
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Adapting the Search Subspace of a
Particle Filter using Geometric
Constraints

TUM-I1762

Nikhil Somani, Yaadhav Raaj, Suraj Nair, Alois Knoll

Adapting the Search Subspace of a Particle Filter using Geometric
Constraints

Nikhil Somani1,2,4 and Yaadhav Raaj1,3 and Suraj Nair1,3 and Alois Knoll2,4

Abstract— Visual tracking of an object in 3D using its
geometrical model is an unsolved classical problem in computer
vision. The use of point cloud (RGBD) data for likelihood
estimation in the state estimation loop provides improved
matching as compared to 2D features. However, point cloud
processing is computationally expensive given its big data
nature, making the use of mature tracking techniques such as
Particle Filters challenging. For practical applications, the filter
requires implementation on hardware acceleration platforms
such as GPUs or FPGAs.

In this paper, we introduce a novel approach for object
tracking using an adaptive Particle Filter operating on a
point cloud based likelihood model. The novelty of the work
comes from a geometric constraint detection and solving system
which helps reduce the search subspace of the Particle Filter.
At every time step, it detects geometric shape constraints
and associates it with the object being tracked. Using this
information, it defines a new lower-dimensional search subspace
for the state that lies in the nullspace of these constraints.
It also generates a new set of parameters for the dynamic
model of the filter, its particle count and the weights for multi-
modal fusion in the likelihood modal. As a consequence, it
improves the convergence robustness of the filter while reducing
its computational complexity in the form of a reduced particle
set.

I. INTRODUCTION

Model based visual tracking has been and continues to
be an extensively researched area within computer vision.
It finds application in several domains within robotics and
automation. The problem has been explored both in 2D and
3D w.r.t. the sensor used and the dimension of the estimated
state space. It continues to be a challenging problem given
the nonlinearity and noise seen in the available vision sen-
sors. A comprehensive survey of object tracking methods and
systems mainly using RGB cameras has been covered in [1].
The recent availability of low cots RGBD sensors have made
it possible to explore model based tracking using point cloud
data.

In visual tracking, typically the state space approach is
adopted to model the position, velocity and acceleration of
the object to be tracked. Statistical correspondence methods
are used to estimate the object’s state by collecting sensor
measurements, where model uncertainties and sensor noise
is also modeled. The Kalman Filter and Particle Filter are the
two most popular methods in model based tracking [2]. The
Kalman filter assumes the state space to be distributed by a
Gaussian and that the update model has a linear relation with

1 TUM CREATE, Singapore
2 Technische Universität München, Germany
3 raaj.yaadhav, suraj.nair@tum-create.edu.sg
4 somani, knoll@in.tum.de

Fig. 1: Constrained motion of a manipulated object: the soda
can lies on a tray that is being moved by a robot.

the measurement model. If the state update and measurement
models are non linear, the Extended Kalman filter [3] is
used where a linear approximation of the same are obtained
using the Taylor series expansion. The assumption of a
Gaussian state space distribution limits the application of a
Kalman filter. The Particle Filter overcomes this limitation by
representing the conditional state density using a set of sam-
ples called particles, where each particle contains a weight
obtained from the measurement (likelihood). Particle Filters
are observed to be robust under multi-modal likelihoods due
to clutter in the tracking scene and thereby are much better
in avoiding local minima as compared to Kalman filters [4],
[5]. However, the computation cost associated with Particle
Filters increases exponentially with the dimensionality of the
modeled state space and the complexity of the measurement
model. For tracking using point cloud data, the measurement
models are inherently computation and memory intensive.
Therefore, known applications of Particle Filter for point
cloud based object tracking is rather limited [6]. Neverthe-
less, particles filter operating on point cloud data and color
(RGBD) information serve as a powerful tool for model
based object tracking.

For our approach, an important assumption that we make
about object models is that some parts of their geometries
can be approximated using a set of primitive shapes such as
planes, cylinders, spheres, etc. For object recognition and
pose estimation, these primitives prove to be very useful
since they can be detected more accurately and efficiently
than complete CAD models.

Whenever an object interacts with its environment or a
manipulator, its motion and dynamics are affected. With
information about the primitive shapes in the environment,
these restrictions can be modeled as geometric constraints
between primitive shapes (see Fig. 1).

Effective exploration and exploitation of primitive shape
constraints can lead to considerable reduction in the com-

putational complexity of Particle Filters used for model
based object tracking using RGBD sensors. These constraints
originate from the following sources:

∙ geometric properties intrinsic to the object model
∙ constraints imposed by the environment on the object

on contact and interaction
∙ constraints imposed by a manipulator, influencing the

dynamics of the object
∙ partial views based on sensor viewpoint
While the object interacts with the environment, real-time

detection of the above mentioned primitive shape constraints
can enable simplification of the object dynamics and thereby
reduce the state space dimensions of the Particle Filter’s
sample set. Furthermore, the number of particles required
to estimate the state can be reduced given the dimension
reductions. As a consequence the computational effort re-
quired by the Particle Filter can be considerable reduced.
This paper demonstrates a novel method for achieving the
above mentioned concepts and a systemic implementation
with evaluations in simulation and a real-world setup. The
methodology demonstrates the feasibility of using Particle
Filters with RGBD sensors in real world applications.

