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Abstract

In a low energy approximation of the massless Yukawa theory (Nelson model) we derive a Faddeev–
Kulish type formula for the scattering matrix of N electrons and reformulate it in LSZ terms. To this end, 
we perform a decomposition of the infrared finite Dollard modifier into clouds of real and virtual photons, 
whose infrared divergencies mutually cancel. We point out that in the original work of Faddeev and Kulish 
the clouds of real photons are omitted, and consequently their wave-operators are ill-defined on the Fock 
space of free electrons. To support our observations, we compare our final LSZ expression for N = 1 with 
a rigorous non-perturbative construction due to Pizzo. While our discussion contains some heuristic steps, 
they can be formulated as clear-cut mathematical conjectures.
© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The seminal paper of Lehmann, Symanzik and Zimmermann [27] was among the first works 
on mathematical foundations of QFT. It starts from three general principles, namely Poincaré 
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covariance, locality and an asymptotic condition, which specifies a certain form of convergence 
of the interacting fields to the asymptotic (free) fields at large times. Based on these assump-
tions, the paper provides the celebrated LSZ reduction formulae linking the scattering matrix 
elements to the amputated Green functions restricted to the mass-shells of the particles. The au-
thors were aware of some limitations of their approach, in particular pertaining to bound states, 
but expected that the method could be applied to QED. Later studies showed that due to the 
infrared problems and local gauge invariance, all the LSZ assumptions have to be treated with 
care in this case: In fact, Lorentz symmetry is typically broken in charged sectors of QED [5,18]. 
Locality of the Dirac field requires the indefinite metric Gupta–Bleuler formulation [15]. Finally 
and most importantly, the simple-minded asymptotic condition, which presupposes ballistic mo-
tion of independent Wigner particles at large times, is undermined by the presence of long range 
forces [10] and the infraparticle problem [36,5,18]. Indeed, it had gradually become clear, that 
the Wigner concept of a particle is too restrictive to cover the electron, and has to be replaced 
with the notion of an infraparticle which is always accompanied by a cloud of real soft photons. 
In particular, an infraparticle does not have a sharp mass shell, to which the Green functions 
from the LSZ formula could be restricted. Consistently with the infraparticle picture of the elec-
tron, Yennie, Frautschi and Suura derived an algorithm for computation of inclusive collision 
cross-sections in QED, with a necessary summation over infinitely many real soft photons [38]. 
In contrast to the conceptually and mathematically clear LSZ paper, this derivation is heuristic 
and relies heavily on perturbation theory. In spite of several later refinements [26,39,37], a con-
vincing derivation of the Yennie–Frautschi–Suura formula, starting from several physically clear 
assumptions is still an unsolved aspect of the infrared problem.

One line of developments towards a solution of this problem was initiated by Faddeev and 
Kulish. Building on the work of Dollard [10] on quantum-mechanical scattering in the pres-
ence of long-range potentials, these authors proposed a construction of a scattering matrix for 
QED [14]. However, due to a peculiar choice of a lower boundary of integration in the Dol-
lard modifier, this S-matrix has no contributions from real soft photons, and thus it is difficult 
to link it to the Yennie–Frautschi–Suura prescription. For similar reasons, the relation between 
the Faddeev–Kulish approach and the LSZ asymptotic condition, widely discussed in various 
models and settings [4,33,29], has never been fully clarified. Given the recent revival of interest 
in the infrared problems triggered by works of Strominger et al. (see [35] for a review) and a 
prominent role of the Faddeev–Kulish approach for these developments [20,22,21,30,28,25], it 
is worthwhile to revisit these long-standing issues.

Another important line of developments towards a solution of the infrared problem was 
initiated by Fröhlich in [16,17]. These works concern a simplified, non-perturbative model of 
QED (the Nelson model) describing non-relativistic electrons coupled to photons. An LSZ-type 
asymptotic condition for one electron is formulated in [16], taking its infraparticle nature into 
account and carefully modeling the accompanying cloud of real photons. Taking the improve-
ments due to Haag [23] and Ruelle [34] into account, the asymptotic condition is formulated in 
terms of strongly convergent asymptotic field approximants giving rise to scattering states, as 
opposed to the weakly convergent approximants from the original LSZ work. A rigorous proof 
of such an asymptotic condition was given relatively recently by Pizzo in the Nelson model [31]
and by Chen–Fröhlich–Pizzo in a more realistic model of QED [7]. Given this mathematically 
satisfactory situation, the Nelson model is a suitable playground to bridge the gaps between 
the different approaches to the infrared problem mentioned above: the Yennie–Frautschi–Suura 
inclusive cross-sections, the Faddeev–Kulish scattering matrix and the LSZ asymptotic condi-
tion. In the present paper we focus on the step from the Faddeev–Kulish approach to the LSZ 
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Fig. 1. The energy–momentum spectrum in the single-electron sector of the massless Nelson model.

asymptotic condition and leave a derivation of the Yennie–Frautschi–Suura algorithm via the 
corresponding LSZ reduction for future studies. (See, however, some remarks in this direction in 
Section 6.)

