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KURZFASSUNG

Stochastische Modelle in der Strömungsdynamik werden verwendet, um Phänomene mit
Skalenseparation zu beschreiben und stellen ein System von Differentialgleichungen mit
einem stochastischen Term dar. Die Lösung stochastischer Gleichungen erfordert anspruchs-
volle numerische Algorithmen, die verwendet werden können, um das Anwendungsspek-
trum stochastischer Modelle zu erweitern. Numerische Algorithmen für stochastische Mod-
elle können sich von denen unterscheiden, die in deterministischen Modellen zum Einsatz
kommen. Die Analyse stochastischer Modelle durch Simulationen kann genutzt werden,
um die Genauigkeit der Algorithmen abzuschätzen.

Verschiedene stochastische Modelle können die gleichen physikalischen Phänomene repräsen-
tieren und können in ähnlichen technischen Anwendungen eingesetzt werden. Die Äquiv-
alenz der Modellparameter ist nicht immer gut definiert. Die Analyse stochastischer Mod-
elle bietet die Möglichkeit, unterschiedliche stochastische Modelle miteinander zu verknüpfen
und eventuell neue Anwendungen der vorhandenen Modelle zu finden.

In dieser Arbeit werden stochastische Modelle für zwei verschiedene Phänomene betrachtet:
turbulente Strömung und thermische Fluktuationen. Die entsprechende Analyse, die auf
Simulationen basiert, wird präsentiert. Die Arbeit ist folgendermaßen gegliedert:

In Kapitel 1 wird die Motivation der Arbeit dargelegt, die eng mit jüngsten Leistungen
im Bereich stochastischer Modelle in der Strömungsmechanik verknüpft ist. Die Übersicht
über die stochastischen Modelle mit ihren Anwendungen wird aufgeführt, gefolgt von der
Liste der statistischen Größen, die für die Analyse von stochastischen Modellen durch Sim-
ulationen verwendet werden können. In Kapitel 2 werden mehrere stochastische Modelle,
wie gitterbasiertes Landau-Lifshitz-Navier-Stokes Gleichungen, Smoothed Dissipative Par-
ticle Dynamics, Dissipative Particle Dynamics und Langevin-Modelle in der Eulerschen
und Lagrangeschen Betrachutungsweise. Dabei wird ein Augenmerk auf die Diskussion
der neuesten numerischen Algorithmen und statistischen Modellparameter gelegt. Die
Erkenntnisse der wichtigsten durch Fachleute begutachteten Publikationen sind in Kapitel
3 aufgeführt. Die Liste der Veröffentlichungen wird in Kapitel 4 präsentiert. Im An-
hang A sind drei Hauptpublikationen samt der Veröffentlichungsvereinbarungsmitteilung
zur Wiederverwendung angefügt.
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ABSTRACT

Stochastic models in fluid dynamics are used to represent phenomena with scale separation
and consist of a system of differential equations with a random term. The solution of the
stochastic equations requires sophisticated numerical algorithms that can be used to expand
the range of application of stochastic models. Numerical algorithms for stochastic models
can differ from the ones those are used in deterministic models. The analysis of stochastic
models by simulations can be used to estimate an accuracy of the algorithms.

Different stochastic models might represent the same physical phenomena and can be used
in similar engineering applications. The correspondence between parameters of such mod-
els is not always well defined. Analysis of stochastic models offers the way to link different
stochastic models with each other and possibly find new applications of the existing mod-
els.

In this thesis, stochastic models for two different phenomena are considered: turbulent
flow and thermal fluctuations. The corresponding analysis that relies on simulations is
provided. The thesis is structured in the following way:

In Chapter 1, the motivation of the thesis is stated, which is closely related to the recent
achievements of stochastic models in fluid dynamics. The overview of stochastic models
with applications is given, followed by a list of statistical characteristics that can be used
for the analysis of stochastic models by simulations. In Chapter 2, several stochastic mod-
els such as grid-based Landau-Lifshitz Navier-Stokes equations, the smoothed dissipative
particle dynamics, the dissipative particle dynamics and the Langevin models in Eulerian
and Lagrangian reference frames are described in more details along with a discussion on
the recent numerical algorithms and statistical characteristics of the models. Key findings
of the main peer-reviewed publications are listed in Chapter 3. The list of publications
can be found in Chapter 4 and the three major publications with the publisher agreement
notification to reuse are attached in Appendix A.
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1 INTRODUCTION

The word stochastic comes from the Greek word “στ óχoζ” (stokhos), which can be trans-
lated as “aim”. “Stochastic” means being or having a random variable. Stochastic models
in physics and engineering are used in phenomena with scale separation. In fluid dynamics,
scale separation occurs due to the different characteristic times and characteristic lengths.
In this thesis, I consider two examples of fluid dynamics phenomena where stochastic mod-
els are used: thermal fluctuations and turbulent flows. Thermal fluctuations appear due to
collisions of molecules. Results of molecular collisions can influence the behavior of liquids
beyond the characteristic time and length scales of molecular collisions. Turbulent flows
are characterized by the random motion on a wide range of timescales and length scales.
The common way to model turbulent flows is to separate scales of the mean-field velocity
and fluctuating small-scale velocity. Stochastic models are used to represent the behavior
of subgrid-scales in turbulent flows.

Stochastic models in fluid dynamics allow for taking into account for multiple possible
outcomes and in this sense, are superior to deterministic models. In stochastic models, one
has to consider average characteristics and probabilities of outcomes. In certain cases, the
probabilities can be derived analytically. To extend stochastic models to a wider range of
cases, suitable numerical algorithms have to be developed. The numerical algorithms that
are used for deterministic models might not accurately represent the statistical properties
of stochastic models and the development of new algorithms is of interest.
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1 Introduction

In this thesis, I present an overview of the stochastic models that are used in engineering
and physical applications to describe thermal fluctuations and turbulent flows. This is
followed by the general description of statistical characteristics that can be used to analyze
the stochastic models in fluid dynamics. In the second chapter, several stochastic mod-
els are described in more detail with corresponding numerical algorithms and statistical
characteristics for each model. In the third chapter, the accomplishments are provided.

1.1 MOTIVATION

Navier-Stokes equations describe conservation of mass, momentum and energy in fluids [1,
2]. Navier-Stokes equations are partial differential equations which represent a wide range
of phenomena in fluid dynamics. Navier-Stokes equations are limited to large scales of
fluids. On small scales, where thermal fluctuations and diffusion of molecules are important,
Navier-Stokes equations might be inaccurate. An accurate method to account for such
small-scale phenomena is the deterministic model of molecular dynamics (MD). In MD, a
simplified, coarse-grained model of molecules is used. The molecules interact with certain
forces. These forces sometimes can be measured in experiments or deduced from more
detailed, quantum mechanical description. As MD is itself a simplified model of quantum
mechanics, it represents the motion of one single molecule only with a certain degree of
accuracy. However, for the collective motion of molecules, MD shows accurate results [3, 4].
The main drawback of the MD method is the large computational cost of simulations.

Navier-Stokes equations describe motion of fluids on large scales and MD model describes
the motion of fluids on small scales. A certain gap exists between descriptions of large
and small scales. In this gap, Navier-Stokes equations are not valid and MD description is
too slow, even for the modern computational methods. Two different approaches exist for
filling this gap: top-down and bottom-up. The top-down approach suggests an extension of
Navier-Stokes equations to model phenomena beyond the limit of Navier-Stokes equations.
The following stochastic models can be associated with the top-down approach: Landau-
Lifshitz Navier-Stokes equations, smoothed dissipative particle dynamics and stochastic
models for turbulent flows. The bottom-up approach constitutes coarse-graining of MD.
The models that are associated with the bottom-up approaches are dissipative particle
dynamics, multiparticle collision dynamics or stochastic rotation dynamics and lattice-
Boltzmann method. Stochastic models are used in both top-down and bottom-up ap-
proaches.

The first stochastic model for fluid dynamics phenomena was introduced in 1908 by Paul
Langevin [5]. The Langevin model serves to describe Brownian motion, which is the random
movement of a particle due to collisions with smaller molecules. Years later, another
remarkable work of Landau and Lifshitz suggested an extension of the Navier-Stokes (NS)
equations with a stochastic term to account for thermal fluctuations [1]. The stochastic
term is added to NS equations to satisfy fluctuation-dissipation balance [6]. The extended
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1.1 Motivation

version of NS equations is usually referred in the literature as the Landau-Lifshitz Navier-
Stokes (LLNS) equations. In addition to the modeling of thermal fluctuations, stochastic
models are also used to study other complex phenomena in fluids. Generalized Langevin
model (GLM) for turbulent and reactive flows was introduced in 80-es [7, 8, 9]. In GLM,
the mean flow is driven by averaged NS equations, and NS equations are resolved with finite
volume or finite difference approaches [10, 11]. A modified version of Langevin equations
is used as a subgrid-scale model. In GLM, Langevin equations and NS equations are
coupled with each other. With development of computers, many models were introduced
to fill out the gap between MD and NS: Direct simulation Monte-Carlo (DSMC) [12, 13,
14], dissipative particle dynamics (DPD) [15, 16], smoothed dissipative particle dynamics
(SDPD) [17, 18, 19]. Models differ by the length scales and cases of application as well as
types of discretizations.

Figure 1.1: Scheme of models in hydrodynamics depending on length scales. Dimension of
length scales is in meters. Red color mark the models which are considered in
more details in the thesis. Generalized Langevin model in Eulerian reference
frame (GLMEF) has a question mark as the application range is not yet well
defined.
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1 Introduction

In models for fluid dynamics, two different types of discretization exist: Lagrangian and
Eulerian. The Eulerian type is based on grid representation. Corresponding equations
in the Eulerian type of models are represented in the grid points. The grid points can
change in time, for example, adapting to flow field. However, grid points always preserve
the certain spatial structure. In the Lagrangian type, which is sometimes referred to as
meshless, the flow is represented by particles. Values of corresponding fields are attached
to positions of particles. The schema of different types of stochastic models and the range
of applications is depicted in Fig.1.1.

Different discretization types of the LLNS equations exist: a grid-based discretization
as well as a particle discretization. In this thesis, the LLNS model is referred to the
grid-based discretization of the LLNS equations. The LLNS equations can be derived by
several analytical approaches for equilibrium fluctuations [1, 20, 21, 22]. For nonequilibrium
thermal fluctuations, the validity of the LLNS equations was shown [23] and compared
with molecular dynamics simulations [24, 25, 26]. The LLNS model was used for the
description of breakup of nanojets [27, 28] and collapsing nanobridges [29], to represent
thermal fluctuations in argon and water [30] and random walk of standing shocks [31].
Further improvement of numerical methods allowed to implement the LLNS model to
represent the phenomena of giant fluctuations in fluids [32, 33, 34]. The phenomenon
occurs when one considers gradient in concentration field with the presence of thermal
fluctuations in microgravity conditions. The nature of the giant fluctuations is reversible
and is related to advection by velocity fluctuations. The LLNS model is used to speed up
numerical algorithm of MD [35] where the LLNS model was coupled with MD simulation
of protein in the hybrid algorithm. In this setup, the LLNS model represents the outer
level, while the layer of liquid around protein, as well as protein itself, are represented
with MD. Moreover, the LLNS model was used to study Rayleigh-Taylor instability [36].
Recently, an algorithm for fluid-structure interaction for the LLNS model [37], which is
able to significantly extend the range of application of the LLNS model, was developed.

Smoothed particle hydrodynamics (SPH) was introduced [38, 39] and is widely used as a
Lagrangian approach to solve NS equations [40]. SDPD is an extension of SPH to the phe-
nomena where thermal fluctuations are important [15, 16]. The fluctuations are added in a
way to satisfy fluctuation-dissipation balance using General Equation for Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC) formalism [41, 42, 43]. One particle in SDPD
represents a discretized piece of fluid. SDPD originates from SPH and can be considered as
a particle representation of the LLNS equations [44]. SDPD model is expected to be slower,
than the model that is based on grid-based the LLNS equations in a wide range of cases.
However, one of the benefits of SDPD is that, due to meshless properties, it is well-suited
for phenomena with complex geometries. SDPD is used in simulations of DNA chains in
flow [45, 46, 47, 48, 49]. In SDPD, DNA chains are modeled with connected particles. A
single particle should be understood as representing the properties of “cluster” of molecules.
SDPD model suspensions of colloidal particles [50, 51, 52]. SDPD is also used in simula-
tions of flows of red blood cells to improve and model drug delivery, microvascular blood
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1.1 Motivation

flows, white blood cell margination in microcirculation, deterministic lateral displacement
(DLD) devices for hydrodynamic size-depending separation of cells [53, 54, 55, 56].

Lattice-Boltzmann is a Eulerian model that is used to discretize Boltzmann equation.
Bolzman equation is solved in statistical manner in lattices [57, 58, 59, 60, 61]. Ther-
mal fluctuations can be added to lattice-Boltzmann model in different ways [62, 63, 64].
The derived equations can be considered as lattice-Boltzmann representation of the LLNS
equations. The corresponding model was applied to investigate different phenomena with
thermal fluctuations [65, 66, 67].

DPD was introduced and developed as a coarse-graining model of MD [17, 18, 19]. DPD is
used to represent complex phenomena in polymers [19], colloids [68], and membranes [69].
The DPD model is similar to SDPD, as it is also a Lagrangian approach and in the limit of
large scales have similar properties as the LLNS equations [70]. Though, DPD is derived
using bottom-up approach and SDPD is the top-down model. One of the challenges in the
DPD model is to set appropriate parameters to represent the phenomena of interest. In
general case, no accurate relations between mesoscopic parameters of DPD, microscopic
potential of MD and macroscopic parameters of NS equations exist. Despite the numerous
efforts to derive such relations [70, 71, 72, 73], theory is still under development. The
current progress is related to implementation of Mori-Zwanzig formalism [74, 75, 76], which
allows to derive coarse-grained model of star polymer melt [77]. Another improvement of
the DPD model is related to energy conservative formulation [78, 79, 80].

It is possible to implement the bottom-up approach to Boltzmann equation to derive the
model for hydrodynamics with thermal fluctuations. The DSMC proposed by Bird [12,
13, 14] is an example of such model. The DSMC model is a powerful tool in solving flows
with high Knudsen number (Kn), in which length scales of interest are comparable with
the mean-free path of gas molecules. An extended version of DSMC to represent thermal
fluctuations in fluids was introduced in [81]. The new model was denoted multiparticle
collision dynamics (MPCD) or stochastic rotation dynamics (SRD) [82, 83, 84] and is used
as a coarse-grained model in fluids.

Langevin model was introduced for a description of Brownian motion [5]. Two forces act
on the Langevin particle: the dissipative force represents a friction of Brownian particle
with media and the random force represents collisions with liquid molecules. Fokker-Planck
equation describes the evolution of probability density function of the velocity of a Brown-
ian particle in time [85, 86]. Joint-PDF of velocity and position of a Brownian particle can
be derived from Fokker-Planck equation [87, 88]. For the last centuries, Langevin equations
were applied to the different aspects of fluid dynamics. Though, beyond the modeling of
Brownian motion [89, 90, 91], Langevin model is used to describe the motion of molecules.
The method was denoted as Brownian Dynamics [92]. Langevin model is used as a ther-
mostat for MD simulations allowing to speed up numerical algorithms [93, 94]. Langevin
model can be used for complex non-linear phenomena in fluid dynamics, such as turbulent
and reactive flows [7, 8, 95] and polydisperse turbulent two-phase flows [96].
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1 Introduction

To analyze stochastic models in this thesis, I consider different statistical characteristics
that can be measured in simulations. The method to evaluate the characteristics is sim-
ilar for the considered stochastic models. For certain stochastic models, the analytical
expressions for such characteristics can be derived. The definitions of the characteristics
are provided in the next section.

1.2 CHARACTERISTICS OF STOCHASTIC MODELS

Stochastic models deal with random variables. The probability density function (PDF) is
the main characteristic of a random variable. PDF f(x) of a continuous random variable
can be defined from cumulative distribution function [97]

f(x) = lim
h→0

F (x+ h)− F (x)

h
(1.1)

where F (x) = P (X ≤ x) is the cumulative distribution function of continuous variable.
Average and variance of this random variable are given by

〈A〉 ≡
∫ ∞

−∞
f(V, t)V dV , (1.2)

〈(A− 〈A〉)2〉 ≡
∫ ∞

−∞
f(V, t)(V − 〈A〉)2dV . (1.3)

Here operator 〈•〉 is defined by equations (1.2). In experiments and simulations, the av-
eraging can be used in the different ways [97]. One can measure mean value in stationary
process (over a time interval T ) as

〈A〉T ≡
1

T

∫ t+T

t

A(t)dt . (1.4)

If the experiment can be repeated multiple times N , then average in ensemble is

〈A〉N ≡
1

N

N∑

n=1

An(t) . (1.5)

The common situation is that considered system has more than one random variables,
which are correlated. Let us consider the system with two random dependent variables
A1(t), A2(t). Such system can be described with a joint-PDF function P (A1, A2, t), which
is the probability that A1 and A2 will take certain values simultaneously in time t. The
other important characteristic is a conditional PDF P (A1, t|A2). It is the probability stated
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1.2 Characteristics of Stochastic Models

that variable A1 will take the certain value in time t, given that the second variable took
value A2. The relation of joint-PDF and conditional PDF is given by [97]

P (A1, A2, t) = P (A1, t|A2)P (A2) .

The joint-PDF of all variables in the model is the most general characteristic of the model.
When the joint-PDF is determined, one can derive corresponding mean characteristics
by averaging, which is defined similarly to the eq. 1.2. A numerical algorithm has to
correctly represent the joint-PDF of all variables of the model. However, joint-PDF is a
bad candidate to rely on in analysis as it is hard to measure in experiments and can be
derived analytically only in the certain cases. In the next three sections, other statistical
characteristics are considered: stationary PDF, static structure factor, dynamic structure
factor and current autocorrelation functions.

1.2.1 STATIONARY PROBABILITY DENSITY FUNCTION

Stationary PDF P (A) can be defined as a limit of PDF P (A, t) in time

P (A) = lim
t→∞

P (A, t) .

Stationary PDF of velocity and density fields can be derived for a wide range of stochastic
models in fluid dynamics. If stationary PDF is Gaussian, it is characterized solely by
mean value limt→∞〈A(t)〉 and variance limt→∞〈A(t)−〈A(t)〉2〉. Stationary PDF of certain
characteristics can be estimated in experiments [98, 99, 100].

1.2.2 CURRENT AUTOCORRELATION FUNCTIONS

Current autocorrelation functions (CACF) can be determined in simulations for stochastic
models both in Eulerian and Lagrangian reference frames. To compute CACF in simu-
lation, every certain time period velocity field u(x, y, z) is transformed to Fourier space
ŵ(qx, qy, qz). Different notation in u and w emphasize the difference between current and
velocity fields. The velocity field u might be represented in both Eulerian and Lagrangian
reference frames. The current field w is attached to the Eulerian reference frame. Autocor-
relation of derived Fourier modes of the current field is evaluated. One can distinguish two
different kinds of CACF: longitudinal (LCACF) and transverse (TCACF). In 3D domain
three LCACF are

9



1 Introduction

Figure 1.2: The decay of initial sinusoidal wave in velocity field. In the left figure, the
initial sinusoidal wave is set parallel to the velocity direction, which formally
corresponds to longitudinal current autocorrelation functions (LCACF). In the
right figure, perpendicular sinusoidal wave corresponds to transversal current
autocorrelation functions (TCACF).

C‖(qx, t) =
〈ŵx(qx, 0)ŵx(qx, t)〉

δŵ2
x(qx, 0)

, C‖(qy, t) =
〈ŵy(qy, 0)ŵy(qy, t)〉

δŵ2
y(qy, 0)

,

C‖(qz, t) =
〈ŵz(qz, 0)ŵz(qz, t)〉

δŵ2
z(qz, 0)

, (1.6)

and six different TCACF are

Cxy⊥(qx, t) =
〈ŵy(qx, 0)ŵy(qx, t)〉

δŵ2
y(qx, 0)

, Cxz⊥(qx, t) =
〈ŵz(qx, 0)ŵz(qx, t)〉

δŵ2
z(qx, 0)

,

Cyz⊥(qy, t) =
〈ŵz(qy, 0)ŵz(qy, t)〉

δŵ2
z(qy, 0)

, Cyx⊥(qy, t) =
〈ŵx(qy, 0)ŵx(qy, t)〉

δŵ2
x(qy, 0)

,

Czy⊥(qz, t) =
〈ŵy(qz, 0)ŵy(qz, t)〉

δŵ2
y(qz, 0)

, Czx⊥(qz, t) =
〈ŵx(qz, 0)ŵx(qz, t)〉

δŵ2
x(qz, 0)

.

(1.7)

CACF are widely used in the analysis of stochastic models and MD. In the LLNS equations
and GLM, CACF can be derived analytically and are used to verify corresponding numer-
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1.2 Characteristics of Stochastic Models

ical algorithms [30, 31, 101, 102]. In MD and DPD, the corresponding CACF are hard to
derive analytically and can be used to link the models with each other and choose appro-
priate parameters to improve the prediction accuracy of the models [98, 103, 104, 105, 106].
CACF is similar to the ensemble-averaged decay of an initially sinusoidal field to steady
state. In Fig. 1.2 two different cases of the initial sinusoidal wave of the velocity field
are shown. The case where the direction of the sinusoidal wave is parallel to the initial
velocity corresponds to the LCACF, represented in Fig. 1.2a. Fig. 1.2b corresponds to the
TCACF.

1.2.3 DYNAMIC AND STATIC STRUCTURE FACTORS

Dynamic structure factor (DSF) is a time-dependent spectrum characteristic. DSF of
density field and temperature can be measured in experiments with incoherent neutron
scattering or Rayleigh scattering of light [98, 99, 100].

One can follow [107] and consider general linear stochastic partial differential equation
(SPDE) for the field U(r, t) ≡ U(t) in Eulerian reference frame of the form

dU(t) = LU (t)dt+KW (r, t) , (1.8)

where time-independent linear operators L is a generator, K is a filter. W (t) is a spa-
tiotemporal white noise

〈W (r, t)W ?(r′, t′)〉 = δ(t− t′)δ(r − r′) . (1.9)

Then DSF is [107]

S(q, ω) = V
〈
Û(q, ω)Û ?(q, ω)

〉
= (L̂(q)− iωI)−1(K̂K̂?)(L̂?(q) + iωI)−1 . (1.10)

where •̂ denotes fourier-space transform. Static structure factor (SSF) comes by integration
over ω of dynamic structure factor

S(q) =
1

2π

∫ +∞

−∞
S(q, t)dω , (1.11)

The fluctuation dissipation balance can be written [6]

L+L? = KK? , (1.12)
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1 Introduction

which ensures that SSF is equal to unity matrix

S = I . (1.13)

In stochastic models of the Lagrangian type, static structure factor resembles the behav-
ior of radial distribution function. For both the Lagrangian and the Eulerian types of
stochastic models dynamic structure factor resembles CACF behavior [98].
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2 ANALYSIS AND NUMERICAL ALGORITHMS

In this chapter, the overview of several stochastic models is provided. In the description
of every model, corresponding statistical characteristics such as stationary PDF, CACF
and SSF are listed with numerical algorithms. In this thesis, I restrict my attention to the
algorithms for modeling of homogeneous fluids. The chapter only partly covers numerical
algorithms which are used to simulate complex boundary conditions and complex fluids,
such as polymers, membranes, colloids etc. The description of numerical algorithms and
models of the lattice-Boltzmann method and MPCD/SRD models is beyond the scope of
this thesis.

