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ABSTRACT

Drones, also referred to as unmanned aerial vehicles (UAVs), are
recently expanding their field of usage beyond military surveillance
and tactical applications. Commercial drone delivery service is one
of the promising applications in the near future, and a number of
companies are already pushing forward the legal and technical bar-
riers to realize the concept. Unlike conventional applications of
drones, the success of a commercial application depends critically
on the profitability. The major sources of expense are the elec-
tricity cost and battery purchasing cost due to aging. Hence, it is
crucial to maximize the energy efficiency and mitigate battery ag-
ing of the drone delivery business. However, no prior work has
extensively assessed the problem for the business as a whole. This
paper, for the first time, proposes a holistic and detailed analysis on
the profitability and time to delivery of the drone delivery business.
This paper identifies the major design parameters and runtime man-
agement potentials that affect the profitability and time to delivery
of the business. We have implemented a discrete event simulator
based on detailed models of the comprising components. We per-
form a design space exploration to understand the effects of the
various battery configurations, battery attachment technique, drone
flight speed, etc., on time to delivery, electricity cost, and battery
purchasing cost. Our results show that such control knobs have a
significant impact on the time to delivery and the operating cost of
the business.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems

1. INTRODUCTION

Use of drones, or unmanned aerial vehicles (UAV), has been
restricted mostly to military surveillance and tactical applications
over the last decade. A number of enterprises such as Amazon are
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Figure 1: Battery flow of a drone delivery service.

looking into the potential of commercial delivery drones. Amazon
Prime Air plans to use multirotor UAVs to autonomously deliver
packages weighing below 5 pounds to its customers within 30 min-
utes of ordering [3]. Logistics company DHL has demonstrated a
practical scenario of using delivery drones [2]. However, a number
of technical challenges as well as legal ones prevent the realization
of the business. The aspect of drone design, autonomous flight,
and coordination of drones are assessed from prior works [12, 4,
7]. However, no work has focused on the profitability and time to
delivery aspect from the perspective of the whole business. Many
battery powered vehicles, e.g., electric vehicles and drones, suffer
from disadvantages coming from high price of batteries, low en-
ergy density and limited lifetime. Batteries for drones suffer from
even harsher environment compared with electric vehicles. Deliv-
ery drones are inherently more weight sensitive than electric vehi-
cles, and this forces them to attach the minimum amount of batter-
ies and exploit the full capacity. They are also designed to fly for
less than 30-40 minutes leading to average discharge rates of up to
2-3C, which is much higher than electric vehicles. Large depth-of-
discharge (DoD) and discharge rate of batteries leads to fast aging
and battery replacement costs will be one of the major factors that
undermines the profitability of the service.

Battery management of a drone delivery service for our problem
setup is summarized in Figure 1. Delivery service provider main-
tains a certain number of delivery drones and a set of batteries to
power the drones. Batteries are automatically detachable from the
drones for re-charging and drones can make the next flight imme-
diately with an already charged battery modules similar to the re-
cently proposed prototype [16]. This can increase the utilization of
drones drastically compared with batteries fixed to drones. Accord-
ing to the differing requirements of each delivery task, e.g., payload
weight, distance to the destination, batteries are allocated to each
drone and serve the tasks. After their service, allocated batteries
are recharged for the next service. As the time goes by, the state-
of-health (SOH) of batteries degrades and they are replaced with an
equal number of fresh batteries when the end of life is reached. Bat-



tery retirement and replacement will be a regular event, and battery
replacement costs will constitute a major portion of the operating
costs as well as the electricity costs.

Although there has been some research on design and navigation
of the drones, not many works have viewed the feasibility of the
drone delivery service from the perspective of business as a whole.
A number of open design optimization problems remain in this do-
main such as the number and types of batteries that should be main-
tained, the number of drones, battery attachment strategy, battery
charging strategy, according to varying delivery request patterns
and payload distributions. In this paper, we design a discrete event
simulator focused on the power and energy consumption perspec-
tive based on elaborate models of battery and drone power models
to explore design parameters mentioned above to analyze their im-
pact on the electricity cost, battery purchasing costs, and time to
delivery.

