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Abstract—Transient stability analysis is a traditional yet sig-
nificant topic in power systems. In order to obtain the stability
domain of the post-fault equilibrium point, the Lyapunov method
is proven to be effective and efficient once a Lyapunov function
has been found. This paper proposes an approach to compute
the largest estimate of the Region of Attraction (ROA) of an
equilibrium point for power systems by using rational Lyapunov
functions. This class of Lyapunov functions is more general
than quadratic Lyapunov functions and polynomial Lyapunov
functions, thus embracing less-conservative results. Thecentral
idea of this paper is to reconstruct the non-polynomial power
systems to an uncertain differential algebraic systems viathe
multi-variate truncated Taylor expansion. An iteration pr ocedure
is proposed to compute the largest estimate of the ROA by
exploiting the Sum of Squares (SOS) technique and the Squared
Matrix Representation (SMR). A classical power system with
transfer conductances is studied to demonstrate the effectiveness
of the proposed approach.

Index Terms—Lyapunov methods, region of attraction, sum
of squares, power system transient stability, optimal rational
Lyapunov function, multi-variate truncated Taylor expansion.

I. I NTRODUCTION

Transient stability analysis of power systems has been
extensively investigated using the direct method [1]–[3].This
method is able to prevent the computationally demanding time-
domain simulation for the post-fault power grid, and provides
a Region of Attraction (ROA) in which the operating point
converges to the post-fault equilibrium point [4].

Amongst various kinds of the direct method, the exact
ROA can be obtained via theZubov equation method and
the maximal Lyapunov function method [5]. Nevertheless, the
solutions of Zubov equation and the maximal Lyapunov func-
tion are generally difficult to be found. Theclosest Unstable
Equilibrium Point (UEP) method andcontrolling UEP method
are viable for some specific power systems, but they demand
for the stability establishment of equilibrium points on the
stability boundary, and they are not immune to the second-
wing uprising [6].

Alternatively, thanks to the recent development of real
algebraic geometry and the Sum of Squares (SOS) technique,
efficient methods are proposed for estimating the ROA based
on Lyapunov function methods and polynomial approxima-
tions [7]–[10]. In [9], the state space is recast into an expanded
one by replacing the nonlinear terms in the system dynamic
with new variables. Using this method, Anghel, etc. propose
an algorithm to construct polynomial Lyapunov functions for
power systems with transfer conductances [11]. In [12], by

using the S-procedure and a V-s algorithm given by [10], a
polynomial Lyapunov function method is proposed for power
systems with single-variate Taylor polynomial (without using
any remainder).

However, existing work in transient stability analysis of
power systems uses quadratic Lyapunov functions or poly-
nomial Lyapunov functions, which are rather conservative
compared to rational Lyapunov functions. This paper extends
the result of [13] and proposes an approach to compute
the largest estimate of the ROA by using rational Lyapunov
functions. The following benefits can be provided for power
systems transient stability analysis: 1) This method can be
easily applied to any continuous-time power systems mod-
eled with analytic nonlinear functions; 2) a less-conservative
method is provided by using the optimal rational Lyapunov
function (ORLF) compared to the fixed rational Lyapunov
function and variable polynomial Lyapunov functions; 3) an
efficient computation is carried out by exploiting the SMR
technique which opens a path for constructing a quasi-convex
optimization problem instead of a non-convex one.

II. PRELIMINARIES

Notations:N,R: natural and real number sets;R
+: positive

real number set;0n: origin of Rn; R
n
0 : R

n\{0n}; |α|: sum
of all the elements of ann-dimensional multi-indexα =
(α1, . . . , αn) ∈ N

n, i.e., |α| = α1 + · · · + αn; α!: multi-
index factorial ofα, i.e.,α! = α1! . . . αn!; xα:xα1

1 . . . xαn

n , for
x ∈ R

n andα ∈ N
n; AT : transpose ofA; A > 0 (A ≥ 0):

symmetric positive definite (semidefinite) matrixA; A ⊗ B:
Kronecker product of matricesA and B; ver(P): set of
vertices of the polytopeP; deg(f): degree of polynomial
function f(x) in x; ∇f : gradient of f(x), i.e., ∇f =
( ∂f
∂x1

, . . . , ∂f
∂xn

)T ; (∗)TAB in a form of SMR:BTAB. P :
the set of polynomials;Pn×m: the set of matrix polynomial
with dimensionn×m.

