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1. Introduction

With task-oriented strategy and the aid of their eyes, 
human beings can skillfully grasp an unknown tool to exe-
cute different tasks without exact knowledge of the kine-
matics and dynamics of their arms and the tool. Advanced 
humanoid robots, like Atlas, Justin [1], Robonaut [2] or the 
HIT-Robonaut as shown in Figure 1, are often equipped 
with robot vision system and redundant manipulators to 
imitate human behavior and control strategy. The robot 
vision system can provide real-time feedback of environ-
mental information, and the redundant manipulator can 
execute multiple tasks simultaneously. By fusing the vision 
information with the encoder signals of manipulators, it 
is possible to greatly improve the flexibility of the robot.

When the redundant manipulator grasps an unknown 
welding pistol to execute multiple tasks, such as welding in 
preassigned shape and simultaneously maintaining a fixed 
pose of the welding rod relative to welded parts, dynamic 
and kinematic uncertainties (including the unknown 
grasp matrix) and unknown nonlinearities may greatly 
degrade the performance of the system if without any 
adaptability in its controller.

To maintain high tracking performance when dynamic 
uncertainty exists in the redundant manipulator, adap-
tive control and robust control [3,4] have been proposed. 
Compared with the latter one, adaptive control is more 
suitable for coping with large load variations due to its 
ability to hold the promise of uniform performance. Based 
on the differences in driving signals of the parameter adap-
tation mechanism, adaptive controllers can be classified 
into three categories: direct [5], indirect [6] and compos-
ite [7–9] adaptive controllers. Compared with the other 

two, composite adaptive controllers extract parameter 
information from both the prediction error and tracking 
error, thus leading to a faster convergence rate and better 
tracking accuracy [10].

Until the past decade, globally convergent adaptive 
controllers have been proposed to simultaneously deal 
with the uncertain kinematics and dynamics. In the view 
of controller design philosophy, they can be generally clas-
sified into two categories: passivity-based control [11–14] 
and inverse dynamic control (computed-torque control) 
[15,16]. Although the inverse dynamics control approach, 
as stated in Ref. [15], can guarantee a uniform perfor-
mance of the manipulator over the entire workspace, the 
passivity-based control is easier to implement owing to its 
attractive properties, i.e. requirement of the joint acceler-
ation and inverse of the estimated inertial matrix can be 
exempted. The basic design philosophy of passivity-based 
controller is to reshape the system’s natural energy such 
that the control objective can be achieved. However, most 
of these adaptive Jacobian controllers aim at non-redun-
dant manipulators.

Although the adaptive controllers in Refs. [12,14] are 
universal for redundant and non-redundant manipula-
tors, multi-task tracking capability cannot be obtained. To 
accomplish multi-task tracking with concurrent adaptation 
to both dynamic and kinematic uncertainties is much differ-
ent compared with these controllers. Potential algorithmic 
singularity during the adaptation may lead to a complicated 
coupling and conflict among the multiple tasks [17].

How to appropriately deal with the multi-task tracking 
needs a detailed discussion. Recently, several adaptive 
controllers have been specially designed for multi-task 
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Hence in this paper, we propose a novel robust adaptive 
multi-priority controller (RAM) for redundant manipula-
tor to address the prioritized multi-task tracking problem 
when dynamic/kinematic uncertainties and unknown dis-
turbances exist. A strategy is established to comprehen-
sively utilize multi-task tracking information to accelerate 
the concurrent adaptation of kinematics and dynamics. 
According to the condition of algorithmic singularity, we 
discuss and design the controller in independent case and 
dependent case, respectively. The modified controller for 
the second case holds universality whether facing algo-
rithmic singularity or not.

2. Problem formulation

2.1. Robot dynamics and kinematics

When using model-based compensator as feedforward 
to cope with nonlinear dynamics such as friction and 
backlash, residuals of unstructured modeling errors or 
unparameterizable parts can be defined as:

 

where τf and τb denote the joint friction and the backlash 
existing in the transmission gear, respectively, mτf and mτb 
represent their corresponding model-based compensator.

Then the dynamics of an n-link rigid redundant manip-
ulator with the unknown tool considered as part of the 
last link can be expressed as:

 

where q ∊ Rn is the joint angle vector, M(q) ∊ Rn×n is the 
inertial matrix, C(q, q̇)q̇ ∈ Rn is the vector of centripetal 
and Coriolis torques, g(q) ∊ Rn is the vector of gravita-
tional torques τ ∊ Rn is the exerted joint torque, τd ∊ Rn 
denotes bounded unstructured modeling uncertainties 
or exogenous disturbances. Several essential properties 
of the manipulator dynamics (2) facilitate the adaptive 
control design even if this dynamic equation is complex 
and highly nonlinear.

Property 1. The inertial matrix M(q) is uniformly pos-
itive definite and symmetric [23].

Property 2. (Ṁ(q) − 2C) is skew-symmetric so that 
𝜐T (Ṁ(q) − 2C)𝜐 = 0 for all υ ∊ Rn.

Property 3. The manipulator dynamics (2) is linear in 
a set of physical parameters θd = [θd1, θd2, …, θdp]

T.
 

where the dynamic regression matrix Yd(·)  ∊  Rn×p is 
bounded for bounded argument signals.

Let xt ∊ Rm be a task space vector defined by
 

(1)�d = (�f −
m�f ) + (�b −

m�b)

(2)M(q)q̈ + C(q, q̇)q̇ + g(q) = 𝜏 + 𝜏d

(3)M(q)q̈ + C(q, q̇)q̇ + g(q) = Yd(q, q̇, q̈)𝜃d

(4)xt = h(q)

tracking. In Ref. [18], Enver Tatlicioglu et al. utilized 
Lyapunov-based analysis to design an adaptive controller 
with which the asymptotical tracking in the task space 
and subtask objective are simultaneously achieved when 
dynamic uncertainty exists. Then Sedgehian et al. [19] 
successfully extended the adaptive control to multi-priority  
control framework. The asymptotical stability and 
convergence in tracking error of the main task and 
subtask are both guaranteed according to the allocated 
priority. However, the kinematics and task Jacobians 
are assumed to be exactly known in both of these two 
controllers. The adaptive controller scheme in Ref. [19] 
only utilizes the tracking error of the primary task for 
dynamic parameter adaptation, large gain is needed when 
facing severe uncertainties, which may induce oscillating 
of the estimated parameters or even cause the whole 
system unstable. Moreover, convergences of all the tasks 
are sequential according to their corresponding priority 
levels [20], namely, convergence of the task with lower 
priority cannot be achieved until all the tasks with higher 
priority converge even when the prioritized tasks are 
independent. This is inefficient especially for the multi-
task tracking with many task layers.