2. RELATED WORKS

There have been several related works addressing the problem
of using drones for delivery service. Logistics company DHL has
demonstrated a practical scenario of the delivery drones and high-
lighted the technical hurdles [2]. [12] has developed an autonomous
framework for delivery drones and [4, 7] proposed some naviga-
tion and control technology. [16] considered the case where bat-
teries are automatically detachable from the drones for re-charging
and the drones can make the next flight immediately with already
charged battery modules, which is similar to the battery model and
charging strategy that we use in this paper. However, the afore-
mentioned related works focused more on the technical and legal
feasibility of the drone delivery service and not on the economi-
cal feasibility, i.e., the profitability, which is the focus of this pa-
per at hand.

Towards the profitability issue, the cost is considered by [6] as
one of the most important challenges for the feasibility of the drone
delivery service, amongst other ones including vehicle design, nav-
igation and coordination. It identified the electricity cost and bat-
tery cost as the most important factors in terms of the cost of the
delivery service and has conducted a cost estimation. But this es-
timation is based on high-level models and does not consider the
impact of various factors like battery aging, heterogeneous batter-
ies, etc. A profitability analysis has been done for a similar appli-
cation, a fleet of electric vehicles [9]. However, the nature of the
problem itself is different. That work assumes that the fleet owner
benefits from fluctuating grid electricity price whereas the current
paper benefits from delivery services. Another work performs a
very similar economic analysis on a taxi fleet with battery swap-
ping stations and uses genetic algorithm to maximize the profit of
the fleet operating company [14]. However, this work is based on
very simple cycle model such that it cannot test detailed manage-
ment policies. In comparison, in our work, we can test and evaluate
different management policies using the proposed simulator.

3. DESIGN AND MANAGEMENT OF DRONE

DELIVERY SERVICES

In this section, we describe the major components of a drone
delivery platform and enumerate design criteria. The major com-
ponents comprising the business are shown in Figure 2. Customers
order products online and make delivery requests. Then, the or-
dered product is taken from the product storage and packaged for
drone delivery. A charged battery is attached to the drone at a bat-
tery replacement platform. Drone delivers the packet to the cus-
tomer and returns to the drone delivery platform. The battery is
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Figure 2: Major components and battery, product flow of a
drone delivery business.

detached from the drone and re-charged for the next mission, while
the drone leaves immediately for the next delivery with a swapped
battery.

Objective: There could be multiple objectives of the drone de-
livery business. Probably the most important objective would be
to maximize the profit of the business under a given time to deliv-
ery constraint. Also, it would be possible to minimize the time to
delivery under a fixed budget.

There are multiple design parameters that affect the objectives.
Number of batteries/drones/chargers: The most important de-
sign time parameters include the total number of batteries, the num-
ber of drones, the number of chargers to serve delivery requests. If
the number of battery sets is too large, the initial investment cost
will be high, and battery depreciation due to calendar aging will
increase the operating cost of the business. On the other hand, if
the number is too small, packets and drones might have to wait for
a battery to finish charging, increasing the time to delivery. Similar
principle holds for the number of drones and chargers.
Heterogeneous batteries/drones: Also, heterogeneous types of
batteries could be used. As it is quite likely for the distance to
destination and payload weight differ from delivery request to re-
quest. However, attaching an unnecessarily large battery to a drone
serving a delivery request requiring only small energy could be an
overkill due to its excessive weight. Thus, it might be a good idea to
use heterogeneous types of batteries to serve delivery request with
differing energy requirements. Another thing to note is that the
number of customer orders will not be constant, but likely to change
over time. While the peak and valley of the volume of customer or-
ders could differ drastically, the delivery business should be able to
maintain constant time to delivery. However, if the discussed de-
sign parameters are determined to satisfy the time to delivery con-
straint for the worst-case scenarios, this might be an overkill initial
investment that severely harms the profitability.

There are also runtime management techniques available.
Battery charging: The decision of when and how to charge the
batteries could affect the objectives. For example, it is generally
perceived that higher average state-of-charge (SOC) is harmful for
the battery life. If it is known when a battery will be discharged, in
our case when the battery will be used for a delivery task, charging
could be delayed as much as possible. A similar idea to extend
the battery life has been proposed for smartphones [15]. Charging
speed could also be a control knob for optimization. If a battery is
charged at higher rate, it would be able to serve more number of
flights per day. On the other hand, energy efficiency of charging
would be lower due to the rate capacity effect of batteries.

