
Scenario-based Optimal Control for Gaussian Process
State Space Models

Jonas Umlauft, Thomas Beckers, Sandra Hirche

Abstract— Data-driven approaches from machine learning
provide powerful tools to identify dynamical systems with
limited prior knowledge of the model structure. More par-
ticular, the Gaussian process state space model, a Bayesian
nonparametric approach, is increasingly utilized in control. Its
probabilistic nature is interpreted differently in the control
literature, but so far, it is not considered as a distribution
over dynamical system which allows a scenario-based control
design. This paper introduces how scenarios are sampled
from a Gaussian process and utilizes them in a differential
dynamic programming approach to solve an optimal control
problem. For the linear-quadratic case, we derive probabilistic
performance guarantees using results from robust convex opti-
mization. The proposed methods are evaluated numerically for
the nonlinear and linear case.

I. INTRODUCTION
The identification of dynamical systems using data-driven

approaches gains attention, as control engineering is in-
creasingly applied in areas where the analytic derivation of
model candidates is not possible, e.g. social networks or
flexible manipulators in robotics. Generally, the increased
availability and improved processing speed of large datasets
supports the trend away from parametric towards data-driven,
nonparametric models. More specifically, Gaussian process
state space models (GP-SSMs) gain attention in system
identification [1] due to many favorable properties, such as
the high flexibility, the intrinsic bias-variance trade-off with
its Bayesian mathematical foundation and the fact that it
provides a measure of the model fidelity along with the
inferred output [2].

Accordingly, there are numerous applications of Gaussian
processes (GPs) in control: A stabilizing control design for
GP-SSMs is proposed in [3] and [4]. The authors of [5], [6]
and [7] exploit the Gaussian process in robotic applications
for stiffness adaptation, cooperation and computed torque
control, respectively. However, the uncertainty in the model
is interpreted differently in various approaches and we will
provide a small overview in Sec. III-B.

One prominent technique to deal with the uncertainty
is stochastic optimal control as it allows precise design
of performance criteria and is solved efficiently by means
of differential dynamic programming (DDP) [8]. Various
approximate solutions have been proposed e.g. data-driven
approximation of the value function [9], the iterative linear
quadratic Gaussian regulator (iLQG) [10] or the scenario-
based model predictive control (MPC) [11]. The latter avoids
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excessive conservatism and provides probabilistic perfor-
mance guarantees. To make this work for GP-SSMs, a sce-
nario interpretation is required which has not been exploited
in control.

Therefore, this paper proposes a scenario-based control ap-
proach for GP-SSMs, where dynamical models are sampled
from a GP to achieve robust control design. Here, proba-
bilistic robustness as discussed in [12] is considered which
uses a finite subset of all possible dynamics to optimize the
control law. The novelty is to use a nonparametric model
as distribution over functions from which realizations are
sampled as scenarios. Exploiting principles of differential
dynamic programming, a solution for the optimal control
problem is approximated. For the linear quadratic (LQ)
case, we utilize results from robust convex optimization to
derive the required number of samples for given level of
probabilistic robustness.

The remainder of this paper is structured as follows: After
defining the problem setting in Sec. II, Sec. III reviews GP-
SSMs and its different interpretations. Section IV focuses on
the scenario-based control design, followed by considerations
for the LQ case in Sec. V and simulations in Sec. VI.

II. PROBLEM FORMULATION

Consider a nonlinear discrete-time system1

xk+1 = f (xk,uk) , (1)

with state x ∈ X ⊆ Rn, input u ∈ U ⊆ Rr and n, r ∈ N, k ∈
N0. The function f : X× U→ X is infinitely differentiable
but unknown. The full state is measurable along with a noisy
version of the consecutive state, forming the dataset states
are given

D =
{
ξ(i),y(i)