A. Problem Formulation

In this paper, let us consider power systems depicted by an
autonomous set of nonlinear differential equations:

ẋ = f(x), x ∈ D (1)

wherex(t) ∈ R
n denotes the state vector andf : Rn → R

n is
a nonlinear function satisfying the locally Lipschitz condition,
x(0) = xinit ∈ R

n is the initial state,D ⊆ R
n is the domain.



For brevity, the dependence of functions on timet and state
x(t) will be omitted whenever reasonable.

In this paper, we are interested in estimating the ROA of
the post-fault equilibrium point. Without loss of generality, we
set the origin as the equilibrium-point of interest. First,let us
introduce the definition of the ROA of the origin, i.e.,

R =
{
xinit ∈ R

n : lim
t→+∞

χ(t;xinit) = 0n

}
, (2)

whereχ(t;xinit) denotes the solution of system (1) at timet,
starting from the initial statexinit. Since rational Lyapunov
functions are more general than quadratic and polynomial
ones, we aim to enlarge the sublevel set of a rational Lyapunov
function to inner-approximateR. Specifically, letV (x) be a
rational function of system (1)

V (x) =
Vnum(x)

Vden(x)
(3)

whereVnum ∈ P andVden ∈ P satisfy

∀x ∈ D, lim
‖x‖→∞

V (x) = ∞,

∀x ∈ D/{0n}, Vnum(x) > 0, and Vnum(0n) = 0,
∀x ∈ D, Vden(x) > 0,

(4)

andD is defined in (1). The sublevel set ofV (x) is

V(c) = {x ∈ R
n : V (x) ≤ c} (5)

wherec ∈ R
+. The functionv(x) is a Lyapunov function of

system (1) for the origin if

V̇ (x) < 0, ∀x ∈ D/{0n}. (6)

We propose the main problem: Find the ORLFv(x) whose
sublevel set is the largest under-estimate of the ROA, i.e.,
solving

µ = sup
c, v

ρ(V(c))

s.t.

{
(3)− (6) hold
V(c) ⊆ D

(7)

whereρ is a pre-definable measure ofV(c). An illustration
example of a Single-Machine-Infinite-Bus model is provided
below for easy understanding.

Example 1: The classical power system considered for
illustration is given by

{
δ̇ = ω

ω̇ =
1

M
(Pm − PM

e sin(δ) +Dω)
(8)

where δ is the generator rotor angle andω is the angular
velocity. Set up the inertial constantM = 0.026 [s2/rad],
the damping coefficientD to be 0.11[s/rad], the mechanical
power inputPm = 1.0 per unit and the electrical power output
PM
e = 1.35 per unit.
We transform the state space such that the equilibrium point

moves from (0.749,0) to the origin. By selecting a polynomial
Lyapunov functionV1(x) = 16x41 + 8x21 + 4x21x

2
2 + x22, the

sublevel setV1(c1) is shown in Fig. 1 to approximateR with
c1 = 1. Our goal is to find a rational Lyapunov functionV2(x)

satisfying (3)-(6) whose level setV2(c2) is larger thanV1(c1),
and in the end, find the ORLFV ∗(x) whose level setV∗(c∗)
is the largest inner-estimate ofR.
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Fig. 1. Illustration example: The solid red line indicates the exact ROA of the
origin; the solid yellow line and the dashed blue line indicate the boundaries
of the sublevel setsV1(c1) andV2(c2), respectively.

B. Basics of Sum of Squares (SOS)

A polynomial p(x) ∈ P is nonnegative ifp(x) ≥ 0 for
all x ∈ R

n. A powerful tool for checking whetherp(x)
is nonnegative consists of checking whetherp(x) can be
expressed as an SOS, i.e.,p(x) =

∑k
i=1 pi(x)

2 for some
p1, . . . , pk ∈ P . We denote the set of SOS polynomials as
PSOS. If p(x) ∈ PSOS becomes0 only for x = 0n and p(x)
is without monomials of degree 0 and 1, we callp(x) local
SOS which is denoted byPSOS

0 .
Consider a polynomialp1(x) ∈ PSOS

0 of degreedeg(p1),
define d(p1) as the smallest integer not less thandeg

x
(p1)
2 ,

i.e., d(p1) = ⌈deg
x
(p1)
2 ⌉. The SMR expression ofp1(x) is:

p1(x) = (∗)T (P1 + L1(γ))φ(n, d(p1)) (9)

where (∗)TAB is short for BTAB, P1 denotes the SMR
matrix of p1(x), n is the number of variables,φ(n, d(p1)) ∈
R

l1 is called the power vector containing all monomials of
degree less or equal tod(p1) but without degree0, L1(γ) is
a parameterization of the affine space

L1 = {L1(γ) ∈ R
l1×l1 : L1(γ) = LT

1 (γ),
(∗)TL1(γ)φ(n, d(p1)) = 0},

(10)

in which γ is a vector of free parameters.