Furthermore, it should be noted that most of the 
research works mentioned above are based on the assump-
tion that the robotic arms are free of unknown nonlin-
earities. However, this is too restrictive since unknown 
nonlinear dynamics, such as friction, backlash or dead-
zone are ubiquitous phenomena in the manipulators’ joint 
[21]. With detailed characteristic of these nonlinearities, 
model-based schemes are preferred for compensation 
[22]. But no matter which kinds of corresponding models 
are used, the unstructured modeling errors always exist 
and would deteriorate the system performance.

Robot Vision System

Unknown Welding 
Pistol

Robotic Arm

Figure 1. Hit-Robonaut system with unknown tool.
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where m < n for redundant manipulators, h(·) ∊ Rn → Rm is 
a transformation describing the relation between the joint 
space and task space. The task-space velocity ẋt is related 
to joint-space velocity q̇ through the Jacobian matrix and 
can be expressed linearly in a set of kinematic parameters 
θk = [θ1, θ2, …, θq]

T, such as joint offsets and link lengths.
 

where Jt(q) ∊ Rm×n is manipulator Jacobian and Ykt(·) ∊ Rm×q 
denotes the kinematic regression matrix.

2.2. Multi-priority inverse kinematics of redundant 
manipulator

For redundant manipulators, multiple tasks can be 
arranged in priority to try to fulfill most of them, hope-
fully all of them. Multi-priority control is a framework to 
achieve this goal by proper task-priority assignment [24]. 
To simplify the discussion, the problem for a case with two 
prioritized task is formulated. Extending to the case with 
multiple tasks is easy to implement by recursive method 
[25]. The primary task with the first priority is specified 
by the first manipulation variable x1 ∈ Rm1(m1 < n) and 
the subtask with the second priority by x2 ∈ Rm2(m2 < n).

 

where Ji ∈ Rmi×n (i = 1, 2) denotes the Jacobian matrix of 
the i-th task. To derive the adaptive controller in a compact 
form, we define ẋ = [ẋT1 , ẋ

T
2 ]

T as the task velocity vector 
and the following equation can be obtained:

 

where J = [JT1 , J
T
2 ]

T ∈ R(m1+m2)×n, Yk = [YT
k1,Y

T
k2]

T ∈ R(m1+m2)×q . 
Yki ∈ Rmi×q denotes the kinematic regression of the i-th 
task.

Since the joint space of the redundant manipulator is 
governed by multiple tasks, then the inverse kinematic 
solution considering task priority can be given by [24]

 

where q̇r denotes the reference joint velocity, ẋ1r ∈ Rm1 
and ẋ2r ∈ Rm2 are the reference velocity for the pri-
mary task and subtask, respectively. They are defined 
as ẋir = ẋid + 𝛼x̃i where α > 0 is an appropriate positive 
constant and x̃i = xid − xi denotes the task tracking error 
for i-th task, the index d stands for the desired trajec-
tory. (A)† = AT (AAT )−1 represents the pseudoinverse of 
the related matrix A and N1 = (I − J†

1
J1) ∈ Rn×n is the 

corresponding null-space projector for J1. J̄2 = J2N1 is 
the so-called projected Jacobian, which determines the 
available range for the execution of the subtask without 
affecting the primary task.

(5)ẋt = Jt(q)q̇ = Ykt(q, q̇)𝜃k

(6)ẋi = Ji(q)q̇

(7)ẋ = J q̇ = Yk𝜃k

(8)q̇r = J†
1
ẋ1r + N1J̄

†

2
(ẋ2r − J2J

†

1
ẋ1r)

With the above redundancy resolution, correct pri-
mary-task solution is expected as long as the sole pri-
mary-task Jacobian matrix is full-rank. Multiplying both 
sides of (8) by J1 leads to following equation when q̇ → q̇r.

 

Before the discussion of the performance of subtask, 
two definitions concerning the relationship between the 
two tasks should be given [26]

The two tasks will be defined as independent if
 

where ρ(·) denotes the rank of the related matrix.
They will be defined as dependent if
 

Independence condition guarantees the full rank of J̄2 
and the avoidance of algorithmic singularity. Then the 
subtask can be expected to perform completely. While 
dependence case results in rank deficiency of J̄2, which 
further affects the tracking performance of subtask. This 
is because ill-conditioned and discontinuous joint velocity 
solutions are experienced when approaching algorithmic 
singularity.

3. Composite adaptive controller

In this section, we will incorporate a passivity-based adap-
tive Jacobian controller into the multi-priority framework 
for redundant manipulators to solve the tracking prob-
lem brought by uncertain kinematics and dynamics. In 
this composite adaptive controller, task-space motion 
tracking error and prediction error are both used to 
drive the parameter estimation. Furthermore, two dif-
ferent cases are discussed, respectively, according to the 
relationship of the two generic tasks (dependence and 
independence). The redundant manipulator is required 
to simultaneously track two desired prioritized task trajec-
tories x

id
for (i = 1, 2) and it is assumed that Ji is globally 

non-singular and xid, ẋid, ẍid are all bounded.

3.1. Independent case

In this case, the two tasks are assigned to be independent 
and the estimated Jacobians (Ĵ1 and Ĵ2) also uniformly sat-
isfy the independence condition.

Since joint accelerations q̈ and the task space velocity 
ẋ are generally sensitive to noise, direct measurement of 
these two signals should be avoided.

Convolving both sides of (2) by the impulse response 
of a low-pass filter yields [27]:

(9)̇̃x1 + 𝛼x̃1 = 0

(10)�(J†
1
) + �(J†

2
) = �

([
J†
1

J†
2

])

(11)𝜌(J†
1
) + 𝜌(J†

2
) > 𝜌

([
J†
1

J†
2

])
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where N̄ = N̂1(Ĵ2N̂1)
† and (Â) is the estimated form of the 

related matrix A.
To eliminate the terms of the task-space velocities in q̈r, 

ẍ1r and ẍ2r should be replaced by their corresponding esti-
mated terms, then the following expression can be given:

 

where ̂̈x
ir
= ẍ

ir
+ 𝛼(ẋ

i
− ̂̇x

i
) for (i = 1, 2), 

𝛽 = 𝛼[Ĵ†
1
− N̄ Ĵ

2
Ĵ
†

1
, N̄]Y

k
(𝜃

k
− �̂�

k
).

