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Abstract

New lightweight materials, such as carbon fibre reinforced plastics (CFRP) allow a

significant reduction in structural weight. Specifically in high-volume production

areas, such as the automotive industry, current manufacturing technologies face a

twofold challenge: cost and cycle time. State-of-the-art composite braiding features

a highly automated and reproducible process combined with an excellent rate of

material deposition for mass-production at minimum waste, making it extremely

economic. As a result of deficient design experience and sizing methods for braided

composites, engineers rely on approaches developed for traditional unidirectional

composites. However, such a methodology cannot be applied to highly non-linear

problems, such as impact and crash, where the material exhibits a complex failure

behaviour as a result of its inherent textile nature including out-of-plane waviness,

interacting fibre bundles, and nesting of compacted plies.

In this work, a high-fidelity simulation framework for virtually predicting the non-

linear mechanical response of triaxial braided composites is developed. In the

first step, multiple braid architectures are investigated experimentally in order to

understand the driving mechanisms of damage initiation and propagation. Subse-

quently, meso-scale finite element unit cell models with a realistic internal geometry

are generated through an automated simulation work-flow by explicitly modelling

the manufacturing process: after resolving initial interpenetration by means of a

fictitious thermal step, a compaction simulation is performed to the desired target

fibre volume fraction. For improved computational efficiency, special out-of-plane

periodic boundary conditions allow an implicit consideration of the compaction of

multiple braid plies in different nesting configurations. After validating the simu-

lation framework against experimental data in terms of internal geometry, elastic

properties, non-linear behaviour and damage morphology, the material response

is predicted under variable uni-axial off-axis load cases. Finally, the effect of the

textile topology on the ultimate strength of the material is investigated.
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Kurzfassung

Der Einsatz neuer Leichtbauwerkstoffe, wie beispielsweise Faserverbundwerkstoffe,

findet aufgrund von potentiellen Gewichtseinsparungen ein immer breiteres An-

wendungsfeld. Jedoch stellen hohe Produktionsvolumina, wie beispielsweise in der

Automobilindustrie, heutige Fertigungstechnologien hinsichtlich Kosten und Zyk-

luszeiten vor große Herausforderungen. Dort gewinnen textile Preformverfahren,

darunter insbesondere das Flechten mit seinem hohen Automatisierungspotential,

hohen Ablegeraten und geringem Materialverschnitt, immer mehr an Bedeutung.

Gleichzeitig erfordert die dabei entstehende textile Faserarchitektur eine komplexere

und weitreichendere strukturmechanische Betrachtung als bei vergleichbaren unidi-

rektional verstärkten Laminaten. Für einen robusten Einsatz in hochgradig nicht-

linearen Anwendungen, wie beispielsweise Fahrzeugcrash, ist eine Berechnungs-

methodik zur Vorhersage des komplexen Werkstoffverhaltens, welches durch Faser-

welligkeiten, Interaktion von Faserbündeln, starker Heterogenität und dem Kom-

paktierungsverhalten einzelner Lagen beeinflusst wird, zwingend erforderlich.

In der vorliegenden Arbeit wird eine Berechnungsmethodik zur Vorhersage des

nichtlinearen Konstitutivverhaltens von Triaxialgeflechten entwickelt. In einem

ersten Schritt wird dazu das Versagensverhalten mehrerer Geflechtarchitekturen

experimentell untersucht. Anschließend wird eine Methodik entwickelt, um meso-

skopische finite Elemente Einheitszellenmodelle automatisiert zu erstellen. Eine

realistische Vorhersage der defektbehafteten textilen Geometrie wird durch eine

explizite Abbildung des Fertigungsprozesses mithilfe von Kompaktierungssimula-

tionen erreicht. Der Einsatz von periodischen Randbedingungen ermöglicht eine

implizite Betrachtung des Kompaktierungsverhaltens von Geflechten in verschiede-

nen Ablagekonfigurationen bei minimaler Rechenzeit. Nach einer umfangreichen

Validierung der Vorhersagegüte hinsichtlich textiler Geometrie, Steifigkeit, nichtlin-

earem Verhalten und zugehörigen Schägdigungsmechanismen, findet eine Vorher-

sage des Materials unter variablen Belastungszuständen statt. Abschließend wird

der Einfluss der textilen Architektur auf die Festigkeit untersucht.
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u(Â) (µm) . displacement field of equivalent points at a periodic boundary

expressed by coordinate vector Â
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1 Introduction

1.1 Motivation

Applying new lightweight materials, such as carbon fibre reinforced plastics (CFRP)

allows a significant reduction in structural weight and carbon dioxide emissions.

Specifically in high-volume production areas, such as the automotive industry, cur-

rent manufacturing technologies face a twofold challenge: cost and cycle time.

State-of-the-art composite braiding features a highly automated and reproducible

process combined with an excellent rate of material deposition for mass-production

at minimum waste, making it extremely economic. Yarns of several thousand car-

bon fibres are intertwined and positioned on a mandrel to produce geometries with

variable cross-sections which can subsequently be infused with a polymer resin.

Triaxial braids comprise an integrated structure of yarns oriented in three in-plane

directions, which makes them a well-suited choice for multi-axial loading. Their

natural through-thickness reinforcement promises excellent specific energy absorp-

tion characteristics in combination with a high degree of delamination resistance.

Following the increasing usage of composites in general, braiding has recently re-

ceived particular attention from the automotive industry. In addition to applica-

tions in the chassis of current electric vehicle platforms, such as the i3 or i8, BMW

has implemented a braided A pillar structure in their latest 7-series (G12), as is

shown in Fig. 1.1.

As a result of deficient design experience and sizing methods for braided composites,

engineers rely on approaches developed for traditional unidirectional composites.

Safety critical aerospace composite parts for example are typically not sized to

experience cracking in-service. In case textile composites are used, empirical knock-

down or safety factors on stiffness and strength can be incorporated during the

design phase in order to account for the textile architecture. However, such a

methodology cannot be applied to highly non-linear problems, such as determining

the catastrophic failure load of a structure or simulating its impact and crash

behaviour. Since the material exhibits a complex failure and damage behaviour as

a result of its inherent textile nature with its out-of-plane waviness, interacting fibre

1



2 1.2 Thesis scope

(a) (b)

Fig. 1.1: Application of triaxial braided composites in the automotive industry (a) Body-in-
White (BiW) of the G12 BMW 7-series (b) braided A pillar

bundles, resin pockets, and nesting of compacted plies, the constitutive response

experiences significant non-linearity before final failure. Additionally, the textile

architecture can vary significantly on a composite component with a multitude of

parameters effecting the material properties, such as braiding angle, yarn geometry,

waviness, and fibre volume fraction. Hence, the determination of robust material

properties by experimental test campaigns is highly cost- and time-intensive. The

experimental characterisation of a single material configuration may easily produce

costs of up to 100,000 e and take up several months.

1.2 Thesis scope

The primary aim of this thesis is to develop a high-fidelity simulation tool for

virtually predicting the non-linear mechanical response of triaxial braided com-

posites. Therefore, following a detailed literature study in chapter 2, a modelling

strategy was developed, which is outlined in Fig. 1.2. In the first step, multiple

braid architectures are investigated experimentally under multi-axial stress states.

Digital image correlation measurement (DIC) techniques and a high-speed camera

are used to quantify the effects of the textile architecture and its heterogeneity

on the surface strain fields, to identify and locate constituent failure mechanisms

and to understand the physics of damage initiation and propagation as a basis

for modelling in chapter 3. With the the driving physical mechanisms behind the

material non-linearity identified, a meso-scale simulation framework is developed

in chapter 4 which generates unit cell models of triaxial braided composites with

a realistic internal geometry by explicitly modelling the manufacturing process.

After validating the simulation framework against experimental data in terms of
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internal geometry, elastic properties, non-linear behaviour and damage morphol-

ogy, the material response is predicted under variable uni-axial off-axis load cases.

Finally, the effect of the textile topology on the ultimate strength of the material

is investigated in chapter 5.

The multiscale framework described in this thesis can be used as a general mod-

elling approach for conducting numerical simulations of other textile composites.

Aside from providing a valuable insight into how damage propagation is affected

by the underlying meso-structure, the predicted stress-strain curves can be used

to calibrate macroscopic material models suitable for large-scale impact and crash

simulations of braided composites.

Fig. 1.2: Overall modelling strategy
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1.3 Thesis outline

This thesis is subdivided into several chapters which address the step-by-step de-

velopment of a high-fidelity simulation tool for virtually predicting the non-linear

mechanical response of triaxial braided composites:

Chapter 2: Introduction to braiding technology

In chapter 2, an introduction to the braiding process technology is

given, including the determination of typical textile parameters and a

discussion of the main technological advantages and disadvantages of

the process.

Chapter 3: Experimental material characterisation

Chapter 3 provides the experimental baseline for the modelling method-

ology by investigating damage and failure of triaxial braided composites

under multi-axial stress states. Three braid architectures, comprising

braiding angles of 30◦, 45◦ and 60◦ are each loaded parallel to their

axial, transverse and braid yarn direction. Digital image correlation

measurement techniques are used to quantify the effects of the tex-

tile architecture and its heterogeneity on the strain field, to identify

and locate constituent failure mechanisms and to investigate damage

initiation and development. In order to identify the driving physi-

cal mechanisms behind the material non-linearity, the evolution of the

damage variable and the accumulated inelastic strain are quantified us-

ing incremental loading/unloading experiments. A high-speed camera

is employed in order to study the dynamic nature of catastrophic fail-

ure. This information further serves as a baseline for the development of

a numerical model for predicting the non-linear constitutive behaviour

of braided composites. Having identified the failure morphology to be

severely affected by the underlying textile architecture, the necessity of

a meso-scale modelling approach becomes evident.

Chapter 4: Development of a meso-scale simulation framework

Based on the modelling requirements and material behaviour identified

in the previous experimental work, a novel simulation framework for

accurate predictions of the the mechanical response of triaxial braided

composites is proposed in chapter 4. A simulation roadmap is intro-

duced and the individual steps are explained in detail: Realistic finite

element unit cell models are generated through an automated bottom-
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up simulation work-flow: local volumetric interpenetrations present in

the initial stage of the model are resolved in a fictitious thermal step.

Subsequently, a compaction simulation is performed to the desired tar-

get fibre volume fraction using flexible membranes for improved compu-

tational efficiency. Special out-of-plane periodic boundary conditions

allow an implicit consideration of the compaction of multiple braid plies

in different nesting configurations in order to capture global FVFs of

55 − 60% while using intra-yarn fibre volume fractions obtained from

experiments. In the last step, a tetrahedral matrix pocket mesh is

created from a CAD reconstruction of the deformed textile. A novel

meshing methodology is developed to incorporate branching cohesive

yarn-to-yarn and yarn-to matrix interfaces without the need of intro-

ducing an artificial matrix mesh of finite thickness. The framework is

validated by a detailed comparison with experimental results. The unit

cell geometry is compared to the detailed reconstruction of the actual

bundle geometry from µCT measurements for three braid architectures

under consideration. The excellent correlation of experiments and unit

cell predictions underlines the framework’s potential for future damage

modelling.

Chapter 5: Non-linear mechanical response

In chapter 5, the previously developed simulation framework is ex-

tended to the prediction of the the non-linear mechanical response of

triaxial braided composites. Numerical predictions are made by three-

dimensional finite element unit cells in two nesting configurations and

validated against experimental stress-strain curves and damage mech-

anisms. The progressive development of matrix cracks manifested in a

smooth degradation of the stress-strain curve up to the formation of a

plateau for matrix dominated load cases, while the underlying textile

architecture acted as a crack arresting grid and inhibited catastrophic

failure. The second damage mechanism was found to be intrinsic to the

textile architecture and prevailed in the presence of severe interfacial

stresses. A stable plateau in the stress-strain curves was correlated with

the rapid formation of large-scale delaminations followed by progressive

bundle pull-out, which was predicted qualitatively by the numerical

model. Although the investigated braid topologies exhibited consid-

erable geometric variability, the unit cell modelling approach with a

compacted geometry model built from average input parameters was

capable of correctly predicting the homogenised constitutive response,
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localisation, and damage evolution. Further, the mechanical response

was predicted under variable uni-axial off-axis load cases and the effect

of the textile topology on the ultimate strength of the material was

investigated. The meso-scale framework described in this paper can be

used as a general modelling approach for conducting numerical simu-

lations of other textile composites. Aside from providing a valuable

insight into how damage propagation is affected by the meso-structure,

the predicted stress-strain curves can be used to calibrate macroscopic

material models suitable for large-scale impact and crash simulations

of braided composites.

Chapter 6: Conclusions and future work

Chapter 6 concludes the experimental and numerical work presented

in this thesis. Finally, the developments achieved within this thesis are

addressed, the capabilities and limitations of the modelling approach

are discussed, and possible future improvements are highlighted.



2 Introduction to braiding

technology

2.1 Manufacturing of braided composites

2.1.1 Manufacturing process

Braiding is a textile manufacturing process that creates a reinforcing fibrous ar-

chitecture composed of interlacing yarns which is subsequently impregnated with

a polymeric resin and cured to form a braided composite material. Based on the

orientations of the majority of the yarns which can be tailored to a specific applica-

tion, they are classified as three-dimensional (3D) or two-dimensional (2D) braids

[7]. Following the basic principle of a traditional maypole dance, the latter are

produced as either flat or tubular preforms on circular braiding machines.

Around the centre of a maypole braider, the horn gears, which are notched discs

that serve as a transportation device for the yarn carriers are positioned around an

orbital ring. In these notches, two groups of yarn spool carriers move in opposing

directions on intersecting serpentine paths, with one half following a clockwise

and the other half a counterclockwise direction. Each time their paths intersect,

two yarns are intertwined in the conversion zone. As the carriers proceed along

the circumference of the machine, more and more interlacement points form an

interlocked fibre mesh that converges progressively towards the deposition plane

in the centre of the machine, where a pulling or take-up mechanism advances the

finished braid.

Two-dimensional braids can be manufactured without a mandrel, resulting in closed

sleeves that can be flattened, or as an helical overwrap on a mandrel in an over-

braiding process. Depending on the application, the mandrel remains within the

part as a permanent core or serves as a temporary moulding tool for subsequent

resin infusion of hollow structures. Automated braiding machines, such as the

radial machine for producing the rim base of CFRP wheels on a Porsche 911 shown

7
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Fig. 2.1: Radial braiding machine with 288 carriers for CFRP wheel production

in Fig. 2.1 use industrial six-axis robots to control the velocity and trajectory of

complex mandrel shapes through the convergence point for further tailoring of

the textile architecture. Multiple braided layers are achieved by either repeated

passing of the mandrel through a single machine, or by a continuous process through

multiple machines in series. Forming or guide rings ensure a consistent convergence

point of the yarns on the mandrel and allow reversing the braid direction during

the process [8]. Flat braided tapes can be accomplished without a mandrel by

inserting terminal horn gears at specific locations in a braiding machine. Here, by

reversing the direction of each carrier, a complete rotation cycle is prevented.

2.1.2 Braid parameters

The large variety of parameters offers many degrees of freedom in designing and

tailoring the material to the requirements of individual components. In addition to

the customisation of the constituent bundles, including the choice of the fibre type,

linear density, the number of filaments, and the twist, the textile architecture and

geometry are a product of several interconnected production process variables.
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2.1.2.1 Braid type and pattern

Similar to woven composites, braids are classified in terms of their characteristic

interlacement pattern shown in Fig. 2.2, which refers to the number of bias yarns

between each cross-over point. In case a braiding machine with four slots in each

horn gear is used, a diamond (1 × 1) or regular (2 × 2) pattern is achieved with

a full load configuration, where half of the available horn gear slots are populated

with yarn carriers. By selecting different initial positions of the carriers on the

track during the machine set-up, either of the two patterns can be realised [9].

A hercules (3 × 3) and 4 × 4 architecture are manufactured on braiding machines

with six and eight slots per horn gear, respectively. In a diamond architecture, each

positively oriented braid yarn alternately passes over a bias yarn and vice versa. As

the number of bridging bias yarns between two cross-over points increases, the ratio

of undulating to straight yarn path is minimised. Thus, the degree of degradation

of mechanical in-plane properties is expected to decrease [10–12]. On the other

hand, however, both the dimensional stability of the preform and the mechanical

out-of plane properties benefit from more intertwining points in the textile, with

the latter being desirable when designing impact critical structures [13]. Regular

braids offer a good compromise between their in-plane and out-of-plane mechanical

properties, which makes them one of the most commonly used braid patterns.1x1 diamond 2x2 regular 3x3 hercules 4x4

Fig. 2.2: Braid patterns referring to the number of bias yarns between each cross-over point

Whereas biaxial braids consist of two interlacing braid yarn directions, triaxial

braids are manufactured by incorporating additional axial bundles into the braid-

ing process from stationary guides. Fig. 2.3 underlines differences between a biaxial

and a triaxial braid for a tubular structure with a mandrel diameter of dM. The

braid yarns are coloured in red and blue, and the entrapped axial yarns are high-

lighted in green. Since the axial yarns are enclosed between the cross-overs of

undulating braid yarns, they are mostly devoid of crimp. While biaxial braids with

their two in-plane fibre directions benefit from predominantly uniaxial load cases,

such as a torque shaft, the reinforcing three in-plane fibre directions of triaxial
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braids make them a well-suited choice for multi-axial loading. Furthermore, the

mechanical properties can be further optimised by the choice of the axial yarns,

e.g. by controlling the relative axial yarn size, by using commingled bundles, or by

creating glass/carbon hybrid braids.

x

z

y

θθθθθθθθθθθθθθθθθ

θθθθθθθθθθθθθθθθθ

sbsbsbsbsbsbsbsbsbsbsbsbsbsbsbsbsb

sbsbsbsbsbsbsbsbsbsbsbsbsbsbsbsbsb

sasasasasasasasasasasasasasasasasa

dM

dM

Fig. 2.3: Comparison of biaxial and triaxial braid architectures for a regular braid pattern

2.1.2.2 Braiding angle

In contrast to weaves, where warp and weft bundles interlace orthogonally, the

bias yarns in braids overlap at an inclined angle with respect to the axial take-up
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direction. This additional degree of freedom in designing the material, denoted as

the braiding angle θ in Fig. 2.3 critically affects the mechanical properties of braided

composites and is directly controlled by the manufacturing process. Considering

the simplest case of a tubular mandrel guided through the centre of a braiding

machine, the braiding angle θ is determined geometrically by relating a bundle’s

projected axial length lcycle during a full carrier rotation to the circumference of

the mandrel UM with diameter dM. Assuming a constant axial take-up velocity vM,

the braiding angle is obtained from

θ = arctan

(

UM

lcycle

)

= arctan

(

UM

vMTcycle

)

. (2.1)

The cycle time Tcycle for a full carrier rotation considering the number of horn gears

in the machine Nhg is

Tcycle = NhgThg, (2.2)

and the time required for a carrier to travel half of the circumference of a single

horn gear Thg can be calculated from

Thg =
π

ωhg

=
1

2 fhg

. (2.3)

With the horn gear frequency fhg and angular velocity ωhg defined by the manu-

facturing process, Equation 2.1 is rewritten as

θ = arctan

(

2UM fhg

vM Nhg

)

= arctan

(

2 dM π fhg

vM Nhg

)

. (2.4)

Subsequently, the yarn spacing, which is the normal distance between the centre-

lines of two adjacent yarns as defined in Fig. 2.3 for circular cross-sections yields:

sa =
2π dM

Nc

; sb = sa cos(θ). (2.5)

When the mandrel is guided through the braiding point at an arbitrary trajec-

tory, including eccentricity and angling of the centre-line, or for complex shapes

mandrels, the resulting braiding angle varies across the entire component. Due to

the need to minimise cost- and time-intensive trial and error manufacturing itera-

tions, various process simulation models have been developed. Kinematic models

[12, 14, 15] neglect many important process parameters, such as yarn interaction
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and shape, contact with the guide ring, friction and gravity. However, their com-

putational efficiency allows to obtain acceptable process settings quickly, or even

optimise the machine and robot take-up speed profile for a desired target braiding

angle distribution. Many of the aforementioned modelling limitations are overcome

by performing FE simulations of the over-braiding process, although at the cost of

significant computational time [1, 16]. Using an explicit time integration scheme,

Hans et al. [1] discretised each yarn centre-line with chains of truss elements and

incorporated experimentally determined friction coefficients for potential contacts

of yarns, mandrel, and the guide-ring in order to predict the local braiding angle

and yarn spacing. When applied to a generic mandrel displayed in Fig. 2.4, the

simulation results showed a good correlations with experimental measurements,

with a maximum error between measured and predicted braiding angle of less than

5◦ at all points. When a constant fibre volume fraction (FVF) is assumed, the

braid ply thickness for biaxial braids can be estimated from the local spacing and

braiding angle of two adjacent braid yarns [17]. Thus, for the case of a pre-defined

mandrel, the design of an outer rigid tool greatly benefits from an available preform

thickness distribution. In case the outer shape of the part is known a priori, a tai-

lored mandrel can be derived from the process simulation. Typical braiding angles

range from 20◦ to 70◦, allowing for significant optimisation of the fibre directions

for structural design. The minimum and maximum braid angles are limited by

jamming of the yarns, which is related to the maximum shear distortion the braid

can sustain [9].

2.1.2.3 Cover factor

The textile architecture of braided composites can be open or closed, depending

on the ratio of spacing to yarn width. The cover factor CF quantifies the surface

area covered by fibres on a mandrel. For a 2D triangular unit cell of minimum

size highlighted in Fig. 2.5, in which the surface areas of the constituent yarns

are correctly represented, the cover factor is obtained by relating the covered to

the total area, or equally by the ratio of uncovered area Ao to the total area At.

With the local braid yarn spacing sb and width wb, the cover factor for a biaxial

architecture is described by:

CFbiax = 1 −
Au

Abiax

= 1 −
(sb − wb)2

s2
b

=
2wb

sb

−
(

wb

sb

)2

. (2.6)
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Fig. 2.4: FE simulation model of the braiding process for a generic curved mandrel using truss
elements [1]

For a triaxial topology, the additional coverage of the axial yarns must be taken

into account. Considering a minimum unit cell of twice the original size of the

biaxial case, the uncovered area is subdivided into three potential zones:

CF triax = 1 −
Au,1 + Au,2 + Au,3

Atriax

. (2.7)

A potential overlapping of braid and axial bundles is considered by a relative con-

tribution of each zone to the overall cover factor defined as:

CF triax = 1 −
1

s2
b

[

1

8
max

(

0, sb − 2wb − 2wa cos(θ)
)2

→ Au,1

+
1

8
max

(

0, sb − 2wa cos(θ)
)2

→ Au,2

+
1

2
max

(

0, sb − 2wa cos(θ)
)

(

sb − wb −
1

2
max

(

0, sb − 2wa cos(θ)
)

)

→ Au,2

+
1

2
min

(

sb − wb,
3

2
sb − wb − wa cos(θ)

)2
]

. → Au,3

(2.8)

When superior mechanical properties are desired, braids are commonly designed

to be closed, which implies a cover factor of close to one. While gaps in between

the bundles are closed, the overall fraction of resin pockets is minimised. Following
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Fig. 2.5: Geometrical derivation of the cover factor for biaxial (left) and triaxial (right) braids

a successive gain in FVF, the mechanical properties improve [18]. Although the

extent of this increase is hard to quantify directly, the cover factor provides a

valuable qualitative assessment of a potential degradation and the corresponding

location during over-braiding of the first ply. In addition, it can be applied to

maximise local fibre coverage particularly for complex mandrels with geometrical

discontinuities and high curvature by optimising the transient process parameters.

Dry yarns consist of thousands of contacting filaments. When subjected to external

forces, their cross-sectional shape can change significantly. Specific to a combina-

tion of process parameters and material properties, including for example local yarn

tension and twist, the bundle width and thickness can vary between an upper and

a lower bound. As a consequence, three potential states can be distinguished in

Fig. 2.6 for a braid depositing on a circular mandrel. Jamming occurs, in case the

core diameter decreases, the fibre bundles try to accommodate to the underlying

mandrel by squeezing together laterally. After the bundles reach their minimum

width wb,min and maximum thickness, they will no longer be able to adjust to the

core and form a closed sleeve with a diameter bigger than that of the core. The

optimum process point is achieved, when the cover factor just approaches a value

of one. Yet, yarns are highly spread and cover the perimeter with their maximum

width and minimum thickness, resulting in a reduced undulation amplitude and

hence excellent mechanical properties. For open braids, the perimeter of the core

cannot be fully covered by the yarns, although they are depositioned at their max-

imum width wb,max. Gaps and a high amount of resin pockets in combination with

low FVF then correlate with poor mechanical properties.
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Fig. 2.6: Jammed, closed, and open braid deposition state on a circular mandrel

2.1.2.4 Volume fractions and areal weight

Since the fibres are the main load carrying elements in the composite, their per-

centage has a direct effect on mechanical properties of the material. The global

FVF ϕF relates the fibre volume VF to the total volume V according to:

ϕF =
VF

V
. (2.9)

Braided composites are composed of impregnated fibre bundles and neat resin

pockets. Thus, the FVF must be homogenised over a large enough domain of at

least one unit cell to be representative of the material. Additionally, the local

intra-yarn FVF κ, also denoted as the yarn packing density [19, 20] is defined as

the fraction of fibre volume VF,yarn to total volume Vyarn inside the bundles:
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κ =
VF,yarn

Vyarn

. (2.10)

For a triaxial braided composites, the global FVF and the intra-yarn FVF are

interconnected through the relative contribution of the yarns in axial Va and braid

direction Vb as

ϕF =
Va κa + Vb κb

V
, (2.11)

where the total volume V is the sum of axial yarns, braid yarns, and matrix pockets

Vm:

V = Va + Vb + Vm. (2.12)

Contrarily to the global FVF which can be experimentally measured by several

techniques, e.g. by physically removing the matrix by digestion or ignition [21],

the determination of the intra-yarn FVF is hindered by the complexity of a re-

liable segmentation and measurement of the yarn volume. As a workaround, the

calculation can be performed on individual bundle cross-sections obtained from mi-

crosections or X-ray computed tomography. Thus, Equation 2.10 can be rewritten

to instead account for the total cross-sectional area Ayarn and fibre cross-sectional

area AF,yarn which contains a known quantity of NF fibres of cross-sectional area

Asf:

κ =
VF,yarn

Vyarn

=
AF,yarn

Ayarn

=
NF Asf

Ayarn

. (2.13)

The fibre areal weight FAW quantifies the mass of fibres mF per surface area AF

of the preform as

FAW =
mF

AF

=
ρF VF

AF

= ρF tF = ρF ϕF t (2.14)

where the average ply thickness t can be calculated for a desired target FVF ϕF or

vice versa, in case the fibre density ρF is known and equal for both bias directions.

With the definition of the linear yarn density µF,yarn as the ratio of yarn mass

mF,yarn per length lF,yarn written as

µF,yarn =
mF,yarn

lF,yarn

, (2.15)



2.1 Manufacturing of braided composites 17

and the crimp factor c, which is the ratio of undulating yarn length Lu’ to projected

length Lu given as

c =
Lu’

Lu

, (2.16)

the fibre areal weight of a biaxial braided composite FAW biax can be expressed

after eliminating the length of the braid on the mandrel lM:

FAW biax =
mF,b

AM

=
Nc mF,yarn,b

dM π lM

=
Nc µF,yarn,b

c

cos(θ)
dM π

=
2 c µF,yarn,b

sb

.

(2.17)

The thickness of a single biaxial ply tbiax can then be obtained after substituting

Equation 2.14:

tbiax =
2 c µF,yarn,b

sb ρF,b ϕF

. (2.18)

For a triaxial braided composite with equal bias yarns, the fibre areal weight

FAW triax is

FAW triax =
mF,a +mF,b

AM

=

Nc

2
mF,yarn,a +Nc mF,yarn,b

dM π lM

=

Nc

2
µF,yarn,a +Nc µF,yarn,b

c

cos(θ)
dM π

=
µF,yarn,a cos(θ) + 2 c µF,yarn,b

sb

.

