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Abstract: Chronic infection with the hepatitis B virus (HBV) can lead to liver failure and can cause
liver cirrhosis and hepatocellular carcinoma (HCC). Reliable means for detecting and monitoring
HBV infection are essential to identify patients in need of therapy and to prevent HBV transmission.
Nanomaterials with defined electrical, optical, and mechanical properties have been developed to
detect and quantify viral antigens. In this review, we discuss the challenges in applying nanoparticles
to HBV antigen detection and in realizing the bio-analytical potential of such nanoparticles.
We discuss recent developments in generating detection platforms based on gold and iron oxide
nanoparticles. Such platforms increase biological material detection efficiency by the targeted capture
and concentration of HBV antigens, but the unique properties of nanoparticles can also be exploited
for direct, sensitive, and specific antigen detection. We discuss several studies that show that
nanomaterial-based platforms enable ultrasensitive HBV antigen detection.
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1. Introduction

Infections with the hepatitis B virus (HBV) often become chronic, especially when people are
infected at a young age. Chronic HBV infection is strongly associated with the development of liver
diseases such as liver cirrhosis and hepatocellular carcinoma, resulting in about one million deaths each
year [1–3]. Although currently no curative therapy for chronic HBV infection is available, treatment of
patients with nucleotide analogs or interferon can suppress viral replication and reduce the risk of
developing end-stage liver disease.

Several physico-chemical and biochemical methods have been developed to diagnose and quantify
HBV infection [4–8]. In most infected patients, HBV DNA can be detected by PCR and secreted HBV
antigens, such as the envelope (hepatitis B surface antigen, HBsAg) and core proteins [4,8], can be
detected by Enzyme-Linked ImmunoSorbent Assay (ELISA) [5]. Although PCR and ELISA-based
methods have proven to have a good specificity, they are not always sensitive enough to detect HBV
antigens in patient samples. For instance, in occult HBV infection, HBV DNA can be detected in patient
serum in the absence of detectable HBsAg. Notably, occultly infected patients are still at an increased
risk of developing HBV infection-related liver disease and may benefit from therapy. In addition,
in blood transfusion practice, the detection limits of currently available standardised tests for HBV
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antigens can cause safety risks, especially because blood samples are often pooled before testing to
reduce testing costs.

Nanoparticles have been developed for various applications in the treatment and imaging of liver
diseases [9]. Typically, such nanoparticles are coated with biological components (e.g., antibodies,
oligonucleotides, aptamers etc.) that grant them a specificity to interact with a specific protein or
DNA fragment. For example, gold particles coated with antibodies specific to certain proteins can be
used to localise specific proteins at a subcellular level by electron microscopy. Nano-sized materials
combined with biomolecules can contribute to the improvement of bio-analytical methods in terms of
sensitivity and specificity. With the development of nanotechnology, various nanoparticles including
e.g., quantum dots [10], carbon nanotubes [11] and nanowires [12] were applied in bio-analytical assays.

The application of nanoparticle-based detection methods may provide a more sensitive alternative
for the diagnosis and monitoring of viral infections. In this review, we provide an overview of recent
advances in the development of diagnostic tools with specific focus on the application of gold and
iron oxide nanoparticles that have gained much attraction in recent years [13–15] in the detection and
quantification of HBV infection.

2. Gold Nanoparticles

Gold nanoparticles (AuNPs) have often been used as carriers for various biomedical applications
due to their biocompatibility, their optical and electronic properties and because they are relatively easy
to manufacture [16]. AuNPs can be functionalised with various biological macromolecules, such as
antibodies, oligonucleotides and aptamers, to detect a variety of (bio) molecules [17]. For instance,
antibody-coated AuNPs can be used to stain substrates for electron microscopy in order to determine
the (sub) cellular localisation of (viral) proteins [18,19].

Over the last few decades, various methods have been developed that employ the unique physical
properties of AuNPs to detect and quantify biological molecules in samples. These methods have the
potential to improve the sensitivity, ease of operation and applicability of HBV detection [20].

