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Abstract

We discuss the nature of symmetry breaking and the associated collective excitations for a system of
bosons coupled to the electromagnetic field of two optical cavities. For the specific configuration
realized in a recent experiment at ETH [1, 2], we show that, in absence of direct intercavity scattering
and for parameters chosen such that the atoms couple symmetrically to both cavities, the system
possesses an approximate U(1) symmetry which holds asymptotically for vanishing cavity field
intensity. It corresponds to the invariance with respect to redistributing the total intensity I = I, + L,
between the two cavities. The spontaneous breaking of this symmetry gives rise to a broken continuous
translation-invariance for the atoms, creating a supersolid-like order in the presence of a Bose—
Einstein condensate. In particular, we show that atom-mediated scattering between the two cavities,
which favors the state with equal light intensities I} = L, and reduces the symmetryto Z, ® Z,, gives
rise to a finite value ~~/T of the effective Goldstone mass. For strong atom driving, this low energy
mode is clearly separated from an effective Higgs excitation associated with changes of the total
intensity I. In addition, we compute the spectral distribution of the cavity light field and show that
both the Higgs and Goldstone mode acquire a finite lifetime due to Landau damping at non-zero
temperature.

1. Introduction

The notion of a supersolid, i.e. a solid which is able to sustain dissipationless mass currents typical for
superfluids, is clearly highly counterintuitive [3]. It requires that the particles in the solid can effectively move
freely through quantum mechanical delocalization [4]. A conceptually simple example, suggested by Andreev
and Lifshitz [5] and by Chester [6], is a quantum crystal with a finite density of defects even at zero temperature.
With Bose statistics, the resulting dilute gas of defects is expected to undergo BEC at low temperatures, giving
rise to a finite superfluid density and thus e.g. to a reduced moment of rotational inertia [7]. As shown by
Prokof’evand Svistunov [8], this scenario for supersolidity is in fact the generic one because superfluid states are
necessarily gapless with respect to adding and removing particles. A commensurate supersolid with an integer
number of particles in the unit cell, in turn, requires a fine tuned value of the density. Formally, such a state
appears in the superfluid regime of the Bose—Hubbard model [9] at fixed integer densities. While such a
commensurate superfluid can in principle be realized with ultracold atoms in an optical lattice [10], it is
important to stress that—similar to the case of superfluid Helium on the surface of a regular crystal—thisis nota
supersolid in the usual sense because translation invariance is broken externally and not spontaneously as a result
of the interactions between the particles. This differs from several proposed realizations with ultracold atoms,
where dipolar [11] or Rydberg [12] interactions as well as collective light scattering [13] or spin—orbit coupling
[14] give rise to crystalline order. In particular, in the latter context, the recent observation of a stripe phase at
MIT [15] provides a simple example of supersolid-like order.

©2017 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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A quite different system in which long range positional order may coexist with superfluid behavior has been
realized in recent years by studying ultracold atoms in a high finesse cavity. In the presence of a transverse laser
field there is an induced interaction between the atoms which is mediated by the cavity photons [16]. The
interaction is long-ranged and, beyond a critical strength A of the drive, the atoms spontaneously arrange in a
periodic lattice, allowing to scatter the light from the transverse field coherently into the cavity [17, 18]. Thisis an
example of the classic Dicke—Hepp—Lieb transition to a superradiant state [19—22] and it results in a two-fold
degeneracy of the periodic arrangement of the atoms. More precisely, the Z, symmetry which is broken at the
Dicke-Hepp-Lieb transition is associated with the relative sign of the two degenerate wave-vectors q = +k,
which appear with equal weight in the standing periodic density wave described by a non-vanishing expectation
value (py ) = 0 of the density operator p, (ko is the externally fixed cavity wave vector). From the point of view
of off-diagonal long range order, which characterizes BEC in its most general form [23], the phase beyond A, is
one in which extensive eigenvalues of the one particle density matrix appear not only at ¢ = 0 butalso at
arbitrary multiples of ¢ = £k, forminga fragmented condensate with a self-generated optical lattice [24, 25].
The system therefore possesses simultaneously both diagonal and off-diagonal long range order. Despite the fact
that periodic order is now generated through light-field mediated interactions between the atoms, itisnota
supersolid in the standard sense because it does not sustain dissipationless particle currents e.g. of the ¢ = 0 part
of the condensate with respect to the fixed periodic density wave pattern associated with the =k components’.
Moreover, due to the long range nature of the interaction the system is effectively zero-dimensional and there are
no proper Goldstone modes usually associated with the breaking of a continuous translation symmetry, which
are the acoustic phonons near reciprocal lattice vectors q ~ G [27].

