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Abstract: Submerged macrophytes are important structural components of freshwater ecosystems
that are widely used as long-term bioindicators for the trophic state of freshwater lakes. Climate
change and related rising water temperatures are suspected to affect macrophyte growth and species
composition as well as the length of the growing season. Alternative to the traditional ground-based
monitoring methods, remote sensing is expected to provide fast and effective tools to map submerged
macrophytes at short intervals and over large areas. This study analyses interrelations between
spectral signature, plant phenology and the length of growing season as influenced by the variable
water temperature. During the growing seasons of 2011 and 2015, remote sensing reflectance spectra
of macrophytes and sediment were collected systematically in-situ with hyperspectral underwater
spectroradiometer at Lake Starnberg, Germany. The established spectral libraries were used to
develop reflectance models. The combination of spectral information and phenologic characteristics
allows the development of a phenologic fingerprint for each macrophyte species. By inversion, the
reflectance models deliver day and daytime specific spectral signatures of the macrophyte populations.
The subsequent classification processing chain allowed distinguishing species-specific macrophyte
growth at different phenologic stages. The analysis of spectral signatures within the phenologic
development indicates that the invasive species Elodea nuttallii is less affected by water temperature
oscillations than the native species Chara spp. and Potamogeton perfoliatus.

Keywords: submerged aquatic vegetation; phenologic variations; remote sensing reflectance
modeling; spectral library; bioindication

1. Introduction

Macrophytes are important structural components and sensitive bioindicators of the long-term
trophic state of freshwater lakes [1]. Occurrence and species composition depend on the nutrient
conditions, water level, water temperature and transparency [1–5]. Changing environmental conditions
affect variations in macrophyte species composition, distribution, vegetation begin and senescence [6–8].
A regular update of the macrophyte index [1] in freshwater lake ecosystems is recommended by
the European Water Framework Directive (WFD). The present regulation requires a mapping of
macrophytes on species level every third year, preferably by divers [9]. Global change affects the
environmental conditions rapidly. Therefore, Palmer et al. [10] recommend more frequent observations
of freshwater lakes to detect changes in water quality at an early stage. Remote sensing offers a time-
and cost-effective method to support monitoring approaches including those recommended by the
WFD. Due to its capability to deliver information at high spatiotemporal resolution, remote sensing
methods offer the potential to observe detailed seasonal changes in macrophyte distribution and water
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quality [11–19]. It can complement hitherto in-situ data collection along transects by divers and is
suggested for closing the gap between the snapshots of in-situ mappings of the WFD [10,20]. It is
expected that a high revisiting frequency may compensate the information loss compared to in-situ
mapping by divers.

Annual variations of different environmental parameters such as water clarity, temperature,
sediment quality and nutrient loading are well known factors controlling the distribution and
phenologic development of submersed macrophyte populations [21–28]. For several years,
these natural variations have been superimposed by continuously increasing mean annual water
temperatures, higher frequencies of heavy rain events, and prolongations as well as other temporal
shifts of growing seasons. These effects are attributed to climate change and can be accompanied
by the sprawl of some endemic macrophyte species such as Najas marina [29,30] and invasions of
non-native species, both of which can potentially change ecosystem functioning.

For a successful macrophyte monitoring by satellite remote sensing, several challenges above
and below the water surface have to be overcome to obtain reliable spectral information of the
littoral bottom coverage [31–33]. Below the water surface, the received signal is influenced by
the overlaying water column and refraction. The radiative transfer is affected by suspended and
dissolved materials in the water column and the water itself [6,34,35]. Littoral bottom coverage
with sediment and macrophytes differs from lake to lake. In addition, annual as well as seasonal
changes strongly affect the signal. Malthus and George [16] used airborne remote sensing systems to
differentiate between floating-leafed and emergent macrophyte species. Additional in-situ spectrometer
data by Pinnel et al. [15] suggested a potential differentiation of bottom substrates as well as a
possible discrimination among high growing macrophytes on species level using HyMap data at
Lake Constance, Germany. Giardino et al. [17] investigated macrophyte colonization patches and
distribution within one growing season at Lake Garda, Italy, by combining Multispectral Infrared
and Visible Imaging Spectrometer (MIVIS) and ex-situ spectral information. Heblinski et al. [36]
documented spatial vegetation dynamics of Lake Sevan, Armenia, with algorithms that can
differentiate bottom coverage types as well as several macrophyte species and sediment types.
To exclude the influence of the water column and water depth, Roessler et al. [14] and Fritz et al. [37]
used a method of depth-invariant indices to differentiate between bottom substrates. In-situ reflectance
spectra of littoral bottom coverage (e.g., macrophytes or sediments) are very helpful to control
atmospheric and water column corrections of remote sensing data and to distinguish macrophyte
signal from water column attenuations [6,36,38].

The information extraction in water related to remote sensing is primarily based on the evaluation
of spectral signatures. The vegetation/sediment ratio and the different phenologic stages within the
growing season control the spectral response. At the beginning of the growing season, the spectral
response, even of sparsely vegetated areas, is sediment-dominated. Organic material on the lake
bottom such as epiphytes and detritus may alter the spectral response of bare sediment [6,13,39–41].
During the growing season, changes in macrophyte/sediment coverage ratio, leaf size and orientation,
leaf pigment concentrations and cellular structure specifically influence intensity and shape of
spectral signatures [6,13,40]. The maximum in macrophyte bottom coverage and biomass content
heralds the senescence phase. During this period, the spectral signature is affected by degrading
Chlorophyll a (Chl-a) content in ageing leaves [42,43] and the change of canopy structure by collapsed
macrophytes [6,13]. Knowledge about the development pattern of the investigated macrophyte species
during the growing season is required for the envisaged differentiation on species level by means of
remote sensing [13,15]. Therefore, detailed information of the species composition and canopy structure
of the macrophytes at the sampling dates are required [44]. Pinnel [38] and Wolf et al. [13] analyzed
in-situ spectral signatures of various submersed macrophyte species (Chara spp., Elodea nuttallii,
Najas marina, and Potamogeton perfoliatus) in different lakes in the Alpine foreland to detect spectral
variations during the growing season. From these studies [13,38], we learn that the phenologic
development within the year and the related spectral signatures are species-specific and deliver a
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phenologic fingerprint, an approach successful applied in forestry for forest tree species identification,
if recorded continuously [45,46].

In the long-term concept for a submersed macrophyte monitoring system for freshwater lakes, the
spectral and temporal information is provided by in-situ measurements. This information needs to be
transferred to high resolution satellite systems such as Sentinel-2 type systems. For this task two main
processing steps are required: first, the calculation of the expected spectra for the date and imaging
time of the remote sensing system (database output of the species specific phenologic model); and,
second, the inversion of bio-optical models adapted from of the extracted database spectra, delivering
water contents and littoral bottom substrate distribution, showing macrophyte patches down to the
species level. When completed, the system allows a trophic status determination of freshwater lakes.

The environmental conditions of the respective growing season cannot be reconstructed precisely.
As an important variable influencing the growth pattern of submersed macrophytes [24–28], water
temperature was chosen in this study. The effect of sediment quality on macrophyte growth [21–23]
was beyond the scope of this study, mainly because the same patches were analyzed for both years.
A previous study by Wolf et al. [13] already demonstrated the phenologic pattern changes within the
growing season. However, that study did not link spectral patterns with temperature effects and it did
not apply a modeling approach for phenologic and seasonal comparisons.

