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Abstract

The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells
(QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns
and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine
the absolute values of the Rashba and linear Dresselhaus spin—orbit interaction (SOI) coefficients,
their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat
node positions with respect to both polar and azimuthal angles between the magnetic field direction
and the QW normal. We show that the SOl is dominated by a large Rashba coefficient together with a
linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be
positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-
plane anisotropy due to SOIL.

1. Introduction

Spin related effects in semiconductor two-dimensional electron systems (2DESs) have been a subject of intense
research in both fundamental physics and research aimed towards novel spintronic devices [1]. In addition to
the anisotropic Zeeman effect relevant for spin manipulation by external magnetic fields [2], in particular the
spin—orbit interaction (SOI) effects in 2DESs are of interest. Here, two contributions, i.e., the Rashba (R) [3, 4]
effect due to structural inversion asymmetry of the heterostructure and the Dresselhaus (D) [5] effect due to the
bulk inversion asymmetry of the crystal play the leading role. The large interest in R-SOI effects in 2DESs is
motivated on the one hand by the possibility to manipulate spins by electrical fields [6]. On the other hand, both
R-SOIand D-SOI can lead to spin decoherence which has to be considered for any device working with spin
information [7]. This insight has led to concepts based on the interplay of R-SOI and D-SOI [8]. In any case, the
unambiguous separation and quantification of all these effects in a given electron system is of utmost
importance. This is still experimentally challenging. Common methods have addressed in-plane anisotropies of
quantities like spin lifetimes that are influenced by SOI. When an external magnetic field is applied, the modeling
must include the interplay of SOI and the Zeeman interaction, parameterized by the anisotropic Landé tensor
g *. The out-of-plane anisotropy of §* stems from the symmetry reduction in planar heterostructures [9] while
the in-plane asymmetry is due to SOI effects in asymmetric heterostructures [10]. Thus, in asymmetric
heterostructures lacking inversion symmetry of the host crystal all of these effects are present simultaneously.
Early studies on SOI effects in 2DESs were performed using magnetotransport measurements. Here, the
SOI-induced spin splitting gives rise to distinct beating patterns in the Shubnikov-de Haas (SdH) oscillations
[11-13]. A theoretical model including R-SOI and D-SOI was already formulated in [14], although no reference
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to the resulting in-plane anisotropies was made. Subsequent studies using beating patterns in SdH oscillations
focused on samples where a dominant R-SOI was assumed [15—18]. Detailed experimental investigations of SAH
beating patterns in tilted magnetic fields and considering both SOI terms are lacking.

Experimental milestones reporting information on the R-SOI and D-SOI coefficients, denoted by ag and
Op, respectively, include the work by Ganichev et al who used the anisotropy of spin photocurrents to determine
the ratio ar/ Bp [19, 20], without applying a magnetic field, i.e., independent of g*. Meier et al performed
angle-dependent time-resolved Faraday rotation and extracted the absolute values and relative sign of ag and
Bp but neglected the §*-anisotropy in their analysis [21]. Larinov and Golub demonstrated the tunability of
ar/ PBp via a gate voltage in angle-dependent time-resolved Kerr rotation [22]. The formation of a persistent spin
helix when ar = fp was first mapped by Walser et al [23]. Recently, Sasaki et al performed
magnetoconductance measurements on etched nanowires with different in-plane orientations and extracted
spin-lifetimes via weak antilocalization. They demonstrated the tunability of ag / Bp and the persistent spin
helixwhen ag = (p [24]. To determine ag and (p at the same time theoretical works suggest experiments such
as electric-dipole spin resonance [25], magnetoexciton absorption [26] and measurements of the quantum
oscillatory magnetization [27] in strong tilted magnetic fields.

Experiments found significant out-of-plane anisotropy of §* in InGaAs-based systems [28], but no
substantial out-of-plane anisotropy in AlGaAs-based 2DESs [29-31]. The in-plane anisotropy was quantified in
AlGaAs-based systems using spin quantum beat spectroscopy [32, 33]. An experimental report treating the full
g%, as well as R-SOI and D-SOI on the same footing is lacking up to now.

In this paper we report the values of o, Bp, their relative sign and all components of g* determined on one-
and-the-same sample using SdH oscillations detected in magnetotransport on Hall bars in doubly tilted magnetic
fields B. The experiment relies on the anisotropy induced in the node positions of the SdH beatings as a function
of the direction of the in-plane component of a magnetic field that is strongly tilted with respect to the 2DES
normal. ag, Bp and g* are determined by fitting model calculations of the node positions to the data. The
calculations are based on numerical diagonalization of the single-particle Hamiltonian including R-SOI, and k-
linear D-SOI terms as well as the anisotropic Zeeman term in an arbitrarily tilted magnetic field.

