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Abstract: Deep geothermal energy systems employ electric submersible pumps (ESPs) in order to
lift geothermal fluid from the production well to the surface. However, rough downhole conditions
and high flow rates impose heavy strain on the components, leading to frequent failures of the pump
system. As downhole sensor data is limited and often unrealible, a detailed and dynamical model
system will serve as basis for deeper understanding and analysis of the overall system behavior.
Furthermore, it allows to design model-based condition monitoring and fault detection systems,
and to improve controls leading to a more robust and efficient operation. In this paper, a detailed
state-space model of the complete ESP system is derived, covering the electrical, mechanical and
hydraulic subsystems. Based on the derived model, the start-up phase of an exemplary yet
realistic ESP system in the Megawatt range—located at a setting depth of 950 m and producing
geothermal fluid of 140 ◦C temperature at a rate of 0.145 m3 s−1—is simulated in MATLAB/Simulink.
The simulation results show that the system reaches a stable operating point with realistic values.
Furthermore, the effect of self-excitation between the filter capacitor and the motor inductor can
clearly be observed. A full set of parameters is provided, allowing for direct model implementation
and reproduction of the presented results.

Keywords: deep geothermal; energy system; artificial lift; electric submersible pump; ESP; simulation;
model-based; condition monitoring; control; induction machine; state-space modeling

1. Introduction

Geothermal energy systems have major advantages compared to other sustainable energy systems:
(i) they provide base load power since they are not depending on variable environmental conditions
such as wind or sunlight and (ii) they are flexible in their usage as both heat and electrical power
may be produced. In so-called low enthalpy regions with reservoir temperatures below 200 ◦C [1],
p. 32—e.g., the Bavarian Molasse Basin in southern Germany or the Paris Basin in France—electric
energy production is made possible by Organic Rankine Cycle (OCR) or Kalina technology. However,
in order to efficiently and economically produce electric power with state-of-the-art technology,
a geothermal fluid temperature of at least 120 ◦C is indispensible [1], p. 43. With an average temperature
increase of 3 ◦C per 100 m depths [1], p. 8, the drilling depths in low enthalpy regions may reach several
hundreds to thousands of meters in order to meet the temperature requirements. It is these areas,
where deep geothermal systems are typically deployed.

In order to lift the geothermal fluid from the reservoir to the surface, electric submersible pumps
(ESP) are employed. Since the ESP technology was predominantly adopted from the oil industry,
the systems were not originally designed to withstand the harsh downhole conditions and high
volume flow rates required in geothermal power applications [2]. Typical problems involve corrosion,
accumulation of carbonate structures (scalings) or insulation failure in the electrical system [3–5].
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Although ESP manufacturers increased research activity and developed improved designs with higher
power and temperature ratings in recent years [3,6], average lifetimes of only a few month—referring
to current installations in Germany—remain the bottleneck of the technology [7], p. 62, [8], p. 681.

Reducing the risk of sudden system failure has thus become an important task for operators
since unscheduled maintenance and repair services are generally costly and hence to be avoided.
Examples of faults in geothermal ESP applications are [8], p. 672:

• Loose cable connections on the motor side (e.g., due to vibrations), leading to an increased electric
resistance (possibly differing per phase) and lowering the motor output power.

• Motor insulation faults, resulting in currents among the windings or between the windings
and ground.

• Solid parts (scalings) entering the pump, reducing the flow rate and causing fluctuations in the
pump pressure and load torque.

• Bearing wear, resulting in higher mechanical friction and overheating of components.
• Shaft fracture, due to abrupt changes in the mechanical load.

One possible solution are condition monitoring systems which may help operators to identify
imminent faults at an early stage and consequently perform a scheduled maintenance service in order
to prevent catastrophic breakdowns or critical failure. These systems, however, depend on detailed
knowledge of the system, obtained through measurements in the downhole and surface equipment,
respectively. As downhole sensor data is typically transmitted analogously via modulation onto the
supply voltage [9], the signals are highly distorted and hence unsuited for the reliable detection of
faults. Other components might simply not be accessible by sensors, impeding further insight into the
respective components. This inherent lack of insight into the system state motivates for model-based
techniques. In addition, a system model allows for further system analysis, on- and offline simulations
and controller design, which makes it a valuable tool for the overall improvement of the ESP system
performance and lifetime.

Publications dealing with the modeling and simulation of ESP systems are rarely found.
Furthermore, most results are related to oil field applications and provide a limited scope on single
subsystems of the ESP only. For instance, Lima et al. describe and simulate an oil field ESP in [10],
accounting for the special motor geometry, the mechanical coupling between motor and load and
the power transmission through the cable. Although the electrical and mechanical components
are described in detail and model sketches are presented, no equations are provided, nor is the
hydraulic subsystem treated. Thorsen and Dalva also provide an electrical and mechanical model of
an ESP in [11], putting special emphasis on the mechanical resonance observed in the load torque,
due to elastic coupling between the individual pump stages. The hydraulic part is neglected, however.
Substantial research was also conducted by Liang et al., who analyzed ESP systems for subsea oil
applications focussing on load filter design methods and evaluation [12,13] and power transmission
via downhole cables [14]. Simulation and experimental results from field studies are provided,
yet the exact models underlying those results are not presented. On the contrary, Kallesøe derived
a general state-space model of an induction motor coupled with a multistage centrifugal pump [15].
The hydraulic part of the pump was derived by means of 1D streamline theory from fluid dynamics.
In the derived model, the transient part of the pressure (head) created by the pump and subsequently
the flow dynamics resulting from it are omitted, though. In fact, it is worth mentioning that the
transient model of the pump pressure is hardly found in literature with two exceptions, namely [16,17],
which solely focus on the hydraulic modeling. A simplified state-space model of a centrifugal pump
system is proposed by Janevska in [18], taking into account the reservoir. The electrical system
components, however, are not included.

Considering the above findings, to the best knowledge of the authors a complete model of
a geothermal ESP system has not been published yet. It is, therefore, the aim of this work to
provide a ready-to-use state-space model of a deep geothermal ESP system that allows for a better
understanding of the overall system and serves as a foundation for the development of model-based
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(online) condition monitoring strategies, state observers (as sensor surrogates or for redundancy) and
sophisticated control algorithms. Inputs to the model are high quality surface measurements—as
opposed to the often unreliable and noisy downhole measurements—of the voltages, currents and flow
rate, respectively, allowing for on- and offline simulations of the system and testing of the developed
algorithms. A system theoretical modeling approach covering the electrical, mechanical and hydraulic
subsystem is chosen, which is based on deriving the state-space descriptions from physical relations of
the various system states, expressed as a set of nonlinearly coupled first-order differential equations.

2. State-Space Model of Deep Geothermal ESP Systems

In this section, a nonlinear state-space model is derived, laying the foundation for implementations
and further system analysis. As the main objective of this paper is to provide a modular system model
that can easily be implemented and extended in simulation software, each component is modeled
separately, allowing for convenient exchange of single components. Although the aim is to map the
physical system in as much detail as possible, generally a trade-off between model complexity and
accuracy must be found. It may therefore be necessary to impose simplifying assumptions in order to
obtain a state-space description.

An overview of the whole ESP system, its three subsystems and their components is given in Figure 1.
The basic components of the ESP system with variable speed drive (VSD) are (see e.g., [3,10,13]):

1. Voltage-source inverter (VSI) (producing variable frequency and amplitude output voltages),
2. Sine filter (converting the pulsed VSI output voltages into almost sinusoidal voltages),
3. Cable (transmitting the electrical power to the downhole motor),
4. Motor (driving the pump by converting electrical into mechanical power),
5. Protector (Seal) (serving as axial bearing and oil reservoir placed between motor and pump),
6. Shaft (transmitting the mechanical power from the motor to the pump),
7. Pump (generating pressure by converting mechanical into hydraulic power), and
8. Pipe system and geothermal reservoir (representing the hydraulic load).

VSI Filter Cable Motor Shaft Pump Pipes & GR

Electrical subsystem Mechanical subsystem Hydraulical subsystem

Motor Pump

Figure 1. Subsystems and components of an electric submersible pump (ESP) in deep geothermal
energy applications (GR = geothermal reservoir).

In the derived model, the Protector is considered to be a part (extension) of the shaft and is
therefore included in the shaft model, without further elaboration on axial forces acting on the motor
and pump, respectively. Based on the considered component selection, the nonlinear state-space
models of the electrical, mechanical and hydraulic subsystems are derived in the following.

2.1. Electrical Subsystem

The electrical subsystem covers the inverter, sine filter, cable and motor. Based on three-phase
equivalent circuits, a two-phase description is derived for each component, yielding expressions for
the inputs and output currents and (phase) voltages, respectively. The phase voltages are stated with
respect to the reference potential measured at the motor star point YM, which is further specified in the
motor section.

2.1.1. Inverter

The power converter links the grid with the electrical drive system and is typically given in
back-to-back configuration, with a grid-side voltage source inverter (VSI), a common DC-link and
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a motor-side VSI. Instead of the grid-side VSI (active front end), which allows bidirectional power
flow, a diode bridge may alternatively be used as a rectifier, if the electric power is supposed to flow
from the grid to the machine only. The model derived in this paper assumes a constantly charged
DC-link capacitance (see Assumption 2) and hence restrains to the motor side. The motor-side VSI
serves as a voltage and power source for the electrical machine of the pump, generating sinusoidal
voltages of variable frequency and amplitude according to a specified reference voltage. In this paper
a 5-level active neutral point clamped (ANPC-5L) inverter as described in [19] is employed, which is
well-suited for medium voltage drive applications.

The schematic of a single phase k ∈ {a, b, c} of the inverter is depicted in Figure 2. Each phase a,
b or c of the inverter consists of three cascaded cells with a total of eight power switches per phase.
The input is accessed via the terminals D+ and D− while the output voltages are taken from the
terminals Tk, respectively. Moreover, the phase current ik

v flows out of the inverter. The power switches
of phase k—typically given as insulated-gate bipolar transistors (IGBT)—are controlled by the three
switching signals sk1, sk2, sk3 ∈ {0, 1} (the respective inverse signals are denoted by s̄k1 = 1− sk1,
s̄k2 = 1− sk2 and s̄k3 = 1− sk3). Cell 1 is controlled by switching signal sk1, with switches 1 and
3 (counted from top to bottom) and switches 2 and 4 controlled in pairs. Cell 2 consists of two
complementary switches controlled by sk2, as does cell 3 which in turn is controlled by sk3.Version September 21, 2017 submitted to Energies 4 of 36
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Figure 2. Equivalent circuit for a single phase k ∈ {a, b, c} of a 5-level active neutral point clamped
(ANPC-5L) inverter. The current paths (colored graphs) depend on the inverter switching levels.
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(ANPC-5L) inverter. The current paths (colored lines) depend on the inverter switching levels.

Assumption 1 (Ideal switches). The inverter IGBTs are assumed ideal switches with switching levels ’1’
(closed) and ’0’ (open), i.e.,

• no current may flow if the switch is open,
• bidirectional current may flow without voltage drop, if the switch is closed and
• the switching takes place instantaneously (no switching delay).

The input DC-link capacitances Cdc1 are shared between the three phases, whereas the capacitance
Cdc2 is assigned to each phase individually [19]. While Cdc1 is charged by the grid-side rectifier or VSI,
Cdc2 is charged by exploiting redundant switching-states and thus controlling the current flowing into
or out of the capacitance (i.e., “voltage balancing”). As sophisticated inverter control algorithms are
beyond the scope of this paper, the following assumption is made.

