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Abstract—Recent advances in battery and drone technologies
have opened up possibilities of commercial use of drones. Private
companies are looking into the possibilities of using drones for
commercial deliveries from the legal, technical, and economical
perspective. Nevertheless, the battery management perspective of
such businesses has not yet been thoroughly investigated. In this
paper, we identify that battery management of such application
has a major impact of the costs, and formulate an optimization
problem to reduce the aging of batteries. We identify two sub-
problems, battery assignment, and battery scheduling to derive
a solution that minimizes the aging of the batteries. We show
that the formulation enables leveraging the trade-off relationships
between the packet waiting time and battery purchasing cost.
The experimental results show the proposed method reduce the
electricity and battery purchasing cost by 25%, and average
packet waiting time by more than 50%.

I. INTRODUCTION

Drone delivery business is a promising application of un-
manned aerial vehicles (UAV). Unlike their traditional appli-
cations, which was confined to military surveillance or tactical
use, companies in private sector are investigating the potential
of drones delivery business in various aspects. For example,
Amazon Prime Air is targeting to deliver products to doorsteps
of customers within 30 minutes of ordering [3]. It targets
packages weighing less than 5 pounds, with a delivery distance
of less 10 miles. DHL’s parcelcopter has shown its capability
of delivering products to remote locations [1]. While many
enterprises are pushing forward to overcome the legal and
technical hurdles for such businesses, little has been done from
the research community on addressing technical hurdles from
the battery management perspective.

Battery management will be one of the major factors affect-
ing the time-to-delivery and profitability of the business. Fig. 1
shows the battery management of a drone delivery business.
A set of available batteries, likely to comprise heterogeneous
packs, serves a set of incoming delivery tasks as the customers
make orders online. The batteries can be attached and detached
from the drones in order to maximize the utilization of both
the batteries and the drones as some commercial enterprises
realized the concept [4], [2]. It avoids long wait times of drones
for their batteries to be charged after every flight, which will
be longer than the flight times themselves. After a delivery
is made, batteries are recharged for next use. Meanwhile, the
state-of-health (SOH) of batteries degrades due to cycle aging
and calendar aging resulting in reduced battery capacity. If
their capacity reduces to a certain threshold, i.e., 80%, they
are no longer fit for service, and are retired to be replaced by
equivalent number of new batteries.

The SOH degradation of batteries will be a particularly
important issue even when compared with other battery-
powered applications, e.g., electric vehicles (EV). The delivery
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Fig. 1. Battery flow of drone delivery business.

drones are even more weight-sensitive and operates under a
harsher condition that EVs. The minimum amount of battery
should be carried by the drones to avoid the snowball effect.
The more battery weight it carries, the more energy it requires,
and hence again requiring additional battery weight. Moreover,
most of the delivery drones are targeting to deliver a product
within 30 minutes mandating the batteries to be discharged at
a rate from well over 2C, much higher than typical currents
seen in an electric vehicle. This all leads to exploitation of the
batteries that accelerates the SOH degradation of the batteries.

Despite recent price reduction of Li-ion batteries, probably
the only option for battery-powered drones, their price is
still quite high. Our simulation results show that with an
electricity price of 20 cents/kWh and the Li-ion battery price
of 500 USD/kWh, the recurring battery purchasing cost would
be around 60% of the electricity cost [13]. Therefore, it is
important to tackle SOH degradation by managing batteries
in an optimized fashion. In this paper, we identify two sub-
problems for the battery management, battery assignment and
battery scheduling, under the objective of minimizing the
battery SOH degradation. As numerous prior works attest to,
two major factors that affect the rate of SOH degradation
are the average state-of-charge (SOC) and SOC swing of the
batteries [10], [15], [14]. The larger the average SOC and the
SOC swing, the faster SOH degradation. Hence, we propose
a solution framework that reduces the average SOC and the
SOC swing.

The contributions of this paper are summarized as follows.

« We, for the first time, formulate the battery assignment
and battery scheduling problem under the objective of
minimizing the SOH degradation of the whole battery
set.

o The solution is divided into two stages where the bat-
tery assignment is solved by a heuristic algorithm, and
battery scheduling is solved by an mixed integer linear
programming (ILP).

o We show that our formulation is capable of leveraging
the trade-off relationship between SOH degradation and
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packet waiting time.

