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Abstract: Ball bearings are commonly used in high speed turbomachinery and have a critical
influence on the rotordynamic behavior. Therefore, a simulation model of the bearing to predict
the dynamic influence is essential. The presented model is a further step to develop an accurate
and efficient characterization of the ball bearing’s rotor dynamic parameters such as stiffness and
deflections as well as vibrational excitations induced by the discrete rolling elements. To make it
applicable to high speed turbomachinery, the model considers centrifugal forces, gyroscopic effects
and ball spinning. The consideration of an elastic outer ring makes the bearing model suitable for
integrated lightweight bearing constructions used in modern aircraft turbines. In order to include
transient rotordynamic behavior, the model is built as a full dynamic multibody simulation with time
integration. To investigate the influence of the elasticity of the outer ring, a comparison with a rigid
formulation for several rotational speeds and loads is presented.

Keywords: ball bearing; elastic outer ring; rotordynamics; vibrations; model reduction;
multibody simulation

1. Introduction

Widely used in common machinery, rolling element bearings permit a rotational motion between
two components. The advantages of ball bearings like low friction and maintenance make them
suitable for most applications. In contrast to journal bearings, no rotor instability occurs, which makes
them perfect for high speed applications. The trend towards more powerful and lightweight
turbomachinery requires precise control and prediction of rotor vibrations and dynamic behavior.
A precise bearing model is essential for the following two reasons: first, it allows the calculation
of typical rotordynamic coefficients like speed and load-dependent stiffness. These parameters are
important for the determination of the rotor’s critical speeds as well as for the definition of the
operational ranges. Second, a precise bearing model provides insight into the bearings excitation
frequency. For instance, under radial load, there is always an excitation in the range of the ball
passing frequency due to the discrete rolling elements. A damaged bearing with faults at the
raceways or the balls generates additional system excitations in frequency ranges, which can be
calculated in the dynamic simulation. In high speed lightweight applications such as turbopumps or
compressors, angular contact ball bearings are used. They are axially preloaded to avoid clearance.
The associated ball kinematics cause, besides the centrifugal forces, gyroscopic moments and ball
spinning. This causes additional loads and wear that have to be considered in machinery design.
In lightweight turbomachinery, mostly for highly integrated aircraft applications, the bearing raceways
are directly integrated in the shaft and the housing itself. This hinders the direct prediction of the
bearing effects on the rotordynamics. To follow this aspect in this contribution, the outer bearing ring
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is modeled elastically using the finite element method (FEM). This allows the determination of the
interaction between the balls and the elastic structure resulting in overall shaft support stiffness.

The issue of bearing modeling has been dealt with for over 50 years. Among the first who dealt
deeper with kinematic and kinetic analyzes were Jones [1] and Harris [2]. Due to the lack of computing
power, no extensive dynamic simulations could be carried out, which led to a quasi-static model
with many simplifications. Firstly, the geometric relationships and quantities within the bearing were
outlined by Harris. Secondly, contact forces and deformations (see Figure 1) were derived based on
the Hertzian-contact theory.

Using the simplification stated by the race control hypothesis, which assumes that there is
no relative motion between the ball and the bearing rings surface (~ωs = 0 and ∆v = 0) and the
inclusion of centrifugal forces and gyroscopic moments Mg, equilibrium relationships were derived.
Further simplifications are made by neglecting the ball–cage interaction and assuming identical angular
distribution of the balls around the rotation axis of the bearing.
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Figure 1. Ball bearing’s kinetics and kinematics.

The model of Koch [3] and later Tüllmann [4] is an extension of Harris’ study. The aim of this work
was the investigation of increased maximum speed for axially loaded angular contact ball bearings.
They extended the modeling by a degree of rotational freedom for the cage, rotating around the center
of the outer ring.

To compute the angular velocity of the balls ~ωb, they first determine the angle αb by geometric
relations, assuming pure rolling on both raceways. The different contact angles between the ball and
the raceway (αi and αo) cause a relative rotational movement between the surfaces (spinning motion)
~ωs. Using a friction model of the elastohydrodynamic (EHD) theory, a spinning friction loss results as
a function of the ball rotating angle αb. By minimizing the power loss, the required rotating angle is
calculated. The gyroscopic moment can then be determined by the ball rotation ~ωb and the angle αb.
This is taken into account as a tangential force Ft at the contact point in the force equilibrium of the
inner and outer ring (Figure 1).

