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Abstract: Tree rings include retrospective information about the relationship between climate and
growth, making it possible to predict growth reaction under changing climate. Previous studies
examined species-specific reactions under different environmental conditions from the perspective of
tree ring growth and 13C discrimination (∆13C). This approach is extended to monospecific versus
mixed stands in the present paper. We investigated the resistance and resilience of Norway spruce
(Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) in response to the drought event in
2003. The study was carried out along a precipitation gradient in southern Germany. Responses of
basal area increment (BAI) and ∆13C were correlated with a Climate-Vegetation-Productivity-Index
(CVPI). The species showed different strategies for coping with drought stress. During the summer
drought of 2003, the BAI of spruces reveal a lower resistance to drought on dry sites than those of
beech. For beech, we found an increasing resistance in BAI and ∆13C from dry to moist sites. In
mixture with spruce, beech had higher resistance and resilience for ∆13C with increasing site moisture.
The combination of ∆13C and tree ring growth proxies improves our knowledge of species-specific
and mixture-specific reactions to drought for sites with different moisture conditions.

Keywords: mixed forest; resistance; carbon isotope; climate change; resilience; tree rings

1. Introduction

Forests provide fundamental ecosystem services and play a key role in the global carbon and
hydrological cycle. For the maintenance of ecosystem services under a changing climate, ecosystems
with high resilience and resistance are of great importance. Resilience and resistance depend on the
ability of the species to maintain fundamental ecosystem processes under disturbances such as drought
events. For the extreme drought event in 2003 in Europe, Cias et al. [1] described the consequences for
forest ecosystems with up to 30% reduction in gross primary productivity caused by rainfall deficits
and extreme summer heat.

Drought episodes affect physiological processes in trees such as photosynthesis, transpiration,
and carbon allocation, which can lead to reduced growth rates and a higher tree susceptibility. The
consideration of different tree species is thus crucial due to differences in physiological and anatomical
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adjustments to cope with drought events. Therefore, it is important to predict responses of forest tree
species to changing environmental conditions in order to understand if silvicultural conversion (e.g.,
mixtures) are meaningful [2]. Two important indices for depicting the effect of climate change are
δ13C in tree rings and the radial stem growth of trees [3–5]. Discrimination against 13C (∆13C) can be
used as an indicator for changes in stomatal conductance and photosynthetic rates and thus reflect
changes in soil water content and evaporative demand of trees, even though coupling between leaf
physiological processes and incorporated stem cellulose may be dampened [6]. During drought stress,
the transpiration rate is reduced by stomatal conductance [7]. In parallel, reduced stomatal aperture
reduces the internal CO2 concentration (Ci) and thus photosynthetic discrimination against 13CO2 at
the leaf level. Hence ∆13C in tree rings decreases [8]. Another indicator of environmental changes is the
reduction in radial growth due to limited water availability. In each particular year, newly formed wood
cells reflect the environmental conditions for tree growth. Andreu et al. [9] examined tree-ring widths
and δ13C chronologies from an Iberian pine forest and concluded that δ13C reveals drought stress
signals more precisely than radial stem growth. However, the relationship between tree rings and ∆13C
does not only represent physical archives but also biological processes such as the competition for water
and light. Studies by Thurm et al. [10], Pretzsch et al. [11], and Lebourgeois et al. [12] provide evidence
based on radial stem growth that species mixture may reduce the climate sensitivity of the species. It
is generally accepted that mixed forest stands can improve soil properties [13,14], biodiversity [15,16],
and productivity [17,18] at stand level. Complementary resource use allows significant positive effects
on yield in mixed compared to monospecific stands [19,20]. Certainly, stands with species mixture are
not always more productive than stands with monocultures, as facilitation effects among species are
dependent on site conditions, age of the stands, and mixing structure [17,21,22].

The relationship between tree ring growth and ∆13C under contrasting levels of competition
(e.g., intra- and interspecific competition) has rarely been explored [5,23]. Tree ring growth and carbon
isotopes can provide information about competition-induced changes in the water balance of the tree
species explored. The aim of this study is to interpret the response of spruce and beech to the drought
in 2003 in terms of tree ring growth and ∆13C. In this regard, spruces are found to follow a more
isohydric strategy and to reduce the stomatal conductance at an early stage of drought stress. Beech
trees, on the other hand, follow a more anisohydric strategy and indicate a later stomatal closure when
water is limited [24,25].

Furthermore, the focus is placed on how growth in monospecific or mixed stands along a
precipitation gradient modifies the impact of changing climate. We applied the indices developed
by Lloret et al. [26] to determine resistance and resilience of beech and spruce trees. The following
hypotheses are addressed: (1) During the summer drought of 2003, resistance and resilience of tree
ring growth and ∆13C decreased from moist to dry sites along the gradient, in which isohydric spruce
trees reacted more sensitively than anisohydric beech trees; (2) Under dry conditions, the growth of
beech benefits from mixture with spruce due to increased water availability.