}N

i=1
,

where ξ ∈ X ⊆ Rp, p = n+ r, y ∈ Rn,

ξ(i) =

[
x
(i)
k

u
(i)
k

]
∈ X and y(i) = f

(
x
(i)
k ,u

(i)
k

)
+ ε

with ε ∼ N (0,σ2
nIn). Given a stage cost c : X× U→ R

and a final cost cf : X → R, with c, cf ∈ C2,

1Notation: Lower/upper case bold symbols denote vectors/matrices, R0
+,

R+ all real positive numbers with and without the zero, N0, N all natural
numbers with and without the zero, and E[·], V[·] the expected value
and variance of a random variable, respectively. In denotes the n × n
identity matrix, A � 0 positive definiteness of matrix A, N (µ,σ2) a
normal distribution, a(1:n) the first n elements of a, Ci the set of i-times
differentiable functions and diag(·) constructs from a set of scalars/matrices
a (block-)diagonal matrix.



the goal is to find a series of control in-
puts u0:H-1 =

[
uᵀ
0 · · · uᵀ

H−1
]ᵀ ∈ UH ⊆ RrH , which

minimizes the accumulated cost over the horizon H ∈ N

min
u0:H-1

H−1∑
k=0

c(xk,uk) + cf (xH). (2)

We aim to solve this optimal control problem by means of
DDP which requires a model of the unknown dynamics.
We utilize the Gaussian process framework for the dynamic
model as described in the following.

III. SCENARIO SAMPLING FOR GAUSSIAN
PROCESSES

This sections first reviews GP-SSMs before discussing its
different interpretations in control. Then, we introduce how
dynamic models are sampled from a GP to obtain different
scenarios for the control design.

A. Gaussian process state space models

The Gaussian process is a stochastic process, which
assigns to any finite subset {ξ1, . . . , ξM} ⊂ X from a
continuous input space X ⊆ Rp a joint Gaussian distribution.
A common interpretation of the Gaussian process is the
”distribution over functions” [2] and written by

fψ(ξ) ∼ GP
(
mψ(ξ), kψ(ξ, ξ

′)
)
.

It is fully characterized by a mean mψ(ξ) : X → R and a
covariance kψ(ξ, ξ′) : X×X → R function. The subscript ψ
indicates the dependency of the functions on hyperparame-
ters. Common practice is to set the mean function mψ to
zero due to lack of prior knowledge. The covariance function
characterizes the functions over which the GP describes the
distribution. Thus, all functions drawn from a GP follow
these properties induced by the kernel. For a linear kernel

klin
ψ (ξ, ξ′) =

p∑
i=1

ξiξ
′
i

l2i
, (3)

where ψ =
[
l1 · · · lp

]ᵀ ∈ Rp
+ are the hyperparameters, all

drawn functions are a sum of linear functions, thus linear.
For the squared exponential (SE) kernel

kSE
ψ (ξ, ξ′) = σ2

f exp

(
p∑

i=1

(ξi − ξ′i)2

−2l2i

)
, (4)

all resulting functions are a sum of Gaussians and the
hyperparameters are ψ =

[
l1 · · · lp σf

]ᵀ ∈ Rp+1
+ . The SE

kernel is universal, thus every continuous function can be
approximated arbitrarily exact with the GP. The resulting
model is considered nonparametric, because the data points
itself are the parameters (hyperparameters of the kernel only
assume a specific correlation among these points).

To model functions with multidimensional outputs, such
as the dynamics in (1), n independent GPs are concatenated

fΨ(ξ) =


fψ1

(ξ) ∼ GP(0, kψ1
(ξ, ξ′))

...
...

fψn
(ξ) ∼ GP(0, kψn

(ξ, ξ′)),

(5)

where the prior mean functions mψi
(ξ) are set to zero for

simplicity and Ψ =
[
ψᵀ

1 · · · ψ
ᵀ
n

]ᵀ
is the concatenation of

all parameter vectors. It is denoted as

fΨ(ξ) ∼ GP
(
0,kΨ(ξ, ξ′)

)
, (6)

where kΨ(·, ·) =
[
kψ1

(·, ·) · · · kψn
(·, ·)