III. O PTIMAL RATIONAL LYAPUNOV FUNCTION

APPROACH

In this section, we first sketch the main steps of our
approach. Then, each step will be explained in detail.

This approach provides a way to compute the largest esti-
mate with a fixed Lyapunov function. Then, iteratively, a better



Start Input

Step 1: System reformulation via Taylor expansion

Step 2: Enlarging estimate with a fixed Lyapunov function
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Fig. 2. Algorithm flowchart of the proposed approach.

Lyapunov function is sought and subsequently the estimate of
the ROA V(c) is enlarged. The iteration procedure is shown
in Fig. 2.
Step 1: System Reformulation by Using the Truncated Multi-
Variate Taylor Expansion

The main idea of this reformulation is to separate the
polynomial functions and the non-polynomial ones, then use
the truncated multi-variate Taylor expansion to approximate
the non-polynomial functions. Specifically, let us equivalently
rewrite the system (1) as

ẋ(t) = h(x(t)) +

r∑

i=1

gi(x(t))ζi(x(t)), x ∈ D (11)

whereh(x(t)), g(x(t)) ∈ Pn are vector polynomial functions,
ζ1(x(t)), . . . , ζr(x(t)) : Rn → R denote the non-polynomial
functions. We assume thatζi, i = 1, . . . , r, are analytic
functions withinD. Let us introduce the multi-index notations:
|α| = α1 + · · · + αn, α! = α1! . . . αn!, x

α = xα1

1 . . . xαn

n

where x ∈ R
n and α = (α1, . . . , αn)

T ∈ N
n is an n-

dimensional multi-index. Thek-th order of mixed derivatives
at the origin can be expressed byDαζ = ∂ζ|α|

∂xα1 ...∂xαn
, for

some |α| = k. Thus, ζi in (11) could be rewritten by the
multi-variate Taylor expansion evaluated at the origin:

ζi(x) = ηi(x) +
∑

|β|=k+1

ξi
xβ

β!
(12)

whereξi ∈ R is a bounded parameter,k denotes the trunca-
tion degree andηi(x) is the k-th order Taylor polynomial:
ηi(x) =

∑
|α|≤kD

αζi(x)
∣∣
x=0

xα

α! . We use the parameters
ξi to over-approximate the Taylor remainderζi − ηi, where
ξ = (ξ1, . . . , ξr)

T is in the orthotope

Ξ = [τ1, τ1]× · · · × [τr, τ r] (13)

andτ i, τ i ∈ R, i = 1, . . . , r. Please refer to [13] for the case
of single-variate trauncated Taylor expansion.
Step 2: Enlarging Estimate with a Fixed Lyapunov Function

In order to solve the problem (7), one important step is
to search the largest estimate of the ROA with a selected
Lypaunov function, i.e., computing

c∗ = sup c (14)

with a ratioinal functionV (x) such that (3)-(6) hold for all
ξi ∈ Ξ, and for alli = 1, . . . , r. This step provides a possible
solution for this problem by using thelocal SOS cone [13]
and thereal Positivstellensatz [7], [8]. In specific, the lower
bound ofc∗ in (14) can be obtained by handling the remainder
of the Taylor expansion in a robust fashion:
ck is a lower bound ofc∗ if there exists a polynomials(x) ∈

PSOS
0 whereck can be computed by

ck = sup
c, s

c

s.t.





