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Abstract
The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantumwells
(QWs) is studied by Shubnikov-deHaasmeasurements combining the analysis of beating patterns
and coincidencemeasurements in doubly tiltedmagnetic fields. Themethod allows us to determine
the absolute values of the Rashba and linearDresselhaus spin–orbit interaction (SOI) coefficients,
their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat
node positions with respect to both polar and azimuthal angles between themagnetic field direction
and theQWnormal.We show that the SOI is dominated by a large Rashba coefficient together with a
linearDresselhaus coefficient that is 10%of the Rashba coefficient. Their relative sign is found to be
positive. The g-tensor is found to have amarked out-of-plane anisotropy and a smaller but distinct in-
plane anisotropy due to SOI.

1. Introduction

Spin related effects in semiconductor two-dimensional electron systems (2DESs) have been a subject of intense
research in both fundamental physics and research aimed towards novel spintronic devices [1]. In addition to
the anisotropic Zeeman effect relevant for spinmanipulation by externalmagnetic fields [2], in particular the
spin–orbit interaction (SOI) effects in 2DESs are of interest. Here, two contributions, i.e., the Rashba (R) [3, 4]
effect due to structural inversion asymmetry of the heterostructure and theDresselhaus (D) [5] effect due to the
bulk inversion asymmetry of the crystal play the leading role. The large interest in R-SOI effects in 2DESs is
motivated on the one hand by the possibility tomanipulate spins by electricalfields [6]. On the other hand, both
R-SOI andD-SOI can lead to spin decoherence which has to be considered for any device workingwith spin
information [7]. This insight has led to concepts based on the interplay of R-SOI andD-SOI [8]. In any case, the
unambiguous separation and quantification of all these effects in a given electron system is of utmost
importance. This is still experimentally challenging. Commonmethods have addressed in-plane anisotropies of
quantities like spin lifetimes that are influenced by SOI.When an externalmagnetic field is applied, themodeling
must include the interplay of SOI and the Zeeman interaction, parameterized by the anisotropic Landé tensor
g *. The out-of-plane anisotropy of g * stems from the symmetry reduction in planar heterostructures [9]while
the in-plane asymmetry is due to SOI effects in asymmetric heterostructures [10]. Thus, in asymmetric
heterostructures lacking inversion symmetry of the host crystal all of these effects are present simultaneously.

Early studies on SOI effects in 2DESswere performed usingmagnetotransportmeasurements. Here, the
SOI-induced spin splitting gives rise to distinct beating patterns in the Shubnikov-deHaas (SdH) oscillations
[11–13]. A theoreticalmodel including R-SOI andD-SOIwas already formulated in [14], although no reference
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to the resulting in-plane anisotropies wasmade. Subsequent studies using beating patterns in SdHoscillations
focused on samples where a dominant R-SOIwas assumed [15–18]. Detailed experimental investigations of SdH
beating patterns in tiltedmagnetic fields and considering both SOI terms are lacking.

Experimentalmilestones reporting information on theR-SOI andD-SOI coefficients, denoted by Ra and

Db , respectively, include thework byGanichev et alwhoused the anisotropy of spin photocurrents to determine
the ratio Ra / Db [19, 20], without applying amagnetic field, i.e., independent of g *.Meier et al performed
angle-dependent time-resolved Faraday rotation and extracted the absolute values and relative sign of Ra and

Db but neglected the g *-anisotropy in their analysis [21]. Larinov andGolub demonstrated the tunability of

Ra / Db via a gate voltage in angle-dependent time-resolvedKerr rotation [22]. The formation of a persistent spin
helixwhen R Da b= wasfirstmapped byWalser et al [23]. Recently, Sasaki et al performed
magnetoconductancemeasurements on etched nanowires with different in-plane orientations and extracted
spin-lifetimes viaweak antilocalization. They demonstrated the tunability of Ra / Db and the persistent spin
helixwhen R Da b= [24]. To determine Ra and Db at the same time theoretical works suggest experiments such
as electric-dipole spin resonance [25], magnetoexciton absorption [26] andmeasurements of the quantum
oscillatorymagnetization [27] in strong tiltedmagnetic fields.

Experiments found significant out-of-plane anisotropy of g * in InGaAs-based systems [28], but no
substantial out-of-plane anisotropy inAlGaAs-based 2DESs [29–31]. The in-plane anisotropywas quantified in
AlGaAs-based systems using spin quantumbeat spectroscopy [32, 33]. An experimental report treating the full
g *, as well as R-SOI andD-SOI on the same footing is lacking up to now.