2. Materials and Methods

2.1. Experimental Sites

Four locations in southern Germany were selected to cover a precipitation gradient. The gradient
has a northwest–southeast (Arnstein, Parsberg, Wasserburg, Traunstein) extent, with the locations
becoming more humid towards the southeast. The precipitation in the growing season (Pgr)
(April–September) ranged from 320 mm in Arnstein to 850 mm in Traunstein (Table 1; data: Bavarian
State Research Center for Agriculture (LfL) [27]). The sites represent a precipitation gradient from
the upper colline to sub-mountainous altitudes. The altitudes range from 330 m in the northwest and
600 m in the southeast of Bavaria. Mean annual temperature for the period 1980–2010 ranged between
8.5 to 9.5 ◦C, with slightly higher temperatures in the southeast. In the year 2003, an extreme climate
anomaly occurred in Europe with high temperatures, particularly in August, and long-lasting drought
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events. At the investigation plots, the total precipitation in this year was the equivalent of 10 months
below the annual average. To calculate resistance and resilience in the drought year 2003, we used
values from the years 2000 to 2006, that is three years prior to and post drought.

Table 1. Geography and the annual and growing season (April to September) temperature
(Ta, Tgr) and precipitation (Pa, Pgr) of the sites along the precipitation gradient. CVPI means
Climate-Vegetation-Productivity-Index (CVPI) based on the period 1980–2010.

Site Latitude
(◦)

Longitude
(◦)

Elevation
above the Sea

Level (m)
Geological Substrate Ta (◦C) Pa

(mm)
Tgr

(◦C)
Pgr

(mm) CVPI

Arnstein 49.903 9.977 330 limestone (mid Triassic) 9.5 654 13.6 320 280
Parsberg 48.936 11.822 550 limestone (Jurassic) 8.5 713 13.5 400 315

Wasserburg 48.142 12.073 620 moraines from Würm glaciation 8.8 858 13.5 650 464
Traunstein 47.939 12.672 600 moraines from Würm glaciation 9.1 962 13.3 850 412

Table 2 gives an overview of the characteristics of the plots. The comparison of mixed versus
monospecific plots is enabled by triplets, represented by two monospecific plots and one mixed plot of
European beech (Fagus sylvatica [L.]) and Norway spruce (Picea abies [L.] Karst). Consequently, 12 plots
are included in this study. Monospecific plots comprise approximately 30 trees of the species, whereas
mixed plots have 60 to 100 trees, respectively. The triplets are in close proximity to each other and have
not recently been thinned.

Table 2. Stand characteristics of the monospecific and mixed stands along the precipitation gradient
from the northwest to the southeast of Bavaria.

Site Species Mixture
Age N HO DO HG DG GV VV

(years) (n/ha) (m) (cm) (m) (cm) (m2·ha−1) (m3·ha−1)

Arnstein

spruce mono 70 484 32.7 41.6 30.4 33.5 42.6 624
beech mono 85 1018 26.9 38.4 22.7 21.7 37.5 453
beech mixture 77 514 27.3 37.3 23.9 22.1 19.8 249
spruce mixture 77 269 31.2 45.0 27.7 31.1 20.4 276
total mixture 783 40.2 525

Parsberg

spruce mono 60 889 30.5 45.5 26.9 28.7 57.6 756
beech mono 95 470 32.7 39.6 30.5 30.7 34.8 558
beech mixture 90 136 36.3 53.3 33.9 42.2 19.0 298
spruce mixture 90 214 32.8 47.3 30.4 33.8 19.3 316
total mixture 350 38.3 613

Wasserburg

spruce mono 50 733 25.1 38.4 22.8 27.9 44.7 498
beech mono 55 595 24.4 36.6 22.5 24.7 28.4 328
beech mixture 60 208 28.6 40.7 25.4 28.3 13.1 162
spruce mixture 60 433 24.6 34.5 22.2 22.3 16.9 192
total mixture 641 30.0 354

Traunstein

spruce mono 50 523 28.6 41.4 26.9 33.0 44.7 579
beech mono 65 375 26.5 42.3 24.9 30.8 28.0 367
beech mixture 67 143 30.2 41.0 29.1 34.0 13.0 197
spruce mixture 67 294 33.8 46.8 31.3 36.0 29.9 445
total mixture 437 42.9 643

Age, tree age in years; N, tree number per ha; HO, average height of 100 dominant trees (m); DO, average diameter
of 100 dominant trees (cm); HG, height of mean basal area tree (m); DG, diameter of mean basal area tree (cm); GV,
basal area (m2·ha−1); VV, volume (m3).