The Nelson model has been used for many decades for non-perturbative discussions of in-
frared problems (see e.g. [16,17,31,1,11]). Its Hamiltonian, stated in Section 2 below, can be 
obtained as a low energy approximation of the massless Yukawa theory with the interaction 
Lagrangian LI = λψφψ . Here ψ is the massive Dirac field, whose excitations will be called 
electrons/positrons, and φ is the massless scalar field whose excitations will be called photons 
(although they are spinless). We fix an ultraviolet cut-off κ and approximate the dispersion re-
lation of the massive particles by the non-relativistic formula p �→ p2/(2m), where m = 1 for 
simplicity. As the creation and annihilation processes of the electron–positron pairs can be ne-
glected in the low-energy regime, we can restrict attention to the zero-positron sector and include 
only the electron–photon interactions in the Hamiltonian H of the Nelson model. This Hamil-
tonian commutes with the total number of electrons and we denote by H(N) the N -electron 
Hamiltonians. Furthermore, by the translation invariance of the model, H(N) commutes with the 
respective total momentum operator P (N) and thus this family of operators can be diagonalized 
simultaneously. For N = 1 the lower boundary of their joint spectrum is the physical (renormal-
ized) energy–momentum relation of the electron which we denote p �→ Ep (see Fig. 1). This 
dispersion relation has been a subject of study for many decades and it is relatively well un-
derstood [1,17,32,12]. Two comments about its properties are in order, since they anticipate our 
discussion in the later part of this paper:

(a) In the presence of interaction the physical dispersion relation p �→ Ep differs from the 

bare one p �→ p2

2 appearing in the free Hamiltonian (2.2). This is caused by certain pho-
ton degrees of freedom ‘sitting’ on the bare electron, which are responsible, in particular, for 
radiative corrections to its mass. We will refer to these photons as ‘clouds of virtual photons’, 
to distinguish them from ‘clouds of real photons’ described in (b) below.

(b) It is also well established1 that there are no normalizable states in the Hilbert space of the 
model, that would ‘live’ exactly at the lower boundary of the spectrum from Fig. 1. In other 
words, it is not possible to find normalizable states describing just the physical electron 

1 Strictly speaking for the Nelson model only partial results in this direction have been published [17,32]. For a min-
imally coupled model of non-relativistic QED the absence of such states can be concluded by combining results from 
[24] and [8,19].
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(including its cloud of virtual photons) and no other particles. Hence, the electron is always 
accompanied by some ‘cloud of real photons’, moving to lightlike infinity.

An early discussion of the Faddeev–Kulish formalism in the Nelson model is due to Fröh-
lich [16, Chapter 5], who was quite pessimistic about its rigorous mathematical justification. Our 
work still contains some heuristic steps, but they have the form of plausible, clear-cut conjec-
tures (see Sections 5 and 6). In Section 3 below we start from the concept of the Dollard modifier 
which comes from quantum mechanical long-range scattering and encodes correlations between 
particles which persist at asymptotic times. It does not suffer from any infrared divergencies and 
thus does not require infrared regularization. Such divergencies appear only in Section 4 when we 
start rewriting the Faddeev–Kulish scattering states in the spirit of the LSZ asymptotic condition. 
This is completed in Section 5, where we express the Dollard modifier as a product of infrared 
divergent objects of two types: the clouds of real photons and the clouds of virtual photons, both 
of which are well-defined only in the presence of an infrared cut-off. From this perspective it is 
completely clear, that the two types of infrared divergencies, discussed in (a) and (b) above, must 
mutually cancel as the infrared cut-off is removed. In Section 6 we indicate that the resulting LSZ 
formula in the case N = 1 reproduces, up to minor technical differences, a rigorous formula for 
one-electron scattering states in the Nelson model due to Pizzo [31]. We conclude our discussion 
with several clear-cut mathematical conjectures concerning the convergence of N -electron scat-
tering state approximants in the Nelson model, and with some comments on the LSZ reduction 
formulae for infraparticles.

Strangely, the original work of Faddeev and Kulish misses the central point above, namely the 
cancellation of the infrared divergences coming from the clouds of real and virtual photons. In 
fact, the omission of the lower boundary of integration in formula (9) of [14] (which corresponds 
to dropping term (4.2) below) ensures commutation of the S-matrix with the total momentum of 
charged particles. Consequently, there is no room for clouds of real photons and the S-matrix is 
ill-defined on the Fock space of free electron states. Faddeev and Kulish try to cure this problem 
by a contrived construction of the asymptotic Hilbert space, based on singular coherent states. 
While this strategy may work in some test-cases in perturbation theory, to our knowledge it has 
never matured into a general non-perturbative argument.