Recently, a major step towards the realization of supersolid behavior with dissipationless particle transport
has been taken by Léonard and coworkers at ETH in a setup involving ultracold atoms in two crossed cavities [1].
In this setup, a cloud of Bose-condensed atoms is enclosed in a configuration involving two optical cavities
which are at a 60° angle with respect to each other. Tuning the parameters such that the atoms couple
symmetrically to both cavities, this system allows to realize light-induced crystallization of the atoms which
involves an arbitrary superposition of both cavity wave vectors. Within a simple two-mode description, the two
discrete symmetries Z, of the individual cavities can thus be combined to a continuous U(1) symmetry, allowing
to observe a continuous shift of the crystallization pattern [1]. Our aim in the present work is to analyze a fully
microscopic model for this setup in order to study the detailed structure of the broken symmetries and the
resulting spectrum of collective excitations. In particular, we will derive the associated effective dynamic
Ginzburg-Landau (GL) functional for the light field in the cavity and discuss the limits in which the system
indeed exhibits the breaking of a continuous translation symmetry. Beyond a detailed discussion of symmetry
breaking and the subtle issue of supersolidity in this context, our results also provide a quantitative
understanding of the recent measurements of the effective Goldstone and Higgs mode frequencies [2].

2.Model and symmetries

We consider the setup used for the recent experiments at ETH [1, 2]. It consists of a three dimensional cloud of
bosonic atoms trapped at the intersection of the TEMo-modes of two optical cavities. All photons couple the
atomic ground state to the same excited state. Generalizing the formalism developed in a previous paper [24],
adiabatic elimination of the excited state (which is well justified for the experimental setup) leads to an effective
Hamiltonian. In the frame rotating with the driving laser wy it takes the following form (note that we use units in
which 7 = 1throughout the paper):

+ 2 A A~
A=-3 Aaja; + fdrzz'(r)(—zv—m + v(r))w(r). M

i=1,2

Here, d; is the bosonic annihilation operator of a photon in the cavity i, ¢(r) is the bosonic annihilation operator
for an atom at position r with massmand A; = w; — w; < 01is the detuning of the laser from the cavity
resonance. Assuming equal dipole couplings g = g, = g in both cavities, the associated single-particle potential
—which still depends on the quantum state of the cavity field—is given by

VI = Vi) + Y Vi@ +a) + > Vijma/a, (@)

i=1,2 i,j=1,2

where V; accounts for the pump potential while V; and V, are the potentials resulting from the interference
between one cavity and the pump. They are given by

Within a hydrodynamic description, such dissipationless currents would be associated with a fourth sound-like mode with linear
dispersion, see [26].
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Figure 1. Left: sketch of the setup considered as implemented in the experiments of [1]. Right: momentum space in the repeated-zone
scheme, where each hexagon indicates the Brillouin zone for a given band. Green zones are occupied even without cavity fields and in
particular their center (I'-point) is the only state occupied at T = 0. Gray zones are occupied via cavity-photon scattering and
correspond to the truncation used in the U(1)-symmetric Hamiltonian (6). The closed curve indicates a scattering path involving two
photons from each cavity. This scattering process, for which we need to include the orange zones in our Hilbert-space truncation,
explicitly breaks the U(1) symmetry of the full Hamiltonian (1).

0?2 T
VL = — cos? (k + —),
FTAL A

3

0 1
V= gA_ cos (koy + g) cos( kox + Eko)’)’
A

2
Q 3 1
V, = gA— cos (koy + g)cos (%kox — Ekoy), 3)
A

where ) is the Rabi frequency of the driving laser while Ay = w; — wy < 0is the detuning of the atomic
resonance from the driving laser at frequency wj . Note that in the experiment under consideration [1, 2] the
laser drive is far detuned (2/]A4] =~ 3 x 10~*), which justifies the adiabatic elimination underlying the
effective Hamiltonian (1). The last term in equation (2) describes the effects of direct inter- and intracavity
scattering. The associated effective potential V; ;(r) = 7;(r) n; (r) is determined by the two mode functions

g V3 1 g V3 1
7,(r) m cos( 5 kox + 5 koy) and 7,(r) m cos( 5 kox zkoy), 4)
which correspond to the configuration shown in figure 1, where the cavity axes form a 30° angle with the x axis
andlie in the x—y planei.e. k; , = ko(n,cos(30°) + n, sin(30°)). The pump axis is along the y direction i.e.
k, = kon, and the standing wave obtained by retroreflection has a phase-shift 7/2. Due to the small detuning
|Aj] < wy the pump and cavity modes can be taken to have the same wavelength Ay = 27 /k,. In the following
discussion we will include the leading contribution of the direct intracavity processes o<, (r)n;(r) as a dispersive
shift to the cavity detuning
Ng?