In this paperwe report the values of Ra , Db , their relative sign and all components of g *determined on one-
and-the-same sample using SdHoscillations detected inmagnetotransport onHall bars in doubly tiltedmagnetic
fieldsB. The experiment relies on the anisotropy induced in the node positions of the SdHbeatings as a function
of the direction of the in-plane component of amagnetic field that is strongly tiltedwith respect to the 2DES
normal. Ra , Db and g * are determined byfittingmodel calculations of the node positions to the data. The
calculations are based on numerical diagonalization of the single-particleHamiltonian including R-SOI, and k-
linearD-SOI terms aswell as the anisotropic Zeeman term in an arbitrarily tiltedmagneticfield.

The paper is organized as follows. In section 2wefirst define themodelHamiltonian.We briefly revisit the
so-called coincidence technique [34, 35] that will later play a role in determining the starting parameters for
matching themodel to the experiment.We then outline the numerical calculations and their results with
emphasis on the impact of SOI parameters and g * on the anisotropy of the node positions. In section 3we
introduce the InP/InGaAs quantumwells (QWs) investigated in this work and describe the experimental setup.
We present the experimental results and analysis in section 4 and discuss their implications in section 5. Finally,
we draw conclusions in section 6.

2. Theory for the analysis of SdHoscillation patterns in doubly tiltedfieldsB

Wefirst present the theoreticalmodel that we used to derive the energy states of a 2DES in tiltedmagnetic fields
including k-linear Rashba andDresselhaus SOI as well as anisotropic Zeeman interaction. These energy spectra
are key to calculate relevant node positions inmagneto-oscillations such as SdH-oscillations as discussed below.
We consider an ideal 2DES confined to the (x, y)-plane, with x 100[ ], y 010[ ]and z 001[ ]. Amagnetic field

B B BB sin cos , sin sin , cosq j q j q= ( ) is applied, whereB defines the absolutefield strength and θ andj are
polar and azimuthal angles, respectively, defining the direction of B. TheHamiltonianH of the problem is now
written as follows [14]:
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Here,H0 is the orbital part with the kineticmomentum ep Ap = +ˆ , p pp ,x y=ˆ ( ˆ ˆ ), the vector potential A
defining themagnetic field B A=  ´ and the effectivemassm*. HZ defines the Zeeman interaction expressed
with the Bohrmagneton Bm , the spin operator , ,x y zs s s s= ( ) and the effective Landé tensor g *. The terms HR

and HD denote k-linear R- andD-SOI termswith SOI parameters Ra and Db , respectively. Note that we
neglected the influence of the in-plane field component B B sin q= on the orbitalmovement in z-direction.
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This is justified as long as the energy separation of the 2D subbands in theQW ismuch larger than eB m*  [36],
whichwas the case in our experiments presented in section 4 ( h 2 p= ( ) is the reduced Planck constant).

Following [14], we calculate thematrix elements H m s H n s, ,ms ns z z,z z
= á ¢ñ¢ ∣ ∣ ofH in terms of the eigenstates

n s, zñ∣ ofH0 (n s0, 1, 2 ,.., z= = ) and diagonalizeHnumerically by truncating at a finite nmax, yielding the
eigenstates n¢ñ∣ with energies En¢ at a particular field B. In the following, wewill use the perpendicular field
component B B cos q=^ togetherwith values of θ andj to discuss E Bn¢ ^( ).

Wefirst concentrate on the case of isotropic Zeeman interaction, i.e., g g * *= (g* is the scalar Landé factor
and  is the identitymatrix). Figure 1(a)displays the calculated E Bn¢ ^( ) for perpendicular field orientation, i.e.,

0q = , using parameters of the investigated InP/InGaAsmaterial system including R-SOI, butfirst neglecting
D-SOI. The chemical potentialμ at constant sheet electron density n 8.5 10 cm2D

11 2= ´ - and zero
temperature is indicated in red.μ exhibits field-dependent quantumoscillations where the sharp jumps
correspond to integer values of thefilling factor n eB h2Dn = ^( ). The presence of R-SOI leads to beatings in
the quantumoscillations in such away that the peak-to-peak amplitudes of the jumps at even and odd integer ν
interchange their signal strength (dashed lines infigure 1(a)). Neglecting level broadening and a finite
temperature for themoment these amplitudes directly correspond to the energy gap between subsequent spin-
split Landau levels En¢ [37–39].