Some aspects of this problem have been discussed both in old [33] and very recent works 
[22], but our observation that the lower boundary of integration is responsible for clouds of real 
photons seems to be new. It leads to a very natural solution: we apply the Dollard formalism ac-
cording to the rules of the art [10,9], without tampering with the lower boundary of integration. 
The resulting S-matrix may not commute with the total momentum of the electrons, but it acts on 
the usual Fock space. As mentioned above, the corresponding incoming and outgoing scattering 
states can be given a solid LSZ interpretation in terms of electrons dressed with clouds of virtual 
photons and accompanied by clouds of real photons. In the case of the outgoing states, these real 
photons can be interpreted as Bremsstrahlung, emitted by the colliding electrons. In the case of 
the incoming states one should rather think about the time-inverted process of photons absorbed 
in the collision. We note that only the former photons (i.e. Bremsstrahlung) have a counterpart 
in the Yennie–Frautschi–Suura algorithm for inclusive cross-sections [38]. This suggests that the 
latter (i.e. absorbed) photons, while indispensable for the existence of the incoming scattering 
states, may be superfluous at the level of collision cross-sections. Thus the step from the (time-
reversal invariant) S-matrix to the Yennie–Frautschi–Suura algorithm will surely be more than 
a purely computational exercise. It will also involve the choice of the arrow of time, akin to 
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the choice of boundary conditions in classical electrodynamics. For a more extensive qualitative 
discussion of this aspect (which will not be further discussed here) we refer to [6,2].

2. The model

The Hilbert space of the Nelson model is given by H=Fe ⊗Fph, where Fe, Fph are the Fock 
spaces of the electrons and photons with the creation and annihilation operators denoted b(∗), 
a(∗), respectively. The Hamiltonian of this model is given by

H := H0 + V, (2.1)

H0 :=
∫

d3p
p2

2
b∗(p)b(p) +

∫
d3k |k|a∗(k)a(k), (2.2)

V :=
∫

d3pd3k v(k)
(
b∗(p + k)a(k)b(p) + h.c.

)
, v(k) := λ

χ[0,κ](|k|)√
2|k| , (2.3)

where H0 involves the free evolution of the electrons and photons, V is the interaction, κ is a 
fixed ultraviolet cut-off and χ[0,κ](|k|) = 1 for 0 ≤ |k| ≤ κ and χ[0,κ](|k|) = 0 otherwise. As the 
Fermi statistics and the spin degrees of freedom of the electron will not play any role in the 
following discussion, we suppress the latter in the notation. Also, as we are primarily interested 
in electron collisions, we treat all photons in the model as ‘soft’ and do not introduce any division 
of the range of photon energies [0, κ] into a soft and hard part.

Since this Hamiltonian commutes with the total number N of electrons, we can consider the 
Hamiltonians H(N) on the N -electron subspace H(N) := F (N)

e ⊗Fph, given by

H(N) =
N∑

�=1

(−i∇x�
)2

2
+

∫
d3k |k|a∗(k)a(k) +

N∑
�=1

∫
d3k v(k) (eikx�a(k) + e−ikx�a∗(k)),

(2.4)

where x� is the position operator of the �-th electron and F (N)
e is the N -particle subspace of Fe. 

This quantum-mechanical representation will facilitate the application of the Dollard prescription 
in Section 3.

3. The Dollard formalism

Let us recall very briefly the basics of the Dollard approach to long-range scattering [10,
9]. We consider for a moment a quantum-mechanical particle moving in an external potential. 
Its Hamiltonian, acting on a Hilbert space H̃, is given by H̃ = H̃0 + Ṽ (x), where H̃0 is the free 
Hamiltonian and the potential Ṽ depends on the position of the particle.2 It is well known that e.g. 
for the Coulomb potential the conventional wave-operators �̃out/in

conv = limt→+/−∞ eitH̃ e−itH̃0 do 
not make sense, as they converge weakly to zero. Dollard proposed to replace the free dynamics 
e−itH̃0 with a modified dynamics e−itH̃0ŨD(t), where the Dollard modifier ŨD(t) is constructed 
as follows:

2 We use tilde here to distinguish the quantum mechanical objects from the corresponding objects in our discussion of 
the Nelson model.
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1. Define the time-dependent asymptotic potential Ṽ as(t) := Ṽ (pt) by evaluating the potential 
Ṽ (x) at the expected ballistic trajectory of the particle pt . Here p is the quantum-mechanical 
momentum operator, which can be treated as a number (i.e. a multiplication operator) if we 
work in the momentum representation of the particle. (We set the mass of the particle equal 
to one.)

2. Transform the asymptotic potential to the interaction picture Ṽ as,I(t) := eitH̃0 Ṽ (pt)e−itH̃0 .
3. Define the Dollard modifier as follows ŨD(t) := T exp

( − i
∫ t

0 dτ Ṽ as,I(τ )
)
, where T exp is 

the time-ordered exponential.

Now the Dollard wave-operators have the form �̃out/in = limt→+/−∞ eitH̃ e−itH̃0ŨD(t) and exist 
as strong limits of their approximating sequences for a large class of long-range potentials. For 
a physical justification of the above prescription one should note that for any 
̃0 ∈ H̃ the family 
of states 
̃t = e−itH̃0ŨD(t)
̃0 satisfies

i∂t 
̃t = (H̃0 + Ṽ as(t))
̃t , (3.1)

that is it evolves according to the asymptotic dynamics.
Let us now apply this formalism to the Nelson model defined in the previous section. Our 

starting point is the interaction V , which is given on H(N) by

V =
N∑

�=1

∫
d3k v(k)

(
e−ikx�a∗(k) + eikx�a(k)

)
. (3.2)

