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Abstract
Wediscuss the nature of symmetry breaking and the associated collective excitations for a systemof
bosons coupled to the electromagnetic field of two optical cavities. For the specific configuration
realized in a recent experiment at ETH [1, 2], we show that, in absence of direct intercavity scattering
and for parameters chosen such that the atoms couple symmetrically to both cavities, the system
possesses an approximateU(1) symmetrywhich holds asymptotically for vanishing cavity field
intensity. It corresponds to the invariancewith respect to redistributing the total intensity = +I I I1 2

between the two cavities. The spontaneous breaking of this symmetry gives rise to a broken continuous
translation-invariance for the atoms, creating a supersolid-like order in the presence of a Bose–
Einstein condensate. In particular, we show that atom-mediated scattering between the two cavities,
which favors the state with equal light intensities =I I1 2 and reduces the symmetry to ÄZ Z2 2, gives
rise to a finite value~ I of the effective Goldstonemass. For strong atomdriving, this low energy
mode is clearly separated from an effectiveHiggs excitation associatedwith changes of the total
intensity I. In addition, we compute the spectral distribution of the cavity light field and show that
both theHiggs andGoldstonemode acquire a finite lifetime due to Landau damping at non-zero
temperature.

1. Introduction

The notion of a supersolid, i.e. a solidwhich is able to sustain dissipationlessmass currents typical for
superfluids, is clearly highly counterintuitive [3]. It requires that the particles in the solid can effectivelymove
freely through quantummechanical delocalization [4]. A conceptually simple example, suggested byAndreev
and Lifshitz [5] and byChester [6], is a quantum crystal with afinite density of defects even at zero temperature.
With Bose statistics, the resulting dilute gas of defects is expected to undergo BEC at low temperatures, giving
rise to afinite superfluid density and thus e.g. to a reducedmoment of rotational inertia [7]. As shown by
Prokof’ev and Svistunov [8], this scenario for supersolidity is in fact the generic one because superfluid states are
necessarily gapless with respect to adding and removing particles. A commensurate supersolid with an integer
number of particles in the unit cell, in turn, requires afine tuned value of the density. Formally, such a state
appears in the superfluid regime of the Bose–Hubbardmodel [9] atfixed integer densities.While such a
commensurate superfluid can in principle be realizedwith ultracold atoms in an optical lattice [10], it is
important to stress that—similar to the case of superfluidHeliumon the surface of a regular crystal—this is not a
supersolid in the usual sense because translation invariance is broken externally and not spontaneously as a result
of the interactions between the particles. This differs from several proposed realizations with ultracold atoms,
where dipolar [11] or Rydberg [12] interactions as well as collective light scattering [13] or spin–orbit coupling
[14] give rise to crystalline order. In particular, in the latter context, the recent observation of a stripe phase at
MIT [15] provides a simple example of supersolid-like order.
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Aquite different system inwhich long range positional ordermay coexist with superfluid behavior has been
realized in recent years by studying ultracold atoms in a high finesse cavity. In the presence of a transverse laser
field there is an induced interaction between the atomswhich ismediated by the cavity photons [16]. The
interaction is long-ranged and, beyond a critical strength lc of the drive, the atoms spontaneously arrange in a
periodic lattice, allowing to scatter the light from the transverse field coherently into the cavity [17, 18]. This is an
example of the classicDicke–Hepp–Lieb transition to a superradiant state [19–22] and it results in a two-fold
degeneracy of the periodic arrangement of the atoms.More precisely, the Z2 symmetrywhich is broken at the
Dicke–Hepp–Lieb transition is associatedwith the relative sign of the two degenerate wave-vectors = q k0

which appearwith equal weight in the standing periodic density wave described by a non-vanishing expectation
value rá ñ ¹ˆ 0k0

of the density operator r̂q (k0 is the externally fixed cavity wave vector). From the point of view
of off-diagonal long range order, which characterizes BEC in itsmost general form [23], the phase beyond lc is
one inwhich extensive eigenvalues of the one particle densitymatrix appear not only at =q 0 but also at
arbitrarymultiples of = q k0, forming a fragmented condensate with a self-generated optical lattice [24, 25].
The system therefore possesses simultaneously both diagonal and off-diagonal long range order. Despite the fact
that periodic order is now generated through light-fieldmediated interactions between the atoms, it is not a
supersolid in the standard sense because it does not sustain dissipationless particle currents e.g. of the =q 0 part
of the condensate with respect to thefixed periodic density wave pattern associatedwith thek0 components3.
Moreover, due to the long range nature of the interaction the system is effectively zero-dimensional and there are
no properGoldstonemodes usually associatedwith the breaking of a continuous translation symmetry, which
are the acoustic phonons near reciprocal lattice vectors q G [27].