(2.19)

Due to the axial bundles commonly exhibiting only minor undulations, the appli-

cation of the crimp factor is confined to the braid bundles. Equation 2.14 is valid

for triaxial braided composites only if the fibre density in the axial and the braid

bundles are identical. In order to obtain a more generalised formulation, the ratio

of axial fibre volume VF,a to global fibre volume content VF is derived first as a
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function of the braiding angle, the crimp ratio, and the respective linear yarn and

fibre densities, or equally, as a function of the cross-sectional yarn ratios:

VF,a

VF

=
tF,a

tF
=

Nc µF,yarn,a

2 ρF,a

Nc µF,yarn,a

2 ρF,a

+
Nc µF,yarn,b c

ρF,b cos(θ)

=
1

1 +
2 c

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

=
1

1 +
2 c

cos(θ)

AF,yarn,b

AF,yarn,a

=
1

1 +
2 c

cos(θ)

NF,b Asf,b

NF,a Asf,a

.

(2.20)

The average thickness of a single triaxial ply ttriax is then calculated by

ttriax =
1

sb ϕF

(

µF,yarn,a cos(θ)

ρF,a

+
2 c µF,yarn,b

ρF,b

)

. (2.21)

It is important to note, however, that Equation 2.18 and Equation 2.21 provide

only an estimation of the ply thickness in a multi-layered braided composite lam-

inate. When multiple layers are stacked and compacted during the resin infusion

process, the final cured ply thickness is controlled by a phenomenon called nesting.

Depending on the geometrical alignment of layers, their textile architecture, and

the compaction behaviour of the constituent dry yarns, inter-yarn voids can be

closed. Thus, an irregularly shaped interface in between plies is created and the

global FVF increases. Lomov et al. [22] concluded that nesting in triaxial braids

is a compromise between two competing effects: on the one side, the axial yarns

increase the overall waviness in the braid yarns and hence promote nesting. On

the other side, they also prevent ultimate nesting, similar to long floats in twill

weaved. Although the outcome of a single simulation in maximum nesting config-

uration suggested that the axial yarns tend to prevent effective nesting compared

to biaxial braided composites, no clear trend was visible in the results obtained

from Monte-Carlo simulations. Endruweit and Long [23] found that due to the

significant periodic thickness in triaxial braids caused by the insertion of axial

yarns, nesting is more pronounced for triaxial than for biaxial braids. In this case
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denoted ’structural nesting’, sections devoid of axial bundles are filled by their ad-

jacent layer’s equivalent. Additional nesting can occur, in case bundles of adjacent

plies are shifted in such a way that voids in between the undulating braid bundles

are filled. Then, local bending effects can give rise to additional fibre waviness in

the axial yarns and an overall increase of nesting. Birkefeld et al. [24] confirmed

this tendency by measuring significantly higher nesting factors in triaxial braids

compared to biaxial braids for multiple braiding angles.

Finally, by rewriting Equation 2.20 to account for the total volume instead of the

fibre volume of the axial yarns, with

Va κa

V ϕF

=
ta κa

ttriax ϕF

=
1

1 +
2 c

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

,
(2.22)

an expression for the relative volume and thickness ratio of the axial yarns, the

braid yarns, and the matrix pockets can be derived:

Va

V
=

ta
ttriax

=
ϕF

κa

(

1 +
2 c

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

)

Vb

V
=

tb
ttriax

=
ϕF

κb

(

1 +
2 c

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

)

Vm

V
=

tm
ttriax

= 1 −
Va + Vb

V
= 1 −

ta + tb
ttriax

.

(2.23)

2.1.3 Advantages and constraints

The use of braided composites offers a variety of unique advantages, such as:

• a high potential for process automation allows for part mass production, such

that recurring costs and cycle time can be significantly reduced compared to

hand lay-up methods. In order to achieve a completely integrated manufac-

turing process chain, a single or multiple braiding machines can be incor-

porated in a fully automated work cell. Collaborating robots continuously

guide the mandrel, starting from over-braiding of multiple layers at an opti-

mised take-up trajectory. Yarn tension and horn gear speeds are controlled

electronically by an on-line inspection system which continuously assesses the

finished textile architecture. Additional circumferential fibres can be intro-
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duced by integral hoop winding. The finished preform is then automatically

cut and further passed to the injection station that employs e.g. a resin

transfer moulding (RTM) step. After subsequent curing, de-moulding, and

final machining, the finished component is measured and checked in an auto-

matic quality assurance system. Such an integrated system was successfully

built by A&P Technology for over-braiding large composite structures. The

’Mantis’ work cell incorporates fully automated control over all braiding pa-

rameters, a vision system for on-line inspection, a laser projection system,

and circumferential winding [25].

• near-net shape manufacturing, minimising expensive scrap material and the

need for additional machining.

• geometric flexibility with the capability to accommodate to complex and

varying cross-sectional shapes. Typical applications comprise elliptical, tri-

angular, rectangular, trapezoidal and asymmetric shapes. Using folding or

cutting techniques, open cross-sections can be realised.

• possibility to directly integrate load introduction and functional elements

during the preforming process, including bushings, connectors, and flanges,

thus minimising subsequent machining and assembly steps [12].

• hybridisation of the textile architecture, with the goal of achieving advantages

in the manufacturing process or tailoring the mechanical properties. By using

glass fibre yarns with a lower cross-sectional area and material cost compared

to carbon fibres for the braid direction, the time in between reloading of the

carriers in a continuous process can be drastically extended. Additionally,

the combination of glass and carbon fibre bundles can also be exploited for

designing composite materials that exhibit a high strain to failure [26].

• the textile architecture can function as a natural crack arresting grid, re-

sulting in a higher strain to failure and damage tolerance compared to tape

laminates [27, 28]. The accompanying mechanical behaviour can be desir-

able in designing structures for crashworthiness with a high specific energy

absorption [29].

Despite the many advantages, the design and manufacturing of braided composites

also poses a number of challenges:

• despite its high flexibility, the manufacturing process imposes several con-

straints on the textile architecture. With a fixed number of yarns involved

in braiding and their geometric shape varying within certain boundaries, the

fibre coverage and the braiding angle are interdependent parameters. Hence,



2.1 Manufacturing of braided composites 21

for a given arbitrarily shaped component, it is not possible to optimise both

parameters at the same time in order to obtain specifically tailored mechan-

ical properties [9].

• concave parts cannot be manufactured directly.

• minimum and maximum practical braid angles are commonly confined to 20◦

and 70◦, respectively [9].

• the braiding process produces considerable variability in the textile architec-

ture and hence in the resulting mechanical properties [13].

• frictional forces between sliding yarns causes several fibres to break at each

cross-over point until each bundle deposits on the mandrel. Hence, some

fibre dominated mechanical properties are diminished [30]. The severity of

this degradation is amplifies by increasing yarn tension and machine diameter,

as the latter is typically accompanied by a higher carrier count that produces

more bundle cross-over points.

• a specific mandrel or core must be developed for each individual component.

Additional complexity is added to manufacturing process, in case the core is

removed after curing.

• with a given diameter and carrier number, each braiding machine is optimised

for parts of a specific size. For a given pattern, yarn type and coverage, only

mediocre variations in part dimensions are possible.

• for conventional braiding machines without an automated spool changing

system, the duration of a single production run is governed by the amount

of material that can be contained on the spools. While the inertia forces

generated by their rotation either limit the horn gear speed or the fibre mass

on each spool, the latter additionally succumbs to space constraints during

carrier movement.

• the complexity of the development process, including an iterative machine

set-up to obtain full coverage of the mandrel and the need to characterise the

mechanical and geometrical properties of a variety of textile architectures. To

address this challenge, the development of a virtual process chain, including

braiding process simulation and the prediction of the mechanical properties

by means of virtual testing is key to address the high variability in the textile

architecture.





3 Experimental material

characterisation

In this chapter, damage and failure of triaxial braided composites under multi-

axial stress states is investigated. In order to introduce different multi-axial stress

states in the material, uni-axial tensile tests are performed at different off-axis

orientations. Three braid architectures, comprising braiding angles of 30◦, 45◦ and

60◦ are each loaded parallel to their axial, transverse and braid yarn direction.

Digital image correlation measurement techniques are used to quantify the effects

of the textile architecture and its heterogeneity on the strain field, to identify and

locate constituent failure mechanisms and to investigate damage initiation and

development. In order to identify the driving physical mechanisms behind the

material non-linearity, the evolution of the damage variable and the accumulated

inelastic strain are quantified using incremental loading/unloading experiments. A

high-speed camera is employed in order to study the dynamic nature of catastrophic

failure.

The triaxial braids within this study exhibited severe non-linearities in the mechan-

ical response before final failure as a result of extensive matrix cracking. While the

underlying textile architecture was found to slightly reduce the elastic properties

compared to equivalent tape laminates, it functions as a natural crack arresting

grid. As a result of this mechanism, braids under certain load conditions were

capable of withstanding a higher strain to failure, even if a large portion of the

specimen surface was saturated with matrix cracks. The accompanying mechani-

cal behaviour can be desirable in the design of crash absorbing or pseudo-ductile

materials. An additional failure mode intrinsic to the textile architecture was en-

countered for loading in the heavily undulated braid yarn direction. Due to yarn

straightening and out-of-plane movements, braided composites were found to fail

as a result of large scale delaminations accompanied by progressive fibre bundle

pull-out.

23
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3.1 Introduction

In high-volume production areas, such as the automotive industry, current manu-

facturing technologies face a twofold challenge: cost and cycle time. Two-dimensional

(2D) triaxial braids comprise an integrated structure of yarns oriented in three in-

plane directions, which makes them a well-suited choice for multi-axial loading.

Their natural through-thickness reinforcement promises excellent specific energy

absorption characteristics [28] in combination with higher delamination resistance

compared to tape laminates [30, 31]. Mechanical in-plane properties, however, suf-

fer from the textile nature of braids, as the intertwining yarns inevitably exhibit a

certain degree of out-of-plane and in-plane waviness. Hence, a reduction of stiffness

and strength can be observed compared to unidirectional composites. The inherent

textile nature, which includes a multitude of curved yarn interfaces, resin rich areas

and nesting of multiple plies, yields a complex damage and failure behaviour. In

addition, the manufacturing process creates a heterogeneous fibre assembly which

can cause significant variations of the material properties across a braided com-

posite structure. As a result, investigations on multiple textile architectures are

usually inevitable for the development of robust design allowables.

The determination of representative mechanical properties for braided composites

remains a challenging task. Due to the complex textile architecture of braided

composites, standard test methods developed for tape laminates may not be appli-

cable. To address this issue, modified specimen dimensions for textile composites

based on the ASTM D3039 standard [32] were proposed by [33]. Masters and

Ifju [11] conducted an experimental programme to characterise the mechanical re-

sponse of triaxial braided composites. Using Moiré interferometry to obtain the

displacement field on the specimen’s surface and X-ray radiography, the damage

development was investigated under longitudinal and transverse loading conditions.

Multiple matrix cracks and delaminations were observed, in particular when load-

ing occurred transverse to the axial yarns. Falzon and Herszberg [30] compared the

performance of triaxial braid architectures to laminates manufactured from fabrics

and prepreg tape. A considerable strength reduction in the longitudinal direction

was observed, which was attributed to a combination of out-of-plane waviness as

well as fibre damage in the yarns as a result of the braiding process. Littell et al.

[34] investigated the effect of the resin system on damage development in braided

composites using digital image correlation (DIC) techniques. A reduced onset and

extent of damage was observed when applying a toughened instead of an untough-

ened epoxy system. Lomov et al. [35] proposed a methodology to study damage

initiation and development in different textile composites using a combination of
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full-field strain measurement obtained through DIC, acoustic emission (AE), X-ray

computed tomography (CT) and microsections on flat coupons exposed to specific

load levels. Ivanov et al. [27, 36] applied this approach to a 45◦ 1x1 triaxial braided

composite and investigated damage mechanisms in different off-axis directions un-

der tensile loading.

The present experimental study serves two major objectives. The first goal is

to investigate the non-linear mechanical response of different triaxial braided car-

bon/epoxy composites under multi-axial stress states, which are achieved through

off-axis tensile tests. For this purpose, straight-sided specimens of three braid ar-

chitectures shown in Fig. 3.1, comprising a braiding angle θ of 30◦, 45◦ and 60◦ are

each tested in their axial (x), transverse (y) and braid fibre direction (1F ).
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Fig. 3.1: Triaxial braid architectures under investigation: [0/±30],[0/±45] and [0/±60]

An overview of the test cases and their corresponding stress state is displayed in

Fig. 3.2. The configurations aim to represent the characteristic manufacturing vari-

ability encountered across a typical braided component [1]. After monotonically

loading an initial test series up to final failure, a subsequent series employed in-

cremental load cycles, which include loading, unloading and reloading. Following

the approach described by [37], the evolution of macroscopic damage and inelastic

strain is investigated, as it provides an insight into the physical mechanisms driv-

ing non-linearities within the material. Secondly, strong emphasis is put on the

characterisation of the complex material damage and failure behaviour. DIC mea-

surement techniques are used to quantify the effects of the textile architecture and

its heterogeneity on the strain field, identify and locate constituent failure mech-

anisms and investigate damage initiation and development. Microsections of the

specimen are analysed for the geometrical material characterisation and assessment

of failure mechanisms in the thickness direction. A high-speed camera is employed

in order to study the dynamic nature of catastrophic failure by identifying the con-

secutive short-term failure events. This information can serve as baseline for the
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development of a simulation model capable of predicting the constitutive behaviour

of triaxial braided composites.
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Fig. 3.2: Test cases with the corresponding multi-axial stress states in principal coordinates (xyz)
as a function of uni-axial loading σψ at an off-axis angle ψ

3.2 Experiments

3.2.1 Material systems

The materials investigated in this study feature two-dimensional 2×2 triaxial braided

preforms manufactured from Toho-Tenax HTS40 F13 12K (800 tex) untwisted

yarns for both the axial and braid yarn direction in combination with a Hex-

cel HexFlow RTM 6 epoxy resin. All three braid architectures, with a nominal

braiding angle of 30◦, 45◦ and 60◦ were manufactured on a Herzog radial braiding

machine with 176 bobbins. Single layers of triaxial braid were produced by over-

braiding on a cylindrical mandrel which was guided through the braiding point by

a robot at constant axial take-up speed as shown in Fig. 3.3. For each braiding

angle, a different mandrel diameter was used in order to obtain a closed braid

with full fibre coverage and hence avoid resin-rich areas. As a result, similar fibre

areal weights were achieved. This allows a comparison of different braiding angles.

Machine parameters were optimised such that the yarn dimensions of all braid ar-

chitectures match as closely as possible. In order to produce flat panels, each braid

layer was cut along the axial yarn direction, removed from the mandrel and subse-

quently flattened. Before cutting, a temperature-resistant tape was applied to all
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preform edges, such that fibre distortions during subsequent handling operations

were minimised.

Braid yarn spools
Axial yarn spools

MandrelConvergence ring Robot
Fig. 3.3: Overbraiding process

Composite plates were produced with a total of four triaxial braid plies each. The

shift between unit cells (UC) in each ply was not controlled and can be considered

to be random. For resin infusion, the Vacuum membrane Assisted Process (VAP)

technology was selected to minimise void content and to yield similar fibre volume

fractions (FVFs) in all plates as a result of constant compaction pressure. The resin

system for all braid architectures consisted of a Hexcel HexFlow RTM 6 resin. This

matrix material is a one-part untoughened 180◦ C cure epoxy system designed for

the RTM process. After degassing, the resin was infused at 80◦ C and then cured

at 180◦ C for 120 minutes. FVF measurements were obtained from three locations

on each panel in accordance with ASTM D3171 [21]. The intra-yarn FVFs were

determined by optical microscopy on polished cross-sections. For quality control

and estimation of the textile architecture, each specimen was inspected with a pho-

tometric stereo sensor [38]. Based on fibre reflectance values from multiple images

under different lighting conditions, the braiding angle distribution was measured

over the entire specimen surface. In a subsequent step, the raw sensor pictures

were processed with an image segmentation algorithm in order to extract features

of the underlying meso-structure, such as yarn width and spacing. The averaged

geometrical properties are summarised in Table 3.1 together with the FVF mea-

surements. Using an idealised model to render the measured geometrical data, the

three braid architectures are visualised in Fig. 3.1.
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Table 3.1: Properties of braid architectures under investigation

Braiding Mandrel FVF Thickness Axial Braid Braid Axial Braid Axial
angle diameter yarn yarn yarn yarn yarn yarn
θ dM ϕF tlam spacing spacing width FVF FVF content

(deg) (mm) (%) (mm) (mm) (mm) (mm) (%) (%) (%)

29.95 ± 2.35 100 58.7 ± 0.9 3.02 ± 0.04 3.63 ± 0.13 3.10 ± 0.57 2.91 ± 0.23 66 ± 6 70 ± 5 29.1 ± 0.4
45.04 ± 2.09 120 55.9 ± 0.8 2.99 ± 0.10 4.37 ± 0.38 3.05 ± 0.38 2.91 ± 0.21 66 ± 4 70 ± 6 25.0 ± 0.3
57.47 ± 2.44 160 57.0 ± 0.2 2.91 ± 0.09 5.30 ± 1.50 2.82 ± 0.23 2.85 ± 0.17 63 ± 5 70 ± 5 19.3 ± 0.4

3.2.2 Test set-up

The selection of a test method to obtain representative material properties for

braided composites is not straightforward. Littell et al. [34] and Kohlman et al.

[39] highlighted differences in damage propagation for straight-sided and tubular

specimens due to edge-initiated failure of a 60◦ triaxial braided composite subjected

to transverse tension. A notched coupon geometry was proposed which yielded sig-

nificantly larger strengths in relation to the standard tests. Contrarily, Ivanov et

al. [27] found no significant influence of edge effects on the damage development for

straight-sided specimens. The difference between cut and uncut coupon edges was

investigated by [28] for biaxial braided composites. A substantial increase in strain

to failure was observed for the case of uncut edges that preserve fibre continuity,

together with a highly non-linear specimen dependent Poisson’s effect and signif-

icant fibre reorientation. Within the presented study, we follow the methodology

proposed by [35] and focus on straight-sided coupons based on ASTM D3039. In

order to obtain a representative material response and minimise the effect of pos-

sible localised edge cracking, the specimen width must be large in relation to the

size of the representative material unit cell. A width of 25 mmwas selected in order

to cover a minimum of two UCs, as proposed in [40]. For proper load introduction,

glass fibre fabric tabs of 50 mmlength were bonded to the specimen grip region,

leaving a total gage length of 150 mm. In case the applied load direction was not

aligned with one of the orthotropic axes, oblique tabs according to [41] were used

to minimise stress concentrations due to the presence of material shear-extension

coupling.

An electromechanical Hegewald & Peschke testing machine with hydraulic grips ca-

pable of loading 250 kNwas operated at a constant head speed of 2 mm/min. All

monotonic tests were performed under displacement control. The incremental load-

ing tests were performed under load control, with the exception of the [0/±30]

configuration under transverse tension due to a plateau-like stress-strain response.

A maximum of seven loading, unloading and reloading cycles was selected in or-
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der to avoid the possibility of low-cycle fatigue phenomena [37]. Since Kelkar and

Whitcomb [10] found viscous effects in biaxial carbon/epoxy braided composites

to be of minor importance, each specimen was reloaded immediately after a pre-

ceding unloading cycle. The final loading cycle caused failure of the specimen.

The maximum load levels of individual cycles were selected such that they specif-

ically correspond to transition regions in the material response identified a priori

in the monotonic tests. For all tests, full field measurement of surface strains was

undertaken using the commercial DIC system GOM ARAMIS in 3D mode with a

maximum camera resolution of 4 mega-pixels. A comprehensive description of DIC

can be found in [42]. The field of view was centred at the coupon mid-section and

covered approximately 70 mmof the gage length and the entire specimen width. A

facet size of 17x17 pixels with a 2 pixels overlap yielded a good compromise be-

tween measurement noise level and local field resolution. The linear strain in each

facet was computed over a 3x3 subset window. In case not all adjacent facets exist,

the strain in the centre facet was determined with a default validity quote of 55%

[43]. Stress-strain curves were generated by averaging the full surface strain field,

except for cases of significant surface cracking. Here, the macroscopic strain was

calculated using a virtual extensometer over the complete measurement window to

avoid any influence of artificial high strain computations in facets with underlying

surface cracks. Final failure of the specimens was investigated with a PHOTRON

SA5 high-speed camera operated at a rate of 20000 frames per second. For a field

of view of similar size to the DIC, a maximum camera resolution of 384x880 pixels

was achieved, with appropriate lighting provided by a 400 W flood light.

3.2.3 Experimental Methodology

For the monotonic tests, the elastic modulus was determined by a moving window

least squares fit of the stress-strain curve. In the case of incremental loading,

damage was characterised in terms of a macroscopic modulus degradation for each

braided material. The corresponding scalar damage variable d was obtained after

each unloading cycle according to [37]:

di = 1 −
Ei

E0

(3.1)

where Ei is the unloading modulus calculated from the end points of the loading

and unloading part of cycle i as is shown in Fig. 3.4, such that the effects of a

potential unloading/reloading hysteresis are minimised. The initial elastic modulus

E0 is calculated from a moving least squares fit in the first loading cycle. The
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accumulated inelastic strain component 〈εie,i〉 was determined from the maximum

nominal stress σi in cycle i by

〈εie,i〉 = 〈εi〉 −
σi

Ei

, (3.2)

where 〈·〉 denotes a volume averaged variable. The scalar damage variable and

the inelastic residual strain represent homogenised material quantities caused by a

combination of plasticity and failure modes occurring within the material, such as

matrix cracking inside the yarns as well as in the resin pockets, intra- and inter-yarn

delaminations, fibre-matrix debonding, and progressive fibre failure.

〈ε〉

σ

σi

〈εi〉

Ei

E0

〈εie,i〉

Fig. 3.4: Determination of damage and inelastic strain from loading/unloading cycles

3.2.4 Analytical Modelling

The overall impact of the textile architecture on the elastic properties is approxi-

mated by comparing experimental data with equivalent tape laminates using classi-

cal lamination theory (CLT). Several modelling approaches exist for predicting the

effect of waviness on the elastic properties of braided composites [19, 44, 45]. By

comparing the experimental results to equivalent laminates without crimp, how-

ever, the possible knock-down of mechanical properties can be quantified directly.

For triaxial braided composites, an equivalent laminate can be constructed by vir-

tually separating the axial yarns, the braid yarns and the pure resin pockets. Each

constituent is then modelled either with a single unidirectional ply in the respective
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fibre direction or represented by an isotropic layer, as is the case for the matrix

pockets. The relative yarn ply thicknesses in the laminate model correspond to the

volume fractions of axial and braid yarn content given in Table 3.1. With the intra-

yarn FVFs determined from microscopy, the relative thickness of the matrix ply

is selected such that the overall FVF is satisfied. As a result of this approach, no

textile architecture is considered, and a quantitative assessment of the mechanical

property knock-down can be made in the linear-elastic regime. The homogenised

elastic properties of the plies given in Table 3.3 were derived from the fibre and

matrix properties given in Table 4.6 using the micromechanical equations from [46].

Table 3.2: Elastic properties for fibre and resin [2]

Fibre: Tenax HTS40 12k (800 tex) Resin: RTM 6

E1f E2f G12f ν12f Em νm

(MPa) (MPa) (MPa) (MPa)

210000 18000 21800 0.305 2890 0.35

Table 3.3: Homogenised elastic properties of the unidirectional plies

Intra-yarn FVF E1 E2 G12 ν12

(%) (MPa) (MPa) (MPa)

63 133369 8660 4364 0.322
66 139583 9087 4705 0.320
70 147867 9709 5236 0.319

3.3 Results and Discussion

3.3.1 Elastic behaviour

The linearised elastic moduli of the three braid architectures are compared to their

respective CLT predictions in Fig. 3.5(a) as a function of the off-axis angle ψ.

Assuming orthotropic material behaviour, the missing experimental in-plane shear

modulus Gxy can be calculated from the off-axis Young’s modulus in braid yarn

direction (1F ). This enables us to highlight differences between experiments and

analytical predictions under arbitrary off-axis angles through a mere transformation

of the stiffness matrix. To compare the three braided configurations, the elastic
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moduli were normalised to a FVF of 56 %, and error bars indicate one standard

deviation.

Due to CLT neglecting any undulation, it generally predicts larger moduli in re-

lation to the experimental results. For loading in the x direction, only a minor

decrease of the material properties can be observed. Here, the total homogenised

stiffness is composed of a substantial contribution of the predominantly straight

axial yarns superimposed by the load carrying capability of the undulated braid

yarns. Most of the stiffness drop in this direction may be attributed to a com-

bination of multiple textile phenomena: the presence of minor fibre in-plane and

out-of-plane waviness in the axial yarns caused by the braiding process in combi-

nation with nesting and uneven compaction. Additionally, the axial fibre bundles

tend to spread in regions where they are primarily surrounded by matrix pockets

and lack support from adjacent braid yarns. Despite having the highest ratio of

axial fibre volume content, the [0/±30] configuration exhibits the largest knock-

down in x direction. This tendency is consistent with a higher contribution of the

wavy braid yarns to the overall stiffness. As expected, this configuration yields the

highest modulus in the x direction, which makes it a preferable choice for structures

primarily subjected to bending loads.

The Young’s moduli in the 1F direction are significantly lower compared to their

equivalent laminate counterparts. This case yields the most severe reduction of

the overall mechanical properties, as the heavily undulated braid yarns are loaded

in their longitudinal direction. With increasing braiding angle, experimental and

predicted moduli in 1F direction deviate progressively. The accompanying increase

in braid yarn volume fraction combined with a larger bias orientation of the axial

yarns contribute more and more to a degradation of the elastic properties, with a

maximum relative error of 15.2 % for the [0/±60] braid. The stiffness reduction ob-

served in the y direction is slightly larger than in the x direction. Here, no fibres are

directly aligned with the load. In particular the axial yarns only contribute to the

overall stiffness through their matrix-dominated transverse properties. Hence, any

slight longitudinal contribution provided by the undulating braid yarns is ampli-

fied, even if the bias angle between the load direction and the braid fibre orientation

is considerably high. A maximum relative error of 9.3 % can be observed for the

[0/±30] case, in which the elastic modulus of 10 GPa is only slightly higher than

the transverse properties of the yarns.

Fig. 3.5(b) summarises the results from the Poisson’s ratio measurements. Given

that only νxy serves as input for the homogenised stiffness matrix, the experimen-

tal results for other load directions diverge from those obtained by transformation.
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Fig. 3.5: Comparison of experimental and predicted Young’s moduli (a) and Poisson’s ratios (b)
as a function of the off-axis angle ψ

The [0/±30] architecture exhibits the largest Poisson’s ratio in the x direction due

to the severe discrepancy of longitudinal and transverse stiffness and is compara-

ble to results obtained by [30]. Furthermore, its specific lay-up induces an auxetic

behaviour close to an off-axis angle of 40◦, with a negative Poisson’s ratio of approx-

imately −0.1. As the braiding angle increases, the mismatch between longitudinal
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and transverse stiffness becomes less pronounced, with a tendency towards bal-

anced Poisson’s ratios for the [0/±60] material. Except for the 1F direction, where

the large relative error is connected to the Poisson’s ratio converging to a value

close to zero, the deviations between experiments and predictions are comparable

to those of the elastic moduli. However, with the Poisson’s effect comprising a

ratio of transverse and longitudinal strain, no direct contribution of fibre waviness

can be extracted. As a general observation, the analytical model provides a simple

and robust method for approximating the elastic in-plane properties of all braid

configurations. While it is not capable of directly capturing any fibre waviness and

generally over-predicts the mechanical properties, it represents a viable tool for

the determination of stiffness properties within a preliminary design phase, where

usually only limited data on the detailed textile architecture is available.

3.3.2 Non-linear behaviour and damage characterisation

The non-linear mechanical behaviour of triaxial braided composites is highly anisotropic.

