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Abstract 
Following a remarkable increase in traffic efficiency and safety through the introduction of both 
passive and active safety technologies, automated vehicles are currently being introduced into road 
traffic with the intention to provide an even higher standard. The introduction of automation into 
other domains has shown that the anticipated benefits can also be accompanied by unexpected or 
novel problems. The step from assistance to automation does not simply mean the addition of 
more of the same but significantly alters the operator’s role and responsibilities, and the nature of 
task demands. Taking this into account, a driver-centered perspective is a key requirement for a 
successful introduction of automated vehicles. 

Driver-centered design requires an understanding of the capabilities and vulnerabilities of both 
driver and driving automation system, as well as how they vary according to different tasks and 
situations. This thesis investigates the relevance of individual differences in the driver’s interaction 
with automation with a focus on take-over situations in five studies. A literature review, Article 1, 
identifies and classifies potential or established individual differences relevant for the interaction 
with a driving automation system. These individual differences are then positioned within human 
information processing to deduce their underlying causal mechanisms. The hypotheses about 
potential individual differences derived from this process are tested in four empirical, confirmatory 
driving simulator studies. In Article 2, the influence of the driver’s age on take-over performance 
in different traffic densities is investigated. Article 3 studies the ability to multitask sequentially in 
automated driving, i.e. taking over vehicle control while being engaged in a non-driving-related 
task. Article 4 investigates the influence of trust in automation on reliance and take-over 
performance. In the course of this study, a questionnaire to measure trust in automation was 
developed and evaluated, and is critically discussed. Article 5 investigates the monitoring task in 
partially automated driving with a focus on the driver’s ability to sustain attention and boredom 
proneness. 

The results demonstrate that individual differences among drivers can crucially influence their 
interaction with automation, which in turn can have a critical impact on safety. An individual’s trust 
in automation influences how much a driver relied on an automated driving system and predicts 
whether a critical take-over situation will be successfully resolved. The ability to multitask 
sequentially predicts take-over time during engagement in a non-driving-related task. However, not 
every driver difference translates into an observable difference in the interaction with automation: 
Contrary to expectations, there is no evidence for an effect of age on take-over performance and 
no evidence for a relationship between the ability to sustain attention and the detection of a 
malfunction. In sum, the studies systematically revealed that individual differences known to be 
relevant in interaction with automated systems generally can also have a safety-relevant influence 
on a driver’s interaction with a driving automation system. The heterogeneity of the results 
underlines the importance of taking individual differences into account and highlights the relevance 
of a driver-centered perspective in automation design.  
  



 

 

  



 

Zusammenfassung 
Die Einführung passiver und aktiver Sicherheitssysteme führte zu einer erheblichen Zunahme der 
Verkehrseffizienz und -sicherheit. Derzeit werden automatisierte Fahrzeuge mit dem Ziel, diesen 
Fortschritt noch weiter auszubauen, in den Straßenverkehr eingeführt. Die Einführung 
automatisierter Systeme in andere Domänen hat gezeigt, dass die antizipierten Vorteile auch mit 
unvorhergesehenen oder neuartigen Problemen einhergehen können. Der Schritt von Assistenz zu 
Automation bedeutet nicht lediglich mehr desselben, sondern ändert signifikant die Rolle und die 
Verantwortlichkeiten des Operateurs sowie die Anforderungen an diesen. Auf Grund dessen ist 
eine fahrerzentrierte Perspektive ein zentraler Punkt bei der Einführung automatisierter Fahrzeuge. 

Fahrerzentrierte Gestaltung setzt ein Verständnis der Fähigkeiten und der Schwachstellen sowie 
deren Variation in verschiedenen Situationen sowohl von Fahrer als auch Fahrzeugautomation 
voraus. Aus diesem Grund wurden in dieser Dissertation in fünf Studien individuelle Unterschiede 
in der Interaktion des Fahrers mit einer Fahrzeugautomation mit einem Fokus auf 
Übernahmesituationen untersucht. In einer Literaturrecherche, Artikel 1, wurden individuelle 
Unterschiede, welche für die Interaktion mit einer Fahrzeugautomation relevant sind oder sein 
könnten, identifiziert und strukturiert. Diese Unterschiede wurde innerhalb des menschlichen 
Informationsprozesses eingeordnet, um die darunterliegenden kausalen Wirkungsmechanismen zu 
identifizieren. Die hieraus abgeleiteten Hypothesen wurden in vier empirischen Studien geprüft. In 
Artikel 2 wurde der Einfluss des Alters auf die Übernahmeleistung bei verschiedenen 
Verkehrsdichten untersucht. Artikel 3 beschäftigt sich mit der Fähigkeit zu sequentiellem 
Multitasking beim automatisierten Fahren, d. h. eine Übernahme der Fahrzeugkontrolle während 
der Beschäftigung mit einer fahrfremden Tätigkeit. In Artikel 4 wurde der Einfluss des Vertrauens 
in die Automation auf das Blickverhalten und die Übernahmeleistung untersucht. Im Rahmen 
dieser Studie wurde außerdem ein Fragebogen zu Messung des Vertrauens in Automation 
entwickelt und evaluiert. In Artikel 5 wurde die Überwachungsaufgabe bei teilautomatisierter Fahrt 
mit einem Fokus auf die Vigilanzleistung und die Neigung zu Langeweile untersucht.  

Die Ergebnisse zeigen, dass individuelle Unterschiede die Interaktion mit einer Automation 
wesentlich beeinflussen, was sicherheitskritische Folgen nach sich ziehen kann. Das individuelle 
Vertrauen beeinflusst, wie sehr Fahrer sich auf die Fahrzeugautomation verlassen, und kann 
vorhersagen, ob eine Übernahmesituation erfolgreich gemeistert wird. Die Fähigkeit für se-
quentielles Multitasking prädiziert die Übernahmezeit bei gleichzeitiger Beschäftigung mit einer 
fahrfremden Tätigkeit. Jedoch hatte das Alter in Studie 2 entgegen den Erwartungen keinen 
Einfluss auf die Übernahmeleistung und es gibt keine Hinweise auf einen Zusammenhang 
zwischen der Vigilanzleistung und der Entdeckungszeit einer Fehlfunktion. Die Limitationen der 
Ergebnisse und methodische Herausforderungen in den Untersuchungen werden diskutiert. Die 
Studien dieser Dissertation haben systematisch gezeigt, dass individuelle Unterschiede, welche in 
der Interaktion mit automatisierten Systemen relevant sind, auch einen großen Einfluss auf die 
Interaktion eines Fahrers mit einer Fahrzeugautomation haben können. Die Heterogenität der Er-
gebnisse unterstreicht die Notwendigkeit, individuelle Unterschiede zu beachten, und verdeutlicht 
die Relevanz einer fahrerzentrierten Perspektive in der Gestaltung einer Fahrzeugautomation. 
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1 The relevance of a driver-centered perspective for the 
introduction of automated vehicles 

“The question is no longer whether one or another function 
can be automated but, rather, whether it should be.” 

(Wiener & Curry, 1980, p. 995) 

On May 7th, 2016, Joshua Brown, a 40-year-old man from Ohio (USA), was driving in his Tesla 
Model S on a state highway in Florida. Suddenly, he collided with a tractor-trailer that was crossing 
the road in front of his car (Boudette, 2017). But Joshua Brown was not driving himself: The car 
was operating under its Autopilot system. Neither Autopilot nor Brown stepped on the brakes. 
Although Autopilot’s camera failed to recognize the white truck against the bright sky, the 
concluding accident investigation “did not identify any defects in the design or performance” of 
Autopilot (Office of Defects Investigation, 2017, p. 1). Autopilot is a driving automation system, 
which controls vehicle speed and path. However, the driver has to continuously monitor the 
driving automation system’s behavior as well as the environment and has to be ready to take over 
vehicle control immediately at any time. Tesla provides information about the driver’s 
responsibilities and the system’s limitations at multiple levels, for example in the manual or every 
time when Autopilot is activated. Therefore, the accident’s investigation came to the conclusion 
that no “incidents in which the systems did not perform as designed” occurred (Office of Defects 
Investigation, 2017, p. 1). Brown also had enough time to react: With the car’s cruise control set at 
74 mph, he had at least seven seconds to notice the truck before the crash. But Brown did not 
brake, steer, or react at all – he was not paying attention to the road. Apparently, he was watching 
a movie at the time of the collision (Levin & Woolf, 2017). 

Parasuraman and Riley (1997) described Brown’s behavior almost 20 years earlier as misuse of 
automation. This term describes inappropriate over-reliance on automation when the operator’s trust 
exceeds the automated system’s capabilities. Operators then use automation where it should not 
be used, rely uncritically on automation without considering its limitations, or fall short of 
monitoring the automated system’s decisions or behavior adequately. Brown owned a technology 
company, was a Tesla enthusiast, and had posted videos on YouTube of him being distracted while 
driving with Autopilot. In these videos, he marvels that “the car’s doing it all itself”, taking his 
hands off the wheel (Brown, 2015). However, data show that Autopilot itself is not an unsafe 
system. In fact, the frequency of crashes involving Tesla models reportedly declined by about 40 % 
after its introduction (Office of Defects Investigation, 2017). Still, not everyone trusts automated 
vehicles as much as Brown did. Although they own the same system, other drivers’ videos show 
them continuously paying attention and even avoiding accidents by overruling Autopilot. It seems 
that there is a great variability in how people think of and interact with a driving automation system. 
Indeed, in a recent survey across several industrialized nations, 4 % to 15 % reported no concerns 
regarding automation technology, whereas up to 44 % indicated that they would monitor the road 
even if the driving automation system was activated (Schoettle & Sivak, 2014b).
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1.1 The introduction of automated driving – expected and unexpected consequences 

Several predicted, beneficial outcomes motivate the introduction of automated vehicles to road 
traffic (Maurer, Gerdes, Lenz, & Winner, 2015; Stanton & Young, 1998; Watzenig & Horn, 2017b): 
Firstly, driving can be a stressful activity (Matthews, Sparkes, & Bygrave, 1996) and routine drives, 
such as commuting, have particularly negative effects on the driver’s health and mood (Roberts, 
Hodgson, & Dolan, 2011). Automating this activity would relieve the affected part of the 
population from this burden and could increase well-being and comfort. Furthermore, driving time 
could then be used more efficiently since drivers can engage in non-driving-related tasks (NDRTs) 
such as reading a newspaper (Feldhütter, Gold, Hüger, & Bengler, 2016; Gold, Körber, Lechner, 
& Bengler, 2016). Besides comfort, automated driving seeks to enhance the mobility of people with 
medical or age-related mobility constraints, providing them with independence and the 
requirements for inclusion in economic and social activity (Shergold, Wilson, & Parkhurst, 2016). 

Secondly, the German Federal Ministry of Transport and Digital Infrastructure (BMVI, 2015) 
predicts an increase of 13 % in passenger traffic on German roads by the year 2030. Since the 
capacity of the traffic system can only be extended to a certain degree, traffic efficiency and degree 
of capacity utilization must increase. Automated and connected vehicles could help to achieve this 
goal by reducing speed variability, route planning according to current traffic, and more efficient 
driving. In addition, fewer traffic jams by means of increased traffic flow could reduce fuel 
consumption and air pollution as well. 

And thirdly, although advancements in passive and active safety technologies have already 
significantly reduced the number of road accidents (Choi & Ji, 2015), 25 700 road fatalities were 
still reported in the European Union in 2014 (European Commission, 2015), and this figure 
increased yet further to 26 000 fatalities in 2015 (European Commission, 2016). This indicates that 
there is still room for improvement. Human error is the most common cause of road accidents 
(Singh, 2015), despite the fact that this risk has already been reduced by driver assistance systems 
(Golias, Yannis, & Antoniou, 2002). It is assumed that automating the driver’s tasks will reduce it 
further still because primary causes of accidents, such as speeding, misjudgment of one’s own path, 
or distraction (Broughton & Markey, 1996; Dingus et al., 2016), may be eliminated.  

Currently, legal, ethical, societal, and technical issues of automated driving are being discussed 
(Maurer et al., 2015). Previous research accompanying the introduction of advanced driver 
assistance systems (ADAS) has brought to light that to guarantee a successful introduction of a 
new technology, it is necessary to examine its deployment from a driver-centered perspective as 
well (Bengler et al., 2014; Körber, Prasch, & Bengler, 2018; Regan, Horberry, & Stevens, 2014). 
While excellent system performance may be sufficient from a technical standpoint, for it to be 
accepted and used, a system’s functionality must be known, understood, and valued by the driver 
(Adell, Várhelyi, & Nilsson, 2014; Körber, Prasch et al., 2018; Najm, Stearns, Howarth, Koopmann, 
& Hitz, 2006). Moreover, besides acceptance, appropriate use is a necessary precondition for the 
claimed benefits to come into effect. In the process of automation, a function that was previously 
carried out by a human is fully or partially replaced by a machine (Parasuraman, Sheridan, & 
Wickens, 2000). Since modern technology is becoming capable of carrying out more and more 
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functions that previously could only be performed by humans, the question arises as to which 
functions should be automated and to what degree (Parasuraman et al., 2000). The benefits of 
automation have already been shown in the domain of aviation in the form of cockpit automation 
(Wickens, Hollands, Banbury, & Parasuraman, 2016). Following a technology-centered approach, 
automation was seen as the solution to reduce costs and human error. It was implemented 
whenever it was possible and feasible (Onnasch, 2015; Parasuraman & Riley, 1997). This was based 
on the assumption that automation can substitute a task formerly executed by a human without 
any larger impact on the system in which that action or task takes place, predicated on the belief 
that a complex system consists of a set of independent tasks (Sarter, Woods, & Billings, 1997). 
However, the limitations of this technology-centered approach as well as initially unanticipated 
problems have become visible in operational experience (e.g., Three Mile Island incident in 1979) 
and field research on human-automation interaction. One of the reasons lies in the belief that a 
human function can be replaced by automation without otherwise affecting the operation of the 
whole system (Christoffersen & Woods, 2002).  

But incidents like Brown’s accident strikingly show that technology cannot be considered in 
isolation from its users. More sophisticated automated systems, such as a driving automation 
system, represent an increase in autonomy and authority of the machine agent, which in itself is 
neither good nor bad (Christoffersen & Woods, 2002). Yet, automation does not just replace a 
human task but rather changes it, sometimes in unanticipated ways. Implementing automation or 
expanding its role at the same time affects the human’s role. It fundamentally alters the nature of 
the interactions in the system and reshapes the nature of the cognitive demands and responsibilities 
of the human operator while imposing new coordination demands (Christoffersen & Woods, 2002; 
Parasuraman et al., 2000; Parasuraman, 2000). Sheridan and Parasuraman (2005) argue that any 
automation must be designed to perform in conjunction with the human interacting with it rather 
than expecting the human to adapt to automation. Even advanced automated systems still require 
human involvement and, for that reason, coordination between human and machine (Sarter et al., 
1997). High system performance is, hence, not sufficient. In order to ensure a safe and efficient 
use, the design of automation must be human-centered (Billings, 1997). That means it must be 
designed to work cooperatively with the human operator, support human performance, and 
understanding of the system (Billings, 1997; Christoffersen & Woods, 2002; Riley, 1995). 
Otherwise, the mentioned anticipated benefits of implementing automation may not become reality 
or may be offset by human performance costs resulting from maladaptive use of inadequate 
automation (Parasuraman & Manzey, 2010). Accordingly, recent accounts on automation stress 
that before considering the design of an automated system “potential system users are identified 
and characterized for each stage of the system lifecycle” (Wickens, Lee, Liu, & Gordon-Becker, 
2014, p. 17). Thus, if we want to avoid the perils of inadequate design of automated vehicles, we 
first have to have a look at the driver. Let us do that in the next section. 
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1.2 The relevance of individual differences in research and road traffic safety 

While this issue with technology-centered automation became clear in the field of aviation, it may 
become even more important in the field of automated driving. Contrary to airplane pilots, drivers 
of automated vehicles will have limited training and will have passed through minimum screening 
and examination. Therefore, the population of drivers is more heterogeneous and variable with 
respect to individual differences, such as in cognitive performance, impairments, age, or affinity 
for technology (Creaser & Fitch, 2015). Those individual differences are an important point to 
consider for multiple reasons.  

Firstly, individual differences are often seen as annoying noise in the data that spoil statistical 
significance tests. Here is Cronbach (1957) portraying this view:  

Individual differences have been an annoyance rather than a challenge to the experimenter. 
His goal is to control behavior, and variation within treatments is proof that he has not 
succeeded. Individual variation is cast into that outer darkness known as ‘error variance’. . . . 
your goal in the experimental tradition is to get those embarrassing differential variables out 
of sight. (p. 674) 

Yet, individual differences may contain information that is crucial for drawing valid conclusions. 
Many theories provide a good fit regarding the average performance of a group of participants 
(Parasuraman, 2011). Yet, these models may not necessarily apply to some or even many individuals 
within a group. Even creating two groups (e.g., slow and fast responders) with adjusted model 
parameters still may not be sufficient to create a coherent description. For example, Parasuraman 
(2009) shows that the decrement of vigilance (a state or degree to detect infrequent and randomly 
occurring target stimuli among frequent non-targets over a prolonged period of time) in a group 
can be well fitted by an exponential function. However, in the referenced study, only 40 % of the 
participants showed a vigilance decrement over time whereas the remainder showed stable or 
variable detection rates. Theory also suggests that driving performance is impaired if the driver is 
engaged in another task (e.g., talking on a cell phone) at the same time. Yet, Watson and Strayer 
(2010) report that 2.5 % of their sample showed no decline driving performance while being 
engaged in a difficult secondary task. It is well known that if a study is supposed to produce 
representative results valid for a population of interest, a representative sample instead of a specific 
group of participants (e.g., test drivers) has to be drawn. Yet, even if this is considered, a focus on 
group means may provide a misleading image. A mean curve does not allow to make statements 
regarding the corresponding individuals because it could result from any of an infinite collection 
of populations of individual curves (Estes, 1956; Sidman, 1952). Estes (1956) warns that “the 
uncritical use of mean curves even for such purposes as determining the effect of an experimental 
treatment . . . is attended by considerable risk” (p. 134). Furthermore, group means are also 
inappropriate if the goal is to draw a conclusion that is valid for the whole population. In this case, 
it is crucial to consider the boundaries of a distribution (Körber & Bengler, 2014). For example, 
Sohn and Stepleman (1998) recommend using the 85th or 99th percentile instead of the mean 
reaction time when making a suggestion for a safe headway distance. 
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Secondly, the relevance of individual differences for road traffic safety also becomes apparent 
by the fact that governmental institutions exist that assess an individual’s fitness to drive (Bukasa 
& Utzelmann, 2009). Their relevance can also be directly observed in road accident statistics: 
Accident-proneness, a conjectured pre-disposition to be involved in accidents, describes the 
observation that some individuals are disproportionally often involved in recurring crashes caused 
by human error (Das, Sun, Wang, & Leboeuf, 2015; Visser, Pijl, Stolk, Neeleman, & Rosmalen, 
2007). Following this notion, some drivers simply seem to be more likely in general to be involved 
in an accident than others. But other, more specific relevant individual differences have been 
identified as well: In their analysis of US crash data, Stutts, Reinfurt, Staplin, and Rodgman (2001) 
identified distraction as the cause of an accident in 8.3 % of the cases. Engaging in complex 
secondary tasks while driving manually increases an individual’s near-crash/crash risk by three 
(Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006). The involvement in such an accident can be 
traced back to individual differences among the drivers: Engagement in distracted driving is 
associated with individual risk perception (Rupp, Gentzler, & Smither, 2016), which is in turn 
associated with a higher crash risk (Ivers et al., 2009; Oltedal & Rundmo, 2006). Sitkin and Pablo 
(1992) specify in their risk model that risky behavior, besides contextual factors, is determined by 
the individual characteristics risk preference, risk perception, and risk propensity. Wilde (1982), in 
the same manner, argues that risk behavior is highly dependent on the individual because it is 
mainly determined by an individual’s striving to establish a subjective risk homeostasis rather than 
by objective risk alone. Depending on the perceived objective risk, individual risk behavior is 
adapted so that ultimately a homeostasis between the subjectively perceived risk level and the 
preferred risk level is achieved. Young, in particular male drivers, exhibit more risky driving 
behavior and perceive situations as less risky (DeJoy, 1992; Evans & Wasielewski, 1983; Finn & 
Bragg, 1986). Drivers who are impulsive or who are sensation seekers engage more frequently in 
risky driving manners such as speeding and violating safe driving laws (Arthur, Barrett, & 
Alexander, 1991; Burns & Wilde, 1995; Schwebel et al., 2007). Thus, these mentioned individual 
differences in the end partly determine involvement in crashes caused by distraction. 

Closely related to risky behavior are individual differences in driving experience. Novice drivers 
generally overestimate their own driving skills and also accept more risks while driving (Deery, 
1999). The ability to avoid collisions increases with a driver’s experience because drivers acquire a 
more efficient search strategy (Koustanaï, Boloix, van Elslande, & Bastien, 2008) and a more 
effective gaze behavior (Underwood, Chapman, Brocklehurst, Underwood, & Crundall, 2003). 
Drivers also get better at allocating their attention during secondary task engagement with more 
driving experience (O’Brien, Klauer, Ehsani, & Simons-Morton, 2016). As a result, driving 
experience and a driver’s expectations are the main determining factors of brake reaction times 
(Green, 2000; Horswill & McKenna, 2004). Consequently, crash risk decreases with each 
subsequent year of driving experience, independent of age at the time of licensure (Maycock, 
Lockwood, & Lester, 1991; Twisk & Stacey, 2007). Besides this, expertise with a system promotes 
complacent behavior (Singh, Molloy, Mouloua, Deaton, & Parasuraman, 1998), influences risk 
perception (Hoedemaeker & Brookhuis, 1998; Rajaonah, Tricot, Anceaux, & Millot, 2008) and 
trust (Rudin-Brown & Parker, 2004). 
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Lastly, road accidents can also be traced back to differences in cognitive functioning and ability. 
Individuals who performed better in cognitive tasks show a more effective eye movement strategy 
while driving and exhibit better driving performance (Mackenzie & Harris, 2017). Kahneman, Ben-
Ishai, and Lotan (1973) as well as Mihal and Barrett (1976) accordingly reported that cognitive 
abilities such as selective attention are correlated with road accidents. The reported frequency of 
everyday slips and errors is positively correlated with driving error rates (Allahyari et al., 2008) and 
the number of accidents (Larson & Merritt, 1991). The ability to multitask, i.e. to be engaged in a 
secondary task while driving, also has an individual difference component itself (Morgan, D’Mello, 
Abbott et al., 2013; Watson & Strayer, 2010) and is determined by working memory performance 
as well as other cognitive abilities (Bühner, König, Pick, & Krumm, 2006; Tijerina, Parmer, & 
Goodman, 1998). In general, the design of interfaces is guided by considerations on workload, 
trying to avoid both underload and overload. However, individual workload is largely determined 
by individual working memory performance (Ahmed et al., 2014; König, Bühner, & Mürling, 2005; 
Parasuraman & Jiang, 2012; Parasuraman, Sheridan, & Wickens, 2008).  

The studies highlight that individual differences have serious implications for road traffic. 
Experience with automation in other domains has shown that a human-centered design approach 
is necessary to overcome the pitfalls that loom when humans interact with automated systems. 
Given the current introduction of automated vehicles to road traffic, the question arises if a 
human/driver-centered design approach also is a crucial stringer to ensure a successful 
introduction. More precisely, are individual differences also relevant in the interaction with driving 
automation systems? Motivated by this question, this thesis aims to systematically investigate if 
individual differences matter in the interaction with driving automation systems. The remainder of 
this thesis is structured as follows: First, an introduction to automation and automated driving is 
given in Section 2. Next, individual differences in information processing as a causal mechanism 
for individual differences in the interaction with automation are discussed in Section 3. Based on 
this, the five research articles that constitute this thesis are presented in Sections 4 to 8. Theory, 
background, and potential causal mechanisms are discussed in this introduction and are completed 
by a summary of each article. A discussion of the articles’ results follows in Section 9, including 
limitations and objectives for future research. The content of Sections 4 to 9 is based on or 
extracted from the respective article. At the end, a final conclusion on the scientific contribution 
and the achieved progress is drawn and practical implications in form of recommendations are 
given. Appendix A provides additional complementary articles and methods for this thesis. The 
content of Appendix A is based on or extracted from the respective article. 
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2 Automated driving 

“Any cars that are being made that do not have full autonomy will have negative value.  
It will be like owning a horse. You will only be owning it for sentimental reasons.” 

Elon Musk (as cited in Thompson, 2015) 

2.1 Automation: Definition, types, and levels 

Automation can generally be defined as “the full or partial replacement of a function previously 
carried out by the human operator” (Parasuraman et al., 2000, p. 287). Several frameworks have 
been proposed to classify automated systems regarding the distribution of functions between 
human and machine (Manzey, Reichenbach, & Onnasch, 2012). Automated systems can differ in 
type and complexity, from merely acquiring information to fully autonomous execution of an 
action. In their model, Parasuraman et al. (2000) classify automated systems regarding two aspects: 
The type of an automated system describes what is being automated, i.e. the classes of functions that 
can be carried out by the automated system. The type can be directly mapped to the stages of the 
human information processing (Figure 1), which will be described in more detail in Section 3. 
Depending on the type of automation, a task of information processing is transferred to the 
automated system that is then executed by it from now on. The second aspect represents the level 
of automation (LoA) within these four types, i.e. how much of this function is automated (Figure 2; 
Manzey, 2012). The LoA describes the allocation of the task, from no allocation (manual control) 
to completely autonomous execution by automation (Sheridan, 1992). Both dimensions together 
have been subsumed by Wickens, Li, Santamaria, Sebok, and Sarter (2010) in the term degree of 
automation. Thereby, automation is not all-or-none but varies across types and levels on a continuum 
from manual to fully automated.  

 

 
Figure 1. Depending on the type of automation, a different stage of information 
processing is replaced by the automated system. 
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Figure 2. The model of different types of automation by Parasuraman et al. 
(2000) combined with the levels of automation by Sheridan (1992). 

2.2 Driving automation systems and levels of driving automation 

Automated driving also represents the transfer of a task – the primary driving task – from human 
to automation. Bubb (2015) classifies the primary driving task into three hierarchical tasks, navigation 
(selection of a driving route), maneuvering (planning the precise trajectory, lane changes), and 
stabilization (vehicle control necessary to execute the planned maneuvers). Additionally, the driver 
has to perform secondary tasks, which are not directly related to vehicle guidance but have to be 
performed for reasons associated with traffic or the environment, such as activating the windshield 
wipers. Optionally, the driver can also engage in tertiary tasks which serve to increase comfort or 
entertainment, such as turning on the radio. The dynamic interaction between driver, vehicle, and 
environment can be described by a closed driver-vehicle feedback loop (Figure 3).  