Assumption 2 (VSI capacitance). The inverter capacitances Cdc1 and Cdc2 are charged to defined voltage
levels udc

2 and udc
4 and are assumed constant for all times.
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The switching combinations and resulting output voltages of phase k are listed in Table 1.
The corresponding current paths are indicated in Figure 2 by the colored lines, which comply
with the background colors of the table rows. Although three switches allow for eight different
switching combinations, the line-to-neutral voltage uk0

v (in V) measured between the output terminal
Tk and the neutral point 0 can attain five distinct voltage levels, i.e., uk0

v ∈ {− udc
2 ,− udc

4 , 0, udc
4 , udc

2 }.
This aforementioned redundancy can be used to charge the phase capacitance Cdc2 . However, the exact
switching combinations leading to the different voltage levels are irrelevant for the model presented
in this paper and therefore the overall switching signal sk ∈ {0, 1, 2, 3, 4} is used to summarize and
describe the overall switching-state and its respective output voltage level for phase k.

Table 1. Switching states and output voltage levels of a single 5-level ANPC inverter phase.

State sk Switch sk1 Switch sk2 Switch sk2 Output Voltage uk0
v

0 0 0 0 − udc
2

1 0 0 1 − udc
4

1 0 1 0 − udc
4

2 1 0 0 0
2 0 1 1 0
3 1 0 1 udc

4
3 1 1 0 udc

4
4 1 1 1 − udc

2

Hence, the overall three-phase switching-state vector sabc = (sa, sb, sc)> ∈ {0, 1, 2, 3, 4}3 can be
introduced such that the line-to-neutral voltages uabc0

v = (ua0
v , ub0

v , uc0
v )> may be written as:

uabc0
v =

1
4

sabcudc −
1
2

13udc. (1)

The line-to-line voltages ua-b-c
v = (uab

v , ubc
v , uca

v )> measured between the inverter outputs Ta,
Tb and Tb (see Figure 2) can in turn be expressed in terms of the line-to-neutral voltages as:

ua-b-c
v =

ua0
v − ub0

v
ub0

v − uc0
v

uc0
v − ua0

v

 =

 1 −1 0
0 1 −1
−1 0 1


︸ ︷︷ ︸

=:TV

uabc0
v , (2)

yielding nine different output voltage levels, i.e., ua-b-c
v ∈ udc · {−1,− 3

4 ,− 1
2 ,− 1

4 , 0, 1
4 , 1

2 , 3
4 , 1}3.

Moreover, the line-to-line voltages may be expressed as ua-b-c
v = TVuabc

v , where uabc
v = (ua

v, ub
v, uc

v)
>

are the phase voltages measured between the output terminals of the inverter and the motor star
point YM. Since the matrix TV is not invertible, the equation cannot be solved for uabc

v [20], Chapter 14.
However, making use of the general voltage constraint ua

v + ub
v + uc

v = u0
v (with possibly non-zero

offset voltage u0
v, if the phase voltages are not balanced), the phase voltages can be stated as:

uabc
v =

 0 −2 −1
−1 0 −2
−2 −1 0


−1

ua-b-c
v + 13u0

v
(1),(2)
=

1
12

 2 −1 −1
−1 2 −1
−1 −1 2


︸ ︷︷ ︸

=:T∗V

sabcudc + 13u0
v. (3)



Energies 2017, 10, 1659 6 of 37

As a two-phase representation is preferred here, the reduced amplitude-correct Clarke
transformation and its (pseudo) inverse are introduced as (see e.g., [20], Chapter 14)

TC = 2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, T−1

C = 3
2


2
3 0
− 1

3
1√
3

− 1
3 − 1√

3

 . (4)

Employing the transformation matrices defined in (4), vectors may be transformed by
xαβ = TCxabc and matrices by Xαβ = TCXabcT−1

C , respectively. Finally, the phase voltages and
currents at the inverter output can be expressed in αβ-coordinates as

uαβ
v = TCuabc

v
(3)
= TCT∗Vsabcudc, (5)

iαβ
v = TCiabc

v . (6)

In the αβ-reference frame, the feasible phase voltages can be visualized by the voltage hexagon as
shown in Figure 3. The respective switching combinations sabc = (sa, sb, sc)> ∈ {0, 1, 2, 3, 4}3 leading
to each node are given in the circles attached to them (e.g., sabc = (2, 1, 4)>).

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6 040 140 240 340 440

041 030 130 230 330 430

042 031 020 120 220 320 420

043 032 021 010 110 210 310 410

400300200100000011022033044

034 023 012 001 101 201 301 401

024 013 002 102 202 302 402

014 003 103 203 303 403

004 104 204 304 404

α

β

Figure 3. Normalized voltage hexagon (with respect to udc) of a 5-level inverter.

In general, the objective of the VSI is to reproduce a given voltage reference vector
uαβ∗

v = (uα∗
v , uβ∗

v )> at its output terminals. In order to achieve this goal, the desired voltage is
sampled with switching frequency fS (in Hz) and translated into the time domain by modulation of the
switching signal, using e.g., sinusoidal pulse width modulation (SPWM) or space vector modulation
(SVM). As a result, the sliding time integral (moving average) of the output voltages over a defined
sampling period tS = 1

fS
(in s) matches the reference voltage sample, i.e.,:

∀n ∈ N : uαβ∗
v (ntS) =

1
tS

(n+1)tS∫
ntS

uαβ
v (t)dt. (7)
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A space vector modulation algorithm for 5-level inverters has been implemented based on [21].

2.1.2. Filter

The VSI generates voltage pulses with steep slopes (high d
dt uαβ

v ) which (i) increase harmonic losses
and (ii) put high stress on the insulation due to parasitic cable and motor capacitances [22]. Moreover,
the high inductance of the motor windings causes (iii) wave reflection at the machine terminals with
a reflection factor of almost one [23], requiring a voltage derating since the reflected voltage may reach
twice the original amplitude [23]. An effective way of avoiding the mentioned effects is to employ
an LC ouput filter (lowpass filter) that smoothes the output voltages and thus reduces steep voltage
slopes. The output filter is located between the VSI output and the downhole cable (see Figure 1).

The equivalent circuit of a non-ideal LC-filter is shown in Figure 4. The filter resistance matrix is
given by Rabc

f = diag (Ra
f , Rb

f , Rc
f ) (in Ω), the filter inductance matrix by Labc

f = diag (La
f , Lb

f , Lc
f ) (in H)

and the filter capacitance matrix by Cabc
f = diag (Ca

f , Cb
f , Cc

f ) (in F).
The star point of the wye-connected capacitances is not grounded and hence at floating potential,

i.e., at voltage u0
f with respect to the motor star point. Moreover, the input voltages are denoted by

uabc
f1

= (ua
f1

, ub
f1

, uc
f1
)> (in V), the input currents by iabc

f1
= (ia

f1
, ib

f1
, ic

f1
)> (in A), the output voltages by

uabc
f2

= (ua
f2

, ub
f2

, uc
f2
)> (in V) and the output currents by iabc

f2
= (ia

f2
, ib

f2
, ic

f2
)> (in A).

ia
f1

Ra
f La

f ia
f2

ib
f1

Rb
f Lb

f ib
f2

ic
f1

Rc
f Lc

f ic
f2

u0
f

YC

ua
f1

ub
f1

uc
f1

ua
f2

ub
f2

uc
f2

Ca
f Cb

f Cc
f

YM

A1

A2

A3

1

2

3

0

Figure 4. Equivalent circuit of a non-ideal LC-filter including copper losses.

Using Kirchhoff’s current and voltage laws on nodes 0 to 3 and meshes A1 to A3 ,
respectively, yields

d
dt

(
iabc
f1

uabc
f2

)
=

[
−(Labc

f )−1Rabc
f −(Labc

f )−1

(Labc
f )−1 03×3

](
iabc
f1

uabc
f2

)
+

[
(Labc

f )−1 03×3

03×3 −(Labc
f )−1

](
uabc

f1

iabc
f2

)

+

[
(Labc

f )−1 03×3

03×3 I3

](
13

d
dt u0

f
13

d
dt u0

f

)
︸ ︷︷ ︸

~

, (8)
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where u0
f is the voltage between star point YC of the capacitor bank and the star point YM of the

motor. Since TC I3u0
f = 02, the term ~ in (8) vanishes if the reduced Clarke transformation is applied,

thus yielding the reduced state-space representation in the αβ-reference:

d
dt

(
iαβ
f1

uαβ
f2

)
=

[
−(Lαβ

f )−1Rαβ
f −(Lαβ

f )−1

(Cαβ
f )−1 02×2

]
︸ ︷︷ ︸

=:Af∈R4×4

(
iαβ
f1

uαβ
f2

)
︸ ︷︷ ︸
=:xf∈R4

+

[
(Lαβ

f )−1 02×2

02×2 −(Cαβ
f )−1

]
︸ ︷︷ ︸

=:Bf∈R4×4

(
uαβ

f1

iαβ
f2

)
︸ ︷︷ ︸
=:uf∈R4

, (9)

with state vector xf, input vector uf, system matrix Af and input matrix Bf. Note, that the input voltage
vector uαβ

f1
is equal to the VSI output vector uαβ

v and the output current vector iαβ
f2

depends on the load
connected to the filter output.

2.1.3. Cable

The power cable connects the filter output with the electrical machine and runs through the space
between wellbore and production tubing. As it extends over the whole distance, from the filter output
to the motor, the cable length lc (in m) becomes a crucial parameter regarding the electrical properties
of the cable such as resistance, inductance and capacitance, also known as line parameters and typically
stated per-unit-length (p.u.l.).

The standard models for power transmission lines are derived by invoking a distributed
parameters approach, which allows the modelling of an infinitesimally short fraction of the cable as
a combination of p.u.l. series impedance and shunt admittance. This approach leads to a set of partial
differential equations, called Telegrapher’s equations (see e.g., [24]), whose steady-state solution are
time and space dependent wave functions for voltages and currents, respectively. As the distributed
parameters approach leads to an infinitely large number of states, a discretization of the model using
lumped parameters and a finite set of cable segments is performed. For sufficiently short segments
the space dependency can be neglected and the segments can be approximated by equivalent π- or
τ-circuits. A segment is classified short if the wavelength λ (in m) of the voltage and current waveforms
is at least 60 times larger than the segment length, i.e., λ ≥ 60lc holds [25], p. 426. Given the vacuum
speed of light c0 (in m s−1), the relative permeability of the cable insulation εr,EPDM ≈ 2.4 and the
frequency of the driving signals f , the condition can be refined to (see [25], p. 410):

λ =
c0√

εr,EPDM f
!
≥ 60lc =⇒ lc,max = 1580 m. (10)

It can be concluded from (10) that, even without a sine filter and switching harmonics of up to
2 kHz, the maximum cable length of lc,max = 1580 m covers most geothermal power applications and
hence a single sequence of τ- and π-segments is sufficient for modeling the cable.

Nevertheless, in the presented model two segments are used: A τ-segment of length lc,τ = 0.5lc is
used on the filter side, as the input voltage is a state variable due to the output capacitance of the filter,
and a π-segment of length lc,π = 0.5lc is used on the load side of the cable, due to the input inductance
of the electric machine. Considering the electric and magnetic coupling between the conductors,
the circuit elements are derived from the p.u.l. line parameters.

Assumption 3 (Cable shunt conductance). It is assumed that the shunt conductance of the power cable is
negligible [25], p. 430.