Battery attachment: We define the term battery attachment as a
mapping from a set of batteries to a set of drones, which corre-
sponds to attaching a battery to a drone. In the case of using het-
erogeneous types of batteries, the decision of which batteries to at-



tach to drones affects the objectives. Carrying just the right amount
of battery would be ideal, but due to practical reasons, the types of
available batteries will be limited, which forbids the drones to carry
the exact amount.

Drone selection: We might even have a heterogeneous types of
drones. Heavier and high-power drones for weighty packets, and
lighter low-power drones for lightweight packets.

Battery replacement: Battery replacement strategy involves the
decision of when to retire a battery from the battery pool and re-
place it with a newly purchased battery. There will be a trade-off
relationship between the purchasing cost and time to delivery as
will be described in the subsequent sections.

4. IMPACT OF BATTERY AGING

Battery capacity fading is one of the major consequences of SOH
degradation. Battery powered vehicles such as electric vehicles or
drones are very weight sensitive, so that capacity fading directly
impacts the performance of the vehicles. Capacity fading is caused
both by calendar aging and cycle aging. Calendar aging depends on
the ambient temperature and the average SOC of the battery. Cycle
aging occurs when the battery is in use. The aging rate depends sig-
nificantly on the SOC deviation and the charging/discharging rate.
As we are tackling the SOH degradation of the batteries for drones,
it is important that we use an accurate and elaborate SOH degrada-
tion model to verify our proposed idea. An elaborate model based
on theory of crack propagation in structural materials applied to
the battery electrodes, considers all these effects and calculates ca-
pacity fading over time [13]. The model calculates capacity fading
cycle-wise. First, the model derives the average SOC, SOC, over a
cycle as follows.

SoC - ( / SOC(t)dt) [T (1)

where T, is the duration of a cycle. The normalized SOC deviation
is calculated by

c:z\/fszm(soc(z)—W)zdt//Tm dt. 2)

Factor 2v/3 is to normalize the standard deviation to 1 for a full
cycle. The effective number of throughput cycles is denoted by N:

[ i(e)dt
N= /T 20mom” @)

We calculate the intermediate parameters L and L, for

Tref +273 ) lcycle
L =KeoN-exp( (6—1)—2L "=~ . @
1 co p(( )Kex(TB +273) llife ( )
Ly = Liexp(4Koc(SOC—0.5)) (1 - L), 5)

where K, is a normalization coefficient for N and K,, is a constant
exponent for depth of discharge. 7, is the reference battery tem-
perature of 25°C and T the battery temperature. f.y;. is the dura-
tion of one cycle and #;7, the shelf life at 25°C and 50% SOC until
80% of the initial capacity remain. Parameter L, reflects the effect
of average SOC with coefficient Ks,.. The above mentioned pa-
rameters were derived by [13] for the A123 ANR26650M1A cell.
Finally, the total increase in the life parameter is given by

Trer +273
Tg+273 )’
where K; accounts for a doubling of the decay rate for each 10°C

rise in temperature. Summing up the damage done by each cycle,
we calculate the remaining life of the battery.

L(T) = Laexp (Kt (T — Trey) (6)
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Figure 3: Battery capacity fading according to different DoD

(fully charged each cycle) using the model from [13].
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Figure 4: The impact of battery aging on time to delivery.

Battery aging has effects on various aspect of the drone delivery
business. Degraded cycle efficiency due to increased internal resis-
tance leads to increased cost in electricity bill. Degraded capacity
of a battery has profound impact on the packet waiting time defined
as the time a packet is waiting for a drone or a battery pack to be
ready for service. First, the number of batteries that are capable of
serving long-distance delivery decreases, and hence, such delivery
requests have to wait for a longer time. Second, degraded capacity
forces the battery to discharge more deeply, which increases the av-
erage charging time. We provide an averaged packet waiting time
in Figure 4.

S. COMPONENT MODELS

In this section, we provide the component models used for the
discrete-event simulator to evaluate the various costs related to the
drone delivery business.

Battery equivalent circuit model: We use a widely-known bat-
tery equivalent circuit model shown in Figure 5, where the param-
eters in the figure is given as follows [5].