Recently, amajor step towards the realization of supersolid behaviorwith dissipationless particle transport
has been taken by Léonard and coworkers at ETH in a setup involving ultracold atoms in two crossed cavities [1].
In this setup, a cloud of Bose-condensed atoms is enclosed in a configuration involving two optical cavities
which are at a 60° angle with respect to each other. Tuning the parameters such that the atoms couple
symmetrically to both cavities, this system allows to realize light-induced crystallization of the atomswhich
involves an arbitrary superposition of both cavity wave vectors.Within a simple two-mode description, the two
discrete symmetries Z2 of the individual cavities can thus be combined to a continuousU(1) symmetry, allowing
to observe a continuous shift of the crystallization pattern [1]. Our aim in the present work is to analyze a fully
microscopicmodel for this setup in order to study the detailed structure of the broken symmetries and the
resulting spectrumof collective excitations. In particular, wewill derive the associated effective dynamic
Ginzburg–Landau (GL) functional for the lightfield in the cavity and discuss the limits inwhich the system
indeed exhibits the breaking of a continuous translation symmetry. Beyond a detailed discussion of symmetry
breaking and the subtle issue of supersolidity in this context, our results also provide a quantitative
understanding of the recentmeasurements of the effective Goldstone andHiggsmode frequencies [2].

2.Model and symmetries

Weconsider the setup used for the recent experiments at ETH [1, 2]. It consists of a three dimensional cloud of
bosonic atoms trapped at the intersection of the TEM00-modes of two optical cavities. All photons couple the
atomic ground state to the same excited state. Generalizing the formalismdeveloped in a previous paper [24],
adiabatic elimination of the excited state (which is well justified for the experimental setup) leads to an effective
Hamiltonian. In the frame rotatingwith the driving laser wL it takes the following form (note thatwe use units in
which  = 1 throughout the paper):

òå y y= - D + -


+
=

⎛
⎝⎜

⎞
⎠⎟ˆ ˆ ˆ ˆ ( ) ˆ ( ) ˆ ( ) ( )† †

H a a
m

Vr r r rd
2

. 1
i

i i i
1,2

2

Here, âi is the bosonic annihilation operator of a photon in the cavity i, ŷ ( )r is the bosonic annihilation operator
for an atom at position r withmassm and w wD = - < 0i L i is the detuning of the laser from the cavity
resonance. Assuming equal dipole couplings = =g g g1 2 in both cavities, the associated single-particle potential
—which still depends on the quantum state of the cavity field—is given by

å å= + + +
= =

ˆ ( ) ( ) ( )( ˆ ˆ ) ( ) ˆ ˆ ( )† †V V y V a a V a ar r r , 2L
i

i i i
i j

i j i j
1,2 , 1,2

,

whereVL accounts for the pumppotential whileV1 andV2 are the potentials resulting from the interference
between one cavity and the pump. They are given by

3
Within a hydrodynamic description, such dissipationless currents would be associatedwith a fourth sound-likemodewith linear

dispersion, see [26].
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whereΩ is the Rabi frequency of the driving laserwhile w wD = - < 0A L A is the detuning of the atomic
resonance from the driving laser at frequency wL. Note that in the experiment under consideration [1, 2] the
laser drive is far detuned (W D » ´ -∣ ∣ 3 10A

4), which justifies the adiabatic elimination underlying the
effectiveHamiltonian (1). The last term in equation (2) describes the effects of direct inter- and intracavity
scattering. The associated effective potential h h=( ) ( ) ( )V r r ri j i j, is determined by the twomode functions
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which correspond to the configuration shown infigure 1, where the cavity axes form a 30° angle with the x axis
and lie in the x−y plane i.e. =  + ( ( ) ( ))kk n ncos 30 sin 30x y1,2 0 . The pump axis is along the y direction i.e.

= kk np y0 and the standingwave obtained by retroreflection has a phase-shift p 2. Due to the small detuning
wD ∣ ∣i L the pump and cavitymodes can be taken to have the samewavelength l p= k20 0. In the following

discussionwewill include the leading contribution of the direct intracavity processes h hµ ( ) ( )r ri i as a dispersive
shift to the cavity detuning

d = -D +
D

> ( )Ng

2
0. 5c i

A

2

i

Wewill however neglect contributions quadratic in ( )V ri j, , which are of order g4. This is valid in the
experimentally realized regimewhere fourth order processes due toV1 andV2 aremore important than second
order effects inVi j, . Since intermediate states in this perturbation series carry energies~ER (in the superradiant
phase creation of cavity photons costs very little energy), this reduces to the condition W D ∣ ∣EA R with recoil
energy =E k m2R 0

2 , which is well satisfied in the experiment (see also below). As the critical Rabi amplitude
W µ D∣ ∣c A is decreased, close to the onset of superradiance, direct intercavity scatteringwill eventually be the
dominant effect. The role of these processes, together with different choices of the retroreflection phase-shift,
have been theoretically investigated in [28, 29].