The remaining line parameters are given by R
′abc
c = diag(R

′a
c , R

′b
c , R

′c
c ) ∈ R3×3 (in Ω m−1),

L
′abc
c ∈ R3×3 (in H m−1) and C

′abc
c ∈ R3×3 (in F m−1), denoting the p.u.l. cable resistance,

inductance and capacitance matrices.
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Magnetic coupling is described by the p.u.l. inductance matrix which is defined as the constant
ratio of conductor flux linkages and currents (if magnetic saturation is neglected), divided by the
segment length lc,x, i.e.,:

L
′abc
c,x =

1
lc,x

ψabc
c,x

iabc
c,x

=


ψa

c,x
ia
c,x

ψa
c,x

ibc,x

ψa
c,x

icc,x

ψb
c,x

ia
c,x

ψb
c,x

ibc,x

ψb
c,x

icc,x
ψc

c,x
ia
c,x

ψc
c,x

ibc,x

ψc
c,x

icc,x

 . (11)

Moreover, electric coupling is represented by capacitances between the lines and ground,
respectively. It can be shown (see Appendix B and [26]) that the capacitances used in the equivalent

circuits, i.e., the line-to-ground capacitances C
′k-0
c and line-to-line capacitances C

′k-j
c (in F m−1) for

k, j ∈ {a, b, c}, k 6= j, are related to the line capacitances used in the phase description by:

C
′abc
c =

C
′a-0
c + C

′a-b
c + C

′c-a
c −C

′b-c
c −C

′c-a
c

−C
′a-b
c C

′b-0
c + C

′a-b
c + C

′b-c
c −C

′b-c
c

−C
′c-a
c −C

′b-c
c C

′c-0
c + C

′b-c
c + C

′c-a
c

 . (12)

The equivalent circuit of the τ-segment is shown in Figure 5, with input voltages
uabc

c,τ1
= (ua

c,τ1
, ub

c,τ1
, uc

c,τ1
)> (in V), input currents iabc

c,τ1
= (ia

c,τ1
, ib

c,τ1
, ic

c,τ1
)> (in A), output voltages

uabc
c,τ2

= (ua
c,τ2

, ub
c,τ2

, uc
c,τ2

)> (in V), output currents iabc
c,τ2

= (ia
c,τ2

, ib
c,τ2

, ic
c,τ2

)> (in A) and voltages across
the capacitances uabc

c,τi
= (ua

c,τi
, ub

c,τi
, uc

c,τi
)> (in V). Moreover, the τ-model parameters are given by

Rabc
c,τ = diag(Ra

c,τ , Rb
c,τ , Rc

c,τ) = 1
4 lcR

′abc
c (in Ω), Labc

c,τ = 1
4 lcL

′abc
c (in H) and Cabc

c,τ = 1
2 lcC

′abc
c (in F).

Note that, for inductances and resistances, half of the respective values were considered on the input
and the other half on the output of the τ-segment (that is why 1

4 appears in the expressions above).

ia
c,τ1

Ra
c,τ

d
dt ψa

c,τ1 Ra
c,τ

d
dt ψa

c,τ2
ia
c,τ2

ib
c,τ1

Rb
c,τ

d
dt ψb

c,τ1 Rb
c,τ

d
dt ψb

c,τ2
ib
c,τ2

ic
c,τ1

Rc
c,τ

d
dt ψc

c,τ1 Rc
c,τ

d
dt ψc

c,τ2
ic
c,τ2

u0
s

YM

ua
c,τ1

ub
c,τ1

uc
c,τ1

ua
c,τ2

ub
c,τ2

uc
c,τ2

Ca-0
c,τ

Cb-0
c,τ

Cc-0
c,τ

Ca-b
c,τ

Cb-c
c,τ

Cc-a
c,τ

A1

A2

A3

B1

B2

B3

10

20

30

00

Figure 5. Equivalent circuit of the power cable τ-segment.

As in the previous section, the state-space description can be derived using circuit analysis. For the

τ-model, evaluating meshes A1 to A3 , meshes B1 to B3 and nodes 00 to 30 yields

d
dt

 iabc
c,τ1

uabc
c,τi

iabc
c,τ2

 =

−(Labc
c,τ )

−1
Rabc

c,τ −(Labc
c,τ )

−1
03×3

(Cabc
c,τ )

−1
03×3 −(Cabc

c,τ )
−1

03×3 (Labc
c,τ )

−1 −(Labc
c,τ )

−1
Rabc

c,τ


 iabc

c,τ1

uabc
c,τi

iabc
c,τ2


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+

(Labc
c,τ )

−1
03×3

03×3 03×3

03×3 −(Labc
c,τ )

−1

(uabc
c,τ1

uabc
c,τ2

)
+

 (Labc
c,τ )

−1
13u0

s
03×3

−(Labc
c,τ )

−1
13u0

s


︸ ︷︷ ︸

~

, (13)

where u0
s denotes the voltage between motor star point YM and ground. Applying the reduced Clarke

transformation as in (4) eliminates the term ~, i.e., TC13u0
s = 02, such that the state-space description

of the τ-segment in the αβ-reference frame can be stated as

d
dt

iαβ
c,τ1

uαβ
c,τi

iαβ
c,τ2

 =


−(Lαβ

c,τ)
−1

Rαβ
c,τ −(Lαβ

c,τ)
−1

02×2

(Cαβ
c,τ)
−1

02×2 −(Cαβ
c,τ)
−1

02×2 (Lαβ
c,τ)
−1 −(Lαβ

c,τ)
−1

Rαβ
c,τ


︸ ︷︷ ︸

=:Ac,τ∈R6×6

iαβ
c,τ1

uαβ
c,τi

iαβ
c,τ2


︸ ︷︷ ︸
=:xc,τ∈R6

+

(Lαβ
c,τ)
−1

02×2

02×2 02×2

02×2 −(Lαβ
c,τ)
−1


︸ ︷︷ ︸

=:Bc,τ∈R6×6

(
uαβ

c,τ1

uαβ
c,τ2

)
︸ ︷︷ ︸
=:uc,τ∈R6

, (14)

with state vector xc,τ , input vector uc,τ , system matrix Ac,τ and input matrix Bc,τ . For the τ-segment,
the input voltage uαβ

c,τ1 is equal to the filter output uαβ
f2

and the output voltage uαβ
f2

is determined by the
input voltage of the π-segment.

Likewise, the π-model state-space form can be derived. The equivalent circuit of the π-segment
is shown in Figure 6, with input voltages uabc

c,π1
= (ua

c,π1
, ub

c,π1
, uc

c,π1
)> (in V), input currents

iabc
c,π1

= (ia
c,π1

, ib
c,π1

, ic
c,π1

)> (in A), output voltages uabc
c,τ2

= (ua
c,τ2

, ub
c,τ2

, uc
c,τ2

)> (in V), output currents
iabc
c,π2

= (ia
c,π2

, ib
c,π2

, ic
c,π2

)> (in A) and currents through the inductances iabc
c,πi

= (ia
c,πi

, ib
c,πi

, ic
c,πi

)>

(in A). The π-model parameters are given by Rabc
c,π = diag(Ra

c,π , Rb
c,π , Rc

c,π) = 1
2 lcR

′abc
c (in Ω),

and Labc
c,π = 1

2 lcL
′abc
c (in H) and Cabc

c,π = 1
4 lcC

′abc
c (in F).
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Figure 6. Equivalent circuit of the power cable π-segment.

The system description is obtained by evaluating meshes C1 to C3 , nodes 01 to 31 and 02 to
32 , i.e.,

d
dt

uabc
c,π1

iabc
c,πi

uabc
c,π2

 =

 03×3 −(Cabc
c,π )

−1
03×3

(Labc
c,π )

−1 −(Labc
c,π )

−1
Rabc

c,π −(Labc
c,π )

−1

03×3 (Cabc
c,π )

−1
03×3


uabc

c,π1

iabc
c,πi

uabc
c,π2


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+

(Cabc
c,π )

−1
03×3

03×3 03×3

03×3 −(Cabc
c,τ )

−1

(iabc
c,π1

iabc
c,π2

)
−

13
d
dt u0

s
03

13
d
dt u0

s


︸ ︷︷ ︸

~

. (15)

Applying the reduced Clarke transformation, the disturbance ~ is eliminated, i.e., TC13u0
s = 02,

and the state-space description for the π-segment is given by

d
dt

uαβ
c,π1

iαβ
c,πi

uαβ
c,π2

 =


02×2 −(Cαβ

c,π)
−1

02×2

(Lαβ
c,π)
−1 −(Lαβ

c,π)
−1

Rαβ
c,π −(Lαβ

c,π)
−1

02×2 (Cαβ
c,π)
−1

02×2


︸ ︷︷ ︸

=:Ac,π∈R6×6

uαβ
c,π1

iαβ
c,πi

uαβ
c,π2


︸ ︷︷ ︸
=:xc,π∈R6

+

(C
αβ
c,π)
−1

02×2

02×2 02×2

02×2 −(Cαβ
c,τ)
−1


︸ ︷︷ ︸

=:Bc,π∈R6×6

(
iαβ
c,π1

iαβ
c,π2

)
︸ ︷︷ ︸
=:uc,π∈R6

, (16)

with state vector xc,π , input vector uc,π , system matrix Ac,π and input matrix Bc,π . For the π-segment
the input currents iαβ

c,π1 are determined by the output currents of the τ-segment, whereas the output

currents iαβ
c,π2 depend on the load connected at the cable end.

2.1.4. Electrical Machine

The electrical machine drives the pump. Both are mechanically linked via a shaft. In order to
achieve higher power output, two separate motors may be connected in series, which is known
as tandem configuration [27]. Typically, squirrel-cage induction motors are used, since they are
well-known, cheap and robust. However, as high currents are flowing through the rotor bars and
resistive losses (heat) are proportional to the current squared, induction machines tend to heat up
quickly. Moreover, the only feasible way to cool the machine is the use of hot geothermal fluid to
conduct away the heat. Therefore, the ampere rating has to be kept at a minimum level, which requires
a higher voltage rating of the machine in order to guarantee the desired mechanical output power.

Due to space limitations inside the borehole, the motor dimensions have to be adapted, resulting in
a long axial expansion and a small diameter. While the stator windings typically expand over the
whole length of the motor, the rotor on the other hand is segmented, with each segment isolated from
each other and equipped with its own bearings [28]. Moreover, the space between rotor and stator is
filled with oil as to (i) prevent water from entering the machine, to (ii) accommodate the high ambient
pressure and to (iii) improve heat transfer from the rotor to the motor surface in radial direction [28].

Assumption 4 (Motor modeling). It is assumed that

• the motor is star-connected, i.e. the secondary ends of the phase windings are interconnected at the motor
star point YM,

• the multi-rotor configuration can be considered a single rotor with combined electromagnetic properties,
i.e., no torsional effects among individual rotors are considered, and

• iron losses can be neglected.

The resulting three-phase equivalent circuit is shown in Figure 7, with stator voltages
uabc

s = (ua
s , ub

s , uc
s)
> (in V), stator currents iabc

s = (ia
s , ib

s , ic
s)
> (in A) and stator flux linkages

ψabc
s = (ψa

s , ψb
s , ψc

s)
> (in Wb), rotor currents iabc

r = (ia
r , ib

r , ic
r)
> (in A), rotor flux linkages

ψabc
r = (ψa

r , ψb
r , ψc

r)
> (in Wb) and rotor angular velocity ωr (in rad s−1), respectively. The rotor

variables are related to the stator [29] and expressed in stator fixed αβ-coordinates.
The stator windings (phases) are modeled by the stator resistances Rabc

s = diag(Ra
s , Rb

s , Rc
s)

(in Ω) and the stator inductance Ls (in H), where Ls can be separated into the stator stray inductance
Lsσ (in H) and the main inductance Lm (in H), i.e., Ls = Lsσ + Lm [29]. The main inductance causes
magnetic coupling between the rotor and stator phases which can be expressed in terms of the stator
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and rotor flux linkages.
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R c
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Figure 7. Three-phase equivalent circuit of a squirrel-cage induction motor.