−ψ(x, c, s(x), ξ) ∈ PSOS
0

∀x ∈ V(c) \ {0}
∀ξi ∈ ver(Ξ), i = 1, . . . , r,

(15)

in which k is the truncation degree in (12),

σ(x) = Vden(x)∇Vnum − Vnum(x)∇Vden (16)

r(x) = σ(x)

(
h(x) +

r∑

i=1

gi(x)ηi(x)

)
(17)

qi(x) = σ(x)gi(x)
∑

|β|=k+1

xβ

β!
(18)

q(x) = (q1(x), . . . , qr(x))
T (19)

ψ(x, c, s(x), ξ) = r(x) + q(x)T ξ
+s(x)(cVden(x) − Vnum(x)),

(20)

and ver(Ξ) is the set of vertices ofΞ.
Step 3: Quasi-Convex Optimization via SMR

Observe that solving (15) is not simple for the reason
that there is no existing method for local SOS programming,
e.g., MATLAB toolboxes YALMIP, SOSOPT and SOSTOOLS
cannot handle this problem directly. To overcome these issues,
the class of SMR for local SOS will be introduced, and a quasi-
convex optimization problem will be formulated instead of the
non-convex problem (15).

Let us introduce the SMR expressionss(x) =
(∗)TSφ(n, d(q)), ψ(x, c, s(x), ξ) = (∗)T (Ψ(c, S, ξ) +
L(γ)) · φ(n, d(ψ)), and polynomials

u(x) = u1(x) + u2(x) (21)

u1(x) = −r(x) − q(x)T ξ + s(x)Vnum(x) (22)

u2(x) = s(x)Ṽ (x) (23)

Ṽ (x) = Vden(x) + λVnum (24)

whereR(ξ), W (S), U2(S) and Ṽ are the SMR matrix of
−r(x)− q(x)T ξ, s(x)Vnum(x), u2(x) and Ṽ (x) respectively.



For a selected truncation degreek, consider a positive scalar
λ ∈ R

+ and a rational functionV (x) : Rn → R satisfying
(3)-(4), ck in (15) can be computed by

ck = −
ẽ

1 + λẽ
(25)

whereẽ is the solution of the following GEVP

ẽ = inf
e, S, γ

e

s.t.






S > 0
eU2(S) > −R(ξ)−W (S)− L(γ)
∀ξ ∈ ver(Ξ).

(26)

For more details of GEVP, please refer to [14].
Step 4: Searching for the ORLF

In this step, we will explain how to find the ORLF. First,
let us uses the following way to obtain the initial rational
Lyapunov functionV0(x): Select

V0(x) =
Vq + Va
Vden

(27)

fulfilling (4) whereVq(x) is a quadratic Lyapunov function for
the linearized system of (1), andVa is an auxiliary polynomial
function which can be simply selected as(xTx) · (xTPx). We
aim to find the ORLF by enlarging a selected geometric shape
within V(c) [10]. In specific, consider

µ̃ = sup
V,ǫ

ǫ

s.t.





S(ǫ) ⊆ V(c)
(3)− (6) hold
ξi ∈ Ξ, ∀i = 1, . . . , r

(28)

where S(ǫ) = {x ∈ R
n : S (x) ≤ ǫ} and S (x) is a

selected polynomial, e.g., chooseS (x) = ‖x‖2, then the
corresponding sublevel sets ofS(ǫ) are in a spherical shape.
Similar to (15), we propose the following optimization to get
a lower bound ofρ(V(c)):

µ̄ = sup
V,ǫ,s̃

ǫ

s.t.





s̃ ∈ PSOS , s ∈ PSOS
0

(ckVden − Vnum)− s̃(ǫ− S ) ∈ PSOS

−ψ(x, ck, s(x), ξ) ∈ PSOS
0

∀ξi ∈ ver(Ξ), ∀i = 1, . . . , r.

(29)

The above problem is non-convex, and only suboptimal so-
lution can be obtained. To solve (29), a GEVP can also be
derived by using SMR technique (similar to (26)). Due to
limited space, we omit here.

Note that 1) If one cannot find aV(ck), a step of modi-
fication is needed, i.e., increase the truncation degreek and
the degrees ofs, s̃, Vden and Vnum. Also, set up a suitable
iteration numbernit; 2) this approach only involves matrix
inequalities consisting of GEVPs and LMIs. In addition, SMR
decomposition is applied only once for the whole procedure,
making this method more efficient than straightforwardly using
SOS.

Fig. 3. Double-machine versus infinite bus power system.