Another approach to investigate the dynamic bearing behavior is made by Oest [5] and later
Fritz [6]. They describe the rotational speed of the balls vb and the cage in the assembly purely
from geometrical considerations in the static, unloaded position. This is possible assuming an
equal ball contact angle αi = αo on the inner and the outer ring. Simplifications are also made
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by neglecting the gyroscopic moments, the centrifugal forces, and the drilling friction forces of the
balls. These assumptions are made under the condition of pure rolling at low operation speed.

A very detailed model for rolling bearings is the ADORE program developed by Gupta [7] over
decades. It describes the behavior of the bearing through a quasi-static as well as a dynamic model.
With the static model, starting solutions for the dynamic simulation are determined with assumptions
similar to Koch’s (no cage interaction, calculation of the ball rotation via a race control assumption
under kinematic relations). The dynamic model does not require any kinematic relationships or
geometric assumptions and describes both roller skidding and skewing as well as the lubricating film
behavior. For this purpose, six degrees of freedom (DOF) per bearing component are used, which are
coupled through the forces.

Another model is the BEAST program developed by Stacke and Fritzson [8] for the company
SKF (Gothenburg, Sweden). As the model of Gupta, each bearing component has six degrees of
freedom, but the contact forces between the cage and the rolling elements are described in more detail.
This allows for computing additional effects numerically, such as the power loss, the lubrication film
behavior as well as the forces on the cage and its behavior.

To study the bearings’ vibrational behavior, Sassi [9] presents a 1D model limited to 3 DOF (both
rings and one ball) to study the dynamic response of a localized defect in the bearing. Another more
detailed approach is made by Tkachuk [10], who uses a 3D dynamic model with 4 DOF for each part
of the bearing. They analyze the effect of axial load and misalignment on the vibration signal.

Tadina [11] uses a bearing simulation model with finite element housing to simulate the vibrational
response of the bearing to different local faults, modeled as ellipsoids on the races. Modeling the
raceway faults or imperfections with sinusoidal functions is proposed in [12].

To determine the effects of a varying ball number and centrifugal forces on the dynamic response
and excitation of the rotor system, Vakharia [13] developed a simulation model that includes specific
geometric constraint assumptions for the cage speed and the ball positions.

The description of the lubricant’s behavior, the friction model as well as the EHD damping
effects can require time-consuming computations. However, Wijnant [14] presents an alternative
approximation method for lubricated contacts in order to gain computing efficiency and keep an
acceptable level of accuracy for the EHD contact loads and damping coefficients [15]. For instance,
in the frame of a rotor dynamic study, the outer ring as well as the housing and the shaft can be
modeled as flexible bodies using finite element techniques including a modal reduction [14,15].

Another method consists of a multi-level model, which interpolates the solution from a set of
precomputed values to provide faster results for EHD computations (see [8,16]).

The motivation for the authors’ work is to develop a fast dynamic simulation model, which
includes all relevant effects for high speed applications. Therefore, a minimal set of degrees of
freedom, analytical and physical motivated solutions are used to avoid the most kinematic and kinetic
simplifications. Besides the classic rigid bearing model, the elasticity of the outer ring is included.

The structure of this paper is as follows: in Section 2, the kinematics of the bearing components
and the dominating forces are described. Section 3 outlines the modeling of the elastic outer bearing
ring including a reduction of the full finite element model of the ring. The full dynamic model is
summarized in Section 4 and the time integration scheme is outlined. Section 5 gives a case study of a
bearing simulation and analyzes the influence of the elasticity of the outer ring on the rotordynamic
coefficients and the vibrational behavior. In Section 6, conclusions are drawn.

2. Bearing Kinematics and Forces

The presented angular contact ball bearing model is based on a multibody simulation, using
6 DOF for the inner ring, 2 DOF for each ball (their axial and radial displacements) and 250 DOF for
the elastic outer ring. The coordinate frames used to describe the bearing configuration are shown in
Figure 2.
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Figure 2. Degrees of freedom and coordinate systems.