Voc(SOC) = o,y ¢*259C 4 01350C3

+ 014S0C? + 015 SOC + 0y,
(XzzSOC

e + 03,
+ 033, (7

(soc)

( ) a3 SOC
Rtl(SOC) = 06416(XAZSOC + 0443,

(soc)
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Cy (SOC) = Og1 E%ZSOC + Olg3,

Drone power consumption: Battery powered drones, in gen-
eral, have limited flight time around 30 minutes and are very weight
sensitive. The flight time depends significantly on the battery and
payload weight. Flight time decreases as much as to 50% accord-
ing to the payload [1]. Battery weight and payload weight should
be chosen very carefully as it affects not only the energy efficiency,
but also the flight time and flight range. Drone power consump-
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Figure 6: Delivery task distribution according to flight distance
and arrival time per day where bin sizes are 1 km and 1 h.

tion depends significantly on types of vehicles and operating con-
ditions, and a number of models exist [1]. We use the following
drone power model from [8] and use parameters from [11].

» (2Mg)*/?
hover — — ;7 —x >
4./pA
1
Pirag = 5PCav*Ar, ®)
Ay =Ay-sin®+A, - cosb,
0= f(v)v

where Pj,,., i the hover power, M is the total weight of the drone
including battery and payload, g is the gravitational acceleration, p
is the air density, and A is the total area of the rotors. Drone angle,
0, is a function of the drone speed [17]. This is a very rough power
consumption model of a drone and it might differ from practical
cases where there is wind and other forces affecting the operation
of the drone. However, we emphasize that our technique does not
rely on the details of the power consumption model as long as the
major trade-off relationships, such as payload vs. flight time, hold.
Charger: We should also accurately quantify the effect of DC—
DC converters in the modular battery system architecture. One of
the major drawbacks preventing the use of the proposed architec-
ture is its complexity and energy efficiency decrease by adding ad-
ditional DC-DC converters in the power path. Well designed DC-
DC converters generally exhibit maximum conversion efficiency
of 90% to 95%, but its value changes according to input/output
voltage and current. For our case, the input and output voltage is
roughly fixed and does not change dynamically over a short pe-
riod of time. Therefore, without loss of generality, we use a curve-
fitted converter efficiency model taking only the load current into
account, where the efficiency value changes from 85% to 94.9%,
which corresponds well with the values of commercial products.
Task distribution: We assume that the distribution of the de-
livery request arrival time is not uniform over time of day, and it
will have peaks and valleys. Figure 6 shows the distribution of
the delivery task arrival time, which is used throughout the paper.
Delivery requests are made starting at 9 AM until 6 PM. We state
that our simulator and observed results do not dependent on par-
ticular distribution. The reason we have chosen linear distribution
for flight distance is that it would be the case if the area around the
packet station is uniformly populated and makes uniform number
of request per area. However, in practical scenarios, this distribu-
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tion might not be the case because the infrastructure would require
a significant space for storing products, and hence, be located at
outskirts of a city. The same goes for the task arrival time distri-
bution. The distribution of delivery requests according to time of
day might not necessarily follow the distribution shown in Figure 6,
but we reiterate that our framework is not dependent on the partic-
ular distributions. The total number of delivery requests per day
we have assumed is about 30,000, a value borrowed from data of a
large home-shopping company located in Dedemsvaart occupying
33,000 m? [10].

6. DELIVERY DRONE BATTERY SIMULA-
TOR

Towards the evaluation of various metrics related to the drone
delivery business, we have developed a discrete event simulator in
the context of this paper. Although there exist different frameworks
for discrete event simulation, in order to minimize the overhead, we
have developed our own simulator in C++ with support for mathe-
matical calculations from the GNU Scientific Library (GSL). The
architecture of the simulator is shown in Figure 7. The simulator
consists mainly of four modules, namely the event engine, the bat-
tery list, the drone list and the task list. The battery list, drone list
and task list manage a set of batteries, drones and tasks and their
state transition respectively. The simulator is driven by the event
engine, where events can be registered and triggered each at a spe-
cific time point in the simulation.

