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Abstract

This thesis is concerned with the analysis of finite element discretizations for time-optimal
control problems subject to linear parabolic partial differential equations and constraints for
the state evaluated at the free end time. Necessary and sufficient optimality conditions are
provided for the regular case and the case of bang-bang controls. A priori discretization
error estimates are proved for different control discretization strategies. Efficient algorithms
for the numerical solution are discussed.

Zusammenfassung

Diese Arbeit befasst sich mit der Analyse finiter Elemente Diskretisierungen zeitoptimaler
Steuerungsprobleme mit linearer, parabolischer, partieller Differentialgleichung und Zustands-
restriktionen am freien Endzeitpunkt. Notwendige und hinreichende Optimalitdtsbedingung-
en werden fir den regulidren und den bang-bang Fall untersucht. A priori Fehlerabschitzung-
en fiir verschiedene Diskretisierungen der Kontrolle werden bewiesen. Effiziente Algorithmen
fiir die numerische Losung werden diskutiert.
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1. Introduction

In many applications a certain criterion has to be met after some time, which should be
chosen as short as possible; cf., e.g., [2, 132]. For example, the objective could be to steer
a system close to a desired state in the fastest time possible by applying a control to the
system. This class of optimization problems is therefore called time-optimal control. Since
it is in general difficult to give an explicit solution formula, appropriate approximations of
these problems are necessary to compute solutions numerically. In this thesis we analyze
finite element discretizations for a class of time-optimal control problems subject to linear
parabolic partial differential equations.

To set the stage, for T" denoting the terminal time, u the state, and ¢ the control, let us
consider the abstract model problem:

T
Minimize j(T,q) ::T—I—/ L(q(t)) dt,
0

T>0, qe Qu0,7), (Prmodel)
subject to u=u(q,T),
[u(T) — uall g < o,

where Qq4(0,7T) is the set of admissible controls, H is an appropriate Hilbert space, and
u(q,T) denotes the solution to the time-dependent partial differential equation for the time
horizon T" > 0 and the control ¢q. In some applications it is necessary to account for control
costs or smoothing terms in the objective functional, cf., e.g., [92, 93, 125]. This motivates
the additional functional L in the problem formulation. Different choices for L and its
implications on the solutions will be detailed below. Many results of this thesis are valid for
more general terminal constraints than the one considered in (Ppoge1) and we will introduce
the precise assumptions in Chapter 2.

The task is to steer the system from a given initial state close to a desired state ug € H by an
appropriate choice of the control q: [0,7] — Q44 and the time horizon T, while minimizing T’
plus the running cost L for the control. It is worth mentioning that both the control ¢ and the
terminal time T are optimization variables. In particular, this means that the time horizon of
the state equation is not fixed. For this reason, (Pyodel) is a nonlinear optimization problem
subject to control as well as state constraints which significantly complicates the analysis
and numerical realization of (Ppoedel) compared to a linear parabolic optimal control problem
with a fixed T see, e.g, [116, 117, 118].

The choice of the functional L will play a central role in this work and we will consider three
different situations:

e Time-optimal control problem: If I = 0, then we obtain the pure time-optimal
problem, where we are plainly interested in steering wug into the H-ball centered at the
desired state uy in the fastest time possible. This is a classical choice in control theory;
see, e.g., [54, 97, 122, 149, 160] and the overview given in [104, Chapter 7]. Typically
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the solutions for L = 0 are bang-bang. We call a control bang-bang, if the set where it
does not equal the control bounds is a set of zero measure.

¢ Regularized time-optimal control problem: A choice different from zero allows
for a regularization strategy of the time-optimal control problem; cf., e.g., [82, 95]. For
example, we can consider

(6%
L(@) = $lal}, fora >0, (1.1)

where @ is another Hilbert space for the controls. We will frequently choose Q = L?(w)
with w the control domain. In this case we are interested in letting the regularization
parameter « tend to zero. Note that for this particular choice of L, the optimal control
¢ inherits regularity properties of the adjoint state by means of a projection formula
that links optimal control and adjoint state. Hence, the choice of the norm for the
regularization is not arbitrary, because it qualitatively changes the solutions.

e Control costs/Smoothing: Moreover, L can represent inherent control costs or sim-
ply when bang-bang controls are not desirable; cf., e.g., [92, 93, 125]. In the latter, L
can be chosen in a way such that it has a smoothing effect, e.g. the L?-norm of the
control. Moreover, other objective functionals can be more appropriate to model the
control costs in concrete applications such as the L'-norm of the control or a linear
functional in the control variable; cf., e.g., [42, 153].

In a strict definition, if L # 0 the optimization problem is not “time-optimal”, because we
are not minimizing just 7. Nevertheless, it seems that in practice, one is often not interested
in steering the system into the terminal set as fast as possible at any costs. This motivates
to consider the more general problem formulation introduced above with free end time and
control costs in the objective. Hence, by the term time-optimal control, we always refer to
the broader definition.

To deal with the variable time horizon, it is convenient to transform the linear parabolic
partial differential equation onto a fixed reference time interval, which is accomplished by
introducing a transformation variable v: [0,1] — R4 with the relation T' = fol v(7)dr. Con-
sidering the transformation v as an additional control variable allows to define a control-
to-state mapping (v,q) — u = S(v,q) that is (infinitely often) continuously differentiable,
where u denotes the solution to the transformed partial differential equation. Moreover, as
all variables are defined on the same reference time horizon, different solutions (arising for
example from the regularization strategy) can be directly compared with each other. For
these reasons, in this thesis we will mainly work with the transformed state equation. In
particular, it is the basis for the numerical method.