]ᵀ
concatenates

the kernel functions.
Gaussian processes are often employed for regression: For

the unknown function f̃ : X → Rn, noisy measurements

y(i) = f̃
(
ξ(i)
)
+ ε, i = 1, . . . ,N (7)

with ε ∼ N
(
0,σ2

nIn
)

are available. Considering a test
input ξ∗ and the j-th component (j = 1, . . . ,n) of the
corresponding predicted output y∗, the joint distribution is[

y∗j
Y (j,:)

]
∼ N

([
0
0

]
,

[
k∗j kᵀj
kj Kj + σ2

nIN

])
, (8)

where Y =
[
y(1) · · · y(N)

]
concatenates the measured

outputs, Y (j,:) denotes j-th row of Y , k∗j = kψj
(ξ∗, ξ∗)

and

Kj=


kψj

(
ξ(1), ξ(1)

)
· · · kψj

(
ξ(1), ξ(N)

)
...

. . .
...

kψj

(
ξ(N), ξ(1)

)
· · · kψj

(
ξ(N), ξ(N)

)
∈RN×N

kj =
[
kψj

(
ξ(1), ξ∗

)
· · · kψj

(
ξ(N), ξ∗

)]ᵀ
∈ RN .

For further notations, we write the concatenation of kernel
evaluations as Kj = kj (Ξ,Ξ) and kj = kj (Ξ, ξ∗),
where Ξ =

[
ξ(1) · · · ξ(N)

]
∈ Rp×N .

Conditioning the joint distribution (8) on the test input ξ∗

and the observations D results in a normal distribution
for p(y∗j |ξ

∗,D) with mean and variance given by

E[y∗j |ξ
∗,D,ψj ]=k

ᵀ
j

(
Kj+σ

2
nIN

)-1
Y (j,:)=:µj (ξ

∗) , (9)

V[y∗j |ξ
∗,D,ψj ]=k

∗
j−k

ᵀ
j

(
Kj+σ

2
nIN

)-1
kj=:σ2

j (ξ
∗) (10)

and concatenated to

µ(ξ∗) :=
[
µ1(ξ

∗) · · · µn(ξ
∗)
]ᵀ

,

σ2(ξ∗) :=
[
σ2
1(ξ
∗) · · · σ2

n(ξ
∗)
]ᵀ

.

From Bayesian inference principle, the hyperparameters are
obtained through optimization of the marginal likelihood for
each component, i.e. for every j = 1, . . . ,n.

B. Interpretations of Gaussian process dynamic models

Gaussian processes are widely applied in system iden-
tification and control to model unknown dynamics. How-
ever, the interpretations of the stochastic process in anal-
ysis and design are different. A visualization is provided
in Fig. 1. For notational simplicity, we consider in this
section scalar uncontrolled, discrete-time state space models
of the form xk+1 = f(xk).

First, in the deterministic interpretation, the mean func-
tion (9) of the GP is taken as estimate for the true function

xk+1 = µ(xk).



The variance function (10) is either ignored or used for
additional task, e.g. robotic cooperation [6]. The approaches
neglect the present uncertainty and do not make use of the
full potential of the probabilistic model.

Alternatively, the work in [13] derives (under cer-
tain assumptions on f(x)) an upper bound for the er-
ror |f(x)− µ(x)|, which is proportional to the variance σ(x)
and holds with high probability. Thus, the GP model is
interpreted as a high probability robust model of the form

xk+1 = µ(xk)± βσ(xk),

where β > 0 is a constant. In control, this has been employed
e.g. in [4] for feedback linearization. However, this view
requires knowledge regarding the true function, e.g. the
correct kernel, which is hard to guarantee.

Third, the uncertainty in the prediction of the GP is
interpreted as process noise and results in drawing from the
normal distribution predicted by the GP in each step, thus

xk+1 ∼ N
(
µ(xk),σ

2(xk)
)
. (11)

It is utilized for control design with corresponding stability
considerations in [3] and [14]. However, assuming determin-
istic dynamics, the interpretation is inconsistent, since the
model predicts two different outputs for two queries at the
same state xk.

Finally, the belief space view is a hybrid concept of the
before mentioned techniques. An approximation fBS is uti-
lized to map from the current state µxk

with covariance σxk

to the next state distribution given by[
µxk+1

σxk+1

]
= fBS

([
µxk

σxk

])
.