The rest of the paper is organized as follows: Section II
presents the state of the art in model based object tracking
followed by Section III which presents the novel concept of
tracking with primitive constraints. In Section IV the adaptive
Particle Filter using primitive shape constraints is introduced.
Finally, experiments and evaluations are presented in Sec-
tion V followed by conclusion and future work in Section VI.

II. RELATED WORK

Model based object tracking in general finds several citing
in computer vision literature. Several algorithms and systems
have been developed over the years. The work presented in
[7] provides a unifying framework for model based visual
tracking in the form of a library of algorithms for 2D and
3D tracking, where object tracking using a variety of sensors
and visual features can be explored. Similarly, [8] developed
a framework for automatic modeling, detection, and tracking
of 3D objects using RGBD data from sensors such as a
Kinect. They employ a multi-modal template based approach
presented in [9]. In [10] the authors present a GPU based
framework for accelerating Particle Filter based approaches
applied to 3D model-based visual tracking.

A special case of 3D visual tracking is tracking of hu-
man hands in several degrees of freedom (3-26). Multiple
approaches in terms of visual features, tracking methods
and data fusion have been explored for handling this high
dimensional problem in [11], [12], [13] and [14].

In terms of Particle Filter based tracking methods, sev-
eral approaches have been documented in literature [15].
[16] presented a Bayesian framework for 3D tracking of
deformable objects by exploring multiple-cues. The authors
propose a spatio-temporal model of the object using Dynamic
Point Distribution Models (DPDMs) in order to improve
robustness towards appearance changes. The state estimation
is performed using a Particle Filter using three cues (shape,

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2: RGBD Object models (a,b,c,d,i) and corresponding
primitive shape decompositions (e,f,g,h,j)

texture and depth) in the likelihood model. In terms of
adaptive particle filters, the KLD tracker [17] is an approach
for adapting the sample set based on the covariance values. In
our approach, we adapt both the sample size and the tracking
subspace based on the primitive shape matching constraints.

Many of the above tracking papers above were also single
camera approaches, allowing nearest neighbour operations to
be fast by exploiting the organized nature of 3D data, e.g.
in [10]. To handle complete occlusion of objects multiple
sensors would be required. Multi-camera tracking approaches
were also studied in [18] [19], but these approaches were
found to either use individual RGB cameras directly during
likelihood estimation, or extracted primitives directly from a
fused point cloud scene for comparison.

The core contribution of this paper is a novel approach
for object tracking using multiple RGBD sensors through an
adaptive Particle Filter. The adaptive nature of the filter is
modeled on the use of a primitive shape detection algorithm
which exploits the detected geometric constraints connected
to the object during the tracking process and thereby exploits
these constraints to reduce the search subspace of the Particle
Filter increasing its convergence robustness and also reduces
its computational complexity. Our approach can also use
multiple sensors seamlessly, and works on unorganized point
clouds via our fast GPU implementation of the indexed
octree library described in [20].

III. PRIMITIVE SHAPE CONSTRAINTS FOR TRACKING

This section describes our adaptive tracking approach with
primitive shape constraints. The overall steps are described
in Algorithm 1, and their individual details are described in
the following subsections.

A. Object models based on primitive shapes

We use a boundary representation (BREP) [21] for all
geometric entities in our system. This representation com-
poses objects from semantically meaningful primitive shapes
(e.g., planes, cylinders). Fig. 2 illustrates such Primitive
Shape Decompositions for some of the objects used in this
work. This object model is motivated from the observation
that the estimation of primitive shapes such as planes and

Algorithm 1: Algorithm for tracking with primitive
shape constraints (TPSC)

Input: Primitive Shape model model, last object pose
st−1, point cloud It, particle set t−1, default
Guassian noise covariance wdef

Output: Tracked object pose st, particle set t
scene ← detectPrimitives(It)
 ← detectConstraints(model,scene, s−1)
Ccomb ← combineConstraints()
foreach S i = (si, wi)t−1 ∈ t−1 do

ŝit ← fproj(sit−1) (see Table II)
ŵit ← [(Nt ⋅w

def
t)Nt + (S ⋅ �t)St, (NR ⋅

wdef
R)NR + (SR ⋅ �R])SR] (Table II)

end
 ← computeLikelihood(̂t)
t ← resample(̂t,)
st ← mean(t)

cylinders in a point cloud is faster and more robust than
detection of the full object models. Based on this simplified
model, the object detection and pose estimation problem can
be considered as a primitive shape matching problem [22]
between the set of model and scene primitive shapes (m and
s respectively). In the context of object pose estimation, the
model primitive can be considered as a constrained shape,
the scene primitive as a fixed shape, and the shape match as a
constraint Ci = Coincident(i

s,
i
m). A geometric constraint

adds restrictions to the relative pose of the constrained shape
w.r.t. the fixed shape.

Each primitive shape i ∈ enforces a set of constraints
Ci = (Cpi ,Cni) on the position and orientation of the object
respectively. Each row of Cpi and Cni contains a direction
along which the constraint has been set. Table II defines these
nullspaces for the geometric constraints relevant to this work.