« The solution scheme is integrated with an discrete event
simulator that features elaborate equivalent circuit battery
models and aging parameters to verify the results.

The experimental results show the proposed method reduce the
electricity and battery purchasing cost by 25%, and average
packet waiting time by more than 50%.

II. RELATED WORK

Recently, a number of e-commerce and logistics companies
began looking into possibility of drones for product deliveries.
DHL has implemented its own delivery drone and success-
fully delivered products in remote locations [1]. E-commerce
giant Amazon has been developing a new service, Amazon
Prime Air, since 2013, in order to deliver products within 30
minutes of ordering [3]. There exist numerous prior works on
autonomous navigation and control of drones from the research
community as well. Autonomous navigation and control of
drones are crucial for realizing such services [5], [8]. An early
framework has been proposed for autonomous drone delivery
including loading and release mechanisms of packages without
human intervention, autopilot software, and communication
infrastructure to achieve autonomous package delivery by
drones [9]. [16] demonstrated a automatic battery replacement
platform, which attaches and detaches batteries to/from drones
without human intervention. This avoids drones waiting for
lengthy battery charge times and enables maximizing the
utilization of drones. A similar concept of battery swapping
has been proposed by Tesla Motors [11]. All the above
mentioned works indicate there is a large body of research
from both industry and academia working toward realizing an
autonomous framework for drone delivery services.

Nevertheless, all the works rather focused on technical
hurdles on individual drones, and there has not been much
work focusing on the battery management for the whole
delivery service. [7] addresses some important challenges
for the drone delivery service, vehicle design, navigation,
coordination between drones, and electricity and battery cost.
However, the work merely introduces these challenges and
much of the research questions are left open. Regarding
the holistic analysis of similar applications involving many
vehicles and batteries, an economic analysis on a taxi fleet
with battery swapping stations has been performed [12].
However, this work lacks details on battery models, and
hence, is inept at evaluating techniques that considers complex
battery characteristics such as aging according to battery usage
patterns. In comparison, in our work, we can test and evaluate
different management policies using the proposed simulator.
A recent work of ours has performed preliminary economic
analysis on drone delivery businesses taking into account
the battery set composition, battery aging, and so on, on
electricity cost, battery purchasing cost and time-to-delivery
of the packages [13].
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III. PROBLEM DESCRIPTION

In this section, we formulate the battery management prob-
lem for the drone delivery business. Before moving on to
the mathematical formulation, we first list some underlying
assumptions and show how the problem could influence the
objectives for this business. The first assumption is that batter-
ies can be attached and detached from the drones as discussed
in Section I. This helps maximizing the drone utilization as it
would not have to wait for its batteries to charge. Secondly,
we assume that heterogeneous sizes of batteries are used for
drone delivery. The distance to destination may differ greatly
among orders, and hence, the energy requirements. Therefore,
attaching smaller batteries to deliveries over a small distance
could reduce the energy consumption.

The battery management problem involves two intercon-
nected sub-problems, namely the battery assignment and the
battery scheduling problem. The former refers to the problem
of mapping a set of batteries onto the delivery services. The
battery assignment problem finds an assignment that is the
most beneficial for mitigating the SOH degradation of the
whole battery set. Fig. 2 depicts a battery assignment. The
figure depicts usage of two 256 Wh batteries and three 452 Wh
batteries. However, other options are available such as usage of
three 256 Wh batteries to serve 5 km, 7 km, 9 km deliveries
and two 452 Wh batteries for the rest. The second solution
allows drones to carry less battery weight leading to less
energy consumption as well as mitigating the SOH degradation
for overall battery set. Therefore, in this paper, we assume that
a task will be assigned a battery with the appropriate capacity,
i.e., a task will not use a battery with a larger capacity if one
with smaller capacity will suffice.

The scheduling problem refers to the problem determining
the time instances at which a battery begins charging, termi-
nates charging, begins discharging, and terminates discharging.
Fig. 3 depicts two different battery schedules, which serves
two identical delivery services. Each timeline refers to a
schedule that one battery goes through a time period. Fig. 3(a)
shows a schedule where a battery is charged immediately to
the full capacity after a delivery service while the schedule
in (b) delays charging and does not charge the battery to its
full capacity. Schedule shown in (b) reduces the average SOC
of the battery, which is known to have mitigating effect on
SOH degradation as will be shown in the next section. In this
paper, we utilize battery assignment and scheduling as the two
control knobs in mitigating the SOH degradation of the whole
battery set as will be shown in the subsequent sections.