The primary objectives of this study therefore were to investigate: (1) whether temporal patterns
of phenologic development phases facilitate species differentiation on base of spectral signatures,
applying the identical sample design and instrumentation as Wolf et al. [13]; (2) whether annual water
temperature oscillations affect species-specific growth of submersed macrophytes; and (3) if native
and invasive species have different tolerance to an increase in water temperature.

2. Materials and Methods

2.1. Study Site

The study site is located in the northern part of Lake Starnberg near the town Starnberg (47.9◦ N,
11.3◦ E), situated 25 km south of Munich in Southern Germany (Figure 1). The current state of the
lake is oligotrophic [47]. With a surface area of 56.4 km2 and a maximum depth of about 127 m,
Lake Starnberg is Germany’s fifth largest lake [48]. At this test site, populations of three coexisting
macrophyte species were measured within the growing seasons of 2011 and 2015. The invasive
species Elodea nuttallii as well as the two indigenous species Chara spp. and Potamogeton perfoliatus
were investigated. The test site Chara is covered by Chara aspera (80%), Chara delicatula (10%) and
Chara intermedia (10%). The 3 test sites are pure stands, one for each species. During both growing
seasons, all measurements were taken at exactly the same positions. The water temperature of Lake
Starnberg is continuously monitored by Bavarian Environmental Agency [49] every hour at the study
site in the northern part of the lake.

Monthly water temperatures of Lake Starnberg are displayed for 2011 and 2015 (Figure 2). In 2015,
mean monthly water temperatures were higher in January (+0.7 ◦C), February (+0.9 ◦C), March
(+0.9 ◦C), July (+2.4 ◦C) and August (+1.5 ◦C) compared to 2011. The remaining 7 months (April
(−1.2 ◦C), May (−1.1 ◦C), June (−0.9 ◦C), September (−1.8 ◦C), October (−1.3 ◦C), November (−0.3 ◦C)
and December (−0.1 ◦C)) had lower values than in 2011. In summary, the beginning of 2015 was
warmer (January to March), while the spring temperatures were lower (April to June). During the
main growing season in July and August, the temperatures in 2015 were higher. In contrast, 2011 had
warmer autumn temperatures (September and October). Overall, the mean water temperature in 2015
was +0.05 ◦C higher.
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Figure 1. Study site at Lake Starnberg. Measurement points of macrophyte test sites (red: Chara, blue: 

E. nuttallii, green: P. perfoliatus) and water temperature (yellow) (Google Earth Imagery, Image 2017 

Landsat/Copernicus). Landsat 8 true‐color composite (acquisition date: 7 April 2014; data source: 

USGS). 

Figure 1. Study site at Lake Starnberg. Measurement points of macrophyte test sites (red: Chara,
blue: E. nuttallii, green: P. perfoliatus) and water temperature (yellow) (Google Earth Imagery, Image
2017 Landsat/Copernicus). Landsat 8 true-color composite (acquisition date: 7 April 2014; data
source: USGS).
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Figure 2. Monthly mean water temperature and standard deviation at Lake Starnberg in 2011 and 2015.  
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Figure 2. Monthly mean water temperature and standard deviation at Lake Starnberg in 2011 and 2015.

2.2. In-Situ Measurements

During the growing seasons of 2011 and 2015, remote sensing reflectance spectra of pure stands of
three macrophyte species were recorded systematically at the same study site and with the same
measurement setup to cover different phenologic stages. The setup was performed on a jetty
(Figure 3). With the aid of an extension arm a distance of 3 m between sensors and jetty was
maintained. This stationary setup avoided drifting as well as shading and neighborhood effects
due to an optimal sun-object-sensor geometry. The measurement setup consisted of three submersible
RAMSES spectroradiometers (ACC-VIS and ARC-VIS; spectral range: 320 nm to 950 nm; TriOS
Mess- und Datentechnik GmbH, Rastede, Germany) [50] and an underwater camera system (Canon
PowerShot G10, Canon, Tokyo, Japan). The camera was used to monitor the sensor position and
to document the bottom coverage of the measurement spot by live stream. The downwelling and
upwelling hemispherical irradiance (Ed and Eu) as well as the upwelling radiance Lu (with a field of
view of 7◦) were collected simultaneously within a range of 320 nm to 950 nm in 3.3 nm intervals.
The data collection took place above sediment surface (depth b) before appearance of vegetation as
well as just beneath the water surface (depth 0). During the plant growing period, the measurements
at depth b were done above the macrophyte canopy. The distance between sensors and plant canopy
respectively sediment was always 45 cm. The sensor depth in relation to the water surface was
documented with a measuring tape fixed to the extension arm.

In both years, field campaigns were planned approximately every 3 weeks under cloud free
conditions. The measurements at each single day were designed to start in the morning hours and
to last until late afternoon. During the main growing season from mid-June to mid-September, sun
position 1.5 h before and after noon in mid-September (Central European Time) was defined as the
reference sun-zenith angle which should be captured by all daily measurement series. Under optimum
conditions, up to 7 datasets per day and macrophyte patch were registered. The repetitions were
conducted at the same places for each species. Each dataset consisted of 20 replicates within 3 min at
the same fixed place and depths. For stable conditions, measurements in depth b and depth 0 were
passed in quick succession.
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Figure 3. Measurement setup of in-situ data collection (modified from Wolf et al. [13]).

2.3. Data Processing

The data processing chain was developed with Python (version 2.7.8, Python Software Foundation,
Delaware, USA). For each dataset, the remote sensing reflectance spectra Rrs(b) and Rrs(0) of the two
depths (depth b and 0) were calculated for 20 measurements of Ed and Lu [34]. Afterwards, the
spectra were smoothed by Savitzky–Golay filter of length 5 [51]. For each of the 20 measurements
of the dataset, the median was calculated. In line with Pinnel [38] and Wolf et al. [13] the spectra
were cropped to a range of 400 to 700 nm to exclude strong sensor noise. Rrs(b) spectra above
the canopy or sediment surface had to be corrected to eliminate the influence of the remaining
water column of 45 cm between sensors and object. The water column correction was according to
absorption models for phytoplankton [52] and colored dissolved organic matter [42], to backscattering
models for phytoplankton [53] and non-algal particles [54], as well as absorption and backscattering
coefficients of water and to the radiative transfer model of Albert and Mobley [55]. For calculating
the required water constituent concentrations (Chl-a), colored dissolved organic matter (cDOM) and
suspended particulate matter (SPM) were derived by an inversion of the diffuse vertical attenuation
coefficient for downwelling irradiance Kd as implemented in the water colour simulator WASI [56,57].
The attenuation coefficient Kd was calculated with the method of Maritorena [58] by using Ed
measurements in two different depths (b and 0) at the same spot.

