
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Robotik, Künstliche Intelligenz und Echtzeitsysteme

Cloud Simulation for Large-Scale Agent-Based
Traffic Simulations

Daniel Zehe

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Nils Thürey

Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Alois Knoll

2. Prof. Wentong Cai, Ph.D.

Die Dissertation wurde am 28.06.2018 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 23.11.2018 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:zehe@in.tum.de

Abstract

It has always been the goal of urban system simulators to build ever-more detailed

simulation models to understand the complex interactions between the different en-

tities in the urban environment. In order to simulate these complex models, the

computational power required is significant. The last two decades have shown that

this problem of ever-more demanding software has been solved by increasing the

processing power of a single CPU, increasing the number of processors of a CPU

die and creating a better interconnect between the hardware nodes.

The setup of such computing systems is an expensive endeavor and not accessible

to everyone due to the complexity of setup and maintenance. Domain experts of

smaller and medium-sized institutions are not able to conduct large-scale simulation

experiments, since only large research centers like universities, large cooperations or

the military can afford this kind of infrastructure.

The growth of cloud computing in the last 10 years now allows computing environ-

ments to scale on demand. Since the infrastructure and services are comparable in

performance to dedicated hardware, not only consumer-oriented web services can

be improved, but also scientific simulation experiments can benefit greatly from this

development. A high-performance simulation for urban systems is only one exam-

ple.

This thesis introduces a reference architecture for a cloud-based agent-based sim-

ulation platform, which allows domain experts of different fields to collaborate on

simulation experiments. Apart from defining an abstract architecture, a specific im-

plementation for traffic-simulation experiments has been developed as part of this

thesis. This includes the extension of the SEMSim traffic (now CityMoS) simula-

tion platform to be cloud capable as well as a data analysis framework for online

data extraction of simulation data with a low bandwidth footprint. The scala-

bility of cloud resources allows for a concurrent simulation-supported search-space

exploration without much overhead. In this thesis an approach to improve the

search-space exploration even further by using multi-resolution models to reduce

the computational overhead when exploring a multi-dimensional search space is

given.

Zusammenfassung

Bei der Simulation von komplexen urbanen Systemen, wie zum Beispiel Verkehr,

kommt es auf die Genauigkeit der verwendeten Modelle an. Diese beschreiben den

Zusammenhang und die Interaktionen zwischen den einzelnen, im urbanen System

beteiligten Entitäten. Eine höhere Genauigkeit bedeutet auch eine größere An-

forderung an Hardwareressourcen. In den letzten 20 Jahren wurde das allgemeine

Problem der anspruchsvolleren Software durch Hardwareoptimierung angegangen.

Mehr Taktgeschwindigkeit bei weniger Leistungsaufnahme und mehr Prozessork-

erne auf einem Sockel sind das Resultat. Da jedoch die Grenze der Hardwareopti-

mierung erkennbar ist, wurde auch die Interkonnektivität zwischen Hardwareknoten

verbessert. Auf diese Weise wird die Arbeit in so genannten High-Performance-

Clustern auf mehrere Computer verteilt. Somit können Simulationen in sehr viel

weniger Zeit durchgeführt werden als noch vor 20 Jahren. Die gestiegene Kom-

plexität der Hardware erschwert den Zugang, da diese Systeme teuer in Anschaffung

und Erhaltung sind. Domänenexperten kleiner und mittelständischer Unternehmen

versperrt dies den Zugang zu großflächigen Simulationsexperimenten, da sich nur

akademische, Regierungs- und Militäreinrichtungen derartige Infrastrukturen leisten

können.

Eine mögliche Abhilfe ist Cloud-Computing. Es erlaubt Hardware je nach An-

forderung dynamisch zu skalieren. Da die Cloud-Infrastruktur auf die gleiche Hard-

ware setzt wie dedizierte High-Performance-Cluster, können dadurch nicht nur end-

kundenorientierte Dienste (soziale Netzwerke, E-Mail, Video-on-Demand etc.), son-

dern auch wissenschaftlichen Simulationen verbessert werden; urbane Simulationen

sind dafür nur ein Beispiel.

In der vorliegenden Dissertation wird eine Referenzarchitektur für cloudbasierte und

agentenbasierte Simulationsplattformen vorgestellt. Diese ermöglicht es Experten

aus unterschiedlichen Domänen kollaborative Simulationsexperimente zu erstellen.

Des Weiteren wird die Durchführbarkeit dieser Architektur anhand einer spezifis-

chen Implementierung für die Verkehrssimulation CityMoS aufgezeigt und evaluiert.

Dazu gehört die Erweiterung durch eine Online-Datenextraktion und -analyse Mid-

dleware, um den Datenspeicheraufwand zu minimieren. Die Skalierbarkeit von

Cloudressourcen erlaubt es, gleichzeitig mehrere simulationsbasierte Suchraumex-

plorationen vorzunehmen. In der vorliegenden Dissertation wird diese optimiert,

indem Techniken der Hybriden-Modellierung angewandt werden. Diese minimieren

die Laufzeit, bei gleichzeitiger Aufrechterhaltung der Simulationsergebnisgüte.

Acknowledgements

I would like to thank Prof. Dr. Alois Knoll for giving me the opportunity to conduct

research under his supervision. I would also like to express my gratitude towards

Prof. Dr. Wentong Cai from the Nanayang Technological University and the Prin-

ciple Investigator at TUMCREATE.

Additionally, I would like to thank Dr. Heiko Aydt, Dr. Vaisagh Viswanathan and

Dr. Suraj Nair for their thematic support while conducting my research at TUM-

CREATE. While working at TUMCREATE, I had the opportunity to supervise

David Grotzky, Marianna Avezum and Akriti Vij, while they were working for their

Bachelor’s and Master’s theses or their final year projects. Their work strongly

influenced my research.

Lastly, I would like to thank my colleagues at TUMCREATE, who provided me with

a pleasant and friendly working environment as well as may fruitful discussions

on scientific matters. The support from Lim Xiu Fen over the last 4 years was

exceptional.

Contents

Abstract iii

Zusammenfassung v

Acknowledgement vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Problem Statement . 7

2 Background of Research 11

2.1 Cloud Computing . 12

2.2 Agent-based Traffic Simulations . 16

2.3 Traffic Simulations . 18

2.4 Multi-Resolution Modeling and Simulation . 25

3 Simulation Cloud Service 27

3.1 Related Work . 29

3.2 General Architecture for Cloud-Based Simulation Services 30

3.3 SEMSim Platform . 37

3.4 Performance Evaluation . 41

3.5 Templating for Simulation Experiments . 48

3.6 Summary . 54

4 Online Data Extraction for Large-Scale Agent-Based Traffic Simulations 57

4.1 Related Work . 59

4.2 Formal Simulation Data Representation . 62

ix

CONTENTS

4.3 Online Data-Processing System . 66

4.4 Case Study . 73

4.5 Summary . 80

5 Cloud-Based Search Space Exploration for Traffic Simulations 83

5.1 Introduction and Motivation . 84

5.2 Related Work . 86

5.3 Model description . 87

5.4 Model Evaluation of Multi-Resolution Simulation Model 95

5.5 Application to real-world networks . 102

5.6 Summary . 116

6 Conclusion 119

References 123

Acronyms 133

Glossary 137

x

List of Figures

1.1 Average connection speed from 2013 to 2016 . 3

2.1 Cloud Service Hierarchy . 14

2.2 Virtual Machines and Container Abstraction Layers 16

2.3 SEMSim Platform coupling overview . 23

2.4 System, Sub-System and Components modeled in SEMSim 24

3.1 Pricing structure and region hardware availability with Google Compute Engine

(GCE) . 31

3.2 Proposed Cloud-Based Simulation Service Architecture 32

3.3 General Workflow of Cloud-Based Simulation Experiment 35

3.4 Simulation Data Decryption Workflow . 36

3.5 Scalable Electromobility Simulator (SEMSim) Cloud Service Model Composition 38

3.6 SEMSim Simulation Cloud Service Experiment Designer 39

3.7 SEMSim Visualisation Applications . 40

3.8 Histogram of Trip Start Times . 42

3.9 Cloud Simulation Overhead . 45

3.10 Cloud Simulation Execution Time Difference . 46

3.11 Shared Memory Bus System . 47

3.12 Workflow starting from domain experts to receiving the templated experiment

results. 51

3.13 Workflow of using the CityMoS Cloud App (CCA) for Experiments 53

3.14 Docker container configuration used for CCA . 54

4.1 Cloud-Based Simulation Reference Architecture 67

4.2 Simulation, Middleware and Processing Workflow 71

xi

LIST OF FIGURES

4.3 Simulation Landmarks inserted into the Output Data 72

4.4 Agent Update Percentage . 74

4.5 Example ER diagram for agent-based traffic simulations 78

5.1 Simulation search space with 2 dimensions with regions of interest identified to

be simulated in higher resolution . 85

5.2 Use of Front and Back Detectors to Determine Traffic Flow 89

5.3 Ghost Vehicle Generation at Micro-Macro Boundary 93

5.4 Data Structure to hold Microscopic Vehicles . 95

5.5 Multi-Resolution Simulation Experiment Setup 96

5.6 Dual-Simulation Setup for Agent State Deviation Experiment 96

5.7 Single-Lane Performance Comparison . 97

5.8 Dual-Lane Performance Comparison . 98

5.9 Position Deviation Experiment Results for Single Lanes 100

5.10 Position and Velocity Deviation Maps . 101

5.11 Post Macro-Zone Flow Comparison . 102

5.12 OSM export compared to the administrative region of a city 104

5.13 Applicable Number of Links and Average Length by Region 105

5.14 Performance Gain for Different Regions . 107

5.15 Fidelity Loss values for Different Regions . 107

5.16 Performance and Fidelity Clustering of Regions 108

5.17 Overall Performance Increase by Region . 109

5.18 Ad-hoc cloud resource execution and cost per experiment configuration 114

5.19 Sustained-use pricing for different degrees of parallelization 115

5.20 Pre-paid pricing for different degrees of parallelization 116

xii

List of Tables

3.1 Computational Resources of Dedicated and Virtual Nodes 43

4.1 Example Relation for Time-Variant Relational Algebra 64

4.2 Example Time-Variant Projection . 65

4.3 Example Time-Variant Selection . 65

4.4 Example Time-Variant Natural Join . 66

4.5 Example Time-Variant Cartesian Product . 66

4.6 Agent Count Storage Writing Speed Correlation 76

5.1 Overhead for Model Switching in a Multi-Resolution Simulation 98

5.2 Lane Counts for Different Regions . 103

5.3 Example search space exploration parameter . 113

5.4 Execution time of multi- and high-resolution simulation as well as cost per in-

stance for different categories of computing capabilities (taken in Feb 2017). . . . 113

5.5 GCE pricing scheme for sustained use . 115

xiii

xiv

Chapter 1

Introduction

Contents

1.1 Problem Statement . 7

1.1.1 Contribution . 7

1.1.2 Thesis Outline . 9

The complexity of simulations has grown exponentially over the last 50 years and so has

the computational capability of the hardware running such simulations. Today, chemical and

physical processes can be represented using computer simulations to a granularity which was

not feasible a decade ago. These include high-fidelity climate simulations that take a single

day to simulate the global climate for an entire year, producing 100TB of output data [1].

Biological simulations of pandemics [2] or folding of proteins as in the Folding@Home1 project

can be computed in a fraction of the time that was required years ago. The most complex of

human organs, the human brain2, is also heavily researched and will be simulatable soon. The

simulation of vehicular traffic in cities, regions and entire countries poses a similar problem.

The main objective of the work presented in this thesis is to explore the requirements and

give a possible solution that allows domain experts with limited technical knowledge to use high-

performance simulations in the cloud. This includes the creation of a simulation cloud-service

reference-architecture, exploring the challenges of simulation templating and data-extraction as

well as using multi-resolution modeling and simulation to speed up search-space exploration for

agent-based traffic simulations. The computational time required to conduct a simulation of

the aforementioned systems depends mostly on two parameters: (1) The size of the simulated

1http://folding.stanford.edu/home
2https://www.humanbrainproject.eu/en/brain-simulation/

1

http://folding.stanford.edu/home
https://www.humanbrainproject.eu/en/brain-simulation/

1. INTRODUCTION

system and (2) the resolution or granularity at which the domain is modeled and simulated.

Controlling these parameters gives users the ability to influence the time required to conduct

experiments.

In the age of Big Data the need for ever-faster and more reliable information is ubiquitous.

At the same time, however, lower-resolution simulations and models which would be compu-

tationally fast are in some use-cases too coarse-grained to draw conclusions. High granularity

also means that the smallest mistakes in modeling a system component or a misconfiguration of

a model parameter can have a significant effect on the result of the simulation, which can lead

to conclusions drawn from misinformation. Rerunning simulation experiments can be costly

in time as well as financially. Domain experts in a specific field have the knowledge of model

behavior for their particular sub-system of a greater, more complex system. The experts un-

derstand the complex dependencies and influence of parameters and behavior with neighboring

models. The combined knowledge of all domain experts can lead to a complete system model,

which subsequently can be simulated in high resolution and with great accuracy.

This presents a dilemma, that the modeled, and ultimately simulated, complex system,

might only show its relevant characteristics at high resolutions and the ever-increasing need

for fast simulation results, to base decisions on, leads to the conclusion that execution of high-

resolution simulations needs to be improved. A solution for this is the use of High-Performance

Computing (HPC), also commonly known as super computing, where many highly specialized

computing environments execute a simulation task together. However, the problem with HPC

centers is that the computers also known as nodes need to be closely interlinked and a large

number of nodes are required.

The issue of scale has been resolved by distributing workloads to ordinary computers in

projects like Folding@Home or Seti@Home1, where smaller work packages are sent out to users

who are willing to share the resources of their (personal) computing devices such as laptops,

workstations or game consoles, to work on small pieces of data and then send the result back

to a centralized computer, integrating the individual results. This approach might be effective

in utilizing the raw computing power of modern computing devices. However, the interlinking

between these devices is loose. The network connection, in such instances mostly the Internet,

cannot be used to exchange state change information between clients quickly, due to bandwidth

and latency limitations and inequalities.

1https://setiathome.berkeley.edu

2

https://setiathome.berkeley.edu

Nonetheless, this leads to a use-case where each computing device is working on a smaller

part of a bigger problem independently of other devices working on the same bigger problem.

This type of loose interconnection is useful for specific computing tasks. Unfortunately, complex

system simulations cannot work using such paradigms where a high degree of fast interlinking

is required. Small changes in one sub-system can affect another sub-system, which cannot be

predicted or modeled beforehand. This property is called the emerging behavior of a complex

system and can be observed in high resolution complex system simulations. In order to com-

municate small state changes from one sub-system to another, a fast interconnection between

nodes needs to present. As stated above, the Internet is one way of connecting computers to ex-

change information between distributed computing nodes. Even though the average bandwidth

of the Internet has increased (see Figure 1.1), and will further increase, the latency between

sending a piece of information and receiving it in a different geographic location is still large.

For the time being, the solution to raw computing power and fast interconnection is the use of

HPC centers. They provide a homogeneous computing environment of hardware and software,

allowing simulations to be optimized to deliver results in the most effective manner.

Q1 ’13 Q2 ’13 Q3 ’13 Q4 ’13 Q1 ’14 Q2 ’14 Q3 ’14 Q4 ’14 Q1 ’15 Q2 ’15 Q3 ’15 Q4 ’15 Q1 ’16 Q2 ’16 Q3 ’16
0

1

2

3

4

5

6

7

Quarter

A
v
e

ra
g

e
 C

o
n

n
e

c
ti
o

n
 S

p
e

e
d

 i
n

 M
b

p
s

Figure 1.1: Average global connection speed from 2013 to 20161

Setting up a HPC center is expensive. It not only relies on providing the computing hardware

and software, but also on other factors. These are, for example, the location of the facility and

1http://stateoftheinternet.com

3

http://stateoftheinternet.com

1. INTRODUCTION

its connection to data and power infrastructure. The connection to the Internet and therefore

the connection to the users and other data centers is as important as a reliable electrical

infrastructure connection. A dependable power supply is required for running the computing

hardware (e.g., computers, network switches and storage) but more importantly for cooling the

facility to optimal operating temperatures. The prevailing political conditions in a country are

also a deciding factor. Data security and privacy depend very much on the jurisdiction the

data centers are built in and the stability of the political system in the country. In short, it

is expensive and a complex endeavor to build and maintain a HPC center. Therefore, few can

afford to have a large computing center. Usually, research institutes, government facilities as

well as military establishments have the means and requirements to own a dedicated data center

for HPC. This has some drawbacks in advancing research and development of new simulation

tools to solve today’s and also tomorrow’s problems. The capability of simulating the evermore

complex world should be open to everyone. It also extends to the individual non-researcher,

who can make more informed decisions based on complex system simulations without knowing

that a simulation was executed in the first place. In this thesis this decision-making process

using simulation tools will be called simulation-supported decision making.

Cloud computing offers pay-per-use access to data-center resources that would otherwise not

be accessible to such user groups. The Cloud Providers (CPs) offer access to their computing

hardware and data center facilities on an abstracted level. They also take care of the prevailing

conditions as well as maintenance, which includes updating the software and hardware, of the

entire system.

While simulation tools on workstation or laptop computers can offer graphical user inter-

faces, the execution of the tools in data centers or on the cloud do not offer such an option or

only offer it with reduced functionality. While a single executable is run on a local machine

where the input data is present and parametrization is also done, the distribution to a remote

data center requires a defined workflow and knowledge of all different components involved to

ensure optimal simulation execution. This includes data transfer, setup of the environment,

observation and monitoring of the simulation progress, and retrieval of simulation results as

well as deallocation of used resources.

Such a set of skills cannot be expected of a domain expert. Therefore, the approach of

simulation execution needs to be rethought. Researchers should focus on their domain-specific

research and use the tools to answer significant scientific questions instead of encountering soft-

ware related problems. It should be as easy to configure and use high-performance simulation

4

software in the cloud as it has become easier to obtain simulation hardware in the cloud. It

has become an everyday tool like web-based email programs or social media. These tools need

to be as easy to use as the ones that are currently utilized but at the same time as power-

ful and computationally optimal as possible. This combination can be achieved by using HPC

paradigms, the most advanced hardware, software and interconnections together with rethought

interaction paradigms to create, control and manage simulation-based experimentation, using

cloud resources.

Unfortunately, this is not as easy as it might sound. The difficulties lie not in the obtaining

the respective hardware resources from the CP in an ad-hoc manner, but rather in the au-

tomation as well as configuration of the software using such resources. It is not feasible for a

domain expert with limited computer engineering knowledge to obtain, automatically allocate

and deallocate resources from the CP, transfer the required input data to the instances, start

and monitor the running of the experiment and ultimately retrieve the experimental results.

The CPs enable each of the steps with available tools and web-based front-ends. Even though

these web-based front-ends can be used easily and provide a low entrance barrier, the difficulty

lies with optimally using the resources to not waste a lot of time, which in cloud computing

can be directly translated into money. Web front-ends are useful for a one-time ad-hoc usage.

Once a more elaborate experimentation setup, including several nodes and different services,

is required, such work becomes cumbersome. The coordination of such experiments and the

structured allocation and deallocation of resources becomes especially important when using

the scalability of the cloud for executing several experiments concurrently (e.g., for search-

space exploration). The individual cost for using a few resources is relatively low, but using

these resources concurrently can become a significant constraint on the budget. A reduction in

experimentation time or speeding up the search-space exploration algorithm can have a huge

effect.

Ever since the onset of scientific computer networks, the exchange of knowledge has been

one of the main objectives. In the field of modeling and simulation, there have been tools and

support mechanisms [3, 4, 5] that help experts from different fields to work on interdisciplinary

projects like simulations of complex systems. These tools mainly focus on designing databases

and ontologies for knowledge collection and distribution. Repositories of models and their

parameter ranges are created by domain experts to facilitate scientific exchange within the

community. With the onset of cloud computing and larger scientific networks, these databases

are made accessible to a wider audience through web services [6]. This is a more convenient

5

1. INTRODUCTION

and intuitive way since web-services are widely used in professional as well as personal life by

many people. The low barrier-of-entry facilitates the exchange and improvement of existing

models or the creation completely new simulation models for a specific (sub-)system. For the

simulation of mechanical parts where standardized simulation techniques exist, cloud services

that offer off-loading of simulation tasks to Simulation Software as a Service web-sites have

been developed and are in use commercially. These simulation-based testing services for e.g.,

fluid-dynamic, structural mechanics and thermal evaluation are performed on digital prototypes

(e.g., CAD models). The research project CloudSME [7] is an European Union founded project

that aims at enabling small and medium enterprises in manufacturing and engineering to use

simulation tools. It is using the App-Model at providing different simulation services on the

cloud to domain experts from industry with limited technical knowledge.

Another difficulty of using cloud resources to conduct experiments is the technical as well

as domain knowledge of different user groups that have an interest on using cloud computing

services. These different kind of users who would greatly benefit from having access to high

performance cloud resources for simulation experiments are:

1. The Domain Expert that has the in-depth knowledge of a parameters and their value

range for given complex system component or model. This group of users can estimate

the consequences of changing models or model parametrization in a given system.

2. The Integration Expert, who has an overview of the entire system and general knowl-

edge of the models and their behavior. This domain expert uses models and parame-

terizations developed by the domain expert to assemble a high-detailed and extensive

simulation experiment.

3. The Administrative User, who is not an expert in a specific domain, but uses the

results of a simulation experiment to base the person’s decisions on. Those can be policy

makers or administrative advisors. They have very specific questions they want to have

answered by using simulation tools. The number of parameters that the simulation should

expose to them needs to be low, in order to not over-complicate the setup process.

4. The non-researcher has neither technical nor in-depth domain knowledge. The person

uses tools to make informed decisions that affect their life or field of work, but does not

know about simulation or the cloud.

6

1.1 Problem Statement

Each of these user groups can utilize the power of the cloud in different ways, but the technical

entrance barrier into cloud-based simulation should be lowered either way. For some of the user

groups. the cloud should be as transparent as possible to have them focus on the goal and not

the technicalities.

1.1 Problem Statement

These aforementioned difficulties in using cloud resources for conducting experiments, especially

simulation-based experiments, describe a problem that this thesis will try to solve. In the

context of this thesis, the focus is not on the hardware configuration or the availability of cloud

resources, but rather on the simulation software services that use the HPC cloud resources. The

problems that exist for agent-base simulations in the cloud and those need to be overcome in

order to fully utilize the computational capabilities that cloud-based resources offer to enable

everyone to use simulation tools are:

1. The interoperability between different user groups of varying degrees of domain knowledge

2. The technical difficulty of designing, starting, monitoring and evaluating agent-based

simulations in the cloud

3. The ways in which the cost and overall usage of cloud resources can be reduced and

experiments optimized

4. The democratization of the decision making process, by allowing everyone to use simulation-

based tools on the cloud

1.1.1 Contribution

The main contribution of this thesis is the analysis and design of a simulation cloud service

reference architecture which addresses simulation specific research questions. This is tailored

towards traffic simulations but can be applied to most other types of high-resolution agent-

based simulations as well. Along with the architecture, several problems arise when moving the

execution from the local workstation computer into the cloud. One problem is the accessibility of

the simulation software by the end-user. User interfaces and interactions have to be rethought

since the computer executing the simulation program is not the same as the computer user

operates to design, configure and start an experiment. The above-mentioned user groups have

the possibility of working together using the same underlying back-end, while the concepts

7

1. INTRODUCTION

of cloud and specific domain knowledge can be as abstract or as transparent as possible. As

a use-case, a Representational State Transfer (REST)full Application Programming Interface

(API) for the Scalable Electromobility Simulator (SEMSim) traffic simulation platform was

implemented in which the first three groups can work together to model traffic related scenarios

and execute such simulations in the cloud.

Also a simulation-experiment templating concept has been envisioned, which allows advisors,

policy makers and non-researchers (group 4) to base decisions on simulation-based experiments,

where only a small number of parameters important to the question at hand need to be changed,

while still utilizing on the computational power and high-resolution models running on cloud

resources. This enables novices, non-experts and related domain experts to have a low entrance

barrier when using HPC-based simulations.

Another challenge when executing simulations in remote locations, where physical access is

not given to the end-user, is data retrieval. Users need a way of retrieving the result datasets

of their simulations for post-processing and evaluation. These can be large datasets, which

are generated and stored during the simulation and later transfered to a post-processing envi-

ronment. Within the context of this thesis, a different approach for an online data extraction

system is given; in which the post-processing is done while the simulation experiment is still

running and thus reducing the amount of data being stored or transfered off-site. For this, a

transparent middleware concept was developed, which reduces the data transfer between the

simulation and the (post/online-)processing pipeline.

Another key contribution of this thesis is the concept of using multi-resolution modeling

of a traffic system to speed up the search-space exploration in the cloud. It utilizes the idea

that in many simulations, especially traffic simulation, there are multiple levels in which the

same scenario can be simulated. These levels are nanoscopic (sub-microscopic), microscopic,

mesoscopic and macroscopic which reach from very fine granularity to very coarse granularity

respectively. The presented approach uses nanoscopic and macroscopic models in the same

simulation and can switch between them on demand. This reduces the overall computational

time, but not significantly reducing the fidelity of the simulation results. This general approach

to multi-resolution simulation in traffic was then used to evaluate different city networks from

around the world on their optimization potential. This is inherently important for the devel-

opment of a cost model for large-scale search space exploration in the cloud, as described in

the same chapter, because the cost savings are directly related to the amount of time saved by

using multi-resolution simulation experiments.

8

1.1 Problem Statement

1.1.2 Thesis Outline

After introducing the related work in the fields of traffic simulation and cloud computing,

SEMSim traffic (City Mobility Simulator (CityMoS)) platform will be introduced, which is

used throughout the thesis as an example for a complex system simulation (CSS) of vehicular

traffic in large cities.

The SEMSim Cloud Service in Chapter 3 is a reference architecture implementation for

an agent-based simulation cloud service. It allows different domain experts to collaboratively

develop component models for traffic simulations and design simulation experiments. These

experiments are then executed using cloud resources and the results can be downloaded to the

user’s computer for further analysis. Within the context of the reference architecture, exper-

iments that compare the hardware performance of dedicated HPC nodes to virtual-machines

nodes in the cloud are conducted.

Compared to a generic Cloud Service that enables different domain experts related to traffic

simulation to explore their models on the cloud, a more end-user-centric approach to cloud

computing is to abstract the cloud and technicality away from the user, while still leveraging

on the computational power of cloud computing infrastructure. This allows use of APIs of the

SEMSim cloud service to create specialized templates for specific simulation experiments. These

experiment templates are pre-composed simulation configurations which allow only a limited

number of parameters to be changed. Using these templates, the end-user can explore new

possibilities and configurations of traffic systems, while being sure that models from outside

their domain expertise behave as verified by the respective domain experts. This allows domain

experts and policy makers to focus on their field of research.

Simulation templates can also help non-specialists to use simulation tools without specialized

knowledge to draw their own conclusions on current problems like traffic policy decisions. The

ubiquitous use of high-resolution simulations on the cloud in all walks of life with easy-to-

use interfaces and templates for answering specific questions allows the democratization of the

decision-making process at the lowest level.

Since the simulation experiments are executed in the cloud and the extraction of simulation

output data is the essence of the entire simulation, new techniques for, not only, post-simulation

data analysis but also online data extraction and analysis need to be studied. This is required

since the data generated by large-scale agent-based high-resolution simulations can be consid-

ered as Big Data. In order to process the data produced in high velocity and in high volume,

the storage capabilities of current technologies might not be up to the task in terms of read and

9

1. INTRODUCTION

write speeds and also total storage capacity. In Chapter 4, an envisioned online data-extraction

system, allowing the reduction of data stored and transmitted by designing a stream process-

ing framework, is presented. It enables the user to draw conclusions rapidly, even while the

simulation is running, reducing the costs involved (e.g., time and money) when executing the

simulation in dedicated data centers or on the cloud.

The seemingly limitless scalability of cloud resources also allows users to do concurrent

search-space exploration. Reducing the simulation resolution can be an effective way to decrease

execution time as well as cost of exploring a large search space. Chapter 5 introduces such a

multi-resolution modeling and simulation technique. These hybrid-resolution simulations can be

executed faster, while the high-resolution equivalent simulation is subsequently used to quantify

the results in greater detail once an interesting parameter combination has been identified by

the hybrid-resolution simulation. In addition to the fundamental research in multi-resolution

simulation and resolution switching in hybrid-resolution simulations, a cloud computing cost

model for sequential and concurrent execution has been developed. Also, an evaluation of

network characteristics towards usability for hybrid-simulation of several metropolitan areas

around the world was performed.

The thesis concludes with a discussion on use-cases and future work that can be explored.

10

Chapter 2

Background of Research

Contents

2.1 Cloud Computing . 12

2.1.1 Web-based and Cloud-based Simulations 12

2.1.2 Cloud and High-Performance Computing 13

2.1.3 Docker - Virtualization at Operating-System Level 15

2.2 Agent-based Traffic Simulations . 16

2.3 Traffic Simulations . 18

2.3.1 Macroscopic Traffic Simulations . 18

2.3.2 Mesoscopic Traffic Simulations . 19

2.3.3 Microscopic Traffic Simulations . 20

2.3.4 Sub-Microscopic Traffic Simulations 21

2.3.5 SEMSim Platform . 21

2.3.6 Yet Another Traffic Simulation? . 22

2.4 Multi-Resolution Modeling and Simulation 25

2.4.1 Multi-resolution in traffic simulation 25

In this chapter, the related work within the context of this thesis will be evaluated. This

includes a deeper insight into cloud computing developments, as well as agent-based simulation

of large complex systems. As all of the use-cases presented in this thesis are related to agent-

based traffic simulation, an introduction to this will be given as well.

11

2. BACKGROUND OF RESEARCH

2.1 Cloud Computing

2.1.1 Web-based and Cloud-based Simulations

Web-based simulations have been used in the scientific community for many years; the world

wide web was developed through the scientific community. Most of the early applications of

combining the web with simulations consisted of providing collaboration platforms or indepen-

dent front-end interfaces [3, 4]. These systems offered interfaces in the form of web-applications

or thin-clients for controlling simulations. Other simulation support systems distribute simula-

tion jobs over a network of computing centers [5] for load-balancing or load optimization. For

collaboration between different institutions, web-based repositories and interfaces for consoli-

dating modeling efforts have always been popular [4].

The question of Modeling & Simulation as a Service (MSaaS) was surveyed by Cayirci [6].