The paper is organized as follows. In section 2 we first define the model Hamiltonian. We briefly revisit the
so-called coincidence technique [34, 35] that will later play a role in determining the starting parameters for
matching the model to the experiment. We then outline the numerical calculations and their results with
empbhasis on the impact of SOI parameters and §* on the anisotropy of the node positions. In section 3 we
introduce the InP/InGaAs quantum wells (QWs) investigated in this work and describe the experimental setup.
We present the experimental results and analysis in section 4 and discuss their implications in section 5. Finally,
we draw conclusions in section 6.

2. Theory for the analysis of SdH oscillation patterns in doubly tilted fields B

We first present the theoretical model that we used to derive the energy states of a 2DES in tilted magnetic fields
including k-linear Rashba and Dresselhaus SOI as well as anisotropic Zeeman interaction. These energy spectra
are key to calculate relevant node positions in magneto-oscillations such as SdH-oscillations as discussed below.
We consider an ideal 2DES confined to the (x, )-plane, with x|[[100], y||[010] and z||[001]. A magnetic field

B = (Bsinf cos ¢, B sin @ sin ¢, B cos 0) is applied, where B defines the absolute field strength and 6 and @ are
polar and azimuthal angles, respectively, defining the direction of B. The Hamiltonian H of the problem is now
written as follows [14]:

H =Hy,+ Hz + Hr + Hp

2

H, =
07 o

1 —
HZ:EMBU'g*'B

QR
Hg = _(Uxﬂy - Uy’frx)
7

Hp = @(Uxﬂ'x — 0yy). 1

7

Here, H,)is the orbital part with the kinetic momentum 7w = p + eA, p = (p,, ﬁy), the vector potential A
defining the magnetic field B = V X A and the effective mass m™. H; defines the Zeeman interaction expressed
with the Bohr magneton i, the spin operator o = (0, 0,, 0;) and the effective Landé tensor §*. The terms Hy
and Hp denote k-linear R- and D-SOI terms with SOI parameters g and [p, respectively. Note that we
neglected the influence of the in-plane field component B = B sin ¢ on the orbital movement in z-direction.
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Figure 1. (a) Calculated energy levels E,/(B,) (gray lines) and chemical potential £(B,) (solid red line) at constant n,p, including
R-SOI for perpendicular field orientation (6 = 0°). Simulation parameters were m™* = 0.037m,, g* = —4.45 (isotropic),
ag = 4.5 x 10712 eVm, Bp = 0and myp = 8.5 x 10" cm~2. The dashed lines are the two envelopes of the quantum oscillations in
11(By) for the sets of even and odd integer v, respectively. Beat node positions for the first and second node are indicated by arrows. (b)
Position of the first beat node in B, asa function of the polar angle 6 for Sp = 0 (solid black line) and for Sp /ag = 0.22at ¢ = 45°
(dotted red line) and at ¢ = 135° (dashed red line). g was fixed as in (a). (¢) ¢-polar plots of first and second node positions at fixed
0 = 78°and ay asin (a) for Bp /ar = {0.22, 0.34, 0.44, 0.55} (from dark to light). The dashed line represents the isotropic case of
Bp = 0.

This is justified as long as the energy separation of the 2D subbands in the QW is much larger than /B /m* [36],
which was the case in our experiments presented in section 4 (2 = h/(27) is the reduced Planck constant).

Following [14], we calculate the matrix elements H,,g ¢ = (m, s;|H|n, s/ ) of Hin terms of the eigenstates
|n, s,)of Hy(n = 0, 1, 2,..,s, = %) and diagonalize H numerically by truncating at a finite 71y, yielding the
eigenstates |n') with energies E, ata particular field B. In the following, we will use the perpendicular field
component B = B cos 6 together with values of § and ¢ to discuss E,/(B,).

We first concentrate on the case of isotropic Zeeman interaction, i.e., g* = ¢*1 (¢" is the scalar Landé factor
and 1 is the identity matrix). Figure 1(a) displays the calculated E,(B, ) for perpendicular field orientation, i.e.,
f = 0, using parameters of the investigated InP /InGaAs material system including R-SOI, but first neglecting
D-SOL. The chemical potential 1 at constant sheet electron density n,p, = 8.5 x 10" cm~2 and zero
temperature is indicated in red. i exhibits field-dependent quantum oscillations where the sharp jumps
correspond to integer values of the filling factor v = n,p /(eB. /h). The presence of R-SOI leads to beatings in
the quantum oscillations in such a way that the peak-to-peak amplitudes of the jumps at even and odd integer v
interchange their signal strength (dashed lines in figure 1(a)). Neglecting level broadening and a finite
temperature for the moment these amplitudes directly correspond to the energy gap between subsequent spin-
split Landau levels E,/ [37-39].