IV. CASE STUDY

Consider a double-machine versus infinite bus power system
with transfer conductances, which is shown in Fig. 3 [4], [11].
It can be expressed by

ẋ1 = x2

ẋ2 = 33.5849− 1.8868cos(x1 − x3)− 5.2830cos(x1)

− 59.6226sin(x1)− 16.9811sin(x1 − x3)− 1.8868x2

ẋ3 = x4

ẋ4 = 48.4810 + 11.3924sin(x1 − x3)− 3.2278cos(x3)

− 99.3761sin(x3)− 1.2658cos(x1 − x3)− 1.2658x4

wherex1 andx3 denote the generator phase angles,x2 andx4
denote the angular velocities. A stable equilibrium point can
be found at (0.4680,0, 0.4630, 0). Lety = (y1, y2, y3, y4)

T =
(x1−0.4680, x2, x3−0.4630, x4)

T , we reformulate the above
system in the format of system (11)

ẏ1 = y2

ẏ2 = 33.5849− 1.8868y2 − 1.8868η1 − 5.2830η2

− 59.6226η3 − 16.9811η4

ẏ3 = y4

ẏ4 = 48.4810− 1.2658y4 − 1.2658η1 + 11.3924η4

− 3.2278η5 − 99.3761η6

whereη1 = cos(y1−y3+0.005), η2 = cos(y1), η3 = sin(y1),
η4 = sin(y1 − y3 + 0.005), η5 = cos(y3), andη6 = sin(y3).
Let us select the initial rational Lyapunov function via (27) as

V1(y) =
y21 + y22 + y23 + y24 + y41 − y21y

2
3 + y43

1 + 2y1 + y2 − 2y3 + 8y21 + 4y22 + 4y23
, (30)

and set the truncation degreek = 5, the shape polynomial
S = y21+y

2
2+y

2
3+0.5y1y3+y

2
4, the degreesdeg(s) = 6 and

deg(s̃) = 4. We display the computation results in Tab. I with
different degree combinations of rational Lyapunov functions.
Let the ORLF withdeg(Vnum) = 4 and deg(Vden) = 2 be
V3(y), and we compare this approach with the method of
finding an optimal polynomial Lyapunov functionsV2(y) with
degree 4 [13]. The result shows a comparatively larger estimate
one can obtain by using the proposed approach (see Fig. 4).



This means that by using the ORLF approach, a better estimate
of ROA can be obtained for the post-fault power system. Due
to the limited space, the expressions ofV2(y) andV3(y) are
omitted here.

TABLE I
THE VALUES OFck AND ǫ FOR SOME DEGREES OFLYAPUNOV FUNCTION

AND THE CORRESPONDING COMPUTATIONAL TIMEtc .

deg(Vnum) deg(Vden) ck ǫ nit tc[s]

2 0 0.073 0.029 4 18.528

2 2 1.074 0.673 6 53.871

4 2 1.653 1.038 8 183.735

−2 −1 0 1 2
−2

−1

0

1

2

y1(t)

y
3
(t
)

V3(y)=1.653

V2(y)=0.096 V1(y)=0.251

Fig. 4. The computational results shown in the angel spacey2 = y4 =
0.85: The solid blue line and green line indicate the specific boundaries of
the sublevel sets by usingV1(y) andV2(y), respectively; the solid red line
indicates the boundary of the largest estimate of ROA by using the ORLF
V3(y).

V. CONCLUSION AND FUTURE WORK

This paper provides an approach to compute the largest
estimate of ROA of power systems by searching the ORLF.
The multi-variate truncated Taylor expansion is exploitedto
reformulate the nonlinear dynamics of power system into
an uncertain algebraic systems with parametric uncertainties
constrained in a bounded orthotope. Then, we propose an
approach to establish the estimate of the ROA by using local
SOS conditions. Based on this, a quasi-convex optimization
consisting of a GEVP is constructed via SMR technique.
Moreover, a strategy to compute the largest estimate of the
ROA is provided for searching the ORLF. Verified by a
classical power system, it is shown that a larger estimate of
the ROA can be obtained by the proposed method.

Like other approaches using SOS relaxation, this method
also suffers from the high numerical complexity when we

select high-order auxiliary functions and large-scale power
system. Thus, a reasonable extension of this work is to
find an optimal decomposition strategy for large-scale power
systems considering the interactions between subsystems,see
the pioneer work in [15]. Extra efforts would be devoted to the
synthesis problem [13], the comparison with the reachability
analysis [16], and the robust stability problem [17].
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