We nowdefine a beat node position atfield values where E E E En n n n1 1- = -¢ ¢- ¢+ ¢( ) ( ), i.e., where energy
gaps for subsequent ν are equal in size. In the following analysis, we concentrate on the first two beat node
positions, as indicated infigure 1(a).When themagnetic field is increasingly tilted away from the surface normal,
the node positionsmove to larger B̂ once the Zeeman energy becomes comparable to half the cyclotron energy.
This is displayed infigure 1(b), where the position of the first node is plotted as a function of θ. The solid black

Figure 1. (a)Calculated energy levels E Bn¢ ^( ) (gray lines) and chemical potential Bm ^( ) (solid red line) at constant n2D including
R-SOI for perpendicular field orientation ( 0q = ). Simulation parameters were m m0.037 0* = , g 4.45* = - (isotropic),

4.5 10 eVmR
12a = ´ - , 0Db = and n 8.5 10 cm2D

11 2= ´ - . The dashed lines are the two envelopes of the quantumoscillations in
Bm ^( ) for the sets of even and odd integer ν, respectively. Beat node positions for thefirst and second node are indicated by arrows. (b)

Position of thefirst beat node in B̂ as a function of the polar angle θ for 0Db = (solid black line) and for 0.22D Rb a = at 45j = 
(dotted red line) and at 135j =  (dashed red line). Ra wasfixed as in (a). (c)j-polar plots offirst and second node positions atfixed

78q =  and Ra as in (a) for 0.22, 0.34, 0.44, 0.55D Rb a = { } (fromdark to light). The dashed line represents the isotropic case of
0Db = .
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line represents the case where 0Ra > and 0Db = and revisits the results already presented byDas et al [6]. As θ
is increased, the nodemoves to larger values in B̂ . At high field values, the Zeeman interaction becomes
dominant over SOI and the curve asymptotically approaches the angle of half coincidence c

1 2q , which is defined
as [35]

g m

e
cos

2
. 2c

1 2 B* *


q

m
= ( )

Note that the result shown as the solid line infigure 1(b) is valid for allj, i.e., the node position is isotropic for all
azimuthal angles. Now, if we additionally assume a non-zeroD-SOI contributionwith 0Db ¹ , the node
positions are no longer isotropic, but depend on the azimuthal orientationj of B. This is illustrated by the
dashed and dotted lines infigure 1(b), which represent the extremal cases of 45j = with B 110 [ ] and

135j =  (B 110 [ ¯ ]). The anisotropy becomesmost significant when θ approaches c
1 2q . To illustrate this

anisotropy, we plot the node positions atfixed θ in aj-polar plot infigure 1(c) for different Db at fixed Ra . The
j-anisotropies of thefirst and the second beat node have a different relative sign (not shown), i.e., themaxima in
B j^( ) for thefirst node correspond to theminima for the second node. The patterns are rotated by 90◦. As the
ratio Db / Ra increases, the anisotropy for both nodes gets larger and both nodesmove towards one another until
theymeet at 45j = .When Db / Ra is further increased the nodes vanish for larger and larger ranges ofj. If

Db / Ra approaches one, ourmodel shows that the nodes vanish for thewholej-range. This behavior agrees with
previousworks that predict the absence of beating patterns inmagneto-oscillations if R Da b= [40].

A reversal of the relative sign of Ra and Db rotates the anisotropy patterns inj by 90◦.We note that the
combinedj-evolution of both node positions as displayed infigure 1(c) is unique for a particular set ,R Da b( ),
i.e., there is no second set that leads to the same curves. Thismeans that ameasurement ofj-dependent node
positions gives access to both absolute values and relative sign of Ra and Db . Solely the absolute signs of Ra and