According to the Dollard prescription, we construct the asymptotic interaction as follows: We 
substitute x� → ∇Ep�

t , where ∇Ep�
is the velocity of the �-th electron moving with momentum 

p� along the ballistic trajectory, as expected for asymptotic times. Thus we have

V as
p (t) :=

N∑
�=1

∫
d3k v(k)

(
e−ik·∇Ep�

t a∗(k) + eik·∇Ep�
ta(k)

)
, (3.3)

where p := (p1, . . . , pN) are momenta of the electrons, which are just numbers since we work 
in the momentum representation (cf. formula (3.7) below). As the physical dispersion relation 
of the electron is not p �→ p2/2 appearing in H0 but rather the lower boundary p �→ Ep of 
the energy–momentum spectrum, we need to renormalize the free Hamiltonian and thus diverge 
slightly from the Dollard prescription outlined above. We define

H ren
0 :=

∫
d3p (Ep − Cp)b∗(p)b(p) +

∫
d3k |k|a∗(k)a(k), Cp :=

∫
d3k

v(k)2

�p(k)
.

(3.4)

Here �p(k) := |k| − k · ∇Ep and the choice of the normalization constant Cp will be justified 
a posteriori in Section 5. (The need to renormalize the free Hamiltonian was noted already in 
[16].) Thus the asymptotic interaction in the interaction picture is

V as,I
p (t) = eiH ren

0 tV as
p (t)e−iH ren

0 t

=
N∑∫

d3k v(k)
(
ei(|k|−k·∇Ep�

)t a∗(k) + e−i(|k|−k·∇Ep�
)t a(k)

)

�=1



W. Dybalski / Nuclear Physics B 925 (2017) 455–469 461
=
N∑

�=1

∫
d3k v(k)

(
ei�p�

(k)t a∗(k) + e−i�p�
(k)t a(k)

)
. (3.5)

Now we define the Dollard modifier

UD
p (t) := T exp

( − i

t∫
0

dτV as,I
p (τ )

) = e
−i

∫ t
0 dτ V

as,I
p (τ)− 1

2

∫ t
0 dτ1

∫ τ1
0 dτ2 [V as,I

p (τ1),V
as,I
p (τ2)],

(3.6)

where the second step above is standard [14]. For any family of functions h� ∈ C∞
0 (R3), � =

1, . . . , N , of the electron momenta we define the corresponding scattering state approximant as 
follows:


h,t = eiHte−iH ren
0 t

∫
d3p1 . . . d3pN UD

p (t)h1(p1) . . . hN(pN)b∗(p1) . . . b∗(pN)|0〉

= eiHte−iH ren
0 t

∫
d3Np UD

p (t)h(p)b∗(p)N |0〉, (3.7)

where in the second step we introduced some obvious short-hand notation. We note that all the 
quantities above are well defined without infrared regularization. But a need for infrared regular-
ization will arise in the next subsection, where we start reformulating states (3.7) in terms of the 
LSZ asymptotic creation operators of photons and electrons. Their approximating sequences are 
given schematically by

t �→ eiHt
(
e−i|k|t a∗(k)

)
e−iH t , t �→ eiHt

(
e−iEptb∗(p)

)
e−iH t . (3.8)

As we will see in (6.6)–(6.7) below, b∗(p) will actually require renormalization.
To conclude this section, we define the wave-operators �in/out : Fe → H for the electron 

scattering as follows

�in/out(∫
d3Np h(p)b∗(p)N |0〉) = lim

t→−/+∞ eiHte−iH ren
0 t

∫
d3Np UD

p (t)h(p)b∗(p)N |0〉
(3.9)

so that the corresponding scattering matrix S := (�out)∗�in is an operator on Fe. The existence 
of the limit in (3.9) is not settled, but seems to be a feasible functional-analytic problem, as we 
discuss in Section 6.

4. Infrared regularization

Let us consider the exponential in the Dollard modifier (3.6) and perform the time integral

−i

t∫
0

dτ V as,I
p (τ ) = (−i)

N∑
�=1

∫
d3k v(k)

(
(ei�p�

(k)t − 1)

i�p�
(k)

a∗(k) + (e−i�p�
(k)t − 1)

(−i)�p�
(k)

a(k)

)

(4.1)

=
N∑

�=1

∫
d3k

v(k)

�p�
(k)

(
a∗(k) − a(k)

)
(4.2)

−
N∑

�′=1

∫
d3k

v(k)

�p�′ (k)

(
e
i�p

�′ (k)t
a∗(k) − e

−i�p
�′ (k)t

a(k)
)
. (4.3)
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Since the l.h.s. of (4.1) is manifestly infrared finite, the same is true for the r.h.s. of this expres-
sion. However, terms (4.2) and (4.3) considered separately, coming from the lower and upper 
boundary of the τ -integration, are infrared singular. Indeed, they involve a(∗)(k) integrated with 
functions which have a non-square-integrable singularity at zero momentum. This division of a 
regular expression into two singular parts, which will be needed to express the approximating 
vector (3.7) in the LSZ fashion, is the source of infrared divergencies, which must mutually can-
cel. As we pointed out above, in the work of Faddeev and Kulish [14] the counterpart of (4.2) is 
omitted.