Depending on the external state of loading, a variation of the tangent modulus can

be attributed to a combination of material and geometrical mechanisms. The ap-

plication of DIC allows us to investigate strain concentrations and characteristic

damage morphology in terms of crack initiation and propagation on the specimen

surface, and to assess their impact on the homogenised stress-strain response. The

results of this investigation are discussed in the following sections for three different

monotonic loading conditions.

3.3.2.1 Loading in the axial (x) direction

Typical stress-strain curves are presented in Fig. 3.6 for loading the three braid

architectures in the axial (x) direction. In addition, the superimposed strain fields

on the specimen surface are displayed for load levels of primary interest, such as

transition regions in the stress-strain curve, the appearance of a first visible surface

crack, and ultimately before final failure of the specimen. If not directly visible,

surface crack locations are indicated by artificially high local strains due to the

underlying displacement discontinuity which, for large crack openings, also causes

automatic removal of the underlying facet. The grey dashed lines represent the

elastic properties and allow us to emphasise the non-linearities in the stress-strain

curves for progressive loading.

For the [0/±30] and the [0/±45] architecture, only a slight decrease in tangent

modulus is observed. The surface strain fields for both configurations show strain
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Fig. 3.6: Representative stress-strain curves and local strain fields for loading in axial (x) direc-
tion

concentrations at the resin-rich yarn-to-yarn junctions of the textile, but no evi-

dence for matrix cracks except for localised edge damage shortly before final fail-

ure. As the overall mechanical response until final failure is dominated by the large

stiffness contribution of the axial yarns loaded in the fibre direction, any possible

geometrical and material non-linearity originating from the mesoscopic building

blocks - the yarns and the matrix pockets - was found to have a negligible im-

pact on the predominantly linear stress-strain response. Furthermore, while some

of these phenomena are associated with a decrease in modulus, such as plasticity

and damage, a competing stiffening effect on the stress-strain curve is induced by

others. In the case of loading in the x direction, the primary load carrying carbon

fibres in the axial yarns exhibit stiffening due to their non-Hookean constitutive

behaviour [47–49]. At the same time, minor undulations in axial bundles caused

by nesting effects of multiple braid plies diminish as the fibres align progressively

with the load. The braid bundles are subjected to a state of multi-axial stress,

particularly in-plane shear in the case of a braiding angle of 45◦. The resulting

non-linear contribution, however, is small, also due to fact that it is simultaneously

counteracted by a lateral fibre reorientation in load direction.

The [0/±60] architecture exhibits almost linear behaviour up to a global threshold

strain level of approximately 0.9 %. Up to this point, strain concentrations intensify
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at the yarn cross-over points until first matrix cracks nucleate at multiple locations

on the specimen surface parallel to the braid fibre direction, as a result of their

combined shear and transverse tensile loading. Within each braid yarn, they prop-

agate along one fibre direction until they are arrested at the adjacent intersecting

bundle. Subsequently, a crack appears in the other braid fibre direction - possibly

promoted by the stress concentrations of the preceding crack tip - thus creating a

zig-zag crack pattern across the specimen width. Unlike in a tape laminate, for

example in a cross-ply laminate where matrix cracks may easily propagate across

the entire coupon width, the textile architecture of braids acts as a crack stopper.

Similar findings are also reported in [27].

Above the threshold strain, crack development can be directly correlated with a

bulge in the stress-strain curve, accompanied by a sudden decrease in modulus.

As the specimen is further loaded and saturating with cracks, the crack density

increases from a single crack per yarn to an average of 2-3 cracks while the tangent

modulus subsequently converges back to its initial magnitude. This stiffening effect

may be the product of two overlying mechanisms: Firstly, after the braid yarns

crack and become more compliant, more loads are redistributed back into the

axial fibres. Secondly, the formation of multiple cracks removes constraints in the

material, which promotes further alignment of fibres in the load direction. A post-

mortem micrograph normal to the axial yarns in Fig. 3.7 highlights the through-

thickness crack formation in the [0/±60] braid. In contrast to the undamaged axial

bundles, a maximum density of three matrix cracks per yarn is evident in the braid

direction, with some additional cracking inside the resin pockets. These findings

are consistent with the DIC results. Depending on the stacking configuration, dry

yarns of adjacent plies and equal orientation nest into each other during compaction

and create a locally merging fibre bundle without a visible interface. Hence, crack

growth from one ply to another is facilitated in the through-thickness direction.

Coalescing cracks of non-aligned fibre direction are rarely observed, except for a

single case in which a crack migrates into a thin resin pocket and further into an

adjacent yarn. Generally, a very limited number of delaminations confined to small

regions around crack tips were observed for loading in longitudinal direction.

3.3.2.2 Loading in the transverse (y) direction

Severe non-linearities exist in all materials for loading in the transverse (y) direc-

tion as shown in Fig. 3.8. The [0/±45] and the [0/±60] braid exhibit a gradual

decrease in stiffness. For the latter, no discrete cracks appear on the specimen sur-

face, again with the exception of edge initiated damage. However, multiple sites of
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Macro-yarn matrix cracks

Off-axis matrix crack migration

Fig. 3.7: Crack pattern in a [0/±60] configuration subjected to axial loading obtained by optical
microscopy

high strain concentrations at elevated load levels correlate with the positions of the

underlying axial yarns, indicating subsurface failure events as a result of transverse

tensile stresses. Considering the absence of any gaps between adjacent braid yarns,

as can be seen in Fig. 3.1, their formation cannot be directly monitored, yet an

investigation of the respective microsections confirmed their presence. A similar

damage morphology was observed for the [0/±45] material. Initially, a gradual

decrease in tangent modulus is attributed to the primary contribution of the braid

fibre direction to the overall stress-strain curve through its non-linear shear be-

haviour. Unlike the previous case, the mechanical response is now not controlled

by the large fibre stiffness in the load direction. Above a threshold stress of approx-

imately 120 MPa, initial cracks appear in the axial yarns. Contrary to the [0/±60]

braid, minor gaps in the textile allow local camera vision onto small segments of

axial fibre bundles where most of the initial occurrences of cracks are identified. In

the DIC image, a straight crack opens, running parallel to the axial fibre direction

across the entire length of the visible uncovered section at the location of the gap

between two braid yarns. Consecutively, both crack tips develop into the braid

fibre direction at their opposing ends until they get arrested at the next cross-over

point, again highlighting the step-wise crack development in braided composites.

Supported by evidence from the micrographs in Fig. 3.9, the cracks in the axial

yarns extend along their entire thickness. In case they contact an adjacent braid

yarn, they further follow along the interface and create a localised delamination.

After a certain length, a crack migration into this braid yarn can occur. Gradu-

ally, a complex crack network is created. This comprises several matrix cracks in

neighbouring bundles connected by a multitude of delaminations or branching into

the neat resin. As a consequence of this phenomenon, the stress-strain curve ex-
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hibits a significant degradation until final failure occurs when the tangent modulus

approaches approximately a quarter of its initial magnitude.
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Fig. 3.8: Representative stress-strain curves and local strain fields for loading in transverse (y)
direction

The [0/±30] braid features the most complex damage behaviour for this load con-

dition. Here, the material response can be separated into three distinct domains up

to final failure: an approximately linear domain, a damage progression domain, and

a saturation domain. As the applied load is increased in the linear domain, strain

concentrations arise in the resin-rich areas between adjacent yarns, thus exposing

the underlying textile architecture. When a critical load level is reached, the first

matrix cracks form at the boundaries of adjacent yarns at a specific location across

the specimen length. Their initial appearance can be correlated with the first ma-

jor load drop, which marks the point of damage initiation at the end of the linear

domain. While the damage morphology follows a similar pattern to the previous

[0/±45] case, the effect on the stress-strain curve is considerably larger. In light of

the fact that the [0/±30] material features the largest bias angle with respect to the

fibres and the load direction, the compliance introduced by the formation of each

crack can be correlated with small load drops. As the strain is further increased,

the loads are redistributed and the stress level exhibits a stable plateau as a result

of progressive damage development. This behaviour is associated with the contin-

uing development of matrix cracks, originating from the initiation location on the
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coupon. When the entire specimen is saturated with cracks, a small increase in

load can be observed. In this domain, the existing cracks exhibit further opening.

Final failure of the specimen is induced when multiple cracks coalesce across the

specimen width.

Delamination

Intra-yarn matrix cracks Inter-yarn matrix cracks

Fig. 3.9: Crack pattern in a [0/±45] configuration subjected to transverse loading obtained by
optical microscopy

3.3.2.3 Loading in braid yarn (1F ) direction

The textile architecture has the greatest effect on the mechanical response for load-

ing in the braid fibre direction (1F ), as is shown in Fig. 3.10. Up to a homogenised

strain level of 〈ε1F〉 ≈ 0.6%, all braid architectures exhibit approximately linear

stress-strain behaviour.

Beyond this threshold point, distinct load drops can be attributed to a progres-

sive failure mechanism intrinsic to the textile architecture: as the highly crimped

braid yarns are aligned with the external load, they straighten along their lon-

gitudinal direction. Hence, intersecting axial fibre bundles are subjected to an

out-of-plane displacement which is at first inhibited by the overlying braid yarns

and the support of adjacent plies in the through-thickness direction. Once the

resulting out-of-plane stresses trigger failure in the interface, a large delamination

zone is created and extends across the entire specimen width along a single sub-

surface axial yarn. Simultaneously, the localised loss of through-thickness support

causes an abrupt pull-out of this fibre bundle, accompanied by several secondary

matrix cracks in the overlying braid yarns. The DIC images in Fig. 3.10 detail
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Fig. 3.10: Representative stress-strain curves and local strain fields for loading in braid yarn
(1F ) direction

the strain field after an initial pull-out event for each braid configuration. Due

to the abrupt and unstable nature of this failure mode, a sudden increase in the

homogenised strain combined with a slight load drop can be observed. When the

applied strain is further increased, the progressive pull-out of fibre bundles fabri-

cates a plateau-like stress-strain response. This behaviour shows similarities to the

previously mentioned [0/±30] transverse load case, but originates from a different

failure mechanism and at considerably higher stress.

Fig. 3.11 displays a detailed view of the strain field for the [0/±45] material after

several axial yarns have debonded. The secondary matrix cracks are clearly visible

and the heterogeneous shading on the coupon surface underlines the mismatch of

out-of-plane displacement of adjacent axial yarns. When a nominal textile geom-

etry derived from Table 3.1 is mapped onto the specimen surface, the locations

of matrix cracks reveal that the pull-out effect is confined to every second ax-

ial bundle. If we consider the cross-sectional cut A-A, it becomes evident that the

braid yarns oriented along the coupon width provide only limited resistance against

out-of-plane deformations at the coupon surface. Without the through-thickness

support of an adjacent layer, the outer plies tend to promote the initial formation

of delamination and subsequent bundle pull-out in regions where the out-of-plane

deformation is oriented to the outside of the specimen. While the first event was
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Fig. 3.11: DIC surface strain field, crack pattern, failure mechanism and ply separation during
ultimate failure of a [0/±45] braid subjected to loading in braid yarn (1F ) direction

observed at a random location, probably triggered by the weakest unit cell, subse-

quent pull-outs progressively occur in direct proximity at the next but one bundle

and propagate along the specimen gage length in both directions until a saturation

stage is reached. The cascading nature of this failure mechanism indicates some
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weakening influence of braid yarns with multiple secondary matrix cracks. As a

result of the textile architecture, these yarns are oriented along the specimen width,

with some of them again inhibiting pull-out of the next potential axial bundle after

one undulation interval. At the end of the plateau strain, the delaminations have

completely interconnected in each of the three ply interfaces. After a full sepa-

ration of the braided layers along the entire gage length, each of them acts as a

separate entity, and the mechanical response is again governed by the braid fibres

aligned with the load. For the [0/±45] and the [0/±60] architecture, the sustain-

able load can be approximately doubled compared to the plateau initiation before

final failure. In addition to the many advantages of applying DIC measurement

techniques to textile composites summarised in [36], the 3D DIC set-up allowed us

to identify and measure the out-of-plane deformation of the braid bundles during

the progressive pull-out mechanism.

3.3.3 Evolution of damage and inelastic strain

In order to identify the driving physical mechanisms behind the material non-

linearity, the evolution of the homogenised damage variable and the accumulated

inelastic strain is quantified as a function of the total strain in Fig. 3.13(a) and

(b), respectively. Each of the data points corresponds to a completed cycle and a

polynomial fit illustrates the average evolution of both variables up to the failure

strain of the corresponding test series. Due to a problem in the data acquisition

during the incremental loading/unloading tests parallel to the braid fibre direction

of the [0/±30]material, this test case is not included. The stress-strain response

and strength of all loading/unloading tests were very similar to their monotonic

counterparts, indicating that unloading and reloading had no substantial effect on

the constituent failure mechanisms, as is highlighted in Fig. 3.12. Depending on

the degree of damage, the unloading and reloading cycles reveal hysteresis loops,

possibly due to frictional effects at crack interfaces and failed fibre/matrix interfaces

[28].

Consistently with the monotonic tests, only minor non-linearities are present in

the material for cases in which the load is aligned with the axial fibre direction

(x). Independently of the braiding angle, the damage variable for the [0/±30] and

the [0/±45] braided composite remains at a steady level below 5 %. The inelastic

strain shows a gradual increase. However, with a maximum magnitude of 0.05 % at

an average failure strain of about 1.3 %, the total contribution for all braid config-

urations in axial direction remains negligible. The [0/±60] configuration exhibits

a negative damage variable which indicates a slight stiffening effect upon loading
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from a combination of initial axial yarn straightening. After the degradation at the

onset of matrix cracking inside the braid yarns, the superimposed stiffening due to

load redistribution and lateral fibre reorientation translates into a slight increase in

both the damage variable and the accumulated inelastic strain until final failure.

Recalling the stress-strain curves from Fig. 3.8, significant non-linearities occur for

loading in the transverse direction. For both the [0/±60] and the [0/±45] cases, the

damage variable and the inelastic strain grow steadily as a function of the applied

strain. An accompanying increase of the damage variable at low strains suggests

the presence of microscopic damage events. When the first macroscopic cracks ap-

pear in the axial and braid yarns at an applied strain of approximately 0.6 %, the

rate of growth of the damage variable and the inelastic strain are amplified. Two

separate domains in the mechanical response of the [0/±30] are clearly visible in

the loading/unloading experiments. In the first domain, the highest gradual in-

crease in damage amongst all architectures is accompanied by a negligible increase

in inelastic strain. Here, strain concentrations arise at the yarn interfaces, but no

macroscopic cracks are visible on the specimen surface yet. Following their first

appearance at the initiation site and the subsequent propagation across the entire

coupon, the increasing crack density can be correlated with an abrupt increase in

both the damage variable and the inelastic strain. As the applied strain is fur-

ther increased, and the coupon is saturating with cracks, the rate of damage and

inelastic strain growth recedes consistently. Now, crack growth is replacing the

formation of new cracks as the driving damage mechanism. Before final failure of

the specimen, the modulus has degraded to almost 50 % of its initial value, at a

considerable inelastic strain of 0.35 %.

Subdividing the mechanical response into two separate domains is also viable in

the case of loading in braid fibre direction (1F ). Before the first pull-out event, all

materials follow an almost identical path, including negligible damage and inelas-

tic strain accumulation. As soon as the first delamination zone forms and induces

axial yarn pull-out, both the damage variable and the inelastic strain increase dras-

tically. The transition into this failure mode is triggered at a slightly lower strain of

0.5 % for the [0/±45] case in comparison to the [0/±60] configuration. During the

progressive ply separation in both materials, the evolution of the damage variable

again follows a very similar path. Due to its higher failure strain of more than 1.7 %

and its earlier failure mode transition, the [0/±45] case is capable of sustaining a

comparably larger loss in modulus and accumulation of inelastic strain before final

failure than the [0/±30] braid subjected to transverse loading. If we consider that

the increase in inelastic strain is negligible before the initial appearance of cracks

in the [0/±45] transverse load case, where both braid yarn directions are predom-
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Fig. 3.13: Evolution of the scalar damage variable d (a) and the accumulated inelastic strain
〈εie〉 (b) as a function of applied strain

inantly loaded in shear and contribute significantly to the overall stiffness, we can

conclude that the overall impact of plasticity in the yarns is small compared to the

effects of matrix cracking. Having identified matrix cracking and delaminations

as the primary source of non-linearities in triaxial braids, we observe that both

of these failure modes introduce significant damage and inelastic strain into the

material.
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3.3.4 Final failure modes

After investigating the non-linear mechanical behaviour, a better understanding

of the mechanisms which trigger catastrophic failure is key to the design of more

damage-tolerant braided composite materials. In Fig. 3.14, the development of final

failure for a representative specimen of each test case is studied using a sequence of

three images recorded with a high-speed camera. The first one highlights the state

of the specimen immediately before failure with a maximum resolution of 0.05 ms.

The second image captures the short-term formation of a fracture zone propagating

across the entire coupon width. This process allows for very rapid movement of

the fracture surfaces and is typically accompanied by a certain degree of motion

blur. Lastly, the third image represents the post-mortem state. Since no data

was available for the [0/±30] y configuration, we focus solely on the post-mortem

inspection in this case.
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Fig. 3.14: Final failure process recorded with a high-speed camera
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All braid architectures loaded in take-up direction develop a bidirectional V-shaped

fracture zone which extends across the coupon width along both intersecting braid

fibre directions. The absence of visible surface cracks and the initial axial move-

ment of the specimen suggests that catastrophic failure for a braiding angle of 30◦

and 45◦ is triggered by rupture of axial yarns. Due to the resulting high amount

of energy getting released, several additional fibre bundles disintegrate and large

pieces of debris are explosively separated from the specimen. For the [0/±60] case,

several matrix cracks propagate rapidly in a zig-zag pattern across the coupon im-

mediately before catastrophic failure and further promote failure of the underlying

axial yarns at the same location. Final failure of all materials loaded in 1F di-

rection is dominated by fibre fracture in the load aligned braid yarns. After all

plies have completely delaminated and the load is further increased, fibre bundles

break at their respective yarn cross-over point. When viewed from the top, each

yarn ruptures at an angle coincident with the intersecting braid fibre direction.

With the ply losing its primary load carrying capability, a stair-case shaped band

of cracked braid yarns propagates rapidly across the coupon width. Due to the

excessive recoil, large pieces of individual layers may disintegrate and allow camera

vision the fractured braid ply interface.In contrast to the previous cases, the final

failure for the transverse load cases is confined to a small region. Here, a single

macroscopic crack develops along one of the braid fibre directions, promoted by the

previously existing matrix cracks. The intersecting braid yarns initially prevent a

complete coupon separation. However, due to the opposing lateral movements of

the fracture surfaces, they fail as a result of excessive rotation.

3.4 Conclusions on experimental material

characterisation

Within this study, the damage and failure behaviour of triaxial braided compos-

ites was investigated under multi-axial stress states introduced through uni-axial

off-axis tests. Digital image correlation measurement techniques were used to quan-

tify the effects of the textile architecture and its heterogeneity on the strain field,

to identify and locate constituent failure mechanisms and to investigate damage

initiation and development. Microsections of the specimen were analysed for the

purpose of geometrical material characterisation and assessment of failure mech-

anisms in the thickness direction. The evolution of the damage variable and the

accumulated inelastic strain was quantified using incremental loading/unloading

experiments. A high-speed camera was employed in order to study the dynamic
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nature of catastrophic failure. The triaxial braids within this study exhibited severe

non-linearities in the mechanical response before final failure. This phenomenon

was primarily attributed to a complex damage behaviour composed of two charac-

teristic mechanisms. In the first one, matrix cracks developed progressively in the

yarns that were not aligned with the load direction. While we found the underlying

textile architecture to slightly reduce the elastic properties compared to equivalent

tape laminates, we conclude that it functions as a natural crack arresting grid and

restricts the propagation of cracks to in between adjacent intersecting yarns, thus

reducing their criticality. Loads can be redistributed without catastrophic failure

of the material. In addition, a possible crack deflection can cause additional energy

absorption. As a result of this mechanism, braids under certain load conditions

were capable of withstanding a high strain to failure, even if a large portion of the

specimen surface was saturated with matrix cracks. The accompanying mechani-

cal behaviour can be desirable in the design of crash absorbing or pseudo-ductile

materials. An additional failure mode intrinsic to the textile architecture was en-

countered for loading in the heavily undulated braid yarn direction. Due to yarn

straightening induced out-of-plane deformations, braided composites were found to

fail as a result of large scale delaminations accompanied by progressive fibre bundle

pull-out.

This information can further serve as a baseline for the development of a numerical

model for predicting the non-linear constitutive behaviour of braided composites.

Having identified the failure morphology to be severely affected by the underly-

ing textile architecture, the necessity of a meso-scale modelling approach becomes

evident. In addition to a realistic representation of the internal geometry after com-

paction of multiple braided layers, the potential development of a bundle pull-out

mode requires failure to not only be captured inside the yarns or matrix pockets,

but also at their respective interfaces.



4 Development of a meso-scale

simulation framework

In this chapter, a novel simulation framework is proposed for accurately predict-

ing the mechanical response of highly compacted triaxial braided composites using

meso-scale finite element models. Unit cells with a realistic internal geometry are

generated within an automated simulation work-flow. Local volumetric interpen-

etrations are removed from a nominal geometry in a fictitious thermal simulation

step. A compaction simulation of a single textile layer is performed to the desired

target fibre volume fraction while implicitly considering multiple plies in different

nesting configurations through periodic boundary conditions. For mechanical sim-

ulation, a matrix pocket mesh is created from a reconstruction of the deformed

textile. A novel meshing methodology incorporates branching cohesive yarn-to-

yarn and yarn-to matrix interfaces for modelling delamination. The framework

was validated by detailed comparison with experimental results for three braid

architectures. The excellent correlation of the internal geometry and the elastic

properties underlines the framework’s potential for future damage modelling.

4.1 Introduction

Braiding combines an automated and reproducible process together with an excel-

lent rate of material deposition for mass-production of high performance structures

[50]. Accurately modelling the mechanical response of 2D braided composites, how-

ever, remains a challenging task due to their textile nature, which includes out-of-

plane waviness, interactions between intertwining bundles and nesting of multiple

plies in the through-thickness direction. Numerical modelling using meso-scale

finite-element (FE) unit cell models provides a powerful tool to study the material

behaviour of braided composites. Typically, a representative domain of the inter-

nal textile geometry is considered, wherein the constituent reinforcing yarns are

explicitly modelled as solid continua. This approach can be applied to a variety of

problems, ranging from determining dry fabric permeability or draping characteris-

49
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tics to the composite mechanical response, including the prediction of stress-strain

fields, macroscopic mechanical properties, and the investigation of the non-linear

behaviour with damage initiation and development.

The fidelity of unit cell models is largely affected by a realistic representation of

the underlying textile geometry. Geometry pre-processors, such as WiseTex [51] or

TexGen [52] provide good results for a variety of textile architectures, but modelling

highly compacted triaxial braided composites with global fibre volume fractions

(FVFs) of 55 − 60% remains challenging. Here, the non-orthogonal interlacing of

three in-plane fibre directions yields a complex internal geometry. After compacting

multiple textile layers, the fabric features severely distorted yarns with multiple

contact zones, locally varying intra-yarn FVF and fibre orientations.

Recently, increased research emphasis has been put on extending established textile

modelling strategies [53] to more realistic geometry models [54]. Hivet and Boisse

[55] developed a consistent 3D CAD formulation devoid of interpenetrations for

the forming simulation of 2D woven fabrics in which contact zones between yarns

are represented by shared geometrical faces. Using a hypoelastic material model

for the yarns, the compaction and nesting behaviour of stacked 2D woven fabrics

was investigated by [56]. In addition, Grail et al. [57] developed a mesh distortion

algorithm to remove the resulting mesh inconsistency between orthogonal yarns

after forming and investigated the mechanical performance of the resulting com-

posite unit cell. Other researcher have tried to mimic the dry fabric behaviour by

representing each bundle through several chains of one-dimensional finite elements

in contact, thus explicitly rendering the effect of inter-fibre sliding [58, 59]. While

results of the investigated 3D woven geometry agree well with microâ€“computed

tomography (µCT) scans, a sophisticated post-processing technique is necessary

to reconstruct yarn surfaces and generate a volumetric mesh for further mechani-

cal analysis. Additionally, the multitude of contacts in the model is accompanied

by a high computational expense and limits the degree of model parallelisation.

Green et al. [60] studied the mechanical response of the above mentioned geome-

try using FE voxel discretisation and found significant differences between nominal

and deformed geometry. Further studies on voxel modelling of textile composites

[61, 62] concluded that although the elastic properties are in good agreement with

a conventional mesh discretisation, the potential for simulating damage initiation

and propagation is limited due to artificial stress concentrations induced by the

staircase-like representation of the geometry. Additionally, the inadequate repre-

sentation of the yarn interfaces impedes the possibility to model delamination in

the unit cell. Another approach for obtaining a representative geometry model is

the direct reconstruction of image data. Compared to a nominal geometry model,
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Naouar et al. [63] obtained an improved correlation with forming experiments of a

single layer of dry woven fabric obtained from µCT images. Faes et al. [64] created

a detailed 2D representative volume element (RVE) model of microscopic images

taken from polished specimen edges to study the stress distribution in multiple

nested layers. Considering the high geometrical characterisation effort for a single

localised geometry, these inverse modelling approaches provide only limited capa-

bilities for predicting the mechanical response of multiple textile architectures. In

the presented work, the authors propose a modelling framework for predicting the

mechanical response of triaxial braided composites using mesoscopic FE unit cells

with a realistic internal geometry. The general procedure and the outline of the

framework are derived from a list of key modelling requirements condensed from

the previously mentioned literature:

1. Increased computational efficiency or modelling detail by

• minimisation of the simulation domain through the use of reduced unit

cell (rUCs) models and application of advanced in-plane periodic bound-

ary conditions (PBCs) [65, 66]

• implicit consideration of nesting and stacking effects in a single layer

model through out-of-plane PBCs during an explicit compaction simu-

lation to obtain highly compacted textile architectures

2. Accurate representation of the textile geometry, interface and properties with-

out unsound assumptions by

• an interpenetration-free geometry model without over-idealisations [67]

• an improved representation of the yarn-to-yarn and yarn-to-matrix in-

terface without the need of introducing and artificial matrix layer [68–71]

• correct representation of the global FVF through a realistic axial and

braid intra-yarn FVF [27, 57, 72]

3. High fidelity in the prediction of the non-linear mechanical response by

• the capability to capture typical failure modes encountered in the yarns,

in the matrix pockets, and at their respective interface [27]

• a high quality structured hexahedral mesh in the yarns for accurate

predictions of stress-strain fields suitable for the application of 3D con-

tinuum damage models [5]

• a matrix mesh without severely distorted tetrahedral elements

4. High degree of automation in model generation through
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• scripting for objectivity and easy accessibility to other users

• relying on software packages widely used and available within the re-

search community. Throughout this work, all models are generated and

solved in the unified FE package Abaqus controlled by MATLAB and

the Abaqus Python scripting API [73].

This paper is structured as follows: in Section 2, the meso-scale modelling frame-

work is introduced. The four key steps implemented in the simulation work-flow

are outlined. From an initial idealised geometry model, a reduced unit cell domain

is extracted, it’s periodic boundary conditions are derived, and two subsequent

process simulation steps are addressed, including the elimination of volumetric in-

terpenetrations and the explicit compaction to the desired FVF. A novel algorithm

for the generation of the complex matrix pocket mesh is introduced. In Section 3,

the numerical model is validated against experimental data by comparing internal

geometry features and elastic properties for three braid architectures. Finally, the

capabilities and limitations of the modelling approach are discussed, highlighting

possible future improvements.