O A+ AL > 0. (5)
We will however neglect contributions quadratic in V ;(r), which are of order g*. This is valid in the
experimentally realized regime where fourth order processes due to V; and V, are more important than second
order effects in V; ;. Since intermediate states in this perturbation series carry energies ~ Eg (in the superradiant
phase creation of cavity photons costs very little energy), this reduces to the condition €2 > /| A4 Eg| with recoil
energy Er = kg /2m, which is well satisfied in the experiment (see also below). As the critical Rabi amplitude
Q. o |A4]is decreased, close to the onset of superradiance, direct intercavity scattering will eventually be the
dominant effect. The role of these processes, together with different choices of the retroreflection phase-shift,
have been theoretically investigated in [28, 29].

As discussed in [1], assuming small (in a sense that will become clear later) light field intensities so that

multiple scattering is suppressed, we can restrict the Hilbert space to the lowest nine momentum states
|ky, ky) =10, 0), |[£k; £ k) (see also figure 1) and truncate the Hamiltonian (1) as follows [1]:

N e e e Q R A e
Hywne = Y |67 d; + Ey&l & + B8] & — gi(aiT + a4l e+ 8¢ + he) |, (6)
i=1,2 2V2 A4
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where E;’i excites an atom into a standing wave of wave vector k; £ k, with energy E. = (2 & 1)Egand ¢,
removes an atom at k = 0. Here g§2/|A,|is the effective cavity pump strength. The truncated Hamiltonian (6)
hasin generala Z, ® Z, symmetry corresponding to the following transformation

(@, G+) — — (@5 G1)s 7

(@2, 64) — — (A, B1). )

The spontaneous breaking of either one of these discrete symmetries corresponds to a superradiant phase
transition characterized by the order parameter (4, + 4;) or equivalently (&7, & + ¢ & + h.c.). In the full
model in real space given by equation (1), the above Z, ® Z, symmetry corresponds to the transformations

N . k

(@, 1) — (—al, r+ w@) ©9)
A n k

(aZ’ I') - (_QZ: r + ﬂ-ﬁ]: (10)

which involve a discrete spatial translation along a cavity axis. In this sense, the superradiant transition
corresponds to a self-ordering of the atoms into a spatial pattern which scatters constructively into the
cavity [16].

As pointed outin [1], for a symmetric choice of cavity detunings 2 = A, there is an accidental U(1)
symmetry in the truncated Hamiltonian (6):

(ﬁlr EIi) &2> 62i)
— (dycosO — dysinb, & 1cosl — Gasinb, d sinf + d, cosB, G+sinf + &icosh). (11)

The signatures of the spontaneous breaking of this continuous symmetry, which corresponds to a fixed value of
the relative phase 6 of the two coherent cavity fields, varying randomly between different realizations, have been
experimentally investigated in [1, 2]. In particular, it has been shown that the symmetry broken state possesses a
collective excitation with a frequency below the experimental resolution of 100 kHz. Correspondingly the cavity
fields have been observed at randomly distributed relative amplitudes with a fixed overall output intensity. Both
these signatures have been interpreted as the Goldstone mode of the broken U(1) symmetry.

As discussed in [1], the transformations (11) can be translated into an invariance of the potential (2) in real
space. Indeed, by examining the potential (2) we see that by restricting to the subspace X defined by
koy + m/2 = nm, n € Z, the potential is invariant under:

(&l) ﬁZ) X, Yy = 71'(1’1 - 1/2)/k0)
— (A1cosf — d,sinf, dsin@ + d,cosb, x £ 20/(\3ko), y = w(n — 1/2) /ky), (12)

where the —(+) sign applies for even (odd) values of n. The continuous symmetry of the Hamiltonian under
rotations of the cavity field by an angle # and a simultaneous shift of the atoms along the x-direction by

426/ (/3 ko) thus leads to supersolid-like behavior with no restoring force for translations of the atoms along
the x-direction.