Db remain ambiguous,meaning that the cases ,R Da b( ) and ,R Da b- -( ) cannot be distinguished.
Up to nowwe have neglected a possible anisotropy of the g *-tensor. This anisotropy could influence the

results above, since the node positions result from the interplay of R-SOI, D-SOI and the Zeeman energy.
Besides the out-of-plane anisotropy of g *, which naturally occurs in narrow (001)-orientedQWs [31, 41], the
combined effect of R-SOI andD-SOI provokes an in-plane anisotropy of g * [10, 42]. In order to provide a
realistic description of the systemwe take the full g *-tensor into account in the numericalmodeling:

g

g g

g g

g
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Here, gP and g⊥ denote the in- and out-of-plane components of g *, while the off-diagonal term gxy due to SOI
parameterizes the in-plane anisotropy. Figure 2(a) shows calculated field positions of the first beat node as a
function of θ for different q g g= ^  (g 0xy = ) andfixed c

1 2q . Themodel reveals that the node positions at a
particular θ are significantly shifted as a function of q, implying that the consideration of out-of-plane anisotropy
of g * is relevant for a correct extraction of the SOI-constants. Furthermore, infigure 2(b), the effect of a non-
zero gxy on thej-anisotropy of the node positions is demonstrated. Qualitatively speaking, gxy provokes aj-
anisotropy of c

1 2q , shifts the asymptotes of the curves shown in (a) and thus leads to an enhancement or a
suppression of the anisotropy in the node positions due to SOI.

In order tofit themodel to the experimental data it is useful to try andfind reasonable starting values and
reduce the number of free parameters in the fitting routine. This can be achieved by, e.g., measuring the
coincidence angles c

1 2q separately at higher fields where the influence of SOI is smaller or even negligible. If we
neglect the SOI terms HR, HD in (1) (which is justified at large B̂ ) theHamiltonian can be diagonalized
analytically, yielding a direction-dependent scalar g*-factor of the form

g g g g g g, cos sin 2 sin sin 2 . 4
xy xy

2 2 2 2 2 2* q j q q q j= + + +^  ( ) ( ) ( )

Note that g * is diagonal in the basis where x and y axes are parallel to 110[ ]and 110[ ¯ ], respectively. Given the fact
that gxy is expected to be small, i.e., g g g,xy ^ ∣ ∣ (∣ ∣ ∣ ∣) [28, 32], the out-of-plane and in-plane dependencies can
be simplified to

g g g g g gcos sin and 90 , sin 2 . 5xy
2 2* *q q q q j j= + =  = +^  ( ) ( ) ( )

We stress that this analytical result is not expected to hold at small B̂ in the presence of R-SOI andD-SOI terms,
and numerical calculations of E Bn¢ ^( ) are required in this case. However, equation (4) together with (2) provides
a tool to analytically calculate the coincidence angle c

1 2q , which is approximately independent of R-SOI and
D-SOI terms at large B̂ .

In conclusion, wefind that direct access to SOI-constants via ameasurement ofj-anisotropies in the node
positions is only possible by considering the full anisotropy of g *. Themodel suggests that this can be achieved
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by accessing these anisotropies at different values of θ and by addressing the respective coincidence angles c
1 2q

separately at the highest achievable field. Suchmeasurements are suitable to extract both R- andD-SOI
constants and the full anisotropy of the Landé tensor by careful fitting to themodel calculations.

3.Materials andmethods

The 2DESs investigated herewere formed inmodulation-doped 10 nm thick asymmetric In0.77Ga0.23AsQWs
sandwiched between InP and InGaAs barrier layers grown bymetal-organic vapor phase epitaxy. TheQWswere
strained and optimized for, both, high electronmobility and dominant R-SOI [43]. A sketch of the layer
sequencewith a schematic band diagramof the conduction band energy is displayed infigure 3(a).

Electrical characterizationwas performed atT= 0.3 K on standard 700 200 m2m´( ) Hall-barmesas with
AuGe contacts (figure 3(b)). TheseHall bars were oriented along the 110[ ¯ ]-direction in the 2DES plane.
Longitudinal and transverse resistance,Rxx andRxy, were recorded simultaneously using standard lock-in
techniques. Themagnetic fieldwas appliedwith tilt angles θ andj defined in section 2. Prior to all

Figure 2.Calculated position inB⊥ of thefirst beat node considering different strengths of the g *-anisotropy. (a) θ-dependence for
different q g g= ^ . Simulation parameters were m m0.037 0* = , 4.5 10 eVmR

12a = ´ - , 0.99 10 eVmD
12b = ´ - ,

n 8.5 10 cm2D
11 2= ´ - and 80.136c

1 2q = . (b)j-dependence for different values of gxy. Parameters were set as in (a) and q=1
(corresponding to g g 4.63= = -^  )was fixed.