To make sense out of (4.2) and (4.3), we need some infrared regularization of (3.7). To this 
end, we introduce an infrared cut-off σ > 0 and define a regularized version of the form factor 
from (2.3)

vσ (k) := λ
χ[σ,κ](|k|)√

2|k| , (4.4)

where χ[σ,κ](|k|) = 1 for σ ≤ |k| ≤ κ and χ[σ,κ](|k|) = 0 otherwise. The corresponding potential 
and Hamiltonians are denoted Vσ , Hσ , H(N)

σ and p �→ Ep,σ is the resulting dispersion relation 
of the electron. Next, we define the regularized approximating sequence analogously as in the 
previous section


σ
h,t = eiHte

−iH ren
0;σ t

∫
d3Np UD

p,σ (t)h(p)b∗(p)N |0〉, (4.5)

with the help of the regularized quantities:

H ren
0;σ :=

∫
d3p (Ep,σ − Cp,σ )b∗(p)b(p) +

∫
d3k |k|a∗(k)a(k), (4.6)

UD
p,σ (t) := T exp

( − i

t∫
0

dτ V as,I
p,σ (τ )

) = e
−i

∫ t
0 dτV

as,I
p,σ (τ )− 1

2

∫ t
0 dτ1

∫ τ1
0 dτ2[V as,I

p,σ (τ1),V
as,I
p,σ (τ2)],

(4.7)

V as,I
p,σ (t) =

N∑
�=1

∫
d3k vσ (k)

(
ei�p�,σ (k)t a∗(k) + e−i�p�,σ (k)t a(k)

)
, (4.8)

where Cp,σ := ∫
d3k

vσ (k)2

�p,σ (k)
and �p,σ (k) := |k| − k · ∇Ep,σ . In this situation we have, analo-

gously as in (4.2)–(4.3),

−i

t∫
0

dτ V as,I
p,σ (τ ) =

N∑
�=1

∫
d3k

vσ (k)

�p�,σ (k)

(
a∗(k) − a(k)

)
(4.9)

−
N∑

�′=1

∫
d3k

vσ (k)

�p�′ ,σ (k)

(
e
i�p

�′ ,σ (k)t
a∗(k) − e

−i�p
�′ ,σ (k)t

a(k)
)
, (4.10)

but the two terms (4.9) and (4.10) above are now well defined and can be analyzed separately. 
By a straightforward computation using the Baker–Campbell–Hausdorff formula, we thus obtain 
from (4.5)


σ
h,t = eiHte

−iH ren
0;σ t

∫
d3Np e

iγp,σ (t)
e
−θp,σ (t)

N∏ (
eiCp�,σ t e

∫
d3k

vσ (k)
�p�,σ (k)

(a∗(k)−a(k))
)

×

�=1
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×
N∏

�′=1

(
e
−Dp

�′ ,σ e
− ∫

d3k
vσ (k)

�p
�′ ,σ (k)

e
i�p

�′ ,σ (k)t
a∗(k)

)
h(p)b∗(p)N |0〉,

(4.11)

where Cp,σ appeared below (4.8) and Dp,σ := 1
2

∫
d3k

vσ (k)2

�p,σ (k)2 . The real-valued numerical func-

tions γp,σ , θp,σ are stated in (5.9)–(5.12) below and will be discussed later.

5. Clouds of real and virtual photons, phases

Now we rewrite formula (4.11) in the LSZ fashion to facilitate its interpretation in terms of real 
and virtual photon clouds. By shifting the term e−iH ren

0;σ t to the right and noting the cancellation 
of the constants Cp�,σ (cf. (4.6)) we get


σ
h,t = eiHt

∫
d3Np e

iγp,σ (t)
e
−θp,σ (t)

N∏
�=1

(
e

∫
d3k

vσ (k)
�p�,σ (k)

(e−i|k|t a∗(k)−ei|k|t a(k))
)

× (5.1)

×
N∏

�′=1

(
e
−Dp

�′ ,σ e
− ∫

d3k
vσ (k)

�p
�′ ,σ (k)

e
−ik·∇Ep

�′ ,σ t
a∗(k)

)
ht (p)b∗(p)N |0〉,

(5.2)

where ht (p) := ∏N
�=1

(
e−iEp�,σ th�(p�)

)
is the (renormalized) free evolution of h.

In the bracket in (5.1) we recognize the LSZ approximants of the clouds of real photons. For 
future reference we set

Wp,σ (t) := e

∫
d3k

vσ (k)
�p,σ (k)

(e−i|k|t a∗(k)−ei|k|t a(k))
. (5.3)

It is more difficult to recast the expression in (5.2) as LSZ approximants pertaining to the elec-
trons. For this purpose we reverse the Dollard prescription in the expression e−ik·∇Ep,σ t in (5.2)
that is we make a substitution e−ik·∇Ep

�′ ,σ t → e−ik·x� . This leads us to a new family of approxi-
mating vectors


̃σ
h,t = eiHt

∫
d3Np e

iγp,σ (t)
e
−θp,σ (t)

( N∏
�=1

Wp�,σ (t)

)
×

×
( N∏

�′=1

e
−Dp

�′ ,σ e
− ∫

d3k
vσ (k)

�p
�′ ,σ (k)

e
−ik·x

�′ t a∗(k)
)

ht (p)b∗(p)N |0〉.
(5.4)

Although we do not have a rigorous proof that limt→∞ ‖
σ
h,t − 
̃σ

h,t‖ = 0, it is intuitively clear, 
that the position x of the freely evolving electron behaves asymptotically as ∇Ep,σ t . (As a 
matter of fact, a similar substitution is used in the rigorous work of Pizzo, which we discuss in 
Section 6.) To simplify (5.4), we define the following (tentative) renormalized creation operator 
of the electron

b̃∗
σ (p) :=

∞∑
m=0

1√
m!