The sites were selected on the basis of similar soil characteristics, stand density, and comparable
stand age. Soil types of the sites are cambisol, with the exception of Arnstein which has a luvisol soil.
In September 2014, in order to determine the characteristics of the soils, four soil cores were taken at
each plot and divided into five fractions (organic layer, 0–10 cm, 10–40 cm, 40–80 cm, 80–150 cm) to
estimate the plant available soil water at field capacity and the cation exchange capacity (CEC) (Table 3).
The CEC was high to very high at Arnstein, Parsberg, and Traunstein and between medium and high
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at Wasserburg compared to national standards [28]. The two calcareous sites Arnstein and Parsberg
compensate for their low soil depth through higher nutrient concentrations. The water storage capacity
reflects the gradient and increases from dry to moist sites.

Table 3. Soil characteristics (availability of water and nutrients (cation exchange capacity, CEC)) in the
monospecific and mixed stands [29].

Site Species Mixture Exposition
Cation Exchange
Capacity (CEC)

Plant Available
Soil Water

(kmol·ha−1) (L·m−2)

Arnstein
spruce mono south 1072 83
beech mono plain 2931 89

spruce/beech mixture plain 1552 79

Parsberg
spruce mono northwest 2060 67
beech mono northwest 1813 67

spruce/beech mixture northwest 2477 80

Wasserburg
spruce mono south 920 217
beech mono south 685 215

spruce/beech mixture south 921 250

Traunstein
spruce mono west 1604 204
beech mono west 2215 198

spruce/beech mixture north 1975 209

2.2. Sampling Procedure

In order to determine tree growth, a total of 112 trees were sampled, i.e., 28 trees per site. For the
analysis of ∆13C, seven trees of each species in the mixed and monospecific stands were used. The
number of sampled trees has been shown to be a satisfactory number of replicates for a representative
study of isotopes [3,30,31]. For tree ring width measurements, 30 trees at the monospecific stands and
60 to 100 trees, respectively, at the mixed stands were cored. To compare carbon isotope in tree rings
and the basal area increment (BAI), we used the same tree individuals. All sample trees were cored in
east and north direction to the pith (overall 56 increment cores per site) at 1.30 m stem height, using
5-mm increment borers. The arithmetic means of the annual ring widths from north and east sides
are used for the analysis. Dominant trees were selected according to vitality, i.e., stem diameter and
height in relation to surrounding trees. The monospecific plot of beech in Traunstein was excluded
from the analysis because no suitable stand trees with the same light conditions were found at this site.
However, it is still used to illustrate BAI.

2.3. Tree Ring Measurements

Ring widths were measured with digital positiometer (Biritz GmbH, Gerasdorf, Austria) with
an accuracy of 0.01 mm. Cross-dating and synchronization of the tree chronologies were carried
out with the help of the software platform TSAP-Win (Rinntech, Heidelberg, Germany). The basal
area increment (BAI) was used instead of radial increment for detrending and statistics because it
better represents tree growth [32]. For the standardization of BAI time series, a double detrending
procedure was applied [33]. Using a Hugershoff function [34], age trend and other background
noise were eliminated, while still preserving high frequency climate signals in tree ring series. As a
second detrending procedure, a cubic spline was used because of the residual growth trends of trees,
for instance, thinning [33]. Cubic spline can fit and remove ring width trends that are not linear or
do not have a monotonical course. The cubic spline and its wavelength were fixed to 15 years with a
frequency response of 0.5 [10].

2.4. Carbon Isotope Analysis

To determine the ∆13C for the reference period of 2000 to 2006, the cores of the sample trees were
mechanically fixed on a wooden holder and prepared with a WSL-core-microtome (WSL, Birmensdorf,
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Switzerland). Individual tree rings of both cores (east and north direction) were ripped with a scalpel
under a binocular. The years 2000 to 2002, representing the initial period, were pooled. After drying in
the dry oven at a temperature of 60 ◦C, the tree ring samples (mass > 50 mg) were cut into small pieces
and processed into a fine powder in sample tubes using a ball mill (Mixer Mill MM2, Retsch, Haan,
Germany). Sample mass was always above 50 mg; thus, contamination from sample tube material
appeared negligible [35]. Subsequently, aliquots of 2 mg were weighed into tin capsules. For carbon
isotope measurements, the samples were combusted to CO2 using a Euro EA 3000 Elemental Analyzer
(Eurovector S.p.A, Milan, Italy). The measurements of the isotope ratio 13C/12C were carried out using
an Isoprime 100 isotope ratio mass spectrometer (GV Instruments Ltd., Manchester, UK).