By means of the control-to-state mapping, we can define the reduced and transformed optimal
control problem as

inf (v, subject to ||u(l) —u < g, u=S(v,q). pm
v>0, ¢€Qq4(0,1) i(,q) . (1) = ually < do (v,9) (Pmodel)

A

To calculate solutions to (Ppodel) in practice, we have to introduce a discretized version of
the state equation and replace the control space and the state space by finite dimensional
spaces. We obtain the discrete version of (Ppodel) as

A

inf (v, subject to ||upp(l) —u < do, urn = Skn(v,q), P,
vo0.aenl o) j(v,q) j Jukn (1) — uall g < do, wkn = Skn(vsq),  (Pmodelkh)

where k& and h denote the temporal and spatial discretization parameters and o is an addi-
tional discretization parameter for the controls. A considerable part of this work is devoted
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to the numerical analysis of the discretized optimal control problem (Ppodelkn). On the one
hand, we show a priori discretization error estimates if L is chosen as the L?-norm of the
control similar as in (1.1) for a fixed cost parameter a > 0. Moreover, we are concerned with
the case of variable «, where we investigate the behavior of the discrete solutions if o tends
to zero.

This thesis is structured as follows. In Chapter 2 we discuss first order optimality conditions
for the time-optimal control problem (Ppder). Since (Ppodel) is subject to state constraints,
a constraint qualification is needed to guarantee optimality conditions in qualified form. Our
approach relies on the concept of weak invariance. We first generalize a characterization of
weak invariance in terms of the so-called lower Hamiltonian condition which is interesting for
itself. This characterization is known for optimal control of ordinary differential equations
and uncontrolled partial differential equations. We show that strengthening of the lower
Hamiltonian condition leads to a sufficient criterion for qualified optimality conditions. In
contrast to typical constraint qualifications our condition can be checked a priori without
having to know the optimal solution. Concrete examples are discussed in Section 2.4. These
results have already appeared in similar form in [18].

Chapter 3 is devoted to sufficient optimality conditions. In the non-bang-bang case, we
formulate second order necessary and sufficient optimality conditions employing a cone of
critical directions that leads to a minimal gap between necessity and sufficiency. Additionally,
the second order sufficient optimality condition is equivalent to a scalar condition that requires
the solution of one linear-quadratic optimization problem. In Section 5.4, we will verify the
second order sufficient optimality condition on the discrete level by numerically computing
the scalar quantity. Most of these results are already contained in [17].

In the bang-bang case, it turns out that the second order sufficient optimality condition
is vacuously true and it is therefore unlikely that this guarantees local optimality. For this
reason, we consider a well-established structural assumption on the adjoint state that provides
a sufficient optimality condition in the bang-bang case. Chapters 2 and 3 form the basis for
the a priori discretization error estimates in Chapter 5.

In Chapter 4 we discuss the theoretical and practical aspects concerning the numerical so-
lution of (Ppodel). In case of a > 0, we consider the augmented Lagrangian method and
briefly discuss its convergence properties. For the solution of the resulting subproblems, we
consider a bilevel approach and a monolithic approach. For the case a = 0, we can solve the
regularized problem for a sequence of regularization parameters with o — 0. Additionally, we
discuss an alternative approach that relies on an equivalent reformulation of the time-optimal
control problem. This reformulated problem has again a bilevel structure, where we have to
find a root of a certain value function in the outer loop and need to solve convex and control
constrained problems in the inner loop. We consider different methods for the solution of the
optimization problems occurring on each level.

In Chapter 5 we discuss the discretization of the state equation of (Ppyodel) and the corre-
sponding adjoint state equation by means of the discontinuous Galerkin method in time and
the continuous Galerkin method in space. Concerning the control variable we consider differ-
ent control discretization strategies. Depending on the concrete discretization, we investigate
the convergence of the solutions of the corresponding discrete variants of (Pder) to solutions
of the original problem. In Section 5.3 we prove a priori discretization error estimates for the
terminal time and the control variable in L? in the case of non-bang-bang controls under the
hypothesis that second order sufficient optimality conditions hold. We verify our theoretical
findings by numerical examples and observe that the estimates are optimal with respect to
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the control variable. These results are already contained [17] and have been submitted to a
scientific journal recently.

Moreover, in Section 5.5 we prove a priori discretization and regularization error estimates
for the terminal time and the control variable in L' in the bang-bang case. It is based on
the structural assumption on the adjoint state. For purely time-dependent control, these
estimates directly follow from standard error estimates of the state equation. However, for
distributed control we require pointwise discretization error estimates for the state equation
and thus error estimates for the optimal control problem are associated with further technical
effort. We provide error estimates in case of distributed control for the particular situation
that the control domain has a strict distance to the boundary of the spatial domain. Nu-
merical examples indicate that the structural assumption for purely time-dependent control
is satisfied which leads to optimal error estimates.

Last, in Section 5.6 we present a different approach that leads to discretization error estimates
for the terminal time without a sufficient optimality condition. It relies on the construction of
feasible controls and cross-wise testing. For the construction, we use a discrete version of the
strengthened Hamiltonian condition from Chapter 2. It is worth noting that the strengthened
Hamiltonian condition can be checked a priori in many examples.

Further auxiliary results that are needed in the main chapters are collected in the appendix.
Many of them are well-known. However, in particular for the discretization error estimates,
the precise asymptotic behavior of the constants is required. Hence, we either provide refer-
ences, where the constants are explicitly stated, or give independent proofs.



