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Abstract — The Maxwell-Liouville-von Neumann (MLN) equations are a valuable tool in nonlinear optics in
general and to model quantum cascade lasers (QCLs) in particular. Several numerical methods to solve these
equations with different accuracy and computational complexity have been proposed in related literature. We
present an open-source framework for solving the MLN equations and parallel implementations of three numer-
ical methods using OpenMP. The performance measurements demonstrate the efficiency of the parallelization.

1 Introduction

The Maxwell-Liouville-von Neumann (MLN) equations are essential in the field of nonlinear optics in general
and a valuable tool to model quantum cascade lasers (QCLs) in particular. In our current research we describe
the light-matter interaction in the active region of a QCL with Maxwell’s equations in 1D for the electric and
magnetic field components Ez (x, t) and Hy (x, t),

∂tEz = ε
−1 (
−σEz − ∂tPz + ∂xHy

)
, (1a)

∂tHy = µ
−1∂xEz, (1b)

where x is the propagation coordinate, y and z are the transversal directions, and t is time. Furthermore, z
denotes the quantumwell growth direction. InMaxwell’s equations we consider the conductivityσ, permittivity
ε , and permeability µ of the active region material as well as the polarization term Pz (x, t).
The medium is represented by a (sufficiently large) number of quantum mechanical multilevel systems in

propagation direction (Jirauschek and Kubis, 2014). The behavior of each system (described by the n×n density
matrix ρ̂ for n discrete energy levels) is governed by the Liouville-von Neumann equation

∂t ρ̂ = −i~−1 [
Ĥ, ρ̂

]
+ ρ̂phen, (2)

where ~ is the reduced Planck constant, ρ̂phen is a phenomenological term that includes scattering processes,
and the Hamiltonian Ĥ = Ĥ0 + ĤI (Ez) consists of a time-independent part Ĥ0 and a time-dependent interaction
part ĤI = −µ̂Ez . In the latter term, µ̂ denotes the dipole moment operator.

Both equations are coupled by the interaction term ĤI in Eq. (2) (which depends on the electric field Ez) and
the polarization term Pz in Eq. (1) (or its derivative, respectively) which is calculated as

∂tPz = N Tr { µ̂∂t ρ̂} , (3)

where N is the density of quantum mechanical particles in the system.
In general, the MLN equations cannot be solved analytically due to their nonlinearity and numerical methods

are required. Naturally, these methods have to be accurate and stable. In particular, the properties of the density
matrix have to be maintained even for large simulation end times. Depending on the numerical method the
discretization step size in time and space must be chosen very small, leading to an increase of the computational
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workload. Most approaches use the rotating wave approximation (RWA) to allow larger discretization step sizes
(Wang et al., 2007). However, Ziolkowski et al. (1995) demonstrated that this approximation omits certain
features which may be crucial for understanding the dynamics of the simulated device. In particular, this will
be the case for QCL broadband frequency combs, which are one of the main topics of our research.

For some QCL simulations (e.g. Tzenov et al., 2016, 2017) it is important to include more than two energy
levels, since various effects are only visible if at least three levels are considered. The number of energy levels
has a large impact on the computational workload, since n2 density matrix entries have to be calculated for
every discretization step. As a consequence, the numerical methods must be implemented efficiently using
parallelization techniques in order to handle the computational workload. This is particularly the case if more
dimensions or additional effects are considered in the simulations.
In order to determine the most efficient numerical method, Saut and Bourgeade (2006) implemented three

methods for the bidimensional MLN equations and compared their performance. We aim to extend this work
and shift the focus towards parallelization. In this paper we present an open-source framework that serves as
common base for different numerical methods. On top of this framework we implement three methods using
the OpenMP standard for parallelization and discuss their performance and parallel efficiency.
The rest of the paper is organized as follows: Section 2 gives an overview of the numerical methods found

in literature. The common framework and the implementation of three of the most promising methods are
presented in Sec. 3. The results of the performance comparison are given and discussed in Sec. 4. Finally, we
conclude with our findings and give an outlook on our future work.

2 Numerical Methods for the Maxwell-Liouville-von Neumann Equations

Several numerical methodswith different degrees of accuracy and computational complexity have been proposed
in literature over the last two decades. The pioneering work was done by Ziolkowski et al. (1995), who combined
the finite-difference time-domain (FDTD, see Taflove and Hagness, 2005) method for Maxwell’s equations with
the Crank-Nicolson scheme for the Liouville-von Neumann equation for two energy levels (i.e. the optical
Bloch equations). The FDTD method uses a staggered grid in time and space (Yee grid, see Yee, 1966) and
is straightforward to implement (update equations, sources and boundary conditions). The main drawback is
that small discretization step sizes are required to keep the numerical dispersion to a minimum. Slavcheva et al.
(2002) extended this approach to two dimensions and an arbitrary number of energy levels. The implicit nature
of the Crank-Nicolson scheme is resolved by multiple predictor-corrector (PC) steps.
Bidégaray et al. (2001) performed a rigorous stability analysis of the FDTD-PC approach and found that

