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Learning Task Parameterized Dynamic Movement Primitives
using mixture of GMMs

Affan Pervez · Dongheui Lee

Abstract Task-parameterized skill learning aims at adap-

tive motion encoding to new situations. While existing

approaches for task parameterized skill learning have

demonstrated good adaptation within the demonstrated

region, the extrapolation problem of task parameterized

skills has not been investigated enough. In this work,

with the aim of good adaptation not only within the

demonstrated region but also outside of the region, we

propose to combine a generative model with a Dynamic

Movement Primitive (DMP) by formulating learning as

a density estimation problem. Moreover, for efficient

learning from relatively few demonstrations, we pro-

pose to augment training data with additional incom-

plete data. The proposed method is tested and com-

pared with existing works in simulations and real robot

experiments. Experimental results verified its general-

ization in the extrapolation region.

Keywords Programming by Demonstration · Dy-

namic Movement Primitives · Task Parameterized

Movement

1 Introduction

Humans are very good at learning and reproducing

complex tasks, but it is often tedious and cumbersome

to program a robot for performing them. Programming

by Demonstration (PbD) alleviates this problem, giv-

ing the possibility to teach a skill to a robot through

demonstrations. The skill can be acquired from an ex-

pert in the corresponding field and removes the bot-

tleneck for the teacher to have knowledge of robotics
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Fig. 1: This figure shows the illustration of a sweeping task.
The position of the trash (colored circles) can be considered
as the task parameter, governing variations in the demonstra-
tions. For a new trash position (blue circle), which is away
from the demonstrated region, the robot should be able to
generate trajectory for moving trash to the collection point.

or programming. This also provides a great potential

for industrial applications as PbD can significantly re-

duce the setting up time of an assembly line. Since PbD

aims at speeding the setting up time, collecting a lot of

demonstrations can be an expensive and time consum-

ing task. Thus it is a desirable attribute to learn from

as few demonstrations as possible. Moreover, since the

demonstrations are finite, the learned controller should

not only be able to generate motions within the demon-

strated ranges, but also beyond them. There are skills in

which multiple demonstrations can look very different

due to the underlying task specific variations [18,27,28].

As an example, Figure 1 presents a sweeping task. In

this task, the trash position can completely modify the

trajectory of the broom, even for a fixed starting and

collection point. For this task, the trash position can

be interpreted as a task parameter, governing the vari-

ations in different demonstrations.

This paper utilizes these types of task specific demon-

strations. Our approach combines dynamical systems [19,

26] and statistical machine learning techniques [7]. The

existing works extending DMPs to include task parame-

ters have used discriminative approaches for learning [10,

18, 27, 28]. Discriminative models are used for model-
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ing the dependence of an unobserved variable y on an

observed variable x. This is done by modeling the con-

ditional probability distribution P (y|x), which is then

used for predicting y from x. On the contrary, we com-

bine a generative approach with the DMP, as it can

make use of incomplete/unlabeled training data. This

results in an 1-Step learning procedure similar to [27].

Generative models encode the joint distribution of P (x, y)

of the variables of interest. The conditional distribu-

tion can later be inferred from the joint distribution

i.e. P (y|x) = P (x, y)/p(x) where p(x) is obtained by

marginalizing out y from P (x, y). The aim of this work

is to learn from very few demonstrations which implies

sparsely distributed data. We solve the data sparsity

problem by augmenting training data with additional

incomplete data while poor local optima are avoided

with Deterministic Annealing Expectation Maximiza-

tion (DAEM).

The main contributions of this paper are:

– Instead of a discriminative model, we have used a

generative model for modeling the forcing terms in

a task parameterized DMP (Section 3).

– The local maxima problem during the likelihood

maximization is resolved with DAEM (Section 3).

– We solve the data scarcity problem by using addi-

tional incomplete data and the Expectation Max-

imization (EM) algorithm [9] (Section 4). The de-

tailed derivation of the incomplete data EM is also

provided (Appendix).

– Through simulated and real robot experiments, we

show that our approach requires very few demon-

strations for learning and provides superior extrap-

olation capabilities when compared with the related

works (Section 6).

2 Movement Primitives

2.1 Dynamic Movement Primitive

DMP is a way to learn motor actions [26]. It can encode

discrete as well as rhythmic movements. We consider

the DMP formulation presented in [19], as it overcomes

the numerical problems which arises when changing the

goal position in the original formulation [26]. A separate

DMP is learned for each considered degree of freedom

(DOF). A canonical system acts as a clock and for syn-

chronization each DMP is driven by the common clock

signal.

τ ṡ = −αss (1)

The parameter s is usually initialized to one and it

monotonically decays to zero, τ is the temporal scaling

factor while αs determines the duration of the move-

ment. From Equation (1), the time t and s are related

as s(t) = exp(−αst
τ ). The canonical system drives the

second order transformed system:

τ v̇ = k(g − x)− dv − k(g − x0)s+ skF(s)

τ ẋ = v

where g and x0 are goal and start positions respectively,

k acts like a spring constant while the damping term

d is set such that the system is critically damped. The

learning of forcing term F(s) allows arbitrarily com-

plex movements. F(s) is defined as

K∑
i=1

ψi(s)ωi

K∑
i=1

ψi(s)

where

ψi(s) = exp(−hi(s− ci)2) are Gaussian basis functions

with spread hi, centers ci and adjustable weights ωi. To

encode a movement, we first register x(t) and its first

and second derivatives v(t) and v̇(t) respectively at each

time step t = 0, . . . , T . Then for a suitable value of τ , we

integrate the canonical system and calculate the target

value Ftar(s) for each time step.

Ftar(s) =
v̇τ − k(g − x) + dv + k(g − x0)s

sk

Now learning is performed to minimize the error cri-

terion J =
∑
s (Ftar(s)−F(s))

2
which is a linear re-

gression problem and the weights ωi are learned with

weighted least squares.

2.2 DMP learning with a Gaussian Mixture Model

The forcing term F(s) can be encoded with a Gaus-

sian Mixture Model (GMM) [2] or any other suitable

function approximator [27]. When using a GMM, the

manual specification of the meta parameters related

to the basis functions (means and spread) is not re-

quired as the means and covariances of the GMM com-

ponents are learned using EM. That is why the GMM

based encoding also requires less number of components

as compared with the number of basis functions. The

number of GMM components can also be optimized by

using an appropriate model selection criterion [22]. A

GMM with K components is parameterized by θ(K) =

{πk,µk,Σk}Kk=1, where π1, . . . ,πK are mixing coeffi-

cients with constraints πk > 0 and
∑K
k=1 πk = 1,

µ1, . . . ,µK are means and Σ1, . . . ,ΣK are covariance

matrices. The learning scheme is as follows. First a

dataset is created

x =

(
s1 . . . sT

Ftar(s1) . . . Ftar(sT )

)
(2)

Then a GMM is fitted to the data with EM [9]. Eigen-

values of covariance matrices are regularized to avoid
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Fig. 2: TP-DMP learning using mixture of GMMs. (a) The mixture of GMMs, (b) the underlying regression surface and (c)
the intuitive reasoning for such a response.

singularity during EM [5]. Now for retrieving F(s) for

a given s value we can use Gaussian Mixture Regres-

sion (GMR) [4]. In GMR, input and output variables

in each component are represented separately

µk =

[
µIk
µOk

]
,Σk =

[
ΣI
k ΣIO

k

ΣOI
k ΣO

k

]
For a given input variable xI , the expected value of xO

is calculated as:

E(xO|xI) =

K∑
k=1

hkx̂k

with hk =
πkN (xI ;µIk,Σ

I
k)∑K

l=1 πlN (xI ;µIl ,Σ
I
l )

x̂k = µOk +ΣOI
k (ΣI

k)
−1

(xI − µIk)

3 Task Parameterized-DMP

The DMP parameters can be separated into two types:

1. the shape parameters ωi associated with the basis

functions and 2. the DMP meta parameters which are

all parameters other than the shape parameters, i.e.