To formulate the problem mathematically, we first define a
set of tasks, which denote the delivery tasks of the drones.
A task 7; € T can be characterized as t; ~ {d!,0},e;,l},b;},
where di, o}, e;, I!, b; represent respectively the arrival time,
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Fig. 4. Two example service schedules. (a) The battery is charged and waits
until the task is arrived and immediately dispatched. (b) The task arrives and
waits until the charging operation is finished to be dispatched.

dispatch time, energy required, flight time and ID of the battery
assigned to this task. Since we assume heterogeneous types
of batteries, e; should differ for different types of batteries.
We further define a set of charging operations c¢; € C as a
tuple ¢; ~ {of,e;, I, bi,ch;}, where of, e;, [f, b;, ch; denote
respectively the start time for charging, energy to charge,
length of charging, battery ID and charger ID. Furthermore,
we define a set of batteries b; € B and chargers ch; € CH.

For each battery, a task is always preceded by a charging
operation. In the case of no charging operation is required
before a task (e.g., because there is sufficient charge left in
the battery), we consider a charging operation of zero time
(If = 0). Thus, we define a set of services as a pair of charging
operation and task s; € S. Then a service can be represented as
a tuple s; ~ {a’,0},1!,0$,1¢ e;,b;,ch;}. In addition, we define
three time regions for each service: (i) the charging region as
RS = [0§,0§ +f], (ii) the task region as R = [o},0} +[!] and
(ii) the service region as R; = [0f,0t +I!]. An example of a
service and the three regions is shown in Fig. 4.

Here, we divide the variables into two categories. The
variables that are given include !, [ and e;, which are
specified by the task profile. The variables that need to be
determined include of, of, If, b;, ch;. The assignment problem
is to determine for each s; the battery b; and the charging
post ch; involved. The scheduling problem is to determine the
schedule for charging, the length of charging and the schedule
for task serving, namely of, I{ and of.

In general, we are interested in two objectives. The first
objective to reduce the average waiting time of tasks, i.e., a
delivery task can be carried out as soon as possible once it has
arrived. This is crucial for drone delivery services as time-to-
delivery is a critical measure of such businesses. The second
objective is to reduce the SOH degradation of the batteries.
The objectives will be elaborated in Section V.

IV. BATTERY SOH DEGRADATION

SOH degradation refers to deterioration of battery condi-
tions in the form of impedance increase, voltage decrease,
and most importantly, capacity fading. The model from [10]
describes capacity fading. Average SOC, SOC, and standard
deviation of SOC, Gsoc, and the operating temperature, 7Tp,
are the main factors affecting the rate of capacity fading. The
model calculates essentially the two intermediate parameters,
Ly, and Ly, in order to calculate the aging factor, L.
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where K.,, K., Ksoc are battery specific empirical con-
stants where the values are given in [10] for an A123
ANR26650M1A cell. T, is the reference battery temperature
of 25°C. tyc1e 1s the duration of one cycle and #;;7, the shelf
life at 25°C at 50% SOC until 80% of the initial capacity
remain. Parameter L; reflects the effect of SOC deviation
while parameter L, reflects the effect of average SOC on SOH
degradation. The total increase in the life parameter is

Trep +273
Tg+273 ’

where K; accounts for a doubling of the decay rate for each
10°C rise in temperature.

We have integrated the SOH model to the Li-ion battery
equivalent circuit model given in [6] to construct a battery
model capable of simulating both the short-term efficiency
as well as the long-term SOH degradation. Using the model,
we have done some preliminary simulations on battery aging
resembling our problem setup. Fig. 5 shows the simulation
result on how the idle time between a discharge and a charge
operation affect the SOH degradation. Battery cells go through
multiple cycles with a period of two hours differing in idle
period T4, as show in the upper figure. Delaying the charging
operation as much as possible reduces the average SOC
significantly which mitigates the capacity fading. Fig. 6 shows
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another simulation result where the depth of discharge (DoD)
differs. The larger the DoD is, the larger the capacity fading
becomes. Poor battery assignment results in carrying addi-
tional battery weight, which increases the energy consumption
and average DoD of the battery set. We emphasize that these
observations are not limited to the SOH model [10], but are
in line prior observations in the literature [15], [14]. We take
a cue from these observations and formulate an optimization
problem to minimize the SOH degradation of the batteries in
a drone delivery services in the following section.