4.2 Modelling framework

4.2.1 Roadmap and data flow

The modelling procedure is schematically shown in Fig. 4.1. Based on a reduced

unit cell (rUC) concept to minimise computational expense [65], a compacted and

interpenetration-free composite geometry is created within a three stage simulation

process. In the first step, a nominal textile geometry is constructed from user-

defined input parameters, such as braiding angle, yarn spacing and cross-sectional

shape. As a result of the absence of initial contact between intertwining fibre bun-

dles at this stage, local volumetric interpenetrations are resolved in a subsequent

fictitious thermal step in which contact is established within the entire unit cell. In

the subsequent compaction simulation step to the desired target FVF, flexible mem-

branes which model the support of adjacent layers are added in through-thickness

direction. By applying different sets of periodic boundary conditions to the latter,

the compaction of multiple plies in different stacking and nesting configurations

is implicitly considered at at reduced computational cost. This approach further

enables us to render global FVFs of 55 − 60% through intra-yarn FVFs obtained

from experiments for the axial and braid bundles. Finally, the deformed hexahedral

yarn mesh is used in a series of boolean operations to create a tetrahedral matrix
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Fig. 4.1: Roadmap and data flow for generating a realistic unit cell model

pocket mesh with continuous yarn-to-yarn and yarn-to-matrix cohesive interfaces

for modelling delaminations.

By obtaining the final geometry in a step-by-step approach, as opposed to inversely

reconstructing geometry directly from µCT measurements [67], the overall robust-

ness of the unit cell generation algorithm improves drastically for a broader range

of textile geometries. Instead of dealing with all the complexity of a compacted

textile at once, the task is subdivided and accounted for by several simulation steps.

While the interpenetration correction step takes care of any potential overlaps in

the initial analytical geometry model, mostly independent of the geometry input

by the user, the compaction step further ensures consistency of both the global

target and intra-yarn FVFs. The framework’s high robustness is a key capability

in order to cope with the large manufacturing variability in braided composites,

where braiding angles in between 20◦ and 70◦ are commonly encountered across a

typical component [1, 9].
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4.2.2 Idealised geometry

In the step 1 of the framework, a surface mesh of the textile is generated from

user-defined input parameters. Aside from the global braiding angle θ and the

geometry of axial and bias bundles, including height, width, spacing and FE mesh

size, their intra-yarn FVFs and the global target FVF are defined. Initially, a

constant idealised cross-section is selected. Axial bundles indicated by the subscript

a are assumed to be straight and their surface is described by a modified sinusoidal

function

za = ±
ta (1 − ξa)

2
cos

(

y′
a π

wa

)na

±
ξa ta

2
, → cross-sectional term (4.1)

for which the required geometrical and global input parameters are displayed in

Fig. 4.2, where the coordinate system xa,b,ya,b,za,b describes the master yarn surface

and x′
a,b,y′

a,b,z′
a,b refers to the area centroid of a cross-section. The sign change

indicates separate equations for the top and bottom surface. In a textile composite,

the cross-sectional shape of a yarn is the product of the local preforming and

compaction history and hence varies along its path. The sinusoidal term with a

shape exponent n enables the generation of an adaptive cross-section capable of

mimicking an arbitrary geometry through progressive morphing along its centre-

line. Within an optimisation framework, it can also be used to minimise initial

volumetric interpenetrations. Here, we exploit this geometrical degree of freedom

to capture experimentally determined cross-sectional areas of bundles in addition

to their width and height, such that consistency of FVF, fibre count and diameter

are achieved. The effect of different magnitudes of the shape exponent n on the

cross-sectional shape and area A for a typical yarn aspect ratio are highlighted

in Fig. 4.3 (a) and (b), respectively. For n = 1.0, a nearly lenticular shape is

reproduced, while the function closely resembles an ellipse with an exponent of

n = 0.5. As n tends to zero, a rectangular cross-section with rounded corners

is generated and the maximum area is achieved. For subsequent mesh quality

purposes, the cross-section is truncated at a predefined side thickness of ξ · t.

For both the positively (b+) and negatively (b−) oriented braid yarn surfaces, an

adapted formulation of the model developed for biaxial braids [74] is implemented.

The total yarn path is assembled by a straight and an undulated segment. The

latter is constructed by superimposing the cross-sectional term by an additional

sinusoidal function responsible for the waviness of amplitude hu = ta + tb:
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Fig. 4.2: Initial geometry representation and model input data

ztop,bottom
b+,b− = ±

tb (1 − ξb)

2

∣

∣

∣

∣

∣

cos

(

y′
b π

wb

)∣

∣

∣

∣

∣

nb

±
ξb tb

2
→ cross-sectional term

+ hu sin

(

(xb − ωb+,b−) π

Lu (1 − ζ)

)

. → undulation term

(4.2)

The opposite signs in Equation 4.2 create the top and bottom master yarn surface.

The straight undulation segment is obtained from:

ztop,bottom
b+,b− = ±

tb (1 − ξb)

2

∣

∣

∣

∣

∣

cos

(

y′
b π

wb

)∣

∣

∣

∣

∣

nb

±
ξb tb

2
→ cross-sectional term

+ hu sign

(

sin

(

xb π

Lu (1 − ζ)

))

. → straight term

(4.3)

Both the positive and negative braid master yarn incorporate a braiding angle

dependent localised phase shift given by
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Fig. 4.3: (a) Comparison of cross-sectional yarn shapes (b) Effect of shape exponent n on resul-
tant area

ωb+,b− = ±y′
b tan

(

π

2
− 2 θ

)

cos
(

xb π

Lu

)2

(4.4)

into the undulation term, the volumetric shape can be analytically distorted while

retaining a constant cross-sectional area. A key advantage of this approach lies in

the significant reduction of mutual braid yarn interpenetrations compared to a fixed

cross-section for braiding angles 6= 45◦, as is exemplified for the non-orthogonal

bundle intersections of a [0/±60] braid in Fig. 4.4 [74]. Each braid yarn is gradually

distorted along its transverse direction by linearly increasing the phase shift. While

the distortion term vanishes periodically at the intersection points of axial and

braid yarns for minimised overlapping, it grows quadratically along the yarn path,

until a maximum is reached at half of the wavelength Lu. Due to the closest

proximity of braid yarns at their kinematic intersection point, the highest phase

shift is introduced here.

It is worth mentioning that a pure rotation of cross-sections, as is often performed

in woven composites [52], has shown only limited potential for an application in

triaxial braids. In many cases, this procedure may reduce the interference with one

entity on one side of a cross-section while causing a severe overlap on the opposite
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side. Since no in-plane waviness is considered in the bundles, the transverse position

in each cross-section y′
a,b is coincident to its representation within the master yarn

ya,b.

x

y

z

Fig. 4.4: Effect of shape morphing on volumetric interpenetrations for [0/±60] braid

From the analytical surface description, an undulated master yarn is constructed

in MATLAB through a series of blended cross-sections. Each cross-section is dis-

cretised symmetrically about its y′ and z′ axis with the user-defined FE mesh size

which will later serve as a blueprint for the structured hexahedral unit cell mesh.

Furthermore, several pieces along the master bundle are extracted and assembled in

the desired textile pattern. Unlike in a periodic biaxial braids, the three interlacing

fibre directions in a periodic triaxial braid induce a geometrical interdependency

of the braiding angle θ, the axial yarn spacing sa and the braid yarn spacing sb

for a given textile pattern, independent of the subsequent unit cell size and type.

Out of these three parameters, only two can be chosen arbitrary. By satisfying the

geometrical compatibility equation defined as

sb = sa cos (θ) , (4.5)

a correct representation of cross-over points within a given braid undulation interval

is ensured. Apart from restricting the yarn width to be equal or smaller than its

corresponding spacing, there are no limitations on the geometry. In the last step,

the assembled textile is rendered in 3D space. This allows a direct visual inspection

of the geometry, an early detection of interpenetrations by geometric slicing and,

if desired, a quick modification of parameters. Finally, an arbitrary unit cell shape

can be selected for extraction.
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4.2.3 Reduced unit cell domain and mesh generation

In order to minimise computational effort, a rUC for triaxial braided composites

is derived on the basis of the equivalence framework for periodic structures [65] in

Fig. 4.5. This approach allows us to reduce the modelling domain to a quarter of

a smallest translational unit cell by exploiting internal symmetries of the textile

topology. The width and height of the rUC are given by

wrUC =
sa

2
; hrUC =

sb

sin (θ)
. (4.6)
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Fig. 4.5: Reduced unit cell with periodic boundaries

With the rUC dimensions defined and using spline interpolation along the fibre

direction, the surface mesh is automatically converted into a solid CAD geometry.

For the transverse direction, a linear interpolation based on the preceding sym-

metric discretisation of cross-sections is selected. This methodology enables us to

retain the spatial information on predefined mesh seeds through geometric edges.

By automatically creating a native Abaqus/CAE format with Python, any issues

arising from external software import, such as imprecise geometry or unconnected

faces are avoided. Hence, a high robustness of the overall procedure is guaranteed.

Working on CAD geometry as opposed to discrete meshes provides many key ben-

efits, such as granting access to volumetric boolean operations that are particularly

useful for mesoscopic modelling. For an arbitrary unit cell selected by the user,
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an exact CAD representation is obtained, independent of the angle of intersection

between yarns and the periodic boundaries of the unit cell.

Zone 4

[0/±30]
7036 elements

[0/±45]
9120 elements

Zone 2

Zone 3
Zone 1

Zone 2 Zone 1

Geometric anchor
point pair

xy
z

Fig. 4.6: Meshing procedure and structured hexahedral mesh for [0/±30] and [0/±45] rUC, 40
elements per yarn width, 2 elements per yarn thickness, ξ = 5%

In light of the fact that a structured first-order hexahedral mesh provides an accu-

rate solution at significantly less cost compared to a second-order tetrahedral mesh

and the use of linear tetrahedral elements should be avoided as much as possible

due their overly stiff behaviour [73], an automatic hexahedral meshing algorithm

was developed for arbitrary yarn geometries.

A regular mesh is aligned with the fibre direction, as it offers many key advantages.

Firstly, for a subsequent application of smeared crack models [75], crack bands may

easily propagate along the fibre direction after strain localisation. Secondly, as a

result of shape morphing, the fibre undulation varies not only along the yarn path,

but also within each cross-section. Nevertheless, the local orientation tensor can

be conveniently calculated on an element by element basis.

The biggest advantage of the presented approach, however, lies in the resulting

inherent mesh periodicity caused by the boundary cut operation on the symmetric

yarn discretisation. Geometric edges representing the transversal mesh seeds are

cropped at the unit cell boundaries in a way that a periodic structure of boundary
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vertices is created, independent of the unit cell size or its type of periodicity. These

anchor points highlighted in Fig. 4.6 are coincident with nodal positions and en-

sure the periodic nature of each boundary discretisation during the following mesh

generation.

The outcome of this initial step is depicted in Fig. 4.6 for a [0/±30] rUC. Now

that all periodic boundaries are fully defined, the nodal positions inside the unit

cell can be established. Depending on their relative position, length, and the

number of periodic seed and target anchor points, each yarn is subdivided into

logical meshing zones featuring up to two periodic boundaries. For single-sided

periodic zones, e.g. zone 1 and zone 2, an orthogonal partition originating from

each pair of seed anchor points produces a rectangular mesh pattern. Compatibility

with the non-orthogonal boundary is satisfied by inserting single wedge elements

per element row. In Fig. 4.6, zone 3 and 4 feature two periodic boundaries and

hence must be treated separately. These two boundaries are subdivided into a

target and a source side, with the latter determined by the minimum anchor point

number. For each through-thickness pair of vertices positioned on the source side, a

corresponding pair of target vertices is found, such that the aspect ratio of the mesh

is optimised. By partitioning the yarns through a connection of these four corner

points, the periodic boundaries remain unchanged. Finally, a user defined number

of element rows is generated in through-thickness direction by a mere subdivision

that preserves the periodic nature of the boundaries.

At the side edges of the bundles, the predefined thickness of ξ · t allows a compat-

ible run-out of the hexahedral mesh. Here, the insertion of wedge elements was

found to be disadvantageous, as they perform poorly in contact when large forces

are introduced over a sharp edge in the fictitious thermal step. Additionally, the

mesh is refined in close proximity to the side edges for optimised contact perfor-

mance and element aspect ratio. An ideal choice for solid meshes with a high width

to thickness aspect ratio are special purpose continuum elements with incompati-

ble modes available in the commercial FE solver Abaqus [73]. In addition to the

displacement degrees of freedom, incompatible deformation modes are added inter-

nally to improve the bending behaviour and eliminate parasitic shear locking. A

slight increase in computational expense is nullified by the fact that significantly

less elements are required in thickness direction leading in the consequence to an

improved aspect ratio. While the meshing procedure was applied to the case of

triaxial braided composites, it can be easily adapted to treat any kind of textile

composite.
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The periodic response is ensured by applying periodic displacement boundary con-

ditions. Following the nomenclature of [65], they can be written for a deformable

periodic body including arbitrary symmetries as

u(A) − γT u(Â) = − 〈F〉 T xO
Ê (4.7)

where u denotes the displacement field of equivalent points A and Â at a periodic

boundary. The coordinate transformation matrix T and the translation vector

xO
Ê define the tessellation of adjacent sub-domains, γ = ±1 describes their load

reversal factor and 〈F〉 is the volume averaged deformation gradient tensor tensor.

Considering the rUC shown in Fig. 4.5, the PBCs are implemented by enforcing a

series of linear constraint equations between displacements of equivalent nodes on

the previously created periodic boundary mesh. Following the procedure described

in [65], a set of master equations for the in-plane boundaries is derived in Table 5.1

where 〈·〉 denotes a volume-averaged variable. For edges and vertices sharing more

than one periodic boundary, a system of linearly independent constraint equations

is assembled.

Table 4.1: Master equations for implementation of in-plane periodic boundary conditions

B1











ux(hrUC/2, y, z)

uy(hrUC/2, y, z)

uz(hrUC/2, y, z)











−











ux(−hrUC/2, y, z)

uy(−hrUC/2, y, z)

uz(−hrUC/2, y, z)








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


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
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By exploiting the internal material symmetry at the periodic boundary B4 in Ta-

ble 5.1, a symmetric undulation path about the z axis is implied throughout the

subsequent simulation steps. In addition, homogenised in-plane shear 〈εxy〉 and
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out-of-plane shear 〈εxz〉 must be applied separately in order to satisfy the admis-

sibility of all sub-domains [65]. Since the rUC can only be extracted at specific

positions of the periodic textile, potential ply shifts in an explicit compaction sim-

ulation of multiple layers are restricted to integer multiples of half of the rUC width

and height.

4.2.4 Interpenetration correction and compaction

With the sole geometric constraint that the yarn width cannot exceed its corre-

sponding spacing, the initial idealised geometry directly represents the user input

data. Although the degree of interpenetrations in the case of non-orthogonal inter-

lacing can be minimised by using the previously described analytical formulation,

there is no guarantee that any combination of input data will always yield an

interpenetration free geometry model. In order to achieve a high robustness of

the presented modelling framework for a large variety of textile geometries, po-

tential volumetric interpenetrations are resolved by means of a fictitious explicit

thermal disturbance step before the textile can be compacted to the desired FVF.

The procedure is highlighted in Fig. 4.7. Initially, the rUC is subjected to a de-

crease in temperature accompanied by volumetric shrinkage of the yarns up to a

point where all parts are distinctively separated. While the latter are subsequently

reset to their initial temperature, they are now capable of interacting with each

other by means of activated contact conditions. Considering the gradual expan-

sion, a smooth transition into a compatible deformed geometric state is achieved.

As this is a purely geometrical procedure of contraction and subsequent expan-

sion, the constitutive law implemented is fictitious. An isotropic dummy mate-

rial (E = 20 GPa , ν = 0.45) obtained from numerical sensitivity studies ensures

an approximately constant bundle volume due to a quasi-incompressible material

response without deteriorating the stable time increment in non-hybrid solid el-

ements. Orthotropic coefficients of thermal expansion eliminate axial stretching

(α1 = 0, α2 = α3 = 1), and a perfectly-plastic constitutive law with a von Mises

yield criterion (σyield = 250 MPa) allows local yielding at critical contact locations,

in particular at the convergence point of axial, positive and negative braid yarn

depicted in Fig. 4.7. Here, they are tightly interlocked, and this clinching effect

can give rise to high localised contact penetrations. With the applied strains elimi-

nated in the in-plane PBC implementation, the rUC volume does not change during

the simulation. Still, the periodic boundaries can deform freely, and geometrical

coupling effects during the orthotropic contraction and expansion are averted.
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(a) (b)

(c)

Fig. 4.7: Resolving interpenetrations at the critical yarn convergence point (a) initial state (b)
separation after contraction (c) interlock after expansion

A key feature of the presented work is the subsequent compaction simulation. In-

stead of explicitly modelling the forming process using a finite number of fabric

layers in combination with a tool, we rely solely on the application of out-of-plane

PBCs during an explicit compaction simulation of a single textile layer to further

minimise computational effort. Flexible membranes of unit thickness which im-

plicitly simulate the support of adjacent layers by means of PBCs are introduced

on the top and bottom of the rUC. With the equivalence framework introduced

previously, the effects of different nesting conditions such as ply shifting or flip-

ping are studied by means of two stacking configurations shown in their compacted

state in Fig. 4.8. The corresponding out-of-plane master equations are summarised

in Table 4.2. As the membranes represent the support of adjacent layers, they

comprise the material properties of the fibre bundles. Considering both the top

and bottom cell assembled with a rotation of 180◦about the z axis (flipped layer),

axial fibre bundles of adjacent layers are positioned such that they are capable of

closing large initial voids originating from the variable braid thickness. In this case

of structural nesting described by [23], sections devoid of axial bundles are filled

by their adjacent layer’s equivalent. As a consequence, a rUC with locally varying
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thickness is produced. An identical nesting case can be obtained by incorporating

a translational offset of wrUC for the top and bottom rUC.

T6 =

[

−1 0 0
0 −1 0
0 0 1

]

Boundary 6
(B6)

Boundary 5II
(B5II)

Boundary 5I
(B5I)

Boundary 5
(B5)

T5 =

[

−1 0 0
0 −1 0
0 0 −1

]

T5I = T5II =

[

−1 0 0
0 −1 0
0 0 −1

]

T6I = T6II =

[

−1 0 0
0 −1 0
0 0 1

]

x
y

zBoundary 6I
(B6I)

Boundary 6II
(B6II)

x

y

z

hrUC/2

Nesting case 1

top ply: flipped, inverted; bottom ply: flipped

Nesting case 2

top ply: flipped, inverted, shifted; bottom ply: flipped, shifted

Fig. 4.8: Out-of-plane PBCs considering nesting case in unshifted and shifted nesting case con-
figuration

However, a specific set of out-of-plane PBCs may not be chosen arbitrarily. Since

rotational and mirror symmetries are exploited simultaneously in B2 and B4, the
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flipped top and bottom layers in Fig. 4.8 must be arranged inversely in order to sat-

isfy the overall compatibility of the periodic structure. In the second nesting case,

the plies are additionally shifted in axial (x) direction by a magnitude of hrUC/2.

In contrast to the first nesting case, the braid bundles are now positioned directly

on top of each other. Hence, regions of high packing densities are supplemented by

local resin rich areas in the textile after compaction.
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Fig. 4.9: Interdependency of in-plane and out-of-plane PBCs for nesting case 1 satisfying periodic
compatibility

It is important to note that the purpose of the model at this stage is not to rep-

resent a dry fabric. The input parameters shown in Fig. 4.2 should be chosen to

match the finished composite as closely as possible. Since we implicitly consider

the yarn compaction behaviour by measuring the finished product rather than ex-

plicitly simulate the physical constitutive response of the dry fibre bundles, several

localised deformation modes, such as yarn flattening, interactions with the tool,

and the compaction force are not directly captured. Instead, we focus on quickly

generating compacted unit cells for mechanical simulations by means of mimicking

global compaction phenomena, such that any artificial scaling of intra-yarn FVF

is avoided, The compaction step’s primary mechanism comprises the shape distor-

tion and repositioning of yarns due to mutual contact during compaction, such that

large resin rich regions are closed and direct contact is established between indi-

vidual fibre bundles. Finally, a more realistic geometry model of variable thickness

enriched by a multitude of defects and imperfections is obtained, without the need

of characterizing the complex mechanical behaviour of the dry fibre bundles. Nev-

ertheless, the modular approach of the framework further allows for an additional

implementation of physical compaction phenomena, for example by implementing

a transversely-isotropic hypo-elastic constitutive law for the yarns [76, 77].
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During the compaction operation, all yarn volumes V and hence intra-yarn FVFs

κ remain approximately constant, enabling a priori determination of the average

compacted ply thickness trUC,c to achieve the global target FVF ϕF,rUC:

trUC,c =
Va κa + Vb κb

4ϕF,rUC hrUC wrUC

=
hrUC Aa κa + 2Lu’ Ab κb

2ϕF,rUC hrUC wrUC

(4.8)

The yarn volumes Va and Vb within the rUC are directly determined from the

actual mesh discretisation, meaning that the target FVF is achieved independently

of the element size. Further mesh refinement in order to obtain FVF convergence,

as is commonly performed in voxel models [61], or a discretisation error due to

mismatching geometry and mesh are eliminated. As the overall layer thickness

gradually decreases over time, the global fibre volume fraction increases up to its

target value. For a [0/±45] braid under investigation, the process is visualised using

an assembly of several rUCs in Fig. 4.10. From the initial state at ϕF,rUC = 0.38,

the flat membranes are subjected to a prescribed displacement. Once interacting

with the fabric, mutual deformations occur. Upon further compaction, they tend

to locally accommodate to the underlying geometric shapes, thus increasing the

contact area and the resulting compaction pressure. The final stage features a

tightly packed structure of deformed bundles in direct contact. Here, the initially

straight axial yarns exhibit a minor degree of crimp accompanied by a reduction

in crimp in the braid yarns.

Considering that the assumption of a periodic stacking during the compaction pro-

cess neglects a potential influence of rigid tool boundaries on the internal geometry

of the outer layers, its applicability should be verified against the actual manufac-

turing process and the ply count of the braided component. In case of a severe

impact of the tool on the yarn geometry, as in the case of laminates with few plies

manufactured by resin transfer moulding (RTM), an explicit representation of the

full stack and the tool may be necessary in order to capture their mutual mechan-

ical interactions, such as flatting of the surface yarns [78]. For higher numbers of

braided layers [24], however, or for vacuum infusion processes with a single-sided

flexible membrane [2, 79], the advantages of drastically reducing computational

expense can outweigh the loss in modelling detail.
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ϕF,rUC = 0.38

ϕF,rUC = 0.45

ϕF,rUC = 0.55

Fig. 4.10: Evolution of global fibre volume fraction ϕF,rUC during compaction simulation for
nesting case 1

4.2.5 Generation of matrix pocket mesh for mechanical

simulation

Now that the geometry of the yarns is defined in its final state, the addition of

a matrix pocket mesh enables us to perform mechanical simulations of the com-

posite unit cell. Particularly due to the non-orthogonal bundle interlacement and

for highly compacted braids with their inherent complexity of the matrix pocket

geometry, this step remains a major challenge in meso-FE modelling. Our ap-

proach relies on two basic principles: Firstly, an exact CAD representation of the

matrix pocket geometry which serves as a surrogate for a solid tetrahedral mesh is

constructed through a series of boolean operations. Secondly, a search algorithm

detects regions of mutual bundle contact and subsequently establishes interfacial

cohesive zones. Thus, the introduction of an artificial matrix layer or a poor tetra-

hedral element quality is avoided. A seamless connection of the cohesive zones in

the direct yarn-to-yarn and the yarn-to-matrix contact regions is achieved by merg-

ing coincidently positioned nodes. As a result, the meshing methodology allows us

to create a coherent three-dimensional cohesive zone with local branching.

The overall procedure is explained in detail in Fig. 4.11. Initially, the deformed

mesh is tessellated in close proximity of the rUC with respect to its symmetries

at the periodic boundaries. Using spline interpolation in axial and transverse di-

rection, a solid CAD representation of the textile is reconstructed based on the

deformed nodal coordinates, as is shown in Fig. 4.11 (a) for a [0/±60] configura-
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Table 4.2: Out-of-plane PBC master equations

Nesting case 1: top ply: flipped, inverted; bottom ply: flipped
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
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Nesting case 2: top ply: flipped, inverted, shifted; bottom ply: flipped, shifted
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tion. Owing to the actual mesh discretisation and small interpenetrations due to

the previous penalty contact formulation, a direct boolean operation between two

contacting yarns is not adequate. Independent of their mesh size, such a procedure

would generate a ill-conditioned geometry features, including voids, self-intersecting

surfaces or very sharp angles that are impractical to mesh [57]. With the definition

of a critical contact cut-off thickness tcrit, the presented algorithm automatically

detects three-dimensional contact surfaces for every possible yarn interaction by

performing geometric boolean operations on slightly thickened dummy bundles.

For the envelopes of the resulting contact domains shown in Fig. 4.12, the distance

between the CAD representation of two adjacent bundles is equal to the predefined

cut-off thickness. If we move progressively to the centre of the contact area, the
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(a) (b)

(d)(c)

(e) (f)

tcrit

Fig. 4.11: Algorithm for generation of matrix pockets mesh: (a) CAD reconstruction of com-
pacted yarn mesh, (b) determination of direct yarn-to-yarn direct contact zones, (c)
CAD model of matrix pockets, (d) final mesh of matrix pockets, (e) cohesive zones
highlighted and (f) detailed view of a transition zone of the yarn-to-yarn and yarn-
to-matrix cohesive mesh

proximity decreases until both bodies locally interpenetrate each other. In case

the geometric proximity between two potential contact partners exceeds the spec-

ified distance, the boolean operation yields a body of zero volume, indicating that

no direct yarn-to-yarn contact is required. Now that the boundaries are defined,

their automatic extraction is followed by the construction of the contact bodies as
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shown in Fig. 4.11 (b). Since this process extends over neighbouring unit cells, the

assembled contact surfaces intrude into the simulation domain in such a way that

all periodicity requirements are automatically satisfied at the boundaries. Now,

the determination of the matrix pocket geometry is straightforward. At first, the

contact bodies are removed from the rUC volume enclosed by the flexible mem-

branes, then the yarns are subtracted from the remainder to obtain the final CAD

geometry highlighted in Fig. 4.11 (c).

With the critical contact regions eliminated, the default meshing algorithm is now

capable of generating a high quality solid tetrahedral mesh. To satisfy the pe-

riodicity requirements, a two-dimensional mesh is initially created at predefined

seed faces at the boundaries. By applying the coordinate transformation matrices,

this source mesh seed is transformed into its corresponding target morphology and

then copied accordingly. The top and bottom surfaces of the completed mesh high-

lighted in Fig. 4.11 (d) are assembled from the deformed nodal coordinates of the

flexible membranes which retain their periodicity during the compaction process.

Contact domain boundaries

x

y

z

Fig. 4.12: Determination of yarn-to-yarn contact regions and extraction of domain cut-off bound-
aries

For the purpose of modelling delamination between the yarns and the bulk resin,

a layer of three-dimensional cohesive elements is extruded on top of the tetrahe-

dral mesh, much like an interior coating. Subsequently, the direct yarn-to-yarn

cohesive interfaces are added to the global mesh. After cropping their geometries

to the rUC boundaries, these regions are discretised with cohesive elements sepa-

rately. However, due to consistent mesh seed sizes, the coordinates of nodes created

at the outer circumference of each contact domain match those generated by the
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tetrahedral meshing algorithm. Along this transition line between the yarn-to-yarn

and yarn-to-matrix interaction shown in Fig. 4.11 (f), a single cohesive interface

branches into two diverging interfaces with underlying tetrahedral elements. By

merging the outer yarn-to-yarn interface nodes with the respective upper and lower

nodes of adjacent yarn-to-matrix cohesive elements, a consistent mesh coupling is

achieved. Consequently, this smooth interfacial transition enables us to capture co-

hesive crack propagation and branching. While the cohesive elements share nodes

with the underlying tetrahedral mesh on one side, their inner surfaces displayed

in Fig. 4.11 (e) and the yarn surfaces are coupled in order to ensure displacement

continuity of the incompatible hexahedral and tetrahedral element types [73]. A

surface-to-surface tie formulation guarantees a smooth and accurate stress distri-

bution as opposed to a mere node-to-surface algorithm at the interface. The inner

nodes of the cohesive elements are excluded from the PBC definition at the periodic

boundaries. Otherwise, over-constraints would either issue an input error or lead

to a drastic increase in simulation run time, depending on whether the implicit or

explicit solver is used. Here, periodicity of the nodal displacements is implicitly

enforced through the master role of adjacent yarn nodes in the tie formulation.