Now, the fact that the U(1) symmetry (12) in the full model (1) is restricted to the subspace X of discretely
spaced values of the y coordinate implies that this symmetry holds only approximately. The fundamental reason
is that the potential (2) has no minimum on the U(1)-symmetriclines y = w(n — 1/2) /k, but rather ata
position which is shifted by an amount inversely proportional to the amplitude of the state independent ac-Stark
shift V7 in the effective potential. This shift appears due to interference between the two cavity fields and is
therefore present for any finite number of photons in both cavities. The corresponding lowest-order scattering
processes are depicted in figure 1 as a closed path involving two photons for each cavity, which for equal
intensities j = I, = I implies that the lowest order of the explicit breaking of the U(1) symmetry is proportional
to I*. It is important to note that the description of these scattering processes requires the inclusion of
momentum states that are absent in the truncation used to obtain the Hamiltonian (6) (see figure 1). In the
following we will discuss the consequences of the explicit U(1) symmetry breaking for the supersolid-like
features, which will turn out to be still approximately present in the limit of intense laser driving 2.

To understand the physics beyond the deviations from a perfect U(1)-symmetry, it is convenient to use a
simple effective Hamiltonian obtained by adiabatically eliminating the photons from (1). Assuming deep lattices
such that we can neglect the kinetic term as well as all terms beyond O(g?) from the contribution Vj ;(r), the
resulting effective Hamiltonian

A= far fﬁ"’(r)fpu)(wr) -5 far W(r')@"’(r')@(r')) (13)

for the atoms alone contains an instantaneous, cavity field induced, attractive density—density interaction of the
form —Y>, Vi (r) Vi (x') /6., which does not decay as a function of the separation |[r — r’|. Since we neglect direct

4
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intercavity scattering, there are no interactions of higher order in the density. In the case that only a single cavity
is superradiant the ground state is given by a density distributed solely within the high symmetry subspace X

Fr 4+ 4mm

243

with p, = N/V . Here, the minus sign implies superradiance in cavity 1 (o = (4;) = 0) while the plus sign
corresponds to a finite expectation value of v, = (d,). The energy density of both states is given by

2
p(r) = po%é(koy - g + nﬂ)é(kox — ), n,meZ (14)

2
€= %(1 + ¢), with ¢ = Ng?/6,|A4|adimensionless positive constant which is much less than one for typical
A

experimental parameters. For two identical cavities §,, = 0. and therefore o = «;, this is, however, not in the
ground state manifold which instead contains for example the density profile

2 _
p(r) = po%é(kox — %) agi (5[ko)/ + Zoarcsin( W) + Zwm], (15)

withn, m € Zandd(c) = 1 + 2c + 4c*.This density distribution slightly frustrates the potential V
induced by the ac-Stark shift of the atoms and shifts the densities away from the X subspace. It therefore slightly
breaks U(1) invariance in the atomic density and locks the relative cavity phases. The small energy difference
between state (15) and state (14) is given by

2 1 0%

Q
Ae=——|1 ——(1 + 4c — 1 —2c— 242 ~
€ AA[ +c+ 27c2( + 4c — d(0))( c—d()2+ c+d(6))] A

2

< 0. (16)
A

As will be discussed below, this energy determines the scale of the effective Goldstone mass. Resubstituting either
one of these density profiles into the cavity equations of motion we obtain || = /I ~ NQg/|A|é, toleading
order in ¢, which shows that in the deep lattice limit the critical coupling strength A, vanishes. Since kinetic
energy contributions have been neglected, the Goldstone mass has an upper bound

_ V-Ae Y _ g

e o QN N

Physically the Goldstone mass 1 arising from the finite energy scale A€ associated with the breaking of the U
(1) symmetry describes the azimuthal curvature of the GL potential, which will be discussed in more detail in
section 4. As expected according to the argument based on the scattering processes illustrated in figure 1,

A€ o |a#| = I%. The explicit symmetry breaking Ae due to the latter scattering processes has actually the same
scaling with intensity as the one which would result from direct intercavity scattering (not involving the pump
), which we neglected in our model (1). As mentioned before, this is justified in the experimentally realized
limit / VIALER] > 1, where direct intercavity scattering is suppressed with respect to the processes shown in
figure 1. In particular, the fact that we can neglect all contributions from the last term in (2) beyond the simple
dispersive shift has no influence on the U(1) invariance in subspace X. Even including all contributions from the
last term in (2), the explicit breaking of the U(1) symmetry is still caused by the fact that the global potential
minimum for the atoms lies outside the subspace X.