V. BATTERY ASSIGNMENT AND SCHEDULING
ALGORITHMS

The battery management problem can be formulated as a
constraint-driven optimization problem. However, the com-
bined problem suffers from a large complexity and the problem
easily becomes intractable as the size becomes large. In order
to tackle the large complexity, we divide the problem into two
parts, namely (i) the battery and charger assignment problem,
where the batteries and chargers are assigned to the services
with a temporal order, and (ii) the scheduling problem, where
the schedules of charging and task dispatching are computed.

A. Battery Assignment

The objective of the assignment problem is to (i) map the
batteries to the corresponding services, i.e., to determine b;
for the service s; and (ii) the batteries to the chargers, i.e.,
to determine ch; for the service s;. The temporal order of
the services mapped on the batteries and chargers is also
determined. Here, we use a greedy heuristic for both problems,
where the batteries and chargers are assigned to services in
a greedy fashion according to the arrival time of the tasks.
We assume in the assignment and scheduling problem, that
the charging and discharging of the batteries are of constant
rate, where k¢ and k' denote the charging and discharging rate
of the battery. Algorithm 1 shows the how the batteries are
assigned. Line 1-2 divides the batteries and services into types
according to the battery capacity and the required energy of
tasks. In Line 3-23, each battery type is gone through for the
battery assignment. In Line 4, each type of services are sorted
in ascending order according to an estimated time for the start
of the charging operation, which can be denoted as a! —e;/k°,
where e; denotes the energy required by the service for the
chosen battery type. Line 5-11 appends attributes 7.4, S and
order to each battery, which denote respectively the earliest
available time of the battery, the services mapped to the battery
and the temporal order. Line 12-19 assigns the services to the
batteries. Line 13 finds the earliest estimated services that is
not assigned and Line 14 finds the battery that will become
available first according to estimation. Line 16 updates the
current battery with the next estimated available time, which
is the maximal value of 7, +e;/k' +e¢;/k® and a’ +e;/k'. Line
15 and 18 assign the battery to the corresponding service and
vise versa. The chargers can then be assigned to the services
in a similar manner.

B. Battery Scheduling

Once the batteries and chargers are assigned to the services,
we formulate the scheduling problem into an ILP problem. The
constraints for the scheduling problem are listed as follows.
(C1) Charge-and-serve constraint: This constraint enforces
that the tasks are dispatched only when the charging operation
is finished.

Vsi €8, of +1f <0l 4)

(C2) Arrive-and-serve constraint: This constraint enforces that
the tasks are dispatched only after the arrival time.

Vs; €S, da <ol &)

(C3) Non-overlapping service constraint: A battery can only
be utilized by one service simultaneously.

VbjEB,VS,’Ebj.S, 0?+lf§0§+1 (6)

Algorithm 1: Battery Assignment Algorithm

Input: S, B
Output: S, B
1: {B;} = groupBatteriesByType(B)
2: {Sx} = groupBatteriesByEnergy(S)
3: for By € {Bk}, Sy € {Sk} do
4: S = Sy.sortByMetric(a} — e; /k,min)
5. for b; € B, do
6: b;.appendAttribute(z,,)
7: b;.appendAttribute(S)
8: b;.appendAttribute(order)
9: bj.tm =0
10: bj.order =0
11:  end for
12: while false == S;.isEmpty do
13: s;i = Sg.popEarliest()
14: b; = By findBatteryByMetric(f,,, min)
15: si.bi = bj
16: bj.tea = max(teg +ei /K +e;/k,a. +e; k")
17: bj.order = bj.order + 1
18: b;.S.addNewService([order,s;])

19:  end while
20:  for bj € By do

21: b;.deleteAttibute(z,,)
22: end for
23: end for

24: return S, B

(C4) Non-overlapping charging operation constraint: Simi-
larly, a charger can only be utilized by one service.