Figure 3. (a) Layer sequence of the InP/InGaAs heterostructures. The energy of the conduction band edge is indicated schematically
by the solid line. (b) Sketch of theHall-bar geometry including the crystallographic orientation. The direction of the appliedmagnetic
field B with polar and azimuthal angles θ andj is indicated.
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measurements presented here, the samples were illuminated in situwith a blue light emitting diode for 10 s in
order tomaximize n2D via the persistent photoeffect. Two different samples,#4069-6 and#4069-7, were
investigated, leading to consistent results.

Coincidence anglemeasurements were performed in a 15T vertical axis superconductingmagnet using a
mechanical rotator sample stagewith the rotation axis normal to themagnetic field direction. In these
experiments, θwas adjusted in situ for two different fixed in-plane orientations 110[ ¯ ] ( 135j = ) and 110[ ]
( 45j = ) addressed in subsequent cool-down cycles. High-fieldRxx-oscillations were recorded for different θ
in the vicinity of the coincidence angle ( 80» ). The angle θ betweenmagnetic field andHall bar normalwas
calibrated using the low-fieldHall resistanceRxy.

The anisotropy of the beat node positions wasmeasured using a 2-axis vectormagnet with 4.5T rotatable
fieldmagnitude. This allowed us to adjust θ by electronicmeans and achieve a very high angular accuracy.jwas
adjusted bymechanically rotating the sample in situ about its vertical axis (see figure 3(b)). Quantumoscillations
ofRxxwere recorded for three different 76.5 , 77.5 , 78.5q =   { } and different values ofj. The absolute
accuracy of θ at different values ofjwas 0.07 asmeasured using theHall resistance.

4. Results

4.1. Experimental results
Wefirst address the coincidencemeasurements that we used to gain information on the Landé tensor and supply
a starting point forfitting the full numericalmodel to the experimental data.Rxx-traces for different θ around

c
1 2q andfixed 135j =  (B 110 [ ¯ ]) are shown exemplarily in figure 4(a). Themaximumperpendicular field
component in this angular rangewas B 2.35 T<^ , corresponding tofilling factors 15n > . In order to extract

c
1 2q , we plotted the normalized amplitudes R R 215 16 17 18D + D- -( ) and R16 17D - as a function of θ in

figures 4(b) and (c) and defined c
1 2q as the crossing point of linear fits to the data. Using this approach it was

possible to extract c
1 2q with an uncertainty of 0.1qD » .

For the following analysis we first neglect the R-SOI andD-SOI terms as discussed above such that the
picture of an angle-dependent scalar g ,* q j( ) is applicable. Comparing the results for 45j =  and 135j = 
wefind an anisotropy of c

1 2q , corresponding to different values of g* (see table 1). In this first analysis neglecting
R-SOI andD-SOI terms this anisotropy is entirely attributable to a non-zero gxy. Note that with this ansatz we
will extract an upper bound for gxy, since the SOI terms that we neglected here produce an anisotropywith the
same symmetry. This will be discussed inmore detail below.With this approach, two of three independent
components of g * can be determined. The third is lacking because the θ dependence is not addressed separately
in a coincidencemeasurement. Since the deviations from in-plane isotropy are small we can use the following

approximations: in equation (4), we set 80q »  and substitute g g q cos 80 sin 8080
2 2 2=  +  . Here, the out-

of-plane anisotropy of g* is represented by the unknown parameter q g g= ^ . Since q is on the order of one, we

Figure 4.Coincidencemeasurements. (a)Rxx-traces in the vicinity of B 2.1 T=^ at 135j =  and different 78.6 80.8q < <  (from
light (red) to black). Curves are offset for clarity. (b) and (c)Normalized amplitudes of R16 17D - (red squares) and

R R1 2 15 16 17 18D + D- -( ) (black triangles) recorded at 45j =  and 135j = , respectively. The dashed lines are linearfits to the
data; the coincidence angle c

1 2q was determined by the crossing points of these fits (indicated by vertical dotted lines).
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further approximate in equation (5) g g80» yielding

g g g80 , sin 2 . 6xy80* q j j=  » +( ) ( )

Weextract g 4.68 0.0480 = -  and the upper bound g 0.14 0.04xy =  , whichwewill use as starting points
for themodeling below.