2. First order optimality conditions

This chapter is devoted to first order optimality conditions for a class of time-optimal control
problems governed by a linear parabolic equation. It is essentially based on the paper [18]
with Konstantin Pieper. For T denoting the terminal time, u the state, and ¢ the control,
we introduce the problem:

T
Minimize j(7,q) ::T+/ L(q(t))dt,
0

T >0,
Gpu(t) + Au(t) = Bq(t), te€(0,T), (P)
subject to u(0) = uo,
u(T) €
q(t) € Qad7 te (0,7).

Here, A: V — V* is a linear, weakly coercive operator for a Gelfand triple V <— H — V*,
Quq C Q for a Hilbert space ) a closed and bounded set of admissible controls, and B a linear
and bounded control operator mapping @ into a subspace of V*. The precise assumptions
will be introduced in Section 2.1. A concrete example of a convection-diffusion equation
satisfying the abstract assumptions will be discussed in Section 3.1.2.

The purpose of this chapter is the derivation of first order optimality conditions for (P)
that can be stated as follows: For any optimal solution (7, q,u), there exists a nontrivial
g € Ny(u(T)) the normal cone to U at u(T), a corresponding adjoint state z with

—0iz(t)+ A*2(t) =0, te€(0,T), 2(T)=p, (2.1)

and a fip € { 0,1}, such that

0= (Bq(t) — Au(t), 2(t)) + fio[1 + L(g(1))]; t < (0,7),
q(t) = argmin [(Bg, 2(t)) + poL(q)], te(0,T)

This general form is fulfilled in any optimum of (P) if, e.g., the target set U is of finite
co-dimension in H. We give an independent proof of the general form of the optimality
conditions for (P) in Theorem 2.26; cf. [40, 104, 134]. In the case that ji9 = 1, the optimality
conditions are called qualified.

In order to verify that qualified optimality conditions hold, we rely on the concept of strong
stability. Strong stability (also known as calmness [25, 136] or weak calmness [21]) quantifies
the dependency of the optimal value function of (P) on small perturbations of the constraint.
Roughly speaking strong stability means that the optimal value function of (P) (i.e. the
minimal value of j(-,-)) depends Lipschitz continuously on perturbations of the target set U
of the form Us = U + Bs(0) with § > 0, where Bs(0) denotes ball in H of radius ¢ centered
at zero. We refer to Section 2.3.1 for a precise definition.
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Figure 2.1.: Geometric interpretation of the lower Hamiltonian condition (2.4) with strengthened
condition (2.5) (dotted).

Assuming strong stability, the qualified form holds; see Theorem 2.25; cf. also [134, Re-
mark 2.2]. More specifically, strong stability implies the existence of an exact penalty func-
tion, which in turn allows to derive qualified optimality conditions, where we use the ap-
proach due to Clarke [39]. We emphasize that Theorem 2.25 does not require any structural
assumptions on U, such as finite co-dimension; see, e.g., [104, Definition 2.1.32]. Moreover,
the multiplier i satisfies an a priori estimate which is of independent interest. Although it
is generally well-known that “almost all” problems are strongly stable, it remains a difficult
task to verify strong stability of a particular problem; cf. [19, Section 3]. The main objective
of this chapter is to derive conditions on the triple (A, U, BQ,q) which guarantee that (P) is
strongly stable for all optimal solutions.

Mathematically, our approach relies on weak invariance of the terminal set. The set U is
called weakly invariant under (A, BQ,q) if for any initial state ug € U there is a control such
that the corresponding trajectory with initial value ug remains in U. The precise meaning of
weak invariance used in this work is given in Definition 2.1. One of the main contributions of
this chapter is the characterization of weak invariance by the conditions that the minimizing
projection onto U in H denoted Py is stable in V, i.e. Py (V) C V, and

h(u, ) = mcign (Bqg— Au,() <0 forallueUNV, € Ny(u)nV, (2.4)
9€ad
where h: V xV — R is the lower Hamiltonian; see Theorem 2.9. This extends known results
for invariance under semigroups, i.e. uncontrolled systems (see, e.g., [127, Section 2.1]), and
results for optimal control of ordinary differential equations (see, e.g., [40, Section 12.1]).

Precisely, our main result can now be stated as follows: Assume that the projection Py is
stable in V' and that the strengthened Hamiltonian condition,

h(u,{) < —=hol|[¢|ly forallue UNV, ¢ € Ny(u)N'V, (2.5)

holds for some hy > 0 (independent of u and ). Then, strong stability is satisfied for all solu-
tions of the time-optimal problem; see Theorem 2.18. As already mentioned, strong stability
guarantees that qualified optimality conditions hold. On top of this, condition (2.5) enables
to derive Lipschitz continuity results of the value function for a variety of perturbations of
the problem (P), not only in the target set. Note, that this corresponds to an estimate for
the optimal time for the pure time-optimal problem, which is of independent interest.

To the best of our knowledge, several of the applications of the sufficient conditions derived
in this work yield new results for concrete problems. In particular, these conditions allow to
derive qualified optimality conditions for several interesting scenarios, such as the control of



the heat equation into L?-balls around certain target sets. We will discuss these applications
in Section 2.4. In the case of steering the system into a single point, i.e. U = {uq }, we can
compare the results to those of Barbu [10, Section 5.3|, who derived the maximum principle for
a nonlinear monotone equation using a quadratic penalty method; cf. also [11] for the Navier-
Stokes equation or [95] for the linear wave equation. Note that the qualifying condition on the
target state in [10, Theorem 5.3.1] is essentially the same as the one obtained from (2.5) in
the case U = { uq }; see Section 2.4.1. However, this condition holds in concrete applications
only for controls which are acting everywhere in space. A different approach, which is based
on controllability, has been proposed by Wang and Zuazua [160]. Here, the equivalence
between time- and norm-optimality (see also [54]) is used in an essential way. In particular,
the conditions (2.1) and (2.3) (which are independent of jip in this case) are obtained for the
problem of steering the heat equation into zero with pointwise bounded controls restricted
to an arbitrary subset of the underlying domain. In this case, the multiplier is obtained in a
space of distributions, larger than L?. However, this technique seems to be restricted to the
case L = 0 and yields a different condition instead of (2.2) to characterize the optimality of
the time variable.