 
Figure 3. The driver-vehicle feedback loop; adapted from Bubb, Bengler, 
Grünen, and Vollrath (2015). 
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The driving task represents the set point, which underlies disturbances from the environment 
(roadway arrangement, other traffic, weather etc.). Departures from this set point value are 
recognized by the driver/controller, who controls the effector’s/vehicle’s longitudinal and lateral 
dynamics in order to re-establish the set point.  

To describe how the primary driving task is transferred to a driving automation system, six levels 
of automation are used (Figure 5; SAE International, 2016) instead of the taxonomy developed by 
Parasuraman et al. (2000). While Level 0 corresponds to manual driving without any assistance, 
Level 1 represents assisted driving where the human is still executing vehicle control assisted by 
ADAS. The introduction of a driving automation system removes the driver from this driver-
vehicle-feedback loop and transfers the primary driving task to the driving automation system (to 
varying degrees; Figure 4). Brown’s Autopilot by Tesla, which was mentioned in the introduction, 
represents a Level 2 partial automation. This level represents the first real transfer of vehicle control 
from the driver to a driving automation system. Here, the function that is transferred is longitudinal 
(accelerating, braking) and lateral (steering) vehicle control. Nonetheless, the driver has to 
constantly monitor the environment and supervise the driving automation system. He has to be 
ready to take over vehicle control immediately. In Level 3, conditionally automated driving, the 
task of monitoring the environment is also transferred to an automated driving system (a Level 3, 
4, or 5 driving automation system; ADS). The driver is completely removed from the feedback 
loop and can engage in non-driving-related activities such as reading a newspaper. The driver 
merely acts as a fallback level and has to take over vehicle control with a certain lead time if 
requested to do so by the ADS due to a system limit. 

 
Figure 4. Automated driving represents the transfer of the primary driving task 
to a driving automation system. 
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Figure 5. The six levels of automation according to SAE International (2016). 

Table 1 explains the role and responsibilities of the driver and ADS in greater detail. Other 
taxonomies referred to this level as highly automated driving (Gasser, 2012) or Limited Self-Driving 
Automation (NHTSA Level 3; National Highway Traffic Safety Administration, 2013). The 
fallback role is also transferred to the ADS in Level 4. While Level 4 is not available in every 
situation or condition, Level 5 represents an unconditional completely self-driving system. The 
studies of this thesis mainly focus on Level 3 automation.  

The introduction of driving automation cannot be considered in isolation from the driver, 
especially since the driver will still play a relevant role even in higher automation levels 
(Christoffersen & Woods, 2002; Gasser & Schmidt, 2017). Automated driving is distinct from 
driver assistance both in a quantitative and qualitative manner (Gasser & Schmidt, 2017). The 
transfer of vehicle control represents a change in the driver’s role and the resulting physical and 
cognitive demands. Levels 2 to 5 represent an increase in the number of functions the driving 
automation system is now responsible for as well as the situations in which this driving mode is 
possible. While the numeration of the levels suggests a quantitative, gradual increase in the degree 
of automation, they, in fact, each represent qualitatively different stages. Automation does not 
simply replace an independent task previously executed by a human, but rather creates a whole new 
human-machine system. Increasing the LoA profoundly changes the driver’s role, the coordination 
between driver and system, and the type and extent of the cognitive demands (Parasuraman et al., 
2000; Parasuraman, 2000). For example, engagement in an NDRT occupies working memory and 
promotes a shift of attention away from the traffic scene (Baumann, Rösler, & Krems, 2007). 
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Table 1 
The role of user and driving automation system in conditionally automated driving (Level 3) according to 
SAE International (2016) 

Consequently, being engaged in a secondary task extends the reaction time (Petermann-Stock, 
Hackenberg, Muhr, & Mergl, 2013), even if it is merely a cognitive task (Radlmayr, Gold, Lorenz, 
Farid, & Bengler, 2014). Each LoA represents a human-machine system on its own, with its own 
specific demands, responsibilities, coordination, and pitfalls. What statement might be true for 
Level 2 does not have to be valid for Level 3 and vice versa. Research conducted in different areas 
has shown that the more support an automated system provides, the better the performance if it 
works flawlessly. But at the same time, failure entails a steeper drop in performance (Onnasch, 
Wickens, Li, & Manzey, 2014). Thereby, considering, safety, ease of use, costs, and liability, it is 
still open for discussion “which system functions should be automated and to what extent” 
(Parasuraman et al., 2000, p. 286).  

This approach is not the only possible concept of the distribution of control. In cooperative 
(guidance and) control, the driver and a driving automation system are cooperatively controlling 
the vehicle in varying shares (Flemisch, Bengler, Bubb, Winner, & Bruder, 2014). This paradigm 
may be realized at different levels of the driving task. In shared control, human and automation 

Role of User Role of Automated Driving System 

Driver (while the ADS is not engaged): 
– Verifies operational readiness of the 

ADS-equipped vehicle 
– Determines when engagement of ADS 

is appropriate 
– Becomes the dynamic driving task 

fallback-ready user when the ADS is 
engaged 

Dynamic driving task fallback-ready user 
(while the ADS is engaged): 

– Is receptive to a request to intervene 
and responds by performing dynamic 
driving task fallback in a timely manner 

– Is receptive to dynamic driving task 
performance-relevant system failures in 
vehicle systems and, upon occurrence, 
performs dynamic driving task fallback 
in a timely manner 

– Determines whether and how to 
achieve a minimal risk condition 

– Becomes the driver upon requesting 
disengagement of the ADS 

ADS (while not engaged): 
– Permits engagement only within its 

operational design domain 

ADS (while engaged): 
– Performs the entire dynamic driving 

task 
– Determines whether operational design 

domain limits are about to be exceeded 
and, if so, issues a timely request to 
intervene to the dynamic driving task 
fallback-ready user 

– Determines whether there is a dynamic 
driving task performance-relevant 
system failure of the ADS and, if so, 
issues a timely request to intervene to 
the dynamic driving task fallback-ready 
user 

– Disengages an appropriate time after 
issuing a request to intervene 

– Disengages immediately upon driver 
request 
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may work on the vehicle control task at the same time. Both are continuously sharing the control 
authority and jointly determine the input. The underlying idea is to keep the driver in the direct 
manual control loop while still providing continuous support (Mulder, Abbink, & Boer, 2012; 
Petermeijer, Abbink, & de Winter, 2015). It may also be possible to cooperate on the maneuver 
guidance level by delegating subtasks to automation in a hierarchical or adaptive manner. Conduct-
by-Wire (Franz, Kauer, Geyer, & Hakuli, 2016) is such a maneuver-based realization of cooperative 
guidance. This paradigm represents a static and hierarchical distribution of control between the 
driver as a maneuvering commander and the driving automation system executing the stabilization. 
Albeit drivers have no role in stabilization anymore, they are still in the control loop by executing 
the guidance task. The maneuver interface also provides a permanent fallback in case of system 
limits.  

The concept H-Mode is inspired by the cooperation between rider and horse (Flemisch et al., 
2014). H-Mode transfers this cooperation to vehicle guidance and represents an approach with an 
emphasis on a haptic-multimodal coupling between driving automation (horse) and the driver 
(rider). The quintessence of this approach is vehicle control in form of a multi-modal combination 
of the driving automation system’s intent and driver input via an active interface, and fluid 
transitions between two levels of automation: tight rein (assisted) and loose rein (highly automated; 
Flemisch et al., 2014; Kienle, Damböck, Kelsch, Flemisch, & Bengler, 2009). Later a third mode, 
secured rein, which takes the driver completely out of the loop, was added. Both driver and 
automation are able to initiate transitions between these three levels of automation, either by 
buttons or fluidly by tightening/loosening or even discontinuing the grip on the active interface.  

2.3 Underlying technology of automated vehicles 

In the following, a brief introduction into the underlying technology of automated driving is given. 
An account in greater detail is given, for example, in Eskandarian (2012), Winner, Hakuli, Lotz, 
and Singer (2016), or Watzenig and Horn (2017a). The technologies that are required for realizing 
automated driving on highways can be allocated to three main branches: perception of the 
environment, vehicle localization, and driving strategy (Kämpchen, Aeberhard, Ardelt, & Rauch, 
2012). 

To move safely in traffic, a vehicle has to know the exact location and attributes of all objects 
around it. Thus, perception of the environment is necessary to reliably detect all objects and 
relevant traffic. The employed sensory systems can be seen as a modest extension of the sensors 
that are currently integrated and used for various driver assistance applications. Car manufacturers 
rely on different configurations that are constituted of mainly four different types of sensors: 

– RADAR: Radar sensors emit pulses of electromagnetic waves and enable detection of 
vehicles and obstacles, including their speed and direction of motion, in the front and the 
rear of the automated vehicle. Depending on the system, long-range systems (77 GHz) 
generally cover a distance up to 250 m with a small spread (ca. 18°), whereas short-range 
systems (24 GHz band) cover about 70 m at a higher spread of about 90–130° (Kirschbaum, 
2015; Stevenson, 2011). 
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– LIDAR and laser scanner: These sensors use ultraviolet, visible or infrared light pulses for 
object detection and, by sensor fusion, provide a gapless surround view of the vehicle’s 
environment. Limited in range, they are responsible for the perception of the environment 
at lower distances than Radar sensors but provide a more detailed image. Laser scanners 
functionally extend LIDAR systems by providing a dynamic viewing angle by rotating 
sensors (Levinson & Thrun, 2010). 

– Ultrasonic: The ultrasonic sensors are implemented on the side of an automated vehicle and 
provide (redundant) detection of close objects at a short range. The sensors use sound waves 
(around 48 kHz) to calculate the distance between the sensor and an object, with a detection 
range of 25 to 400 cm (Paulweber, 2017).  

– Mono or stereo camera: Image sensors (e.g., CMOS) in cameras deliver a detailed front/rear 
view (horizontal field of view of about 45° to 90°) and allow a reliable classification of 
objects at a range of 50 to 100 m. Thereby, the vehicle does not only know that an obstacle 
but also what obstacle is present. Furthermore, they detect lane markings for localization, 
evaluate road quality, and read traffic signs and signals. When using multiple cameras (stereo 
cameras), depth of field can be included. Infrared systems can be used for night vision 
(Punke, Menzel, Werthessen, Stache, & Höpfl, 2016). 

To ensure system robustness, the sensors are implemented following the principle of redundancy, 
i.e. no area is only covered by a single sensor or only covered by utilization of a single measurement 
modality. Sensor data is then processed, organized, and fused (Kämpchen et al., 2012). Figure 6 
shows an exemplary sensor configuration. 

Accurate trajectory planning and vehicle control require a precise location of the vehicle on the 
road and highly accurate digital maps that provide information on the current and upcoming course 
(e.g., the curvature of the curves). For this purpose, the global location determination of the vehicle 
on a high precision multi-lane map by GPS and odometry is used. This information is combined 
with a sensor road model, created by the sensor data from cameras and laser scanners, to enable a 
centimeter-precise localization of the vehicle (Rauch, Aeberhard, Ardelt, & Kämpchen, 2012).  

 
Figure 6. A possible sensor configuration of an automated vehicle illustrated 
by Aeberhard et al. (2015). 
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Building on environmental perception and vehicle localization, a driving strategy derives the best 
possible course of action that moves the vehicle safely and comfortably based on the current traffic 
situation and the driver’s goals. Appropriate trajectories are generated by artificial intelligence, 
which then sends them to a robust and real-time vehicle controller for execution (Aeberhard et al., 
2015). For example, if a slower vehicle is detected ahead, the system analyses the surrounding 
environment and traffic to check if an overtake maneuver is possible and feasible. The system then 
executes the lane change, carried out fully automatic, while constantly monitoring traffic and the 
upcoming road (Kämpchen et al., 2012).  

2.4 Take-over requests 

Conditionally automated driving (Level 3) still requires a driver as a fallback level. The ADS may 
request the driver to take over vehicle control within a certain lead time. This take-over request 
(TOR), also called request to intervene (RtI; Marberger et al., 2018), may be triggered, for example, 
because of missing map data, leaving the operational design domain, conditions inhibiting sensor 
perception, sensor failure, or unpredictable or too complex situational factors (Gold, 2016). Such 
system limits are detected by the ADS, which emits the request to monitor or to take over manual 
vehicle control. Such a TOR might be signaled by a form of visual, auditory, vibro-tactile, or multi-
modal stimulus (van den Beukel, van der Voort, & Eger, 2016; Petermeijer, Cieler, & de Winter, 
2017). This signal is emitted at a certain lead time, the time budget to react.  

Several authors (Gold & Bengler, 2014; Petermeijer, de Winter, & Bengler, 2016; Zeeb, Buchner, 
& Schrauf, 2015) have identified multiple stages of the take-over process, which are more or less 
based on the information processing model by Wickens et al. (2016). The response to a TOR 
consists of partly automatic and partly controlled processing (Schneider & Shiffrin, 1977). Firstly, 
the driver senses the TOR, then perceives it, and, in an automatic response, orients his attention 
towards the road ahead (Zeeb et al., 2015). This is a highly practiced response that is rapid and 
without capacity limitation, because there is no conscious perception, processing, or decision 
making involved – the signal processing wanders straight from sensation to motor reaction (Green, 
2000). Subsequently, a driver interprets the current situation regarding status, attributes, and 
dynamics of the relevant elements such as the position of other vehicles or the upcoming course 
(Endsley, 1995). The perceived information is processed and interpreted while it is being aligned 
with the driver’s working memory (e.g., a comparison with the status at the last gaze to the driving 
scene) and long-term memory (e.g., expectations, traffic rules, schemata). Parallel to information 
processing, the driver returns to a driving position (e.g., feet on pedals, hands on steering wheel), 
which is again a highly trained automatic response. The result of this process is the selection of a 
response, once more in cooperation with long-term and working memory. This response, for 
example evasive steering, is then executed as a motor reaction (Gold & Bengler, 2014). Contrary 
to the first automatic response, these steps represent conscious controlled processing, which 
requires thought, is slower, serial, effortful, and capacity-limited (Schneider & Detweiler, 1988). 
However, automatic and controlled reactions do not represent a strict dichotomy but rather a 
graded continuum because the response in some situations can be an automatic process as well. 
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For example, drivers often unconsciously hit the brakes if they sense flashed brake lights ahead 
(Green, 2000). Figure 7 illustrates the particular phases of a take-over process identified in 
Petermeijer et al. (2016). 

Several metrics can be derived to evaluate this process, which may be more or less arbitrarily 
classified into performance metrics and quality metrics. Performance is defined as “any activity or 
collection of responses that leads to a result” (VandenBos, 2015, p. 778), whereas the result here 
can be seen as a successful take-over, while the definition of success depends on the take-over 
scenario. For example, if the take-over situation requires evading an obstacle, a situation is 
successfully solved if no collision occurred (Körber, Gold, Lechner, & Bengler, 2016). Thus, the 
simplest, yet most relevant metric of take-over performance is if the situation has been solved 
successfully. However, this metric also conveys the lowest amount of information; drivers who did 
not react at all are classified the same way as drivers who barely could not avoid a collision. 
Chronometric measures represent a measurement on ratio scale level and are a detailed 
representation of the degree to which the situation has been solved successfully. Because of these 
properties, studies to investigate the influence of certain characteristics of the take-over situation 
primarily rely on these measures (Gold et al., 2016; Gold & Bengler, 2014; Gold, Damböck, 
Lorenz, & Bengler, 2013; Körber, Gold et al., 2016). Analogously to the chronometric experiments 
on information processing in cognitive psychology, the duration of the several stages of the take-
over process, such as gaze reaction time or hands-on time, can be assessed individually for a detailed 
evaluation (Gold, 2016). The time between the emittance of the TOR and the first controlled 
reaction of the driver is called take-over time (TOT) and represents the main metric since it 
subsumes the speed in all other previous stages of the take-over process. Certainly, this definition 
is incomplete without defining the term conscious reaction. Different variables and thresholds for 
conscious reaction result in different values for the take-over time for the exact same data (Gold 
& Bengler, 2014; Payre, Cestac, Dang, Vienne, & Delhomme, 2017; Zeeb et al., 2015).  

Secondly, the quality of a take-over can be evaluated. Quality refers to the characteristic, the 
essential character, or nature of something (VandenBos, 2015). Take-over quality is a metric that 
subsumes how the take-over has been executed and, indirectly, to what degree it was safe. The 
take-over scenario determines how a successful take-over looks like and what metrics are 
meaningful to measure take-over quality in this scenario. For evasive maneuvers, as investigated in 
this thesis, time-to-collision (TTC) is a common metric for the criticality of a situation (Winner et 
al., 2016) and is thereby also a metric for take-over quality. The TTC is defined as the current  

 
Figure 7. Phases of a take-over process according to Petermeijer et al. (2016). 
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remaining time until a collision with an object on the assumption of constant speed and direction 
for both (while corrections exist for other cases; Winner et al., 2016). The minimum value 
represents the most informative descriptive statistic, which marks the point of the highest criticality 
occurred. Besides the TTC, vehicle dynamics, such as longitudinal and lateral vehicle accelerations, 
describe how the take-over was performed. Again, the minimum and maximum value are the most 
informative descriptive statistic.  

All metrics have to be interpreted in the context of the whole maneuver. Absolute values may 
be misleading: An uncritical take-over does not necessarily imply low accelerations and high 
accelerations do not necessarily indicate a critical take-over maneuver. For example, braking instead 
of no braking does not directly mean that the take-over was, in fact, more critical. A participant 
that did not brake and changed lanes without checking the mirrors may act riskier despite exhibiting 
lower longitudinal accelerations. In the same manner, the potential presence of a speed-accuracy 
trade off has to be taken into account (Hong & Williamson, 2008): A participant may take his time 
to choose an appropriate reaction. In this case, the participant’s take-over time is higher while in 
the end the reaction might be better or safer. That being said, it has to be taken into account that 
take-over performance and take-over quality are not completely independent dimensions but are 
correlated with strength varying on the take-over scenario. Moreover, absolute take-over quality, 
i.e. independent of the situation, differs from relative take-over quality, dependent on the 
possibilities of a situation. In sum, a holistic evaluation of the take-over process instead of mere 
reliance on numbers is recommended. A more detailed account of the process of a take-over can 
be found in Gold (2016). 

For a successful introduction of automated vehicles, reliable system performance has to be 
ensured from the technological side. Yet, while vehicle control is transferred to a driving 
automation system in automated driving, drivers are not completely released from their 
responsibilities in Level 2 to 3 automated driving. It thus has to be ensured that drivers can interact 
with a driving automation system in a safe manner as well. Section 1.2 already highlighted the 
importance of individual differences in driving behavior and in the interaction with automation. 
Taking this into account, this thesis aims to investigate the influence of individual differences on 
the interaction with driving automation with a focus on take-over situations. 
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3 Information processing and behavior – causal mechanisms of 
individual differences 

“Science walks forward on two feet, namely theory and experiment . . . .  
Sometimes  it is one foot that is put forward first, sometimes the other, 

but continuous progress is only made by the use of both” 

Robert A. Millikan, Nobel Lecture 1924 (as cited in Gigerenzer, 2009) 

How do the aforementioned individual differences in the interaction with automation arise? How 
can it be that high trust in automation leads to a collision? To investigate these research questions, 
it is necessary to embed the findings in the current state of research and to create a scientific theory 
that includes an underlying causal mechanism. Establishing a causal relationship allows performing 
forward causal inference (What will happen if X?) as well as reverse causal inference (What causes 
Y? Gelman, 2011). Experiments themselves do not lead to causal explanations but only to causal 
descriptions (Shadish, Cook, & Campbell, 2002). In other words, they describe the influence of the 
systematic variation of an independent variable on a dependent variable but do not offer 
explanations why and under which conditions a certain relationship exists. The identification of a 
causal mechanism, in contrast, opens the possibility to estimate the generalizability of results. It 
may also help to explain why a replication of an experiment may have failed and helps to lower the 
probability of being fooled by spurious relationships without an underlying causal relation. 
According to Popper (1959), for a theory to be scientific, it has to make falsifiable predictions. 
Scientific progress is then the process of proposing falsifiable theories and testing their predictions 
with observations. Observational evidence can refute the theory or, if they are in line with the 
predictions, corroborate it (Dienes, 2008; Howson & Urbach, 2006). Indeed, while cognitive 
ergonomics mainly deals with descriptive analysis, Wickens et al. (2016) consequently distinguish 
engineering psychology from cognitive ergonomics because only the former has a strong and 
necessary basis in theory. Thus, the first step of this thesis in the investigation of individual 
differences in the interaction with automation was to establish a suitable theoretical model in order 
to explain and to consolidate the findings. After this, the therefrom derived hypotheses were tested 
by confirmatory studies presented in this thesis. 

3.1 Models of information processing 

Depending on the LoA, manual and automated driving can be conceptualized as a task that 
primarily consists of information acquisition and transforming this information into an adequate 
reaction (Abendroth & Bruder, 2016). It is essential to take information processing into account 
when investigating the interaction between humans and automation because in almost all such 
interactions the operator has to perceive and process information, react based on the result, and 
then must evaluate the feedback from that action, i.e. its effect on the environment (Wickens & 
Carswell, 2006). Thus, to pinpoint individual differences, first the relationship between information 
processing and response needs to be investigated. Information processing models may function as 
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a causal explanation. They could explain why something happens (Why does trust differ?) but also 
predict what will happen (What is the behavioral outcome of a difference in trust?). 

The paradigms of human information processing characterize humans as a system that receives 
input from the environment, processes that input, and then returns a reaction as output to the 
environment (Proctor & van Zandt, 2008). The models are typically elaborated versions of this 
three-stage model consisting of perception, cognition, and reaction. Their construction follows an 
inductive approach by the aggregation of experimental studies of human performance that provide 
their empirical base (Proctor & van Zandt, 2008). Researchers identified the stages by aggregating 
the results of many single experiments that are based on chronometric methods with reaction times 
as the primary measure of information processing (Lachman, Lachman, & Butterfield, 1979). By 
manipulating the characteristics of tasks that should influence a certain assumed processing stage, 
the influence of this manipulation can be measured as the change in the resulting reaction time 
(Donders, 1969; Proctor & Vu, 2009; Sanders, 2013; Sternberg, 1969). Further support for distinct 
stages comes from neurobiological studies that identified distinct brain regions that correspond in 
their activity to the different proclaimed stages (Wickens & Carswell, 2006). 

Information processing represents a deeply complex process (Pashler, Yantis, Medin, Gallistel, 
& Wixted, 2004). In order to understand and work with this process, an abstraction in form of a 
model is necessary. A model functions as an abstract, simplified representation of a process that 
strives to approximate reality. Wickens et al. (2016) provide a basic model of human information 
processing (Figure 8), which gives a useful overview of the relevant stages of information 
processing. Let us go through the model stage by stage: In the proclaimed flow of information, 
stimuli are first sensed or attended by the sensory system with the quality and quantity of the 
information (and of all other following processing stages) being dependent on the properties of 
the sensory system in question. The information is then stored in the sensory memory for a very 
brief time. It is then processed for the first time in the perceptual stage where it is consciously  

 
Figure 8. The information processing model of Wickens et al. (2016). 
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perceived and interpreted. In the information processing stage, the decision to act or not to act is 
made. This decision is significantly determined by the individual. The type of action can be 
classified into three levels (skill, rule, or knowledge-based behavior; Figure 9; Rasmussen, 1983). 
Skill-based behavior comprises automatic sensumotoric reactions with low processing time without 
conscious top-down regulation (e.g., adapting vehicle speed to a headway vehicle). Rule-based 
behavior requires more cognitive resources and is a conscious action led by stored rules or 
heuristics that are activated based on the cues provided by the situation at hand (e.g., interacting 
with other road users). Knowledge-based behavior represents the most resource-straining behavior 
that comes into play in novel situations where no stored rules apply (e.g., navigation in an unfamiliar 
environment). The current situation is analyzed in detail and, depending on personal preferences, 
a plan of action is constructed. 

The whole process of perception and response selection is moderated by an operator’s attention 
and memory. Following Baddeley’s (2007) multicomponent working memory model, memory can 
be, in a simplified manner, structured into a short-term working memory and a long-term memory 
(besides the already mentioned sensory store; Sternberg, Sternberg, & Mio, 2012). Working 
memory functions as a temporary, attention-demanding store, where novel, as well as currently-
demanded information, is stored for a short time. Corresponding illustrating metaphors for 
working memory are a workbench of consciousness or a computer’s random-access memory. 
Guided by the central executive that controls and regulates the cognitive processes, humans use 
their working memory to examine, evaluate, transform, and compare mental representations of 
information, which are then used for action or stored in long-term memory (Wickens & Carswell, 
2006). Working memory is responsible for processing and manipulating the perceived information 
and choosing an adequate action. Long-term memory in turn stores different variants of memory 
(such as procedural, semantic, episodic) that can be retrieved if needed in the current operation 
(Atkinson & Shiffrin, 1968). It stores rules, past experiences, models, and facts that influence 
detection, perception of information, and, hence, how we see the world. 

 
Figure 9. Three types of human behavior according to Rasmussen (1983). 
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Attention, the second moderator, acts as the fuel to carry out all of the mentioned processes. This 
fuel or mental resource can, in function of a filter, be selectively allocated to stimuli, information, 
or the processing stages and, thereby, selects what information will be processed in what level of 
detail and what tasks can be performed simultaneously (Wickens & Carswell, 2006).  

The last stage represents the execution of the response, which has been selected based on the 
results of the prior stages. Evoked feedback is then sensed. This creates a closed-loop cycle, where 
the feedback from a system to a response is in the end perceived and evaluated again, mimicking 
closed-loop models of control engineering (Jagacinski & Flach, 2003). 

The model certainly simplifies the process to provide a helpful and functional overview. For 
example, it does not detail the underlying operations in the different processing stages and 
subsumes very complex processes, such as perception, in a single box. It is thereby not exhaustive 
of all the relevant cognitive processes (Pretz & Sternberg, 2005; Sternberg et al., 2012). Moreover, 
while the whole process is moderated by attention, there is no detailed elaboration on whether the 
attentional capacity is limited by a single resource (Kahneman, 1973) or multiple resources 
(Wickens, 2002). Due to this simplification, the model can be consulted to explain a variety of 
effects, which is its strength but also its weakness. The applicability of the model should not be 
over-generalized. For example, the model is not suitable for highly practiced automated actions 
such as manually shifting a gear while driving, which are processed effortless and subconsciously 
without an involvement of the working memory (Schneider & Shiffrin, 1977). However, “all 
models are wrong but some are useful” (Box, 1979, p. 202): Contrary to rather isolated paradigms 
in cognitive psychology produced by laboratory research, the model strives to be applied in 
naturalistic contexts and gives an accurate overview of the underlying processes. Differences in the 
observable outcome variable, i.e. the response execution, can be traced back to differences in a 
prior processing stage. Individual differences in states, traits, and dispositions can be found at each 
processing stage, causing different responses from these individuals.  