To calculate ∆13C, the long-term changes in the atmospheric 13CO2 signal were corrected for:
∆13C = (δ13Catmosphere − δ13Cplant)/(1 − δ13Cplant/1000) [3]. The Belemnite of PEE-Dee-formation
from North-Carolina, USA was used as the standard: δ13C (h) = ((Rsample/Rstandard) − 1)·1000, with
R = 13C/12C. The isotopic fractionation enrichment of 13C relative to 12C isotope is described through
the simplified equation of Farquhar et al. [36]: ∆13C = a + (b − a) (ci/ca). The ci/ca indicates the
leaf internal to atmospheric CO2 concentration. The constant a gives the kinetic fractionation of
13CO2 during diffusion (4.4h). The constant b describes the discrimination by CO2-fixation of the
carboxylating enzymes (29h). Both stomatal conductance and photosynthesis rate determine ci and
thus discrimination of 13C during photosynthesis [8].

2.5. Climatic Site Conditions

To determine the influence of climatic site conditions on ∆13C and BAI, we calculated the
Climate-Vegetation-Productivity-Index (CVPI) defined by Paterson [37] (data: Bavarian State Research
Center for Agriculture (LfL) [27]). The CVPI is a climatic index of forest growth. The index has been
developed for areas at a global scale, but it can also be very useful for comparing zones located in the
same region [38–40]. The CVPI estimates the potential productivity of a forest area based on climatic
variables: CVPI = (Tv × P × G × E)/(Ta × 12 × 100). Hereby, Tv gives the mean temperature of the
warmest month (◦C), and Ta is the mean annual range of the temperature between the coldest and
warmest month (◦C). P is the mean annual precipitation (mm), G is the length of the growing season
in months (in the study region from April to September), and E is an evapotranspiration reducer
(based on latitude and giving generalized total annual radiation received as a percentage of that at the
equator). A high index value indicates high productivity under moister conditions. For our sites, the
values ranged from 280 at dry sites to 412 at moist sites (Table 1).

2.6. Data Analysis and Statistics

To compare the trees in view of basal area increment and carbon isotope signatures under drought
stress, indices for resistance (RT) and resilience (RS) by Lloret et al. [26] were applied. The indices
were calculated on the basis of annual mean values of the BAI and the ∆13C. Our study focused on
the drought event of 2003. We used three years before and after the drought year to describe the
post-drought and pre-drought situation of BAI and ∆13C. Resistance describes the decline in the year
of drought stress compared to the previous year (RT = drought/pre-drought). RT = 1 stands for a
complete resistance. Resilience describes the capacity to reach the level present before the drought
event (RS = post-drought/pre-drought). RS ≥ 1 represents a full recovery or overcompensation.

A linear mixed effect model “lmer” (lme4 R package [41] and lmerTest package [42]) was applied.
All analyses were performed with the R version 3.2.3 (R Core Team, 2015). We used a linear mixed
effect model to verify if RT and RS of tree growth and ∆13C values depend on the variables site, species,
and mixture. To take into account the nesting in the data, plot and site are included as random effects
in the models. Species, CVPI, or mixture were used as fixed effects. The fixed effects, species and
mixture, were coded as binary variables. Linear mixed effect models have the form:

yijk = a1x1ijk + a2x2ijk + a3x3ijk . . . anxnijk + bi1z1ij + bi2z2ij . . . binznij + εijk
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where yijk describes the outcome variable (in our case RT or RS), a1 through an stand for the fixed
effects coefficients and x1 through xn represent the fixed effect variables, random effect coefficients
bi1 through bin with the random effect variables z1ij through znijk. εijk represents the independent
and identically distributed random error. The indices I, j, and k stand for site, plot, and tree. To fit
the relationship of BAI and ∆13C for RT and RS, we logarithmized RT and RS in the model. The
significances of the coefficients were calculated with an F-test with Satterthwaite’s approximation [42]
from the R-package lmerTest.

Differences amongst the least square means (population means) and confidence intervals for the
fixed effect part mixture (monospecific/mixed) for both species of the linear mixed effect model (R
package lmerTest [42]) were calculated. This allows a comparison of the performance of both species
in different mixtures.

3. Results

3.1. Ring Width Variations and Tree Ring ∆13C Signatures

In monospecific stands, the mean basal area increment (2000–2006) of spruce reached 21 ± 13 cm2,
whereas for beech it was 16 ± 12 cm2. In mixture, the BAI for spruce was 20 ± 14 cm2, whereas for
beech it reached 17 ± 12 cm2. The mean ∆13C of spruce in monospecific stands was 17.4 ± 0.2h and
in mixture, it was 16.9 ± 0.6h. In general, beech generated higher ∆13C values with 17.8 ± 0.6h in
monospecific and 18.2 ± 0.7h in mixed stands.