Assumption 5 (Magnetic linearity). It is assumed that the effect of magnetic saturation can be neglected and
hence the stator and rotor flux linkages are affine functions of the stator and rotor currents, respectively, i.e.,

ψabc
s = Lsiabc

s + Lmiabc
r , ψabc

r = Lmiabc
s + Lriabc

r . (17)

In the fault-free case, the phase resistances are typically identical, i.e., Ra
s = Rb

s = Rc
s holds.

However, in case of windage faults this assumption may not hold true anymore and therefore the
general description is used in the presented model. For the sake of consistency, the same applies for
the rotor resistances.

The stator voltages, measured between the input terminals and the motor star point YM,
are given by:

uabc
s = Rabc

s iabc
s + d

dt ψabc
s

(17)
= Rabc

s iabc
s + Ls

d
dt iabc

s + Lm
d
dt iabc

r . (18)

Applying the Clarke transformation (4) yields the corresponding representation in the
αβ-reference frame:

uαβ
s = Rαβ

s iαβ
s + Ls

d
dt iαβ

s + Lm
d
dt iαβ

r . (19)

On the rotor side, the conducting bars of the rotor cage are likewise modeled as a three-phase
system, with rotor resistance Rabc

r = diag(Ra
r , Rb

r , Rc
r) (in Ω) and rotor inductance Lr, composed of

the rotor stray inductance Lrσ (in H) and the main inductance Lm, i.e., Lr = Lrσ + Lm [29]. Moreover,
the rotor magnetic field induces a voltage in the rotor cage depending on the flux linkage ψabc

r and the
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electrical (synchronous) speed ωr := npωm, where ωm (in rad s−1) is the mechanical speed and np is
the number of pole pairs. Evaluating meshes A , B and C yields the following dependency:

− Rabc
r iabc

r − (Lr
d
dt iabc

r + Lm
d
dt iabc

s )︸ ︷︷ ︸
(17)
= ψabc

r

+ωr

√
3

3

 0 −1 1
1 0 −1
−1 1 0


︸ ︷︷ ︸

=:J∗

ψabc
r = 03, (20)

which, transformed to αβ-coordinates, becomes:

− Rαβ
r iαβ

r − (Lr
d
dt iαβ

r + Lm
d
dt iαβ

s ) + ωr Jψ
αβ
r = 02, (21)

where J = TC J∗T−1
C and:

ψ
αβ
r = Lmiαβ

s + Lri
αβ
r . (22)

Solving (22) for iαβ
r allows to eliminate the rotor currents from (19) and (21) and, hence, the overall

nonlinear state-space electrical system can be derived as follows:

d
dt

(
iαβ
s

ψ
αβ
r

)
=

− ( 1
σLs

Rαβ
s + 1−σ

σLr
Rαβ

r

)
iαβ
s − 1−σ

σLm
(ωr J − 1

Lr
Rαβ

r )ψ
αβ
r

Lm
Lr

Rαβ
r iαβ

s + (ωr J − 1
Lr

Rαβ
r )ψ

αβ
r


︸ ︷︷ ︸

fM(xM)

+

(
1

σLs
uαβ

s

0

)
︸ ︷︷ ︸
=:gM(uM)

, (23)

where σ := 1− L2
m

LsLr
denotes the inductive leakage factor, xM := (iαβ

s , ψ
αβ
r )> ∈ R4 is the state vector,

uM := uαβ
s ∈ R2 is the input vector, fM : R4 → R4, xM 7→ fM(xM) is the non-linear system function

and gM : R2 → R4, uM 7→ gM(uM) is the input function. Note that the rotational speed ωr describes
an additional system state which results from the torque balance on the machine shaft, i.e.,:

d
dt ωm =

1
np

d
dt ωr =

1
Θ
(me −∑ ml), (24)

where Θ (in kg m2) is the overall moment of inertia, me (in N m) is the motor torque and ∑ ml (in N m)
is the sum of load torques acting against the motor torque. In anticipation of the mechanical subsystem,
the electro-magnetic torque me (in N m) produced by the motor can be described in terms of electrical
system states, i.e., (see e.g., [20], Chapter 14):

me =
3
2

np
(
iαβ
s
)> Jψ

αβ
s

(22)
=

3
2

np
Lm

Lr

(
iαβ
s
)> Jψ

αβ
r . (25)

The load torque and inertia, however, are determined by the hydraulic and mechanical subsystems
derived in Sections 2.2 and 2.3. Therefore, the rotational speed dynamics will be further elucidated in
the following sections.

2.2. Hydraulic Subsystem

The hydraulic subsystem comprises the pump and the piping system. The former serves as
a hydraulic source, while at the same time being a mechanical load. The latter in turn is the hydraulic
load. The produced volume flow results from the net head, i.e., the difference between hydraulic
source and load.
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2.2.1. Pump

The pump is used to lift the geothermal fluid from the deep well to the surface and thus forces
it to overcome a height difference. In order to produce the required volume flow rates—despite
the strict space limitations in geothermal power applications—multi-stage centrifugal pumps are
employed. Each stage of the pump consists of a moving part, the impeller, and a fixed part, the diffuser.
In the impeller the fluid is accelerated, whereas the diffuser converts the kinetic energy into static
pressure, and thus performs hydraulic work.

Figure 8a shows the 2D cross-section of a centrifugal pump impeller, which defines the control
volume V(A, hi) as a function of cross-section area A (in m2) and uniform impeller height hi (in m).
The fluid enters the impeller through the inlet area ∂Vin at radius r1 (in m) and leaves the impeller
through the outlet area ∂Vout at radius r2 (in m). Due to its axisymmetric design, the shape of the
blades depends on the radius r only and is described by its angle β(r) (in rad), with inlet angle
β1 := β(r1) and outlet angle β2 := β(r2), respectively. The movement of the fluid particles is
described by the velocity triangle (see Figure 8b) at every point in V , where u, w and v (in m s−1)
are tangential, relative and absolute speed, respectively. Moreover, the impeller rotates with angular
velocity ωi, imposed by the motor through the shaft. The total volume flowing through the pump
stage is described by the volume flow Qi (in m3 s−1) and is the result of the produced head Hi (in m),
describing the height of the water column potentially produced in the pump stage. For an incompressible
fluid (see Assumption 6), the density ρ (in kg m−3) is constant and thus head becomes proportional
to static pressure. Furthermore, the impeller creates a load torque mi (in N m) acting on the shaft.
Both, load torque and head, depend on the rotational speed and the volume flow. The respective
hydromechanical model of the pump is derived based on 1D average streamline theory of fluid
dynamics in Appendix A. It is subject to the following assumptions:

Assumption 6 (Incompressible flow). The geothermal fluid is assumed to be incompressible, i.e.,
ρ > 0 (constant).

Assumption 7 (Average streamline). The velocity distribution of the fluid particles within V is assumed to
be uniform, i.e., the velocity triangle depends only on the radius r, but not on the angle ϕ.

As derived in Appendix A.1, the load torque created by a single stage of the impeller is
described by:

mi = ϑ d
dt Qi + Θw

d
dt ωi + a1Q2

i + a2Qiωi + a3ω2
i , (26)

with geometry dependent constants ϑ (in kg m−2), Θw (in kg m2), a1 (in kg m−5), a2 (in kg m−2) as
defined in (A8) and a3 (in kg m2) accounting for disk friction losses. Note that Θw describes the inertia
of the fluid contained in the impeller, whereas ϑ describes the impact of flow rate variations on the
load torque.

The head created by a single impeller stage is derived in Appendix A.2 and given by:

Hi = −Γp
d
dt Qi + γ d

dt ωi + b1Q2
i + b2ωiQi + b3ω2

i , (27)

with constants Γp (in s2 m−2), γ (in m s2), b1 (in kg m−4), b2 (in s2 m−2) and b3 (in m s2). While Γp is the
(head related) fluid inertance, γ describes the impact of change of the rotational speed on the produced
head. The steady-state parameters b1, b2 and b3 depend on the geometry, but also account for hydraulic
losses such as hydraulic friction, shock losses and the slip factor [15]. A qualitative H-Q-curve for
constant ωi is depicted in Figure 9: At the absence of losses, the pump produces the theoretical head,
which is drawn as a bold line. Due to the finite number of impeller vanes and flow deviations from
the mean line, the theoretical head is decreased by a constant factor (slip factor), indicated by the
hatched blue area. Incidence (hatched yellow area) and skin friction (hatched green area) losses depend
quadratically on the flow, resulting in the parabolic shape of the curve. At the best efficiency point
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(BEP), the pump operates at designed conditions and the losses are minimal. Further details on the
loss mechanisms can be found in Appendix A.2.

∂Vout

∂Vin

V(A, hi) A

ωi

x

y
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u1

v1

w1
β1

r2

u2

v2

w2
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(a) 2D impeller cross section.
r

ruu

w

u

w

w
v

v

vp
vtβ

β

(b) Velocity triangle.

Figure 8. (a) 2D impeller cross section (top view) defining the control volume V and (b) exemplary
velocity triangle of the fluid contained in the impeller.

Deep geothermal ESP systems are deployed at great depths, such that the required head cannot
be produced by a single pump stage anymore. For this reason, multi-stage pumps are used, with each
stage adding to the total head, as well as increasing the overall load torque.

Assumption 8 (Multi-stage characteristics). Each impeller stage is assumed to contribute equally to the total
head and load torque, respectively.

As a consequence of Assumption 8, the series connection of N pump stages can be accounted for
by multiplication of the single stage load torque mi and head Hi with factor N. Ideally, the volume
flow through the impeller stages Qi should be the same as the flow Qp leaving the pump discharge.
However, due to leakage in the seals, wearing rings, bushings and axial thrust balancing devices
a small portion of the flow is lost [30], Section 3.6.2. Leakage flow occurs particularly at partload as the
high pressure fluid cannot exit the pump through the outlet and hence flows back through narrow
passages to the lower pressure regions. For the sake of simplicity the following assumption shall hold.

Assumption 9 (Leakage flow). It is assumed that the leakage flow is much smaller than the main flow and
thus negligible, i.e., Qp = Qi holds true.
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Q

H

Figure 9. Qualitative H-Q curve of a pump stage, with theoretical head, slip losses, friction losses and
shock (incidence) losses.

2.2.2. Pipe System and Geothermal Reservoir

The hydraulic system between pump intake and wellhead defines the hydraulic load of the model.
It is depicted in Figure 10 and comprises the production pipe, pressures at both pipe ends and the
(dynamical) water level.

z

2 rpipe

zp

hw

prv

pwh

Figure 10. Hydraulic system of the geothermal production well.

Assumption 10. The production pipe radius rpipe (in m) is assumed constant, such that the (steady-state) flow
velocity can be considered uniform along the production path.