Batteries, drones and tasks: The battery list keeps track of a
set of batteries, which can be in one of the following states: avail-
able, deployed, used, charging and retired. A battery in the avail-
able state is fully charged and ready to be attached to drones. The
deployed state denotes that the battery is currently attached to a
drone in delivery. Once the drone returns, the battery is transferred
to the used state and waits to be recharged. If there is a charger
available, the battery can then be recharged (charging state) and
afterwards becomes available again. A battery maintains some in-
ternal variables like the SOC and parameters like the capacity. The
time that a battery stays in the deployed state depends on the flight
time of a specific task and can be calculated according to the char-
acteristics of the tasks and the SOC of the battery. The charging
time can be calculated by the current SOC, the battery capacity
and the charging current and voltage. After each charging cycle,
the battery capacity degradation and the aging mechanism are com-
puted. If the SOH deteriorates below a certain threshold, the battery
is no longer considered fit for usage and thus moved to the retired
state. New batteries can also be added to the list before the simula-
tion starts or during the simulation. The drones are managed by the



drone list module and can switch between the available, deployed
and retired state. The available and deployed state represent that the
drone is available for a delivery task or is currently serving a task
respectively. Similar to the batteries, if the performance of a drone
deteriorates, it can also be moved to the retired state and new drones
can be added to the simulation. A task instance is a four tuple of
order time, energy required for delivery, payload weight and dead-
line for delivery. A task can firstly be registered (registered state)
so that it is known to the simulator’s event engine. It becomes ar-
rived once the simulation time arrives at the pre-scheduled arrival
time of the task. Once a task arrives, if there are resources (drones
and batteries) available to make the flight, it will transit into the
serving state. After the flight time is finished, the task is moved to
the served state. Task series can be pre-generated before the simu-
lation starts or generated during the simulation. In the former case,
the task series can be loaded into the simulator at the beginning
and put into the inpool state. The tasks can then be registered dur-
ing the simulation based on different metrics (e.g., a fixed window
of time ahead). This implementation prevents the event engine to
be overloaded with tasks, in which case the simulation speed could
be slower.

Simulator engine and control flow: The control flow of the
simulator is based on the event engine, where a list of events, their
triggering time and callback functions are maintained. The sim-
ulator executes an indefinite loop until the event list is empty. In
each cycle, the simulation time proceeds to the next event trigger-
ing time, processes all events and then registers further events if
there is any. Examples of events include: (i) task arrival — a task is
scheduled to arrive, (ii) task service ends — the service of a delivery
task is scheduled to end, and (iii) charging finishes — the charging
of a battery is scheduled to end.

7. DESIGN SPACE EXPLORATION OF
DRONE INFRASTRUCTURE

There are a number of design parameters which affect the prof-
itability of the delivery business, for example, how many battery
modules and drones we should maintain according to different vol-
umes of delivery request. We analyze the relationship between the
following parameters to identify the appropriate value. This prob-
lem is a multi-objective problem where the objectives are the aver-
age packet waiting time, battery purchasing cost, electricity usage,
and so on.

7.1 Simulator Validation

Short-term simulation results: We first show the simulation
results in general. Figure 8 shows the results for two days in the
middle of a longer simulation. The simulation used 1,900 batteries
of 452.36 Wh capacity, 6 cells of [5] in series connection, which
is able to serve a flight of 30 km. The uppermost graph shows the
SOC trace of a randomly selected battery in the battery set. A bat-
tery serves multiple delivery requests per day as can be seen from
the graph. The second graph in Figure 8 shows the status of each
battery of the total battery set we have defined in Section 6. Outside
the service hours, all of the batteries are in the available state, while
during the service hours, the batteries are in corresponding states.
In this case, the number of batteries in available state reaches O dur-
ing the most busy hours and some delivery requests have to wait a
bit for a battery to be charged. The third graph in Figure 8 shows
the electricity usage from the grid. In this simulation, the batteries
are charged with a rate of 2C, and the sum of the charging power
reaches up to 900 kW. Inherent losses due to non-ideal battery cycle
efficiency and converter losses are also displayed. The last graph
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Figure 8: Short-term simulation traces for two days.

shows the number of delivery requests served during the time pe-
riod. There is a slight, but acceptable lag between delivery request
arrivals and actual service time as the number of batteries are not
determined for the worst case arrival rate.