By analyzing the set of primitive shapes that form an
object, properties such as symmetry can be determined. Each
primitive shape i ∈ in the object is used to create a
constraint Ci = Coincident(i,i). The set of constraints
 =

⋃

i
Ci is then used by a constraint solver to determine a

transformation manifold. These transformation manifolds are
geometric entities, and provide projection functions. Hence,
any pose hypothesis for the object can be projected onto this
transformation manifold. The DoFs of this transformation
manifold determine the symmetry axes of the object. This
information about the symmetry axes and the projection
functions from the transformation manifold can be exploited
to improve the tracking, as shown in Section IV.

Given a partial view of an object, it might not be pos-
sible for a detector to determine its complete pose. This is
especially the case for detectors based on primitive shapes,
where fine features that form a small fraction of the object are
often ignored in simplified models. Given the set of primitive
shapes visible from a specific viewpoint, the DoF analysis
can be used to determine the axes along which the pose

(a) (b) (c) (d)

Fig. 3: Projection of particles to the nullspace of geometric
constraints (a) 3D particle set (b) Particles projected onto a
plane (c) Particles projected onto a line (d) Particles projected
onto a point

can’t be determined. This information can be utilized by the
tracker to sample more particles in these DoFs. Since the
tracker uses a motion model and maintains a history of the
previous pose, it might be able to predict the correct pose of
the object in from this partial view.

B. Geometric model of the environment constraints

We exploit knowledge about the environment and its
effect on the object’s motion, by modeling the environment
using the same primitive shapes models as described in
Section III-A. Geometric constraints can then be defined
between primitive shapes in the environment (e) and the
object (m). As an example, for an object that only moves
on a tabletop, a Coincident constraint can be defined between
a plane on the object’s bottom surface and the plane of the
table. This restricts the translation of the object along the
normal direction of the tabletop plane, and orientations along
the other two orthogonal axes.

C. Constraint solver

We choose the exact geometric solver by [23] for this
application. This provides several advantages over iterative
approaches. Most importantly, the transformation manifolds
and projection functions need to be calculated once for each
frame of the scene point cloud and can be re-used for all the
particles. Also, the exact solver is much faster than iterative
approaches. For our constraints, the exact solver can provide
runtimes of approximately 50�s.

IV. ADAPTIVE PARTICLE FILTER

The Particle Filter based tracker holds a state-space rep-
resentation of the 3D object. The pose is modeled in 6D
(position and orientation) and represented as

st = (xt, yt, zt, �t, �t, t) (1)

A. Projection sampling

The Particle Filter incorporates a Brownian motion model
for the state prediction. As compared to a normal particle
filter, in our method the Filter’s dynamic model is further
influenced by the projections fproj(s) obtained form the ge-
ometric constraints detection system, as discussed in Sec III
and Algorith 1. Fig. 3 shows an illustration of the projection
operations. In case of one plane match, the translation
nullspace is a plane, and all points in the particle set st
are projected onto the plane (see Fig. 3(b)). For two plane

TABLE I: Projection functions for supported geometric constraints

Fixed Constrained Constraint Controlled Space Null Space
(C) (S) (N)

Pl1(p1, n̂1) Pl2(p2, n̂2) Dist. (d)
SR : [n̂1⟂1 ; n̂1⟂2]
St : [n̂1]

NR : [n̂1]
Nt : [n̂1⟂1 ; n̂1⟂2]

Pl1(p1, n̂1) Pl2(p2, n̂2) Coinc.
SR : [n̂1⟂1 ; n̂1⟂2]
St : []

NR : [n̂1]
Nt : [1]

L1(p1, â1) L2(p2, â2) Coinc.
SR : [â1⟂1 ; â1⟂2]
St : [â1⟂1 ; â1⟂2]

NR : [â1]
Nt : [â1]

Pt1(p1) Pt2(p2) Coinc. SR : []
St : 1

NR : [1]
Nt : []

L1(p1, â1) L2(p2, â2) Parallel
SR : [â1⟂1 ; â1⟂2]
St : [â1⟂1 ; â1⟂2]

NR : [â1]
Nt : [â1]

1 Pl = Plane, L = Line, Pt = Point, Coinc = Coincident, Dist = Distance, p = Point, n = Normal direction, a = Axis

matches, the constraint is a Line-Line Coincident constraint
between the lines of intersection of the two sets of matched
model and scene planes. The translation nullspace is a line,
and all points in the particle set st are projected onto it (see
Fig. 3(c)). For three plane matches, the constraint is a Point-
Point Coincident constraint between the point of intersection
of the two sets of matched model and scene planes. The
translation nullspace is a point, and all points in the particle
set st are projected onto it (see Fig. 3(c)).