Sanders (1983) and Luczak (1975) developed very similar models, supporting the construct 
validity of the model of Wickens et al. (2016). Following a combination of stage-wise information 
processing (as in Wickens et al., 2016) and resource models (Kahneman, 1973; Luczak, 1998), 
Abendroth and Bruder (2016) provide a model that transfers information processing to the driving 
context and describes the interaction between driver and vehicle in great detail. However, this 
model is less parsimonious than the model of Wickens et al. (2016) and provides an abundance of 
parameters that are in parts not specified in detail. This makes the model very complex, i.e. it is 
able to fit various or arbitrary data patterns. Such a model is difficult to falsify and it is difficult to 
determine how much of a good fit can be attributed to verisimilitude compared to the model’s 
general ability to fit any arbitrary data (Preacher, Zhang, Kim, & Mels, 2013). For this reason, this 
thesis relies on the information processing model of Wickens et al. (2016) to explain individual 
differences among drivers in their interaction with automation by tracing them back to differences 
in the stages of the information processing model. 
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3.2 Positioning individual differences in information processing 

Rohmert (1984) as well as Bubb (1992) highlight that the outcome of a human-machine-interaction 
not only depends on factors that are common for each individual but it also on the individual’s 
reaction to these factors, which is determined by the characteristics of this individual. Following 
this notion, an individual characteristic component is implemented in almost every model that is 
relevant for human-machine interaction, such as human error (Gründl, 2005; Reason, 2000), 
situation awareness (Endsley, 1995), or mental workload (de Waard, 1996), as well as in several 
driver behavior models (Irmscher & Ehmann, 2004; Markkula, Benderius, Wolff, & Wahde, 2012; 
Yang, Rakheja, & Stiharu, 2001). 

Consequently, Abendroth and Bruder (2016) added an individual characteristics component to 
their mentioned model. The individual characteristic parameter interacts with the information 
processing at every stage and, thereby, moderates the outcome. However, in this thesis, another 
taxonomy of individual characteristics based on the domains of biopsychology and personal 
psychology building on Körber and Bengler (2014) is proposed. Firstly, following the state-trait-
model known from differential psychology (Amelang & Schmidt-Atzert, 2006) and latent state-
trait theory (Kelava & Schermelleh-Engel, 2012), an individual characteristic is classified as either 
state or trait, depending on whether the characteristic remains stable over time and is consistent in 
different situations (trait) or not (state). However, the boundaries are fuzzy yet meaningful (Allen 
& Potkay, 1981; Chaplin, John, & Goldberg, 1988), forming rather two ends of a continuum than 
a rigid dichotomy. States are considered temporary, brief, and mainly determined by external 
circumstances. In the driving context, for example, the whole research domain of driver state 
monitoring focuses on the detection of a driver’s current state, such as current drowsiness 
(Schmidt, Braunagel, Stolzmann, & Karrer-Gauss, 2016). Contrarily, a (phenotypic) trait is defined 
as a stable attribute resulting from an interaction of a hereditary predisposition and environmental 
influence (VandenBos, 2015) and are either directly observable (e.g., height) or non-manifest latent 
constructs (e.g., personality traits, such as conscientiousness, or attitudes). Those characteristics 
vary in their stability as well as in their dependence on a genetic disposition. For example, abilities, 
as listed by Abendroth and Bruder (2016), are considered by VandenBos (2015) as an innate 
existing competence to perform an act, whereas skills (as listed in the model) are acquired through 
training. 

The causes of these aforementioned individual differences can be located in the information 
processing model of Wickens et al. (2016). For example, experienced drivers differ from novice 
drivers in their allocation of attention (Crundall, Underwood, & Chapman, 1999; Underwood et 
al., 2003), the moderator variable in the model. For them, the driving task has become an automated 
process, which leads to differences in the capacity utilization of the model’s working memory 
component (Schneider & Shiffrin, 1977). They also have more strategies internalized and can recall 
them with less effort (Chase & Simon, 1973; Krings et al., 2000), which makes them differ in the 
response selection and the decision-making stage (Pashler & Baylis, 1991; Pretz, 2008; Wiggins, 
Stevens, Howard, Henley, & O’Hare, 2002). Lastly, training improves the response execution 
(Logan, 1992; McPherson, 1999). Differences in the ability to drive distracted can be traced back 
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to differences in the working memory component (König et al., 2005). Drowsiness deteriorates 
attention (Goel, Rao, Durmer, & Dinges, 2009) or, for example, the decision-making process (Lobb 
& Stern, 2009), attention to and processing of risk-relevant cues as well as cognitive control 
(Damasio, 1996; Rao, Korczykowski, Pluta, Hoang, & Detre, 2008). The majority of these findings 
can already be traced back to differences in the neuroanatomy and neurophysiology (e.g., 
Anderson, Vicki, & Jacobs, 2014; Haines & Schenk, 2015). The recently emerged field of 
Neuroergonomics, “the study of the human brain in relation to performance at work and other 
everyday settings” (Parasuraman, 2011, p. 181), looks into the underlying causes on the very basic 
level of gene expression and molecules (Parasuraman & Rizzo, 2008). For example, Parasuraman, 
de Visser, Lin, and Greenwood (2012) successfully investigated the neurobiology of automation 
bias, the tendency to erroneously follow incorrect advice or information provided by the automated 
system. The extent to which individuals exhibit automation bias varies with their capacity of 
working memory and the efficiency of their executive functions. Both are highly heritable and 
under dopaminergic and noradrenergic control in the prefrontal cortex.  

In sum, these findings answer why individual differences among drivers in manual or automated 
driving exist. We can trace the differences in driving back to differences in the drivers’ information 
processing, which in turn correspond to differences in neuroanatomy and neurophysiology. 

3.3 Individual differences in human-automation interaction and in automated driving 

The aforementioned study by Parasuraman et al. (2012) shows that individual differences also exist 
in the domain of automation. There is more evidence: Especially in dual-task situations, some 
operators tend towards complacency, i.e. they shift their attention away from an automated task to 
a concurrent task, resulting in monitoring failures (Parasuraman et al., 2008). The tendency to this 
maladaptive attentional strategy appears to be determined by the operator’s personality and is a 
stable personality trait (Singh, Molloy, & Parasuraman, 1993a). Furthermore, participants who 
prefer manual operation over automated operation tend to lapse into complacency more quickly 
(Maehigashi, Miwa, Terai, Kojima, & Morita, 2012). Performance in general benefits from working 
with a functioning automation but suffers when automation is erroneous, particularly at higher 
levels of automation (Onnasch et al., 2014). Rovira, Pak, and McLaughlin (2016) showed that the 
extent of the costs and benefits depend on individual differences in working memory ability. In 
their study, performance of participants with low working memory ability suffered more severely 
when automation failed at a high LoA than those with higher working memory. Lower working 
memory capacity was also related to higher trust in automation in their study. de Visser, Shaw, 
Mohamed-Ameen, and Parasuraman (2010) reported similar results on the role of working memory 
in an automated unmanned aerial vehicle task. 

Previous research has also identified individual differences in automated driving. As described 
in Section 2.2, depending on the LoA, implementing a driving automation system replaces the 
driver’s active role of manual driving with either a passive role as a monitor or as a fallback level in 
case of a system limit. Such a situation of task underload and monotony has been shown to induce 
hypovigilance, passive fatigue, and drowsiness (Körber, Cingel, Zimmermann, & Bengler, 2015). 
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Accordingly, Feldhütter, Hecht, Kalb, and Bengler (2018) reported an increase in drowsiness 
during a prolonged automated drive, however, the observed onset and extent of this drowsiness 
increment were highly variable among the participants. Error bars in studies on drowsiness caused 
by an automated drive also similarly show large individual differences regarding the onset or extent 
(Körber, Cingel et al., 2015; Schmidt et al., 2009; Schmidt et al., 2016). Moreover, Merritt and Ilgen 
(2008) found that besides actual objective characteristics of an automated system, such as its 
reliability, the individual subjective perception of its characteristics has a significant impact on trust. 
The subjective perception is in turn determined by the operator’s personality, or, more precisely, 
the general propensity to trust. In this study, the participants’ general propensity to trust also 
determined the magnitude of the effect of automation failures on trust in automation. Individual 
trust in automation can also explain differences in NDRT engagement since it determines how 
much participants monitor the environment during the engagement with an NDRT (Hergeth, 
Lorenz, Vilimek, & Krems, 2016). Consequently, the heterogeneity in trust in the population also 
shows up in surveys on automated driving across several industrialized nations: Less than 15 % 
reported absolutely no concerns regarding automation technology, whereas up to 33 % would 
refuse to ride in an automated vehicle (Schoettle & Sivak, 2014a, 2014b, 2015, 2016). 

Motivated by these findings, the first aim of the research process of this thesis was to identify 
and structure the abovementioned findings in a literature review on potential and known individual 
differences regarding automated driving. This was realized in Article 1.
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4 Article 1: “Potential individual differences regarding automation 
effects in automated driving” 

Körber, M., & Bengler, K. (2014). Potential individual differences regarding automation effects in 
automated driving. In C. S. G. González, C. C. Ordóñez, & H. Fardoun (Eds.), Interacción 
2014: Proceedings of the XV International Conference on Human Computer Interaction (pp. 152–158). 
New York, NY, USA: ACM. 

Motivated by the need to investigate the influence of individual differences in automated driving, 
this article investigates the characteristics of automated driving and lists individual differences that 
could potentially influence human performance in interaction with driving automation.  

At the beginning, the characteristics of the interaction with Level 2 and Level 3 driving 
automation, such as a passive monitoring role in Level 2, have been defined. Then, findings from 
the general domain of automation, driver assistance systems, engineering psychology, general 
psychology, and research on human performance have been screened for their relevance regarding 
these characteristics. The literature review uses a slightly deviating version of the aforementioned 
state-trait model and structures the found individual differences into dispositional factors, stable 
personality traits and behavior patterns, current operator state, attitudes, and demographic factors. 
Since automated driving is a novel technology, most of these individual differences have not yet 
been empirically investigated and, thus, only represent potential individual differences. The aim of 
this dissertation thesis was to empirically investigate these potential individual differences in 
automated driving.  

The results of this literature review laid the foundations for a confirmatory research agenda on 
the empirical investigation of individual differences. Theories on a possible individual difference 
have been proposed, hypotheses have been deducted from them, and their predictions have been 
tested on the basis of observations in four confirmatory studies (Wagenmakers, Wetzels, 
Borsboom, van der Maas, & Kievit, 2012). This led to the following four articles of this thesis. 
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5 Article 2: “The influence of age on the take-over of vehicle control 
in highly automated driving” 

Körber, M., Gold, C., Lechner, D., & Bengler, K. (2016). The influence of age on the take-over 
of vehicle control in highly automated driving. Transportation Research Part F: Traffic Psychology 
and Behaviour, 39, 19–32. 

5.1 A closer look at the process of aging 

Industrialized nations are currently witnessing a steadily growing proportion of elderly people in 
the driving population – the global population older than 65 years is predicted to double from 7 % 
to 14 % by 2040 (Cauley, 2012). Automated vehicles are hypothesized as an option to enhance the 
mobility of elderly adults (Reimer, 2014; Shergold et al., 2016). Thus, elderly drivers will represent 
a relevant and even increasing proportion of users of automated vehicles.  

Aging influences information processing in the model of Wickens et al. (2016) on every stage 
and component, for example executive functions, working memory, attention, or speed of 
information processing (Anstey, Wood, Lord, & Walker, 2005; Bryan & Luszcz, 2000; Der & 
Deary, 2006; Miller, Taylor-Piliae, & Insel, 2016; Salthouse, 2009). For example, the sensory 
perception of elderly adults is impaired (Haegerstrom-Portnoy, Schneck, & Brabyn, 1999), there is 
a decline in the perception of hazards (Horswill et al., 2008), and in the speed of information 
processing (Salthouse, 1991; Verhaeghen & Salthouse, 1997). Working memory function, as well 
as executive functions, decline with age (Bryan & Luszcz, 2000; Salthouse & Babcock, 1991). 
Elderly adults have a decreased ability to divide attention (Ponds, Brouwer, & Van Wolffelaar, 
1988) and their dual-task performance is worse (Baldwin & Schieber, 1995; Hartley & Little, 1999). 
In addition, they suffer from a decline in their ability to maintain and to select task sets, and in task 
switching (Kray, Eber, & Lindenberger, 2004; Kray & Lindenberger, 2000; Mayr, 2001). 
Consequently, their reaction times are higher (Der & Deary, 2006) and elderly drivers exhibit higher 
brake reaction times and hazard perception response times (Horswill et al., 2008; Warshawsky-
Livne & Shinar, 2002). Anstey et al. (2005) provide an overview of age-related changes relevant to 
safe driving and report associations of varying strength between the decline in performance in 
cognitive tests with driving outcome measures. Deficiencies in attentional, perceptual, cognitive, 
and psychomotor abilities predict unsafe driving incidents and involvement in motor vehicle 
crashes (Emerson et al., 2012; Mathias & Lucas, 2009; McKnight & McKnight, 1999). While the 
reflection of age-related decline in accident statistics is still under discussion (Schlag, 2013), elderly 
drivers are overrepresented in crashes in complex situations such as intersections (Braitman, Kirley, 
Ferguson, & Chaudhary, 2007; Clarke, Ward, Bartle, & Truman, 2010).  

Automated driving still requires a driver in certain situations (see Section 2.2). Because reaction 
times (Der & Deary, 2006), hazard perception response time (Horswill et al., 2008), processing 
speed (Salthouse, 1991), and task switching performance (Kray & Lindenberger, 2000) deteriorate 
with age, it may be possible that elderly drivers could have difficulties to take over vehicle control 
in time in critical situations. Moreover, automated driving allows the engagement with an NDRT 
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in certain modes. Elderly adults have a lowered ability to shift attention flexibly between two tasks, 
to adhere to a prioritized focus (Siu, Chou, Mayr, van Donkelaar, & Woollacott, 2008), and a 
decreased ability to divide attention (Ponds et al., 1988). In addition, they show deficits in the ability 
to keep up relevant situational information (Salthouse, 1991). Correspondingly, elderly people take 
longer to resume a task following an interruption (Monk, Boehm-Davis, & Trafton, 2004). 

However, albeit every aging individual experiences this decline, there is a high variability in the 
decline’s rate and intensity (Hultsch, MacDonald, & Dixon, 2002), which further increases with age 
(Morse, 1993). Hertzog, Kramer, Wilson, and Lindenberger (2008) describe this decline as a “zone 
of possible functioning” (p. 1) whose limits are determined by individual endowment and age-
related constraints. An individual’s position in this zone depends on the individual engagement in 
beneficial intellectual, physical, and social activities. Given the right conditions, satisfactory 
cognitive functioning can be maintained even at high age. Besides this, performance in everyday 
naturalistic tasks does not solely depend on general cognitive ability but also on task-specific 
knowledge and expertise (Masunaga & Horn, 2001). Deterioration of cognitive performance is 
thereby not exclusively a function of age but also of compensatory adaptation, experience-related 
changes, and acquisition of expertise. Altogether, aging does not automatically cause a deterioration 
in driving performance but its impact strongly depends on the specific situation and the specific 
driver. 

The impact of age-related decline on driving performance has already been investigated in 
manual driving (Devlin, McGillivray, Charlton, Lowndes, & Etienne, 2012; Horberry, Anderson, 
Regan, Triggs, & Brown, 2006). Yet, the novelty of the technology of automated driving and the 
qualitative differences in the driver’s role and tasks between manual and automated driving 
(described in Section 2.2) create the need to investigate the interaction of elderly drivers with 
driving automation. As already mentioned, elderly drivers will represent an increasingly important 
user segment. Safety has to be ensured for every potential user, not just for an average user (Körber 
& Bengler, 2014). This is especially important given the mentioned variability in age-related 
cognitive decline. In this study, we investigated the influence of age on take-over situations in 
conditionally automated driving. 
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5.2 Summary of Article 2 

Seventy-two participants divided into two age groups, consisting of 36 elderly drivers (≥ 60 years) 
and 36 younger drivers (≤ 28 years), took part in this study. The conditions of the take-over 
situation were manipulated by adding a verbal NDRT (20 questions task) and by variation of traffic 
density. The participants encountered three situations with either no, medium, or high traffic 
density in which they had to take over vehicle control to evade an obstacle on their lane. We found 
no significant difference between the take-over times of elderly drivers and younger drivers. 
However, the age groups differed in their modus operandi: The elderly drivers maintained a higher 
TTC, a higher proportion in this group hit the brakes during the take-over, and braking was 
stronger. While the engagement in an NDRT had no effect, there was negative influence of a higher 
traffic density on take-over time and take-over quality independent of age. Both younger and older 
drivers showed a learning effect between the first and the last take-over situation in form of a 
decrease in take-over time, an increase in minimum TTC, and a decrease in maximum lateral 
acceleration. 

The results highlight that despite the mentioned assumed decline in cognitive performance, 
elderly participants did not significantly differ from young participants in their take-over times. 
Both age groups adapted to the experience of the three take-over situations in the same way and 
to the same extent. While the study provides initial evidence on the role of age in take-over 
situations, it is difficult to generalize these results to the whole population of elderly drivers. First, 
cognitive decline is highly variable in its degree and speed. Both depend on factors such as personal 
lifestyle, individual experiences, and genetics (Deary et al., 2009; Hultsch et al., 2002; Morse, 1993). 
Variance in these factors leads to variance in the cognitive ability. Second, not aging in general but 
a decline in particular abilities may cause an age-related increase in crash risk (Hakamies-Blomqvist, 
1998). For these reasons, elderly drivers at the lower end of the zone of possible cognitive 
functioning (Hertzog et al., 2008) might solve the take-over situations less successfully, despite 
being the same age. 

  



6.1 Multitasking revisited 
 

28 

6 Article 3: “Prediction of take-over time in highly automated 
driving by two psychometric tests” 

Körber, M., Weißgerber, T., Kalb, L., Blaschke, C., & Farid, M. (2015). Prediction of take-over 
time in highly automated driving by two psychometric tests. Dyna, 82(193), 195–201.  

6.1 Multitasking revisited 

Wickens et al. (2016) describe multitasking not only as dividing attention between information 
channels but also as dividing attention between tasks. The best-known account on multitasking 
may be Wickens’s (2002) theory on multiplicity, illustrated as a three-dimensional cubic structure. 
In this theory, he claims that the extent to which two tasks demand separate resources along four 
dimensions (stage, code, modality, visual location) determines the decrement in task performance 
in comparison to single-task execution. This account revised Kahneman’s (1973) model of a single 
pool of undifferentiated capacity. 

However, this is only one component of his multiple resource theory. Task interference is also 
determined by the difficulty, i.e. the total resource demand of a task (Figure 10). Even if they use 
similar resources, two very easy simultaneously executed tasks can still be solved successfully. In 
the end, which task suffers, how interruptions are managed, or what information is processed is 
under the regulation of the central executive system, which is responsible for selective attention, 
inhibition, or shifting between tasks in a top-down manner (Sternberg et al., 2012; Wickens & 
McCarley, 2008). This system is also responsible for shifting attention between multiple activities, 
even if no dual-task situation is present. Salvucci (2013) construes multitasking as a continuum 
between concurrent multitasking and sequential multitasking. Concurrent multitasking embodies 
the act of doing two tasks at the same time. As the intervals between the task switches grow, 
multitasking more and more embodies a sequential task paradigm. It follows that multitasking does 
not only comprise simultaneously engaging in two tasks but also situations in which users switch  

 
Figure 10. The architecture of the multiple resource theory of Wickens (2002); 
adapted from Wickens et al. (2016). 
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between tasks after minutes or abandon one task entirely for a certain amount of time, either 
motivated by task interruption or task management. Such conditions are also prevalent in 
conditionally automated driving. The complete transfer of the dynamic driving task to driving 
automation allows a driver to engage in an NDRT. For example, a driver may look up from his 
newspaper to check why the vehicle performs a lane change. Task-relevant information, details of 
the visual scene, and similar information is retained in the driver’s working memory – and will be 
updated by his next gaze on road. As a result, the driver has to switch between two tasks if a TOR 
occurs. Switching between tasks results in switch costs: An individual’s responses are slower and 
more error-prone directly after a task switch (Monsell, 2003). 

Other problems that may arise from replacing an operator with an automated system in the 
feedback loop are subsumed under the term out-of-the-loop problem (Endsley & Kiris, 1995)1. 
Engagement in an NDRT promotes the driver to orient his attention away from the diving scene 
and occupies working memory (Baumann et al., 2007). The rehearsal and retrieval of task-specific 
information in working memory have been proposed as a bottleneck in multitasking. This process 
consumes a so-called problem state resource, which is used to maintain the mental representations that 
are necessary for executing a task (Borst, Taatgen, & van Rijn, 2010). Interference arises when 
state-related information of the driving task (e.g., location of other vehicles) and of the NDRT are 
stored, manipulated, and retrieved from working memory at the same time. For example, active 
engagement in a driving task leads to less road scanning than passively monitoring (Mackenzie & 
Harris, 2015). This, in turn, may result in a loss of situation awareness, “the perception of elements 
in the environment within a volume of time and space, the comprehension of their meaning, and 
the projection of their status in the near future” (Endsley, 1988, p. 97). According to Endsley and 
Kiris (1995), operators who have lost situation awareness may be slower to diagnose problems, 
require more time to re-orient themselves to the relevant parameters, and take longer to resume 
manual control. If the driver is engaged in an NDRT when a TOR is issued, he has to reallocate 
his attention to the driving scene, regain situation awareness, and react appropriately. Performance 
in this situation is a function of reaction time, the storage of task-relevant information in working 
memory, and the ability to switch tasks.  

Multitasking performance is more than simply the sum of two single-task performances. The 
performance decrement that arises out of a dual-task situation is correlated with single-task 
performance, but the single-task performance cannot fully explain the variance in dual-task 
performances. This unexplained variance reflects the component that is unique to dual-task 
situations (Wickens et al., 2016). Once more, the question arises why individuals differ in their 
ability to multitask and, as before, the information processing model can be applied. A first cause 
may lie in the cognition stage and the following stages of response selection and execution. 
Individual differences in time sharing between two tasks can be traced back to differences in 

                                                 
1 Removing the driver from the driver-vehicle loop may induce an out-of-the-loop state defined as “a driver state of 
readiness in which the driver is not able to immediately intervene in the feedback loop comprised of controller and 
vehicle. In this state, the driver does not have up-to-date knowledge of the parameters that are relevant for the 
controlling task, e.g. his own speed, position, or a headway vehicle. He is also not able to predict the situation insofar 
as to create a time window for himself that is long enough to react to events in a manner that is safe for road traffic” 
Körber, Weißgerber, Kalb, Blaschke, and Farid (2015, p. 196). 
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expertise in one or both of the tasks: Experts exhibit automated task execution and thus reduced 
effort to execute an action (Fisk, Ackerman, & Schneider, 1987). Wickens et al. (2016) further 
suggest that experts exhibit more efficient visual scanning and greater attentional flexibility. 
Mackenzie and Harris (2017) explain the differences between novices and experts in scanning 
behavior (Underwood, Crundall, & Chapman, 2002) by two mechanisms. Novice drivers may not 
be aware of potentially hazardous areas and, consequently, do not know where to look. But driving 
is also a less automated task for novices, which takes up the majority of their attentional resources. 
For example, working memory load has been found to elicit spatial gaze concentration on the road 
center (Recarte & Nunes, 2003) and impairs object detection (Törnros & Bolling, 2006). Hence, 
novices lack the attentional resources to orient visual attention to areas relevant for safe driving, 
which makes them vulnerable to performance costs in task switching situations.  

Beyond that, stable individuals differences in working memory capacity, also a component of 
the information processing model, exist (Engle, 2002). Working memory is responsible for the 
ability to maintain information in an active, quickly retrievable state, and to control attention, both 
of which are important for multitasking. Working memory moreover supports individuals to switch 
from one task to another by storing information related to a task that they are not currently 
executing, and by controlling attention (König et al., 2005). This conceptualization of working 
memory is accommodated in the multidimensional model of working memory by Oberauer, Süß, 
Wilhelm, and Wittman (2003). In this model, the three dimensions of working memory are storage 
in the context of processing, coordination, and supervision (Bühner et al., 2006). Under high task load, these 
three functions break down. Accordingly, working memory was the most important predictor of 
multitasking performance in addition to attentional performance and fluid intelligence in a study 
by König et al. (2005) and in a study by Bühner et al. (2006). Age-related differences in working 
memory are also seen as the cause of a decline in task-switching with increasing age (Kramer, Hahn, 
& Gopher, 1999; Kray, Li, & Lindenberger, 2002). 

Findings that investigate these hypothesized individual differences in multitasking in applied 
settings are sparse. Participants in the study of Wood, Hartley, Furley, and Wilson (2016) with 
lower working memory capacity performed poorer in a dual task, reported more instances of 
inattention during driving and exhibited poorer hazard perception performance under dual task 
conditions. Morgan, D’Mello, Adams et al. (2013) found working memory to be a significant 
predictor of multitasking ability in a flight simulation. Recently, Mackenzie and Harris (2017) found 
that participants who performed better in two multiple-object tracking tasks targeting aspects of 
cognition including dual-tasking, covert attention, and visuomotor skill exhibited more effective 
eye movement strategies while driving and also showed better driving performance. Kahneman et 
al. (1973) found a negative association between the ability to shift attention and a driver’s accident 
history, i.e. a lower ability is associated with increased accident frequency. Alzahabi and Becker 
(2013) divided their sample into light and heavy multitaskers based on their reported frequency of 
being simultaneously engaged in two media activities. Despite the authors found no difference 
regarding performance in a dual-task, heavy multitaskers were better at switching between two 
tasks. What is more, 2.5 % of the participants in a study by Watson and Strayer (2010) exhibited no 
decrease in performance when performing a difficult dual task. The authors subsequently named 
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this group supertaskers. In the same study, these supertaskers were also found to be the top performing 
group in a working memory test. These findings suggest that drivers differ in their multitasking 
ability, namely keeping task-relevant information stored and ready, interrupting and switching 
tasks, simultaneously sampling and processing task-relevant information, and keeping up situation 
awareness. Thereby, they diverge in their potential to reach a critical out-of-the-loop state by 
engaging in an NDRT. As the out-of-the-loop state is assumed to yield longer response times, this 
should be directly visible in the drivers’ take-over times. This hypothesis was tested in Article 3. 
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6.2 Summary of Article 3 

Thirty participants took part in this study. We assessed multitasking ability by a self-developed 
multitasking test. This test was conducted on two separate monitors that were placed on a table at 
a frame-to-frame distance of 60 cm at an angle of 45° to the participant who took a seat about 
40 cm in front of the monitors. On each of the two monitors, a different task had to be worked on 
simultaneously. The tasks were built in the Psychology Experiment Building Language (PEBL; 
Mueller & Piper, 2014). On the left monitor, the participants performed a reaction time task, which 
was a modified version of the PEBL Perceptual Vigilance Task (Karlen, Cardin, Thalmann, & 
Floreano, 2010; Mueller & Piper, 2014): A white fixation cross was presented for 400 ms on a black 
background in the center of the screen. Then, a red dot appeared at random intervals from the set 
[4, 5, …, 8] s. Participants had to react as fast as possible by pressing the space bar. Upon pressing 
the space bar, the dot disappeared and a new trial began. On the right monitor, a modified version 
of the PEBL Visual Search Task (Treisman, 1985) was presented. Participants had to find the letter 
“X” out of a random selection of 10, 20, or 30 distractor letters (“U”, “D”, “G”, “C”, “Q”). All 
letters were presented in white color on black background. Upon spotting the letter, the participant 
then had to respond with a left mouse click. Every letter previously shown was now hidden behind 
white circles and participants had to click on the target’s location from memory. Multitasking 
performance as measurement outcome was defined as the sum of the reaction time of each of the 
two tests. The participants had to simultaneously perform both tasks for 3 min.  