Vchj € CH,Vs; € chj.S, of +1i <of, (7

(CS5) Sufficient charge constraint: This constraint enforces that
in a service, the battery always has sufficient charge for the
task. Vs, € E(s;,b;j) denote here all the services that use the
same battery b; and are scheduled earlier than s;.

VbjeBNsi€bi.S, Y (lok*— LK) +Ik 1K >0
VSmEE<S,',bj)
(8)

(C6) Battery charge capacity constraint: The battery can
not be charged beyond its current maximal capacity. Here,
bj.cap denotes the maximal capacity of battery b;. In a single
scheduling period (e.g. one day), we consider it to be constant.
This value, however, is expected to decrease in the long term,
as discussed in Section IV.

Vb; € B,Vs; €b}.5, Y
VSmGE(S,‘,b_/)

(ISkS =LK )+ IFkE < bj.cap

€))
The objectives we consider is on one hand the average
task waiting time and the SOH degradation on the other. We
have shown in Section IV that one important factor for the
SOH degradation rate is the average SOC of the batteries.
We, therefore, use two linear objectives to represent the SOH
degradation, namely the average left-over charge and the
average charged waiting time, which have a direct impact on
the average SOC. Thus, we consider three objectives in this
scheduling problem, which can be formulated as follows. We
use a weighted sum of the objectives as the final objective of
the problem. The weight combinations can explored to achieve
the design requirements. The scheduling problem can then be
formulated into an ILP problem and solved by an external
solver.
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(O1) Average task waiting time: This objective describes the
average waiting time of the tasks, which is represented as the
time between the arrival of the task and the dispatch of the
task. Here N is total number of services in S.

obji =Y (oj—d})/N
Vs;eS

(10)

(02) Average left-over charge: This objective describes the
average left-over charge, which is the charge that remains in
the battery after the flight.

obp=Y ()Y
Vb/‘EB, VSMGE(S[,b_/')
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(03) Average charged waiting time: This objective describes
the average charged waiting time of the tasks, which is
represented as the time between the end of the charging
operation and the dispatch time of the task.

objs=Y, (o} —0f —I{)/N
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VI. EXPERIMENTS
A. Experiment Setup with Discrete-Event Simulator

In order to evaluate the efficacy of the proposed algorithm,
we use a custom developed simulator from [13]. The simulator
incorporates all the detailed battery models presented in Sec-
tion IV, such that we are able to correctly evaluate the gains of
a battery management. The simulator is built around the event
queue implemented as a priority queue, where the simulation
events correspond to real-world events such as delivery service
request arrival, drone departure/arrival, battery charging start,
battery charging finish, and so on. When an event triggers, the
corresponding callback function is called to perform related
calculations such as battery SOC update, SOH update, drone
status, etc. We emphasize that the gains are presented not in
terms of the objective functions of the algorithm, but the actual
SOH degradation obtained from the simulation. The overall
evaluation flow is shown in Fig. 7. The discrete event simulator
for drone delivery service implemented in C++ communicates
with an independent solver that embeds the proposed algo-
rithm in Sections V-A and V-B implemented in MATLAB.
The algorithm is invoked during the simulation run and solves
the mapping, ordering, and scheduling problem repeatedly. As
the algorithm requires knowledge of the service request times,
we make an assumption that delivery requests are foreseeable
for a certain time period in the future. This makes sense in

that every delivery service require some amount of preparation
time, e.g., locating the package in the storage, transporting the
package to the drone platform, etc. Hence, we assume that the
algorithm could find a time window for foreseeing the future.

B. Results

In this section, we show the amount of SOH degradation of
the proposed method compared with two baseline techniques.
The first baseline, random algorithm, assigns batteries ran-
domly to delivery tasks as long as the energy constraints are
met. The second one, capacity algorithm, searches through
batteries, which has the least amount of energy meeting
the requirement of a delivery task. Both algorithms charge
batteries to its full capacity as soon as a delivery task is served.
We use a task profile, where its flight distance follows a linear
distribution between 0 km to 25 km, and its number of services
follows a Poisson distribution. We perform a simulation for a
four year period serving delivery services of a million tasks
with a battery set size of 75. The battery set comprises 25
batteries of 226 Wh capacity and 50 batteries of 452 Wh
capacity. The reason we use more larger batteries is that the
flight distance distribution of tasks follows a linear distribution,
and there are more long distance deliveries than short ones.
The numbers of delivery services and batteries are smaller than
what a real drone delivery business are likely to be, but it is
enough to show the efficacy of the proposed method.