τ, g,K, etc. DMP presented in Section 2 does not con-

sider external parameters T , which are referred to as

task parameters in this work (e.g. the trash position in

Figure 1). Also the only input to a DMP is the clock

signal. In the Task Parameterized-DMP (TP-DMP), we

firstly want to learn from multiple demonstrations exe-

cuted for different task parameters. Secondly for adapt-

ing the motion to a new task, the task parameters

should also be passed as an input along with the clock

signal. Following are the preprocessing steps that we

consider in our TP-DMP framework:

1. Since a common clock (canonical system) drive all

DMPs, we assign a common time duration to all

demonstrations.

2. All demonstrations are linearly resampled to have

an equal number of samples. A sample inbetween

two data points is created by linear interpolation of

the neighboring data points.

3.1 TP-DMP learning using mixture of GMMs

We consider learning as a density estimation problem

where we want to learn the joint distribution of (s,T ,F).

Learning a single GMM over all demonstrations encod-

ing (s,T ,F) can suffer from curse of dimensionality

in higher dimensional space. That is why we learn a

separate GMM for each demonstration in lower dimen-

sional space i.e. (s,F), by first creating the datasets as

in Equation (2) and then applying EM as mentioned in

section 2.2.

µo,m =

(
µso,m
µFo,m

)
,Σo,m =

(
Σss
o,m Σ

sF
o,m

ΣFso,m Σ
FF
o,m

)
Here the subscript o andm denote the indexes of demon-

strations and components respectively while the terms

s and F in superscript denote the dimensions corre-

sponding to s and F respectively. Since the task param-

eters remain constant during a demonstration, we can

simply concatenate their values in the learned means

of the GMM components. The diagonal values corre-

sponding to the task parameters in the covariances are

not learned and are set to small value ε

µo,m =

µso,mT o
µFo,m

,Σo,m =



Σss
o,m 0 . . . 0 ΣsF

o,m

0 ε
. . . 0

...
. . .

. . .
. . .

...

0
. . . ε 0

ΣFso,m 0 . . . 0 ΣFFo,m


.
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If the task parameters are varying during the demon-

strations, the GMMs can simply be learned over all of

the variables, i.e. (s,T ,F), and we will have uncon-

strained covariances. In fact it is the fixed task param-

eters for each demonstration that makes the learning

challenging. The idea of combining separately learned

HMMs has also been introduced in [13] but in our ap-

proach we apply an additional EM cycle over the sep-

arately learned GMMs for achieving task specific gen-

eralization. We mix the separately learned GMMs to

achieve generalization for novel task parameter values.

Similar to the mixing coefficients π which represent the

weights of the components within a GMM, we introduce

a mixing coefficient φ representing the mixing weight

of each GMM, having the same constraints as that of

π, i.e. πi > 0 and
K∑
i=1

πi = 1. With these settings we

apply EM to learn a mixture of GMMs. We do not

update the mixing weights and the means of the com-

ponents within each GMM as they are important for

preserving the local behavior of each demonstration.

As EM maximizes the likelihood locally, it can con-

verge to a local maxima. To overcome local maxima

problem we use DAEM [29]. DAEM has a temperature

parameter β which has a small value at the beginning

and it gradually increases to one. It uses the ideas from

statistical mechanics, by applying the concept of max-

imum entropy. The objective function is considered as

the thermodynamic free energy, which is regulated by

the temperature. EM is applied deterministically for

each temperature value and the estimated parameters

become initialization for the next temperature value.

At lower temperature values DAEM suppresses poor lo-

cal optima and increases the likelihood of convergence
to the global maximum. For M demonstrations with

T data points in each demonstration, we first create

a single dataset containing all demonstrations (define

N = TM) and then apply the DAEM for learning mix-

ture of GMMs, whose update equations can be written

as:

E-step:

pi,o,m =
(
φtoπo,mN (xi;µ

t
o,m,Σ

t
o,m)

)β
bi,o =

K∑
l=1

pi,o,l

M∑
r=1

K∑
l=1

pi,r,l

, qi,o,m =
pi,o,m

M∑
r=1

K∑
l=1

pi,r,l

M-step:

φt+1
o =

N∑
i=1

bi,o

N
,

Σt+1
o,m =

N∑
i=1

qi,o,m(xi − µo,m)(xi − µo,m)
>

∑N
i=1 qi,o,m

where bi,o represents the responsibility that the oth GMM

takes for explaining the ith data point while qi,o,m rep-

resents the responsibility that the mth component of

the oth GMM takes for explaining the ith data point. It

is a common practice to apply regularization on learned

covariances for avoiding singularities during EM. As a

regularization measure, if any of the eigenvalues of the

learned covariances becomes lower than a predefined

threshold ε, then we reset it to ε. We apply the de-

scribed approach to the mixture of GMMs learned for

encoding the forcing terms of a DMP, with variations

along a scalar task parameter. The learned mixture of

GMMs, which is also the estimated density function,

is shown in Figure 2a. The GMMs remain unchanged.

The regression for the mixture of GMMs is calculated

as:

E(xO|xI) =

M∑
r=1

K∑
l=1

vr,lx̂r,l

with vo,m =
φoπo,mN (xI ;µIo,m,Σ

I
o,m)

M∑
r=1

K∑
l=1

φrπr,lN (xI ;µIr,l,Σ
I
r,l)

x̂o,m = µOo,m +ΣOI
o,m(ΣI

o,m)
−1

(xI − µIo,m).

For evaluation, we generate linearly spaced samples

of T and s within the demonstrated ranges and use

GMR to predict the value of F for each sample, i.e.

{s × T } 7→ F . The surface plot of this data can be

visualized in Figure 2b. We can see that it has a step

along the task parameter. This shows that as we have

sparse data in the task space (only two trajectories),

each GMM in the mixture kept concentrated at regions

of demonstrations. Due to data sparsity, the density es-

timate is overfitted in its current form. The reason for

the step in surface plot can be explained by Figure 2c. If

we have well separated Gaussians (Figure 2c-top) then

their activation functions, calculated as the responsi-

bility term in EM, switches in a very narrow region

(Figure 2c-bottom). The same phenomenon occurred

in the regression surface where regions close to a GMM

are mostly influenced by it. As we move away, the ac-

tivation transits sharply to a nearby GMM. This also

means that this model is overfitted and can only be use-

ful for exact reproduction of task parameter values in

training dataset and it fails to generalize for novel task
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Fig. 3: Result of manually setting the variance along task variable. (a) The mixture of GMMs, (b) the mixture of GMMs after
manually setting the variance along task variable and (c) the underlying regression surface.

parameter values. Instead of using EM, a simple trick

to avoid overfitting problem could have been to manu-

ally specify a reasonable value of variance ε for the task

variables, as in the LWR based approaches [28]. This is

analogous of applying a regularization term along task

variables. Although this can provide interpolation be-

havior, it fails to extrapolate beyond the demonstrated

regions, as the underlying regression surface changes its

behavior beyond the demonstrated interval as shown in

Figure 3.