Wenow turn to the anisotropy of themeasured beat node positions.We showRxx-traces of sample#4069-7
for constant 77.5q =  and three different 45 , 90 , 135j =   { } infigure 5. The beat nodes as defined in
section 2 are indicated by arrows. The nodes shift as a function ofj. The node positionswere extracted from the
crossing points of the amplitude evolution for even and odd ν. This procedure resulted in an uncertainty of 10
mT for thefirst node and 3mT for the second node, while the uncertainty in θ for the differentjwas negligible.
The experimental node positions for sample#4069-7 are summarized inj-polar-plots infigures 6(a) and (b).
We observe a clearj-anisotropy of thefirst nodewhich becomes significantly strongerwith increasing θ. The
anisotropy of the second node is significant but less pronounced and exhibits an anisotropy pattern that is
rotated by 90◦with respect to thefirst node, consistent with our theoreticalmodel.

4.2. Comparisonwith theory
In the followingwewill use the theoreticalmodel introduced in section 2 to extract all relevant parameters Ra ,

Db , g⊥, gP and gxy in a self-consistent way. For this, wefirst perform a least-squaresfit of the full theoreticalmodel
(including Ra , Db and g *) to the data of all experimental node positions, i.e., of the first and second node and
for differentj and θ, as displayed infigures 6(a) and (b). Freefit parameters were Ra , Db and q g g= ^ . The

knownparameters sheet carrier density n 8.51 10 cm2D
11 2= ´ - determined from the periodicity of SdH-

oscillations at 0q =  and effectivemass m m0.37 0* = extracted fromT-dependentmeasurements reported in
[44]werefixed. The starting values for g80 and gxy extracted from the coincidencemeasurements were taken in
thefirst least squares fit. From thefit result, the corresponding coincidence angles c

1 2q at 45j =  and
135j =  at B 2.1 T=^ were calculated and compared to the results from coincidencemeasurements (see

table 1). This was found to overestimate the anisotropy of c
1 2q compared to experiment. This is expected and can

be understood as follows: the actual value of gxy is smaller than the upper bound of g 0.14xy = when the residual

influence of SOI terms on c
1 2q at B 2.1 T=^ is not negligible in the experiment. Therefore thefit routinewas

performedwhile systematically varying gxy between 0 and 0.14. The bestfit was achieved for g 0.11xy = and is

shown as dashed lines infigure 6. The extracted parameters together with their estimated uncertainties are:

Table 1.Experimental coincidence angles c
1 2q

and calculated scalar g* for sample#4069-7.

j (deg) c
1 2q (deg) g*

45 80.33±0.1 −4.54±0.05
135 79.74±0.1 −4.81±0.05

Figure 5.ExperimentalRxx-traces as a function of B̂ of sample#4069-7 recorded at 77.5q =  at different in-plane orientationsj.
Curves are offset for clarity. The positions of thefirst two beat nodes are indicated by arrows.
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g

g

g

4.62 0.09 10 eVm

0.46 0.14 10 eVm
2.91 0.60

4.72 0.05

0.11 0.02. 7xy

R
12

D
12

a
b

=  ´
=  ´
=- 
=- 

= 

-

-

^



( )
( )

( )

Note that the relative sign of Ra and Db is thus found to be positive as is the sign of gxy.
At this point wewould like to comment on one particular aspect of the above procedure: the in-plane

anisotropy of g * on the one hand and the anisotropy due to the SOI terms on the other hand lead to beat node
anisotropies with the same symmetry. So how can the fitting procedure distinguish the two components?Of
course, independentmeasurement of gxy via the coincidencemethod at the highest availablemagnetic fields
where the SOI-terms can be neglected is straightforward.However, we saw in the analysis above that in our case
therewas a residual influence of the SOI terms in the coincidencemeasurements. The answer lies in the strongly
different dependence of the Zeeman- and the SOI terms on themagnetic field.While E BZ µ , it is
E E n B, 1R D µ + ^( ) which is roughly independent ofB for high n. Our routine overcomes the problemby
simultaneouslyfitting thej-anisotropy of experimental data obtained in three differentmagnetic field regimes,
namely the second node (at B 0.3»^ T), thefirst node (at B 0.8»^ T), and the coincidence (at B 2.1»^ T). In
thesemeasurements in different field regimes the information is encoded that allows to separate the influence of
gxy and the SOI, such that it is neither possible tomodel the data by assuming g 0xy = and 0Db >∣ ∣ , nor by

assuming g 0xy >∣ ∣ and 0Db = . Both effects are clearly present in the experiment as is expected from

theory [10].
In the followingwe briefly comment on the contribution of the k-cubic term in theDresselhaus part of the