2.4. Reflectance Model

The corrected in-situ Rrs(b) spectra were used to create a model of remote sensing reflectance
intensities. The reflectance model was a database model calculated in R (version 3.0.3, R Core Team,
Vienna, Austria.) [59]. To cover the complete vegetation season as well as the differing sun heights, the
collected remote sensing reflectance data had to be interpolated. A method for linear interpolation of
irregular gridded data was applied (R package akima [60], R package stats [59]). The interpolation
was carried out in two consecutive steps. First, a linear interpolation of the reflectance along the sun
zenith angles for each measurement day was performed in steps of 1◦. In the second step, reflectance
intensities of the measurement days along the year were interpolated for each sun zenith angle
separately. The model is limited to wavelengths from 400 nm to 700 nm and to sun zenith angles
from 25◦ to 65◦. Due to strong absorption of water in the near-infrared wavelengths the characteristic
spectral features normally are superimposed by water absorption [41]. Hence, several surface models
of reflectance intensities could be processed for each sun zenith angle. For each of the species sampled
in the database, a spectrum can be produced together with confidence intervals.
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2.5. Species-Specific Rrs Spectra

Out of the species-specific reflectance models, time series with an interval of 2 weeks and the same
sun zenith angles were extracted for each species. The spectral responses on the appropriate dates of
the investigated years were compared within the complete wavelength range. For the comparison of
phenologic development of the different species, the 1st derivation of the Rrs spectra were calculated
within the wavelengths 550 nm and 650 nm. The species were analyzed for August because for this
month the vegetation maximum and the greatest temperature effects were expected.

2.6. Classification Process

The classification was based on the spectral libraries and was conducted with simulated spectra as
derived from the reflectance model and followed a stepwise classification process chain [61] (Figure 4).
For each classification level, a linear discriminant analysis was conducted and the spectrum was
assigned to the best matching class. This procedure was conducted and repeated consecutively for each
classification step. In the process, input spectra were adjusted to Rrs spectra in the spectral database
with systematic measurements of 2010, 2011 and 2015 at Lake Starnberg. To facilitate the classification
process, a pre-selection was conducted based on the date of the input spectra. The classification
process was divided in four steps. Classification Step 1 was a separation in one of the categories: plant,
sediment, plant/sediment, plant/water and water. Water and sediment were already final classes.
Step 2 was assigning plant spectra of Step 1 to one of the macrophyte classes (Chara spp., E. nuttallii and
P. perfoliatus). In Step 3 the species spectra were assigned to a phenologic stage. Step 4 was independent
of Steps 2 and 3. In this step, input spectra classified as plant/sediment in Step 1 were attributed to
defined species and phenologic stage. If the input spectrum was classified as plant/water in Step 1,
this was assigned to tall growing species P. perfoliatus. Spectra with ambiguous phenologic stages
were assigned to “no stage classifiable”. The validation of this classification method was performed
with data from 2010 and 2011; the overall accuracies were calculated for each single classification
step separately.
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Figure 4. Schematic diagram of the stepwise classification after Wolf [60].

With this classification process chain, four main phenologic stages were distinguished. Stage 0
declares pure sediment, and Stage 1 sparsely vegetated sediment. Stage 2 describes a fully grown
and upright standing vegetation. If the vegetation is already degrading and collapsing, it is classified
as Stage 3. Differing subdivisions within one classification stage are attributed to varying bottom
coverage and height of the macrophyte canopy.
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3. Results

3.1. Reflectance Model

The reflectance models and the species-specific spectral response revealed clear differences
between seasonal dates and phenologic stages. Spectral properties could be linked with diverse
phenologic stages. A classification on species level and phenologic information revealed differences
in accuracy for the different species. The highest accuracy was obtained for the test sites Chara
(no misclassification on species level) and P. perfoliatus (two misclassifications on species level).

Reflectance models for 2011 and 2015 were simulated with linear interpolation method for the
three macrophyte species Chara spp., E. nuttallii and P. perfoliatus separately (Figure 5). Depending on
the first and last measurement day of the season, the models covered different time periods. For each
species, the sun zenith angles were the same in both years. Variations of Rrs within a year could be
observed. Overall, Rrs showed higher intensities at the beginning of the year. The intensities in the
blue wavelength region (400 nm to 490 nm) were lower, the ones in green (490 nm to 560 nm) higher.
A local reflectance minimum at around 680 nm could be observed for all sites and species. A difference
in shape and intensity between both years and between the different species was obvious. However,
a general trend could be observed for all species. The reflectance intensities decreased from May to
August, followed by an increase towards the end of the growing season in September.

3.2. Species-Specific Rrs Spectra

Rrs spectra of different dates within the growing season of three macrophyte species were
displayed side by side with top of view photographs of the test sites (Figures 6–8). The spectra
were simulated with the linear interpolation model. For 2011 and 2015, Rrs was plotted for same
dates with in an interval of 10 days for the same sun zenith angle of each species. Rrs spectra covered
wavelengths from 400 nm to 700 nm. The photos for documentation were recorded at the sampling
days and do not show the situation at the day and daytime for which the spectra were simulated.

3.2.1. Test Site Chara

The simulated Rrs spectra of Chara spp. revealed the situation at a sun zenith angle of 35◦ in the
afternoon from May (Figure 6a) to September (Figure 6e). In May (Figure 6a), the spectra of both years
revealed a similar shape for the simulated days, differing in Rrs intensity. The Rrs intensity increased
from 400 nm to 550 nm, followed by a plateau until 650 nm. Afterwards, Rrs intensity deceased,
resulting in a local minimum at 680 nm. Within the year, the shape formed a maximum at about
570 nm, the minimum at 680 nm was more distinct (Figure 6b–d). Throughout August (Figure 6d),
a difference in the phenologic development could be observed. Both shape and bottom coverage varied
in the investigated years. The shape of 2015 clearly flattened in yellow and orange wavelength regions
between 560 nm and 650 nm. This trend could be observed in September (Figure 6e) for both years.

3.2.2. Test Site P. perfoliatus

The simulated Rrs spectra of P. perfoliatus were modeled with linear interpolation method and
represented the situation from May (Figure 7a) to September (Figure 7e) at a sun zenith angle of
27◦ in the afternoon. In May (Figure 7a), the shapes of both years increased from 400 nm to 600 nm
and a distinct local minimum at 680 nm was evident. In June (Figure 7b) and July (Figure 7c),
a maximum at 570 nm was observed. In August (Figure 7d) and September (Figure 7e), differences in
the species-specific development could be detected. In the investigated years, shape, bottom coverage
and canopy structure varied. In August (Figure 7d), the maximum was evident in 2015. The shape of
2011 was flattened without a clear maximum. Flattened and compressed spectra in yellow and orange
wavelengths (560 to 650 nm) were shown in 2015 in September (Figure 7e). The spectra of 2011 still
revealed a distinct maximum in the green region.
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Figure 5. Reflectance models of three macrophyte species for 2011 and 2015. Chara spp. for sun zenith 

angle 35° in: (a) 2011; and (b) 2015; P. perfoliatus for sun zenith angle 27° in: (c) 2011; and (d) 2015; and 

E. nuttallii for sun zenith angle 31° in: (e) 2011; and (f) 2015.  

Figure 5. Reflectance models of three macrophyte species for 2011 and 2015. Chara spp. for sun zenith
angle 35◦ in: (a) 2011; and (b) 2015; P. perfoliatus for sun zenith angle 27◦ in: (c) 2011; and (d) 2015; and
E. nuttallii for sun zenith angle 31◦ in: (e) 2011; and (f) 2015.
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Figure 6. Simulated Rrs intensities of Chara spp. modeled with a linear interpolation method of 2011
(blue) and 2015 (red). Top view photos of the investigated test sites of the sampling days: (a) May;
(b) June; (c) July; (d) August; and (e) September.
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Figure 7. Simulated Rrs intensities of P. perfoliatus modeled with a linear interpolation method of 2011
(blue) and 2015 (red). Top view photos of the investigated test sites of the sampling days: (a) May;
(b) June; (c) July; (d) August; and (e) September.
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3.2.3. Test Site E. nuttallii

The simulated Rrs spectra of E. nuttallii from May (Figure 8a) to September (Figure 8e) were
calculated with linear interpolation method for a sun zenith angle of 31◦ in the afternoon. In May
(Figure 8a), completely different shapes were evident for both years. The shape of the spectral curve in
2011 increased continuously. In June (Figure 8b), the spectra of 2011 displayed a continuous increase up
to 560 nm followed by a plateau. Local minima were at 620 nm and 680 nm. In contrast, the simulated
Rrs intensity of 2015 had a distinct maximum in the green region. In July (Figure 8c), the shapes in July
were similar in both years, with a distinct maximum in the green wavelengths. Similar results were
observed for August (Figure 8d), with a trend to flatten in the yellow and orange wavelength regions.
In September (Figure 8e), the shapes were quite similar in both years with a distinct maximum in the
green and lower intensity values in the blue and red regions, representing a vital and upright standing
vegetation as confirmed by the photos.