As discussed in [1], assuming small (in a sense that will become clear later) lightfield intensities so that
multiple scattering is suppressed, we can restrict theHilbert space to the lowest ninemomentum states

ñ = ñ   ñ∣ ∣ ∣k k k k, 0, 0 ,x y i p (see alsofigure 1) and truncate theHamiltonian (1) as follows [1]:
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Figure 1. Left: sketch of the setup considered as implemented in the experiments of [1]. Right:momentum space in the repeated-zone
scheme, where each hexagon indicates the Brillouin zone for a given band.Green zones are occupied evenwithout cavity fields and in
particular their center (Γ-point) is the only state occupied atT=0.Gray zones are occupied via cavity-photon scattering and
correspond to the truncation used in theU(1)-symmetricHamiltonian (6). The closed curve indicates a scattering path involving two
photons from each cavity. This scattering process, forwhichwe need to include the orange zones in ourHilbert-space truncation,
explicitly breaks theU(1) symmetry of the fullHamiltonian (1).
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where ˆ†ci excites an atom into a standingwave of wave vector k ki p with energy =  ( )E E2 1 R and ĉ0

removes an atom at =k 0. Here W D∣ ∣g A is the effective cavity pump strength. The truncatedHamiltonian (6)
has in general a ÄZ Z2 2 symmetry corresponding to the following transformation

 - ( ˆ ˆ ) ( ˆ ˆ ) ( )a c a c, , , 71 1 1 1

 - ( ˆ ˆ ) ( ˆ ˆ ) ( )a c a c, , . 82 2 2 2

The spontaneous breaking of either one of these discrete symmetries corresponds to a superradiant phase
transition characterized by the order parameter á + ñˆ ˆ†a ai i or equivalently á + + ñ+ -ˆ ˆ ˆ ˆ† †c c c c h.c.i i0 0 . In the full
model in real space given by equation (1), the above ÄZ Z2 2 symmetry corresponds to the transformations
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( )a ar r

k

k
, , , 102 2

2

2
2

which involve a discrete spatial translation along a cavity axis. In this sense, the superradiant transition
corresponds to a self-ordering of the atoms into a spatial patternwhich scatters constructively into the
cavity [16].

As pointed out in [1], for a symmetric choice of cavity detuningsD = D1 2 there is an accidentalU(1)
symmetry in the truncatedHamiltonian (6):

q q q q q q q q - - + +
 

   

( ˆ ˆ ˆ ˆ )
( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( )

a c a c
a a c c a a c c

, , ,
cos sin , cos sin , sin cos , sin cos . 11

1 1 2 2

1 2 1 2 1 2 1 2

The signatures of the spontaneous breaking of this continuous symmetry, which corresponds to afixed value of
the relative phase θ of the two coherent cavityfields, varying randomly between different realizations, have been
experimentally investigated in [1, 2]. In particular, it has been shown that the symmetry broken state possesses a
collective excitationwith a frequency below the experimental resolution of 100 kHz. Correspondingly the cavity
fields have been observed at randomly distributed relative amplitudes with afixed overall output intensity. Both
these signatures have been interpreted as theGoldstonemode of the brokenU(1) symmetry.

As discussed in [1], the transformations (11) can be translated into an invariance of the potential (2) in real
space. Indeed, by examining the potential (2)we see that by restricting to the subspaceX defined by

p p+ = Îk y n n2 ,0 , the potential is invariant under:

p

q q q q q p

= -

 - +  = -

( ˆ ˆ ( ) )
( ˆ ˆ ˆ ˆ ( ) ( ) ) ( )

a a x y n k

a a a a x k y n k

, , , 1 2

cos sin , sin cos , 2 3 , 1 2 , 12

1 2 0

1 2 1 2 0 0

where the- +( ) sign applies for even (odd) values of n. The continuous symmetry of theHamiltonian under
rotations of the cavityfield by an angle θ and a simultaneous shift of the atoms along the x-direction by

q ( )k2 3 0 thus leads to supersolid-like behaviorwith no restoring force for translations of the atoms along
the x-direction.