In the survey, MSaaS is defined as a “model for provisioning modeling and simulation services

on demand from a Cloud Service Provider (CSP)”. It is furthermore defined that a user of

such simulation systems should not be responsible for the maintenance, licensing of software or

scaling of infrastructure. The survey largely focuses on the security, privacy and trust issues

connected with using cloud computing as a vital back-end of simulation experiments. The

security concerns discussed by Cayirci are the ones defined by the Cloud Security Alliance1 for

general cloud computing instances [8]. These are evaluated and transformed into tangible risks

which are of concern for MSaaS. Cayirci concludes that it comes down to trust between the

experimenter and the different CPs as well as a possible lock-in to a specific CP.

Guo et al. [9] tried to develop a service specification of how a Simulation Software as a

Service (SSaaS) and service-oriented simulation experiments should be formally specified. They

give a formal description of how service-oriented experiments can be expressed as well as how

formal descriptions of a SSaaS can be given. This approach helps to produce a meta-model for

simulation experiments.

Cloud-based services have been very successful for Web 2.0 applications as a back-end for

mobile applications. There are some commercial applications available that offer SSaaS. The

EU-founded research project and now start-up CloudSME2 is concerned with the use of cloud-

based simulations for the manufacturing and engineering industry. This project has shown

its potential for being a viable option for cloud-based modeling and simulation [7]. SimScale3

1https://cloudsecurityalliance.org
2http://cloudsme.eu
3http://www.simscale.de/

12

https://cloudsecurityalliance.org
http://cloudsme.eu
http://www.simscale.de/

2.1 Cloud Computing

and AutoDesk1 both offer simulation services for Computer-Aided-Design (CAD) models. The

simulation services include simulation-based tests for fluid-dynamics, structural mechanics and

thermal evaluation on digital prototypes. The Altair Simulation Cloud Suite2 allows researchers

and engineers who have a CAD and Computer Aided Engineering (CAE) workflow for their

simulations to move them completely to a cloud-based solution. This allows users to import

their CAD models into the browser-based interface and allows an off-site simulation life cycle

management, leveraging on the Altair Hyperworks3 simulation tools for Computational fluid dy-

namics (CFD) simulation and exploration as well as visualisation. Another example is Rescale4

which offers a cloud simulation platform. Their approach is to give researchers an easy-to-use

web-interface for creating and starting experiments and simulations as well as allowing some

basic data analysis. Their catalog of simulation software includes, among others, tools for fi-

nite element analysis, fluid dynamics and molecular dynamics from different software providers.

In the scientific community, cloud-based computing infrastructure is used to give researchers

the opportunity to execute proof-of-concept studies without the risk of investing in expensive

hardware [10].

2.1.2 Cloud and High-Performance Computing

The terms cloud-service or cloud-based have been used in mass-media and mainstream fre-

quently in the last decade. There are subtle differences between the different kinds of cloud

computing solutions provided by commercial companies [11]. The difference between using

dedicated hardware resources and using virtualized resources is also important as we should

differentiate between using cloud-based virtualized hardware and dedicated hardware. Firstly,

the different kinds of cloud services are introduced before differentiating cloud-based hardware

and dedicated hardware.

Figure 2.1 shows the different stages of cloud services. Infrastructure as a Service (IaaS)

is the underlaying foundation for many other services. It provides virtual back-end resources.

These resources are usually shared between many users and applications. IaaS cloud services

such as Azure5 from Microsoft, Elastic Cloud from Amazon, Google Compute Engine (GCE)

from Google and others offer computing resources on-demand. The drawback of using cloud

1http://www.autodesk.com/products/sim-360
2http://www.altair.com/simulation-cloud/
3http://www.altairhyperworks.com/industry/Automotive
4http://www.rescale.com
5http://www.azure.microsoft.com/

13

http://www.autodesk.com/products/sim-360
http://www.altair.com/simulation-cloud/
http://www.altairhyperworks.com/industry/Automotive
http://www.rescale.com
http://www.azure.microsoft.com/

2. BACKGROUND OF RESEARCH

IaaS

PaaS

SaaS

virtual machines, servers, back-end storage,

network,...

execution runtimes, database,

http servers, tools, APIs,...

Email, office

software, chat,...

Clients
brower,

mobile-app

thin clients

Figure 2.1: Different kinds of traditional Cloud Services and their hierarchy

infrastructure resources for a longer period of time is the cost [12]. However, the benefit of us-

ing infrastructure resources, is the elimination of initial hardware setup expenses. This makes

infrastructure cloud services a great tool for short-term, highly scalable systems and for proto-

typing applications before migrating them to a dedicated HPC node [13]. On the other hand,

HPC nodes offer computing resources at high initial costs but very little operational costs apart

from electricity for operation and cooling, housing as well as maintenance. Nonetheless, vir-

tualized hardware has the problem if interference from other guest virtual machines (VMs) on

the same physical hardware. Since two or more customers with different application profiles

are sharing the same hardware, the mixed-use calculation of the CP, would not allow for full

performance of all components to all virtualized instances at the same time. In comparison

with rented and shared resources from an IaaS CP, the performance of a dedicated system is

deterministic. Applications are executed directly on the physical hardware (bare metal comput-

ing) without an abstraction layer for virtualization. The different computing nodes on an HPC

are usually co-located and connected via high-bandwidth interfaces such as InfiniBand or 10-

Gigabit Ethernet. This connectivity offers the advantage that high-bandwidth for distributed

applications which use message passing interface (MPI) protocol can also be run [14].

Platform as a Service (PaaS) can be implemented either on top of the IaaS or by using

dedicated hardware instead of a virtual machine. These kinds of services are typically APIs that

14

2.1 Cloud Computing

are used for varying use-cases. The Dropbox Datastore1, as one example, can be considered a

PaaS, because developers can use it to build applications that use a key-value-store to exchange

small amounts of data. Similar services exist from other CPs like Apple, Microsoft or Google.

Web-based email or online text-processing applications are prominent examples of Software as

a Service (SaaS). There are also file storage solutions like Dropbox2 or Google Drive3 which

are widely used. It is possible that different kinds of services are offered under the same name

but to different target groups at different abstraction levels. The end-user can access SaaS

via a web-browser, mobile applications or thin-clients with limited on-device processing power,

whereas application developers can store data directly using PaaS API calls.

The Anything As a Service (XaaS) is a special representation of the traditional Services

mentioned above with a very specific use case. Simulation Software as a Service is just one

specific Software as a Service, while Network as a Service is a specific IaaS or PaaS, which

depends on the amount of control and management over the actual infrastructure the user has.

2.1.3 Docker - Virtualization at Operating-System Level

In contrast to virtual machines, the use of containers to isolate different user-space instances of

an operating system reduces the overhead that is introduced when virtualizing entire machines.

These containers are a kernel feature of modern Linux kernels and allow processes and software

stacks to have a virtual environment with its dedicated namespace. This, of course, adds differ-

ent security concerns when deploying different containers on the same physical hardware and

host operating system [15]. Unlike virtual machines, a container running on the same kernel

as the host system has different security concerns to be taken into consideration. Docker [16]

is an automation tool that uses different container technologies (e.g., LXC, libvirt and libcon-

tainer) to create Docker containers that can be used to package and deploy pieces of software

independent of the underlying host operating system. It is widely used in the cloud computing

community for its ease of use in deployment of (micro-) services and its portability. All big CPs

offer pre-configured images for their virtual machines to run Docker containers on. Since the

processes running inside a Docker container have a very low overhead on native execution on the

host OS, but offer a more heterogeneous computing environment on a single piece of hardware,

the scientific community can have a great effect on such technology. These two differences in

system layers can be seen in Figure 2.2.

1https://www.dropbox.com/developers/datastore
2https://www.dropbox.com
3https://drive.google.com

15

https://www.dropbox.com/developers/datastore
https://www.dropbox.com
https://drive.google.com

2. BACKGROUND OF RESEARCH

Infrastructure

Host Operating System

Hypervisor

Guest OS

Bins/Libs

App 1

Guest OS

Bins/Libs

App 2

Guest OS

Bins/Libs

App 3

Guest OS

Bins/Libs

App n

(a) Virtual Machines to wrap applications

Infrastructure

Host Operating System

Container Engine

Bins/Libs

App 1

Bins/Libs

App n

Bins/Libs

App 2

Bins/Libs

App 3

(b) Container to wrap applications

Figure 2.2: Virtual Machines and Container Abstraction Layers

Docker in the scientific community

The use of containers for emulating different real network components offers a great advantage

over simulating and hardware test-bedding for reproducibility of results [17]. Handigol et al.

envisioned a research community where published results can be reproduced and checked, which

ultimately improves the reliability in the research conducted. Shekhar et al. [18] have introduced

a cloud-based Simulation as a Service middleware concept, that can be used as a general purpose

middleware for different kinds of simulation in order to bring them to the cloud. They have

also identified complex system simulations and large search-space explorations as a viable use-

case for cloud simulation. In addition to their work in comparing VMs to containers, their

middleware concept also includes a scheduling architecture that allows a time- or resource-

bounded experiment run. This has the advantage that, if the underlying simulation engine

allows it, to either scale the experiment up or down depending on the immediacy of the deadline

or the budget allocated for the experiments. The middleware uses the Docker container engine

to rapidly replicate simulation experiments for stochastic simulations on different hosts and

compared their results with VM-based executions. They also identified that the lightweight of

a container to a full featured hypervisor is very appealing to the HPC community.

2.2 Agent-based Traffic Simulations

In order to gain knowledge about the traffic of a region (city or country), experiment within

the traffic system have to be performed. This is not always easily possible since the sheer size

of a traffic network makes it realistically unfeasible. There are two important problems that

16

2.2 Agent-based Traffic Simulations

have to be addressed when trying to understand the traffic system of a region. One is the hard

data that the traffic is producing. How many vehicles? How fast are they driving? From where

to where are they going? The second is the complex interactions that all the individual entities

in a traffic system are engaging with. When does a vehicle accelerate? When does it decide

to overtake or to break? These are behavioral aspects of a traffic system that is influenced by

human decisions.

If the traffic system is to be understood as well as experimented with, models of each

individual component of the system need to be created. The models can later be combined to

draw a big picture and can be used to recreate existing conditions for validation and verification,

as well as to estimate how the system behaves when other models are introduced or changed.

This methodological approach from the real world to an abstraction is called modeling.

A model is a formal description of a (complex) system. The model can be a mathematical

equation, a flow diagram or a source code of a computer program, just to name a few. In

order to “... build a model of a system, we need first to acquire knowledge of the system what

we could translate in terms of assumptions.” [19]. The assumptions are usually simplifications

of the internal workings of the system. Depending on the assumptions we decide on for our

model, the performance of the models will differ. For computational models, performance can

be measured by the runtime or the memory usage, while in other disciplines, the correctness or

error is used to measure performance of a model. Describing a ray of light only as a particle

will give us a close enough estimation of where the ray of light will illuminate a surface, but

the wave characteristics of the light have been totally ignored. This will lead to an error in

the smaller scale of the system, but will be correct for a macroscopic experiment, where the

microscopic characteristics are not important. This leads to the conclusion that there is not

one unique model of a physical system but multiple, correct models for the given use-case and

degree of knowledge of the modeler. When the people first turned their interest to the planets

of our solar system, some thought the earth was in the center, while others thought the sun

was. Both groups formed a model of their surroundings and made assumptions based on their

knowledge and beliefs. The accepted model by today’s standard is the helio-centric model of

the solar system. However, this is only because there are more models supporting this theory

than the geo-centric model. Thought, as well as, real experiments were used to support the

idea of the helio-centric solar system. These thought-experiments were simulations that tried

to answer “What happens if” questions. Later, they were then verified by real experiments.

Due to the lack of 100 percent certainty in any model, every model “...will only be a partial

17

2. BACKGROUND OF RESEARCH

representation of reality” [19]. The performance of a model is always relative to the real system,

therefore these performance measures or utility functions help experimenters to evaluate the

quality of the model within the use-case.

In today’s research world, the use of computer simulations is inevitable and researchers

have proclaimed that modeling and simulation is the “third paradigm of science by observers

who think it adds something beyond the paradigms of experiment and theory” 1. The mostly

computerized simulations are becoming a “laboratory” for conducting searches of complex or

even dangerous systems from the desk in an office. The “What-if” questions can now be

answered in the span of seconds due to the advances in computational capabilities. These give

researchers and engineers an invaluable tool for advancement in science and society.

In traffic simulations, the number of models are as different in complexity and performance

as the vehicles or pedestrians on the streets of today’s cities. There are four main groups

of modeling vehicular traffic flow. Macroscopic, mesoscopic, microscopic and sub-microscopic

models for describing traffic in cities or countries are used today. These are explained in more

detail in Section 2.3.

2.3 Traffic Simulations

Traffic simulations can be classified into macroscopic, mesoscopic and microscopic simulations.

Some classifications even define nanoscopic or sub-microscopic simulations. This section will

give an overview of the different model characteristics and some existing implementations and

tools.

2.3.1 Macroscopic Traffic Simulations

Macroscopic modeling uses the analogy of hydrodynamics to describe the traffic flow in a given

road segment. This means the traffic is considered a particular type of fluid process. The

defining characteristics are the density k(x, t), the volume of traffic q(x, t) and the speed u(x, t)

as the average speed of vehicles on a given road segment. Each of the characteristic values are

defined for the time t and every point in space x. Gerlough and Huber [20] as well as Kühne

et al. [21] have proposed a continuity equation that links the characteristic values together:

δq

δx
+
δk

δt
= 0 (2.1)

1http://www.educause.edu/ero/article/scientific-research-how-many-paradigms

18

http://www.educause.edu/ero/article/scientific-research-how-many-paradigms

2.3 Traffic Simulations

q(x, t) = k(x, t)u(x, t) (2.2)

It assumes that between two points where vehicles are counted, no vehicle is entering or leaving

the road segment. There have been extensions to the basic macroscopic models within the late

1980s and throughout the 1990s. Many of these models have been collected and explained by

Barcelo [19].

Examples of traffic simulations that use macroscopic models are:

• Aimsun: Enables users to have simultaneous macroscopic and microscopic simulations

running at the same time. This allows users to define areas of the road network to see in

higher microscopic or lower macroscopic resolution, depending on the use case1.

• Many researchers implement macroscopic traffic models themselves, since the basic models

only consist of the above equations.

2.3.2 Mesoscopic Traffic Simulations

In mesoscopic traffic flow modeling, each vehicle is modeled in detail, but the behavior is

described in an aggregated manner [22]. These plateaus or groups of vehicles are considered to

be homogeneous in type and behavior, but within the simulation there can be different kinds

of vehicles with different behaviors. The limitations and advantages of mesoscopic models in

comparison to microscopic and macroscopic models are shown by Burghout [23].

Examples of traffic simulations that use mesoscopic model are:

• DYNAMIT: It is designed to offer a simulation-based approach to estimate the current

and future state of a transportation system. It uses historical and surveillance data to

predict future traffic conditions [24]. The simulation engine uses a mesoscopic model of

the vehicles’ speed-density-distribution, as well as a queuing model for the interaction of

vehicles.

• MEZZO: It integrates a mesoscopic model with a microscopic model to form a hybrid

simulation model. The use of a mesoscopic part of a link and a queuing model before

an intersection (microscopic part) simplifies the turning behavior of vehicles in large net-

works [23].

• MatSim: Apart from having a mesoscopic traffic flow model it includes a microscopic

demand model [25].

1http://www.aimsun.com/

19

http://www.aimsun.com/

2. BACKGROUND OF RESEARCH

2.3.3 Microscopic Traffic Simulations

In microscopic traffic-flow modeling, each individual vehicle’s motion is regarded and modeled

in respect to other vehicles on a given road segment. Over the years there have been many

different models that involve the flow and behavior of individual vehicles. One of the most-used

approaches toward modeling traffic flow microscopically is the application of agent-based mod-

eling and simulation techniques. This allows the simulation scenario to have each individual

vehicle in the traffic network assigned with different models that behave differently in situations.

One of the goals in creating a more realistic traffic scenario is a heterogeneous agent popula-

tion. It can be achieved by implementing numerous models for each agent or to parametrize

and stochastically distribute the input parameter in a certain range such that agents behave

similarly but not exactly the same. This process of model selection and parametrization not

only functions well for creating models for freeway traffic scenarios but also for inner city traffic

scenarios as explained in detail by Barcelo [19]. Two of the more commonly used models are

the Intelligent Driver Model (IDM) [26], which is explained in more detail in Chapter 5, and

the Gipp’s model [27], which pioneered in factoring in different behaviors like the desired speed

of individual vehicles. For agent-based simulations, microscopic simulations are mostly used,

because each vehicle’s behavior, perception and movement can be translated into an agent with

states and state-transfer algorithms.

Examples of traffic simulations that use microscopic models are:

• SUMO: The Simulation of Urban Mobility offers, in addition to detailed vehicle models,

pedestrians as well as public transport system within the same network. It is shipped

with a user interface to load existing road networks as well as generate standard artificial

networks (e.g., grid, circular, random)1.

• Aimsun: Since it enables users to use macroscopic as well as microscopic models at the

same time in a user defined region of the network, it can be considered a microscopic

simulation software.

• SimMobility: The simulation suit comprises of different modes from an activity-based

microscopic simulation that works within a day’s time frame to mid-term and long-term

simulation. The mid-term and long-term simulation tools are used hierarchically, gener-

ating input to the lower models2.

1http://sumo.dlr.de/
2https://its.mit.edu/research/simmobility

20

http://sumo.dlr.de/
https://its.mit.edu/research/simmobility

2.3 Traffic Simulations

• ViSSim: The market leader in microscopic traffic flow simulation includes high resolution

models for vehicles, public transport, cyclists and pedestrians. It is shipped in an end-

user-friendly interface to design, observe and evaluate different simulation experiments1.

2.3.4 Sub-Microscopic Traffic Simulations

In sub-microscopic traffic flow modeling the model granularity is even higher in comparison

to microscopic traffic models. This is sometimes also called nano-scopic models, since the

individual components of the vehicles are also modeled and simulated individually and not

entire the vehicle as one monolithic entity. In traffic simulation, one can differentiate between

component models of the individual components in and outside the vehicle, as well as the

behavioral model of the driver that influences such models.

Example traffic simulations that use nanoscopic models are:

• SEMSim Traffic/CityMoS: Traffic simulation that uses component models of vehicles

as well as individual driver behavior models to build up agents in a lane-level nanoscopic

simulation. A detailed description follows below, since SEMSim traffic (now CityMoS) is

used in almost all use cases throughout this thesis.

• PELOPS: It combines sub-microscopic models of vehicles with microscopic traffic flow

models to analyze longitudinal dynamics of vehicles together with traffic flow [28].

2.3.5 SEMSim Platform

The SEMSim platform is used in the context of electromobility research and aims at helping

to answer various questions regarding the impact of large-scale electro-mobility on a city’s

infrastructure. With large-scale electro-mobility, it is meant to replace all (or a majority of the)

vehicles in a city. Although there are test fleets of electric vehicles all over the world, there are

only a few cases of a city where electromobility is used on a large scale. This presents a problem

for policy makers and city planners because there are no reference cases available. For that

reason, one approach is to use a holistic electromobility simulation platform that allows us to

answer some of the important questions in this context. The scope of this research is currently

limited to the case of Singapore. The simulation methods developed as part of this project can

also be used with other cities.

1http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

21

http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

2. BACKGROUND OF RESEARCH

The extension of the SEMSim platform is City Mobility Simulator (CityMoS). It extends

the functionality of SEMSim traffic to include more aspects of urban mobility. The additions

include the simulation of public transport options like buses and other road-based transport

vehicles, as well as the coupling capabilities with communication network simulation engines

such as veins [29] for the evaluation of smart-city scenarios.

Unlike existing research, this approach aims at studying large-scale electro-mobility in a

holistic manner, i.e., not investigating individual sub-systems (e.g., power system, traffic system,

vehicle system) in isolation but in a holistic simulation that allows to investigate the complex

interactions and inter-dependencies between the various sub-systems and their components.

For this purpose, many different simulations can be combined or coupled together in order

to use the best technique for modeling a certain behavior. An example in the domain of

electromobility research is the coupling of an agent-based traffic simulation (SEMSim Traffic)

and a discrete-event power system simulator [30]. The main question in creating simulation

scenarios that not only exchange information unidirectionally but in two ways is the data-

exchange mechanism. One standardized way of coupling various simulation entities together

is using the High Level Architecture (HLA) [31]. This allows the investigate of the impact of

thousands of electric vehicles on the power grid depending on their charging behavior. Figure

2.3 illustrates the SEMSim platform with its major simulation components. In order to couple

the traffic simulation with a communication network simulation the TraCi protocol is used [32].

It is used with other traffic simulation platforms and CityMoS can therefore act as a drop-in-

replacement for existing simulation tools, while offering the simulation capabilities for other

aspects of urban mobility.

2.3.6 Yet Another Traffic Simulation?

Since the SEMSim Platform is designed to answer electromobility-related questions for mega-

cities using multiple tools like SEMSim Traffic and SEMSim Power, the computational needs

are significant. One major difference between SEMSim\CityMoS and the existing traffic sim-

ulations is the level of detail at which the internal state of vehicles is simulated. In CityMoS,

every agent represents a driver-vehicle unit which consists not only of driver-behavior models

but also vehicle component models (e.g., air conditioning, drive train, battery). CityMoS is a

simulation that has a lane-level resolution which indicates that it is a microscopic simulation.

However, due to the fact that the internal state of vehicles is also simulated, it is referred to as

22

2.3 Traffic Simulations

Runtime Infrastructure (RTI)

Parallel Agent-based Traffic Simulation Entity
Federate 1

Agent

Power System Simulation Entity
Federate 2

Other Simulation Enity
Federate n

?

CPU CPU CPU CPU

SEMSim Power:
Discrete-event

power system

Simulation

SEMSim Traffic:
Modular agent-based

parallel discrete-event

traffic simulation

In principle, any number of

simulation entities can be

coupled using HLA. The SEMSim

platform uses two: SEMSim

Traffic and SEMSim Power.

However, it is not limited to just

these two. Other entities (incl.

3rd party entities) can be

integrated as well.

The SEMSim platform uses a HLA

RTI to communicate between

different entities

Figure 2.3: Overview of simulation entities that are part of the SEMSim Platform

a nanoscopic simulation in order to differentiate it with regards to existing microscopic simula-

tions. Unlike existing simulations tools (e.g., MatSim [33], SUMO [34], DynaMIT [35]), where

some use a fixed time-stepped simulation engine, we use a discrete event simulation engine. In

a discrete event simulation (DES) engine, the state of the simulation is only advanced when an

event is executed (as compared to every time step in a time-stepped simulation). Events in a

DES can be scheduled at arbitrary times; this provides the needed flexibility as some models

need more frequent updating (e.g., moving of agents on the road network) while others are

updated only infrequently (e.g., internal vehicle models or behavior). Figure 2.4 illustrates the

various sub-systems and components that are part of the SEMSim platform and in particular,

SEMSim Traffic. Due to the high computational requirements of simulating a large number

(> 100k) of agents and their interaction in a nanoscopic simulation, the execution environment

for the SEMSim platform is a high-performance computing cluster that supports highly parallel

execution. Workstation computers, as are used by other simulation tools, are not capable of

delivering simulation results quickly enough for a megacity-sized experiment. The simulation

resolutions of MATSim (meso and macroscopic, see Section 2.3.2), SUMO (micro and meso-

scopic, see Section 2.3.3) and DynaMIT (mesoscopic, see Section 2.3.2) are not in the scale

of nanoscopic simulation that SEMSim Traffic is offering but are necessary for researching the

interactions between vehicles and other simulations of a complex system. The simulations are

also not designed to be run on a multi-process/-core execution environment that is crucial for a

23

2. BACKGROUND OF RESEARCH

Component

Level

Sub-System

Level

System

Level

Battery

Air Condition

...

Drivetrain

Reactive

Behaviour

Deliberative

Behaviour

Driver

Vehicle

Charging

Station

Power

System

Traffic

System

Figure 2.4: Overview of sub-systems and components that are modelled as part of the SEMSim

Platform

fast execution on a HPC. The target user-group for the SEMSim Platform are traffic researchers

and policy-maker advisors. These user groups have no, or only little, expertise in executing

such complex simulation experiments and usually have no access to high performance comput-

ing hardware. Therefore, the SEMSim Platform aims to include Cloud Computing capabilities

that make it easy to configure, setup and execute simulation experiments to study large urban

systems. SEMSim Platform is not a single simulation tool. Instead it is a set of individual

simulations, middlewares and UI tools. Among these tools, there are currently SEMSim Traffic

and SEMSim Power, which allow to study the interactions between the urban transportation

system and a corresponding power system. This is made possible through coupling these in-

dividual tools by using HLA. The SEMSim Platform thus provides various tools which can be

used depending on the requirements of the simulation study or application that needs to be

realised. This differentiates SEMSim Platform in the sense that it is not a monolithic simulation

tool in the back-end but looks and feels as one to the user.

Due to the nanoscopic modelling approach in SEMSim Traffic and the fact that we simulate

a realistic number of agents, the computational requirements for a megacity like Singapore are

24

2.4 Multi-Resolution Modeling and Simulation

high. In Singapore, there are more then 500,000 privately owned vehicles 1 which produce an

approximate peak-hour traffic of 100,000 vehicles. This means that the simulation needs to be

able to simulate the same magnitude of agents. Because of the computational requirements,

SEMSim Traffic has been specifically designed for HPC systems. In order to simulate a realistic

amount of agents, the simulation has to be performed either on a dedicated HPC or the cloud.

For this reason, most of the examples and use-cases in this thesis will focus on SEMSim Traffic

and the SEMSim Cloud Service. Chapter 3 will introduce this cloud service in more detail as a

proof-of-concept implementation of the reference architecture envisioned in the same chapter.

2.4 Multi-Resolution Modeling and Simulation

Within the following section, the work of other researchers in the field of multi-resolution

modeling and simulation is reviewed. The focus will be on applications concerning traffic

simulation models.

Multi-resolution modelling and simulation was, amongst others, introduced when differ-

ent kinds of military-related simulations should work together. The coupling was done using

the High Level Architecture (HLA). The different simulations were also on multiple resolu-

tions. Battlefield generals wanted to have a different view on the simulated battlefield than a

commander of a tank division. Aggregation and disaggregation of simulations was necessary

and are, until today, the biggest challenge in multi-resolution modeling and simulation. Other

fields, where multi-resolution modelling and simulation is used are, amongst others, bio-medical

systems [36] or train control system [37].

2.4.1 Multi-resolution in traffic simulation

There have been several approaches to multi-resolution modeling of traffic simulations. Two

main approaches towards the topic have been (1) the use aggregation and disaggregation at

runtime and (2) the use of multi-resolution entities.

The first approach, which aggregates a high resolution model at runtime to a lower res-

olution and then disaggregates from the low resolution to a high resolution, is trivial on the

aggregation side. There is, in most cases, an aggregation function (e.g., SUM, AVG) that can be

used to aggregate existing high-resolution agents’ states. The disaggregation algorithm on the

other hand, has to interpolate or create/reconstruct information from the low-resolution model

1http://www.lta.gov.sg/content/ltaweb/en/publications-and-research.html

25

http://www.lta.gov.sg/content/ltaweb/en/publications-and-research.html

2. BACKGROUND OF RESEARCH

in order to obtain the state information for the high-resolution model. It has been shown that a

frequent transition between high- and low-resolution models through aggregation and disaggre-

gation is not good practice [38]. One problem is the thrashing effect, where agents cross between

resolution boundaries often. This can create a large overhead in computation, especially when

running a distributed simulation due to synchronization between non-local nodes.

This method of aggregation and disaggregation was initially developed for military simula-

tions [39, 40], since it follows very well with the command security structure in the military.

Battalions, for example, are disaggregated divisions and allow a manageable view of certain bat-

tlefield scenarios for different key personnel in the chain of command, whereas a disaggregated

view of individual fighters is necessary for group leaders.

An approach to multi-resolution traffic modeling was discussed by Burghout [41, 22], where

a ghosting method was used to ease the transition between microscopic and macroscopic bound-

aries in the aggregation-based approach.

In order to avoid the aforementioned thrashing effect of frequent model-switching, Natrajan

et al. [42] proposed the concept of Multi-Resolution Entities (MRE). A MRE consolidates

the properties of several resolutions in one object. Those properties are then kept consistent

by design. This requires a larger memory footprint and individual operations require more

computing cycles for each of the resolutions, but there is no consistency problem.

Another approach to mitigate the thrashing effect, especially for traffic simulations, while

avoiding the use of MRE, has been presented by Chua and Low [43], proposing a set of predictive

algorithms. These algorithms are used to project an agent’s future position on a road segment.

The multi-fidelity modeling approach presented by Choi et al. [44] describes generally how

to convert an existing model into a multi-resolution model. This methodology can be used

to increase the simulation speed for a given simulation as well as to give measures for fidelity

derivation. While their approach generalizes a methodology, within the relevant chapters of

this thesis, the focus is on using multi-resolution modeling to investigate its potential in regard

to usage in high-performance traffic simulations, mainly SEMSim\CityMoS.

26

Chapter 3

Simulation Cloud Service

Contents

3.1 Related Work . 29

3.2 General Architecture for Cloud-Based Simulation Services . . . 30

3.2.1 Components . 31

3.2.2 Workflow . 34

3.2.3 Data Encryption Mechanism . 34

3.3 SEMSim Platform . 37

3.3.1 Front-end Applications . 37

3.3.2 Back-end Applications . 39

3.4 Performance Evaluation . 41

3.4.1 SEMSim Traffic . 41

3.4.2 Design of Experiment . 42

3.4.3 Experimental Results . 44

3.4.4 Discussion . 46

3.5 Templating for Simulation Experiments 48

3.5.1 Templating for agent-based Traffic Simulations 49

3.5.2 Templating workflow . 50

3.5.3 Transparent Cloud Realization . 51

3.5.4 CityMoS Cloud App . 52

3.6 Summary . 54

Large parts of this chapter have been published in the Simulation Modelling Practice and

Theory Jornmal in a Special Issue on Cloud Simulation [45].

27

3. SIMULATION CLOUD SERVICE

As stated in the introductory chapter, urban processes have been the subject of many

simulation studies in the past. This includes topics that cover diverse aspects of urban life, such

as climate science (e.g., urban heat island effect [46]) , energy studies (e.g., smart grids [47]

or vehicle-to-grid [48]), health (e.g., pandemics [2]), social science (e.g., crowd evacuation

[49]), and transportation (e.g., public transport [50] and traffic management [51]), to name

only a few. Agent-based models are commonly used for simulating urban processes such as

transportation and are often the only feasible way to study the urban systems of interest due to

emerging behaviors of complex systems. With an increasing worldwide interest in city science

and research, we can expect to see more of such simulation studies in the future.