For instance, Wu et al. employed AuNPs dually labelled with anti-HBsAg antibodies and human
alpha-thrombin (HAT, an enzyme that can convert a bisamide substrate into a fluorescent reaction
product) [21]. These AuNPs were used to detect HBsAg bound to anti-HBsAg coated on a conventional
ELISA plate by enhanced fluorescence enzyme-linked immunosorbent assay (FELISA). Under optimal
conditions (HBsAg was dissolved in phosphate-buffered saline (PBS)), this method allowed the detection
of HBsAg concentrations of 5 × 10−4 IU/mL, which is about 104 times lower than the detection limit
of other fluorescence-based methods and 106 times lower than those of the conventional ELISA [21].

2.1. Detection of Hepatitis B Virus Antigens by Gold Nanoparticles Surface Plasmon Resonance

One of the unique physical properties of the AuNPs is their specific optical behaviour when
exposed to electromagnetic radiation. This causes an oscillation of the electrons, called surface
plasmon resonance (SPR), which depends on the size and shape of the nanoparticle and (the dielectric
constant of) its environment [22]. Consequently, interactions between molecules covering the AuNP
and molecules in the environment cause changes in the SPR frequencies of the AuNP that can be
detected and used to quantify specific biological molecules in their environment. Several bio-analytical
applications based on AuNP SPR have been reported [23–25]. AuNP SPR has been used to quantify
HBsAg in blood, serum and plasma by directly measuring the shift in the SPR peak of anti-HBsAg
coated AuNP [26]. The authors were able to detect HBsAg concentrations of 0.1 IU/mL [26].

Interestingly, changes in the SPR of AuNPs can be in the visible part of the spectrum, allowing
the determination of a reaction by colour shifts in the visible spectrum. Typically, for this format,
AuNPs are immobilised on paper strips and used to detect PCR-amplified pathogen DNA, which
greatly enhances their applicability in resource-poor settings. For example, AuNPs have been
combined with inkjet-printed, dye-sensitised TiO2 photodetectors as a means of detection to generate
colorimetric biosensors with a limit of detection (LOD) of 1 nm DNA [27]. Recently, this method was
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further enhanced to simultaneously detect two different pathogens in one reaction [28]. Duan et al.
recently employed immobilised HBV and hepatitis C virus (HCV) antigens, staphylococcal protein A
(SPA)-labelled AuNPs and a silver staining step to increase the optical signal to simultaneously detect
antibodies to HBV and HCV antigens [29]. The method was tested on 305 serum samples, of which
antigen concentrations were previously determined by ELISA, showing a comparable sensitivity and a
LOD of 3 ng/mL antibody [29]. Interestingly, Song et al. used oligonucleotide-directed precipitation
of AuNP on a plate carrier to identify tyrosine-methionine-aspartate-aspartate (YMDD) mutations
in patient-derived HBV DNA [30]. The release of AuNPs from a carrier can also be monitored by
dark-field microscopy. Jang et al. used AuNPs coupled to multiple pathogen-specific oligonucleotides
with restriction enzyme specific bridging sequences to simultaneously detect femtomolar amounts
of hepatitis A virus (HAV), HBV and human immunodeficiency virus (HIV) cDNA using sequential
incubation with different restriction enzymes [31].

2.2. Use of Gold Nanoparticles in Electrochemical Detectors

The electrochemical features of the AuNPs make them attractive carriers to grant specificity to
electrochemical biosensors (Reviewed in [32]). AuNP-based electrochemical biosensors have been
designed for DNA [33–35] and protein [36] quantification and analysis. The principle of the method is
based on the complex formation between oligonucleotide- or antibody-coated AuNPs and specific DNA
fragments or proteins at an electrode surface that results in the production of detectable amperometric,
potentiometric or impedimetric signals (Figure 1). Notably, the detection of viral DNA does not require
a PCR amplification step. Several electrochemical biosensors have been used to detect HBV antigens.
Streptavidin-conjugated AuNPs have been combined with a biotin-labeled, HBV DNA-specific DNA
probe and applied for the voltammetric detection of HBV DNA with a LOD of 2 × 10−12 M viral
DNA [37]. Chen et al. designed and tested an impedance biosensor for HBV DNA which had a LOD of
111 copies/mL [35]. Several electrochemical biosensors have been developed to detect HBsAg [36–42],
with sensitivities ranging from 0.358 pg/mL [36] to 1.9 pg/mL.
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2.3. Gold Nanoparticles-Based Lateral Flow Assay