We now define a beat node position at field values where (E,» — E,s_) = (E,»11 — E,),1.e., where energy
gaps for subsequent v are equal in size. In the following analysis, we concentrate on the first two beat node
positions, as indicated in figure 1(a). When the magnetic field is increasingly tilted away from the surface normal,
the node positions move to larger B, once the Zeeman energy becomes comparable to half the cyclotron energy.
This is displayed in figure 1(b), where the position of the first node is plotted as a function of 6. The solid black
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line represents the case where ag > 0and Sp = 0 and revisits the results already presented by Das et al [6]. As §
isincreased, the node moves to larger values in B, . At high field values, the Zeeman interaction becomes
dominant over SOI and the curve asymptotically approaches the angle of half coincidence 6'/2, which is defined
as[35]

2g* upm*
Cosei/z = gL'
e/

Note that the result shown as the solid line in figure 1(b) is valid for all ¢, i.e., the node position is isotropic for all
azimuthal angles. Now, if we additionally assume a non-zero D-SOI contribution with Sp = 0, the node
positions are no longer isotropic, but depend on the azimuthal orientation  of B. This is illustrated by the
dashed and dotted lines in figure 1(b), which represent the extremal cases of ¢ = 45° with By[|[110] and

@)

¢ = 135° (By||[110]). The anisotropy becomes most significant when ¢ approaches 0'/2. To illustrate this
anisotropy, we plot the node positions at fixed 6 in a -polar plot in figure 1(c) for different 3, at fixed ag. The
w-anisotropies of the first and the second beat node have a different relative sign (not shown), i.e., the maxima in
B, () for the first node correspond to the minima for the second node. The patterns are rotated by 90°. As the
ratio Op/ ag increases, the anisotropy for both nodes gets larger and both nodes move towards one another until
they meetat o = 45°. When p/ ay is further increased the nodes vanish for larger and larger ranges of . If
Bp/ ar approaches one, our model shows that the nodes vanish for the whole -range. This behavior agrees with
previous works that predict the absence of beating patterns in magneto-oscillations if ag = Sp [40].

A reversal of the relative sign of ag and (p rotates the anisotropy patterns in ¢ by 90°. We note that the
combined ¢-evolution of both node positions as displayed in figure 1(c) is unique for a particular set (ag, Op),
i.e., there is no second set that leads to the same curves. This means that a measurement of ¢-dependent node
positions gives access to both absolute values and relative sign of ag and (p. Solely the absolute signs of ag and
Op remain ambiguous, meaning that the cases (ag, Op) and (—ag, —0Op) cannot be distinguished.

Up to now we have neglected a possible anisotropy of the g *-tensor. This anisotropy could influence the
results above, since the node positions result from the interplay of R-SOI, D-SOI and the Zeeman energy.
Besides the out-of-plane anisotropy of §*, which naturally occurs in narrow (001)-oriented QWs [31, 41], the
combined effect of R-SOI and D-SOI provokes an in-plane anisotropy of §* [10, 42]. In order to provide a
realistic description of the system we take the full g*-tensor into account in the numerical modeling:

gH gxy 0
0 0 g

Here, g and g, denote the in- and out-of-plane components of g *, while the off-diagonal term g, due to SOI
parameterizes the in-plane anisotropy. Figure 2(a) shows calculated field positions of the first beat node as a
function of § for different = g, /g (g,, = 0)and fixed 0'/2. The model reveals that the node positions at a
particular 6 are significantly shifted as a function of g, implying that the consideration of out-of-plane anisotropy
of g* is relevant for a correct extraction of the SOI-constants. Furthermore, in figure 2(b), the effect of a non-
zero g, on the p-anisotropy of the node positions is demonstrated. Qualitatively speaking, g, provokes a (-
anisotropy of 6'/2, shifts the asymptotes of the curves shown in (a) and thus leads to an enhancement or a
suppression of the anisotropy in the node positions due to SOL

In order to fit the model to the experimental data it is useful to try and find reasonable starting values and
reduce the number of free parameters in the fitting routine. This can be achieved by, e.g., measuring the
coincidence angles 6'/2 separately at higher fields where the influence of SOI is smaller or even negligible. If we
neglect the SOI terms Hy, Hp in (1) (which is justified at large B, ) the Hamiltonian can be diagonalized
analytically, yielding a direction-dependent scalar g*-factor of the form

g%, ) = \/gf_ cos?d + (gH2 + gxzy)sinZG + 2¢8,, sin? @ sin 2¢. 4)

Note that §* is diagonal in the basis where x and y axes are parallel to [110] and [110], respectively. Given the fact
that g, is expected to be small, i.e., | gxyl < ( |gH| » 1g,1) 28, 32], the out-of-plane and in-plane dependencies can
be simplified to

g50) = \/gl cos’0 + gsin’ and  g*( = 90°, ¢) = g + g, sin2¢p. (5)

We stress that this analytical result is not expected to hold at small B, in the presence of R-SOI and D-SOI terms,
and numerical calculations of E,(B, ) are required in this case. However, equation (4) together with (2) provides
atool to analytically calculate the coincidence angle #/2, which is approximately independent of R-SOI and
D-SOItermsatlarge B, .