∫
d3mk f̃ m

p,σ (k1, . . . , km)a∗(k1) . . . a∗(km)b∗(p − k(m)), (5.5)

f̃ m
p,σ (k1, . . . , km) := (−1)me−Dp,σ

vσ (k1)
. . .

vσ (km)
, (5.6)
�p,σ (k1) �p,σ (km)
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where k(m) = k1 + · · · + km. Using e−ik·xb∗(p)|0〉 = b∗(p − k)|0〉, it is then easy to show that

e−Dp,σ

(
e
− ∫

d3k
vσ (k)

�p,σ (k)
e−ik·xa∗(k)

)
b∗(p)|0〉 = b̃∗

σ (p)|0〉. (5.7)

Thus, intuitively, b̃∗
σ (p) creates from the vacuum the electron with its cloud of virtual photons.

Consequently, we can rewrite (5.4) in the LSZ form:


̃σ
h,t = eiHt

∫
d3Np e

iγp,σ (t)
e
−θp,σ (t)

( N∏
�=1

Wp�,σ (t)

)( N∏
�′=1

e
−iEp

�′ ,σ t
h�′(p�′)b̃∗

σ (p�′)

)
|0〉.

(5.8)

The real-valued functions γp,σ and θp,σ , appearing above, have the following explicit form

γp,σ (t) := γ1;p,σ (t) + γ2;p,σ (t),

γ1;p,σ (t) := −2
N∑

�=1

∫
d3k vσ (k)2 sin �p�,σ (k)t

�2
p�,σ

(k)
, (5.9)

γ2;p,σ (t) := −2
∑
�<�′

∫
d3k vσ (k)2 (sin�p�′ ,σ (k)t + sin�p�,σ (k)t)

�p�,σ (k)�p�′ ,σ (k)
(5.10)

+
∑
�<�′

∫
d3k vσ (k)2

(
1

�p�,σ (k)
+ 1

�p�′ ,σ (k)

)
sin (�p�,σ (k) − �p�′ ,σ (k))t

(�p�,σ (k) − �p�′ ,σ (k))
,

(5.11)

θp,σ (t) :=
∑
�<�′

∫
d3k vσ (k)2 cos(�p�′ ,σ (k) − �p�,σ (k))t

�p�,σ (k)�p�′ ,σ (k)
. (5.12)

Recalling that �p,σ (k) = |k| − ∇Ep,σ · k and therefore �p�,σ (k) − �p�′ ,σ (k) = (∇Ep�′ ,σ −
∇Ep�,σ ) · k we expect that the above contributions facilitate the asymptotic decoupling between 
the following particles:

• (5.9): the �-th electron and a photon from the �-th cloud.
• (5.10): the �-th electron and a photon from the �′-th cloud (and vice versa).
• (5.11), (5.12): the �-th electron and the �′-th electron.

Expression (5.11) corresponds to the Coulomb phase and it is easy to show that it behaves as 
log t for large t and σ = 0. The remaining terms do not have counterparts in many-body quantum 
mechanical scattering.

6. Comparison with a rigorous LSZ approach

For N = 1 formula (5.8) is very similar to the single-electron state approximants obtained by 
Pizzo in [31]. To obtain these latter states from (5.8) one has to make the following modifications:

1. Cell partition: The region of p-integration in (5.8) has to be divided into time-dependent 
cubes. Suppose, for convenience, that this region is a cube of volume equal to one, centered 
at zero. At time 1 ≤ |t | the linear dimension of each cell is 1/2n, where n ∈ N is s.t.
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(2n)1/ε ≤ |t | < (2n+1)1/ε (6.1)

for a small exponent ε > 0. Thus there are 23n ≤ |t |3ε cells. Each such cell is denoted �(t)
j

and the collection of all cells �(t).
2. Photon clouds: The photon cloud Wp,σ (t) from (5.8) should be replaced with the cloud 

Wσ (vj , t), defined in (6.3) below, associated with the cube �(t)
j containing p and depending 

on the velocity vj := ∇Epj ,σ in the center of the cube �(t)
j . Thus one makes the following 

substitution

Wp,σ (t) := exp

{
−

∫
d3k vσ (k)

a(k)ei|k|t − a∗(k)e−i|k|t

|k|(1 − k̂ · ∇Ep,σ )

}
(6.2)

↓
Wσ (vj , t) := exp

{
−

∫
d3k vσ (k)

a(k)ei|k|t − a∗(k)e−i|k|t

|k|(1 − k̂ · vj )

}
, (6.3)

where vj := ∇Epj ,σ is the velocity in the center of the cube �(t)
j and k̂ := k/|k|. Clearly, the 

difference |∇Ep,σ − vj | tends to zero as t → ∞ and the size of each cube �(t) shrinks to 
zero, so it should not be difficult to justify this substitution.