Körber and Bengler (2014) listed simple reaction time as another potential factor influencing 
take-over time. This seems reasonable since a take-over requires a fast orientation reaction and a 
fast response execution (see Section 2.4). Because the aim of this research was to identify the sole 
influence of multitasking ability on take-over time, we controlled for simple reaction time by fitting 
a multiple linear regression model. This allows disclosing the effect of multitasking after having 
accounted for simple reaction time – what is the effect of multitasking beyond the effect of simple 
reaction time? What does the multitasking ability tell about a participant’s take-over time after his 
simple reaction time is known? To assess the simple reaction time, we used a modified version of 
the task PEBL Simple Response Time (Robinson & Tamir, 2005). The participants were presented 
a black letter “X” on a gray background at random inter-stimulus intervals from the set [500, 750, 
1000, …, 2500] ms. Upon appearance of the letter, the participants had to press the key “X” on 
the keyboard as fast as possible. Each keystroke commenced a new trial with a total of 75 trials.  

The participants first performed the multitasking test and the simple response task. After this, 
they drove for about 38 min highly automated on a highway, encountering five take-over situations. 
During the drive, the participants engaged in an NDRT. Potential NDRTs in automated driving 
will be texting with a cell phone or performing an input in an entertainment system, which are both 
visual-manual tasks (Horberry et al., 2006; Petermann-Stock et al., 2013). To simulate easily 
interruptible, visual-manual NDRT engagement, we used the Surrogate Reference Task (SuRT; 
detailed description in International Organization for Standardization, 2012).  

We found a significant negative relationship between the performance in the multitasking test 
and the take-over time: The better the participants performed in the multitasking test, the lower 
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the take-over time in the first and second take-over situation, even when we controlled for simple 
reaction time. The eye tracking data also reflect this finding: Participants with low multitasking test 
scores focused their gaze more on the NDRT and less on the road or environment. It is imaginable 
that participants who have difficulties performing two tasks simultaneously prioritized one task to 
alleviate task-induced stress. However, both relationships weakened over the course of the 
remaining three situations. In an exploratory analysis, we split the sample into four quartiles 
depending on their multitasking test performance. The mean take-over times of the first to third 
quartile, the 75 % best multitaskers, converged at Situation 3 and then remained on an equal level 
for the rest of the experiment. The participants within the second and third quartile probably either 
changed their task engagement strategy, increased their effort, or improved their multitasking 
performance by learning. However, the latter seems unlikely since the fourth quartile (the 25 % 
worst test performers) also experienced a reduction in take-over time. Nonetheless, an average 
difference of 1689 ms to the other three quartiles remained and they never achieved the same 
performance level of good multitaskers. It seems thus more probable that all participants adapted 
to the situation, but a stable difference in multitasking ability remained. Future work needs to 
investigate the mechanisms that determine why participants differ in their multitasking test 
performance and in their take-over performance development. 
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7 Article 4: “Introduction matters: Manipulating trust in automation 
and reliance in automated driving” 

Körber, M., Baseler, E., & Bengler, K. (2018). Introduction Matters: Manipulating Trust in 
Automation and Reliance in Automated Driving. Applied Ergonomics, 66, 18–31. 

7.1 The relationship between trust in automation and human-automation interaction  

“There is probably no variable more important in human-automation interaction than that of trust” 
(Wickens et al., 2016, p. 388). First of all, trust in automation determines whether an automated 
system is used at all. Ghazizadeh, Lee, and Boyle (2012) state in their Automation Acceptance Model 
that trust is a pivotal determinant for an individual’s acceptance of automated systems and trust is 
a key factor for the adoption of new technologies (Gefen, Karahanna, & Straub, 2003), the 
employment of automation (Lee & Moray, 1992, 1994; Parasuraman & Riley, 1997), and the 
intention to use autonomous vehicles (Choi & Ji, 2015). In other words, “operators tend to use 
automation that they trust while rejecting automation that they do not” (Körber, Baseler, & 
Bengler, 2018; Pop, Shrewsbury, & Durso, 2015, p. 545). 

Operator and automation act as a team with assigned tasks and responsibilities while properties 
of both operator and automation within this team affect the human-automation interaction 
(Bengler, Zimmermann, Bortot, Kienle, & Damböck, 2012). Hence, “human operator trust in 
automation is now a major topic of interest” because it predicts not only whether automation is 
used but also “how automation is used” (Sheridan, 2002, p. 77). Parasuraman and Riley (1997) 
categorize the interaction with automation into four styles, which correspond to different levels of 
an operator’s trust in automation: Use describes appropriate trust that matches the automated 
system’s capabilities. Operator’s usage and monitoring behavior lead to an enhancement in safety 
and improved performance of tasks that otherwise would have been performed manually (Lee, 
2008). Disuse is present if the operator’s trust lies below the automated system’s capabilities. This 
form of inappropriate under-trust means that the operator does not accept and use automation at 
all or not to its full extent. Disuse is a consequence of a complex combination of the automated 
system’s properties (e.g., frequency of failures; Dzindolet, Peterson, Pomranky, Pierce, & Beck, 
2003), operator’s properties (e.g., self-confidence; Lee & Moray, 1992), and situational factors (e.g., 
workload; Parasuraman & Riley, 1997). The third category, Abuse, refers to the designers of 
automation and describes situations in which automation is designed and deployed without taking 
the operator and his situation into account (Parasuraman & Riley, 1997). A mindless exchange of 
an operator for an automated system can cause new severe failures (Sarter & Woods, 1995).  

If the operator’s trust exceeds the automated system’s capabilities, Misuse in the form of 
inappropriate over-reliance and over-compliance, the fourth category, may arise. Too much trust 
lures the operator into using automation in ways which designers did not anticipate or even try to 
avoid (Lee, 2008). Here, operators rely mindlessly on automation without verifying its actions and 
neglect monitoring the system (Hergeth et al., 2016; Muir & Moray, 1996; Rudin-Brown & Parker, 
2004). Consequences are failures to detect errors (Bagheri & Jamieson, 2004; Bailey & Scerbo, 
2007; Parasuraman, Molloy, & Singh, 1993) and omission errors, i.e. the operator does not react to a 
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critical event if the automated system does not alert him (Meyer, 2001). Operators are then also 
vulnerable to automation bias (less attentiveness to contradictory information; Skitka, Mosier, & 
Burdick, 1999), leading to commission errors, i.e. an operator blindly follows an incorrect 
recommendation from an automated system without verification (Mosier & Skitka, 1996). 
Conversely, appropriately calibrated trust leads to a higher time-to-collision (Beller, Heesen, & 
Vollrath, 2013), a faster reaction time (Helldin, Falkman, Riveiro, & Davidsson, 2013; Seppelt & 
Lee, 2007), and better reaction quality (McGuirl & Sarter, 2006).  

Thus, given the mentioned consequences of inappropriate trust, it is crucial to take individual 
differences in trust in automation into account if human-automation interaction is to be studied. 
The accident of the Tesla with Level 2 automation mentioned at the beginning illustrates the 
relevance of automation misuse caused by inappropriate trust: The driver trusted Autopilot beyond 
its capabilities and relied so much on it that he allegedly started to watch a movie and failed to 
monitor the system. It is a vivid example that trust may influence the interaction with automation 
in ways that are not directly connected with the design of automation (Lee & See, 2004). 
Consequently, the Transportation Research Board published two Research Needs Statements 
regarding human factors research on automated vehicles and primarily issues associated with 
NHTSA’s Level 2 and Level 3. One of the two statements pertains to the investigation of misuse 
and abuse of automated vehicles (Creaser & Fitch, 2015). 

7.2 Trust in automation and reliance 

Based on Mayer, Davis, and Schoorman (1995), trust can be defined as “the attitude of a user to 
be willing to be vulnerable to the actions of an automated system based on the expectation that it 
will perform a particular action important to the user, irrespective of the ability to monitor or to 
intervene” (Körber, 2019, p. 17). It is an attitude that is closely related to reliance, which is a 
concrete observable behavioral outcome of trust (Körber & Bengler, 2014; Lee & See, 2004). 
Driving automation is a novel and intricate technology. Contrary to automation in aviation, its 
operators will not be professionals who have a complete comprehension of its functionality. Its 
operation represents a situation marked by uncertainty and vulnerability in which the user entrusts 
automation his well-being (Walker, Stanton, & Salmon, 2016). It is a risky, uncertain situation, 
where trust per definition becomes effective: If the complexity of a technology and its interaction 
with the situation make a complete understanding either impractical or impossible, operators tend 
to apply heuristics rather than analytic calculations to accommodate for their limited cognitive 
capacity (Gigerenzer & Selten, 2002). In such a situation, where procedures are inappropriate or 
cognitive resources are too limited for rational choice (Damasio, 1996), trust provides guidance for 
reliance and, hereby, aids operators to cope with the cognitive complexity of the system (Lee & See, 
2004). Yet, trusting a system is not a binary all-or-none decision. Trusting and reliance may be 
rather seen as a graded process, with the degree of trust being dynamic and situational in its amount, 
calibration, and resolution (Hoff & Bashir, 2015; Lee & See, 2004). The object of the evaluation 
does not have to entirely be the system as a whole but may also be any of its particular functions. 
For example, trust ratings were distinct to the specific automatic controller in a study on a 
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supervisory process control task (Lee & Moray, 1994) and an automation failure did not affect trust 
in the other similar but independent automatic controllers (Lee & Moray, 1992; Muir & Moray, 
1996). Contrary to this, Keller and Rice (2009) presented a completely reliable aid together with an 
unreliable aid and report that operators tended to rate both aids the same in the sense of a global, 
system-wide trust rating rather than evaluating them as different, independent systems with distinct 
reliabilities. The definite degree of functional specificity is probably determined by an operator’s 
experience with the system, its complexity, the information presented, and the operator’s goals 
(Lee & See, 2004). Lee and See (2004) visualized trust as a continuum in relation to the automated 
system’s capabilities (Figure 11).  

 
Figure 11. Appropriate trust in automation can be defined as a function of the 
relationship between calibration, resolution, and automation capability. 
Illustrated by Lee and See (2004). 

7.3 Stable individual differences in trust in automation 

Trust in automation is strongly dependent on the automated system in question but also exhibits a 
stable individual component. Although many authors have discussed what attributes constitute a 
trustworthy automated system, not objective characteristics but a person’s subjective perception of 
these characteristics determines trust in automation (Lee & See, 2004; Merritt & Ilgen, 2008). 
Beyond this, there is evidence for a stable individual difference in how much a person is generally 
willing to trust a machine. In the influential model of trust by Mayer et al. (1995), trust is not only 
determined by the attributes of the party to be trusted (the trustee), but also depends on a person’s 
individual trust propensity, the general willingness to trust others. Rotter (1967) defines trust 
entirely as an individual trait in form of a generalized expectancy that the statements or promises 
of another individual can be relied on – a generalization of many interpersonal experiences. The 
trait determines how much a person trusts a particular party prior to any knowledge of that party 
being available. In their meta-analysis, Colquitt, Scott, and LePine (2007) confirmed that trust 
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propensity has a unique influence on trust beyond the trustee’s trustworthiness. Merritt and Ilgen 
(2008) found that a user’s individual perception of automation is only partially determined by the 
actual machine characteristics but is also influenced by the individual user’s propensity to trust 
machines. 

Mayer et al. (1995) suggest that this propensity to trust is a stable trait that varies between people, 
depending on their developmental experiences, personality type, and cultural backgrounds. 
Accordingly, in a study by Hergeth, Lorenz, Krems, and Toenert (2015), Chinese drivers reported 
higher automation mistrust than German drivers. Hoff and Bashir (2015) provide further evidence 
for cultural differences in trust in automation in their literature review. Cultural differences in trust 
have also been found by Schoettle and Sivak (2014a, 2014b) who surveyed about automated driving 
in several industrialized nations. Also, there is evidence that a form of anchoring effect exists, such 
as that operators lose trust upon a failure proportionally to their initial level of trust, which is in 
turn determined by a person’s trust propensity (Lee & See, 2004; Merritt & Ilgen, 2008). For 
example, operators that exhibit a high expectancy that automation is trustworthy seem to be more 
sensitive to changes in an automated system’s reliability (Pop et al., 2015). In addition to that, there 
is also more indirect evidence for a stable individual difference in trust. Singh et al. (1993a) argue 
that operators show stable individual differences in their attitude towards an automated system. 
The authors developed a scale to assess a person’s personality in form of their potential to show 
complacency, which is an attentional strategy to allocate attention away from an automated task, 
leading to monitoring failures (Singh, Molloy, & Parasuraman, 1993b). The underlying reason for 
this allocation of attention may lie in their trust in the automated system. Individual differences 
also exist in the expectations in an automated system’s reliability (Dzindolet, Pierce, Beck, & Dawe, 
2002; Merritt, Unnerstall, Lee, & Huber, 2015) and Lee and Moray (1992, 1994) found strong 
individual differences in automation use regarding proneness to use manual control.  

7.4 Attention allocation as a causal mechanism for the influence of trust in automation 

Again, the question of the underlying causal mechanism arises. For example, how may it be that 
operators do not detect a failure or show a delayed reaction if their trust in an automated system is 
high? While trust in automation has various effects on the interaction with automation 
(Parasuraman & Riley, 1997), a possible causal mechanism of the effects (higher reaction times, 
more collisions) in Article 4 is described here. A Level 3 driving automation allows the driver to 
engage in NDRTs while the ADS is performing the driving task. By this, the driver allocates his 
attention away from the driving task and environment, and toward the NDRT. Previous research 
has already identified some problems that may arise in this scenario. Complacency is an attentional 
process that is defined as “a strategy of allocating attention away from the automated task to other 
concurrent tasks” (Parasuraman et al., 2008, p. 149). This strategy is probably partly a result of 
over-reliance on the system based on over-trust. The attentional manifestations of this strategy are 
an allocation of attention away from the automated task or under-sampling of the information 
sources that the automated system uses, based on the belief that the automated system manages 
the task well anyway (Wickens, Clegg, Vieane, & Sebok, 2015). For example, if an adaptive cruise 
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control works perfectly fine in every condition, the driver may cease to pay attention whether the 
adaptive cruise control (ACC) keeps the right headway distance. In consequence, an operator 
expecting an automated system is to do its job perfectly fine will monitor it less. The consequences 
are monitoring failures, i.e. an operator misses or reacts extremely delayed to a malfunction, 
anomalous condition, or failure (Parasuraman et al., 1993; Wickens et al., 2016). 

Secondly, without monitoring an operator loses awareness of the automated system’s current 
state and its development, as well as the environment; in other words mode confusion and situation 
awareness, respectively (Endsley & Kiris, 1995; Manzey, 2012; Sarter & Woods, 1995). Thus, even 
if a failure is detected, the operator will be less likely to be able to deal with it appropriately (Wickens 
et al., 2016). This is particularly the case for interactions with constant highly reliable automated 
systems and in multitask situations (Parasuraman et al., 1993). The strategy of attention allocation 
may itself be partly driven by trust in the automated system and may evolve from a certain initial 
level of trust in automation, which is reinforced if the automated system performs at a stable high 
level of reliability (Parasuraman & Manzey, 2010; Wickens et al., 2016). Highly reliable systems 
induce trust which in turn increases an operator’s reliance (Lee & Moray, 1992) and, probably, 
compliance with an automated system (Reichenbach, Onnasch, & Manzey, 2010), giving rise to 
omission and commission errors. Correspondingly, complacency most often ensues in interaction 
with automated systems that are perceived as highly and permanently reliable (Bahner, Hüper, & 
Manzey, 2008; Parasuraman & Manzey, 2010). Complacency can be reflected in two distinct types 
of behavioral outcomes of trust (Meyer, 2004): Reliance is the tendency to refrain from monitoring 
and acting when the automated system does not indicate the need for action. Inappropriate over-
reliance promotes omission errors. Compliance, on the other hand, is the degree to which an operator 
tends to comply with an action that is instructed by the automated system. By this, over-compliance 
promotes commission errors (Mosier & Skitka, 1996). Trust causes attention to be shifted away 
from the automated task (Hergeth et al., 2016; Muir & Moray, 1996) and, consequently, a negative 
correlation between trust and monitoring performance has been found (Bagheri & Jamieson, 2004; 
Bailey & Scerbo, 2007).  

The SEEV model (Wickens & McCarley, 2008) can be applied to explain the underlying 
mechanisms of automation complacency. In the discussion of divided attention, researchers 
describe attention as a limited resource that fuels conscious information processing (Neumann, 
1996). However, earlier theories on attention described attention as a filter or bottleneck, which 
selects certain stimuli or events to be processed and filters out irrelevant stimuli (Broadbent, 1958; 
Kahneman, 1973; Wickens & McCarley, 2008). This filter prevents overloading the limited-capacity 
information processing mechanism that lies beyond the filter and processes the input in detail (e.g., 
its meaning; Eysenck & Keane, 2010). Yet, the exact mechanism of the filter and its location in the 
information processing stages are still under discussion (Sternberg et al., 2012). If a stimulus passes 
the filter, the information is processed under the constraint of the limited mental resources, which 
determines the possible activities and the number of processes that can be simultaneously carried 
out (Kahneman, 1973; Wickens & McCarley, 2008). The model of information processing of 
Wickens et al. (2016) thus only applies if the information is not filtered (Figure 12).  
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Figure 12. A simplified model of selective attention of Wickens and McCarley 
(2008); a filter, controlled by top-down and bottom-up factors, determines 
what information is processed. 

The focus of attention, and, therefore, the filter, is controlled both by top-down (i.e. 
knowledge/expectancy-driven) and bottom-up (i.e. attention-capture) factors (Corbetta & 
Shulman, 2002; Wickens & McCarley, 2008). Top-down attention orienting has been described as 
voluntary, effortful, and controlled, whereas bottom-up orienting is an automatic process. The 
orientation of attention in driving is heavily top-down driven by knowledge, context, and current 
task goals or states such as perceived risk (Engström, 2011). For example, arriving at a T junction 
triggers a check of one or both directions of the road before turning because this is where relevant 
information concerning the turn maneuver is expected. At the same time, drivers might miss or 
react inadequately to unexpected events or events at unexpected locations (Shinoda, Hayhoe, & 
Shrivastava, 2001). According to Wickens and McCarley (2008), six factors influence visual 
information sampling, i.e., where our visual attentional spotlight wanders: 

(1) Habit (procedural scanning) 
(2) Attention capture: salience 
(3) Information content: event rate or bandwidth 
(4) Information content: contextual relevance 
(5) Information value 
(6) Effort conservation 

The authors describe how these factors operate together to guide the visual attention of an operator 
to selectively attend a sample information at an area of interest (AoI). Based on the factors, salience, 
effort, expectancy, and value, the authors propose the SEEV model, which aims to predict the 
probability of attending to an area P(A) as follows: 

P(A) = sS − efEF + (exEX + vV). 
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Here, S describes the strength of salience, which is the extent to which the AoI stands out from 
the background or from other AoIs (e.g., by size, color, intensity, or contrast). EF denotes the 
effort, which defines the cost of shifting attention to or away from an AoI. Salience and effort 
represent bottom-up influences, which can be objectively characterized by the physical 
environment (e.g., stimulus brightness). EX denotes the expectancy, i.e. the degree of how much 
we expect something to happen at the AoI. A high value of EX may result from a high frequency 
of events at the AoI, for example a neighboring lane where vehicles frequently pass by. Or, we 
expect an event driven by contextual cues, such as a warning or a road where we know that 
pedestrians frequently jaywalk. V represents the subjective value or the amount of information 
gained at this specific AoI, which may be re-described as the subjective usefulness or importance 
of the information. It is determined by the relevance of an AoI for a task weighted by the subjective 
importance of the task. Expectancy and value are top-down influences, reflecting the operator’s 
mental model of the environment and task priorities. Wickens and McCarley (2008) provide an 
example for better understanding: It is crucial to detect potential collisions on the road ahead. 
Thereby, the AoI windshield has a high value, even if traffic is sparse (low expectancy). In contrast, 
the value of the AoI roadside is low, because highway advertising signs are irrelevant, albeit the 
expectancy (bandwidth) of the signs is high. Within this equation, the uppercase parameters 
describe the level of these particular parameters in a particular task while the lowercase coefficients 
denote the strength of these influences in directing human attention in general. Figure 13 illustrates 
the guidance of attention by top-down and bottom-up factors.  

 
Figure 13. The SEEV model of Wickens and McCarley (2008) describes the 
factors that guide visual attention. 
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The SEEV model provides multiple reasons why even a high-value AoI, such as the automated 
task in complacency situations, is not attended sometimes. Firstly, the AoI has a low information 
bandwidth. If an automated system works very reliable, then a critical event will happen very rarely, 
which results in a low expectancy value for the AoI automation. Expectancy and value are 
multiplied in the SEEV model and the low expectancy value means for the operator that this AoI 
should rarely require information sampling, albeit its value for the operator is very high.  

Secondly, the value could indeed also be low. Information value in the SEEV model describes 
an expected subjective value or the amount of information to be gained by scanning the AoI. Per 
definition, high trust means that the operator is willing to be vulnerable to the actions of an 
automated system based on the expectation that it will fulfill its tasks, irrespective of the ability to 
monitor or to intervene (Körber, Baseler et al., 2018). If a user completely trusts automation, he 
believes that the system will perfectly fulfill its tasks. Thus, monitoring the automated system 
becomes unimportant. Likewise, the information gained by monitoring the automated system has 
a low value and is of not much use for the operator. Following the SEEV formula, a low 
information value leads to a low probability of attending this AoI, the automated system.  

Thirdly, the effort to monitor the automated system might be too high. In a dual-task situation, 
dual task loading competes for effort E and reduces the probability to monitor automation, 
especially if the automation AoI is spatially far away (Recarte & Nunes, 2000). As a result, 
infrequent, unexpected automation failures are difficult to detect and might be missed because the 
automated system is not checked anymore. Even if they are detected, operators will be less likely 
to respond appropriately or quickly, because they did not sample the automated system’s current 
state, its development, or the environment (Mahr & Müller, 2011; Wickens et al., 2016). This may, 
at the same time, explain the cry wolf effect (Breznitz, 1984): After frequent false alarms, an alarm 
and the corresponding AoI obtain such a little SEEV value that the operator does not pay attention 
to the alarm anymore. 

Complacency does not necessarily involve a shift in overt attention. Of course, the correlation 
between eye movements and attention is not perfect; unless the eyes are closed, allocation of 
attention to visual versus non-visual (e.g., auditory, cognitive) sources cannot be discriminated since 
the eyes must always fixate on something in the visual environment. However, it is still sufficiently 
high to be a valid indicator. Findings such as inattentional blindness (Simons & Chabris, 1999) or 
change blindness (Simons & Rensink, 2005) indicate that even salient stimuli in the environment 
may be missed albeit they are fixated. Detection or response to an object is generally improved if 
an individual beforehand possesses information about its features, such as location or motion 
(Corbetta & Shulman, 2002; Dosher & Lu, 2000; Posner, Snyder, & Davidson, 1980). For example, 
Posner’s cueing paradigm (Posner, 1980) already showed that observers are better in detecting a 
stimulus in trials where it appears at an expected location (indicated by a valid cue) than control 
trials or trials with an invalid cue. This was the case although the participants fixated a central 
fixation cross for the whole time. This is an example of a covert attention shift, which is in contrast to 
overt attention shifts, mental focus or attention to an object without any physical movement. Indeed, 
there is evidence that complacency does not only consist of fixation failures (Parasuraman 
& Manzey, 2010). Duley, Westerman, Molloy, and Parasuraman (as cited in Parasuraman 
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& Manzey, 2010) obligated their participants to fixate the automated task by leaving it within foveal 
vision. Still, complacency in form of poorer detection performance under automation in 
comparison to manual control ensued. 

An operator, who trusts a system and expects the automated system to successfully fulfill its 
tasks, probably does not expect a failure or an intervention. A lack of readiness to respond to a 
signal generally leads to an increase in reaction time (Poulton, 1950), while preparatory attention to 
a stimulus or a response generally facilitates perception as well as action (Corbetta & Shulman, 
2002; Dosher & Lu, 2000). In his thorough review of driver perception-reaction times, Green 
(2000) comes to the conclusion that expectancy has the greatest effect. Compared to an expected 
event, reaction times increased about 0.5 s in common, but uncertain signals and were twice as long 
if the event was completely unexpected. Hence, even if operators with high trust do not divert their 
visual attention away from the automated task, reaction times to an event may be increased because 
the event is simply not expected. Expectation guides attention and leads to overlooking subjectively 
less probable events (Koustanaï et al., 2008). In such looked-but-failed-to-see accidents (Herslund & 
Jørgensen, 2003), drivers fail to detect an obvious hazard although they were looking in its 
direction. It follows that neither high trust nor low trust but appropriately calibrated trust is 
important. To raise the expectation of a possible upcoming event, the uncertainty of an ADS may 
be visualized. Indeed, studies have shown that the presentation of uncertainty improved situation 
awareness and led to an increase in time-to-collision in the event of an automation failure (Beller 
et al., 2013). Drivers in the study of Helldin et al. (2013), who were provided with an uncertainty 
representation, regained control of the vehicle faster when needed.  
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7.5 Summary of Article 4 

Trust in automation does not only predict whether an automated system is used but also how it is 
used (Parasuraman & Riley, 1997). Inappropriate over-trust and the resulting over-reliance has 
been associated with monitoring failures, longer reaction times, and poorer reaction quality 
(Bagheri & Jamieson, 2004; Bailey & Scerbo, 2007; Beller et al., 2013; Helldin et al., 2013; McGuirl 
& Sarter, 2006; de Waard, van der Hulst, Hoedemaeker, & Brookhuis, 1999). An operator should 
be aware of the capabilities and should rely on it adequately when it is close to the limits of its 
capability (Carlson, Drury, Desai, Kwak, & Yanco, 2014). Otherwise unexpected situations may 
occur in which the reaction to unexpected events is known to be delayed or poorer (Green, 2000; 
Wickens et al., 2016). In conditionally automated driving, the take-over of vehicle control can then 
pose a critical situation if the ADS is operated in an unfamiliar, unexpected, or unstructured 
environment, situation, or condition (Shinar, Tractinsky, & Compton, 2005; Wagner & Koopman, 
2015). For example, Payre, Cestac, and Delhomme (2016) found a positive correlation between 
take-over time and trust if training was insufficient. Consistent across different levels of 
automation, an inappropriate level of trust leads to longer reaction times or inferior reaction quality 
(Abe, Itoh, & Tanaka, 2002; McGuirl & Sarter, 2006; Parasuraman & Riley, 1997). Some of the 
mentioned findings have been studied in non-driving-related automation paradigms, such as 
supervisory control tasks. The goal of this study was to assess the relationship between trust, 
reliance, and take-over performance in the context of conditionally automated driving in greater 
detail. More precisely, we investigated if trust is associated with monitoring of the ADS, reliance 
on the ADS, take-over time, and take-over quality. 