Under the assumption that the two estimated Jacobian 
always satisfy the independence condition (10), then using 
Ĵ to multiply both sides of (21), we can obtain:

 

Next, define an estimated task-space sliding variable 
ŝx =

[
ŝT1x ŝT2x

]T
∈ R(m1+m2)×1

 

where ẋr =
[
ẋT1r ẋT2r

]T
 is the task-space reference 

velocity, Δ ̂̇x =
[
Δ ̂̇xT1 Δ ̂̇xT2

]T
 and x̃ =

[
x̃T1 x̃T2

]T
 

with Δ ̂̇xi = ẋid − ̂̇xi.
Combining (16), (19), (23) and (24) yields:
 

Also, to extract parameter information from the pre-
diction error, we define the prediction error of the filtered 
torque as:

 

and the prediction error of the filtered task-space velocity 
as:

 

where Wk(t) =
[
WT

k1(t) WT
k2(t)

]T
, 𝜃d = �̂�d − 𝜃d and 

𝜃k = �̂�k − 𝜃k are the dynamic and kinematic parameter 
prediction error, respectively.

Using Property 1, the following linearly parameterized 
equation associated with the dynamics model (2) can be 
obtained:

 

(22)

̂̈q
r

= Ĵ
†

1
̂̈x
1r
+ ̇̂
J
†

1
ẋ
1r
̇̄
N(ẋ

2r
− Ĵ

2
Ĵ
†

1
ẋ
1r
)

+ N̄( ̂̈x
2r
− ̇̂
J
2
Ĵ
†

1
ẋ
1r
− Ĵ

2

̇̂
J
†

1
ẋ
1r
− Ĵ

2
Ĵ
†

1
̂̈x
1r
)

= q̈
r
+ 𝛼(Ĵ†

1
− N̄ Ĵ

2
Ĵ
†

1
)(ẋ

1
− ̂̇x

1
) + 𝛼N̄(ẋ

2
− ̂̇x

2
)

= q̈
r
+ 𝛽

(23)Ĵ q̇r =

[
Ĵ1
Ĵ2

]
q̇r =

[
ẋ1r
ẋ2r

]

(24)ŝx = ẋr − ̂̇x = Δ ̂̇x + 𝛼x̃

(25)Ĵ sq = ŝx

(26)ed = ŷd − yd = Wd(q, q̇, t)𝜃d

(27)ek = ŷk − yk = Wk(t)𝜃k

(28)M(q) ̂̈qr + C(q, q̇)q̇r + g(q) = Ydr(q, q̇, q̇r , ̂̈qr)𝜃d

 

which we can be written as:
 

where ω(t) is the impulse response of the filter �f ∕(�f + p) 
and yd is the filtered joint torque, 𝜆f > 0 is the filter param-
eter and p is the Laplace operator. The filter is exponen-
tially stable and strictly proper.

Measurement of task-space velocity can be avoided 
similarly by filtering Equation (7)

 

where 𝜆fki > 0 and yki is the filtered task-space velocity.

3.1.1. Design of the controller
In the presence of uncertainties, the dynamic and kine-
matic parameters are uncertain. Let �̂�d and �̂�k be the esti-
mate of the θd and θk, then the estimate of the filtered 
torque ŷd(t) can be expressed as:

 

and the task-space velocity ̂̇x as:
 

Combining with Equation (14), the estimate of the fil-
tered velocity ŷk can be given as:

 

Differentiating Equation (16) with respect to time leads 
to:

 

where ̂̈x is the time derivative of ̂̇x.
Now define a joint-space sliding variable sq ∊ Rn as:
 

Its time derivative can be given as:
 

where q̇r expressed by Equation (8) should be rewritten 
as follows when considering the kinematic uncertainties

 

(12)

yd = ∫
t

0

𝜔(t − r)𝜏dr

= ∫
t

0

𝜔(t − r)
[
M(q)q̈ + C(q, q̇)q̇ + g(q)

]
dr

(13)yd(t) = Wd(q, q̇, t)𝜃d

(14)yki =
𝜆fki

𝜆fki + p
ẋ = Wki(t)𝜃k (for i = 1, 2)

(15)ŷd(t) = Wd(q, q̇, t)�̂�d

(16)
̂̇x =

(
̂̇x1
̂̇x2

)
=

(
Ĵ1
Ĵ2

)
q̇ = Ĵ q̇ =

(
Yk1

Yk2

)
�̂�k = Yk�̂�k

(17)ŷk = Wk(t)�̂�k

(18)
̂̈x = Ĵ q̈ + ̇̂J q̇

(19)sq = q̇r − q̇

(20)ṡq = q̈r − q̈

(21)q̇r = Ĵ†
1
ẋ1r + N̄(ẋ2r − Ĵ2Ĵ

†

1
ẋ1r)
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where Rd  ∊  Rn×n and Rk ∈ R(m1+m2)×(m1+m2) are corre-
sponding weighting matrices indicating the weights of 
the prediction error in adaptation laws. Both of them are 
uniformly positive definite. Ldk, ℑ, Lr and ℵ are all positive 
constant gain.

Remark 2: When the two tasks are independent, their 
tracking errors are both used in (33)–(38) and together 
accelerate the parameter estimation. In fact, Ĵ, ŝx, x̃ and 
WT

k Rkek in the above control law and updating laws can 
be replaced by Ĵ1, ŝx1, x̃1 and WT

k1Rk1ek1 since the primary 
task can always be performed completely with the highest 
priority when considering (21). The stability and con-
vergence of the subtask tracking can be guaranteed con-
ditionally to the set A = {x̃1, sq, x̃2|x̃1 = 0, sq = 0} [19]. 
But in the sense of achieving high performance of the 
subtask as the primary one when they are independent, 
the controller (33)–(39) outperforms the aforementioned 
one with which the convergence of the subtask only can 
be stated after the convergence of the primary task is 
fulfilled [28].

To eliminate the drawbacks of slow or oscillatory 
convergence in gradient estimator and the gain van-
ishing/explosion in standard least-square estimator, 
bounded-gain-forgetting (BGF) estimator is used since 
it can guarantee the uniformly boundedness of the esti-
mated parameters and gains in the absence of persistent 
excitation.