The effect of the presented methodology on the interfacial stress distribution is

shown in Fig. 4.13 for an axial yarn of the [0/±45] braid loaded in transverse di-

rection. Owing to the stiffness discontinuity at the interface transition line, where

a single cohesive element branches into a stack of tetrahedral matrix elements cov-

ered by a thin cohesive zone on both sides, these regions develop minor stress

concentrations compared to their undisturbed surroundings. However, the overall

distribution of the traction components is preserved well. Given the low intensity

of the artificial stress concentrations at the interface junction, it can be concluded

that the overall stress distribution in the interface is captured well by the meshing

methodology. Similar to the yarn meshing procedure, this methodology may be

easily adapted to a variety of textile composites, allowing for a more realistic repre-

sentation of branching interfaces without the need of introducing a dummy matrix

mesh of finite thickness in between contacting yarns. In addition, the proposed

methodology offers several advantages:

• since a spline-based CAD geometry is employed in the procedure, contacting

meshes are not required to match, and the results are less sensitive to mesh

refinement

• no modifications or distortions of the yarn mesh are required

• by working on CAD geometry, error prone nodal search algorithms are avoided
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Fig. 4.13: Effect of the proposed yarn-to-yarn and yarn-to-matrix cohesive meshing methodology
on the interfacial stress distribution of half of an axial yarn of a [0/±45] braid loaded
in transverse direction

4.3 Validation and application

With the simulation framework defined, we apply our methodology to predict the

elastic properties of triaxial braided composites. The materials in this study are

manufactured from Toho-Tenax HTS40 F13 12K (800 tex) untwisted yarns for both

the axial and braid direction in combination with a Hexcel HexFlow RTM 6 epoxy

resin. In order to demonstrate the framework, various unit cells are generated

for braiding angles ranging from 25◦ to 65◦ in increments of 5◦. For validation

purposes, tensile tests of straight-sided specimens with a total of four layers are

performed in accordance with ASTM D3039 [32]. Three braid architectures, with

a nominal braiding angle of 30◦, 45◦ and 60◦ are each tested in their longitudinal

(x), transverse (y) and braid yarn direction (1F ). Details on the manufacturing

process and the elastic properties are summarised in [79].

Based on a mesh refinement study, an average element seed size of 70µm is se-

lected for all unit cells. Given the geometrical properties of the bundles under

investigation, this discretisation yields approximately 40 hexahedral elements with

incompatible modes over the yarn width and two elements in the thickness direc-

tion, with a total of 7036 elements for the [0/±30], 9120 for the [0/±45] and 9114

for the [0/±60] configuration. Depending on the braiding angle, roughly 15,000

and 20,000 cohesive elements ensure coupling with the matrix pockets that contain

in between 40,000 to 50,000 tetrahedral elements. For all unit cells, a bundle side

thickness ratio of ξa = ξb = 5% is selected.
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4.3.1 Internal geometry

Ensuring that the unit cell models render a realistic representation of the compacted

internal textile geometry is key for accurate predictions of the mechanical response.

A detailed reconstruction of the actual geometry from µCT measurements enables

us to identify key geometrical features and compare them to the model. These

parameters comprise the yarn centre-line, thickness, width, spacing, twist, and

the intra-yarn FVF calculated from the cross-sectional area for both the axial and

braid fibre bundles. In addition, we can study the periodic nature of the internal

geometry, evaluate its spatial variability and asses the applicability of a unit cell

modelling approach to the problem.

For each textile architecture, samples of 15 × 15 × 3 mm3 were cut from the resin-

infused plates in close proximity to the coupons used for the mechanical tests and

scanned with a GE Phoenix/X-Ray Nanotom 180 at a voxel size of 9µm3 at the

University of Applied Sciences Upper Austria. Since an automatic segmentation of

resin-infused bundles poses significant challenges [80], a semi-automatic segmenta-

tion strategy was developed. Initially, the raw CT data is imported into a Matlab

script and sliced using three planes, with each of them corresponding to a cut

orthogonal to one of the in-plane fibre directions. Within the resulting stacks of

CT images, solely the cross-sections normal to the cut plane are segmented man-

ually by a predefined number of points that form a closed polygon line at the

bundle perimeter. This procedure is repeated until all cross-sections along each

image stack are processed. To minimise the manual input during this cumbersome

procedure, existing points are automatically copied to subsequent images where

only minor adjustments are required. As the data is progressively visualised and

saved, changes to any of the cross-sections can be made at any time via a graphical

user interface. A minimum of statistical data is captured along each yarn path by

limiting the segmentation to entities that extend at least over a single undulation

interval inside the measurement volume. In the presented study, each cross-section

is manually discretised with 20 measurement points. The distance between two

consecutive cross-sections is 180µm for the braid and 540µm for the axial direc-

tion. In total, the segmentation of the [0/±30] material involves 37900 points, the

[0/±45] 43100 points and the [0/±60] braid 40460 points. Finally, the data set is

converted into a 3D CAD geometry using spline interpolation in both axial and

transverse direction for easy inspection of geometrical features and comparison with

the unit cell models. For the generation of the unit cell models at arbitrary braid-

ing angles, we apply a quadratic interpolation function on the basis of the averaged
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µCT geometry that is summarised in Table 4.3. The global FVF measurements

ϕF,rUC were obtained using acid digestion in accordance with ASTM D3171 [21].

Table 4.3: Averaged µCT geometry used for the generation of the unit cell models

Global Axial yarns

θ ϕF,rUC sa wa ta κa Aa na

(deg) (%) (µm) (µm) (µm) (%) (mm2)
30 56 ± 0.9 3354 ± 123 2122 ± 131 452 ± 90 66 ± 6 0.674 ± 0.029 0.76
45 55 ± 0.8 4232 ± 118 2340 ± 157 440 ± 43 66 ± 4 0.726 ± 0.041 0.74
60 56 ± 0.2 6003 ± 259 2888 ± 203 350 ± 45 63 ± 5 0.742 ± 0.059 0.63

Global Braid yarns

θ ϕF,rUC sb wb tb κb Ab nb

(deg) (%) (µm) (µm) (µm) (%) (mm2)
30 56 ± 0.9 3052 ± 583 2695 ± 267 326 ± 59 70 ± 5 0.660 ± 0.048 0.58
45 55 ± 0.8 3047 ± 288 2716 ± 187 327 ± 50 70 ± 6 0.661 ± 0.054 0.60
60 56 ± 0.2 2799 ± 233 2767 ± 175 317 ± 59 70 ± 5 0.663 ± 0.060 0.56

The centre-lines shown in Fig. 4.14 for the [0/±45] braid are extracted from the

geometrical area centroid of consecutive cross-sections along the axial and braid

fibre undulation path. After segmentation, the individual curves are superimposed

and averaged locally to allow a comparison with the compacted unit cell geometry.

For the braid yarns displayed in Fig. 4.14 (a), the periodic nature of the fibre

waviness is clearly evident. When following individual bundle loci, we encounter

greater deviations from the experimental average, particularly in close proximity to

regions of peak amplitude. Here, the nesting configuration during compaction plays

a key role in the formation of the overall internal geometry. When braid bundles

of equal orientation are positioned on top of each other, the mutual interaction can

flatten their undulation path over a finite contact length. During compaction and

subsequent resin infusion, they merge into a bundle devoid of a visible interface in

this region. If we analyse each of the centre-lines separately, we observe a certain

degree of geometric variability induced by manufacturing process chain, much like

superimposed high frequency noise. However, as soon as a critical number of yarn

loci is combined in a statistical analysis, the average path follows a clear periodic

trend with a comparable standard deviation bandwidth. If the first nesting case

is considered in the simulations, the average experimental shape is captured very

well. Here, the positioning of the braid yarns in the thickness direction promotes

nesting into cavities that form in regions where the bundles progressively thin out

along their width. Due to the lack of a supporting yarn at about half of the distance
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between the point of maximum and zero undulation amplitude, the braid yarns are

compacted inwards and the yarn path exhibits a slight kink. In the second nesting

case, the centre-lines of the braid yarns are arranged directly on top of each other.

Using coincident geometric input parameters, they develop an undulation plateau

with a slightly smaller amplitude at the intersection with an axial bundle. At

this point, the yarn are tightly packed. Hence, large compaction stresses translate

into yarn flattening and hence a higher degree of geometrical defects in the textile

architecture.
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Fig. 4.14: Comparison of experimental and simulated yarn path of the [0/±45] braid for (a)

braid yarns (b) axial yarns (see Fig. 4.16 for braid yarn cross-sections at positions 1

to 5 )

The experimental findings in Fig. 4.14 (b) confirm the existence of additional fi-

bre waviness in the axial bundles, although at a significantly reduced amplitude

compared to the bias direction. The individual experimental curves are shifted

to achieve an optimum correlation in their first positive undulation interval. Here,
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the average undulation path and the simulations with both nesting cases match ex-

tremely well in terms of wavelength and amplitude. As we progressively move away

from the correlation point, fundamental changes in the shape of the centre-lines

are accompanied by a sky-rocketing standard deviation. These findings indicate

that the degree of fibre waviness in the axial yarns is driven by local bending

effects dominated by the nesting configuration. The simulated nesting cases were

found to have only minor impact on the yarn path of the unit cell. During the com-

paction, the initially straight axial bundles are subjected to local bending from their

entangling braid counterparts, independent of the applied out-of-plane boundary

conditions. While we cannot identify a clear periodic trend of axial fibre waviness

in the experiments, the unit cell model captures this geometrical phenomenon in

terms of amplitude and wavelength and hence also renders possible effects on the

mechanical response.

In addition to the centre-lines, the textile architecture is characterised by a variety

of geometrical parameters. As exemplarily displayed in Fig. 4.15 for the braid

bundles of the [0/±45] configuration, the yarn width wb, thickness tb, intra-yarn

FVF κb and twist angle αb are analysed along the average experimental undulation

path. Assuming an undamaged 12k bundle and a fibre diameter of 7µm, the intra-

yarn FVF is obtained for each cross-section by relating the total filament area to

the total segmented area. Each cross-section and the corresponding yarn thickness

are calculated orthogonal to the local yarn path direction.

When we investigate the evolution of the average braid yarn width wb along its

undulation path z′
b in Fig. 4.15 (a), we discover a periodic increase each time it con-

verges to its peak amplitude. Looking at the distribution of the average thickness

tb in Fig. 4.15 (b) at the same time, an opposite trend is clearly visible. This change

in aspect ratio is further accompanied by a repeating growth of the intra-yarn FVF

in Fig. 4.15 (c) at coincident positions along the undulation path. These finding

underline the impact of the compaction process on the bundle geometry. In regions

where yarns of adjacent plies are in direct contact, their cross-sections are flattened

under the applied pressure. In these regions where the elevated intra-yarn FVF lev-

els are consistent with a tight fibre packing, dry contacting filaments are subjected

to a transverse movement and the bundles are subsequently widened. Recalling that

the primary focus of the simulation framework is to construct a defect enriched ge-

ometry model based on average geometrical parameters of the finished composite,

only minor variations of the geometrical parameters are rendered in the unit cell.

While the bundle width is largely unaffected by the compaction simulation and its

stacking configuration, the second nesting case produces a slight variation in the

thickness and intra-yarn FVF distribution. Again, with bias bundles of adjacent



4.3 Validation and application 77

plies positioned directly on top of each other, a flattening mechanism similar to the

one found in the µCT experiments is introduced.
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Fig. 4.15: Comparison of experimental and simulated yarn architecture of the [0/±45] braid (a)
bundle width wb (b) bundle thickness tb (c) intra-yarn FVF κb, (d) twist angle αb
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Fig. 4.15: continued: Comparison of experimental and simulated yarn architecture of the
[0/±45] braid (a) bundle width wb (b) bundle thickness tb (c) intra-yarn FVF κb,
(d) twist angle αb

The distortion of fibre bundles along their undulation path is hard to quantify,

especially since the cross-sections typically do not exhibit uniform twisting. For

a more detailed comparison of the experimental and the simulated topology, we

introduce a twist angle α derived from the orientation of the principal axes of the

second area moment tensor defined as:

α =
1

2
arctan

(

2 Iy’z’

Iy’ − Iz’

)

, (4.9)

where the tensor components Iy’, Iz’ and Iy’z’ with respect to the yarn cross-sectional

area centroid are obtained from numerical integration and the sign of α follows a

right-handed coordinate system. When looking at the distortion of positively ori-

ented braid yarns in Fig. 4.15 (d), we notice a periodic response characteristic of

their waviness. At the point of maximum path amplitude, they are located di-

rectly on top of their axial counterparts. During the transition into the downwards

undulation segment, the mutual contact induces a gradual distortion in the braid

bundles as they are forced to accommodate to the underlying cross-section. This

phenomenon is consistent with the first sinusoidal peak of the twist angle αb. At

the point of maximum out-of-plane curvature, the fibres further pass through the

gap of two neighbouring longitudinal bundles. Owing to the absence of an inter-

acting axial bundle at this point, the overall distortion is minimised. Although the

bundle now continues on the opposite side of the textile, a second peak is created

by the identical kinematics near the successive intertwining region. Further along

the centre-line, the mechanism is continuously repeated, with the exception that
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the orientation of the twist angle changes sign in the upwards path segment. The

unit cell model captures this phenomenon accurately. Consistent with the higher

overall distortion, the second nesting predicts a sharper shape of the twist angle

distribution.
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A detailed comparison of the experimental and the simulated yarn cross-sections in

both braid directions is shown in Fig. 4.16 at different locations along the centre-

lines indicated in Fig. 4.14 (a). Superposition of the cross-sections is achieved by
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shifting each area centroid to the origin of the local coordinate system. The first

virtual cut 1 is made halfway between the point of maximum and zero undula-

tion amplitude, where the simulated yarn shapes experience the largest degree of

twisting. While the magnitude and the opposing twist directions in the positive

and negative braid bundles agree well with the µCT measurements, we observe

considerable scatter in the latter, further indicating that their deformation during

compaction is sensitive to the local nesting configuration. Moving further along the

centre-line, the second cut 2 investigates the point of maximum undulation ampli-

tude. Here, the braid yarns are pressed against their axial counterparts as a result

of direct contact with bundles from neighbouring layers. While the unshifted stack-

ing configuration in nesting case 2 produces a flattened top and bottom surface,

additional bending is introduced across the yarn width as a result of the shifted

locations of braid bundles through-the-thickness in nesting case 1. The resultant

asymmetric shape correlates well with the characteristic deformation mode of the

actual cross-sections at this location, similar to the mechanism found in woven

composites [67]. Contrarily to the previous cases, we observe mostly undistorted

yarn-shapes and a low scatter near the point of zero undulation amplitude 3 ,

where the fibres exhibit their maximum crimp angle. As a bundle crosses from one

side of the textile to the other, the degree of interaction with adjacent plies and

subsequent deformation are minimised. Position 4 coincides with the first cut in

the upwards undulation segment and repeats the characteristic deformation pat-

tern, although the sign of twist deformation changes. In the final cross-section 5

slightly before the peak amplitude, the gradual development of the yarn flattening

mechanism is again encountered in opposite direction.

In Fig. 4.17, the evolution of the average ply thickness trUC,c is outlined as a function

of the global FVF ϕF,rUC. At the beginning of the compaction simulation, all three

braid architectures comprise a global FVF of approximately 37%. During their

initial interaction, the bundles reposition freely and fill up large voids while the

overall thickness drops considerately.

Close to the target FVF, the mutual contacts multiply. Due to the inherent growth

in compaction resistance, the slope of the thickness reduction declines consistently.

In comparison to the experimental data obtained from calliper measurements of

the plate thickness, the simulated target values agree well. To validate the quasi-

incompressible material behaviour during the compaction simulation, the total

change in yarn volume is investigated in Fig. 4.18. For configurations involving

the first nesting case, a negligible volumetric change is encountered. More pro-

nounced but still in an acceptable range, the second nesting case induces a total

volumetric shrinkage of approximately 0.5%. Here, the direct contact of two over-
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lapping braid bundles from adjacent plies produces excessive contact pressure and

local distortion.

In order to assess the sensitivity of the compacted geometry and the resulting stress

fields with respect to the mesh density, a mesh refinement study was performed.

A total of four unit cells of the same [0/±45] architecture in the first nesting con-

figuration were created with the properties of each mesh highlighted in Table 4.4.

In addition to varying the input element seed size lmesh from its nominal value of

70µm (medium) to 45µm (fine) and 105µm (coarse), the number of elements in the

yarn through-thickness direction was doubled for the nominal case. As the meshing

algorithm in the resin pockets adjusts for this modification at the truncated yarn

sides, both medium mesh topologies feature a slightly different discretisation of the
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matrix pockets. For the side edges of the bundles, a thickness ratio of ξ = 5% was

selected for all unit cells throughout this work.
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Fig. 4.19: Relative yarn path error along a single undulation interval (a) at the top position and
(b) at the side of the braid bundles

The effect of the different mesh sizes on the compacted yarn path is investigated in

Fig. 4.19 along a single undulation interval (a) at the top position and (b) at the side

of the braid bundles. We quantify the relative positional error by comparing the

nodal coordinates of each mesh with respect to the finest discretisation. Following

the nodal coordinates at the top position of the bundle along a single undulation

interval in Fig. 4.19 (a), we can identify two characteristic peaks in the geometrical

error, with the larger one coinciding to the location of direct contact with an

entangled axial bundle close to the minimum path locus. Although the identical
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phenomenon is again encountered at the top of the undulation path, its severity

is dampened by larger distance to the output location. While the shape of the

yarn path deviation is mostly independent of the mesh, the relative error reduces

gradually as a function of the mesh refinement. A significantly better convergence,

however, is achieved by increasing the element count in the yarn thickness direction,

as local deformations at the mutual contact zones can be captured more accurately.

The same tendency can be found at the yarn side locus in Fig. 4.19 (b). While

still having the highest error magnitude, the path predicted by the coarse mesh

changes sign compared to all other configurations near the point of zero undulation

amplitude, where axial and braid yarns interlock. Given the low overall sensitivity

of the compacted geometry with respect to the mesh density, it can be concluded

that the compacted textile architecture can be reliably reproduced with the given

normal mesh size of lmesh = 70µm.

Table 4.4: Mesh statistics of the [0/±45] braid refinement study (ξa = ξb = 5%)

Mesh density Fine Medium Medium Coarse

lmesh (µm) 45 70 70 105
Elements per yarn thickness 4 4 2 2
Elements in yarns (hex) 39512 17328 8664 4064
Elements in yarns (wedge) 1392 912 456 312
Elements in matrix pockets (tet) 118187 41776 40787 17016
Elements (3D cohesive) 44295 16564 16234 8977
Elements total 203386 76580 66141 30369

Nodes in yarns 52410 23665 14199 6927
Nodes in matrix pockets 59339 22649 22175 11796
Nodes total 111749 46314 36374 18723

4.3.2 Elastic properties

After updating the local fibre orientations for the compacted yarns, elastic prop-

erties can be readily obtained through the application of principal load cases and

subsequent homogenisation. The material properties of the linear elastic trans-

versely isotropic bundles summarised in Table 4.5 are calculated from the fibre and

matrix properties given in Table 4.6 using Chamis’ micromechanical equations [46]

at the intra-yarn FVFs κ from Table 4.3. For a rUC subjected to a sequence of four

successive linear load cases (Ex, Ey, Ez, Gxy) combined in a single simulation, the

model is solved by Abaqus/Implicit (6.14) within seconds on a standard computer.

In order to quantify to effect of the textile architecture in the unit cell, the results

are compared to an equivalent tape laminate using classical lamination theory



84 4.3 Validation and application

Table 4.5: Elastic properties of the transversely isotropic yarns for characteristic intra-yarn FVFs

κ E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

(%) (MPa) (MPa) (MPa)

63 133369 8660 4364 0.322 0.388
66 139583 9087 4705 0.320 0.391
70 147867 9709 5236 0.319 0.395

Table 4.6: Elastic properties for fibre and resin [2, 3]

Fibre: Toho-Tenax HTS40 F13 (12K, µF,yarn = 800 tex) Resin: RTM 6

E1f E2f G12f ν12f ν23f ρF Em νm

(MPa) (MPa) (MPa) (g/cm3) (MPa)

210000 18000 21800 0.305 0.450 1.76 2890 0.35

(CLT). For triaxial braided composites, we construct an equivalent laminate by

virtually separating the axial yarns, the braid yarns and the pure resin pockets.

Each of the three constituents is then modelled either with a single unidirectional

ply in the respective fibre direction or represented by an isotropic layer, as is the

case for the matrix pockets. Assuming no crimp, the relative ply thicknesses ta/t

and tb/t in the laminate model correspond to the volume fractions of axial and

braid yarn content Va/V and Vb/V and vary as a function of the braiding angle θ

and the yarn properties. From a 2D unit cell, they are related by:

Va

V
=
ta
t

=
ϕF

κa

(

1 +
2

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

)

Vb

V
=
tb
t

=
ϕF

κb

(

1 +
2

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

)

Vm

V
=
tm
t

= 1 −
Va + Vb

V
= 1 −

ta + tb
t

,

(4.10)

where the linear yarn density µF,yarn and the fibre density ρF for the coincident

axial and braid yarns are given in Table 4.6 and the intra-yarn and global FVFs

are taken from Table 4.3.

For the longitudinal (x), transverse (y) and braid yarn direction (1F ), the predicted

elastic moduli are compared to their experimental equivalent as a function of the

braiding angle θ in Fig. 4.20 (a). Error bars indicate one standard deviation for

a total of six specimen tested. While the properties of the first two principal load
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directions (x and y) are directly calculated from homogenisation of the unit cell, the

modulus in braid fibre direction (1F ) is obtained by an additional transformation of

the macroscopic in-plane stiffness tensor. Consequently, this orientation implicitly

incorporates deviations of the shear modulus Gxy and the Poisson’s ratio νxy.

Due to the higher degree of overall bundle distortion after compaction, the second

nesting case consistently yields the lower stiffness among the two stacking configu-

rations. However, the magnitude of this knock-down is comparably small, since the

localised defects are smeared over a finite volume during the subsequent homogeni-

sation step. Nonetheless, the effect on the non-linear response including failure is

expected to be significantly larger [81, 82]. For the principal directions, the unit

cell predictions match the experiments exceptionally well, with a maximum relative

error of 3.4 % in the case of a [0/±30] braid loaded in x direction. A similar trend

is encountered in case the applied load is aligned with the braid fibre direction 1F ,

with the exception that the stiffness of the [0/±60] architecture is severely over-

predicted with a relative error of 10.5 %. While this is the most pronounced case,

the predictions generally exceed the experimental results. For minimised computa-

tional effort, we assume an infinite stack of plies in through-thickness direction and

hence over-estimate their out-of-plane support in comparison to an actual braided

laminate [81]. If we now directly introduce the load in the fibre direction of the

heavily undulating braid bundles, local out-of-plane deformations develop as a re-

sult of non-zero bend-extension coupling terms accompanied by a degradation of

the effective modulus E1F.

With the CLT model neglecting any undulation, it generally predicts larger elastic

moduli compared to the unit cell results. In the braid’s principal directions, an

average increase in relative error of approximately 5% compared to the unit cell

results is encountered. In the braid fibre direction 1F , we observe an increase in

error of up to 7% for the [0/±45] braid. Clearly, these small improvements in the

prediction of the elastic properties do not justify the extensive modelling effort and

computational cost of meso-scale unit cell models. For this purpose, the CLT model

provides a simple and viable tool within a preliminary design phase, particularly in

case only limited data on the detailed textile architecture is available. In addition,

several analytical approaches also explicitly account for the effect of fibre waviness

on the elastic properties of braided composites [44, 45, 83].

Fig. 4.20 (b) completes the comparison of the elastic properties by a comprehen-

sive summary of the in-plane Poisson’s ratios. An excessive Poisson’s effect in

axial direction is encountered in the [0/±30] material. Here, the discrepancy of

the longitudinal and transverse stiffness is most prominent. As the braiding an-
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Fig. 4.20: Comparison of homogenised experimental and predicted (a) elastic moduli (b) Pois-
son’s ratios as a function of the braiding angle θ

gle increases, this mismatch becomes less pronounced, with a tendency towards a

balanced Poisson’s effect in the [0/±60] architecture. Up to a braiding angle of

45◦, experiments and predictions differ by a magnitude comparable to the elastic

moduli, with the sole exception of the 1F direction. The corresponding jump of

the relative error may be attributed to ν converging to a value close to zero. In

the [0/±60] braid, the axial experiments are predicted well by the unit cell model.
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Contrarily, the remaining load cases exhibit a relative error up to 15 %, possibly

originating from a larger mismatch between the unit cell and the actual internal

geometry of the composite. Again, the differences between the unit cell and the

CLT model predictions are small.
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Fig. 4.21: Effect of mesh density on the stress distribution in fibre direction along a single
undulation interval (a) at the top position and (b) at the side of the braid bundles

After having successfully demonstrated a minimal sensitivity of the simulated yarn

path to the mesh cases under investigation, the preceding refinement study is

extended to the stress fields inside the yarns. Coincident with the positions in

Fig. 4.19, the stress distribution in the local braid fibre direction σ1b is assessed

as a result of the unit cell being subjected to a homogenised shear stress 〈τxy〉 in

a linear analysis. For each mesh, the nominal stress is calculated at the centre
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and the side nodal position of the actual yarn path by extrapolation of the closest

integration points. Hence, we benchmark the net effect of mesh refinement along

the complete simulation chain, including both the geometric and actual mesh con-

vergence. Fig. 4.21 (a) compares the linear stress concentration factor σ1b/ 〈τxy〉

for different mesh densities along the top path of the braid bundles. Aside from the

periodic pattern being represented well in all configurations, the element count in

the yarn through-thickness direction outweighs the effect of global mesh refinement,

particularly with regards to the peak amplitudes. When the bundle thickness is

discretised with four elements, a global mesh refinement leads to a negligible change

in the stress distribution compared to the medium case. Contrarily to the top po-

sition, the effect of a denser global mesh is more pronounced along the side of a

braid bundle as shown in Fig. 4.21 (b). While both medium mesh cases yield com-

parable peak amplitudes here, the stress distribution along the yarn path tends to

experience less noise and more distinct peaks with increasing refinement, as local

bending effects are reproduced more accurately. Similar to the convergence be-

haviour during compaction and considering the additional computational expense

of a fine mesh, a global mesh size of of lmesh = 70µm is deemed sufficient to capture

local stresses accurately.

4.4 Conclusions on meso-scale simulation framework

In this chapter, a novel simulation framework for accurate predictions of the me-

chanical response of triaxial braided composites was proposed. Realistic FE unit

cell models were generated through an automated bottom-up simulation work-flow:

local volumetric interpenetrations present in the initial stage of the model were re-

solved in a fictitious thermal step. Subsequently, a compaction simulation was

performed to the desired target fibre volume fraction using flexible membranes for

improved computational efficiency. Special out-of-plane periodic boundary con-

ditions allow an implicit consideration of the compaction of multiple braid plies

in different nesting configurations which enabled us to capture global FVFs of

55 − 60% while using intra-yarn fibre volume fractions obtained from experiments.

In the last step, a tetrahedral matrix pocket mesh was created from a CAD recon-

struction of the deformed textile. A novel meshing methodology was developed to

incorporate branching cohesive yarn-to-yarn and yarn-to matrix interfaces without

the need of introducing an artificial matrix mesh of finite thickness. The frame-

work was validated by detailed comparison with experimental results. First, the

unit cell geometry was compared to the detailed reconstruction of the actual bundle
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geometry from µCT measurements for three braid architectures, with a nominal

braiding angle of 30◦, 45◦ and 60◦. Subsequently, the predictive capability of the

approach and its robustness were demonstrated by successfully generating models

in an automatic fashion for braiding angles ranging from 25◦ to 65◦. These models

were successfully used to predict the elastic properties obtained experimentally.

The excellent correlation of experiments and unit cell predictions underlines the

framework’s potential for future damage modelling.