the Crank-Nicolson scheme may yield unrealistic results for a system with more than two energy levels. An
alternativewas proposed inBidégaray (2003), where an operator splitting (OS) techniquewas employed to update
the Liouville-von Neumann equation. This OS technique bases on the calculation of matrix exponentials, which
is computationally expensive.
Therefore, Saut and Bourgeade (2006) as well as Marskar and Österberg (2011) used the pseudo-spectral

time-domain (PSTD, see Liu, 1997) method, since the spatial discretization step size may be increased without
impairing accuracy. Using this method the same operator splitting technique can be employed for fewer spatial
grid points, which yields a performance boost. Additionally, the PSTD method is superior to the FDTD method
in terms of numerical dispersion. The main drawback, however, is that the implementation of sources or sharp
material parameter changes becomes increasingly difficult. Also, absorbing boundaries must be included in
order to prevent the wrap-around effect (Liu, 1997).
Finally, several research groups (Sukharev andNitzan, 2011; Deinega and Seideman, 2014; Cartar et al., 2017)

used the FDTD method combined with the fourth-order Runge-Kutta scheme for the Liouville-von Neumann
equation. This approach has – to the best of our knowledge – not been subject to a rigorous stability analysis
yet, but is a very promising candidate with respect to performance.
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Figure 1 Schematic of the mbsolve project. Thembsolve-lib library contains the base classes (e.g. solver, device, scenario).
Various solver libraries which specialize the solver base class and implement numerical methods may be added. It is
possible to use different parallelization techniques (e.g. OpenMP or NVIDIA CUDA). However, hybrid approaches that
combine two techniques are not supported at the moment. All libraries can be loaded into a C++ application or a Python
script.
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Figure 2 Schematic overview of the FDTD-PCmethod. The circles and crosses represent the spatiotemporal discretization
of the magnetic field and electric field, respectively. Additionally, the crosses denote the positions of the quantum
mechanical systems. The data dependencies are marked with arrows. The grid is partitioned into tiles (the green bar
denotes a tile border) which can be subsequently assigned to different threads. Two costly synchronizations between the
threads are required during each time step. The synchronizations can be traded against redundant calculations (marked
with the green triangle).

3 Implementations

Each numerical method in the previous section was implemented and tested by the respective authors. However,
the simulation source codes are not publicly available which renders the extension of an existing solution
difficult. Therefore, we decided to start our own project featuring a common framework for all numerical
methods to be implemented. A schematic of the mbsolve project (Riesch and Jirauschek, 2017) is depicted in
Fig. 1.

Based on the literature research results in the previous section we selected three candidates, namely the
FDTD-predictor-corrector (FDTD-PC) approach by Ziolkowski et al. (1995), the FDTD-operator splitting
(FDTD-OS) method by Bidégaray (2003), and a candidate similar to the FDTD-Runge-Kutta (FDTD-RK)
approaches reported in literature. We implemented all three methods for the simplest case, i.e. for a system with
two energy levels.
In all approaches the updates of the Liouville-von Neumann equation as well as the updates of the electric

and magnetic field are spatially independent and can be performed in parallel. However, there exists a spatial
dependency between the electric and the magnetic field. Therefore, synchronizations are required between the
updates of the electric field and the updates of the magnetic field. With the help of the OpenMP standard it
was quite straightforward to implement the calculations in parallel. However, after the first performance tests it
became apparent that the straightforward implementation is suboptimal due to the number of synchronization
calls. Following the recommendations from Krishnamoorthy et al. (2007), we traded synchronization calls
versus redundant calculations and were thus able to exploit the parallelization potential more efficiently. Fig-
ure 2 describes this approach shortly. The implementation details as well as the causes for the performance
improvements compared to the straightforward version will be discussed thoroughly in a separate publication.
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The operator splitting method requires efficient calculations of matrix exponentials. These calculations are
performed using the Eigen library (Guennebaud et al., 2010), which offers an implementation of the Padé
approximation algorithm.
Finally, the update mechanism of the FDTD-RK approach is outlined shortly. In this description the time

tn = n∆t corresponds to the time step n, where ∆t is the time step size. First, the electric field value of the next
time step En+1

z = Ez(tn+1) is calculated using the FDTD method. Both the old and the updated value of the
field are stored. Then, the density matrix is updated with the rule for the fourth-order Runge-Kutta method (for
a thorough description, see Hairer et al., 1993)

ρ̂n+1 = ρ̂n + ∆t (k1 + 2k2 + 2k3 + k4) /6, (4)

where k1 = f (tn, ρ̂n), k2 = f (tn+1/2, ρ̂n + ∆tk1/2), k3 = f (tn+1/2, ρ̂n + ∆tk2/2), and k4 = f (tn+1, ρ̂n + ∆tk3).
The function f denotes the right hand side of the Liouville-von Neumann equation (2), which is time-dependent
due to the electric field. The required electric field values En

z and En+1
z have already been calculated and stored,

the missing value En+1/2
z ≈

(
En
z + En+1

z

)
/2 is approximated by the average between the old and the updated

field value.