Because they are easy to operate and do not require reagents or machines to be read out, lateral
flow assay (LFA)-based detection methods are often applied in point-of-care diagnostics [20]. Several
studies suggest that the main disadvantage of such tests, that of their low sensitivity, can be improved
by AuNP-based signal amplification [43]. Kim et al. developed an AuNP-based LFA that could detect
500 ng/mL HBsAg in whole blood, which was comparable to a commercially available HBsAg LFA
(Humasis, Anyang, Republic of Korea) [44].

2.4. Gold Nanoparticles-Enhanced Raman Spectroscopy

Raman spectroscopy is the analysis of the scattering of low energy electromagnetic radiation by
inelastic collision with an analyte [20]. Adsorption or immobilisation of an analyte on AuNPs can



Viruses 2017, 9, 193 4 of 11

greatly (106) enhance the probability of Raman scattering, a phenomenon called surface enhanced
Raman spectroscopy (SERS). Intriguingly, SERS-based detection methods have been developed with a
sensitivity in the order of single molecules [17,45]. A gold nanostructure SERS-based HBsAg assay
was developed, which had a sensitivity of 0.01 IU/mL, a good specificity and a broad linear range [46].

3. Magnetic Nanoparticles

Because biological materials lack magnetic behaviour, magnetic nanoparticles (MNPs) can be
used to detect specific molecules in biological samples without causing interference with signal
detection [47]. MNPs based on iron oxide are one of the most widespread NP formulations applied
in biomedical research [48] and have been applied in various electrochemical, optical, piezoelectric
and magnetic field sensors [49–55]. For the synthesis of MNPs, several types of magnetic iron oxides
including magnetite (Fe3O4), hematite (α-Fe2O3) and maghemite (γ-Fe2O3 and β-Fe2O3) are used [56].
As the magnetism of such particles relies on superparamagnetism, they are often referred to as
superparamagnetic iron oxide nanoparticles (SPIONs). A widely used and straightforward application
of such particles is magnetic-activated cell sorting (MACS), in which specific cells are labelled with
antibody-conjugated magnetic particles and subsequently sorted by exposure to a magnetic field.
The ease of sorting MNP-bound molecules has also been used to develop HBsAg-specific aptamers
that were subsequently used to detect HBsAg by ELISA with a LOD of 0.1 ng/mL [57].

3.1. Spin–Spin Relaxation Time-Based Detection Methods

Most MNP-based antigen detection methods are based on changes in the spin-spin relaxation
time (T2) of water molecules surrounding an MNP upon the clustering of the MNP induced by a
specific target (Figure 2). Changes in T2 can be quantified using conventional magnetic resonance
imaging (MRI) scanners or nuclear magnetic resonance (NMR) relaxometers. Notably, such devices
are becoming increasingly practical to work with (i.e., benchtop format) and sensitive. Recently,
Wang et al. demonstrated that, using MNPs and an ultra-low field (ULF) NMR technique, they could
detect protein concentrations of 10 pg/mL, below the LOD of conventional ELISA [58]. More recently,
chip-based NMR detection systems have been developed which can process multiple microliter
volumes samples [54].
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Figure 2. Schematic representation of magnetic nanoparticle (MNP) clustering in the presence of a
specific antigen. Following interaction between functionalized MNPs and an antigen, the clustering of
MNPs induces a change in the T2 relaxation values of the surrounding water molecules, which can be
detected by (diagnostic) magnetic resonance.

3.2. Electrochemical Detection

Magnetic nanoparticles can be used for the electrochemical detection of an interaction with a
specific ligand, e.g., through direct contact with the electrode, the transfer of electrons generated in
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redox-reactions, or the formation of a film on the electrode surface [50]. Fatemi et al. used MNPs
to capture PCR-amplified HBV DNA and subsequently detect the presence or absence of DNA by
cathodic stripping voltammetry [59]. Although this method requires PCR-amplified DNA, it has a good
potential for miniaturisation (i.e., lab-on-a-chip) application [59]. Nourani et al. applied anti-HBsAg coated
MNPs to capture HBsAg and a horseradish peroxidase (HRP)-labelled secondary antibody to convert
aminophenol into electrochemically detectable reaction products, with an LOD of 0.9 pg/mL [59,60].
Magnetic nanoparticles have been applied to capture HBV DNA prior to analysis in a commercially
available microfluidic electrophoresis system (Experion, Bio-Rad, Hercules, CA, USA) [61].