Large-scale agent-based simulations, i.e., simulations that include several hundred thousand

agents, can be compute-intensive which is the reason why they are ideally performed on High-

Performance Computing (HPC) systems. Domain experts which are mainly but not limited to

transportation engineers, who are the typical users of simulation tools, may not have access to

in-house HPC resources and/or may not have the necessary skills to work with an HPC system.

With the onset of cloud computing, this situation is rapidly changing. HPC resources are now

readily available via cloud computing providers such as the GCE1, Amazon EC22 and others.

Given the availability of HPC resources, it is expected that more cloud-based simulation services

will emerge. It has been shown [52] that the move to using cloud-based simulation hardware

can offer opportunities for vertical and horizontal scaling of hardware resource usage at runtime

and is an interesting field of research that will serve as the foundation of the following chapters.

With large-scale simulations being migrated to the cloud, users will have to face new chal-

lenges including (but not limited to):

• Usability, where graphical user interfaces (GUIs) of many simulation software tools have

been designed for use on workstations by a single user. Although existing user interfaces

can be re-used even if the simulation is executed in the cloud, it would be better to

think about more suitable user interfaces that are specifically designed for cloud-based

simulation services. User interfaces should be able to communicate through a well-defined

API instead of with the simulation directly. This enables many different user Interfaces

which can include GUIs for different aspects of the same simulation (e.g., configuration,

visualization, data analysis).

1https://cloud.google.com/products/compute-engine
2https://aws.amazon.com/ec2

28

https://cloud.google.com/products/compute-engine
https://aws.amazon.com/ec2

3.1 Related Work

• Data Confidentiality, since virtually all urban systems simulations rely on a large amount

of data (e.g., road network data, population data, traffic data, cell phone activity data).

This data may be sensitive and data providers may not permit the use of cloud-services

due to concerns regarding confidentiality. This issue can be addressed using standard

data encryption techniques to ensure that RAW data is never stored on external servers.

Within this chapter, a cloud-based simulation service is introduced. It addresses the above-

mentioned issues and presents the Scalable Electromobility Simulator Cloud Service (SEMSim

CS), which is a proof-of-concept implementation of the proposed reference architecture. SEM-

Sim CS is used in the context of electromobility research for answering questions regarding the

impact of introducing large numbers of electric vehicles into an existing transportation system.

For such use case, a comparison in simulation runtime, between dedicated hardware as it is

found in HPC centers and VMs that are acquired when using cloud resources, is performed.

3.1 Related Work

In addition to the general related work section in Chapter 2, in this specific section, the existing

research surrounding the development of a simulation cloud service is discussed.

In this section, the current state-of-the-art of simulation front-end applications is presented.

Two traffic simulation engines will be focused on: Multi-Agent Transport Simulation (MATSim)

and Simulation of Urban Mobility (SUMO), because they are microscopic traffic simulations

similar to SEMSim Traffic\CityMoS. Additionally, for both simulation platforms the source

code is available, which would allow interested parties to extend the initial capability and

convert them into cloud-ready simulations. MATSim does not offer a standard graphical user

interface. The main configuration method is using configuration files that are loaded at the

start of the simulation program. For outputting, MATSim writes the simulation results into

files and these can then be visualized using external visualization tools. Having a command-

line interface allows MATSim to be run on various hardware configurations, including headless

server hardware as it can be found in HPC or cloud environments. The Simulation of Urban

mobility (SUMO) comes with a graphical user interface as well as a command-line interface.

SUMO can, similar to MATSim, can be configured using a series of input files. Since it can be

run in command-line-only mode and configured using configuration files, it can be executed on

a headless HPC node or cloud VM. When running in GUI mode, the simulation output can

be seen in the program window. It also offers a number of post-processing and plot-generation

29

3. SIMULATION CLOUD SERVICE

scripts. SUMO’s current GUI could be adapted to work with a cloud-based simulation when

changing the input method to the GUI, from direct input from the running simulation, to an

stream-based method from a middle-ware or the cloud-based execution itself.

In terms of data confidentiality for simulation data, neither of the comparable simulation

tools (e.g., MATSim or SUMO) offer any built-in data de-/encryption functionality for input or

output data. For this reason, the use of SEMSim traffic (now CityMoS) as a basis for a traffic

simulation cloud service is favorable, since it offers support for AES-encrypted input data as

well as secured output data, using AES-encryption for persistent-storage output and transport

encryption (e.g., TLS) for steaming output. In addition, it also offers, similar to the two other

simulation engines, a headless execution mode with file-based configuration. Together with the

SEMSim platform tools which provide a RESTful APIs to generate such input files with any

kind of (graphical) user interface, SEMSim traffic can be easily configured.

The CityMoS application architecture allows the simulation to be executed with or without

a 3D graphical interface. The underlying models and configurations are exactly the same. The

graphical components also use internal APIs to obtain data from simulation entities.

3.2 General Architecture for Cloud-Based Simulation Ser-

vices

The purpose of a cloud-based simulation service is to migrate the simulation software into the

cloud and provide users with appropriate graphical user interfaces and APIs. A cloud-based

simulation service as described here can be classified mostly as SaaS with only some components

of the architecture that can be classified as PaaS (compare with Figure 2.1 on Page 14). One

notable difference between using dedicated HPC machines and virtual machines in the cloud

is that users of a dedicated HPC machine know the exact hardware configuration as well as

the location of the data center that hosts the HPC machine. Generally, this is not the case

with infrastructure provided by cloud-based VMs. Although IaaS providers provide informa-

tion regarding geographic locations for load-balancing and fast connectivity, the information is

mostly on a (sub-)continental level. Therefore, users usually only have an vague idea of where

the VMs are located and idea of the type of physical resources they run on. In Figure 3.1, it

can be seen that the prices for different pre-configured machines are increasing linearly with

the capabilities (e.g., memory and CPU). It can also be seen that the hardware between differ-

ent regions are not homogeneous. While the Singapore region (asia-southeast1) will only use

30

3.2 General Architecture for Cloud-Based Simulation Services

Broadwell and Skylake physical hardware, the Taiwan region (asia-east1) has CPUs from Ivy

Bridge, Broadwell and Skylake family. Additionally, the maximum CPU (currently 96) is not

rolled out over all regions.

(a) Pricing for different standard predefined VMs

on the GCE for the Singapore region (Feb 2018).

(b) Hardware configurations and limitations in

different locations (selection) on the GCE (Feb

2018).

Figure 3.1: Pricing structure and region hardware availability on GCE

3.2.1 Components

The proposed architecture of a cloud-based simulation service consists of front-end applica-

tions (i.e., user interface applications) that can be used by the end-users to use the simulation

service and back-end applications which provide the necessary logic that realizes this service.

In general, all front-end applications interact with the back-end by means of corresponding

Application Programming Interface (API). The separation between front-end applications and

back-end applications is a notable difference between cloud-based simulation software and a

workstation-based simulation software where the user interface and simulation engine often

come as monolithic applications (e.g., Arena1). Due to this separation, it is possible to develop

entirely new concepts for user interfaces that are not limited to the traditional user interfaces

used by standalone workstation applications. Figure 3.2 illustrates an overview of the proposed

architecture.

The front-end consists of the following components:

1https://www.arenasimulation.com/

31

https://www.arenasimulation.com/

3. SIMULATION CLOUD SERVICE

Cloud Service

User

Dispatch

Server

Simulation

Instance 1

Simulation

Instance 2

Simulation Results
Optional Real-Time

Visualisation

Simulation

Instance n

Visualisation

Server
Database

A
P
I

A
P
I

Back-end

Figure 3.2: Overview of proposed architecture for a cloud-based simulation service

• Design-of-experiment applications are used by the user to specify the experiment that is

to be performed. This may include specification of a number of experiment parameters

as well as specifying which data sets and what models to use in order to perform the

simulations. The design of experiments is highly use-case specific. In general, this kind

of application needs to generate an Experiment Description File (EDF) which contains

all the necessary information and data (if applicable) required in order for the back-end

to perform the simulation experiment.

• Visualisation applications are used to perform real-time visualisations of a currently-

running simulation instance. This can be useful for troubleshooting and to gain a better

understanding of the current state of the simulation. Depending on the simulation, real-

time visualisation is likely to be a performance bottleneck not only because of (possibly)

large amounts of data that need to be transferred but also because the simulation instance

may have to be temporarily throttled. This is necessary in order to better understand

the progress in a faster-than-real-time simulation. One way of accomplishing such inter-

activity with high performance simulations running on cluster hardware is to decrease

the execution speed when connected with a visualisation client and increasing the speed

32

3.2 General Architecture for Cloud-Based Simulation Services

when running headlessly. One way of reducing the performance bottleneck is the usage of

a smart middleware and/or online data-extraction techniques as described in Chapter 4.

• Analysis applications are used to analyse the simulation results. Similar to the design

of experiment applications, analysis applications are highly use-case specific. Depending

on the purpose of the simulation and the aim of the experiments, the analysis process

differs from case to case. Here, too, the online data-extraction middleware described in

Chapter 4 can be applied.

The back-end consists of the following components:

• A Simulation instance executes a single simulation according to the specification provided

in the EDF. Depending on the underlying simulation software, a simulation instance may

or may not provide certain features. For example, some simulation tools may not pro-

vide real-time visualisation capabilities. Since an experiment may require an arbitrary

number of simulation runs, each simulation run is executed in a separate VM. When us-

ing containerized execution (e.g., Docker) of simulation experiments, multiple simulation

instances can be executed on a single physical or virtual hardware, should the resources

allow it. This is useful for small experiments that need to be run multiple times to increase

the confidence in the results generated.

• A Dispatch Server application is responsible for executing a simulation experiment ac-

cording to the specifications in the EDF. Generally, this is done in the following steps:

the dispatcher (1) provisions a number of VMs or containers in the cloud each of which

will host one instance of the simulation software (simulation instance), (2) initializes the

run environment (i.e., copies files, setup the run-time environment, etc.), (3) starts exe-

cution of the simulation instance in the run environment, and (4) notifies the user when

the experiment has been completed. It should be noted that an experiment may consist

of an arbitrary number of simulation runs, each being executed in its own simulation

instance. While this is true for non-distributed simulation, distributed simulation might

require multiple simulation instances to form a single simulation-experiment run.

• A Visualisation server application enables a specific simulation instance to connect to it

and the real-time data stream is then forwarded to the visualisation application in the

front-end. In addition, it relays control commands from the visualisation application to

the simulation instance. For example, this can be used to control the visualisation (e.g.,

33

3. SIMULATION CLOUD SERVICE

slowing the simulation down or speeding it up). It can also be used to manipulate objects

and parameters in the simulation and thus realize sophisticated interaction between the

user and the simulation. In order to reduce complexity and confusion between multi-

ple connected clients, one client connected to the visualisation server application has to

become the master-client, which can then interact with the simulation, while all other

connected clients have access to a read-only simulation output from the simulation in-

stance. This can be realised by using a middleware as explained in Chapter 4, a simulation

specific solution like HLA or a simple publish/subscribe solution.

3.2.2 Workflow

In general, the workflow can be distinguished between two use cases: (1) manual use-case and

(2) automated use-case.

The workflow of the manual use-case starts with the user designing an experiment and

submit an EDF to the dispatching server in the cloud. The Dispatch Server interprets the EDF

and performs the necessary tasks in order to start the various simulation instances. Once the

simulation instances are running, the user may connect to a simulation instance for real-time

visualisation and/or to interact with the simulation run. Depending on the simulation type,

the output of the simulation run is directly stored in a database. This database may reside on

the user’s site or be provisioned from a CP’s PaaS portfolio. Once the experiment is completed,

the user is notified. By using an analysis tool, the user can analyze the simulation results. The

analysed data can then be used as an input for an adjusted experimentation run. Figure 3.3

illustrates the workflow of the manual use-case.

In principle, the workflow of the automated use-case is the same as for the manual use-

case. The difference is that the user of the simulation service is not a human user but yet

another software tool which generates experiments algorithmically. For example, this can be

used to perform simulation-based optimization by employing an optimization algorithm (e.g.,

evolutionary or genetic algorithms) that works in an iterative manner. For each iteration, an

experiment is defined according to the specifications provided by the algorithm (utility or fitness

function).

3.2.3 Data Encryption Mechanism

For a cloud-based simulation service, it is important that the confidentiality agreements with

data providers for input data are respected by the user. On the other hand, the generated

34

3.2 General Architecture for Cloud-Based Simulation Services

1
Profile and
Experiment Designer

Dispatch Server

submit

Cloud
Computing
provider

provision infrastructure

Encryption key server
or user input

get decryption key

 package data and re
so

ur
ce

s

Cloud Computing
node

Simulation data
receiver (Database...)

Browser or native
visualization client

1

2

3

4

6 7

 sim
u
la

tin
g

deallocate resources
and inform user

adjust parameters
and rerun

5

Figure 3.3: Overview of general workflow for the manual use-case.

simulation data and results are of importance to the experimenter. Therefore a simulation

cloud service should use secure transfer mechanisms (e.g., TLS [53]) to communicate between

cloud computing nodes, the user and the dispatch server. All input data should be encrypted

and a secure channel, to either a key-server or a client device (e.g., mobile handset, browser) of

the researcher, is opened to allow reliable key exchange (e.g., elliptic curve Diffie-Hellman [54]).

The decrypted input data will only exist in the main memory of the underlying resources and

will never be available in its unencrypted form on the persistent storage. As in any connected

system, there are attack vectors that a potential malicious entity could use, but they are more

complex than reading plain text data from persistent storage. This is primarily done for input

data since the output data is streamed to a visualisation client or stored in a database. Database

connections by all major database providers are encrypted and HTTPS connections between

the visualisation server and the actual visualisation client are used. If local data is generated,

the same key is used for decrypting the input data is used to encrypt the resulting data before

it is written to a file on the cloud node’s persistent storage.

A workflow of decryption is depicted in Figure 3.4. When the simulation application starts

after the simulation bundle (collection of input data and EDF) has been opened, the first step

of the application is to read in the EDF and find out which data needs to be decrypted. The

35

3. SIMULATION CLOUD SERVICE

Simulation Key Server Client Device

Read EDF and Load
Input Files

alt
[use key server]

[else use user input]

sd Open TLS Connection

Request decryption key

Send decryption key

Decrypt input and
start simulation

sd Close TLS Connection

Request decryption key notify
user

User
receive
input

sd Open TLS Connection

Send decryption key

Decrypt input and
start simulation

sd Close TLS Connection

Figure 3.4: Simulation Data Decryption Workflow

key acquisition method is given in the EDF. It can have two options. The first one includes

a key server which serves out keys to decrypt the input data (Figure 3.4 left side). For this

method, no user interaction is needed and it can also serve as a method of limiting access to

foreign resources (e.g., number of accesses, group access policies). The second option is to notify

the experimenter of a simulation run and request for him/her to enter the decryption key into

a client device application or a website (Figure 3.4 right side). Both the connections to the

key server and from the user’s client device are required to use TLS for establishing a secure

connection. After the keys have been received successfully, the input files are decrypted, the

actual simulation is started and the secure TLS connection is closed.

36

3.3 SEMSim Platform

3.3 SEMSim Platform

3.3.1 Front-end Applications

SEMSim (now CityMoS) Cloud Service (CS) provides a series of front-end applications. The

general idea behind the user interface concept of SEMSim CS is to make use of modern input

devices (e.g., devices with touchscreen) that are not limited to typical workstation applications

and standard input methods. The goal of SEMSim CS is to make all technical aspects of the

HPC-based simulation in the cloud transparent to the user (typically a domain expert with

limited experience in working with HPC environments).

• Design-of-Experiment Applications: Design of experiments is concerned with two parts –

the Profile Designer (PD) and the Experiment Designer (ED). One part is the parametriza-

tion of the models used within a nano-scopic traffic simulation. For this, the PD appli-

cation is used. Figure 3.5 shows the PD where the Driver-Vehicle-Unit (DVU) models

are parametrized in a tree-like structure as an example user interface. More use-case

specific user interfaces can be thought of. The model parameter can either be a fixed

value or a distribution from which a value is drawn when the specific model instance is

created. These profiles are stored in a repository and will be used when creating the ac-

tual experiment. This is done by using the ED application shown in Figure 3.6. The ED

application is divided into two sections. In the upper section of the application window,

general experimentation parameters are configured (e.g., road network, number of agents,

simulation time span); whereas in the bottom part, the agent population is configured.

The output of the ED is an EDF which is a configuration that serves as input to the sim-

ulation experiment. This configuration uses the profiles created in the PD to specify the

different combinations of driver-vehicle-unit profiles with ratios on the total population

in order to create a heterogeneous agent population.

• Visualisation Applications: SEMSim (now CityMoS) CS provides a set of visualisation

applications. The individual applications can be classified as browser-based and touch-

based. Each type has different features. For example, the browser-based visualisation

allows the user to connect to a running simulation instance and provides features such as

coloring agents by a given criterion. This should give a broad overview of the simulation’s

state. For performance reasons, showing an entire map with several thousand agent rep-

resentations with all state information is not possible in the browser-based visualisation.

37

3. SIMULATION CLOUD SERVICE

Figure 3.5: SEMSim Cloud Service Model Composition Tree

Rendering several thousand agent representations at a time exceeds the capabilities of

most browsers. While browser capabilities are increasing steadily (e.g., WebGL or We-

bASM), the performance depends greatly on the underlying individual hardware of the

client. Therefore, the zoom level is restricted to several streets at a time. Instead, ad-

vanced features such as selecting agents and receiving real-time state information about

an individual agent or agent tracking are only provided by the touch-based visualisation

applications which have been developed for the iOS platform1. Since the visualisation

does rely on state information of agents and other simulation entities, a simulation could

also use the Online Data Extraction methodology introduced in Chapter 4. Figure 3.7a

and Figure 3.7b show screenshots of the browser-based and touch-based visualisation

applications.

• Analysis Applications: SEMSim (now CityMoS) CS currently does not come with a dedi-

cated analysis application. In Chapter 4, an online data extraction mechanism is explored

1In principal it is also possible to provide visualisation applications on any platform due to the use standard

APIs

38

3.3 SEMSim Platform

Figure 3.6: SEMSim Simulation CS Experiment Designer

which reduces the amount of data being transfered and ultimately written to persistent

storage. It envisions a middleware system that provides data to external processing ap-

plications in a similar way how a post-simulation data-base would.

3.3.2 Back-end Applications

The back-end applications used to conduct experiments with the SEMSim (now CityMoS)

CS are transparent to the user and run entirely on cloud resources. There are several API

endpoints with which the user interacts through the applications. This is mainly for submitting

an experiment to be run, to retrieve the data after the simulation is done and, if possible, to

access the real-time visualisation of a running simulation.

• SEMSim (now CityMoS) CS Dispatch Server (DS): After an experiment has been sub-

mitted to the DS, the DS partially reads the EDF and bundles all necessary data into

one self-contained simulation bundle. The input data in this bundle can either be stored

on the DS instance or can come from an arbitrary source (e.g., database, file server).

39

3. SIMULATION CLOUD SERVICE

(a) Screenshot of browser-based visualisation

app.

(b) Screenshot of touch-based visualisation app.

Figure 3.7: Visualisation applications

Since the data is encrypted, the dispatch server has no knowledge of the content of the

bundle. Only meta-information such as filename or file size is given. As described in the

general system description, the DS is also responsible for creating virtual machine (VM)

instances or containers as a run environment for the simulations and keeping track of a

simulation’s individual progress. If a simulation fails to report its progress, this instance

is deallocated, a run environment with the same simulation bundle is created and the user

is informed in order to take action.

• Visualisation Server (VS): This component of the back-end applications is created by

the DS when a real-time visualisation is requested by the experimenter in the EDF. It

also runs on a VM in order to reduce the performance penalty of running it on the same

machine as the DS. The VS acts as a middleware application between simulation instances

and visualisation clients. In order to reduce the overhead on the simulation side due to

visualisation output when multiple clients are connected, each VS instance only connects

to one simulation instance. It also pre-processes (e.g., aggregation) some visualisation

data before sending it to the connected clients. This is especially important for browser-

based visualisation clients since their computational capabilities are limited. With a

high number of agents, the performance would suffer. Depending on the performance

characteristics, a single VS can be used for multiple simulation instances concurrently.

The DS also keeps track of the utilization of the VS and provisions an additional one if

necessary.

40

3.4 Performance Evaluation

• Simulation instance: A simulation instance is executed in one run environment (VM

or container) from a CP. In case of a VM, it uses a pre-configured persistent storage

medium (e.g., snapshot) with the required libraries and simulation dependencies already

installed. If a container is used as the run environment, a pre-configured image is used.

The container has been created similarly to the VM by installing required libraries and

simulation dependencies. This image could be stored on a private or public repository

(e.g., Docker Hub) or loaded from a file. A startup script retrieves the self-contained

simulation bundle from the DS and starts the simulation process. It also reports the

progress of a given simulation back to the DS in order to verify whether the simulation

experiment is still running as planned.

3.4 Performance Evaluation

3.4.1 SEMSim Traffic

SEMSim Traffic (now CityMoS) has been introduced above as part of the SEMSim Platform.

We use SEMSim Traffic for the performance evaluation discussed in this section.

The main component of SEMSim Traffic is the High Performance Traffic Simulation (HPTS)

core. This consists of a shared memory multi-threaded simulation execution core as introduced

in [55]. This offers an efficient way to handle a large number of agents on a multi-core system.

Furthermore, it supports routing for individual agents. When updating an agent during the

simulation, there are two steps as explained by Aydt et al. [55]. The first step is to calculate a

route for a newly created agent or to update the route if the agent needs re-routing. In the second

step, the position of the agent is updated and the vehicle and behavior models are evaluated.

Amongst others, these models include component models of the battery, and an electric drive

train for an electric vehicle as well as behavior models like charging or route choice behavior. The

(re-)routing operation is far more computationally expensive than the movement and update

of the vehicle models. This assumption is very much dependent on the implementation of

the routing algorithm used. A simple unaltered Dijkstra algorithm usually performs poorly in

larger graphs. Many forms of optimization have been proposed to decrease time for a single

shortest path calculation [56, 57, 58]. Nevertheless, in a road network like the one of Singapore

with over 215,000 nodes and 245,000 edges, using a bi-directional Dijkstra algorithm with

landmarks [56] and reaches [57], one routing operation costs between 0.1 ms and 100 ms. A

very promising approach to speed up the routing is a Contraction Hierarchy routing algorithm

41

3. SIMULATION CLOUD SERVICE

proposed by Geisberger et al. [58]. This offers a 100 fold performance increase compared to other

implementation (e.g., boost library). With thousands of agents being updated simultaneously,

a large number of concurrent threads increases the overall system performance.

3.4.2 Design of Experiment

In order to evaluate the performance of cloud-base simulation, a simulation composed of the

HPTS core and a lean extension for basic vehicle characteristics (e.g., kinematic model) and

driving behavior (e.g., car following and lane changing) was chosen and executed. The simu-

lation experiments were executed on a virtual computing node composed of cloud computing

resources from the GCE as well as on a dedicated HPC node. For the performance analysis,

the road network of Singapore with about 80,000 trips during a period of 5 hours between 5

am and 10 am was used. This time frame covers the morning rush hour as it can be seen in

Figure 3.8. These times have been obtained by using the Household Interview Travel Survey

(HITS) data from 2008 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1000

2000

3000

4000

5000

6000

7000

Hour of the Day

N
u

m
b

e
 o

f
T

ri
p

s
 S

ta
rt

in
g

Figure 3.8: Histogram of Trip Start Times

The GCE offers different configurations of VMs ranging from sharing one virtual CPU

core to up to 96 virtual cores (compare Figure 3.1 on page 31). The availability of certain

1https://www.lta.gov.sg/apps/news/page.aspx?c=2&id=hgsaeh28887x80v8eyw74vjf02tnhy0xnv36xqcuc87g8r9qk4

42

https://www.lta.gov.sg/apps/news/page.aspx?c=2&id=hgsaeh28887x80v8eyw74vjf02tnhy0xnv36xqcuc87g8r9qk4

3.4 Performance Evaluation

virtual resources depends on the different geographic location of GCE data centers. For our

experiment, we chose a data center in the asia-east region for all VMs in order to reduce latency

when transferring the payload simulation bundle from the DS to the cloud node. The important

specifications relevant for this experiment are given in Table 3.1. For the dedicated HPC node,

there are 16 physical cores located on 2 separate processor dies on the same motherboard.

The processor information within the VM of the CP (e.g., /proc/cpuinfo) indicates that the

virtual machine’s underlying hardware is a computer with two 6-core processors. The processor

information has to be regarded with caution, since it can easily be changed or emulated when

running in a virtualized environment. This leads to the conclusion that the 16 virtual cores are

not mapped one-to-one to physical cores but rather represent hyper-threading threads. Similar

to other cloud infrastructure providers, Google, operator of the GCE, has defined a performance

unit to describe the computational capabilities of their virtual machines that is not intuitively

mappable to specific hardware resources (e.g., CPU, Memory) as one Google Compute Engine

Unit (GCEU). It describes the computational capability of 4
11 hardware hyper-threads (2.75

GCEUs = 1 hardware hyper-thread) 1. Since the simulation can run with different numbers of

HPC Node GCE VM node

(n1-standard-16)

CPU 2x 8 Intel Xenon E5-2670

@ 2.60 GHz

16 x Virtual Intel Xenon

E5-2630 @ 2.50 GHz

Memory 192 GB 60GB

Table 3.1: Computational resources specifications of a dedicated HPC node and a GCE virtual

node

threads, the experiment has been conducted using different configurations. Each experiment

has been executed on a virtual cloud node and dedicated HPC node with 16 processors in the

configuration of 1, 2, 4, 8 and 16 threads. The execution time for the same simulation run

has been recorded. In addition to measuring the actual execution time of the simulation, the

following times were also measured:

• Provisioning time: the time for provisioning a virtual node including hard drive and

network from the GCE. This serves as an indicator of whether the availability of a certain

configuration can be different.

1https://cloud.google.com/compute/docs/machine-types

43

3. SIMULATION CLOUD SERVICE

• Startup time: the time for transferring the payload in the form of the self-contained

bundle, as discussed in Section 3.3 on Page 37, to the virtual cloud node. This can be

used to evaluate the network performance at the geographic location of the data center.

• Deallocation time: the time for deallocation of the resources. This has to be considered

in order to have a complete time span for an experiment.

These time measurements are not necessary when executing on a dedicated HPC node since

there is no provisioning and deallocation of hardware. When the execution environment is a

shared high-performance cluster, there might be some waiting time to get required resources

assigned, but these considerations are not part of this experiment.

In order to create a new VM from the infrastructure resources offered by the GCE, we must

first create a virtual startup disk from a pre-configured base-image. Together with standard

network resources, this image is attached to a VM of the type n1-standard-16 1. This is initiated

by the DS through an API provided by GCE. The download of the payload data to the VM is

initiated by the startup script of the VM. This script has been included in the aforementioned

base-image that is used to create the VM and is run every time the VM is (re)booted. Once

the simulation terminates, the deallocation process is triggered by the DS through the API.

The deallocation process works opposite to the creation. Hence, the virtual machine and all

resources (e.g., network) are deleted first and the virtual disk afterwards.

3.4.3 Experimental Results

The experimental results have to be differentiated between the overhead introduced by provi-

sioning, start-up, decryption and deallocation on a GCE VM node and the actual execution

time of the simulation.

3.4.3.1 Cloud Computing Overhead

The decryption of 4 files of input data, ranging from only several kilobytes (intersection control)

to hundreds of megabytes (road network file), with a total file size of 489.02 megabytes took only

1.26 seconds with a standard deviation of 0.049 seconds. The number of threads used had no

influence on the decryption performance, since the implementation used is only single-threaded.

A parallel execution of independent input files can speed up the overall decryption process, but

1https://developers.google.com/compute/docs/machine-types

44

3.4 Performance Evaluation

since there are interdependencies between the input files (especially the road network), this was

not possible in this case.

For the tested GCE of the machine-type n1-standard-16, the average total overhead from

90 samples is 149.52 seconds. The individual times can be seen in Figure 3.9b. Since the

provisioning, startup and deallocation operations are highly dependent on the GCE service

availability, the execution time of the individual operation can vary due to external factors

(e.g., network congestion or high demand) as well. The API calls using the GCE SDK are

asynchronous, but have to be finished before advancing to the next operation and cannot be

done in parallel.

It can be observed that the decryption of the input data is insignificant compared to the rest

of the overhead. On a dedicated HPC node, the times for provisioning, start-up and deallocation

can be disregarded since the system already exists. The decryption of the input files nonetheless,

adds 2.29 seconds with a standard deviation of 0.56 seconds to the total execution time (see

Figure 3.9a).

(a) Simulation overhead when running a simula-

tion instance on HPC node

(b) Simulation overhead when running a simula-

tion instance on GCE node

Figure 3.9: Simulation overhead on different execution environments

3.4.3.2 Simulation Runtime Comparison

The execution time on a dedicated HPC node for different numbers of threads is given in

Figure 3.10a. This shows that on a dedicated HPC node with 16 physical processing cores,

the execution time decreases when the number of threads increases. This trend reaches its

minimum execution time with a configuration of 8 threads and has a slight increase when using

16 threads (+2.6%).

The results for executing the same experiment on a comparable virtual node are shown in

Figure 3.10b. There, the same general characteristic of a decreasing execution time can be

45

3. SIMULATION CLOUD SERVICE

(a) Simulation execution time in seconds depend-

ing on the number of threads on 16 physical cores

(b) simulation execution time in seconds depend-

ing on the number of threads on 16 virtual cores

Figure 3.10: Simulation execution time on different execution environments

observed. Rather than having a slight increase in execution time, the increase between using 8

and 16 threads is significant (+25.6%).

3.4.4 Discussion

Since the overhead imposed by provisioning, start-up and deallocation is independent from

the actual execution time, its influence on the total experimentation time gets smaller when

the simulation workload increases. The increase in workload can be due to various means.

The increase of concurrently active agents as well as increasing the complexity (computational

requirements) of the internal agent models influence the workload. An average of 149.52 seconds

makes up between 1.57 (for 1 thread) and 4.12 percent (for 16 threads) of the given execution

time depending on the number of threads used. In comparison, the decrease in execution time

by using a virtual node is between 1.11 (for 8 threads) and 2.10 (for 1 thread) percent. This

makes the use of virtual nodes very much comparable to the dedicated HPC nodes. Even for

such short-running simulation examples, the imposed overhead can be neglected. The only

exception to the comparable performance is the use of 16 threads on the virtual node. There,

the performance decreases by 21.1 percent compared to a dedicated node.