To further assess the applicability of the strengthened Hamiltonian condition (2.5) in the
context of concrete examples, in Section 2.4 we discuss several cases when A is given by a
general convection-diffusion operator on a bounded domain (2. On the one hand, we find
that (2.5) always holds for the control of, say, the heat equation into a L?(§2)-ball centered at
a sufficiently small ug, assuming only that the zero control is admissible. We emphasize that
this already includes the classical setting ug = 0 considered in, e.g., [149, 159, 162], without
further assumptions. On the other hand, we find that it is fulfilled for more restrictive target
sets or more general convection-diffusion operators only under additional assumptions on
the form of the control operator and the admissible set. We compare these requirements
to established controllability assumptions (see, e.g., [167]) and find that our conditions are
stronger, in general. This can be connected to the fact that the cost of the controls resulting
from controllability conditions (see [56]) grows exponentially if the length of the control
horizon is decreased towards zero. However, for general A, we also give an example of a
special target set where (2.5) follows directly from an established stabilizability assumption,
based on the Fattorini criterion, which can be fulfilled even with finite-dimensional controls.

Clearly, as (2.5) implies (2.4), we implicitly only consider systems that are weakly invariant.
This can also be justified from a practical point of view. Note first, that we only require
the state to be inside the target set at the final time 7" in the mathematical formulation of
the time optimal problem (P). However, in practice, time continues to advance afterwards
and in many cases we are interested to remain inside of the target set. Therefore, it seems
to be reasonable to restrict attention to systems where this is always possible. Otherwise,
the optimal control might achieve u(7T") € U with small cost, but every trajectory continuing
from u(T") might be forced to leave the target set again (possibly immediately).

We appreciate that (2.5) might not be fulfilled in all practically relevant cases. However,
we anticipate that it is useful in many situations, where the objective is to steer the system
“sufficiently close” to a weakly invariant, or even asymptotically stable state ug; cf., e.g., [2,
43, 92]. Here, it could also help to guide the choice of appropriate target sets U, which
guarantee both that the terminal state will be close to ug, and that the resulting control
problem will be strongly stable. We also note that, if the optimal trajectory u is assumed
to be known and U has finite co-dimension with regular normal cone, condition (2.5) can be
weakened to

R((T),C) < ~hollCllyy for all ¢ € Ny(a(T)), (2.6)
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while still implying the qualified form of the optimality conditions; see Proposition 2.30.
Furthermore, if the normal cone contains only one element, this condition is already equivalent
to the qualified optimality conditions (see Proposition 2.31), which further clarifies the role
of the strengthened Hamiltonian condition.

Viewing (P) as an abstract constrained nonconvex optimization problem, one could also
require a constraint qualification (CQ) to guarantee the qualified form of the optimality
conditions. However, the concrete form of the standard CQs does not only depend on the
parametrization of the constraint, but also on objects such as gradients, which require a proper
(but in some sense arbitrary) parametrization of the time variable T'; see Section 2.3.2. There-
fore, strong stability appears to be the more straightforward tool in this context. Comparing
CQs to the strengthened Hamiltonian condition (2.5), we remark that the latter qualifies all
optimal solutions at once, whereas the other considers only one specific, but a priori unknown
solution, similar to (2.6).

This chapter is organized as follows: In Section 2.1 we introduce some notation and state the
main assumptions. Weak invariance is characterized in Section 2.2. The concept of strong
stability is introduced in Section 2.3, where we discuss the time-optimal control problem
and derive optimality conditions. Moreover, we show that strengthening of weak invariance
implies strong stability as well as further perturbation results. Last, Section 2.4 is devoted
to applications. The text will be accompanied by the illustrative example U = {uq } with
fixed ug € H, to make ideas visible to the reader. However, we emphasize that it does not
represent the main application.

2.1. Notation and main assumptions

For any two Banach spaces X and Y we use Y — X to denote the continuous embedding
and Y <. X for the continuous and compact embedding. The domain of a linear (possibly
unbounded) operator A on X is denoted by Dx (A). Let V and H be real Hilbert spaces such
that V —. H =2 H* — V* form a Gelfand triple. Without restriction suppose |[v||y, > [Jv] 5
for all v € V. In general, we abbreviate the duality pairing and the inner product and norm

in H by
Gy =Codvews G =060 FE=1Hg
Assumption 2.1. Let a: V xV — R be a continuous bilinear form, which satisfies the Gard-

ing inequality (which is also referred to as weak coercivity): we assume there are constants
agp > 0 and wg > 0 such that

a(u,u) + wollul* = aollully, uweV. (2.7)

We denote by A: V C V* — V* the unique linear operator with
(Au,v) = a(u,v) forallve V.