2.1 STOCHASTIC INTEGRATION

Stochastic integration demands special consideration. The most widespread stochastic
calculus are Ito and Stratonovich. In the following subsections, I provide a brief overview of
these calculus. More detailed explanation can be found in [108, 109, 110, 111, 112, 113].

For a function f(t) of time t and a Wiener process W (t) with properties [108]

〈dWt〉 = 0, 〈(dWt)
2〉 = dt, 〈(dWt)

n〉 = o(dt) , (2.1)

13



2 Analysis and Numerical Algorithms

Riemann-Stieltjes definition of an integral constitutes
∫ t

0

f(t)dW (t) = lim
n→∞

n∑

j=1

f(τj)(W (tj+1)−W (tj)) , (2.2)

where τj ∈ [tj, tj+1]. For smooth f(t) one does not need any stochastic modification. In
SPDEs W (t) is not smooth, continuous and non-differentiable variable with unbounded
variation in any interval. For that reason, the limits which define the integral depends on
where τj is taken. Different choices correspond to different stochastic calculus.

• τj = tj is Ito calculi

• τj = 1
2
(tj + tj+1) is Stratonovich calculi

It is easy to show the difference of Stratonovich and Ito calculus on the simple example [108].
Let us consider

∫ t
0
W (t′)dW ′(t′). According to definition (2.2) the results for different

stochastic calculus are

• Ito integration

I =

∫ t

0

W (t′)dW ′(t′) =
1

2

[
W (t)2 −W (0)2 − t

]
. (2.3)

• Stratonovich integration

I =

∫ t

0

W (t′)dW ′(t′) =
1

2

[
W (t)2 −W (0)2

]
. (2.4)

2.1.1 ITO INTEGRATION

Ito integral is defined similar to Riemann-Stieltjes integral, however taking the function at
the beginning of partial sums. Stochastic integral is defined as a mean square limit [108]

∫ t

t0

f(t′)dW (t′) = ms− lim
n→∞

n∑

j=1

f(tj)(W (tj+1)−W (tj)) . (2.5)
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2.1 Stochastic Integration

Velocity Verlet algorithm

Stochastic Velocity Verlet algorithm [114, 115] is of Ito form. The basic idea is to write
forward and backward third-order expansion of particle position in time

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 +

1

6
b(t)∆t3 +O(∆t4) ,

r(t−∆t) = r(t)− v(t)∆t+
1

2
a(t)∆t2 − 1

6
b(t)∆t3 +O(∆t4) ,

where v, a and r are velocity, acceleration and position of particles, correspondingly. b is
the third derivative of r. The summation of the two expressions gives

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O(∆t4) . (2.6)

The derived algorithm is denoted as Verlet algorithm. The Velocity Verlet scheme is similar
to Verlet algorithm extended to velocity evaluation

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 , (2.7)

v(t+ ∆t/2) = v(t) +
1

2
a(t)∆t , (2.8)

a(t+ ∆t) = − 1

m
∇V (r(t+ ∆t)) , (2.9)

v(t+ ∆t) = v(t+ ∆t/2) +
1

2
a(t+ ∆t)∆t . (2.10)

Acceleration term a(t) usually includes deterministic FD and stochastic forces Fs

a(t) = FD + Fs . (2.11)

The Velocity Verlet algorithm is used in Lagrangian methods, such as MD, DPD, SDPD,
etc.
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2 Analysis and Numerical Algorithms

2.1.2 STRATONOVICH INTEGRATION

Stratonovich integral is defined as [108]

∫ t

t0

f(x(t′), t′) ◦ dW (t′) =

ms− lim
n→∞

n∑

j=1

f

(
1

2
(x(tj) + x(tj−1)) , tj−1

)
(W (tj+1)−W (tj)) . (2.12)

In Stratonovich integration, the ordinary rules of calculus is valid for change of vari-
ables [108].

Third-order Runge-Kutta method

Third-order Runge-Kutta variance-preserving method is used to integrate stochastic dif-
ferential equations in the Eulerian reference frame in time. It is based on a strongly stable
(for deterministic equations) Runge-Kutta temporal integrator (RK3) [116, 117]. It ac-
curately reproduces dynamic and static structure factors for advection-diffusion equation
and for the isothermal LLNS equations. [31, 107, 118] The integration allows generating
noise field only two times for one timestep.

RK3 for the equation of the type of the eq. (1.8) has three substeps given by equations

Un+1/3 = Un − dtdUn +
√
dtKn , (2.13)

Un+2/3 =
3

4
Un +

1

4
Un+1/3 − 1

4
dtdUn+1/3 +

√
dtKn+1/3 , (2.14)

Un+1 =
1

3
Un +

2

3
Un+2/3 − 2

3
dtdUn+2/3 +

√
dtKn+2/3 , (2.15)

where dU is the solution vector, and K is the stochastic-force vector. There are sev-
eral possibilities for evaluating K at intermediate time steps [107, 118]. The following
formulation requires only two independent random fields (WA and WB)

Kn+1/3 = α1WA + β1WB , Kn+2/3 = α2WA + β2WB ,

Kn+1 = α3WA + β3WB ,
(2.16)
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2.2 Grid-Based Landau-Lifshitz Navier-Stokes model

with the coefficients

α1 = α2 = α3 = 1, β1 =
2
√

2±
√

3

5
,

β2 =
−4
√

2± 3
√

3

5
, β3 =

√
2∓ 2

√
3

10
.

(2.17)

For multiplicative noise, when prefactor of noise changes in time, the scheme might be
inaccurate and has to be extended.

2.2 GRID-BASED LANDAU-LIFSHITZ NAVIER-STOKES

MODEL

The LLNS model is based on the solution of the LLNS equations with the Eulerian method
of discretization. The LLNS equations are a stochastic extension of Navier-Stokes equa-
tions [99]

∂ρ

∂t
+∇ · ρu = 0 , (2.18)

∂g

∂t
+∇ · (ρuu− σ − σS) = 0 , (2.19)

∂e

∂t
+∇ · (Q+ eu− u · σ − u · σS) = 0 , (2.20)

where e is total energy, σ and σS are a deterministic and a stochastic stress tensors,
respectively. We consider the fluid with Newtonian properties. Stress tensor of such a fluid
is given by equation

σij = pδij − ηs(∇iuj +∇jui −
2

3
∇ · uδij) + ηv∇ · uδaij , (2.21)

where ηs and ηv are shear and bulk viscosities, respectively. Diffusive part of energy flux
Q is

Q = −λ∇T . (2.22)

Stochastic stress tensor is Gaussian matrix with zero mean and correlation is chosen to
satisfy fluctuation-dissipation theorem
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2 Analysis and Numerical Algorithms

〈σS(r1, t1)σS(r2, t2)〉 = 2kBT∆V Cαβγδδ(t1 − t2)δ(r1 − r2) , (2.23)

where Cαβγδ = ηs(δαδδβγ + δαγδβδ) + (ηv − 2
3
ηs)δαβδδγ and ∆V is volume cell, which defines

the level of discretization. The smaller the volume is, the higher fluctuations in velocity
fields are.

The equations (2.18)–(2.23) are not closed. One needs to define the equation of state,
which constitutes the dependency of pressure p from density ρ. One of the options is to
consider linear dependency of pressure from density

p = c2
Tρ , (2.24)

where cT is isothermal speed of sound. With equation of state (2.24), equations (2.18)–
(2.20) can be simplified to the isothermal LLNS equations

∂ρ

∂t
+∇ · ρu = 0 , (2.25)

∂g

∂t
+∇ · (ρuu− σ − σS) = 0 . (2.26)

Statistical characteristics

In this section, statistical characteristics of the isothermal LLNS equations are provided.
Corresponding characteristics in more general case can be found in [98, 99]. Stationary
PDF of density and velocity fields in the LLNS equations are Gaussian functions and are
characterized by mean and variance. Variances of velocity and density field, respectively,
are

〈u2〉 =
kBT

ρ̄
∆V −1 , 〈ρ2〉 =

ρ̄kBT̄

c2
T

∆V −1 . (2.27)

Dynamic structure factor of the isothermal LLNS equations is given by

Suu(q, ω) =
q2Dv ω

2

(cs2 q2 − ω2)2 + q2Dv
2 ω2

, (2.28a)

Sρρ(q, ω) =
q4Dv cs

2

(cs2 q2 − ω2)2 + q2Dv
2 ω2

, (2.28b)

Sρu(q, ω) = Suρ(q, ω) = 0 , (2.28c)
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2.2 Grid-Based Landau-Lifshitz Navier-Stokes model

where Dv = 4
3
ηs
ρ̄

+ ηv
ρ̄

is longitudinal kinematic viscosity. Static stricture factor can be
obtained through integration of

Suu(q) =
1

2π

∫ +∞

−∞
Suu(k, ω)dω = 1 , (2.29a)

Sρρ(q) =
1

2π

∫ +∞

−∞
Sρρ(q, ω)dω = 1 . (2.29b)

Current autocorrelation function resembles behavior of dynamic structure factor

C‖LLNS = e−q
2Dv

1
2
τ cos(csqτ)− Dvq

2cs
e−q

2Dv
1
2
τ sin(csqτ) , (2.30)

C⊥LLNS = e−q
2Dv

1
2
τ , (2.31)

CρLLNS = e−q
2Dv

1
2
τ cos(csqτ) +

Dvq

2cs
e−q

2Dv
1
2
τ sin(csqτ) . (2.32)

Numerical algorithms

The isothermal LLNS equations are non-multiplicative as prefactor of the stochastic term
is constant in time. For non-multiplicative case, time integration can be evaluated with
explicit Stratonovich third-order Runge-Kutta scheme eqs. (2.13)-(2.17). Other time-
integration schemes for stochastic partial differential equations with non-multiplicative
noise were considered in [107, 118]. Though, for the small fluctuations in temperature
field, multiplicity in the LLNS equations was observed to be small [31].

The LLNS is a system of stochastic partial differential equations (SPDE). For the solution
of the LLNS SPDE, one has to introduce a scheme for the spatial discretization. Finite
volume discretization of the isothermal LLNS equations was suggested in [30]. Different
finite volume discretization methods were considered for the compressible LLNS equations
in [31]. Piecewise parabolic method with Godunov scheme was shown to represent cor-
rectly the variance of velocity, density and temperature fields of the compressible LLNS
equations. Furthermore, discretization based on a staggered finite-difference scheme was
found superior in comparison with the schemes on the collocated grid for the LLNS equa-
tions [119]. The further development of numerical algorithms confirms the superiority of
staggered finite-difference discretization over the one on the collocated grid by considering
discrete static structure factor [107]. The skew-symmetric discretization originally derived
for NS equations [120] was shown to give the most accurate results for static structure
factor [101, 121]. The recently developed scheme uses finite-element approach to solve the
LLNS equations [122], which might be beneficial in case of complex boundary conditions.
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2 Analysis and Numerical Algorithms

2.3 SMOOTHED DISSIPATIVE PARTICLE DYNAMICS

SDPD is based on the second-order discretization of Navier-Stokes equations. The method
is an extension of SPH model to the length scales, where thermal fluctuations are impor-
tant [16].

Density of the fluid is given by

ρi = mi

∑

j

Wij . (2.33)

The momentum equations are discretized as

dvi
dt

= − 1

mj

∑

j

(
pi
σ2
i

+
pj
σ2
j

)
∂Wij

∂rij
eij +

η

mi

∑

j

(
1

σ2
i

+
1

σ2
j

)
vij
rij

∂Wij

∂rij
+ dP̃i , (2.34)

where fluctuation term dP̃i is derived [16] according to GENERIC formalism [41, 42, 43]
and is given as

dP̃i =
∑

BijdW̄ijeij , (2.35)

where dW̄ij is the traceless symmetric part of an independent increment of Wiener process
and Bij is the corresponding fluctuating coefficient in SDPD given by

Bij = [−4kBTη]
1
2 . (2.36)

Statistical characteristics

Statistical characteristics of the SDPDmodel are similar to the LLNS equations. Stationary
PDF of velocity field are Gaussian functions with variance

〈
v2
〉

= d
kBT

ρ̄Vi
, (2.37)

where Vi is a particle volume, similar to a cell volume in the LLNS equations. Stationary
PDF of density field depends on a choice of an equation of state. In the SDPD model, a
radial distribution function is usually considered instead of a static structure factor. The
radial distribution function approximates unity on the large distance r similar to SSF of
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2.4 Langevin model in the Lagrangian reference frame

the LLNS equations. On the small distance, radial distribution function differs from the
unity and is similar to one of MD simulations of liquid [49].

For the dynamic statistical characteristics, such as DSF and CACF, one would expect
similar behavior as in the LLNS equations, that is described in Section 2.2.

Numerical algorithms

SDPD is a meshless Lagrangian approach. In contrast to Eulerian frame methods, it does
not need additional discretization of non-linear term. The quintic weighting function, that
gives the best convergence properties for SPH discretization of NS equations [123] is usually
chosen [49, 52] for the SDPD simulations.

Time integration of Lagrangian methods is usually done with Ito type of time integration.
In the SDPD simulations, Velocity Verlet algorithm can be used. Timestep integration can
be improved with implicit numerical scheme for SDPD [124, 125].

2.4 LANGEVIN MODEL IN THE LAGRANGIAN REFERENCE

FRAME

Langevin models are represented with Langevin equations. The Langevin equations (LE)
state

ẋi = vi , (2.38)
v̇i = −βvi + θi(t) , (2.39)

where i, j = 1, 2, 3..., N for N particles that are governed by LE. Here a dissipation coeffi-
cient β is constant and θi,k is a delta-correlated in time Gaussian random variable

〈θi,k(t)〉 = 0 , (2.40)

〈θi,k(t)θj,l(t′)〉 =
2kBTβ

m
δijδklδ(t− t′) , (2.41)

where k, l = x, y, z, kB is the Boltzmann constant, T is the temperature and m is the
mass of the Brownian particle. Modified version of LE is used as subgrid scale model in
turbulent flows [7, 8, 95]. LE are also used in modeling of rarefied gasses in the case of low
Knudsen number [126, 127].
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Statistical characteristics

The most general way to describe the properties of LE is through its conditional joint-PDF
P (v,x, t|v0), which is the probability of the particle with the initial velocity v(t = 0,x =
0) = v0 that is situated in x0 to be at time t in x with velocity v. The expression for
conditional joint-PDF of Langevin equations for d-dimensions [88] is

P (v,x, t|v0) = Zp exp
[
− AV · V + 2CV ·X +BX ·X

2(AB − C2)

]
, (2.42)

Zp =
eβtd

(2π)d(AB − C2)
d
2

, (2.43)

V = eβtv − v0, X = x+ u/β − x0 − v0/β , (2.44)

A = 2
kBT

m
β−2t , B =

kBT

m
β−1(e2βt − 1) , C = −2

kBT

m
β−2(eβt − 1) . (2.45)

For the further analysis, it is enough to consider only one direction x. The corresponding
equations for other directions y, z are equivalent. The marginal PDFs result from definition
after integration of the joint-PDF

Px(x, t|vx0) =

∫ ∞

−∞
P (vx, x, t|vx0)dv ,

Pv(vx, t|vx0) =

∫ ∞

−∞
P (vx, x, t|vx0)dx .

The Maxwell-Boltzmann distribution can be derived from the joint-PDF

G(vx) = lim
t→∞

Pv(vx, t|vx0) ,

G(vx) =

√
2π
kBT

m
exp

[
− m

2kBT
v2
x

]
. (2.46)

Expressions for the CACF were derived in [128]. TCACF, LCACF and density current
autocorrelation functions, respectively, are
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2.5 Langevin models in Eulerian reference frame

CLE⊥ = exp
[
− βt

]
× exp

[
− q2kBT

β2m

(
βt− 1 + e−βt

)]
, (2.47)

CLE‖ =
(
eβt − q2

(kBT
β2m

)
(eβt − 1)2

)
×

exp
[
− 2βt

]
exp

[
− q2kBT

β2m
(βt− 1 + e−βt)

]
, (2.48)

CLEρ = exp
[
− q2kBT

β2m
(βt− 1 + e−βt)

]
. (2.49)

Numerical algorithms

Velocity-Verlet can be used to perform integration in time. Another option is to use
semi-implicit algorithm for integration in time, which gives similar accuracy with higher
Current-Levi-Friedrich (CFL) number [126], and conserves kinetic energy. Other time
integration schemes can be found in [129].

2.5 LANGEVIN MODELS IN EULERIAN REFERENCE FRAME

The certain correspondence between the Eulerian frame PDF and the Lagrangian frame
PDF of Langevin models exists [97]. Moreover, Fokker-Planck equation that represents an
evaluation of PDF in time is similar for the Lagrangian and the Eulerian PDF for Langevin
equations [97]. Solution of Fokker-Planck equation directly takes a large amount of com-
putational resources and is seldom used in modeling. Usually, Fokker-Planck equation is
solved by means of corresponding stochastic differential equation (SDE) in the Lagrangian
reference frame. In Generalized Langevin Model (GLM), Langevin equations in the La-
grangian reference frame are used as a subgrid-scale model for turbulent flows [97] and
large scales are represented by NS equations in the Eulerian reference frame. The hybrid
Lagrangian-Eulerian approach has shown to be successful in the modeling of turbulent and
reactive flows [95, 96]. One of the possibilities to improve an accuracy of GLM and reduce
computational costs is to use the Eulerian reference frame for Langevin equations.

The main challenge arises from numerical solution of Langevin equations in the Eulerian
reference frame. The derived SPDE has the nonlinear term that has to be discretized.
However, in contrast to the LLNS equations, Langevin equations in the Eulerian reference
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frame have no viscosity and no pressure term. Due to this difference, the common algo-
rithms that are used for the solution of Navier-Stokes equations can not be implemented
without additional modifications.

Recently, two methods were proposed to solve Langevin equations in the Eulerian refer-
ence frame: Eulerian Monte-Carlo (EMC) method and Generalized Langevin model in the
Eulerian reference frame (GLMEF). In EMC, SPDE that are statistically equivalent to
the Langevin equations in the Lagrangian reference frame are considered [130, 131]. In
GLMEF, additional pressure term to SPDE [132] is introduced. The additional term sim-
plifies numerical algorithm, however, the derived equations are not statistically equivalent
to the Langevin equations in Lagrangian reference frame [102].

Another difference between the two methods is due to the different way of introducing
stochastic term. In EMC method the noise term is delta-correlated in time and constant in
space. Such approach demands to solve simultaneously around Ns = 500 equations [133].
Each equation represents one smooth realization of the stochastic field which is shifted
in comparison with other realizations of the same value in the whole domain. PDF is
evaluated by the means of Favre averages. In GLMEF the noise term is introduced as
delta-correlated in time and in space. In the next Section, the EMC method is provided.
GLMEF numerical algorithm and statistical characteristics are described in the first paper
in Appendix A.

2.5.1 EULERIAN MONTE CARLO METHOD

EMC model has been proposed for solving one-time one-point velocity PDF transport
equation [130, 131, 134]. The one-dimensional EMC subgrid scale model can be written
for fluctuating velocity u′′ by

∂ρ

∂t
+
∂ρu′′

∂x
= 0 , (2.50)

∂ρu′′

∂t
+
∂ρu′′2

∂x
=
ρ

ρ

∂ρu′′2

∂x
+ ρC1ωu

′′ + ρ
√
C0εξ , (2.51)

where ρ is a stochastic density, ρ is a mean density, C1 and C0 are model constants, ω and
ε is a mean turbulent frequency and a mean turbulent energy dissipation [97].

Statistical properties

Statistical properties of EMC are similar to the Lagrangian Langevin equations, described
in Section 2.4.
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2.6 Dissipative Particle Dynamics

Numerical algorithm

In EMC 2.50, 2.51, special multivariate solution has to be considered [133]. The algorithm
to solve EMC was proposed in [135] and was tested for one-dimensional PDF.

2.5.2 GENERALIZED LANGEVIN MODEL IN EULERIAN REFERENCE
FRAME

The GLMEF in one dimension consitutes [102]

∂ρ(x, t)

∂t
+
∂g(x, t)

∂x
= 0 (2.52a)

∂g(x, t)

∂t
+

∂

∂x

g2(x, t)

ρ(x, t)
= −∂p(x, t)

∂x
− γρ(x, t) (u(x, t)− u0(x, t))

+
√
ρ(x, t)Dγζ(x, t) ,

(2.52b)

with the weakly compressible equation of state

p(x, t) = ρ(x, t)c2
s . (2.52c)

In these equations ρ(x, t) and p(x, t) denote mass density and pressure fields, respectively,
g(x, t) = ρ(x, t)u(x, t) and cs is the isothermal speed of sound.

Numerical analysis and algorithm for the equations is provided in Appendix [102].

2.6 DISSIPATIVE PARTICLE DYNAMICS

DPD is a multiparticle model that was initially introduced as a coarse-graining of molecular
dynamics. In this thesis, I restrict my attention to statistical properties of a DPD solvent.
DPD was introduced in [17, 18]. A pairwise force acts on each particle Fij [19] and shifts
their locations:

dri
dt

= vi,
dvi
dt

=
1

m

∑

j 6=i
Fij . (2.53)

The force Fij consists of three different parts: conservative force F C
ij , dissipative force FD

ij

and random force FR
ij :

Fij = F C
ij + FD

ij + FR
ij . (2.54)
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The pairwise forces have a cutoff radius rc which is taken as unity as well. The conser-
vative force is repulsive between particles and acts along the connecting line between two
particles

FC
ij =




aijm(1− rij

rc
)r̂ij, rij < rc

0, rij ≥ rc

, (2.55)

where aij is the maximum repulsion between the particles, rij = ri − rj, rij = |rij| and
r̂ij = rij/rij are relative position, distance and unit vector between two particles i and j,
respectively. The dissipative and random forces are

FD
ij = −mγwD(rij)(r̂ij · vij)r̂ij , (2.56)

and
FR
ij = mσwR(rij)θij r̂ij , (2.57)

where weighting functions wD(rij) and wR(rij) as well as dissipation coefficient γ and ran-
dom coefficient σ are related so that they satisfy the fluctuation-dissipation balance [18]

wD(rij) = (wR(rij))
2, γ =

σ2

2kBT
. (2.58)

Here, rij = ri − rj, rij = |rij| and r̂ij = rij/rij are relative position, distance and unit
vector between two particles i and j, respectively. kB is the Boltzmann constant and T
is the temperature. vij = vi − vj is the relative velocity, and θij is a Gaussian random
variable with the properties [19]

〈θij(t)〉 = 0 , (2.59)

〈θij(t)θkl(t′)〉 = (δikδjl + δilδjk)δ(t− t′) . (2.60)

The standard weighting functions wR(rij) and wD(rij) are [19]

wD(rij) = (wR(rij))
2 =





(
1− rij

rc

)2

, rij < rc

0, rij ≥ rc

. (2.61)

Statistical properties

Stationary Probability density function of DPD solvent is Gaussian. DPD has the proper-
ties of the LLNS equations on large scales. On small scales, DPD is expected to represent
features of the microscopic motion of fluids. In this sense, DPD might benefit over SDPD,
as it has a potential to represent a wider range of scales. The main disadvantage of the
DPD model, in comparison with SDPD, is that one has to use the mesoscopic DPD param-
eters. The relation between macroscopic parameters and the DPD parameters were derived

26



2.6 Dissipative Particle Dynamics

in [72, 71], however, is accurate in the limited number of cases. The problem is described
with more aspects in the second paper in Appendix A [106] as well as a new approach to
measure macroscopic parameters that is based on CACF consideration is suggested.