4 Generalizing from incomplete data via the

EM

Due to the few demonstrations, the challenge of data

sparsity is posed in task space. We show that the data

sparsity problem can be solved by augmenting the train-

ing data with the additional incomplete data spanning

the input space. This can subsequently be used for get-

ting a better estimate of the underlying distribution

and thus improving the generalization behavior of the

already learned GMMs. Since the mixture of GMMs

is a generative model, it can benefit from incomplete

data [3].

4.1 Defining input data distribution

For a task parameterized DMP, the input variables are

(s,T ) for which we want to predict the value of out-

put F . Without loss of generality, we can assume that

the input variables are independent of each other but

conditionally dependent for a given output value, as

shown in Figure 4. We first separately model the dis-

tribution of each input variable. Among the input vari-

ables, the clock signal s is generated by an exponen-

tially decaying function (canonical system) and has un-

even distribution of samples in different regions. Since a

GMM can model any arbitrarily complex density func-

tion we model the distribution of s by fitting a uni-

variate GMM with W components (through EM) to its

samples θs(W ) = {πsw, µsw, (σsw)2}Ww=1. The same proce-

dure cannot be used for the very limited samples of task

parameters T , which are equal to the number of demon-

strations. For simplicity, we assume each dimension of

task variables to follow a univariate normal distribu-

tion, i.e. for the dth dimension of

T = [T 1 . . . T d . . . T D]>, T d ∼ N
(
µd, σ

2
d

)
where µd =

T d
1 +T d

2 +···+T d
M

M and σ2
d = 1

M−1

M∑
i=1

(T di − µd)2.

Since the inputs are provided in a regression prob-

lem, we refer to them as the observable variables. Sim-
ilarly, the output variables that need to be predicted

are termed as missing variables. Using the assumption

of independence, the resultant distribution of the input

variables is defined by concatenating all the distribu-

tion learned separately to form a multivariate GMM

with W components.

θobs(W ) = {πobsw ,µobsw ,Σobs
w }

W

w=1 with πobsw = πsw,

s T T

F

1 D

Fig. 4: Graphical model illustrating dependence of input and
output variables.
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As the output dimension is not considered for now, we

term the input data distribution as Incomplete Data

GMM (IDGMM).

4.2 Incorporating Incomplete data via EM

Figure 5 shows a dataset with a mixture of complete

and incomplete data. The incomplete data still pro-

vides useful information when applying EM for fitting

a GMM [9]. As mentioned earlier, the regression us-

ing mixture of GMMs encountered problem due to the

data sparsity in task space. What would be the effect of

filling regions inbetween GMMs with incomplete data,

i.e. without the outputs F? The EM applied with ad-

ditional incomplete samples provide smooth activation

of responsibilities when switching from one GMM to

a nearby GMM. Since we treat learning as a density

estimation problem, the amount of incomplete data re-

quired to fill the empty regions can increase drastically

with the increase in the dimensions of task parameters

(curse of dimensionality). The computational burden of

EM also increases with the increase in size of training

data. To avoid these problems, we instead directly use

the IDGMM.

To use the IDGMM, a weighting parameter analo-

gous to the number of data points represented by the

IDGMM has to be specified by the user. Our training

dataset consists of N data points. The weighting pa-

rameter is also set equal to N and thus each IDGMM

component represent πobsw ×N data points. It has to be

noted that the EM applied with this additional data

still provides a maximum likelihood estimate of the

model parameters as the IDGMM is defined on data

and not on the parameters of the model. Now, for ben-

efiting from this incomplete data, we use the current

mixture of GMMs for calculating the Expectation of in-

complete terms appearing in likelihood maximization [12].

It turns out that, for a data point xi with observ-

able (input dimensions) and missing (output dimen-

sions) parts

[
xobsi
xmissi

]
, we have to calculate three expec-

tations [12], i.e. E[zi,k|xobs,θt], E[zi,k,x
miss|xobs,θt]

and

E[zi,k,x
missxmiss

> |xobs,θt], where zi,k is an indicator

variable defining association of xi to the kth cluster.

These expectations can be directly used in M-step [12].

In the M-step, the value of dt+1
i,o,m calculated only

on the observable dimensions can be directly used for

updating φt+1
o .

E-step:

pt+1
i,o,m =

(
φtoπo,mN (xi;µ

t
o,m,Σ

t
o,m)

)β
ct+1
w,o,m =

(
φtoπo,mN (µobsw ;µobso,m,Σ

obs
w +Σobs

o,m)
)β

bt+1
i,o =

K∑
l=1

pt+1
i,o,l

M∑
r=1

K∑
l=1

pt+1
i,r,l

, qt+1
i,o,m =

pt+1
i,o,m

M∑
r=1

K∑
l=1

pt+1
i,r,l

dt+1
w,o,m =

ct+1
w,o,m∑M

r=1

∑K
l=1 c

t+1
w,r,l

× πobsw ×N

M-step:

φt+1
o =

N∑
i=1

bt+1
i,o +

∑W
w=1

∑K
l=1 d

t+1
w,o,l

2N
,

Σt+1
o,m =

N∑
i=1

qt+1
i,o,m(xi − µo,m)(xi − µo,m)> +

W∑
w=1

Aw,o,m

∑N
i=1 q

t+1
i,o,m +

W∑
w=1

dt+1
w,o,m

where

µo,m =

[
µobso,m
µmisso,m

]
,Σo,m =

[
Σobs
o,m Σobs.miss

o,m

Σmiss.obs
o,m Σmiss

o,m

]
Aw,o,m = dt+1

w,o,m

[
Xobs
w − µobso,m

Xmiss
w − µmisso,m

] [
Xobs
w − µobso,m

Xmiss
w − µmisso,m

]>
=

[
A11 A12

A21 A22

]
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with

A11 = dt+1
w,o,m

(
Σobs
w + (µobsw − µobso,m)(µobsw − µobso,m)

>)
A21 = dt+1

w,o,mΣ
miss.obs
o,m (Σobs

o,m)
−1Aw,o,m

A12 = A21
>

A22 = dt+1
w,o,mΣ

miss
o,m + dt+1

w,o,mΣ
miss.obs
o,m

(Σobs
o,m)

−1Aw,o,m(Σobs
o,m)

−1
Σmiss.obs
o,m

>

− dt+1
w,o,mΣ

miss.obs
o,m (Σobs

o,m)
−1

(Σmiss.obs
o,m )

>

where Aw,o,m = Σobs
w + (µobsw − µobso,m)(µobsw − µobso,m)

>
.

Since we do not update the means, the additional data

cannot pull the already learned GMMs away from the

demonstrated regions, the components cannot get to a

saddle point during DAEM and it also results in a fast

rate of convergence for EM.