The origin of the inertial coordinate system RI is fixed at the center of the outer ring, so that
~ro = 0. In order to describe the balls’ positions, the local coordinate frame (eax, erad) is used. Each ball’s
local system is established according to the angle Φb,k and determined by the cage rotation ~ωc.

To describe the ball-inner race and ball-outer race contacts and interactions, local coordinate
frames (Rk,i) and (Rk,o) are used (see Figure 3). eax and erad represent the balls’ degrees of freedom.
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Figure 3. Local ball-race contact coordinate frames.

2.1. Deflections, Normal Forces and Cage Speed

The main step to describe the bearing behavior is to calculate the contact deflections δi and δo

as well as the contact angles αi and αo between the ball and the inner and outer raceway (Figure 3).
Therefore, a detailed description of the inner bearing geometry and geometric projections of the
degrees of freedom are used. In the general bearing configuration, the contact angles are different
between inner and outer ring because of the acting centrifugal forces. This is taken into account by
using the 2 DOF of each ball and can be calculated with the dynamic equilibrium.

Assuming a pure rolling condition, meaning no slip in circumferential direction, the velocities of
the ball centers can be calculated (see Figure 4):

~vb =
~vbo,b +~vbi,b

2
, (1)

and the ball rotation is given by

||~ωb|| =
||vcd

bo − vcd
bi ||

||~rbo −~rbi||
(2)

with the ball contact positions ~rbo and ~rbi, respectively, and the velocity parts in circumferential
direction vcd

bo and vcd
bi .
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Figure 4. Velocities in the ball bearing.

Since each ball can be positioned differently in the rings, depending on the contact geometry and
the ring positions, the velocity of the ball contact point can differ in addition to the velocities ~vb of the
center of the balls. However, the cage constrains them all to a prescribed velocity determined by the
rotational velocity ~ωc of the cage. To calculate the resulting rotational velocity ~ωc, different methods
exist. Here, in this contribution, a method based on a weighting approach is used and presented in
the following.

The first step is to calculate the ball normal Hertzian contact forces ~Fn,i and ~Fn,o using the
deflections δi and δo (see, for instance, [6]):

Fn = KHδ3/2, (3)

with the Hertzian stiffness coefficient KH (see [5]). Note that, in this present study, the effect of
lubrication is neglected. Its influence may require further investigations and could be considered,
for instance, by a contact force law as derived by Wijnant [14].

The improved method to calculate the cage speed ~ωc is to take a weighted mean of the ball center
velocities with the normal contact forces as weighting factors (see Figure 4):

~ωc = 1/F ·∑
k
(||~Fn,i||k + ||~Fn,o||k)

||~vcd
bk
||

||~rbk
−~rc||

~ex, (4)

with
F = ∑

k
(||~Fn,i||k + ||~Fn,o||k) (5)

using k for the ball number. This weighting approach ensures that the velocities of balls, which
are highly loaded, are taken more into account than the velocities of balls, which are not loaded.
Therefore, the higher the force Fn, the more a ball is considered to satisfy the pure rolling condition. If a
ball has no contact, an unloaded clearance zone occurs and no forces act on the cage. As the gyroscopic
moments counterbalancing tangential forces are acting perpendicular to the cage rotation speed, they
are not taken into account in this weighted averaging.

Having the cage speed ~ωc, the centrifugal forces ~Fc acting on the balls are calculated with the ball
mass mb and the difference of~rb and~rc:

~Fc = −mb(~ωc × (~ωc × (~rb −~rc))). (6)

They are acting in the direction of~erad.
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2.1.1. Spinning, Skidding and Gyroscopic Moments

To calculate the gyroscopic effects of the rolling elements, the balls’ rotational velocity ~ωb is needed.
The ball rotation axis ~ωb cannot be normal for both contact ellipses at the outer and inner ring contacts
simultaneously because of the different angles αo and αi. This causes relative rotation velocity at the
contact points, called here spinning motion and denoted by ~ωs,o and ~ωs,i at the raceways (see Figure 4).
It generates the power loss Ploss and wear on the surfaces due to the friction forces at the contact ellipse.
The determination of the ball rotation ~ωb is not possible using only geometrical constraints.