3. Phases: The phase γp,σ (t) from (5.8) should be replaced with the phase defined in (6.5)
below. Thus in view of (5.9) and the definition above �p,σ (k) := |k| − k · ∇Ep,σ , we make 
the substitution

γp,σ (t) = −
t∫

0

dτ

{ ∫
0≤|k|

d|k|dω(k̂) vσ (k)2(2|k|)
(

cos(k · ∇Ep,σ τ − |k|τ)

1 − k̂ · ∇Ep,σ

)}
(6.4)

↓

γσ (vj , t)(p) = −
t∫

1

dτ

{ ∫
0≤|k|≤σ S

τ

d|k|dω(k̂) vσ (k)2(2|k|)
(

cos(k · ∇Ep,σ τ − |k|τ)

1 − k̂ · vj

)}
,

(6.5)

where dω(k̂) := sin θ
k̂
dθ

k̂
dφ

k̂
is the measure on the unit sphere, and τ �→ σ S

τ = κτ−α , 1/2 <
α < 1, is the slow infrared cut-off. (As stated in 5. below, the cut-off σ will tend to zero with 
t much faster.) Since the region of momenta |k| ≥ σ S

τ affected by the above change is well 
separated from the infrared singularity, it is easy to justify the above step using stationary 
phase arguments.

4. Renormalized creation operators: The tentative renormalized creation operator of the elec-
tron (5.5)–(5.6) should be replaced with the actual renormalized creation operator, given by 
(6.7) below. That is, we make the following replacement:

b̃∗
σ (p) :=

∞∑
m=0

1√
m!

∫
d3mk f̃ m

p,σ (k1, . . . , km)a∗(k1) . . . a∗(km)b∗(p − k(m)), (6.6)

↓

b̂∗
σ (p) :=

∞∑ 1√
m!

∫
d3mk f m

p,σ (k1, . . . , km)a∗(k1) . . . a∗(km)b∗(p − k(m)), (6.7)

m=0
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where the functions f̃ m
p,σ are given by (5.6) and f m

p,σ are the wave-functions of the nor-
malized ground states ψp,σ of the fiber Hamiltonians Hp,σ . These latter Hamiltonians are 
defined via the direct integral decomposition

H(1)
σ = �∗

( ⊕∫
d3p Hp,σ

)
�, (6.8)

where � is a certain unitary identification of Hilbert spaces and Hp,σ is a concrete operator 
on an auxiliary fiber Fock space Ffi. The key property of the operator (6.7) is that it creates 
a freely-evolving physical electron from the vacuum (at fixed σ > 0), i.e.

eiHσ t

∫
d3p h(p)b̂∗(p)|0〉 = �∗

⊕∫
d3p e−itEp,σ th(p)ψp,σ . (6.9)

Starting from [13, formula (4.43)], [12, formula (5.2)] and using methods from these refer-
ences one can show that

f m
p,σ (k1, . . . , km) = f̃ m

p,σ (k1, . . . , km) + · · · , (6.10)

where the omitted terms are either of order λ or more regular near zero than f̃ m
p,σ , at least 

in some variables ki . Thus in the weak coupling regime f̃ m
p,σ captures the leading part of 

the infrared singularity of f m
p,σ . Further analysis in this direction is needed to justify the 

substitution (6.6) → (6.7), which takes correlations between the virtual photons dressing the 
electron into account.

5. Fast infrared cut-off: The infrared cut-off σ appearing in (5.8) should be removed in the 
limit t → ∞. More precisely, one sets

σ → σt := 1/tβ, (6.11)

for β ≥ 1 sufficiently large.

After the above changes, we obtain from (5.8) the following approximating sequence


̂h,t := eiHt
∑

j∈�(t)

Wσt (vj , t)

∫
�

(t)
j

d3p e−iEp,σt t eiγσt (vj ,t)(p)h(p)b̂∗
σt

(p)|0〉. (6.12)

It was rigorously proven by Pizzo in [31] that the outgoing and incoming single-electron states 

̂

in/out
h := limt→−/+∞ 
̂h,t exist and are non-zero.
Given the above considerations, there is hope for proving convergence of the Faddeev–Kulish 

type approximating sequence (3.7) in the single-electron case by estimating the norm distance to 
the Pizzo state (6.12). The most difficult parts will be the partial reversal of the Dollard prescrip-
tion (5.2) → (5.4) and the step from the tentative to the actual renormalized creation operator 
of the electron (6.6) → (6.7). A more ambitious strategy consists in proving the existence of the 
limit of (3.6) directly, e.g. via an application of the Cook’s method. Also here it seems neces-
sary to make contact with the renormalized creation operator b̂∗(p), in order to exploit the key 
property (6.9). We hope to come back to these problems in future publications.