17)

3. Effective action and phase diagram

In order to compute the phase diagram and the experimentally accessible spectrum of the cavity light field, we
extend the effective equilibrium path-integral approach developed in [24] for a single-cavity configuration. We
derive an effective action for the cavity degrees of freedom by exactly integrating out the atoms. The action splits
into a mean-field (MF) plus a fluctuation (FL) part. The latter will be discussed in detail in section 5 below. As
shown in [24], this action becomes exact in the thermodynamic limit due to the infinite-range interactions. By
separating the coherent part of cavity fields «; = (d;) as well as the atom field ¢ (r) = (@(r)> (which
corresponds to the condensate fraction) we obtain the effective action

Seit[ary, aipl = SEP + SE[ak,, iyl (18)
The leading MF action reads
MF Vv?
SHP = =3 Ajei? + TrIn[G™'] + fdr gb*(r)[% + Vip(r) — u]g‘)(r). (19)
i=1,2

Itinvolves an effective c-number single-particle potential V,(r) = V(1) |4, q, felt by the atoms in which the
light field operators are replaced by their coherent state expectation values. The atom propagator defined by

5
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Thermal gas

Superradiant thermal gas

Superradiant BEC

0 20 40 60 80

Figure 2. Phase diagram in the U,—T plane for parameters A, = Ay, eg = 8,n = 1, A = 2.8. To theright of the blue line the system
is in a superradiant state with equal intensity in both cavities, below the red line a finite fraction of the atoms is condensed.

2
G,;nl/(r, r) = [—iwn - ZV_m + Vip(r) — u]émn/é(r - 1), (20)

where the integers 1, n’ label the Matsubara space with frequencies w, = 2mnkg T, kg is the Boltzmann constant
and T'the temperature of the system. In equation (19) the trace Tr = f dr}",, is taken over coordinate and
Matsubara space and 1 is the atomic chemical potential.

The saddle-point associated with the MF action defines a closed system of equations:

oV,
~Aa; +fdra%ff)u¢(r>|2 +pmI=0, i=1,2

2
(—i ACE u)qu 0
2m
[ards@p + p@n =N, @)

with the condensed p,(r) =|¢(r)|> and non-condensed p(r) = (@T (r)z} @) —py¥) =

>, ny(eg — ) |ve ()| atom density. Here v, (r) are the eigenvectors of the single-atom Hamiltonian with
potential Vi, (r) with eigenvalue €/, and 1, (x) = (exp(x/kgT) — 1)~ is the Bose—Einstein distribution. The
second equation in (21) is the Gross—Pitaevskii equation for the condensate wavefunction while the third
equation fixes the chemical potential. We stress that both p(r) and V;, (r) depend on the cavity coherent parts
ay . Itis convenient to introduce dimensionless quantities, which we define by

. 02 QgJVN E
5 =min(8.), n = L”’ Up=— A= g\/_, = —=. (22)
i (m(sc) / |AA|6£ |AA|6€ 6c
Moreover, we measure temperatures in units of the critical temperature of an ideal Bose gas
Tidel — 278 (n/ ¢ (3/2))*/? at the given average density n and with ( the Riemann zeta function. We
furthermore rescale & — a/+/N in the remainder of this paper and in all figures.
As discussed in the previous section, the Hamiltonian (1) possesses the Z, ® Z, symmetry defined by
equation (9). The corresponding order parameters are the two real quantities
Xip = (Xip) = (4, + 4,) = 2Re(au). (23)

A finite expectation value X; = 0 creates the effective one-body potential V;, which results in an atomic density
wave. Thus equivalent order parameters can be defined by the density components

pra= [ dr costiy - costhiz - 1) (0 (1))
— [ dr costic, - costiz - DUSDP + p(x). (24)

Additionally, we have the Bose—Einstein condensation transition described by the U(1) order parameter ¢ (r).
We first investigate the interplay between the superradiant transition and the Bose—Einstein condensation by

solving the MF equations (19) as a function of temperature T'and driving strength U,,. The corresponding phase

diagram, which is qualitatively the same as the one for the single-cavity case considered in [24] is shown in

figure 2. With growing values of the coupling strength U, the atomic gas becomes increasingly confined to the

4 We choose Er = 84, for our computations. This is much larger than the experimental values Eg ~ 8. /100 of the recoil energies, which
would increase the numerical effort considerably without changing the qualitative physics.
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Figure 3. Phase diagram in the 6,,—0,, plane. The color scale indicates the angle in 6 in the oy —a, plane. Inset: cavity amplitudes along
the black line indicated on the phase diagram. The parametersusedare T = 0, A = 2.82, 77 = 4and eg = 8.