Then the gain update equations for Pd and Pk are given 
as:

 

 

 

 

where �0 (�0 k) and k0(k0 k) are all positive constants repre-
senting the maximum forgetting rates and pre-specified 
bounds for the norm of gain matrix, respectively.

(37)̇̂
𝜃dk = −Ldk

⌢

Y
T

drsq −ℑ�̇�dk

(38)
̇̂
𝜃k = Pk(t)

(
−2𝛼YT

k Kmx̃ −WT
k Rkek

)

(39)
̇̂Di = Lrsqi tanh

(
sqi∕𝜍

)
− ℵD̂i

(40)
d

dt

[
Pd

]
= �d(t)Pd − PdW

T
d (t)RdWd(t)Pd

(41)�d(t) = �0(1 −
‖‖Pd

‖‖∕k0)

(42)
d

dt

[
Pk

]
= �k(t)Pk − PkW

T
k (t)RkWk(t)Pk

(43)
�k(t) = �0 k(1 −

‖‖Pk
‖‖∕k0 k)

where the joint acceleration and task velocity in Yd(q, q̇, q̈) 
are eliminated. Then the estimated form of (28) is written 
as:

 

Substituting (22) into (28) results in:
 

where M𝛽  is linear in a new set of coupling parameters 
θdk. Hence (30) can be rewritten as:

 

Combining (31) with (2) leads to
 

Based on the above error analysis, the following adap-
tive controller is proposed:

where Km ∈ R(m1+m2)×(m1+m2) and Kp ∊ Rn×n are both posi-
tive-definite symmetric matrix. Λ = [Λ1, Λ2 … Λn]

T ∊ Rn 
denotes the adaptive robust compensator which is pre-
sented as

 

where D̂i is the estimate of the Di’s upper bound, and ς is a 
positive constant to regulate the smoothness of the switch 
function. sqi denotes the i-th element of the sliding vector 
sq. Di is defined as the supremum of the unstructured part

 

where τdi denotes the i-th element of the unstructured 
vector.

Remark 1: In (34), tangent hyperbolic functions are cho-
sen as the switch function in the robust compensator rather 
than the traditional sign function to avoid the discontinu-
ity and chattering. Moreover, the upper bound is adaptively 
regulated since it cannot be exactly known in advance and a 
conservative value often leads to severe chattering.

The parameter estimates �̂�d, �̂�dk and �̂�k are updated by,
 

(29)M̂(q) ̂̈qr + Ĉ(q, q̇)q̇r + ĝ(q) = Ydr(q, q̇, q̇r , ̂̈qr)�̂�d

(30)

M(q)q̈r + C(q, q̇)q̇r + g(q) = Ydr(q, q̇, q̇r , ̂̈qr)𝜃d −M𝛽

(31)
M(q)q̈r + C(q, q̇)q̇r + g(q)

= Ydr(q, q̇, q̇r , ̂̈qr)𝜃d −
⌢

Y dr(q, q̇, q̇r , �̂�k)𝜃dk

(32)Mṡq + Csq = Ydr𝜃d −
⌢

Y dr𝜃dk − 𝜏 − 𝜏d

(33)𝜏 = Ydr �̂�d −
⌢

Y dr �̂�dk + Ĵ TKmŝx + Kpsq + Λ

(34)Λi = D̂i tanh
(
sqi∕𝜍

)

(35)Di = sup
(||�di||

)

(36)̇̂
𝜃d = Pd(t)

(
YT
drsq −WT

d Rded

)
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where

According to (35) and Lemma 3, the following two 
inequalities can be obtained, respectively:
 

 

Substituting the above inequalities with (34) into V̇2 and 
considering Lemma 1 yields:

 

Furthermore, according to the definition of Δ ̂̇x, ̇̃x and 
𝜃k, we obtain:

(49)

V̇ = sTq

�
−Y

dr𝜃d +
⌢

Y
dr𝜃dk − Ĵ TKmŝx − Kpsq − Λ − 𝜏d

�

+ 𝜃Td

�
YT
drsq −WT

d Rded

�
−

1

2
𝜃Td 𝜆dP

−1
d 𝜃d

+
1

2
𝜃Td W

T
d RdWd𝜃d − 𝜃T

dk

�
⌢

Y
T

drsq + L−1
dkℑ�̂�

dk

�

−
1

2
𝜃Tk 𝜆kP

−1
k 𝜃k +

1

2
𝜃Tk W

T
k RkWk𝜃k

− 2𝛼𝜃Tk Y
T
k Kmx̃ − 𝜃Tk W

T
k Rkek + 2𝛼x̃TKm

̇̃x

+
n∑
i=1

D̃T
i

�
sqi tanh(sqi∕𝜍) − L−1

r ℵD̂i

�

= − sTq Kpsq −
1

2
𝜃Td W

T
d RdWd𝜃d −

𝜆d

2
𝜃Td P

−1
d 𝜃d

−
𝜆k

2
𝜃Tk P

−1
k 𝜃k −

1

2
𝜃Tk W

T
k RkWk𝜃k

− sTq
�
Λ + 𝜏d

�
+

n∑
i=1

�
D̃T

i sqi tanh(sqi∕𝜍) − D̃T
i L

−1
r ℵD̂i

�

−
�
Ĵ sq

�T

Kmŝx − 2𝛼𝜃Tk Y
T
k Kmx̃ + 2𝛼x̃TKm

̇̃x − 𝜃T
dkL

−1
dkℑ�̂�

dk

= V̇
1
+ V̇

2
+ V̇

3
+ V̇

4

⎧⎪⎪⎨⎪⎪⎩

V̇1 = −sTq Kpsq −
1

2
𝜃Td W

T
d RdWd𝜃d −

𝜆d

2
𝜃Td P

−1
d 𝜃d −

𝜆k

2
𝜃Tk P

−1
k 𝜃k −

1

2
𝜃Tk W

T
k RkWk𝜃k

V̇2 = −sTq (Λ + 𝜏d) +
n∑
i=1

(D̃T
i sqi tanh

�
sqi∕𝜍

�
− D̃T

i L
−1
r ℵD̂i)

V̇3 = −(Ĵ sq)
TKmŝx − 2𝛼𝜃Tk Y

T
k Kmx̃ + 2𝛼x̃TKm

̇̃x

V̇4 = −𝜃TdkL
−1
dkℑ�̂�dk

(50)−sqi�d ≤ |||sqi
|||Di

(51)−D̃T
i L

−1
r ℵD̂i ≤ −

1

2
D̃T

i L
−1
r ℵD̃i +

1

2
DT

i L
−1
r ℵDi

(52)