It is applied to control design in [15], but the applied approx-
imation refrains the approach from providing performance or
convergence guarantees.

The summary shows that none of these methods uses
an interpretation which considers the GP as a distribution
over functions which allows to draw deterministic functions
as samples of the stochastic process. We will refer to this
interpretation as the scenario view and explain it in detail in
the following section.

C. Iterative sampling from Gaussian processes

As stated in Sec. II, the control goal is to minimize
the cost function over a time horizon H . This requires
to perform model-based predictions of the state xk, k =
1, . . . ,H , starting from an initial state x0 for a given input
sequence u0:H-1. This section proposes the scenario view
of GPs to perform these predictions which differs from
previously used techniques. So other than in the deterministic
interpretation, we sample from the GP. But we do not sample
in the output space (as in the stochastic interpretation) but
from the function space. Technically, this requires sampling
from an infinite dimensional space, however, we are not
interested in the entire function, but only at the locations
which are reached during the prediction horizon. So for the
first draw, we start similar to the stochastic interpretation
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Fig. 1. Different interpretations of GP-SSMs in control.

x1 ∼ N
(
µ(ξ0), diag

(
σ2(ξ0)

))
and draw from the distri-

bution p(x1|ξ0,D,Ψ), where ξ0 =
[
xᵀ
0 uᵀ

0

]ᵀ
. The real-

ization of x1 is considered as a realization of the function.
Thus, for any further predictions, in order to obtain x2, we
condition on this observation of the function. The resulting
posterior distribution for x2 is

p(x2|ξ1,x1, ξ0,D,Ψ).

The sampled point (ξ0,x1) is treated similarly to a training
point of the GP, with the important difference, that it is
observation noise free: No σ2

n is added to the kernel evalu-
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Fig. 2. Illustrative example for forward simulation with a sampled GP. For
the points in the prediction horizon the variance is zero, while the training
points are subject to observations noise.

ation kj(ξ0, ξ0). This ensures, that every further evaluation
of the Gaussian process at the same input location ξ0 will
result in exactly the same output, since the variance (10) is
zero and µ(ξ0) = x1. A visualization for two steps is shown
in Fig. 2. In step k, the joint distribution is given byxk+1,j
x1:k,j

Y (j,:)

∼N
00

0

,
kj(ξk, ξk) kj(ξk, Ξ̃) kj(ξk,Ξ)

kj(Ξ̃, ξk) kj(Ξ̃, Ξ̃) kj(Ξ̃,Ξ)

kj(Ξ, ξk) kj(Ξ, Ξ̃) Kj+σ2
nIN


where x1:k,j =

[
x1,j · · · xk,j

]ᵀ ∈ Rk concatenates
the j-th dimension and Ξ̃ =

[
ξ0 · · · ξk−1

]
∈ Rp×k.

Based on this notation, the prediction procedure for a
horizon H is summarized in Algorithm 1.

Algorithm 1: Sampling procedure for GP-SSMs
Input : D, Ψ, x0, H , u0:H-1
Output: x1:H

k = 0, Ỹ = [ ], Ξ̃ = [ ];
while k < H do

ξk = [xᵀ
k u

ᵀ
k]

ᵀ ;
Draw from p(xk+1|ξk, Ξ̃, Ỹ ,D,Ψ);
Ξ̃ = [Ξ̃ ξk], Ỹ = [Ỹ xk+1];
k = k + 1;

end

D. From functions samples to scenarios

The previous section explained how a trajectory of one
dynamical model is consistently sampled. To obtain a robust
design, we draw multiple realizations of the GP to account
for the model uncertainty. The proposed GP forward sim-
ulation in Algorithm 1 is therefore employed M times to
generate M different scenarios. The initial state is the same
for all, however for each scenario a different function is sam-
pled from the GP resulting in different predicted trajectories.
The M different dynamic models are all itself deterministic
and denoted by f [m] with state x[m], m = 1, . . . ,M and

x
[m]
k+1 = f [m]

(
x
[m]
k ,uk

)
.