minima of the effective single-particle potential, which results in an enhancement of the kinetic energy and
therefore a reduction of the critical temperature for Bose—Einstein condensation T.. Beyond a critical coupling
strength U), (or equivalently \.) the atoms spontaneously arrange into a spatially ordered configuration,
resulting in a superradiant backscattering of light into the cavity. This Dicke—Hepp—-Lieb transition as indicated
by the blue line in figure 2 can be found both with and without a condensate fraction. Additionally, a finite, but
small, temperature can enhance the tendency towards superradiance, as can be seen from the decrease of the
critical driving strength for increasing temperaturesat T < T4,

The phase diagram of figure 2 is computed for a symmetric cavity configuration i.e. for equal detunings
A = A,, implying that in the superradiant phase both cavities are equally occupied with order parameters
oy = a,. For a comparison with the experimental results we also compute the zero temperature phase diagram
in the 6,—0,, plane, which is shown in figure 3. Apart from the superradiant phases with only one nonzero cavity
fieldie. oy = 0, ap; = 0 we observe a narrow region around the diagonal A; = A, whereboth Z,
symmetries are brokeni.e. g = 0, a; = 0. Within this small region of the phase diagram the two cavity order
parameters are not equal, as quantified by the color scale in figure 3, indicating the value of the angle 6 in the
oy—; plane (see also figure 4), defined as

0 = arctan (ﬂ),
[8%)

which equals the U(1)-parameter of equation (12).

This region exists due to the fact that the U(1) symmetry of equation (12) is not perfectly realized. In
particular, the size of the region is set by the value of the Goldstone mass. Using equation (17) and the
experimental parameters Q2/|A4| = 38 Eg, g2/|A4l = 5 x 107* Egand |A| = 10% Ez [1], one obtains
|Ae| ~ m&a? ~ 0.1 Eg, consistent with the experimental result | A¢| < 10 Eg.

4. GL potential for the cavity fields and role of cavity losses

In order to investigate the approximate U(1) symmetry of our model in more detail, we compute the full GL
potential corresponding to the MF equations (21). The resulting effective potential in the a;—a; plane is shown
in figure 4, both for an asymmetric and the perfectly symmetric choice of detunings, at zero and finite
temperature.

The asymmetric case for T = 0 is picked such that we are in the single-cavity superradiant phase and the GL
potential has indeed two minima atangles = 0, 7 when cavity 1 is preferred, or § = £ /2 when cavity 2 is
preferred. The asymmetric case for T' = 0.97; is instead picked such that we still are in the coexistence region
where both cavities are occupied and where the GL potential has four minima. One of those is shown at an angle
slightly below § = /4, connected by reflection symmetry with respect to the origin.

On the contrary, for A; = A, the GL potential shows four degenerate minimaat § = +7 /4, +37 /4. Since
a U(1) symmetric potential would show a degenerate minimum on a whole circle, we see that the extent to which
this symmetry is explicitly broken is measured by the azimuthal curvature of the potential about anyone of the
four minima, which determines the square of the effective Goldstone mass. The latter, together with the
associated effective Higgs mass, which corresponds to the square root of the curvature in the radial direction, is
shown in figure 5 across the superradiant phase transition at zero and at finite temperature. In the disordered
phase there is only a single collective mode in the radial direction with a mass vanishing at the critical point.
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while (¢), (d) for T = 0.9Tcid”1. (a) and (c) correspond to a symmetric configuration 6., = §,,, while (b) and (d) correspond to

¢, = 1.018,,. The remaining parametersare 77 = 10, eg = 8aswellas A = 3in (a), (b)and A = 2.7 in(c), (d). Notice the small
curvature along the azimuthal direction.
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Figure 5. Goldstone and Higgs mass across the superradiant transition at T = 0 (left)and T = 0.5T4" (right). Parameters are the
same as in figure 2 apart from A = 2.278.

Beyond this point Goldstone and Higgs mass separate, the latter growing much faster while the former remains
atleast one order of magnitude smaller. By expanding the GL potential one can show that the Goldstone mass
close to the critical point is proportional to \/a; ¢, in accordance with the arguments discussed in section 2.
Moreover, the ratio between Goldstone mass and Higgs mass is inversely proportional to the drive strength, so
that for the strong drive employed in experiment and considered in figure 5 we find a large separation between
the Higgs and the Goldstone mass.