3.2.4. Water Temperature Effect on Species-Specific Growth

The first derivation of in-situ Rrs spectra reflected the variations of the gradient between the
investigated species within August (Figure 9). The species-specific variations differed in the different
years. E. nuttallii showed slight variations of the gradient within months and between both years
in this wavelength range. Clear differences between both years were observed for the indigenous
species Chara spp. and P. perfoliatus. Overall, the gradient in 2011 was lower. The monthly variations
of the gradient were higher in 2015, especially in the wavelength range between 570 nm and 610 nm.
In this year, the mean water temperatures were higher during main growing season in July and August
(Figure 2).

3.3. Spectral Classification on Species Level

The classification results revealed a continuous succession of phenologic stages for the test site
Chara (Table 1). The overall accuracy of Step 1 was 70%, and of Step 2 82%. The accuracy of the
assignment to a phenologic stage was between 79% (E. nuttallii) and 91% (Chara spp.).

The growing season is starting with sediment (2011) and plant/sediment (2015) spectra in May,
followed by plant/sediment (2011) and plant (2015) spectra in June and July. In 2011, an interruption
of the phenologic succession could be observed on 14 July, 24 July and 3 August. For the test site
P. perfoliatus, a continuous succession of phenologic stages could be observed for both years. In 2011, the
succession was interrupted on 3 and 13 August. The test site E. nuttallii showed several irregularities
in both years. In 2011, one misclassification took place on 4 June. The other spectra were classified as
plant/sediment or sediment consistently. Due to the small spectral differences, no classification on
species level was possible at the test site E. nuttallii. In 2015, irregularities in the phenologic succession
could be located on 4 June, 14 June and 24 July.
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Figure 8. Simulated Rrs intensities of E. nuttallii modeled with a linear interpolation method of 2011
(blue) and 2015 (red). Top view photos of the investigated test sites of the sampling days: (a) May;
(b) June; (c) July; (d) August; and (e) September.
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Figure 9. 1st Derivation of in-situ Rrs spectra of: August 2011 (a); and August 2015 (b), in a wavelength
range between 550 nm and 650 nm.
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Table 1. Results of the stepwise classification after Wolf [60] for Chara spp., E. nuttallii and P. perfoliatus.

Date Test site Chara 2011 Test Site Chara 2015 Test Site P. perfoliatus 2011 Test Site P. perfoliatus 2015 Test Site E. nuttallii 2011 Test Site E. nuttallii 2015

15 May 100% sediment 100% plant/sediment
100% Chara spp. 1.1 - - 100% sediment

99.99% plant
100% E. nuttallii
100% E. nuttallii 2.1

25 May 100% sediment 100% plant/sediment
100% Chara spp. 1.2

30 May
100% sediment

30 May
100% sediment 100% sediment

100% plant
100% E. nuttallii
100% E. nuttallii 2.1

4 June 100% sediment 100% plant/sediment
100% Chara spp. 1.2

100% plant/water
100% P. perfoliatus 1 100% sediment 100% plant/sediment

100% Chara spp. 1.2
100% plant/water
100% P. perfoliatus 1

14 June 100% plant/sediment
100% Chara spp. 1.2

100% plant/sediment
100% Chara spp. 1.2

100% plant/water
100% P. perfoliatus 1

100% plant/water
100% P. perfoliatus 1

100% plant/sediment
no stage classifiable

100% plant/sediment
no stage classifiable

24 June 100% plant/sediment
100% Chara spp. 1.2

100% plant
100% Chara spp.
100% Chara spp. 2

100% plant/water
100% P. perfoliatus 1

100% plant/water
100% P. perfoliatus 1

100% plant/sediment
no stage classifiable

100% plant
100% E. nuttallii
100% E. nuttallii 2.2

4 July 100% plant/sediment
100% Chara spp. 1.2

100% plant
100% Chara spp.
100% Chara spp. 2

100% plant/water
100% P. perfoliatus 1

100% plant/water
100% P. perfoliatus 1

100% plant/sediment
no stage classifiable

100% plant
100% E. nuttallii
100% E. nuttallii 2.2

14 July 100% plant/sediment
100% Chara spp. 1.1

100% plant
100% Chara spp.
100% Chara spp. 2

100% plant
100% P. perfoliatus
100% P. perfoliatus 2

100% plant/water
100% P. perfoliatus 1

100% plant/sediment
no stage classifiable

100% plant
100% E. nuttallii
100% E. nuttallii 2.2

24 July 100% plant/sediment
100% Chara spp. 1.1

100% plant
100% Chara spp.
100% Chara spp. 2

100% plant
100% P. perfoliatus
100% P. perfoliatus 2

100% plant/water
100% P. perfoliatus 1

99.99% plant/sediment
no stage classifiable

100% plant
100% E. nuttallii
100% E. nuttallii 3

3 August 99.91% plant/sediment
100% Chara spp. 1.1

100% plant
100% Chara spp.
100% Chara spp. 2

100% plant99.48% E. nuttallii
100% E. nuttallii 2.3

100% plant
100% P. perfoliatus
100% P. perfoliatus 2

99.82% plant/sediment
no stage classifiable

100% plant
100% E. nuttallii
100% E. nuttallii 2.3

13 August 89.58% plant/sediment
no stage classifiable

99.99% plant
100% Chara spp.
100% Chara spp. 2

99.99% plant
100% E. nuttallii
100% E. nuttallii 2.3

100% plant
100% P. perfoliatus
100% P. perfoliatus 2

99.99% plant/sediment
no stage classifiable

99.99% plant
100% E. nuttallii
100% E. nuttallii 2.3

23 August 99.90% plant/sediment
no stage classifiable

100% plant
100% Chara spp.
100% Chara spp. 3.1

99.99% plant
99.98% P. perfoliatus
100% P. perfoliatus 3.1

100% plant
100% P. perfoliatus
100% P. perfoliatus 3.1

100% plant/sediment
no stage classifiable

99.99% plant
100% E. nuttallii
100% E. nuttallii 2.3

2 September 100% plant/sediment
no stage classifiable

99.99% plant
100% Chara
100% Chara 3.1

100% plant
100% P. perfoliatus
100% P. perfoliatus 3.1

100% plant
100% P. perfoliatus
100% P. perfoliatus 3.1

100% plant/sediment
no stage classifiable

100% plant
100% E. nuttallii
100% E. nuttallii 2.3

12 September 100% plant/sediment
no stage classifiable

100% plant/sediment
no stage classifiable

100% plant
100% P. perfoliatus
100% P. perfoliatus 3.1

100% plant/water
no stage classifiable

100% plant/sediment
no stage classifiable

100% plant
100% E. nuttallii
100% E. nuttallii 2.3
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4. Discussion