In contrast to aviation, the drivers of automated vehicles will not be professional experts but 
laypeople (Casner, Hutchins, & Norman, 2016). Automated driving, including the engagement in 
NDRTs, represents a novel situation for future drivers. As already mentioned, trust is particularly 
important here because it determines reliance in complex, novel, or unanticipated situations that 
are not or cannot be completely understood (Lee & See, 2004; Meyer, 2001). In such a situation, 
instructions and training with automation form expectations, prior knowledge, and understanding 
(Hoff & Bashir, 2015). How reliable an operator expects an automated system to be depends very 
much on how an automated system is presented (Barg-Walkow & Rogers, 2016; Mayer, Rogers, & 
Fisk, 2009). This expectation, in turn, determines how an automated system’s reliability is perceived 
(Madhavan & Wiegmann, 2005; Pop et al., 2015). Explicit statements about system reliability in the 
introduction set the initial reliance, compliance, and tendency towards over-reliance (Madhavan 
& Wiegmann, 2005; Mayer, Sanchez, Fisk, & Rogers, 2006). Accordingly, Beggiato and Krems 
(2013), for instance, reported a negative relationship between the preliminary presented number of 
potentially critical situations and initial trust in an adaptive cruise control system (ACC).  

In this study, we aimed to transfer the mentioned findings to conditionally automated driving 
and investigated whether trust-promoting and trust-lowering introductory information influences 
reported trust, reliance behavior, and take-over performance. We expected that an ADS that raises 
positive expectations regarding its performance (Schaefer, Chen, Szalma, & Hancock, 2016), signals 
high reliability (Mayer et al., 2006), and is experienced as reliable (Sauer, Chavaillaz, & Wastell, 
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2015) should promote initial trust in automation. Forty participants were equally assigned to two 
groups (Trust Lowered or Trust Promoted) that received either trust-lowering or trust-promoting 
information prior to an experimental drive. Trust in automation was measured by the TiA 
questionnaire, which was developed in the course of this study and is discussed in Section A4 in 
the appendix. The participants then encountered three situations during a 17 min highway drive in 
a conditionally automated vehicle (SAE Level 3). Situation 1 and Situation 3 were non-critical 
situations that were solved by the ADS, but a take-over was a reasonable action if one did not trust 
driving automation. Situation 2 represented a critical situation where a take-over by the driver was 
necessary to avoid a collision. An NDRT, the SuRT, was presented between the situations to make 
participants’ allocation of visual attention observable. Results showed that participants reporting a 
higher trust level spent less time monitoring the road or instrument cluster and more time looking 
at the NDRT. The manipulation of introductory information resulted in medium differences in 
reported trust. Accordingly, participants of the Trust promoted group monitored the road or 
instrument cluster less and looked more at the NDRT. The odds of participants of the Trust promoted 
group to intervene, i.e. to overrule the ADS, in the non-critical situations were 3.65 times (Situation 
1) to 5 times (Situation 3) higher. In the critical take-over situation, the Trust promoted group’s mean 
take-over time was 1154 ms higher and the mean minimum time-to-collision was 933 ms lower. Six 
participants from the Trust promoted group compared to zero participants of the Trust lowered group 
collided with the obstacle. 

The results highlight that the individual trust level influences not only how much drivers 
monitor the road and the environment while being engaged in an NDRT, but also the reliance on 
an ADS, and predicts if a critical take-over situation can be successfully solved. Introductory 
information influences this trust level. However, it has to be taken into account that the study was 
conducted in a driving simulator because of the potential risk of collisions and injuries. It is 
imaginable that the participants may have behaved in a riskier manner in this setting because of the 
lack of real negative consequences. The demonstrated impact the information material has on the 
participants’ trust in automation implicates that car manufacturers should carefully consider how 
they present and introduce an ADS to their customers. 
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8 Article 5: “Vigilance, boredom proneness and detection time of a 
malfunction in partially automated driving” 

Körber, M., Schneider, W., & Zimmermann, M. (2015). Vigilance, boredom proneness and 
detection time of a malfunction in partially automated driving. In International Conference on 
Collaboration Technologies and Systems (CTS) (pp. 70–76). IEEE. 

8.1 Partially automated driving as a vigilance task 

In Level 2 automation, i.e. partially automated driving, the longitudinal and lateral control of the 
dynamic driving task is transferred to a driving automation system, but the driver has to constantly 
monitor the environment and the system. In case of an event, the driver has to be ready to 
immediately execute an appropriate response (SAE International, 2016). Hence, the driver’s role 
shifts from an active controller to a passive monitor. Since the driver is being relieved from 
controlling the vehicle, it seems to be a logical consequence that now enough attentional resources 
are available to monitor the driving automation system. However, this shift in vehicle control still 
necessitates further investigation since past research has shown that humans are low performers in 
monitoring tasks and in monotonous situations with low task demands (Molloy & Parasuraman, 
1996; Pattyn, Neyt, Henderickx, & Soetens, 2008; Saxby et al., 2008). In the case of a reliable 
automation, malfunctions are rare events (Parasuraman et al., 1993). To detect a malfunction, the 
operator has to sustain his attention and monitor the automated system for a long time without 
any critical event occurring. Sustained attention, also called vigilance, is a state or degree of 
readiness to detect and to react to rarely occurring stimuli that appear at random intervals for an 
extended time (Körber, Schneider, & Zimmermann, 2015). Although the task might seem easy, 
humans generally perform poorly in vigilance tasks and detection performance declines in the 
course of these tasks (Parasuraman, 2009). For example, Molloy and Parasuraman (1996) found 
that more participants detected an automation malfunction in the first 10 min than in the last 10 min 
of a 30 min session. Parasuraman and Riley (1997) collected further findings on low monitoring 
performance when automation reliability is high, which creates a monotonous monitoring 
situation. A highway drive can be monotonous and detrimental to the driver’s arousal level, 
conditions that are also present in vigilance tasks. Such a monotonous situation has been already 
shown to reduce vigilance in manual driving (Larue, Rakotonirainy, & Pettitt, 2011; Schmidt et al., 
2009; Thiffault & Bergeron, 2003).  

Partially automated driving may be seen as a vigilance task because the operator has to ignore 
non-critical events for a long time and has to react to comparably rare critical events. Studies on 
vigilance tasks and automation monitoring tasks have shown that individuals differ in their ability 
to sustain attention and to monitor an automated system (Finomore, Matthews, Shaw, & Warm, 
2009; Körber & Bengler, 2014; Matthews, Warm, Shaw, & Finomore, 2010; Prinzel, DeVries, 
Freeman, & Mikulka, 2001; Shaw et al., 2010; Singh et al., 1993b). It follows that not only the 
situation but also the individual operator is relevant for the resulting monitoring performance. The 
decrement of vigilance during a partially automated highway drive has already been investigated by 
Körber, Cingel et al. (2015), which is discussed in detail in the complementary article provided in 
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the appendix, Section A2. Building on this, we investigated if a person’s ability to stay vigilant is 
directly related to an individual’s detection performance of a malfunction of a driving automation 
system.  

Furthermore, since relevant events for the driver occur with low frequency, monitoring tasks 
are generally seen as boring (Scerbo, 1998; Straussberger, 2006). Following the mindlessness theory 
(Smallwood & Schooler, 2006), a situation where low stimulation leads to a state in which the mind 
begins to wander, task-irrelevant thoughts and inner monologues occur. The driver is lost in 
thoughts and exhibits an increased variability of reaction times (Seli, Cheyne, & Smilek, 2013) and 
takes longer to respond to sudden events (Yanko & Spalek, 2013). However, how fast a situation 
becomes boring depends on the individual operator: Farmer and Sundberg (1986) showed that 
there are also individual differences in how fast individuals get bored by a situation. They 
introduced the construct boredom proneness, which describes the extent of stimulation needed to keep 
a person from becoming bored. Therefore, we expect that a driver will get bored when driving 
automation is activated, and engages in mind wandering and task-irrelevant thoughts, which may 
increase reaction times. This hypothesis was also investigated in this study. 
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8.2 Summary of Article 5 

We conducted a driving simulator experiment with 23 participants who drove for 24 min on a 
three-lane highway with partial automation activated. To assess individual vigilance performance, 
we developed a vigilance task in E-Prime 2.0 based on the short vigilance task by Temple et al. 
(2000) and similar tasks (Caggiano & Parasuraman, 2004; Helton & Russell, 2013). A fixation cross 
appeared for 200 ms accompanied by two zeros left and right of it. Both zeros had the same 
distance of 25 mm to the fixation cross in noise trials. In signal trials, one of the two zeros 
horizontally deviated 5 mm from its position. Participants should react as fast as possible if they 
spotted a signal trial. No reaction was required in noise trials. A total of 600 trials were presented 
which resulted in a total test time of about 12 min. Boredom proneness was measured by the 
Boredom Proneness Scale (BPS; Farmer & Sundberg, 1986). 

The dependent variable was the reaction time to an automation malfunction. This malfunction 
was implemented as an extensive right curve. At the beginning of this curve, the vehicle’s lateral 
control malfunctioned without noticing the driver. Given these circumstances, the car went straight 
into the long right curve and eventually left the middle lane, in which the participants were 
supposed to drive. The dependent variable was the time until they detected this suddenly occurring 
malfunction of lateral control. 

The vigilance test developed for this study showed similar results as comparable tests. No 
significant relationship between the predictors and reaction time was found, although boredom 
proneness seems to be a promising predictor with a standardized regression coefficient of 
Beta = 0.25. Reasons for the non-significant effects could be the chosen operationalization of the 
dependent variable. The main determining factors for reaction time were probably the location of 
visual attention at this moment and the individual threshold to classify the deviance from the lane 
center as a malfunction. These two factors might have outweighed the influence of personality 
traits. Further explanations are the study’s small sample size, which implies a low statistical power, 
or the novelty of the driving simulator for the participants, which may have eliminated the 
monotony and boredom of the situation. 
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9 Where to go from here? General discussion, limitations, and 
future work 

Following the presentation of the articles of this thesis, this chapter provides a more general 
discussion of the findings and the methods used, as well as potential objectives for further research. 
Based on the results, practical implications in form of recommendations on courses of action are 
given. 

9.1 Trust in automation: More than a feeling 

Trust is a latent, non-observable construct, yet as reported in Article 4, it has severe observable 
consequences: Six participants (30 %) of the Trust Promoted group compared to zero participants of 
the Trust Lowered group collided with an obstacle in a take-over situation. A participant’s level of 
trust furthermore predicted the interaction with the ADS while being engaged in an NDRT. As 
expected, participants who reported a higher level of trust prior to the experimental drive then 
spent less time looking at the road and the instrument cluster and more time looking at the NDRT. 
At the same time, participants with lowered trust showed traces of automation disuse when they 
unnecessarily overruled the automated system. Thus, trust in automation is a significant 
determinant of a driver’s interaction with an ADS: It influences how much drivers monitor the 
environment while performing an NDRT, reliance on the ADS, and if a critical take-over situation 
is solved successfully. Beyond that, the study showed that the trust level and thereby the interaction 
with an ADS can be influenced by the provision of introductory information. The results 
empirically confirm the theoretical predictions and transfer the findings on the role of trust in the 
interaction with automation to the field of automated driving. Yet, the generalizability of the results 
is certainly not without limits. Risk is absent in a driving simulator and, therefore, the experimental 
situation might have elicited riskier behavior than during a naturalistic drive. We conducted the 
study in a high-fidelity driving simulator and chose a realistic scenario regarding the deployment of 
driving automation. We still believe that the participants’ immersion was sufficient to ensure that 
their behavior in outlines reflects naturalistic behavior. While the sample size per group was rather 
small, we found the same relationship between trust and reliance consistently over the three 
situations, which indicates a stable effect. Further evidential value comes from the fact that the 
study embodied a confirmatory research design, i.e. the findings were predicted from the theory 
on trust in automation (for details see Section 7.2) and are consistent with related work (Hergeth 
et al., 2016; Manzey, 2012; Parasuraman & Riley, 1997).  

Because the presented introductory information material systematically influenced participants’ 
trust in automation, the resulting recommendation is that car manufacturers should carefully 
consider how they present the ADS to customers. Trust generally calibrates according to 
experiences made with the automated system. It usually increases up to a stable high level if the 
system performs reliably and as expected (Beggiato, Pereira, Petzoldt, & Krems, 2015; Hergeth et 
al., 2016). If operators are unaware of a system limit, its first occurrence triggers a calibration 
process. But this calibration comes too late for the first occurrence of a malfunction and over-
reliance may have already been present. Neglecting the limitations of an ADS at its presentation 
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and at the same time focusing on its capabilities may lead to miscalibrated trust and over-reliance, 
at least with little further experience with the system. On the other hand, automation failures 
generally result in a drop of trust but its impact depends rather on its predictability than on its 
magnitude (Lewandowsky, Mundy, & Tan, 2000). A failure erodes trust if limitations are omitted 
in the system introduction given beforehand (Beggiato & Krems, 2013). But when the failure is 
predictable or when its cause is comprehensible, no drop in trust occurs (Dzindolet et al., 2003). 
Therefore, the correct introduction of an ADS is crucial not only to avoid over-reliance but also to 
ensure acceptance. The Tesla accident shows that the provision of information material alone may 
not be sufficient: Over-reliance occurred albeit all necessary information on Tesla’s Autopilot was 
provided by the company (Office of Defects Investigation, 2017). The majority of future users of 
automated vehicles will not be professionals but laypeople without detailed knowledge of driving 
automation (Walker et al., 2016). At the beginning, they will construct a mental model of the 
system’s functioning based on either the information provided with the system or their interactions 
with it (Naujoks & Totzke, 2014). Without the provision of correct and comprehensible feedback, 
customers might construct an incorrect mental model (Christoffersen & Woods, 2002). The 
recommendation derived from this study is not only to provide information material and training 
but also to pay close attention to its content and presentation. The training or the information 
material should describe how particular situations interact with the characteristics of the ADS to 
influence its capability to solve the situation (Lee & See, 2004). Thus, customer-tailored training 
and information material as an introduction to automated driving could appropriately calibrate trust 
and could mitigate the negative effects of an automation failure (Wickens & Xu, 2002). Further 
thoughts on the calibration of trust by design of the human-machine interface (HMI) or a 
gamification approach (Robson, Plangger, Kietzmann, McCarthy, & Pitt, 2015) can be found in 
the corresponding article by Körber, Baseler et al. (2018) and in the complementary article in 
Section A1 of the appendix. 

In the same manner as car manufacturers, experimenters need to consider how they present the 
ADS to their participants. An overly optimistic presentation without acknowledging the limitations 
or a too narrow focus on them may lead to miscalibrated trust. If the majority of participants 
collides with an obstacle because of over-reliance, the influence of an HMI is difficult to assess. 
Furthermore, researchers may include a measurement of trust in their experimental design to 
explain unusual behavior, possibly combined with an interview. A questionnaire is an attractive 
option for measurement trust in automation. For this reason, a questionnaire was developed in the 
course of the study. Its development process and the evaluation of its psychometric quality are 
discussed in Section A4 in the appendix. If a strong influence of trust is assumed, researchers can 
include reported trust in automation as a covariate in their regression model to reduce error 
variance in take-over times.  

In the study, trust in automation was measured before the experimental drive. This highlights 
the predictive validity and influence of trust on the subsequent interaction with driving automation. 
In other words, miscalibrated trust is not only a post hoc diagnosis in case of an accident, trust 
measures can also to a certain extent predict the subsequent interaction with automation. However, 
trust is not the only factor determining the interaction. Even though trust is high, over-reliance 
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does not follow with certainty since, as mentioned previously, attitudes and real behavior are in a 
complex, non-deterministic relationship. As a consequence, the interaction with automation cannot 
be predicted with absolute certainty, even with moment-to-moment measurements of trust (Drnec, 
Marathe, Lukos, & Metcalfe, 2016). Affinity to technology and trust in automation are in a close 
relationship and were consequently found to highly correlate in this study. Although their exact 
inter-relationships remain to be elucidated, both, together with prior or expert knowledge on 
automation, seem to have a strong influence on the interaction with automation, especially in the 
case of the first real interaction. Since they are at least partly stable individual characteristics, it is 
essential for researchers to carefully consider how they constitute their study sample according to 
their research goal and the population they want to infer to. 

The study investigated the relationship between trust in automation and reliance behavior in 
form of gaze behavior and voluntary interventions. The participants were instructed to engage in 
the NDRT during the drive. Future research can build on these results and could investigate the 
relationship between trust in automation and voluntary engagement in NDRTs. Participants with 
a higher trust level could be more comfortable with voluntary engagement in an NDRT and might 
begin to engage with it in a shorter time. Generally, many predictions can be derived from the 
hypothesized relationships between trust and the interaction with automation. However, only few 
empirical studies have been performed yet that explicitly test these predictions. Replications and 
effect size estimation are required to stabilize the theory’s nomological network. 

However, the probably most important question to answer is the development of trust in long-
term use of automated vehicles and the possible development of complacency. In longitudinal 
studies, researchers now need to investigate how trust in automation develops in day-to-day use, 
especially over a longer period of time. The study’s results and Brown’s Tesla accident mentioned 
in the beginning emphasize the urgency of this research question. Section 9.7 provides a broader 
discussion of this issue as well as recommendations on suitable methods. 

9.2 What is the influence of age in automated driving? 

Aging influences information processing in the model of Wickens et al. (2016) at every stage and 
in each component (Anstey et al., 2005; Bryan & Luszcz, 2000; Der & Deary, 2006; Miller et al., 
2016; Salthouse, 2009). However, we found no significant difference in the take-over performance 
between younger (≤ 28 years) and elderly (≥ 60 years) drivers. It seems that an age-related cognitive 
decline measured in laboratory tasks does not invariably translate into a functional decline of 
everyday performance (Green, 2000; Park & Gutchess, 2012; Wickens & McCarley, 2008). 
Laboratory tests are set in a very controlled environment that provides the sensitivity to detect 
differences that might be washed-out in naturalistic settings by confounding factors such as 
strategies, experience, and expectancy. Although everyday tasks and situations may at first appear 
to be cognitively demanding on first sight, the majority of driving tasks is immensely well-trained 
and, hence, handled by automatic rather than conscious effortful processing (Schneider & Shiffrin, 
1977). Moreover, to compensate the effects of aging, elderly people develop task-related strategies 
such as prioritizing one task in a multi-task situation or taking notes in memory-heavy tasks 
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(Andrews & Westerman, 2012; Wickens & McCarley, 2008). By this tactical compensation, they 
allow themselves more time to react to events and to make driving-related decisions (Andrews 
& Westerman, 2012). For example, elderly drivers drive more slowly (Hakamies-Blomqvist, 1998) 
and choose bigger gaps at junctions (Middleton, Westwood, Robson, & Kok, 2005). Elderly drivers 
also avoid driving conditions and traffic situations that do not suit their abilities (Baldock, Mathias, 
McLean, & Berndt, 2006; Molnar & Eby, 2008). It is imaginable that any potential difference in 
cognitive functioning could have been neutralized by compensational strategies and experience. 

The results also have to be interpreted in light of the potential confound trust in automation. 
Previous studies gathered weakly informative, mixed support for a relationship between age and 
trust in automation (Gold, Körber, Hohenberger, Lechner, & Bengler, 2015; Ho, Wheatley, & 
Scialfa, 2005; Sanchez, Fisk, & Rogers, 2004). Surveys on automated driving have reported a slight 
tendency of elderly towards having a more negative attitude towards automated driving (Abraham 
et al., 2018; Payre, Cestac, & Delhomme, 2014; Schoettle & Sivak, 2016). Their attitude towards 
technology, in general, seems to be more negative (Ellis & Allaire, 1999), however, the relationships 
seem to very complex with multiple moderating and mediating variables present (Czaja et al., 2006). 
Hoff and Bashir (2015) suggest that people of different ages could employ different strategies in 
their analysis of the trustworthiness of an automated system, while the specific effect of age may 
vary according to the context. Donmez, Boyle, Lee, and McGehee (2006) also state the effect of 
age may strongly depend on the type of technology assessed. Furthermore, individual age is 
confounded with the expertise with a technology, which in turn is related to trust (Rudin-Brown 
& Parker, 2004). If older drivers, compared to younger drivers, differed in their trust in automation 
and their attitude towards driving automation systems, they might have handled the take-over 
situation more seriously and with greater attention. Moreover, it is imaginable that, given their more 
skeptical view on automated driving, the elderly participants could also have taken the driving 
simulator experiment more seriously than the younger drivers. It is imaginable that this potential 
difference in trust in automation and attitude towards technology could have neutralized any 
existing difference in take-over performance.  

Despite this, the results seem to suggest that the driver’s age has no relevance in automated 
driving. This finding is in line with other studies that used different scenarios (Naujoks, Purucker, 
Neukum, Wolter, & Steiger, 2015; Petermann-Stock et al., 2013) and has since been conceptually 
replicated in a more recent study (Clark & Feng, 2017). One can therefore quite certainly state that 
age does not seem to influence take-over time in driving simulator studies in similar, yet slightly 
different conditions. The question is to what extent the results can be generalized. Is the conclusion 
“age has generally no influence” valid? This depends on the external validity of a study. The external 
validity is “the extent to which the results of research or testing can be generalized beyond the 
sample that generated them” (VandenBos, 2015, p. 402). High external validity means that a 
relationship that has been demonstrated in one specific research setting can be obtained in other 
settings, at different times, with a different sample, or different research procedures (Brewer & 
Crano, 2014). Many textbooks underline the limits of the generalizability of results regarding the 
sample of participants and the inference from a sample to a population (Hammond, 1986). For 
example, if a study has been conducted solely with male participants, the results may not generalize 
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to female participants (VandenBos, 2015). It is debatable if the results of this study generalize to 
the whole population of elderly drivers since the cognitive decline is highly variable in its degree 
and depends on personal lifestyle, experiences, and genetics (Deary et al., 2009; Hultsch et al., 2002; 
Morse, 1993). High inter-individual variability in these factors consequently leads to a variability in 
the cognitive functioning as well. Not aging per se seems to cause an increased crash risk but a 
decline in particular abilities (Hakamies-Blomqvist, 1998). Same-aged participants may thus differ 
strongly in their performance. Given this high variability, it has to be taken into account that the 
participants in this study were volunteers who probably considered themselves fit enough to 
perform a novel task in a driving simulator. The sample may therefore not represent a random 
sample of the whole population of elderly drivers but a random sample of the population of elderly 
drivers who are affine to technology and who think of themselves as cognitively fit. This sample 
bias may skew the difference between younger and elderly drivers. Taken together, these results 
allow the conclusion that no significant difference among cognitively fit elderly and younger drivers 
exists, but they do not guarantee this statement to be valid for the whole population of elderly 
drivers. At the same time, a non-significant mean difference does not imply that a small proportion 
of elderly with high cognitive decline can still safely interact with a driving automation system – in 
the end, it is merely an average difference.  

Another limitation stems out of the fact that the non-significant difference was observed in a 
driving simulator under highly controlled conditions. This limits the interpretation of the results in 
two ways. Firstly, previous research has confirmed relative validity for certain tasks in high fidelity 
driving simulators such as the driving simulator used in this study. That means that the drives in a 
simulator and on-road produce values similar in magnitude and with the same sign (Blana, 1996; 
Mullen, Charlton, Devlin, & Bédard, 2011). But this validity is specific to each task and condition. 
Brunswik (1956) stresses that not only the sample but also the conditions of the experiment must 
be representative of the context that the researcher wants to make inferences about. He sees 
ecological validity, the degree to which experimental conditions are representative of conditions in 
the real world, as a crucial fundament for external validity. Designing situations that are convenient 
to analyze or produce a large effect but are atypical for the individual, here the driver, lowers the 
ecological validity. Low ecological validity may create clear findings that are nevertheless not 
observable outside of the experiment. The focus on high internal validity may sometimes come at 
the expense of external validity, the generalizability of a causal relationship beyond the conditions 
under which it was studied or observed. It is crucial in the design of an experiment to always 
consider its relevance regarding conditions beyond the laboratory setting. The experimenter should 
know and understand the corresponding real-world context and tasks which should lead the design 
of the experiment (Wickens et al., 2016). Otherwise, researchers end up “with results confined to 
a self-created ivory tower ecology” (Brunswik, 1956, p. 110). A driving simulator provides limited 
ecological validity because, contrary to a naturalistic drive, risk and real consequences are absent, 
which may result in riskier behavior. For the majority of participants, driving with an automated 
vehicle constitutes a novel situation contrary to the routine that is inherent in the vast majority of 
drives. Furthermore, participants know that they are monitored and may be extra-motivated or act 
socially desired (Kircher, 2007). We implemented realistic take-over situations and an NDRT that 
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emulates a phone call. The driving simulator was a high-fidelity mockup and the experimental track 
was a realistic highway drive, which is the most likely scenario for the first deployment of a driving 
automation system. At the beginning of the experiment, participants were instructed to obey traffic 
rules and to ensure safe driving at any time. We believe that the participants’ behavior and 
perception did not substantially differ from a naturalistic drive and that meaningful results were 
obtained. Therefore, the experimental design itself exhibited sufficient ecological validity. 
However, the experiment still comprised a very controlled situation which differed from a 
naturalistic drive in some aspects. For example, the drivers were prompted to engage in the NDRT 
throughout the whole experimental drive. This has to be taken into account regarding the 
generalizability of the results. 