Hamiltonian thatwe did not include in themain part of this work. Following [14], k-cubic terms of the
DresselhausHamiltonian lead to a renormalization of Db , such that we have to replace kzD

2b g= - á ñ in (1) by
k k1 4zD

2
F
2b g¢ = - á ñ -( ). Here γ is the bulkDresselhaus constant. Further, additional off-diagonalmatrix

elements n H n k, 3, i 4 F
3gá + + -ñ = -∣ ∣ ( ) appear [14], coupling states with quantumnumbers n and n 3+ .

Using the parameters extracted from the experiment, we verified that the effect of thesematrix elements on the
results was negligible.

5.Discussion

The result of the present experiment is the unambiguous extraction of Ra and Db and their relative sign together
with the full g *-anisotropy. For this, no a priori assumptionswere necessary. The ability to determine all
parameters at the same time provides amore comprehensive picture of spin-related phenomena in
semiconductor heterostructures. In particular, k p· -theory predicts g k z k zxy

e
z z

2 2 2

B
= á ñá ñ - á ñg

m
( ). Our

experimental approach determining k k1 4zD
2

F
2b g¢ = - á ñ -( ) and gxy on an equal footingmay thus pave the

way to quantitatively validate the theoretical predictions. This is however, beyond the scope of the present paper.

Figure 6.Polar plots inj of the experimental node positions (symbols) of (a)first and (b) second node at three different values of θ.
The dashed lines represent the fit of the theoreticalmodel to the data, taking into account R- andD-SOI aswell as the full anisotropic
g *-tensor.
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Our analysis highlighted the deep connection between gxy and the SOI-termsWewere able to disentangle the
two contributions to themeasured anisotropy in the numerical fitting routine,finding that the SOI terms had a
significant influence on our coincidencemeasurements. In this particular case at B 2.1»^ T, 70%» of the
anisotropy in c

1 2q could be attributed to gxywhile 30%» were due to the influence of the SOI termsAddressing
the pure components of g * in a coincidence experiment would require highermagnetic fields. Ourmodel

predicts that for the specific system investigated here, the SOI contribution to c
1 2q becomes negligible at

B 10»^ T. At 80q »  this amounts to B 58» T,which can be reached in pulsedmagnetic fields at large scale
facilities.

Ourwork reveals a remarkable out-of-plane anisotropy of g *with g 2.98= -^ and g 4.72= - . This

result is consistent with previous experiments of Kowalski et al on similar InGaAs heterostructures [28]. A
significant out-of-plane anisotropy of g *was also predicted by k p· -theory for InGaAs, albeit with g g>^ ∣ ∣ ∣ ∣
[9]. However, the correct way to derive ĝ and g∣∣ is controversial [31]. The small size of the in-plane

g *-anisotropy represented by g 0.11xy = as compared to the diagonal components g⊥ and gP is similar to

experiments onAlGaAs-based heterostructures [32, 33]. The outcome of a dominant Rashba parameter
4.62 0.09 10 eVmR

12a =  ´ -( ) is consistent with previous experiments on the same heterostructures
[44, 45]. Furthermore a smaller 0.46 0.14 10 eVmD

12b =  ´ -( ) on the order of 0.1 Ra is consistent with the
more recent analysis in [46], where the oscillatory Bm ^( )wasmeasured inweakly tiltedfields.

6. Conclusion

In conclusion, we have determined theRashba- andDresselhaus constants 4.62 0.09 10 eVmR
12a =  ´ -( )

and 0.46 0.14 10 eVmD
12b =  ´ -( ) and their relative sign (positive) togetherwith the full g-tensor g *with

g 2.91 0.60= - ^ ( ), g 4.72 0.05= -  ( ) and g 0.11 0.02xy = ( ) for an asymmetric InGaAsQW. For this

we employed SdHmagnetotransportmeasurements in doubly tiltedmagnetic fields together with numerical
calculations of the SOI-induced beat node positions. Themethod presented here is especially powerful to
explore systemswhere one of the two components is small: if one of the two SOI terms is exactly zero, the node
positions are isotropic. The breaking of this symmetry is a very sensitive gauge capable of resolving the
smaller term.
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