4 Performance Measurements

We tested the implementations of themethodsmentioned in the previous section using the setup fromZiolkowski
et al. (1995) and verified the correctness of our implementations. In this setup, the density of quantummechanical
particles in the medium is N = 1024 m−3. The two-level systems are described with the Hamiltonian

Ĥ = Ĥ0 + ĤI = ~ω12

[
− 1

2 0
0 1

2

]
−

[
0 µ12
µ12 0

]
Ez, (5)

where ω12 = 4π × 1014 s−1 is the transition frequency and µ12 = 10−29 A s m is the dipole moment between the
two levels, and the phenomenological term

ρ̂phen =

[
T−1

1 ρ22 −T−1
2 ρ12

−T−1
2 ρ21 −T−1

1 ρ22

]
, (6)

where T1 = 10−10 s and T2 = 10−10 s are upper level lifetime and dephasing time, respectively. Initially, the
lower level is fully populated. Furthermore, the medium has vacuum permittivity ε = ε0, vacuum permeability
µ = µ0, and zero conductivity σ = 0.
For the first performance measurements, the grid contained 32 768 spatial grid points, which corresponds to

a spatial discretization size of 4.578 nm. By setting the Courant number C = 0.5, we chose a time step size of
7.635 × 10−18 s. In later measurements, we varied the number of grid points and modified the time step size
accordingly using the same Courant number.
Wemeasured the execution time on a quad-socket Intel Xeon Processor E7-4870with 40 physical cores in total

as function of the number of used threads and the number of grid points, respectively. The measurements were
executed five times in order to ensure reproducibility. Also, variations (e.g. caused the operating system) were
reduced by choosing the simulation end time sufficiently long. In all measurements the execution time exceeded
25 s. It should be noted that we used the FDTD version with redundant calculations in all measurements.
The performance is calculated as number of grid point updates per time unit, i.e. P = NxNt/texec, where Nx

and Nt are the number of spatial and temporal grid points, respectively, and texec is the measured execution
time. Hence, the metric can be used to compare the performance of problems with different sizes. The parallel
efficiency

ET =
ST
T

(7)

is used as metric for the scalability. In this equation, T is the number of used threads and ST = PT/P1 denotes
the achieved speedup.
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Figure 3 Performance scalability of the FDTD-PC implementation for different problem sizes.
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Figure 4 Performance scalability of the FDTD-OS implementation for different problem sizes.

Figure 3 demonstrates that the FDTD-PC implementation scales well with the number of used threads and
achieves a parallel efficiency of E40 = 69.6 % for 32k spatial grid points. The efficiency increases with the
problem size and reaches 87% for 256k grid points.
We performed the same measurement for the FDTD-OS implementation and found that the parallel efficiency

increased to E40 = 81.6 % for 32k spatial grid points (see Fig. 4). However, the absolute performance decreased
by factor ≈ 17 (up to ≈ 20 for larger problems) compared to the FDTD-PC implementation. This is caused
by the higher computational workload due to the matrix exponential calculations and in agreement with our
expectations.
Finally, the results for the same measurement with the FDTD-RK method are depicted in Fig. 5. The parallel

efficiency is E40 = 71.2 % for this method (for 32k spatial grid points), while the absolute performance is ≈ 9
to ≈ 10 times lower compared to the FDTD-PC method.

5 Conclusion and Outlook

In this paper we presented a framework for solvers for the Maxwell-Liouville-von Neumann equations and three
implementations of different numerical methods that base on it. Since the source code is publicly available, it
may serve as base not only for our future extensions but also for those of other research groups.
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Figure 5 Performance scalability of the FDTD-RK implementation for different problem sizes.

We measured the performance of all three implementations and verified that the parallelization is efficient on
current multi-processor systems. With regard to absolute performance, the FDTD-OS is computationally more
expensive but will preserve the properties of the density matrix when applied to more than two energy levels.
The FDTD-RK approach performs better than the FDTD-OS method (by factor ≈ 2), but is still ≈ 10 slower
than FDTD-PC. An analysis of this method with respect to the preservation of physical properties has not been
published yet.
In order to reduce the computational workload of the FDTD-OS approach, the FDTD method could be

replaced with the PSTD method. This will be one of the next steps of our research. Additionally, we will
consider further alternatives and investigate their stability and performance.
Furthermore, it would be of interest to evaluate the performance on different hardware architectures (e.g. the

Intel Xeon Phi or graphics processing units (GPUs)). In future work, we will compare the performance of the
most promising numerical method on those architectures.

Supplementary Material

See Riesch and Jirauschek (2017) for source code, build instructions, and basic documentation. In this paper
we used the development branch riesch2017b, the Eigen library version 3.3.4, and the Intel C++ compiler
17.0. The build was configured with the arguments

-DCMAKE_BUILD_TYPE=RelWithDebInfo -DARCH=SSE3 -DMAT_EXP_METHOD=PADE

using CMake and built with GNU make. The scripts in tools/loadleveler/riesch2017b provide the
necessary information to run the simulations.
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