Secondly, an experiment itself can also be thought of as a sample, namely, a sample of behavior. 
Again, the characteristics of the sample determine the population to which it can be inferred 
(Hogarth, 2005). The interpretation and generalizability of findings also depend on the stimuli and 
the conditions of the experiment (Fiedler, 2011), which are also just a sample of the population of 
relevant conditions or possible stimuli. Just like the sample of participants determines the 
population to which the results can be inferred, the sample of conditions also limits the conditions 
to which the results generalize. The stimuli should be representative of a defined population of 
stimuli, for example in terms of their number, distribution etc. To obtain ecological validity, a 
researcher must use stimuli that are representative of the natural stimuli to which the experimenter 
wishes to generalize (Dhami, Hertwig, & Hoffrage, 2004). The conditions of the take-over situation 
in this experiment were far from optimal: Different traffic densities and an NDRT were 
implemented. Both age groups did not differ in their take-over time and suffered from higher 
traffic densities to the same extent. Still, to generalize this finding universally to all possible 
conditions would be too big of a leap. It is conceivable that younger drivers’ capabilities were not 
exhausted to the full extent in the take-over situation while elderly participants were already 
operating at their limits. With increasing experience, driving becomes a more and more automated 
task, which is known to be executed with minimal cognitive effort (Schneider & Shiffrin, 1977). 
Experience compensates for differences in the driving ability in routine situations, but differences 
appear in novel situations (Baltes, Staudinger, & Lindenberger, 1999). Elderly drivers are 
overrepresented in crashes occurring from complex situations, such as junctions, where self-paced 
task performance is not possible (Andrews & Westerman, 2012). If the conditions get worse – a 
shorter take-over time or a more complex response may be required – differences between the 
groups may appear. For example, in the study of Bélanger, Gagnon, and Stinchcombe (2015), 
elderly drivers showed a higher crash risk than younger drivers when a critical event required 
multiple synchronized reactions. 

In conclusion, this study, in combination with the other studies (Clark & Feng, 2017; Naujoks 
et al., 2015; Petermann-Stock et al., 2013), provides initial evidence that age does not have a 
significant influence on the take-over performance in a driving simulator. However, more evidence 
is needed to provide a clearer and more general conclusion. In addition, a naturalistic drive could 
confirm the ecological validity of the findings. The challenge now is to identify the reason for the 
contradiction between findings on cognitive decline and the study’s finding of no significant 
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difference between younger and elderly drivers in take-over time by eliminating competing 
explanations (Platt, 1964). Future studies should recruit a more diverse sample of elderly 
participants to rule out the effect of the mentioned sample bias. An implementation of more 
difficult or more elaborate scenarios, where a more complex decision or reaction is required, could 
test the hypothesized compensation strategies. Differences in trust or in attitudes can be measured 
by questionnaires and implemented as covariates.  

9.3 Dealing with non-significant results: Equivalence testing to accept the null 
hypothesis 

The data in Article 2 showed no significant difference between the two age groups; we did not 
reject the null hypothesis of no difference. What conclusion can be drawn? The p-value is only an 
indirect indicator of evidence against the null hypothesis and states how compatible the data are 
with it. It would be a fallacy to conclude that the groups are equal, i.e. no difference exists, based 
on an observed high (non-significant) p-value alone. The typical NHST procedure states a null 
hypothesis that is supposed to be rejected by the data. The reasoning then relies on modus tollens, 
denying the consequent. That means that if the null hypothesis is rejected, the complementary 
alternative hypothesis is accepted. If the data are not surprising enough, assuming the null 
hypothesis is true, we cannot accept the null hypothesis but only fail to reject. Because of this, a 
non-significant result cannot be taken as evidence for the null hypothesis. This is true because of 
several reasons (Greenland et al., 2016): Firstly, accepting the null hypothesis would ignore the 
principle “absence of evidence is not evidence for absence” (Oliver & Billingham, 1971, p. 5). The 
p-value can only state evidence against the null hypothesis but not for it. Insufficient evidence for 
a rejection does not imply sufficient evidence to accept the null hypothesis (Blackwelder, 1982). 
Secondly, the data may not be informative either for the null hypothesis or for the alternative 
hypothesis. Moreover, even if the null hypothesis is wrong, a p-value may be large because of a 
large random error term or another violated assumption. Thirdly, a large p-value merely states that 
the data are compatible with the null hypothesis, but many other alternative hypotheses may be 
equally or more compatible with the data (Wasserstein & Lazar, 2016). Fourthly, the high p-value 
only states that, given a certain sample size, the difference may not be large, but it is no evidence 
for a difference of zero (Greenland et al., 2016).  

After deciding to not reject, a Bayes factor (BF) could be calculated to quantify how sensitive 
the data distinguish the null hypothesis from the alternative hypothesis (Dienes, 2014; Rouder, 
Speckman, Sun, Morey, & Iverson, 2009). A BF is the ratio of the probability of the data given a 
null model to their probability given an alternative model and, by that, quantifies whether the data 
are more compatible with the null model or the alternative model (Körber, Prasch et al., 2018; 
Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017). The null model, in this case, would be 
no difference between the groups. A BF, contrary to a p-value, is able to obtain evidence for the 
null hypothesis and, thereby, can distinguish between uninformative results and results supporting 
the null hypothesis (Dienes, 2014). However, an alternative model has to be specified and 
implemented as prior distribution for the expected effect. Thus, the BF would tell us if the data are 



9 Where to go from here? General discussion, limitations, and future work 
 

55 

more compatible with a difference of 0 ms or with, for example, a normal distribution on an effect 
of d = 0.10. Hence, the results strongly depend on the chosen alternative hypothesis. If the aim is 
concluding that there is practically no difference, an equivalence test approach may be me more 
informative (Lakens, 2017). An equivalence test can be performed either by performing two one-
sided tests (TOST procedure) or by interval estimation – both procedures lead to the same 
conclusion. In this procedure, the null hypothesis of an effect size deemed relevant is supposed to 
be rejected. An equivalence region [−δ, δ] has to be proposed. It may be based on a consideration 
regarding effect sizes, for example a small effect of d = 0.10. Alternatively, theoretical 
considerations may guide the choice. For example, given a maximum test result of 100 score points, 
a difference of ± 3 score points in a test on mathematics ability may be deemed as practical 
irrelevant, i.e. indistinguishable and essentially the same ability.  

An equivalence region for the take-over time may be set to ± 300 ms, the approximate mean 
simple reaction time to a visual stimulus (Deary & Der, 2005). Thus, equivalence would be rejected 
when the groups differ more than the time it takes to react. Another equivalence boundary could 
be set from an accident related perspective. At a speed of 100 km/h on a highway, a vehicle would 
take 180 ms to drive 5 m. Thus, equivalence would be established if the distance between two 
entities of each group at the brake reaction point would be on average less than approximately 5 m. 
Interval estimation provides an illustrative way to investigate if the two age groups are equivalent 
regarding their take-over time. The procedure quantifies the uncertainty of a parameter estimation 
and thereby answers how sure we can be about the estimated mean difference. Interval estimation 
can be realized for this purpose in form of a frequentist confidence interval or a Bayesian credible 
interval. The possible results of an equivalence test are illustrated in Figure 14. If the interval 
boundaries of the difference are within the equivalence boundaries, equivalence is established (Case 
A and C). If not, we can conclude that we cannot tell if they are either different or equivalent with 
the given data – the data are inconclusive (Case D). More, informative data has to be gathered in 
this case. The confidence interval is the 90 % confidence interval based on the t distribution (Walker 
& Nowacki, 2011). The priors for the credible interval are similar to  

 
Figure 14. Possible results of a statistical test on equivalence and difference; 
adapted from Lakens (2017). 

Mean Difference

300 ms−300 ms 0 ms

Statistical result:

A A: Equivalent and not different

B B: Not equivalent and different

C C: Equivalent and different

D D: Not equivalent and not different

Equivalent



9.3 Dealing with non-significant results: Equivalence testing to accept the null hypothesis 
 

56 

Körber, Radlmayr, and Bengler (2016) and again scripts by Kruschke (2015) were used. For the 
estimation of the difference in take-over times ydiff, we chose generic, relatively uninformed, and 
robust prior distributions that are only minimally informed by the scale of the data. Each group 
mean μj was estimated with a normal prior distribution that was adjusted to the sample data. The 
group standard deviation σj was estimated with a broad flat uninformed prior with boundaries 
adjusted to the sample standard deviation. Take-over times of both groups yij were assumed to 
come from a t distribution with a mean μj, standard deviation σj, and normality parameter ν: 

μj ~ normal(mean(y), 1/(SD(y)·100)²) 
σj ~ uniform(SD(y)/1000, SD(y)·1000) 
ν ~ exponential(1/30) 
yij ~ t(μj, 1/σj2, ν) 

The estimated mean difference between the two age groups and their corresponding 90 % 
confidence intervals/credible intervals are listed in Table 2 and illustrated in Figure 15. Given an 
equivalence region of ± 300 ms or ± 180 ms, equivalence cannot be established in both cases. It 
follows that the mean difference in take-over time between both age groups is neither significant 
nor are the groups equivalent. That means the data of this study are inconclusive regarding the 
influence of age on take-over time. They do not provide sufficient evidence for a difference among 
younger and elderly drivers, but at the same time they do not allow the statement that the found 
difference is negligible. Taken together, what is the verdict on the influence of age on take-over 

Table 2 
Resulting confidence intervals and credible intervals for the mean difference in take-over 
times at different traffic densities 

 Mean Difference [CI] Mean Difference [CrI] 

Traffic Density 0 184 [−222, 589] 236 [−200, 640] 
Traffic Density 10 177 [−334, 688] 173 [−366, 698] 
Traffic Density 20 153 [−324, 630] 132 [−362, 631] 

 
Figure 15. Illustration of the resulting confidence intervals for the mean 
difference in take-over times at different traffic densities. 

 

TD 20

TD 10

TD 0

Mean Difference

300 ms−300 ms 0 ms
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times in this study? A statement of no influence of age would be premature not only because of 
the aforementioned methodological limitations but also because the data do not provide a 
conclusive answer: It is not possible to decide whether age influences take-over time by the data 
of this study alone. The recommendation here is to collect more data to arrive at a statistical 
decision. 

9.4 Can every phenomenon be studied in a driving simulator? Obstacles and lessons 
learned in studying vigilance 

The general notion that a passive monitoring role or long periods of conditionally automated 
driving lead to a vigilance decrement because of drowsiness has yet received mixed support in the 
literature (Feldhütter et al., 2018; Körber, Cingel et al., 2015; Schmidt et al., 2016). In Article 5, we 
investigated if the decrease in vigilance can be predicted by individual traits. To be precise, we 
investigated if a person’s ability to stay vigilant and their boredom proneness is related to an 
individual’s detection time of a malfunction of a driving automation system. The data showed no 
relationship between the predictors and the detection time. However, the general conclusion that 
there is no relationship between boredom proneness, vigilance ability, and detection time would 
be premature because of several reasons.  

Firstly, partly due to the small sample size, the confidence intervals for the predictors are wide 
– there is low certainty about the estimators. Secondly, multiple confounding influences inherent 
in the operationalization could have washed out any existing relationship. Performance of sustained 
attention in partially automated driving was operationalized as the detection time of a suddenly 
occurring malfunction of lateral control. This malfunction was realized in an extensive right curve, 
where, without lateral control, the vehicle slowly drifted out of the lane. There are several factors 
that may conflate the relationship between vigilance level and reaction time. It is imaginable that 
the participants differed in their response bias, as known from signal detection theory (Stanislaw 
& Todorov, 1999), i.e. the individual threshold to classify the deviance from the lane center as a 
malfunction. In other words, a certain deviation from the lane center might be alarming for some 
participants while for others it may seem to be in line with a regularly functioning driving 
automation system. Secondly, different trust in automation may have led to differing degrees of 
reliance, leading to different thresholds for an intervention. As described in Article 4, lower trust 
leads to more voluntary interventions.  

Thirdly, the current location of visual attention introduces a lot of error variance. Since the 
dependent variable was only measured at one point, there is no possibility to cancel out this random 
influence by performing multiple measurements. That might have drowned the relationship 
between the two predictors and the detection time in statistical noise.  

Fourthly, the implemented vigilance task was a fast-paced task that was based on the resource 
theory of vigilance (Helton & Russell, 2011). According to this theory, detection failures in vigilance 
tasks can mainly be attributed to participants’ depletion of their limited attentional resources. 
During a vigilance task, observers continuously make active discriminations between signal and 
noise with little to no opportunity for rest. By this, the limited attentional resources (Kahneman, 
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1973) deplete over time and a decline in performance follows. The stimulus rate of the vigilance 
task used in this study was set according to similar tasks to 50 trials per minute. It might very well 
be possible that this rate does not reflect the conditions that a driver encounters in partially 
automated driving. A typical highway drive in a partially automated vehicle lasts longer than the 
implemented task, but at the same time, the rate of stimuli (e.g., other road users) is probably lower. 
From this perspective, the vigilance test may not reflect the skills needed to stay vigilant during 
partially automated driving.  

Fifthly, the experimental drive of an automated driving study is typically the first or one of the 
first drives in a driving simulator for the participants. The novelty of driving in a driving simulator 
and the situation of taking part in an experiment make it difficult to induce a state of monotony 
and boredom. 

Taking these issues into account, the results of the study remain inconclusive on whether a 
decrement in vigilance can be predicted by the ability to sustain attention and boredom proneness. 
The recommendation regarding future research is to resolve the mentioned methodological 
problems. That means, for example, to implement a vigilance test that better reflects the activity 
partially automated driving. Also, a measure of vigilance has to be implemented that is less 
influenced by factors unrelated to vigilance such as an individual decision criterion, trust, or random 
error. Besides this, boredom proneness shows promise to play a meaningful role in automated 
driving apart from its potential effect on any performance measure. For example, studies on NRDT 
engagement could implement boredom proneness as a predictor of the onset and extent of 
engagement in an NDRT.  

The abovementioned recommendation provokes the question if every mentioned 
methodological issue is solvable. Given the idiosyncrasies of driving simulators, mentioned in 
Section 9.2, the question arises if such a state of low vigilance can be elicited in them at all. No 
daylight and lack of risk but also the novelty of a driving simulation and the knowledge of being 
monitored may skew physiological processes. Thus, the individual ability to sustain attention is 
difficult to study in this setting. More generally, which kind of psychological subject can or cannot 
be studied in a driving simulator? A driving simulator provides controllability, reproducibility, and 
standardization of scenarios (e.g., traffic, weather conditions). They provide extended options for 
data recording, while measurements are accurate and synchronized. Their virtual environment 
allows the investigation of critical situations without negative consequences for the participants (de 
Winter, Leeuwen, & Happee, 2012). But therein also lies an essential drawback: Driving simulators 
lack real consequences and actions are free of any risk. This is not the case in a real drive and, 
thereby, a driving simulator exhibits limited ecological validity, especially in studies involving an 
NDRT (Dhami et al., 2004). All of the reported studies in this thesis have been conducted in a 
high-fidelity driving simulator, which provides a high level of immersion. The behavioral validity 
of such a simulator has been shown for many human factors research questions and even for take-
over times (Eriksson, Banks, & Stanton, 2017). Although experiments on take-over time may 
exhibit certain external validity, the goal is not to draw conclusions about behavior in a simulator 
but behavior in real road traffic. Wickens et al. (2016) highlight the specific characteristic of data 
analysis in engineering psychology: Tightly controlled experiments such as those done in classic 
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experimental psychology may fail to provide the right answers. This may be because effects found 
in such an environment are probably washed out when the effect is studied in a realistic applied 
situation where many other more or less random parameters influence behavior. Kimball (1957) 
defined these possibly incorrect conclusions as an “error of the third kind”, “the error committed 
by giving the right answer to the wrong problem” (p. 134). Interaction with NDRTs, arousal, risk 
perception, or effects of long-term use may be completely different in naturalistic drives compared 
to simulator drives. For future studies, one has to first evaluate if the effect to be studied is 
significantly influenced by the difference between simulator and real drive. At the same time, 
current findings need to be replicated in naturalistic drives to estimate the ecologic validity of a 
driving simulator in such scenarios.  

9.5 Challenges in the statistical analysis of individual differences 

Just like a driving simulator cannot answer all research questions, it needs to be assessed if a one-
size-fits-all data analysis approach might also not give us all the answers we seek. The currently 
dominant paradigm of data analysis in the domain of human factors is NHST, which is suitable 
and informative for certain research fields or questions but may not be optimal or even unsuitable 
for others (Szucs & Ioannidis, 2017). Its suitability for research on individual differences in 
automated driving is limited because in many cases it does not ask the questions that we seek to 
answer. The (mindless) null ritual consists of setting up a null hypothesis of no difference or zero 
correlation (nil hypothesis) without a specification of a substantive alternative hypothesis or any 
specific predictions. If the null hypothesis is rejected, the research hypothesis is accepted 
(Gigerenzer, 2004). However, NHST only allows rejection of the null hypothesis but tells nothing 
about how much the data fit a certain alternative hypothesis (Szucs & Ioannidis, 2017). In fact, an 
actual difference of exactly zero between two samples is the exception rather than the rule (Cohen, 
1990), making a rejection of the null hypothesis the destruction of a mere strawman. By increasing 
precision or sample size (especially in large data sets), it is possible to reject almost any point 
hypothesis such as a hypothesis of exactly zero difference (Meehl, 1967). Based on the rationale to 
conduct applied research such as in human factors, the focus of engineering psychology does not 
lie on statistical significance but on practical significance. NHST may be unsuitable for this purpose 
because it tells nothing about the practical significance of an effect.  

Contrarily, a focus on effect size estimation directly evaluates if an effect is large enough to 
cause worry instead of asking about its mere existence. The principles of applied research also have 
to be reflected in the design of the experiments of human factors studies. Laboratory settings are 
of limited value if the effects cannot be generalized to applied settings. In the same way, mindlessly 
maximizing fit of a model to a data set as a surrogate for a theory with parameters chosen post hoc 
to maximize the fit creates a model that accounts for almost everything after the fact but its ability 
to make new predictions is questionable (Gigerenzer, 1998). A successful fit to observed data has 
to be shown to not simply be due to a highly flexible model; the variability of the data and the 
likelihood of other outcomes has to be taken into account as well (Roberts & Pashler, 2000).  
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NHST is mostly accompanied by an analysis of mean differences. But as laid out in this thesis, 
individuals may strongly differ in their information perception, processing, or resulting behavior. 
Thus, summary statistics and statistical tests alone cannot answer if an individual interacts with 
automation in a safe manner – “no single index should substitute for scientific reasoning” 
(Wasserstein & Lazar, 2016, p. 132). Reliance on a dichotomous reject/non-reject null ritual results 
at best in an incomplete understanding of human-automation interaction. Besides this, safety does 
not have to be ensured solely for the average user but also needs the examination of the full variety 
of participant behavior, distributions, outliers, and rare events. Rare events must not be treated as 
outliers but need to be investigated carefully. While the interaction with two different systems might 
not manifest in mean differences, the frequency of rare events could differ. The research of 
drowsiness in automated driving has further shown that drowsiness may develop in an automated 
drive but its onset and extent is highly variable. This thesis also showed that individual differences 
among drivers can decisively influence their interaction with automation. For this reason, a reliance 
on solely the sample mean may be misleading and uninformative to estimate the safety of 
automated driving. Estes (1956) reconciles both approaches in his recommendation: “The group 
curve will remain one of our most useful devices both for summarizing information and for 
theoretical analysis provided only that it is handled with a modicum of tact and understanding” 
(p. 134). All things considered, neither a focus on averages or groups nor a completely individual 
analysis of each participant is a viable analysis strategy. Both each answer research questions on 
their own and both should be consulted to answer human factors research questions. 

The recommendation derived from the results of this thesis is to accommodate the data analysis 
procedures to allow for an analysis of individual differences as well. That means to implement a 
holistic analysis using a toolbox instead of mindless one-size-fits-all analysis by the book. This can 
be accomplished by considering the whole distribution of observations – the central tendency (e.g., 
mean), extreme or rare values, percentiles and individual development in longitudinal designs. 
Dichotomous NHST decision may be substituted with effect size estimation combined with 
expressing uncertainty by interval estimation (Cumming, 2014; Kruschke & Liddell, 2018), 
quantification of evidence (Dienes & Mclatchie, 2018; Wagenmakers, Wetzels, Borsboom, & van 
der Maas, 2011), a strict distinction between exploratory and confirmatory research (Wagenmakers 
et al., 2012), and a focus on practical relevance/significance (Radlmayr, Körber, Feldhütter, & 
Bengler, 2016). A further discussion is provided in the complementary articles in Section A3 of the 
appendix. 

9.6 Users adapt to automated driving (to a certain extent) 

Adaption and learning are well-known and fundamental psychological processes that appear within 
every experience and driving is no exception (Bubb et al., 2015). Consequently, with growing 
experience, drivers get better at driving (McCartt, Mayhew, Braitman, Ferguson, & Simpson, 2009). 
This is also visible in take-over data: In Article 2, the take-over times decreased from the 3.70 s in 
the first take-over situation to 2.80 s in the last take-over situation. But the drivers do not only learn 
to perform a take-over, they also adapt their multitasking behavior. Article 3 contained five take-
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over situations where the participants were engaged in an NDRT while driving conditionally 
automated. In the course of the five situations, the mean take-over time decreased from 737.17 to 
−1687.53 ms (i.e. before the TOR was even issued). 

However, this adaption seems to have limits. We split the sample into four quartiles depending 
their multitasking ability. After experiencing two take-over situations, the means of the first, 
second, and third quartile do not differ anymore; the drivers adapted to the multitasking situation. 
The fourth quartile, the worst multitaskers, still remained at a constant mean difference of about 
1689 ms in take-over time to the other three quartiles throughout all take-over situations. Thus, all 
drivers reacted faster, but a stable performance difference still persisted. The results are consistent 
with an adaption in NDRT task management strategy but also highlight that even after changing 
the strategy, stable individual differences in the ability remained. Thus, we need to realize and then 
work on two things. First, the results show that drivers started with different strategies for engaging 
in the NDRT. Future studies need to identify predictors of the choice of strategy, such as risk 
preference, trust in automation, or the presentation of an automated system. Second, even if certain 
drivers adapt their strategy, they do not reach the same multi-tasking performance as others. Future 
work needs to reinforce the evidence and to work out other potential stable performance 
differences as well as their variation according to different contexts. 

Albeit the correlation coefficients between the multi-tasking test results and take-over time 
decrease after the second take-over situation, they are still at a very high level compared to other 
relationships in individual differences research. Studies on individual difference generally do not 
obtain effect sizes as large as other subdomains of automated driving research such as HMI design. 
For example, Gignac and Szodorai (2016) derived effect size guidelines for individual difference 
research based on meta-analytically acquired correlations and suggest considering a correlation of 
only r = .29 as the benchmark for a large effect. At the same time, small samples are more 
vulnerable to over-fit (Gelman & Carlin, 2014). The study, therefore, provides substantive initial 
evidence, still, it should be replicated with a larger sample to obtain more precise effect size 
estimates. Likewise, the use of a more modern data analysis method such as a mixed-effect model 
is recommended (Bates, Mächler, Bolker, & Walker, 2015). While the implemented multitasking 
test exhibits a high face validity, the underlying mechanisms causing participants to differ in their 
test performance can yet only be hypothesized (see Section 6.1). The recommendation regarding 
future research here is to not only replicate the finding but also to position it in the current theories 
on multitasking performance by deriving and testing hypothesized causal mechanisms. 

What is more, Article 3 highlights that switch costs as a result of multitasking inhere a substantial 
potential for the design of the take-over process. The study’s results suggest some 
recommendations on how the design of an HMI and TORs may facilitate the take-over process by 
reducing switch costs and by supporting the shift of attention. Individuals are generally better at 
detecting and reacting to an object if they know in advance something about its features, such as 
its location or motion (Corbetta & Shulman, 2002; Dosher & Lu, 2000; Posner et al., 1980). Based 
on this, directional warnings can prompt an overt or covert shift of attention towards a hazard, for 
example by emitting the TOR from the hazard’s direction. Indeed, directed warning signals have 
already been shown to reduce reaction times to hazards (Weller et al., 2011). A cue could also 
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provide an evident indication of what action should be performed since a response to a stimulus is 
quicker when a participant knows in advance what movement they have to make (Abrams & 
Jonides, 1988; Allport, Styles, & Hsieh, 1994; Arbuthnott & Woodward, 2002; Corbetta 
& Shulman, 2002; Rosenbaum, 1980). This approach could also be combined with a directional 
cue: The Simon effect (Simon & Rudell, 1967) describes that the reaction time to a stimulus is 
lower if the location of the stimulus corresponds to the location of the required response 
(VandenBos, 2015). 

9.7 Users (could) maladapt to automated driving 

The abovementioned study has shown that drivers learn and adapt in the interaction with 
automation. Consequently, the take-over time reduces with repeated experience of a take-over 
situation (Körber, Gold et al., 2016; Körber, Weißgerber et al., 2015). But this does not reflect the 
complete big picture: Human-automation interaction represents the paradoxical situation that users 
may deliver worse performance with increasing experience. Behavioral adaption is already known 
from studies on ADAS, in particular on ACC (Hoedemaeker & Brookhuis, 1998; Mahr & Müller, 
2011; Rudin-Brown & Parker, 2004). While participants behave according to instructions in single 
drives in experiments, long-term use can drastically differ in terms of risky behavior and rule 
obedience (Mahr & Müller, 2011). Many current studies investigate the interaction with a driving 
automation system only in a single drive. But complacent behavior does typically not come up 
within the first interactions but after prolonged exposure to a reliable system (Parasuraman 
& Manzey, 2010). The usual development of trust reflects a steady increase until a certain high and 
stable level (Beggiato et al., 2015). If a system performs on a very high level of reliability, users 
could build up over-reliance and interact with automation in ways not intended by design. High 
reliability may lead to complacency, as mentioned in Section 7.4, which describes reduced 
information sampling and verification of the automated system’s decisions and recommendations 
(Bahner et al., 2008; Parasuraman & Manzey, 2010). 

Accordingly, Article 4 has shown that higher levels of trust are associated with less monitoring 
and lower take-over performance. There is also already initial anecdotal evidence for this process 
in automated driving: Brown, the aforementioned Tesla driver whose accident was narrated at the 
beginning, built up so much trust in Autopilot (“The car’s doing it all itself”) that he allegedly 
started to watch a movie when he was actually responsible for monitoring the system. Likewise, 
false alarms may promote maladaptive behavioral adaption: A high number of false alarms reduce 
compliance to alarms and lead to a cry wolf effect where the user starts to ignore warnings or at least 
reacts to them very slowly, for example after finishing another task (Dixon & Wickens, 2006).  

The results of Article 3 provide empirical support for this notion of behavioral adaption to a 
driving automat system, as well as the evolution and development of strategies for attention 
allocation. Brown’s accident provides anecdotal evidence for its potential hazardous consequences. 
The task is now to investigate how drivers adapt to automated driving in long-term day-to-day use. 
The recommendation is to widen the focus from cross-sectional studies to longitudinal studies to 
investigate drivers’ long-term adaption to a driving automation system. This could be realized either 
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in repeated experimental drives, long-term field operational tests, or by interviews and 
questionnaires on usage patterns. 