Now, the fact that theU(1) symmetry (12) in the fullmodel (1) is restricted to the subspaceX of discretely
spaced values of the y coordinate implies that this symmetry holds only approximately. The fundamental reason
is that the potential (2) has nominimumon theU(1)-symmetric lines p= -( )y n k1 2 0, but rather at a
positionwhich is shifted by an amount inversely proportional to the amplitude of the state independent ac-Stark
shiftVL in the effective potential. This shift appears due to interference between the two cavityfields and is
therefore present for anyfinite number of photons in both cavities. The corresponding lowest-order scattering
processes are depicted infigure 1 as a closed path involving two photons for each cavity, which for equal
intensities = =I I I1 2 implies that the lowest order of the explicit breaking of theU(1) symmetry is proportional
to I2. It is important to note that the description of these scattering processes requires the inclusion of
momentum states that are absent in the truncation used to obtain theHamiltonian (6) (see figure 1). In the
followingwewill discuss the consequences of the explicitU(1) symmetry breaking for the supersolid-like
features, whichwill turn out to be still approximately present in the limit of intense laser drivingΩ.

To understand the physics beyond the deviations from a perfectU(1)-symmetry, it is convenient to use a
simple effectiveHamiltonian obtained by adiabatically eliminating the photons from (1). Assuming deep lattices
such that we can neglect the kinetic term aswell as all terms beyond( )g 2 from the contribution ( )V ri j, , the
resulting effectiveHamiltonian

ò òåy y
d

y y= - ¢ ¢ ¢ ¢
⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ( ) ˆ ( ) ( ) ( ) ( ) ˆ ( ) ˆ ( ) ( )† †
H V

V
Vr r r r

r
r r r rd d 13L

i

i

c
i

i

for the atoms alone contains an instantaneous, cavity field induced, attractive density–density interaction of the
form d-å ¢( ) ( )V Vr ri i i ci

which does not decay as a function of the separation - ¢∣ ∣r r . Sincewe neglect direct

4

New J. Phys. 19 (2017) 123027 J Lang et al



intercavity scattering, there are no interactions of higher order in the density. In the case that only a single cavity
is superradiant the ground state is given by a density distributed solely within the high symmetry subspaceX
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2 3
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with r = N V0 . Here, theminus sign implies superradiance in cavity 1 (a = á ñ ¹â 01 1 )while the plus sign
corresponds to a finite expectation value of a = á ñâ2 2 . The energy density of both states is given by

 = +W
D

( )c1
A

2

, with d= D∣ ∣c Ng c A
2

i
a dimensionless positive constant which ismuch less than one for typical

experimental parameters. For two identical cavities d d=c ci
and therefore a a= i, this is, however, not in the

ground statemanifoldwhich instead contains for example the density profile
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with În m, and = + +( )d c c c1 2 4 2 . This density distribution slightly frustrates the potentialVL

induced by the ac-Stark shift of the atoms and shifts the densities away from theX subspace. It therefore slightly
breaksU(1) invariance in the atomic density and locks the relative cavity phases. The small energy difference
between state (15) and state (14) is given by

D = -
W
D

+ + + - - - + + »
W
D

<
⎡
⎣⎢

⎤
⎦⎥( ( ))( ( ))( ( )) ( )c
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27
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0. 16

A A

2

2

2 2

Aswill be discussed below, this energy determines the scale of the effective Goldstonemass. Resubstituting either
one of these density profiles into the cavity equations ofmotionwe obtain a d= » W D∣ ∣ ∣ ∣I N g A c to leading
order in c, which shows that in the deep lattice limit the critical coupling strength lc vanishes. Since kinetic
energy contributions have been neglected, theGoldstonemass has an upper bound

 
a

d
=

-D -D
W

=
-D

( )m
I

N

g
. 17G

c A

A

Physically theGoldstonemassmG arising from thefinite energy scale D associatedwith the breaking of theU
(1) symmetry describes the azimuthal curvature of theGL potential, whichwill be discussed inmore detail in
section 4. As expected according to the argument based on the scattering processes illustrated infigure 1,
 aD µ =∣ ∣ I4 2. The explicit symmetry breaking D due to the latter scattering processes has actually the same

scalingwith intensity as the onewhichwould result fromdirect intercavity scattering (not involving the pump
W), whichwe neglected in ourmodel (1). Asmentioned before, this is justified in the experimentally realized
limit W D ∣ ∣E 1A R , where direct intercavity scattering is suppressedwith respect to the processes shown in
figure 1. In particular, the fact that we can neglect all contributions from the last term in (2) beyond the simple
dispersive shift has no influence on theU(1) invariance in subspaceX. Even including all contributions from the
last term in (2), the explicit breaking of theU(1) symmetry is still caused by the fact that the global potential
minimum for the atoms lies outside the subspaceX.