V̇
2
= −

n∑
i=1

sqi
(
Λi + 𝜏di

)
+

n∑
i=1

(D̃T
i sqi tanh

(
sqi∕𝜍

)

− D̃T
i L

−1
r ℵD̂i)

≤
n∑
i=1

{
Di

|||sqi
||| + (D̃i − D̂i)sqi tanh

(
sqi∕𝜍

)

−
1

2
D̃T

i L
−1
r ℵD̃i +

1

2
DT

i L
−1
r ℵDi

}

≤
n∑
i=1

(
𝛿𝜍Di −

1

2
D̃T

i L
−1
r ℵD̃i +

1

2
DT

i L
−1
r ℵDi

)

3.1.2. Stability and convergence analysis
Before the Lyapunov analysis, three important lemmas 
should be first stated

Lemma 1: The following inequality always holds for any 
u ∊ R and κ > 0

 

Lemma 2 [29]: If f , ḟ ∈ L∞ and f ∊ Lp for some p ∈ [1,∞) , 
then f(t) → 0 as t → ∞.
Lemma 3: (Young’s inequality) ∀(x, y) ∊ R2, the following 
inequality always holds:

 

where ε > 0, p > 1, q > 1 and (p − 1)(q − 1) = 1.

(44)0 ≤ |u| − u tanh

(
u

�

)
≤ ��, � = 0.2785

(45)xy ≤ �p

p
|x|p + 1

q�q
||y||q

Then substituting the controller (33) into (32) with the 
definition of  𝜃dk=�̂�dk − 𝜃dk yields the following dynamics:

 

To analyze the stability and convergence of the closed-
loop system, a Lyapunov candidate function is given as:

 

Differentiating V with respect to time leads to:
 

Using the skew-property of the matrix Ṁ(q) − 2C(q, q̇) 
and substituting (36–39), (40), (42) and (46) into (48) 
yields:

(46)
Mṡq + Csq = −Ydr𝜃d +

⌢

Y dr𝜃dk − Ĵ TKmŝx − Kpsq − (Λ + 𝜏d)

(47)

V =
1

2

(
sTq Msq + 𝜃Td P

−1
d 𝜃d + 𝜃T

dkL
−1
dk 𝜃dk

+ 𝜃Tk P
−1
k 𝜃k +

n∑
i=1

D̃T
i L

−1
r D̃i

)
+ 𝛼x̃TKmx̃

(48)

V̇ = sTq

�
Mṡq +

1

2
Ṁsq

�
+ 𝜃Td P

−1
d

̇̂
𝜃d +

1

2
𝜃Td Ṗ

−1
d 𝜃d + 𝜃T

dkL
−1
dk

̇̂
𝜃
dk

+
n∑
i=1

D̃T
i L

−1
r

̇̂Di +
1

2
𝜃T
dkL̇

−1
dk 𝜃dk + 𝜃Tk P

−1
k

̇̂
𝜃k

+
1

2
𝜃Tk Ṗ

−1
k 𝜃k + 2𝛼x̃TKm

̇̃x
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Remark 3: If Wd and Wk are both persistent exciting, 
𝜆d > 0 and 𝜆k > 0 always hold. This results in the fact that 
𝜃d ∈ 2 ∩ ∞ and 𝜃k ∈ 2 ∩ ∞ when considering (57). 
In addition, ̇̃𝜃d and ̇̃𝜃k are bounded since ̇̂𝜃d and ̇̂𝜃k in (36) 
and (38) are bounded. Then �̂�d − 𝜃d → 0 and �̂�k − 𝜃k → 0 
can be achieved.

Remark 4: The stability and convergence analysis above suf-
fers from four kinds of singularities: kinematic singularities 
of the task Jacobian and that of its estimated ones, algorith-
mic singularities of the projected Jacobian and that of its 
estimated one. Before handling them, their characteristics 
should be discussed separately for differential treatment. For 
two given prioritized tasks, the kinematic singularities of 
J1 and J2 are determined in advance and will not be con-
sidered when assuming that the redundant manipulator is 
operating in two finite task spaces. In addition, a standard 
projection algorithm can be used to ensure that the estimated 
kinematic parameter �̂�k remains in an appropriate region 
[30]. Therefore, kinematic singularities of the estimated task 
Jacobian Ĵ1(q, 𝜃k) and Ĵ2(q, 𝜃k) only depend on q, not �̂�k,  
which further results in the fact the full rank of the two esti-
mated task Jacobian can always holds during the adaptation.

From (21), rank deficiency of ̂̄J2 leads to the ill-condi-
tioned solution of qr. So only the algorithmic singularity 
of J̄2 and ̂̄J2, will be discussed in detail in the next part.

3.2. Dependent case

For sake of simplicity, algorithmic singularities are 
avoided in the above derivation by several proper assump-
tions. This will make the controller to loss generality as to 
dependent case. The algorithmic singularities of J̄2 with ̂̄J2 
are difficult to predict since they depend on how the two 
tasks conflict with each other along the desired trajectory 
being executed. So, we will propose a modified adaptive 
controller to achieve the main goal of task tracking while 
release these restrictive assumptions simultaneously.

A singularity-robust inverse (SRI) method from the 
field of inverse kinematics, which is known as damped 
least square technique (DLS), can be used here to cope 
with the algorithmic singularities. The most general 
approach concerning DLS is based upon variable damp-
ing factors [31]. Although this approach can ensure con-
tinuity and good shaping of DLS solution by choosing the 
damping factor γ as (48), it is not intuitive as pointed in 
Ref. [32] and the direct consequence on physical values 
of the system is not clear, because it creates unnecessary 
damping for other well-conditioned singular vector, this 
may further produce more tracking error.

 

(60)
𝛾2 =

⎧⎪⎨⎪⎩

0
�
𝜎m2

≥ 𝜀

�
�
1 − (

𝜎m2

𝜀
)2
�
𝛾2max

�
𝜎m2

< 𝜀

�

 

With (24) and (25), we have:
 

Substituting (53) and (54) into V̇3 leads to:
 

Similar to (51), V̇4 can be reformulated as:
 

Considering that �d and �k are uniformly non-negative, 
then Equation (49) can be reformulated as follows by 
substituting (52), (55) and (56) in it,

 

Define a positive constant η as:
 

where ωmin(·) and ωmax(·) denote the minimum and max-
imum eigenvalues of the related matrix respectively. Then 
(57) can be rewritten as:

 

where 𝜐 =
1

2
𝜃TdkL

−1
dkℑ𝜃dk +

∑n

i=1 (𝛿𝜍Di +
1

2
DT

i L
−1
r ℵDi). 