In conclusion, we find that direct access to SOI-constants via a measurement of p-anisotropies in the node
positions is only possible by considering the full anisotropy of §*. The model suggests that this can be achieved

4
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Figure 2. Calculated position in B, of the first beat node considering different strengths of the g *-anisotropy. (a) -dependence for
different ¢ = g, /g Simulation parameters were m* = 0.037mo, ag = 4.5 x 10~ eVm, fp = 0.99 x 107'? eV,

fp = 8.5 x 10! cm~2and Gi/ 2 = 80.136°. (b) -dependence for different values of 8y~ Parameters weresetasin(a)andg = 1
(correspondingto g, = g = —4.63) was fixed.

(a) (b) [001]

Figure 3. (a) Layer sequence of the InP/InGaAs heterostructures. The energy of the conduction band edge is indicated schematically
by the solid line. (b) Sketch of the Hall-bar geometry including the crystallographic orientation. The direction of the applied magnetic
field B with polar and azimuthal angles # and ¢ is indicated.

by accessing these anisotropies at different values of § and by addressing the respective coincidence angles 6'/2
separately at the highest achievable field. Such measurements are suitable to extract both R- and D-SOI
constants and the full anisotropy of the Landé tensor by careful fitting to the model calculations.

3. Materials and methods

The 2DESs investigated here were formed in modulation-doped 10 nm thick asymmetric Ing 7,Gag 23As QWs
sandwiched between InP and InGaAs barrier layers grown by metal-organic vapor phase epitaxy. The QWs were
strained and optimized for, both, high electron mobility and dominant R-SOI [43]. A sketch of the layer
sequence with a schematic band diagram of the conduction band energy is displayed in figure 3(a).

Electrical characterization was performed at T= 0.3 K on standard (700 x 200) pzm? Hall-bar mesas with
AuGe contacts (figure 3(b)). These Hall bars were oriented along the [110]-direction in the 2DES plane.
Longitudinal and transverse resistance, R, and R, were recorded simultaneously using standard lock-in
techniques. The magnetic field was applied with tilt angles § and ¢ defined in section 2. Prior to all
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Figure 4. Coincidence measurements. (a) R,-traces in the vicinity of B, = 2.1 T at ¢ = 135° and different 78.6° < 6 < 80.8° (from
light (red) to black). Curves are offset for clarity. (b) and (¢) Normalized amplitudes of ARys_17 (red squares) and

1/2(ARy5_16 + ARy7_ 1) (black triangles) recorded at ¢ = 45° and ¢ = 135°, respectively. The dashed lines are linear fits to the
data; the coincidence angle 6!/2 was determined by the crossing points of these fits (indicated by vertical dotted lines).

measurements presented here, the samples were illuminated in situ with a blue light emitting diode for 10 s in
order to maximize #,p, via the persistent photoeffect. Two different samples, #4069-6 and #4069-7, were
investigated, leading to consistent results.

Coincidence angle measurements were performed ina 15 T vertical axis superconducting magnet using a
mechanical rotator sample stage with the rotation axis normal to the magnetic field direction. In these
experiments, § was adjusted in situ for two different fixed in-plane orientations [110] (¢ = 135°)and [110]

(¢ = 45°) addressed in subsequent cool-down cycles. High-field R,-oscillations were recorded for different 6
in the vicinity of the coincidence angle (=80°). The angle § between magnetic field and Hall bar normal was
calibrated using the low-field Hall resistance R,,.

The anisotropy of the beat node positions was measured using a 2-axis vector magnet with 4.5 T rotatable
field magnitude. This allowed us to adjust § by electronic means and achieve a very high angular accuracy. ¢ was
adjusted by mechanically rotating the sample in situ about its vertical axis (see figure 3(b)). Quantum oscillations
of R, were recorded for three different 6 = {76.5°, 77.5°, 78.5°} and different values of ¢. The absolute
accuracy of f at different values of ¢ was 0.07° as measured using the Hall resistance.

4, Results

4.1. Experimental results

We first address the coincidence measurements that we used to gain information on the Landé tensor and supply
astarting point for fitting the full numerical model to the experimental data. R, -traces for different § around
0'/% and fixed p = 135° (By||[110]) are shown exemplarily in figure 4(a). The maximum perpendicular field
component in this angular range was B, < 2.35 T, corresponding to filling factors v > 15. In order to extract
Qi/ 2, we plotted the normalized amplitudes (AR5 + AR;7_15) /2 and ARjs_ 7 asa function of @ in

figures 4(b) and (c) and defined 0'/2 as the crossing point of linear fits to the data. Using this approach it was
possible to extract #1/2 with an uncertainty of A§ ~ 0.1°.