Along the gradient, both mean ∆13C and BAI from the period 2000 to 2006 increased from dry to
moist sites, in particular for beech ∆13C (Figure 1). The BAI values of beech trees in Parsberg (PAR)
and Wasserburg (WAS) were similar. The BAI of spruce at the moist site Traunstein was an exception,
with a decreasing value. In terms of the ∆13C of spruce trees, only the difference between Arnstein and
Parsberg was significant. The BAI of spruce trees were higher than those of beech trees, whereas beech
trees showed a higher discrimination in comparison with spruce trees.
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Figure 1. Mean basal area increment (a) and ∆13C signatures (b) of spruce trees (triangles) and beech
trees (circles) from the dry site Arnstein to the moist site Traunstein. The means of the years 2000 to
2006 were used. Significances are represented by the letters a to e, calculated with an ANOVA and
Tukey HSD (honest significant difference) test for E. beech (European beech) and N. spruce (Norway
spruce). The letters represent the significances for spruce trees (above) and for beech trees (below)
(p < 0.05). The same letters indicate no significant differences.

The mean basal area increment index (BAII) in Figure 2 shows the detrended data over the
reference period (2000–2006). The figure gives an overview of the data of BAII and ∆13C in the
period before and after the drought year 2003. The decreased BAII and ∆13C in the year 2003 can be
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seen in most cases. The drop in 2003 is calculated and evaluated through the results for resistance
(RT). For ∆13C, beech trees of the mixed stands reveal a higher discrimination compared to the same
species in a monospecific environment. In contrast, spruce trees had a higher discrimination in a
monospecific environment.Forests 2017, 8, 177  7 of 18 
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Figure 2. Standardized mean basal area increment (BAII) (a,b) and mean ∆13C (c,d) (for the period
2000 to 2006) of spruce and beech in monospecific and mixed neighborhood at the sites Arnstein (ARN),
Parsberg (PAR), Wasserburg (WAS), and Traunstein (TRA) with confidence intervals (CI, 95%).
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3.2. Species-Specific Differences in Resistance and Resilience

Resistance (RT) and resilience (RS) of the reference period (2000 to 2006) were calculated to analyze
the drought stress reaction in the year 2003. The relationship between the RT and RS of ∆13C and BAI
in 2003 was chosen to determine whether these two proxies react in the same way under drought
conditions (Figure 3, Table 4 Model description (1) and (2)). Resistance indices demonstrated different
reactions between the two species. A significant oppositional trend in the relationship between the
RT of ∆13C and BAI (p < 0.01) for spruce and beech can be seen for the drought year 2003. Because
of an absence of linearity, we logarithmized RT and RS in the model. The RT of spruce trees reveals
a significant negative relationship between ∆13C and BAI (Table 3). In contrast, beech trees were
positively correlated to a significant degree. For both species, the resilience indices of ∆13C and BAI
indicated no significant correlation.
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Figure 3. Relationship between the resistance (a) and resilience (b) of the ∆13C and BAI of spruce
and beech trees in the drought year 2003 (lmer with logarithmic transformation of resistance (RT) and
resilience (RS) in the model). Differences are significant between the species for the RT (p < 0.01 **).
Light grey circles represent the values of resistance or resilience in 2003 of beech trees, dark grey
triangles represent those of spruce trees.

3.3. Differences in Resistance and Resilience of Monospecific vs. Mixed Stands

To compare species and species mixing (i.e., monospecific vs. mixed stands, group comparison),
the means of RT and RS were used. The difference between the means of beech and spruce reveals
which species or species mixing had a higher RT or RS (Table 5, differences). The BAI of beech indicates
that it has significantly higher RT (difference 0.15) and RS (difference 0.11) than spruce. Values of
∆13C present the opposite trend with spruce having a significantly higher RT (difference 0.02) and RS
(difference 0.02) than beech. Regarding mixture, significant differences were found in ∆13C for a higher
RT of spruce trees in mixed than in monospecific stands. Beech trees in a monospecific neighborhood
also reveal a significantly higher RS (0.02) than in mixed stands.

3.4. Relationship with Climate Variables

To analyze the influence of the climate on RT and RS, the relationships based on the
Climate-Vegetation-Productivity-Index (CVPI) were tested (Figure 4, Table 4 model description (3–6)).
Spruce and beech trees show significantly different courses along the gradient for BAI and ∆13C RT,
with a significantly greater difference on moist sites for RT BAI (p < 0.001). The RT of spruce trees’
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∆13C indicates a significantly greater difference for the species at dry sites and a decrease from dry to
moist sites. The resistance of BAI spruce is significantly less than that of beech trees along the gradient.
Beech trees indicate a significantly increasing relationship between RT and RS (except BAI RS) with
increasing CVPI from dry to moist sites (BAI and ∆13C).