Given a nominal control sequence u0:H-1, nominal trajec-
tories for each scenario x

[m]
0:H =

{
x
[m]
0 , . . . ,x

[m]
H

}
can

be computed. For notational simplicity, we introduce the
concatenated state vector/transition function

x
[1:M ]
k =


x
[1]
k
...

x
[M ]
k

 ,f [1:M ]
(
x[1:M ],u

)
=

 f
[1]
(
x[1],u

)
...

f [M ]
(
x[M ],u

)
 .

The control input u is the same for all scenarios, since only
a single control input is applied to the real system.

IV. ITERATIVE LQR FOR SCENARIOS
We make use of the scenario-based forward

simulations of GP-SSMs in an optimal control setting.
We introduce the notation for the cost function
over all scenarios c

(
x[1:M ],u

)
=
∑M

m=1 c
(
x[m],u

)
,

cf
(
x[1:M ]

)
=
∑M

m=1 cf
(
x[m]

)
and define the value

function Vk : XM → R

Vk

(
x[1:M ]

)
= min
u0:H-1

H−1∑
i=k

c
(
x
[1:M ]
i ,ui

)
+ cf

(
x
[1:M ]
H

)
,

which is the minimal cost-to-go from any state x[1:M ] ∈ XM .
Following Bellman’s principle of optimality the value func-
tion is written recursively as

Vk

(
x[1:M ]

)
=min

u
c
(
x[1:M ],u

)
+Vk+1

(
f [1:M ](x[1:M ],u)

)
with the boundary condition VH

(
x[1:M ]

)
= cf

(
x[1:M ]

)
.

Therefore, the value function can only be solved backwards
in time along a nominal trajectory (backward pass). Given
the value function at time step k + 1, the optimal control
input is computed for time k, leading to the value function
at time k. An updated control input results in a new nominal
trajectory which requires a new simulation forward in time
(forward pass) [16]. Alternating forward and backward pass
leads to convergence to a (locally) optimal trajectory [17].

a) Backward Pass: We define the cost-to-go func-
tion Ck : XM×U→ R in terms of deviations δ[1:M ]

x ∈ RnM ,
δu ∈ Rr from the nominal trajectories x[1:M ]

0:H , u0:H-1

Ck

(
δ[1:M ]
x , δu

)
= c

(
δ[1:M ]
x + x

[1:M ]
k ,uk + δu

)
+ Vk+1

(
f [1:M ](δ[1:M ]

x +x
[1:M ]
k ,uk+δu)

)
.

This cost function is now approximated for
all k = 1, . . . ,H − 1 by a linear model around the
nominal trajectory with dynamic matrix A[1:M ]

k ∈ RMn×Mn

and input matrix B[1:M ]
k ∈ RMn×r

A
[1:M ]
k =

∂f [1:M ]

∂x[1:M ]
, B

[1:M ]
k =

∂f [1:M ]

∂u
. (12)

Approximating the cost function as quadratic, allows the
following approximation of the cost-to-go function

C̃k

(
δ[1:M ]
x , δu

)
= δ[1:M ]

x

ᵀ
Q

[1:M ]
k δ[1:M ]

x + δᵀuRkδu

+ q
[1:M ]
k δ[1:M ]

x + rkδu + δᵀuS
[1:M ]
k δ[1:M ]

x

+ q
[1:M ]
k + Vk+1

(
x
[1:M ]
k+1

)
, (13)



where

Q
[1:M ]
k =

∂2c

∂x∂x
+A

[1:M ]
k

TW
[1:M ]
k+1 A

[1:M ]
k ,

Rk =
∂2c

∂u∂u
+B

[1:M ]
k

TW
[1:M ]
k+1 B

[1:M ]
k ,

q
[1:M ]
k =

∂c

∂x
+w

[1:M ]
k+1 A

[1:M ]
k , (14)