The apparent increase in execution time in both configurations when 16 threads are used

can be explained by evaluating the underlying hardware architecture. The dedicated HPC

node has two eight core CPUs whereas the VM from the GCE has two six core CPUs. Since

hyper-threading was used on the dedicated HPC node as well, the simulation execution on the

GCE virtual machine should result in a comparable outcome. The 16 threads used with two

eight core CPUs (32 hyper-threads) leaves more headroom for scheduling of threads to a certain

processor than on a machine with two 6-core CPUs (24 hyper-threads). The overhead due to

46

3.4 Performance Evaluation

cache misses in the hardware architecture and the programming model can lead to the biggest

performance decrease. Simulating thousands of agents in a nanoscopic manner leads to cache

misses, since the processor which will need the same agent data during the next calculation

cannot be predicted. As Figure 3.11 shows, there are two CPUs on the same motherboard

connected via the main system bus on which other peripherals such as the main memory is also

connected. An access to a memory address from a CPU core on the same physical CPU results

in using the cached value in the CPU L1 to L3 cache, due to the locality principles. Accessing

a memory address that has not previously been requested on the same physical core as the

requesting core, the chance that the required data will no be present in the cache and therefore

has to be retrieved from main memory, using the system bus, is higher. This operation costs

many computing cycles as Hennessy et. al. [59] describes it, which slows down the simulation.

BUS

core
1

core
2

core
N

CACHE

MMU

MAIN MEMORY

core
1

core
2

core
N

CPU1 CPU2

CACHE

MMU

Figure 3.11: Shared memory on multi-core and multi-processor systems1.

Adding the encryption layer to the input files does not add any overhead to the execution

time. The prolonging of the simulation by 1.26 seconds or 2.29 seconds for a virtual and a

dedicated HPC node respectively is not significant considering the overall run-times of several

hours for a given simulation. The visible discrepancy between the dedicated HPC node and the

virtual node of about 1 second can only be inferred by differences in speeds in the persistent

storage medium. It is not necessary to encrypt the data on a simulation system that is under

the control of the simulator. Nevertheless, if data providers want to control the use of their

data, a key server can revoke access to the input data if a usage limit has been negotiated

between the simulator and the date provider. This is similar to the digital rights management

(DRM) used to protect music, books or movies.

1Figure adapted from Understanding Parallel Hardware: Multiprocessors, Hyperthreading, Dual-Core, Mul-

ticore and FPGAs at http://www.ni.com/tutorial/6097/en/

47

http://www.ni.com/tutorial/6097/en/

3. SIMULATION CLOUD SERVICE

3.5 Templating for Simulation Experiments

Templates can be seen as pre-configured instances of an object that needs to be completed

by adding or changing parts of the object to obtain a specific result. Websites, for example,

are usually built using templates, which consist of static segments of HTML code as well as

exchangeable sections. Such sections are filled when the user requests a certain website with

his/her user-account. An example could be a web-mail client in a browser or in a web-wrapper in

a multi-platform application (e.g., Electron1). The construct of how the elements are arranged

on the screen are equal between different users, but the actual emails that are displayed are

dynamic content. Therefore, the skeleton of the email page is the template to a certain user-

specific functionality.

For simulation experiments that are closely related, the amount of input parameter changes

between two experiments is rather small. Therefore, simulation configuration templates could

be used to reduce the configuration complexity of simulation experiments significantly. This

also applies for the easy reproducibility of experiments. Additionally, in a complex-system

simulation, like traffic, many different models from different domains play together and their

possible interconnection and interdependency cannot be evaluated by a single user in a spe-

cific (sub-)domain. Therefore, providing simulation experiment templates in which the static

parameter values are validated, by the domain expert, is a big plus in making complex system

simulation much more reliable and helps to keep researchers focused on their domain research.

In addition to researchers, non-experts can also benefit from templating. Complex scenarios can

be simulated using the latest models and technology and the effect of an abstracted change (e.g.,

change in road infrastructure) of a single or a couple of tangible parameters can be observed,

interpreted and explained to the non-expert.

Templates and applications that allow for easy use of simulation templates in for simulation

experiments, as presented in this section, can be seen as a targeted Experiment Designer (ED)

as described in Chapter 3.3. It allows researcher and non-exeperts to quickly prototype models

or run manual parameter sweeps without going through all parameters of an Experiment De-

scription File (EDF). The partial EDF (template), where only a limited number of parameter

have not been filled in, is used as an input and a completed EDF, with all parameter and

runtime values filled out, is the output.

1https://electronjs.org

48

https://electronjs.org

3.5 Templating for Simulation Experiments

3.5.1 Templating for agent-based Traffic Simulations

For agent-based traffic simulations like SEMSim Traffic (now CityMoS), a configuration of the

different model parametrization is vital. This also means a template for a simulation can easily

be created by using an existing configuration from a validated simulation and converting it into

a template.

An example would be to have the user change the population sizes for the different het-

erogeneous agent populations. While this small change can have a large effect on the overall

system performance and can lead to different conclusions to be drawn in the real world, all

other models in the templated simulation experiment are already verified and validated to work

properly by the respective domain expert. This experiment template is very useful to adminis-

trative advisors or city planners that need to base their future infrastructure decisions on these

holistic simulations of large urban systems like traffic and its interplay with other systems (e.g.,

energy, smart city).

The example of agent-based traffic simulation templates will be further explored in order to

demonstrate the complexity and therefore necessity of templating. For a holistic agent-based

traffic simulation experiment, different model categories are required to adequately represent

the real world. For each of these model categories and sub-categories, different domain experts

are to be consulted in order to end up with the most accurate model. The vehicle component

of such simulation requires mechanical and vehicle engineers which can be further divided into

specialized engineers for electric and internal combustion engine vehicles, should the simula-

tion experiment require electric or conventionally powered vehicles respectively. This can be

extended to any level of detail, depending on the depth that the simulation needs to go into.

Additionally, behavioral models for both drivers as well as other traffic system participants

need to be present.

Experts in the field of developing such models have to verify and calibrate models that range

from travel patterns (e.g., activity base) to create traffic up to the individual decision model

for changing a lane or deciding to refill/charge the vehicle. This is also dependent on the type

of vehicles in the simulation and the experiment’s focus. Since a traffic simulation experiment

would not be possible without infrastructure data like traffic signals, bus stops, car parks and

especially the road network, to name a few, experts in data preparation, fusion and processing

are required to make the simulation experiment as close to the real world as possible. The

above-mentioned domain experts cannot be combined into one single person while expecting

the results to be meaningful. Integration experts can be called into action to create experiment

49

3. SIMULATION CLOUD SERVICE

scenarios for the end-user, since they have high-level knowledge of all the different components

involved. Therefore, the simulation cloud service model and profile repository as mentioned in

Chapter 3.3 can be used to generate templates for end-users. While the Profile Designer and

the Experiment Designer help to create entire simulation scenarios, in a templating context

these designed profiles and experiments can be simplified into templated scenarios for different

user groups. These users can be manifold, consisting of policy makers as well as related-field

domain experts up to the non-expert wanting to explore their local traffic-system. This would

improve the knowledge of the non-experts and democratize the decision-making process by

allowing everyone to have access to easy to use and understand simulation tools and scenarios.

3.5.2 Templating workflow

In order to develop a template for a given scenario that helps non-domain experts to explore

a complex system like traffic, several steps have to be taken. These steps are visualized in

Figure 3.12 and will be explained as follows.

The three involved user groups are (1) the respective domain experts that create, calibrate

and validate the models within their domain’s expertise. Furthermore, they are providing a

set of parameters and input value ranges for which the models are validated. This allows the

(2) integration expert to use such models and combine them into scenarios. This includes

taking models from different domains and combining them into a single simulation experiment,

where most of the model input parameter values are pre-determined by the scenario creator.

The interplay between different models have to be checked for basic interoperability. Since the

integration expert is in most cases not a simulation-execution expert, using a cloud service to

obtain the required computing power is the most favorable option. The checked model, together

with the changeable parameters is then pushed to the template repository. From there (3), the

end-user can use the template to explore various scenarios given the limited input parameter-

value range. These end-users can be related-field domain-experts, policy makers or non-experts

as mentioned above. Since the end-user can be assumed to be the least technical person with

regards to executing simulation experiments efficiently in the cloud or on an HPC, tools such as

a cloud service or a specialized templating application can be used to abstract the technicalities

from the user. The results from such experiments in the cloud are sent back to the end-user

and evaluated. These evaluation steps can be part of the templating application to present a

non-expert or non-technical person with simple and easy-to-understand answers.

50

3.5 Templating for Simulation Experiments

Figure 3.12: Workflow starting from domain experts to receiving the templated experiment

results.

3.5.3 Transparent Cloud Realization

The use of templating for simulation experiments increases the usability for non-experts and

novice users. It allows the user to focus on the important aspects of the researcher’s field

or the interest of the user. The calibration and validation of the models and components is

done by the domain experts. Nonetheless, the computing infrastructure needs to be present

in order to execute such a complex-system simulation, which requires a significant amount of

computing resources. One solution as presented in this thesis is the use of cloud resources to

do so. The setup and maintenance of such computing resources has become relatively easy, but

still nothing a domain expert that is not in computer science should be tasked with. Therefore,

cloud services as presented in this thesis abstracts the complexity away from the user. One

other option when not relying on cloud-service APIs is the use of lightweight containers to

create VMs runtime environments on the local computer and push them to a cloud service

when a large-scale experiment, that requires more computing power, is to be run.

Lightweight containers and their most prominent implementation, Docker, are an emerging

technology that has changed the landscape of deploying software stacks, not only to the cloud

but also local testing environments. The Docker software family and services have grown

significantly over the last years and have a very rapid development cycle with new features

51

3. SIMULATION CLOUD SERVICE

added on a monthly basis. One of the software options to allocate Docker-capable computing

nodes is Docker Machine.

This is possible via a standardized (command-line) interface that is able to create VMs,

provision them and use them for simulation experiments. The Docker Machine comes pre-

configured with multiple common cloud-providers drivers like Amazon, GCE or Microsoft Azure.

A driver describes to the Docker Machine application how to interface with the specific CP’s

backend to create VMs. Should a driver no bin in the list, users can also add them manually.

Using this technology, the execution of a simulation experiment follows the same workflow,

where it does not matter if executed on a local machine, running bare-metal Linux, a virtualized

Linux, using type 1 or type 2 hypervisors, or a cloud VM, it will look and feel the same to

the user. In conjunction with Docker and Docker Machine, the distribution and execution on

heterogeneous hardware configuration has been much simplified due to automatic configuration

on different computing environments. When you include the post-processing into the templating

workflow, an entire decision support system can be built up using templated complex-system

simulation. In the following section, an exemplary application for using a templated workflow

is presented. This also includes information about the back-end system and repositories.

3.5.4 CityMoS Cloud App

The CityMoS Cloud App (CCA) is an application that allows a novice user of simulation to get

started quickly. It is used to conduct traffic simulation experiments using the SEMSim traffic

(now CityMoS) simulation engine. In Figure 3.13, the work-flow of executing a simulation

using CCA is shown, as well as the involved components. The main control component is the

CCA Application window. From there, the user can browse the different templates available

in the repository and gain an overview of the running experiments. The template repository

is a (mongoDB) database that stores the templates, the binaries that can be used with a

given template as well as meta-information such as descriptions of the experiments that are

possible with the given template. This can either be hosted locally on the user’s computer or

centralized, allowing multiple users to have access to the templates. Another repository is the

private or public docker repository for Docker container images. These are images, that contain

a configured runtime environment for the simulation engine and a second container contains

the standard input for experiments that can be done with the given templates. The runtime

environment has all the dependencies and libraries installed that the SEMSim traffic (now

CityMoS) executable can run. Since Docker container can have different versions, this allows

52

3.5 Templating for Simulation Experiments

for updating the environment independently from the executable. This applies to changes to the

input data (container) as well. The most important component is the hardware the simulation

experiment is actually executed on. Since provisioning, starting, controlling and deallocation of

these resources is done through the Docker Machine, the virtual resources are called machines.

The user does not need to know what kind of hardware, physical or virtual, is used to run the

experiments.

Loop

CCA Template Repo Data Container

Executable
Container

Output
Container

Request all Templates

Return all Templates

Request specific Template Files

Return binary and

Template files

Create Data Container

from Image
Container created

Create Executable Container

from Image

Connect to the input data

Connected to input data

Container Created

upload binary and

 parametrised template

Upload complete

start experiment

send status message

Experiment is done

Create Output Container

from Image

Connect to output data

Connected to output data

Container Created and started

Delete Container

Delete Container

Delete Container

1

7

6

5

4

3

2

Figure 3.13: Workflow diagram for the CCA overall architecture

The different steps of a templated simulation work-flow are:

1 Download of the template information into the CCA. This mainly includes the meta-

information about the experiments possible with this template as well as the parameters

that can be changed. The actual template as well as the binary are kept in the repository

until needed.

2 The experimenter enters the parameter values into the mask and selects the machine

the experiment will run on. The machine can be the current workstation, a Docker-enabled

compute-machine in the network or a cloud-allocated resource.

53

3. SIMULATION CLOUD SERVICE

3 This selection, together with the parameter values, is then combined with the tem-

plate from the database to form a proper configuration file for the simulation experiment.

4 A bundle containing the binary (also downloaded from the database) and the con-

figuration file is created and pushed into the selected Docker container on the selected

machine.

5 The simulation starts to produces output that is stored in the container itself. The

console output can be taken and used by the CCA to estimate the progress of the simu-

lation experiment.

6 Once the simulation ends, the container stops as well, but is not yet discarded. Fur-

thermore, another container is started that provides a HTTP-based front-end to download

the output data contained in the execution container.

7 The experimenter decides when to discard the containers as well as when to deallocate

the Docker Machine.

In the execution of a template-based simulation experiment using the CCA, there are three

containers involved. The schema and their interconnection is depicted in Figure 3.14.

Execution Env.

- CityMoS

Volumes

Applications

Access Type

/data_pool R
/output RW

Data Pool

Volumes

Applications

Access Type

/data_pool RW

Output Server

- Python

Volumes

Applications

8080:XX

Access Type

/output R
/data_pool R

Figure 3.14: Docker container configuration with exposed ports and linked volumes.

3.6 Summary

In this chapter, an architecture for a cloud-based simulation platform for urban systems that

enables the user to execute large-scale simulation experiments without the need for dedicated

hardware was introduced. It has been shown that the use of IaaS from CP is feasible and

relatively easy to do. In addition, the performance of a virtual computing node from the GCE

is comparable to that of a dedicated node of a HPC cluster.

54

3.6 Summary

In contrast with other approaches, the proposed service acquires computing resources on-

demand and therefore has no upfront costs. The presented approach also explicitly takes into

account data encryption to ensure confidentiality of data used to perform simulations. Through

the use of a self-contained package, a heterogeneous execution environment composed of dif-

ferent hardware and software components can be used and is transparent to the user. Using

Docker images or pre-configured VMs as run environments makes the deployment even easier

and reduces the overall administrative overhead. Since the actual simulation is not run on

workstation computers but rather in a local HPC or virtual compute center, the interaction

methodology has been substituted, leading away from mouse-and-keyboard-based input devices

on workstation computer and towards application-specific (e.g., touch-based) input devices as

well as a standard web-browser through some kind of API. Such simulations are not limited to

the presented urban system simulation, but can be manifold.

Based on the presented methods, developing a framework to enable researchers to run their

simulations in the cloud is a next logical step. PaaS Application Programming Interfaces that

are tailored towards running simulations have to be implemented. This enables developers to

utilize the APIs to develop more forward-thinking user-interaction methods and application

support systems.

55

3. SIMULATION CLOUD SERVICE

56

Chapter 4

Online Data Extraction for

Large-Scale Agent-Based Traffic

Simulations

Contents

4.1 Related Work . 59

4.1.1 Relational Data Description . 59

4.1.2 Big-Data and Stream Processing . 60

4.1.3 Data Extraction Techniques for Simulations 61

4.2 Formal Simulation Data Representation 62

4.2.1 General Simulation Data Representation 62

4.3 Online Data-Processing System . 66

4.3.1 SEMSim Cloud Service . 67

4.3.2 System Design . 68

4.3.3 Implementation . 69

4.4 Case Study . 73

4.4.1 Data Amount Model . 73

4.4.2 Traffic Simulation Cloud Service . 76

4.5 Summary . 80

Large parts of this chapter have been published in the proceedings of the ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation 2016 [60].

57

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

The computational resources required for modern urban-system simulations [61, 62] are in-

creasing; this has also resulted in more high-resolution output data being generated. Moreover,

the availability of much cheaper storage options1 has resulted in data being generated at un-

precedented velocities, volumes and varieties [63, 64]. Depending on the run time of a single

simulation, the design decision is often taken to record as much as possible in order to reduce

the number of simulation runs.

However, despite the price reduction in persistent storage, analyzing large amounts of data

can still be problematic. Large data sets have to be loaded into the memory of one or multiple

machines in order to do the necessary post-processing of the data. If the main memory of the

system is exhausted, a distributed or stream-processing workflow (e.g., Apache Hadoop) has to

be used. This adds an additional overhead for the user.

There is a need for more efficient methods for handling the large datasets that are gener-

ated, especially with the increasing availability of cloud computing resources and cloud-based

simulation services [65] as presented in this thesis. As stated in [66], “transferring data-sets

to a centralized machine is thus expensive (due, for example, to network communication and

other I/O related costs)”.

A possible solution to this problem is to conduct the data analysis while the simulation is

running and store only the processed data-set necessary for the given experiment, i.e. the result

data-set. Such a solution would be most useful for large workflows where, traditionally, huge

amounts of data have to be transfered between two consecutive steps. A possible approach

to this would be to leverage on the IEEE 1516 High Level Architecture (HLA) [31] which

is popular in the simulation community. A data processing federate could be created which

collects the data from the running simulations and processes and writes it to persistent storage

as required. However, the limited data transfer rate and the large overhead of publishing

all information either reduces the simulation performance significantly or necessitates a larger

simulation “cool-down” phase during which all data is analyzed and transmitted to a single

data analysis federate.

Most simulation experiment post-processing workflows start with obtaining data-sets from

databases, but since the size of these data sets is increasing steadily, an online data-extraction

methodology, as presented in this chapter, can be useful. A formal description of the com-

ponents and advantages involved in an online data extraction methodology for agent-based

simulations (specifically cloud-based simulations), in which data processing at simulation time

1http://www.mkomo.com/cost-per-gigabyte-update

58

http://www.mkomo.com/cost-per-gigabyte-update

4.1 Related Work

is used to minimize the use for slower persistent storage options, is presented and executed.

Using relational algebra in the context of modelling the data output of a simulation does not

break the post-processing workflow of many experiments. Agent-based simulations have been

taken as an example, since the state of agents of the same (or similar) type in a simulation

experiment can be interpreted as a table or and the interaction between such agents as relations.

Using relational algebra to model the data output of a simulation is beneficial, since it does

not interfere with the established post-processing workflow of many experiments. Agent-based

simulations are a good example for the use of a relational representation of the output data,

since agents can be grouped together and be seen as a relation with tuples of state-variables.

As part of the literature review in this chapter, the current research in big data and stream

processing as well as data-description-languages is explored. Subsequently, the structure and

overall workings of data-analysis components for a cloud-based simulation system as presented

in Chapter 3 is introduced. This is followed by a formal relational-algebra-based description

of that data output. Unlike traditional relational algebra, the proposed data description can

be used to describe time-variant data. Finally, two traffic simulation examples are used to

demonstrate the workings for the system as well as the data description using time-variant

relational algebra before concluding this chapter with outlook on further research that can be

conducted in this field.

4.1 Related Work

4.1.1 Relational Data Description

Relational data models are widely used in the database domain where they describe the rela-

tions of data by using tables from which data can be accessed and operations can be executed

on. The data entries are called tuples and share the same structure (i.e., fields) within a single

database table. The advantages of the relational data description language (DDL) and rela-

tional algebra are that they enable the analysis and optimization of complex and large amounts

of data by using formal mathematical methods. Despite the limited number of operations,

complex manipulations of structured data can be achieved through combination. Relational

databases and data structures were first introduced by Codd [67] and later refined by Dar-

wen and Date [68]. In this chapter, the well-developed work in relational algebra is extended

with a temporal component in order to deal with time-variant data sources that characterize

simulations.

59

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

4.1.2 Big-Data and Stream Processing

Ranja [66] commented on the fact that the data that is being generated on the internet has been

and will keep increasing rapidly over the next couple of years. This is similar to the data being

generated by simulations. Individual simulations produce a lot more data than the average

server on the internet in the same time-span. The use of cloud-based simulation services [45]

can result in multiple concurrent simulations at unprecedented rates which will increase the

data output significantly. Ranja [66] postulates further that relational databases will be unable

to cope with the massive data. In contrast, state-of-the-art data mining algorithms work on

main memory. However, main memory is much more expensive and invariably inadequate to

store the amount of data generated.

Another point to be considered is the network and I/O costs involved in the transfer of data

between the storage location and the analytics computer [66]. Ranja proposes an ecosystem

for data processing that involves a high velocity data ingestion layer that communicates with

the actual data analytics layer, which then pushes the resulting data sets to a data storage

layer. These kinds of data analytics frameworks have different advantages and drawbacks.

While the Apache Hadoop [69] distributed stream data processing toolchain is more suited for

historic/existing data analysis, Spark [70] and Storm streaming processing are better suited for

online data-streams with highly variable (in terms of amount and type) data.

For general big data processing, different tools already exist. Tools like Apache Mahout1

and GraphLab2 have a large number of implemented data analysis algorithms available for

use. These offer an easy-to-use, off-the-shelf experience for researchers. On the other hand,

building a system for simulation data analysis with such tools might be outside the realm of

standard big data processing and presents its own set of challenges. A distributed system

that relies on message passing and queuing for a general purpose API is more applicable for

simulations. Apache Kafka3 for distribution of incoming data streams is an example of such a

system. This usually works in conjunction with Hadoop, Storm4 or Spark5 to distribute high-

velocity data processing payloads. Such data needs to be stored in a NoSQL database structure

like MongoDB [71] or Casandra [72]; in these systems large amounts of data are stored in

1http://mahout.apache.org
2http://graphlab.org
3http://kafka.apache.org
4http://storm.apache.org/
5http://spark.apache.org

60

http://mahout.apache.org
http://graphlab.org
http://kafka.apache.org
http://storm.apache.org/
http://spark.apache.org

4.1 Related Work

easily-accessible structures that are advantageous for the application to retrieve and work on

the data.

Babcock et al. [73] give an overview of data-streaming models and current issues in data

stream processing systems. They acknowledge that there are separate groups of data-streaming

models that handle data differently and differ from conventionally stored data in (1) availability

(online vs. offline), (2) order of data elements, (3) undefined or unbound size of the stream and

(4) the unavailability of historical data, since after processing, the input data is discarded.

4.1.3 Data Extraction Techniques for Simulations

For many simulations the data export focuses on writing to a comma-separated, XML-based

or application-specific binary data format. This might be acceptable for small amounts of data

coming from small-scale simulations or rarely updated variables, where the final amount of

raw data is rather small. For large-scale simulations, saving raw data might be desirable but

unfeasible due to I/O constraints. Many simulation tools output only aggregated values or

rely on visualization to transport information in the form of recordings (animation or video)

or images. Some prominent examples are material simulations, where the physical or thermal

forces on a digital workpiece are shown as an overlaid heat map [74, 75].

Schützel et al. [76] describe a stream-based reference architecture for a data-management

system that interacts with all the components of a simulation workflow. The described approach

starts from the experiment setup and the actual execution of the simulation, up to adding a

“processing graph” and a storage engine. Data management has a mediating role between

all steps of a simulation and passes data between the different steps of an experiment. This

mediator role is also active for different simulations within one experiment run.

In a different publication, Schützel et al. [77] have presented that the extraction of simulation

data is dependent on the structural dimension of the simulation entities as well as the sequential

dimension that describes the order in which the data is being generated. They describe the

ML-Rules Data Extraction Language and also the SystemXtract Language. The latter uses

sequential logs to reconstruct the structural and sequential information of the simulation state

and passes it to the analysis application.

61

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

4.2 Formal Simulation Data Representation

The data in an agent-based simulation can be described in multiple ways. It is proposed that one

way data can be represented is via relation algebra. This is used in this section. This provides

the advantage that queries composed using the structured query language (SQL) can be used to

retrieve data from the simulation. In agent-based simulation, each set of agents of the same type

can be perceived as tuples in a relation of a database. Therefore, the approach representing the

output data-model in the form of relations is favorable, since many (post-processing) algorithms

and work-flows already work on “database structured data” as input. Should there be a very

heterogeneous agent-population, where agents cannot be grouped together into relations, each

agent will then form its own relation with only one time-variant tuple.

Since some of the data will change over the course of the simulation, a temporal component

needs to be added to the relational schema. Mahmood et al. [78] have given an overview of

how to encode temporal information into a relational data model with a focus on database use

cases. This approach is not restricted to databases and can be applied to generic relational

data. This temporal relational data model can be adapted to be used in describing output data

from an agent-based simulation. The difference between a simulation that data is described

using relational algebra for database used is that there can’t be any data of the past delivered

to the requester, by simply changing the query as possible with data bases, where all the data

is stored and available to be requested. The data analysis middleware will only receive data

from the simulation when the requested time is reached. This means, in practical use, a request

on a future state of an agent in the system can trigger an event to start output of the data at

that event and not sooner.

4.2.1 General Simulation Data Representation

Relational data models, are often used to characterize the well-defined structure of databases,

called a database schema. One could describe the state variables of the agents in an agent-based

simulation as a schema with time-varying data. The formal description of an n-ary tuple of

states is usually done by writing the name of the tuple (class name) followed by a comma-

separated list of the state variable names in parentheses [67]. Primary keys describe a field or

a set of fields which characterizes the tuple unambiguously. The notation for a primary key

is underlining the respective variable names. For the time-varying relational data models as

described in [78], an extra field is added to each relation entry to describe its temporal activation

62

4.2 Formal Simulation Data Representation

(when the value is valid). It is also possible to add a field for each variable of the relation, but

this increases the number of variables in a relation significantly, since for each variable field an

extra field for activation is required. Since the actual time when a state variable is active is not

very important, an indication that the field might change over the course of the simulation is

sufficient and adding an extra field of each of the state variables indicating the time of change

is unnecessary.

It is proposed to indicate time-variance by adding that the variable is a function of time

(e.g. variablename(t)).

A(f1, f2, ..., fk, fk+1, fk+2, ..., fk+n, fk+n+1(t), ..., fk+n+m(t))

shows agent A with n ∈ N>0 static state variable names, m ∈ N>0 time-variant state variable

names and k ∈ N>0 state variable names that unambiguously describe one (m + n + k)-ary

tuple. Time-variant data cannot be part of the primary key tuple since it would additionally

describe the relation uniquely in time, which is not a desired attribute to track the changes of

this entry over time.

Time-variant Relational Algebra

Since traditional relational algebra has no concept of time-variant fields or tuples, the individual

simple functions like projection (Π), selection (σ), Cartesian product (×) and natural join (./)

have to be translated to equivalent time-variant operations. In all following operations the

n-ary tuple for a given relation has to be determined, such that the tuples that are included

in the result set of tuples are the most recent tuples for a given primary key in respect to the

time τ given. This is also expressed in Equation 4.2. The Domain of operation α on relation R

at time τ finds all entries where the timestamp is smaller or equal to τ and there is no other

timestamp (t2) that is closer to τ than t1. Additionally, there is no other entry with the same

id and which has a timestamp between t1 and τ .

63

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

A(idi, ti) :Entry in a relation with id and time (4.1)

TS(idi) :all Timestamps for a given idi

ID(tsi) :all IDs for a given tsi

α :Πa1,...,an , σaθv, ./,×, ...

Dom(α(R(τ))) :Domain of operation from α

on relation R at time τ

Dom(α(R(τ))) =
[
∀A(id1, t1) : [t1 ∈ TS(id1), t1 ≤ τ

∧ @t2 ∈ TS(id1), t1 < t2 ≤ τ]

∧ [@A(id2, t2) : t2 ∈ TS(id2), t1 < t2 ≤ τ

∧ id1 = id2]
]

(4.2)

Table 4.1 shows two exemplary relations that are used to demonstrate the time-variant

operations in this section. The column TS is the time-stamp of the respective values.

Table 4.1: Example Relations

Relation1 Relation2

ID V1 V2 TS ID V3 TS

1 A C 0 1 E 0

2 B H 0 2 F 0

1 J C 1 1 G 1

3 C D 2 2 L 1

2 I C 2

Time-variant Projection

A projection Πa1,...,an(R) returns a set of data items that contain the components a1, ..., an

of relation R and disregards all other fields in the set of tuples. The time-variant projection

includes the indication for what time τ this operation should be applied. Πa1,....,an(R(τ))

returns all n-ary tuples from the time-variant set R that satisfy the result of Equation 4.2. The

projection in Table 4.2 outputs the variable V1 and the ID at time τ = 1 from Relation1. The

result shows that only the entries from Releation1 are shown, that have or had a value prior to

the requested time τ = 1. Even though ID=2 has no timestamp TS=1, the information is in the

64

4.2 Formal Simulation Data Representation

result projection because information exists for TS=0. The opposite is true for ID=3, which

doesn’t have any information prior to TS=2 and is therefore not in the resulting projection.

Table 4.2: ΠID,V1(Relation1(1))

ID V1

1 J

2 B

Time-variant Selection

A selection σaθv(R) returns a set of data items from the set of n-ary tuples R that satisfies

the restriction expressed by attribute a, the binary operation θ ∈ {<,≤,=, 6=,≥, >} and the

constant value v. The time-variant version of a selection needs to include the indication for

what time τ this operation should be applied. σaθv(R(τ)) returns all tuples that satisfy the

restriction, but are also part of Domain specification given by Equation 4.2. The selection in

Table 4.3 outputs the variables of Relation1 with the condition that variable V2 is equal to D

and τ has the value 2.

Table 4.3: σV 2=D(Relation1(2))

ID V1 V2

3 C D

Time-variant Natural join

A natural join R ./ S returns a set of data item from the sets of tuples R and S that have at

least one matching attribute (∃ar ∈ R ∧ ∃as ∈ S; ar = as) from both relations in a resulting

tuple. The time-variant version of this natural join includes indications for what times τS and

τR this join should be applied for. R(τ1) ./ S(τ2) return all tuples as the standard join would,

but under the constraint that the relations R and S are first reduced to the result generated by

Equation 4.2. The natural join exapmle in Table 4.4 joins Relation1 and Relation2 at τ1 = 1

and τ2 = 2. The matching attribute is the ID of Relation1 and Relation2. Additionally, the

entry Relation1(2, I, C, 2) is not included because it does not meet the ts criterion, becuase it

only activates at timestamp 2.