9.8 Automation is neither good nor bad in itself 

Implementing automation in itself is neither a good nor a bad decision – the deciding factor is how 
it is implemented. The introduction of automation in other domains has shown that the economic 
and safety benefits are often accompanied by novel problems. Automation can enhance 
performance and make us smart, or degrade performance and make us dumb (Christoffersen 
& Woods, 2002; Norman, 2003). A higher degree of automation is not simply more of the same; 
each degree represents a human-machine system on its own, reflecting a qualitative change in the 
interaction (Bengler, Winner, & Wachenfeld, 2017). Human and automated system are not 
independent: Implementing automation alters the quality of the interaction, the operator’s role and 
responsibilities, and the nature of the cognitive demands. To argue that we can overcome these 
novel problems with simply more automation ignores the fact that technology cannot be 
considered independent of its human users (Christoffersen & Woods, 2002; Sarter et al., 1997). 
Hence, a driver-centered perspective is a key requirement for the introduction of automated 
vehicles. Implementation of a driver-centered design approach requires an understanding of the 
capabilities, vulnerabilities, and idiosyncrasies of both driver and driving automation system in the 
context of different tasks and situations (Drnec et al., 2016). This issue is especially pronounced in 
automated driving, where future users are not a homogenous group of screened and trained experts 
but a heterogeneous group of laypeople. 

The results of this thesis empirically support this point of view: The studies systematically 
revealed that individual differences among drivers can have a safety-relevant influence on their 
interaction with a driving automation system. This highlights the importance of a driver-centered 
perspective in the design of automated vehicles. The driver-centered design process of vehicles 
must now recognize the safety-relevant influence of individual differences and, consequently, it 
must also comprise the design of the driving automation system. Articles 3 and 4 demonstrated 
that individual differences in trust and multitasking ability can crucially influence drivers’ allocation 
of attention and their reactions to critical events, which results in observable and serious 
consequences. This thesis hereby provides empirical support the recommendation to enrich 
technological considerations with driver-centered design. The implied recommendation is a 
cautious evidence-based development strategy that takes the drivers with all of their capabilities, 
vulnerabilities, and idiosyncrasies into account. Vice versa, in light of the findings of this thesis, a 
development process that solely relies on technical reliability may not suffice to ensure a safe 
introduction of automated vehicles to road traffic.  

The investigation of individual differences remains an important topic. First, because they can 
have serious consequences and, second, because it is difficult to deduce which individual difference 
really translates into such consequences. Article 2, despite our expectations, did not provide 
sufficient evidence for an effect of age on take-over performance. Not every difference among 
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drivers translates into an observable difference in their interaction with automation. This provides 
further support for a step-by-step evidence-based development process.  

As laid out in this discussion, the investigation of individual differences and drawing valid 
conclusions is challenging. The studies conducted as part of this thesis investigated individual 
differences in specific situations with a focus on the take-over process in a driving simulator. The 
aforementioned constraints imposed by the research setting somewhat limited the extent of the 
progress that has been possible in the scope of this thesis. Yet, when combined, these small steps 
led to a better understanding of individual differences in the interaction with automation. As Cy 
Levinthal once remarked:  

Well, there are two kinds of biologists, those who are looking to see if there is one thing that 
can be understood, and those who keep saying it is very complicated and that nothing can be 
understood. . . . You must study the simplest system you think has the properties you are 
interested in. (Platt, 1964, pp. 348–349) 
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Appendix 

A Complementary articles and methods 

Besides the articles that are included in this thesis, further research has been conducted. The 
following is a selection of work that shines a light on facets that are not in the main focus of this 
thesis or that has laid the methodical foundations of the included articles.  

A1 “Why do I have to drive now? Post hoc explanations of take-over requests” 

Körber, M., Prasch, L., & Bengler, K. (2018). Why do I have to drive now? Post hoc explanations 
of takeover requests. Human Factors: The Journal of the Human Factors and Ergonomics Society, 60(3), 
305–323. https://doi.org/10.1177/0018720817747730 

In this work, we conducted further research on trust in automation and investigated if trust in 
automation and acceptance can be increased by providing an explanation for take-over requests. 
The concept of automated driving is a novelty for the majority of the driving population, which is 
why its acceptance is not directly guaranteed but has to be ensured (Payre et al., 2014). Whereas 
flawless system performance may be sufficient from a technical point of view, a driving automation 
system’s functionality must be understood and valued by the drivers to establish its acceptance and 
use (Adell et al., 2014; van der Laan, Heino, & de Waard, 1997). According to Ghazizadeh et al. 
(2012), trust determines how the operator’s beliefs and external variables affect the perceived 
usefulness and ease of use of an automated vehicle. It also has a direct effect on the behavioral 
intention to use automation. Thus, trust in automation is a necessary condition that has to be 
established before a system will be accepted. In comparison to ADAS, a driving automation system 
is a more sophisticated technology, which entails an increase in autonomy and authority 
(Parasuraman et al., 2000). Such a complex machine agent requires more coordination than a simple 
ADAS function and an adequate model of the automated system’s intentions and actions (Norman, 
1990; Sarter, 2008). Otherwise, the increase in autonomy and authority creates “mysterious and 
obstinate black boxes” (Christoffersen & Woods, 2002, p. 4). Thus, to ensure trust in automation, 
it is crucial to provide drivers with comprehensible information regarding the automated system’s 
intentions, state, and capacity in order to help them understand and to make the system predictable. 
Promoting predictability, understanding, or transparency has been shown to increase trust in 
automation in several studies (Forster, Naujoks, & Neukum, 2017; Hoff & Bashir, 2015; Verberne, 
Ham, & Midden, 2012). An explanation also helps to prevent automation surprises (Sarter et al., 
1997) and concomitant negative emotional reactions, which are known to reduce acceptance. In 
this context, we investigated whether providing an explanation for a take-over request in automated 
driving increases understanding and system transparency and, in doing so, trust in automation and 
acceptance. 

Forty participants were equally assigned to either an experimental group, which received an 
explanation of the reason for a take-over request, or a control group without explanations. In a 
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simulator drive, both groups experienced three take-over situations that varied in the obviousness 
of the cause for the take-over request. The participants rated their trust in automation before and 
after each take-over situation and rated their acceptance before and after the experimental drive. 
All participants reported the same high level of acceptance before and after the drive and we found 
no evidence for a difference between both groups. Trust ratings remained unchanged by take-overs 
in all but a single situation. Participants provided with explanation felt stronger that they had 
understood the system and the reasons for the take-overs. While the explanations had no systematic 
effect on trust in automation or acceptance, the increase in system transparency by providing 
explanations seems to have been successful. 
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A2 “Vigilance decrement and passive fatigue caused by monotony in automated 
driving” 

Körber, M., Cingel, A., Zimmermann, M., & Bengler, K. (2015). Vigilance decrement and passive 
fatigue caused by monotony in automated driving. Procedia Manufacturing, 3, 2403–2409. 
https://doi.org/10.1016/j.promfg.2015.07.499 

The model of May and Baldwin (2009) describes passive fatigue as the opposite of active fatigue. 
Unlike active engagement, task underload and monotony are seen as the cause of fatigue effects 
such as a reduced attentional capacity or increased reaction times (Matthews & Desmond, 2002; 
Saxby, Matthews, Warm, Hitchcock, & Neubauer, 2013; Young & Stanton, 2002). Schmidt et al. 
(2009) empirically investigated the effect of passive fatigue in a naturalistic setting. In their study, 
they examined the effect of a 3 h monotonous highway drive on driver’s vigilance and drowsiness. 
Besides an increase in subjective and objective indicators of drowsiness, reaction times increased 
during the drive. The passive monitoring role in partially automated driving (Level 2; SAE 
International, 2016) could constitute an even more monotonous situation since the driver’s only 
task is to monitor the system and to intervene in case of an event. In this work, we investigated the 
decrement of vigilance during a partially automated highway drive with 20 participants driving in a 
driving simulator for 42 min. Indicators for the vigilance state were a self-developed auditory 
oddball paradigm, eye tracking, and a mind wandering questionnaire (Matthews, Joyner, Gilliland, 
Huggins, & Falconer, 1999). We found no significant effects of time-on-task on the reaction times 
in the oddball task but a significant increase of drowsiness indicated by three of four eye tracking 
measures (blink frequency, blink duration, pupil diameter). Also, subjectively reported mind 
wandering increased in the course of the drive. Altogether, the results show that fatigue can occur 
even without active task engagement. Yet, future studies have to clarify its consequences on 
reaction time and reaction quality in critical events. 
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A3 Articles on statistical methods 

Körber, M., Radlmayr, J., & Bengler, K. (2016). Bayesian highest density intervals of take-over 
times for highly automated driving in different traffic densities. In Proceedings of the Human 
Factors and Ergonomics Society (HFES) 60th Annual Meeting 2016 (Vol. 60, pp. 2009–2013). 
https://doi.org/10.1177/1541931213601457 

Radlmayr, J., Körber, M., Feldhütter, A., & Bengler, K. (2016). Methoden und Fahrermodelle für 
Hochautomatisiertes Fahren [Methods and driver models for highly automated driving]. In K. 
Kompaß (Ed.), Haus der Technik Fachbuch: Band 144. Methodenentwicklung für aktive Sicherheit und 
automatisiertes Fahren. 2. Expertendialog zu Wirksamkeit - Beherrschbarkeit - Absicherung. Renningen: 
expert Verlag. 

Körber, M. (2016). Einführung in die inferenzstatistische Auswertung mit Bayes-Statistik 
[Introduction to inferential statistics with Bayesian statistics]. Ergonomie aktuell, 017, 27–33. 

Besides empirical studies in the field of human factors, several articles on statistical methods have 
been published in the context of this dissertation. These articles describe the rationale for the 
advancement in statistical methods used in the articles of this thesis. While the early articles, Article 
3 and 5, solely rely on NHST, Article 2 constitutes a shift to more informative ways of analysis in 
form of effect size estimation and interval estimation. Reliance on NHST promotes a dichotomous 
in data analysis: significant result or non-significant result (Szucs & Ioannidis, 2017). This practice 
is especially uninformative if a nil hypothesis of zero difference is tested. Moving on to estimating 
the magnitude of an effect (raw or standardized) promotes a focus on the actual effects obtained 
and the precision of the estimates (Cumming, 2014). Article 4 represents a switch to Bayesian data 
analysis. Here, we relied on Bayesian parameter estimation to quantify the uncertainty in the 
parameter estimates. For hypothesis testing, we relied on BFs, which are defined as the ratio of the 
probability of the data given a null model to the probability of the data given an alternative model 
(Kruschke, 2015; Rouder et al., 2009). The ratio, thus, quantifies whether the data are more 
compatible with the null or the alternative model and provide a continuous form of evidence either 
for the null hypothesis or the alternative hypothesis (or neither; Dienes, 2014; Schönbrodt et al., 
2017). 
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A4 Theoretical considerations and the development of a questionnaire to measure 
trust in automation2 

An empirical investigation of the role of trust in automation in automated driving necessitates a 

measurement of trust in automation. Trust in automation is a latent construct, which is not directly 

observable; thereby, researchers rely on indicators such as neuroscientific methods (Drnec et al., 

2016), behavioral measures (e.g., eye tracking; Hergeth et al., 2016), or questionnaires (Jian, Bisantz, 

& Drury, 2000; Madsen & Gregor, 2000). Trust in automation and reliance on automation are 

closely related: “People tend to rely on automation they trust and tend to reject automation they 

do not” (Lee & See, 2004, p. 51). Yet, trust in automation and reliance on automation are at the 

same time distinct constructs. In their theory of reasoned action, Ajzen and Fishbein (1980) argue 

that behavior, such as reliance, results from an intention and that this intention is a function of 

attitudes, which in turn are an affective evaluation of beliefs. Trust in automation as an attitude, 

thus, stands between the belief about the characteristics of an automated system, such as its 

reliability, and the intention to rely on it. Attitude, intention, and actual behavior are not in a 

deterministic but in a probabilistic relationship (Ajzen & Fishbein, 1980). Whether trust translates 

into reliance behavior depends on a dynamic interaction of operator, automation, situational 

factors, and interface (Lee & See, 2004). As a result, other factors, such as the effort to engage or 

self-confidence, also affect the intention to rely on an automated system (Bisantz & Seong, 2001; 

Dzindolet, Beck, Pierce, & Dawe, 2001; Kirlik, 1993; Lee & See, 2004; Meyer, 2004). 

Environmental and cognitive constraints, such as time pressure, then determine whether a formed 

intention translates into actual reliance on automation. Even if trust is at a high level and the 

automated system is perceived as capable, reliance does not necessarily follow (Kirlik, 1993). Figure 

16 from Lee and See (2004) provides a notable overview of the relationship between trust in 

automation and reliance. That means, to measure trust as an attitude itself, a questionnaire or 

another similar methodology that is distinct from observable risk taking is necessary (Mayer et al., 

1995). Furthermore, the conceptualizations of trust in automation refer to the construct as an 

attitude (Lee & See, 2004), a mainly affective response closely related to beliefs and expectations. 

Affective responses are not always accompanied by overt behavior. For example, students with 

and without math anxiety may behave the same way during a math test even though their internal 

state differs (McCoach, Gable, & Madura, 2013). An affective response is, thereby, probably only 

completely accessible through self-report (Paulhus & Vazire, 2007). A questionnaire, therefore, is 

an attractive method to measure trust in automation.  

                                                 
2 Parts of this section have been published in Körber (2019). 
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Figure 16. The model of the evolution of trust and its relationship to reliance 
from Lee and See (2004). 

A literature review of available questionnaires on trust in automation revealed that the 
questionnaires comprise single-item as well as multi-item scales. Single-item scales allow a quick, 
uncomplicated measurement such as a dynamic assessment during an experiment. However, these 
instruments also have some drawbacks. Dimensions and models of trust have been extensively 
discussed, resulting in a variety of facets and concepts (Lee & See, 2004). It is questionable whether 
the broadness and depth of this construct can be captured by a single questionnaire item. In 
contrast, multiple, heterogeneous indicators (= questionnaire items) enhance construct validity by 
increasing the probability of adequately identifying the construct (Eisinga, Grotenhuis, & Pelzer, 
2013). The items of a scale should hold a common core but also contribute unique variance not 
shared and untapped by other items (Churchill & Peter, 1984). Consequently, Fuchs and 
Diamantopoulos (2009) do not recommend single-item scales if the construct in question is 
abstract. Likewise, a single item does not allow for a detailed analysis of the underlying reasons for 
a favorable or non-favorable trust score. Is the machine perceived as unreliable? Does a participant 
simply not trust a certain brand? It is not possible to give an answer with a single item scale. 

Furthermore, single-item scales are more vulnerable to random measurement error because 
random errors cannot be canceled out by the remaining items like in a multi-item scale (Emons, 
Sijtsma, & Meijer, 2007). The first axiom of classical test theory (CTT) claims that the true score τvi 
can be estimated by the expected value of multiple measurements of a participant v of item i: 
τvi = E(xvi). Given (essentially) tau-equivalent items, each of these on their own is a measurement 
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of the latent construct. The second axiom states that the obtained score, i.e. the item responses, 
which are meant to represent the latent construct, of a participant v at item i, xvi, is a combination 
of the true score τvi and a random measurement error εvi (Zedeck, 2014). Thus, with multiple 
measurements, random measurement error occurring at each measurement is canceled out and the 
true score is the expected value of the multiple measurements. In this way, the measurement gains 
precision with each added item. In contrast, the estimation of the true score is not possible with 
just a single item. Shorter tests possess a lower reliability because of higher measurement error 
(Bühner, 2011; DeVellis, 2006; Moosbrugger & Kelava, 2012; Robins, Hendin, & Trzesniewski, 
2001).  

Moreover, the items of a questionnaire generally represent a random selection from all 
hypothetically possible indicators of the construct (Nunnally & Bernstein, 1994). Using multiple 
items helps to cancel out errors due to specificities inherent in single items (Diamantopoulos, 
Sarstedt, Fuchs, Wilczynski, & Kaiser, 2012). Single-item scales are correspondingly more 
susceptible to unknown biases in meaning and interpretation (Hoeppner, Kelly, Urbanoski, & 
Slaymaker, 2011): If a single item is misunderstood, the validity of the whole measurement becomes 
questionable. Due to respondents’ state dependence, an individual’s response pattern frequently 
carries over to the subsequent item. This is less problematic in multi-item scales because the 
remaining items can possibly compensate for this effect. If a scale consists of only one item, such 
carry-over effects can skew the response, lowering a measure’s (predictive) validity 
(Diamantopoulos et al., 2012). Furthermore, the estimation of the reliability, i.e. the precision of a 
measurement, is problematic with only a single item. Reliability is defined as the ratio of the 
variance of the true scores to the variance of the observed scores. Without measurement error, all 
variation in observed scores would be explained by variation in true scores. With a single item, it is 
not possible to calculate the variance of the true scores and, consequently, the measurement error 
and confidence intervals for a measurement as well. If items are (essentially) tau-equivalent, then 
the correlation between them can be used to estimate the reliability by calculating the internal 
consistency, Cronbach’s α (Bühner, 2011). With single items, however, the internal consistency 
reliability statistic cannot be computed (Hoeppner et al., 2011). That means the precision of a 
measurement remains unknown. Single-item scales have to use other forms of reliability estimation 
that might have drawbacks in the context of trust measurement. If the typical data analysis 
approach based on CTT is followed, multi-item scales offer the advantage that averaging over 
multiple items allows for a more granular range of possible resulting scores, which can be seen as 
an argument for measurement (of a continuous construct) on an interval scale level. Also, typically 
less skewed data is produced (Carifio & Perla, 2007). Because of these drawbacks, single item 
measures were discarded as an option to measure trust in the experiment. 

Jian et al. (2000) constructed a 12-item questionnaire following an inductive approach (Bühner, 
2011) not based on the hitherto existing theoretical models of trust. Seven graduate students 
majoring in Linguistics or English with unknown affinity to technology rated 138 words regarding 
their relation to general trust, human-human trust, and human-machine trust. No definition of 
these three constructs was given, but each student used his own definition, which were also used 
for word collection. It is unclear on which definition of trust in automation the questionnaire is 
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based or what construct it exactly claims to measure. Not reporting relevant statistics, the authors 
conducted a factor analysis and a cluster analysis on the relatedness of the generated words without 
evaluating the questionnaire in the interaction with an existing automated system. Items were then 
generated based on the emerged groups. Because ratings of trust were highly negatively correlated 
with ratings of distrust, the authors proclaim a unidimensional structure of trust. This structure has 
been questioned in a more recent analysis by Spain, Bustamante, and Bliss (2008), who used a not 
further specified “modified version” (p. 1337), and in the thorough analysis of their German 
adaptation by Pöhler, Heine, and Deml (2016). Following this notion, an individual could trust and 
mistrust an automated system at the same time. Nonetheless, others have found support for the 
assumption that trust and distrust form one dimension (Onnasch, Wiczorek, & Manzey, 2011). For 
example, the probably most cited definition of trust defines the construct as “the willingness of a 
party to be vulnerable to the actions of another party” (Mayer et al., 1995, p. 712). Following this 
definition, an individual would not be willing to be vulnerable and take risks at all if trust is 
completely absent (Schoorman, Mayer, & Davis, 2007). Both a complete absence of trust and 
distrust would mean the same thing. Regardless of dimensionality, it is questionable how well terms 
like friendship, honor, love, or steal can be evaluated in relation to an automated system. This content 
is probably included because of the process of item generation.  

The authors generated the questionnaire items based on terms that were collected at the same 
time regarding their assumed affinity to general trust, human-human trust, and human-automation 
trust. This led to the inclusion of terms that are probably more relevant to interpersonal trust and 
that require a malicious intent (e.g., phony, honor). Since the authors generated the item content based 
on these terms, the items also focus on this specific facet, for example deception. However, despite 
some similarities, interpersonal trust and trust in automation exhibit fundamental differences in 
their basis, development, and in the relationship between trustor and trustee (Hoff & Bashir, 2015; 
Madhavan & Wiegmann, 2007). One fundamental difference is that automation lacks intentionality 
(Lee & See, 2004). Although designers of automated systems develop it with a certain purpose, 
deception requires a malicious intent, which does not seem to fit perfectly in the context of 
thoroughly developed automated systems. The items mapped to terms related to distrust (item 1 
to 5) seem suitable for interpersonal trust measurement but may not completely match the context 
of human-automation trust. As a result, this lowers construct validity because of fuzzy construct 
boundaries. Moreover, albeit trust is assumed to be unidimensional by Jian et al. (2000), almost half 
of the items in their questionnaire are inversely/negatively formulated and all items are sorted by 
their relation to trust (items 1 to 5 negative, items 6 to 12 positive). This promotes item order 
effects (Elson, 2017), which might be another explanation for the better fit of a two-factor solution 
found by Pöhler et al. (2016). Given its focus on malicious intent, it was decided to discard this 
questionnaire. Another multi-item (25 items) questionnaire by Madsen and Gregor (2000) focuses 
on human-computer trust. However, their initial study did not support their theoretical model, 
which also includes the general appraisal of the system. For these reasons, this questionnaire was 
also discarded. As a consequence, it was decided to develop an entirely new questionnaire.  

The measurement of a latent construct such as trust requires the process of construct validation 
(Flake, Pek, & Hehman, 2017). In the substantive phase, the literature is reviewed, the construct is 
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defined and conceptualized, and its dimensions, boundaries, and structure are identified. For this 
purpose, theoretical discourses on trust in automation were screened along with empirical articles 
and articles with a stronger focus on interpersonal trust3. The most widespread and most cited 
model of trust is the dyadic model of organizational trust by Mayer et al. (1995), depicted in Figure 
17. Integrating previous theoretical accounts on trust, the parsimonious model differentiates trust 
from its contributing factors and its outcome, risk taking in a relationship. The authors argue that 
trust is only necessary in a risky situation or when having something invested. In this context, they 
define trust as  

the willingness of a party to be vulnerable to the actions of another party based on the 
expectation that the other will perform a particular action important to the trustor, irrespective 
of the ability to monitor or control that other party. (Mayer et al., 1995, p. 712) 

 
Figure 17. Illustration of the trust model from Mayer et al. (1995). 

According to their model, a person’s trust depends on two components, a person’s individual 
propensity or general willingness to trust others and the trustworthiness of the party to be trusted 
(trustee). A person’s trust propensity results from different developmental experiences, personality 
type, and cultural background and determines how much a person trusts a trustee prior to any 
knowledge of that particular party being available. The second component, the perceived 
trustworthiness, is determined by three relevant attributes of the trustee: 1) Ability: The level of 
skills, competencies, and characteristics that the trustee possesses and that enables him to have 
influence within a specific domain. 2) Benevolence: The extent to which a trustee is perceived to want 
to do good to the trustor and avoids egocentric motives. 3) Integrity: The extent to which the trustee 

                                                 
3 In this literature review, the following work was considered: Barber (1983), Blomqvist (1997), Butler and Cantrell 

(1984), Butler (1991), Deutsch (1958), Deutsch (1960), Dzindolet et al. (2001), Hoff and Bashir (2015), Hoffman, 

Johnson, Bradshaw, and Underbrink (2013), Jian et al. (2000), Lee and Moray (1992), Lee and See (2004), Madhavan 

and Wiegmann (2007), Madsen and Gregor (2000), Mayer et al. (1995), McKnight and Chervany (1996), McKnight 

and Chervany (2001), Muir (1987), Muir (1994), Muir and Moray (1996), Rempel, Holmes, and Zanna (1985), Rotter 

(1971). 
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consistently adheres to a series of principles that the trustor deems acceptable. Risk taking is then 
the behavioral manifestation of the willingness to be vulnerable, i.e. the outcome of trust.  

The increasing interaction with automated systems has sparked the interest of human factors 
researchers in trust in automation with the overall goal to improve joint system performance in 
mind (Drnec et al., 2016). Since interpersonal trust and trust in automation, as already mentioned, 
exhibit fundamental differences, the model from Mayer et al. (1995) does not completely apply to 
trust in automation. Taking this into account, Lee and See (2004) follow the model of trust by 
Mayer et al. (1995) but fit their dimensions to the context of trust in automation. They argue that 
previously found bases for trust in automation can be summarized into three dimensions, 
performance, process, and purpose, which correspond to the dimensions of trustworthiness in the model 
by Mayer et al. (1995), as illustrated in Figure 18. Performance refers to the current and previous 
operation of the automated system and comprises characteristics such as reliability, competency, 
and ability. Performance information describes what the automated system can do reliably and 
matches the attribute ability in Mayer et al. (1995). Process describes how the automated system 
operates and if this modus operandi is appropriate for the situation and the operator’s goals. It 
subsumes characteristics such as understandability and matches integrity in Mayer et al. (1995). 
Purpose describes the intention in the automated system’s design, the perception that the designers 
possess a positive orientation towards the operator, and the degree to which automation is used as 
intended by the designer. It corresponds to benevolence in Mayer et al. (1995). We follow the 
model from Lee and See (2004) but divide the three components into more detailed facets for item 
generation. Three underlying dimensions of trust in automation were postulated: 
Reliability/Competence, Understandability/Predictability, and Intention of Developers. As already mentioned, 
trust exhibits a stable individual component (see Section 7.3 for a detailed discussion). Individuals 
consistently vary in their general propensity to trust, depending on their developmental 
experiences, personality type, and cultural backgrounds. Additionally, not objective characteristics 
but a person’s subjective perception of a system’s characteristics determines trust in automation in 
the end (Lee & See, 2004; Merritt & Ilgen, 2008). We, therefore, added the individual component, 
Propensity to Trust, from the model of Mayer et al. (1995) as a moderator but also as a direct 
determinant of trust in automation. 

The model of Mayer et al. (1995) addresses interpersonal trust. While other human individuals 
may be perceived more or less as individuals, different driving automation systems seem to be 
perceived as a single technology (Schoettle & Sivak, 2014b). This increases the importance of prior 
familiarity because trust is thereby probably not evaluated again for each driving automation 
system. Familiarity is assumed to have an indirect influence on trust in automation. With increasing 
familiarity, operators form expectations, calibrate their trust, and eventually, their confidence in the 
evaluation of the attributes increases (Hergeth, Lorenz, & Krems, 2017). For example, if no 
unexpected failures occur, the confidence in the system’s reliability increases. As experience with a 
system grows, trust builds up until a certain level is reached (Beggiato et al., 2015). Taking this into 
account, Familiarity with an automated system was included as a moderator in the theoretical model. 
Figure 18 illustrates the complete model structure. Based on Mayer et al. (1995), we define trust in 
automation as 
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the attitude of a user to be willing to be vulnerable to the actions of an automated system based 
on the expectation that it will perform a particular action important to the user, irrespective of 
the ability to monitor or to intervene. 