During the prediction phase several prior state hypoth-
esis sit are generated by the Particle Filter to form the
particle (sample) set using the previous particle distribution
(si, wi)t−1. The motion model used is Brownian in nature: (2)
where, w is the white Gaussian noise with defined covariance
in the st state variables and K is the number of particles.

sit = fproj(s)(sit−1) +w
i
t, i = 1, 2,… , K (2)

B. Covariance adaptation

In the re-sampling step, the particle filter uses the es-
timated Gaussian noise covariance value to add random
noise to the sampled particles. This Brownian model is an
important feature of the particle filter approach and enables
it to adapt to measurement noises. This value should closely
correspond to the actual random noise in the measurement,
e.g, the inherent accuracy and precision of the sensor. This
value also depends on the sensor data processing that might
introduce delays and therefore additional uncertainty in the
actual measurement.

In our adaptive particle filter, we exploit the information
about primitive shapes detected in the scene to adapt this
noise estimate. The primitive shape detection algorithm pro-
vides estimated noise in the detection process (e.g. average
fitting error for points on a plane). The default noise co-
variance vector wdef represents the estimated noise in the
raw sensor data. For the combined primitive shape constraint
used for tracking Ccomb, the estimated noise in position and
orientation is �R and �t respectively. A constraint specifies
the directions it constrains (Controlled Space Directions) and
the directions where it has no effect (Nullspace directions),

as listed in Table II. In the directions controlled by the
constraint (Controlled Space Directions) the estimated Gaus-
sian noise covariance corresponds to �R and �t, while in
the remaining directions (Nullspace directions) the estimated
Gaussian noise covariance is wdef . (3) combines these to
generate the adapted covariance vector ŵ.

ŵ← [(Nt⋅w
def
t)Nt+(S⋅�t)St, (NR⋅w

def
R)NR+(SR⋅�R])SR]

(3)

C. Hypothesis Verification

For every particle hypothesis the object model is projected
into the point cloud scene I and a likelihood is computed
w.r.t. a distance matching metric. It requires evaluation of a
distance measure Dp between the projected point cloud of the
object model and the corresponding nearest neighbor points
in the measurement Pt. This is followed by the computation
of the distance measure Dc on the color separation of the
two point sets.

Dp =
1
N

N
∑

n=1

dist(mnxyz, I
n
xyz)(1 −m

n
normal ⋅ I

n
normal))

r
(4)

(4) presents the first metric where, N is the number of
projected points based on the camera perspective (only points
visible to the camera view are considered by analyzing the
normals), dist(m, I) refers to the distance between a model
point m and the approximated nearest neighbor point in the
scene within a search radius r. The computed distance is
further biased by the angle between the normal directions
of the model point and the matched scene point. This is
obtained using the dot product between the two normals
wherein a better match reduces the overall distance measure.
(4) represents the metric.

qm = fℎisto2D(mℎsv)
qI = fℎisto2D(Iℎsv)

Dc =

[

1 −
N
∑

n=1

√

qm (n) qI (n)

]1∕2 (5)

TABLE II: Nullspace definitions for supported geometric constraints

Fixed Constrained Constraint Projection Functions (fproj(s))
(C) Translation (projp(u)) Rotation (projr(Ri))

Pl1(p1, n̂1) Pl2(p2, n̂2) Dist. (d) u + ((p1 − u) ⋅ n̂1)n̂1 + dn̂1 RAA(n̂1xn̂2,∠(n̂1,Rin̂2))Ri

Pl1(p1, n̂1) Pl2(p2, n̂2) Coinc. u + ((p1 − u) ⋅ n̂1)n̂1 RAA(n̂1xn̂2,∠(n̂1,Rin̂2))Ri

L1(p1, â1) L2(p2, â2) Coinc. p1 + ((u − q) ⋅ ̂̂a) ̂̂a RAA(â1xâ2,∠(â1,Riâ2))Ri

Pt1(p1) Pt2(p2) Coinc. p1 Ri

L1(p1, â1) L2(p2, â2) Parallel u RAA(â1xâ2,∠(â1,Riâ2))Ri

1 Pl = Plane, L = Line, Pt = Point, Coinc = Coincident, Dist = Distance, p = Point, n = Normal direction, a = Axis, u = Input Point, Ri = Input rotation
matrix, RAA(a, �) = Rotation matrix defined by Axis a and angle �

(5) shows the colour distance measure which is obtained
by generating the joint probability histograms [24] of the
projected model points and the matched scene points ob-
tained from the nearest neighbor search as a part of the
point matching distance measure. The RGB values of the
points are first converted to a HSV color space and thereafter
the the joint probability histograms qm and qI are computed
for the projected model and scene points respectively. In
the next step a distance between the two histograms is
computed using the Bhattacharya distance metric [25]. The
two distance measures are fused in a likelihood function
under a Gaussian model wherein a weighted sum of the the
two distance measures is applied. A parameters �p and �c
define the fusion weight of the point and color matching
metrics respectively such that �p + �c = 1. (6) presents the
likelihood model where Df is the fused distance measure
and � is the Gaussian likelihood model covariance.

P (z|sit) = exp(−
K
∑

p=1
(D2

f∕�)

Df = �pDp + �cDc

(6)

Based on the computed likelihood, the weight wi of
each particles is updated. Based on the normalized weights
distribution a importance based re-sampling strategy [26] is
applied to the particle set.