A modern approach for this calculation of ~ωb is made by [3,4]. It is applied to every ball in this
dynamic bearing model. The methodology is to minimize the ball spinning power loss Ploss to get the
ball’s rotation angle αb. Therefore, the ball spinning motion for each contact is calculated depending
on the ball rotation vector: ~ωs = f (~ωb). The power loss is then calculated using the spin vector ~ωs

and the relative skidding velocity ∆~v to:

Ploss =
∫

S
||~v(P) · τ(P)||dS, (7)

where ~v(P) is the slip velocity and τ(P) = p(P) · µ is the friction shear stress in the contact ellipse at
point P, the integration taking place over the entire ellipse (see Figure 5). The chosen dry coulomb
friction coefficient for steel is µ = 0.1 and p(P) is the local hertz pressure. The local slip velocity ~v(P)
at point P is:

~v(P) = ∆~v + ~ωs × ~O′P. (8)

The skidding velocity ∆~v is calculated from the cage rotation ~ωc and the contact point velocities
assuming that the skidding velocity at both contact points is equal (∆~v = ∆~vo = ∆~vi), so:

∆~v = ~vb − ~ωc × (~rb −~rc). (9)

(S)

~v(P)

τ(P)

dS(P)

O′

P

Figure 5. Power loss, velocity and pressure in the contact ellipse.

The calculated power loss is then added for both contacts for each ball and is a function of the
ball rotation vector Ploss = f (~ωb) and its angle αb and magnitude. A numerical minimization of
the power loss leads to ~ωb and must be performed in each timestep. The reached power loss and
the spinning motion are a part of the whole bearing losses and can be used for frictional, thermal or
wear calculations.

The gyroscopic moments caused by the misalignment between the balls’ rotation ~ωb and the
bearing axis are shown in Figure 1. It is defined with the balls’ moment of inertia Jb as:

~Mg = Jb~ωb × ~ωc. (10)

We assume that these gyroscopic moments are in equilibrium with the moments created on the
ball by the tangential forces ~Ft (Figure 1), acting at the ball-race contact points.



Lubricants 2017, 5, 17 7 of 14

2.1.2. Damping in Ball Race Contact

In our dry bearing case, there is only little damping compared to the lubricated one, where the
elastohydrodynamic oil film generates the damping forces. However, the cyclic deformation of a
linear-elastic material causes energy losses that correspond to the hysteresis on a load-displacement
diagram. For a specific material, the loss factor Ψd corresponds to the dissipated energy ED and the
strain energy ES over a deformation cycle (see [5]):

Ψd =
ED

2πES
. (11)

For this model, Ψd = 1.5% is chosen for each bearing contact. To propose a viscous damping
coefficient c, the energy dissipation is compared for a 1D oscillator system. The resulting coefficient c
is a function of Ψd, the Hertzian contact stiffness kh and the deformation frequencyωbp = ||~ωc||/nk,
the ball passing frequency (nk is the number of balls), to [5]:

c = Ψd
kh
ωbp

. (12)

3. Modeling of the Elastic Outer Ring

So far, the local penetration between ball and outer raceway is taken into account due to the
Hertzian contact model (see Section 2.1). In order to cover the global deflection of the outer raceway
in addition to the local one, an elastic model for the bearing outer ring is considered. The inner ring
elasticity can also be modeled. As an example, only the elasticity of the outer ring is considered. In this
work, it is represented by a reduced finite element model with linear elastic material behavior.

The following steps describe representatively the process of the outer ring modeling.
First, the physical dimensions define the geometry of the elastic ring. Second, a discretization by the
finite element method gives the governing equations for the full outer ring model. In the last step,
an adequate reduction method decreases the size of the full model for a later efficient consideration in
the dynamic simulation. Here, the Craig–Bampton approach is applied.