Table 4. Estimates of the linear mixed effect models of resistance and resilience for BAI, ∆13C, and
CVPI for beech and spruce trees (n = 86; standard deviations in brackets). Empty cells are not included
in the model. Model description (1) and (2) describe results of the relationship between RT and RS of
BAI and ∆13C in Figure 3, (3–6) describe the linear mixed effect models of Figure 4. Signif. codes: ‘***’,
0.001; ‘**’, 0.01; ‘*’, 0.05; ‘(*)’, 0.1.

Dependent Variables:

(1) (2) (3) (4) (5) (6)
Log(RT) Log(RS) RT RS RT RS

∆13C ∆13C BAI BAI ∆13C ∆13C

Intercept −0.02 *** −0.018 ** 0.249 0.812 0.884 *** 0.939 ***
−0.005 −0.005 −0.198 −0.482 −0.029 −0.028

Log(RT) (BAI) 0.052 **
−0.015

Log(RS) (BAI) −0.008
−0.013

CVPI
0.002 (*) 0.0002 0.0002 * 0.0001
−0.001 −0.001 −0.0001 −0.0001

Species (N. spruce) −0.007 0.022 ** 0.488 ** −0.168 0.131 *** 0.091 ***
−0.009 −0.007 −0.17 −0.211 −0.029 −0.026

Log(RS):Species (N. spruce) −0.003
−0.017

Log(RT):Species (N. spruce) −0.083 ***
−0.022

CVPI:Species (N. spruce) −0.002 *** 0.0002 0.0003 *** −0.0002 *
−0.0005 −0.001 −0.0001 −0.0001

Table 5. Means of RT and RS, differences between means, and significance levels (linear mixed effect
model) of ∆13C and BAI. Species and mixture situation are independent variables. Significance levels:
‘***’, p < 0.001; ‘**’, 0.01; ‘*’, 0.05; ‘(*)’, 0.1.

Group Comparison
Type Variable

Group Comparison
(Means) Difference p Value

1 2 1 2

E. beech–N. spruce BAI RT 0.80 0.65 0.15 0.00 ***
E. beech Mixed–E. beech Pure BAI RT 0.76 0.84 −0.09 0.09 (*)

N. spruce Mixed–N. spruce Pure BAI RT 0.64 0.67 −0.03 0.60
E. beech–N. spruce BAI RS 0.89 0.78 0.11 0.02 *

E. beech Mixed–E. beech Pure BAI RS 0.86 0.91 −0.05 0.38
N. spruce Mixed–N. spruce Pure BAI RS 0.77 0.79 −0.02 0.74

E. beech–N. spruce ∆13C RT 0.96 0.98 −0.02 0.00 ***
E. beech Mixed–E. beech Pure ∆13C RT 0.96 0.97 −0.01 0.07 (*)

N. spruce Mixed–N. spruce Pure ∆13C RT 0.99 0.97 0.02 0.03 *
E. beech–N. spruce ∆13C RS 0.98 1.00 −0.02 0.00 **

E. beech Mixed–E. beech Pure ∆13C RS 0.98 1.00 −0.02 0.03 *
N. spruce Mixed–N. spruce Pure ∆13C RS 1.01 1.00 0.01 0.49

In general, spruce and beech trees in monospecific stands did not significantly differ from mixed
ones in terms of resistance and resilience along the gradient. Significant differences were only found
for ∆13C of beech (p < 0.01) (Figures A1 and A2, and Table A1, Appendix A). The RT and RS of beech
in mixture were significantly higher on the moist sites for ∆13C (RT p < 0.01, RS p < 0.05).
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Figure 4. Linear mixed effect model of species and sites relative to the drought period 2003 for the BAI
(a,b) and ∆13C (c,d) of beech (green line) and spruce (red line), represented by the CVPI, with means of
RT and RS and confidence intervals (CI, 95%). The differences between species along the gradient are
significant for BAI RT (p < 0.001 ***), ∆13C RT (p < 0.001 ***), and ∆13C RS (p < 0.05 *).

4. Discussion

This study focused on the drought stress reaction in terms of resistance and resilience of spruce
and beech trees based on the following hypotheses: (1) During the summer drought of 2003, resistance
and resilience of tree ring growth and ∆13C decreased from moist to dry sites along the gradient, in
which isohydric spruce trees reacted more sensitively than anisohydric beech trees; (2) Under dry
conditions, the growth of beech benefits from mixture with spruce due to increased water availability.