One may wonder about the result of fitting a single

GMM instead of using the mixture of GMMs. As the

data is concentrated at discrete regions of input space

(task parameters), the components of a single GMM

will also get attracted to same regions as by the mixture

of GMMs. An appropriate regularization term must be

used for a single GMM, to avoid singularity issues of co-

variance matrices, as the data concentrated at discrete

regions in higher dimensional space. The reason for us-

ing the mixture of GMMs instead of a single GMM is

that now we optimize the weight φ of each GMM sep-

arately, without disturbing the weights π within each

GMM, as they are important for preserving the local

behavior of each GMM. This also results in a smaller

number of parameters update during the second EM

cycle, in contrast to updating the mixing weights π of

a single GMM.

4.3 Computational complexity

The computational complexity of our approach during

motion execution is O(n) for the number of DMPs, the

number of demonstrations and the number of GMM

components. Since GMR involves matrix inversion over

input variables, the computational complexity is O(n3)

for the dimensions of task parameters. For the special

case of fixed task parameters throughout the trajec-

tory, one can find conditional GMMs for the fixed task

parameters. This makes the computational complexity

irrelevant of task parameters, i.e. for the fixed task pa-

rameters T , the conditional parameters for the regres-

sion are calculated as:

φ̂oπ̂o,m =
φoπo,mN (T ;µTo,m,Σ

T
o,m)∑M

r=1

∑K
l=1 φrπr,lN (T ;µTr,l,Σ

T
r,l)

µ̂o,m = µ{s,F}o,m +Σ{s,F}.To,m (ΣTo,m)
−1

(T − µTo,m)

Σ̂o,m = Σ{s,F}o,m −Σ{s,F}.To,m (ΣTo,m)
−1
ΣT .{s,F}o,m

where the terms s,F and T in superscript denote the

dimensions corresponding to s, F and T respectively.

Table 1: Computational complexity during motion generation
with respect to the variables of interest.

The number of DMPs O(n)
The number of demonstrations O(n)
The number of GMM components O(n)
The number of task parameters O(n3)
For constant task parameters O(1)

5 Related Work

In general there are two main approaches for learn-

ing motor skills; firstly those based on mimicking mo-

tion data using dynamical systems, i.e. DMPs [19, 26],

secondly those relying on statistical machine learning,

i.e. Gaussian Mixture Models (GMMs) [7] and Hidden

Markov Models (HMMs) [16, 17]. DMPs consider one-

shot learning and provide spatial and temporal scala-

bility properties as well as guaranteed convergence to

the goal position. Learning is done at acceleration level

and many variations exist for DMPs [11,20,21]. Statisti-

cal machine learning based approaches directly learn on
spatial data and can easily encode multiple demonstra-

tions at a time, but lack certain properties presented by

a DMP, for instance spatial amplification of the move-

ment or guaranteed convergence to a goal position.

Among the GMM based approaches, [7] used differ-

ent frames of reference for capturing distinct aspects

of multiple demonstrations. Task parameters are de-

fined as frames of reference. For generalization, the al-

ready learned GMMs are placed with respect to new

frames and multiplied to retrieve a GMM for a new sce-

nario. A similar method is [6], where they have shown

that such an approach can also provide some extrapola-

tion capability. However, these approaches lack typical

properties associated with DMPs, e.g. spatial amplifi-

cation of the movement and guaranteed convergence to

a goal position. Additionally the frames of references

cannot be arbitrarily placed and the user needs to have

a certain level of understanding about how to place the

frame of references for the TP-GMM to be successful.

Probabilistic movement primitives (ProMPs) have been
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shown to have better inference capabilities than a DMP

and can combine or blend multiple demonstrations to

achieve task specific generalizations. However, ProMPs

require a large number of demonstrations for learning.

According to [25], ProMPs have a high-dimensional co-

variance matrix and many free parameters. That is why

they suffer from overfitting without a large number of

demonstrations.

Task specific variations of DMPs are considered in

[10,18,27,28]. Basis targets can be extracted for the cor-

responding style parameters of each demonstration [18].

The basis targets and style parameters are combined to

get appropriate basis functions. For generalization to a

new situation with different task parameters, for exam-

ple different height of an obstacle in a point to point

reaching task, one has to provide appropriate style pa-

rameters. To get the style parameters for novel situa-

tions, the mapping from task parameters to style pa-

rameters is learned by supervised learning.

A more direct 2-Step (2S) approach is considered

in [10,28]. In the first step a mapping from task param-

eters to the DMP parameters is learned. It can either

be learned by Locally Weighted Regression (LWR2S),

by placing local kernels along the task parameters [28],

or a function approximator such as Gaussian Process

Regression (GPR2S) [10]. In the second step, the in-

ferred DMP parameters are used for motion generation.

An extension of [28] is [27], where they used Locally

Weighted Projection Regression (LWPR) [30] for avoid-

ing manual placement of the basis functions, which sig-

nificantly reduces the required number of basis func-

tions as compared with LWR. They also emphasized

that any suitable function approximator can be used

for directly encoding forcing terms of the DMPs, elimi-

nating need to follow the 2-Step procedure. When using

GPR for learning the direct encoding, they called their

approach GPR1S, where the superscript 1S and 2S em-

phasize on the 1-Step and 2-Step approaches respec-

tively. These approaches can provide generalization ca-

pability when interpolating along the task parameters,

but they do not perform well for very few demonstra-

tions and cannot extrapolate beyond the demonstrated

regions of task parameters, as we also show in our ex-

periments.

In our work, the use of a generative model with a

DMP may seem like a strange choice at first, as exist-

ing approaches use discriminative models [10,18,27,28].

The discriminative models have been shown to yield

lower asymptotic errors compared to their generative

counterparts, but they also require higher amount of

training data to reach those levels [14]. More specifi-

cally, a discriminative model requires O(n) training ex-

amples for reaching its asymptotic error while a gener-

ative model require O(log n) [14]. This implies that, for

few training examples, the generative model might have

already reached its lowest asymptotic error, and thus

performing better than a discriminative model. Since

PbD focuses on learning from as few examples as pos-

sible, a generative model is indeed a useful choice.

6 Results

For all experiments the temperature schedule (β) which

we use for annealing (DAEM) is [0.1 0.2 . . . 1.0]. The

regularization term ε for eigenvalues of the GMM co-

variances is set to 10−6. For initializing GMMs the

trajectories are equally segmented in time domain and

then the Gaussians are calculated from the samples of

each segment. The parameters of all models are empir-

ically set.

6.1 Simulation of variable height obstacle avoidance

Our first experiment consists of a planar point to point

reaching task with the variable height of the obstacles.

If there is an obstacle in the way, the trajectory has to

change according to the height of the obstacle. In this

experiment the task parameter is defined as the max-

imum height to avoid the obstacle.1 The goal of learn-

ing is to adapt a motion trajectory for a new desirable

height. The demonstrations can be visualized in Fig-

ure 6a. There are only two demonstrations with 200

samples in each demonstration. The task parameters as-

sociated with these demonstrations are [0.0903, 0.1598].