For the following analysis we first neglect the R-SOI and D-SOI terms as discussed above such that the
picture of an angle-dependent scalar g*(6, ) is applicable. Comparing the results for ¢ = 45°and ¢ = 135°
we find an anisotropy of 812, corresponding to different values of g* (see table 1). In this first analysis neglecting
R-SOI'and D-SOI terms this anisotropy is entirely attributable to a non-zero g,,. Note that with this ansatz we
will extract an upper bound for g, since the SOI terms that we neglected here produce an anisotropy with the
same symmetry. This will be discussed in more detail below. With this approach, two of three independent
components of g* can be determined. The third is lacking because the 6 dependence is not addressed separately
in a coincidence measurement. Since the deviations from in-plane isotropy are small we can use the following

approximations: in equation (4), we set § ~ 80° and substitute g, = 8 \/ q? cos?80° + sin?80°. Here, the out-
of-plane anisotropy of g is represented by the unknown parameter q = g, /8- Sinceqison the order of one, we
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Table 1. Experimental coincidence angles 6!/
and calculated scalar g" for sample #4069-7.

¢ (deg) 0/2 (deg) s
45 80.33 £+ 0.1 —4.54 £+ 0.05
135 79.74 £ 0.1 —4.81 £+ 0.05

0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

B, (T

Figure 5. Experimental R,,-traces as a function of B, of sample #4069-7 recorded at § = 77.5° at different in-plane orientations ¢.
Curves are offset for clarity. The positions of the first two beat nodes are indicated by arrows.

further approximate in equation (5) 8~ o yielding
g0 = 80°, ¢) ~ g, + 8,y Sin 2. (6)

Weextract gg, = —4.68 & 0.04 and the upper bound &y = 0.14 + 0.04, which we will use as starting points
for the modeling below.

We now turn to the anisotropy of the measured beat node positions. We show R, -traces of sample #4069-7
for constant @ = 77.5° and three different ¢ = {45°, 90°, 135°} in figure 5. The beat nodes as defined in
section 2 are indicated by arrows. The nodes shift as a function of ¢. The node positions were extracted from the
crossing points of the amplitude evolution for even and odd v. This procedure resulted in an uncertainty of 10
mT for the first node and 3 mT for the second node, while the uncertainty in  for the different » was negligible.
The experimental node positions for sample #4069-7 are summarized in p-polar-plots in figures 6(a) and (b).
We observe a clear ¢-anisotropy of the first node which becomes significantly stronger with increasing 0. The
anisotropy of the second node is significant but less pronounced and exhibits an anisotropy pattern that is
rotated by 90° with respect to the first node, consistent with our theoretical model.

4.2. Comparison with theory

In the following we will use the theoretical model introduced in section 2 to extract all relevant parameters ag,
Bp» &1, 8| and g, in a self-consistent way. For this, we first perform aleast-squares fit of the full theoretical model
(including ag, Bp and g*) to the data of all experimental node positions, i.e., of the first and second node and
for different p and 0, as displayed in figures 6(a) and (b). Free fit parameters were ar, fpand q = g, /8 The
known parameters sheet carrier density n,p = 8.51 x 10! cm™2 determined from the periodicity of SdH-
oscillations at § = 0° and effective mass m™ = 0.37m, extracted from T-dependent measurements reported in
[44] were fixed. The starting values for g, and g, extracted from the coincidence measurements were taken in
the first least squares fit. From the fit result, the corresponding coincidence angles 0'/2 at » = 45°and

¢ = 135°at B, = 2.1 T were calculated and compared to the results from coincidence measurements (see

table 1). This was found to overestimate the anisotropy of Hi/ 2 compared to experiment. This is expected and can
be understood as follows: the actual value of g, is smaller than the upper bound of g, , = 0.14 when the residual

influence of SOI terms on #1/2 at B, = 2.1 T is not negligible in the experiment. Therefore the fit routine was
performed while systematically varying g, between 0 and 0.14. The best fit was achieved for g, = 0.11and is
shown as dashed lines in figure 6. The extracted parameters together with their estimated uncertainties are:
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(b)
180 0
A 0=76.5°
® 0=77.5°
m 0=78.5°
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0.32 0.31 030 0.30 0.31 0.32
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Figure 6. Polar plots in ¢ of the experimental node positions (symbols) of (a) first and (b) second node at three different values of 6.
The dashed lines represent the fit of the theoretical model to the data, taking into account R- and D-SOI as well as the full anisotropic
g*-tensor.

agr = (4.62 £ 0.09) x 1072 eVm
Bp = (0.46 £ 0.14) x 10712 eVm
g, =—2.91 £ 0.60
§)=—472 £ 0.05

8,y = 0.11 £ 0.02. %)

Note that the relative sign of a and Bp is thus found to be positive as is the sign of g,,,.