In view of Assumption 10, the system head Hw (hydraulic load) can be described by the dynamic
(transient) Bernoulli equation for incompressible, inviscid flow along a streamline as [31], Chapter 6.6:

Hw = Γw(hw)
d
dt Qw + Hg(hw, pwh, Qw) + Kfw(hw)Q2

w (28)

with system flow Qw = Qp (in m3 s−1, equal to the pump flow) and an additional loss term
Kfw(hw)Q2

w to account for the frictional losses in the piping system. The constant Γw(hw) (in s2 m−2)
denotes the inertance of the fluid in the piping system, whereas Kfw(hw) (in s m−2) is the combined
hydraulic friction coefficient. Both coefficients, Kfw and Γw, linearly depend on the water level hw

and thus dynamically change during the system start-up. The friction coefficient is derived using the
Darcy-Weisbach Equation (see e.g., [30], Section 1.5.1), i.e.,:

Kfw(hw) = hw
λD

4π2gr5
pipe

(29)
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where λD (dimensionless) denotes the Darcy friction factor depending on the Reynold’s number of the
pipe system. The inertance on the other hand is given by:

Γw(hw) = hw
1

πgr2
pipe

(30)

and follows from the integral along the streamline of the water (see e.g., [31], Chapter 6.6). The term:

Hg(hw, pwh, Qp) = hw +
pwh − prv(Qp)

ρg
(31)

denotes the part of the system head (in m) which consists of the (limited) water column hw weighing
on the pump and the scaled pressure gradient between wellhead pressure pwh and reservoir pressure
prv (in Pa). While the wellhead pressure is typically kept at a constant value once it reaches a required
value, the reservoir pressure changes throughout the operation of the system, resulting in a lower idle
water level (drawdown). The drawdown is characterized by the productivity index δrv (in m5 N−1 s−1)
of the geothermal reservoir and the idle pressure prv0 (in Pa) and changes with the volume flow.
According to [8], Section 14.1.2 the reservoir pressure can be stated as:

prv(Qp) = prv0 −
1

δrv
Qp. (32)

Moreover, the dynamic water level hw can be described by the following equation

d
dt hw = k̄hw(hw, Qp)

1
πr2

pipe
Qp, (33)

where:

k̄hw(hw, Qp) =

{
0 , (hw ≤ 0∧Qp ≤ 0) ∨ (hw ≥ zp ∧Qp ≥ 0)
1 , else

(34)

allows for conditional activation or deactivation of the integration in (33). The wellhead pressure pwh
is built-up only if the water column reaches the wellhead and is saturated by a defined (and constant)
value p∗wh (in Pa), according to the employed pressure valve. It can be described by:

d
dt pwh = k̄hw(hw, Qp, pwh)

ρg
πr2

pipe
Qp, (35)

with decision function:

k̄pwh(hw, Qp, pwh) =

{
0 , hw 6= zp ∨ (pwh ≤ 0∧Qp ≤ 0) ∨ (pwh ≥ p∗wh ∧Qp ≥ 0)
1 , else

(36)

The equilibrium condition of the hydraulic system can be obtained by enforcing Hw
!
= NHi,

which is obtained by inserting (27) and (28) into the balance condition, i.e.,

Hg(hw, pwh, Qp)
(31),(32)

=

=:Ĥg(hw,pwh)︷ ︸︸ ︷
hw +

pwh − prv0
ρg

+
1

ρgδrv
Qp (37)

!
= −Γt(hw) d

dt Qp + Nγ d
dt ωp + (Nb1 − Kfw(hw))Q2

p + Nb2ωpQp + Nb3ω2
p,

where Γt(hw) = Γw(hw) + NΓp (in s2 m−2) is the overall inertance of the fluid in the system and Ĥg

(in m) the static head. Note that the amount of water in the pipe is typically much higher compared
to the water in the pump and thus the overall intertance can be approximated by Γt(hw) ≈ Γw(hw).
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The above equation fully describes the dynamics of the hydraulic system. However, as it depends on
the derivative of the rotational speed, the mechanical system has to be taken into account in order to
resolve this dependency.

2.3. Mechanical Subsystem

The mechanical subsystem links the electrical with the hydraulic subsystem as it transfers the
motor torque via the shaft to the pump, which in turn imposes a load torque on the shaft. According to
Newton’s second law, the shaft is accelerated in proportion to the net torque applied. As proposed by
[10,11], the shaft is modeled as an elastic spring-damper-system due to its high length-to-diameter
ratio. For the sake of simplicity lumped parameters are used to describe the two-mass system [20],
Chapter 11.

2.3.1. Shaft (Spring-Damper-System)

A rotational spring-damper-system is depicted in Figure 11. Both, motor and pump, are modeled as
rotating masses with motor and impeller moments of inertia Θm and Θi (in kg m2), angular displacement
angles φm and φp (in rad), angular velocities ωm = d

dt φm and ωp = ωi = d
dt φp and viscous friction

coefficients νm and νi (in N m s), respectively. The shaft is modeled as a massless link between motor and
pump with torsion constant kT (in N m rad−1) and damping coefficient kD (in N m s rad−1).

NΘi, Nνi
kT, kD

Θm, νm me, φm −Nmi, φP

Figure 11. Free body diagram of a rotational two mass system.

Applying Newton’s second law and considering torsion and damping moments, the mechanical
system is described by the following equations

me = Θm
d
dt ωm + kT(φm − φp) + kD(ωm −ωp)− νmωm (38)

−Nmi = NΘi
d
dt ωp − kT(φm − φp)− kD(ωm −ωp)− Nνiωp. (39)

Inserting the electromagnetic torque of the motor (25) in the motor-side mechanical system (38)
and solving for d

dt ωm yields the motor-side mechanical system:

d
dt

(
φm

ωm

)
(25),(38)

=

(
ωm

1
Θm

[
3
2 np

Lm
Lr

(
iαβ
s
)> Jψ

αβ
r − kTφm + kTφp − (kD + νi)ωm + kDωp

]) . (40)

Similarly, the impeller load torque (26) can be inserted in the pump-side mechanical system (39)
yielding the hydromechanical coupling

−Nmi
(26)
= −Nϑ d

dt Qp − NΘw
d
dt ωp − Na1Q2

p − Na2ωpQp − Na3ω2
p

(39)
= −kTφm + kTφp − kDωm + (kD + Nνi)ωp + NΘi

d
dt ωp. (41)

Note that both, the derivatives of flow and angular velocity appear in the this equation,
which does not comply with the standard form of state-space representations (i.e., d

dt x = f (x, u, t)).

Assumption 11 (Flow dynamics). It is assumed that the overall hydraulic system is considerably slower than
the mechanical system (as proposed in [15]), i.e.,

| − Nϑ d
dt Qp| � |Na1Q2

p + Na2ωpQp + Na3ω2
p − kT(φm − φp)− kD(ωm −ωp)
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+Nνiωp + N(Θi + Θw)
d
dt ωp| (42)

holds at all times.

As a consequence of Assumption 11 the d
dt Qp term in (41) is negligible and the pump side

mechanical system can be written as:

d
dt

(
φp

ωp

)
=

(
ωp

1
Θp

[
−Na1Q2

p − Na2ωpQp − Na3ω2
p + kTφm − kTφp + kDωm − (kD + νp)ωp

]) , (43)

where Θp := N(Θw + Θi) (in kg m2) is the overall moment of inertia and νp := Nνi (in N m s) the
overall viscous friction coefficient of the pump.

2.3.2. Decoupling of the Hydraulic and Mechanical System Dynamics

In order to obtain the state-space representation in standard form, the pump-side speed and flow
dynamics need to be merged by combining (38), (40) and (43) and solving for d

dt Qp, i.e.,

d
dt Qp =

1
Γt(hw)

[
(Nb1 − Kfw(hw)− N2γa1)Q2

p + (Nb2 − N2γa2)ωpQp + (Nb3 − N2γa3)ω
2
p

+NγkTφm − NγkTφp + NγkDωm − Nγ(kD + νp)ωp −
1

ρgδrv
Qp − Ĥg(hw, pwh)

]
. (44)

Input of the hydraulic system is the static head Hg(hw, pwh).

2.4. Overall System Dynamics

Having derived the submodels of the pump system—i.e., Equations (9), (14), (16), (23), (40),
(43) and (44)—the inputs and outputs can be connected and the overall system stated in a single
equation as
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d
dt



iαβ
f1

uαβ
f2

iαβ
c,τ1

uαβ
c,τi

iαβ
c,τ2

uαβ
c,π1

iαβ
c,πi

uαβ
c,π2

iαβ
s

ψ
αβ
r

Qp

hw

pwh

φp

ωp

φm

ωm


︸ ︷︷ ︸

=:x

=



−(Lαβ
f )−1Rαβ

f iαβ
f1
− (Lαβ

f )−1uαβ
f2

(Cαβ
f )−1iαβ

f1
− (Cαβ

f )−1iαβ
c,τ1

−(Lαβ
c,τ)
−1Rαβ

c,τiαβ
c,τ1 − (Lαβ

c,τ)
−1uαβ

c,τi + (Lαβ
c,τ)
−1uαβ

f2

(Cαβ
c,τ)
−1iαβ

c,τ1 − (Cαβ
c,τ)
−1iαβ

c,τ2

(Lαβ
c,τ)
−1uαβ

c,τi − (Lαβ
c,τ)
−1Rαβ

c,τiαβ
c,τ2 − (Lαβ

c,τ)
−1uαβ

c,π1

−(Cαβ
c,π)

−1iαβ
c,πi + (Cαβ

c,π)
−1iαβ

c,τ2

(Lαβ
c,π)

−1uαβ
c,π1 − (Lαβ

c,π)
−1Rαβ

c,πiαβ
c,πi − (Lαβ

c,π)
−1uαβ

c,π2

(Cαβ
c,π)

−1iαβ
c,πi − (Cαβ

c,π)
−1iαβ

s

−
(

1
σLs

Rαβ
s + 1−σ

σLr
Rαβ

r

)
iαβ
s − 1−σ

σLm
(npωm J − 1

Lr
Rαβ

r )ψ
αβ
r + 1

σLs
uαβ

c,π2

Lm
Lr

Rαβ
r iαβ

s + (npωm J − 1
Lr

Rαβ
r )ψ

αβ
r

1
Γt(hw)

[
(Nb1 − Kfw(hw)− N2γa1)Q2

p + (Nb2 − N2γa2)ωpQp

+(Nb3 − N2γa3)ω
2
p + NγkTφm − NγkTφp

+NγkDωm − Nγ(kD + νp)ωp − 1
ρgδrv

Qp

]
k̄hw (hw, Qp)

1
πr2

pipe
Qp

k̄pwh (hw, Qp, pwh)
ρg

πr2
pipe

Qp

ωp

1
Θp

[
− Na1Q2

p − Na2ωpQp − Na3ω2
p + kTφm

−kTφp + kDωm − (kD + νp)ωp

]
ωm

1
Θm

[
3
2 np

Lm
Lr

(
iαβ
s
)> Jψ

αβ
r − kTφm + kTφp − (kD + νm)ωm + kDωp

]


︸ ︷︷ ︸

=: f (x)

+



(Lαβ
f )−1uαβ

v

0

0

0

0

0

0

0

0

0

− Ĥg(hw ,pwh)

Γt(hw)

0

0

0

0

0

0


︸ ︷︷ ︸

=:g(u(x))

(45)

with state vector x ∈ R27, system function f : R27 → R27, x 7→ f (x), input function g : R3 →
R27, u 7→ g(u) and input vector u(x) := ((uαβ

v )>, Ĥg(hw, pwh))
> ∈ R3. The colors indicate the

subsystem of the respective state variables, i.e., electrical (red), mechanical (orange) and hydraulic
(blue) subsystem.

3. Simulation Results and Discussion

The state-space submodels as derived in the preceding sections and summarized in (45) have been
implemented in MATLAB and Simulink (R2017a, The MathWorks, Inc., Natick, MA, United States) using
the parameters given in Tables 2–4. The parameters were either calculated based on estimated geometry
and system data—e.g., inverter, filter, cable—or provided by local energy suppliers (As to avoid
conflicts with existing nondisclosure agreements, the suppliers’ data has been modified in such a way
that the values remain realistic yet do not represent real values)—e.g., hydraulic system, pump, motor,
shaft. The simulations have been performed using the ode4 solver with a fixed step time of 100 ns for
the duration of 100 s. The displayed data was sampled at the end of each PWM cycle, since at this
point the voltage over time integral of the inverter output voltage equals the voltage over time integral
of the sampled reference voltage.
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Table 2. Simulation parameters of the electrical subsystem.