65

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

Table 4.4: Relation1(1) ./ Relation2(2)

ID V1 V2 V3

1 J C G

2 B H L

Time-variant Cartesian product

The Cartesian product of R×S returns a set of data items from tuples R and S in which does

not required a matching attribute. The time-variant version of the Cartesian product needs to

include in what times τ1 and τ2 the tuples need to be included in the operation. R(τ1)× S(τ2)

returns all standard Cartesian product tuples that are reduced by using Equation 4.2 for τ1 and

τ2. The Cartesian product in Table 4.5 joins Relations1 and Relation2 at τ1 = 1 and τ2 = 0.

Table 4.5: Relation1(1) ×Relation2(0)

ID V1 V2 V3

1 J C F

2 B H F

1 J C E

2 B H E

This extension to the standard relational algebra can be used when the data in a database

contains additional information about the time of activation of a respective tuple.

4.3 Online Data-Processing System

The SEMSim (now CityMoS) Cloud Service, a simulation cloud service for agent-based simula-

tion with special focus on traffic simulations, has been presented in Chapter 3. In this chapter,

the SEMSim (now CityMoS) Cloud Service is used as the reference model for giving context

and for describing the proposed model. However, the methods developed are not SEMSim (now

CityMoS) specific in any way. In the next section, we give a brief overview of the Cloud Ser-

vice [45] and its extensions. This is a functional implementation and extension of the reference

architecture for an agent-based simulation cloud service presented in Chapter 3.

66

4.3 Online Data-Processing System

Server

Repositories

private public

Execution

Environment

Cloud

Compiler

Data Analysis
input

data processing

output

input

data processing

output

Storage

Raw Models Sources

USER

ExecutablesTyped Models

+

+

+

Input Data

+

CityMoS

C l o u d

Figure 4.1: Cloud-based Simulation Reference Architecture. The user interacts with the system

through RESTful APIs and the entire system runs on public or private cloud instances.

4.3.1 SEMSim Cloud Service

The cloud service consists of 6 main components as shown in Figure 4.1, of which the Data

Analysis component is the focus of this chapter.

1. The user-interface is represented through REST APIs. Through the use of APIs and

non-fixed front-end, the user can tailor a use-case-specific front-end for the simulation

experiments.

2. These API calls are then translated by the cloud service server component which

executes cloud service actions like allocation and deallocation of cloud resources as well as

starting, monitoring and stopping of simulation experiments (comparable to the dispatch

server in Chapter 3).

3. A repository for raw models (algorithms with parameters), typed models (parameter

configurations for models), source code (for implemented models and simulation engine)

and executables (compiled source code) is the main component of the cloud service. It

can offer private repositories to privileged users or repositories that are publicly available

67

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

to all user. This allows different domain experts to develop, validate and test models

before usage by a non-domain expert.

4. The cloud compiler takes the source code from the repository and compiles it into an

executable that can be used by the execution environment.

5. An execution environment is the heart of the cloud-based simulation service. It ex-

ecutes an executable from the repository together with typed models and input data to

form a simulation run (in comparison to run-environment in Chapter 3).

6. Data Analysis is an integral part of any simulation experiment. It is connected to the

execution environment and uses the data being generated by a simulation run to deduce

results by analyzing it directly. This data generated can be transferred to persistent

storage or forwarded as a stream to a visualization endpoint. The size can range from

megabytes for infrequently changing data to terabytes for a single simulation run. This

depends on the configuration of the simulation experiments.

The complete system relies on public cloud resources allocated from cloud service providers

(e.g., GCE1, Amazon AWS2, Microsoft Azure3). These resources, mostly virtual machines but

also virtual networks and virtual storage, are allocated according to the specifications of the

experiment and deallocated after the experiment has finished. The data generated is stored

in the cloud as well. In order to guarantee the security of the input data into the simulation,

all data is encrypted until used in the simulation itself. Generated output data can also be

encrypted, if required. The focus in this section is on the data analysis part which is described

in more detail in the next section.

4.3.2 System Design

In the proposed system, the simulation instance’s output data is first formally defined in rela-

tional algebra as presented in Section 4.2.1. This allows for leveraging on the effectiveness and

power of relational algebra in simulation data manipulation. Once the simulation is running,

a high performance simulation can output data in several ways. The naive and standard ap-

proach is to output all state variables of all agents whenever they change. However, by doing so,

the bandwidth required would be very high (as illustrated in Section 4.4.1). A better strategy

1https://cloud.google.com/compute/
2https://aws.amazon.com
3https://azure.microsoft.com/

68

https://cloud.google.com/compute/
https://aws.amazon.com
https://azure.microsoft.com/

4.3 Online Data-Processing System

would be allowing external programs to subscribe to updates of variables as required for the

analysis. This means that subscribers either get an update of the variable whenever it changes,

at certain intervals, or, if sufficient for the analysis, just once at initialization (e.g., start of the

simulation). This is a contrast to always receiving all data, whenever a state changes in the

simulation. A constraint is that the update interval, in which state changes can be received,

should not be smaller than the time between two events that change an attribute in the simula-

tion (e.g., if the simulation event occurs every 1s then an update frequency of 500ms is possible

but would waste bandwidth by sending each value twice).

This data-stream is then received by stream processing scripts. As the data is received in

batches (e.g., every 1 second), and in temporal order1, an event-based processing framework that

instantiates a new thread/process is very favorable. This also allows for scaling the processing

to multiple nodes, due to its limited dependency.

Once the data has been processed by the scripts (which may even be a chain of different

processing steps), this final resulting data set is either stored in persistent storage, or sent to a

visualization client.

In order to extend a simulation engine in the cloud with a stream processing engine, the

simulation engine needs to provide an API that exposes the state of the simulation to an external

data sink. This API should present the data in such a way, that once requested, each change

in the agent’s state will be transmitted to the requester. This process continues for as long

as the simulation is running, or until the request is specifically terminated by the requester.

Additionally, the data sink should have some form of caching to reduce the amount of data

being transfered at every change. The actual processing can be done using existing stream

processing tools like Hadoop or Spark, as introduced in Section 4.1, which distributes the data

to be processed to one or multiple worker nodes.

4.3.3 Implementation

The data request scripts that define what data is streamed from the simulation are, for ease of

use, in an SQL-like language called SimuSQL, to ensure compatibility with offline analysis of

the data. An example query on the output data-model of a traffic simulation requests data of

electric vehicles (EV) that have the time variant property State-of-Charge (SOC) at an update

rate of 1 second (see below).

SELECT * from EV WHERE SOC >0.3 AT 1 SECOND

1note that the transport protocol can change the receive order

69

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

The extension AT 1 SECOND is added to specify how often an update of the data should be

provided by the simulation. When omitting this parameter, a new data item is sent whenever

available. The related concepts are described in more detail in Section 4.2. The data analysis

middleware should take care of static/non-changing content and inject this accordingly, to

ensure that the simulation can omit that data if unchanged. This can be described as transparent

caching. The receiver gets the entire dataset in order to not break the (post-)processing tool-

chain.

The most important part of the cloud service, in the context of the proposed data anal-

ysis system, is an interface which the data analysis middleware provides, that the processing

framework can access and request data from. This interface (connection towards the Stream

Processing application in Figure 4.2) needs to be separate from the simulation itself, but should

use locality in the data center to ensure fast data transfer (e.g., infiniband/10GE) from the

simulation (connection towards the Simulation in Figure 4.2). The middleware accepts re-

quests in the above defined SimuSQL and returns data when available. It also takes care of the

transparent caching of the data. The connection to the simulation has to be via open socket

connections that support fast data transfers.

As can be seen in Figure 4.2, the data-processing starts with issuing a request towards

the data analysis middleware component (step 1). This can be done by using the SimuSQL

SELECT statement from above. Note that the user initiating this data-processing workflow can

be different from the user that designed or started the simulation experiment. The SELECT

statement is furthermore the trigger to instantiate a connection between the simulation and

the data analysis middleware. For this specific call, the first callback will be towards the

initialization function of the data analysis middleware (step 2). This is different from any

other succeeding callback, because the simulation will transmit the entire current state. This

includes, unlike all other callbacks, the static data as well. All following callbacks will only

include the time-variant data, as well as the key to identify the tuple unambiguously (step 3).

Should a new agent be added to the simulation and should it satisfy the conditions stated in

the initial request, its data will be fully included. The data-analysis middleware has to ensure

that the static data from the initial data set is merged with the time-variant data stream. After

the data has been prepared, the entire data set is presented to the stream-processing toolchain.

At the end of processing, data can be stored as a result data set or streamed out to a different

data-sink. Since there is no historical data (e.g., from previous simulation states) injected into

the stream of data, the processing component needs to take care of passing values from one

70

4.3 Online Data-Processing System

step to the next should such data be required for that analysis process. The data will be sent

from the simulation to the data analysis middleware and passed to the processing component

until a cancel request is sent (step 4).

Simulation Data Analysis
Middleware

Stream
Processing

Start Simulation

Request initial data

Response
(all data)

Simulation data
(time variant data)

Simulation data
(all data)

Simulation data
(all data)

static
data

Simulation data
(time variant data) Simulation data

(all data)

cancel data
requeststop data

static
data

loop
[simulation running]

User

define
analysis algorithmtransmit

data request

User

Storage

Visuali-

sation

1

2

3

4

Figure 4.2: Sequence diagram depicting the workflow of the data analysis including the data

processing. The Data Analysis middleware combines the time-variant data and the static data

and passes it on to the analysis processing. Finally the result is sent to storage or visualization.

Data Order Description

The data transmitted from the simulation is not a constant stream of data. Depending on

the execution speed of the simulation itself, the output will change once the state of an agent

changes or a new agent is added to the simulation. For example, the position of all vehicles in

a traffic simulation, will be updated rather frequently (in the range of a few seconds), while the

71

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

occupancy of a car park will be updated more infrequently (in the range of a few minutes)1. The

data-analysis middleware needs to know when all data is in the same logical time step in order

to pass this block of data to the processing component. In order to handle this, landmarks, a

concept proposed by Gama et al. [79], can be introduced into the stream by the simulation.

Those are meta-information from which the receiver, in our case the data-analysis middleware,

can deduce the end of a concurrent data stream of information. This combats the problem, that

between 2 discrete simulation time steps each agent’s information is at maximum transmitted

once, because the full state of a simulation needs to be consistent at the processing side.

Figure 4.3 shows how the landmarks are inserted into the data stream of serialized data

objects from the simulation. Each rectangle represents information from a specific agent in-

stance in the simulation (instances of a class). The Entity Types are different classes in the

object-oriented framework in a simulation. The order in which entities of different types are

put on the stream can vary (see A and B in Figure 4.3), as long as the same state variable of

an agent is not updated twice between 2 simulation time steps (landmarks). It can also happen

that for different entity types, the amount of data varies. Also, not all entities are updated

between 2 landmarks as for more infrequently updated agents (compare B and C in Figure 4.3).

The data-analysis middleware needs to keep track of this. This is done to ensure the reduction

of bandwidth usage by avoiding unnecessary transfers of information.

simulation time t

A1 A2 A3 A1 A3 A2 A1 A3 A2

B1 B2 B3 B4 B2 B1 B3 B4 B2
Entitie

s Type A

Entitie
s Type B

C1 C2 C3 C4 C2 C1 C2 C1 C2

Entitie
s Type C

LMB LMBLMA LMA LMALMC LMC LMC

Figure 4.3: The Simulation inserts landmarks into the stream of updates of state changes for each

entity type. The data analysis middleware detects the landmarks and discards all old information

from the changed entities and replaces it with the newly-received information. Should an agent’s

state not change, the previous value is kept by the data analysis middleware.

To ensure data consistency between the simulation data model and the output data model,

1Note that all time information is simulation time, not real-time

72

4.4 Case Study

the landmarks play an important role. With regards to the entities that have not been updated

since the last landmark, their old values are still to be considered valid, which means they

are transmitted to the stream processing component over again, using the data from cache.

Between different entity types, the time stamp of the landmarks for each type is compared by

the middleware component in order to send a consistent set of data to the processing component.

4.4 Case Study

The necessity for reducing the amount of data stored in persistent storage is presented by first

evaluating the bandwidth requirements in which data needs to be written to a storage medium

and what current storage technologies support. The measures are the number of agents and the

actual simulation speed. Secondly, an example on how the workflow can be used in an actual

cloud-based traffic simulation scenario is given.

4.4.1 Data Amount Model

In the following section, a comparison between (different) suitable data-processing frameworks

and the amount of data typically generated by simulation is conducted. For this, the writing

speed of conventional storage mediums like HDD or SSD as well as network-based distributed

data processing solutions is considered. The writing speed is important, since it either slows

down the simulation when written inline with the simulation execution, being a blocking system

call, or the experiment prolongs after the simulation has ended, since the queued up write

commands have to be finished. Both options will result in longer experimentation times and

ultimately in higher costs. The best result, that can be expected, is then the writing speed

of the medium is similar to the output rate of the simulation. First, a model to estimate the

amount of data that is being generated by a simulation is developed.

For this, the assumption is made that for an agent-based simulation with nA ∈ N>0 number

of agents, the update frequency of the agents ts (in seconds), the run time of the simulation

T (in seconds) as well as the function g(τ), the percentage of agents updated at a given time.

Additionally, the run-time performance as a real time factor RTF (how much faster than real-

time) needs to be considered, as well as the number of state variables s ∈ N>0 each agent can

have. An exemplary function g(τ) can be seen in Figure 4.4.

73

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

time t

% change

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

{

ts

Figure 4.4: Time-variant percentage of agent’s state changing in the simulation. ts describes

the time between subsequent simulation steps.

The final mathematical model to determine how many values will have to be saved or

transmitted is:

TotalV alues =

T∑
t=t0

g(t) ∗ nA ∗ s (4.3)

All variables are double values on a 64-bit system, the memory footprint is different from the

space required when outputting into CSV format. The precision p ∈ N>0 needs to be regarded

as well, since this will influence the number of bytes that need to be written to disk. If the

precision is 10 digits, a string representation of the number with ASCII coding [80] would need

11 bytes, due to the decimal point. This is 3 bytes more than that in the computer’s main

memory.

CSV size = TotalV alues ∗ (p+ 1) (4.4)

In order to evaluate if a certain storage medium can be used, the specification of common hard-

ware write speeds need to be collected. For this, conventional hard drives with a writing speed

of 80 - 160 MB/s as well as solid-state disks with a writing speed of 400 - 1000 MB/s are consid-

ered. The speeds mentioned are for single disks and not for a redundant array of independent

disks (RAID) or other storage solutions/technologies (e.g., NVME or 3D XPoint). Additionally,

state-of-the-art network transfer speeds for local networks need to be considered, since the data

analysis is not done on the same machine as the one the simulation is being executed on. In

case of executing a large-scale, multi-agent simulation that might need more memory, while

processing the results in statistical application might be more CPU-bound. Therefore, different

74

4.4 Case Study

machines are required to efficiently work. Current data center interconnection technologies are

Ethernet, Infiniband or fiber-optical connections. They range from 10 − 40GB/s, 56GB/s to

> 100GB/s respectively. The output bandwidth in bytes per update is defined as

OutputSpeed =
CSV size

T
ts

∗RTF (4.5)

Where the CSV size is given in bytes and the simulation time T and time step size ts are

given in seconds, and the RTF as no unit. The bandwidth in bytes per second is obtained by

multiplying the OutputSpeed by the number of updates per second, which is 1/ts. With the

overhead of representing numbers as a set of individual characters, the transmission of data

over a network connection has some protocol overhead. The more abstraction layers there are

between the data representation and the actual bit-level, the more overhead is introduced and

the actual transmission speeds not only depends on the performance of the network interface,

but also from the processing power of the layers above. For a TCP-based transmission model,

as found in most applications, the maximum transmission unit (MTU) has the most influence

on the overhead, since more byte per packet reduces the ratio between the fixed size protocol

data (header) and the payload. For standard installation, the MTU is usually set to 1500 which

results in a relative overhead of around 5%. In a data-center environment, larger MTU sizes

might not be as much of a problem, since the environment is well known and the interference

which can lead to dropped frames and resending of information, is minimal in comparison to

a open network environment like WLAN. Conventional ways of processing simulation-output

data also requires the system to access data from main memory. There are also limits on main

memory of a single system. A distributed processing workflow (e.g., Apache Hadoop [69]) has to

be used in such cases. This allows the workload to be distributed to multiple worker nodes and

use a single aggregation node to combine the results. This works very well, when the data has

little or no dependencies. The developed model for estimating the amount of data produced buy

a simulation can help to design the right data analysis workflow for an agent-based simulation.

Data amount example

In a simple example where the number of agents in a 24-hour simulation with each agent having

25 state variables that change throughout the simulation is varied from 5000 to 800000, the

time step is 1 second and the RTF is 100. Over the course of the simulation, with each time

step 50% of the agents change and their state and the change has to be outputted.

75

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

This would result in 87.55GB of total data, assuming a precision of 16 digits, and 1.04MB

per simulation second when considering 5000 agents at real-time execution speed. Multiplying

it with the RTF of 100, it results in 103.76MB/s that have to be written to storage. This

would be possible with all the listed storage options in Table 4.6, especially because sequential

writes and reads in a constant stream output usually yield higher speeds than random access.

The introduction of more agents into a simulation will have the effect that the simulation

data cannot be written out anymore and the system’s capability is exhausted. This assumes

that there is no non-linear dependency between the agent amount and the data generated. In a

simple example when more agents are present in the simulation there might be more interaction

and more data being generated through state change.

Table 4.6: Agent count vs. writing speed

5000 8000 80000 800000

103.76 MB/s 166.02MB/s 1.66GB/s 16.6GB/s

HDD X - - -

SSD X X - -

10G Ethernet X X X -

56G Infiniband X X X X

100G Fibre X X X X

In the system presented, the large data would only be transferred from the simulation to a

distributed processing workflow.

This means that the large amount of data generated by a simulation is streamed to the

processing systems using high-throughput network communications. In contrast to hard-disk-

based approach of storing the data, where after the simulation concludes the post-processing

step needs to wait for all data to be written, in a stream-processing approach the data is

concurrently processed and the final result is ready immediately after the simulation ended.

Once the simulation output data bandwidth exceeds the capability of the medium, the I/O

presents a bottleneck to the simulation experiment.

4.4.2 Traffic Simulation Cloud Service

The Scalable Electromobility Simulator (SEMSim) (now CityMoS) simulation engine [55, 61] is

used in the SEMSim (now CityMoS) traffic simulation cloud service. It is an agent-based traffic

simulation engine which is part of a platform, that also includes a power system simulation [62].

76

4.4 Case Study

This allows researchers to study the holistic effects of electromobility on an entire city/region

through simulation.

Within the SEMSim traffic (now CityMoS) simulation, each agent is represented as driver-

vehicle-units (DVU) which consists of driver behavior and vehicle component models. Depend-

ing on the specific agent, the actual models can vary. The simulation uses a hybrid time-stepped

and event-based execution model. Specific events like agent movement have predefined intervals,

whereas other events, like the decision-making of the driver or the update of the air-conditioning,

are scheduled at different intervals. This gives the flexibility to vary the update of certain models

more frequently than others. The following example extracts the data from an electromobility

study [62], where the objective is to determine the locations and State-of-Charge (SoC) of all

electric vehicles which battery has a capacity of less than 30% of the capacity they started with.

For this experiment, the simulation data model needs to be determined, followed by determin-

ing the correct time-variant relation algebra equation which is subsequently transformed into

an SimuSQL query.

4.4.2.1 Traffic Simulation Data

In nanoscopic agent-based traffic simulations like SEMSim Traffic (now CityMoS), the agents

are the vehicles and their driver. The behavior of the driver directly influences the state of

the vehicle. For example, the decision by the driver model to increase the velocity directly

influences the acceleration, fuel consumption and, ultimately, the velocity of the vehicle itself.

Since the vehicle is not the only entity in a traffic simulation, the output data representation

also needs to consider other entities:

• Roads: Consist of links and lanes [61], used for routing and movement.

• Car Parks: Hold a certain number of vehicles.

• Traffic Lights: Regulate the traffic at intersections and control the flow of vehicles.

• Other Infrastructure Components: including Bus stops, Crosswalks and Tram/MRT sta-

tions

An agent-based traffic simulation is usually modeled in an object-oriented framework. All

the entities can have inheritance to child-models with larger amounts of data (see Figure 4.5).

A vehicle only contains the very basic attributes like speed, location and geometric dimensions,

while more specific vehicle implementations (e.g., electric, fuel-cell, ICE) can have more specific

77

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

EV ICE

Vehicle

is A

Trip is On is On Vehicle

consists

of

VehiclehasVehicle

Figure 4.5: ER output data Model for a agent-based traffic simulation

78

4.4 Case Study

model attributes that influence the speed or location. The same applies for driver behavior. The

output data relations for this example, containing only a subset of all entities in the simulation,

would be:

Vehicle(vehicleID ,geometry , velocity(t),location(t))

EV(vehicleID ,batterySize ,currentCapacity(t))

ICE(vehicleID ,MotorPower ,tankSize , tankfilled(t))

Road(ID,name ,startpoint ,endpoint)

Link(ID,startpoint ,endpoint)

Lane(ID,startpoint ,endpoint ,leftlane ,rightlane)

CarPark(ID,location ,totalSlots , freeSlots(t))

Trip(ID,vehicleID ,FromLocation ,ToLocation)

This relation scheme needs to be known to the user that is developing the processing scripts,

because these are the relations a SimuSQL query can return results for.

4.4.2.2 Time-variant Relational Data Model

The data required from the simulation is the vehicle location as well as the information of the

SoC. A time-variant relation algebra expression would look like the following when considering

that t is the current time tnow:

LowSOCAgents(tnow) = Vehicle(tnow) ./ σcurrentCapacity/batterySize<0.3(EV (tnow)) (4.6)

ΠvehicleID,location,batterySize,currentCapacity(LowSoCAgents(tnow)) (4.7)

This projection will return the vehicle ID, the location of the vehicle, the current capacity of

the battery as well as the total battery size. Due to the selection in equation 4.6, the natural join

only includes those agents that have an SoC of less than 0.3. The SoC is defined as the current

capacity of the battery over the maximal battery size. The equation 4.7 applies a projection

on the result tuples of equation 4.6. This is the formal description and operations that can be

used to optimize queries using time-variant relational algebra. The following section expresses

the same query as an SimuSQL statement which is used by the processing script to request

data from the data analysis middleware.

4.4.2.3 Stream Output for Traffic Simulations

After we have introduced the data that a traffic simulation is generating, and the formal time-

variant relation algebra optimization that has been performed, the translation into a SimuSQL

query and the workflow at the data analysis middleware will be shown now.

79

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

A SimuSQL query to obtain the location and the SoC of all vehicles in the simulation that

have less than 0.3 would be:

SELECT vehicleID ,Location ,currentCapacity/batterySize as SOC from

EV natural join Vehicle WHERE currentCapacity/batterySize <

0.3;

This will return a time-variant tuple of all vehicles containing the location as well as batterySize

as a fixed value whenever a vehicle has an SoC (currentCapacity/BatterySize) of less than

0.3. Since there is no update interval (e.g., AT 1 SECOND) specified, the data is streamed

whenever the value changes in the simulation. This query will be forwarded to the data analysis

middleware where it is translated into a statement requesting information from the vehicle

object as well as the inherited properties from the EV object in the simulation. The first request

will transmit the entire state of the simulation regarding the vehicles and the EVs to the data

analysis middleware. The transparent caching capabilities in the data analysis middleware will

then cache the time-invariant variables, like the batterySize in this case and pass the entire

data stream to the processing engine. Here, the processing of spatial information of vehicles is

performed and the result of clustering “low SoC agents” is transmitted to the database and/or

pushed to a visualization engine, which eventually displays this information. In parallel with

the processing, the simulation continues running and data continues being sent to the data

analysis middelware. With any subsequent stream of data after the initial one (containing

the batterySize), only the primary key, in this case the vehicleID, together with the time-

variant information (e.g. currentCapacity) is forwarded. In the above example, data analysis

middleware takes care of inputting the batterySize from the transparent cache and forwards

it to the processing engine. To the processing engine, the simulation looks like a normal SQL

database; however, in the background the simulation is changing the data constantly, while the

cloud service is trying to minimize the data transmitted between the simulation and the data

analysis middleware and the processing engine.

4.5 Summary

In this chapter, an approach to reduce the data generated by simulation experiments and to

couple the data analysis to the simulation execution has been presented. This approach is

especially useful for cloud-based simulation experiments, where the costs of running simula-

tion experiments is low, but long-term storage and transfer of large amounts of data can be

80

4.5 Summary

expensive. The proposed system uses stream processing of data during its generation and a

relational data model of the possible output data generated by a simulation experiment. This

enables experiment designers to formally model the simulation output data with a time-variant

relational data model.

A formalism that indicates time variance on a simple relational model, where all operations

have to regard the time at which the data was created or becomes active, has also been proposed

in this chapter. Since this method introduces another layer of middleware into the simulation

work-flow, the middleware component presents a possible bottleneck to the system. Experi-

mental studies could be used to evaluate the real world performance, but since the middleware

discards any historical data, the execution, even of complex queries, is expected to be fast.

Possible use-cases of this model is an online data visualization application that can show

results, and possible interactions with the simulation while it is still running. (Semi-)manual

exploration of different simulation and model configurations could be much more engaging and

fruitful. This can be used for visualization of the data but also for decision-support systems

that deliver results while the simulation is still running.

81

4. ONLINE DATA EXTRACTION FOR LARGE-SCALE AGENT-BASED
TRAFFIC SIMULATIONS

82

Chapter 5

Cloud-Based Search Space

Exploration for Traffic

Simulations

Contents

5.1 Introduction and Motivation . 84

5.2 Related Work . 86

5.3 Model description . 87

5.3.1 Microscopic Model . 87

5.3.2 Macroscopic Model . 88

5.3.3 Multi-Resolution Model Extensions 90

5.4 Model Evaluation of Multi-Resolution Simulation Model 95

5.4.1 Design of Experiments . 95

5.4.2 Model Performance . 96

5.4.3 Model Fidelity . 98

5.5 Application to real-world networks 102

5.5.1 Algorithm . 104

5.5.2 SSE Discussion . 106

5.5.3 Scalability concerns using Cloud Resources 110

5.6 Summary . 116

Large parts of this chapter have been published in the proceedings of the ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation 2015 [81].

83

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

5.1 Introduction and Motivation

Within the thesis, different aspects of enabling non-researchers, domain experts and policy mak-

ers have been shown. In this chapter, the focus lies on speeding up the search-space exploration

of large domain spaces using multi-resolution modelling and hybrid-resolution simulations. This

is possible, since Cloud Providers (CPs) offer the cloud resources in seemingly unlimited quan-

tities, which can be used concurrently for search-space exploration.

When using cloud resources, the cost for ad-hoc (single use) is slightly higher than using a

specific instance for longer times. CPs offer sustained-use policies to give users the incentive to

use the resources for longer times. These policies have different implementations. The Google

Compute Engine (GCE), for example, offers a pricing philosophy that automatically reduces

the cost-per-minute of a machine that runs more than 25, 50, 75 per cent of the month. For

this to take effect, it is not the same machine that need to be running, but rather all machines

that are of the same type1. Amazon’s AWS takes a different approach with discounting users

for prolonged use. They offer Reserved Instances, which are an upfront payment for 1 or 3

years of use. For this period, the price is significantly lower than for ad-hoc instances. The

pricing structure needs to be taken into consideration when designing large-scale search-space

exploration experiments.

In order to lower the cost, by reducing the runtime of a single simulation configuration, the

multi-resolution modelling and simulation approach can be very helpful. It can offer significant

speedups to the simulation runtime while at the same time not significantly sacrificing on the

simulation results. This can be used to identify interesting combinations of values in a multi-

dimensional search-space exploration where the entire search space can be explored in a series

multi-resolution simulations and only regions of interest in the search space in higher, but

computationally more demanding, resolution simulations. A qualitative visual example can be

seen in Figure 5.1. An approach that is in comparable is the use of surrogate models. They are

used as a drop-in replacement for more computationally demanding models but also lower the

accuracy of the results. Multi-resolution simulations are different they combine the lower and

higher resolution models for the same aspect of the simulation, while surrogate models only

offer the a single resolution. One could see the lower resolution models in the multi-resolution

context as a surrogate model of the higher resolution model.

1https://cloud.google.com/compute/pricing

84

https://cloud.google.com/compute/pricing

5.1 Introduction and Motivation

Dimension 1

D
im

e
n
s
io

n
 2

Multi-Resolution Simulation

High Resolution Simulation

Figure 5.1: Simulation search space with 2 dimensions with regions of interest identified to be

simulated in higher resolution

This chapter illustrates the findings of using multi-resolution modelling and simulation for

a transportation scenario of switching between a macroscopic and nanoscopic traffic model.

Since for agent-based traffic simulations the level of detail is crucial to the system’s runtime

performance as well as the fidelity of the results, different model abstractions have been used

through out literature to find the best model for a specific use case. Each of the models (macro-

scopic, mesoscopic, microscopic and nanoscopic) have their use-cases and benefits. Microscopic

traffic simulations have a high level of detail but at the same time require a large amount of

computational resources. In a large traffic network of a mega-city or an entire country, the use of

a complete microscopic simulation is a difficult endeavor. The resources required to do so have,

for most use cases, no relation to the actual outcome. A hybrid traffic-simulation model as it

has been proposed within this chapter that uses both, a high-resolution agent-based microscopic

simulation alongside a lower resolution flow-based macroscopic simulation for specific road seg-

ments, might be a solution. Since there are regions of a road network of an entire city, country

or region where a lower level of detail is sufficient, computing resources can be saved. In such

cases, a multi-resolution model may offer a means to improve processing efficiency while only

marginally affecting the overall simulation fidelity. Such region could be a stretch of highway

between on and off-ramp or long country roads connecting cites or villages, but other city-roads

could be applicable as well. The problem with using different simulation models is the fidelity

at the boundary between such simulation models. This fidelity discrepancy is caused by the

difficulties with aggregation and disaggregation passing through the boundary. For the evalu-

ation of such discrepancies between fidelity and performance increase, a prototypical design of

a multi-resolution agent-based traffic simulation has been developed and its performance with

85

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

regards to computational run-time and fidelity (deviation from highest resolution) has been

evaluated.

The findings have been presented at the PADS 2015 [81] conference and have been extended

to include an analysis of the performance benefits and result drawbacks for larger, real-world

networks of 17 different city regions, extending the single road example presented in [81]. Saving

the computational time can directly be translated into saving money when using cloud resources.