The magnetic properties of MNPs have also been used to assemble oligonucleotide-labelled MNPs
on an electrode surface by the application of a magnetic field. This electrode was subsequently applied
to detect HBV DNA by impedance spectroscopy (an electrochemical technique to characterize film
formation on conductive surfaces [62]), with a LOD of 2.5 nm HBV DNA [63].

3.3. Lateral Flow Assay

Zhang et al. constructed an MNP-based HBsAg lateral flow assay. Using human serum samples,
they demonstrated the LFA strips had an LOD of 5 pg/mL for manual (i.e., naked eye) detection and
of 0.1 pg/mL for detection by mechanical analysers [64].

4. Quantum Dots

Because of their photochemical stability, quantum dots (QDs) are a promising alternative to
organic fluorophores [65]. As such, QDs have been applied to detect HBV DNA [66], anti-HBsAg
antibodies [67], HBV mutants [68,69], and HBsAg [70]. Except for the detection of Anti-HBsAg (LOD:
2 pg/mL [67]), the sensitivity of QD-based detection of HBV antigens is below that of other methods.

5. Combinations of Different Nanoparticles

Detection methods employing different nanomaterials can increase the effectiveness and
applicability by combining the properties of individual nanoparticles [71]. Mashhadizadeh and
Talemi [72] combined antisense DNA probes, immobilised on AuNPs and linked to a carbon paste
electrode, to measure the competition between target (HBV) DNA and MNPs by assessing the change
in interfacial charge transfer resistance (RCT). The LOD of this method was 3.1 (±0.1) × 10−13 M HBV
DNA, considerably lower than detection methods employing either nanoparticle alone (Table 1).

Table 1. Overview of different nanoparticle-based detection methods and their detection limits.

Method Nanoparticle Use Detected Antigen Detection
Method

Lower Limit of
Detection

Substrates
Tested Ref.

Conventional
methods

- Anti-HBsAg ELISA Plasma, serum [73]

- HBsAg ELISA 0.5 IU/mL Plasma, serum [19]

- HBV DNA PCR 2000 IU/mL Plasma, serum [74]

Gold
nanoparticles

DNA-coated AuNP HBsAg Direct detection of
SPR peak 0.1 IU/mL Blood, serum,

plasma [26]

DNA-coated AuNP HBV DNA Voltammetry 2 × 10−9 M PCR product [37]

Anti-HBs and
HAT-coated AuNP HBsAg FELISA 5 × 10−4 IU/mL HBsAg in PBS

Oligo-coated AuNP DNA
Colorimetric,

disposable paper
strips

1 × 10−9 M N.A. [27]

Oligo-coated AuNP HBV DNA
Colorimetric,

dark-field
microscope

1 × 10−13 M PCR product

HBsAg Electrochemical 0.343 pg/mL [36]

Gold Nanostructure HBsAg SERS 0.01 IU/mL Serum [46]

Oligo-coated AuNP HBV DNA Electrochemical
(impedance) 111 copies/mL Serum [35]
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Table 1. Cont.

Method Nanoparticle Use Detected Antigen Detection
Method

Lower Limit of
Detection

Substrates
Tested Ref.