Analysis for large scales and mesoscales of DPD was performed analytically in [70]. It was
also demonstrated, that on the large scales, the DPD resembles statistical properties of
the LLNS equations. Statistical properties of DPD on small scales differ from the LLNS
equations and are considered in the third paper in Appendix A [136].

Numerical algorithms

Time integration of DPD can be performed with Velocity-Verlet algorithms described in
Section 2.1.1 for the case of low Schmidt numbers. For realistic Schmidt numbers of liquids,
an implicit splitting scheme for DPD originally proposed by Shardlow can be used [137].
The superiority of the Shardlow-like splitting algorithm is shown in [138]. In [139], splitting
algorithms were developed for constant-enthalpy and constant-energy DPD conditions.
The papers related to DPD that are listed in Appendix A use Velocity-Verlet algorithm
for time integration.
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3 ACCOMPLISHMENTS

3.1 NUMERICAL METHODS FOR THE WEAKLY

COMPRESSIBLE GENERALIZED LANGEVIN MODEL IN

EULERIAN REFERENCE FRAME

Turbulent flows are characterized by wide range of time and length scales. A common com-
putational approach is to solve a filtered or averaged set of equations and to model small
scales fluctuations with probability density function methods. The PDF can be evolved
by Generalized Langevin Model introduced by Pope [8]. The natural representation of the
model is a system of equations in Lagrangian frame, typically solved by particle methods.
A representation in a Eulerian frame, however, has the potential to significantly reduce
computational effort. The GLMEF has a potential of serving as approximate subgrid-scale
reconstruction [132], where previously developed in [140, 141] approximate-deconvolution
procedure for turbulent flows was used. There is a correspondence between GLMEF and
nonlinear fluctuating hydrodynamics (NFHD) equations derived by Nakamura and Yoshi-
mori [142]. Unlike Landau-Lifshitz Navier-Stokes equations NFHD equations are derived
from the underdamped Langevin equation and do not require an assumption of local equi-
librium. The objective of this work is to examine numerical methods that were recently
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3 Accomplishments

proposed for solving the LLNS equations when they are applied to GLMEF and to come
to conclusions about their feasibility.

In D. Azarnykh, S. Litvinov, N. A. Adams: Numerical methods for the weakly
compressible Generalized Langevin Model in Eulerian reference frame; Journal of Compu-
tational Physics; Volume 314, Pages 93-106, 2016 [102]

for spatial discretization, we use a skew-symmetric semi-discrete compact finite difference
scheme on a regular grid [120] and for time integration we use a strongly-stable Runge-
Kutta method [107]. Skew symmetry of the fluxes ensures that spatial scheme maintains
a discrete fluctuation-dissipation balance. Two test cases in one dimension are considered
following [31]. For the simulation of dilute monatomic gas where thermal fluctuations
are in equilibrium, the spatial skew-symmetric scheme improves the prediction of static
structure factor in comparison with other high-order finite volume schemes. The variance
of the momentum, density and spectral autocorrelation of density function agrees with
theory. For a random walk of a static shock wave, the model recovers the dependence of
the shock-location variance on the Mach number

My contribution to this work lies in developing the method and its implementation in an
in-house code. Moreover, I have verified the implementation and validated the method
as well as performed the numerical simulations. The algorithm for postprocessing and
analyzing the results is due to me. The manuscript for the publication has been written
predominantly by me.
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3.2 Determination of macroscopic transport coefficients of a dissipative particle dynamics
solvent

3.2 DETERMINATION OF MACROSCOPIC TRANSPORT

COEFFICIENTS OF A DISSIPATIVE PARTICLE DYNAMICS

SOLVENT

Macroscopic parameters of a DPD solvent can be estimated with different methods. The
standard methods are to use Poiseuille flow [143] or reverse Poiseuille flow [144, 145,
146] to estimate shear viscosity. However, the standard methods are unable to measure
complicated relation of shear viscosity and length scales within one simulation. Moreover,
these methods can not determine other macroscopic parameters, such as bulk viscosity and
isothermal speed of sound.

The work D. Azarnykh, S. Litvinov, X. Bian, N. A. Adams: Determination of macro-
scopic transport coefficients of a dissipative particle dynamics solvent; Physical Review E
- Statistical, Nonlinear, and Soft Matter Physics; Volume 93, (Issue 1), 2016 [106]

is devoted to the measurement of macroscopic parameters: shear viscosity, isothermal
speed of sound and bulk viscosity in simulations of DPD solvent. For this purpose, we
analyze CACF of DPD. One can think about CACF as a more general version of a radial
distribution function. In fact, the former can be derived directly from CACF [98]. However,
CACF contains more information, as it reflects also dynamic properties of the model.
Moreover, analysis of CACF allows to see the properties of the DPD on different scales
as well as to determine which is the maximum scale where DPD still reflects the real
behavior of fluid and where numerical errors start to dominate. We introduce a new
function that gives a good approximation for the modes of CACF in the DPD solvent and
allows to measure shear viscosity with reasonably high accuracy from CACF for a wide
range of parameters. We observe that macroscopic parameters of the DPD solvent depend
on length scale. Bulk viscosity and shear viscosity measured in simulations are compared
with analytical predictions, which were derived by Marsh [71, 72, 70] for the DPD solvent
without repulsive potential.

My contribution to this work lies in developing the method. Moreover, I have verified the
implementation and validated the method as well as performed the numerical simulations.
The algorithm for postprocessing and analyzing the results is due to me. The manuscript
for the publication has been written predominantly by me.

31



3 Accomplishments

3.3 DISCUSSIONS ON THE CORRESPONDENCE OF

DISSIPATIVE PARTICLE DYNAMICS AND LANGEVIN

DYNAMICS AT SMALL SCALES

In this work, the analysis of DPD with CACF is continued. We used the method developed
in the previous article [106] to investigate small-scales dynamic of DPD. Macroscopic prop-
erties of DPD, such as shear and bulk viscosity as well as isothermal speed of sound depend
on two non-dimensional length-scale parameters: cut-off radius rc, and decorrelation length
l0. In the previous studies [72],[71],[70] different regimes of DPD were introduced, based
on the correspondence between these two parameters, see Table 3.1.

Table 3.1: Regimes of DPD and corresponding hydrodynamic subregimes
Collective regime rc > l0 Particle regime l0 > rc
λ > rc > l0 Navier-Stokes λ > l0 > rc Navier-Stokes
rc > λ > l0 kinetic l0 > λ > rc mesoscopic
rc > l0 > λ N-particle l0 > rc > λ N-particle

For these regimes, different approximations for DPD shear viscosity were derived. However,
these laws were derived analytically and based on some assumptions.

In D. Azarnykh, S. Litvinov, X. Bian, N. A. Adams : Discussions on the corre-
spondence of dissipative particle dynamics and langevin dynamics at small scales. Applied
Mathematics and Mechanics; 39(1):31–46, 2018 [136].

we use numerical analysis to investigate the behavior of DPD on small scales in the 3D case.
For that purpose, we measure current CACF of DPD in 3D. We compare CACF of DPD
with the systems in which CACF can be derived analytically. We show similarities and
differences of DPD with other systems and make conclusions about the correspondences
of certain scales of DPD and Langevin equations. We extend and improve the findings of
previous studies [72],[71],[70] and suggest that DPD has potential to model rarefied gas
dynamics.

My contribution to this work lies in developing the method. Moreover, I have verified the
implementation and validated the method as well as performed the numerical simulations.
The algorithm for postprocessing and analyzing the results is due to me. The manuscript
for the publication has been written predominantly by me.
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A well established approach for the computation of turbulent flow without resolving all 
turbulent flow scales is to solve a filtered or averaged set of equations, and to model 
non-resolved scales by closures derived from transported probability density functions 
(PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ 
the equivalence between the Fokker–Planck equation for the PDF and a Generalized 
Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles 
by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic 
differential equations in a Lagrangian reference frame, typically solved by particle methods. 
A representation in a Eulerian reference frame, however, has the potential to significantly 
reduce computational effort and to allow for the seamless integration into a Eulerian-
frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to 
the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori 
(2009) [12]. Unlike the more common Landau–Lifshitz Navier–Stokes (LLNS) equations 
these equations are derived from the underdamped Langevin equation and are not based 
on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of 
GLMEF requires special considerations. In this paper we investigate different numerical 
approaches to solving GLMEF with respect to the correct representation of stochastic 
properties of the solution. We find that a discretely conservative staggered finite-difference 
scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in 
conjunction with a strongly stable (for non-stochastic PDE) Runge–Kutta method performs 
better for GLMEF than schemes adopted from those proposed previously for the LLNS. We 
show that equilibrium stochastic fluctuations are correctly reproduced.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Generalized Langevin Model (GLM), introduced by Pope [1], is a rather well established Lagrangian approximation 
of the Fokker–Planck equation for the probability density function (PDF) of turbulent fluctuations [2]. A drawback of GLM 
is that its Lagrangian formulation leads to a particle discretization scheme, which cannot be seamlessly integrated into a 
Eulerian frame grid-based solution algorithm for the mean or filtered flow field.

A Eulerian reference frame PDF-based approach has been applied for modeling turbulent reactive flows [3]. O. Soulard 
and V. Sabelnikov proposed the Eulerian Monte Carlo (EMC) method to solve a transport equation for the Favre joint PDF 
of velocity fields and turbulent reactive scalars [4–6]. A challenge for the application of EMC to turbulent flows originates 

* Corresponding author.
E-mail address: d.azarnykh@tum.de (D. Azarnykh).
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from the particular properties of the resulting stochastic partial differential equations (SPDEs). Further research on the topic 
demonstrated that the equivalence of the solutions obtained from the PDF transport equations and that from the EMC SPDEs 
is based on multi-valued solution of the SPDEs [7,8]. In this work also an algorithm to solve EMC SPDEs was proposed. The 
solution of EMC SPDEs is statistically equivalent to that of a Fokker–Planck equation without potential force. The same kind 
of Fokker–Planck equation is obtained for GLM which shows that EMC is well suited for modeling turbulent fluctuations.

In [9] a stochastic extension of the approximate deconvolution subgrid-scale model (ADM) [10,11] has been proposed 
to cope with the hard-deconvolution problem in turbulence modeling by an enrichment of subgrid-scales from a stochastic 
model for turbulent transport. A Eulerian-reference-frame formulation of GLM was proposed (GLMEF) which differs from 
GLM by a repulsive potential. Results for isotropic compressible turbulence have indicated an improvement on the standard 
formulation of ADM. However, neither has this paper addressed the question of consistent numerical discretizations of 
GLMEF, nor have the particular properties of GLMEF been analyzed. Besides the repulsive potential, another difference 
between GLMEF and EMC is that with EMC the stochastic force is delta-correlated in time and not in space.

GLMEF is a particular case of the Nonlinear Fluctuating Hydrodynamic (NFHD) equations that have been derived by 
Nakamura and Yoshimori [12] from the underdamped Langevin equation in the Lagrangian reference frame. NFHD and thus 
GLMEF are based on earlier work by Dean [13] and share similarities with the Landau–Lifshitz Navier–Stokes (LLNS) equa-
tions [12,14–17]. GLMEF and LLNS differ by their dissipative mechanism and by the fact that with LLNS the stochastic force 
is expressed in divergence form. Due to these differences GLMEF and LLNS have different ways of satisfying a fluctuation–
dissipation balance and thus may complement each other as models for nonequilibrium fluctuations in fluids. This is the 
reason that in the current paper we investigate the numerical discretization of GLMEF in order to enable future numerical 
experimentation similarly as has been done in previous work on LLNS.

2. GLMEF model equations

In order to facilitate analytical understanding and numerical accessibility we will in this paper restrict ourselves to 
spatially one-dimensional (1D) configurations. The underlying NFHD equations can be written in the following form

∂n(x, t)

∂t
+ 1

m

∂ g(x, t)

∂x
= 0 (1a)

∂ g(x, t)

∂t
+ ∂

∂x

g2(x, t)

m n(x, t)
= −n(x, t)

∂

∂x

(
δH V [n(x, t)]

δn(x, t)

)
− γn g(x, t) + √

Dn(x, t)γnζ(x, t) , (1b)

where m is the constant mass of the notional sample particles, D and γn correspond to fluctuation and dissipation coef-
ficients (considered as constant in the following). n(x, t), g(x, t) := mn(x, t)u(x, t) denote number density and momentum 
fields respectively and are defined at the position x j and for the momentum p j of the notional particles j = 1, . . . , Np in 
the Lagrangian reference frame as

n(x, t) =
N p∑
j=1

δ(x − x j(t)); g(x, t) =
N p∑
j=1

p j(t)δ(x − x j(t)) .

H V [n(x, t)] is a functional for the internal energy of the system. ζ(x, t) is a Gaussian white noise uncorrelated in time and 
space

ζ(x, t)ζ(x′, t′) = 2δ(x − x′)(t − t′).
The Generalized Langevin Model in Eulerian frame (GLMEF) follows from equations (1) by setting

ρ(x, t) := n(x, t)m ,

γ := γn/m , (2)

n(x, t)
∂

∂x

(
δH V [n(x, t)]

δn(x, t)

)
:= c2

s
∂ρ(x, t)

∂x
. (3)

The definition in (3) is motivated by weakly-compressible approaches in macroscopic and mesoscopic particle discretizations 
of transport equations (smoothed-particle hydrodynamics) [18]. As explained in [9], for consistency of the GLMEF derivation 
with the underlying Lagrangian form it is necessary to ensure that no two notional particles occupy the same location at the 
same time, which can be accomplished by a repulsive potential implied through relation (3). In Eulerian reference frame, 
the situation that two notional particles occupy the same location corresponds to crossing of characteristic curves which 
can occur even for smooth initial values [7,8]. The resulting GLMEF equations result from taking into consideration a mean 
velocity u0(x, t) which in the current work is assumed to be known

∂ρ(x, t)

∂t
+ ∂ g(x, t)

∂x
= 0 (4a)

∂ g(x, t)

∂t
+ ∂

∂x

g2(x, t)

ρ(x, t)
= −∂ p(x, t)

∂x
− γρ(x, t) (u(x, t) − u0(x, t)) + √

ρ(x, t)Dγ ζ(x, t) , (4b)
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with the weakly compressible equation of state

p(x, t) = ρ(x, t)c2
s . (4c)

In these equations ρ(x, t) and p(x, t) denote mass density and pressure fields, respectively, and cs is the isothermal speed 
of sound.

In a first straightforward application of GLMEF [9] the same numerical discretization scheme (pseudo spectral in space 
and three-stage Runge–Kutta scheme in time) was applied as for the underlying macroscopic (filtered) flow-evolution equa-
tions (compressible Navier–Stokes equations). However, no analyses have been performed on the accuracy of this scheme 
with respect to reproducing statistical properties of GLMEF. Furthermore, pseudo-spectral schemes are difficult to apply to 
more complex configurations than the triply periodic domains considered in that paper. The objective of this paper is to 
revisit the issue of suitable and accurate discretization of GLMEF, following the analyses of numerical schemes for the LLNS 
due to their similarity with GLMEF.

GLMEF is a system of coupled nonlinear Stochastic Partial Differential Equations. In recent years significant progress 
on solving nonlinear SPDE in a Eulerian reference frame has been achieved. Bell et al. [15] compared different numerical 
methods for the compressible LLNS equations. Several equilibrium and nonequilibrium cases were considered. With respect 
to time integration, best results were obtained with a variance-preserving third-order Runge–Kutta (VP RK3) scheme em-
ploying third-order, total variation diminishing (TVD RK3) Stratonovich time integration. Spatial discretization was done by 
a fourth-order finite-volume scheme. Donev et al. [19] proposed a new approach to examine grid-based spatiotemporal 
schemes for nonlinear SPDEs in a Eulerian reference frame. The analysis relies on static and dynamic structure factors (SSF 
and DSF) in Fourier space. SSF and DSF were derived analytically from the linearization of the underlying SPDEs. Upon 
satisfying the fluctuation dissipation balance for LLNS, the equilibrium SSF should be unity, which Donev et al. have used 
to modify the original TVD Runge–Kutta time integration scheme. Balboa et al. [20] used a staggered-grid discretization 
for isothermal compressible and incompressible LLNS. Different types of temporal discretizations were examined for the 
fluctuating Burgers equation with staggered grid spatial discretization by Delong et al. [21].

An important difference between LLNS, which previous numerical method development has focused on, and GLMEF is 
that for LLNS the stochastic forcing term appears in divergence form. The GLMEF equations satisfy a fluctuation–dissipation 
relation of the second kind [12], with the stochastic forcing term being in non-conservative form. The GLMEF equations 
are derived from the underdamped Langevin equation and do not imply the assumption of local equilibrium. Moreover, the 
GLMEF equations can represent phenomena with non-Gaussian probability distribution function (PDF) of the density and 
velocity fields. Such properties differ from that of LLNS considered in [19–21], and motivate the derivation and analysis of 
suitable discretization schemes for their numerical solution. Due to their different properties, it cannot be expected that 
discretization schemes derived for the LLNS equations transfer their properties when applied to GLMEF. The purpose of our 
work is to analyze the performance of methods derived for LLNS and stochastic Burgers equations upon their application 
to GLMEF. We address deficits of these methods and propose an alternative scheme which delivers considerably improved 
results. As this is the first investigation, to our knowledge, of numerical discretizations for GLMEF, we follow the approach 
of previous work on LLNS of a stepwise increase in complexity, and will restrict the work in this paper to GLMEF in one 
spatial dimension.

3. Properties of GLMEF

Several criteria have been proposed for the analysis of discretization schemes for the LLNS equations. We follow these 
concepts and provide in this section the corresponding properties of GLMEF in terms of the static and dynamic structure 
factor. Furthermore, we extend previous analyses by considering also the non-Gaussian property of the PDF.

3.1. Static and dynamic structure factor

For the analysis of discretization schemes it is convenient to consider a spectral-space description rather than real 
space. For this purpose one derives analytical relations for dynamic and static structure factors for the corresponding lin-
earized SPDEs. Here we follow the general procedures presented in [19,22] to derive dynamic and static structure factors for 
the linearized GLMEF. Linearization is performed around a uniform reference equilibrium state ρ(x, t) = ρ0 + ρ1(x, t) and 
u(x, t) = u0 + u1(x, t). Furthermore, we assume ρ1 � |u1|. Upon linearization, equations (4) can be written as

dU (t) = LU (t) + KdB(x, t) , (5)

with definitions

L(x) =
(

0 ρ0
∂
∂x

c2
s

∂
∂x −γρ0

)
K (x) =

(
0 0
0

√
Dγρ0

)
U (x, t) =

(
ρ(x, t)
u(x, t)

)

and dB(x, t) is a Gaussian-noise forcing.
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For simplicity we consider stationary fluctuations and a domain with periodic boundaries, so that the linearized GLMEF 
can be Fourier transformed in space and time and becomes

iωÛ (k,ω) = L̂(k)Û (k,ω) + K̂dB̂(k,ω) . (6)

ω and k are the dual independent variables in Fourier space, i.e. frequency and wave number. The dynamic structure factor 
characterizes the statistical properties of eq. (5). It is given by the covariance matrix

S(k,ω) = 1

D
〈Û (k,ω)Û �(k,ω)〉 = (L̂(k) − iωI)−1(K̂ K̂ �)(L̂�(k) + iωI)−1 . (7)

We denote the dynamic structure factor as Sφ1φ2 (k, ω) and the static structure factor as Sφ1φ2 (k) for the respective scalar 
fields φ1(k, ω) and φ2(k, ω). Accordingly, for the GLMEF equation in one space dimension we obtain two scalar fields ρ̂(k, ω)

and û(k, ω), and eq. (7) becomes

S(k,ω) =
(

Suu(k,ω) Suρ(k,ω)

Sρu(k,ω) Sρρ(k,ω)

)
(8)

with the components

Suu(k,ω) = γ ω2(
cs

2 k2 − ω2
)2 + γ 2 ω2

, (9a)

Sρρ(k,ω) = γ cs
2 k2(

cs
2 k2 − ω2

)2 + γ 2 ω2
, (9b)

Sρu(k,ω) = Suρ(k,ω) = 0 . (9c)

For equilibrium fluctuations the static structure-factor components are obtained by averaging over ω as

Suu(k) = 1

2π

+∞∫
−∞

Suu(k,ω)dω = 1 , (10a)

Sρρ(k) = 1

2π

+∞∫
−∞

Sρρ(k,ω)dω = 1 . (10b)

The static structure factors of velocity and density fluctuations is unity, which is consistent with the fluctuation–dissipation 
theorem (FDT).

From the dynamic structure factor one can derive an equation for the spectral correlation of the density field in time 
upon inverse Fourier transform of (9b) for the case of stationary equilibrium fluctuations

〈ρ̂(k, t) ρ̂(k, t + τ )〉
〈ρ̂2(k, t)〉 = γ√

4 cs
2 k2 − γ 2

e− γ τ
2 sin

(√
4 cs

2 k2 − γ 2 τ

2

)
+ e− γ τ

2 cos

(√
4 cs

2 k2 − γ 2 τ

2

)
, (11)

where 〈•〉 denotes averaging over time. The term −γ 2 under the square root originates from the derivative of the dissipation 
term. When 0 ≤ γ � 1 this contribution can be neglected in comparison to 4c2

s k2, and we obtain

〈ρ̂(k, t)ρ̂(k, t + τ )〉
〈ρ̂2(k, t)〉

∣∣∣∣
GLMEF

= e− γ
2 τ cos(cskτ ) + γ

2kcs
e− γ

2 τ sin(cskτ ) . (12)

A similar analysis is performed for the velocity field. The spectral correlation of the velocity field in time is

〈û(k, t)û(k, t + τ )〉
〈û2(k, t)〉

∣∣∣∣
GLMEF

= e− γ
2 τ cos(cskτ ) − γ

2kcs
e− γ

2 τ sin(cskτ ) . (13)

Eq. (12) can be compared with the two-point time correlation of density obtained for LLNS. For this purpose, we use 
the expression derived for the compressible LLNS in [23,24] and set the ratio of specific heats to unity. This corresponds an 
isothermal form of the LLNS with a weakly compressible equation of state that we also use for GLMEF. We do not consider 
bulk viscosity, and ν = η

ρ̄ denotes the kinematic viscosity. We follow [15] to obtain

〈ρ(k, t)ρ(k, t + τ )〉
δρ2(k, t)

∣∣∣∣
LLNS

= e−k2 2ν
3 τ cos(cskτ ) + kν

2cs
e−k2 2ν

3 τ sin(cskτ ) . (14)

Upon comparison of (12) and (14) it is apparent that the equations are identical for the wave number k = k0 which satisfies
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γ = 4

3
νk2

0 = 4

3

η

ρ̄

(
2πn0

L

)2

, (15)

where n0 is the corresponding integer wave number. In the following we set n0 = 1 and adjust the parameters ν and γ
accordingly.