The main research question, whether in-situ measured spectral variations within the growing
season can be linked to phenologic stages of macrophyte populations, was confirmed by our results.
An interrelation between macrophyte growth and water temperature was also demonstrated for
the indigenous species Chara spp. and P. perfoliatus, but not for the invasive species E. nuttallii.
The reflectance models developed based on the spectral signatures taken within the growing season
and over the course of the day, proved to be able to mitigate gaps in in-situ data collection (e.g., due to
cloud coverage). The models deliver simulated spectra for each day and all sun positions of possible
optical satellite data takes (approximate ±2 h around noon). The inversion of the models for Chara spp.
and P. perfoliatus with the aim of macrophyte classification on species level is successful. Restricting
the search period based on external information about the weather history of that season and giving
an estimate of the phenologic development stage additionally improve the classification success.
Especially in that direction, we expect further advances by linking the modeling runs for species
identification with external information on extreme events such as drought or rainy periods.

4.1. Phenologic Development in Rrs Spectra and Water Temperature

The general phenologic development scheme we observed is similar for the investigated species
in both investigated years. Phenologic development stages control the changes in spectral response
within the growing season [8,13]. Differing bottom coverage and species-specific structure elements
like biomass, chlorophyll content, canopy height and alignment explain the variations of the shape
of the spectra within the growing season. The species-specific phenologic development depends on
the environmental conditions such as water temperature, water clarity, morphology and nutrient
load [8,24,62]. To characterize the response of different macrophyte species to different environmental
conditions, the species-specific spectral signatures within two growing seasons within two growing
seasons is most informative. Water temperature was the only relevant variable available for both years.
It is well-known that freshwater lakes buffer air temperature changes very well, which is explained by
their thermal properties. The effects are smoothed and result in delayed water temperature effects.
Nevertheless, these temperature fluctuations affect the biologic activities in the lake, affecting growth
processes of submersed macrophytes as well.

In our discussion, we concentrate on August because the maximum of vegetation development is
expected and greatest temperature effects (both acutely and accumulated) are expected at this time
point. The most significant changes were observed in the green to red wavelength region, on which
we concentrate in our analysis.

For the test sites Chara (Figure 6d,e) and P. perfoliatus (Figure 7d,e), the flattened shape of the
spectral signature in the yellow and orange wavelength region is interpreted as a variation in leaf
pigment ratio [13,63]. The intraspecific variations are illustrated by the derivation of the spectra for
August (Figure 9). Especially, a lower Chl-a content in ageing leaves induces such a shift in yellow and
orange wavelengths [63,64]. Higher water temperatures during the main growing season in July and
August 2015 (Figure 2) may have resulted in a shortened growing season with earlier senescence [8,65].
The earlier senescence is demonstrated by a flattened shape (550 nm and 650 nm) with a slight gradient
(Figure 9). The change in bottom coverage ratio (Figure 6e) and macrophyte structure (Figure 7d)
confirms the assumption that water temperature influences the length of growing season. The pictures
clearly show the decrease of plant covered area as well as collapsed and degraded macrophytes, with
both phenomena being connected to macrophyte degradation.

In contrast to the indigenous species, the species-specific development of the invasive species
E. nuttallii reveals spectral differences at the beginning of the growing season (Figure 8a,b). Higher
water temperatures in the first quarter of 2015 (Figure 2) might explain induction of an earlier vegetation
begin. During the main vegetation time in July and August, neither the spectral shape nor the bottom
coverage are affected by higher water temperatures (Figure 9). This might be attributed to the better
adaption to higher water temperatures of E. nuttallii [66].
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The interpretation of the measurements of the indigenous species Chara spp. and P. perfoliatus
indicate a shortened growing season at warmer temperatures in 2015. For the test site Chara, the
shape of the spectra on 13 August 2015 (Figure 6d) and 2 September 2011 (Figure 6e) are almost the
same. Consequently, the growing season and phenologic stage in 2015 was about 20 days shorter for
Chara spp. than in 2011. This result coincides with higher water temperature during the main growing
season in July and August 2015. The observations for P. perfoliatus in 2015 are similar. The spectral
signature reflects the beginning of macrophyte degradation already at the end of August, visible by
a flattened signature curve especially in the yellow to red region of the spectra. Such a phenologic
shift at the end of the growing season was not found in E. nuttallii. A shortened growing season for
indigenous species might be linked to higher water temperatures. E. nuttallii is probably not affected
due to a higher temperature tolerance compared to the investigated indigenous species [66].

4.2. Reflectance Model

The developed reflectance models (Figure 5) provide species-specific spectral signatures
throughout the complete growing season for every required sun position during a defined day.
These protracted and detailed spectral pieces of information can strongly improve the knowledge of
the seasonal variation of macrophyte species. The output spectra of these models provide a useful and
necessary basis for bio-optical models such as BOMBER [54] or WASI [56,57].

The prediction limits are directly related to two variable groups: the daily and seasonal
distribution of in-situ measurements and the specific environmental frame conditions of the respective
year. In case of the distribution of in-situ measurements within the vegetation season there is a clear
rule: the shorter the time-gaps between the in-situ measurements, the more detailed are the reflectance
models. With high probability, the date of the vegetation maximum (e.g., maximum vegetation height
and extension; highest biomass content) [8] is between two sampling days and cannot be expected to
be represented by the model. In addition, for the applied linear interpolation method, an extrapolation
for situations before and after the beginning and end of the measurements series is not possible.

Environmental parameters such as water clarity, water temperature and nutrient load affect
macrophyte expansion and phenologic development [24,62]. Environmental parameters vary from
year to year, affecting the prediction accuracy of the model outputs. The examined variable in this
study, the water temperature, seems to trigger a variation in reflectance intensity and shape between
the two investigated years (Figure 5a,c,e in contrast to Figure 5b,d,f). Further studies on the influence
of light availability on the spectral variation might improve the accuracy of these reflectance models
and the output spectra. In contrast, short-term events like draughts, floods or turbidity after an intense
rainfall cannot directly be represented by the models. Such short-term and partial effects are highly
different in different years. Due to the inertness and buffer action of freshwater lakes, these short-term
events are attenuated and influence the models indirectly. We expect that this type of effects might be
buffered and constrained by integration of external information into the inversion processes.

4.3. Model Inversion for Species Level Classification

The inversion of the reflection models with the aim of classifying macrophyte species and their
phenologic stage for predefined daytimes and dates is successful. The inversion procedure delivers
reliable spectra which we used for the comparison of phenologic development stages in 2011 and
2015. The analysis of the investigated macrophytes on species level (classification Step 2) based on
phenologic development stages (Table 1) reveals an overall logic succession for the test sites Chara and
P. perfoliatus for both investigated years.

The phenologic succession of Chara spp. was not accurately predicted for three dates in July
and August 2011. The phenologic stage Chara spp. 1.1 induces a sediment proportion of 0.5 [61].
One explanation is a temporary sediment deposition masking the plant canopy. Sediment cover
inevitably will result in an apparently higher sediment fraction and accordingly higher signal
intensity [67].