At this point we would like to comment on one particular aspect of the above procedure: the in-plane
anisotropy of g* on the one hand and the anisotropy due to the SOI terms on the other hand lead to beat node
anisotropies with the same symmetry. So how can the fitting procedure distinguish the two components? Of
course, independent measurement of g, via the coincidence method at the highest available magnetic fields
where the SOI-terms can be neglected is straightforward. However, we saw in the analysis above that in our case
there was a residual influence of the SOI terms in the coincidence measurements. The answer lies in the strongly
different dependence of the Zeeman- and the SOI terms on the magnetic field. While E; o B, itis
Eg, Ep < /(n + 1)B_ which is roughly independent of B for high #n. Our routine overcomes the problem by
simultaneously fitting the p-anisotropy of experimental data obtained in three different magnetic field regimes,
namely the second node (at B, =~ 0.3 T), the firstnode (at B, & 0.8 T), and the coincidence (at B, ~ 2.1T).In
these measurements in different field regimes the information is encoded that allows to separate the influence of
&xyand the SOI, such that it is neither possible to model the data by assuming g y =0 and |Bp| > 0, nor by
assuming|g, [ > 0 and Bp = 0. Both effects are clearly present in the experiment as is expected from
theory[10].

In the following we briefly comment on the contribution of the k-cubic term in the Dresselhaus part of the
Hamiltonian that we did not include in the main part of this work. Following [ 14], k-cubic terms of the
Dresselhaus Hamiltonian lead to a renormalization of 3p, such that we have to replace fp = —~ <k22> in (1) by
B = —y((k2) — 1/4k?). Here vis the bulk Dresselhaus constant. Further, additional off-diagonal matrix
elements (n, +|H|n + 3, —) = —(iy) /4k; appear [14], coupling states with quantum numbers nand n + 3.
Using the parameters extracted from the experiment, we verified that the effect of these matrix elements on the
results was negligible.

5. Discussion

The result of the present experiment is the unambiguous extraction of ag and (p and their relative sign together
with the full g§*-anisotropy. For this, no a priori assumptions were necessary. The ability to determine all
parameters at the same time provides a more comprehensive picture of spin-related phenomena in

semiconductor heterostructures. In particular, k - p-theory predicts g, , = %((kf) (z) — (k%z)).Our

experimental approach determining 3, = —y((k?) — 1/4k#)and &, 0on an equal footing may thus pave the
way to quantitatively validate the theoretical predictions. This is however, beyond the scope of the present paper.

8
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Our analysis highlighted the deep connection between g,,, and the SOI-terms We were able to disentangle the
two contributions to the measured anisotropy in the numerical fitting routine, finding that the SOI terms had a
significant influence on our coincidence measurements. In this particular case at B, ~ 2.1T, ~70% of the
anisotropy in 6/ could be attributed to &, While ~230% were due to the influence of the SOI terms Addressing
the pure components of g* in a coincidence experiment would require higher magnetic fields. Our model
predicts that for the specific system investigated here, the SOI contribution to '/% becomes negligible at

B ~ 10T. At ~ 80° thisamounts to B =~ 58 T, which can be reached in pulsed magnetic fields at large scale
facilities.

Our work reveals a remarkable out-of-plane anisotropy of * with g, = —2.98 and g = —472. This
result is consistent with previous experiments of Kowalski et al on similar InGaAs heterostructures [28]. A
significant out-of-plane anisotropy of §* was also predicted by k - p-theory for InGaAs, albeit with |g, | > | gl
[9]. However, the correct way to derive g, and g is controversial [31]. The small size of the in-plane
g *-anisotropy represented by 8, = 0.11as compared to the diagonal components g, and g is similar to
experiments on AlGaAs-based heterostructures [32, 33]. The outcome of a dominant Rashba parameter
ag = (4.62 £ 0.09) x 107'2 eVm is consistent with previous experiments on the same heterostructures
[44, 45]. Furthermore a smaller 3p = (0.46 £ 0.14) x 107!2 eVm on the order of 0.1ay is consistent with the
more recent analysis in [46], where the oscillatory 1 (B, ) was measured in weakly tilted fields.

6. Conclusion

In conclusion, we have determined the Rashba- and Dresselhaus constants ag = (4.62 & 0.09) x 1072 eVm
and Bp = (0.46 + 0.14) x 10~!? eVm and their relative sign (positive) together with the full g-tensor g* with
g = (=291 £ 0.60), g = (—4.72 4+ 0.05) and &y = (0.11 £ 0.02) for an asymmetric InGaAs QW. For this
we employed SdH magnetotransport measurements in doubly tilted magnetic fields together with numerical
calculations of the SOI-induced beat node positions. The method presented here is especially powerful to
explore systems where one of the two components is small: if one of the two SOI terms is exactly zero, the node
positions are isotropic. The breaking of this symmetry is a very sensitive gauge capable of resolving the

smaller term.

Acknowledgments

We thank E I Rashba and D Maslov for valuable discussions and gratefully acknowledge financial support by the
DFG TRR80 and via SPP1285 ‘semiconductor spintronics’, Grant No. GR1640/3 as well as the German
Excellence Initiative via Nanosystems Initiative Munich (NIM).