3.2. Probability density functions

The Fokker–Planck equation for GLMEF has been derived in [12] as

∂ P ([ρ, g], t)

∂x
= L̂([ρ, g])P ([ρ, g], t) ,

with the linear operator

L̂([ρ, g]) =
∫

dx

(
δ

δρ(x)
∇ · g(x) + δ

δg(x)
·
(
ρ(x)∇

(
δH V [ρ]
δρ(x)

)
+ ∇ ·

(
g2(x)

ρ(x)

))

+ δ

δg(x)
· γρ(x)

(
D

δ

δg(x)
+ δH K [ρ, g]

δg(x)

))
.

In this equation H V and H K are functionals for the internal and the kinetic energy, respectively. As stated in [12], the 
corresponding steady-state probability-density function (PDF) is given by

Peq[ρ, g] = 1

Z
exp

(
− H V [ρ] + H K [ρ, g]

D

)
, (16)

where Z is a normalization coefficient. For the 1D GLMEF (4) we obtain the steady-state PDF for a H V that is consistent 
with the underlying weakly compressible model

n(x, t)
∂

∂x

δH V [n]
δn(x, t)

= mc2
s
∂n(x, t)

∂x
. (17)

The solution of this equation is

H V [n] = mc2
s n(x, t) (log(n(x, t)) − 1 + C1) + C2 , (18)

with integration constants C1 and C2. C2 can be merged with the normalization coefficient Z in Eq. (16). For determining C1
we stipulate that for n(x, t) = n̄, where n̄ is the spatial average number density, the internal energy becomes H V [n̄] = −mc2

s n̄, 
resulting in

C1 = − log(n̄) ,

and

H V [n] = mc2
s n(x, t)

(
log

(n(x, t)

n̄

) − 1

)
,

or alternatively written as mass density

H V [ρ] = c2ρ(x, t) log

(
ρ(x, t)

ρ̄

)
− c2ρ(x, t).

As the kinetic energy functional is given by

H K [ρ, g] = g2(x, t)

2ρ(x, t)
,

the steady-state PDF becomes

Peq[ρ, g] = 1

Z
exp

⎛
⎝−

c2ρ(x, t) log
(

ρ(x,t)
ρ̄

)
− c2ρ(x, t) + g2(x,t)

2ρ(x,t)

D

⎞
⎠ . (19)

The marginal steady-state PDF for momentum and mass density are obtained from

Peq[ρ] =
∫

du(x, t)Peq[ρ, g] (20)
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and

Peq[g] =
∫

dρ(x, t)Peq[ρ, g] . (21)

For analytic derivations we have relied on the Maxima computer algebra system [25].

4. Spatial discretization schemes

For the discretization of the convective term of the GLMEF different classes of spatial schemes can be considered. One 
option is a staggered scheme that has improved stability and accuracy properties for small-scale fluctuations of LLNS (char-
acterized by a stochastic force in divergence form) as compared to collocated schemes [20,26]. A drawback of staggered 
schemes is that they require interpolation operations to transform between cell-center and cell-vertex variables. Motivated 
by previous research we will assess in the following three different spatial discretizations schemes for GLMEF: (i) the 
fourth-order finite-volume scheme proposed by Bell et al. [15], (ii) a second-order energy-conservative skew-symmetric 
scheme based on a staggered grid, and (iii) a second-order energy-conservative skew-symmetric scheme based on a collo-
cated grid [27].

4.1. Fourth-order finite-volume scheme in a collocated grid

A fourth-order finite-volume spatial discretization scheme was studied by Bell et al. [15]. The scheme is similar to the 
piece-wise parabolic discretization method, however does not employ a characteristic-projection reconstruction procedure. 
Conservative variables at cell-faces are reconstructed by

gi+1/2 = α1(g j + g j+1) − α2(g j−1 + g j+2)

and

ρi+1/2 = α1(ρ j + ρ j+1) − α2(ρ j−1 + ρ j+2) ,

with coefficients

α1 = 7

12
; α2 = 1

12
.

4.2. Compact finite-difference schemes for staggered grid

The advantage of staggered grids is due to their stability in the incompressible limit, as they preclude the so-called 
odd-even decoupling during pressure-projection. Moreover, staggered compact schemes have better wave-resolution proper-
ties than collocated schemes of like order [28], and it was demonstrated that skew-symmetric staggered schemes maintain 
a discrete fluctuation–dissipation balance [20]. The staggered-grid scheme of Voulgarakis and Chu [26] shows improved 
predictions of the spatial density-field correlation for nonlinear SPDEs with a noise term in divergence form (as for LLNS).

These results indicate that advantages of staggered schemes for deterministic transport equations may transfer to 
stochastic equations. For this reason we consider a family of skew-symmetric schemes proposed by Morinishi [27]. The 
convective term for a transported scalar φ is re-written in skew-symmetric form as

(Skew.)φ = √
ρ

∂
√

ρφ

∂t
+ 1

2

(
∂ρu jφ

∂x j
+ ρu j

∂φ

∂x j

)
.

A second-order, skew-symmetric, staggered, energy conservative scheme results as

(Skew. − SC2) =
√

1

2
(ρi+1 + ρi)

∂

√
1
2 (ρi+1 + ρi)ui+1/2

∂t
+

+ 1

8dx

(
(ρi+2 + ρi+1)u2

i+3/2 − (ρi−1 + ρi)u2
i−1/2+

+ (ρi+1 + ρi)ui+1/2ui+3/2 − (ρi+1 + ρi)ui+1/2ui−1/2
)

.

4.3. Semi-discrete compact finite difference scheme in a regular grid

Staggered grids increase implementational complexity and require the definition of consistent interpolation operators 
between variables at cell centers and at cell vertices. We also consider a second-order, conservative, skew-symmetric scheme 
on a collocated grid, as proposed by Morinishi in order to analyze whether the staggered formulation exhibits advantages 
over the collocated also for GLMEF,

(Skew. − RC2) = √
ρi

∂
√

ρiui

∂t
+ 1

4dx

(
ρi+1u2

i+1 − ρi−1u2
i−1 + ρiuiui+1 − ρiuiui−1

)
.
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5. Temporal integration scheme

For time integration we employ a strongly stable (for deterministic equations) Runge–Kutta temporal integrator (RK3) 
[29,30]. This time-integration scheme was shown to represent accurately statistical properties for LLNS [15,19]. RK3 has 
three substeps

Un+1/3 = Un − dtdUn + √
dt K n ,

Un+2/3 = 3

4
Un + 1

4
Un+1/3 − 1

4
dtdUn+1/3 + √

dt K n+1/3 ,

Un+1 = 1

3
Un + 2

3
Un+2/3 − 2

3
dtdUn+2/3 + √

dt K n+2/3 ,

where dU is the solution vector, and K is the stochastic-force vector. There are several possibilities for evaluating K at 
intermediate time steps [19,21]. The following formulation requires only two independent random fields (W A and W B )

K n+1/3 = α1W A + β1W B , K n+2/3 = α2W A + β2W B ,

K n+1 = α3W A + β3W B , (22)

with the coefficients

α1 = α2 = α3 = 1, β1 = 2
√

2 ± √
3

5
,

β2 = −4
√

2 ± 3
√

3

5
, β3 =

√
2 ∓ 2

√
3

10
. (23)

In the skew-symmetric form we transport √ρu, and at each substep of the RK3 time integration we evaluate

(
√

ρu)n+1 = 1√
ρn

(ρnun + dt Rn
skew) , (24)

where Rskew is the right-hand side of the semi-discretized GLMEF using one of the spatial schemes given above.

6. Numerical experiments

6.1. Equilibrium

In this section we test numerical methods for GLMEF for the case of stationary fluctuations. For this purpose we choose 
dissipation and fluctuation coefficients for Argon thermal fluctuations in equilibrium [15]. This case was considered to test 
numerical methods for the compressible LLNS equations. Here, we want to assess in a similar fashion numerical schemes 
for the GLMEF equations. The particular choice of parameters is not meant to represent a real physical model of Argon equi-
librium fluctuations but rather should facilitate the comparison between LLNS and GLMEF which have different dissipation 
mechanisms. For that purpose we consider fluctuations around a given mean velocity u0(x, t) = 0

∂ρ(x, t)

∂t
+ ∂ g(x, t)

∂x
= 0 (25)

∂ g(x, t)

∂t
+ ∂

∂x

g2(x, t)

ρ(x, t)
= −∂ p(x, t)

∂x
− γρ(x, t) (u(x, t) − u0(x, t)) + √

ρ(x, t)Dγ ζc . (26)

We take the dissipation coefficient from eq. (15), and the fluctuation coefficient is chosen such that we have the same 
fluctuation magnitude within the velocity and density fields for GLMEF as for the LLNS in [15]

γ = 4

3

η

ρ̄
k2

0 ,

D = 2σ 2
g

ρ̄
, σ 2

g ∝ 1

V c
. (27)

Here, σ 2
g is the variance of the momentum, kb is the Boltzmann constant, η is the dynamic viscosity, T̄ is a constant tem-

perature, ρ̄ denotes the average density, V c is the constant cell volume. In [15] V c was chosen to be compatible with DSMC 
particle simulations. In this paper we choose the same system volume to allow for a comparison of results with [15]. L is 
the domain size, k0 = 2πn/L is a chosen wave number. The factor of 

√
2
�t , originating from Stratonovich integration (time-

centered fluxes), is accounted for by the coefficients (23) in eq. (22). N = 107 time steps for the autocorrelation, PDF and 
static-structure factor analysis were simulated with dt = 10−11. In analogy to LLNS we define the Courant–Friedrichs–Lewy 
(CFL) numbers as
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Table 1
System parameters (in cgs units) for simulation of thermal 
fluctuations in periodic domain.

Molecular diameter (argon) 3.66 × 10−8

Molecular mass (argon) 6.63 × 10−23

Reference mass density (ρ̄) 1.78 × 10−3

Temperature (T̄ ) 273
Artificial sound speed 23843.86
System length (L) 1.25 × 10−4

Reference mean free path 6.26 × 10−6

System volume (V c ) 1.96 × 10−16

Time step (dt) 1.0 × 10−11

Number of cells (Nc ) 40
Number of time steps (N) 107

Grid size (dx) 3.13 × 10−6

Variance of momentum (σ 2
g ) 13.34

Fluctuation coefficient (D) 14988.76

Fig. 1. Comparison of static structure factor Suu(k) and Sρρ(k) in thermodynamic equilibrium for different spatial discretization schemes.

α2 = dx

(cs + umax)dt
≤ 1, α1 = γ dt ≤ 1

2
.

A small CFL number ensures that the spatial truncation error is dominant, and that differences in results originate primarily 
from the spatial discretization scheme. Parameters are chosen such that the PDF of momentum and velocity are consistent 
with that of isothermal LLNS. The full set of parameters is given in Table 1.

Eq. (26) has a stochastic forcing in non-conservative (non-divergence) form. As result a non-zero mean velocity uav with 
variance σav = D

Nc
occurs. We suppress this effect by enforcing zero mean of the stochastic force over the (finite) domain. 

The corrected stochastic force is

ζcor(x, t) = ζ(x, t) − L−1
∫
L

ζ(x, t)dx

at each Runge–Kutta substep. We use the GNU Scientific Library to generate a normal distribution [31].

6.1.1. Static structure factor at equilibrium
An appropriate discretization of the convective term should maintain a discrete fluctuation–dissipation balance, i.e. the 

computed static structure factor (SSF) should agree with the analytical solution. In section 3.1 it was determined that the 
SSF for GLMEF is unity, which is consistent with a fluctuation dissipation balance. Fig. 1 shows the results for the nu-
merical solution of the GLMEF equations at equilibrium, discretized with different spatial schemes. We observe that the 
skew-symmetric staggered schemes results in the best agreement with theory. We also observe that the skew-symmetric 
collocated scheme for a wide range of wave numbers agrees well with theory and only at large wave numbers, where collo-
cated schemes are known to have inferior wave-resolution properties to staggered schemes, deviates. Both skew-symmetric 
schemes give better agreement with theory than the fourth-order finite-volume scheme.

We also tested other staggered formulations proposed in [27], i.e. the staggered divergence and advective formulations, 
which gave results worse than the skew-symmetric staggered and slightly better than the skew-symmetric collocated for-
mulation.

6.1.2. Time correlation at equilibrium
The spectral autocorrelation of density can be derived from the dynamic structure factor (DSF) by applying an inverse 

Fourier transform. An analytical solution for the spectral autocorrelation can be derived and thus serves also to assess the 
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Fig. 2. Time correlation of density and velocity fluctuations at equilibrium for GLMEF for different schemes in comparison with the exact solution Eqs. (12), 
(13).

Fig. 3. Density field PDF of GLMEF with skew-symmetric spatial discretization on a staggered grid. Results of simulations with different isothermal speed of 
sound are compared with a Gaussian function (dashed lines).

prediction accuracy for the DSF. Following [15] we consider the wave number n0 = 1. The dissipation coefficient in GLMEF 
is chose such that the spectral autocorrelation for GLMEF is equal that isothermal LLNS at wave number n0 = 1. The spectral 
autocorrelation of density is computed from node values ρi by

〈δρ(k, t)δρ(k, t + τ )〉 = 1

N

N∑
samples=1

R(t)R(t + τ )

with

R(t) = 1

Nc

Nc∑
l=1

ρl sin(2πnxl/L) ,

where ρl is a cell average of the density field, l = 1, . . . , Nc is the number of a cell, and N is the number of time steps. 
Fig. 2 shows a comparison of the different spatial schemes for the spectral autocorrelation of density. We find overall good 
agreement with theory for all schemes.

6.2. Density probability density function

In this section we consider the PDF of density. We restrict our attention to the skew-symmetric scheme on a staggered 
grid that gives the best results for the SSF. The difference between the density field PDF of GLMEF P (ρ) and the Gaussian 
distribution appears to be only minor, irrespective of a variation of the speed of sound, see Fig. 3. Reference speed of sound 
is c0 = 23843.86 cm/s. Closer inspection is facilitated by a logarithmic plot of

ln[P (ρ)] ∼
(

ρ − ρ̄

2σρ

)2



102 D. Azarnykh et al. / Journal of Computational Physics 314 (2016) 93–106

Fig. 4. Solid lines: density PDF of GLMEF with skew-symmetric staggered spatial scheme measured from simulations. Dashed lines: analytical solution 
eq. (20). Different colors correspond to different values of the speed of sound. Both positive and negative tails are shown. For the variables shown positive 
and negative tails of the Gaussian PDF coincide. The figure demonstrates that the PDF of GLMEF has non-Gaussian properties.

Fig. 5. Convergence study in time of static structure factor Suu(k) and Sρρ(k) in thermodynamic equilibrium. Grey dashed line is the theoretical order of 
convergence O (dt2).

in Fig. 4. A purely Gaussian distribution would exhibit a straight line. Dashed lines in the figure indicate analytical results, 
eq. (19), for different isothermal speeds of sound, solid lines are the simulation results for the skew-symmetric staggered 
scheme. The results show that the scheme correctly predicts skewness and non-Gaussian tails of the density PDF: the 
deviation from Gaussian behavior increases with decreasing speed of sound. For rare events we observe increasing deviation 
from the analytical result.

6.3. Weak convergence study

For assessing the weak convergence of the method we consider the deviation of static structure factors Suu(k) and Sρρ(k)

from their analytical solutions. We vary the time-step size to verify that the solution exhibits the convergence order O(dt2). 
We use the same parameters as given in Table 1. Averaging is performed by sampling results from up to N = 6.4 × 107 time 
steps. Fig. 5 shows the dependence of the relative errors of Suu(k) and Sρρ(k) on CFL number α2 with decreasing time-step 
size. It can be seen that the algorithm is weakly second-order accurate in time. The skew-symmetric scheme on a staggered 
grid satisfies the discrete fluctuation–dissipation balance (DFDB) [20] and thus predicts the static structure factors Suu(k)

and Sρρ(k) within statistical error for the given parameters.

6.4. Nonequilibrium

The problem of standing-shock diffusion was studied previously with DSMC [32] and with lattice–gas simulations [33,
34]. It also has served as test case for investigating nonequilibrium diffusion for different discretization schemes of the LLNS 
[15,35]. Motivated by this previous research, we simulate fluctuations around a stationary isothermal standing-shock profile 
for GLMEF. We consider density fluctuations around a given mean shock profile u0(x). Pre-shock conditions are prescribed 
as for the previous equilibrium case. Post-shock conditions result from the isothermal Rankine–Hugoniot conditions for two 
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Table 2
System parameters (in cgs units) for computation of 
standing isothermal shock, Ma 1.4.

System length (L) 4.0 × 10−3

RHS mass density 1.78 × 10−3

LHS mass density 5.81 × 10−3

RHS velocity (URHS) −43093.4
LHS velocity (ULHS) −13191.9
Sound speed 23842.86
Time step 1.0 × 10−11

Number of cells 1280
Collision grid size 3.13 × 10−6

Fig. 6. Initial shock velocity profile u0(x) (black line) and stationary solution of GLMEF with zero fluctuation coefficient uini(x). Blue line and red line denote 
the case of dissipation coefficient equal to γ0/2 and γ0 respectively. Case of Ma = 1.4 is presented, γ0 = 3.9 × 108 1

s . (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

different shock strengths at Mach numbers Ma = 1.2, Ma = 1.4. We approximate infinite reservoir boundaries by setting 
a constant corresponding velocity at the left and right domain boundaries. To reduce the boundary effect on the fluctuat-
ing evolution the domain size is 32 times larger than for the equilibrium case, while keeping the same grid size dx and 
fluctuation coefficient.

In the absence of physical diffusion the discontinuous initial shock profile tends to develop small-scale disturbances due 
to truncation errors at large wave numbers. Finite diffusion damps such spurious disturbances and non-dissipative numerical 
schemes can recover smoothed shock profiles. We consider a smooth initial shock profile that can be well resolved by a 
non-dissipative scheme by blending pre- and post-shock states with a hyperbolic tangent

u0(x) = 1

2
(ULHS − URHS)

(
1 − tanh

(
Cshock

x − L

L

))
.

This prevents spurious errors from polluting density fluctuations around the standing shock. The parameters for the standing 
isothermal shock are given in Table 2. We choose Cshock = 10 to maintain a smooth stationary solution in case of vanishing 
fluctuations. To avoid initial velocity and density relaxation, we initialize domain with velocity u(x, 0) = uini(x) that is 
derived from a precursor simulation of GLMEF with zero fluctuating coefficient, Fig. 6.

We measure the shock location at every time step from the average density field by

σρ(t) = L
ρ̄(t) − (1/2)(ρL + ρR)

ρL − ρR
,

where

ρ̄ = L−1

L/2∫
−L/2

ρ(x, t)dx (28)

is the instantaneous spatially averaged density.
We emphasize that the setup should not be considered as an accurate representation for the shock-diffusion problem. 

It serves here rather as a simple configuration to assess isothermal nonequilibrium fluctuations. The equation of state was 
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Fig. 7. Variance of shock location for density field in case of isothermal shock set up for weakly compressible GLMEF. The late-time growth rate of the 
density field variance in case of GLMEF keeps constant in time as for random walk model and depends neither on Mach number nor dissipation coefficient. 
γ0 = 3.9 × 108 1

s .

chosen for simplicity and with the objective of analyzing the weakly compressible form of GLMEF. Moreover, the setup 
of simulation does not take into account fluctuations of the mean shock profile u0(x, t). Nevertheless, the setup serves to 
investigate diffusion properties of GLMEF fluctuations around a non-trivial one-dimensional mean flow with steep gradients. 
The shock location fluctuates in time, and we are interested in changes of the variance of shock-location. If the numerical 
model properly captures thermal fluctuations of the shock, the shock location should diffuse similar to that of a simple 
random walk [34,15].

Fig. 7 shows the results for the late-time location variance of the isothermal shock over time. The variance is estimated 
by averaging over 1000 simulation samples. In comparison with the compressible equation of state, the location variance 
for the weakly compressible equation of state does not depend on shock strength when GLMEF is considered. The variance 
of shock location has the same slopes for Ma = 1.2 and Ma = 1.4

7. Discussion

We have addressed the question of suitable numerical discretization schemes for GLMEF which has structural similarity 
with an isothermal version of the Landau–Lifshitz Navier–Stokes equations, albeit the dissipative mechanism and stochas-
tic force are different. This similarity has motivated us to follow a similar analysis for GLMEF as other authors previously 
have performed for LLNS, and propose a combination of a staggered skew-symmetric finite-difference discretization of con-
vective terms and a strongly stable (for deterministic equations) three-stage Runge–Kutta scheme. We find that previous 
approaches suggested for LLNS do not necessarily perform well for GLMEF. By considering finite-difference schemes that 
have been designed particularly for good wave resolution and discrete conservation properties [27] we find that the bet-
ter wave-resolution properties that staggered schemes have over their collocated counterparts for deterministic equations 
transfer to the stochastic equations. Furthermore, the reduction of aliasing errors due to the skew-symmetric formulation 
[36] also leads in the stochastic case to improved numerical stability.

The proposed staggered skew-symmetric spatial discretization gives a correct prediction of the static structure factor and 
recovers non-Gaussian behavior of the density PDF. A finite-volume fourth-order spatial discretization scheme [15] results 
in a significant deviation from the analytical solution. This observation is consistent with the results for LLNS [19]. The 
observation that a staggered scheme is superior to a collocated scheme for the GLMEF also is consistent with previous 
studies for LLNS [20]. The choice of a suitable scheme for the spatial discretization is particularly important for GLMEF. We 
show that the considered collocated schemes exhibit a larger deviation from analytical results for GLMEF than for isothermal 
LLNS, and that only the staggered scheme in both cases equations returns satisfactory predictions. The fact that GLMEF is 
more sensitive to numerical errors may be due to the dissipation mechanism differing from that of LLNS.

The Generalized Langevin Model without repulsive potential is widely used to model turbulent flows. Its relation to 
intermittency effects on the velocity structure factor and energy-dissipation-rate structure function was shown in [37]. The 
difference from GLMEF considered in this paper is due to the presence of a repulsive potential by including a pressure from 
a weakly-compressible equation of state in GLMEF. One objective of this extension is to regularize the SPDEs in order to 
facilitate stable numerical solution.

The GLMEF model considered in this paper has the potential to capture non-Gaussian density PDF when discretized 
with a grid-based method. We consider this property as important for an application as subgrid-scale model for turbulent 
flows. We have employed in this paper only a very simple weakly-compressible equation of state to model the repulsive 
potential between notional particles. The analysis of other equations of state is the subject of future work. The further 
development of GLMEF might help to merge the well established subgrid-scale reconstruction properties of the particle 
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based Lagrangian-frame numerical solution approaches [38] with the efficiency of grid-based Eulerian methods [9], and 
thus offers a unified approach to Large-Eddy and Reynolds-averaged modeling of turbulent flows. It can be speculated 
that GLMEF with repulsive potential might extend the applicability of GLMEF-based subgrid-scale models to more complex 
turbulent flows than considered so far.