It holds Dy+(A) = V; see, e.g., [80, Theorem 3.4]. Due to the Garding inequality, the
operator —(A + wp) generates an analytic semigroup on V*; see, e.g., [127, Section 1.4]. We
abbreviate wg Id by wg, where Id is the identity operator on V*, to simplify the presentation.
Due to (2.7), we can define fractional powers in the sense of [128, Section 2.6]. For fixed
6 > 0, we abbreviate Xy = Dy+((A + wp)?) and introduce the norm on Xy as

Il x, = 1A +wo) Iy



2.2. Weak invariance

As usual, (V*,V)g s, respectively [V*,V]y, stand for the real, respectively complex interpo-
lation couple with 6 € (0,1) and s € (1,00). Since V is a Hilbert space (and thus V* as
well), the operator (A + wp) has bounded imaginary powers and it holds for 6 € (0,1) that
Xg = [V*,V]g = (V*,V)g2; see, e.g., [146, Section 1.15.3]. In particular, X, = H; see, e.g.,
[108, Section 1.2.4]. Moreover,

Xg=[V" Vg =[V",Vh-o = X1-0;

see, e.g., [146, Theorems 1.9.3 b), 1.11.3]. Furthermore, using [146, Theorems 1.9.3 b), 1.11.3
and 1.15.3] we find

X1 =V Vg =[[V*,V]1/2, V]1-20 = [H, V]1 2. (2.8)
For any set S C Y in a Banach space Y, let d)S/() denote the distance function
d% (y) = inf ||y — /||y
s ()= iflly —ylly

Furthermore, if Y is a Hilbert space and S is closed and convex, we denote by ng Y —» S
the minimizing projection to S. Note that ng is Lipschitz continuous in Y (with Lipschitz
constant one); see, e.g., [12, Proposition 4.8]. We denote by

NY(y) ={veY*: (v, = Y)y-y <0 forally’ € S}

the normal cone to S at the point y € S. In the case Y = H and S = U (or if no ambiguity
arises), we simply write dy(-), Py, and Ny(+).

Concerning the problem (P), the terminal set U C H is assumed to be nonempty, closed,
and convex and the initial state satisfies ug € H.

Assumption 2.2. Let @ be a Hilbert space, and QQ,q be a closed convex subset. We assume
the control operator B: Q — Xy, — V* for some 6 € (0,1/2] to be linear and continuous. In
addition, we assume Q44 to be bounded in @, and define Cg_, = max,cq,, Hq||Q Furthermore,
the functional L: Q — R, is Lipschitz continuous on @),4 and convex.

In addition, for T' > 0 we define Q(0,T) := L?((0,T); Q) and

Qad(0,T) ={q € Q(0,7): q(t) € Quq a.e. t € (0,T)} C L>((0,7);Q).

Moreover, for T > 0 we use the symbol W (0,T') to abbreviate H((0,T); V*)N L2((0,T); V),
endowed with the canonical norm and inner product. The symbol ip: W (0,T) — H denotes
the continuous trace mapping iru = u(T).

2.2. Weak invariance

We first introduce the notion of weak invariance.

Definition 2.1. The set U C H is said to be weakly invariant under (A, BQquq), if for every
ug € U there exists a control ¢: [0,00) — Q4q such that the solution u to

Ou + Au = Bq, u(0) = uy,

satisfies u(t) € U for all ¢t > 0. If ambiguity is not to be expected, we simply say U is weakly
invariant.



2. First order optimality conditions

Remark 2.2. Different terms for weak invariance are being used in the literature, such as
holdability or viability; cf. [141] and [41, Section 1].

The structure of this section is as follows: We first discuss stability of the minimizing pro-
jection Py in V. This is then needed to characterize weak invariance in terms of the lower
Hamiltonian.

2.2.1. Stability of the projection to the target set

We call the minimizing projection Py in H onto U stable in V', if Py (V) C V. In general,
stability of Py in V is a non-trivial assumption. However, in the uncontrolled case, it is
known that invariance of U under A (i.e., the property e *AU C U for all t > 0, with e *4
the semigroup generated by —A) implies the stability of Py in V; see, e.g., [127, Theorem 2.2],
cf. also [4, Section II.6.3] for the nonautonomous case. In the following we generalize this
known sufficient condition for stability of Py in V' to controlled systems. This will be a
prerequisite for the characterization of weak invariance of U under (A, BQuq).

Example 2.3. As an illustrative example, we consider the set U = {wug4 }. The projection Py
is given by Py(u) = ug. Clearly, Py is stable in V' if and only if uy € V. Now, suppose that
U is weakly invariant under (A, BQuq). Then there is a control ¢: [0,00) — Q44 such that
the corresponding state u satisfies u(t) = uq for all ¢ > 0, i.e. u is the steady state solution.
Thus, 0 = Ju(t) = Bq(t) — Aug, which in turn leads to ug € V, in accordance with the
results of this section. Additionally, we infer that invariance of U under the uncontrolled
system (corresponding to weak invariance with the trivial choice Q,q = {0}) holds only for
Aug = 0; see [127, Theorem 2.2], cf. also Theorem 2.9.

The proof is divided into two steps. Roughly speaking, we first prove that for a weakly
invariant set U, the scaled resolvent of A does not map points in U too far outside of U. We
define for any u € H

Eyu =X X+ A)lu=(1+A4/))" u.

Provided that A\ > wg, where wy was defined in (2.7), we find that Eyxu € X; = V is well
defined for any u € Xo = V*. Additionally, using a resolvent identity and the interpolation
inequality, there holds the estimate ||Exu — ully. = A"YABEully. < ¢ A™Y2|u| for all

u € H = Xy5. For u € U, an improved estimate for the distance of Eyu to U can be
obtained under weak invariance.

Proposition 2.4. Suppose that U is weakly invariant under (A, BQuq) and let 6y be the
constant from Assumption 2.2. Then, for allu € U and v € [0,1/2] it holds

iy (Byu) < e X000 x>
where ()7 = max{-,0} denotes the positive part, and the constant ¢ depends only on v, 6y,

A, and Quq.