Two DMPs are learned for generating motion in the x

and y axis. We set the number of components in each

GMM to 6. The two GMMs (ε = 10−6) correspond-

ing to the forcing terms of DMPs for motion on the

y-axis are shown in Figure 6b. Now we apply our pre-

scribed approach with the components in the IDGMM

empirically set to 15. This transforms the complete data

GMMs as shown in Figure 6c. A single computer with

Ubuntu 14.04, Intel Core i7 4790K QuadCore 4.0GHz

and 16GiB memory took approximately 13s for fitting

the the GMM in Matlab R2015b. The forcing terms of

all DMPs can be predicted in less than 1 ms during the

reproduction in simulation.

Comparison: The proposed approach is compared

with LWR2S [28], GPR1S [27], GPR2S [10] and TP-

GMM [5]. Since we have used Gaussian Mixture Re-

gression for direct prediction of forcing terms, we refer

1 This chosen task parameter can be directly used for eval-
uation for the task performance. But the alternative choice
of task parameter is also possible (such as the height of the
obstacle) without any algorithmic changes.
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Table 2: Task errors (simulation) with different approaches.

GMR1S GMR1S LWR2S GPR1S GPR2S TP-GMM
(without DAEM)

Interpolation

ME (m)
SD (m)

0.0027
0.0012

0.0067
0.0046

0.0072
0.0045

0.0015
0.0010

0.0074
0.0052

0.0055
0.0028

Extrapolation

ME (m)
SD (m)

0.0113
0.0033

0.0539
0.0272

0.0541
0.0313

0.0407
0.0265

0.0835
0.0385

0.0159
0.0034
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Fig. 6: A step by step illustration of TP-DMP learning with additional incomplete data and DAEM. (a) Demonstrations,
(b) Initial GMMs encoding forcing terms of DMPs for y-axis, (c) transformed GMMs using incomplete data and DAEM, (d)
learned regression surfaces for y-axis, (e) multiple generated movements.
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Fig. 7: Learned regression surfaces for y-axis (a) with GMR1S without DAEM, (b) with LWR2S, (c) with GPR1S and (d)
with GPR2S.

to our approach as GMR1S. For LWR2S, [28] and [27]

used tricubic kernel and Gaussian kernel respectively.

We use Gaussian kernel with 5 equally spaced kernels

placed along the task space. The choice of kernel is sel-

dom important for the performance of LWR [28]. In

LWR2S and GPR2S, the number of basis functions for

shape parameters are set to 10, as the smaller values do

not correctly capture the demonstrations. On the other

hand, the GMMs in our approach require fewer num-

ber of Gaussians (i.e. 6) in this experiment. As in [27],

GPR is used with the covariance function of the Matérn

form, with isotropic distance measure and hyperparam-

eters optimization [24]. Three frames of reference are

defined for TP-GMM, one at the starting point, one

above the starting point with height equal to the de-

sired height and one at the ending point. The number

of components in the TP-GMM is empirically set to

4, as the higher values yield spiky motions. When per-
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Fig. 8: Motion reproductions (a) with GMR1S without DAEM, (b) with LWR2S, (c) with GPR1S, (d) with GPR2S and
(e) with TP-GMM.

Table 3: Task errors (simulation) of different approaches when the height is changed during the trajectories.

GMR1S LWR2S GPR1S GPR2S TP-GMM

ME (m)
SD (m)

0.0038
0.0029

0.0329
0.0253

0.0239
0.0221

0.0532
0.0342

0.0129
0.0035
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Fig. 9: Motion reproductions for changing the height during execution (a) with GMR1S, (b) with LWR2S, (c) with GPR1S,
(d) with GPR2S and (e) with TP-GMM.

forming learning with few demonstrations, if the GMMs

in TP-GMM are learned with the high number of Gaus-

sains then they converge to the data-points of the indi-

vidual trajectories. Calculating the product of GMMs

with Gaussians concentrated at regions of individual

trajectories results in sudden activation of the respon-

sibility term from one Gaussian to another Gaussain of

a different trajectory and thus results the spiky behav-

ior and wrong motion reproduction. Also the GMMs in

TP-GMM is formed by encoding the relationship inbe-

tween the clock signal and the spatial data with GMMs

in different frame of references and their products after-

wards while the GMMs in a TP-DMP model encode the

relationship inbetween the clock signal, task parameters

and the forcing term of a DMP. Since both models op-

erate differently and encode different set of variables,

setting the same number of Gaussians in each is not

needed for fair comparison.

The errors can be defined as the difference inbe-

tween the maximum desired height of the trajectory

(i.e. the input task parameter value used for the regres-

sion) and the actual achieved height values by the repro-

duced trajectories. We generate 50 linearly spaced task

parameter values in the range [min(T ),min(T ) + 2.5×
(max(T ) − min(T ))] ([0.0903,0.2641]). The generated

trajectories for these task parameters are shown in Fig-

ure 6e and 8. Table 2 presents the Mean absolute Error

(ME) and its Standard Deviation (SD) when interpo-

lating (task parameter in the range [0.0903,0.1577]) and

extrapolating (task parameter in the range [0.1612,0.2641]).

All approaches produce small errors when interpolating

while GMR1S outperformed all other approaches when

extrapolating beyond the demonstrated task parame-
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ters. The use of DAEM is critical for the performance

of GMR1S as the performance degrades substantially

without annealing. The TP-GMM fails to preserve the

shape information of the demonstrations, as it can be

seen in Figure 8e.

Figure 6d and Figure 7 present the surface plots

of the generated forcing terms ({s × T } 7→ F) of the

DMP based approaches for y-axis. The regression sur-

faces of all the approaches except GMR1S change their

response in the extrapolation range, which is also the

reason for their large errors when extrapolating. The

regression surface of GMR1S without DAEM shows

that the EM converged to a poor local optima with-

out annealing. The kernels in LWR and GP based ap-

proaches predict by mostly using the nearby data. Thus,

their performance degrades when trying to extrapolate.

The emphasis in TP-GMM model is to strictly pass

through certain frames of reference and thus it can lose

the shape information. Additionally, with the clock sig-

nal as the only input, the starting point of the repro-

ductions with the TP-GMM, which is marked by a
′−′ sign in Figure 8e, moves quite far away from the

starting point of the demonstrations. This problem can

happen when the clock signal is the only input in the

TP-GMM without consideration of the current point

of a trajectory. A remedy to such a problem can be to

encode the current point as an input.

Since we use a generative model for encoding the

forcing terms of the DMP, our approach can benefit

from the incomplete data. The IDGMM spans beyond

the demonstrated range and thus retrieves a better un-

derlying function when compared with the supervised

learning approaches, which only rely on training data.

Varying task parameter: The task parameter is

not necessary to be fixed during the reproduction phase

and can vary if needed. Now 20 trajectories are gener-

ated with the initial desired task parameters linearly

sampled from the interval [0.0903, 0.1577]. After one

third of the executed motion, the desired task parame-

ters are multiplied with 1.5. They now lie in the interval

Fig. 10: Schematic of our vision system.