GLMEF may also lead to new applications as mesoscale models for nonequilibrium thermodynamics in liquids. There 
is a correspondence between Landau–Lifshitz Navier–Stokes and the overdamped Langevin equation described by R.F. Fox 
and G.E. Uhlenbeck [39,40]. In the manuscript we consider the underdamped Langevin equation which has the potential 
to extend the numerical investigation of nonequilibrium fluctuating phenomena in liquids [12]. These developments are 
subject of current work.
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We present an approach to determine macroscopic transport coefficients of a dissipative particle dynamics
(DPD) solvent. Shear viscosity, isothermal speed of sound, and bulk viscosity result from DPD-model input
parameters and can be determined only a posteriori. For this reason approximate predictions of these quantities
are desirable in order to set appropriate DPD input parameters. For the purpose of deriving an improved
approximate prediction we analyze the autocorrelation of shear and longitudinal modes in Fourier space of a
DPD solvent for Kolmogorov flow. We propose a fitting function with nonexponential properties which gives a
good approximation to these autocorrelation functions. Given this fitting function we improve significantly the
capability of a priori determination of macroscopic solvent transport coefficients in comparison to previously
used exponential fitting functions.
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I. INTRODUCTION

The dissipative particle dynamics (DPD) method is a
stochastic numerical model for the representation of mesoscale
phenomena in fluids. It was first suggested by Hoogerbrugge
and Koelman [1]. DPD is widely applied in physics and
engineering science. It has been used for, among others,
modeling of polymer solutions [2], red blood cells [3], and
colloidal suspensions [4,5]. One of the main complications
of the DPD method lies in determining effective macroscopic
fluid coefficients, such as viscosity and compressibility. Such
macroscopic transport coefficients are indirectly determined
by a set of DPD input parameters which are essentially of
microscopic nature. A relation between DPD and molecular
dynamics with Lennard-Jones potential was demonstrated
in [6]. In contrast to DPD, smoothed dissipative particle
dynamics (SDPD) has an inherently macroscopic nature, and
macroscopic transport coefficients characterized by shear and
bulk viscosities and isothermal speed of sound have a direct
correspondence to SDPD input parameters. SDPD was first
proposed in [7] as a stochastic extension of the smoothed
particle hydrodynamics (SPH) method to the mesoscale [8].
For that reason SDPD is limited to the classical hydrodynamic
regime of fluids, where macroscopic transport coefficients do
not depend on length scales. It should be pointed out that the
SDPD model and the Landau-Lifshitz Navier-Stokes (LLNS)
equations are related to each other for certain input-parameter
ranges [9]. As SDPD and LLNS are limited to the classical
hydrodynamic regime, the challenge of finding a relation
between macroscopic and DPD input parameters cannot be
solved through modeling a DPD solvent with SDPD or
LLNS. A variety of methods have been proposed to estimate
macroscopic transport coefficients for a DPD solvent. The
common approach is to expose a DPD solvent to a body
force which is constant in time. The shear viscosity can
then be derived directly from the response of the solvent
to such a perturbation. Fan et al. [10] used wall-bounded

*d.azarnykh@tum.de

Poiseuille flow to asses the viscosity of a DPD solvent in
a microchannel. A constant body force was applied in the
wall-parallel direction, and the channel walls were modeled as
frozen solvent particles. The same method was used to estimate
the viscosity of a polymer suspension in a microchannel. It
is also possible to estimate the viscosity of a DPD solvent
by using a reverse Poiseuille flow [11–13], which implies
the application of equal body forces with opposite direction
in each half of the periodic domain. Another approach to
estimate shear viscosity is to employ the Green-Kubo method
which can lead to inaccuracies at small scales and may
require additional corrections [14]. The Green-Kubo method
as well as Poiseuille flow allow us to estimate the shear
viscosity only on the length scale which is predefined by
the initial conditions. If the shear viscosity does not depend
on the length scale, as is the case for the Navier-Stokes
equations, this approach is sufficient to predict dissipation
on the different length scales. However, a DPD solvent has
a more complicated relation between dissipation and length
scales which is defined by the DPD weighting function and
DPD dissipation as well as the repulsive potential. Another
limitation is that stationary Poiseuille flow methods are unable
to predict other macroscopic transport coefficients such as the
bulk viscosity of a DPD solvent or its isothermal speed of
sound. The dissipation in a DPD solvent without potential
was widely analyzed in the classical works on DPD [15–17].
Predictions for the length scale dependency of macroscopic
transport coefficients have been derived analytically from the
DPD Fokker-Planck equation. In the analytical derivation of
macroscopic transport coefficients some assumptions were
imposed such as the absence of a potential between DPD
particles. The main disadvantage of a DPD fluid without
conservative force is due to the fact that the equation of state
of such a fluid becomes that of an ideal gas [17]. It thus limits
the model applicability. In [17] it was suggested to estimate
macroscopic transport coefficients of a DPD solvent from
the approximation of the Fourier transform of the velocity
autocorrelation functions (FTVACF) with an exponential
function. The approximation of FTVACF modes with an
exponential function might introduce additional errors in the

2470-0045/2016/93(1)/013302(14) 013302-1 ©2016 American Physical Society
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estimation of shear viscosity [11]. It was demonstrated that
when FTVACF modes are exponential (in the limit of long time
and large length scale ω → 0, k → 0) the viscosity estimated
with the Green-Kubo method equals that estimated from the
first FTVACF mode [14,20]. In principle one can consider
the Green-Kubo method as a particular case of the more
general FTVACF analysis. In this work we consider a DPD
solvent with repulsive potential and show that an assumption
of exponential decay of FTVACF modes implies additional
errors in the estimation of macroscopic transport coefficients
for a DPD solvent. The estimation of viscosity from FTVACF
modes is well established for particle methods. The analysis of
FTVACF in a multiparticle collision dynamics (MPC) solvent
is described in [18], where an exponential function was used
to estimate macroscopic transport coefficients of MPC. When
the FTVACF-mode decay is not purely exponential, it may be
useful to introduce a so-called memory function. Palmer [14]
analyzed the transverse-current autocorrelation function for
molecular dynamics with an exponential model of the memory
function. The method also was compared with an estimate
of the shear viscosity from Green-Kubo and Poiseuille flows
for molecular dynamics [19]. Other models for the memory
function are described in [20]. In this paper we analyze
FTVACF modes of a DPD solvent in three spatial dimensions.
We approximate the nonexponential evolution of FTVACF
modes in a DPD solvent. For that purpose we introduce a
function with nonexponential decay and calibrate its transport
coefficients. This function gives a good approximation to the
modes of FTVACF of a DPD solvent. We show that the analysis
of FTVACF modes can be used to derive the wave-number
dependence of the shear viscosity, the isothermal speed of
sound, and the bulk viscosity of a DPD solvent. The paper
is structured in the following way. After summarizing the
DPD solvent model in the second section, we derive the shear
viscosity on different scales from an analysis of Kolmogorov
flows in the third section. In the fourth section we analyze the
response of a DPD solvent on linear perturbations. We perform
simulations for the decay of sinusoidal waves in longitudinal
and transverse directions. For the case of sinusoidal wave
decay we compare the maximum velocities at different wave
numbers. In the same section the nonexponential nature of
FTVACF is shown. We define the Fourier transform of the
density autocorrelation function (FTDACF) to estimate the
accuracy of prediction of macroscopic transport coefficients.
We also introduce a function that improves the approximation
of FTVACF modes of a DPD solvent in comparison with
an exponential function. In the fifth section we compare the
accuracy of the methods that can be used to derive macroscopic
transport coefficients. We change the input parameters of the
DPD solvent in the sixth section in order to assess applicability
limits of the approach.

II. THE DPD METHOD

We consider a set of identical particles interacting with each
other with a pairwise force Fij . The law of motion for the ith
particle is described by

d r i

dt
= vi ,

dvi

dt
= 1

m

∑
j �=i

Fij . (1)

Here we take mass of the particle equal to unity. The force can
be split into three parts:

Fij = FC
ij + FD

ij + FR
ij . (2)

The pairwise forces have a cutoff radius rc which we take as
unity as well. The conservative force is repulsive between
particles and acts along the connecting line between two
particles:

FC
ij =

{
aijm(1 − rij )r̂ ij , rij < rc

0, rij � rc
, (3)

where aij is the maximum repulsion between the particles;
r ij = r i − rj , rij = |r ij |, and r̂ ij = r ij /rij are relative posi-
tion, distance, and unit vector between two particles i and j ,
respectively. Dissipative and random forces are

FD
ij = −γmwD(rij )(r̂ ij · vij )r̂ ij (4)

and

FR
ij = σmwR(rij )θij r̂ ij , (5)

respectively, where γ and σ are dissipative and random
coefficients. wD(rij ) and wR(rij ) are weighting functions,
vij = vi − vj is the relative velocity, and θij is a random
function with the properties

〈θij (t)〉 = 0, (6)

〈θij (t)θkl(t
′)〉 = (δikδjl + δilδjk)δ(t − t ′), (7)

with i �= j , k �= l. The coefficients of the random and dissi-
pative forces are related such that they satisfy the fluctuation-
dissipation balance [21]

wD(rij ) = [wR(rij )]2, γ = σ 2

2kBT
, (8)

where kB is the Boltzmann constant and T is the temperature.
We choose the standard weighting functions [2]

wD(rij ) = [wR(rij )]2 =
{

(1 − rij )2, rij < rc

0, rij � rc
. (9)

The velocity Verlet algorithm is used for time integration.
Simulations in this work are performed with the LAMMPS open-
source code [22].

Nondimensional transport coefficients

DPD can represent dynamics of a fluid in different scale
regimes. On the large scales DPD obeys laws of classical
hydrodynamics. On the small scales the dynamics of a
DPD solvent differ from classical hydrodynamics. As scaling
parameters that separate the dynamic regimes of a DPD solvent
one may take a decorrelation length of DPD particles l0
and the cutoff length rc. Here we follow [17] and choose
nondimensional transport coefficients as presented in Table I.
We choose the mass of DPD particles m as a mass unit, the
collision time t0 as time unit, and the dynamic length l0 as a
length unit. We nondimensionalize transport coefficients such
as kinematic shear viscosity, kinematic bulk viscosity, and
isothermal speed of sound according to the chosen system of
units. Nondimensional transport coefficients will be used in
Sec. VI.
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TABLE I. Scaling ratios for DPD nondimensional transport
coefficients.

ν Kinematic shear viscosity ν = ηs

ρ

ζ Kinematic bulk viscosity ζ = ην

ρ

v0 Thermal velocity
√

kBT /m

[rwD]r Integral of wD [rwD]r = ∫ rc

0 wD(r)d r

ω0 Collision frequency ω0 = ρ[rwD]rγ /d

t0 Collision time t0 = 1
ω0

l0 Dynamic distance l0 = t0v0

�0 Dynamic overlapping �0 = rc
l0

k̃ Nondimensional wave number k̃ = kl0

ν̃ Nondimensional ν ν̃ = ν

ω0l20

ζ̃ Nondimensional ζ ζ̃ = ζ

ω0l20

c̃t Nondimensional ct c̃t = ct

ω0l0

III. KOLMOGOROV FLOW OF SIMPLE DPD FLUID

One common approach to asses shear viscosity of a DPD
system is to expose the DPD solvent to a temporally constant
body force [10]. In this work we choose a sinusoidal spatial
dependence for the body force that acts on the solvent. This
particular choice of the force is motivated by convenience:
sinusoidal waves have simple Fourier representations. We are
interested in the low Reynolds number regime where nonlinear
effects of the solvent are negligible. The choice of sinusoidal
waves corresponds to the Kolmogorov-flow configuration
which allows us to measure viscosity at any prescribed wave
number [23,24]. We consider a body force

F = F0(kz)sin(kzx)x̂, (10)

where kz = 2πn/Lz is the z component of a wave-number
vector, Lz is the extent of the simulation box in the z direction,
n is an integer wave number, and F0(kz) is a body force that
depends on the wave-number vector in a way that will be
described below. For small Reynolds number Re <

√
2, one

can obtain an analytical stationary solution

v = v0sin(kzx)x̂, (11)

with v0 = F0(kz)ρ
mηsk2

z
. The Reynolds number is defined as

Re = F0(kz)

mν2k3
z

. (12)

To estimate the viscosity law ηs(k) we perform separate
simulations for different kz. For every simulation we take the
body force F0(kz) in such a way as to maintain Re ∈ [0.2,0.3]
for Lz = 40. An empirical expression for F0(kz) is

F0(kz) =
{

0.0199 k3
z , kz < 2π×14

40

0.00125 k2
z , kz � 2π×14

40

. (13)

The simulation input parameters are described in Table II
and are taken from [10]. To assess the shear viscosity, for
every kz we perform a preliminary simulation for a sufficiently
long time until the Kolmogorov flow becomes stationary.
Subsequently, for the developed stationary flow we evaluate

TABLE II. Input parameters of the DPD solvent for Kolmogorov
flow.

Domain size (Lx × Ly × Lz) 40 × 40 × 40
Mass (m) 1
Temperature (kBT ) 1
Stochastic coefficient (σ ) 3
Dissipative coefficient (γ ) σ 2/(2kBT )
Repulsion coefficient (aij ) 18.75
Time step (dt) 0.01
Density (ρ) 4
Prerun length in time steps 4 × 105

Simulation length in time steps (Nt ) 32 × 105

Ni samples from every simulation. Every sample represents an
independent instantaneous velocity profile. We approximate
each sample of the velocity profiles with a sinusoidal function
(11) to extract the maximum velocity v0. From the value of v0

we estimate the shear viscosity ηs for every kz. We find the sta-
tistical error of the shear viscosity estimation from the standard
deviation of ηs . To achieve an error in viscosity estimation of
less than 1%, we extend the simulation for the first integer wave
number n = 1 up to 16 × Nt time steps and for the second in-
teger wave number n = 2 up to 8 × Nt time steps, and so forth,
where Nt is given in Table II. Figure 1 shows the velocity pro-
files averaged from Ni samples for n = 1 and 4. We consider
the shear viscosity, estimated from Kolmogorov flow as a ref-
erence for the remainder of the paper. The viscosity law ηs(k)
which has been derived from this method is shown in Fig. 5.

IV. DPD RESPONSE ON LINEAR PERTURBATIONS

In this section we consider the linear response of a DPD
solvent on perturbations. Such perturbations can be imposed by
initial conditions in terms of longitudinal and transverse waves.
Another option is to consider the transport and dissipation
of equilibrium fluctuations. In the linear case the dissipation
of random velocity fluctuations obeys the same dissipative
evolution as the relaxation of an initially imposed velocity
field. The correspondence of the two approaches was shown in
[25] for fluctuating hydrodynamics. For a DPD solvent such a
correspondence will be shown below. From the linear response
of a DPD solvent one can derive the length scale dependence
of macroscopic transport coefficients.

FIG. 1. Velocity profiles for different integer wave numbers and
their analytical approximation (11). The statistical error is less than
1%.
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TABLE III. Input parameters of the DPD solvent for the decay of
sinusoidal waves.

Domain size (Lx × Ly × Lz) 20 × 20 × 20
Mass (m) 1
Temperature (kBT ) 1
Stochastic coefficient (σ ) 3
Dissipative coefficient (γ ) σ 2/(2kBT )
Repulsion coefficient (aij ) 18.75
Time step (dt) 0.01
Density (ρ) 4
Prerun length in time steps (Nprerun) 4.8 × 104

Simulation length in time steps (Nrun) 1.2 × 104

Number of realization (Nseed) 1000

A. Decay of sinusoidal waves

Considering the decay of sinusoidal waves allows us to
asses the scale dependence not only of shear viscosity but
also of other macroscopic transport coefficients such as bulk
viscosity and isothermal speed of sound [25,26]. To analyze
the evolution of dissipation of velocity modes in time one can
consider the decay of the initial velocity perturbations. The
dissipation rate of such perturbations can be determined for
the different length scales. For convenience we impose initial
velocity perturbations as sinusoidal waves at low Reynolds
number. We opt to initialize sinusoidal waves of the velocity
field in two directions, transverse and longitudinal with respect
to the initial velocity field. For transverse perturbations the
initial velocity field is given by

v⊥ = vr + vmax(kz)ρ
2sin(kzz)êx, (14)

where vr is a random velocity field, and êx is the unit vector in
the x direction. To generate the random velocity field we run
simulations with zero initial conditions for Nprerun time steps.
kz = 2πnz/Lz is the wave number of interest. For the case of
longitudinal perturbations the initial velocity field is

v‖ = vr + vmax(kx)ρ2sin(kxx)êx. (15)

As a solution for longitudinal and transverse perturbations we
expect to have

v⊥ = vmax(kz)ρ
2sin(kzz)f⊥(kz,t) (16)

and

v‖ = vmax(kx)ρ2sin(kxx)f‖(kx,t), (17)

respectively. At the standard hydrodynamic regime (in the
limit of long time and large length scale) f⊥(kz,t) and f‖(kz,t)
have analytical expressions, which assume exponential decay.
As shown in Fig. 3, the exponential approximation of such
functions can result in additional errors in the estimation of
macroscopic parameters. We run DPD simulations with initial
conditions defined by Eqs. (14) and (15) for integer wave
numbers nx,nz = 1,4,11,21. Simulation input parameters are
given in Table III. For each integer wave number we perform
independent simulations Nseed = 1000 and ensemble average
the transient velocity profiles. Subsequently, for each averaged
velocity profile we determine the decay of sinusoidal waves
by assessing the functions f⊥(kx,t) and f‖(kx,t). Results are
shown in Fig. 2 and are discussed below.

B. Stationary fluctuations

Now we consider the dissipation of random fluctuations of
the velocity field without adding a mean flow. A convenient

FIG. 2. Functions of decay of sinusoidal waves in parallel and perpendicular directions f‖ and f⊥ defined in Eqs. (16) and (17) compared
with longitudinal CDPD‖ and transverse CDPD⊥ FTVACF measured in simulation. The comparison for different wave numbers is depicted from
left to right as n = 1,4,11,21. We find a good agreement between the functions for different wave numbers.
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way to derive the decay rate directly from the fluctuating
velocity of the DPD solvent is to represent the random
fluctuations of the particle velocity field as

∑
ks

Aks
f (ks)

where ks is a length scale parameter. The dependence of
macroscopic transport coefficients can be derived from the
autocorrelation function of coefficients Aks

. For zero mean
flow, the common approach is to expand random fluctuations
of the velocity field in space as Fourier series and to assess
the dependency of macroscopic transport coefficients on the
length scale from FTVACF. It is convenient to set

v̂l(km,t) =
N∑

j=1

vl,j (m,t)sin(mjkm). (18)

For FTVACF C(km,t) one can write

C(km,t) = 〈v̂l(km,t0)v̂l(km,t0 + t)〉
δv̂2

l (km,t)
. (19)

Here m = x,y,z and l = x,y,z are direction indices and
indicate the wave-number vector and velocity-vector compo-
nents in the coordinate directions x,y,z, respectively. m =
l indicates longitudinal FTVACF with C‖(k,t), and m �=
l indicates transverse FTVACF C⊥(k,t). δv̂2

l (km,t) is the
variance of the respective Fourier mode. It is possible to
measure the functions C⊥(k,t) and C‖(k,t) from numerical
simulations. We will denote FTVACF that are measured in
simulations of a DPD solvent as CDPD⊥(k,t) and CDPD‖(k,t).
To compare the functions CDPD⊥(k,t) and CDPD‖(k,t) with
the decay of sinusoidal waves, we run DPD simulations with
input parameters as given in Table III. After relaxation to
stationary equilibrium, we transform the Lagrangian velocity
distribution to a Eulerian field and then to Fourier space and
measure FTVACF CDPD⊥(k,t) and CDPD‖(k,t). To minimize
statistical error, we perform simulations with N = 107 time
steps. Independent simulations are performed with different
seeds Ns = 32 times to assess a statistical error. Figure 2
shows comparison of transverse CDPD⊥(k,t) and longitudinal
CDPD‖(k,t) FTVACF exposed to the decay of an initial sinu-
soidal velocity field in transverse and longitudinal directions.
FTVACF agrees with the decay of maximum velocities of
sinusoidal waves from the previous subsection. There is neither
numerical nor phenomenological difference between FTVACF
and decay of sinusoidal waves. For convenience we choose to
analyze longitudinal and transverse FTVACF in the remainder
of the paper. In the following subsections we describe several
methods of derivation of macroscopic transport coefficients
from FTVACF. These methods will be compared in Sec. V.

C. Assumption of exponential decay

The behavior of a fluid on large scales can be described
by the Navier-Stokes equations. An extension of the Navier-
Stokes equations by a divergence of a random stress is able
to capture many physical phenomena of thermal fluctuations
on mesoscales such as multispecies mixing [27], diffusion
enhancement and giant fluctuations [28,29], or the random
walk of stationary shock [30]. Landau and Lifshitz first
proposed this extension [31]. The velocity autocorrelation
function is one of the main quantities to describe the statistical
properties of the solvent. For the transverse and longitudinal

FTVACF in case of LLNS we write [25]

CLLNS⊥(k,t) = e
−k2 ηs

ρ
t (20)

and

CLLNS‖(k,t) = e−k2
t cos(�kt)

− k


�
e−k2
t sin(�kt), (21)

respectively, where

� =
√

4 c2
t − k2
2

2
, 
 =

(
1 − 1

d

)
ηs

ρ
+ 1

2

ην

ρ
, (22)

and d = 3 is the number of dimensions. The DPD method
is able to represent phenomena beyond the standard hydro-
dynamic limit and capture the mesoscopic hydrodynamics
regime as well as N-particle Langevin dynamics [15,17].
To extend the analysis of collective properties of a DPD
solvent to small scales we follow [17] and introduce the
functions ηs(k), ην(k), ct (k) instead of constant values of
the macroscopic transport coefficients. The wave-number
dependence in this case serves to describe the macroscopic
properties of a DPD solvent on different wave numbers k.
An accurate approximation of CDPD‖(k,t) and CDPD⊥(k,t)
that are measured in the simulation allows us to estimate
transport coefficients on different wave numbers k. To extend
the functions CLLNS⊥(k,t) and CLLNS‖(k,t) to small scales one
may consider wave-number dependent transport coefficients
in Eqs. (20) and (21):

C⊥(k,t) = e
−k2 ηs (k)

ρ
t (23)

and

C‖(k,t) = e−k2
(k)t cos[�(k)kt]

− k
(k)

�(k)
e−k2
(k)t sin[�(k)kt], (24)

respectively, with

�(k) =
√

4 c2
t (k) − k2
2(k)

2
,


(k) =
(

1 − 1

d

)
ηs(k)

ρ
+ 1

2

ην(k)

ρ
. (25)

The FTVACF quantities CDPD‖(k,t) and CDPD⊥(k,t) that are
measured from simulations can be approximated by Eqs. (23)
and (24). From the result of the approximation one can derive
the wave-number dependence of macroscopic transport coeffi-
cients ηs(k), ην(k), ct (k). The results of the approximation for
different wave numbers n = 1,4,11,21 are shown in Fig. 3.
The results reveal that the approximation of FTVACF of a
DPD solvent by the functions C‖(k,t) and C⊥(k,t) introduces
approximation errors that affect the assessment of macroscopic
transport coefficients. This error will be demonstrated and
discussed in Sec. V.