According to (59), a conclusion that the Lyapunov func-
tion V is non-increasing can be obtained.

Now we are in the position to state the following 
theorem:

Theorem 1: Under the assumption that two estimated 
task Jacobian Ĵ1 and Ĵ2 are uniformly independent, then 
the adaptive control law (33) with parameter update laws 
(36–39) can guarantee the stability of control system for 
redundant manipulators and lead to the convergence of 
the tracking errors of the two prioritized tasks. That is 
x1 − x1d → 0, x2 − x2d → 0 and ẋ1 − ẋ1d → 0, ẋ2 − ẋ2d → 0 
as t → 0.

Proof: Please see Appendix 1.

(53)Δ ̂̇x − ̇̃x + Yk𝜃k = 0

(54)
(Ĵ sq)

TKmŝx = ŝTx Kmŝx
= (Δ ̂̇x + 𝛼x̃)TKm(Δ ̂̇x + 𝛼x̃)

= Δ ̂̇xTKmΔ ̂̇x + 2𝛼Δ ̂̇xTKmx̃ + 𝛼2x̃TKmx̃

(55)V̇3 = −Δ ̂̇xTKmΔ ̂̇x − 𝛼2x̃TKmx̃

(56)V̇4 ≤ −
1

2
𝜃TdkL

−1
dkℑ𝜃dk +

1

2
𝜃TdkL

−1
dkℑ𝜃dk

(57)

V̇ ≤ − sTq Kpsq −
𝜆d

2
𝜃Td P

−1
d 𝜃d −

1

2
𝜃Td W

T
d RdWd𝜃d

−
𝜆k

2
𝜃Tk P

−1
k 𝜃k −

1

2
𝜃Tk W

T
k RkWk𝜃k

−Δ ̂̇xTKmΔ ̂̇x − 𝛼2x̃TKmx̃

+
n∑
i=1

(𝛿𝜍Di −
1

2
D̃T

i L
−1
r ℵD̃i +

1

2
DT

i L
−1
r ℵDi)

−
1

2
𝜃T
dkL

−1
dkℑ𝜃

dk +
1

2
𝜃T
dkL

−1
dkℑ𝜃

dk

(58)𝜂 = min

(
2𝜔min(Kp)

𝜔max(M(q))
, 𝜆d , 𝜆k,ℑ,ℵ,𝛼

)

(59)V̇ ≤ −𝜂V + 𝜐
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An alternative approach is to use the following redun-
dancy resolution equation to replace (21)

 

In which the algorithmic singularities are avoided in the 
cost of a greater tracking error of the subtask [35].

Remark 5: When we preassign the prioritized multiple 
tasks, the basic principle is to ensure that they are not 
uniformly dependent, hopefully they are uniformly inde-
pendent (otherwise the subtasks are meaningless and loss 
the possibility to be well executed). So, the algorithmic 
singularity is usually temporary. As stated in Remark 1, 
the tracking error and prediction error of the subtask 
then have much space to be utilized for faster conver-
gence rate and better tracking accuracy of the multiple 
tasks. When algorithmic singularity is encountered, the 
modified scheme in this section can properly avoid the 
unexpected parameter adaptation and unpredictable com-
manded torques.

Remark 6: Fast resolution of the inverse can resort to a 
hierarchized complete orthogonal decomposition method 
[36].

4. Simulation results

In this section, we present the simulation results of a three-
DOF planar manipulator grasping an unknown welding 
pistol to verify the performance of the robust adaptation 
based multi-priority controller proposed above (RAM 
Scheme for short). The simulation is implemented by 
Simulink and SimMechanics. The block diagram is shown 
in Figure 2.

Since there is no controller with the same aim in the 
literatures (to the author’s best knowledge), to demon-
strate the advantages of the proposed RAM in the robust-
ness, tracking performance and the smoothness of the 
commanded torques, another controller is established for 
comparison, which is a direct combination of the adaptive 
Jacobian controller proposed by Cheah in Ref. [12] and 
the priority oriented adaptive controller proposed by Dr 
Sedeghian in Ref. [19], and is abbreviated as C–H scheme 
hereinafter. Common parameters of the two comparative 
schemes share same values.

We assume that the position of the end-point of the 
tool can be gained from the robot vision system. Physical 
parameters of the system are listed in Table 1. m1, m2, m3 
and me are the masses of the three links and the tool; Ii for 

(67)

Vp =
1

2

(
sTq Msq + 𝜃T

dkL
−1
dk 𝜃dk + 𝜃Td P

−1
d 𝜃d+ 𝜃Tk1P

−1
k 𝜃k1

)

+ 𝛼x̃T
1
Kmx̃1

(68)q̇r = Ĵ†
1
ẋ1r + N̂1Ĵ

†

2
ẋ2r

Evoked by the SRI approach proposed in Ref. [33], 
Gaussian distribution of damping factor can be adopted 
here and only the ill-conditioned singular vectors are 
damped by applying singular value decomposition (SVD) 
[34]. Then (21) should be reformulated as:

 

 

 

where σi is the singular value of the estimated projected 
Jacobian ̂̄J2. νi and μi are the i-th output and input sin-
gular vector respectively. ε is the pre-specified constant 
which defines the size of the singular region, �max sets 
the maximum of the damping factor. Optimal choice of 
aforementioned two parameters should be obtained by 
trial and error.

When approaching to algorithmic singularities, non-
null damping factor brings in inevitable reconstruction 
error to the subtask tracking, which will further lead 
to the unpredictable parameter estimation and torque 
discontinuity. Significantly, discontinuous command 
torques would result in unstable behavior. Hence, the 
control law and kinematic parameter updating law in 
(33) and (38) should also be properly modified. The idea 
of continuous dead zone [29] and transition shaping 
technique [32] can be used here to avoid unexpected 
parameter adaptation and discontinuity of the control 
torques brought by the reconstruction tracking error of 
the subtask.