3.1. Geometry

The geometry of the bearing outer ring is defined by the physical dimensions of the rigid bearing.
As an example, without loss of generality, the outer ring is approximated in the following by a cuboid of
dimensions Do × Do ×Wo with the side length Do and the width Wo of the outer ring. The cuboid has
a hollow cylinder with diameter do representing the outer raceway inside the bearing ring. Despite the
simple FE geometry, the detailed geometric curvature of the outer raceway is still considered by an
analytical superposition. Thus, it is possible to choose a very crude or highly reduced FE mesh and
to represent a real bearing raceway geometry (represented by the curvature radii and its centers) for
calculating the deflections and contact forces.

3.2. Finite Element Approach

In the next step, a finite element approach is used in order to discretize the structural equations
of the bearing ring. This step is performed in a finite element software tool. The elastic volume is
discretized by using three-dimensional incomplete quadrilateral elements (each with 20 nodes) with
serendipity shape functions. A structured mesh is applied to the interface of the hollow cylinder by
using 40 elements in circumferential and four elements in axial directions, respectively. Bi-quadratic
finite elements (each with eight nodes) are used for the interface. The degrees of freedom of the nodes
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of the cuboid’s bottom are fixed. Figure 6 shows the finite element model of the bearing outer ring
structure. The homogeneous space-discretized equation of the full finite element model is stated as

MFE ~̈x + KFE~x =~0, (13)

with the finite element mass matrix MFE and the finite element stiffness matrix KFE. The vector ~x
represents the N elastic coordinates of the full ring model.

fixed degrees

boundary nodes

of freedom

Figure 6. Finite element model of an elastic bearing outer ring.

3.3. Reduction Methodology

Due to the large number of elastic degrees of freedom, the full finite element model can hardly be
handled in a dynamic multibody simulation. Therefore, in the following, the full model with its N
degrees of freedom is reduced by the classical Craig–Bampton method.

For the Craig–Bampton reduction, the vector ~x of the full model is decomposed into a vector ~xb
containing nb displacements of boundary nodes and a vector ~xi containing ni displacements of inner

nodes. The degrees of freedom are thus partitioned as ~x =
(
~xT

b ~xT
i

)T
with the total number of nodes

N = nb + ni. As the boundary nodes are later retained for the reduced model, they are chosen as
the nodes that belong to the circle of the outer raceway, indicated in blue in Figure 6. The residual
nodes correspond to the inner nodes of the model. Then, a reduction ~x = T~qel by the Craig–Bampton
approach is defined as:

~x =

[
I 0

−K−1
ii Kib Φv

](
~xb
~η

)
= T~qel . (14)

The first columns of the reduction basis T are nb interface constraint modes based on unit
displacements of the boundary coordinates ~xi. The remaining columns contained in the matrix Φv a
set of nv � ni fixed interface normal modes. They are determined by restraining all boundary nodes
and solving the obtained eigenvalue problem for the first nv eigenvalues. Using the reduction of
Equation (14), the following reduced mass and stiffness matrices are obtained:

Mel = TT MFE T, Kel = TT KFE T. (15)
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In the later example, 80 boundary nodes and hence nb = 3× 80 constraint modes and nv = 10
vibration modes are used.

It is noteworthy that other approaches could also be used for the reduction of the full outer
ring structure model. For instance, the already reduced model could be further reduced by a modal
truncation approach, as followed by Novotny [17] for elastic journal bearings. In addition, a load
dependent approach by using free interface normal modes and attachment modes could have been
followed (see [18–20]).

4. Full Dynamic Bearing Model

The bearing assembly can be seen as two different parts: The bearing elements (the balls, cage and
inner ring) and the elastic outer ring structure. The movements of the bearing elements lead to a
multibody simulation, in which the elastic outer ring is a structural dynamics element.

The two parts are coupled using projections of the displacements and forces with interpolations
to the constraint modes. This is discussed in detail next.