Water 2017, 9, 527 18 of 21

In August 2011, a misclassification due to an interruption of the logic succession, on species level
occurred for the test site P. perfoliatus. The in-situ measurement and classification of single growing
plants without a closed plant canopy is more difficult and error-prone than for dense populations [68].
With the applied measurement setup, meadowy canopies such as Chara spp. allow a more stable
spectral data collection resulting in a good to excellent classification success.

For the test site E. nuttallii, misclassification on species level occurred for 4 June in both years.
A classification based on phenologic stages was not successful at all with the dataset for 2011. In 2015,
the logic succession was interrupted. Slight water depth, shipping traffic, shading and a plant canopy
up to the water surface hindered the in-situ data collection which might explain the misclassifications
at this test site.

The accuracy of the classification results depends on the number of spectra of the spectral database.
To obtain more detailed information about species composition and canopy structure, several in-situ
measurements at different phenologic stages are required [44]. Spectral databases are able to provide
day and daytime specific reference spectra of the lake bottom substrates. The knowledge of phenologic
development related spectral response seems necessary when trying to improve the simulation and
analysis of optical properties and light field parameters of deep and shallow waters in satellite datasets.
This detailed information for the diverse phenologic stages of macrophytes are expected to improve the
inversion success of bio-optical models such as BOMBER [54] and WASI [56,57]. Such models presently
are the most sophisticated methods for deriving optical properties and light field parameters of deep
and shallow waters from satellite data. Such information is required for the monitoring of freshwater
lakes and large water bodies in general as e.g., included in the WFD. A further improvement of the
prognosis accuracy of this evaluation chain is expected by steering the selection of the appropriated
spectral signatures by e.g., detailed information about weather history of the respective growing season
or the expected phenologic stage during data take.

5. Conclusions

Remote sensing methods offer a great potential to build up a monitoring system of submersed
aquatic plants. A key requirement is the automatic discrimination of submersed macrophyte species.
A spectral library with phenologic features as base for coupled growth and reflectance models seems
essential for monitoring lake bottom substrates, especially for macrophytes. In the present study,
the seasonal phenologic and spectral variability of aquatic plants at a test site at Lake Starnberg was
investigated for 2011 and 2015. Water temperature was identified as one of the environmental driver
explaining the phenologic shift by spectral signature analysis.

Investigations into the influence of the effects of small-scaled extreme weather conditions (e.g.,
light availability and turbidity) are highly recommended topics of future work. To improve the
accuracy of the classification results, a large database is needed. Test sites are recommended in several
lakes of diverse trophic states and on other macrophyte species, especially on potentially invasive
species, to identify site-specific and species-specific variations of remote sensing reflectance. Further
influences of the reflectance signal are related to periphyton coverage on macrophyte leaves.

Acknowledgments: This research was founded by the Federal Ministry for Economic Affairs and Energy (BMWi)
under the grand number 50EE1336. We would like to thank our colleagues at Limnological Research Station
Iffeldorf of Technical University of Munich for their support in fieldwork.

Author Contributions: Christine Fritz and Thomas Schneider conceived and designed the experiments; Christine
Fritz performed the experiments; Christine Fritz and Thomas Schneider analyzed the data; and Christine Fritz,
Thomas Schneider and Juergen Geist conceived, structured and jointly wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Melzer, A. Aquatic macrophytes as tools for lake management. Hydrobiologia 1999, 396, 181–190. [CrossRef]

http://dx.doi.org/10.1023/A:1017001703033


Water 2017, 9, 527 19 of 21

2. Søndergaard, M.; Johansson, L.S.; Lauridsen, T.L.; Jørgensen, T.B.; Liboriussen, L.; Jeppesen, E. Submerged
macrophytes as indicators of the ecological quality of lakes. Freshw. Biol. 2010, 55, 893–908. [CrossRef]

3. Skubinna, J.P.; Coon, T.G.; Batterson, T.R. Increased abundance and depth of submersed macrophytes in
response to decreased turbidity in saginaw bay, lake huron. J. Gt. Lakes Res. 1995, 21, 476–488. [CrossRef]

4. Poikane, S.; Birk, S.; Böhmer, J.; Carvalho, L.; de Hoyos, C.; Gassner, H.; Hellsten, S.; Kelly, M.; Lyche
Solheim, A.; Olin, M.; et al. A hitchhiker’s guide to european lake ecological assessment and intercalibration.
Ecol. Indic. 2015, 52, 533–544. [CrossRef]

5. Penning, W.E.; Dudley, B.; Mjelde, M.; Hellsten, S.; Hanganu, J.; Kolada, A.; van den Berg, M.; Poikane, S.;
Phillips, G.; Willby, N.; et al. Using aquatic macrophyte community indices to define the ecological status of
european lakes. Aquat. Ecol. 2008, 42, 253–264. [CrossRef]

6. Silva, T.S.F.; Costa, M.P.F.; Melack, J.M.; Novo, E.M.L.M. Remote sensing of aquatic vegetation: Theory and
applications. Environ. Monit. Assess. 2008, 140, 131–145. [CrossRef] [PubMed]

7. Short, F.T.; Neckles, H.A. The effects of global climate change on seagrasses. Aquat. Bot. 1999, 63, 169–196.
[CrossRef]

8. Rooney, N.; Kalff, J. Inter-annual variation in submerged macrophyte community biomass and distribution:
The influence of temperature and lake morphometry. Aquat. Bot. 2000, 68, 321–335. [CrossRef]

9. European Commission. The Water Framework Directive (Directive 2000/60/ec of the European Parliament and
of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy);
Official Journal of the European Communities: Brussels, Belgium, 2000; pp. 1–72.

10. Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future
directions. Remote Sens. Environ. 2015, 157, 1–8. [CrossRef]

11. Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic.
2016, 64, 105–122. [CrossRef]

12. Yuan, L.; Zhang, L.-Q. Mapping large-scale distribution of submerged aquatic vegetation coverage using
remote sensing. Ecol. Inform. 2008, 3, 245–251. [CrossRef]

13. Wolf, P.; Rößler, S.; Schneider, T.; Melzer, A. Collecting in situ remote sensing reflectances of submersed
macrophytes to build up a spectral library for lake monitoring. Eur. J. Remote Sens. 2013, 46, 401–416.
[CrossRef]

14. Roessler, S.; Wolf, P.; Schneider, T.; Melzer, A. Multispectral remote sensing of invasive aquatic plants using
rapideye. In Earth Observation of Global Changes (EOGC); Krisp, M.J., Meng, L., Pail, R., Stilla, U., Eds.;
Springer Berlin Heidelberg: Berlin, Germany, 2013; pp. 109–123.

15. Pinnel, N.; Heege, T.; Zimmermann, S. Spectral discrimination of submerged macrophytes in lakes using
hyperspectral remote sensing data. SPIE Proc. Ocean Opt. XVII 2004, 1, 1–16.

16. Malthus, T.J.; George, D.G. Airborne remote sensing of macrophytes in cefni reservoir, anglesey, UK.
Aquat. Bot. 1997, 58, 317–332. [CrossRef]

17. Giardino, C.; Bartoli, M.; Candiani, G.; Bresciani, M.; Pellegrini, L. Recent changes in macrophyte colonisation
patterns: An imaging spectrometry-based evaluation of southern Lake Garda (Northern Italy). APPRES
2007, 1, 011509–011517.