Long-term simulation results: The result for a longer time pe-
riod, two years, is shown in Figure 9. The first graph in the figure
shows the SOC swing and capacity degradation of a selected bat-
tery. Since the time scale is much larger, not all the details of SOC
swing can be seen from the graph, but it is notable that the DoD
is generally increasing as the time proceeds and battery ages. In
slightly less than a year, the battery reaches its end of life capac-
ity and is no longer used anymore. The second graph shows the
packet waiting time, defined in Section 4, changes over the two
year period. As the simulation starts with a fresh battery set, no
batteries are retired for the first 200 days, and the average capac-
ity is monotonically decreasing. During this time period, there is
a clear increasing trend in the average packet waiting time, which
coincides with the description given in Section 4. Beyond this time
period, battery retirement becomes more like a regular event such
that the packet waiting time roughly converges around 15 minutes.
The third graph shows the number of retired batteries. The first rush
of battery retirement begins around 220 days, and the second rush
around 450 days. But as time proceeds, battery retirement rate sta-
bilizes. The last graph shows the final battery capacity distribution.
The distribution is almost evenly spread out, with newly replaced
batteries around day 700 on the right side of the distribution.

7.2 Design Space Exploration

Now, we perform a design space exploration of the infrastruc-
ture. The objectives we observe are as follows: The average packet
waiting time, initial investment cost, battery replacement cost due
to aging, and electricity usage. The control variables for the design
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space exploration are, the number of batteries, use of heterogeneous
types of batteries, size of batteries, and battery charging rate. We
also take a brief look into the effect of battery attachment policy
during runtime.

Impact of number of battery: Figure 10 shows the impact of
the total number of batteries and various costs and packet waiting
time. We have increased the total number of batteries from 1,700 to
2,200. The number of batteries below 1,700 resulted in intolerable
packet waiting times and was not further investigated. The capacity
of the batteries is again 6 cell 452.36 Wh used for the above sim-
ulations. We assumed the battery price of 500 USD/kWh and grid
electricity price of 20 cents/kWh. The exact current market price
might be different from the values, but the relative relationship is
still valid. Packet waiting time is 451 s when the number of battery
packs is 1,700, 87 s when the number is 1,900, and rapidly con-
verges to zero beyond this point. Meanwhile, the initial investment
cost in batteries and recurring battery replacement cost increases.
It is obvious that the initial investment cost increases linearly pro-
portional to the number of batteries. Recurring battery purchasing
cost increases from 491k USD to 563k USD. The reason why re-
curring battery replacement cost increases is the calendar aging of
the batteries. As we have stated in Section 4, the calendar aging
also plays a significant role and is largely affected by the average
SOC of a battery. Thus, it would be a good direction to search for
a better runtime algorithms, which makes use of delayed charging
similar to a smartphone usage case [15], or charging the battery to
just the appropriate amount. The electricity cost remains almost
the same, as the actual amount of energy required for the deliveries
does not change.

Impact of using heterogeneous sizes of battery: Figure 11
shows the impact of the number of small battery packs on the objec-
tives. We make mixed use of 226.18 Wh batteries together with the
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Figure 10: Impact of the total number of batteries on cost and
packet waiting time over two years.
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Figure 11: Impact of the portion of small size batteries on cost
and packet waiting time over two years.

452.36 Wh battery packs used in the above experiments. Through-
out the experiments in Figure 11, the total number of battery packs
is maintained to 2,200. The number of small battery packs corre-
sponds to the value on the x-axis, and the number of larger battery
packs is determined to match the total number 2,200. In this experi-
ment, the packet waiting time increases according to the increasing
portion of smaller batteries. This is due to the fact that delivery
request requiring large amount of energy has to wait for the larger
batteries to be available. If the number of larger battery is 0, some
requests will never be served, and hence, the result was excluded
from the graph. On the other hand, all the battery related costs de-
crease according to increased portion of smaller battery packs. It is
a trivial fact that the initial battery cost is reduced, as the summed
up energy of the whole battery set decreases. The reason the elec-
tricity cost reduces is that the drones fly with less battery weight,
and thus, it uses less amount of energy per flight. Also, the recur-
ring battery purchase costs decrease as the sum of total battery en-
ergy decreases, and drones make more energy efficient flights. The
tricky part in evaluating the benefit of using heterogeneous sizes of
battery packs is that, it might also be a fair comparison if the total
sum of battery capacity is fixed instead of the total number of bat-
teries as in Figure 11. In such case, the result is a combination of
Figure 10 and 11 such that packet waiting time is a convex func-
tion of the portion of the sum of small battery capacity. Whichever
analysis we adhere to, it indicates that having appropriate amount
of small battery is beneficial.