4.1. Multibody Simulation

Modeling the bearing components, the kinematics and kinetics lead to a dynamic equilibrium for
each bearing component. For the inner ring, the dynamic equation writes:

mi~̈ri = −∑
k
(~Fn,i + ~Ft,i)k +~hi, (16)

where~hi is the vector of external forces on the inner ring. For the dynamic equation of motion of each
ball k follows, using~rk = (eax erad)

T :

mk~̈rk = Ak (~Fn,i + ~Ft,i)k + Ak (~Fn,o + ~Ft,o)k +~hk, (17)

where the matrix Ak transforms the ball forces into the local ball coordinate system. The centrifugal
forces are summarized in the vector~hk. The outer ring follows with~ro = ~x, and the equation:

Mel~̈ro = −∑
k

JT
k (~Fn,o + ~Ft,o)k − Kel~ro, (18)

where the Jacobi matrix JT
k projects the k-th ball forces into the direction of the coordinates of the finite

element model of the outer ring.
These three equations are summarized to a set of dynamic equations of motion of the whole

bearing. A time integration scheme (MATLAB ode15s, R2016b, 7 September 2016, The MathWorks
Inc., Natick, MA, USA) applied to the state space formulation of the system is used in order to get the
component velocities and displacements over time.

4.2. Deflection Calculation

The contact deflection δi and δo of each ball on the inner and outer raceway, respectively, is calculated
from the current state variables. The deflection δi,k depends on the coordinate vector~ri of the inner raceway
and the coordinate vector~rk of the k-th ball. The deflection δo,k depends on the coordinate vector~rk of the
k-th ball and the current elastic deformation of the bearing housing at the ball angle Φb,k (Figure 4), which
is in the following denoted by~do,k. The latter deformation~do,k is interpolated from the deformation of the
neighboring nodes by using the bi-quadratic shape functions used for the finite element discretization.

4.3. Force Projections

The ball forces~Fn,i,~Ft,i and~Fn,o,~Ft,o on the inner and outer raceway, respectively, are calculated on
the basis of the local deflections (see Equation (3)). While they can be directly applied to the dynamic
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equations of the inner ring (see Equation (16)), they have to be transformed into the local coordinate
system by a matrix Ak, when applying them to the dynamic equation of the k-th ball (see Equation (18)).
At the outer raceway, they have to be projected onto the elastic coordinates at the ball angle Φb,k
(Figure 4). Therefore, the Jacobi matrix JT

k is used (see Equation (18)). It contains the bi-quadratic shape
functions used for the finite element discretization and evaluated at the current position Φb,k.

4.4. Bearing Model Implementation

The coupling of the two parts is done directly by projecting the elastic housing’s deformation
to the contact deflections of the outer raceway. The normal and tangential forces are then projected
back from the raceway to the housing. In this way, it is possible to add the state space formulation of
the housing directly to the bearing state vector. Thus, the overall dynamic equilibrium is solved for
each timestep.

Outer Ring Structural Damping

To add damping to the elastic housing, two approaches are combined. The elastic housing modes
are damped by 1% modal damping ε using the modal expansion to build the viscous damping matrix
Cel (see [21]):

Cmodal =
n

∑
s=1

Mel~x(s)
2εω0s

µs
~xT
(s)Mel, (19)

with µs =~x(s)Mel~xT
(s) for the generalized mass of the state space mode~x(s). Mel is the mass matrix of

the elastic housing with stiffness matrix Kel .
The static degrees of freedom of the housing (viscous damping matrix Cstatic) are damped using

the Rayleigh approach:
Cstatic = αMstatic +βKstatic, (20)

with α = β = 1%. The whole damping matrix Cel is then assembled:

Cel =

[
Cstatic 0

0 Cmodal

]
. (21)

To speed up the time integration scheme and to choose realistic initial conditions, the static
equilibrium is solved beforehand.

5. Results of Representative Example

Showing the differences in the bearing behavior between a rigid and elastic outer ring formulation
is the task of this chapter.

The examined ball bearing is a standard deep groove ball bearing of type 6404. Its outer diameter
is 72 mm, the inner is 20 mm, and it includes six balls with a diameter of 15.1 mm. The material is
steel and no lubrication is used. In the elastic housing case, the outer ring is replaced by the flexible
structure. For a realistic rotor case simulation, some shaft mass (1 kg) and stiffness are added to the
bearing’s inner ring, which leads to neglecting the rotation of the inner ring system around ey and ez.