D. Integral characteristics of FTVACF

Another approach to estimate shear viscosity is to integrate
numerically FTVACF CDPD⊥(k,t) in time. For transverse
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FIG. 3. FTVACF of DPD solvent CDPD⊥ and CDPD‖ which are measured from simulations compared with exponential approximations C⊥
Eq. (23) and C‖ Eq. (24). The comparison for different integer wave numbers is depicted (from left to right) as n = 1,4,11,21. We observe a
deviation of the approximation functions and FTVACF of the DPD solvent for integer wave numbers n � 11.

FTVACF we write∫ t1

0
CDPD⊥(k,t)dt =

∫ t1

0
e
−k2 ηs (k)

ρ
t
dt

t1→∞= ρ

ηs(k)k2
, (26)

where t1 is the maximum time difference for which we
measure transverse and longitudinal FTVACF. The wave-
number dependence of the shear viscosity ηs(k) is given by

ηs(k) = ρ

k2

(∫ t1

0
CDPD⊥dt

)−1

. (27)

The longitudinal FTVACF depends on two transport coeffi-
cients and both isothermal speed of sound and bulk viscosity
cannot be directly derived from integration of longitudinal
FTVACF. A disadvantage of the method is related to finite
time t1. FTVACF is measured in the following way: during the
simulation at every time step δt we measure the correlation
between the instantaneous velocity v(k,t0 + δt) in Fourier
space and stored ones from the previous velocity field that
consists of Nv = t1/δt elements. δt is a time step of FTVACF
that could in principle be larger than the time step of the DPD
computation dt . Computational cost of measuring modes of
FTVACF directly relates to Nv . To minimize errors in the
numerical evaluation of the integral (26) it is important to
keep t1 as large as possible. One way to decrease t1 is to
approximate CDPD⊥(k,t) by some suitable function g⊥(k,t)
and then compute the integral (26) for t1 = ∞. Section IV F
describes suitable choices for the function g⊥(k,t) in detail.

E. Fourier transform of the density autocorrelation functions

Equations (23) and (24) are derived from isothermal
linearized LLNS equations which have macroscopic nature.
Characteristics of DPD solvent CDPD⊥(k,t) and CDPD‖(k,t)

might differ from Eqs. (23), (24), and (30) due to microscopic
properties of a DPD solvent as well as truncation errors. For the
shear mode one can compare the prediction of shear viscosity
derived from CDPD⊥(k,t) with the prediction derived from
Kolmogorov flow. To estimate the accuracy of bulk viscosity
and isothermal speed of sound derived from longitudinal
FTVACF CDPD‖(k,t) we consider Fourier transform of the
density autocorrelation function (FTDACF). Unlike other
particle methods such as SPH and SDPD the the DPD method
does not model density field explicitly. Each particle of the
DPD solvent has constant mass. The mass density of the DPD
solvent can be introduced through the kernel approximation at
every point of the DPD solvent. For simplicity we assume that
the mass density is unity at the locations of DPD particles and
introduce FTDACF similarly as FTVACF:

ρ̂(km,t) =
N∑

j=1

ρj sin(mjkm), (28)

where ρj = 4 is a mass density of a DPD particle with index
j . For FTDACF we write

CDPDρ(km,t) = 〈ρ̂(km,t0)ρ̂(km,t0 + t)〉
δρ̂2(km,t)

. (29)

As mass density is a scalar we have only a single FTDACF
component. Similarly to Eq. (24) we write

Cρ(k,t) = e−k2
(k)t cos[�(k)kt]

+ k
(k)

�(k)
e−k2
(k)t sin[�(k)kt]. (30)

In the following section we introduce the function g‖ that
may improve accuracy of prediction of bulk viscosity and
isothermal speed of sound.
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F. Nonexponential approximation of FTVACF modes

Figure 3 demonstrates that transverse and longitudinal FT-
VACF exhibit nonexponential behavior on small scales. Note
that it has been established that the deviation from exponential
decay on small scales is physically sound [14,19,20,32–35].
Such a deviation may be approximated by the introduction of a
memory function. Consider the time correlation function C(t).
Its memory function can be defined as

∂

∂t
C(t) = −

∫ t

0
dt ′φ(t ′)C(t − t ′). (31)

On the large time scales where fluid dynamics is described by
the Navier-Stokes equations, the memory function coincides
with the Dirac delta function. On small scales the memory
function is usually approximated by some phenomenological
model. Given such a model one can derive a closed approx-
imation for FTVACF modes. We suggest another approach:
instead of introducing a memory function one can introduce
functions to approximate the FTVACF modes. To derive
macroscopic transport coefficients of the DPD solvent from
measured FTVACF CDPD⊥(k,t) and CDPD‖(k,t), we modify the
exponential functions C⊥(k,t) and C‖(k,t). The functions are
modified by introducing a parameter that allows us to further
reduce the approximation error. The approximation function
of transverse FTVACF is g(k,t)⊥ and is defined as

g(k,t)⊥ = e
−k2Ak

t2

t+Bk . (32)

The parameters Ak > 0 and Bk > 0 depend on k and are
calibrated to predict FTVACF. Ak has the dimension of
kinematic viscosity and Bk has the dimension of time. To
derive the shear viscosity one can compute the integral of the
function (32):

ηs(k) = ρ

k2

(∫ ∞

0
e
−k2Ak

t2

t+Bk d t

)−1

. (33)

It is important to emphasize that with t � Bk the function
g(k,t)⊥ corresponds to the exponential function C⊥(k,t), and
ηs(k) = ρAk . When t and Bk have the same order one can
represent the integral of the function g(k,t)⊥ as∫ ∞

0
g(k,t)⊥dt = Bke

2k2Ak/BkK−1

(
k2Ak

Bk

,
k2Ak

Bk

)
, (34)

where K−1(Ak

Bk
,Ak

Bk
) = ∫ ∞

1 e
− Ak

Bk
(t+ 1

t
)
d t is an incomplete

Bessel function. In this work we evaluate the integral∫ ∞
0 g(k,t)⊥dt numerically. To fit longitudinal FTVACF and

FTDACF we write

g(k,t)‖ = e
−k2Ck

t2

t+Dk

[
cos(�kkt) − kCk

�k

sin(�kkt)

]
, (35)

g(k,t)ρ = e
−k2Ck

t2

t+Dk

[
cos(�kkt) + kCk

�k

sin(�kkt)

]
. (36)

For sufficiently large time differences t � Dk Eq. (35)
reduces to Eq. (21). The isothermal speed of sound ct (k)
and the coefficients Ck and Dk may be derived directly from
the approximation with function g‖(k,t) of the longitudinal
FTVACF CDPD‖(k,t) that is measured from the computational
experiment. The parameter Ck has the dimension of sound

attenuation and Dk has the dimension of time. For sound
attenuation


(k) = 1

k2

(∫ ∞

0
e
−k2Ck

t2

t+Dk dt

)−1

. (37)

The bulk viscosity relates to sound attenuation in three
dimensions as

ην(k) = 2ρ
(k) − 4
3ηs(k). (38)

Figure 4 shows the approximation of transverse and longitudi-
nal FTVACF with the functions g(k,t)⊥ and g(k,t)‖. g(k,t)⊥
gives a good approximation to the nonexponential decay of
C(k,t)DPD⊥. The longitudinal approximation g(k,t)‖ slightly
differs from C(k,t)DPD‖ for large wave numbers. However, it
improves the results in comparison to the exponential approx-
imation C(k,t)‖. A similar result, however not demonstrated
here, was observed for approximation of C(k,t)DPDρ .

V. PREDICTIVE CAPABILITY OF
NONEXPONENTIAL APPROXIMATIONS

In this section we compare the predictive capability
of nonexponential approximations of macroscopic transport
coefficients with exponential approximations in terms of the
wave-number dependence of ηs(k), ην(k), and ct (k). Specifi-
cally, we compare four different measures and approximations
of ηs(k): (1) exact evaluation of Kolmogorov flow described
in Sec. III; (2) approximation of FTVACF CDPD⊥(k,t) with
exponential function C⊥(k,t) from Sec. IV C; (3) integration
of CDPD⊥(k,t) described in Sec. IV D; and (4) nonexponential
approximation of CDPD⊥(k,t) described in Sec. IV F.

We perform three-dimensional simulations using the input
parameters given in Table III and assess the dependence of
the shear viscosity on wave number. The results are shown
in Fig. 5. Simulation lengths are chosen such as to achieve a
statistical error in the estimation of shear viscosity of less than
1%. As reference ηs(k) we consider the shear viscosity that
has been derived from the analysis of Kolmogorov flow. The
estimation error is computed as

E|ηs
(k) = 100

ηs(k) − ηs |KF⊥(k)
1

Nk

∑
k ηs |KF⊥(k)

, (39)

where ηs(k) is the shear viscosity given by one of the
approximations above, and ηs |KF⊥(k) is the reference shear
viscosity. We observe that the shear viscosity derived from the
exponential approximation C⊥ deviates from the reference.
This deviation originates from the fact that the transverse
FTVACF of a DPD solvent is nonexponential as shown in
Fig. 3. The estimation of ηs(k) directly from an integration of
CDPD⊥(k,t) agrees with the reference for large wave numbers
and should be exact as t1 → ∞. However, due to finite time
t1 the numerical value is slightly smaller. In the simulation
we choose the same t1 = const. for all wave numbers. For
small wave numbers t1 should be larger than the current
value which leads to an overestimation according to Eq. (27).
However, this overestimation does not invalidate our general
observation. When the shear viscosity is estimated from the
nonexponential approximation of FTVACF using Eq. (32)
we obtain a much better agreement with the exact value.
From an analysis of the longitudinal FTVACF one can assess
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FIG. 4. FTVACF of DPD solvent CDPD⊥ and CDPD‖ which are measured in simulation compared with nonexponential approximations g⊥
Eq. (32) and g‖ Eq. (35). The comparison for different wave numbers is shown as n = 1,4,11,21 (from left to right).

the dependence on wave number of macroscopic transport
coefficients such as the bulk viscosity ην(k) and the isothermal
speed of sound ct (k). Aside from analytical estimations of
such dependencies for the case of noninteracting DPD particles
(aij = 0) in [17], no methods have been reported in literature
so far for an estimation of ην(k) and ct (k) of a DPD solvent.
For such purposes one can analyze the decay of sinusoidal
longitudinal waves, which agrees, as has been shown in
Fig. 2, with longitudinal FTVACF CDPD‖(k,t) for low Reynolds
numbers in the linear regime. In order to estimate the accuracy
of estimates for ην(k) we compare four different methods
that are based on the estimation of the bulk viscosity from
longitudinal FTVACF CDPD‖(k,t) and FTDACF CDPDρ(k,t):
(1) approximation of FTVACF CDPD‖(k,t) with exponential
function C‖(k,t) from Sec. IV C; (2) nonexponential approxi-
mation of CDPD‖(k,t) described in Sec. IV F; (3) approximation
of FTDACF CDPDρ(k,t) with exponential function Cρ(k,t)
from Sec. IV C; and (4) nonexponential approximation of
CDPDρ(k,t) with function gρ(k,t) described in Sec. IV F.

For assessment of ct (k) we consider four similar possibili-
ties of using exponential and nonexponential approximations
for CDPD‖(k,t) and CDPDρ(k,t). Figure 6 shows the dependence
of the bulk viscosity and the isothermal speed of sound on wave
number that was estimated with the different methods. The
statistical errors on both plots are smaller than the symbol size.
Differences between approximations are quantified according
to

D|ct
(k) = ct (k) − ct |g‖(k) (40)

and

D|ην
(k) = ην(k) − ην |g‖(k). (41)

For the assessment of the relative differences D|ct
(k) and

D|ην
(k) in the approximations of ct (k) and ην(k) with the

different methods we take the estimation derived from the
nonexponential approximation of the longitudinal mode of
FTVACF as reference. For the approximating error in the
isothermal speed of sound, exponential ct (k)|‖ and nonex-
ponential approximation ct (k)|g‖ from both FTVACF and
FTDACF give similar results at small wave numbers. For
large wave numbers the difference D|ct

, the difference between
estimation of ct (k) from FTVACF and FTDACF, is smaller for
approximation with the nonexponential function. Moreover, in
Fig. 4 we show that the nonexponential function g(k,t)‖ im-
proves the approximation of longitudinal FTVACF CDPD‖(k,t)
in comparison with the exponential function C‖. For these
reasons we consider results derived from the nonexponential
approximation as more accurate for estimating ct (k).

The shear viscosity ηs(k) and the isothermal speed of
sound ct (k) are estimated directly from the transverse and the
longitudinal FTVACF. However, to estimate the bulk viscosity
from CDPD‖(k,t) that is measured in simulations, one first
needs to determine shear viscosity and isothermal speed of
sound. Figure 6 shows the dependence of bulk viscosity, that
is estimated with four different methods, on the wave number.
We observe significant discrepancy between estimation of
bulk viscosity from FTVACF and FTDACF. For the smallest
wave number, difference is about 9% and it rises with larger
wave numbers. The discrepancy is due to imperfections of the
fitting function that is not able to incorporate the microscopic
properties of the DPD solvent in the longitudinal direction. The
improvement of the accuracy for the bulk viscosity prediction
is a subject of future work. For both estimates the statistical
error is smaller than the symbol size, quantitatively less than
1%. We show that the nonexponential approximations g(k,t)⊥
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FIG. 5. Dependence of shear viscosity on wave number that
is estimated with different methods. The exponential fit C⊥ (blue
lines with triangles) implies significant errors compared with the
reference for Kolmogorov flow (orange line with squares) for large
wave numbers. The large deviation at small wave numbers of the
estimation that is derived by numerical integration of transverse
FTVACF (green line with diamonds) can be explained by the limited
time of measurement t1. The black line with circles denotes the
estimation from the exponential fit with function g⊥. The error Eηs

is
measured according to Eq. (39).

and g(k,t)‖ allow us to derive the wave-number dependence
of macroscopic transport coefficients ct (k), ηs(k), and ην(k).
We also show that these predictions are more accurate than
those derived from exponential approximations. Up to this
point our attention was restricted to a single set of DPD input
parameters. The following section is devoted to an extension
of the approach to a wider range of DPD input parameters.

VI. NUMERICAL EXPERIMENTS

In this section we analyze the approximation capability of
FTVACF with nonexponential functions g⊥(k,t) and g‖(k,t)
for different sets of nondimensional DPD input parameters.
We also estimate bulk viscosity and isothermal speed of sound
for different �0 (see Table I). To facilitate computations we
shorten the domain size to [Lx,Ly,Lz] = [10,10,10]. We set
the number density as ρ = 4, temperature as kBT = 1, cutoff
radius as rc = 1, and γ = σ 2

2kBT
. The number of time steps in

the stationary regime is Nt = 4 × 106. For each set of input
parameters we perform Nseed = 16 independent simulations.
The DPD input parameter kBT is related to the nondimensional

FIG. 6. Dependence of isothermal speed of sound and bulk vis-
cosity on wave number, estimated with different methods. Differences
between estimates Dην

and Dct
are computed from Eqs. (40) and (41).

parameter �0. For the kernel (9) the relation is

kBT =
(

πm3/2ρr4
c σ 2

45�0

) 2
3

. (42)

A detailed derivation is provided in the Appendix. For the DPD
input parameters of the previous section we have �0 = 2.5. In
this section we take �0 = [0.1; 0.3; 1; 5; 10; 20; 50; 100] with
the corresponding kBT . We choose a time-step size according

to the relation dt = 0.01
√

mr2
c

kBT
as in [36] for all cases except

for �0 = [50; 100] where dt = 0.01. We vary the repulsive
parameter of the DPD solvent aij = [0; 18.75kBT ]. The
particular choices of the repulsive potential are motivated by
the fact that aij = 18.75kBT is widely used for modeling water
[2] and that for aij = 0 analytical predictions of macroscopic
transport coefficients in the classical hydrodynamics regime
are possible [17].

A. Approximation error analysis

For each simulation we estimate the dependency ηs(k)
by three different methods: (i) from direct integration of
CDPD⊥(k,t), (ii) by approximating CDPD⊥(k,t) with an expo-
nential function C⊥(k,t), and (iii) by a nonexponential function
g⊥(k,t). We take t1 sufficiently large in order to obtain an
accurate prediction of the shear viscosity dependence upon
integration of CDPD⊥(k,t). We consider the shear viscosity
obtained by integration of CDPD⊥(k,t) as reference. We
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FIG. 7. Approximation errors (43) and (44) derived from different
shear viscosity estimates for different values of �0. As reference
we integrate the transverse FTVACF measured in the simulation.
Statistical errors are indicated with dashed lines.

estimate approximation errors for exponential and nonexpo-
nential approximations as

E|ηs
=

[∑2π/rc

k=2π/L
rc

L
(ηs |⊥(k) − ηs |DPD⊥(k))2

] 1
2∑2π/rc

k=2π/L ηs |DPD⊥(k)
(43)

and

Eg|ηs
=

[ ∑2π/rc

k=2π/L
rc

L
(ηs |g⊥(k) − ηs |DPD⊥(k))2

] 1
2∑2π/rc

k=2π/L ηs |DPD⊥(k)
, (44)

respectively. Figure 7 shows differences in the estimation
of ηs(k) by exponential and nonexponential functions. It
demonstrates that for �0 � 10 the nonexponential function
gives a better prediction than the exponential function. For

�0 � 10 the prediction of ηs(k) has a similar error. Large
errors in the estimations of shear viscosity for the case �0 � 20
relate to the different shape of FTVACF for large �0; consider
the transverse FTVACF for the case of �0 = 100 shown in
Fig. 8. As was mentioned in the previous section, no method
to determine DPD solvent bulk viscosity and isothermal speed
of sound except for that from FTVACF and FTDACF can
be found in current literature. One can analyze the decay
of sinusoidal waves for such purposes. However, this will
result in the same CDPD‖ and it does not resolve the main
issue of how to estimate ct (k) and ην(k) from longitudinal
FTVACF and FTDACF. For that reason we do not estimate the
approximation error for the isothermal speed of sound and bulk
viscosity.

B. Simulation results

On the small scales of the DPD solvent shear and bulk
viscosities are lower. With decreasing k the magnitudes of
ηs(k) and ην(k) increase until a certain plateau is reached. For
the plateau, the dynamics of DPD particles can be described
by classical hydrodynamics. To estimate the classical hydro-
dynamic level of viscosities it has been proposed to use the
following expressions [15]:

ηs = γρ2[rwd ]r

2d(d + 2)
+ dmkBT

2γ [rwd ]r
, (45)

and

ην = γρ2[rwd ]r

2d2
+ mkBT

γ [rwd ]r
. (46)

For nondimensional kinematic shear and bulk viscosity these
expressions correspond to

ν̃ = 1
2 + a2�

2
0 (47)

FIG. 8. Transverse FTVACF for �0 = 100 compared with exponential and nonexponential approximations for different wave numbers
(from left to right) n = 1,4,6,10. Two cases considered: aij = 0 (top) and aij = 18.75kBT (bottom).

013302-10



DETERMINATION OF MACROSCOPIC TRANSPORT . . . PHYSICAL REVIEW E 93, 013302 (2016)

FIG. 9. Nondimensional kinematic shear viscosity ν̃ dependence
on nondimensional wave number q = kl0 for different �0 and
different aij . Solid lines correspond to the case of aij = 0 and
dashed lines correspond to aij = 18.75kBT . Dash-dotted lines are
estimations of the shear viscosity from Eq. (47) for the plateau values.

and

ζ̃ = 1
2 + 1

2b2�
2
0, (48)

respectively, where the coefficients a2 and b2 with kernel (9)
are

b2 = 3a2 = 3[rwD]r

2(d + 2)r2
c [wD]r

= 3

35
. (49)

Figure 9 illustrates the dependence of the nondimensional
kinematic shear viscosity on nondimensional wave number q.
We compare simulations with aij = 0 and 18.75kBT with the
estimation of the kinematic shear viscosity from Eq. (47). The
estimation (47) was derived for the case of aij = 0. We find
that Eq. (47) may not give a good prediction for the plateau
level of the kinematic shear viscosity even for the case without
repulsive potential. For �0 � 10 Eq. (47) overestimates the
shear viscosity measured from the simulation. For 10 > �0 �
1 Eq. (47) underestimates shear viscosity measured from
the simulation. For �0 < 1 the shear viscosity is far from
the classical hydrodynamic limit due to the limitations in
domain size, so that no definite conclusions can be drawn
on the prediction (47) for the case of aij = 0. The kinematic
shear viscosity measured from the simulation for the case of
aij = 18.75kBT differs from that for aij = 0. For �0 < 5 the
DPD solvent with repulsive potential has lower shear viscosity
in comparison with the case without repulsive potential. For
�0 > 5 the repulsive potential enhances shear viscosity.

Figure 10 shows the dependence of the nondimensional
isothermal speed of sound on nondimensional wave number q.
Two different values for the repulsive potential are considered,
and two different estimation methods were used. For the case
of zero repulsive potential and small �0 the isothermal speed
of sound remains constant. With increasing �0 one can observe
a deviation of c̃t (k) from the constant value. For the case of
nonzero repulsive potential the estimation of the isothermal
speed of sound with two different methods is similar for �0 <

50. The estimated isothermal speed of sound corresponds to
the speed of sound in water c̃t = 4 [2]. The small difference
in the largest wave numbers between two methods may be due

FIG. 10. Nondimensional isothermal speed of sound c̃t depen-
dence on nondimensional wave numbers q = kl0 for different �0 and
different aij = 0 (upper plot) and aij = 18.75 (lower plot). Solid
lines with circles correspond to the measurements derived from
analysis of longitudinal FTVACF and dashed lines with triangles
correspond to measurements from FTDACF. The dash-dotted line is
the nondimensional speed of sound in water on the lower plot [2] and
analytical estimation for the case of zero repulsive potential c̃t = 1
on the upper plot.

to truncation errors. The estimation of the isothermal speed of
sound from longitudinal FTVACF and FTDACF differs for the
case aij = 0 and is similar only for the largest wave number
when �0 � 20. This may be related to the approximation error
of FTVACF in the case of aij = 0. An approximation error
was also found for large �0. A further improvement of the
estimation accuracy of c̃t (k) for the case of large �0 as well as
small aij is subject of future work.

In contrast to the estimation of the isothermal speed of
sound we find that the kinematic bulk viscosity measured
from simulations with different methods results in significant
discrepancies for the case of both nonzero and zero repulsive
potential on small scales and cannot be considered as accurate.
For large scales the discrepancy between the two methods is
smaller. We found a better agreement of the kinematic bulk
viscosity with its estimation from Eq. (48) for large scales in
comparison with measurements and predictions for kinematic
shear viscosity. The results are given in Fig.11. Moreover, on
large scales no differences in the bulk viscosity for aij = 0
and 18.75 was found for �0 > 5. When �0 < 5 we find that
the bulk viscosity does not approach a plateau on the smallest
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FIG. 11. Nondimensional kinematic bulk viscosity η̃ν depen-
dence on nondimensional wave number q = kl0 for different �0 and
different aij = 0 (upper plot) and aij = 18.75 (lower plot). The legend
is the same as that of Fig. 9. Dash-dotted lines are estimations of the
shear viscosity from Eq. (48) for the plateau values. The solid line
is the estimation from longitudinal FTVACF. The dashed line is the
estimation from FTDACF.

measured wave number k = 2π
L

and thus cannot be compared
with the prediction.