3. Effective action andphase diagram

In order to compute the phase diagram and the experimentally accessible spectrumof the cavity light field, we
extend the effective equilibriumpath-integral approach developed in [24] for a single-cavity configuration.We
derive an effective action for the cavity degrees of freedomby exactly integrating out the atoms. The action splits
into amean-field (MF) plus afluctuation (FL) part. The latter will be discussed in detail in section 5 below. As
shown in [24], this action becomes exact in the thermodynamic limit due to the infinite-range interactions. By
separating the coherent part of cavityfields a = á ñâi i aswell as the atom field f y= á ñ( ) ˆ ( )r r (which
corresponds to the condensate fraction)we obtain the effective action

* *= +[ ] [ ] ( )( ) ( )S a a S S a a, , . 18eff 1,2 1,2 eff
MF

eff
FL

1,2 1,2

The leadingMF action reads

*òå a f m f= - D + + -
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It involves an effective c-number single-particle potential = a( ) ˆ ( )∣ˆV Vr r asp i i
felt by the atoms inwhich the

lightfield operators are replaced by their coherent state expectation values. The atompropagator defined by
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where the integers ¢n n, label theMatsubara space with frequencies w p= nk T2n B , kB is the Boltzmann constant
andT the temperature of the system. In equation (19) the trace ò= årTr d n is taken over coordinate and
Matsubara space andμ is the atomic chemical potential.

The saddle-point associatedwith theMF action defines a closed systemof equations:
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with the condensed r =( )r0 f∣ ( )∣r 2 and non-condensed r =( )r y yá ñ -ˆ ( ) ˆ ( )†
r r r =( )r0

 må -( )∣ ( )∣ℓ ℓ ℓn v rb
2 atomdensity. Here ( )ℓv r are the eigenvectors of the single-atomHamiltonianwith

potential ( )V rsp with eigenvalue ℓ, and = - -( ) ( ( ) )n x x k Texp 1b B
1 is the Bose–Einstein distribution. The

second equation in (21) is theGross–Pitaevskii equation for the condensate wavefunctionwhile the third
equationfixes the chemical potential.We stress that both r ( )r and ( )V rsp depend on the cavity coherent parts
a1,2. It is convenient to introduce dimensionless quantities, whichwe define by

d d
r
d d

l
d d

= = =
W

D
=

W
D

=( )
( ) ∣ ∣ ∣ ∣

( )n
m

U
g N E

min , , , , . 22c
i

c
c

p
A c A c

R
R

c

0
3 2

2

i

Moreover, wemeasure temperatures in units of the critical temperature of an ideal Bose gas
pd z= ( ( ))T n2 3 2c c

ideal 2 3 at the given average density n andwith ζ the Riemann zeta function.We
furthermore rescale a a N in the remainder of this paper and in allfigures.

As discussed in the previous section, theHamiltonian (1) possesses the ÄZ Z2 2 symmetry defined by
equation (9). The corresponding order parameters are the two real quantities

a= á ñ = á + ñ =ˆ ˆ ˆ ( ) ( )†X a aX 2 Re . 231,2 1,2 1,2 1,2 1,2

Afinite expectation value ¹X 0i creates the effective one-body potentialVi, which results in an atomic density
wave. Thus equivalent order parameters can be defined by the density components

ò
ò

r y y

f r

= á ñ

= +

( · ) ( · ) ˆ ( ) ˆ ( )

( · ) ( · )(∣ ( )∣ ( )) ( )

†
r k r k r r r

r k r k r r r

d cos cos

d cos cos . 24

p

p

1,2 1,2

1,2
2

Additionally, we have the Bose–Einstein condensation transition described by theU(1) order parameter f ( )r .
Wefirst investigate the interplay between the superradiant transition and the Bose–Einstein condensation by

solving theMF equations (19) as a function of temperatureT and driving strengthUp. The corresponding phase
diagram,which is qualitatively the same as the one for the single-cavity case considered in [24] is shown in
figure 24.With growing values of the coupling strengthUp the atomic gas becomes increasingly confined to the

Figure 2.Phase diagram in the –U Tp plane for parameters D = D2 1,  = 8R , n=1, l = 2.8. To the right of the blue line the system
is in a superradiant state with equal intensity in both cavities, below the red line afinite fraction of the atoms is condensed.