D. Complexity

Applying the Particle Filter for tracking objects in the
scheme mentioned above is challenging in terms of com-
putational complexity arising from a very high number of
particles required to track the object in 6D. The point cloud
based likelihood models themselves are computationally
heavy give their big data nature. Furthermore, sensor noise,
scene clutter and free dynamics of the object effects the
stability of the tracker resulting in tracking loss. In our work
we precisely address this problem of Particle Filters through
geometric constraints. We define a finite parameter set which
influences the sub search space of the Particle Filter. It is
gives as follows:

PFparams =

⎧

⎪

⎨

⎪

⎩

K, particle count K > 0
w, process noise covariance
�c , colour modality weigℎt

0 ≤ �c ≤ 1

⎫

⎪

⎬

⎪

⎭

(7)

On startup, the Particle Filter is initialized using a rough
pose of the object using a standalone detector. This in-
formation is sufficient to obtain a initial estimate of the
object’s state. However, to maintain robust track of the object
which exhibits free dynamics, the parameter set represented
in (7) requires one-line adaptation in real-time. In order to
achieve this the companion geometric constraint detection
system operates in close synchronization with the Particle
Filter. At each time step, the constraint detection system gets
the current estimated pose of the target from the Particle
Filter. Based on the association between the target pose
and the geometric constraints detected (plane, line or point)
a new set of parameters are generated for the Particle
Filter. This process essentially locks one or more degrees
of freedom of the update model of the Particle Filter which
is reflected in the new covariance set for the dynamic update
model. In addition the reduction in the state space dimension
allows reduction in the particle count resulting in reduced
computational complexity of the filter. Furthermore, it is
observed that the color modality allows convergence of the
Particle Filter when the filter initialization is considerably
away from the ground truth or under tracking loss scenarios.
In such circumstances the influence of the color modality
can be enhanced using the �c parameter. Fig. 7 compares
the performance of these different tracker modes in cases of
tracking loss.

V. EXPERIMENTS AND EVALUATIONS

We conducted several experiments, both in simulated
scenes and on real data from a Kinect v2 sensor. Through
these experiments, which are described in detail in the fol-
lowing subsections, we show how objects can be accurately
tracked by our system with very few particles.

A. Experimental Setup

Our live experimental setup (see Fig. 4) consists of 3
NUC/Kinect units (C1, C2, C3) with a tracking space of
approximately (3m x 3m x 2.5m). RGB and Registered Depth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-1.5

-1

-0.5

0

0.5

1

1.5

Po
si

tio
n

(m
)

Comparison of position tracking:
3D tracker with100 particles and 3D PSC with100 particles

3D PSC x
3D x
3D PSC y
3D y
3D PSC z
3D z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-600

-500

-400

-300

-200

-100

0

100

An
gl

e
(d

eg
)

Comparison of orientation tracking:
3D tracker with100 particles and 3D PSC with100 particles

3D PSC roll
3D roll
3D PSC pitch
3D pitch
3D PSC yaw
3D yaw

(a) Trajectory for translation (b) Trajectory for orientation

Fig. 5: Comparison of trajectories for object WoodBox using our live experimental setup

Fig. 4: Experimental setup with illustrations of some live
tracking scenarios

images are extracted via the libfreenect2 and iai-kinect2 [27]
drivers and sent via the ROS (Robot Operating System) in-
terface to a central computer. The 3 cameras are extrinsically
calibrated to a central WorldFrame. We then create a fused
streaming point cloud by generating, transforming and fusing
the points together into the same frame on the GPU. A voxel
grid filter followed by polynomial fitting [28] is used to filter
out noise, and finally generate data (r, g, b, x, y, z, nx, ny, nz)
at approx. 10Hz. We run our experiments on a Intel 6700K
CPU and a Geforce GTX 1070.

B. Evaluation of TPSC

For evaluation, we used the set of models available
from [6]. The objects and their simplified models based on
primitive shape are shown in Fig 2.

We quantitatively examined several aspects of our tracking
approach. Firstly, we evaluate the effect of color information
(controlled by parameter �c) on the tracking performance.
Secondly, we determine the benefits of using primitive shape
constraints. For each object in the evaluation, we used 4
different tracking approaches: Only 3D (i.e., using only 3D
point cloud information Dp), color+3D (i.e., �pDp + �cDc),
3D+PSC (Dp with primitive shape constraints), and the full
TPSC (i.e. �pDp + �cDc with primitive shape constraints).

For the tracking scenario, we used a tabletop scene with
the object. In the first segment of the ground truth trajectory,
the object is moved in all 6DoFs until it reaches the table.
In the second segment, the object moves along the table
with 3DoFs (translation along x and y axes, and rotation
along z-axis). The results showing the errors in each axis
for all the object and tracker combinations are summarized
in Table III. Tracking trajectories in rotation and translation
for the object JuiceBox using the full TPSC tracker over the
simulated dataset are shown in Fig. 6. Fig. 7 compares the
evolution of tracking errors from an initial position for the 4
different trackers.It is clear that the full TPSC tracker shows
the best convergence properties.

From the evaluation, and a comparison with the results
in [6], it is clear that our approach can achieve reasonably
accurate tracking by use of very few particles. In most cases,
use of color information improves the tracking, but there are
a few outliers. This is more prominent for the Box, and the
probable reason is a low-resolution color model and similar
textures on all faces of the box. In particular, it can be
observed that tracking with use of primitive shapes always
improves the tracking accuracy, and requires lesser particles.