[0.1355,0.2366]. Figure 9 contains the plot of the gen-

erated trajectories. A benefit of using a DMP-based ap-

proach is that the output trajectories are always smooth,

even though the change in the task parameters is dis-

continuous. The reproduction errors are given in Ta-

ble 3. Again, due to the aforementioned reasons, the

TP-DMP outperforms all other approaches by pro-

ducing least amount of error. Care should be taken in

a real robot experiment, as an instantaneous change in

the value of desired task parameters can cause a high

acceleration at the end-effector. The high accelerations

can be avoided by smoothly changing the task param-

eters when required.

6.2 Real robot experiments

Experimental setup: The experiments are conducted

using a KUKA lightweight robot IV+. For collecting

demonstrations, the robot is set to gravity compensa-

tion mode. With GPR1S, offline trajectories are gen-

erated due to its high computational cost. This also

means that with GPR1S, the task parameters should

remain fixed during the motion reproduction. The mark-

ers are tracked with Kinect RGB-D camera by using

ROS wrapper for Alvar, an open source augmented re-

ality tag tracking library [1]. More specifically, we have

a fixed marker with respect to robot’s frame of refer-

ence and a moving marker. The fixed marker is used for

localizing the camera while the moving marker is used

for tracking objects, as shown in Figure 10. A low pass

filter is applied to remove high frequency noise in the vi-

sion system. The GMM model is always learned offline

in Matlab. A single computer with Ubuntu 12.04 32-bit,

Intel Core i5-2500 quad core 3.3GHz and 16GiB mem-

ory is used for marker tracking as well as online motion

generation. For motion reproduction with GMR1S, the

forcing terms of all DMPs are predicted within 7 ms.

A Cartesian impedance controller with a control fre-

quency of 100Hz is used for motion generation.

6.2.1 Sweeping task:

This experiment considers a sweeping task, which con-

sists of moving trash to a collection point. The task

parameters are defined as the planar coordinates of the

trash. A teacher physically holds the end-effector for

various trash positions and demonstrates the required

motions for moving the trash to the collection point,

as shown in Figure 11a. Learning is performed in task

space (position and orientation of the end-effector). Each

demonstration has a duration of approximately 5 sec-

onds with a sampling rate of 10ms.
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(a) (b)

Fig. 11: Demonstrations are collected by setting the robot in gravity compensation mode while a Cartesian impedance controller
is used for motion generation. (a) A human provides the demonstration for moving the trash to the dustpan. (b) The robot
generates motion for a new trash position.
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Fig. 12: Comparison of GMR1S, LWR2S, GPR1S, GPR2S and TP-GMM for the sweeping task. (a) Demonstrations
for the sweeping task. Circles represent the trash positions while the rectangle represents the bounding box enclosing these
trash positions. (b) Blue dots represent trash positions for interpolation evaluation while the red ones are for extrapolation
evaluations. (c,d,e,f) Generated movements for new trash positions.

Three DMPs are learned, two for generating a pla-

nar motion and one for encoding the planar orienta-

tion of the end-effector. As shown in Figure 12a, four

demonstrations are provided for different positions of

the trash. In our demonstrations, the x and y values

of the trash position lies between [−0.0216m ,0.0350m]

and [−0.54m, −0.454m] respectively (drawn as a rect-

angle). We selected 25 new trash positions (a grid) for

evaluation in the extended x and y ranges of [−0.0358m

,0.0491m] and [−0.6045m,−0.3895m] respectively, which

can be visualized in Figure 12b. The blue samples, which

are close to the bounding box of the demonstrated re-

gion, are used for evaluating interpolation performance.

The red samples, which are far away from the bounding

box, are used for evaluating extrapolation performance.

Comparison: We defined error as the minimum

distance inbetween the trash position and the generated

trajectory. Table 4 contains the ME and its SD when us-

ing our approach, LWR2S, GPR1S, GPR2S and TP-

GMM. Three frames at starting point, ending point

and at the trash location are defined for TP-GMM.

The number of components in the TP-GMM is empir-

ically set to 6, as the higher values yield spiky motion.

The basis functions in LWR2S and GPR2S are set to

60. For our approach the components in each GMM, as

well as the IDGMM, are set to 40. The remaining set-

tings are same as in previous experiment. Like in the

previous experiment, our approach requires less compo-

nents as compared with the basis functions in the other

approaches. Again, our approach produces less errors

for interpolation as well as extrapolation as shown in

Figures (12c-12f) and Table 4. The error for other ap-

proaches increases considerably as we move away from

the demonstrated interval. Additionally, some of the

trajectories generated by TP-GMM surpassed the col-

lection points as the TP-GMM model does not have

the notion of a goal position. Interestingly, no demon-
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Table 4: Task errors (KUKA) with different approaches.

GMR1S LWR2S GPR1S GPR2S TP-GMM

Interpolation

ME (m)
SD (m)

5.4× 10−3

4.3× 10−3
13× 10−3

7.1× 10−3
7.5× 10−3

4.3× 10−3
14.5× 10−3

10.3× 10−3
11× 10−3

5.3× 10−3

Extrapolation

ME (m)
SD (m)

9.9× 10−3

9.6× 10−3
68.3× 10−3

6.3× 10−3
43× 10−3

5.7× 10−3
84.6× 10−3

13× 10−3
33.8× 10−3

8.2× 10−3

strations are provided for the trash positions in the

upper half of the sweeping area, which makes it an

interesting region for comparing different approaches.

GMR1S also successfully generates the motion for the

trash position in this region, as shown in Figure 12f.

6.2.2 Striking task:

This experiment considers a task which involves strik-

ing a ball such that it hits a desired target position.

The ball is always placed at the same point and the

task parameter is defined as the the x-coordinate of the

target. The y-coordinate of the target is fixed in the two

demonstrations. Similar to the previous experiment, a

teacher physically holds the end-effector and demon-

strates the required motion for hitting the target. The

demonstrations have a duration of appropriately 1.5

seconds with a sampling rate of 10ms. Due to the small

duration of the motions we increase the size of data

ten times (to approximately 1500) by inserting samples

in between the adjacent data points of the trajectories

by using linear interpolation. Now we consider learning

in joint space. Different demonstrations can produce

completely different final joints configuration during the

demonstrations. The final joint configurations are mea-

surable in the demonstrations but are unknown when

reproducing motion for a new target position. Thus, it is

necessary to predict the final joints configuration during

the reproduction phase. Seven DMPs are learned with

one DMP for each joint of the robot and thus utilizing

all DOFs.

Our approach can also easily incorporate the learn-

ing of meta parameters in a DMP. For GMR1S, we

learn the distribution of (s, [T g],F). Similar to task

parameters, the goal terms g (meta parameters) are

constants for a single demonstration. Thus we simply

interpret them as additional task parameters. This also

means that different DOF in each demonstration will

now have different task parameters. The final joint con-

figurations (goal positions), which we set as an addi-

tional task parameter, cannot be known in advance. As

there is no distinction inbetween input and output vari-

ables when fitting a GMM and during GMR, any set

of variables can be selected as input, to retrieve the ex-

pected value of remaining variables. Thus with GMR,

the observable task variable can be used for predict-

ing the expected value of missing task variables and

for motion generation. So now, with GMR, we not only

predict the goal terms g of each DMP but also generate

the forcing terms. For GMR1S the components in each

GMM (ε = 10−4), as well as in the IDGMM, are set

to 60. The number of basis functions in LWR2S and

GPR2S is set to 100. The goal positions for LWR2S

and GPR2S are predicted in the first step along with

the DMP parameters by using LWR and GPR respec-

tively. The goal position in GPR1S is predicted at each

time step along with the forcing terms by using GPR.