18. George, D.G. The airborne remote sensing of phytoplankton chlorophyll in the lakes and tarns of the english
lake district. Int. J. Remote Sens. 1997, 18, 1961–1975. [CrossRef]

19. Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Analytical algorithms for lake water TSM estimation for retrospective
analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [CrossRef]

20. Malthus, T.J.; Karpouzli, E. Integrating field and high spatial resolution satellite-based methods for
monitoring shallow submersed aquatic habitats in the Sound of Eriskay, Scotland, UK. Int. J. Remote Sens.
2003, 24, 2585–2593. [CrossRef]

21. Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment interactions with submersed macrophyte growth and
community dynamics. Aquat. Bot. 1991, 41, 41–65. [CrossRef]

22. Squires, M.M.; Lesack, L.F. Spatial and temporal patterns of light attenuation among lakes of the mackenzie
delta. Freshw. Biol. 2003, 48, 1–20. [CrossRef]

23. Barko, J.W.; Smart, R.M. Sediment-related mechanisms of growth limitation in submersed macrophytes.
Ecology 1986, 67, 1328–1340. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2427.2009.02331.x
http://dx.doi.org/10.1016/S0380-1330(95)71060-7
http://dx.doi.org/10.1016/j.ecolind.2015.01.005
http://dx.doi.org/10.1007/s10452-008-9183-x
http://dx.doi.org/10.1007/s10661-007-9855-3
http://www.ncbi.nlm.nih.gov/pubmed/17593532
http://dx.doi.org/10.1016/S0304-3770(98)00117-X
http://dx.doi.org/10.1016/S0304-3770(00)00126-1
http://dx.doi.org/10.1016/j.rse.2014.09.021
http://dx.doi.org/10.1016/j.ecolind.2015.12.009
http://dx.doi.org/10.1016/j.ecoinf.2008.01.004
http://dx.doi.org/10.5721/EuJRS20134623
http://dx.doi.org/10.1016/S0304-3770(97)00043-0
http://dx.doi.org/10.1080/014311697217972
http://dx.doi.org/10.1080/01431160010006917
http://dx.doi.org/10.1080/0143116031000066314
http://dx.doi.org/10.1016/0304-3770(91)90038-7
http://dx.doi.org/10.1046/j.1365-2427.2003.00960.x
http://dx.doi.org/10.2307/1938689


Water 2017, 9, 527 20 of 21

24. Shuchman, R.A.; Sayers, M.J.; Brooks, C.N. Mapping and monitoring the extent of submerged aquatic
vegetation in the laurentian great lakes with multi-scale satellite remote sensing. J. Gt. Lakes Res. 2013, 39,
78–89. [CrossRef]

25. Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain.
Energy Rev. 2015, 50, 431–444. [CrossRef]

26. Zhu, B.; Mayer, C.M.; Rudstam, L.G.; Mills, E.L.; Ritchie, M.E. A comparison of irradiance and phosphorus
effects on the growth of three submerged macrophytes. Aquat. Bot. 2008, 88, 358–362. [CrossRef]

27. Madsen, T.V.; Brix, H. Growth, photosynthesis and acclimation by two submerged macrophytes in relation
to temperature. Oecologia 1997, 110, 320–327. [CrossRef] [PubMed]

28. Hoffmann, M.A.; Raeder, U.; Melzer, A. Influence of environmental conditions on the regenerative capacity
and the survivability of elodea nuttallii fragments. J. Limnol. 2014, 74. [CrossRef]

29. Hoffmann, M.; Raeder, U. Predicting the potential distribution of neophytes in southern Germany using
native Najas marina as invasion risk indicator. Environ. Earth Sci. 2016, 75, 1217. [CrossRef]

30. Hoffmann, M.; Sacher, M.; Lehner, S.; Raeder, U.; Melzer, A. Influence of sediment on the growth of the
invasive macrophyte Najas marina ssp intermedia in lakes. Limnologica 2013, 43, 265–271. [CrossRef]

31. Morel, A.; Belanger, S. Improved detection of turbid waters from ocean color sensors information. Remote Sens.
Environ. 2006, 102, 237–249. [CrossRef]

32. Mertes, L.A.K.; Smith, M.O.; Adams, J.B. Estimating suspended sediment concentrations in surface waters of
the Amazon River wetlands from Landsat images. Remote Sens. Environ. 1993, 43, 281–301. [CrossRef]

33. Bostater, J.C.R.; Ghir, T.; Bassetti, L.; Hall, C.; Reyeier, E.; Lowers, R.; Holloway-Adkins, K.; Virnstein, R.
Hyperspectral Remote Sensing Protocol Development for Submerged Aquatic Vegetation in Shallow Waters;
SPIE: Bellingham, WA, USA, 2004; pp. 199–215.

34. Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt.
1999, 38, 7442–7455. [CrossRef] [PubMed]

35. Mumby, P.J.; Clark, C.D.; Green, E.P.; Edwards, A.J. Benefits of water column correction and contextual
editing for mapping coral reefs. Int. J. Remote Sens. 1998, 19, 203–210. [CrossRef]

36. Heblinski, J.; Schmieder, K.; Heege, T.; Agyemang, T.K.; Sayadyan, H.; Vardanyan, L. High-resolution satellite
remote sensing of littoral vegetation of lake sevan (armenia) as a basis for monitoring and assessment.
Hydrobiologia 2011, 661, 97–111. [CrossRef]

37. Fritz, C.; Doernhoefer, K.; Schneider, T.; Geist, J.; Oppelt, N. Mapping submerged aquatic vegetation using
rapideye satellite data: The example of Lake Kummerow (Germany). Water 2017, 9, 510. [CrossRef]

38. Pinnel, N. A Method for Mapping Submerged Macrophytes in Lakes Using Hyperspectral Remote Sensing.
Ph.D. Thesis, Technische Universität München, München, Germany, 2007.

39. Williams, D.J.; Rybicki, N.B.; Lombana, A.V.; O’Brien, T.M.; Gomez, R.B. Preliminary investigation of
submerged aquatic vegetation mapping using hyperspectral remote sensing. Environ. Monit. Assess. 2003,
81, 383–392. [CrossRef]

40. Fyfe, S. Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct?
Limnol. Oceanogr. 2003, 48, 464–479. [CrossRef]

41. Armstrong, R.A. Remote sensing of submerged vegetation canopies for biomass estimation. Int. J. Remote
Sens. 1993, 14, 621–627. [CrossRef]

42. Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with
reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [CrossRef]

43. Gausman, H.W. Evaluation of factors causing reflectance differences between sun and shade leaves.
Remote Sens. Environ. 1984, 15, 177–181. [CrossRef]

44. Hestir, E.L.; Khanna, S.; Andrew, M.E.; Santos, M.J.; Viers, J.H.; Greenberg, J.A.; Rajapakse, S.S.; Ustin, S.L.
Identification of invasive vegetation using hyperspectral remote sensing in the California delta ecosystem.
Remote Sens. Environ. 2008, 112, 4034–4047. [CrossRef]

45. Elatawneh, A.; Kalaitzidis, C.; Petropoulos, G.P.; Schneider, T. Evaluation of diverse classification approaches
for land use/cover mapping in a mediterranean region utilizing hyperion data. Int. J. Digit. Earth 2014, 7,
194–216. [CrossRef]