References

[1] Awschalom D D and Flatte M E 2007 Nat. Phys. 3 153-9
[2] Toloza Sandoval M A, de Andrada e Silva E A, Ferreira da Silva A and La Rocca G C 2016 Semicond. Sci. Technol. 31 115008
[3] BychkovY A and Rashba E11984 J. Phys. C: Solid State Phys. 17 6039
[4] Manchon A, Koo H C, Nitta ], Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[5] Dresselhaus G 1955 Phys. Rev. 100 5806
[6] DattaSand DasB 1990 Appl. Phys. Lett. 56 665—7
[7]1 Zuti¢ I, Fabian ] and Das Sarma S 2004 Rev. Mod. Phys. 76 323-410
[8] SchliemannJ, Egues ] C and Loss D 2003 Phys. Rev. Lett. 90 146801
[9] Winkler R 2003 Spin—Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer Tracts in Modern Physics vol 191)
(Berlin: Springer) (https://doi.org/10.1007 /b13586)
[10] Kalevich VK and KorenevV L1993 JETP Lett. 57 571
[11] Luo]J, Munekata H, Fang F F and Stiles P J 1988 Phys. Rev. B 38 10142-5
[12] LuoJ, Munekata H, Fang F F and Stiles P ] 1990 Phys. Rev. B 41 7685-93
[13] DasB, Miller D C, Datta S, Reifenberger R, Hong W P, Bhattacharya P K, Singh J and Jaffe M 1989 Phys. Rev. B39 1411-4
[14] DasB, Datta S and Reifenberger R 1990 Phys. Rev. B 41 8278-87
[15] NittaJ, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335-8
[16] Engels G, Lange J, Schipers T and Liith H 1997 Phys. Rev. B55 R1958-61
[17] Grundler D 2000 Phys. Rev. Lett. 84 6074—7
[18] Faniel S, Matsuura T, Mineshige S, Sekine Y and Koga T 2011 Phys. Rev. B83 115309
[19] GanichevSD etal2004 Phys. Rev. Lett. 92 256601
[20] Giglberger S etal 2007 Phys. Rev. B 75035327
[21] Meier L, Salis G, Shorubalko I, Gini E, Schon S and Ensslin K 2007 Nat. Phys. 3 6504
[22] Larionov AV and Golub L E 2008 Phys. Rev. B 78 033302
[23] Walser M P, Reichl C, Wegscheider W and Salis G 2012 Nat. Phys. 8 757
[24] Sasaki A, Nonaka S, Kunihashi Y, Kohda M, Bauernfeind T, Dollinger T, Richter K and Nitta ] 2014 Nat. Nanotechnol. 9 703
[25] Fal’ko V11992 Phys. Rev. B 46 4320-3



https://doi.org/10.1038/nphys551
https://doi.org/10.1038/nphys551
https://doi.org/10.1038/nphys551
https://doi.org/10.1088/0268-1242/31/11/115008
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1038/nmat4360
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1063/1.102730
https://doi.org/10.1063/1.102730
https://doi.org/10.1063/1.102730
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/PhysRevLett.90.146801
https://doi.org/10.1007/b13586
https://doi.org/10.1103/PhysRevB.38.10142
https://doi.org/10.1103/PhysRevB.38.10142
https://doi.org/10.1103/PhysRevB.38.10142
https://doi.org/10.1103/PhysRevB.41.7685
https://doi.org/10.1103/PhysRevB.41.7685
https://doi.org/10.1103/PhysRevB.41.7685
https://doi.org/10.1103/PhysRevB.39.1411
https://doi.org/10.1103/PhysRevB.39.1411
https://doi.org/10.1103/PhysRevB.39.1411
https://doi.org/10.1103/PhysRevB.41.8278
https://doi.org/10.1103/PhysRevB.41.8278
https://doi.org/10.1103/PhysRevB.41.8278
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevB.55.R1958
https://doi.org/10.1103/PhysRevB.55.R1958
https://doi.org/10.1103/PhysRevB.55.R1958
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevB.83.115309
https://doi.org/10.1103/PhysRevLett.92.256601
https://doi.org/10.1103/PhysRevB.75.035327
https://doi.org/10.1038/nphys675
https://doi.org/10.1038/nphys675
https://doi.org/10.1038/nphys675
https://doi.org/10.1103/PhysRevB.78.033302
https://doi.org/10.1038/nphys2383
https://doi.org/10.1038/nnano.2014.128
https://doi.org/10.1103/PhysRevB.46.4320
https://doi.org/10.1103/PhysRevB.46.4320
https://doi.org/10.1103/PhysRevB.46.4320