C. Application in logistics domain

We use some examples from the logistics domain to
evaluate our tracking approach. This domain is very relevant
for our approach since a large fraction of cargo items are
comprised of simple shapes such as cuboids and cylinders.
We show a tracking scenario with 3 kinect V2 sensors, where
some cargo items are tracked (see Fig. 8).

We use simulated object trajectories to generate a synthetic
dataset and use this to compare two trackers under different
settings. Our baseline tracker (“Only 3D”) is a simple particle
filter that doesn’t use the primitive shape information. The
second tracker is our primitive shape based tracking approach
(“3D+PSC”) described in Section IV. We quantitatively
evaluate several properties of the trackers. We study the

0 50 100 150 200 250 300 350 400

Iteration

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po
si

ti
o
n
 (

m
)

gt x
tracker x
gt y
tracker y
gt z
tracker z

(a) Trajectory for translation

0 50 100 150 200 250 300 350 400
Iteration

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
n
g
le

 (
ra

d
)

gt roll
tracker roll
gt pitch
tracker pitch
gt yaw
tracker yaw

(b) Trajectory for orientation

Fig. 6: Tracking trajectories for object JuiceBox using TPSC

TABLE III: Evaluation of TPSC

Object Tracker #Particles RMS Errors (mm) RMS Errors (deg)
(min. – avg. – max.) X Y Z Roll Pitch Yaw

Box

Only 3D 500 10.2 8.7 7.9 7.7087 6.1825 11.6113
color+3D 500 10.0 9.8 7.6 6.0418 6.0899 10.3905
3D+PSC 150 – 255.7 – 500 10.6 3.8 3.3 1.7763 1.8372 2.5001
color+3D+PSC 150 – 255.1 – 500 8.7 3.3 5.0 1.7898 1.7909 3.1615

Juice

Only 3D 500 15.4 11.8 6.8 7.9867 7.1782 9.8036
color+3D 500 13.4 8.3 6.2 8.0417 8.0357 8.4454
3D+PSC 150 – 335.2 – 500 12.0 3.7 6.1 1.9949 3.0015 4.0498
color+3D+PSC 150 – 304.3 – 500 3.9 3.9 4.8 1.4417 1.0215 2.6449

Milk

Only 3D 500 10.7 6.0 8.2 3.9158 4.3284 7.2542
color+3D 500 8.4 7.2 6.7 6.1082 4.8459 8.4107
3D+PSC 150 – 379.8 – 500 5.9 4.6 7.1 3.2659 3.1813 4.2037
color+3D+PSC 150 – 340.3 – 500 5.0 4.0 5.8 3.1820 2.6500 3.7363

KinectBox

Only 3D 500 10.4 23.2 14.1 4.9606 6.1498 5.0923
color+3D 500 10.4 16.9 12.7 4.7392 7.0245 5.3812
3D+PSC 150 – 342.5 – 500 9.3 19.2 9.7 3.6295 3.3586 3.3702
color+3D+PSC 150 – 355.2 – 500 5.9 10.4 7.4 1.9650 3.4623 1.7482

effect of varying the number of particles on the accuracy
of tracking, i.e. the RMS tracking errors in rotation and
translation w.r.t the ground truth. The results of this experi-
ment are summarized in Table IV. From this evaluation, we
can see that the use of primitive shape constraints improves
the tracking error. In some cases, the performance of the
“3D+PSC” tracker with 50 particles is close to or better than
the “Only 3D” tracker with 200 particles. This confirms our
expected behavior that the use of primitive shapes reduces the
search subspace and hence, the required number of particles
to sample the space.

We also plot the tracking errors over time for this dataset
for the object WoodBox. Fig. 10 shows the results for
this experiment, where tracking errors for the “3D+PSC”
tracker in blue are lower than that of the “Only 3D” tracker
throughout the tracking sequence.

In addition to the synthetic data, we also performed
several experiments with real sensor data captured using

our experimental setup. Some images of these experiments
showing the properties of our tracker are shown in Fig. 8.
We compared the tracking trajectories for these two solvers
on this database. Fig. 9 shows this comparison, where the
trajectories for the “3D+PSC” tracker seem more smooth
compared to those for the “Only 3D” tracker.

VI. DISCUSSION

In this paper, we have presented an approach for exploiting
geometric information about the object and its environment
to improve the performance of a Particle Filter based tracker.
This is achieved by combining an intelligent primitive shape
detection component that can also estimate the shape fitting
error, and an exact geometric constraint modeling framework
that can generate the geometric nullspace with bounds based
on these errors. An adaptive Particle Filter formulation
restricts its search to this nullspace, and also adapts the
process covariances according to the estimated fitting error.