The qualitative behavior and the ratio of the Goldstone to Higgs mass shown in figure 5 is consistent with the
experimental results of [2]. By contrast, the presence of a well-defined minimum in the GL potential in the range
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0 < 0 < /2 offigure 4 is not compatible with the experimental finding [1] that 6 is homogeneously distributed
in this range. However, we can reconcile our prediction with the experiment by adding the noise induced by
cavity losses to the picture. The probability of escaping the minimum and delocalizing across the circle in figure 4
is given by Pietoc & exp(—/Nph AV /), where AV oc o o | — A is the depth of the minimum while r is
the cavity loss rate. Note that the noise is suppressed by a factor 1 / \/N_ph if we assume a coherent cavity field.
With the experimental value /27 ~ 200 kHz and with AV ~ |A¢|which is determined by the square of the
Goldstone mass according to the first equality in equation (17), typical values Ny, = |a|* ~ 100 lead to an
escape probability of Py =~ exp(—0.02) ~ 0.98. We stress that our estimate for AV is an upper bound and
thereby our escape probability provides alower bound. A critical test for this scenario of a restoration of the U(1)
symmetry by cavity loss induced noise, is that with an increasing number of intracavity photons the escape
probability is expected to decrease exponentially like

Paetoc o exp(—No(?). (25)

5. Effective action for low-energy excitations

In this final section we will discuss the nature of the low-energy excitations of the cavity field in the superradiant
phase. For this purpose we expand the effective action derived in section 3 up to quadratic order about the
minima of the MF potential discussed in section 4. The resulting time-dependent deviations a;(7) can be
expanded in terms of discrete Fourier-coefficients a; , which determine the spectrum oflight field fluctuations
in the cavity. Thus, the effective Goldstone and Higgs mode appear explicitly, allowing to compute both their
masses discussed above and—moreover—their damping or inverse lifetime which appears at finite temperature.

As described in section 3, in the thermodynamic limit the action (18) can be expanded up to quadratic order
in the fluctuations. Since the coupling between atoms and the imaginary part of the cavity fields results solelyin a
dispersive shift, we can integrate out the imaginary part, generating only even powers in w,,. At zero temperature
the fluctuation part in dimensionless units is then given by

Ser ™) lr—o = > > {(wp + Dafal,

n=0i=1,2

+4 ) > ——————(Ty(0)

j=1,2 1 iwy, — 1(0)

Ui(0)) (Wi(0)

a* To(0) af, ],_n}, (26)

8a}k
where af is a real part of the cavity field and |;(k)) is the atomic wave function with quasi-momentum k and
band index I. This expression describes the scattering of atoms from the condensate to the I"'-point of an excited
band in second order perturbation theory. Since these processes are far off-resonant with respect to the low
energy excitations in the photon fields, they do not give rise to damping. The associated spectral functions are
thus perfectly sharp. The picture gradually changes with increasing temperature, when more and more atoms
occupy states near the edge of the Brillouin zone, where low energetic photons can be scattered resonantly. This
effect can be accounted for by generalizing the effective action through the inclusion of thermally occupied states

(FL)[ﬂ 2] = nose(;fL)[alR2]|T:0

Vs ny(En(K)) — ny(e(k))
v 1 (k Uy(k)) (W (k P, k) = R gR_
+Jz”; f W )‘ O | S| ) S el
= Z Z g(w”)ljal n ],—n’ 27

n=0 1,

where 1 is the condensate fraction. An important point is that, both at T = 0 and at finite temperature, the
action involves only the real parts of the cavity fields and is thus an even function of w. Therefore, it contains no
linear terms of the form i7aR (t) 9,a® (t) which would give rise to dynamics involving a reversible first order time
derivative, where no proper Higgs mode exists [30]. Since the matrix elements respect the symmetry of the mean
field action, the fluctuations can be diagonalized in terms of Goldstone and Higgs modes

ag = —sinfa® + cosfaf and ay = cosfal + sinfaf. Upon expanding to second order in the frequency, we
thus obtain the action
Sit Lac> anl ~ (Zewy + mé)ag.ac,n + (Zuwy + mi) ar g, - (28)

with numerical coefficients that fulfill mg < my,aswellas Zg g — 1 = O(mg, g/ €g) at small temperatures.
From this action the existence of a (approximately) gapless Goldstone mode together with a strongly gapped
Higgs mode is apparent.
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Figure 6. Low-energy excitation spectrum in the 7—w plane showing the Goldstone and Higgs peak with finite width close to the
critical point. The temperatures and coupling strengths A in order of increasing color saturationare {T, A} = {0, 2.2} (dotted
arrows), {0.5, 2.3} (dashed line) and {0.9, 2.2} for the solid line.