 

 

 

where Δ is a small positive preassigned threshold. From 
remark 1, μ is introduced to determine whether or not 
the adaptation and control term of tracking error of the 
subtask are activated for parameter estimation and con-
trol laws.

The stability and convergence proof for primary task 
when choosing (64), (36), (37), (39) and (65) as the control 
law and updating laws are similar to that of Theorem 1.

(61)q̇r = Ĵ†
1
ẋ1r + N̂1(

̂̄J2)
∗(ẋ2r − Ĵ2Ĵ

†

1
ẋ1r)

(62)( ̂̄J2)
∗ =

m2∑
i=1

𝜎i

𝜎2
i + 𝜆2

Gi

𝜈i𝜇
T
i

(63)�Gi = �max exp(−(�i∕�)
2)

(64)

𝜏 = Ydr �̂�d −
⌢

Y dr �̂�d1 + Ĵ T1 Km1ŝx1 + 𝜇Ĵ T2 Km2ŝx2 + Kpsq + Λ

(65)

̇̂
𝜃k = Pk(t)

[
−2𝛼

(
YT
k1Km1x̃1 + 𝜇YT

k2Km2x̃2
)
−WT

k Rkek
]

(66)𝜇 =

{
1 (for i = 1, … ,m𝜆Gi ≤ Δ)

exp (−
(
1 − 𝜆Gi∕Δ

)2
) (𝜆Gi > Δ)
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The initial configuration of the 3-DOF manipulator 
is q(0) = [�∕3,−�∕2,−�∕6]T and the initial value of the 
end-effector position is x1(0) = [0.7630, − 0.0941]T.

In the simulation, the desired end-effector  
trajectory of the primary task is depicted by: 
xd1 = [ 0.4730 + 0.3 cos(0.2�t) −0.1241 + 0.3 sin(0.4�t) ]T . 
The subtask is defined as the square of the length from 
joint 2 to the end tip. The desired value for this task is 
given as x2d = 0.5054 and the initial value is x2(0) = 0.5154.

Without loss of generality, the unmodeled error τd is 
consisted of unstructured friction u𝜏f (q̇) and time-varying 
term τς(t), where

 

(69)

{
u𝜏f (q̇) = diag(0.75, 0.3, 0.075) × q̇ + diag(0.1, 0.1, 0.025) × sgn(q̇)

𝜏
𝜍
(t) = [0.5 + 5 sin(2𝜋t);0.5 + 0.25 sin(2𝜋t); − 0.5 − 0.25 sin(2𝜋t)]

(i = 1, 2, 3, e) denotes their momentum of inertial. li and 
lci, which are shown in Figure 3, express their link length 
and the centers of mass respectively. The deflection angle 
is specified as �e = �∕6. One can refer to Appendix 2 for 
the details about the parameterized linearization of the 
dynamics and kinematics.

Unstructured Dynamics 
Compensation

Unknown Bound 
Estimation

Adaptive Control

Dynamic Parameter 
Estimation

Kinematic Parameter 
Estimation

Task Priority 
Assignment

Multi-
Priority 

Resolution

Coupling Parameter 
Estimation

Vision Based Pose 
Feedback

T
ask 1

T
ask 2

T
ask n

Transition 
Shaping

Continuous 
Dead Zone

Figure 2. block diagram of the proposed controller for redundant manipulator with unknown welding pistol.

Table 1. Parameters of the manipulator and tool.

Body mi(kg) Ii(kg ⋅ m2) li(m) lci(m)
Link (1) 6.5 0.12 0.42 0.28
Link (2) 5.0 0.42 0.3 0.22
Link (3) 2.6 0.10 0.24 0.15
tool (e) 1.0 0.06 0.2 0.1

Figure 3. sketch of the Hit-Robonaut system with an unknown 
tool.

Figure 4.  Arm configuration of the 3-doF planar redundant 
manipulators.
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4.2 Performance analysis of the RAM scheme

With 50% dynamic uncertainty and nearly 40% kinematic 
uncertainty and the unstructured disturbance described 
by (69), the corresponding simulation results are illus-
trated in Figures 4–7. The arm configuration trajectory 
with RAM scheme is presented in Figure 4, from which 
we can see that the primary task is well tracked.

From these figures, we can obtain the following remarks 
about the proposed RAM scheme:

(1)    Even the parameter adaptation process is in 
company with algorithmic singularity at the 
beginning (0s ≤ t < 0.6 s), the convergence of 
the tracking error of the two tasks are not dis-
turbed (show by the blues solid line in Figure 
5(a)–(c)).

(2)    Within the time interval of shaded rectangle 
(from t = 4.5 s to t = 6 s) in Figures 5 (a)–(c) 
and 6(a), the performance of the proposed 
RAM scheme near algorithmic singularity is 

The control parameters of the proposed controller are 
chosen as:

The two parameters of the Gaussian-based DLS method 
are chosen as: �max = 0.1, � = 0.04. The parameters of 
the robust compensator are chosen as: � = 0.01, Lr = 1.

𝜆f = 2, 𝜆fk1 = 𝜆fk2 = 20, 𝛼 = 10,Kp = 20I
3
,

Δ = 2 × 10
−3
,ℵ = 0.1,ℑ = 0.1, 𝜆k = 5,

P
k
(0) = 1.5I

6
,R

k
= 0.8I

3
,K

m1
= 0.5I

2
,K

m2
= 0.1I

1
,

P
d
(0) = 2.5I

7
, �

d
= 1, L

dk
= 1.2,

R
d
= 5I

3
, �̂�

k
(0) = [0.6, 0.5, 0.2, 0.05, 0.2, 0.1]T ,

𝜃
k
= [0.42, 0.3, 0.4132, 0.1, 0.124, 0.03]T ,

�̂�
d
(0) = 50% × 𝜃

d
,

𝜃
d
= [3.4603, 1.3137, 0.3277, 0.462, 0.3017, 0.4536, 0.2155]T .
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Figure 5. Multi-task tracking results with two comparative schemes. (a) Primary task tracking errors with two schemes in X-axis, (b) 
Primary task tracking errors with two schemes in Y-axis, (c) subtask tracking errors with two schemes and (d) Primary tracking results 
with two schemes in X-Y Panal.
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corresponding damping factor (calculated by 
the improved SRI).

(3)    When far from the region of algorithmic sin-
gularity (1 s ≤ t ≤ 4.5 s and 6 s < t ≤ 10 s), 
both of the two tasks are performed well.