0 10 20 30 40 50

Iteration

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Po

si
ti

o
n
 (

m
)

gt x
t1 x
t2 x
t3 x
t4 x

(a) Translation X

0 10 20 30 40 50

Iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

A
n
g
le

 (
ra

d
)

gt roll
t1 roll
t2 roll
t3 roll
t4 roll

(b) Rotation Roll

0 10 20 30 40 50

Iteration

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

Po
si

ti
o
n
 (

m
)

gt y
t1 y
t2 y
t3 y
t4 y

(c) Translation Y

0 10 20 30 40 50

Iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

A
n
g
le

 (
ra

d
)

gt pitch
t1 pitch
t2 pitch
t3 pitch
t4 pitch

(d) Rotation Pitch

0 10 20 30 40 50

Iteration

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Po
si

ti
o
n
 (

m
)

gt z
t1 z
t2 z
t3 z
t4 z

(e) Translation Z

0 10 20 30 40 50

Iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

A
n
g
le

 (
ra

d
)

gt yaw
t1 yaw
t2 yaw
t3 yaw
t4 yaw

(f) Rotation Yaw

Fig. 7: Convergence of trackers from an initial pose, for the object Juice. The four trackers mentioned in Table III have
been tested: t1 refers to “color+3D+PSC”, t2 refers to “3D+PSC”, t3 refers to “color+3D”, t4 refers to “’Only 3D”.

(a) WoodBox:
Full 6d tracking

(b) WoodBox: Tracking in a cluttered
scene

(c) WoodBox: Full 6d tracking in a clut-
tered scene with occlusions

(d) Box:
Full 6d tracking

(e) Box:
Full 6d tracking

(f) Box: Tracking in the presence of large
occlusions

(g) Chair: Tracking of a more complicated
object

(h) Chair: Tracking in the presence of
occlusions

(i) Chair:
Full 6d tracking

Fig. 8: Constraint-based tracking for 3 objects in our experimental setup.

TABLE IV: Evaluation of TPSC in a logistics scenario

Object Tracker #Particles RMS Errors (mm) RMS Errors (deg)
X Y Z Roll Pitch Yaw

WoodBox

Only 3D 50 26.1 23.9 27.4 2.91 2.79 2.75
Only 3D 100 21.4 25.0 23.2 2.11 2.29 1.82
Only 3D 200 14.9 19.5 19.7 1.45 1.53 1.35
3D+PSC 50 14 14.1 16.3 1.69 1.57 1.40
3D+PSC 100 14 15.2 13.6 1.21 1.29 1.08
3D+PSC 200 10.1 12.7 14.3 1.097 0.87 0.85

Box

Only 3D 50 15.4 17.3 56.2 5.74 19.05 7.36
Only 3D 100 11.8 24.6 23.9 1.97 1.65 2.00
3D+PSC 50 14.3 12.6 34.0 5.01 18.87 7.13
3D+PSC 100 10.3 19.4 16.1 1.25 1.07 1.28

In principle, our approach can be used in higher dimen-
sional spaces and is not specialized for 6D space. We focused
our experiments towards 6D rigid objects, but this can be
extended to articulated objects (e.g. hands, skeletons) in the
future. Also, in many practical tracking scenarios the tracker
complexity is also influenced heavily by the number of
objects to be simultaneously tracked. If each object requires
a smaller (and lower dimensional) search subspace based on
our method, more objects can be tracked simultaneously with
the same number of particles.

VII. ACKNOWLEDGMENT

This work was financially supported by the Singapore
National Research Foundation under its Campus for Re-
search Excellence And Technological Enterprise (CREATE)
programme.

REFERENCES

[1] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys, vol. 38, no. 4, dec 2006. [Online]. Available:
http://doi.acm.org/10.1145/1177352.1177355

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0

10

20

30

40

50

60

70

80
An

gl
e

(d
eg

)
3D PSC x
3D x

(a) Translation X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0

1

2

3

4

5

6

7

An
gl

e
(d

eg
)

3D PSC roll
3D roll

(b) Rotation Roll

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0

10

20

30

40

50

60

70

80

90

An
gl

e
(d

eg
)

3D PSC y
3D y

(c) Translation Y

0 0.2 0.4 0.6 0.8 1
Time

0

1

2

3

4

5

6

7

8

9

An
gl

e
(d

eg
)

3D PSC pitch
3D pitch

(d) Rotation Pitch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0

10

20

30

40

50

60

70

An
gl

e
(d

eg
)

3D PSC z
3D z

(e) Translation Z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

An
gl

e
(d

eg
)

3D PSC yaw
3D yaw

(f) Rotation Yaw

Fig. 10: Comparison of tracking errors on synthetic data from a pre-defined trajectory for the object WoodBox.

[2] Z. Chen, “Bayesian filtering: From kalman filters to particle filters,
and beyond,” Statistics, vol. 182, no. 1, pp. 1–69, 2003.

[3] Y. Bar-Shalom, Tracking and data association. Academic Press
Professional, Inc., 1987.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-1.5

-1

-0.5

0

0.5

1

1.5

Po
si

tio
n

(m
)

Comparison of position tracking:
3D tracker with100 particles and 3D PSC with100 particles

3D PSC x
3D x
3D PSC y
3D y
3D PSC z
3D z

(a) Trajectory for translation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-600

-500

-400

-300

-200

-100

0

100

An
gl

e
(d

eg
)

Comparison of orientation tracking:
3D tracker with100 particles and 3D PSC with100 particles

3D PSC roll
3D roll
3D PSC pitch
3D pitch
3D PSC yaw
3D yaw

(b) Trajectory for orientation

Fig. 9: Comparison of trajectories for object WoodBox using
our live experimental setup

[4] S. Nair, G. Panin, M. Wojtczyk, C. Lenz, T. Friedelhuber, and
A. Knoll, “A multi-camera person tracking system for robotic appli-
cations in virtual reality tv studio,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2008.