rk =
∂c

∂u
+w

[1:M ]
k+1 B

[1:M ]
k ,

S
[1:M ]
k =

∂c

∂x∂u
+A

[1:M ]
k

ᵀ
W

[1:M ]
k+1 B

[1:M ]
k ,

and q
[1:M ]
k = c

(
x
[1:M ]
k ,uk

)
, where the gradient and

Hessian of the next step value function Vk+1, denoted
by W [1:M ]

k+1 ∈ RMn×Mn and w[1:M ]
k+1 ∈ RMn are used. These

are obtained iteratively backwards in time, starting with

W
[1:M ]
H =

∂2cf
∂x∂x

, w
[1:M ]
H =

∂cf
∂x

For the recursive solution of the value function, the approx-
imate cost-to-go (13) is minimized over the deviation δu

Vk

(
x[1:M ]

)
= min

δu
Ck

(
δ[1:M ]
x , δu

)
,

which is obtained for

δu = L
[1:M ]
k δ[1:M ]

x + lk, (15)

where L[1:M ]
k =−Rk

−1S[1:M ]
k ∈Rr×Mn, lk=−Rk

−1rk∈Rr.
Substituting the optimal control (15) in the approximate cost-
to-go function (13) yields the quadratic value function

Vk

(
x[1:M ]

)
= w

[1:M ]
k +w

[1:M ]
k

(
x[1:M ] − x[1:M ]

k

)
+

1

2

(
x[1:M ] − x[1:M ]

k

)ᵀ
W

[1:M ]
k

(
x[1:M ] − x[1:M ]

k

)
,

where

W
[1:M ]
k = Q[1:M ] +L

[1:M ]
k

ᵀ
RkL

[1:M ]
k

+ S[1:M ]ᵀL
[1:M ]
k +L

[1:M ]
k

ᵀ
S[1:M ]

w
[1:M ]
k = q[1:M ] +L

[1:M ]
k

ᵀ
Rklk + S[1:M ]ᵀlk +L

[1:M ]
k

ᵀ
rk

w
[1:M ]
k =

1

2
lᵀkRklk + rklk + w

[1:M ]
k+1 + q

[1:M ]
k .

b) Forward Pass: For the update of the nominal trajec-
tory, we start with x[m]

0 = x
[m,new]
0 and apply the optimal

control (15) derived in the backward pass

unew
k = uk +L[m]

(
x
[m,new]
k − x[m]

k

)
+ lk

x
[m,new]
k+1 = f [m]

(
x
[m,new]
k ,unew

k

)
.

Remark 1: Because the true cost-to-go function is not
quadratic, the new trajectory not necessarily improves the
overall cost. However, a line search in the direction of
improvement is commonly implemented, for more details
see [10].

Remark 2: The linear approximation of the dynamic
in (12) requires to linearize each of the M GPs along the
nominal trajectory. Due to the linearity of the differentiation

operation, the gradient of a GP is again a GP, which has no
uncertainty at previously visited points. We therefore utilize
the gradient of the mean functions.
However, there is no guarantee how well the control law (15)
performs on the true system. Generally, providing perfor-
mance guarantees based on an uncertain model is very
difficult. Nevertheless, for linear system this is possible as
we show in the following to demonstrate the consistency of
our approach.

V. GUARANTEES FOR LINEAR SYSTEMS

This section shows that the presented approach is con-
sistent with scenario-based MPC for linear systems, which
allows to derive probabilistic performance guarantees of the
control law on the real system. We therefore consider the
specific case of an LQ problem in the following.

A. Reformulation for the LQ case

It is now assumed, that the unknown system (1) has a
finite reproducing kernel Hilbert space (RKHS) norm [13]
under the linear kernel (3), formally written as

‖f‖klin
ψ
<∞, (16)

which is equivalent to consider linear systems with unknown
dynamic and input matrix A ∈ Rn×n, B ∈ Rn×r, respec-
tively. Let Q,Qf ∈Rn×n, R∈Rr×r define the cost

c(x,u) = xᵀQx+ uᵀRu, cf (x) = x
ᵀQfx (17)

with R,Q,Qf � 0. The optimization

min
u0:H-1

H−1∑
k=0

c(xk,uk) + cf (xH) (18)

is then solved exactly by the proposed dynamic programming
scheme, since the employed quadratic form of the cost-to-go
holds exactly. Thus only a single forward-backward pass
is required since the linearization of the dynamics and the
quadratic cost functions hold globally and are not updated
with a new nominal trajectory. However, instead of employ-
ing DDP, the problem can also be reformulated to

min
u0:H-1

(Gu0:H-1 +Hx0)
ᵀ
Qall (Gu0:H-1 +Hx0)