5 Non-linear mechanical response

In this chapter, the non-linear mechanical response of 2D triaxial braided compos-

ites under multiple tensile loading conditions was investigated with a novel meso-

scale simulation framework. Numerical predictions made by three-dimensional fi-

nite element unit cells with a realistic internal geometry in two nesting configura-

tions showed excellent correlation to experimental stress-strain curves and damage

mechanisms. Triaxial braided composites were found to experience significant non-

linearity in their macroscopic constitutive response before final failure, primarily

attributed to two characteristic damage mechanisms. In the first one, the pro-

gressive development of matrix cracks manifested in a smooth degradation of the

stress-strain curve up to the formation of a plateau for matrix dominated load

cases, while the underlying textile architecture acted as a crack arresting grid and

inhibited catastrophic failure.

The second damage mechanism was found to be intrinsic to the textile architecture

and prevailed in the presence of severe interfacial stresses. A stable plateau in the

stress-strain curves was correlated with the rapid formation of large-scale delami-

nations followed by progressive bundle pull-out, which was predicted qualitatively

by the numerical model.

Although the investigated braid topologies exhibited considerable geometric vari-

ability, the unit cell modelling approach with a compacted geometry model built

from average input parameters was capable of correctly predicting the homogenised

constitutive response, localisation, and damage evolution. Further, the mechanical

response was predicted under variable uni-axial off-axis load cases and the effect

of the textile topology on the ultimate strength of the material was investigated.

The meso-scale framework described in this chapter can be used as a general mod-

elling approach for conducting numerical simulations of other textile composites.

Aside from providing a valuable insight into how damage propagation is affected

by the meso-structure, the predicted stress-strain curves can be used to calibrate

macroscopic material models suitable for large-scale impact and crash simulations

of braided composites.

91
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5.1 Introduction

As a result of tight constraints on manufacturing costs and cycle-time in the in-

dustry, braided composites have recently been receiving increased attention. Aside

from significant processing advantages over traditional laminates, their high spe-

cific energy absorption and excellent damage tolerance characteristics make them

an ideal choice for designing primary load-carrying structures [50]. The accurate

prediction of their non-linear mechanical response, however, remains a challenging

task. Owing to the inherent textile nature with its out-of-plane waviness, inter-

acting fibre bundles, resin pockets, and nesting of compacted plies, the material

exhibits a complex failure and damage behaviour. In light of the fact that the textile

architecture can vary significantly on a composite component with a multitude of

parameters effecting the material properties, the determination of robust material

properties by experimental test campaigns is highly cost- and time-intensive.

Finite-element (FE) modelling of mesoscopic unit cells provides powerful means for

investigating the material behaviour of braided composites via virtual testing. In

textile composites, a representative domain of the internal geometry is considered

wherein the constituent reinforcing yarns are explicitly rendered as homogeneous

continua. This approach can be applied to a variety of problems, ranging from the

simulation of a dry fabric to the composite mechanical response with the accurate

prediction of stress-strain fields, the determination of homogenised elastic proper-

ties, and the investigation of non-linearities with plasticity, damage initiation and

progression up to final failure [53].

A unit cell’s potential to accurately predict damage is primarily driven by a realis-

tic representation of the underlying textile geometry. Idealised geometrical models,

like for example those created by available pre-processors [51, 52], provide excel-

lent results for a variety of topologies, but modelling highly compacted triaxial

braided composites with global fibre volume fractions (FVF) of 55 − 60% remains

a challenging task. Here, the non-orthogonal intertwining of three in-plane fibre

directions with multiple compacted layers produces a complex internal geometry

that features severely distorted bundles with multiple contact zones and locally

varying fibre orientations.

The non-linear mechanical response of textile composites was investigated by sev-

eral researchers based on idealised geometrical models. By exploiting symmetries

and periodicity in the material microstructure, Tang and Whitcomb [66, 74] derived

a reduced unit cell (rUC) for biaxial braided composites. Owing to the model’s

computational efficiency, a sensitivity study of the progressive failure behaviour to
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the internal geometry was performed. By generalising this approach, Carvalho et al.

[65, 70] developed an equivalence framework for arbitrary periodic structures and

accurately predicted failure envelopes for woven composites under biaxial compres-

sion. For a triaxial braided composite, Ivanov et al. [27] found a good correlation

between the experimental and numerical stress-strain curves for tensile loading in

axial and transverse direction. Obert et al. [84] introduced multiple discrete cracks

in a woven unit cell and applied finite fracture mechanics to simulate the effect of

transverse matrix cracks on the energy release rate.

Recently, increased research focus has been dedicated to the generation of more

realistic geometry models, either by implementing additional processing simula-

tion steps [60, 61, 85] or by a direct reconstruction of experimentally measured

geometries using micro-computed tomography (µCT) images [64, 67]. Green et

al. [60] studied the mechanical response of compacted 3D woven composites us-

ing a FE voxel discretisation and found significant differences between an idealised

geometry model and one obtained from process simulation steps. For the same

voxel meshing methodology applied to 2D woven composites, however, Doitrand

et al.[61] showed that despite the good agreement of the elastic properties with

a conventional mesh discretisation, the potential for simulating damage initiation

and propagation is strongly limited due to severe artificial stress concentrations

induced by the staircase-like representation of the geometry. After performing a

numerical compaction step, Grail et al. [57] developed a nodal distortion algorithm

to create matching mesh topologies between orthogonal yarns and investigated the

mechanical performance of the resulting composite unit cell. In a subsequent study,

Doitrand et al. [78] predicted the occurrence of matrix cracks at similar locations

to those observed in experiments and studied their impact on the macroscopic

mechanical performance.

The primary aim of this chapter is to provide a high-fidelity simulation tool for pre-

dicting the non-linear mechanical response of triaxial braided composites. There-

fore, a meso-scale FE simulation framework was developed, which generates unit

cell models with a realistic internal geometry by explicitly modelling the com-

paction process. The article is organised as follows:

• Firstly, the numerical model is described in detail and its key features are

summarised, the periodic boundary conditions are introduced for strain con-

trolled off-axis loading, and the constitutive law including plasticity, damage

initiation and propagation is addressed.

• Secondly, the numerical results for several test cases under are presented for

two nesting conditions and validated against experimental data by compar-
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ing stress-strain curves and damage morphology obtained from digital image

correlation (DIC) measurements.

• Thirdly, the mechanical response is investigated under multi-axial stress states,

and the effect of the textile architecture on the ultimate strength of the ma-

terial is studied.

• Finally, the capabilities and limitations of the modelling approach are ad-

dressed.

5.2 Modelling framework

5.2.1 Key features

Despite their high fidelity, the excessive computational expense of meso-FE models

currently confines their potential application to a small niche of engineering appli-

cations. The capability to run multiple simulations in a short time frame would

allow for more robust predictions by performing sensitivity studies as well as the

generation of failure envelopes and optimisation tasks. To maximise computational

efficiency, a reduced unit cell model which exploits the inherent material symme-

tries is generated within an automated simulation work-flow in four key steps for

highly compacted braided composites at global FVFs of 55-60%. Following the

roadmap outlined in Fig. 4.1, a nominal geometry is constructed a priori from

measurable geometric parameters. In the second step, local volumetric interpen-

etrations are resolved in a fictitious thermal contraction and expansion step to

achieve a compatible internal geometry. Subsequently, a compaction simulation is

performed to the desired global target FVF using a single textile layer enclosed by

flexible membranes. By applying different sets of PBCs, the compaction of mul-

tiple plies in different stacking and nesting configurations is implicitly considered

at significantly reduced computational cost compared to explicitly modelling the

full textile stack. The compacted rUC correctly renders the global FVF through

experimentally determined intra-yarn FVFs. In the last step, a tetrahedral ma-

trix pocket mesh is created from a CAD reconstruction of the deformed textile for

subsequent mechanical analysis.

The key features of the finished composite rUC model are summarised in Fig. 5.1.

Aside from the minimisation of the simulation domain, the use of a hexahedral

mesh for the yarns which constitute about 80% of the total volume plays a key

role in further improving the computational efficiency. With this discretisation,
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Fig. 5.1: Key modelling features of the simulation framework

an accurate solution at significantly reduced cost compared to a full second-order

tetrahedral mesh is obtained [73], while the tetrahedral elements are confined to

fill the complex resin pocket topology. The large width-to-thickness aspect ratio of

the fibre bundles promotes the use of continuum elements enriched by incompatible

modes. In addition to their displacement degrees of freedom, incompatible defor-

mation modes are added internally to improve the bending behaviour and eliminate

parasitic shear locking [73]. Despite their cost-intensive numerical formulation, a

net decrease in computational expense is achieved by requiring a minimum amount

of elements with improved aspect ratio in through-the-thickness direction to cap-

ture the bending stress gradient accurately.

In the fibre bundles, the implementation of a state-of-the-art three-dimensional

elasto-plastic constitutive law with a set of physically-based damage initiation cri-

teria enables us to capture non-linearities and typical failure modes encountered in

textile composites.

In addition to intralaminar damage, the progressive delamination of the fibre bun-

dles at their interface is an important failure mechanism which can trigger catas-

trophic fracture of the entire braid architecture. By connecting the yarn-to-yarn
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and the yarn-to-matrix cohesive interfaces without an artificial matrix layer of finite

thickness, delamination propagation is captured through an energy-based traction

separation law.

5.2.2 Periodic boundary conditions under off-axis loading

conditions

After exploiting the internal material symmetries to minimize the simulation do-

main, the periodic response of the rUC displayed in Fig. 5.2 is ensured by applying

periodic displacement boundary conditions. By extending Equation 4.7 to account

for arbitrary off-axis loading conditions, we obtain

u(A) − γT u(Â) = −T−1
ψ 〈F〉 T xO

Ê , (5.1)

where the left side describes the periodic displacement field u at the boundaries

expressed by the complementing points A and Â. The coordinate transformation

matrix T and the translation vector xO
Ê define the tessellation of adjacent sub-

domains, and the volume averaged deformation gradient tensor 〈F〉 represents the

external forcing function. Since the rUC is constructed by exploiting rotational

and mirror symmetries, the load reversal factors γ = ±1 inhibit a simultaneous

superposition of in-plane and out-of-plane shear loading. Due to the availability

of experimental data, we focus on combined in-plane loading and compare our

predictions against experimental off-axis test results. Under load control, this set-

up is conveniently modelled by a transformation of the off-axis stress tensor into

principal coordinates. Under displacement controlled loading, however, the full

strain tensor in off-axis coordinates is not known a priori, as the model must be

able to deform freely in any direction other than the load direction, such that

Poisson’s effects and shear-extension couplings are captured accurately. In order

to reproduce this case, the external loading term on the right side of Equation 5.1

is extended by transforming an arbitrary deformation gradient tensor 〈F〉 from

off-axis coordinates into principal coordinates using the transformation matrix Tψ

with the off-axis loading angle ψ, as is displayed in Fig. 5.4.

The master equations necessary for the implementation of in-plane periodic bound-

aries are summarised in Table 5.1, and their out-of-plane equivalents are processed

with an identical methodology. For edges and vertices sharing more than a sin-

gle periodic boundary, a system of linearly independent constraint equations is

assembled. The PBCs are incorporated into the FE model by coupling nodes at
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the periodic boundaries through linear constraint equations in combination with

external constraint driver nodes that define the homogenised deformation gradient

tensor. It is important to note that under a case of uni-axial loading in off-axis

direction, the unknown homogenised displacements of each constraint driver node

except for the user-defined forcing term εψ1 are determined by the FE solver.

T1 =





1 0 0
0 1 0
0 0 1





T2 =





−1 0 0
0 −1 0
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
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
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1 0 0
0 1 0
0 0 1




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Boundary 3
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
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0 0 −1





x

y

z

Reduced unit cell

wrUC
hrUC

Fig. 5.2: Derivation of rUC domain with periodic in-plane boundaries and corresponding trans-
formation matrices

A key feature of the presented work lies in the high fidelity of the mechanical sim-

ulation, since it builds on a compacted and defect-enriched geometry model that

is the product of a step-by-step simulation process. In order to minimise computa-

tional expense during the compaction step, the out-of-plane behaviour of a periodic

laminate is implicitly modelled by adding flexible dummy membranes to the top

and bottom of the rUC. PBCs are subsequently applied to both membranes in

their initial flat state and remain active throughout the entire compaction proce-
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Fig. 5.3: Comparison of simulated nesting cases visualised by multiple tessellated rUCs and
experimental µCT reconstruction for the [0/±45] architecture

dure. Finally, the periodically deformed nodal coordinates serve as a blueprint for

constructing the solid matrix mesh at the out-of-plane boundaries of the rUC for

the mechanical simulation.

The choice of through-the-thickness boundary conditions, including layer shifts and

nesting severely affects the compacted geometry and the mesoscopic stress fields

[81, 82]. When an actual component is manufactured on a braiding machine with

multiple layers and changes in cross-section, the local shifts are hard to control and
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hence tend to follow a random pattern. In the presented model, two different nest-

ing configurations are considered implicitly with a special set of out-of-plane PBCs,

both during the compaction simulation and the mechanical analysis. In their final

state displayed in Fig. 5.3, axial fibre bundles of adjacent layers are positioned

such that they are capable of closing the large initial voids originating from the

variable braid thickness. In this case of maximum nesting, sections devoid of axial

bundles are filled by their adjacent layer’s equivalent. In the second nesting case,

the stacked layers are additionally shifted in axial direction by a magnitude of half

the rUC length. In contrast to the first case, the braid bundles are now positioned

directly on top of each other. Hence, regions of high packing densities are sup-

plemented by local resin-rich areas in the textile after compaction. A comparison

with several cross-sections of the reconstructed µCT yarn geometry underlines the

random nature of layer shifts. While the nesting configurations considered in the

numerical can be identified in regions of the reconstructed geometry, they primar-

ily aim to represent bounding intervals to the support provided by the adjacent

layers at significantly reduced computational expense. The mechanical simulations

of both nesting cases are conducted on two different geometry models that origi-

nate from the same compaction simulation being performed under the respective

out-of-plane condition.

x

y

θ

1F

〈ε〉

ψ

Fig. 5.4: Definition of off-axis load cases

Special care must be taken when PBCs are implemented in the commercial FE

solver Abaqus/Explicit with the *Equation keyword. Within this environment,

user-defined constraints are assembled in a global matrix for which a solution is

obtained in every explicit time increment by means of an embedded penalty based



100 5.2 Modelling framework

implicit algorithm. Unlike in the implicit solver, however, the constraint equation

solver in Abaqus/Explicit is not parallelised. Hence, a bottleneck controlled by

the bandwidth of the constraint matrix is formed in the overall solution procedure.

With a standard implementation of the PBCs, the run-time for a non-linear anal-

ysis of a single rUC increases by a factor of 20 compared to simple displacement

boundary conditions and would nullify all benefits of the periodic model reduction.

To overcome this issue, the constraint equation system is fully decoupled by intro-

ducing a phantom slave node for each physical node at a periodic boundary. Both

entities are coupled using rigid one-dimensional truss elements to ensure displace-

ment equivalence. The constraint equations are now independently formed at the

isolated phantom slave nodes in order to obtain a straightforward solution for a

minimum bandwidth matrix. As the task of overall coupling of the equation system

is now distributed explicitly among several elements, the solution procedure can

be subdivided between multiple CPUs. This methodology produces similar run-

times with and without activated PBCs and hence ensures the low computational

expense of the unit cell. In order to eliminate parasitic stress concentrations at the

boundaries from numerical inaccuracies in the nodal displacements, the PBCs are

continuously solved in a double precision format.

Table 5.1: Master equations for implementation of in-plane periodic boundary conditions
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5.2.3 Constitutive modelling

5.2.3.1 Yarns

The non-linear mechanical response of the fibre bundles under quasi-static loading

is modelled using LaRC05 [5]. As one of the best performing failure theories bench-

marked in the World Wide Failure Exercise (WWFE) [86], this physically-based

smeared-crack model considers typical failure processes in composites under three-

dimensional stress states, such as matrix cracking, fibre kinking, fibre splitting and

fibre tensile failure. The constitutive law consists of three basic building blocks,

including the elastic-plastic behaviour before failure onset, the prediction of failure

initiation by means of physically-based criteria, and damage propagation using a

smeared crack model.

Elastic-plastic behaviour

The elastic properties of the transversely-isotropic fibre bundles are calculated from

the fibre and matrix properties given in Table 4.6 by means of an analytical mi-

cromechanical approach [46] at the corresponding intra-yarn FVFs to obtain the ho-

mogenised properties summarised in Table 4.5. Before failure onset, non-linearities

due to matrix-induced plasticity are considered in shear and transverse direction

through a change of the respective secant moduli that produce plastic strains with-

out damage. The decomposition of the total strain tensor into an elastic and a

plastic part yields a constitutive law in the form of

σ = C (ε − εpl) (5.2)

where C denotes the elasticity tensor of the undamaged material, σ is the effective

stress tensor and ε and εpl are the total and plastic strain tensors. The non-zero

components of the latter irreversible part at time t are obtained from calculating

the maximum over the loading history as

εpl
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t*≤t

{
∣

∣

∣

∣

∣

ε2(t)

(

1 −
Enl

2

E2

)∣

∣

∣

∣

∣

,
∣

∣

∣εpl
2 (t*)

∣

∣

∣

}

εpl
3 (t) = max

t*≤t

{∣

∣

∣

∣

∣

ε3(t)

(

1 −
Enl

3

E3

)∣

∣

∣

∣

∣

,
∣

∣

∣εpl
3 (t*)

∣

∣

∣

}

γpl
12(t) = max

t*≤t

{
∣

∣

∣

∣

∣

γ12(t)

(

1 −
Gnl

12

G12

)
∣

∣

∣

∣

∣

,
∣

∣

∣γpl
12(t*)

∣

∣

∣

}

γpl
13(t) = max

t*≤t

{∣

∣

∣

∣

∣

γ13(t)

(

1 −
Gnl

13

G13

)∣

∣

∣

∣

∣

,
∣

∣

∣γpl
13(t*)

∣

∣

∣

}

.

(5.3)
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The transverse isotropy of the material is retained throughout its plastic defor-

mation history by consistently degrading the corresponding shear and transverse

moduli, such that Enl
3 = Enl

2 and Gnl
13 = Gnl

12. By assuming a negligible contribu-

tion of the axial strain to yielding of the matrix, its plastic deformation is further

quantified by introducing the current irreversible equivalent strain [5] as

εeq =
√

(ε2 − ε3)
2 + γ2

12 + γ2
13 + γ2

23. (5.4)

Material healing during unloading can be further prevented by defining the history

field variable εmax
eq at time t as the maximum over the loading history as

εmax
eq (t) = max

t*≤t
{εeq(t*)} . (5.5)

For a maximum equivalent strain greater zero, both non-linear shear secant mod-

ulus Gnl
12 and transverse secant modulus Enl

2 are defined as the ratio of the current

stress state to the maximum equivalent strain under uniaxial loading conditions as

Gnl
12 =

τ12(εmax
eq )

εmax
eq

Enl
2 =

σ2(εmax
eq )

εmax
eq

. (5.6)

The non-linear stress-strain curves τ12(εmax
eq ) and σ2(εmax

eq ) in Equation 5.6 are de-

termined experimentally under the respective uniaxial loading conditions. An ex-

ponential fitting function with three independent constants in the form of

τ12(ε
max
eq ) = a12

(

eb12 εmax
eq − ec12 εmax

eq

)

σ2(ε
max
eq ) = a2

(

eb2 εmax
eq − ec2 εmax

eq

)

(5.7)

captures the non-linear behaviour in the shear and transverse direction adequately.

Moreover, the monotonically increasing nature of this analytical formulation en-

sures a positive tangent stiffness, produces a smooth curve extrapolation for com-

bined load cases and avoids time consuming tabular interpolations during the so-

lution procedure. The plastic coefficients summarised in Table 5.2 are obtained by

fitting averaged stress-strain data of shear and transverse compressive coupon tests

for the material used in this study.

In the fibre direction (1), the stress-strain response is typically modelled as linearly-

elastic up to final failure. Under tension, carbon fibres reveal a non-Hookean con-

stitutive behaviour, in which the Young’s modulus increases proportionally with

the applied load [48, 49, 87]. This stiffening phenomenon is incorporated into the



5.2 Modelling framework 103

Table 5.2: Plastic fitting parameters for the non-linear shear and transverse stress-strain curves

a12 b12 c12 a2 b2 c2

(MPa) (MPa)

73.53 2.53 -72.50 -1957.00 -16.75 -10.76

constitutive law by a simple empirical relation [47] where the stress-proportional

modulus in the fibre direction is calculated from

E1 =











E1,t,lin(1 + kf σ1) for σ1 ≥ 0

E1,c,lin for σ1 < 0,
(5.8)

and E1,t,lin denotes the linear tensile Young’s modulus at zero load. From regression

of unidirectional tests, an averaged stress-strain curve is represented with a load

proportional stiffness factor of kf = 4.76. Due to the lack of reliable data under

longitudinal compression, we resort to a linear model in this region. Here, poten-

tial non-linear effects are implicitly incorporated by an adjustment of the elastic

properties. The compressive modulus E1,c,lin is degraded based on a material char-

acterisation campaign performed by [3] for the fibre/matrix combination utilised

within this study.

Failure initiation

The onset of damage in the yarns is predicted by physically-based failure crite-

ria which distinguish four failure modes under three-dimensional stress states, in-

cluding matrix cracking, fibre kinking, fibre splitting, and fibre tensile failure [5].

Whereas the latter is predicted using a maximum stress criterion, the coincident

fibre kinking and splitting failure indices are evaluated on a rotated fracture plane

m aligned with the formation of a possible kink band by:

FI f,kink = FI f,split =

√

√

√

√

(

τm
23

ST − ηT σm
2

)2

+

(

τm
12

SL − ηL σm
2

)2

+

(

〈σm
2 〉+

YT

)2

(5.9)

where SL and ST are the longitudinal and transverse shear strengths, Yt is the

transverse tensile strength and ηL and ηT are friction coefficients on the corre-

sponding fracture plane. These two failure modes are then distinguished based

on the magnitude of the acting longitudinal compressive stress with σ1 ≤ −Xc/2

representing fibre kinking and −Xc/2 < σ1 < 0 indicating fibre splitting [5]. This
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distinction is important for further failure propagation. The McCauley brackets

〈•〉+ are defined as 〈x〉+ = max {0, x}.

Matrix cracking is predicted using a modified version of the Mohr-Coulomb failure

criterion with a quadratic stress interaction on a rotated fracture plane given by

FI mat =

√

√

√

√

(

τT

ST − ηT σN

)2

+

(

τL

SL − ηL σN

)2

+

(

〈σN〉+

Yt

)2

. (5.10)

A stress transformation yields the components of the traction vector σN, τL and τT

acting on a possible fracture plane, see Fig. 5.5, as

σN = σ2 cos2(α) + σ3 sin2(α) + τ23 sin(2α)

τT =
σ3 − σ2

2
sin(2α) + τ23 cos(2α)

τL = τ12 cos(α) + τ31 sin(α).

(5.11)

1 2

3

σN

α

τL

τTσmat

τmat λ
ω

Fig. 5.5: Traction components on the fracture plane for matrix cracking

By iteratively evaluating Equation 5.10 within a range of 0◦ < α < 180◦ in such

a way that the failure index is maximised, the fracture plane is identified when

FI mat ≥ 1. The normal traction component σN only contributes to failure onset

for positive values attributed to crack opening, whereas a negative or compressive

value inhibits failure onset through frictional mechanisms. The longitudinal friction

coefficient ηL = 0.082 is taken from experimental data for a typical carbon/epoxy
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composite [5]. Assuming a fracture angle of α0 = 53◦ under pure transverse com-

pression, the transverse friction coefficient ηT is calculated from

ηT = −
1

tan(2α0)
(5.12)

The matrix failure criterion does not directly incorporate the corresponding uni-

directional strength Yc. However, considering that failure under pure transverse

compressive loading is triggered by the transverse shear stress component τT on a

rotated fracture plane, the transverse shear strength ST is given by

ST =
Yc

2 tan(α0)
. (5.13)

Failure propagation

Once a failure criterion is satisfied, the formation of cracks in the material is sim-

ulated using a continuum damage mechanics (CDM) approach. By introducing

the concept of effective stress [88] and associating an independent scalar damage

variable with each of the failure modes fibre tension, matrix cracking and fibre

kinking/splitting, the constitutive law is modified in such a way that the trac-

tions on the associated fracture plane are progressively reduced to zero. During

this degradation procedure, the energy dissipated by the model corresponds to the

fracture toughness of the associated failure mode. Using a linear softening law, the

irreversible scalar damage variable for fibre tension and fibre kinking/splitting is

defined as a function of the strain tensor as

d = max

{

0,min

{

1, εf ε− ε0

ε(εf − ε0)

}}

. (5.14)

where ε denotes the current elastic driving strain on the fracture plane, ε0 corre-

sponds to the onset of damage and εf to final failure. The latter are obtained based

on the smeared crack band model [75] while considering a suitable characteristic

size of the band lchar in order to alleviate mesh dependency from
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εf
f,t =

2Gf,t
Ic

Xt lchar

εf
f,kink =

2Gf,kink
Ic

Xc lchar

εf
f,split =

2Gmat
IIc

τ 0,m
12 lchar

.

(5.15)

The choice of the characteristic material length lchar is affected by the failure mode,

the orientation of the fracture plane, the finite element type, and the mesh topology

[89, 90]. For the sake of numerical simplicity, the cubic root of the element volume

is selected here. Thus, taking into account that the orientation of the hexahedral

yarn mesh follows the fibre direction, the most accurate predictions are achieved

if the crack band develops either along or perpendicular to the yarn-path. After

transforming the stress tensor from principal material coordinates onto the previ-

ously identified fracture plane, the nominal traction vector t including damage is

defined as

t =

{(

1 − d
〈σN〉+

σN

)

σN (1 − d) τL (1 − d) τT

}T

. (5.16)

In the final step, the degraded stress tensor is rotated back to the material co-

ordinate system. Using the material data provided in Table 5.3, the stress-strain

response of the braid bundles in the fibre direction is shown for different loading/un-

loading cases in Fig. 5.6 (a). While macroscopic cyclic loading is not part of this

study, the constitutive law’s capability to capture unloading is key to accurately

render load redistributions after localisation in a non-linear failure analysis.

Unidirectional composites often exhibit an increasing resistance to fracture during

matrix crack growth, which is attributed to toughening effects in the wake of the

crack tip, such as fibre bridging [91]. By formulating a bi-linear softening law,

an increase in the resistance (R)-curve associated with a transition from crack

initiation to steady state propagation can be captured [92]. A piecewise definition

of damage variable dmat in the initiation and propagation region yields

dmat =



























max

{

0,
(ε− ε0)(εi − r ε0)

ε(εi − ε0)

}

for ε0 < ε ≤ εi

min

{

1,
(r ε0(ε− εf)

ε(εf − εi)

}

for εi < ε ≤ εf,

(5.17)
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where the strength ratio r relates the intermediate strength to the initiation strength

at which the energy dissipated by the model is coincident to the mixed-mode initi-

ation fracture toughness Γmat
init . The respective intermediate strain εi and the final

failure strain εf at which the element is deactivated are defined as

εi =
2 Γmat

init

σ0 lchar

+ r ε0and

εf =
2 Γmat

prop

r σ0 lchar

.