[5] S. Nair, G. Panin, T. Röder, T. Friedelhuber, and A. Knoll, “A dis-
tributed and scalable person tracking system for robotic visual servoing
with 8 dof in virtual reality tv studio automation,” in Proceedings of
the 6th International Symposium on Mechatronics and its Applications
(ISMA09). IEEE, 2009.

[6] C. Choi and H. I. Christensen, “RGB-D object tracking: A particle
filter approach on GPU,” IEEE International Conference on Intelligent
Robots and Systems, pp. 1084–1091, 2013.

[7] G. Panin, C. Lenz, M. Wojtczyk, S. Nair, E. Roth, T. Friedlhuber,
and A. Knoll, “A unifying software architecture for model-based
visual tracking,” pp. 681 303–681 303–14, 2008. [Online]. Available:
http://dx.doi.org/10.1117/12.784609

[8] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” in Asian conference
on computer vision. Springer, 2012, pp. 548–562.

[9] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time detec-
tion of texture-less objects in heavily cluttered scenes,” in International
Conference on Computer Vision. IEEE, 2011, pp. 858–865.

[10] J. A. Brown and D. W. Capson, “A framework for 3d model-
based visual tracking using a gpu-accelerated particle filter,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 1,
pp. 68–80, 2012.

[11] S. Melax, L. Keselman, and S. Orsten, “Dynamics based 3d
skeletal hand tracking,” in Proceedings of Graphics Interface
2013, ser. GI ’13. Toronto, Ont., Canada, Canada: Canadian
Information Processing Society, 2013, pp. 63–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2532129.2532141

[12] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun, “Realtime and robust
hand tracking from depth,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2014, pp. 1106–1113.

[13] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Efficient model-
based 3d tracking of hand articulations using kinect.” in British
Machine Vision Conference (BMVC), vol. 1, no. 2, 2011, p. 3.

[14] H. Hamer, K. Schindler, E. Koller-Meier, and L. Van Gool, “Tracking
a hand manipulating an object,” in Computer Vision, 2009 IEEE 12th
International Conference On. IEEE, 2009, pp. 1475–1482.

[15] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman filter:
Particle filters for tracking applications. Artech house Boston, 2004,
vol. 685.

[16] J. Giebel, D. M. Gavrila, and C. Schnörr, “A bayesian framework for
multi-cue 3d object tracking,” in European Conference on Computer
Vision. Springer, 2004, pp. 241–252.

[17] D. Fox, “Adapting the sample size in particle filters through
kld-sampling,” The International Journal of Robotics Research,
vol. 22, no. 12, pp. 985–1003, 2003. [Online]. Available: http:
//dx.doi.org/10.1177/0278364903022012001

[18] G. Panin, Model-based Visual Tracking: The OpenTL Framework,
ser. IT Pro. Wiley, 2011. [Online]. Available: https://books.google.
com.sg/books?id=voYW0kGib8EC

[19] L. Zhang, J. Sturm, D. Cremers, and D. Lee, “Real-time human motion
tracking using multiple depth cameras,” Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pp. 2389–2395, 2012.

[20] J. Behley, V. Steinhage, and A. B. Cremers, “Efficient Radius Neighbor
Seach in Three-dimensional Point Clouds,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[21] A. Perzylo, N. Somani, M. Rickert, and A. Knoll, “An ontology for
CAD data and geometric constraints as a link between product models
and semantic robot task descriptions,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015.

[22] N. Somani, A. Perzylo, C. Cai, M. Rickert, and A. Knoll, “Object
detection using boundary representations of primitive shapes,” in
Proceedings of the IEEE International Conference on Robotics and
Biomimetics (ROBIO), Zhuhai, China, December 2015.

[23] N. Somani, M. Rickert, and A. Knoll, “An exact solver for geometric
constraints with inequalities,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 1148–1155, April 2017, accepted for presentation at
ICRA 2017.

[24] G. Pass and R. Zabih, “Comparing images using joint histograms,”
Multimedia Systems, vol. 7, no. 3, pp. 234–240, may 1999. [Online].
Available: http://dx.doi.org/10.1007/s005300050125

[25] A. Bhattacharyya, “On a measure of divergence between two multino-
mial populations,” Sankhyā: the indian journal of statistics, pp. 401–
406, 1946.

[26] M. Isard and A. Blake, “Condensation – conditional density propa-
gation for visual tracking,” International Journal of Computer Vision
(IJCV), vol. 29, no. 1, pp. 5–28, 1998.

[27] T. Wiedemeyer, “IAI Kinect2,” https://github.com/code-iai/iai“
kinect2, Institute for Artificial Intelligence, University Bremen, 2014,
accessed June 12, 2015.

[28] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 9, no. 1, pp. 3–15,
2003.