4.1. Species-Specific Differences of BAI and ∆13C Signatures in Tree Rings

In view of the present results, the dendrochemical isotope analysis revealed a clearer signal in
drought response among site and stand composition than the dendrochronological tree ring analysis.
Likewise, Hartl-Meier et al. [4], Mölder et al. [5], Andreu et al. [9], and Saurer et al. [43] found a strong
sensitivity of the C isotopic signatures to climate variables such as precipitation for different species.
Tree ring width variations may reflect more local factors i.e., site conditions [9]. The ratio of leaf
intercellular and ambient CO2 concentration and, further, the photosynthetic fractionation of carbon
isotopes, generally allow the characterization of environmental effects with the use of ∆13C of newly
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assimilated organic matter [44]. However, tree ring growth and ∆13C in tree rings relationships are
not always straightforward, since several factors may concurrently influence isotope fractionation i.e.,
species-specific differences [3,6].

The ∆13C of deciduous beech trees was higher than that of evergreen spruce trees. The
higher ∆13C of beech reflects a higher ci, resulting from a higher stomatal conductance and/or
a lower photosynthetic rate and hence different intrinsic water use efficiencies (iWUE = net
photosynthesis/stomatal conductance) [45–47]. The stomatal control of transpiration is crucial for plant
survival and growth performance, especially under drought stress. Klein [25] described contrasting
water management strategies (anisohydric or isohydric) of tree species on the basis of the stomatal
conductance and the leaf water potential. Following a more anisohydric strategy, beech trees have
higher stomatal conductance under drought and lower leaf water potentials than spruce. Moreover,
beech’s greater capacity for higher soil water exploration is related to its deeper root system compared
with spruce. As a consequence, spruce as an isohydric species was more susceptible to drought than
beech [11,48] due to the lower stomatal conductance at an early stage of soil drought.

Species-specific differences were observable when comparing the resistance and resilience of
BAI and ∆13C. The ∆13C of spruces revealed a high drought resistance, while the resistance of tree
ring growth is low. On the other hand, the resistance of BAI and ∆13C of beech trees showed a
positive correlation. One possible explanation for this pattern is that evergreen and deciduous species
have different seasonal carbon storage amounts and remobilization patterns of starch and sugars
and a subsequent isotopic coupling among tree rings and leaves [49]. Thus, for evergreen species, a
stronger coupling between isotope composition of new assimilates and tree rings is assumed [6,50].
Klein et al. [51] and Barbour et al. [52] showed a rapid response in ∆13C with changing environmental
conditions. Photosynthates of the evergreen species are transferred directly to the tree ring with limited
involvement of C stores. In addition, spruce trees begin growing earlier than beech trees in the study
region and could involve more ∆13C in tree rings at the beginning of the growth period.

Along the gradient, we suggest that on moist sites during the drought event of 2003,
new assimilates of beech trees were transferred more to the stem, whereas under drought at the
dry sites, allocation of photoassimilates to the stem ceased. Hommel et al. [53] and Zang et al. [54]
indicated that beech trees allocate photoassimilates to a greater extent belowground under moderate
drought, compared to situations where water supply is unlimited. That beech trees benefit on moist
sites also concurs with the findings in the data for tree ring growth. The higher the water supply, the
greater the capacity demonstrated by beech to avoid a strong reduction in the growth level when the
drought event happened [11,55]. For BAI, spruce trees had a lesser resistance on dry sites than beech
trees. In contrast, the ∆13C of spruce trees showed greater resistance on dry sites during the drought
year compared to beech. The ability of tree species to cope with a decrease in the water availability
at xeric and mesic sites in Central Europe for δ13C was determined in a study by Levesque et al. [46].
Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and
early spring. At mesic sites, trees were more vulnerable to water deficits of shorter duration than at
the xeric site. The assumptions of the first hypothesis can be confirmed for the BAI of spruces, but
must be rejected for ∆13C of spruce trees. With respect to BAI, spruce trees have a lower resistance at
the dry site, whereas beech trees reveal a greater resistance at the moist site.

4.2. Species Interaction in Monospecific Versus Mixed Stands

The influence of the mixture structure of spruce and beech stands has been analyzed in many
studies [12,23,56–58] but no common statement could be found in these. Species mixture could lead
to positive effects as well as to negative consequences for tree ring growth. For instance, the shading
effects of beech or its deep-rooting system and the consequent restriction of water and nutrient supply
could have negative effects on spruce [17,59]. Positive effects of beech on spruce might include
hydraulic lift by the roots. At night, when transpiration is low and tree water potential high, roots
receive water from deeper soil layers. If the water potential is lower in the upper soil layer compared
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to deeper soil layers, as in drought situations, water emerges from these layers to the surface layer.
This water can be used from the beech tree itself, but also from the surrounding trees [60–62]. This
could provide an explanation for the higher resistance of spruce trees in mixture with regard to ∆13C.