So far there is no counterpart of the result of Pizzo for two or more electrons. Actually, it is 
not even clear how the approximating sequence (6.12) should look like in this case. As scattering 
of two electrons in the Nelson model is currently under investigation [11–13], it is worth pointing 
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out that the Faddeev–Kulish type analysis from previous sections gives a reasonable candidate. 
In fact, let us simply apply the modifications 1.–5. listed above to the approximating vector (5.8)
in the case N = 2. We obtain


̂
(2)
h,t := eiHt

∑
j1,j2∈�(t)

Wσt (vj1 , t)Wσt (vj2, t)

∫
�

(t)
j1

×�
(t)
j2

d3p1d
3p2 e

iγ2;p,σt (t)e
−θp,σt (t)×

×
(

e−iEp1,σt t eiγσt (vj1 ,t)(p1)h1(p1)b̂
∗
σt

(p1)

)(
e−iEp2,σt t eiγσt (vj2 ,t)(p2)h2(p2)b̂

∗
σt

(p2)

)
|0〉,

(6.13)

where γ2;p,σ , θp,σ are given by (5.10)–(5.12) and may require some small modifications, akin to 
(6.4)→(6.5). We are confident that the above observations will facilitate mathematically rigorous 
research on scattering of two electrons in the Nelson model.

If the existence of the scattering states 
̂(2),out/in
h := limt→+/−∞ 
̂

(2)
h,t can be established, it 

will constitute an LSZ-type asymptotic condition for the two-electron scattering in the Nelson 
model. It is a natural question, how to derive the LSZ reduction formula for the corresponding 
S-matrix elements Sh′,h := 〈
̂(2),out

h′ , 
̂(2),in
h 〉. Although this question, and a comparison of the 

result with the Yennie–Frautschi–Suura formula, is outside the scope of the present paper, let us 
provide some comments in this direction: We define the relevant LSZ approximants, similarly as 
in (3.8):

b̂∗
j (t) := eitH

(∫
d3p e−iEpthj (p)b̂∗

σt
(p)

)
e−itH , Wj (t) := eitHWσt (vj , t)e

−itH ,

(6.14)

where hj is the restriction of h to the cube j and we disregard here the time-dependence of the 
cubes. The matrix element Sh′,h can be expressed in terms of the expectation values of the form

〈0|b̂j ′
2
(t)b̂j ′

1
(t)Wj ′

2
(t)∗Wj ′

1
(t)∗Wj1(−t)Wj2(−t)b̂∗

j1
(−t)b̂∗

j2
(−t)|0〉, (6.15)

for large t > 0. Next, for any pair of operators C1, C2 one considers functions τ �→ Fj,τ which 
satisfy (cf. [3, Lemma 5.7]

Fj,τ =
{

C1b̂
∗
j (τ ) for τ � −1,

b̂∗
j (τ )C2 for t � 1.

(6.16)

Then one notes the identity

t∫
−t

dτ ∂τFj,τ = b̂∗
j (t)C2 − C1b̂

∗
j (−t). (6.17)

(Of course an analogous relation can be written for the photon fields Wj (t).) Such identities 
allow us to replace the incoming LSZ approximants in (6.15) with the outgoing ones at a cost 
of time-ordered products of the photon and electron fields. The resulting scalar product of two 
outgoing scattering states corresponds to the trivial part of the scattering matrix and the expres-
sion involving time-ordered products encodes the interaction. Clearly, the above formulas differ 
in some respects from the original LSZ formalism, as the asymptotic condition is adapted to the 

non-relativistic model. In particular, we note the absence of the typical 
↔
∂ 0 expression in (6.14)

and of the Klein–Gordon operator in (6.17). More importantly, the ‘restriction to the electron’s 
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mass-shell’ is a subtle two-step procedure in the infraparticle case: First, at a non-zero infrared 
cut-off σt > 0, the renormalized creation operator b̂∗

σt
(p) creates a physical single-electron state 

according to (6.9). Next, the infrared singularity appearing in the limit σt → 0 (i.e. t → ∞) 
must be cancelled by the clouds of real photons Wj (t). Surely, it will still require a considerable 
amount of work and insight to turn the above remarks into convincing computations, but there is 
little doubt that the LSZ approach can be adapted to scattering of several infraparticles.

7. Conclusion

In this paper we revisited the Faddeev–Kulish approach to the electron scattering in the context 
of the massless Nelson model. In contrast to the original paper of Faddeev and Kulish, we applied 
the Dollard formalism according to the rules of the art, without dropping the lower boundary of 
integration. This led us to a scattering matrix which is meaningful on the usual Fock space of 
free electrons, but does not commute with the total electron momentum. This latter point was 
clarified in the later part of our analysis, where we reformulated this scattering matrix in the LSZ 
terms: The lower boundary of integration gives rise to clouds of real photons which always carry 
some momentum. Furthermore, we checked that the resulting LSZ formula at the one-electron 
level reproduces single-electron states constructed rigorously by Pizzo, up to minor technical 
differences. Our observations provide clear-cut mathematical conjectures, which will facilitate 
rigorous research of N -electron scattering in the massless Nelson model. Our findings may also 
provide a more solid basis for heuristic discussions of scattering theory in QED, which is a 
popular topic in current physics literature.
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