4
We choose d=E 8R c for our computations. This ismuch larger than the experimental values d~E 100R c of the recoil energies, which

would increase the numerical effort considerably without changing the qualitative physics.
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minima of the effective single-particle potential, which results in an enhancement of the kinetic energy and
therefore a reduction of the critical temperature for Bose–Einstein condensationTc. Beyond a critical coupling
strengthUpc

(or equivalently lc) the atoms spontaneously arrange into a spatially ordered configuration,
resulting in a superradiant backscattering of light into the cavity. This Dicke–Hepp–Lieb transition as indicated
by the blue line infigure 2 can be found bothwith andwithout a condensate fraction. Additionally, afinite, but
small, temperature can enhance the tendency towards superradiance, as can be seen from the decrease of the
critical driving strength for increasing temperatures at T Tc

ideal.
The phase diagramoffigure 2 is computed for a symmetric cavity configuration i.e. for equal detunings

D = D1 2, implying that in the superradiant phase both cavities are equally occupiedwith order parameters
a a=1 2. For a comparisonwith the experimental results we also compute the zero temperature phase diagram
in the d d–c c1 2

plane, which is shown infigure 3. Apart from the superradiant phases with only one nonzero cavity
field i.e. a a¹ =0, 01,2 2,1 we observe a narrow region around the diagonalD = D1 2 where both Z2

symmetries are broken i.e. a a¹ ¹0, 01 2 .Within this small region of the phase diagram the two cavity order
parameters are not equal, as quantified by the color scale infigure 3, indicating the value of the angle θ in the
a a–1 2 plane (see alsofigure 4), defined as

q
a
a

=
⎛
⎝⎜

⎞
⎠⎟arctan ,1

2

which equals theU(1)-parameter of equation (12).
This region exists due to the fact that theU(1) symmetry of equation (12) is not perfectly realized. In

particular, the size of the region is set by the value of theGoldstonemass. Using equation (17) and the
experimental parameters W D =∣ ∣ E38A R

2 , D = ´ -∣ ∣g E5 10A R
2 4 and D =∣ ∣ E10 R

3 [1], one obtains
 aD ~ ~∣ ∣ m E0.1G R

2 2 , consistent with the experimental result D <∣ ∣ E10 R.

4.GL potential for the cavityfields and role of cavity losses

In order to investigate the approximateU(1) symmetry of ourmodel inmore detail, we compute the full GL
potential corresponding to theMF equations (21). The resulting effective potential in the a a–1 2 plane is shown
infigure 4, both for an asymmetric and the perfectly symmetric choice of detunings, at zero and finite
temperature.

The asymmetric case forT=0 is picked such that we are in the single-cavity superradiant phase and theGL
potential has indeed twominima at angles q p= 0, when cavity 1 is preferred, or q p=  2when cavity 2 is
preferred. The asymmetric case for =T T0.9 c is instead picked such that we still are in the coexistence region
where both cavities are occupied andwhere theGL potential has fourminima.One of those is shown at an angle
slightly below q p= 4, connected by reflection symmetrywith respect to the origin.

On the contrary, forD = D1 2 theGL potential shows four degenerateminima at q p p=  4, 3 4. Since
aU(1) symmetric potential would show a degenerateminimumon awhole circle, we see that the extent towhich
this symmetry is explicitly broken ismeasured by the azimuthal curvature of the potential about anyone of the
fourminima, which determines the square of the effective Goldstonemass. The latter, together with the
associated effectiveHiggsmass, which corresponds to the square root of the curvature in the radial direction, is
shown infigure 5 across the superradiant phase transition at zero and at finite temperature. In the disordered
phase there is only a single collectivemode in the radial directionwith amass vanishing at the critical point.

Figure 3.Phase diagram in the d d–c c1 2 plane. The color scale indicates the angle in θ in the a a–1 2 plane. Inset: cavity amplitudes along
the black line indicated on the phase diagram. The parameters used areT=0, l = 2.82, h = 4 and  = 8R .
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Beyond this point Goldstone andHiggsmass separate, the latter growingmuch faster while the former remains
at least one order ofmagnitude smaller. By expanding theGL potential one can show that theGoldstonemass
close to the critical point is proportional to a a1 2 , in accordance with the arguments discussed in section 2.
Moreover, the ratio betweenGoldstonemass andHiggsmass is inversely proportional to the drive strength, so
that for the strong drive employed in experiment and considered infigure 5wefind a large separation between
theHiggs and theGoldstonemass.

The qualitative behavior and the ratio of theGoldstone toHiggsmass shown infigure 5 is consistent with the
experimental results of [2]. By contrast, the presence of awell-definedminimum in theGL potential in the range

Figure 4.Ginzburg–Landau potential VGL as a function of the cavity amplitudes. Arrows indicate the gradient. (a), (b) are forT=0
while (c), (d) for =T T0.9 c

ideal. (a) and (c) correspond to a symmetric configuration d d=c c1 2, while (b) and (d) correspond to
d d= 1.01c c2 1. The remaining parameters are h = 10,  = 8R as well as l = 3 in (a), (b) and l = 2.7 in (c), (d). Notice the small
curvature along the azimuthal direction.