Proof. By assumption, there is a control such that the state @ with initial value u stays in U
for all ¢ > 0. Now, we can estimate the distance of e=*4u to U in X, by the distance of 1(t),

and obtain
diy (e ) < e — i(t) ||y, < ett=00",

where the last inequality is an application of Proposition A.18 (iii) with # = min{~, 6 }.
Indeed, the variable w(t) = e *4u — u(t) solves a parabolic equation with right-hand side in

10



2.2. Weak invariance

L*>°(0,00; Xp) and w(0) = 0. Since the resolvent is the Laplace transform of the semigroup
it holds

Eyxu=AA+A)"tu = / e Me Tty dt.
0

Note, that due to u € U C H = X3 and A > wp, the integral is defined with values in X,
for all v < 1/2; cf. [128, Sect. 1.7]. Finally, we apply the distance function on both sides of
the equation, and we derive

d)U(7 (Eyu) < /0 )«—:-_’\td)U(AY (e~ ) dt

< C/OO )\(3_>\tt1_(7_00)+ dt = cF(Q + 60— 'y) )\_1+(“/—90)+,
0

with fooo e~ M = 1, convexity of the distance function, and a generalized Jensen’s inequality;
see, e.g., [129, Theorem 3.10 (ii)]. O

Remark 2.5. Note that for the result of Proposition 2.4, we only used the assumption that
BQ,q is a bounded set in X, (using Assumption 2.2). All the results from this section remain
valid under this modified assumption.

Lemma 2.6. If U is weakly invariant under (A, BQuq), then the projection Py is stable in
V,ie Py(V)CV.

Proof. Let v € V be fix and set u = Py(v) € H. We first prove that u € X(,_1)/, with
n = 2™ for all m > 1. Since u € H = X5, the assertion holds for m = 1. Proceeding
by induction, we assume it holds for all 1 < m’ < m and show it for 2n = 2m+1 - Since
AE\u = Au — E)\u), we compute
(AE\u, Exu) = (AE\u, Exu — u) + (AE\u, u)
= AMNu — Eyu, Exu — u) + (AEyu,u) = —\|u — Exul|* + (AE\u, u).

Now, we take for any X a v} € U with ||u) — E/\“HXI/,L < 2d§1/"(E,\u). Moreover, since
Xg = X1-9 = V7, it holds (¢, ¥) < [|¢llp+ vy, , 1¥lljy+ v, for ¢ € Xig and ¢ € V. Thus,
for v € V with w = Py(v) from the beginning of the proof it holds
(AE\u, Exu) + \|u — Exul|* = (AE\u, u — v) + (AEyu, v)
= Mu —uy,u —v) + ANu)\ — Exu,u —v) + (AE\u, v)
<0+ Al — Bxully,, lu—vllx, . +clBxully lolly

— +
< e A0 |y — Vllxo,_yy,. +ellExullyllvlly, (2.9)

)/
X
where we have used (u — ul,u —v) = (u — u}, Py(v) —v) < 0, the estimate dj;"/" (E\u) <
eA~1H(1/n—b0)" (from Proposition 2.4 with v = 1/n), and the continuity of A. Consequently,
with Young’s inequality, we arrive at
—0,)t (67}
(AByu, Byu) + Au — Byul? < eXV0 u—ofly 4 S Bl el

and the Garding inequality (2.7) yields

(&%) 2 2 —0p)t+ 2 2
DByl + N~ Bxul® < e Xm0 oy — ol elfol+ wo Exul”

11



2. First order optimality conditions

With [|Eyul| < c||ul| < ¢||v]] we obtain constants ¢; and ¢ (depending on the norms of v € V
and u € X(,_1)/n, by the induction hypothesis) such that for all A > wy it holds

HEAUHV-F)\UQHU—EAUH < 01)\(1/"_90)+/2+62.

Note that the constants ¢; and ¢s depend on n. However, for the proof we only require
finitely many steps which can be estimated a priori by 1/n < y. Recall the functional of the
K-method of real interpolation, see, e.g., [146, Section 1.3],

K(u,t,V, H) = inf [[[ally +t]u—all].

inf
aeV
By inserting for each ¢ > tyin = max {1, /wg } the values @ = E\u for A = 2, we obtain the
estimate K (u,t,V,H) < e t1/m=00)* 4 ¢ Moreover, inserting @ = 0 yields K(u,t,V,H) <
t|ul| < ct. Thereby, we obtain
o0 2
2 -1 -1
lelitv.say, o = /0 (MK (u,t, v, H)) ¢t at

tmin s 2
< c/ 2 g +/ (01 max { ¢~/ 7%} + czfl/”) t7Hdt < oo.
0

tmin

As in (2.8) with 6 = 1/(2n), we find (V, H)y/n2 = X1_1/(2n)- Therefore, u € X(3,_1)/2, and
we have shown the assertion for 2n = 2m+1,

Finally, let n € N such that 1/n < y. Then, in the last step of (2.9) we obtain that
2 2
||EAU||V S CHU - U||X17(n71)/n + CHUHV
Thus, Eyu is uniformly bounded in V. As Eyu — u in H, we conclude u € V. O

Corollary 2.7. Under the assumptions of Lemma 2.6, there exist constants c1,co > 0, such
that
1Py ()l < e+ ezfvlly- (2.10)

Proof. Let v € V. Then, u = Py(v) € UNV due to Lemma 2.6. As in the last step of
Lemma 2.6, we derive

2
[Exully < erflu=vlly + ez [[Exully|[olly < e ((lully + [lvlly) +ea [Exully v]ly-

Recall that Eyxu = A(A + A)"'u. Since u € V, it holds Eyu — u in V. Passing to the limit
in the inequality above yields

2
lully < e (lully + llvlly) + ez [[ully llvfly-
Dividing by ||ul|,,, we conclude || Py (v)|, < max{1,ci1(1+ ||v]y)+ c2l|v]|, } and the asser-

tion follows for appropriately modified constants ¢, cs. O

2.2.2. Characterization of invariance
Using the result on the stability of the projection, weak invariance can be characterized by

conditions involving either the projection or the normal cone. In the following, we will make
repeated use of the following basic identification.