Parameter Variable Value Unit

Inverter DC-link voltage udc 10,000 V
Switching frequency fS 1000 Hz

Filter Filter inductance Lf 3.1× 10−3 H
Filter capacitance Cf 110× 10−9 F
Resonant frequency ff 272.5 Hz

Cable Length lc 997.5 m
Line resistances R

′a
c , R

′b
c , R

′c
c 0.38× 10−3 Ω m−1

Line self inductances L
′aa
c , L

′cc
c 1.15× 10−6 H m−1

Line mutual inductances L
′ab
c , L

′bc
c 0.86× 10−6 H m−1

L
′ac
c 0.69× 10−6 H m−1

Line self capacitances C
′aa
c , C

′cc
c 82.5× 10−12 F m−1

Line mutual capacitances C
′ab
c , C

′bc
c −32.2× 10−12 F m−1

C
′ac
c −32.2× 10−12 F m−1

Motor Rated voltage (phase-peak) ûs,N 5750 V
Rated current (phase-peak) îs,N 190 A
Number of pole pairs np 1
Stator resistance Rs 0.37 Ω
Rotor resistance Rr 0.47 Ω
Main inductance Lm 129.5× 10−3 H
Stator leakage inductance Lsσ 8.7× 10−3 H
Rotor leakage inductance Lrσ 11.5× 10−3 H

Table 3. Simulation parameters of the mechanical subsystem.

Parameter Variable Value Unit

Shaft Torsion constant kT 670 N m rad−1

Damping factor kD 0.196 N m s rad−1

Motor Moment of inertia Θm 0.059 kg m−2

Viscous friction coefficient νm 1.5× 10−3 N m s

Pump Moment of inertia Θp 0.233 kg m−2

Viscous friction coefficient νp 1.5× 10−3 N m s
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Table 4. Simulation parameters of the hydraulic subsystem.

Parameter Variable Value Unit

Pump Number of pump stages N 28
Head parameters (fitted) γ 0 m s−2

b1 −5.27× 102 kg m−4

b2 1.674× 10−1 s2 m−2

b3 1.92× 10−4 m s−2

Torque parameters (fitted) ϑ 0 kg m−2

a1 1.686× 103 kg m−5

a2 2.237× 10−1 kg m−2

a3 5.579× 10−4 kg m2

System Fluid inertance (full load) Γw 3.082× 103 s2 m−2

Required wellhead pressure p∗wh 10× 105 Pa
Setting depth zp 950 m
Pipe radius rpipe 0.1 m
Darcy factor λD 0.12
Reservoir pressure (idle) prv0 70× 105 Pa
Reservoir production index δrv 8.06× 10−8 m5 N−1 s−1

Ambient and water
temperature T0 140 ◦C

3.1. Test Scenario

For the simulation, the system is assumed to be in idle state, initially. The geothermal reservoir
lifts the fluid to its idle water level of approximately 180 m below surface level and the ESP system is
at standstill with zero voltage applied. In the start-up phase, Regime I (t ≤ 40 s), the reference voltage
magnitude and frequency are increased simultaneously (u/f control) at a constant ratio of 96.2 V s
with slopes of 144.3 V s−1 and 1.5 s−2, respectively. Once the maximum values are reached, the voltage
references are kept constant. In Regime II (40 s < t ≤ 77.5 s), the hydraulic system is in transient state;
while in Regime III (t > 77.5 s), the overall system is in steady state.

3.2. Results and Discussion

The simulation results are depicted in Figures 12–15; with Figure 12 showing the pump
characteristic curves and the respective trajectories of operating points, Figure 13 showing the
general system behaviour of the different physical subsystems, Figure 14 showing power related
simulation data and Figure 15 showing detailed views of the electrical (see Figure 15a,b) and mechanical
(see Figure 15c) simulation results. The pump curves in Figure 12 and Bode diagrams in Figure 16 are
used to further illustrate the pump behaviour and validate the hypotheses inferred from the timeseries
plots. Whenever necessary, the measured data was filtered by a moving average filter to improve the
display of multiple timeseries within one plot. The mean values are plotted as solid lines, whereas the
original data is moved to the background with the same color but lower opacity.

3.2.1. Overall System (See Figure 13)

In the first plot (from top to bottom) of Figure 13, the voltage magnitudes measured at the
inputs of the different electric system components are plotted, i.e., the filter input (inverter output)
voltage ûf, the cable input (filter output) voltage ûc and the machine input (cable output) voltage ûs.
As described in Section 2.1.1, the inverter output (filter input) voltage switches between nine discrete
voltage levels, varying around the desired reference voltage with large deviations, yet accurate on
average per sampling period. Therefore, the filter input voltage can be represented by the sampled
and delayed (for one switching period) reference voltage, fed to the inverter. As expected, the filter
input voltage magnitude is increased linearly during Regime I and equals udc/

√
3 in Regimes II and
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III. The damping resistor of the filter and the resistive part of the power cable lead to voltage drops
which can be observed in the slightly smaller magnitudes of the cable and stator voltages, respectively.

The second plot shows the corresponding current magnitudes, with filter input current îf,
cable input current îc, stator current îs and rotor current îr. The first observation is that the cable
and stator currents almost perfectly coincide, which leads to the conclusion that the influence of the
cable on the dynamic system narrows down to a mere voltage drop, assuming that a filter is employed.
This hypothesis is supported by the Bode diagram of the open-loop power cable transfer function
Gc(s) = uα

c,π1
(s)/uα

f2
(s), which is given in Figure 16b. The transfer function is deduced from the system

Equation (45). From the Bode diagram it can be inferred that no significant changes in magnitude and
phase occur in the operating frequency range of 0 Hz to 60 Hz. In fact, even the lowest resonance point
located in the frequency range of 30 kHz to 40 kHz is very unlikely to be excited.

Another important observation is that—after a brief initialization period—the filter current
becomes smaller than the stator current, which implies that current is circulating between the filter
output and the motor. This effect is known in literature as self-excitation [32] and should be taken
into account when designing the filter, since higher currents than measured at the inverter output
will flow into the filter capacitors. Further analysis of this is effect is conducted in the power section,
when looking at the reactive power flow.

The third plot of Figure 13 shows the speed measured at the electrical machine output ωm and the
pump input ωp, respectively. Due to the frequency ramp until t ≤ 40 s the machine speeds up during
Regime I, reaching a final value slightly below 377 rad s−1 (60 Hz), which is caused by the slip of the
induction machine.

In the fourth plot, the machine torque me produced by the motor and the load torque mp := Nmi

of the pump are shown. It can be observed that the load torque is directly related to the volumetric
flow rate Qp (6th plot), which increases during start-up, then is slightly reduced and finally reaches
steady-state at t = 77.5 s. Due to friction and damping in the mechanical system, the motor must
provide a higher torque than actually required by the load which can clearly be observed in the plot.
Moreover, the motor torque is subject to an apparent ripple which is caused by the current ripples (as
a consequence of inverter switching).

The fiths plot shows various pressures and water levels in terms of head, with pump head
Hp := NHi, water level hw and draw down hd. As expected, the pump head is proportional to the
speed squared and thus shows a parabolic increase during Regime I. It can be observed that the pump
head is slightly reduced after the start-up procedure is completed (Regime II), which might be caused
by the high fluid inertance that causes the flow to increase, even though further head is not delivered
in terms of increased pump speed. When the flow settles at t = 77.5 s (Regime III), the pump head
reaches its final value and the overall pump system is in steady-state. The corresponding pump flow is
shown in the sixths (last) plot.

In addition, Figure 12 shows contour plots of the simulated pump system, with (a) the trajectory
of the pump operating points (red line) over the HQ-contour plot of the simulated pump and (b) its
respective input power as defined in (47) (PQ-contour plot). The dashed white line in the HQ-curve
represents the system curve for zero wellhead pressure, whereas the solid white line assumes full
wellhead pressure as defined by p∗wh. In Figure 12a, the trajectory in the HQ-curve shows that after
a short acceleration period, the pump reaches its maximum flow rate at constant speed slightly below
60 Hz. From here, constant speed is maintained and the trajectory starts moving on the respective
hyperbola. When the trajectory crosses the dashed white line the height difference between pump
and wellhead is overcome. Finally, the trajectory reaches the solid white line, where the desired
wellhead pressure is reached. In Figure 12b, the parabolic power input (due to constant ωp and linear
increase of Qp) during the acceleration phase (Regime I) is clearly visible, whereas in Regime II only
the pump head is further increased while the pump load torque decreases (see Figure 13). This leads
to a reduction of the pump input power until its final value of Pp,m ≈ 1050 W is reached in Regime III
(compare also with first plot in Figure 14).



Energies 2017, 10, 1659 24 of 37

0 0.1 0.2 0.3
0

100

200

300

400

500

600

700

20

30

40

50

50

60

60

(a) HQ-curve

0 0.1 0.2 0.3
0

500

1000

1500

10

20

20

30

30

40

40

50

50

60

(b) PQ-curve

Figure 12. Pump curves of the simulated pump system with trajectories (Hp(·), Qp(·)) (a) and
(Pp,m(·), QP(·)) (b) of operating points taken from the simulation data shown in Figure 13.

3.2.2. Power and Efficiency (See Figure 14)

In the following, electrical power terms such as apparent, active and reactive power will be used.
For voltage and current vectors uαβ and iαβ, the averaged (RMS) power terms are defined as

P =
3
2

1
tS

t∫
t−tS

(uαβ)>iαβdτ, Q =
3
2

1
tS

t∫
t−tS

(uαβ)> Jiαβdτ, S =
3
2

1
tS

t∫
t−tS

‖uαβ‖‖iαβ‖dτ, (46)

with sampling period tS, active power P (in W), reactive power Q (in var) and apparent power S (VA).
Moreover the power factor is defined as cos (φ) := P/S.

The first plot of Figure 14 (likewise from top to bottom) shows various power terms related
to the pump system, i.e., motor electrical input power Pm,e, motor mechanical output power Pm,m,
pump mechanical input power Pp,m and pump hydraulic output power Pp,h (all in W), i.e.,

Pm,e :=
3
2

1
tS

t∫
t−tS

(uαβ
s )>iαβ

s dτ, Pm,m := meωm, Pp,m := Nmiωp, Pp,h := NρgQpHi. (47)

As power is flowing in the aforementioned order—from the motor input to the pump output—and
losses occur in each subsystem a steady decrease in power can be observed. The corresponding
efficiencies are shown in the second plot, with ηm := Pm,m/Pm,e denoting the motor efficiency and
ηp := Pp,h/Pp,m denoting the pump efficiency, respectively. The motor efficiency reaches values of over
90 %, while the pump efficiency is much lower with a maximum value of about 70 %. The efficiency of
the overall system is given by ηt := Pf /Pp,h with a maximum value of approximately 60 %, where Pf
denotes the active power at the filter input.