Two frames of reference are defined for TP-GMM: one

at the start of the trajectory and one at the end of the

trajectory. As mentioned before, the final joint configu-

rations are not known and hence the TP-GMM cannot

be used directly in this experiment. To use TP-GMM,

we first predict the final joint configuration with GP

and then the second frame of reference is placed at

that final joint configuration for motion reproduction

i.e. the offset vector for second frame of reference looks

like b2 = [tf jf1 jf2 jf3 jf4 jf5 jf6 jf7]′ where tf is

the final time value and jfn is the predicted final joint

angle for the nth joint. The transformation matrices for

the two frames of references are set to identity matri-

ces. The number of components in the TP-GMM is

empirically set to 4. The remaining settings are same

as in the previous experiments.

Comparison: A binary evaluation criterion is de-

fined as a success if the robot is able to hit the tar-

get and failure otherwise. Demonstrations are provided

for hitting a target with x-coordinate of −0.4891m and

−0.6703m, as shown in Figure 13a. Figure 13b shows

the end-effector pose. Interpolation performance is eval-

uated for the target x-coordinates of −0.5663m while
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Fig. 13: Joint angles and end-effector trajectory of the demonstrated motions.
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(b) End-effector trajectory in Cartesian space.

Fig. 14: Reproductions with LWR2S

extrapolation performance is evaluated for the target

x-coordinates of −0.4146m and −0.7933m. When gen-

eralizing for novel goal positions, the DMPs can pro-

duce high accelerations at the beginning of the move-

ment [15]. This is due to the initial interaction inbe-

tween the linear dynamics and forcing terms. This un-

desirable behavior was slightly observed in this exper-

iment. A simple solution to solve this problem is to

gradually activate the forcing terms. Thus we multiply

the predicted forcing terms by (1−s10). As s decays ex-

ponentially, the effect of this term vanishes very quickly.

Figure 14 contains the reproduction results with

LWR2S. It produces a good trajectory for interpolation

performance as it lies inbetween the demonstrated tra-

jectories. The trajectories for the extrapolation fails to

reproduce the task as they are similar to the demonstra-

tions. The LWR2S also encountered the same problem

during the first experiment where successful trajectories

were generated for interpolation intervals but it failed to

reproduce during the extrapolation intervals. Figure 15

contains the reproduction results with GPR1S. It can

easily be observed that the initial end-effector trajec-

tory required to approach the ball (and critical for the

execution of the task) is very similar for the three re-

productions. The trajectories lose the important shape

information required for the successful execution of the

task. Also the green and brown trajectories of one of

the joints are almost overlapping. Since the reproduc-

tion is in joint space, an incorrect motion of even a sin-

gle joint can lead to the failure of the task. Figure 16
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Fig. 15: Reproductions with GPR1S
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Fig. 16: Reproductions with GPR2S

contains the reproduction results with GPR2S. Some of

the reproduced trajectories are very different from the

demonstrated ones. As with GPR1S, the trajectories

generated with GPR2S lose the initial shape informa-

tion which is required for the successful execution of the

task. The failure of both of the GP based approaches

can be attributed the small amount of training data,

i.e. only two trajectories. Figure 17 contains the repro-

duction results with TP-GMM. The reproduced tra-

jectories do not capture the demonstrated motions and

it fails to learn anything useful for this task. The joint

distribution of all the eight variables (one phase and

seven joint angles) is encoded in the TP-GMM. As

we only have two trajectories, the product of GMMs in

TP-GMM suffers from a severe curse of dimensional-

ity.

Figure 18 contains the reproduction results with

GMR1S. The shape information is preserved in the re-

produced trajectories and the DMPs goal parameters

are correctly inferred. The generated joint angles tra-

jectories extend further away from the demonstrated

trajectories for extrapolation. The joint angles trajec-

tories for interpolation are inbetween the extrapola-

tion trajectories. Executing motion trajectories gener-

ated by GMR1S on KUKA show that our approach

always yields success in the extended range of [0.4146,

0.7933]. For the two extrapolation evaluations with our

approach, the ball trajectories, as well as the executed

motions on KUKA, are visualized in Figure 19, where
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Fig. 17: Reproductions with TP-GMM
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Fig. 18: Reproductions with GMR1S

the different final joint configurations of the reproduced

motions are also observed.

7 Conclusion and future work

We have shown how the task specific generalization of a

DMP can be achieved by formulating learning as a den-

sity estimation problem. The proposed approach cap-

tures the local behavior of each demonstration by using

a GMM. These GMMs are then mixed to get the task

specific generalization. We have handled the data spar-

sity along task parameters by introducing additional in-

complete data filling the input space. Deterministic An-

nealing EM is used to avoid the local maxima problem.

We retain the local behavior of each GMM by keep-

ing the means and mixing weights within the GMMs

fixed. The task specific generalization is achieved by

just adapting covariances and mixing coefficient of the

already learned GMMs. The TP-DMP framework can

perform learning in task space as well as in joint space

and can even handle the learning of meta parameters

of a DMP. As shown in the experiments, our approach

requires very few demonstrations for learning and it

outperforms the existing approaches specially when ex-

trapolating beyond the demonstrated ranges of the task

variables. As future work, we plan to extend our pro-

posed work with sample reuse approach [8] and to in-

vestigate the scalability issue to complex tasks.
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(a) (b) (c) (d)

Fig. 19: Executed motions for the two extrapolation evaluations. (a,c) Robot initial configuration and different target positions.
(b) Executed striking motion for hitting the target in (a). (d) Executed striking motion for hitting the target in (c).

Appendix

Following properties have been used in this proof [23]:

– Property 1: If X ∼ N (µ,Σ) and b a vector then

E
[
(X + b)(X + b)>

]
= Σ + (µ+ b)(µ+ b)>

– Property 2: The product of Gaussian densities is

defined as: N (µ1,Σ1)N (µ2,Σ2) = e N (µe,Σe)

where e = N (µ1;µ2,Σ1 +Σ2).

Expected pdf value:
The Expected pdf value of a Gaussian N (µ,Σ) eval-
uated at a Gaussian stochastic random variable X ∼
N (µX ,ΣX) can be defined as:
E[N (X;µ,Σ)] → E [N (N (µX ,ΣX);µ,Σ)] which is
similar to E[f(X)] =

∫
f(x)p(x)dx. Now

E [N (N (µX ,ΣX);µ,Σ)] =∫ ∞
−∞

. . .

∫ ∞
−∞
N (µ,Σ)N (µX ,ΣX)

By using property 2.