+ uᵀ
0:H-1Rallu0:H-1 (19)

where Qall = diag(Q, . . . ,Q,Qf ) ∈ Rn(H+1)×n(H+1),
Rall = diag(R, . . . ,R) ∈ RHr×Hr and G ∈ Rn(H+1)×rH ,
H ∈ Rn(H+1)×n are defined such that the state along
the horizon is given by x0:H = Gu0:H-1 + Hx0. Since
matrices A, B (constructing G and H) are unknown, they
are sampled from a GP-SSM with linear kernel.

B. Scenario sampling for the linear kernel

Other than the SE kernel, the linear kernel is not universal
and it requires only p noise free samples to fix the GP-SSM
to a single model. Thus, after k = p steps of Algorithm 1,
the variance of the GP is globally zero. The dynamics
for each scenario are then given globally by A[m], B[m]

for m = 1, . . . ,M . The optimal control input is obtained



by either using DDP (Sec. IV) or solving the epigraphic
reformulation

h∗ = arg min
u0:H-1,h

h (20)

s.t.
(
G[m]u0:H-1+H

[m]x0

)ᵀ
Qall

(
G[m]u0:H-1+H

[m]x0

)
+ uᵀ

0:H-1Rallu0:H-1 < h, m = 1, . . . ,M

where h is the scalar slack variable. Each of the m con-
vex constraints corresponds to a realization of the random
variables A[m], B[m]. This setting is known as scenario
optimization which is used to relax convex optimization
problems where the constraint depends on a continuous-
valued random variable [12]. These problems are simplified
by considering only a finite number of realizations of the
random variable, as shown in (20). Since not all constraints
(corresponding to all linear dynamics) are considered, it is of
interest if the performance h∗ is also achieved for all other
possible dynamics:

Theorem 1: For an unknown system (1) under assump-
tion (16) and quadratic cost (17), control law (15) achieves
a cost less or equal h∗ from (20) with probability no smaller
than 1− β, β ∈ (0, 1) on all systems f with ‖f‖klin

ψ
<∞ but

at most an α-fraction, α ∈ (0, 1), if at least

M ≥ 2 (Hr − log β) /α

samples are drawn according to Algorithm 1.
Proof: Since (19) is quadratic in u0:H-1, the optimiza-

tion (18) is convex for a system with ‖f‖klin
ψ
< ∞ and

quadratic cost function (17). Therefore, [18, Theorem 1] is
applicable and the cost of the worst case scenario h∗ is
with probability 1− β an upper bound for an α-fraction of
all possible dynamics with bounded RKHS norm under the
linear kernel to which the control (15) is applied.
From an intuitive perspective, the confidence parameter β
denotes the probability, that a not representative subset of
dynamical systems from the set of all dynamics is sampled.
This is important from a theoretical point, however, from
a practical point, it can be made very small, since the
number of samples only increases with log β. The violation
parameter α indicates the fraction of all constraints which
are violated by the given solution. Thus in our case, for
how many linear systems the computed performance is not
achieved. This allows to chose the number of samples, such
that a desired fraction of all dynamics is ensured to achieve
a specific level of performance.