Plots 3–5 show the apparent, active and reactive power components, measured at the filter input
(subscript f), cable input (subscript c) and machine stator (subscript s), respectively. The apparent
power shows similar characteristics as the current magnitudes depicted in Figure 13, with a higher
apparent power in motor and cable, compared to the filter. On the contrary, the active power is steadily
reduced from filter to motor, as resistive components in the system dissipate power. Looking at the
reactive power, it can be observed that the inverter supplies reactive power to the system in the
interval 0 ≤ t ≤ 27.5 s. At approximately t = 27.5 s the reactive power flow ceases, whereas for
t > 27.5 s the inverter consumes reactive power. In order to analyze this effect the Bode diagram
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for the no-load case (i.e., no current is flowing in the rotor) can be consulted. As mentioned above,
the cable can be neglected in the analysis. The Bode diagram is shown in Figure 16a for two different
transfer functions, i.e., Gf,1 = iα

f1
(s)/uα

f1
(s) and Gf,2 = iα

s (s)/uα
f1
(s). The magnitude plot reveals

that the filter current is damped with approximately 70 dB at frequency f = 41 Hz, which explains
that no reactive power is flowing at the filter input for that specific frequency (at t = 27.5 s the
reference frequency equals 41 Hz). As a consequence, reactive power must circulate between motor
and filter. This hypothesis is supported by the resonant frequency of the filter capacitance and the
stator inductance f f s := 1/(2π

√
(CfLs) = 41.25 Hz. At the same frequency, a phase shift of 180◦

in the filter current occurs. Since both, stator and filter current, are defined positive in the same
direction, the phase shift of the filter currents means that both currents flow simultaneously into the
filter capacitor and thus lead to high currents in the capacitor.

In the sixth plot, the corresponding power factors are depicted. As expected, the filter power
factor reaches 1 at t = 27.5 s, since the reactive power flow is zero. Moreover, it can be observed that
during start-up (Regime I) an increased amount of reactive power—compared to active power—is
required as the electromagnetic components are supplied, while at the same time the load (active part)
is not fully built up yet, resulting in a low power factor.

3.2.3. Detailed Views on Electrical and Mechanical Subsystems (See Figure 15)

Figure 15a,b show detailed views of the voltages, currents and flux linkages (for phase α) of the
various electrical subsystem components for two different operating points (Regime I in Figure 15b
and Regime III in Figure 15a). Both plots show three periods of the sinewave signals, with fundamental
frequencies 22.5 Hz in (a) and 60 Hz in (b).

The upper plots show the α-components of the voltages, namely the reference voltage uα∗
s , the filter

input voltage uα
f , the cable input voltage uα

c and the stator voltage uα
s , with amplitudes of about 2.5 kV

and 5.7 kV in (a) and (b), respectively. It can be observed that the produced output voltage of the
inverter is smoothed by the filter in both cases. The cable itself, however, does not have a noticeable
impact on the voltages (as motivated above). The mid plots show the filter input current iα

f , the cable
input current iα

c , the stator current iα
s and the rotor current iα

r . In both plots, the filter input currents are
distorted, whereas the stator currents are smoothed by the large inductance of the motor. The effect of
self-exciation can be seen clearly in (a), where the amplitude of iα

s is higher than that of iα
f . Moreover,

a slight phase shift between stator and filter currents can be observed. Since the load is still low in the
presented sequence (compare with Figure 13), the amplitude of the rotor current remains comparably
small. The rotor current is clearly shifted in phase, however. In Regime III (b), the amplitudes of both,
filter and stator currents, are nearly doubled compared to (a). Moreover, the stator current is subject to
a phase shift of about π/2 compared to the filter input current, whereas the phase shift of the rotor
current is even larger. Since the load is much higher in Regime III, the amplitude of the rotor current is
increased notably compared to (a). In both cases, the cable does not influence the current waveforms.
The lower plots show the flux linkages ψα

s and ψα
r in the stator and rotor, respectively. Although the

rotor flux is slightly shifted in phase and reduced in amplitude in (b), both plots give evidence that,
once magnetized, the flux linkages do not change significantly anymore.

Figure 15c gives a detailed view on the two-mass mechanical subsystem with the upper plot
showing the angular velocities ωm and ωp and the lower plot showing the torque me and mp = Nmi of
motor and pump, respectively. Both plots reveal minor oscillations of speed and torque on the motor
side. On the other hand, the smoothing impact of the high inertia of the pump is visible in velocity
and torque. The two-mass system acts like a second-order low pass filter for motor torque input me

and pump angular velocity output ωp (compare with the Bode diagram in Figure 16c).
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Figure 13. Simulation results (I): Overview of the results from all subsystems.
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Figure 15. Simulation results (III): Detailed views of the electrical (a,b) and mechanical (c) subsystems.
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Figure 16. Open loop Bode diagrams of (a) LC filter + RL-load transfer functions Gf,1 = iαf1
(s)/uα

f1
(s) [ ]

and Gf,2 = iαs (s)/uα
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(s) [ ]; (b) cable transfer function Gc(s) = uα
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(s)/uα

f2
(s) [ ] and (c) two-mass

system transfer functions Gm,1(s) = ωm(s)/me(s) [ ] and Gm,1(s) = ωp(s)/me(s) [ ].
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4. Conclusions

A detailed state-space model of a deep geothermal ESP system has been derived, comprising the
electrical, mechanical and hydraulic subsystems. Moreover, simulations have been performed for
a Megawatt ESP system located at 950 m below surface level, lifting geothermal fluid of 140 ◦C
temperature. During start-up the electrical frequency has been increased from 0 Hz to 60 Hz and
the voltage amplitude from 0 V to 5750 V, respectively. It could be observed that—once the start-up
procedure was completed—the system reached steady-state, with the pump operating at a constant
flow rate of 0.145 m3 s−1 and a head of 475 m. Besides reaching stable conditions it could be observed
that the cable does not have a significant impact on the system dynamics as the relevant frequencies are
located far beyond the fundamental and switching frequencies. On the other hand, the effect of motor
self-excitation resulting from the large filter capacitor became apparent when looking at the power
factor, reactive power and currents. It should be taken into account when selecting the ESP components,
as the motor currents may be considerably higher than the inverter output currents. The mechanical
two-mass system between motor and pump showed low-pass characteristics, with the minor torque
and speed oscillations from the motor side being almost completely damped on the pump side.
Moreover, simulation results have shown that the model is able to emulate a realistic behavior for the
made-up test scenario, the realistic system parameters and the chosen system dimensions. Nevertheless,
experimental validation of the overall system or individual sub-systems remains an open task that will
be tackled in future work. In this context, a parameter sensitivity analysis should also be conducted in
order to identify sensitive parameters of the model.

The derived model paves the way for further research steps. For example, it allows to design
model-based condition monitoring and fault detection systems which can be implemented on the
realtime platform to monitor the state of the system online by comparing the model outputs with
measured quantities. In the fault-free case, the deviation is expected to be small provided that the
model is correctly parameterized. However, respective action such as a scheduled system shut-down
should be taken by the operator, once the error between measurement and model output surpasses
a defined threshold. Moreover, state-space observers such as extended Kalman filters or Luenberger
observers can be used in order to estimate crucial system states (quantities) which are not measurable or
not measured (since additional expensive sensors would be required). The observer outputs substitute
measurements, reduce deteriorations due to measurement noise and can likewise be used for more
advanced and robust control strategies.

In conclusion, the main contributions of this work are:

1. Identification of primary system components of geothermal ESP systems,
2. Simplification and abstraction of the physics based on feasible assumptions,
3. Consistent and detailed state-space modeling of the system components,
4. Provision of a set of realistic system parameters, and
5. Simulative validation of the overall system.

Future work comprises (i) extensions of the motor model by considering saturation effects
and multi-rotor configurations; (ii) incorporating a temperature model in order to be able to adjust
temperature dependent parameters (e.g., electric resistances, density of water, viscosity of oil, etc.);
(iii) the design of model-based condition monitoring and fault detection systems; and (iv) experimental
validation of the proposed model (as far as possible as operators and manufacturers are reluctant to
share all relevant data).
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Nomenclature

The following nomenclature is used in this manuscript:

N,R Natural, real numbers.
x ∈ R Real scalar.
x := y x “defined as” y.

x !
= y x “forced to be equal to” y.

x := (x1, . . . , xn)> ∈ Rn Column vector of magnitude x̂ :=
√

x2
1 + . . . + x2

n.

x> Transpose of vector x.
X ∈ Rm×n Matrix with m rows and n columns.
diag(x) ∈ Rn×n Square matrix with diagonal elements x and off-diagonal elements 0.
0m×n Zero matrix.
In ∈ Rn×n Identity matrix.
0n := (0, . . . , 0)> Zero (column) vector.
1n := (1, . . . , 1)> Unit (column) vector.
∧, ∨ Logical “and” and “or”.

Moreover, xpy
zn denotes a general signal, with

x Signal (e.g., current i and voltage u).
z Location or assigned component (e.g., c = cable and f = filter).
p ∈ {′, ∗} Signal variants (i.e., per-unit-length, reference).
n ∈ {1, 2} Input and output.
y Assigned reference frame, (i) a-b-c = (ab, bc, ca) for line-to-line signals,

(ii) abc = (a, b, c) for phase signals (three-phase) and (iii) αβ = (α, β) for
the two-phase representation.

Abbreviations

The following abbreviations are used in this manuscript:

ESP Electric submersible pump
VSI Voltage source inverter
PWM Pulse-width modulation
SVM Space-vector modulation

Appendix A. Hydromechanical Model of a Single Impeller Stage

Appendix A.1. Impeller Torque

Based on the conservation of momentum principle [31], p. 99, the load torque mi is derived using
Newton’s second law, i.e., the rate of change of the angular momentum is equal to the resulting torque,
which can be stated in terms of the control volume by the following equation:

mi =
d
dt

∫∫∫
V

ρ r v(r)dV , (A1)

where the integral describes the total angular momentum occurring in the control volume V and vt

is the tangential part of the absolute velocity v at radius r (see Figure 8b). By applying Reynold’s
transport theorem (see e.g., [31], p. 103), the equation above can be reformulated as:

mi =
∂

∂t

∫∫∫
V

ρ r vt(r)dV +
∫∫

∂V
ρ r vt(r)v(r)>S , (A2)

where the first integral describes the transient, and the second integral the steady-state part of the load
torque, respectively. Since inlet and outlet surface of the impeller are not connected, the surface S is
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split into an inlet surface S1 (equal to ∂Vin in Figure 8a) with normal vector pointing in −r direction
(by convention) and an outlet surface S2 (equal to ∂Vout in Figure 8a) with normal vector pointing in
+r direction. Due to the dot product of the radially oriented infinitesimal surfaces and the absolute
velocity, only the absolute value vp(r) of the radial part of the velocity vector remains such that the
impeller torque can be rewritten as:

mi =
∂

∂t

∫∫∫
V

ρrvt(r)dV +
∫∫

∂V2

ρr2vt(r2)vp(r2)dS2 −
∫∫

∂V1

ρr1vt(r1)vp(r1)dS1, (A3)

Exploiting the cylindrical shape of the impeller, the volume flow can be defined as:

Qi = 2πrhivp, (A4)

where vp is the radial component of the absolute velocity. Using basic trigonometry (see Figure 8b),
the tangential part vt of the absolute velocity can be expressed in terms of vp and the angle β as:

vt(r) = ωir− vp(r) cot(β(r)). (A5)

Invoking the infinitesimal volume dV := rdrdϕdz and the infinitesimal surfaces dSk := rkdϕdϕ

for k ∈ {1, 2} (both in cylindrical coordinates), and inserting (A4) and (A5) in (A3) yields the load
torque as a function of rotational speed ωi and volume flow Qi, i.e.,:

mi = ϑ d
dt Qi + Θw

d
dt ωi︸ ︷︷ ︸

transient part

+ a1Q2
i + a2Qiωi︸ ︷︷ ︸

steady-state part

, (A6)

with geometry dependent constants

ϑ := −ρ

r2∫
r1

r cot β(r)dr, Θw := 2πρhi

r2∫
r1

r3dr, (A7)

a1 := − ρ

2πhi
(cot β(r2)− cot β(r1)), a2 := ρ(r2

2 − r2
1). (A8)

The transient part of the torque is characterized by the constant ϑ (in kg m−2) describing the
impact of flow variations on the load torque, and the constant Θw (in kg m2) denoting the inertia
of the fluid contained in the impeller. Moreover, the steady steady-state part of the load torque is
characterized by the constants a1 (in kg m−5) and a2 (in kg m−2).