(4)    Even with small adaptation and control gains, 
tracking error of the primary task still con-
verges quickly.

presented. The commanded torques are kept 
continuous and the tracking performance of 
the subtask is sacrificed to retain high pre-
cision of the primary task. For clear under-
standing of the task dependence condition 
during the simulation process, one can refer 
to Figure 7(a) which shows the singular value 
of the estimated projected Jacobian and the 
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implementing the corresponding experiments: sam-
pling time and measurement error of the vision system. 
By improving the visual algorithm of object detection/
tracking and stereo matching, reduction of image pro-
cessing time can be expected. Furthermore, Kalman fil-
ters or extended Kalman filters can be used and properly 
designed for removal of measurement error based on 
characteristic analysis.
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4.3. Comparison results analysis

Figure 5 shows the comparison results of the multi-task 
tracking performance between the RAM scheme and 
the combined C-H scheme. From the four panels, we 
see that faster convergence rate and smaller tracking 
error in both primary task and subtask can be achieved 
by the proposed RAM when facing dynamic and kine-
matic uncertainties and unstructured disturbances. This 
is because the proposed RAM properly utilizes both the 
prediction error and tracking error of the primary task 
and subtask to accelerate the adaptation process, and the 
unstructured disturbances are suppressed by an adaptive 
robust compensator.

Furthermore, Figure 6(a) and (b) present the joint com-
manded torques with RAM scheme and the combined 
C-H scheme, respectively. From the two panels, we see 
that the commanded torques with RAM always main-
tain continuous and smooth and little chattering exists 
even with a robust compensator. This superiority owes to 
the combined action of continuous differentiable switch 
function of the robust compensator, the continuous dead 
zone and torque transition shaping. These incorporated 
techniques guarantee the easy application in along with 
improvement of the tracking performance.

5. Conclusion and discussion

In this paper, a novel robust adaptive multi-priority control-
ler is proposed to solve the multi-task tracking problem of the 
redundant manipulators when dynamic/kinematic uncer-
tainties and unstructured dynamics exist. To accelerate the 
adaptation process, both the tracking errors of the two pri-
oritized tasks and the prediction error are utilized. Moreover, 
a continuous robust compensator is designed to suppress 
the unstructured disturbances. We discuss and design the 
controller in the sense of algorithmic singularity. Unlike 
the general damping least square method, an improved sin-
gularity-robust technique is incorporated to minimize the 
effect the damping factor acting on the task tracking and 
alleviate the bad behaviour of damped projected Jacobian. 
The idea of continuous dead zone is used to cope with the 
problem of unpredictable adaptation when reconstruction 
error exists in the subtask. Besides, transition shaping tech-
nique is also applied to the commanded torques to eliminate 
the discontinuity led by the potential discontinuous projec-
tion. Along with the improvement of the multi-task tracking 
performance, smoothness of the commanded torques is still 
guaranteed and the noisy joint accelerations/task velocities 
are not required. Simulation results have verified the effec-
tiveness and universality of the proposed controller whether 
facing algorithmic singularity or not.

It is worth mentioning that two factors may affect the 
practical performance of the proposed controller when 
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Furthermore, ̂̈xr = ẍd + 𝛼(ẋ − ̂̇x) ∈ ∞ holds; with the fact that 
Wk(t) ∈ ∞ and ek = Wk𝜃k ∈ ∞, we have ̇̂𝜃k ∈ ∞ consider-
ing (38). This leads to ̇̂J†

1
∈ ∞ and ̇̄N ∈ ∞ under the assump-

tion that Ĵ
1
 and Ĵ

2
N̂

1
 are both of full rank. Then ̂̈qr ∈ ∞ can be 

obtained by (22). From (33) and (2), the fact that � → ∞ with 
�d → ∞ and further q̈ → ∞ holds considering that Λi ∈ ∞.  
And hence ẍ ∈ ∞ holds considering the time derivative of 
(7). Based on ̈̃x = ẍd − ẍ, then ̈̃x ∈ ∞ holds.
Conclusion 2: Using Lemma 1, ̇̃x = ẋd − ẋ → 0 is guaranteed.

Appendix 2. Parameterized Linearization of the 
Dynamics/Kinematics

To simplify the expressions of the dynamic parameters, the 
last link and the unknown tool can be treated as an equivalent 
link since they are fixedly connected throughout. According to 
equivalence principle, parameters of the new link are given as:

δ3e is assumed to be known as a constant value to properly 
simplify the linearization. Then the robot dynamic parameters 
θd = [θd1, θd2 … θd6, θd7]

T are selected as follows:

The matrices M(q), C(q, q̇) and the expression of θdk with its 
estimation results are not listed here for simplicity. The matrix 
Wd(q, q̇, t) and the dynamic regression matrix Y

dr(q, q̇, q̇r , ̂̈qr) 
can be computed based on (12) and (28) respectively. 
⌢

Y
dr(q, q̇, q̇r , ̂̈qr , �̂�k) can be obtained from (22).

The robot kinematic parameters θk =  [θk1, θk2 … θk6]
T are 

given as: θk1 = l1, θk2 = l2, θk3 = l3 + le cos (δe), θk4 = le sin (δe), 
θk5 = l2(l3 + le cos (δe)), θk6 = l2le sin (δe). The kinematic regres-
sion matrix Yk(q, q̇) and the matrix Wk(t) are obtained from (5) 
and (14), respectively.
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Appendix 1. Proof of Theorem 1

V̇ ≤ −𝜂V + 𝜐 implies that V in (47) is always bounded and 
so as to the integral of V̇ . This means that sq ∈ ∞ ∩ 

2
, 

x̃ ∈ ∞ ∩ 
2
, 𝜃k, 𝜃d , 𝜃dk, D̃i ∈ ∞, Δ ̂̇x ∈ 

2
, Wd𝜃d ∈ 

2
 and 

Wk𝜃k ∈ 
2
. x̃ = xd − x ∈ ∞ leads to the fact that x ∈ ∞ and 

further q ∈ ∞, then Ĵ(q, �̂�k) ∈ ∞ holds. From (25), we have 
ŝx ∈ ∞, which implies Δ ̂̇x ∈ ∞ and further ̂̇x ∈ ∞ consid-
ering (24). Using (16) and (7), q̇ ∈ ∞ and then ẋ ∈ ∞ can be 
obtained.
Conclusion 1: With the previous analysis, ̇̃x ∈ ∞ holds 
x̃ = xd − x → 0 is achieved.
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