Magnetic
nanoparticles

Immobilised,
probe-conjungated NP HBV DNA

Non-faradic
impedance

spectroscopy

50 pMol in 20 µL;
2.5 × 10−6 M

Plasma and
serum [63]

Anti-HBsAg coated
MNP HBsAg (cyclic)

voltammetry 0.9 pg/mL HBsAg in PBS [60]

QDs HBsAg-coated QDs Anti-HBsAg Lateral flow 2 pg/mL Anti-HBsAg [67]

Magnetite and
gold

nanoparticles

Immobilised gold NP,
competition between
target DNA and MNP

HBV DNA RCT
3.1 (±0.1) × 10−13

M
Urine, plasma [72]

Anti-HBsAg coated
MNP and AuNP

aggregation
HBsAg Anodic stripping

voltammetry 87 pg/mL HBsAg in PBS [75]

AuNPs and QDs
Immobilised QD,

competition between
target DNA and AuNP

Simultaneous
HBV DNA and

HCV RNA

Colorimetric, ECL
quenching

8.2 × 10−14 M
(HBV) and 3.4 ×
10−13 M (HCV)

Plasma [76]

ELISA: enzyme-linked immunosorbent assay; HBeAg: hepatitis B virus e antigen; HBsAg: hepatitis B virus surface
antigen; RCT: interfacial charge transfer resistance; QDs: quantum Dots; HAT: human alpha-thrombin; HCV:
hepatitis C virus; SPR: surface plasmon resonance; FELISA: fluorescence enzyme-linked immunosorbent assay;
SERS: surface enhanced Raman spectroscopy; ECL: electrochemiluminescence; PBS: phosphate-buffered saline;
N.A.: non applicable.

Gold nanoparticles and magnetic nanoparticles have also been combined for the colorimetric
quantification of target DNA or RNA. Briefly, AuNPs were labelled with oligonucleotides that, upon
hybridisation to a specific target RNA or DNA sequence, undergo a click-chemistry reaction which
could be amplified by thermal cycling. Subsequently, AuNPs were precipitated using MNPs specific
to the reaction product. The (visible) change in the reaction supernatant SPR (i.e., colour) served
as a readout [73]. This technique was able to detect several copies of target DNA, comparable to
PCR-based methods. The method was not validated for detecting HBV DNA. Alizadeh et al. designed
an electrochemical HBsAg immunosensor by assembling anti-HBsAg coated MNPs on an electrode as a
supporting matrix, and peroxidase-labelled AuNPs were used to generate a voltametrically detectable
signal [77], with a LOD of 0.19 pg/mL HBsAg. Shen et al. combined AuNPs with MNPs to detect
HBsAg by anodic stripping voltammetry, with a LOD of 87 pg/mL [75].

Gold nanoparticleshave also been combined with multi-colour QDs to simultaneously detect
HBV and HCV DNA. QDs of different colours were coated with HBV DNA or HCV cDNA specific
probes and captured on glassy carbon electrodes. These were incubated with target DNA, which
prevented the binding of target DNA coated AuNPs in a dose-dependent manner. Subsequently,
target DNA concentrations were determined by the quenching of QD electrochemoluminescence by
AuNPs [76]. By employing these methods, the authors could detect HBV DNA with concentrations as
low as 8.2 × 10−14 M in human serum without PCR amplification.

Oligo-labelled AuNPs and MNPs have been applied to capture HBV DNA, concentrate and purify
it using a magnet and measure silver nanoparticle (AgNP) amplified voltammetric signals on a device
consisting of electrodes and folded paper [78]. Although, with a LOD of 85 pM HBV DNA, the device
was not the most sensitive, its application is virtually reagent-free and the disposable device can be
assembled for around 0.36 U.S. dollars, making it conceptually interesting for point-of-care (POC)
HBsAg determination in low-resource settings [78].

6. Conclusions

Adequate means to detect HBV antigens in serum samples are essential for providing adequate
individual patient care, but also in guaranteeing the safety of transfusable human blood products [6–8].
Numerous studies have shown that the application of nanoparticles can greatly improve the sensitivity
and applicability of diagnostic methods. The possibility of detecting NP-associated antigens by SPR,
electrochemistry and NMR has been demonstrated for HBV antigens and offers interesting perspectives
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for miniaturisation. Further (commercial) development and the validation of NP-based detection
techniques could be of great use in increasing the safety and decreasing the costs of testing in blood
transfusion product production. The signal enhancement of LFA-based detection strips by NPs may
increase their applicability, especially in POC HBV testing. Combinations of such techniques can
be used to generate cheap, easy to operate and reagent-free HBsAg tests. If the sensitivity of such
tests could be improved, they may be a favourable alternative for POC HBV status determination in
resource-poor settings [27].
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