VI. SIMULATION
A. Setup

To evaluate the approach numerically, consider

f(x,u) =

[
0.8x1 − 0.5x2 + 0.1 cos(3x1)x2

0.4x1 + 0.5x2 + (1 + 0.3 sin(2x2))u

]
(21)

and the unstable linear system

xk+1 =

[
0.9 0.2
1 0

]
︸ ︷︷ ︸

=:Asim

xk +

[
1
0.5

]
︸ ︷︷ ︸
=:Bsim

uk (22)

x0 Q Qf Rnl Rlin N H U σn
[2 2]ᵀ I2 I2 10−3 1 125 9 [−3 3] 10−2

TABLE I
PARAMETERS EMPLOYED IN THE SIMULATION.
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Fig. 3. Simulation nonlinear system: Blue arrows show behavior for zero
control input, red lines trajectories for 20 sampled scenarios used in control
design and black shows behavior of the real system for the derived controller.

to show an application of Theorem 1. For both, we utilize the
quadratic cost functions (14) and the parameters in Table I.

In a first step, N = 53 = 125 training points are taken
on the uniform grid [−3 3] × [−3 3] × [−3 3] ⊂ X × U.
To obtain the hyperparameters for the SE kernel (4) for the
nonlinear system and the linear kernel (3) for the linear
system, a conjugate gradient solver from [2] is employed.
Based on the resulting GP-SSMs, scenarios (=dynamical
models) are sampled starting from the same initial point x0

using Algorithm 1. The iterative LQR approach described in
Sec. IV is employed to find optimal control inputs u0:H-1
and the corresponding trajectories for each scenario. For the
nonlinear (nl) case, Mnl = 20 scenarios are used. For the
linear (lin) case, a confidence parameter β = 10−2 and a
violation parameter α = 0.1 is chosen, which results in
Mlin ≥ 273 scenarios according to Theorem 1. For both
cases, we follow the procedure described in Sec. IV. For
verification, we apply u0:H-1 to the true dynamics.
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xk+1=Asimxk +Bsimuk

xk+1=Asimxk

Fig. 4. Simulation linear system: Blue arrows show behavior for zero
control input, red lines trajectories for 273 sampled scenarios used in control
design and black shows behavior of the real system for the derived controller.



B. Results

Figure 3 shows that the proposed scenario-based approach
optimizes the control law for all dynamic models drawn from
the GP-SSM. The resulting control law achieves the desired
behavior on the real system. For the unstable linear system,
Fig. 4 shows that all 273 trajectories are stabilized by the
computed control. The maximum cost of all scenarios is ≈
7.58. Thus, Theorem 1 concludes that with probability 99%
the computed control sequence result in a cost below ≈ 7.58
for at least 90% of all dynamics. It turns out, that the true
dynamics lies within this 90% as a cost of≈ 7.43 is achieved.

C. Discussion

The proposed scenario-based optimal control method for
GP-SSM is applicable to a very broad class of nonlinear
systems with arbitrary cost functions. As it relies on a purely
nonparametric model, also complex functions are modeled
with high precision. The resulting control law takes into
account the uncertainty in the model by optimizing the
performance over many realizations of the stochastic process.
For the linear case, the approach allows to impose probabilis-
tic guarantees for the performance of the control law. For
the general nonlinear case, DDP does not guarantee globally
optimal solutions. The result will therefore depend on the
initialization of the control u0:H-1. However, convergence
of the iterative approximation to a local optimal control
is ensured according to [10]. The probabilistic guarantee
provided by Theorem 1 requires the strong assumption (16).
However, according to the no-free- lunch theorems [19], we
cannot expect any generalization without any assumptions. In
general, the hyperparameters are not guarantee to be optimal
due to the non-convex likelihood optimization. However, for
the linear case, it becomes convex and therefore optimal
parameters are obtained. Generally, is is still unclear, whether
randomization is the best way to achieve robustness. For a
detailed discussion, we refer the reader to [20].

VII. CONCLUSION

This paper introduces a control design for a scenario-based
interpretation of the GP-SSM. By drawing deterministic
dynamic models from a GP and optimizing over all these
scenarios, we consider the probabilistic nature of the model
while avoiding approximations (like in the belief space view)
or injecting process noise, which is not present in the true
system (in the stochastic interpretation). The optimal control
problem is solved using differential dynamic programming,
more specifically the iterative LQ regulator. We show that for
the specific case of a linear dynamical system and quadratic
cost function, results from randomized robust optimization
can be employed to derive probabilistic performance guar-
antees.
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