Impact of runtime allocation policy: We have implemented
two very simple runtime battery attachment policies and made a
few simulation runs with heterogeneous battery setup to test whether
it has impact on costs. The first policy is random policy, which
randomly selects a battery among the ones that satisfy the energy



Initial  Elec. Battery Wait
cost cost purchase time (s)
Random 4,750 14,595 9,718 100.32
Capacity 4,750 14,472 10,412 96.76
Random 5428 14,456 11,106 15.49
Capacity 5,428 14,243 11,800 12.88

Setup Policy

Setup 1

Setup 2

Table 1: Various costs and packet waiting time according to
battery attachment policy over two years (cost in USD).

End-of-life  Initial  Elec. Battery Wait

Setup threshold cost cost purchase time (s)
Setup 1 80% 4,750 14,472 10412 96.76
75% 4,750 14,439 7,678 112.56
80% 5428 14,243 11,800 12.88
Setup 2

75% 5,428 14,218 8,656 15.59

Table 2: Various costs and packet waiting time according to
battery end-of-life threshold over two years (cost in USD).

requirement of the delivery task. Drawback of this policy is that
unnecessarily large batteries could be assigned to delivery tasks
leading to lower energy efficiency. The second policy is capac-
ity policy, which selects the battery with the least surplus energy to
serve a task. The results are shown in Table 1. Setup 1 employs
30 large battery packs and 10 small battery packs, while setup 2
employs 30 large battery packs and 20 small battery packs. We
have studied a smaller set as capacity policy involved a procedure
scanning through all the batteries, therefore causing inefficient sim-
ulation. Surprisingly, the impact of battery attachment was not very
much significant. Capacity policy was able to reduce the electricity
cost as it makes more energy-efficient flights due to reduced battery
weight. However, the gain is marginal and it tends to increase the
recurring battery purchase costs. We speculate that this is partly due
to the side-effect of poorly designed capacity policy that prefers
degraded batteries over healthier batteries of same weight as they
have less energy margin. Degraded batteries will be exploited even
further while healthier batteries tend to be allocated later. Using
heterogeneous sizes of batteries already provides significant bene-
fits and the gain of battery attachment strategy is marginal under
the current simulation setup. Nevertheless, we do not conclude as
the battery attachment policy to be insignificant and leave possibil-
ity for improvement with a better designed runtime policy under
different battery setups.

Impact of end-of-life capacity threshold: In battery-power ve-
hicle applications, a battery is usually considered to have reached
the end-of-life when the capacity becomes 80% of its initial ca-
pacity. The exact threshold value differs from application to ap-
plication. Throughout the experiments above, we assumed that the
threshold is 80%, but setting a different value has significant im-
pact on the objectives. The results are shown in Table 2. Lowering
the threshold value to 75% decreases the recurring battery purchase
cost significantly with a marginal increase in the packet wait time.
The ratio of recurring battery purchase cost reduction roughly co-
incides with the ratio of extended lifetime of each battery (100%-
80%=20% to 25%). Assuming that battery aging ratio due to cycle
aging is similar for both cases, it is calendar aging that makes dif-
ference in the results. Unlike other battery-powered applications
such as electric vehicles where the drive-range is significantly af-
fected by the battery degradation, the drone delivery business as a
whole suffers less from extended end-of-life.

8. CONCLUDING REMARKS

In this paper, we proposed a holistic and detailed analysis on
the profitability and time to delivery of the drone delivery busi-

ness. While there is increasing attention on the design and naviga-
tion techniques of individual drones, this is the first work that ad-
dresses the feasibility and profitability of the whole business. We
have identified the source of major recurring costs, which are elec-
tricity cost and battery purchasing cost, and analyzed how they are
affected by design parameters and runtime techniques. Another
important parameter to take note is the packet waiting time, which
affects time to delivery, a critical metric for the success of such
business. The packet waiting time, in general, has a trade-off re-
lationship with the recurring costs, and hence, the design parame-
ters should be carefully chosen. The experimental results on our
discrete-event simulator also show that the packet waiting time,
and thus, the time to delivery, which is critical to the drone de-
livery business, is affected by the battery aging. As for the future
work, it would be interesting to perform systematic optimization
and find the appropriate design parameters and runtime algorithms
that balance the operating cost and the time to delivery according
to different delivery request patterns.
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