VII. SUMMARY AND DISCUSSION

We start our analysis of a DPD solvent with the derivation
of the dependence of the stationary shear viscosity on wave
number with dynamic overlapping coefficient �0 = 2.5. For
this purpose we use the Kolmogorov flow. Subsequently, we
consider the decay of sinusoidal waves to estimate dynamic
properties of shear viscosity. We show that the decay of
sinusoidal waves for the case of parallel and perpendicular
directions corresponds to longitudinal and transverse FTVACF.
The dynamic overlapping is a nondimensional parameter that
defines the dynamic regime of the DPD solvent [17]. For
�0 = 2.5, the DPD solvent corresponds to the case considered
in [10]. For the case of �0 = 2.5 we demonstrate the nonexpo-
nential character of transverse and longitudinal FTVACF. The
estimation of stationary shear viscosity from the exponential
approximation shows a significant deviation from the station-
ary shear viscosity, derived from an analysis of Kolmogorov
flow. To fit both longitudinal and transverse FTVACF we
propose nonexponential functions g⊥(k,t) and g‖(k,t), which

recover exponential functions for small parameters Bk and
Dk . We show that the shear viscosity which is estimated from
an approximation of FTVACF modes with nonexponential
functions agrees with the stationary shear viscosity computed
for Kolmogorov flow. We use the same method to derive the
dependence of other macroscopic transport coefficients, such
as bulk viscosity and isothermal speed of sound, on wave
number.

In order to assess the applicability limits of the approach,
we perform simulations with different DPD input parameters.
We show that the method of derivation of the shear viscosity
from a nonexponential fit of FTVACF is suitable for a wide
range of input parameters �0 < 20. The proposed method is
more accurate than the derivation of macroscopic transport
coefficients from exponential functions for �0 � 10 and gives
the same approximation errors for �0 > 10. We assess the
accuracy of the prediction of shear viscosity in the classical
hydrodynamic limit Eqs. (47) and (48) that was proposed
in [15] which matches neither the case of the DPD solvent
without repulsive potential nor that with repulsive potential
aij = 18.75kBT . In contrast, the prediction of the classical
hydrodynamics limit of the bulk viscosity shows better agree-
ment with the bulk viscosity measured from the simulation
on the largest scale. The nondimensional isothermal speed of
sound for the DPD solvent with repulsive potential is similar
to that for waterlike fluid on large scales. In the case of zero
repulsive potential the isothermal speed of sound corresponds
to unity, the value that was derived from analysis [17].

The analyses described in the paper allow us to asses macro-
scopic transport properties on different scales. The estimation
can help in coupling the DPD solvent with other mesoscale
methods such as LLNS or SDPD. Moreover, for the case of
�0 < 20 the analysis is accurate for shear viscosity on the
small scale and may be useful to couple the DPD solvent with
molecular dynamics. One may also assess the accuracy of the
DPD solvent in representing phenomena beyond the standard
hydrodynamic limit. Modes of FTVACF can be measured in
the experiment and compared with the simulation of the DPD
solvent and with simulations of molecular dynamics.

Introducing g⊥(k,t) and g‖(k,t) can be interpreted as an
attempt to construct a surrogate model for the memory function
of a DPD solvent. The analytical derivation of the exact
memory function is tedious and not necessarily possible.
However, an accurate approximation by a model of the
memory function of the solvent allows us to predict the k

dependence of the solvent a priori. For that purpose, it can
be useful to consider the dependence of the fitting parameters
Ak , Bk , Ck , Dk on different scale ranges, which may allow us
to derive an empirical dependence of macroscopic transport
coefficients of a DPD solvent on wave number from Eqs. (33)
and (34).

We have considered so far only the classical DPD solvent.
However, we believe that the analysis can be readily extended
to measure the k dependence of macroscopic parameters for
other variants of the DPD solvent, such as multibody DPD [37],
energy-conserving DPD [38], and smoothed DPD (SDPD)[7].
For a classical DPD solvent we observe k dependence of
macroscopic coefficients. This finding is in an agreement
with the previous work on the topic [17]. On large scales,
liquid behavior can be described by the Landau-Lifshitz
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FIG. 12. Decreasing of viscosity for the case aij = 18.75kBT

relative to the viscosity with wavelength L = 10rc. In the legend ηs(L)
is a shear viscosity on wavelength L and relative error is estimated as
[ηs(L) − ηs(10rc)]/ηs(10rc). Different �0 are considered.

Navier-Stokes equations, where viscosity does not depend on
k. Beyond a certain scale, macroscopic parameters depend
on k, and one has to account for such a dependence in
the underlying model. One possibility is offered by the
Lennard-Jones molecular dynamics (L-J MD) solvent. L-J
MD has k-dependent macroscopic parameters and describes
small-scale behavior of liquids [20]. DPD is a mesoscale
model which has a wide range of applications and often is
used to represent complex microfluidics phenomena where
thermal fluctuations are important. We demonstrate the k

dependency of macroscopic parameters of a DPD solvent
which can be interpreted in two different ways: as a numerical
artifact which one would like to avoid when DPD is used
to model hydrodynamic length scales, or as an additional
feature which allows us to model phenomena beyond the
hydrodynamic limit. The described analysis can be applied
in both cases, in order to modify the DPD solvent to minimize
modeling artifacts, or to model small length scales beyond the
hydrodynamic limit.

To minimize numerical artifacts when the length scales
of interest are large enough and macroscopic parameters in
liquids are known to be constant, one may consider other
variants of the DPD solvent, such as SDPD. Another way to
avoid the k dependence of macroscopic parameters may be
to consider different kinds of DPD kernel functions. These
studies are beyond the scope of the current paper.

On the other hand, the k dependence of macroscopic
parameters is directly related to memory effects [20]. In recent
studies the possibility of a physically motivated model for
memory functions with a DPD solvent was demonstrated
[39,40]. Using techniques described in the current paper, one
can compare a classical DPD solvent with L-J MD simulations
for different length scales and model memory effects of L-J
MD according to such approaches. This allows us to increase
the scale where a DPD model represents physical phenomena.

We observe no sharp critical limit beyond which DPD
macroscopic parameters become constant. The evolution
of macroscopic parameters losing their k dependence with
increasing length scale is rather smooth. Figure 12 shows
a comparison of relative viscosity differences of that at

wavelength L = 10rc with that at wavelengths L = 5rc and
2rc. Different parameters �0 are considered. One can ob-
serve that the viscosity at L = 2rc is smaller by 20–30%
in comparison with the viscosity at wavelength L = 10rc.
Further investigations are needed to establish whether the k

dependence of the viscosity affects the diffusion of colloids
and polymers in DPD simulations.

The approach for assessing the isothermal speed of sound
and the bulk viscosity may be improved for the case of
zero repulsive potential by considering a more suitable ap-
proximation function for longitudinal FTVACF and FTDACF.
For an accurate approximation function one would expect a
similar prediction of macroscopic transport coefficients for
both methods. With the nonexponential approximation we find
a good agreement between predictions of the isothermal speed
of sound derived from an analysis of FTVACF and FTDACF
for the case of nonzero repulsive potential. The analyses
show similar results for the prediction of bulk viscosity from
FTVACF and FTDACF only for large length scales. The
truncation error on small scales or on large scales can be
estimated to improve the accuracy of the DPD solvent predic-
tion, which is the subject of future work. For a DPD solvent
with �0 > 20 new approximation functions which account
for the long tail of DPD FTVACF should be introduced. In
principle one can consider using machine-learning algorithms
for the prediction of FTVACF in order to reduce the statistical
error as well as the simulation length which is necessary for
the derivation of macroscopic transport coefficients of particle
methods.
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APPENDIX: RELATION OF DYNAMIC
OVERLAP AND TEMPERATURE

We follow [17] and introduce the dynamic distance as

l0 := t0v0. (A1)

Upon taking corresponding expressions for t0 and v0, one
obtains

l0 = 1

ω0

√
kBT /m. (A2)

We insert the expressions for ω0 := 1
d
ρ[rwD]rγ from Table I

and γ = σ 2

2kBT
from Table II into Eq. (A2) to get

l0 = 2kBT
1
d

[rwD]rρσ 2

√
kBT /m. (A3)
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A typical DPD kernel is

wD(rij ) = [wR(rij )]2 =
{

(1 − rij )2κ , rij < rc

0, rij � rc

, (A4)

where κ is the parameter that controls kernel smoothness.
Integration between zero and cutoff radius gives

[rwD]r =
∫ rc

0
wD(r)d r = 8πr3

c

(2κ + 1)(2κ + 2)(2κ + 3)
.

(A5)

We use κ = 1 and obtain

[rwD]r = 8πr3
c

60
. (A6)

Equation (A3) for the case of d = 3 dimensions becomes

l0 = 45kBT

πr3
c ρσ 2

√
kBT /m. (A7)

Consequently, we obtain Eq. (42):

kBT =
(

πm3/2ρr3
c l0σ

2

45

) 2
3

, (A8)

where �0 := rc

l0
. From that the relation between kBT and the

nondimensional parameter �0 follows as

kBT =
(

πm3/2ρr4
c σ 2

45�0

) 2
3

. (A9)
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Abstract We investigate the behavior of dissipative particle dynamics (DPD) within
different scaling regimes by numerical simulations. The paper extends earlier analytical
findings of Ripoll, M., Ernst, M. H., and Español, P. (Large scale and mesoscopic hy-
drodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15),
7271–7281 (2001)) by evaluation of numerical data for the particle and collective scaling
regimes and the four different subregimes. DPD simulations are performed for a range
of dynamic overlapping parameters. Based on analyses of the current auto-correlation
functions (CACFs), we demonstrate that within the particle regime at scales smaller
than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime,
we show that the small-scale behavior of DPD differs from Langevin dynamics. For the
wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in
the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic
overlapping parameters.
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1 Introduction

For the modeling of fluid flow, different methodologies are employed when the interest is on
macroscopic or on microscopic scales. Macroscopic scales typically are described by the contin-
uum or Navier-Stokes (NS) equations, whereas for microscopic scales, the molecular dynamics
(MD) method with realistic potentials can be used. For the intermediate mesoscopic scales,
NS and MD cannot be applied directly. The NS equations may be extended to the mesoscopic
range by adding a stochastic stress, which results in the Landau-Lifshitz Navier-Stokes (LLNS)
equations[1]. Since the LLNS equations are based on the continuum hypothesis, they are still
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inappropriate when the spatial scales approach the dimension of molecules. Given an accurate
force field, MD is valid at any length scale. However, it is computationally unfeasible to sim-
ulate a reasonably complex fluid flow with MD. A gap exists between the length scales that
can be efficiently simulated by MD and those where the NS or LLNS equations become valid.
As an attempt to bridge the gap, dissipative particle dynamics (DPD) was invented[2–4]. It
is a Lagrangian particle method operating at the mesoscopic scales. DPD has been success-
fully applied to study a wide range of phenomena, such as solubility of polymers[4], rheology of
colloids[5], and dynamics of membranes[6].

As the mesoscopic scales described by the DPD method overlap with macroscopic and mi-
croscopic scales, it is necessary to establish relations between DPD and MD for the small-scale
limit and between DPD and NS/LLNS for the large-scale limit. It is difficult to develop gen-
erally valid formal relations for these limits. Assumptions and restrictions have always been
made for each individual scenario. For example, a formal connection between DPD and MD
has been established for structured fluids[7–8] using the Mori-Zwanzig projection formalism[9–10].
However, for a simple fluid, a correspondence between DPD particles and MD particles is un-
clear, and a formal connection is still under development[11]. Other attempts to develop a
formal relation between DPD and NS equations have also been made in several early studies.
In Refs. [12] and [13], a kinetic theory was used to connect the DPD input parameters (with-
out conservative force) to output transport coefficients. In Ref. [14], analytical expressions of
wavenumber-dependent macroscopic properties have been derived for a two-dimensional system.
The extension of such analysis to three dimensions is difficult. Moreover, often the assumption
of exponential decay of the current auto-correlation function (CACF) is invoked to proceed
with analytical derivations, which may be invalid, however, for small scales of DPD. Hence, the
relations derived so far cannot cover the entire range of DPD parameters.

An interpretation of DPD from a top-down perspective has enabled a successful alternative
approach. In a seminal paper[15], Español and Revenga started with a Lagrangian discretiza-
tion of the NS equations using the smoothed particle hydrodynamics (SPH) method[16–17] and
introduced thermal fluctuations directly on the Lagrangian particles following the general equa-
tion for non-equilibrium reversible-irreversible coupling (GENERIC) framework[18]. To reflect
that it bridges DPD and SPH, this method is called smoothed dissipative particle dynamics
(SDPD). Soon after its invention, SDPD has been applied to many problems, such as flows of
red blood cells[19], colloidal particles[20], DNA chains[21], and viscoelastic liquids[22]. However,
to capture unconventional phenomena beyond the continuum limit, SDPD has to be modified
or extended[23–24].

In this paper, we choose to analyze DPD. To be more specific about the possible signifi-
cance of analyzing the small scale dynamics of DPD, we outline three illustrative examples as
motivation for our work.

Soddemann et al.[25] realized that DPD equations (with only friction and stochastic forces)
can be utilized as an effective thermostat as alternative to the Langevin equations (LEs) for MD
simulations. Due to momentum conservation, DPD indeed provides correct and unscreened hy-
drodynamic correlations of the MD system. Moreover, the effect of the DPD friction parameter
on the intrinsic viscosity of microcanonical MD was studied extensively[25–27]. Nevertheless,
at least two questions remain open: (i) it is unclear how the friction parameter may affect
small-scale dynamics of microcanonical systems, (ii) whether the DPD thermostat effects are
comparable to the Langevin thermostat at these small scales.

In another study[28], the equation of motion for DPD particles without conservative force
was rewritten as (see Eq. (13) in Ref. [28])

dvi = −γ

d
(vi − Vi)dt+ F̆dt, (1)

where an environment velocity Vi and the random force F̆ are defined using properties of the
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neighboring particles (the other terms are defined in Section 2). Equation (1) suggests that
DPD shares similarities with the LE. Furthermore, in the regime of large overlapping parameter,
or large number of neighboring particles, the velocity auto-correlation of a tagged particle is
predicted well by the analytical expressions derived from Eq. (1). In other regimes, however,
the relation between DPD and the LE is unknown.

DPD is a dissipative system with conservation of the momentum. Another well-known model
with such properties is the hybrid Lagrangian-Eulerian approach[29]. The Eulerian part serves
to conserve momentum of the particle-based system, which is usually described by the LEs. A
similar approach can also be applied to model rarefied gases[30]. It appears that the application
range of DPD may be extended to such situations, provided that the small-scale behavior of
DPD is fully understood.

In the current work, we apply numerical analysis to investigate the behavior of DPD on
small scales in three dimensions. In particular, we measure the CACFs of DPD in Fourier
space and compare them with analytical expressions that can be derived for LLNS and LEs.
We demonstrate similarities and differences of DPD with other systems and come to conclusions
about the correspondence between DPD and LEs. The remainder of the paper is structured
as follows: in Section 2, we describe the DPD method with a short review of previous findings
on DPD macroscopic properties; in Section 3, we discuss properties of the CACFs of the LLNS
equations and the LEs; in Section 4, the CACFs of DPD obtained from simulations are compared
with the analytical solutions of CACF for the LE; in Section 5, we summarize our results and
come to conclusions.

2 DPD model

DPD is a multi-particle model. A pairwise force Fij acts on each particle i and shifts its
locations

dri
dt

= vi,
dvi

dt
=

1

m

∑

j 6=i

Fij . (2)

The force Fij consists of three different parts: conservative force FC
ij , dissipative force F

D
ij , and

random force FR
ij , that is,

Fij = FC
ij + FD

ij + FR
ij . (3)

In this paper, we consider DPD without the conservative force, FC
ij = 0. This choice is motivated

by the objective of comparing thermostat characteristics of LEs with that of DPD. In addition,
analytical properties of the corresponding LEs (without conservative force) can be derived
straightforwardly.

Dissipative and random forces in DPD are defined as

FD
ij = −mγwD(rij)(r̂ij · vij)r̂ij , (4)

FR
ij = mσwR(rij)θij r̂ij , (5)

where the weighting functions wD(rij) and wR(rij) as well as the dissipation coefficient γ and
the random coefficient σ are related so that they satisfy the fluctuation-dissipation balance[3]

wD(rij) = (wR(rij))
2, γ =

σ2

2kBT
. (6)

We define rij = ri − rj, rij = |rij |, and r̂ij = rij/rij as relative position, distance, and unit
vector between two particles i and j, respectively. kB is the Boltzmann constant, and T is the
temperature. vij = vi − vj is the relative velocity, and θij is a Gaussian random variable with
the properties[3]

〈θij(t)〉 = 0, (7)
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〈θij(t)θkl(t′)〉 = (δikδjl + δilδjk)δ(t− t′), (8)

where δ(t) is the Dirac delta, and δij is the Kronecker delta. We choose the standard weighting
functions as[4]

wD(rij) = (wR(rij))
2 =





(
1− rij

rc

)2

, rij < rc,

0, rij > rc.

(9)

Properties of DPD are determined by a priori chosen parameters, which relate microscopic,
macroscopic, and mesoscopic scales of motion. We follow previous works[14,31–32] by considering
wavenumber dependent macroscopic properties. The wavenumber q = 2π/λ corresponds to the
length scale of interest λ = L/n with n = 1, 2, 3, · · · and L is the length of the domain. The
specific dependence of macroscopic properties on q in DPD, such as the effective shear viscosity
ν(q), the effective bulk viscosity ζ(q), and the effective isothermal speed of sound ct(q), varies
with length scales. With DPD, one can distinguish three different characteristic length scales:
cut-off radius rc, decorrelation length l0 of particles, and length of interest λ. The decorrelation
length l0 of DPD particles is analogous to the mean free path[14]. Depending on the relation of
the cut-off radius rc to the decorrelation length l0 of DPD particles, different scaling regimes
were defined[14]: the collective regime rc > l0 and the particle regime rc < l0. Please refer
to Table 1 for a classification. In analogy to the length-scale parameter l0, the collision time
t0 = l0/v0 was defined as time-scale parameter[14], where v0 is the thermal velocity. Please
refer to Table 2 for the definitions of variables. In the collective regime within the collision
time t0, particles on the average do not travel far enough before interacting with neighboring
particles multiple times. This situation is common for liquid molecules. In the particle regime,
particles encounter less frequent interactions with the same neighboring particles and rather
interact with new neighbors. The particle regime is typical for gas molecules. One can choose
between collective or particle regime by setting the parameters of DPD appropriately.

For the collective regime of DPD, one can distinguish three different subregimes: the stan-
dard hydrodynamic subregime λ > rc > l0, the mesoscopic subregime rc > λ > l0, and the N -
particle subregime rc > l0 > λ. Macroscopic properties of DPD in the standard hydrodynamic
subregime do not depend on wavenumber and correspond to the isothermal NS equations[14].

Table 1 Regimes of DPD and corresponding subregimes

Collective regime (rc > l0) Particle regime (l0 > rc)

λ > rc > l0, NS λ > l0 > rc, NS

rc > λ > l0, mesoscopic l0 > λ > rc, kinetic

rc > l0 > λ, N-particle l0 > rc > λ, N-particle

Table 2 DPD nondimensional parameters

Parameter Meaning Definition

ν Effective shear viscosity ηs
ρ

ζ Effective bulk viscosity ην
ρ

v0 Thermal velocity
p

kBT/m

[· · · ]r Volume integral operator
R

· · · dr
ω0 Collision frequency 1

d
[wD]rγ

t0 Collision time 1
ω0

l0 Decorrelation length t0v0 7

Ω0 Dynamic overlapping rc
l0

q̃ Nondimensional wave number ql0

ν̃ Nondimensional ν ν
ω0l

2
0

ζ̃ Nondimensional ζ ζ
ω0l

2
0
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For the particle regime of DPD, one can expect three different subregimes as well[14]: the
standard hydrodynamic subregime λ > l0 > rc, the kinetic subregime l0 > λ > rc, and the N -
particle subregime l0>rc>λ. The functional dependence of DPD properties on q varies across
the subregimes. Regimes of DPD and corresponding subregimes are summarized in Table 1.

It was shown in Ref. [33] that on the small scales, CACFs of DPD follow non-exponential
laws. We investigate this property in detail in this work. For this purpose, we first consider
the properties of CACFs for LLNS equations and LEs, followed by a comparison of small-scale
behaviors of the LEs and of DPD.

3 CACFs

The CACF C(qk, t) is defined as[32]

C(qk, t) =
〈ŵl(qk, 0)ŵl(qk, t)〉

δŵ2
l (qk, 0)

. (10)

Subscripts k, l indicate the wavenumber-vector, current-vector, and velocity-vector components
in coordinate directions x, y, z, respectively. k = l results in the longitudinal CACF with
C‖(q, t), and k 6= l results in the transverse CACF with C⊥(q, t). δŵ2

l (qk, t) is the variance of
the respective Fourier mode of current w.

CACFs are used to analyze MD systems[31–32], fluctuating hydrodynamics[34–35],
DPD[33,36–37], and multi-particle collision dynamics solvent[38–39], and are directly related to
macroscopic properties, such as the effective shear viscosity, the effective bulk viscosity, and the
effective isothermal speed of sound. CACFs may also represent the ensemble-averaged decay
of an initial sinusoidal velocity field to the steady state. This property follows from the regres-
sion hypothesis of Onsager[40] which states that microscopic thermal fluctuations at equilibrium
can be modeled by non-equilibrium transport coefficients. Setting an initial sinusoidal velocity
in two different directions parallel or perpendicular to the velocity direction corresponds to
longitudinal and transverse CACFs, respectively[34]. In the following subsections, we consider
CACFs of two models, that is, the LLNS equations and the LEs, at thermodynamic equilibrium.

3.1 CACFs of the LLNS equations

The LLNS equations are an extension of the NS equations to smaller scales where thermal
fluctuations are important[1]. A stochastic term is introduced to account for the spontaneous
fluctuations of stresses in a finite thermodynamic system. The dissipative term of the LLNS
is the same as that of the NS equations, and the stochastic term in the LLNS together with
the dissipative term satisfies the fluctuation-dissipation theorem. For simplicity, in this paper,
we consider only isothermal LLNS in the linearized form. For the linearized equations in a
periodic domain, one can derive the transverse and longitudinal CACFs as well as density
auto-correlation function[41] as

CLLNS⊥(q, t) = e−q2νt, (11)

CLLNS‖(q, t) = e−q2Γt cos(Θqt)− qΓ

Θ
e−q2Γt sin(Θqt), (12)

CLLNSρ(q, t) = e−q2Γt cos(Θqt) +
qΓ

Θ
e−q2Γt sin(Θqt), (13)

respectively, where

Θ =

√
4 c2t − q2Γ2

2
, Γ =

(
1− 1

d

)
ν +

1

2
ζ. (14)
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3.2 CACFs of the LEs

The LEs were introduced to describe the Brownian motion of particles[42]. In this section,
we consider one particle driven by the LE

ẋ = v, (15)

v̇ = −βv + θ(t). (16)

Here, we take a constant dissipation coefficient β and a delta-correlated in time Gaussian
random variable θk,i,

〈θ(t)〉 = 0, (17)

〈θ(t)θ(t′)〉 = 2kBTβ

m
δ(t− t′), (18)

where kB is the Boltzmann constant, T is the temperature, and m is the mass of the particle.