The derived torque equation is based on the change of the angular momentum inside the impeller.
However, hydraulic friction between the rotating parts (impeller shrouds) and the liquid creates a drag
opposing the rotation. This drag is called disk friction and causes additional power losses. Disk friction
is modeled by an additional load torque component proportional to the rotational speed squared [30],
p. 85, i.e., mdf = Kdω2

i , where Kd (in kg) denotes the disk friction coefficient. The overall load torque
of the impeller is hence given by:

mi = ϑ d
dt Qi + Θw

d
dt ωi + a1Q2

i + a2Qiωi + a3ω2
i , (A9)

where for conventional consistency the constant a3 = Kd accounting for disk friction was
additionally introduced.

Appendix A.2. Impeller Head

In analogy to the load torque derivation where the principle of momentum conservation was
used, the pressure—or head—created by the impeller can be derived using the conservation of energy
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principle (see e.g., [17,33]). The total energy Esys (in J) for a system of mass inside the control volume is
given by [33], p. 201:

Esys =
∫∫∫
V

ρ e dV = Wt + Qt, (A10)

which—according to the first law of thermodynamics—is equal to the sum of work Wt done on the
system and heat Qt (both in J) contained in the system. The variable e (in J kg−1) denotes the energy
per unit mass. Taking the derivative of (A10) and applying Reynold’s transport theorem yields:

d
dt Esys =

∂

∂t

∫∫∫
V

ρedV +
∫∫
∂V

ρev(r)>dS = d
dt Wt +

d
dt Qt. (A11)

If it is assumed that the work done on the system is dominated by shaft and pressure work
only [33], p. 203, the derivative of the total work becomes:

d
dt Wt = ωimi︸︷︷︸

shaft

−
∫∫
∂V

pv(r) · dS
︸ ︷︷ ︸

pressure

, (A12)

where p (in Pa) denotes the pressure and the derivative of the pressure work is negative by convention
since work is done by the system [33], p. 204. Moreover, if it is assumed that heat transfer across the
system boundaries is negligible (see e.g., [33], p. 202) the fluid temperature is considered equal to the
ambient temperature, i.e., d

dt Qt ≈ 0, Equation (A11) can be expressed as:

∂

∂t

∫∫∫
V

ρedV +
∫∫
∂V

ρev(r)>dS (A12)
= ωimi −

∫∫
∂V

pv(r)>dS . (A13)

The total energy per unit mass is defined as:

e = u + 1
2 v2 + gz, (A14)

where u is the internal energy per unit mass, 1
2 v2 is the kinetic energy per unit mass and gz

is the potential energy per unit mass, with gravitational constant g ≈ 9.81 m s−1 and height z.
Rearranging (A13) and inserting (A14) gives:

∂

∂t

∫∫∫
V

ρ
(
u + 1

2 v(r)2 + gz
)
dV +

∫∫
∂V

ρ
(
u +

1
2

v2 + gz + 1
ρ p
)
v(r)>dS = ωimi. (A15)

As Section A.1, the surface integral is evaluated at the inlet and outlet surfaces, respectively.
Moreover, the time derivative of the potential energy is zero, since the pump is assumed to be in a fixed
position (height is not changing). Using v2 = v2

t + v2
p (see Figure 8b) and invoking (A4), (A5) and (A9),

the integrals can be solved as follows:

∂

∂t

∫∫∫
V

ρudV
︸ ︷︷ ︸

=T d
dt S

+ϑ d
dt ωi +

ρ

2πhi

r2∫
r1

1
r sin2 β(r)

dr d
dt Qi + ρgHi + ρgHλ = a1ωiQi + a2ω2

i . (A16)

Since the fluid is assumed to be incompressible (see Assumption 6), the first term on the left-hand
side can be referred to as the time rate of change of the fluid entropy S (in J K−1) times the fluid
temperature T (in K), which is neglected in the following [17] since it is assumed to change slowly,
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compared the other system quantities.Based on Bernoulli’s equation [30], p. 4, the head Hi and head
loss Hλ (in m) are defined as

Hi :=
1

2g
(v2

2 − v2
1) +

1
ρg

(p2 − p1)− (z2 − z1), Hλ :=
1
g
(u2 − u1), (A17)

with velocities v1 and v2, pressures p1 and p1 and vertical rise z1 and z2 evaluated at the input the inlet
and outlet radii r1 and r2, respectively. Finally, the head equation can be stated as:

Hi = −Γp
d
dt Qi + γ d

dt ωi + b∗2 ωiQi + b∗3 ω2
i − Hλ, (A18)

with geometry dependent but constant parameters

Γp :=
1

2πghi

r2∫
r1

1
r sin2 β(r)

dr, γ := − ϑ

ρg
=

1
g

r2∫
r1

r cot β(r)dr, (A19)

b∗2 :=
a1

ρg
= − 1

2πghi
(cot β(r2)− cot β(r1)), b∗3 :=

a2

ρg
=

1
g
(r2

2 − r2
1). (A20)

Again, Equation (A18) consists of a transient part and a steady-state part. The former is
characterized by the (scaled) fluid inertance Γp (in s2 m−2) and a constant γ (in m s2) which describes
the impact of speed variations on the produced head. The steady-state part excluding losses is
described by the constants b∗2 (in s2 m−2) and b∗3 (in m s2) and is referred to as theoretical head.

Due to various fluid dynamical effects such as flow separation, secondary flow or recirculation,
the output velocity distribution of the fluid is non-uniform as opposed to the mean streamline
assumption (see Assumption 7). In fact, the tangential speed at the impeller outlet is reduced (on
average) and does not achieve the theoretically calculated value in a real system. This lack of model
accuracy is accounted for by introducing the slip factor σ, an empirical constant describing the ratio of
actual vt(r2) over theoretical v∗t (r2) output tangential velocity, i.e., σ = vt(r2)/v∗t (r2). Typically, the slip
factor lies in the range of 0.9 [30], pp. 75 ff. Hydraulic losses such as hydraulic friction or shock losses
further decrease the produced head (see e.g., [30]). Hydraulic friction occurs when fluid is flowing
in close vicinity to solid materials and can be modeled by introducing the head loss Hλ,f = KfiQ2

i ,
with material specific constant Kfi (in s m−2). Shock, or incidence, losses occur when the flow enters
the impeller at an angle other than the blade angle and subsequently has to adjust its direction abruptly.
At design conditions shock losses are zero. However, for off-design flow they can be modeled by
Hλ,v = Ks1(Ks2ωi − Qi)

2, where Ks1 (in s2) and Ks2 (in m2) are constants and Ks2ωi is the design
flow [15]. Summarizing the previous considerations the pump curve—as depicted qualitatively in
Figure 9—is given for constant ωi, showing the different components of the head losses and indicating
the best efficiency point (BEP) for which the shock losses become zero.

Concluding, the overall impeller head including losses can be modeled as follows:

Hi = −Γp
d
dt Qi + γ d

dt ωi + b1Q2
i + b2ωiQi + b3ω2

i , (A21)

with newly introduced constants

b1 := −Kfi − Ks1, (A22)

b2 := 2Ks1Ks2 −
1

2πghi
(σ cot β(r2)− cot β(r1)), (A23)

b3 :=
1
g
(σr2

2 − r2
1)− Ks1K2

s2. (A24)
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Finding analytical expressions for the derived coefficients is generally a complicated task, so that
experimentally obtained pump curves are used to fit the parameters. Note that these curves are
typically provided by pump manufacturers.

Appendix B. Transformation of Cable Capacitances Into Model Capacitances

The p.u.l. model capacitances C
′abc
c used in the state-space description of the cable segments must

be derived from the actual physical capacitances among conductors and between conductors and
ground, respectively. Given a capacitive coupling network (as used in the π- and τ-equivalent circuits
depicted in Figures 5 and 6) with line-to-ground capacitances C

′k-0
c and line-to-line capacitances C

′k-l
c

(in F m−1), the model self capacitances C
′kk
c and mutual capacitances C

′kj
c for k, j ∈ {a, b, c}, k 6= j can be

derived using circuit analysis of the network. In the following the derivation is conducted exemplarily
for phase k. Figure A1 illustrates the corresponding voltage meshes and current nodes that are used to
derive the relation between model capacitances and physical capacitances. The line-to-line voltages are
denoted by uk-j

c , the phase voltages by uk
c, the line input and output currents by ik

c1
and ik

c2
, respectively,

the inter-phase currents by ik-j
c and the voltage between the phase reference Y and ground by u0

c .

Y
u0

c

C
′k-0
c

C
′ j-0
c

C
′k-j
c

ik-l
c

Muk
c uj

c

uk-j
c

(a)

ik
c1

ik
c2

C
′k-0
c

ik-0
c C

′k-j
c

ik-j
c

C
′k-l
c

ik-l
c

Y
u0

c

1

(b)

Figure A1. Isolated capacitance network of the π- and τ-cable equivalent circuits: (a) Voltage mesh for
phase k over phase j to ground, j, k ∈ {a, b, c}, j 6= k and (b) currents flowing from and to phase k.

In Figure A1a a voltage mesh M is drawn, comprising the capacitances between phase a and
ground, between phase b and ground and between phase a and b, respectively. Applying Kirchhoff’s
voltage law yields:

uk-j
c = uk

c − uj
c + u0

c . (A25)

Figure A1b shows the currents associated with phase k. The inter-phase currents can be stated as:

ik-j
c = C

′k-j
c

d
dt

(A25)
= C

′k-j
c

d
dt uk

c − C
′k-j
c

d
dt uj

c + C
′k-j
c

d
dt u0

c (A26)

and, analogously:

ik-l
c = C

′k-l
c

d
dt

(A25)
= C

′k-l
c

d
dt uk

c − C
′k-l
c

d
dt ul

c + C
′k-l
c

d
dt u0

c . (A27)

Now, by applying Kirchhoff’s current law on node 1 , the line-to-line voltages can be
eliminated, i.e.,:

ik
c1
− ik

c2
= ik-0

c + ik-j
c + ik-l

c (A28)
(A26),(A27)

= C
′k-0
c ( d

dt uk
c − d

dt u0
c) + C

′k-j
c ( d

dt uk
c − d

dt uj
c +

d
dt u0

c) + C
′k-l
c ( d

dt uk
c − d

dt ul
c +

d
dt u0

c)

= (C
′k-0
c + C

′k-j
c + C

′k-l
c ) d

dt uk
c − C

′k-j
c

d
dt uj

c − C
′k-l
c

d
dt ul

c + (C
′k-0
c + C

′k-j
c + C

′k-l
c ) d

dt u0
c .
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It follows from aboves equation that the self capacitance is determined by C
′kk
c = C

′k-0
c + C

′k-j
c + C

′k-l
c ,

whereas the mutual capacitances are given by C
′kj
c = −C

′k-j
c and C

′kl
c = −C

′k-l
c . Note, that the zero voltage

vector u0
c will be eliminated by applying the Clarke transformation.
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