E [N (N (µX ,ΣX);µ,Σ)] =

=

∫ ∞
−∞
· · ·

∫ ∞
−∞

eN (x;µc,Σc)

= e

∫ ∞
−∞
· · ·

∫ ∞
−∞
N (x;µc,Σc)

= e

where

e = N (µ;µX ,Σ +ΣX) (3)

Incorporating Incomplete data via EM for mix-

ture of GMMs:

In the E-step, the expectations E[zi,k|xobs,θt],
E[zi,k,x

miss|xobs,θt] and E[zi,k,x
missxmiss

> |xobs,θt]
have to be calculated for incomplete data [12]. Let µo,m =[
µobso,m
µmisso,m

]
,Σo,m =

[
Σobs
o,m Σobs.miss

o,m

Σmiss.obs
o,m Σmiss

o,m

]
,Xw =

[
Xobs
w

Xmiss
w

]
where Xobs

w ∼ N (µobsw ,Σobs
w ) is the observable part

representing the GMM components spanning the in-

put space. Now the similar expectations of the missing

dimensions (output) are calculated as:

E[zw,o,m|Xobs
w ,θt] = dt+1

w,o,m

=
ct+1
w,o,m∑M

r=1

∑K
l=1 c

t+1
w,r,l

× πobsw ×N

with ct+1
w,o,m =

(
φoπo,mN (µobsw ;µobso,m,Σ

obs
w +Σobs

o,m)
)β

where N (µobsw ;µobso,m,Σ
obs
w +Σobs

o,m) is the expected pdf

calculated only on the observed dimensions, as derived

for Equation (3).

E[zw,o,m,X
miss
w |Xobs

w ,θt] =

dt+1
w,o,m(µmisso,m +Σmiss.obs

o,m (Σobs
o,m)

−1
(Xobs

w − µobsd,m))

Define: X̂miss
w,o,m = µmisso,m + Σmiss.obs

o,m (Σobs
o,m)

−1
(Xobs

w −
µobso,m)

E[zw,o,m,X
miss
w |Xobs

w ,θt] = dt+1
w,o,mX̂

miss
w,o,m

E[zw,o,m,X
miss
w Xmiss>

w |Xobs
w ,θt] =

dt+1
w,o,m(Σmiss

o,m −Σmiss.obs
o,m (Σobs

o,m)
−1

(Σmiss.obs
o,m )

>
+

X̂miss
w,o,mX̂

miss>

w,o,m )

Now for updating Σt+1
o,m, the term

dt+1
w,o,m(Xw − µo,m)(Xw − µo,m)

>
for incomplete data

is calculated as:

dt+1
w,o,m

[
Xobs
w − µobso,m

Xmiss
w − µmisso,m

] [
Xobs
w − µobso,m

Xmiss
w − µmisso,m

]>
=

[
A11 A12

A21 A22

]
where

A11 = d
t+1
w,o,m(X

obs
w − µobs

o,m)(X
obs
w − µobs

o,m)
>

by using Property 1

= d
t+1
w,o,m

(
Σ

obs
w + (µ

obs
w − µobs

o,m)(µ
obs
w − µobs

o,m)
>)
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A21 = d
t+1
w,o,m(X

miss
w − µmiss

o,m )(X
obs
w − µobs

o,m)
>

= (E[zw,o,m,X
miss
w ]− dt+1

w,o,mµ
miss
o,m )(X

obs
w − µobs

o,m)
>

=
(
d
t+1
w,o,m

(
µ

miss
o,m +Σ

miss.obs
o,m (Σ

obs
o,m)

−1

(X
obs
w − µobs

o,m)
)
− dt+1

w,o,mµ
miss
o,m

)
(X

obs
w − µobs

o,m)
>

= d
t+1
w,o,mΣ

miss.obs
o,m (Σ

obs
o,m)

−1

(X
obs
w − µobs

o,m)(X
obs
w − µobs

o,m)
>

= d
t+1
w,o,mΣ

miss.obs
o,m (Σ

obs
o,m)

−1(
Σ

obs
w + (µ

obs
w − µobs

o,m)(µ
obs
w − µobs

o,m)
>)

A12 = A21
>

A22 = d
t+1
w,o,m(X

miss
w − µmiss

o,m )(X
miss
w − µmiss

o,m )
>

= E[zw,o,m,X
miss
w X

miss>
w ] + d

t+1
w,o,mµ

miss
o,m (µ

miss
o,m )

>

−2E[zw,o,m,X
miss
w ](µ

miss
o,m )

>

= d
t+1
w,o,m

(
Σ

miss
o,m −Σmiss.obs

o,m (Σ
obs
o,m)

−1
(Σ

miss.obs
o,m )

>

+X̂
miss
w,o,mX̂

miss>
w,o,m

)
+ d

t+1
w,o,mµ

miss
o,m (µ

miss
o,m )

>

−2
(
d
t+1
w,o,m

(
µ

miss
o,m +Σ

miss.obs
o,m (Σ

obs
o,m)

−1

(X
obs
w − µobs

o,m)
))

(µ
miss
o,m )

>

A22 = d
t+1
w,o,mΣ

miss
o,m − dt+1

w,o,mΣ
miss.obs
o,m (Σ

obs
o,m)

−1
(Σ

miss.obs
o,m )

>

+d
t+1
w,o,m

(
µ

miss
o,m +Σ

miss.obs
o,m (Σ

obs
o,m)

−1
(X

obs
w − µobs

o,m)
)

(
µ

miss
o,m +Σ

miss.obs
o,m (Σ

obs
o,m)

−1
(X

obs
w − µobs

o,m)
)>

+d
t+1
w,o,mµ

miss
o,m µ

miss
o,m

> − 2d
t+1
w,o,mµ

miss
o,m µ

miss
o,m

>

−2dt+1
w,o,mΣ

miss.obs
o,m (Σ

obs
o,m)

−1
(X

obs
w − µobs

o,m)µ
miss
o,m

>

= d
t+1
w,o,mΣ

miss
o,m − dt+1

w,o,mΣ
miss.obs
o,m (Σ

obs
o,m)

−1
(Σ

miss.obs
o,m )

>

+
hhhhhhhhd

t+1
w,o,mµ

miss
o,m µ

miss
o,m

>

+

hhhhhhhhhhhhhhhhhhh

2d
t+1
w,o,mµ

miss
o,m

(
Σ

miss.obs
o,m (Σ

obs
o,m)

−1
(X

obs
w − µobs

o,m)
)>

+d
t+1
w,o,mΣ

miss.obs
o,m (Σ

obs
o,m)

−1
(X

obs
w − µobs

o,m)

(X
obs
w − µobs

o,m)
>
(Σ

obs
o,m)

−1
Σ

miss.obs
o,m

>

+
hhhhhhhhs
t+1
w,o,mµ

miss
o,m µ

miss
o,m

> −
hhhhhhhh2d

t+1
w,o,mµ

miss
o,m µ

miss
o,m

>

hhhhhhhhhhhhhhhhhhh

−2dt+1
w,o,mΣ

miss.obs
o,m (Σ

obs
o,m)

−1
(X

obs
w − µobs

o,m)µ
miss
o,m

>

= d
t+1
w,o,mΣ

miss
o,m − dt+1

w,o,mΣ
miss.obs
o,m (Σ

obs
o,m)

−1
(Σ

miss.obs
o,m )

>

+d
t+1
w,o,mΣ

miss.obs
o,m (Σ

obs
o,m)

−1
(
Σ

obs
w + (µ

obs
w − µobs

o,m)

(µ
obs
w − µobs

o,m)
>)

(Σ
obs
o,m)

−1
Σ

miss.obs
o,m

>
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