46. Stoffels, J.; Hill, J.; Sachtleber, T.; Mader, S.; Buddenbaum, H.; Stern, O.; Langshausen, J.; Dietz, J.; Ontrup, G.
Satellite-based derivation of high-resolution forest information layers for operational forest management.
Forests 2015, 6, 1982–2013. [CrossRef]

http://dx.doi.org/10.1016/j.jglr.2013.05.006
http://dx.doi.org/10.1016/j.rser.2015.05.024
http://dx.doi.org/10.1016/j.aquabot.2008.01.003
http://dx.doi.org/10.1007/s004420050165
http://www.ncbi.nlm.nih.gov/pubmed/28307220
http://dx.doi.org/10.4081/jlimnol.2014.952
http://dx.doi.org/10.1007/s12665-016-6004-8
http://dx.doi.org/10.1016/j.limno.2012.11.002
http://dx.doi.org/10.1016/j.rse.2006.01.022
http://dx.doi.org/10.1016/0034-4257(93)90071-5
http://dx.doi.org/10.1364/AO.38.007442
http://www.ncbi.nlm.nih.gov/pubmed/18324298
http://dx.doi.org/10.1080/014311698216521
http://dx.doi.org/10.1007/s10750-010-0466-6
http://dx.doi.org/10.3390/w9070510
http://dx.doi.org/10.1023/A:1021318217654
http://dx.doi.org/10.4319/lo.2003.48.1_part_2.0464
http://dx.doi.org/10.1080/01431169308904363
http://dx.doi.org/10.1562/0031-8655(2002)075&lt;0272:ACCIPL&gt;2.0.CO;2
http://dx.doi.org/10.1016/0034-4257(84)90045-2
http://dx.doi.org/10.1016/j.rse.2008.01.022
http://dx.doi.org/10.1080/17538947.2012.671378
http://dx.doi.org/10.3390/f6061982


Water 2017, 9, 527 21 of 21

47. Arle, J.; Blondzik, K.; Claussen, U.; Duffek, A.; Grimm, S.; Hilliges, F.; Hoffmann, A.; Leujak, W.; Mohaupt, V.;
Naumann, S.; et al. Wasserwirtschaft in Deutschland. Teil 2. Gewässergüte; Umweltbundesamt (UBA): Bonn,
Germany, 2013. (In Germany)

48. Wöbbecke, K.; Klett, G.; Rechenberg, B. Wasserbeschaffenheit der Wichtigsten Seen in der Bundesrepublik
Deutschland: Datensammlung 1981–2000; Umweltbundesamt: Dessau-Roßlau, Germany, 2003. (In Germany)

49. Bavarian Environmental Agency. Bavarian Hyrological Service. Available online: http://www.Gkd.Bayern.
De (accessed on 13 July 2017).

50. TriOS. Ramses Radiometer. Available online: http://www.Trios.De/en/products/sensors/ramses.html
(accessed on 13 July 2017).

51. Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

52. Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the chlorophyll-specific absorption coefficients
of natural phytoplankton: Analysis and parameterization. J. Geophys. Res. 1995, 100, 13321. [CrossRef]

53. Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water
quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1376–1387. [CrossRef]

54. Giardino, C.; Candiani, G.; Bresciani, M.; Lee, Z.; Gagliano, S.; Pepe, M. Bomber: A tool for estimating water
quality and bottom properties from remote sensing images. Comput. Geosci. 2012, 45, 313–318. [CrossRef]

55. Albert, A.; Mobley, C.D. An analytical model for subsurface irradiance and remote sensing reflectance in
deep and shallow case-2 waters. Opt. Express 2003, 11, 2873–2890. [CrossRef] [PubMed]

56. Gege, P. Wasi-2d: A software tool for regionally optimized analysis of imaging spectrometer data from deep
and shallow waters. Comput. Geosci. 2013, 62, 208–215. [CrossRef]

57. Gege, P. The water color simulator wasi: An integrating software tool for analysis and simulation of optical
in situ spectra. Comput. Geosci. 2004, 30, 523–532. [CrossRef]

58. Maritorena, S. Remote sensing of the water attenuation in coral reefs: A case study in french polynesia. Int. J.
Remote Sens. 1996, 17, 155–166. [CrossRef]

59. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2014. Available online: http://www.R-project.org/ (accessed on 13 July 2017).

60. Akima, H.; Gebhardt, A.; Petzoldt, T.; Maechler, M. Akima: Interpolation of Irregularly Spaced Data; R package
version 0.5-11. Available online: https://cran.r-project.org/web/packages/akima/index.html (accessed on
13 July 2017).

61. Wolf, P.K.-H. In Situ-Messungen als Basis Für Wachstums-/Reflexionsmodelle Submerser Makrophyten.
Ph.D. Thesis, Technische Universität München, München, Germany, 2014. (In Germany)

62. Blindow, I. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophk lakes.
Freshw. Biol. 1992, 28, 15–27. [CrossRef]

63. Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a
wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354.
[CrossRef]

64. Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments
with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [CrossRef]

65. Barko, J.W.; Smart, R.M. Comparative influences of light and temperature on the growth and metabolism of
selected submersed freshwater macrophytes. Ecol. Monogr. 1981, 51, 219–235. [CrossRef]

66. McKee, D.; Hatton, K.; Eaton, J.W.; Atkinson, D.; Atherton, A.; Harvey, I.; Moss, B. Effects of simulated
climate warming on macrophytes in freshwater microcosm communities. Aquat. Bot. 2002, 74, 71–83.
[CrossRef]

67. Wolter, P.T.; Johnston, C.A.; Niemi, G.J. Mapping submergent aquatic vegetation in the US great lakes using
quickbird satellite data. Int. J. Remote Sens. 2005, 26, 5255–5274. [CrossRef]

68. Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending satellite remote sensing to
local scales: Land and water resource monitoring using high-resolution imagery. Remote Sens. Environ. 2003,
88, 144–156. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.Gkd.Bayern.De
http://www.Gkd.Bayern.De
http://www.Trios.De/en/products/sensors/ramses.html
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1029/95JC00463
http://dx.doi.org/10.1109/TGRS.2003.812907
http://dx.doi.org/10.1016/j.cageo.2011.11.022
http://dx.doi.org/10.1364/OE.11.002873
http://www.ncbi.nlm.nih.gov/pubmed/19471407
http://dx.doi.org/10.1016/j.cageo.2013.07.022
http://dx.doi.org/10.1016/j.cageo.2004.03.005
http://dx.doi.org/10.1080/01431169608948992
http://www.R-project.org/
https://cran.r-project.org/web/packages/akima/index.html
http://dx.doi.org/10.1111/j.1365-2427.1992.tb00558.x
http://dx.doi.org/10.1016/S0034-4257(02)00010-X
http://dx.doi.org/10.1016/1011-1344(93)06963-4
http://dx.doi.org/10.2307/2937264
http://dx.doi.org/10.1016/S0304-3770(02)00048-7
http://dx.doi.org/10.1080/01431160500219208
http://dx.doi.org/10.1016/j.rse.2003.04.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	In-Situ Measurements 
	Data Processing 
	Reflectance Model 
	Species-Specific Rrs  Spectra 
	Classification Process 

	Results 
	Reflectance Model 
	Species-Specific Rrs  Spectra 
	Test Site Chara 
	Test Site P. perfoliatus 
	Test Site E. nuttallii 
	Water Temperature Effect on Species-Specific Growth 

	Spectral Classification on Species Level 

	Discussion 
	Phenologic Development in Rrs  Spectra and Water Temperature 
	Reflectance Model 
	Model Inversion for Species Level Classification 

	Conclusions 