 
Figure 18. Model of trust in automation based on the postulated dimensions 
by Mayer et al. (1995) and Lee and See (2004). 

Likert-scales are used as means of measurement. Measurement by Likert-scales is based on 
summative scaling, where respondents use a ranked scale to indicate their agreement with 
statements. The total score is obtained by summing the ratings of each statement. The goal is to 
combine the single item responses of an individual to obtain a total score that represents a reliable 
measurement – multiple Likert-type items form one coherent Likert scale (Hubley & Zumbo, 2013; 
Uebersax, 2006). The analysis of such a scale assumes a dominance response process, i.e. an 
individual exhibiting a high degree in the assessed latent trait is assumed to answer positively with 
high probability (Drasgow, Chernyshenko, & Stark, 2010). A 5-point rating scale ranging between 
1 (= strongly disagree) to 5 (= strongly agree) was chosen as the response format. Rating scales 
with a very fine-grained range, for example from 1 to 100 as in Brown and Galster (2004), offer a 
resolution that might be inadequate for the provided precision of the measurement, resulting in 
merely artificial precision. Furthermore, the self-report of trust is based on introspection. It is 
questionable whether the participants are able to access their trust by introspection with such a 
granularity as provided by the scale. Measurement, as defined by Krantz, Luce, Suppes, and Tversky 
(2007), is the process of mapping empirical relational structures onto numerical relational 
structures. A scale maps the relations of the empirical objects to numerical values. There are 
different classes of scales, which differ in how much information/relations between the empirical 
objects is mapped onto numbers. Such a fine-grained scale might map an empirical structure, which 
does not exist in this resolution, onto numbers with limited meaning. If such scales provide no 
anchor points, measurement at interval scale level is also even more problematic since equidistance 
between the rating scale points becomes even more questionable.  

We followed a deductive approach for the generation of items (Burisch, 1978) and constructed 
the questionnaire based on classical test theory (Moosbrugger & Kelava, 2012). An initial set of 
57 items was generated. Approximately one third of the items was inversely formulated to reduce 
response bias (e.g., acquiescence bias) and based on Likert’s notion that someone with a positive 
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attitude about the object should also disagree with negative statements. An online survey was 
conducted for item analysis. The participants watched two videos: 1) an explanation of the 
underlying technology of automated vehicles (10 min), 2) a conditionally automated highway drive 
(3 min). A total of n = 94 participants completed the survey, 32 participants were female (34.0 %), 
60 were male (63.8 %). The mean age was M = 35.60 years (SD = 14.60, ranging from 17 to 
71 years). Based on the criteria item difficulty, standard deviation, item-total correlation, internal 
consistency, overlap with other items in content, and response quote, 32 items were eliminated, 
leaving 25 items.  

The first validation was carried out in a subsequent online study. In a between-subjects design, 
a sample of n = 58 participants (age range 17 to 72, mean age M = 34.00 years, SD = 15.10, 58.6 % 
male, 37.9 % female) watched a video of a conditionally automated highway drive. Participants were 
randomly assigned to a reliable condition, where the video showed a perfectly functioning 
automation, or a non-reliable condition, where participants watched an extended version including a 
take-over request. As expected, participants of the reliable condition rated the ADS more reliable 
(t(41.32) = 3.76, p < .001, d = 1.05). Additionally, participants rated their trust directly by 
answering the item “I trust this system” on a 5-point rating scale ranging between 1 (= strongly 
disagree) to 5 (= strongly agree). All scales correlated positively with different strength with this 
rating (lowest: Familiarity: r = .33; highest: Reliability: r = .85). Although the total questionnaire 
correlated strongly with this item (r = .81), we found no significant difference between the two 
conditions (t(46.92) = 1.21, p = .23, d = 0.33), on the contrary for the direct question 
(t(45.63) = 2.58, p = .01, d = 0.71). Because of their high correlation, the scales Competence and 
Reliability were merged, leading to a reduction to 17 items. The internal consistency of the scales 
ranged from acceptable (α = .75; Propensity to trust) to excellent (α = .92; Reliability/Competence). 

McCoach et al. (2013) recommend utilizing an exploratory factor analysis (EFA) to evaluate the 
structure in the very first pilot study because it allows for the highest flexibility of potential 
solutions. An exploratory factor analysis was conducted to assess whether the structure of the 
covariation among items is consistent with the proposed factor structure of the trust model. The 
analysis was performed in JASP (JASP Team, 2018). The dataset showed a sufficient basis to 
conduct an initial exploratory factor analysis (KMO = .80, Bartlett-Test: χ²(136) = 418.81, 
p < .001). Following the recommendations of Sakaluk and Short (2017) and McCoach et al. (2013), 
we chose principal axis factoring as the extraction method and oblique rotation (oblimin) to make 
the factor solution more interpretable. Parallel analysis by Horn (1965) as well as multiple item 
factor loadings > .40 on only one single factor determined the extracted factors (Figure 19). Results 
of the analysis provide initial support for the assumed factorial structure. The resulting pattern 
matrix (Table 3) shows a clear structure of four factors with high over-determination, “the degree 
to which each factor is clearly represented by a sufficient number of variables” (MacCallum, 
Widaman, Zhang, & Hong, 1999, p. 89). Each factor exhibits high pattern coefficients (> .50) by 
multiple variables while each of the items does not load substantially (> .35) onto other factors, a 
requirement for a stable solution. Medium to high communalities were observed. Table 4 and Table 
5 provide further information on the resulting solution. 
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Table 3 
Pattern matrix generated by principal axis factoring; loadings < .35 have been omitted 

  Factor 1 Factor 2 Factor 3 Factor 4 Uniqueness 
Familiarity 1   .81  .31 
Familiarity 2   .80  .34 
Intention of Developers 1   .74   .46 
Intention of Developers 2   .49   .45 
Propensity to Trust 1     .58 .60 
Propensity to Trust 2     .55 .36 
Propensity to Trust 3     .59 .55 
Reliability/Competence 1  .88    .15 
Reliability/Competence 2  .70    .34 
Reliability/Competence 3  .79    .23 
Reliability/Competence 4  .82    .30 
Reliability/Competence 5  .86    .28 
Reliability/Competence 6  .70    .44 
Understanding/Predictability 1   .65   .36 
Understanding/Predictability 2  .60   .44 
Understanding/Predictability 3 .64    .24 
Understanding/Predictability 4  .62   .50 

Table 4 
Inter-correlations matrix of the extracted factors 

  Factor 1 Factor 2 Factor 3 Factor 4 
Factor 1     
Factor 2 .65    
Factor 3 .25 .24   
Factor 4 .19 .31 .04  

Table 5 
Fit indices of the resulting model 

Chi-squared test Additional fit indices 
Value df p RMSEA TLI 

112.139 74 .003 0.09 [0.05, 0.11] .85 
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Figure 19. Scree plot of the extracted factors with a parallel analysis by Horn 
(1965) superimposed. 

McNeish (2018) advises against using Cronbach’s alpha as a reliability index because its rigid 
assumptions are routinely violated. He suggests using the omega coefficient, which is conceptually 
similar to Cronbach’s alpha but makes less strict assumptions. In fact, omega total is a more general 
version of Cronbach’s alpha: It also assumes unidimensionality, but the items are allowed to vary 
in how strongly they are related to the measured construct. Revelle’s omega differs from omega 
total in its more sophisticated variance decomposition. Given that the items each implement a 5-
point rating scale, relying on Pearson covariance matrices is reasonable (Rhemtulla, Brosseau-Liard, 
& Savalei, 2012). All scales exhibited good to excellent internal consistency (Table 6). 

Table 6 
Indices of the internal consistency of each scale; a since Omega 
total and Revelle’s omega cannot be calculated for scales with 
fewer than three items, the Spearman-Brown coefficient 
according to Eisinga et al. (2013) was calculated 

  Omega Total Revelle’s Omega 
Familiarity  .83a - 
Intention of Developers  .79a - 
Propensity to Trust .78 .77 
Reliability/Competence .92 .95 
Understanding .81 .88 

The factor Reliability/Competence was the first extracted factor and, therefore, explained a very major 
part of the variance, which may be expected given the design of the study, i.e. automation reliability 
was manipulated between the conditions. However, no factor for Intention of Developers could be 
extracted. The reason for this may lie in the domain of automated driving. A driving automation 
system is an expensive, highly sophisticated system whose development was motivated by the 
increase in safety and comfort. The developers of the system are known to be professional car 
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manufacturers. Thus, it is hard to imagine that a driving automation system’s developers did not 
act in a benevolent manner. A revised version of the questionnaire may eliminate this dimension, 
at least in the domain of automated driving. Item 3 of Understanding (“The system state was always 
clear to me”) seems to exhibit a certain degree of multidimensionality and may also be eliminated 
if this again is the case in future analyses.  

Although the aim was to conduct an EFA, fit indices for the model, known from confirmatory 
factor analysis (CFA), are also reported (Table 5). Fit indices indicate how well the empirical data 
of the study actually conform to the proposed model. A CFA, therefore, is a more stringent test if 
the pattern of relationships among the items can be explained by the proposed model/factor 
structure (McCoach et al., 2013). The chi-squared test evaluates the null hypothesis that the 
proposed model exactly reproduces the population covariance matrix implied by the data 
(McCoach et al., 2013). This null hypothesis has to be rejected for the four-factor model. Besides 
the chi-squared test is generally too liberal at small samples sizes, as in this study, the informative 
value of this rejection is limited by the fact that a model is always a simplification of a process in 
reality that never intends to exactly recreate it (McCoach, 2003). The root mean square error of 
approximation (RMSEA) is an index of absolute fit that compensates for the effect of model 
complexity (Hu & Bentler, 1999) and can be considered an estimate of the misfit of the model per 
degree of freedom in the population (Preacher et al., 2013). Cut-offs for small sample sizes 
(N ≤ 250) are .08 for a mediocre fit whereas .10 and larger indicates a poor fit (Heene, Hilbert, 
Draxler, Ziegler, & Bühner, 2011; Hu & Bentler, 1999; MacCallum, Browne, & Sugawara, 1996), 
indicating a mediocre fit for the four-factor structure of the trust model. However, the estimate is 
positively biased and the amount of the bias depends on the smallness of the sample and the 
degrees of freedom (Kenny, Kaniskan, & McCoach, 2014). The Tucker-Lewis Index (TLI) 
indicates an incremental fit and also compensates for model complexity. A TLI value at or above 
.95 indicates a good fit, TLI values below .90 are generally considered less than satisfactory 
(McCoach, 2003). The four-factor model does not fulfill this criterion. However, once again, the 
TLI is biased in small samples, i.e. it is underestimated in samples with fewer than 100 participants. 
Heene et al. (2011) echoe previous critique on the application of fixed cut-off rules for model fit 
because of the multiple dependencies of the fit indices on the conditions (e.g., the achieved factor 
loadings) and on sample size. After establishing the trust model, two items for measurement of 
trust in automation itself (“I trust the system” and “I can rely on the system”) forming the subscale 
Trust in Automation were added. 

The EFA gathered sufficient preliminary evidence of the factor structure and shows that further 
pursuit of the model is reasonable. Nevertheless, this analysis of construct validity is certainly not 
sufficient. Firstly, the sample size of n = 58 participants results in a case/item ratio of 
approximately 3:1, which reflects the absolute minimum for a sensible analysis and may be too 
small to produce a stable solution. However, the minimum required ratio is not constant across 
studies but rather depends on aspects of the variables and study design (MacCallum et al., 1999). 
Given a clear factor structure, a high degree of over-determination and high communalities 
(constantly > .60, as in this study), it is nevertheless possible to reach a stable factor solution even 
with a sample size smaller than 100 participants (McCoach et al., 2013). Secondly, the participants 
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did not experience driving automation themselves but watched videos of it. Thirdly, the 
participants only got a short, probably first impression of a driving automation system. This may 
promote a single-factor structure because the participants might not have had enough insight into 
the driving automation system to form themselves a detailed, multifaceted impression. 

The results of the initial exploratory factor analysis established sufficient initial evidence for the 
factor structure, affirming that further work is sensible but also needed. Thus, the development 
process for the questionnaire has certainly not yet come to its end. Future studies have to 
investigate and ensure the construct validity in greater detail and need to investigate the structure 
in an applied setting with an adequate sample size. Future work should also follow up this analysis 
with a CFA to put the established structure to a more rigorous test. In a structural equation model, 
the claimed paths and relationships of the model can be directly tested and different models can 
be compared.  

The questionnaire’s criterion validity was examined in its first use in a driving simulator study 
in Article 4, where the developed questionnaire to measure trust in automation was used in an 
applied setting for the first time. In this driving simulator study, 40 participants encountered three 
critical situations while driving in a conditionally automated vehicle (SAE Level 3) on a highway 
while being engaged in an NDRT. Eye tracking was used to assess how much the participants rely 
on the ADS. Furthermore, the instruction for the ADS was varied between two groups with 
participants receiving either trust-promoting (Trust promoted group) or trust-lowering (Trust lowered 
group) introductory information. The trust questionnaire was administered three times: 1) after an 
introductory video, 2) after an introductory drive, 3) after the experimental drive. It was expected 
that, firstly, self-reported trust will correlate positively with reliance on automation and, secondly, 
that participants of the Trust promoted group will report higher trust than the Trust lowered group. 

The analysis comprised the whole Trust in Automation Questionnaire (TiA; 19 items) as well as just 
the subscale Trust in Automation and the subscale Competence. Regarding the reliability of the Trust in 
Automation subscale, the drawbacks of short scales become eminent. The scale exhibits a low 
reliability of α = .63 after the video and of α = .70 after the introductory drive, while it achieved a 
high reliability of α = .85 after the experimental drive. This reflects the problems mentioned earlier 
with single-item scales: They are more vulnerable to random measurement errors and more 
susceptible to unknown biases in meaning and interpretation (Emons et al., 2007; Hoeppner et al., 
2011). Nevertheless, the subscale Trust in Automation was the scale that showed the largest difference 
(Mdiff = 0.45, d = 0.59, BF−0 = 4.35) between the two groups after the introductory drive. The 
subscale might be more sensitive than the whole questionnaire, but this does not guarantee that its 
predictive performance regarding trust in other systems is superior – predictive quality might vary 
in different situations and context. The experiment included two situations (Situation 1: overtaking 
maneuver; Situation 2: adapting speed to a headway vehicle) that were solved by the automated 
vehicle, but a take-over was a reasonable action if one does not trust automation. In both situations, 
participants who intervened showed lower trust than participants who did not intervene. The effect 
size was comparable between the full TiA questionnaire (Situation 1: d = 0.41, Situation 2: d = 0.51) 
and the subscale Trust in Automation (Situation 1: d = 0.50, Situation 2: d = 0.45). The same results 
were obtained for the take-over situation, where participants who crashed reported higher trust 
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than collision-free participants (Full TiA: d = 0.51; subscale Trust in Automation: d = 0.58). Both 
scales correlated moderately with take-over time (Full TiA: r = .27; subscale Trust in Automation: 
r = .33) and minimum TTC (Full TiA: r = −.29; subscale Trust in Automation: r = −.35). Both full 
questionnaire and subscale Trust in Automation correlated with the participants’ gaze behavior with 
the expected sign and at approximately the same magnitude (medium effect) in all three 
measurement intervals.  

In summary, participants with higher trust scores consistently showed stronger reliance in all 
behavioral measurements compared to participants with a lower trust score. Consequently, the 
study confirms the predictive validity of the questionnaire. Furthermore, the medium-sized 
correlation between the TiA questionnaire score and the affinity for technology questionnaire 
(Feuerberg, Bahner, & Manzey, 2005) of r = .47 (BF = 18.85) shows that trust is related to affinity 
for technology, yet it represents a distinct construct, supporting its construct validity. 

The two-item subscale Trust in Automation showed lower reliability but was more sensitive 
regarding group differences and performed equally as well as the full TiA questionnaire regarding 
all other measures. This provokes the question of whether a single-item scale may be sufficient for 
a valid measurement of trust. The benefits of using single-item measures have been listed by several 
researchers (Fuchs & Diamantopoulos, 2009; Hoeppner et al., 2011): Single-item scales are less 
monotonous and time-consuming. They can also be administered during an experiment for a 
momentary assessment, for example while driving. The aforementioned advantages of multi-item 
scales are also accompanied by drawbacks, such as boredom caused by redundant items and fatigue 
in lengthy questionnaires (Burisch, 1984). Nevertheless, for a detailed assessment of a 
multidimensional construct such as trust in automation, a multi-item measure is typically necessary 
(Nunnally & Bernstein, 1994). 

Yet, Fuchs and Diamantopoulos (2009) argue that the use of a single-item scale may still be 
appropriate in certain cases. For example, Sloan, Aaronson, Cappelleri, Fairclough, and Varricchio 
(2002), while discussing the quality of life measurement, claim that “there comes a point where the 
construct becomes so complex that a single question may be the best approach” (p. 481). Hence, 
when measuring overall job satisfaction, the best measurement may be a question like “Overall, 
how satisfied are you with your job?” (Fuchs & Diamantopoulos, 2009, p. 204; Scarpello & 
Campbell, 1983). A single item on trust in automation reflects the conceptualization of trust in 
automation as a mainly affective response with influences from analytic and analogical processes. 
Lee and See (2004) suggest that because of the complexity of automation technology, operators 
probably rely less on analytic calculations to guide their behavior but rather apply heuristics to 
accommodate the limits of the human bounded rationality (Gigerenzer & Selten, 2002). A situation 
might occur where operators cannot form a complete mental model of an automated system as it 
is too complex to perfectly predict its behavior. Emotions can then guide behavior when rules are 
not effective or when cognitive resources are too limited for a calculated rational choice (Damasio, 
1996; Lee & See, 2004). 

In the validation study, 78 % of the participants have had no contact with conditionally 
automated driving before. Thus, it might not have been possible for the participants to rate each 
dimension of the trust questionnaire adequately because of a lack of knowledge or experience. 
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Differences in the ability to accurately rate a system have been pointed out by Annett (2002) who 
gives the example of expert test drivers who learn by experience to identify and rate the subtle 
dynamic features of a vehicle. It is conceivable that the participants’ trust rating was a rather global 
impression or rating, which can be captured accurately by a single item. It is unclear if participants 
would also provide a global rating if they had more experience with an automated vehicle.  

Yet, such a simplification of the construct trust in automation comes with a cost: The Trust in 
Automation scale consists of two items, one of them with the content “I can rely on the system”. It 
is not surprising that such a measure highly correlates with behavioral reliance measures such as 
eye tracking and intervention frequency. For such a narrow conceptualization of trust, the high 
validity may justify the use of a single-item measure (Flake et al., 2017). The construct trust in 
automation, which possesses a detailed underlying theory (Lee & See, 2004; Mayer et al., 1995), 
would then, at the same time, become one with its measure and loses any theoretical meaning 
beyond that measure (Bagozzi, 1982). This measurement would then be in conflict with the 
definition of what it intends to measure. Indeed, as already mentioned, trust is an attitude that 
stands between the belief about characteristics of an automated system and the intention to rely on 
it. Attitude, intention, and actual behavior are not in a deterministic but in a probabilistic 
relationship (Ajzen & Fishbein, 1980). Whether trust translates into actual reliance on an automated 
system is also influenced by other factors such as self-confidence or time constraints (Dzindolet et 
al., 2001; Lee & See, 2004; Meyer, 2004).  

The use of a single-item measure is also problematic in longitudinal studies: If the observed 
value changes, it is not possible to differentiate between a true change in the construct and a change 
caused by imperfect reliability of the measurement (Fuchs & Diamantopoulos, 2009). Here, 
researchers may fall back on the multi-item questionnaire. If a single-item is administered to obtain 
a global assessment, it has to be taken into account that the respondents each consider an individual 
set of aspects of trust and of the automated system, weighted by their own individual preferences, 
providing a tailor-made impression (Nagy, 2002). Hence, respondents may not consider the same 
aspects or may not even think of a relevant aspect at all. It, thereby, remains unknown how the 
assessment is constituted. To ensure that each participant assesses the same construct, i.e. that a 
common understanding of trust exists, an accurate definition of trust in automation has to be 
provided in this case (Fuchs & Diamantopoulos, 2009). On the other hand, multi-item scales are 
less individual but more comparable. A preset of aspects, formed by the questionnaire’s scales, also 
helps and guides the participants to rate the system. Multiple scales also provide the possibility to 
express the trust rating in greater detail. With a single-item scale, should the trust score turn out to 
be low, the researchers then have no indication for the reason. Contrarily, multiple scales may 
enable researchers to find the cause in a certain characteristic of the automated system. For 
example, it could be perceived as reliable, but participants did not understand its functioning. Thus, 
it is reasonable to use a multiple-item scale such as the TiA if the aim is a thorough, multi-faceted 
assessment.  

In conclusion, if the research objective is a global assessment, an overall feeling or impression 
by the participants, then a single-item may provide all the desired information (Fuchs 
& Diamantopoulos, 2009). It represents a useful supplement that might be sufficient for a single 
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and quick, yet valid assessment and “can provide an acceptable balance between practical needs 
and psychometric concerns” (Robins et al., 2001, p. 152). This is particularly true if trust is merely 
used as a moderator or as a control variable (Fuchs & Diamantopoulos, 2009). If the goal is a 
detailed assessment of trust in automation or if a longitudinal design is implemented, then the 
multi-item questionnaire may be preferred.  

The questionnaire’s further development certainly needs to address its psychometric qualities. 
The low internal consistency of the subscale Trust in Automation at the beginning of the study raises 
the question of whether a short scale of two rather direct items is sufficient as a measurement of 
trust itself. Mayer and Davis (1999) provide a questionnaire for their model of interpersonal trust, 
which includes a four-item scale to assess trust. The items are less direct than the two Trust in 
Automation items of the TiA questionnaire and rather aim at the willingness to be vulnerable, 
corresponding to their definition of trust (Mayer et al., 1995). Thus, a revised version of the TiA 
questionnaire may adopt this approach and offer a four-item scale (besides the original scales) for 
trust in automation that is closer to its definition by Körber, Baseler et al. (2018). Items from Mayer 
and Davis (1999) adapted to the domain of automation could, for example, read “I would be 
comfortable handing over the driving task to the driving automation system without monitoring 
it” or “If I had my way, I wouldn’t let a driving automation system have any influence on the 
driving task”. A single item for assessing trust in automation such as “I trust this driving automation 
system” then may function as the aforementioned pragmatic variant alongside the multi-item 
questionnaire. In addition, information on the questionnaire’s discriminant validity is still missing. 
Also, further data on the questionnaire’s predictive performance have to be gathered.  

A revision may also reconsider the inclusion of the scale Familiarity. Familiarity itself is not an 
element of trust in automation but indirectly influences it as a moderator. With increasing 
familiarity, operators form expectations and the confidence in their evaluation of the attributes 
increases. If this moderating role is of no interest in a study, the scale could be eliminated to shorten 
the questionnaire. A core questionnaire only containing the factors that directly influence trust then 
may be more appropriate. Beyond this, familiarity could also induce response bias: Low familiarity 
with an automated system could induce a tendency towards a global evaluation of the system due 
to a lack of in-depth knowledge. It would, therefore, be interesting to administer the questionnaire 
to participants who are already very familiar with a driving automation system. This is especially of 
interest regarding the difference between the predictive performance of a single-item measure and 
the multi-item TiA questionnaire.  

In closing, it has to be considered that the measurement of trust in automation by means of a 
questionnaire certainly has to be viewed in perspective of its position in measurement theory. There 
have been concerns doubting the possibility of measurement of psychological constructs and their 
quantitative nature in general (Michell, 1997). However, using rating scales for the measurement of 
psychological constructs, such as trust, does not exclusively have to be regarded as a form of 
measurement in the strict sense of the term, i.e. in terms of the representational theory of 
measurement, where a homomorphic representation of physical empirical relations is mapped to 
numerical relations (Annett, 2002; Krantz et al., 2007). Instead, following a model-based account 
of measurement, measurement of trust can rely on an abstract model that is valid for the prediction 
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of an individual’s performance during a certain task (Tal, 2017). As Tal (2017) argues, such a model 
is defined by theoretical and statistical assumptions about the measured psychological construct 
and its relation to the measurement task. Inference from the indication of a measurement 
instrument (e.g., a rating scale) to the measurement outcome is non-trivially derived from the 
model. Measurement is then the coherent and consistent assignment of values to parameters in 
this model, based on instrument indications. The model defines the content of the measurement 
outcome, which does not have to hold a counterpart in the observable world – a construct, in the 
end, is a concept, model, or schematic idea (McCoach et al., 2013). As for the measurement of 
intelligence, the values do not represent physical properties but empirical relationships between 
theoretical constructs and other constructs or behavior (Annett, 2002). Trust measurement, thus, 
may not deliver meaningful, absolute values per se, but values that are meaningful in the context 
of a model of trust, which is defined by theoretical and statistical assumptions such as confirmed 
construct validity. In this way, the measurement outcome can be used to predict and explain 
behavior, decisions, or performance. For this reason, it is unreasonable to apply the same standards 
to the measurement of trust as to measurements such as take-over time. Nevertheless, the results 
in Article 4 show that the questionnaire produces meaningful measures with relation to observable 
and safety-relevant behavior. 
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B Article 1: Potential individual differences regarding automation 
effects in automated driving 

Körber, M., & Bengler, K. (2014). Potential individual differences regarding automation effects in 
automated driving. In C. S. G. González, C. C. Ordóñez, & H. Fardoun (Eds.), Interacción 
2014: Proceedings of the XV International Conference on Human Computer Interaction (pp. 152–158). 
New York, NY, USA: ACM.  
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C Article 2: The influence of age on the take-over of vehicle control 
in highly automated driving 

Körber, M., Gold, C., Lechner, D., & Bengler, K. (2016). The influence of age on the take-over 
of vehicle control in highly automated driving. Transportation Research Part F: Traffic Psychology 
and Behaviour, 39, 19–32.  
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D Article 3: Prediction of take-over time in highly automated 
driving by two psychometric tests 

Körber, M., Weißgerber, T., Kalb, L., Blaschke, C., & Farid, M. (2015). Prediction of take-over 
time in highly automated driving by two psychometric tests. Dyna, 82(193), 195–201.  
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E Article 4: Introduction matters: Manipulating trust in automation 
and reliance in automated driving 

Körber, M., Baseler, E., & Bengler, K. (2018). Introduction matters: Manipulating trust in 
automation and reliance in automated driving. Applied Ergonomics, 66, 18–31.  
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F Article 5: Vigilance, boredom proneness and detection time of a 
malfunction in partially automated driving 

Körber, M., Schneider, W., & Zimmermann, M. (2015). Vigilance, boredom proneness and 
detection time of a malfunction in partially automated driving. In International Conference on 
Collaboration Technologies and Systems (CTS) (pp. 70–76). IEEE.  
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