Fig. 9 and 10 show the detailed battery schedule for a day of
the random algorithm and the proposed algorithm. Black boxes
denote the charged-and-wait time, grey boxes denote discharge
time, and white boxes denote the charge time, respectively. The
most significant difference is that the former exhibits very long
charge-and-wait times for a battery while the latter exhibits
almost no charge and wait times. The batteries with an ID of
less than 50 is used less than others because these are larger
batteries only used for long distance flights. Fig. 8 shows the
time-series comparison between the proposed algorithm and
the capacity algorithm. From the SOC traces, it is noticeable
that the average SOC is decreased in case of proposed algo-
rithm, and hence, the capacity degradation is mitigated. The
dense grey lines consisting of hundreds of charge/discharge
cycles show SOC swing. For the proposed algorithm, the
minimum SOC of each cycle is clamped to the minimum
value, while it is clamped to the maximum value for the
baseline. As a result, the capacity fade is much slower, making
the battery usable well over the first 300 days. The proposed
algorithm is capable of reducing the waiting time significantly
as well, almost to half of the capacity baseline. The number
of retired batteries over time is directly influenced by the rate
of capacity fading, and there is significant reduction. Table I

Method Elec. Batt. Sum Wait time

Random  75,060.34  52,199.24  127,259.58 271.27

Capacity  73,479.21  54,073.59  127,552.80 252.59

Proposed  78,804.04  15,889.47 94,693.51 108.32
TABLE T

OPERATING COST (IN USD) BREAKDOWN ANALYSIS AND PACKET
WAITING TIME (S) FOR DIFFERENT ASSIGNMENT AND SCHEDULING
TECHNIQUES.

provides the costs and packet waiting times. The proposed
algorithm is capable of reducing the battery purchasing costs
by significant proportion and reduces the sum of electricity
cost and battery cost by more than 25% compared with the
baselines, and packet waiting time by more than 50%. The
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electricity cost is increased slightly for the proposed algorithm,

which is one of the small blind spots in our algorithm. It is
widely observed that the internal resistance is a function of
SOC, where the value is increased when the SOC is low [6].
As our algorithm prefers to operate batteries in the low SOC
region, it adversely affects the battery cycle efficiency, which
results in slightly higher electricity cost. Nevertheless, huge
gain from battery purchasing cost cancels out this effect.
We acknowledge that the gain depends substantially on the
delivery request profiles. For example, it is likely that drone
flights will be forbidden during night times due to noise, safety,
etc. If the length of this idle interval is longer, our algorithm
shows larger gain, as it tries to maintain low battery SOC
during the interval, while the baselines let the batteries wait
fully-charged.

Lastly, the proposed algorithm provides leverage to exploit
the trade-off relationship between the different objectives. For
example, the weight values (1,1,1) for objectives (10) to (12)
provides, the packet waiting time of 69.57 s, average surplus
SOC of 7.57%, while (1,10,1), and (1,20,1) provides 99.98 s,
1.32% and 113.28 s, 0.34 %, respectively. This shows that
as we put more emphasis on optimizing the average surplus
charge, the gain accompanies sacrifice of packet waiting times.

VII. CONCLUDING REMARKS

In this paper, we, for the first time, addressed the battery
assignment and scheduling problem for drone delivery busi-
ness under the objective of minimizing the SOH degradation.

We identify that the battery assignment affects the energy con-
sumption of the delivery services, and the idle time between
battery charge cycles have a significant impact on the SOH
degradation of batteries. We formulate the battery assignment
and scheduling problem as a two-stage problem where the
mapping stage is solved by a heuristic and the scheduling stage
is formulated as an ILP problem. The experimental results
show that compared with the baseline policies, the proposed
algorithm reduces the electricity and battery purchasing cost
by 25% and packet waiting time by more than 50%. Finding
the truly global optimal solution for the SOH degradation
minimization problem remains as a future work.
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