(5.18)

Assuming quadratic mode mixety [90], the fracture toughness on the fracture sur-

face is calculated from

Γmat = Gmat
Ic

(

〈σ0
N〉+

σ0
mat

)2

+Gmat
IIc

(

τ 0
T

σ0
mat

)2

+Gmat
IIc

(

τ 0
L

σ0
mat

)2

. (5.19)
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Fig. 5.6: Stress-strain response of the braid bundles loaded in their (a) fibre direction (1),
lchar=4 mm, (b) transverse direction (2), lchar=150µm, (c) shear direction (12),
lchar=250µm

In addition to the fracture toughness initiation properties given in Table 5.3, the

propagation values required for the definition for the bi-linear softening law are

based on an experimental R-curve reported in [92]. Due to numerical stability

reasons, a value of 0.02 is selected for the strength ratio r. The stress-strain re-

sponse of the braid bundles is displayed for loading in the transverse direction (2)
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Fig. 5.6: continued: Stress-strain response of the braid bundles loaded in their (a) fibre direction
(1), lchar=4 mm, (b) transverse direction (2), lchar=150µm, (c) shear direction (12),
lchar=250µm

in Fig. 5.6 (b) and for in-plane shear (12) loading in Fig. 5.6 (c). In the presence of

non-linearities due to matrix-induced plasticity, only the elastic part of the strain

tensor contributed to the fracture process. In the case of more than a single fail-

ure criterion initiating at the same material point during the simulation, the fibre

tensile and kinking damage process are treated as the most critical propagation

modes and an element is deactivated when each of its integration points is fully
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damaged. The material model is implemented in the commercial finite element

code Abaqus/Explicit [73] using a user-defined material model (VUMAT). The ex-

plicit implementation avoids convergence problems often encountered in implicit

implementations during softening.

Table 5.3: Strength and initiation fracture toughness properties for axial and braid yarns [4, 5]

κ Xt Xc Yt Yc SL Gf,t
Ic Gf,kink

Ic Gmat
Ic Gmat

IIc

(%) (MPa) (MPa) (MPa) (MPa) (MPa) (J/m2) (J/m2) (J/m2) (J/m2)

Axial yarns 63-66 2100 1240 45 180 70 89800 78300 200 400 1

Braid yarns 70 2200 1240 50 180 80 89800 78300 225 400 1

1 estimated

5.2.3.2 Interface

In both the yarn-to-matrix and the yarn-to-yarn interfaces, the possibility of debond-

ing is incorporated through a cohesive zone modelling (CZM) approach. The consti-

tutive response employs a quadratic stress interaction criterion for failure initiation

where the opening component of the normal traction tn and the effective shear trac-

tion tshear are evaluated against the interface strength properties N and S in the

form of

(

〈tn〉+

N

)2

+
(

tshear

S

)2

= 1. (5.20)

Once the onset of failure is reached, damage propagation is modelled using an

energy-based linear softening law. The mixed-mode response is governed by a

power law interaction of the energies required to cause failure in the individual

modes given by

(

GI

GIc

)αpl

+
(

Gshear

GIIc

)αpl

= 1. (5.21)

Using the material properties provided in Table 5.4 and a power law coefficient

of αpl = 1.23 [? ], the corresponding bi-linear traction-separation response of the

interface is shown under mixed-mode conditions in Fig. 5.7. After complete failure

of the interface, normal and post-debonding frictional stresses are transmitted by

means of a contact algorithm, where an isotropic friction coefficient of 0.6 [93]

between the delaminated surfaces is employed.
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Fig. 5.7: Bi-linear traction-separation law

Table 5.4: Material properties used to define the cohesive interface [6]

Kn = Kshear N S GIc GIIc

(N/mm3) (MPa) (MPa) (J/m2) (J/m2)

2.5 · 106 50 80 225 460

5.2.3.3 Resin pockets

The non-linear constitutive response of the resin pockets under quasi-static load-

ing is commonly addressed by elastic-plastic material models, such as the Drucker-

Prager yield criterion, which accounts for the effect of hydrostatic stress and dif-

ferent hardening responses under tensile and compressive loading encountered in

polymers [94, 95]. For the tightly packed braid configurations investigated in this

study, the neat resin volume takes up about 20 % of the total unit cell at about four

to seven times the amount of finite elements in the fibre bundles. Hence, considering

that the latter already contribute the majority of the macroscopic elastic-plastic re-

sponse and significant savings in computational cost, the resin pockets are assumed

to behave linearly elastic, with their material properties given in Table 4.6.
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5.3 Applications

In the present section, the non-linear mechanical response for triaxial braided com-

posites manufactured from Toho-Tenax HTS40 F13 12K (800 tex) bundles for both

the axial and braid yarns in combination with a Hexcel RTM6 epoxy resin is pre-

dicted. In the first part, the numerical results for several test cases are presented

and validated against experimental data by addressing their macroscopic and meso-

scopic behaviour for three braid architectures, with nominal braiding angles of 30◦,

45◦ and 60◦. On top of investigating the correlation of the homogenised stress-

strain curves, a detailed comparison of the progressive damage morphology and its

effect on the overall mechanical response is performed, and the driving mechanisms

behind catastrophic failure are identified.

In a subsequent step, the existing braids are subjected to multi-axial stress states

in order to identify transition regions in the overall failure behaviour. Finally, the

effect of the textile architecture on the ultimate strength of the material is studied

by generating unit cell models for braiding angles ranging from 25◦ to 65◦ obtained

from interpolated geometrical data.

For the numerical model, a quasi-static analysis under displacement control is per-

formed using an explicit integration scheme in the commercial FE code Abaqus/Ex-

plicit (6.14) [73]. Based on a preceding mesh refinement study, an average element

seed size of 70µm is selected for all unit cells. Given the geometrical properties of

the bundles under investigation, this discretisation yields approximately 40 hexa-

hedral elements over the yarn width and two elements in the thickness direction,

with a total of 7036 elements for the [0/±30], 9120 for the [0/±45] and 9114 for

the [0/±60] configuration. Depending on the braiding angle, roughly 15,000 and

20,000 cohesive elements ensure coupling with the matrix pockets that contain in

between 40,000 to 50,000 tetrahedral elements.

Appropriate mass scaling is applied carefully to the entire model, such that ultimate

failure occurs after 200,000-300,000 explicit time increments at a kinetic to strain

energy ratio of less than 5 %. Variable local mass scaling is employed such that

the stable time increment of all elements in the model is scaled to a user-defined

target value. The latter was determined through a sensitivity analysis, where trial

simulations were performed ranging from 1,000,000 increments (slowest run) to

100,000 increments (fastest run) under multiple loading scenarios. The critical time

increment, its associated element, and any effects on the predicted stress-strain

response and damage pattern were continuously monitored. Appropriate mass

scaling was then selected according to the worst case scenario. In order to eliminate
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any shock from a sudden initial acceleration on the rUC, the homogenised applied

displacements at the constraint driver nodes are ramped over time using a 5th order

polynomial function. No filtering or smoothing is applied to any of the stress-strain

curves presented in this paper. In a double precision solution format, a single

simulation runs in approximately two hours on four CPUs (Intel Core i7-6700K,

4.6 GHz). For a consistent comparison with the experiments, the homogenised

stress-strain curves obtained from volume-averaging employ engineering strain and

nominal stress measures with 〈·〉 denoting a volume-averaged variable.

5.3.1 Validation test cases

For validation purposes, the numerical predictions are compared to mechanical

tensile tests of straight-sided specimens performed with a total of four layers in ac-

cordance with ASTM D3039 [32]. All three braid configurations are each subjected

to uni-axial loading aligned with their axial (x), transverse (y) and braid yarn di-

rection (1F ) until catastrophic failure. Details on the manufacturing process and

the test set-up are summarised in chapter 3. The experimental stress-strain curves

are generated by averaging the complete DIC surface strain field. The geometry

data employed for the generation of the unit cell models is obtained from µCT mea-

surements in close proximity to the mechanical test specimens and is summarised

in Table 4.3. Out of the three braid test cases in each section, we focus on the two

most interesting ones.

5.3.1.1 Uni-axial loading in the axial direction (x, ψ = 0◦)

The experimental and numerical stress-strain curves for imposing a uni-axial load in

the axial direction (x) are displayed in Fig. 5.8. As the load direction is aligned with

the axial fibre bundles regardless of the braiding angle, their dominant contribution

to the overall stiffness induces only minor deviations from linearity. Generally, the

degree of non-linearity encountered in the stress-strain curve is composed of a

relative contribution of the three mesoscopic constituents: the resin pockets and

the bundles oriented in the axial and braid direction. In the [0/±45] configuration

shown in Fig. 5.8 (a), the latter are primarily loaded under in-plane shear. Hence,

with a significant amount of plastic strain but negligible damage predicted by the

numerical model, their stiffness contribution decreases gradually as the applied

load increases. In agreement with these findings, the DIC surface strain fields show

strain concentrations at the resin-rich yarn-to-yarn junctions of the textile but no

evidence of matrix cracking. At the same time, however, the material non-linearity
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is counteracted by a geometrical stiffening phenomenon, as the braid fibres tend to

continuously reorient in the direction of the global load. In addition, the carbon

fibres in the axial yarns exhibit stiffening due to their non-Hookean constitutive

behaviour. In total, these effects only play a minor role in the mechanical behaviour

for this case. When catastrophic failure occurs as a result of axial yarn rupture, the

second nesting configuration yields the lower failure stress prediction of both cases,

which can be attributed to a higher degree of yarn distortion after compaction.

Considering the scatter in the experiments, the upper and lower bounds in ultimate

strength are well predicted by the two nesting configurations.
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Fig. 5.8: Comparison of experimental and predicted homogenised stress-strain curves in the axial
direction (x) for the (a) [0/±45] and (b) [0/±60] architecture (see Fig. 5.9 and Fig. 5.10

for damage morphology at load levels 1 , 2 and 3 )
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A more severe effect of the braid yarns on the global behaviour is encountered in

the [0/±60] architecture displayed in Fig. 5.8 (b). In addition to the stress-strain

response, the progressive damage development predicted by the rUC is compared

to the formation of cracks during the mechanical tests in Fig. 5.9 at three load levels

that correspond to transition regions in the stress-strain curve. For a more conve-

nient interpretation of the predicted damage pattern, the rUC model is tessellated

several times with respect to its periodic boundaries such that a piece of a single

layer of braid is constructed. In addition, the development of damage predicted in

the bundles and the interface during progressive loading is quantified in Fig. 5.10

through a scalar damage variable for each failure mode from volume-averaging

calculated as

〈d〉 =
1

V

∫

V
d dV. (5.22)

Up to the first load level at approximately 250 MPa, the [0/±60] architecture ex-

hibits almost linear behaviour without damage. When this threshold level is ex-

ceeded in the experiments, matrix cracks nucleate in the braid bundles at multiple

locations on the specimen and propagate parallel to their fibre direction until they

are arrested at an intersecting bundle. A new crack then develops along the inter-

secting direction, thus creating a saw-tooth crack network. The numerical model

captures this matrix cracking failure mode as a result of combined transverse ten-

sile and shear loading in the braid bundles accurately. When a global threshold

strain of approximately 0.6 % is exceeded, the first zones of damage tend to initiate

in close proximity to the mutual braid bundle interfaces where the maximum fibre

waviness and a three-dimensional state of stress prevail. Subsequently, a stable

growth observed in the accumulated matrix damage in Fig. 5.10 can be correlated

with the simultaneous localisation of the first crack band in the centre of the pos-

itively and negatively oriented braid yarns and the subsequent propagation along

the respective fibre directions.

Above the first load level, the continuous development of damage in the exper-

iments and the model produces a bulge in the stress-strain curve, accompanied

by a sudden decrease in modulus as a result of the stiffness degradation in the

braid yarns. After the entire coupon is saturated with a network of matrix cracks,

their density increases from a single crack to an average of three cracks per yarn

close to the second load level. Apart from a small amount of secondary damage

in the interface, the unit cell predicts four parallel localisation bands in regions of

higher bundle thickness. While this tendency is in good agreement with the crack

loci on the specimen surface, their criticality is slightly over-predicted. Although
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Fig. 5.9: Predicted damage morphology and DIC strain field for the [0/±60] architecture (nesting
case 1) loaded in the axial direction (x)
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Fig. 5.10: Evolution of accumulated damage in the yarns and the interface for the [0/±60]
architecture (nesting case 1) loaded in the axial direction (x)

the formation of new cracks is observed persistently in the experiments, the tan-

gent modulus of the stress-train curves subsequently converges back to its initial

magnitude. This phenomenon may be the product of two overlying mechanisms:

Firstly, with increasing compliance due to softening in the braid yarns, more loads

are redistributed into the axial fibres. Secondly, the appearance of multiple cracks

removes constraints in the material and hence promotes further alignment of fibres

in the load direction. While the model is capable of accurately rendering the first

mechanism, an over-estimation of modulus degradation can be attributed to the

constitutive law of the bundles not explicitly incorporating large fibre reorienta-

tions. Upon further loading to the third level, however, the overall tendency of

damage saturation is well captured with a declining growth in the accumulated

matrix damage variable. The measured ultimate strength agrees well with the pre-

dictions, if the first nesting case is considered. In the second stacking configuration,

the higher degree of overall bundle distortion triggers a preliminary delamination

of the slightly undulated axial yarns, which induces a catastrophic failure. Hence, a

conservative strength prediction in relation to the experimental results is achieved.

Although the progressive formation of a crack network across the entire coupon is

driven by the variability of the underlying textile architecture, the unit cell mod-

elling approach is capable of correctly rendering the overall damage morphology

and its effect on the macroscopic constitutive response.
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5.3.1.2 Uni-axial loading in the transverse direction (y, ψ = 90◦)

In case the triaxial braided composites are loaded transverse to their axial fibre

bundles, a strongly non-linear behaviour as shown in Fig. 5.11 is induced. Con-

trary to the previous load case, the material’s constitutive response is not governed

by the dominant stiffness contribution of the load aligned fibres, but rather by the

combined off-axis response of the entirety of all mesoscopic phases. The [0/±45]

architecture displayed in Fig. 5.11 (a) exhibits a gradual decrease in tangent mod-

ulus up to a stress of approximately 120 MPa, which is attributed to the non-linear

in-plane shear contribution of the braid bundles to the overall stress-strain curve.
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Fig. 5.11: Comparison of experimental and predicted homogenised stress-strain curves for the
(a) [0/±45] and (b) [0/±30] architecture loaded in the transverse direction (y)
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Above this threshold, their axial counterparts exhibit matrix cracking parallel to

the fibre direction across the coupon width as a result of transverse tensile stresses.

As the load is further increased, more cracks progressively localise at the cross-

over points of braid yarns entangling a previously failed axial bundle. Again, their

propagation is constrained by the underlying textile architecture at adjacent inter-

faces. As a consequence of this phenomenon, the stress-strain curve experiences a

knee-point followed by a gradual stiffness degradation. This characteristic shape

and the failure mechanism in the axial yarns are well captured by the numerical

model. When a localisation band forms along the central axial bundle of the unit

cell, secondary failure in the adjacent braid bundles due the redistributed loads

is correctly predicted. However, with only a diffuse region of damage developing

here, possibly attributed to the limitations of CDM to model crack interactions,

the effect on the stress-strain curve is under-predicted. Still, its shape and failure

strain match the experimental measurements.
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Fig. 5.12: Evolution of accumulated damage in the yarns and the interface for the [0/±30]
architecture (nesting case 1) loaded in the transverse direction (y)

Although the damage morphology of the [0/± 30] braid shown in Fig. 5.11 (b) fol-

lows a similar tendency, its effect on the stress-strain curve is considerably larger.

Here, three separate domains in the constitutive behaviour are identified up to fi-

nal failure: an approximately linear domain, a damage progression domain, and a

saturation domain. As soon as the applied load reaches a critical level, a cluster

of matrix cracks forms on the specimen surface. This event correlates with the

first load drop, which marks the point of damage initiation at the end of the linear
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Fig. 5.13: Predicted damage morphology and DIC strain field for the [0/±30] architecture (nest-
ing case 1) loaded in the transverse direction (y)

domain. By studying the detailed behaviour of the mesoscopic model in Fig. 5.13

and its associated damage accumulation in Fig. 5.12, the combined nature of this

damage mechanism can be well explained: when failure localises rapidly in the
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axial yarns close to the first two load level markers, comparable to a tunnelling

matrix crack in the centre of the yarn, stresses are transferred through the inter-

face into the surrounding braid bundles where they immediately trigger additional

damage. Considering that the [0/±30] material features the highest bias angle of

the fibres with respect to the off-axis angle and hence the lowest overall stiffness,

the non-linear shape of the stress-strain curve is heavily affected by damage evo-

lution. In the damage progression domain, the test samples exhibit a stable load

plateau during the continuing development of matrix cracks over the entire coupon.

This process coincides with a declining rate of damage growth predicted in the ax-

ial yarns, while damage in the braid bundles quickly accumulates as a result of

localisation. During the continuous load redistribution, approximately half of the

interfacial area delaminates. When the entire specimen is saturated with cracks

in the experiments, a small increase in load can be observed before final failure

due to the existing cracks exhibiting further growth. With the shifted plies in the

second nesting configuration, the crack network coalesces such that a preliminary

catastrophic failure within the plateau region is predicted. Contrarily, the exper-

imental stress-strain curve and its mechanisms in the saturation domain are well

captured by the first nesting case. In this phase, the intra-yarn and inter-yarn

damage experience a receding growth, until the unit cell predicts final failure due

to a catastrophic delamination in accordance with the measured failure stress and

strain. Given the complexity of the failure morphology and its crucial effect on the

mechanical response, the unit cell’s capabilities are clearly demonstrated.

5.3.1.3 Uni-axial loading in the braid fibre direction (1F ,ψ = 30◦, 45◦)

The test cases in braid fibre direction (1F ) shown in Fig. 5.14 reveal a predominant

effect of the fibre waviness on the mechanical behaviour. Initially, with one group

of braid bundles aligned with the load direction, the [0/±45] and the [0/±30]

braid topology respond approximately linearly-elastic up to an applied strain of

〈ε1F 〉 = 0.5 % in the experiments. Beyond this point, the measured stress-strain

curves experience a stable load plateau as a result of several cascading failure events

intrinsic to the textile architecture. One group of parallel braid bundles straightens

along its longitudinal direction while progressively decreasing its initial waviness.

Hence, crossing axial bundles are pushed in the through-the-thickness direction

close to mutual intersection points while the deformation is constrained by opposing

braid yarns and the support of adjacent plies. If the interface is not capable of

sustaining additional inter-laminar stresses, a delamination forms abruptly along a

single axial bundle across the specimen width followed by its out-of-plane pull-out.
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During this mechanism highlighted by the DIC strain fields in Fig. 5.16, secondary

matrix cracks become visible in the overlying braid direction. As the applied strain

is further increased, the cascading bundle pull-outs fabricate a plateau-like shape

of the stress-strain curve in all tested braid architectures. After the braided layers

are fully debonded along their entire gage length, they act as separate entities, and

the mechanical response is again governed by the straightening braid fibres aligned

with the load direction. Contrarily to the [0/±30] case, the sustainable load before

final failure can be approximately doubled compared to its plateau initiation value

in the [0/±45] case.
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Fig. 5.14: Comparison of experimental and predicted homogenised stress-strain curves for the
(a) [0/±45] and (b) [0/±30] architecture loaded in the braid fibre direction (1F )
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Fig. 5.15: Evolution of accumulated damage in the yarns and the interface for the [0/±45]
architecture (nesting case 2) loaded in the braid fibre direction (1F )

Unlike many macroscopic approaches, such as equivalent laminate models based

on classical lamination theory [2, 28], the proposed unit cell captures the textile

induced failure mode. After an initially linear response identical to the mechanical

tests, the pull-out mode of the materials shown in Fig. 5.14 was measured to initiate

at a macroscopic stress level comparable to the numerical predictions. Among both

nesting configurations, the second case follows its previous tendency of producing

a lower initial peak stress that matches well the [0/±45] material. For the [0/±30]

braid, the effect of the out-of-plane PBCs on the first load drop is negligible. Here,

the onset of the pull-out induced stress plateau is slightly over-predicted, possibly

due to a severe through-the-thickness stress gradient not captured by the out-of-

plane periodicity [81]. For the three braid topologies under consideration, the first

load drop in the stress-strain curve is triggered by the sudden formation of a large

delamination zone in the unit cell model visualized in Fig. 5.16. The initial failure

in the cohesive interface occurs primarily under mode I, close to the point where

the intersecting braid yarns are heavily undulating.

The damage evolution curves shown in Fig. 5.15 reveal that the interface fails

almost completely between the first and second indicated load levels. As in the

experimental observations of secondary matrix cracking, the extensive debonding

process and subsequent out-of-plane deformation are accompanied by a sudden ac-

cumulation of intra-yarn matrix damage. Here, the mesoscopic structure shows

considerable distributed damage, but no clear localisation bands are visible. Con-
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Fig. 5.16: Predicted damage morphology and DIC strain field for the [0/±45] architecture (nest-
ing case 2) loaded in the braid fibre direction (1F )
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trary to the cascading pull-out events experienced by the tensile specimens, the

model’s periodic boundaries imply a simultaneous bundle pull-out in an infinite

array of repeating cells. As a consequence, the severity of the post-peak load

drop and the associated localisation behaviour are over-estimated. Upon further

straining, however, the stress capacity of the unit cell continuously increases at a

slope comparable to the experimental post-plateau stiffness. Close to the end of

the plateau-strain where the macroscopic stress level starts to increase again, the

numerical predictions again capture the experimental response accurately. After

all bundles have sustained severe secondary matrix cracking damage, the textile

exhibits catastrophic failure when a localised fibre failure inside the load aligned

yarns appears. Although the same failure mode was identified experimentally in

the [0/±30] case, both the plateau initiation and the final failure stress level are

over-predicted. While the model is capable of predicting the failure mode observed

in the experiments qualitatively, this test case emphasises a limitation of the unit

cell approach in addressing localisation and propagation of failure across a larger

than the characteristic unit cell size.

5.3.2 Variable off-axis loading

Following the validation test cases, the mechanical response of the braid topologies

is investigated under multiple uni-axial tensile off-axis load cases in order to identify

transition regions in the failure morphology and further provide material failure

envelopes for actual part design. By investigating the predicted stress-strain curves

for the [0/±30] architecture shown in Fig. 5.17 (a), three principal mechanisms are

identified. In case the load is applied along the axial principal material axis at an

angle of ψ = 0◦, ultimate failure of the braid is controlled by a catastrophic rupture

of the load aligned bundles at the end of a linear constitutive response. Here, the

small bias angle inherent to both braid fibre directions with respect to the uni-

axial load inhibits the formation of matrix cracks before final failure. Following the

absence of damage and its potential weakening effect on the load-carrying capability

of axial yarns, the maximum strength of the [0/±30] configuration is achieved as

a result of a predominant fibre tensile failure mode. However, with increasing

misalignment of the load, the overall mechanical behaviour of the textile tends

to be more and more affected by its interface. As the interfacial stresses grow

quickly, localised delaminations promote a premature failure in the axial yarns

accompanied by a degradation of the material strength. In case the off-axis angle

and the braiding angle converge, a non-critical load drop followed by a characteristic

growth in post-peak stress and strain marks the transition point into the textile
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dominated bundle-pull out mode. For slightly greater off-axis angles, the bundle

orientations of the multi-directional textile begin to redefine its failure morphology.

Owing to the multi-axial stress state, the simultaneous formation of matrix cracks

inside the axial and braid yarns accompanied by secondary damage along their

interfaces translates into an early kink in the stress-strain curve. Since the initial

stiffness of the braid gradually deteriorates as the load aligns with the transverse

direction, the cumulative effect of damage on the stress-strain curve is amplified,

until a plateau-like response with a strain to failure of up to 2 % is achieved for

values greater than ψ = 70◦.

The damage morphology of the [0/±45] braid presented in Fig. 5.17 (b) exhibits

a similar behaviour. Due to its greater braiding angle, this topology responds

in a much more balanced way when subjected to multi-axial loading. Although

intra-yarn matrix cracking remains a primary failure mode, its contribution to the

macroscopic non-linearity is confined to a portion of the gradual stiffness degra-

dation for off-axis angles greater than ψ = 60◦. For transverse tension, the axial

bundles must sustain additional compressive stresses along their fibre direction due

to the Poisson’s effect. Hence, superimposed fibre splitting contributes to ultimate

failure. Due to the absence of a competing failure mode, the bundle pull-out mech-

anism prevails over a considerable loading range from approximately ψ = 30◦ to

ψ = 60◦, with the most pronounced plateau forming in the braid fibre direction,

but with the initiation stress remaining largely insensitive to the load case.

Among the three triaxial braids under investigation, the least amount of non-

linearity in the stress-strain curves is found in the [0/±60] braid shown in Fig. 5.17

(c). Owing to the evenly spaced in-plane yarn orientations, the macroscopic re-

sponse under an arbitrary off-axis angle is assembled from a primary contribution

of one load aligned bundle group, while the remainder can sustain multiple matrix

cracks without triggering a catastrophic failure of the textile. For tension in axial

direction, the two braid bundle directions accumulate damage equally in the con-

text of a multi-axial stress state, such that a kink is generated in the stress-strain

curve at about half of the strength. With the exception of a pull-out mode in close

proximity to the braid fibre direction, the knee in the stress-strain curves gradually

vanishes as the load vector rotates. Here, a less critical stress state delays the

onset of matrix cracking in one group of braid bundles, while the rate of damage

growth in the second group does not suffice for a noticeable non-linearity in the

stress-strain curve. A comparable mechanism prevails for transverse loading. Al-

though the matrix cracks and fibre splits start to develop at roughly two thirds of

the failure load inside the axial bundles, any macroscopic effect is shielded by the
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predominant load carrying and redistribution capabilities of the entangling braid

fibres that ensure the integrity of the textile.
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Fig. 5.17: Effect of variable off-axis loading on the predicted stress-strain curves for for (a) the
[0/±30] braid (nesting case 1), (b) the [0/±45] braid (nesting case 2) and (c) the
[0/±60] braid (nesting case 1)
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Fig. 5.17: continued: Effect of variable off-axis loading on the predicted stress-strain curves for
for (a) the [0/±30] braid (nesting case 1), (b) the [0/±45] braid (nesting case 2) and
(c) the [0/±60] braid (nesting case 1)

5.3.3 Effect of the braiding angle on the ultimate strength

Due to the high geometrical flexibility of the over-braiding process, it is often used

to manufacture complex hollow parts that incorporate changing or asymmetric

cross-sectional shapes. As a result, the textile and its mechanical properties grad-

ually vary over the entire component, further complicating the structural design

process. In order to investigate the sensitivity of the predicted macroscopic be-

haviour to the underlying textile architecture for a typical manufacturing process

window, additional unit cell models are generated for braiding angles ranging from

25◦ to 65◦ in increments of 5◦, with the input geometry obtained by a quadratic

interpolation of Table 4.3.

The effect of the braiding angle on the material ultimate strength is shown in

Fig. 5.18 for the uni-axial load cases in the axial (x), transverse (y) and braid fibre

(1F ) direction. Although the strength in the axial direction drops considerably

with increasing braiding angle after a predominantly linear stress-strain response,

it is consistently controlled by fibre failure in the axial bundles at a comparable

failure strain. While the load carrying contribution of the braid bundles declines as

their fibres exhibit a higher bias angle, the formation of matrix cracks in the latter

close to a braiding angle of 50◦ induces a knee in the stress-strain response. Under

transverse tension, a constant reduction of the degree of non-linearity is observed.
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Fig. 5.18: Ultimate strength as a function of the braiding angle θ

For braiding angles below 35◦, the rate of matrix cracking and interfacial damage

growth adds substantial compliance to the material’s matrix-dominated response,

such that a constant stress level during an increase in strain is maintained. Follow-

ing the growing stiffness contribution of the braid yarns, this plateau subsequently

transitions into a smooth degradation of the stress-strain curve, until its effect

becomes barely noticeable for braiding angles greater than 65◦. In the braid fibre

direction, progressive pull-out is encountered for any braiding angle, suggesting that

this failure mechanism is triggered by a critical degree of braid bundle waviness

present in all variations of the topology under investigation. The numerical model

generally over-predicts the ultimate strength, with the exception of an excellent

agreement for the [0/±45] case. This indicates that further improvements in the

post-failure response are needed to better replicate the damage pattern introduced

during the progressive nature of the bundle pull-out phenomenon.