Therefore, an example pricing model will be presented that takes the different cloud service

providers’ pricing strategies into consideration for the use of a large-scale search-space traffic

simulation experiment.

5.2 Related Work

There have been several approaches to multi-resolution modeling of traffic. Two main ap-

proaches towards the topic have been (1) the use of aggregation and disaggregation at runtime

and (2) the use of multi-resolution entities.

The first approach, which aggregates a high-resolution model at runtime to a lower reso-

lution and then disaggregates from the low resolution to a higher resolution is trivial on the

aggregation side. This is because there is usually sufficient data to average over the existing

high resolution agents’ states. The disaggregation algorithm on the other hand has to inter-

polate or create/reconstruct information from the low-resolution model in order to obtain the

state information for the high-resolution model. It has been shown that a frequent transition

between high- and low-resolution models through aggregation and disaggregation is not a good

practice [38]. One problem is the thrashing effect, where agents cross between resolution bound-

aries often, can create a large overhead in computation, especially when running a distributed

simulation.

This method of aggregation and disaggregation was initially developed for military simula-

tions [39, 40], since it conforms very well with the command security structure in the military.

Battalions, for example, are aggregated divisions and allow manageable view on certain bat-

tlefield scenarios for different key personnel in the chain of command, whereas a disaggregated

view of individual fighters is necessary for group leaders.

An approach to multi-resolution traffic modeling was discussed by Burghout [41, 23], where

a ghosting method was used to ease the transition between microscopic and macroscopic bound-

aries in the aggregation-based approach.

86

5.3 Model description

In order to avoid the trashing effects of frequent model switching, Natrajan et al. [42] propose

the concept of Multi-Resolution entities (MRE). A MRE consolidates the properties of several

resolutions in one object. Those properties are then kept consistent by design. This requires a

larger memory footprint and individual operations require mode computing cycles for each of

the resolutions, but there is no consistency problem.

Another approach to mitigate the thrashing effects, especially for traffic simulations, while

avoiding the use of MRE, has been presented by Chua and Low [43], proposing a set of predictive

algorithms. These algorithms are used to project an agent’s future position on a road segment.

The multi-fidelity modeling approach presented by Choi et al. [44] describes how to convert

an existing model into a multi-resolution model. This methodology can be used to increase the

simulation speed for a given simulation as well as to give measures for fidelity derivation. While

their approach generalizes a methodology, this chapter focuses on using multi-resolution mod-

eling to investigate its potential with regard to its use in high-performance traffic simulations.

5.3 Model description

The multi-resolution model is comprised of a microscopic car-following model with lane changes

and a macroscopic traffic-flow model. These models are executed simultaneously and are con-

nected through a model-switching strategy to form a multi-resolution model of traffic on road

segments. This section will begin with a detailed description of the two model types, followed

by a description of the connecting boundaries between two joining road segment zones. Such

connections require an aggregation of agents’ states at the microscopic-macroscopic boundary

and a disaggregation at the macroscopic-microscopic boundary.

The model uses a discrete time advancement in the microscopic model and a fixed time

advancement in the macroscopic model. The multi-resolution model functions as a drop-in

replacement for either a macroscopic or a microscopic simulation model. This requires the two

different models to have no knowledge of the respective other model and be fully self-sufficient

traffic simulations.

5.3.1 Microscopic Model

For the microscopic traffic simulation models, a car-following model that determines acceleration

and gap calculation between agents is important to express the traffic behavior correctly. The

Intelligent Driver Model (IDM) developed by Treiber et al. [26] is widely used in agent-based

87

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

traffic simulations. Together with the Minimal Overall Breaking Induced by Lane Change

(MOBIL) [82] algorithms that extend the capabilities of Intelligent Driver Model (IDM), this

model is sufficient to model the driving behavior on a road segment. The acceleration for each

agent is given by Equation 5.1;

acur = a ·

(
1−

(
vα
v0

)σ
−
(
s∗(vα,∆vα)

sα

)2
)

(5.1)

it uses the maximum acceleration (a) of the agent (α) along with the current velocity (vα) of

the agent as well as the position (s∗(vα,∆vα)), derived using Equation 5.2

s∗(vα,∆vα) = s0 + vα ·T +
vα ·∆vα
2
√
a · b

(5.2)

as well as distance (sα = xα−1 − xα − lα−1) between an agent (α − 1) in front of the agent α,

and the velocity difference (∆vα = vα − vα− 1) between agent α and agent α − 1. Where s0

denotes the minimum distance between two agents on one lane, T is the time headway in seconds

between agents in normal traffic conditions, and a and b are the comfortable acceleration and

deceleration of the agent.

In addition to the IDM and MOBIL features, the underlying microscopic model is aug-

mented to support arbitrary obstacles. Intersections, standing vehicles and moving vehicles are

considered obstacles. An agent has to assess whether to adjust the acceleration or to change

lanes in order to avoid collision with the obstacle (collision-free model), which can lead to an

unrealistic braking behavior. Intersections are a special type of obstacle that span the entire

width of the road (multiple lanes) and can have a transparency property that can change dy-

namically. If the state is set to transparent, agents can pass through and normal car-following

models apply. Otherwise, agents will adjust their speed to come to a full stop. This allows for

manipulation of the traffic simulation without violating any IDM or MOBILE rules.

5.3.2 Macroscopic Model

The macroscopic metrics described by Hoogendoorn and Bovy [83] are one way of expressing a

macroscopic view on a road segment. They assume the traffic density k can be derived, as in

fluid dynamics, from the number of vehicles that pass through a certain section of road (vc) in

a given time and the length (l) of that road segment (Eq. 5.3).

k =
vc

l
(5.3)

88

5.3 Model description

This density, together with the average velocity (v) of all agents within the given time frame,

produces the traffic flow q (Eq. 5.4).

q = v · k (5.4)

Since the macroscopic model is not aware of individual agents within the segment, the

model uses detectors at the boundaries to gain knowledge about entering and leaving agents.

The time and state of the macroscopic model is only advanced when there is a vehicle entering

the macroscopic zone or scheduled to be leaving the zone. A front detector senses a microscopic

agent entering the macroscopic zone and saves its ID as well as the cycle number (simulation

time). The information about a vehicle entering is gathered by the front-detector is used to

calculate the vehicle’s velocity at the end of the macroscopic zone and when a single vehicle

should emerge from the macroscopic zone into the next read segment. This is done by updating

the state of the macroscopic zone and using the newly changed average velocity v and the length

of the segment to determine the cycle this vehicle should exit the macroscopic zone through the

back detector. This next segment can either be a macroscopic or microscopic model. The front

and back-detectors are illustrated in Figure 5.2. The three important metrics for macroscopic

road

Vehicle #1 exits road

vehicle #1: cycle 223
...

vehicle #1: cycle 564

vehicle #1: cycle 223

back detectorfront detector

data map

Vehicle #1 enters

traffic direction

Figure 5.2: Using detectors to record entering and exiting vehicles

traffic state are average velocity (v), density (k) and traffic flow (q). The average velocity (v)

can be determined solely by the information gathered from the traffic detectors.

v =
vc · vold + v

vc+ 1
(5.5)

An update to v is done only when the back (or front) detector records a vehicle leaving (or

entering) the macro zone. This will implicitly decrease (or increase) the vehicle count (vc) by

89

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

one, since the vehicle is not (or additionally) present in the data structure map assigned to this

macroscopic zone. Because the number of vehicles on the road segment has changed, the k and

q values (Eq. 5.3 and 5.4) have to be updated as well.

5.3.3 Multi-Resolution Model Extensions

The microscopic and macroscopic simulations can be run independently in separate simulations.

In a multi-resolution simulation, they are executed simultaneously and have to exchange data.

The points on a road segment at which data has to be exchanged are the front and back

detectors discussed in Section 5.3.2. In our model we use two approaches for aggregation

and disaggregation at the boundaries of the different zones. On the boundary between the

microscopic and macroscopic zone (front detector), a position-triggered aggregation is used.

The back-detector’s boundary between the macroscopic and microscopic zone uses a cycle-

based disaggregation scheme. Where one cycle is equivalent to one time step in the microscopic

simulation.

There are three different categories in which overall traffic can be categorized. They are

dependent on the current traffic density (k). Since they can be observed and/or calculated

in macroscopic as well as microscopic zones, they can be used to compare macroscopic and

microscopic road segments.

• Free Flow Traffic k ≤ kc: The vehicles on the road segment are able to achieve their

desired velocity by accelerating normally. This critical density (kc) has been described by

Hoogendoorn and Bovy [83] and is the density at which congestion starts.

• Congested Traffic kc ≤ k ≤ kj : Since traffic density that exceeds kc leads to congestions,

vehicles cannot accelerate as freely as before and might not reach their desired velocity.

The vehicles also have not yet come to a full stop, meaning that k would be reaching the

jam density kj . Intermittent braking of agents can be observed. This traffic state has

been described by Helbing et. al [84].

• Jammed Traffic k = kj : When the density of a road segment reaches kj as described

by Hoogendoorn and Knoop [85]. All vehicles come to a full stop and no movement is

possible.

90

5.3 Model description

5.3.3.1 Aggregation

In the microscopic area before the aggregation boundary (micro-zone), the simulation checks

during each simulation cycle which agents traverse though the defined position where the micro-

zone ends and the macroscopic-zone starts. For estimating the projected cycle time for disag-

gregating the vehicle back into the micro-zone, two operation modes are possible. One is the

single-lane mode where overtaking is not possible and the other one is the multi-lane mode.

In the single-lane case, the vehicle’s velocity (v) before passing into the macroscopic-zone is

taken, together with the length of the macroscopic-zone (lmacro) and the duration of one cycle

in seconds (tcycle), to determine the number of simulation cycles that have to pass before the

vehicle is disaggregated back into the micro-zone at the back detector.

∆cycles =
lmacro
v · tcycle

(5.6)

When looking at the model for a multi-lane road segment, the aggregation and cycle pre-

diction gets more complicated. Since overtaking is possible, a vehicle’s maximum velocity is

not restricted by the leading vehicle on the same lane but also by the vehicle furthest away on

any of the parallel lanes. Therefore, the projection takes the traffic density (k) immediately

after the macroscopic-zone into account as well. This is not required for the single lane case,

since the density is used to determine the likelihood of a lane change occurring and the agent

disaggregating on a different lane. The three cases of traffic state as discussed above have to

be regarded.

For the free flow traffic case, the acceleration (a) is regarded for the entire length of the

macroscopic-zone. The total travel time through the macroscopic-zone is determined using

Equation 5.7 as a basis and solving it for ∆t in Equation 5.8 and ending up with the number

of cycles (∆cycles) given through Equation 5.9. The length of the macroscopic-zone (lmacro)

can be substituted in for s and the initial velocity (v0) for v.

s =
a

2
∆t2 + v ·∆t (5.7)

∆t =
−v +

√
v2 + 2 · a · s
a

(5.8)

∆cycles =
∆t

tcycle
(5.9)

Should the velocity at the end of the macroscopic-zone (vend = a∆t + v) exceed the desired

velocity v0, the total travel time has to be recalculated by having an acceleration time (∆ta)

91

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

and a constant velocity phase (∆tv0).

∆ta = ∆t− vend − v0
a

(5.10)

la =
a(∆ta)2

2
+ v∆ta (5.11)

The constant velocity phase is calculated using Equation 5.12.

∆tv0 =
lmacro − la

v0
(5.12)

Where ∆tv0 is the time spent in constant velocity v0. lmacro and la represent the total distance

of the macroscopic-zone and the distance traveled while accelerating respectively.

The cycle count when the vehicle exits the macroscopic-zone is then determined by Equa-

tion 5.13.

∆cycles =
∆ta + ∆tv0

tcycle
(5.13)

For the congested traffic state, the acceleration is determined as in the free flow case (Eq.

5.7,5.8,5.9), but then multiplied with a density proportion factor pdens which leads to an ad-

justed acceleration value a′ = a · pdens. This is necessary to cope for very slow moving traffic

and to counteract unrealistic acceleration and breaking behaviors. It results in the maximum

acceleration of an individual agent being proportional to the state of the road. The density

proportion factor is calculated using Equation 5.14 with the densities from above.

pdens =
k − kc
kj − kc

(5.14)

The cycle count is then determined as it would in the free flow case, except the acceleration is

adjusted to a′.

In the traffic jam case, the velocity at the end of the macroscopic zone is 0 and the projection

is performed using the vehicle’s current velocity only and disregarding any acceleration occurring

in the macroscopic zone.

Since both, the single and multi-lane calculation of ∆cycles, calculate the time a vehicle

spends in the macroscopic simulation and the returned position (xret = x + lmacro), which is

equal with the back detector’s position. The absolute cycle in which the vehicle is put back

into the microscopic simulation, after removing it, is determined using Equation 5.15.

cycleret = cyclenow + ∆cycles (5.15)

IDM car-following model relies very much on a leading vehicle to determine the new accel-

eration. When there is no vehicle leading, a free-flow mode is chosen. The free-flow mode in the

92

5.3 Model description

IDM model is much simpler and assumes the maximum acceleration. However, once an agent

is removed from the microscopic model, a following vehicle loses its leading vehicle to base its

acceleration algorithms on (Eq 5.1). The IDM car-following model is very much depended on a

leading vehicle, otherwise free-flow traffic is assumed. Free-Flow traffic mode is not applicable

to the following vehicle, since it could lead to unwanted acceleration and to wrong overall mi-

croscopic model behavior. Therefore, we introduce ghost vehicles to mitigate this problem [41].

This allows a following vehicle to determine its correct acceleration values. A ghost vehicle

contains only a subset of properties of a ”true” microscopic agent and is used to approximate

a microscopic model. A ghost vehicle is spawned as soon as a vehicle traverses through the

aggregate

vehicle #1vehicle #2

micro zone macro zone

before vehicle #1
enters

after vehicle #1 has
entered

follows

vehicle #2
ghost

(vehicle 1)follows

vehicle #1

Figure 5.3: Ghost vehicle generation at micro-macro boundary

micro-macro boundary. At this point, the ghost’s length, position and velocity are set to the

properties of the removed agent’s. During each cycle, the ghost’s microscopic model states are

updated by as if this agent was part of the microscopic model. This tricks the subsequent agent

into following into the macroscopic-zone. A ghost moves along the macroscopic-zone until an-

other vehicle enters the macroscopic-zone. At that point the ghost is discarded and replaced by

a new one. The movement of a ghost is dependent on the number of lanes (single or multi-lane

mode) and the traffic state behind the macroscopic-zone. In single lane mode, the ghost moves

along the macroscopic-zone at a constant velocity it had when it was created. In a multi-lane

scenario, the traffic state in the microscopic zone behind the macroscopic-zone is used to modify

the ghost’s velocity. The new velocity v′ = (1− visc) · v uses a viscosity metric that is derived

from the traffic density behind the macroscopic-zone and given by Equation 5.16 (similar to

the density proportion factor pdense).

visc =

{
k−kc
kj−kc kc ≤ k ≤ kj
1 k > kj

(5.16)

93

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

At each cycle the density inside the macroscopic zone is queried and if it exceeds the jam

density kj the ghost is stopped. This leads to agents reducing their speed when approaching

the macroscopic zone and eventually stopping before entering the macroscopic zone. Since the

macro density is updated whenever a vehicle is disaggregated back into the microscopic model,

movement of the ghost continues when kmacro falls below kj . Should the ghost vehicle reach

the end of the macroscopic zone before being replaced by a ghost of a newly entered vehicle, it

is discarded and the free-flow case can be assumed.

5.3.3.2 Disaggregation

When vehicles are returned to the macroscopic-microscopic boundary, disaggregation has to be

performed. There are 3 steps involved to ensure the model integrity, given by the position on

the road and the internal state of the agent, is not violated.

1. Depending on the current cycle time, the internal data structure holding all agents cur-

rently in the macroscopic-zone is checked, and all agents that have a lower return cycle

number (cycleret) are prepared to be returned to the microscopic zone. The data structure

is depicted in Figure 5.4

2. If there is a vehicle that is supposed to be returned at the current cycle, the lane(s) are

checked for enough free space to insert the vehicle safely.

3. Once a vehicle is supposed to be returned at a specific location, the IDM calculation is

executed. It is then checked if an emergency breaking situation would occur. If this is the

case, insertion is suspended. This check is not executed when the average velocity of the

micro-zone is below 10% of the roads recommended speed, in order to allow for insertion

when the traffic state is strongly congested. Alternatively, using the macroscopic metrics

kj and kc could be used to determine whether this check needs to be performed.

For a multi-lane scenario, all lanes are checked against the free-space and emergency break-

ing conditions. Should the checks fail for every single lane, the disaggregation is postponed.

Vehicles stay in the data structure and are checked again on the next cycle. Upon a success-

ful disaggregation, the vehicles are removed from the data structure and the back-detector is

notified.

94

5.4 Model Evaluation of Multi-Resolution Simulation Model

203

1006

405

...
vehicle #32

vehicle #2 vehicle #43

...

...

vehicle #15

cyclenow = 204

cycleret

Figure 5.4: Microscopic vehicle date holding data structure

5.4 Model Evaluation of Multi-Resolution Simulation Model

Since the aim of the proposed multi-resolution model is to increase the performance while

affecting the model fidelity as little as possible, the multi-resolution performance is compared

against a pure microscopic simulation.

5.4.1 Design of Experiments

Three experiments with the following setup in order to establish a microscopic base line for

comparison and experiments for evaluating performance and fidelity respectively were designed.

• The Microscopic Mode simulates the entire road segment using only the microscopic

model. There is no need for model switching and it serves as the base-line implementation

used to compare the performance and fidelity (see Figure 5.5a).

• The Multi-resolution Mode simulates a road segment as discussed in Section 5.3. Both

microscopic and macroscopic models are used and model-switching at the boundaries is

executed (see Figure 5.5b). This is done to gain the performance measures that are later

compared to the base-line microscopic model experiment.

• The Dual-Simulation Mode runs the previous modes simultaneously with identical

starting conditions. The mode is used to evaluate the fidelity effects of multi-resolution

execution (compare Figure 5.5c).

Four different types of driver-vehicle unit configurations for the microscopic road segments

have been chosen. They are normal, timid and aggressive driver of private vehicles as well

as a configuration for truck drivers. Each of the configurations have different values for the

preferred maximum speed, the time headway, the acceleration and deceleration for normal

95

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

length l0m N m

microscopic model

microscopic model macroscopic model microscopic model

a

b

Figure 5.5: Simulation experiment setups

traffic conditions. These values for different types have been identified by Kesting et al. [86].

In order to generate a heterogeneous agent population, the properties are uniformly distributed

around the values identified by Kestig et al. with a margin of ±20%.

5.4.2 Model Performance

The goal of this chapter is to evaluate the performance increase when using multi-resolution

models for traffic simulations. Therefore, the average processing of one time step in the sim-

ulation for a pure microscopic simulation (tmicro) and a multi-resolution simulation (tmrs) is

compared. The performance difference (∆p) was then calculated using Equation 5.17.

∆p =
tmrs
tmicro

− 1 (5.17)

The experiment runs several (> 20) simulations in microscopic mode (Figure 5.5 a) as well

as multi-resolution mode (Figure 5.5 b). Each simulation created 15 agents and stopped them

at the same location within each simulation with a non-transparent obstacle (e.g., traffic light

at an intersection) to simulate a red traffic light situation, where all vehicles start from a resting

position and accelerate after the light turns green. This obstacle is placed in the microscopic-

zone before the macroscopic-zone. The setup can be seen in Figure 5.6. Once all agents stop

macro zone
length

traffic direction intersection

(no macro zone)

multi-resolution

microscopic

vehicle #2vehicle #3
2000 m 5000 m

distance

state comparison
(position, velocity, ...)

returned
vehicle #1

Figure 5.6: Dual-Simulation setup for agent state deviation experiment

fully, the obstacle are made transparent. This allows the IDM to accelerate the agents and

96

5.4 Model Evaluation of Multi-Resolution Simulation Model

move along the road segment. For each simulation cycle, the execution time is recorded and

then averaged over the entire simulation until all agents reach the end of the road segment.

A close-to-zero value of ∆p indicates that the performance of both simulations is equal,

whereas negative values indicates less processing time is spend on a cycle in the multi-resolution

simulation. The performances for single- and multi-lane simulations are shown in Figues 5.7

Distance to Macro Zone [m] 50
100

150
200

250
300

350
400

450

Length of Macro Zone [m]
50100

150
200

250
300

350
400

450

Cy
cle

tim
e

co
m

pa
re

d
to

M
icr

o
Si

m

≠50

≠40

≠30

≠20

≠10

0

10

≠50
≠40
≠30
≠20
≠10
0
10
20
30
40
50

Cy
cle

tim
e

co
m

pa
re

d
to

M
icr

o
Si

m

Figure 5.7: Single lane performance comparison: Relative performance between microscopic and

multi-resolution mode. Cycle time up to 40% reduced for long macro-zones and long distance to

macro-zone.

and 5.8. Each point shows the average relative performance between the microscopic and

multi-resolution simulation form more than 20 runs. It shows that for the single-lane simu-

lation the performance increases when the macroscopic-zone becomes longer. An increase in

model performance is also seen, even though not so prominently visible, when the distance to

the macro-zone gets longer. The same general shape can be seen in the multi-lane simula-

tion experiment. There, the overall performance increase is, averaged over all configurations,

bigger(+30% compared to +25%). It also shows that there is a larger deviation from the mean

value. The performance increase is bigger due to the more complex model in the pure mi-

croscopic simulation. There is of course an overhead due to the model switching mechanism.

The mechanism includes the aggregation of the agent at the front-detector, where the agent is

97

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

Distance to Macro Zone [m] 50
100

150
200

250
300

350
400

450

Length of Macro Zone [m]
50100

150
200

250
300

350
400

450

Cy
cle

tim
e

co
m

pa
re

d
to

M
icr

o
Si

m

≠40

≠30

≠20

≠10

0

10

≠32
≠24
≠16
≠8
0
8
16
24
32

Cy
cle

tim
e

co
m

pa
re

d
to

M
icr

o
Si

m

Figure 5.8: Dual lane performance comparison: Relative performance between microscopic and

multi-resolution mode. Cycle time reduction lessens when decreasing the length of the macro-zone.

removed from the microscopic simulation, the estimation of the re-entry cycle and the creation

of a ghost vehicle; and the disaggregation, where the agents is put back into the microscopic

simulation (see Sections 5.3.3.1 and 5.3.3.2). This overhead with regard to the entire simulation

run is shown in Table 5.1.

min% max% mean% σ

single-lane 9.3 14.5 9.4 ± 0.39

multi-lane 6.5 10.8 7.6 ± 0.74

Table 5.1: Model switching overhead

5.4.3 Model Fidelity

The model fidelity is determined between the multi-resolution simulation and the pure-microscopic

simulation. In order to quantify the differences, both simulations with the exact same starting

parameters and settings have been executed. This leads to each agent in the microscopic simu-

lation having an exact counterpart in the multi-resolution simulation. Two types of deviations

that occurs from the switching and the use of a macroscopic model are evaluated:

98

5.4 Model Evaluation of Multi-Resolution Simulation Model

• Agent State Deviation describes the difference between the individual state variables

of an agent (e.g., position on the road).

• Differences in Traffic Flow is a more statistical assessment of the influence of the

multi-resolution simulation. It is a macroscopic metric used instead of the individual

state based agents fidelity.

5.4.3.1 Agent State Deviation

In order to determine an agent’s state deviation by the proposed multi-resolution model, two

simulations (one micro and one multi-resolution) were used. Both simulation had the exact

same parameter. The road length of 5000 meters was used and number of vehicles was set to

100. Vehicles are spawned with a distribution of 3 : 3 : 3 : 1 of the vehicles classes discussed

previously. Both simulations contain a non-transparent obstacle (e.g., traffic light) at the exact

same position and are only opened when all agents have come to a full stop. This obstacle mimics

an intersection, where the vehicles are starting to accelerate at the same time. This intersection

is always placed before the macroscopic zone (front detector). In the multi-resolution simulation

model a macroscopic zone is placed at the 2000 meter mark. This is not present in the pure

microscopic simulation. The experiment setup is illustrated in Figure 5.6 on Page 96 and the

distance between the obstacle and the length of the macroscopic-zone are varied as in the

performance evaluation above. Once a vehicle leaves the macroscopic zone, its state is logged

in each of the simulations and analyzed after the simulation finishes. The root-mean-square for

the position (xrms) and velocity (vrms) deviation are calculated.

yrms ∈ {xrms, vrms} (5.18)

yrms =

√∑N
i=1(yimrs − yimicro)2

N
(5.19)

Since the rms value grows with positive and negative value differences, it only gives absolute

discrepancy information. A more fitting estimate for over- and underestimation of the agent

state variables is the root mean square of the ratio (y%rms) between multi-resolution simulation

and pure microscopic simulation.

y%rms =

√√√√∑N
i=1

(
yimrs

yimicro

)2
N

− 1 (5.20)

If the root-mean-square ratio is 0.0 then there is no significant difference between the micro-

scopic and multi-resolution simulation, but if the value is negative, the multi-resolution vehicles

99

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

have a smaller value (e.g., position behind microscopic simulation). This means they were

underestimated when aggregating. Should the value be positive, the multi-resolution vehi-

cles overestimated their projection values. These experiments were repeated 20 times and the

standard deviation (σ) to all values was calculated.

σy =

√∑20
i=1(yirms − yrms)

20− 1
(5.21)

The experiments were conducted with different ratios of microscopic and macroscopic regions.

This was done by changing the length of the macro-zones without changing the overall road

segment length constant. This leads to an increasing proportion of the road segment being han-

dled by the macroscopic model. Macro-zones length between 50 and 500 meters with 10 meter

increments (45 configurations) were chosen. Additionally, the distance from the intersection to

the beginning of the macroscopic-zone was varied. The same 50 to 500 meter and 10 meter

increment was applied there (45 configurations). This lead to a total number of 40,500 simu-

lation runs (45 · 45 · 20) in the single lane experiment and the same amount in the multi-lane

experiment.

Distance to Macro Zone [m] 50
100

150
200

250
300

350
400

450

Length of Macro Zone [m]
50100

150
200

250
300

350
400

450

Co
m

pa
re

d
to

M
icr

o
Si

m

≠40
≠35
≠30
≠25
≠20
≠15
≠10
≠5
0
5

≠25
≠20
≠15
≠10
≠5
0
5
10
15
20
25

Co
m

pa
re

d
to

M
icr

o
Si

m

Figure 5.9: Position deviation in percent on single-lane experiments: Longer macro-zones and

short distances to the macro-zone show the highest positional difference. Small deviation visible

for longer distance to the macro-zone regardless of the length of the macro-zone.

100

5.4 Model Evaluation of Multi-Resolution Simulation Model

The two parameters discussed previously are shown on the x and y-axis of Figure 5.9. The

z-axis shows the positional deviation in percent between the microscopic and multi-resolution

simulation. A negative value stands for an underestimation of the projected position after

disaggregation.

In the single-lane scenario the distance to the macro-zone is more important than the length

of the macro-zone itself. This can be observed since the values of the graph decrease when the

distance to the macro zone is below 200 meters for the distance to the macro-zone but not when

the length is changed. This only has a significant effect when the distance to the macro-zone is

already low.

For the multi-lane mode (number of lanes between 2 and 5), the results are similar. It

also shows that the distance to the macro-zone has a smaller influence than the length. Short

macro-zones and long distances to the macro-zone have the least influence on the deviation of

position.

50 100 150 200 250 300 350 400 450 500

Distance to Macro Zone [m]
50

100

150

200

250

300

350

400

450

500

Le
ng

th
of

M
ac

ro
Zo

ne
[m

]

0

2

4

6

8

10

Po
sit

io
n

an
d

Ve
lo

cit
y

Fi
de

lit
y

M
ap

[%
]

(a) Position and velocity deviation map for

single-lane experiments: Maximum percent devi-

ation for either velocity or position dependent on

the distance to macro-zone and the length of the

macro-zone. Distance to macro-zone bigger influ-

ence than the length.

50 100 150 200 250 300 350 400 450 500

Distance to Macro Zone [m]
50

100

150

200

250

300

350

400

450

500

Le
ng

th
of

M
ac

ro
Zo

ne
[m

]

0

2

4

6

8

10

Po
sit

io
n

an
d

Ve
lo

cit
y

Fi
de

lit
y

M
ap

[%
]

(b) Position and velocity deviation map for multi-

lane experiments with three lanes: Maximum per-

cent deviation for either velocity or position de-

pendent on the distance to macro-zone and the

length of the macro-zone. Distance to macro-zone

has bigger influence than length, except for very

short macro-zones.

Figure 5.10: Position and Velocity Deviation Maps

The map in Figure 5.10a shows the absolute maximum deviation from either position or

velocity (worst case for deviation) for the single-lane experiments. It can be seen that the

distance to the macro-zone has a bigger influence and is more volatile, but for road segments

that are at least 250m (50m length of macroscopic-zone + 200m distance to macroscopic-zone),

the deviation is below 10%. The same is shown in Figure 5.10b, except that there are fewer

101

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

areas with less than 2% deviation and more configurations lead to a higher than 10% deviation.

Also it can be seen that the distance to macro-zone is of influence since the fidelity gets worse

when the length of the macro-zone is really short.

5.4.3.2 Traffic Flow Deviation

After looking at the agents’ state deviation, the comparison of the traffic flow gives a more

statistical approach to the influence of the multi-resolution simulation. Therefore, the region

behind the macro-zone is examined. The tested scenario is depicted in Figure 5.11, where the

observed area in both simulations is shown. The traffic flow in both simulations from the cycle

when the first vehicle enters the zone in either simulation until the simulation run ended was

logged. A student’s T test, to disprove the hypothesis that there is no significant difference

(no macro zone)

post-macro zone

macro zone
length

traffic directionintersection

multi-resolution

microscopic

2000 m 5000 m

distance

Figure 5.11: Post macro zone flow comparison

between the two zones, has been conducted. This test shows that for a single-lane (p ≤ 0.773)

and a dual-lane (p ≤ 0.879) the null-hypothesis cannot be discarded and therefore the traffic flow

in both simulation shows no significant difference by introducing the multi-resolution model.

5.5 Application to real-world networks

In order to determine how simulation time and ultimately money can be saved when instead

of experimenting on a single road segment, a city-scale simulation experiment is to be run,

the results from the small-scale evaluation of a single road-segment described in Section 5.3

and evaluated in Section 5.4 are scaled up to a city-scale. Furthermore, utility-function scores

for (1) performance increase, (2) fidelity decrease and (3) trade-off (e.g., maximizing difference

between performance gain and fidelity decrease) scores are calculated. The ‘upscaling’ isn’t

done by implementing the multi-resolution simulation into a full-scale traffic simulation, but

rather by taking the results from evaluating different road configurations and fitting them to

the network characteristics of different mega-cites, treating each section as independent roads.