As anticipated, at finite temperatures the Goldstone and Higgs modes experience losses via resonant Landau
damping processes where a photon scatters against an atom while conserving energy and momentum. The
resulting lifetimes as well as the masses of both excitations can be obtained from the spectral function
A(w) = 23G(—iw + 07) which can be measured via pump—probe experiments. The resulting sectra are shown
in figure 6 for different temperatures’. For finite temperatures, there is additional structure in the tails of the
Goldstone and Higgs peaks, which arises from van-Hove singularities at the edges of the Brillouin zones.

As shown in figure 6, the Goldstone mass increases drastically with temperature, an effect that cannot be
observed in figure 5 for the mass obtained from the curvature of the mean field action at the global minimum.
This is because in our expansion in fluctuations about the potential minima we do not allow atoms to
redistribute. We are therefore effectively computing the behavior of photonic excitations at ‘high’ frequencies
with respect to the timescale of atomic redistribution. The inclusion of atomic redistribution beyond mean field
would require a non-equilibrium approach like the one employed in [31]. This would allow to interpolate
smoothly between the high frequency mass, as determined in A (w), and low frequency mass, obtained from the
MF potential. However, since the atomic redistribution time is extensive in the number of atoms [31], we expect
the Goldstone mass experimentally observable in large systems to correspond to the high-frequency mass
measured by the spectral function.

The spectral function exhibits two distinct peaks which possess a nontrivial frequency but no momentum
dependence. This is a consequence of the fact that the present double-cavity system is still an effectively zero-
dimensional one. As a result, it does not give rise to a genuine spectrum of Goldstone modes usually associated
with supersolids, where gauge and translation symmetry are broken simultaneously in a system with short range
interactions. For such a genuine supersolid, the total free energy can be written as an integral over a spatially
varying free energy density f (T, n, v, u)which involves thermodynamic variables which vary continuously in
space. In particular, the simultaneous presence of broken translation and gauge invariance leads to two
additional contributions in the differential of the free energy density

dflrn =j, - dvi + Tr g - du. (29)

As discussed by Liu within a hydrodynamic approach [26], the term proportional to the superfluid current
density j, and its conjugate variable, the superfluid velocity v; = %ng), results in a persistent mass flow for
generic supersolids or dissipationless entropy flow in the absence of defects. Similarly, for the generic case of
short range interactions where the stress tensor ¢ is linearly proportional to the strain tensor u, the second
contribution gives rise to phonons whose frequency w(q) ~ |q| vanishes linearly with the wave vector. Due to
w(q) = w(q + G) forregular crystals, this entails a vanishing Goldstone mass w(q = G) = 0 atreciprocal
lattice vectors as a signature of the spontaneous breaking of translation invariance [27]. In the present system
such a Goldstone mode also exists for the motion of atoms in the limit where m can be neglected. It is associated
with the shift along the x-direction discussed in equation (12) and leads to w(G) = 0 for all reciprocal lattice
vectors G = nk; + mk, with n, m € Z.1In particular the transverse acoustic phononatn = —m = £1
corresponds to the translation described in equation (12), which is related to the indirect exchange of a photon
between the two cavities. In contrast to the standard situation, however, where the phonon frequencies approach
zero continuously as q approaches 0, the long ranged nature of the interactions give rise to a finite energy gap at
any q = G. The Goldstone mode thus exists only at isolated points in momentum space, with all other momenta
being gapped.

> Note that up to leading order in the frequency expansion the lifetime of the modes is infinite and we need to use the full action (27) in order
to introduce damping.
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6. Conclusions

In summary, we have studied the nature of broken symmetries, the effective GL potential and the spectrum of
the light field in the double cavity setup realized recently at ETH [1, 2]. It has been shown that the emergent U(1)
invariance for symmetrically coupled cavities is slightly broken by higher order photon scattering processes. We
have determined an upper bound for the resulting mass of the effective Goldstone mode which is consistent with
the experimental results [2]. In addition, it has been shown that the ratio mg /my between the Goldstone and
Higgs mass vanishes in the limit of large driving amplitudes. As an experimentally testable prediction, we have
determined the cavity noise induced escape probability from the global minimum of the effective potential as a
function of the intracavity photon occupation which might be used for an indirect measurement of the
Goldstone mass. Finally, the issue of dissipationless transport of particles in the double cavity supersolid has
been discussed carefully and has been compared to the case of genuine supersolids, where this is associated with
an additional true Goldstone mode.
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