Positive effects of spruce trees on beech trees could include competitive reduction through the low
self-tolerance of beech compared with other species [55] or the capability of beech trees to occupy the
crown space of spruce with relatively low biomass investment [63,64] which results in positive growth
reactions compared to beech in monospecific stands. Additionally, Metz et al. [23], Bolte et al. [65],
and Mölder et al. [5] reveal that growing in a neighborhood with other species has a positive effect on
beech. This positive effect is detected in this study which shows that beech grown in a neighborhood
with spruce has significantly higher resistance and resilience (∆13C) on moist sites. Thus, the second
hypothesis is confirmed for ∆13C of beech trees in mixture at moist sites, but not dry sites. Therefore,
∆13C also indicates higher sensitivity to neighborhood effects in addition to environmental factors, as
mentioned above.

The stress-gradient hypothesis from Callaway et al. [66] predicts that facilitation of mixture
dominates on poor sites rather than rich sites, which is also reflected by the precipitation gradient in
the present study. Maestre et al. [67] extended the stress-gradient hypothesis by considering the life
history of the interacting species (tolerance to stress vs. competitive ability) and whether the factor of
stress is a resource or not. Malkinson et al. [68] emphasized that the physiological response is not linear
with respect to environmental changes along stress gradients and that the fitness of the individuals,
as the product of facilitation and competition, plays an important role. These findings support the
results of the present paper, that it is not possible to explain the stress reaction pattern of mixtures
exclusively on the basis of the level of resource stress of the examined species. Therefore, we were
not able to confirm the stress-gradient hypothesis. Beech trees indicated a higher resistance on moist
sites in mixture than on poor sites, in accordance with the findings of Pretzsch et al. [69], where beech
trees were shown to profit most from a mixture on fertile sites. On dry sites, monospecific beech was
facilitated. Tree ring growth and 13C discrimination are affected by a complex mix of environmental
factors and a greater number of samples are necessary to make a general statement. Moreover, drought
may uncouple tree ring growth from photosynthesis, which leads to weak relationships between
secondary growth and ∆13C [70]. Further studies in other mixed forests are needed to further clarify
the effect of mixture on species with different adaption strategies.

5. Conclusions

Our findings indicate that drought stress reaction patterns of ∆13C and BAI provide short- or
long-term responses to climate variability. Along a precipitation gradient, the more isohydric spruce
revealed a lower resistance in BAI under harsh environmental conditions (i.e., low soil moisture).
Anisohydric beech trees had an increasing resistance for BAI and ∆13C with increasing soil moisture.
Furthermore, the discrimination of carbon and stem growth is strongly affected by climate conditions,
whereas the ∆13C helped to inform the analysis of drought stress reaction. During drought events,
beech trees are facilitated in mixture with spruce with a higher resistance on moist sites. On dry sites,
monospecific beech trees are favored. The more sensitive reaction of ∆13C in tree rings to climate
indicates that ∆13C is a beneficial indicator of climate change in combination with tree ring growth.
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Appendix A

Table A1. Estimates of the linear mixed effect model of spruce and beech in monospecific and mixed
stands along the precipitation gradient (CVPI) (spruce n = 45; beech n =41). Standard deviation is
represented in brackets. Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘(*)’ 0.1.

Dependent Variable:

N. Spruce E. Beech

RT RT RS RS RT RT RS RS
BAI ∆13C BAI ∆13C BAI ∆13C BAI ∆13C

Intercept 0.871 * 1.027 *** 0.672 1.050 *** 0.157 0.861 * 1.033 0.928 ***
−0.252 −0.032 −0.453 −0.033 −0.213 −0.041 −0.608 −0.022

CVPI
−0.001 −0.0001 0.0003 −0.0001 0.002 *** 0.0003 −0.001 0.0001 *
−0.001 −0.0001 −0.001 −0.0001 −0.001 −0.0001 −0.002 −0.0001

Mixture
(Pure)

−0.342 −0.091 −0.062 −0.105 (*) 0.173 0.102 *** −0.263 0.083 *
−0.245 −0.047 −0.309 −0.047 −0.229 −0.027 −0.288 −0.031

CVPI·Mixture
(Pure)

0.001 0.0002 0.0002 0.0003 (*) −0.0002 −0.0003 ** 0.001 −0.0002 *
−0.001 −0.0001 −0.001 −0.0001 −0.001 −0.0001 −0.001 −0.0001
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Figure A1. Linear mixed effect model of species and sites relative to the drought period in 2003 for the
resistance of spruce and beech of BAII (a,b) and ∆13C (c,d) in monospecific or mixed environments
along the gradient represented by Paterson-index (CVPI).
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