102

5.5 Application to real-world networks

Table 5.2: Lane Counts for Different Regions

Region Abbrev. # Links 1 Lane 2 Lanes 3 Lanes ≥ 4 Lanes

Bangkok bkk 201308 195218 1918 1813 2359

Beijing bei 262818 241519 14040 5815 1444

Chengdu ctu 86230 77978 2688 4541 1023

Shanghai sha 313077 275048 21107 10443 6479

Shenzhen szx 157127 149875 1330 5071 851

Singapore sgp 122291 118478 1859 1263 691

Tokyo tyo 864937 782338 74583 4885 3131

Los Angeles lax 928032 758849 85462 21708 62013

Montreal ymq 116917 79416 32593 3256 1620

New York City nyc 221719 197784 10043 9601 4291

Berlin ber 228086 185333 30834 8425 3494

London lon 616393 576824 27454 9381 2734

Moscow mow 401825 340293 31682 13235 16615

Munich muc 149829 127639 15810 4266 2114

Paris par 92100 87846 2252 739 1263

Rio de Janeiro rio 200439 182348 13222 3376 1493

Sydney syd 462748 430692 17984 11274 2798

Since in the experiments in Sections 5.3 and 5.4 it was assumed that the vehicles will start

form a stand-still initial position, similarly to a traffic light, it is assumed that the network

can therefore be broken down into road segments where to influence between the segments is

regulated through the traffic light. Furthermore, an analysis-based approach, with the results

from the previous sections, compared to a full simulation-based evaluation is much quicker and

need fewer computing resources. Additionally, the scenario setup of a city-scale simulation is

not easy, especially when the objective of the experiment is to find the possible multi-resolution

benefit for different regions, as it in done in this analysis. A high resolution (e.g., simulation-

based) analysis of major cities as done in this chapter is possible, but not a general methodology

for every (custom) network. The selected cities used for comparison are presented in Table 5.2

along with abbreviations and network characteristics used in this chapter.

The cities were chosen on the merit that they present different large cities with different

cultural areas. Network data for the given regions was obtained from OpenStreetMap (OSM)

crowd sourced data. Furthermore, the administrative region that defines the city has been taken

to reduce the OSM to the streets that actually belong to the city. This meta information is

present in the OSM data. It is necessary, since the export from OSM is always rectangular and

103

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

includes street that are outside the city boundaries. In Figure 5.12 which shows the exported

region of Berlin, Germany, as well as the administrative region Berlin, streets that are located

outside the marked area are discarded before the evaluation of a city is started.

Figure 5.12: OSM export compared to the administrative region of a city

Afterwards, the link information in terms of lane numbers and lane length is extracted.

From the multi-resolution experiments (see Sections 5.3 and 5.4), the performance and fidelity

information for different combinations of distances from the intersection to the macroscopic-

zone and length of the macroscopic-zone have been extracted. This resulted in 2116 (45 · 45 · 4)

combinations for lane counts from 1 to 4, where all links with more than 4-lane are counted in

the 4-lane category. To determine the different performance and fidelity values, the distance

from the intersection to the macroscopic-zone as varied between 50 meter and 500 meter (45

samples), as was the length of the macroscopic-zone (45 samples).

5.5.1 Data Analysis

In a first step of network analysis, all length and lane combinations were categorized into 10

meter bins that range from 100 meter to 1000 meter, whereas all links that are longer than

1000m were added to the 1000 meter bin. The lower limit of 100 meter and upper limit of

1000 meter mark the shortest and longest road segments that the multi-resolution experiment

104

5.5 Application to real-world networks

muc tyo lon par mow ber syd sgp lax rio ymq nyc szx bkk sha bei ctu
0

0.02

0.04

0.06

0.08

0.1

0.12

(a) For the selected regions, the links that are

eligible to use for multi-resolution modeling as the

percentage of all links in the network are shown.

muc tyo lon par mow ber syd sgp lax rio ymq nyc szx bkk sha bei ctu
0

20

40

60

80

100

120

(b) Average length in meter of links in a given

region

Figure 5.13: Links, for which MR-modeling can be applied, have to be at least 100m in length.

has data for (50/500m length to macroscopic-zone and 50/500m length of macroscopic-zone).

This gives a count of how many links have a length that is in a certain 10 meter interval. It

results in 91 bins for each of the 4 lane counts (1,2,3 and ≥4). In order to get the magnitude of

each of the links in comparison to all eligible links(length >= 100m), each count was divided

by the total number of links. This resulted in a relative lane-length count for all regions. The

percentage of eligible links can be seen in Figure 5.13a and the average length other all lanes

in a given region can be seen in Figure 5.13b.

In the next step, the best combination for a certain road length and utility function (per-

formance gain, fidelity lose or trade-off score) had to be determined. This means, iterating

over all possible distance-length combinations from the previous experiments, where the sum of

which is smaller than the total length of the length-lane value, and finding the best value given

by a certain utility function. This is done in order to make sure that the road-segment can

be divided into a pre macroscopic and macroscopic-zone. The fidelity of a city (fidelity(city))

in all evaluations is the geometric mean of the positional difference and the velocity difference

between the multi-resolution simulation and a pure microscopic simulation. Since the fidelity

of the pure microscopic simulation is the ground truth, the ratio between that value and the

deviation in the multi-resolution simulation is defined the fidelity difference. Performance (per-

formance(city)) is defined as how much computational time is required for the execution of the

multi-resolution simulation in respect to the microscopic simulation. The performance gain is

1-performance.

For this data analysis two different utility functions where used:

105

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

• Best Performance gain: determine the combination, which offers the highest perfor-

mance gain, disregarding the fidelity loss. (max(performance(city)))

• Best Trade off : maximizing the difference between performance and fidelity. This works

because the fidelity is highest when close to 1 and the performance is best when close to

0. (max(fidelity(city)− performace(city)))

These utility function values have been multiplied with the relative lane-length count to

weight them to all possible eligible links. The sum of all weighted utility values over all eligible

lanes is the total performance increase and fidelity loss. This only shows the increase and

decrease in respect to all eligible links. Additionally, the overall performance and fidelity values

have been calculated by multiplying the total values by the percentage of eligible links as

mentioned in Figure 5.13a.

5.5.2 Results and Discussions

Performance and Fidelity

Firstly, the best performance and fidelity measures for a given region are examined. In Fig-

ure 5.14 the performance gain values are shown. When simply using the best combination of

macroscopic-zone and distance to macroscopic-zone for performance without regarding the fi-

delity loss, the values can reach up to 40 per cent, but never below 35 per cent (red bars). When

looking at the trade-off number, where the utility function maximizes the difference between

performance gain and fidelity, the performance for the regions falls below 35 per cent. The

same trend between the regions can be observed. The Beijing(bei) and Los Angeles(lax) have

the highest values in the best performance case as well as in the trade-off case.

In Figure 5.15 the fidelity loss values for the same cases are shown. Here, the difference

between the best performance case and trade-off case are more pronounced. Paris(par), for

example, has, compared to other regions, one of the lowest fidelity loss values in the best

performance case, while in the trade-off case having the highest value. Overall, the fidelity loss

is below 25 per cent in the trade-off case but well above 35 per cent in the best performance

case.

In order to have a closer look, a scatter plot of the trade-off values where the performance

gain is shown on one axis and the fidelity loss on the other axis. Figure 5.16 shows that the

best performance and fidelity ratio have the cities in the bottom right corner. Beijing, Chengdu

106

5.5 Application to real-world networks

bei ctu sha bkk nyc szx sgp syd rio lax lon par ymq ber mow tyo muc

cityname abbreviation

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p
e
rf

o
rm

a
n

c
e

 g
a

in

performance gain when maximising the difference between perf and fidelity (trade-off)

performance gain when only taking the maximum performance gain into consideration

Figure 5.14: The performance gain with respect to different utility values is shown. Once the

trade-off value and then the performance-only value.

bei ctu sha bkk nyc szx sgp syd rio lax lon par ymq ber mow tyo muc

cityname abbreviation

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

fi
d

e
lit

y
 l
o

s
s

fidelity lose when maximising the difference between perf and fidelity (trade-off)

fidelity lose when only taking the maximum performance gain into consideration

Figure 5.15: The fidelity loss with respect to different utility values is shown. Once the trade-off

value and then the performance-only value.

107

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

and Shanghai have the highest performance gain while at the same time suffer from the lowest

fidelity loss.

The middle cluster consists of North American cities like New York and Los Angeles as

well as Singapore and Sydney. This similarity has its roots in similar urban development and

industrialization level of the regions. Bangkok, Shenzhen and Rio de Janeiro can be found here

as well. All these regions have a higher performance increase than fidelity loss, which is around

20 per cent.

The last cluster consists of European regions like London, Paris and Berlin as well as Tokyo.

They score the lowest in terms of performance gain over fidelity loss, which might be due to

their historically-grown networks that have been around for more than 100 years, which have

rather short links. This is supported by the values shown in Figure 5.13b, where the average

link length is depicted as well as Figure 5.13a, which shows the overall low number of links that

are longer than 100 meter.

0.29 0.3 0.31 0.32 0.33 0.34
0.14

0.16

0.18

0.2

0.22

0.24

0.26

bei

ber

lax

lon

mow

muc par

rio sgp

sha

syd

tyo

ctu

ymq

nyc

bkk

szx

Performance increase

F
id

e
lit

y
 l
o
s
s

Figure 5.16: Performance gain and fidelity loss on two axis. Three clusters have been identified.

Cities within these three main clusters are predominantly from the same cultural or geographical

region of the earth.

So far the evaluation focussed on the performance increase of the links that are eligible, but

overall performance increase has to take all links within a region into consideration. Therefore,

the performance numbers have to be multiplied by the percentage of eligible links from Fig-

108

5.5 Application to real-world networks

ure 5.13a. This results in the graph shown in Figure 5.17. It can again be seen, that the Asian

regions are leading the statistics with the highest performance increase of up to 7.5 per cent,

while the European cities and Tokyo go as low as below 1 per cent of performance increase.

The performance is a measure that expresses the computational time saved in comparison with

pure microscopic simulation, while the fidelity is the difference between the position and the

velocity of an agent after emerging from a macro-zone. An error here can propagate throughout

the entire system.

ctu bei sha bkk szx nyc ymq rio lax sgp syd ber mow par lon tyo muc
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 5.17: Overall performance increase in per cent.

Assumptions and Limitations

Using the OSM data set to determine characteristics of a road network of a city or region is very

much dependent on the quality of the data that is being added by the users of the openstreetmap

(OSM) platform. In different countries, the quality can vary. This could be one explanation,

why Chinese cities have a longer average link length in comparison to the European and North

American cities. Since this is the case for many cities within China, the layout and structure

of Chinese cities might just be better suited. In European cities, many of the streets and alleys

have been around for many 100 years and were converted to motorways with the onset of the

last century. This means they were not designed for motorized vehicles but rather horses and

109

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

are much shorter.

The performance for the different regions is very low, since the number of links that are

eligible in the respective networks is relatively small. The actual performance increase might

be higher due to the fact that the smaller roads are much less frequented and are therefore not

responsible for the majority of the simulation workload. In order to take this into consideration,

a detailed experiment with realistic travel patterns needs to be conducted.

5.5.3 Scalability concerns using Cloud Resources

What does that mean for cost savings when using the multi-resolution approach to speed up

the performance of the search-space exploration on the cloud? A definite answer to how much

cost can be saved can only be given when actually deploying simulations to the cloud, but

a rough model for estimating the cost can be developed. First and foremost, it depends on

how many interesting combinations have to be re-simulated using a high-resolution simulation.

As described in Section 5.1 the execution idea of exploring a large search space is to simulate

the entire search space using multi-resolution models and only re-simulating the interesting

parameter combinations in high resolution. In the following sections, a run-time model for

large-scale agent-based simulations as well as a simple cost model for two CPs (Amazon AWS

and Google Compute Engine) will be shown and evaluated on their usability for search space

exploration on the cloud.

Time Model

Since the price of cloud resources depends greatly on the duration they are use, a model de-

scribing the overall exploration time needs to be developed. The following equation shows how

much time a search-space exploration for a given space with n dimensions would take, given

these parameters.

N : set of dimensions

ni : number of values in dimension i

pint : percentage of interesting combinations

tMR : time to simulate one combination in multi-resolution

tHR : time to simulate one combination in high resolution

pperf : performance increase in per cent

(5.22)

110

5.5 Application to real-world networks

The performance increase ratio is calculated as follows:

pperf =

(
1− tMR

tHR

)
(5.23)

The pperf value is the the resulting performance value for a given region as described in Sec-

tion 5.5.1. It can be used to determine tMR by rearranging the above equation:

tMR = (1− pperf) · tHR (5.24)

The total time to explore the entire search space can be given as the following equation:

tSSE =
[|N |∏
i=1

ni

]
· ((1− pperf + pint) · tHR) =

[|N |∏
i=1

ni

]
· (tMR + pint · tHR) (5.25)

This includes the time it takes to simulate all possible combinations in multi-resolution as

well as pint percent in high resolution. As long as the overall performance increase using multi-

resolution simulation is larger than pint for a given region, the recalculation of an interesting

combination of values comes without extra cost.

Take an example city from the above region, cities such as Berlin, Paris or Tokyo, which

have a performance increase of less than 2 percent. This method might not be advisable, since

the percentage of interesting regions is expected to be higher. This, of course, depends greatly

on the use-case of the simulation. On the other hand, simulations of cities such as Chengdu or

Beijing benefit greatly.

Until now, the execution time to explore the search space assumed a sequential execution

on a single node. Using the scalability of the cloud, this could be done in parallel on many

nodes. There are two ways of exploring the search-space concurrently. One is to parallelize the

execution of a single simulation run and a second is to have each simulation run on a single node,

but to execute multiple parameter combinations at the same time or actually doing both. The

time to execute in parallel is a little different than just dividing the total time by the execution

time of one simulation. The high-resolution simulation of interest can only be done after all

multi-resolution simulations are completed or when an interesting parameter configuration has

been identified and resources are available. This also means that there can be different degrees

of parallelism, which reduces the overall costs. The total time for a parallel (tSSEpar) version

depends greatly on the degree of parallelism for the multi-resolution part DPMR and for the

high-resolution part DPHR.

tSSEpar =

[∏|N |
i=1 ni

]
· tMR

DPMR
+

[∏|N |
i=1 ni

]
· pint · tHR

DPHR
(5.26)

111

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

DPk ≤
[|N |∏
i=1

ni

]
· p(k)

k ∈ {HR,MR}

p(k) =

{
k = HR, pint

k = MR, 1.0

(5.27)

For most CPs, it is favorable to reduce the number of parallel-used instances to reduce the

overall costs. This is especially required when using ad-hoc instances. Since it is simple to

increase or decrease the number of instances allocated from CP, DPk should be adjusted.

Price Model

Following the model to determine the time and parallelization strategy for multi-resolution

search-space exploration, the influence in different pricing schemes will be evaluated. For this,

three pricing strategies will be taken into consideration.

1. Ad-hoc : Pricing without any saving strategy

2. pre-paid : As a cost saving strategy offered by AWS

3. sustained use: The cost reduction strategy offered by GCE

Each of the CPs have different prices per instance (ppi(c)) for virtual machines (VMs)

with different capabilities (c) in terms of number of CPUs, amount of main memory and disk

sizes. For VMs with higher capacities, the prices increase a lot, since they are running almost

exclusively on physical hardware resources in the data centers. This also means that the tk

(k ∈ {HR,MR})is dependent on what hardware-equivalent is chosen. Therefore, the time for

executing a multi-resolution (tMR) or a high resolution (tHR) simulation experiment depends

on the computational capability of the VM. The times tk(c) are also expressed as a function of

the capabilities c. The total price (Ptotal) of running a search-space exploration is the sum of

the price for running the multi-resolution part with a certain degree of parallelism (DPMR) and

the price for executing the high-resolution part with a specific degree of parallelism (DPHR).

Generically, the price can be state as follows:

Pk = ppi(c) · tk(c) ·
∏|N |
i=1 ni
DPk

· p(k) ·DPk (5.28)

The price Pk is determined by the ppi of a specific category of VM and the time this VM takes

to compute this task for the multi-resolution case. This value is multiplied with the number of

possible combinations to explore the search space devided by the possibilities that can be done

112

5.5 Application to real-world networks

Table 5.3: Example search space exploration parameter

parameter description value

|N | number of dimensions 4

n1 number of vehicles from 100k to 1000k in 50k increments 19

n2 percent of electric vehicles from 0% to 100% in 5% increments 21

n3
percent of carparks with charging stations

from 0% to 100% in 2% increments
51

n4 number of different charging behaviors 5

pint estimated percent of interesting combinations 0.01

Table 5.4: Execution time of multi- and high-resolution simulation as well as cost per instance

for different categories of computing capabilities (taken in Feb 2017).

category timeMR timeHR price in USD

tMR() tHR() ppi()

c1 3.7h 3.885h 0.076

c2 1.9h 1.995h 0.152

c3 1h 1.05h 0.304

c4 0.6h 0.63h 0.608

c5 0.35h 0.3675h 1.216

in parallel (DPk) and the percentage of parameter combinations that will be run in this mode

p(k). Lastly, the value is multiplied by the degree of parallelism DPk.

Example

The following example demonstrates the usefulness of the multi-resolution approach. The above

mentioned parameter values can be seen in Table 5.3. Furthermore, the capabilities are taken

from the GCE specification of different machine types with high CPU configuration, resulting

in 5 different capability categories. Since the execution time and price is a function of the

capability, the values for tMR, tHR and ppi have been determined empirically for one of the

combination with the assumption that the parameter choice does not influence the execution

time and are shown in Table 5.4. Since it is difficult to determine tht exact execution time

depending on the model parameter before running the actual simulation, a random combination

was chosen.

The price and time for this example is shown in Figure 5.18. The names of specific machines

used from the GCE correspond with Figure 3.1 on Page 31 (e.g., c1 corresponds to n1-standard-

1). It can be seen that using a higher capability machine increases the costs, but also decreases

113

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

the time to execute. The degree of parallelization describes how many parameter variations are

executed at the same time and also determines the number of VMs that need to allocated from

the CP. Parallelization also reduces the overall execution time. There is no upper limit on how

many instances can be used a the same time, but in the following experiments it is varied from

1 to 100 in step with the degree of parallelization. Since there is no benefit for reducing the

number of allocated instances at a given point in time by the CP, the price does not change,

due to the fact that the price scales linearly with the capabilities. The prices for each capability

(c1-c5) are constant with the degree of parallelization is due to the fact that it does not matter,

if a single instance is run n-times (e.g., n=100) consecutively or n instances are run concurrently

(see Table 5.4 on Page 113), when not taking price reduction into consideration.

10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

Degree of Parallelization

T
o

ta
l
E

x
e

c
u

ti
o

n
 t

im
e

 i
n

 h

10 20 30 40 50 60 70 80 90 100

2.8

3

3.2

3.4

3.6

3.8

4

4.2

x 10
4

T
o

ta
l
p

ri
c
e

 i
n

 U
S

D

time(c
1
) time(c

2
) time(c

3
) time(c

4
) time(c

5
) price(c

1
) price(c

2
) price(c

3
) price(c

4
) price(c

5
)

Figure 5.18: Computational time required to finish the experiment with a different number of

parallel executions and different capabilities. The price, determined by the pricing model given

in Equation 5.28, is also shown, but since the parallel instance costs as much as a sequential used

instance, there is no difference in pricing.

Alternatively, the GCE pricing model, which gives discount on sustained-use instances,

results in a similar execution time behavior depending on the capability c and the degree of

parallelism DP. In Figure 5.19 the effective price per hour for the different configurations is

shown instead of the total price of the execution of the search-space exploration. The execution

time for exploring the search space does not change and stays the same as shown Figure 5.18.

The price reduction scheme has been taken from the GCE pricing structure. There the first

25% of the month are full priced and with each following 25% of usage, the price drops by 20%

114

5.5 Application to real-world networks

for the next 25% (see Table 5.5). The figure shows that for sustained use the effective hourly

price is below the ad-hoc pricing.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Degree of parallelization

E
ff
e
c
ti
v
e
 p

ri
c
e
 p

e
r

h
o
u
r

in
 U

S
D

/h

sustained use (c
1
)

sustained use (c
2
)

sustained use (c
3
)

sustained use (c
4
)

sustained use (c
5
)

ad−hoc (c
1
)

ad−hoc (c
2
)

ad−hoc (c
3
)

ad−hoc (c
4
)	

ad−hoc (c
5
)

Figure 5.19: Sustained use pricing in comparison to adhoc pricing with degree of parallelization

Table 5.5: GCE pricing scheme for sustained use

Usage Level base rate percentage

0%-25% 1.0

25%-50% 0.8

50%-75% 0.6

75%-100% 0.4

A similar behavior can be see in Figure 5.20, where the Amazon Web Services (AWS)

pricing model is assumed. Under this model, users can pre-purchase VM instances of 1-or 3-

year contracts. The effective hourly price for such instances is about 62% or 39% of the ad-hoc

base rate.

The results show that the overall price when a large degree of parallelism is assumed is much

higher under the ad-hoc scheme. Using the pre-paid scheme with 1 and 3 year contracts reduces

the cost significantly, but eventually reaches the same price point as the ad-hoc instances. This

can be seen in Figure 5.20b. There, the step pattern in the dashed lines for the different

configurations show a significantly lower effective price. This nonetheless stops once the degree

of parallelism reduces the overall runtime below 1 or 3 years to have any benefit from the

115

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Degree of parallelism

E
ff

e
c
ti
v
e

 p
ri
c
e

 p
e

r
h

o
u

r
in

 U
S

D
/h

o
u

r

pre−paid (c
1
)

pre−paid (c
2
)

pre−paid (c
3
)

pre−paid (c
4
)

pre−paid (c
5
)

ad−hoc (c
1
)

ad−hoc (c
2
)

ad−hoc (c
3
)

ad−hoc (c
4
)

ad−hoc (c
5
)

(a) Pricing for ad-hoc and pre-paid instances in

AWS for 1 to 100 concurrent instances

0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

50

Degree of parallelism

E
ff

e
c
ti
v
e

 p
ri
c
e

 p
e

r
h

o
u

r
in

 U
S

D
/h

o
u

r

(b) Pricing for ad-hoc and pre-paid instances in

AWS for 1 to 30 concurrent instances

Figure 5.20: Pre-paid pricing for different degrees of parallelization

reduced price. Similar behavior can be seen in on the GCE sustained-use pricing scheme as

well, but with a higher degree of parallelism since the calculation period is not 1 or 3 years, but

rather a month.

While being a rather large, but not necessarily unrealistic example with a total of 101745

different combinations, the costs are high. It should only be considered should there be not

a different option on gaining access to a high performance cluster or if the use-case is very

singular. Only in this case, will the above benefits of on-demand cloud resources apply. The

trade-off between obtaining the search-space exploration results quickly, but paying a high price

(high degree of parallelization), or getting cheaper resources that will take longer have to be

a budgeting and urgency decision made by the researcher. A mix of resources of ad-hoc and

long-term contract (e.g., AWS 1-3 year contract) could be useful, when considering an entire

system of nodes for exploring a search space over a longer period of time. The saving using

pre-paid resources could be utilized for node that manage the search-space exploration while

ad-hoc nodes are used for actual simulations. Here, also spot instances from AWS, that have

an even lower price, but need to be bidden for in a marketplace, could help in lowering the

price even more, but have an even unpredictable long-term price structure that is usually not

favorable in a research environment.

5.6 Summary

The evaluation shows that a more than 20% performance increase compared to a pure micro-

scopic model using multi-resolution models can be achieved. The main factors that influence

116

5.6 Summary

the relative performance (pure microscopic vs. multi-resolution) is the complexity of the high-

resolution model and the length of the road segment. The longer the road segment, the more

time that can be spent in the macro-zone and therefore the less computing that needs to be

done. The side-effect of this is that the fidelity of the result decreases as well. It also shows

that a lower than 6% fidelity deviation on single-lane roads can be kept. This is given when the

macroscopic zone is at least 150m from an intersection. For a dual-lane road segment, a devia-

tion of less then 6% can be achieved when the macro-zone is at least 300m from an intersection

and 200m long. It has also been shown that the introduction of a macroscopic element into a

microscopic simulation does not change the traffic flow behind a macroscopic zone modeled.

In this chapter, we have shown that a simple multi-resolution approach to agent-based

traffic simulations can have a great performance improvement of the simulation. Nevertheless,

the performance improvement comes at a price of model fidelity. It has been shown that with

macroscopic metric there is no significant difference between a multi-resolution simulation and

a pure-microscopic one. With microscopic measures, a loss in fidelity is observed; however,

depending on the road configuration, this can be reduced to a minimum. Therefore, the second

part of this chapter dealt with the analysis of different road networks of large cities from around

the globe. This has shown that cities in Asia, especially China have characteristics that are

better suited for being used in multi-resolution simulations than cities in Europe and North-

America. The performance of the simulations can be improved in all tested cities, while at

the same time there is some fidelity loss. The amount of performance gain and corresponding

fidelity loss differs between the two extreme cases of Beijing, China and Munich, Germany.

While the performance gain is between 30 per cent in the Munich network and 33 per cent

in the Beijing network, the fidelity loss in Munich is close to 25 per cent and in Beijing only

around 15 per cent.

For the Cloud Simulation use-case, to explore the massive parallelism and ease of allocation

of additional resources, an evaluation of a simple time model for search-space exploration was

performed. This takes into consideration the results from the previous sections about the

overall performance gains (using multi-resolution modelling) in different kinds of road networks,

to develop a time model for simulations using such methodology to firstly simulate a search

space using the faster multi-resolution simulation and then identifying interesting combinations,

and re-simulate them using a high resolution simulation. There, the model that determines

the actual simulation time for different parameter combinations as well as resource use could

improve the time model’s accuracy.

117

5. CLOUD-BASED SEARCH SPACE EXPLORATION FOR TRAFFIC
SIMULATIONS

Future research should look into the dynamic creation of multi-resolution road segments

depending on the road conditions. Also, the static analysis for an entire country could lead

to an even bigger performance increase, since connecting highways or country roads are longer

which is favorable, since the macroscopic-zones can be longer which reduces the computation

time for these road segments.

118

Chapter 6

Conclusion

The main problems which this thesis tried to explore and give a possible solution to were

focused on the issue of how to enable researchers, engineers, policy makers as well as the general

users to use the cloud for high fidelity simulation experiments. This encompassed the topic of

interoperability between users of different domains and the connected knowledge gaps that are

present when complex systems like a traffic system of a large metropolitan area are simulated.

Additionally, the problem of different knowledge areas in the domain of computer engineering

for setting up high-performance computing infrastructure in the cloud as well as the optimal

utilization of such, was identified in the introduction chapter. Apart from the hardware and

system design aspect, the difficulty of creating, starting, monitoring and evaluating cloud-based

simulation scenarios is the biggest issue. All the above mentioned problems with running agent-

based simulation experiments in the cloud, come together into the problem that simulation of

complex systems does need expert knowledge and decisions are made within an exclusive circle of

people. By moving such decision-support tools to the cloud, where there are little constraints

on user-interfaces, hardware and software requirements, everyone can use the tools and will

therefore democratize the decision-making process significantly. On one hand, it allows the

average interested party to influence the decision by being better informed, but on the other

hand also allows decision makers to better explain why decisions have been made in a certain

way.

Within this thesis, the use-case was an agent-based simulation system for transport system

of mega-cities. This was chosen to illustrate the usefulness of creating a cloud service for such

large-scale agent-based traffic simulations. By introducing the general concept and a reference

architecture for a traffic simulation cloud service in Chapter 3, the foundation for using such

119

6. CONCLUSION

a system to conduct further studies was set. This approach of creating a collaborative and

hardware-independent complex-system simulation platform allows users with various forms of

domain knowledge but minimal technical expertise in computer engineering to create complex

system simulations in the context of traffic simulation. Subsequently, the questions of data

extraction of such big-data producing simulations were answered. There, it was shown that

it is inherently necessary to find a new paradigm of working and modeling with simulation

output data. This includes treating the data as relational data as done in RDBMS, including

the introduction of time-variant algorithms, as well as reducing the amount of data persis-

tently stored by the simulation, by doing on-line post processing instead. Ultimately, the main

chapters conclude with using cloud resources to conduct large-scale domain-space exploration.

This includes an optimization step of using multi-resolution modeling and hybrid-resolution

simulation execution to speed up a single experiment run, while only marginally sacrificing on

the fidelity of the results. The potential of this method is evaluated on different real-world

mega-city scenarios and a pricing as well as exploration-time model has been developed.

The gained insight into the workings of simulation experiment creation as well as collabo-

ration between users and researchers of various, but overlapping fields, can be applied not only

to vehicular traffic simulation, but also to general mobility scenarios. There, the challenges lie

within the added complexity and diversity of the users. It is even more important that the

technicalities of allocating resources and managing the execution of simulations is even more

abstracted and the model interfaces are defined properly. This could lead can lead to finding

transitive effects, where non-overlapping areas influence each other, but the domain experts are

not aware of their influence. This is outside the scope of this thesis, but could be an interesting

field for interoperability of simulation models of various fields. Furthermore, the individual

aspects of a simulation cloud service can be expanded. While within this thesis an overall

reference architecture as well as the topics of data extraction and domain space exploration

were covered, optimization of the entire workflow as well as an online cost model for cloud-

based simulation experiments are logical extensions. The actual execution optimization, from

not only using the a single computing machine for one simulation experiment, but utilizing on

distributed computing on cloud architecture with all its challenges of e.g. synchronization and

latency as well as data exchange on loosely coupled infrastructure is an interesting research

field and needs to be further investigated.

The research questions studied in this thesis focus on removing the technical overhead and

offering Application Programming Interfaces (APIs) for users, but it fails to conduct any user

120

studies, if this is what is wanted by the community. It is not out of the realm of expectation

that a little complexity in terms of configurability is wanted in order to not hinder the research

process by not allowing certain operations. This can only be examined with real-world user

studies. That includes human workflow behavior modeling as well as knowledge into human

machine interaction for next-generation simulation platforms.

In contrast to other approaches in the field, this thesis tries to give a solution for the specific

problem of agent-based simulation in the cloud. The respective problems were identified and

addressed, while at the same time offering a reference architecture with regards to how such

specific cloud system could look like. Furthermore, the field of mobility and transportation

simulation is a highly competitive field where many academic and commercial products are

available. Many of these have not yet capitalized on the possibilities of allowing users without

powerful computing hardware to execute large-scale simulation experiments by using cloud

resources. The approaches within the thesis may help to give developers and platform designers

a guideline on how to move such products to the cloud as well as present the complexity of

such an undertaking. This will not only help in the development of better simulation tools

and services, but ultimately improve the collaboration between related research fields as well

as aid in conveying of policy implications to the non-expert by democratizing the knowledge

generation from the wealthy institutions to everyone with an Internet connection.