The CACFs can be derived from simulations or analytically. An analytical derivation is
provided in the Appendix for reference. The CACFs of the LEs are

CLE⊥ = exp(−βt)× exp
(
− q2kBT

β2m
(βt− 1 + e−βt)

)
, (19)

CLE‖ =
(
eβt − q2

( kBT

β2m

)
(eβt − 1)2

)
× exp(−2βt) exp

(
− q2kBT

β2m
(βt− 1 + e−βt)

)
, (20)

CLEρ = exp
(
− q2kBT

β2m
(βt− 1 + e−βt)

)
. (21)

We compare the analytical expressions with simulations. In the simulations, for one particle,
we take[33]

ŵl(qk, t) = vl(k, t) sin(kqk), (22)

where k, l = x, y, z are direction indices. Equation (22) can be used to compute CACFs
according to Eq. (10). Equation (10) for Nr independent realizations gives

C(qk, t) =

Nr∑

i=1

1

Nr

〈ŵl(qk, 0)ŵl(qk, t)〉i
δŵ2

l (qk, 0)
, (23)

where angular parentheses 〈·〉i denote averaging in time of the ith realization. In order to
determine the CACFs for LEs, we perform a numerical simulation with one particle moving
according to the LEs (15) and (16) with kBT = 0.25 and β = 0.1. The particle moves in a three-
dimensional box of size 250×250×250with periodic boundary conditions. For the simulation, we
use the velocity-verlet algorithm for integration in time. The number of independent realizations
is Nr = 128, and the time interval of each simulation spans T = 5 × 105 time units. The
comparison of numerical results with theoretical predictions for CACFs is presented in Fig. 1
for different wavenumbers. The statistical errors in Fig. 1 are smaller than the symbol size.
The results show that the numerical simulations agree well with the analytical predictions for
CACFs of LEs, which verifies the numerical approach.
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Fig. 1 (a) Transverse CACF CLE⊥ and (b) longitudinal CACF CLE‖ of LEs for different integer
wavenumbers n. Black solid lines denote the analytical predictions, Eqs. (19) and (20), while
colored lines with symbols denote results measured from numerical simulation (Color online)

3.3 Effective shear viscosity
It is convenient to operate with the nondimensional DPD parameters which were introduced

in Ref. [14] and are listed in Table 2. Dynamic overlapping Ω0 is introduced as the ratio between
cut-off radius and decorrelation length,

Ω0 =
rc
l0

=
rcργ(w

D)r

d
√
kBT/m

, (24)

where ρ is the number density. For the particle regime of DPD, Ω0 < 1, and for the collective
regime, Ω0 > 1. Analytical estimations of macroscopic DPD properties for large scales and
for mesoscopic scales have been derived in Refs. [12]–[14]. For the standard hydrodynamic
subregime, the nondimensional effective shear viscosity is estimated as

ν̃ =
1

2
+ a2Ω

2
0, (25)

where the coefficient a2 is

a2 =
3(r2wD)r

2(d+ 2)r2c (w
D)r

. (26)

For the weighting function of Eq. (9) and d = 3, a2 = 1
35 . In the mesoscopic subregime, the

estimation is
ν̃ = 1 + q̃ −2, (27)

whereas in the N -particle subregime of DPD, the estimation is ν̃ = 1[14].
The common macroscopic definition of viscosity is the coefficient relating the stress tensor

to the deformation rate of the fluid[1]. In DPD literature, viscosity is usually defined as a
measure of energy dissipation, which is a wavenumber dependent property[12–14]. The energy
dissipation in DPD has dissipative and kinematic contributions. The energy dissipation can
be derived directly from CACFs. In this paper, we compare CACFs which are derived from
Langevin dynamics of a single particle with CACFs derived from DPD simulations. For such
a comparison, it is convenient to define a quantity of interest that resembles the definition
of DPD viscosity which is used in the literature. However, the definition of this quantity of
interest as kinematic viscosity for LEs may be misleading. For this reason, we employ the
effective viscosity. In this paper, the effective shear viscosity is defined from transverse CACF
as

ν(q) :=
1

q2

(∫ ∞

0

C⊥(t, q)dt
)−1

. (28)
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This definition allows us to determine the effective shear viscosities for systems without mo-
mentum conservation, such as described by the LEs. The effective shear viscosity has the same
dimension as the usual kinematic viscosity. Note that the effective shear viscosity defined by
Eq. (28) may have properties different from the kinematic shear viscosity in a continuum de-
scription. For example, in the limit of q → 0, the effective shear viscosity diverges for Langevin
dynamics, but reaches a plateau value for DPD fluids.

The effective shear viscosity νLE of LE can be derived from the transverse CACF. Upon
inserting Eq. (19) into Eq. (28), we obtain

νLE(q) =
1

q2

( 1

β
A−A1−1

1 eA(Γ(A1 + 1)− Γ(A1 + 1, A1))
)−1

, (29)

where Γ(s, x) :=
∫∞
x ys−1e−ydy is the upper incomplete gamma function, Γ(s) :=

∫∞
0 ys−1e−ydy

is the gamma function, and A1 := kBTq2

β2m is a coefficient.

We emphasize that Eq. (29) does not go beyond what has been covered in the previous
studies[43], but it provides a convenient tool to compare properties of Langevin dynamics with
that of DPD.

4 CACFs of DPD

In the previous section, we have derived analytical expressions for CLLNS and CLE. In order
to measure CACFs of DPD, we consider numerical simulations for different wavenumbers q.
We calculate CACFs for DPD using the same numerical technique as for LEs. For N DPD
particles, Eq. (22) is

ŵl(qk, t) =

N∑

i=1

vl,i(k, t) sin(kiqk), (30)

and the corresponding CACFs can be evaluated according to Eq. (23). The number of indepen-
dent realizations is Nr = 16, and the time interval of each simulation spans T = 4 × 106 time
units. Simulation parameters are given in Table 3. For DPD simulations, periodic boundary
conditions are used. The statistical errors in Fig. 2 and Fig. 3 are smaller than the symbol size.
In Fig. 2, the current characteristics of DPD are shown for different wavenumbers and different
subregimes. We compare these characteristics with the corresponding analytical predictions
derived from the LE theory, Eqs. (19), (20), and (21). The decorrelation length of a particle
governed by LE is lLE =

√
kBT/m/β. Parameters for the analytical predictions are chosen in

such a way that the particle in the LE has the decorrelation length equal to the one of DPD l0
and the relaxation time in the LE is equal to the collision time t0 of DPD particles.

Table 3 Parameters of DPD simulation

Parameter Meaning Numerical value

rc Cut-off radius 1

m Mass 1

Lx × Ly × Lz Domain size 10× 10× 10

ρ Number density 4

σ Random coefficient 3

Ω0 Dynamics overlapping [0.1; 0.3; 1; 5; 10; 20; 50; 100]

kBT Temperature
“

πm3/2ρr4cσ
2

45Ω0

” 2
3

γ Dissipative coefficient σ2

2kBT

d Dimension 3
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Fig. 2 From top to bottom (a)–(c) transverse CACFs, (d)–(f) longitudinal CACFs, and (g)–(i) den-
sity auto-correlation functions, which are derived from DPD simulation and are compared with
analytical estimates for LEs (19), (20), and (21). Simulations with different values of dynamic
overlapping are presented: Ω0 = 0.1, 5.0, 20.0 from left to right. In every plot, wavenumbers
n = 2, 5, 10, 15, 20 are taken. Faster decay of the CACF corresponds to larger wavenum-
bers. Green, yellow, red, and blue colors correspond to N-particle, kinetic, mesoscopic, and
standard hydrodynamic subregimes of DPD, respectively (Color online)

For this purpose, the temperature in the LE is set equal to the temperature in DPD, and the
dissipation coefficient in the LE is set the same as the collision frequency in DPD β = ω0.
Nondimensional wavenumbers q̃ in the LE predictions correspond to the ones in DPD. For the
N -particle subregime, which is depicted with green color in Fig. 2, we find that the CACFs of
DPD are in good agreement with those predicted by the LE theory. The correspondence of
CACFs of DPD and LE is independent of the DPD parameters. This observation suggests that
the large wavenumbers of DPD have a common, universal behavior. We compare CACFs on
small wavenumbers of DPD with CACFs of the LLNS equation. Lines with triangles in Fig. 2
present a fit of CACFs of DPD in the standard hydrodynamic regime with Eqs. (11)–(13). For
large dynamic overlapping Ω0 = 20, DPD agrees with LLNS. Transverse CACFs derived from
DPD for Ω0 = 5 differ from the ones of LLNS. This demonstrates that the transition between
different dynamic subregimes occurs gradually. An alternative way to look at the subregimes
of DPD is to analyze the nondimensional effective shear viscosity.

Figure 3(a) presents a comparison of the nondimensional effective shear viscosity of DPD
and LE. Every data point in Fig. 3(a) corresponds to the respective C⊥ of DPD and is computed
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Fig. 3 Nondimensional effective shear viscosity eν(eq) estimated from DPD simulations and compared
with nondimensional effective shear viscosity of LE (29). Brown line corresponds to the
estimation (27) of scaling law for mesoscopic regime from Ref. [14]. In (a) DPD simulations
with different Ω0 are presented. Colored dash-dotted lines are the analytical estimates for
the corresponding values of dynamic overlapping equation (25) from Ref. [14]. For all values
of dynamic overlapping, the nondimensional kinematic viscosity collapses to the same law for
wavenumbers larger than the cut-off wavenumber. In (b) different subregimes of DPD, see
Table 1, are compared with the effective shear viscosity estimate for LE, Eq. (29), and the
effective shear viscosity of rarefied gas Eq. (35). Colors correspond to those in Fig. 2 (Color
online)

according to the definition of the effective shear viscosity in Eq. (28). One can observe that the
dependency of the nondimensional effective shear viscosity ν̃ on q̃ differs for different values of
dynamic overlapping Ω0. Nondimensional wavenumbers that correspond to the cut-off radius
and decorrelation length are q̃rc = l0

2π
rc

and q̃l0 = 2π, respectively. We choose the decorrelation
length as length unit. For that reason, the nondimensional parameter q̃l0 coincides for different
values of Ω0 in Fig. 3(a). However, q̃rc differs for different Ω0. For wavenumbers larger than the
cut-off wavenumber q̃rc , the nondimensional effective shear viscosities for different Ω0 follow the
same universal trend. For the large wavenumbers q̃ > q̃l0 , the trend follows a q̃ −1 scaling law
and coincides with the LE effective shear viscosity. However, for small wavenumbers q̃ < q̃l0 , the
trend differs from the LE effective shear viscosity and differs from the q̃ −2 scaling law. Note that
the q̃ −1 scaling law corresponds to the ballistic regime of LE[44] and q̃ −2 corresponds to the case
where the CACFs of LE are exponential functions. The effective shear viscosities of DPD and
LE are similar in the N -particle subregime and are different in the mesoscopic subregime. This
fact deviates from the estimates for the mesoscopic and N -particle regimes given by Eq. (27),
represented by a brown line in Fig. 3(a), previously derived in Ref. [14]. According to Eq. (27) in
the N -particle subregime, the effective shear viscosity of DPD is constant, and in the mesoscopic
subregime, it follows a q̃ −2 scaling law. To improve the prediction given by Eq. (27), we
approximate ν̃(q̃) of DPD for the mesoscopic subregime empirically as

g(q̃) = 1.09q̃ −1.3 exp(0.1 log(q̃)2). (31)

An LE-based model was applied to rarefied gas flows in Refs. [30] and [45]. The Knudsen number
is defined as the ratio of the mean free path to the length scale of interest nK := l0/λ. For
high Knudsen numbers, length scales of interest are comparable to the mean free path of gas
molecules. In the proposed model[30,45], Lagrangian particles are governed by a modified version
of LE and the length scales of interest are comparable with the mean free path of Lagrangian
particles. In Fig. 3(a), we demonstrate the similarity of the LE and DPD on the N -particle
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subregime. However, it is also possible to compare ν̃(q̃) of a rarefied gas with that of DPD. The
velocity auto-correlation of a Brownian particle in gas is[46–47]

〈v(0)v(t)〉 = kBT

M
e−Γ0t, (32)

where the damping coefficient Γ0 is

Γ0 =
6πηgasR

m

0.619

0.619 + nK
(1 + cK), (33)

cK =
0.31nK

0.785 + 1.152nK + n2
K

. (34)

An alternative way to represent the motion of a Brownian particle in gas is to consider that
the effective viscosity depends on the Knudsen number

ν̃r.g. = ν̃gas
0.619

0.619 + nK
(1 + cK), (35)

where ν̃gas is the constant effective shear viscosity of the gas for nK ≪ 1. Define the nondi-
mensional wavenumber as q̃ = 2πl0/λ so that q̃ = 2πnK. We take ν̃gas = 1, without restricting
the validity of the results in Fig. 3(b). Different colors in Fig. 3(b) correspond to different
subregimes of DPD. The N -particle subregime (green lines) is in good agreement with the LE-
theory (29). The kinetic subregime (yellow lines) deviates slightly from the LE theory. The
mesoscopic subregime of DPD (red lines) exhibits a universal scaling range, which differs from
the LE theory and is in good agreement with the empirical function g(q̃) given by Eq. (31). For
wavenumbers smaller than the cut-off wavenumber and the decorrelation-length wavenumber,
we observe that DPD recovers the LLNS viscosity dependence which is characterized by the
constant nondimensional effective shear viscosity (blue lines).

We conclude that the nondimensional effective shear viscosity of a rarefied gas and of DPD
have common properties. For large wavenumbers, they follow the q̃ −1 power law, corresponding
to the N -particle subregime of DPD (green lines). In the limit of small wavenumbers, a plateau
of the effective shear viscosity corresponds to the standard hydrodynamic subregime (blue lines).
A smooth transition from N -particle to standard hydrodynamic subregime corresponds to the
kinetic subregime of DPD (yellow lines).

5 Summary and discussions

In this paper, we review properties of the CACFs for two different systems, LLNS and LE.
For these systems, expressions for CACFs can be derived analytically. The analytical solutions
are well reproduced by numerical simulations for the CACFs of the LE.

The effective shear viscosity is defined through an integration of the transverse current
auto-correlation function (28). This definition allows to introduce the effective shear viscosity
for systems without momentum conservation, such as the LE. We determine the wavenumber
dependence of the nondimensional effective shear viscosity of DPD without repulsive potential
with the method introduced in a previous study[33].

The plateau exhibited by the DPD model is associated with macroscopic properties. For
the standard hydrodynamic subregime, isothermal laws of motion in liquids and gases can be
described with the LLNS equations, and the CACFs of DPD and LLNS are in good agreement,
as was shown in Fig. 2 and in Ref. [33]. We show that the CACFs of the N -particle subregime
of DPD and LE coincide. We also demonstrate that the effective shear viscosity of the DPD
mesoscopic subregime differs from the LE effective shear viscosity. We introduce an empirical
function g(q̃) to match the dependency ν̃(q̃) for the mesoscopic subregime of DPD.



42 D. AZARNYKH, S. LITVINOV, X. BIAN, and N. A. ADAMS

We extend previous findings in Ref. [14] where it was suggested that the effective shear
viscosity is constant both in the limit of large wavenumbers and small wavenumbers. For
the range between small and large wavenumbers, it was estimated that the effective shear
viscosity of DPD follows a 1 + q−2 scaling law. In the current paper, we confirm that on small
wavenumbers, the effective viscosity is constant. However, for large wavenumbers, the effective
viscosity exhibits a similar behavior as the effective viscosity for LEs (29), which corresponds
to a q−1 scaling law. The correspondence of DPD and Langevin equations for this wavenumber
range is also shown by comparison of the non-trivial form of CACFs of the LEs and of DPD.
Moreover, we show that the 1 + q−2 scaling law can be improved by the introduction of the
empirically derived (31). The difference from previous reports may be attributed to the fact
that in such previous studies, e.g., Ref. [14], an exponential approximation for the transverse
CACF was used. Note that in another previous study[33], it was shown that on small scales,
the transverse CACF in DPD is not exponential.

The concept of DPD particle is loosely defined and lacks physical meaning[11]. Scales smaller
than the cut-off radius are underresolved. However, in this work, we show that such scales
exhibit a consistent dissipation law. We suggest that the small-scale behavior of DPD may be
employed as an implicit fluid model, e.g., for high-Knudsen number flows. Properties of small,
numerically underresolved scales are used for instance in turbulence modeling. For so-called
implicit large-eddy simulation models, numerical dissipation on underresolved scales can be
tuned to reproduce established energy-transfer mechanisms of turbulence[48–49].

We compare properties of Langevin and DPD thermostats. For that purpose, we consider
DPD without conservative force. In principle, the effective shear viscosity can be measured
for Kolmogorov flow[22]. The estimate from Kolmogorov flow coincides with the estimate of
effective viscosity from CACF analysis[33]. However, for purely dissipative systems, such as the
LE, it is challenging to set up Kolmogorov flow simulation, and a CACF analysis is preferable.

We use the analytical derivation of CACFs of a particle governed by the LEs. The same
results are valid for a system of non-interacting particles governed by the LE. However, in the
case of an additional force between the particles, e.g., due to a Lennard-Jones potential, the
analytical expressions for CACFs are much more challenging to derive. In Fig. 1, it is shown that
CACFs of LE can be accurately measured in simulations. For that reason, the analysis provided
here can be extended to systems with repulsive potential. One can compare simulations of a
Langevin thermostat with a certain interaction between particles against a DPD thermostat
with the same interaction. From preliminary results, we can find that for large wavenumbers,
such comparison reveals similar behavior of CACFs. Moreover, it is plausible that for DPD
with a classical potential[4], the same scaling law as for DPD without potential will be observed.

Although we compare only the effective shear viscosity of DPD with that derived from
the LE, an extension of the analysis for other macroscopic parameters, such as the effective
isothermal speed of sound and the effective bulk viscosity, is straightforward. For this purpose,
one needs to introduce a definition of effective bulk viscosity and effective isothermal speed
of sound that is based on the longitudinal CACF. However, with any definition chosen, the
isothermal speed of sound and the effective bulk viscosity of the N -particle subregime of DPD
and LE would be similar due to the similarity of the longitudinal CACFs for both systems, which
is presented in Figs. 2(d)–2(f). Another possibility is to extend the analysis to types of non-
Markovian DPD (NM-DPD)[8]. The NM-DPD model on small scales can be compared with the
colored noise LEs[50]. A comparison of the q-dependency of the effective shear viscosity of DPD
with that of a rarefied gas reveals that DPD has the potential to model flows at high Knudsen
number. For the correct representation of complex high Knudsen number flows, one needs to
introduce a proper treatment for rarefied-gas wall boundaries in DPD. Practical rarefied gas
modeling computations of DPD are beyond the scope of the current paper. We consider CACFs
of DPD without the presence of mean shear. However, it is possible to extend the findings of
the paper to the case of moderate shear rates following[36]. From the modeling perspective, the
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presented analysis of DPD small scales extends the application of DPD to new problems, such
as the modeling of turbulent phenomena on the mesoscale level or modeling of flows with high
Knudsen number.

An extended consideration of current memory functions of the LE as well as DPD enables
to use grid-based models for both systems. Numerical algorithms for the generalized Langevin
model with repulsive potential were described in a previous study[51], where a repulsive potential
was used for stability of the numerical algorithm and enters as a model parametrization. By
tuning the form and the value of the repulsive potential and by using correlated form in time
noise, current characteristics of grid-based models can be matched with Lagrangian ones.
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Appendix A

The LEs are characterized by the velocity auto-correlation function and the mean-squared displace-
ment (MSD)[44,47]

CLEv(t) =
〈v(0)v(t)〉
〈v(0)v(0)〉 = e−βt , (A1)

CLEx(t) = 〈∆x2(t)〉 = 2kBT

β2m
(βt − 1 + e−βt). (A2)

Another general way to describe the properties of the LE is through its conditional joint probability
distribution function (PDF) P (v,x, t|v0), which is the probability of the particle with the initial velocity
v(t = 0,x = 0) = v0 and location x0 to be at time t in x with velocity v. The expression for the
conditional joint-PDF for the LEs in d-dimensions is[43]

P (v,x, t|v0) = Zp exp
“

− AV · V + 2CV · X +BX · X
2(AB − C2)

”
, (A3)

Zp =
eβtd

(2π)d(AB − C2)
d
2

, (A4)

V = eβtv − v0, X = x + u/β − x0 − v0/β, (A5)

A = 2
kBT

m
β−2t, B =

kBT

m
β−1(e2βt − 1), C = −2

kBT

m
β−2(eβt − 1). (A6)

As the LE is an isotropic model, it is sufficient to consider only one direction. The corresponding
equations for other directions are equivalent. The marginal PDF results by definition from integration
of the joint-PDF,

Px(x, t|vx0) =
Z ∞

−∞
P (vx, x, t|vx0)dv,

Pv(vx, t|vx0) =
Z ∞

−∞
P (vx, x, t|vx0)dx.
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The one-dimensional Maxwell-Boltzmann distribution results as equilibrium PDF,
8
><
>:

G(vx) = limt→∞ Pv(vx, t|vx0),

G(vx) =

r
2π

kBT

m
exp

“
− m

2BT
v2x

”
.

(A7)

We further derive the analytical expressions for the transverse CACF, longitudinal CACF, and
density auto-correlation functions, respectively, as

8
>>><
>>>:

CLE⊥ =
1

bw(0)2

Z ∞

−∞
vx0vxe

iqy0eiqy × P (vx, y, t|vx0)G(vx0)dvxdvx0dy,

CLE‖ =
1

bw(0)2

Z ∞

−∞
vx0vxe

iqx0eiqx × P (vx, x, t|vx0)G(vx0)dvxdvx0dx,

(A8)

CLEρ =
1

bρ(0)2
Z ∞

−∞
eiqy0eiqyPy(y, t|vy0)G(vy0)dydvy0. (A9)

After integration, we obtain Eqs. (19)–(21),

CLE⊥ = exp(−βt) × exp
“

− q2kBT

β2m
(βt − 1 + e−βt)

”
,

CLE‖ =
“
eβt − q2

“ kBT

β2m

”
(eβt − 1)2

”
× exp(−2βt) exp

“
− q2kBT

β2m
(βt − 1 + e−βt)

”
,

CLEρ = exp
“

− q2kBT

β2m
(βt − 1 + e−βt)

”
.

To our knowledge, Eqs. (19)–(21) have not been explicitly stated before, although the Laplace-Fourier
transformed version of Eqs. (19)–(21) were provided in Ref. [52].

Note that the first factor of Eq. (19) on the right originates from the exponential auto-correlation
of Lagrangian particle velocity, Eq. (A1). The other factor originates from the diffusion of the particles
in space, Eq. (A2), and coincides with the density auto-correlation function CLEρ.
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