5.4 Conclusions on non-linear mechanical response

In this chapter, a novel meso-scale simulation framework was applied to predict

the non-linear mechanical response of triaxial braided composites under multiple

loading conditions. By explicitly modelling the compaction process at low compu-

tational cost, unit cells with a realistic representation of the mesoscopic geometry

were generated in a fully automated fashion. Using a 3D constitutive law to cap-
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ture plasticity, damage initiation, and propagation inside the fibre bundles and

cohesive zone modelling at the interfaces, the numerical predictions were validated

against mechanical test of three braid architectures by comparing both stress-strain

curves and damage morphology from DIC measurements. Further, the mechanical

response was predicted under variable uni-axial off-axis load cases. Finally, the

effect of the textile topology on the ultimate strength of the material was investi-

gated. Based on the results presented in this study, the following conclusions can

be formulated:

• Triaxial braided composites experienced significant non-linearity in their macro-

scopic constitutive response before final failure. This phenomenon was pri-

marily attributed to a complex damage behaviour composed of two charac-

teristic mechanisms. In the first one, matrix cracks developed progressively

in the fibre bundles and induced subsequent inter-yarn fracture propagation,

while the underlying textile architecture acted as a crack arresting grid and

inhibited catastrophic failure. In both the experiments and the simulations,

this failure mode manifested in a smooth degradation of the stress-strain

curve up to the formation of a plateau for matrix dominated load cases. The

second damage mechanism was found to be intrinsic to the textile architec-

ture and prevailed in the presence of severe interfacial stresses, as was the

case for loading parallel to the braid yarn direction. Here, a stable plateau in

the stress-strain curves was correlated with a rapid formation of a large-scale

delamination followed by progressive bundle pull-out, highlighting that the

meso-scale strongly affects the mechanical behaviour at the macro-scale.

• Considering the good agreement of predicted and measured stress-strain curves

and damage mechanisms, the capabilities of the unit cell modelling strategy

were demonstrated. Although the investigated braid topologies exhibited

considerable geometric variability, a unit cell modelling approach with a com-

pacted geometry model built from average input parameters was capable of

correctly predicting the homogenised constitutive response, localisation, and

damage evolution by means of a combined CDM and CZM approach. Com-

pared to damage, plasticity in the bundles was found to have a negligible

impact on the stress-strain behaviour. The textile induced bundle pull-out

mechanism was captured qualitatively. The capability to explicitly model

its progressive nature and the associated stress-strain plateau, possibly by

means of a statistical RVE, would imply a multiplication of the current com-

putational cost at a comparable fidelity and was not the primary focus of this

work. Regarding the effect of the nesting configuration on the homogenised
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response, it was found that axial shifting of adjacent layers in the second con-

figuration consistently yielded a lower ultimate strength prediction. While the

nesting configuration was found to affect the criticality of damage initiation

and catastrophic failure, the load redistribution during damage propagation

in the braid followed a comparable pattern.

• The meso-scale framework described can be used as a general modelling

approach for conducting numerical simulations of other textile composites.

Aside from providing a valuable insight into how damage propagation is af-

fected by the meso-structure, the predicted stress-strain curves can be used

to calibrate macroscopic material models suitable for large-scale impact and

crash simulations of braided composites.



6 Conclusions and future work

The primary aim of this thesis was to develop a high-fidelity simulation tool for

virtually predicting the non-linear mechanical response of triaxial braided compos-

ites. In the first step, multiple braid architectures were investigated experimentally

under multi-axial stress states. Different experimental techniques were applied to

quantify the effects of the textile architecture and its heterogeneity on the surface

strain fields, to identify and locate constituent failure mechanisms and to investi-

gate damage initiation and development as a basis for modelling. With the the

driving physical mechanisms behind the material non-linearity identified, a meso-

scale simulation framework was developed which generates unit cell models of tri-

axial braided composites with a realistic internal geometry by explicitly modelling

the manufacturing process. After validating the simulation framework against ex-

perimental data in terms of the internal geometry, elastic properties, non-linear

behaviour, and damage morphology, the material response was predicted under

variable uni-axial off-axis load cases and the effect of the textile topology on the

ultimate strength of the material was investigated. The meso-scale framework de-

scribed in this thesis can be used as a general modelling approach for conducting

numerical simulations of other textile composites. Aside from providing a valuable

insight into how damage propagation is affected by the meso-structure, the pre-

dicted stress-strain curves can be used to calibrate macroscopic material models

suitable for large-scale impact and crash simulations of braided composites.

6.1 Conclusions

In chapter 3, the damage and failure behaviour of triaxial braided composites was

investigated under multi-axial stress states introduced through uni-axial off-axis

tests. Digital image correlation measurement techniques were used to quantify

the effects of the textile architecture and its heterogeneity on the strain field, to

identify and locate constituent failure mechanisms and to investigate damage ini-

tiation and development. Microsections of the specimen were analysed for the

purpose of geometrical material characterisation and assessment of failure mech-

131
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anisms in the thickness direction. The evolution of the damage variable and the

accumulated inelastic strain was quantified using incremental loading/unloading

experiments. A high-speed camera was employed in order to study the dynamic

nature of catastrophic failure. The triaxial braids exhibited severe non-linearities

in the mechanical response before final failure. This phenomenon was primarily

attributed to a complex damage behaviour composed of two characteristic mech-

anisms. In the first one, matrix cracks developed progressively in the yarns that

were not aligned with the load direction. While the underlying textile architecture

was found to slightly reduce the elastic properties compared to equivalent tape

laminates, it functions as a natural crack arresting grid and restricts the prop-

agation of cracks to in between adjacent intersecting yarns, thus reducing their

criticality. Loads can be redistributed without catastrophic failure of the material.

In addition, a possible crack deflection can cause additional energy absorption. As

a result of this mechanism, braids under certain load conditions were capable of

withstanding a high strain to failure, even if a large portion of the specimen sur-

face was saturated with matrix cracks. The accompanying mechanical behaviour

can be desirable in the design of crash absorbing or pseudo-ductile materials. An

additional failure mode intrinsic to the textile architecture was encountered for

loading in the heavily undulated braid yarn direction. Due to yarn straightening

induced out-of-plane deformations, braided composites were found to fail as a re-

sult of large scale delaminations accompanied by progressive fibre bundle pull-out.

This information served as a baseline for the development of a numerical model

for predicting the non-linear constitutive behaviour of braided composites. Having

identified the failure morphology to be severely affected by the underlying textile

architecture, the necessity of a meso-scale modelling approach became evident. In

addition to a realistic representation of the internal geometry after compaction of

multiple braided layers, the potential development of a bundle pull-out mode re-

quires failure to not only be captured inside the yarns or matrix pockets, but also

at their respective interfaces.

In chapter 4, a novel simulation framework for accurate predictions of the the me-

chanical response of triaxial braided composites was proposed. Realistic FE unit

cell models were generated through an automated bottom-up simulation work-flow:

local volumetric interpenetrations present in the initial stage of the model were re-

solved in a fictitious thermal step. Subsequently, a compaction simulation was

performed to the desired target fibre volume fraction using flexible membranes for

improved computational efficiency. Special out-of-plane periodic boundary condi-

tions allowed an implicit consideration of the compaction of multiple braid plies in

different nesting configurations which allowed capturing global FVFs of 55 − 60%
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while using intra-yarn fibre volume fractions obtained from experiments. In the last

step, a tetrahedral matrix pocket mesh was created from a CAD reconstruction of

the deformed textile. A novel meshing methodology was developed to incorpo-

rate branching cohesive yarn-to-yarn and yarn-to matrix interfaces without the

need of introducing an artificial matrix mesh of finite thickness. The framework

was validated by detailed comparison with experimental results. First, the unit

cell geometry was compared to the detailed reconstruction of the actual bundle

geometry from µCT measurements for three braid architectures, with a nominal

braiding angle of 30◦, 45◦ and 60◦. Subsequently, the predictive capability of the

approach and its robustness were demonstrated by successfully generating models

in an automatic fashion for braiding angles ranging from 25◦ to 65◦. These models

were successfully used to predict the elastic properties obtained experimentally.

The excellent correlation of experiments and unit cell predictions underlined the

framework’s potential for damage modelling.

In chapter 5, the meso-scale simulation framework was applied to predict the non-

linear mechanical response of triaxial braided composites under multiple loading

conditions. Using a 3D constitutive law to capture plasticity, damage initiation,

and propagation inside the fibre bundles and cohesive zone modelling at the in-

terfaces, the numerical predictions were validated against mechanical test of three

braid architectures by comparing both stress-strain curves and damage morphology

from DIC measurements. Further, the mechanical response was predicted under

variable uni-axial off-axis load cases. Finally, the effect of the textile topology on

the ultimate strength of the material was investigated. To summarise the previous

results, the following conclusions can be formulated:

• Triaxial braided composites experienced significant non-linearity in their macro-

scopic constitutive response before final failure. This phenomenon was pri-

marily attributed to a complex damage behaviour composed of two charac-

teristic mechanisms. In the first one, matrix cracks developed progressively

in the fibre bundles and induced subsequent inter-yarn fracture propagation,

while the underlying textile architecture acted as a crack arresting grid and

inhibited catastrophic failure. In both the experiments and the simulations,

this failure mode manifested in a smooth degradation of the stress-strain

curve up to the formation of a plateau for matrix dominated load cases. The

second damage mechanism was found to be intrinsic to the textile architec-

ture and prevailed in the presence of severe interfacial stresses, as was the

case for loading parallel to the braid yarn direction. Here, a stable plateau in

the stress-strain curves was correlated with a rapid formation of a large-scale
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delamination followed by progressive bundle pull-out, highlighting that the

meso-scale strongly affects the mechanical behaviour at the macro-scale.

• With the excellent correlation of the predicted and measured stress-strain

curves and damage mechanisms, the capabilities of the unit cell modelling

framework were demonstrated. Although the investigated braid topologies

exhibited considerable geometric variability, a unit cell modelling approach

with a compacted geometry model built from average input parameters was

capable of correctly predicting the homogenised constitutive response, lo-

calisation, and damage evolution by means of a combined CDM and CZM

approach. Compared to damage, plasticity in the bundles was found to have

a negligible impact on the stress-strain behaviour. The textile induced bundle

pull-out mechanism was captured qualitatively. The capability to explicitly

model its progressive nature and the associated stress-strain plateau, possibly

by means of a statistical RVE, would imply a multiplication of the current

computational cost at a comparable fidelity and was not the primary focus

of this work. Regarding the effect of the nesting configuration on the ho-

mogenised response, it was found that axial shifting of adjacent layers in the

second configuration consistently yielded a lower ultimate strength predic-

tion.

• The meso-scale framework described in this work can be used as a general

modelling approach for conducting numerical simulations of other textile com-

posites. Aside from providing a valuable insight into how damage propagation

is affected by the meso-structure, the predicted stress-strain curves can be

used to calibrate macroscopic material models suitable for large-scale impact

and crash simulations of braided composites.

6.2 Potential future work

6.2.0.1 Experimental material characterisation

• Compression testing

In order to obtain representative stress-curves for triaxial braided compos-

ites under compressive loading, the most appropriate test method has to be

identified. With its limited gage length and specimen width, the combined

loading compression (CLC) fixture according to ASTM D 6641 may not yield

satisfactory results for a wide range of braided composites. Considering the

crack growth tends to be governed by the underlying textile architecture,
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cracks may be forced to propagate into the clamped regions of the speci-

men, causing a combination of non-physical failure patterns and material

properties. A larger specimen might be necessary in order to not artificially

constrain crack growth and hence obtain representative stress-strain curves

in a robust fashion. One possibility worth investigating could be a modi-

fied version of open-hole compression testing according to ASTM D 6484.

Adding custom made transparent lateral supports for vision onto the entire

gage length would further allow the investigation of damage propagation by

full-field strain measurement techniques under compressive loading.

• Additional non-destructive test methods

In-situ computed tomography is a powerful non-destructive testing method to

study the damage inside the material during progressive loading. By tracking

the nucleation and propagation of cracks, their phenomenology and effect on

the macroscopic behaviour can be studied. Since cracks and delaminations

are identified while the specimen is under load, crack-closure effects during

microscopy of damaged specimens are avoided. A topic of particular inter-

est are crack migration phenomena between different bundle orientations:

Despite different in-plane fibre orientations, inter-connected matrix cracks

are observed in regions of direct yarn-to-yarn contact when investigating mi-

crosections of damaged specimens. These cracks extend through individual

bundles, branch into localised delaminations at the bundle interface and sub-

sequently connect with a matrix crack in a neighbouring bundle. By better

understanding the interaction among different damage mechanisms, the fi-

delity and robustness of future models can be drastically improved.

• Additional investigations on progressive fibre pull-out failure mode

In order to further strengthen the findings on the progressive bundle pull-out

mechanism for loading parallel to the braid fibre direction, additional testing

with a variable specimen width is proposed. Since the occurrence of this fail-

ure mode was initially not expected, only a single specimen width was tested.

Hence, a potential dependency of the results on the coupon dimensions could

not be eliminated. However, considering that the three braid architectures

under investigation experienced the same failure mode despite their unequal

unit cell quantity per specimen width, it may be concluded that bundle pull-

out is a failure mode intrinsic to braided composites and that the specimen

width was sufficient to obtain a representative material response.
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6.2.0.2 Meso-scale modelling

• Improving runtime and robustness of the modelling framework

A large part of the modelling framework’s pre-processing work flow is cur-

rently implemented within the Abaqus/CAE Python API environment. Core

functionalities, such as the yarn meshing procedure and the generation of the

matrix pockets by CAD geometry reconstruction are fully automated, but

rely on the performance of built-in Abaqus/CAE functionalities. Unfortu-

nately, with its original development dating back to the 1990s, Abaqus/CAE

does not support multi-threaded operations and fails at handling large quan-

tities of geometric elements. For example, the yarn meshing algorithm can

suffer from am excessive run-time for very fine meshes, since the pre-processor

cannot handle the quantity of elements involved in the geometric partitioning

procedure. During the CAD reconstruction of the matrix pockets geometry,

complex shapes may induce a large run-times or failure of the built-in boolean

operation functionalities. The mediocre performance seems to be a result of

an older ACIS geometry kernel implementation. Possible future improve-

ments may switching to more advanced pre-processors which still allow for

fully automated work-flows, such as ANSA (BETA CAE Systems), Hyper-

mesh (Altair), the 3DEXPERIENCE Platform (Dassault), CATIA V5/V6

(Dassault) or Abaqus/CAE with improved user-developed functionalities.

• Application to woven and other textile composites

With the fully automatic implementation, the meso-scale framework can be

extended to other textile composites, such as woven or biaxial braided com-

posites. For the latter, only slight modifications are necessary, including the

removal of axial bundles and small adjustments to the characteristic undula-

tion path. 2D woven composites are coincident to a 45◦ biaxial braid, with a

convenient definition of the warp and weft direction after rotating the prin-

cipal coordinate system.

• Explicit representation of multiple nested plies

The through-the-thickness boundary conditions, including layer shifts and

nesting affect the initiation and propagation of damage. In the presented

model, two different nesting configurations were considered implicitly with

a special set of out-of-plane PBCs, both during the compaction simulation

and the mechanical analysis. While the current implementation focuses on

minimum computational expense, numerical studies with an explicit repre-

sentation of the textile stack are proposed in order to capture the effect of

the through-the thickness stress gradient on damage initiation and propaga-
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tion. Additionally, the stochastic variability of the textile architecture can

be addressed by assembling laminates from unit cells with varying geometry

characteristics.

• Higher order periodic boundary conditions during compaction sim-

ulation

During the compaction simulation, the periodic displacement boundary con-

ditions do not enforce curvature continuity to adjacent elements inside the

unit cell. During highly localised compaction, this can cause kinks in the

surface curvature across the periodic boundaries and lead to localised stress

concentrations. As a future work-around, the solid mesh of the yarns can

be wrapped with a thin dummy shell mesh, such that the periodic boundary

conditions acting on displacements can be extended to rotational degrees of

freedom. Hence, a smooth surface curvature is ensured across all cell bound-

aries.

• Studying the effect of the unit cell size on damage localisation

The exploitation of internal material symmetries to minimize the simulation

domain also implies that a specific type of periodicity is enforced on the pre-

dicted damage pattern. Additional numerical studies on the implications of

exploiting arbitrary symmetries for modelling damage and strain localisation

are necessary for reduced unit cells.

• Discrete representation of cracks inside the unit cell

The formation of damage in the material is currently simulated using a con-

tinuum damage mechanics approach. High-fidelity approaches, such as the

Floating Node Method represent discrete cracks by enriching finite elements

with connectivities of geometrical entities. While the approach is accompa-

nied by an increase in computational expense, the propagation of cracks and

interactions of different failure mechanisms can be captured more accurately.

6.2.0.3 Macro-scale modelling

• Implicit consideration of the textile architecture through reduced-

order constitutive laws

The efficient simulation of composite structures manufactured from braided

composites requires developing new reduced-order constitutive laws. For the

sake of numerical efficiency and in the context of shell element discretisation,

one proposed approach involves formulating a constitutive relation based on

internal damage state variables that are obtained a priori from the meso-
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scale model through homogenisation. Another approach relies on extending

the previously introduced approach of virtually separating the braided com-

posite into an equivalent tape laminate using classical lamination theory and

modifying individual ply material properties, such that the overall consti-

tutive of the meso-scale model is matched. Hence, the effect of the textile

architecture is implicitly incorporated on the macro-scale.



A Implementation of periodic

boundary conditions

A.1 General procedure

The implementation of periodic boundary conditions into finite element models is

often a challenging and time consuming task. This section provides basic guidelines

for their implementation into finite element models in the form of a ’cooking recipe’.

Details on the theory and their derivation in the absence of bending and twisting

can be found in [65, 66, 70]. An extension for solid-to-shell homogenisation is given

in [96].

The overall implementation procedure can be subdivided into several main steps:

1 Identification and selection of a suitable unit cell as shown in Fig. A.1

after assessing

• the overall computational expense

• the complexity of generating a mesh that satisfies all periodicity require-

ments

• the potential effect for modelling damage propagation when internal

symmetries and periodicity are exploited in reduced unit cells

• the feasibility of different out-of-plane boundary conditions, their im-

plications for textile nesting configurations, and the compatibility of

in-plane and out-of-plane periodic boundary conditions for reduced unit

cells

• the feasibility of different textile stacking and nesting configurations in

case a compaction simulation is explicitly performed with multiple layers

• the admissible applied strain or stress tensor for reduced unit cells

2 in the absence of rigid body motions, evaluate the relationship of

each periodic boundary with respective neighbouring cell or sub-

139
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Fig. A.1: Selection of unit cell type for a 2 × 2 triaxial braided composite

domain by finding the unknown parameters in

u(A) − γTu(Â) = − 〈F〉 TxO
Ê

• determine the transformation matrices T at each periodic boundary as

shown in Table A.1.

• determine the load reversal factors γ at each periodic boundary to check

the admissibility of potential applied volume averaged deformation gra-

dient tensors 〈F〉 in Table A.1 by solving for γ in

〈F〉 = γT 〈F〉 TT

If no solution for γ exists at any periodic boundary, the given strain

tensor will not be admissible.

• determine the translation vector xO
Ê and the periodic displacement field

u(A) and u(Â) at each periodic boundary as is displayed in Table A.2. In
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case of out-of-plane periodicity, the additional equations are summarised

in Table A.3.

• with all parameters determined, evaluate the PBC equations to obtain

all master coupling equations between the periodic boundary faces.

• in case of modelling displacement (strain) controlled off-axis loading,

the full strain tensor in off-axis coordinates is not known a priori, as

the model must be able to deform freely in any direction other than the

load direction, such that Poisson’s effects and shear-extension couplings

are captured accurately. In order to reproduce this case, the external

loading term on the right side is extended by transforming an arbitrary

deformation gradient tensors 〈F〉 from off-axis coordinates into principal

coordinates using the transformation matrix Tψ with the off-axis loading

angle ψ. In this case, the periodic boundary conditions are extended to:

u(A) − γTu(Â) = −T−1
ψ 〈F〉 TxO

Ê

Table A.1: In-plane sub-domain admissibility for 1/4 rUC (orthogonal to axial yarns)

Ê1 Ê2 Ê3 Ê4

Ti















1 0 0

0 1 0

0 0 1





























−1 0 0

0 −1 0

0 0 1





























1 0 0

0 1 0

0 0 1





























−1 0 0

0 −1 0

0 0 −1















〈















ε1 ε12 ε13

ε12 ε2 ε23

ε13 ε23 ε3















〉

γ1 = 1 γ2 6= ±1 γ3=1 γ4 = 1

〈















ε1 ε12 0

ε12 ε2 0

0 0 ε3















〉

γ1 = 1 γ2 = 1 γ3 = 1 γ4 = 1

〈















0 0 ε13

0 0 ε23

ε13 ε23 0















〉

γ1 = 1 γ2 = −1 γ3 = 1 γ4 = 1
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Table A.2: In-plane PBCs for 1/4 rUC (orthogonal to axial yarns)

Ê1 Ê2 Ê3 Ê4

Ti















1 0 0

0 1 0

0 0 1





























−1 0 0

0 −1 0

0 0 1





























1 0 0

0 1 0

0 0 1





























−1 0 0

0 −1 0

0 0 −1















xOÊ















−hrUC

0

0





























0

−wrUC

0





























hrUC

0

0





























0

wrUC

0















xÂ















−hrUC/2

−wrUC/2 ≤ y ≤ wrUC/2

−trUC/2 ≤ z ≤ trUC/2





























−hrUC/2 ≤ x ≤ hrUC/2

−wrUC/2

−trUC/2 ≤ z ≤ trUC/2





























hrUC/2

−wrUC/2 ≤ y ≤ wrUC/2

−trUC/2 ≤ z ≤ trUC/2





























−hrUC/2 ≤ x ≤ hrUC/2

wrUC/2

−trUC/2 ≤ z ≤ trUC/2















xA















xÂ1 + hrUC

xÂ2

xÂ3





























−xÂ1

−xÂ2 − wrUC

xÂ3





























xÂ1 − hrUC

xÂ2

xÂ3





























−xÂ1

−xÂ2 + wrUC

−xÂ3















Table A.3: Out-of-plane PBCs for 1/4 rUC (orthogonal to axial yarns) in
nesting case I: T=-1,-1,-1 ; xshift = 0, yshift = 0,
nesting case II: T=-1,-1,-1 ; xshift = hrUC/2, yshift = 0

Ê5,N1 Ê6,N1 Ê5,I,N2 Ê5,II,N2 Ê6,I,N2 Ê6,II,N2

Ti















−1 0 0

0 −1 0

0 0 −1





























−1 0 0

0 −1 0

0 0 1





























−1 0 0

0 −1 0

0 0 −1





























−1 0 0

0 −1 0

0 0 −1





























−1 0 0

0 −1 0

0 0 1





























−1 0 0

0 −1 0

0 0 1















xOÊ















0

0

trUC





























0

0

−trUC





























hrUC/2

0

trUC





























−hrUC/2

0

trUC





























−hrUC/2

0

−trUC





























hrUC/2

0

−trUC















xÂ















−hrUC/2 ≤ x ≤ hrUC/2

−wrUC/2 ≤ y ≤ wrUC/2

trUC/2





























−hrUC/2 ≤ x ≤ hrUC/2

−wrUC/2 ≤ y ≤ wrUC/2

−trUC/2





























0 ≤ x ≤ hrUC/2

−wrUC/2 ≤ y ≤ wrUC/2

trUC/2





























−hrUC/2 ≤ x ≤ 0

−wrUC/2 ≤ y ≤ wrUC/2

trUC/2





























−hrUC/2 ≤ x ≤ 0
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−xÂ2
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3 Determine a consistent system of linear equations

• from the periodic master equations, determine a consistent nomencla-

ture of faces (isolated periodic boundary), edges (sharing two periodic

boundaries) and vertices (sharing three periodic boundaries) for the unit

cell displayed in Fig. A.2. In case of reduced unit cells, periodic faces

may need to be further subdivided according to the master equations,
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such that all internal symmetries are satisfied. As a result, additional

edges and vertices are generated and need to be treated separately.

• for edges and vertices sharing more than a single periodic boundary (or

result from a subdivision of a face), the individual equations need to be

combined and condensed in order to generate a set of linear independent

equations. Since many finite element codes allow coupling of master and

slave nodes only in such a way that each slave node may only be used

once (in order to minimise over-constraints and chains of constraints),

an admissible system of linear equations must be derived. In case a node

set is used more than once as a slave node set in Abaqus/Implicit, an

error is directly issued. In Abaqus/Explicit, no direct error is returned,

but the pre-processor crashes after several hours of run-time while un-

successfully trying to resolve over-constraints prior to the beginning of

the actual solution procedure. In a first step, write down all possible

independent coupling equations for edges and vertices. Obtain new cou-

pling equations by eliminating individual coefficients from substitution,

subtraction or addition. A graphical representation of the coupling equa-

tions shown in Fig. A.3 describes how a system of equations is found that

couples as many as possible to as few as possible master edges. The full

implementation for faces, edges and vertices for a 1/4 reduced unit cell

(orthogonal to axial yarns) including both out-of-plane nesting cases in

summarised in Section A.2.

4 Incorporate the periodic boundary conditions into the finite ele-

ment model

• create a mesh that satisfies the periodicity and symmetry requirements

of the master coupling equations at all periodic boundaries. All previ-

ously determined faces, edges, and vertices must be represented in the

model with at least a single node. In case a periodic mesh is cannot

be obtained, a two-dimensional periodic dummy mesh can be created at

the boundaries and then coupled to an arbitrary mesh inside the unit

cell.

• create node sets for each face, edge, and vertex located at a periodic

boundary.

• sort all node sets according to their nodal coordinates in the correct

order. The node sorting must represent periodicity and potential sym-

metries at each boundary, such that each node will later be coupled to
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FACE 4

FACE 3
FACE 2

FACE 5

FACE 1

FACE 6

x

y

z

EDGE 1 UPPER

EDGE 1 LOWER

EDGE 2 LOWER

EDGE 2 UPPER

EDGE 3 LOWER
EDGE 3 UPPER

EDGE 4 LOWER
EDGE 4 UPPER

EDGE 5

EDGE 6

EDGE 7

EDGE 8

VERTEX 1 UPPER

VERTEX 1 LOWER

VERTEX 2 UPPER

VERTEX 2 LOWER

VERTEX 3 LOWER

VERTEX 3 UPPER

VERTEX 4 LOWER

VERTEX 4 UPPER

Fig. A.2: Definition of periodic faces, edges, and vertices on arbitrary periodic cell before eval-
uating internal symmetries

its correct partner node. Due to numerical inaccuracies in the nodal

coordinates of structured meshes, the introduction of a search tolerance

is strongly advised.

• apply coupling equations specific to the FE solver of choice. The order

of the implementation in the solver input deck is irrelevant.

• use a double precision solution format in case an explicit solver is em-

ployed. Small inaccuracies in the nodal displacements may cause severe

stress concentrations at the periodic boundaries.

• special care must be taken when PBCs are implemented in the commer-

cial FE solver Abaqus/Explicit with the *Equation keyword. Within this

environment, user-defined constraints are assembled in a global matrix

for which a solution is obtained in every explicit time increment by means

of an embedded penalty based implicit algorithm. Unlike in the implicit

solver, however, the constraint equation solver in Abaqus/Explicit is

not parallelised. Hence, a bottleneck controlled by the bandwidth of

the constraint matrix is formed in the overall solution procedure. With

a standard implementation of the PBCs, the run-time for a non-linear

analysis of a single rUC increases by a factor of 20 compared to sim-
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ple displacement boundary conditions and would nullify all benefits of

the periodic model reduction. To overcome this issue, the constraint

equation system is fully decoupled by introducing a phantom slave node

for each physical node at a periodic boundary. Both entities are cou-

pled using rigid one-dimensional truss elements to ensure displacement

equivalence. The constraint equations are now independently formed at

the isolated phantom slave nodes in order to obtain a straightforward

solution for a minimum bandwidth matrix. As the task of overall cou-

pling of the equation system is now distributed explicitly among several

elements, the solution procedure can be subdivided between multiple

CPUs. This methodology produces coincident run-times with and with-

out activated PBCs and hence ensures the low computational expense

of the unit cell.
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(a) (b)

(c) (d)

Fig. A.3: Combination of coupling equations for 1/4 rUC (orthogonal to axial yarns) for edges
2/4 and edges 1/3 (a),(c) raw coupling possibilities, (b),(d) solver implementation after
condensation
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