121

6. CONCLUSION

122

References

[1] Michael F. Wehner, Kevin A. Reed, Fuyu Li, Prabhat, Julio Bacmeister,

Cheng-Ta Chen, Christopher Paciorek, Peter J. Gleckler, Kenneth R. Sper-

ber, William D. Collins, Andrew Gettelman, and Christiane Jablonowski.

The effect of horizontal resolution on simulation quality in the Community At-

mospheric Model, CAM5.1. Journal of Advances in Modeling Earth Systems, 6(4):980–

997, 2014. 1

[2] J.M. Epstein. Modelling to contain pandemics. Nature, 460(7256):687, 2009. cited

By 82. 1, 28

[3] Frank Seibt, Marco Schumann, and Jürgen Beikirch. Concept and compo-

nents for a web-based simulation environment (WBSE). SIMULATION SERIES

30, pages 189–194, 1998. 5, 12

[4] S. Narayanan. Web-based modeling and simulation. In Simulation Conference,

2000. Proceedings. Winter, 1, pages 60–62 vol.1, 2000. 5, 12

[5] Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the Modeling

and Simulation of Distributed Resource Management and Scheduling for Grid

Computing. CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERI-

ENCE (CCPE, 14(13):1175–1220, 2002. 5, 12

[6] E. Cayirci. Modeling and simulation as a cloud service: A survey. In Simulation

Conference (WSC), 2013 Winter, pages 389–400, Dec 2013. 5, 12

[7] S.J.E. Taylor, A. Anagnostou, T. Kiss, G. Terstyanszky, P. Kacsuk, and

N. Fantini. A tutorial on Cloud computing for Agent-based Modeling amp;

Simulation with Repast. In Simulation Conference (WSC), 2014 Winter, pages 192–

206, Dec 2014. 6, 12

123

http://dx.doi.org/10.1002/2013MS000276
http://dx.doi.org/10.1002/2013MS000276
http://www.scopus.com/inward/record.url?eid=2-s2.0-68449102017&partnerID=40&md5=f9347a2b4b6732451d13c40f639a9ed6

REFERENCES

[8] Cloud Security Alliance. Top Threats to Cloud Computing V1.0, 2010. 12

[9] Song Guo, Fan Bai, and Xiaolin Hu. Simulation software as a service and

Service-Oriented simulation experiment. In Information Reuse and Integration (IRI),

2011 IEEE International Conference on, pages 113–116, Aug 2011. 12

[10] A.A. Huqqani, Xin Li, P.P. Beran, and E. Schikuta. N2Cloud: Cloud based

neural network simulation application. In Neural Networks (IJCNN), The 2010 In-

ternational Joint Conference on, pages 1–5, July 2010. 13

[11] C. N. Hoefer and G. Karagiannis. Taxonomy of cloud computing services. In

GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pages 1345–1350, Dec 2010. 13

[12] S. Chaisiri, Bu-Sung Lee, and D. Niyato. Optimization of Resource Provision-

ing Cost in Cloud Computing. Services Computing, IEEE Transactions on, 5(2):164–

177, April 2012. 14

[13] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good.

The Cost of Doing Science on the Cloud: The Montage Example. In Proceed-

ings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 50:1–50:12,

Piscataway, NJ, USA, 2008. IEEE Press. 14

[14] Sayantan Sur, Matthew J. Koop, and Dhabaleswar K. Panda. High-

performance and Scalable MPI over InfiniBand with Reduced Memory Us-

age: An In-depth Performance Analysis. In Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. 14

[15] Adrian Mouat. Docker Security. OŔeilly Media, August 2015. 15

[16] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Develop-

ment and Deployment. Linux J., 2014(239), March 2014. 15

[17] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and

Nick McKeown. Reproducible network experiments using container-based em-

ulation. In Proceedings of the 8th international conference on Emerging networking ex-

periments and technologies, pages 253–264. ACM, 2012. 16

124

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241

REFERENCES

[18] Shashank Shekhar, Hamzah Abdel-Aziz, Michael Walker, Faruk Caglar,

Aniruddha S. Gokhale, and Xenofon D. Koutsoukos. A simulation as a service

cloud middleware. Annales des Télécommunications, 71:93–108, 2016. 16

[19] Jaume Barceló et al. Fundamentals of traffic simulation, 145. Springer, 2010. 17,

18, 19, 20

[20] David L Gerlough and Matthew J Huber. Traffic flow theory. Technical report,

1976. 18

[21] Reinhart Kuhne and Panos Michalopoulos. Continuum flow models. Traffic

flow theory: A state of the art reportrevised monograph on traffic flow theory, 1997. 18

[22] Wilco Burghout, Haris Koutsopoulos, and Ingmar Andreasson. Hybrid

mesoscopic-microscopic traffic simulation. Transportation Research Record: Jour-

nal of the Transportation Research Board, (1934):218–255, 2005. 19, 26

[23] Wilco Burghout. Hybrid microscopic-mesoscopic traffic simulation. Doctoral disserta-

tion, Royal Institute of Technology, Stockholm, 2004. 19, 86

[24] Moshe Ben-akiva, Michel Bierlaire, Haris N. Koutsopoulos, and Rabi Misha-

lani. Real Time Simulation of Traffic Demand-Supply Interactions within Dy-

naMIT, 2000. 19

[25] Andreas Horni, Kai Nagel, and Kay W. Axhausen, editors. The Multi-Agent

Transport Simulation MATSim. Ubiquity, London, UK, 2016. 19

[26] M Treiber, A Hennecke, and D Helbing. Congested traffic states in empirical

observations and microscopic simulations. Physical Review E, 62:1805–1824, August

2000. 20, 87

[27] Peter G Gipps. A behavioural car-following model for computer simulation.

Transportation Research Part B: Methodological, 15(2):105–111, 1981. 20

[28] Forschungsbesellscahft Kraftfahrwesen mbH Aachen. PELOPS White Pa-

per. 21

[29] Christoph Sommer, Reinhard German, and Falko Dressler. Bidirectionally

Coupled Network and Road Traffic Simulation for Improved IVC Analysis.

IEEE Transactions on Mobile Computing, 10(1):3–15, January 2011. 22

125

http://www.diva-portal.org/smash/record.jsf?pid=diva2:14700
http://www.ncbi.nlm.nih.gov/pubmed/11088643 http://pre.aps.org/abstract/PRE/v62/i2/p1805_1
http://www.ncbi.nlm.nih.gov/pubmed/11088643 http://pre.aps.org/abstract/PRE/v62/i2/p1805_1

REFERENCES

[30] David Ciechanowicz, Heiko Aydt, and Alois Knoll. SEMSim Power as an

Application of USES. In Proceedings of the IASTED International Symposium on Power

and Energy 2013, 2013. 22

[31] J.S. Dahmann and K.L. Morse. High Level Architecture for simulation: an

update. In Distributed Interactive Simulation and Real-Time Applications, 1998. Pro-

ceedings. 2nd International Workshop on, pages 32–40, Jul 1998. 22, 58

[32] Axel Wegener, Michal Piorkowski, Maxim Raya, Horst Hellbrück, Stefan

Fischer, and Jean-Pierre Hubaux. TraCI: An Interface for Coupling Road

Traffic and Network Simulators. In 11th Communications and Networking Simulation

Symposium (CNS), 2008. 22

[33] Michael Balmer, Marcel Rieser, Konrad Meister, David Charypar, Nicolas

Lefebvre, Kai Nagel, and K Axhausen. MATSim-T: Architecture and simula-

tion times. Multi-agent systems for traffic and transportation engineering, pages 57–78,

2009. 23

[34] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker.

Recent Development and Applications of SUMO - Simulation of Urban MO-

bility. International Journal On Advances in Systems and Measurements, 5(3&4):128–138,

December 2012. 23

[35] Moshe E Ben-Akiva. SMART–Future Urban Mobility. JOURNEYS, page 30, 2010.

23

[36] Katharina Meier, Alexandra Choutko, Jozica Dolenc, Andreas P. Eichen-

berger, Sereina Riniker, and Wilfred F. van Gunsteren. Multi-Resolution

Simulation of Biomolecular Systems: A Review of Methodological Issues. Ange-

wandte Chemie International Edition, 52(10):2820–2834, 2013. 25

[37] S. Wei, B. Cai, S. Li, Z. Liu, and J. Wang. Multi-resolution simulation strategy

and its simulation implementation of Train Control System. In Proceedings of

2011 IEEE International Conference on Service Operations, Logistics and Informatics,

pages 579–584, July 2011. 25

126

http://www.scs.org/confernc/springsim/springsim08/cfp/cns08.htm
http://www.scs.org/confernc/springsim/springsim08/cfp/cns08.htm
http://elib.dlr.de/80483/
http://elib.dlr.de/80483/

REFERENCES

[38] Paul F. ReynoldsJr, Anand Natrajan, and Sudhir Srinivasan. Consistency

maintenance in multiresolution simulation. Transactions on Modeling and Computer

Simulation (TOMACS), pages 368–392, 1997. 26, 86

[39] Gary Tan, WN Ng, and F Moradi. Aggregation/disaggregation in HLA multi-

resolution distributed simulation. In proceedings of the IEEE/ACM International

Symposium on Distributed Simulation and Real Time Applications, pages 76–83, Cincin-

nati, Ohio, USA, 13-15 Aug., 2001. IEEE. 26, 86

[40] Martin Adelantado and Pierre Siron. Multiresolution Modeling and Simu-

lation of an Air-Ground Combat Application. In proceedings of the 2001 Spring

Simulation Interoperability Workshop, Orlando, USA, 25-30 Mar., 2001. IEEE. 26, 86

[41] Wilco Burghout and H Koutsopoulos. Hybrid Traffic Simulation Models: Ve-

hicle Loading at Meso–Micro Boundaries. In proceeding of the International Sympo-

sium of Transport Simulation, Lausanne, Switzerland, 04-06 Sep., 2006. 26, 86, 93

[42] Anand Natrajan. MRE: a flexible approach to multi-resolution modeling. In

proceedings of the 11th Workshop on Parallel and Distributed Simulation, pages 156–163,

Lockenhaus, Austria, 10-13 June, 1997. IEEE. 26, 87

[43] B.Y.W. Chua and M.Y.H. Low. Predictive algorithms for aggregation and dis-

aggregation in mixed mode simulation. In proceeding of the Winter Simulation Con-

ference, pages 1356–1365, Austin, Texas, USA, 13-16 Dec., 2009. IEEE. 26, 87

[44] Seon Han Choi, Sun Ju Lee, and Tag Gon Kim. Multi-fidelity modeling &

simulation methodology for simulation speed up. In proceedings of SIGSIM-PADS

’14, pages 139–150, New York, New York, USA, 18-21 May, 2014. ACM. 26, 87

[45] Daniel Zehe, Alois Knoll, Wentong Cai, and Heiko Aydt. SEMSim Cloud

Service: Large-scale urban systems simulation in the cloud. Simulation Modelling

Practice and Theory, 58, Part 2:157 – 171, nov 2015. Special issue on Cloud Simulation.

27, 60, 66

[46] TS Saitoh, T Shimada, and H Hoshi. Modeling and simulation of the Tokyo

urban heat island. Atmospheric Environment, 30(20):3431–3442, 1996. 28

127

http://dl.acm.org/citation.cfm?id=259235
http://dl.acm.org/citation.cfm?id=259235
http://www.computer.org/csdl/proceedings/ds-rt/2001/1348/00/13480076.pdf
http://www.computer.org/csdl/proceedings/ds-rt/2001/1348/00/13480076.pdf
http://oatao.univ-toulouse.fr/4512/
http://oatao.univ-toulouse.fr/4512/
http://www.ctr.kth.se/publications/ctr2006_06.pdf
http://www.ctr.kth.se/publications/ctr2006_06.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=594601
http://dl.acm.org/citation.cfm?doid=2601381.2601385
http://dl.acm.org/citation.cfm?doid=2601381.2601385
http://www.sciencedirect.com/science/article/pii/S1569190X15000805
http://www.sciencedirect.com/science/article/pii/S1569190X15000805

REFERENCES

[47] M. Pipattanasomporn, H. Feroze, and S. Rahman. Multi-agent systems in a

distributed smart grid: Design and implementation. In Power Systems Conference

and Exposition, 2009. PSCE ’09. IEEE/PES, pages 1–8, March 2009. 28

[48] Dominik Pelzer, David Ciechanowicz, Heiko Aydt, and Alois Knoll. A price-

responsive dispatching strategy for Vehicle-to-Grid : An economic evaluation

applied to the case of Singapore. Journal of Power Sources, 256(0):345–353, 06 2014.

28

[49] Heiko Aydt, Michael H Lees, Stephen J Turner, and Wentong Cai. Toward

Simulation-Based Egress Optimization in Smart Buildings Using Symbiotic

Simulation. In Pedestrian and Evacuation Dynamics 2012, pages 987–999. Springer,

2014. 28

[50] Winnie Daamen. Modelling passenger flows in public transport facilities. DUP Science

Delft, the Netherlands, 2004. 28

[51] Qi Yang, Haris N Koutsopoulos, and Moshe E Ben-Akiva. Simulation labora-

tory for evaluating dynamic traffic management systems. Transportation Research

Record: Journal of the Transportation Research Board, 1710(1):122–130, 2000. 28

[52] Gabriele D’Angelo and Moreno Marzolla. New trends in parallel and dis-

tributed simulation: From many-cores to Cloud Computing. Simulation Modelling

Practice and Theory, 2014. 28

[53] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2, 2008. 35

[54] Ram Ratan Ahirwal and Manoj Ahke. Elliptic curve diffie-hellman key ex-

change algorithm for securing hypertext information on wide area network.

International Journal of Computer Science and Information Technologies, 4(2):363–368,

2013. 35

[55] Heiko Aydt, Yadong Xu, Michael Lees, and Alois Knoll. A Multi-Threaded

Execution Model for the Agent-based SEMSim Traffic Simulation. In Proceedings

of the 13th International Conference on Systems Simulation (AsiaSim), 2013. 41, 76

128

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt

REFERENCES

[56] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A

search meets graph theory. In Proceedings of the sixteenth annual ACM-SIAM sym-

posium on Discrete algorithms, pages 156–165. Society for Industrial and Applied Mathe-

matics, 2005. 41

[57] Ron Gutman. Reach-Based Routing: A New Approach to Shortest Path Al-

gorithms Optimized for Road Networks. In Proceedings 6th Workshop on Algorithm

Engineering and Experiments (ALENEX), pages 100–111. SIAM, 2004. 41

[58] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.

Contraction hierarchies: Faster and simpler hierarchical routing in road net-

works. In International Workshop on Experimental and Efficient Algorithms, pages 319–

333. Springer, 2008. 41, 42

[59] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.

The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science,

2006. 47

[60] Daniel Zehe, Vaisagh Viswanathan, Wentong Cai, and Alois Knoll. Online

Data Extraction for Large-Scale Agent-Based Simulations. In Proceedings of the

2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation,

pages 69–78. ACM, 2016. 57

[61] Vaisagh Viswanathan, Daniel Zehe, Jordan Ivanchev, Dominik Pelzer, Alois

Knoll, and Heiko Aydt. Simulation-assisted exploration of charging infras-

tructure requirements for electric vehicles in urban environments. Journal of

Computational Science, 12:1–10, jan 2016. 58, 76, 77

[62] David Ciechanowicz, Dominik Pelzer, and Alois Knoll. Simulation-based Ap-

proach for Investigating the Impact of Electric Vehicles on Power Grids. In

Proceedings of IEEE PES Asia-Pacific Power and Energy Engineering Conference 2015,

Nov 2015. 58, 76, 77

[63] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with

big data. Knowledge and Data Engineering, IEEE Transactions on, 26(1):97–107, Jan

2014. 58

129

http://books.google.com.sg/books?id=57UIPoLt3tkC

REFERENCES

[64] Wei Fan and Albert Bifet. Mining big data: current status, and forecast to

the future. ACM sIGKDD Explorations Newsletter, 14(2):1–5, dec 2012. 58

[65] Daniel Zehe, Wentong Cai, Alois Knoll, and Heiko Aydt. Tutorial on a Mod-

eling and Simulation Cloud Service. In Proceedings of the 2015 Winter Simulation

Conference, dec 2015. 58

[66] Rajiv Ranjan. Streaming Big Data Processing in Datacenter Clouds. IEEE

Cloud Computing, 1(1):78–83, may 2014. 58, 60

[67] Edgar F Codd. A relational model of data for large shared data banks. Com-

munications of the ACM, 13(6):377–387, jun 1970. 59, 62

[68] Hugh Darwen and C. J. Date. The Third Manifesto. SIGMOD Rec., 24(1):39–49,

mar 1995. 59

[69] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia,

Benjamin Reed, and Eric Baldeschwieler. Apache Hadoop YARN: Yet An-

other Resource Negotiator. In Proceedings of the 4th Annual Symposium on Cloud

Computing, SOCC ’13, pages 5:1–5:16, New York, NY, USA, oct 2013. ACM. 60, 75

[70] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica.

Discretized streams: an efficient and fault-tolerant model for stream processing

on large clusters. In Proceedings of the 4th USENIX conference on Hot Topics in Cloud

Ccomputing, pages 10–10. USENIX Association, jun 2012. 60

[71] Kyle Banker. MongoDB in Action. Manning Publications Co., Greenwich, CT, USA,

jan 2012. 60

[72] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured

storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40, apr 2010. 60

[73] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and Issues in Data Stream Systems. In Proceedings of the Twenty-

first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

PODS ’02, pages 1–16, New York, NY, USA, 2002. ACM. 61

130

http://doi.acm.org/10.1145/202660.202667
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/543613.543615

REFERENCES

[74] P.M. Kurowski. Engineering Analysis with SolidWorks Simulation 2012. SDC Publica-

tions, apr 2012. 61

[75] Sham Tickoo. Autodesk Simulation Mechanical 2015 for Designers. CADCIM Technolo-

gies, sep 2014. 61

[76] Johannes Schützel, Holger Meyer, and Adelinde M. Uhrmacher. A Stream-

based Architecture for the Management and On-line Analysis of Unbounded

Amounts of Simulation Data. In Proceedings of the 2Nd ACM SIGSIM Conference on

Principles of Advanced Discrete Simulation, SIGSIM PADS ’14, pages 83–94, New York,

NY, USA, may 2014. ACM. 61

[77] Johannes Schützel and Adelinde M. Uhrmacher. Targeted extration of sim-

ulation data. In Distributed Simulation and Real Time Applications (DS-RT), 2015

IEEE/ACM 19th International Symposium on, Oct 2015. 61

[78] Nadeem Mahmood, S. M. Aqil Burney, and Kamran Ahsan. A Logical Temporal

Relational Data Model. CoRR, abs/1002.1143, jan 2010. 62

[79] JoÃ£o Gama and PedroPereira Rodrigues. Data Stream Processing. In JoÃ£o

Gama and MohamedMedhat Gaber, editors, Learning from Data Streams, pages 25–

39. Springer Berlin Heidelberg, sep 2007. 72

[80] Charles E. Mackenzie. Coded Character Sets, History and Development. Addison-

Wesley, 1980. 74

[81] Daniel Zehe, David Grotzky, Heiko Aydt, Wentong Cai, and Alois Knoll.

Traffic Simulation Performance Optimization Through Multi-Resolution Mod-

eling of Road Segments. In Proceedings of the 3rd ACM SIGSIM Conference on Princi-

ples of Advanced Discrete Simulation, SIGSIM PADS ’15, pages 281–288, New York, NY,

USA, 2015. ACM. 83, 86

[82] Arne Kesting, Martin Treiber, and Dirk Helbing. General Lane-Changing

Model MOBIL for Car-Following Models. Transportation Research Record: Journal

of the Transportation Research Board, 1999:86–94, 2007. 88

[83] SP Hoogendoorn and PHL Bovy. State-of-the-art of vehicular traffic flow mod-

elling. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems

and Control Engineering, 215(4):283–303, 2001. 88, 90

131

https://books.google.com.sg/books?id=PbHcJ1bfmBcC
http://doi.acm.org/10.1145/2601381.2601399
http://doi.acm.org/10.1145/2601381.2601399
http://doi.acm.org/10.1145/2601381.2601399
http://arxiv.org/abs/1002.1143
http://arxiv.org/abs/1002.1143
http://dx.doi.org/10.1007/3-540-73679-4_3
http://doi.acm.org/10.1145/2769458.2769475
http://doi.acm.org/10.1145/2769458.2769475
http://trb.metapress.com/openurl.asp?genre=article&id=doi:10.3141/1999-10
http://trb.metapress.com/openurl.asp?genre=article&id=doi:10.3141/1999-10
http://pii.sagepub.com/content/215/4/283.short
http://pii.sagepub.com/content/215/4/283.short

REFERENCES

[84] D Helbing and A Hennecke. Micro-and macro-simulation of freeway traffic.

Mathematical and computer modelling, 35(5):517–547, 2002. 90

[85] Serge Hoogendoorn and Victor Knoop. Traffic flow theory and modelling. In

David Banister, Bert Van Wee, and Jan Anne Annema, editors, The Transport

System and Transport Policy: An Introduction, pages 125–159. Edward Elgar Publishing

Ltd, Cheltenham, United Kingdom, 2012. 90

[86] Arne Kesting, Martin Treiber, and Dirk Helbing. Agents for traffic simula-

tion. In Adelinde M. Uhrmacher and Danny Weyns, editors, Multi-Agent Systems:

Simulation and Applications, pages 325–356. CRC Press, Boca Raton, Florida, USA, 2008.

96

132

http://www.sciencedirect.com/science/article/pii/S089571770280019X
http://books.google.com/books?hl=en&lr=&id=_UwJWfgoOeEC&oi=fnd&pg=PA125&dq=Traffic+flow+theory+and+modelling&ots=4dq-GBQZ2I&sig=aobOGIRBMgKjhyafk6qlMhIGfCQ
http://arxiv.org/abs/0805.0300
http://arxiv.org/abs/0805.0300

Acronyms

API

Application Programming Interface 8, 9, 14, 15, 28, 30, 31, 38, 44, 45, 51, 55, 60, 67, 120,

Glossary: Application Programming Interface

AWS

Amazon Web Services 115, 116, Glossary: Amazon Web Services

CCA

CityMoS Cloud App xi, 52–54, Glossary: CityMoS Cloud App

CityMoS

City Mobility Simulator 9, 21, 22, 26, 29, 30, 37–39, 41, 49, 52, Glossary: City Mobility

Simulator

CP

Cloud Provider 4, 5, 12, 14, 15, 34, 41, 43, 52, 54, 84, 110, 112, 114, Glossary: Cloud

Provider

CS

Cloud Service 37, 38, Glossary: High-Performance Computing

DVU

Driver-Vehicle-Unit 37, Gloassary: Driver-Vehicle-Unit

EDF

Experiment Description File 32, 35, 37, 48, Glossary: Experiment Description File

133

Acronyms

GCE

Google Compute Engine xi, xiii, 13, 28, 31, 42–46, 52, 54, 68, 84, 112–116, Glossary:

Google Compute Engine

GUI

graphical user interface 28–30, Glossary: graphical user interface

HITS

Household Interview Travel Survey 42, Glossary: Household Interview Travel Survey

HLA

High Level Architecture 22, 24, 34, 58, Glossary: High Level Architecture

HPC

High-Performance Computing 2–5, 7–9, 14, 24, 25, 28–30, 37, 42–46, 50, 54, 55, Glossary:

High-Performance Computing

IaaS

Infrastructure as a Service 13–15, 30, 54, Glossary: Infrastructure as a Service

IDM

Intelligent Driver Model 87, 88, 92–94, 96, Glossary: Intelligent Driver Model

PaaS

Platform as a Service 14, 15, 30, 55, Glossary: Platform as a Service

REST

Representational State Transfer 8, 30, 67, Glossary: Representational State Transfer

SaaS

Software as a Service 15, 30, Glossary: Software as a Service

SEMSim

Scalable Electromobility Simulator xi, 8, 9, 11, 21–26, 29, 30, 37–39, 41, 49, 52, 57, 66,

67, 76, 77, Glossary: Scalable Electromobility Simulator

134

Acronyms

SSaaS

Simulation Software as a Service 12, Glossary: Simulation Software as a Service

VM

virtual machine 14, 16, 29–31, 33, 40–44, 51, 52, 55, 112, 114, 115, Glossary: virtual

machine

135

Acronyms

136

Glossary

Amazon Web Services

An online service for cloud-computing infrastructure provided by Amazon. It offers,

amongst others, Infrastructure as a Service (IaaS). 115

Application Programming Interface

Is a particular set of rules and specifications that a software program can follow to ac-

cess and make use of the services and resources provided by another particular software

program that implements that API. 8, 31, 120

Big Data

The term has been coined in the early 2000s and describes in what velocity, variety and

volume data is generated in a and needs to be processed in order to extract viable insights

into a system. 2, 9

City Mobility Simulator

An agent-based nanoscopic mobility simulation framework build on the foundation of

Scalable Electromobility Simulator (SEMSim). It extends the traffic simulation to a

holistic mobility simulation. 9, 22

CityMoS Cloud App

A software that runs platform independently and is used to execute simulation experi-

ments in the cloud or on a local machine. It uses templates to allow the user to get started

with simulation experiments quickly, without much configuration. xi, 52

cloud computing

Is the practice of using a network of remote servers hosted on the Internet to store,

manage, and process data, rather than a local server or a personal computer. 4, 5, 9

137

Glossary

Cloud Provider

A service provider on the Internet that allows users to allocate and use data-center re-

sources on a pay-per-use bases. 4, 84

Cloud Service

A service, usually on the internet, that is made available to users on demand through

APIs or web sites. 37

Docker

A lightweight container technology that allows developers to virtualize entire operating

systems without the overhead of a virtualization stack. 51–53

Docker container

A container format that is an instantiation of a Docker Image. This can be running or

stopped, but until delete or committed into a Docker Image all data is persistent only

inside the container. xi, 52, 54

Docker Machine

A software component that is part of the Docker software family. It allows to provision

computing resources capable of running Docker container. This can be on the cloud, a

local VM or a physical machine. 52–54

Driver-Vehicle-Unit

A concept of agent-based modeling and simulation, where the combination of driver-

behavior and vehicle-component models are used together. 37

Experiment Description File

A file containing all the information (e.g., input-file locations, model parametrization,

number of repetitions) to create a simulation experiment. 32, 48

Google Compute Engine

Is a service for cloud infrastructure like virtual machines, storage or networking provided

by Google Inc. It offers a IaaS. xi, 13, 84

138

Glossary

graphical user interface

Is a type of interface that allows a user to interact with an computer system through

graphical representation of icons and indicators. 28

High Level Architecture

Is a general-purpose architecture for distribute simulations. The communication between

simulation instances is satisfied regardless of the computing platform 22, 58

High-Performance Computing

A system of different computers that are used collectively to execute distributed applica-

tions. 2, 28

Household Interview Travel Survey

A reoccurring interview series conducted by the Land Transport Authority (LTA) in

Singapore to get insight into the travel patterns of 1 per cent representativity residents

of Singapore. 42

hypervisor

A software or hardware component that runs, manages and creates VMs. 16, 52

Infrastructure as a Service

Is the most basic cloud service model and provides the user with bare computing resources

(e.g., CPU, RAM, Network, Storage). Theses resources can be physical or virtual. 13

Intelligent Driver Model

Is a car-following model which is used to simulate freeway as well as urban traffic. 87, 88

macroscopic

A mathematical model that formulates the relationship in traffic flow between density,

flow and speed. It represents the lowest resolution in traffic simulation models. 8, 18–20,

85, 87–92, 94–101, 104–106, 118

mesoscopic

A simplified but computationally more efficient traffic model category. It takes aspects

from both, the macroscopic and the microscopic modeling paradigms into consideration.

8, 18, 19, 85

139

Glossary

microscopic

Simulation model or a set of models that are used in the context of traffic simulation

to characterize the granularity of the model. A microscopic model include usually only

very limited vehicle components and is mostly concerned with driving behavior (e.g.,

car-following and lane-changing models). xii, 8, 17–21, 23, 85, 87–101, 105, 116, 117

middleware

A piece of software that bridges communication and data exchange between two system

that wouldn’t share a mutual exchange protocol 8, 33, 34, 39, 40, 70–73, 79–81

nanoscopic

A simulation model or a set of models that are used in the context of traffic simulation

to characterize the granularity of the model. A nanoscopic model includes, in addition to

driving-behavior also vehicle-component models. 8, 18, 21, 23, 24, 85

Platform as a Service

Is a cloud computing service that provides a platform to develop, run and manage ap-

plications on. It removes the complexity and overhead of building and maintaining the

infrastructure associated with developing cloud-based services. 14

Representational State Transfer

Is an architectural style, and an approach to communications that is often used in the

development of web services. It can be seen as a API. 8

Scalable Electromobility Simulator

An agent-based nanoscopic traffic simulation framework as well as a power system simu-

lation platform for holistic transportation related questions. xi, 8, 76

Simulation Software as a Service

Is a specialized Software as a Service (SaaS) in the simulation domain. 12

Software as a Service

Is a software licensing and delivery model in which the software is provided on a subscrip-

tion bases and is centrally hosted (usually cloud). The users access the software through

thin clients or a web browser. 15

140

Glossary

virtual machine

Is an emulation of particular computer system in software. 14, 112

141

	Abstract
	Zusammenfassung
	Acknowledgement
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement

	2 Background of Research
	2.1 Cloud Computing
	2.2 Agent-based Traffic Simulations
	2.3 Traffic Simulations
	2.4 Multi-Resolution Modeling and Simulation

	3 Simulation Cloud Service
	3.1 Related Work
	3.2 General Architecture for Cloud-Based Simulation Services
	3.3 SEMSim Platform
	3.4 Performance Evaluation
	3.5 Templating for Simulation Experiments
	3.6 Summary

	4 Online Data Extraction for Large-Scale Agent-Based Traffic Simulations
	4.1 Related Work
	4.2 Formal Simulation Data Representation
	4.3 Online Data-Processing System
	4.4 Case Study
	4.5 Summary

	5 Cloud-Based Search Space Exploration for Traffic Simulations
	5.1 Introduction and Motivation
	5.2 Related Work
	5.3 Model description
	5.4 Model Evaluation of Multi-Resolution Simulation Model
	5.5 Application to real-world networks
	5.6 Summary

	6 Conclusion
	References
	Acronyms
	Glossary