The results should not necessarily represent a realistic bearing. Instead, they are presented to
show the differences of the model methodology and the advantage of detailed elastic formulations.

Figure 7 shows a snapshot of the dynamic simulation (time-dependent) of the bearing. It is
loaded by a constant radial force of 1000 N in a positive y-direction (upwards in the figure). The shaft
rotates at 1047 rpm. The green points represent the position of the elastic housing. It can be seen
that the balls have a Hertzian deflection δ additionally to the housing’s deformation. The deflections
and deformations are amplified for better visualization. In contrast to a homogeneous black box
formulation, the inhomogeneous load distribution can be seen clearly.
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Figure 7. Visualized bearing displacements with elastic outer ring.

5.1. Bearing Displacements

The radial inner ring displacements (shaft movement) are shown in Figure 8. The bearing is
loaded with radial force, in the y-direction, at several rotational speeds (3000, 6000, 12,000, 24,000 rpm)
for a rigid and elastic housing formulation.

Within the rigid configurations, the speed dependency is only minor. The centrifugal forces
are small with regard to the Hertzian stiffness. In the elastic housing case, a larger influence of the
rotational speed can be seen. The higher the shaft speed, the higher the radial displacement.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

20

40

60

radial force Frad [N]

ra
d
ia
l
d
is
p
la
ce
m
en
t
y
[µ
m
]

3× 103 rpm 6× 103 rpm 12× 103 rpm 24× 103 rpm

rigid

elastic

Figure 8. Inner ring displacement according to radial force at different rotational speeds.

The absolute inner ring displacement of the elastic formulation is higher compared to the rigid
one. This shows the weakening effect of a soft outer ring structure. Figure 9 shows the radial bearing
stiffness calculated from the displacements.
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Figure 9. Radial bearing stiffness according to radial force at different rotational speeds.

5.2. Bearing Excitation Frequencies

The consideration of the bearing as an inhomogeneous, discrete parted element leads to a rotating
angle-dependent behavior. Depicted in Figure 10 is the orbit plot of the inner ring motion of the
constant radial loaded bearing (Frad =1000 N) at a constant rotational speed of 1000 rpm.
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Figure 10. Inner ring orbit over time at constant radial load and rotational speed.

It indicates a movement of the shaft in an elliptic orbit. The center location is not constant unlike
the load, so the dynamic simulation is useful to predict the amplitudes. The frequency of this orbit is
described mainly by the ball passing frequency (see Figure 11). It has to be considered to avoid a rotor
resonance at that frequency. In this case, the inner ring rotates at 1000 rpm, corresponding to 16.7 Hz.

The dominating excitation frequency is about 33.9 Hz. It excites higher frequencies of the elements
and the housing. The ball passing frequency is determined by the cage speed ~ωc and the number of
balls. An accurate calculation, presented in this paper, is useful for the machinery design process.
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Figure 11. Inner ring displacement over time at constant radial load and rotational speed.

6. Conclusions

In this paper, a full dynamic multibody bearing simulation including an elastic outer ring is
presented. The discrete elements of the bearing, the inner ring, the balls and the cage are described.
To calculate the acting forces, the Hertzian theory and deflections between the bearing elements are
used. To model a bearing integrated into a lightweight structure, the bearing outer ring is modeled
as an elastic structure using the FEM approach and reduction techniques. Projections of forces and
displacements are used to couple the multibody simulation to the structural part. This formulation
makes it possible to examine the ball–structure interaction and the whole dynamic bearing behavior.
A time integration leads to the shaft and bearing elements dynamic motion. To compare the elastic
and the rigid outer ring approach, some stiffness and displacement results are shown. The orbit
movement can lead to a vibrational excitation of the rotor. The excitation frequency is calculated using
a detailed physically motivated bearing cage approach. The model still contains simplifications like
the assumption of constant radii for inner and outer raceway shapes, the neglect of cage inertia and
clearance effects, the simplified FE geometry or the absence of lubrication. These simplifications give
space for future investigations; for instance, the validation of the model by experimental data could
provide deeper knowledge on the underlying effects.
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