10P Publishing

NewJ. Phys. 19 (2017) 103012 FHerzoget al

[26] Olendski O, Williams Q and Shahbazyan T 2008 Phys. Rev. B77 125338

[27] Wilde M A and Grundler D 2013 New J. Phys. 15 115013

[28] Kowalski B, Omling P, Meyer B K, Hofmann D M, Wetzel C, Hirle V, Scholz F and Sobkowicz P 1994 Phys. Rev. B 49 14786-9
[29] LeJeune P, Robart D, Marie X, Amand T, Brousseau M, Barrau J, Kalevich V and Rodichev D 1997 Semicond. Sci. Technol. 12 380
[30] Malinowski A and Harley R T 2000 Phys. Rev. B 6220516

[31] Pfeffer P and Zawadzki W 2006 Phys. Rev. B74 233303

[32] Oestreich M, Hallstein S and Ruhle W W 1996 IEEE J. Sel. Top. Quantum Electron. 2 747-55

[33] Eldridge P S, Hiibner J, Oertel S, Harley R T, Henini M and Oestreich M 2011 Phys. Rev. B 83 041301

[34] FangF Fand Stiles P ] 1968 Phys. Rev. 174 8238

[35] NicholasRJ, HaugR]J, Klitzing K vand Weimann G 1988 Phys. Rev. B37 1294

[36] Wilde M A, Reuter D, Heyn C, Wieck A D and Grundler D 2009 Phys. Rev. B79 125330

[37] Wilde M A, Springborn J I, Roesler O, Ruhe N, Schwarz M P, Heitmann D and Grundler D 2008 Phys. Status Solidi b 245 344-55
[38] Wilde M A, Rupprecht B, Herzog F, Ibrahim A and Grundler D 2014 Phys. Status Solidib 251 1710-24

[39] MacDonald AH, OjiH C A and Liu KL 1986 Phys. Rev. B 34 2681-9

[40] Tarasenko S A and AverkievN S2002 J. Exp. Theor. Phys. Lett. 75 552—5

[41] Ivchenko E Land Kiselev A A 1992 Sov. Phys. Semicond. 26 827

[42] NefyodovY A, Shchepetilnikov A V, Kukushkin I V, Dietsche W and Schmult S 2011 Phys. Rev. B 83 041307

[43] Hardtdegen H etal 1993 J. Appl. Phys. 73 4489-93

[44] Schdpers T, Engels G, Lange ], Klocke T, Hollfelder M and Liith H 1998 J. Appl. Phys. 83 432433

[45] Rupprecht B, Heedt S, Hardtdegen H, Schipers T, Heyn C, Wilde M A and Grundler D 2013 Phys. Rev. B 87 035307

[46] HerzogF, Heyn C, Hardtdegen H, Schipers T, Wilde M A and Grundler D 2015 Appl. Phys. Lett. 107 092101

10


https://doi.org/10.1103/PhysRevB.77.125338
https://doi.org/10.1088/1367-2630/15/11/115013
https://doi.org/10.1103/PhysRevB.49.14786
https://doi.org/10.1103/PhysRevB.49.14786
https://doi.org/10.1103/PhysRevB.49.14786
https://doi.org/10.1088/0268-1242/12/4/006
https://doi.org/10.1103/PhysRevB.62.2051
https://doi.org/10.1103/PhysRevB.62.2051
https://doi.org/10.1103/PhysRevB.62.2051
https://doi.org/10.1103/PhysRevB.74.233303
https://doi.org/10.1109/2944.571776
https://doi.org/10.1109/2944.571776
https://doi.org/10.1109/2944.571776
https://doi.org/10.1103/PhysRevB.83.041301
https://doi.org/10.1103/PhysRev.174.823
https://doi.org/10.1103/PhysRev.174.823
https://doi.org/10.1103/PhysRev.174.823
https://doi.org/10.1103/PhysRevB.37.1294
https://doi.org/10.1103/PhysRevB.79.125330
https://doi.org/10.1002/pssb.200743317
https://doi.org/10.1002/pssb.200743317
https://doi.org/10.1002/pssb.200743317
https://doi.org/10.1002/pssb.201350203
https://doi.org/10.1002/pssb.201350203
https://doi.org/10.1002/pssb.201350203
https://doi.org/10.1103/PhysRevB.34.2681
https://doi.org/10.1103/PhysRevB.34.2681
https://doi.org/10.1103/PhysRevB.34.2681
https://doi.org/10.1134/1.1500719
https://doi.org/10.1134/1.1500719
https://doi.org/10.1134/1.1500719
https://doi.org/10.1103/PhysRevB.83.041307
https://doi.org/10.1063/1.352789
https://doi.org/10.1063/1.352789
https://doi.org/10.1063/1.352789
https://doi.org/10.1063/1.367192
https://doi.org/10.1063/1.367192
https://doi.org/10.1063/1.367192
https://doi.org/10.1103/PhysRevB.87.035307
https://doi.org/10.1063/1.4929840

	1. Introduction
	2. Theory for the analysis of SdH oscillation patterns in doubly tilted fields B
	3. Materials and methods
	4. Results
	4.1. Experimental results
	4.2. Comparison with theory

	5. Discussion
	6. Conclusion
	Acknowledgments
	References