Figure 5.Goldstone andHiggsmass across the superradiant transition atT=0 (left) and =T T0.5 c
ideal (right). Parameters are the

same as in figure 2 apart from l = 2.278.
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q p< <0 2 offigure 4 is not compatible with the experimental finding [1] that θ is homogeneously distributed
in this range. However, we can reconcile our predictionwith the experiment by adding the noise induced by
cavity losses to the picture. The probability of escaping theminimumand delocalizing across the circle infigure 4
is given by k» - D( )P N Vexpdeloc ph , where a l lD µ µ -∣ ∣V c

4 2 is the depth of theminimumwhileκ is

the cavity loss rate. Note that the noise is suppressed by a factor N1 ph if we assume a coherent cavity field.

With the experimental value k p ~2 200 kHz andwith D D ∣ ∣V which is determined by the square of the
Goldstonemass according to thefirst equality in equation (17), typical values a= ~∣ ∣N 100ph

2 lead to an
escape probability of - ( )P exp 0.02 0.98deloc .We stress that our estimate forDV is an upper bound and
thereby our escape probability provides a lower bound. A critical test for this scenario of a restoration of theU(1)
symmetry by cavity loss induced noise, is that with an increasing number of intracavity photons the escape
probability is expected to decrease exponentially like

µ -( ) ( )P Nexp . 25deloc ph
5 2

5. Effective action for low-energy excitations

In thisfinal sectionwewill discuss the nature of the low-energy excitations of the cavity field in the superradiant
phase. For this purpose we expand the effective action derived in section 3 up to quadratic order about the
minima of theMFpotential discussed in section 4. The resulting time-dependent deviations t( )ai can be
expanded in terms of discrete Fourier-coefficients ai n, which determine the spectrumof lightfield fluctuations
in the cavity. Thus, the effective Goldstone andHiggsmode appear explicitly, allowing to compute both their
masses discussed above and—moreover—their damping or inverse lifetimewhich appears atfinite temperature.

As described in section 3, in the thermodynamic limit the action (18) can be expanded up to quadratic order
in the fluctuations. Since the coupling between atoms and the imaginary part of the cavity fields results solely in a
dispersive shift, we can integrate out the imaginary part, generating only even powers in wn. At zero temperature
thefluctuation part in dimensionless units is then given by
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where ai
R is a real part of the cavity field and Y ñ∣ ( )kl is the atomicwave functionwith quasi-momentum k and

band index l. This expression describes the scattering of atoms from the condensate to theΓ-point of an excited
band in second order perturbation theory. Since these processes are far off-resonant with respect to the low
energy excitations in the photonfields, they do not give rise to damping. The associated spectral functions are
thus perfectly sharp. The picture gradually changes with increasing temperature, whenmore andmore atoms
occupy states near the edge of the Brillouin zone, where low energetic photons can be scattered resonantly. This
effect can be accounted for by generalizing the effective action through the inclusion of thermally occupied states
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where n0 is the condensate fraction. An important point is that, both atT=0 and atfinite temperature, the
action involves only the real parts of the cavity fields and is thus an even function ofω. Therefore, it contains no
linear terms of the form  ¶( ) ( )a t a ti R

t
R whichwould give rise to dynamics involving a reversible first order time

derivative, where no properHiggsmode exists [30]. Since thematrix elements respect the symmetry of themean
field action, the fluctuations can be diagonalized in terms ofGoldstone andHiggsmodes

q q= - +a a asin cosG
R R

1 2 and q q= +a a acos sinH
R R

1 2 . Upon expanding to second order in the frequency, we
thus obtain the action

w w» + + +- -[ ] ( ) ( ) ( )( )S a a Z m a a Z m a a, 28G H G n G G n G n H n H H n H neff
FL 2 2

, ,
2 2

, ,

with numerical coefficients that fulfill m mG H , as well as - = ( )Z m1G H G H R, , at small temperatures.
From this action the existence of a (approximately) gapless Goldstonemode together with a strongly gapped
Higgsmode is apparent.
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As anticipated, atfinite temperatures theGoldstone andHiggsmodes experience losses via resonant Landau
damping processes where a photon scatters against an atomwhile conserving energy andmomentum. The
resulting lifetimes aswell as themasses of both excitations can be obtained from the spectral function

w w= - + +( ) ( )IA 2 i 0 which can bemeasured via pump–probe experiments. The resulting sectra are shown
infigure 6 for different temperatures5. Forfinite temperatures, there is additional structure in the tails of the
Goldstone andHiggs peaks, which arises from van-Hove singularities at the edges of the Brillouin zones.