12



2.2. Weak invariance

Proposition 2.8 (see [12, Proposition 6.46]). Let uw € U. Then
Ny(u) ={v—u:ve H with Py(v) =u}.
In particular, it holds v— Py (v) € Ny(Py(v)) for allv € H, and Py(u+¢) = u for allu € U
and ¢ € Ny (u).
Following [40, Section 12.1], we define the lower Hamiltonian as
h(u,{) = min (Bq— Au,{) forueV, (eV.
quad

Analogous to the corresponding theory for ordinary differential equations, we can now char-
acterize weak invariance in terms of the lower Hamiltonian.
Theorem 2.9. The following conditions are equivalent:

(i) U is weakly invariant,

(ii) Py is stable in V and h(u,{) <0 for allu e UNV and ¢ € Ny(u)NV,
(#ii) Py is stable in V and h(Py(v),v — Py(v)) <0 for allv e V.
For the proof of Theorem 2.9 we need an estimate of the distance to the target set for the
controlled system, which is given next. For later use, we prove it in a more general form,

including both the strengthened condition (2.5) as well as the weaker condition (2.4) (which
is the special case for hg = 0).

Lemma 2.10. Suppose that Py is stable in V' and that there is hg > 0 such that for allv € V
we have
h(u,¢) < —hol|C]|, where u= Py(v), ( =v—u. (2.11)

Then, for each uy € H with dy(up) wg < hg there exists a control q: [0,00) = Quq Such that
the solution u to
Owuw+ Au= Bq, u(0) = uo,

satisfies
dy(u(t)) < max {0, dy(ug) + (dy(ug)wo — ho)t}  fort>0.
To prove this result, we construct a sequence of feedback controls which have approximately
the desired property, and then we go to the limit. We start with an auxiliary result.
Proposition 2.11. The squared distance function d?]: H — R is differentiable with
Vd# (u) = 2(u — Py(u)).

Moreover, if Py is stable in V, then VdQU is continuous from V to Xi_g,.

Proof. Differentiability of the squared distance function is proved in [12, Corollary 12.30].
Using the expression of the derivative, we infer that Vd%] is Lipschitz continuous on H with
Lipschitz constant two, and stable on V' due to stability of Py in V; see Corollary 2.7. The
interpolation inequality [146, Theorem 1.9.3 f)] yields

1 1 _
S 1V () = Vg (0)lir1), _ag, < 511V () = Vs ()i | Ve (u) = Vel (0)[*

1—26, 26,
< [2er + (Lt eo)([[olly + [lully )] lu = ol

where ¢1,co are from estimate (2.10). Hence, Vd2U is continuous from V to [H,V]i_9, =
X1-0,; see (2.8). O

13



2. First order optimality conditions

We now construct the desired sequence of approximate feedback controls.
Proposition 2.12. Let ug € H, v > 0 and T > 0. Then the equation
Oy~ + Auy, = Bgy,
¢y = P, (—77 B (uy = Pu(uy))) , (2.12)
uy(0) = uo,

possesses a solution u, € W(0,T)NC((0,T); V)N CH(0,T); V*) and g, € C((0,T); Q).
Proof. Consider the mapping F: Q(0,7) — Q(0,T) defined by
Flg) = Po,, (—(27)'B* |Vd} (S(uo, Bg)))) ,

where S: H x L?((0,T); Xg,) — W(0,T) denotes the solution operator of the parabolic
equation with initial value ug and right-hand side Bq. According to Proposition 2.11, the
function Vd%] is continuous from V' into Xj_g,. Moreover, since Xy = Xi_4,, and B is
supposed to be continuous from @) to Xy,, we infer continuity of B* from X;_g, to Q* = Q.
Continuity of Py, on @) leads to continuity of F from (0, T") into itself. Using compactness of
q — S(ug, Bq) into L?((0,T); V) according to Proposition A.19, we deduce that F(Q.q(0,T))
is contained in a compact subset of Q(0,T).

Finally, Schauder’s fixed point theorem (see, e.g., [163, Theorem 2.A]) yields the existence
of a fixed point F(¢y) = ¢y. Setting u, = S(uo,q,) proves the existence of a solution
to (2.12). According to Proposition A.18, u, is continuous on (0, 7] with values in V. Now,
the continuity of the projection Pg,, on @) yields the improved regularity of ¢,. Furthermore,
from Oyu, = Bgy — Au, we deduce that u, is continuously differentiable on (0,7") with values
in V*. O

Next, we observe that the feedback control g, is close to the minimizing argument of the
lower Hamiltonian.