As shown infigure 6, theGoldstonemass increases drastically with temperature, an effect that cannot be
observed infigure 5 for themass obtained from the curvature of themean field action at the globalminimum.
This is because in our expansion influctuations about the potentialminimawe do not allow atoms to
redistribute.We are therefore effectively computing the behavior of photonic excitations at ‘high’ frequencies
with respect to the timescale of atomic redistribution. The inclusion of atomic redistribution beyondmeanfield
would require a non-equilibrium approach like the one employed in [31]. This would allow to interpolate
smoothly between the high frequencymass, as determined in w( )A , and low frequencymass, obtained from the
MFpotential. However, since the atomic redistribution time is extensive in the number of atoms [31], we expect
theGoldstonemass experimentally observable in large systems to correspond to the high-frequencymass
measured by the spectral function.

The spectral function exhibits two distinct peakswhich possess a nontrivial frequency but nomomentum
dependence. This is a consequence of the fact that the present double-cavity system is still an effectively zero-
dimensional one. As a result, it does not give rise to a genuine spectrumofGoldstonemodes usually associated
with supersolids, where gauge and translation symmetry are broken simultaneously in a systemwith short range
interactions. For such a genuine supersolid, the total free energy can bewritten as an integral over a spatially
varying free energy density ( )f T n uv, , ,s which involves thermodynamic variables which vary continuously in
space. In particular, the simultaneous presence of broken translation and gauge invariance leads to two
additional contributions in the differential of the free energy density

s= +∣ · · ( )f uj vd d Tr d . 29T n s s,

As discussed by Liuwithin a hydrodynamic approach [26], the termproportional to the superfluid current
density js and its conjugate variable, the superfluid velocity

 f= vs m
, results in a persistentmassflow for

generic supersolids or dissipationless entropyflow in the absence of defects. Similarly, for the generic case of
short range interactionswhere the stress tensor s is linearly proportional to the strain tensor u, the second
contribution gives rise to phononswhose frequency w ~( ) ∣ ∣q q vanishes linearly with thewave vector. Due to
w w= +( ) ( )q q G for regular crystals, this entails a vanishingGoldstonemass w = =( )q G 0 at reciprocal
lattice vectors as a signature of the spontaneous breaking of translation invariance [27]. In the present system
such aGoldstonemode also exists for themotion of atoms in the limit wheremG can be neglected. It is associated
with the shift along the x-direction discussed in equation (12) and leads to w =( )G 0 for all reciprocal lattice
vectors = +n mG k k1 2 with În m, . In particular the transverse acoustic phonon at = - = n m 1
corresponds to the translation described in equation (12), which is related to the indirect exchange of a photon
between the two cavities. In contrast to the standard situation, however, where the phonon frequencies approach
zero continuously as q approaches 0, the long ranged nature of the interactions give rise to afinite energy gap at
any ¹q G. TheGoldstonemode thus exists only at isolated points inmomentum space, with all othermomenta
being gapped.

Figure 6. Low-energy excitation spectrum in the h w– plane showing theGoldstone andHiggs peakwithfinite width close to the
critical point. The temperatures and coupling strengthsλ in order of increasing color saturation are l ={ } { }T , 0, 2.2 (dotted
arrows), { }0.5, 2.3 (dashed line) and { }0.9, 2.2 for the solid line.

5
Note that up to leading order in the frequency expansion the lifetime of themodes is infinite andwe need to use the full action (27) in order

to introduce damping.
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6. Conclusions

In summary, we have studied the nature of broken symmetries, the effective GL potential and the spectrumof
the lightfield in the double cavity setup realized recently at ETH [1, 2]. It has been shown that the emergentU(1)
invariance for symmetrically coupled cavities is slightly broken by higher order photon scattering processes.We
have determined an upper bound for the resultingmass of the effective Goldstonemodewhich is consistent with
the experimental results [2]. In addition, it has been shown that the ratio m mG H between theGoldstone and
Higgsmass vanishes in the limit of large driving amplitudes. As an experimentally testable prediction, we have
determined the cavity noise induced escape probability from the globalminimumof the effective potential as a
function of the intracavity photon occupationwhichmight be used for an indirectmeasurement of the
Goldstonemass. Finally, the issue of dissipationless transport of particles in the double cavity supersolid has
been discussed carefully and has been compared to the case of genuine supersolids, where this is associatedwith
an additional trueGoldstonemode.
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