Proposition 2.13. For any (,u € V and ¢, = Pg,, (—y 1 B*() it holds
<Bq7 - A'LL, <> S h(ua C) + c, (213)

where ¢ solely depends on Quq.-

Proof. Consider for v > 0 the family of functions defined by

ha(u.€) = min |(Bg— Au. Q) + 3 al} | (2.14)

Clearly, hg is the lower Hamiltonian h. Denote the minimizers of (2.14) by ¢,. Then, we
estimate

(Bay = Au,€) < hy(u,€) < (Bao — Au, ) + % laollyy < ho(u, Q) + 5 €3,

Furthermore, for v > 0, from the optimality conditions for (2.14) we infer that the minimizer
¢ is given by ¢, = Pg,, (—y "1 B*(). O

Now we prove the main result of this section.
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2.2. Weak invariance

Proof of Lemma 2.10. Clearly, it suffices to show the result for ¢ € (0,T") for some arbitrary
but fixed T' > 0. Let ug € H be given, let u, for v > 0 denote the corresponding solution
to (2.12), and define d(t) = dy(u,(t)). Then, for any 0 <t < T we infer

g2 (t) = (Bruy (), Vi (uy (1)) = (Bay (t) — Auy (1), Vi (uy (1))

dt 7
= (Bay (t) — APy (uy (1)), Vdiy (uy (1)) + (APy (uy (1)) — Auy (1), Vdi (us (1)),

where we have used (2.12). For the last term, the Garding inequality yields

(AP (uy (1)) — Auy (1), Vi (uy (1)) = —%(AVd%(uv(t)), Vi (us (1))

wo (67) wo
< 8y ()1 — 2Vl ()] < 2V )]
Employing (2.13), the Hamiltonian condition (2.11), and

IV (1 (8)) | = 2dus (0 (1)) = 25 (8),
we infer
B(Py (1 (1)), Vs (ur (£))) + e + <LVl (s (1)
< —hody(t) + ey + wgdi(t).

(2.15)

Using the fact that %dgy(t) = 2d’,(t)d,(t), we obtain from (2.15) that
d.(t) < wody(t) 4+ cy/dy(t) —ho on {t:d,(t)>0}.
According to Proposition A.25 the differential inequality implies
dy(t) < max { 3, (du (o) + VD" + (e — ho)o(t) } = Dy(t),  (2.16)
where ¢(t) = wy ' (e0t — 1), if wy > 0, and G(t) = t otherwise.

For v — 0 we now choose suitable subsequences such that ¢, — ¢ in Q(0,7) and u, — w in
W(0,T). Clearly, the weak limits satisfy

Ou+ Au = Bq, u(0) = up.

Thus, with W(0,T) — C([0,77; H) we have u(t) — u(t) in H for all t € [0,T]. Using weak
lower semicontinuity of the distance function d(-) and (2.16), we obtain

dy (u(t)) < lim inf du (us (1)) < lim D, (1) = max { 0, du(uo)e*’ — hoo(t) | .

~v—0

Now, using the supposition dy(ug)wp < hg, the definition of ¢, and the fact that ¢(t) > ¢, we
obtain

dy(u(t)) < (dy(uo) + (wodu (uo) — ho)d(t)) " < (du(uo) + (wodu (uo) — ho) £)"

concluding the proof. O

Finally, we show the charactization of weak invariance by means of the lower Hamiltonian.
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2. First order optimality conditions

Proof of Theorem 2.9. We separately prove three implications.

(i) = (ii). The stability of Py in V follows with Lemma 2.6. For the second property, let
ug € U NV be arbitrary. Then, with weak invariance, there is a control ¢ € Q44(0,00) such
that the corresponding state satisfies u(0) = ugp and u(t) € U for all ¢ > 0. Additionally,
u(t) € V for all t > 0 follows by Proposition A.18 (i). Let further ¢ € Ny (ug) N'V. It holds
Owu = Bq — Au in L?((0,s); V*) for any s > 0, and we have

0>

Su(s) — w0, ) = (5 [ 1Bat) - Au(e)ar.C). (2.17)

Define the temporal averages gs = (1/s) [y ¢(t)dt and us = (1/s) [5 u(t)dt. Due to u €
C([0,1]; V), it holds us — ug in V for s — 0. Furthermore, with ¢(t) € Qg4 for all ¢, it follows
ds € Qaq (see, e.g., [40, Exercise 2.44]) and we can select a sequence s, — 0 and a ¢y € Q
such that s, — qo in @ for n — co. By weak closedness of Q4 we have gy € Quq. Going to
the limit in (2.17), we obtain

0 > (Bqo — Aug, ) > h(ug, ¢),

using boundedness of B: ) — V* and A: V — V*. Since ug and  were arbitrary, we finish
the proof.

(i) = (iii). This follows directly from the fact that w = Py(v) € UNV and v — Py(v) €
Ny(u) NV for all v € V' with the stability of the projection.

(#ii) = (i). The last implication is consequence of Lemma 2.10 (with hg = 0). O

2.3. Time-optimal control problem

We now turn to the time-optimal control problem. In the following, we use the notation u[q]
for the solution of the state equation dyu + Au = Bq and u(0) = ug for a given control q.
Let U C H denote the terminal set that is assumed to be closed and convex. Furthermore,
to exclude the trivial case with zero optimal time, we assume that ug € H \ U. Problem (P)
can then be restated as:

inf i(T, bject t T) e U.
S J(T,q) subject to ulqg](T)

First, we consider the question of existence of optimal controls. We show that if there exists
a feasible pair (T, q) € Ry X Qqq(0,T), the problem is well-posed:

Proposition 2.14. Suppose there exists a finite time T > 0 and a feasible control q €
Qad(0,T) such that the corresponding state satisfies u[q](T') € U. Then, problem (P) admits
at least one optimal solution (T,q) € Ry X Qquq(0,T).

Proof. The proof is done by standard arguments (the direct method); cf., e.g., [106, Sec-
tion II1.17]. We use in particular the boundedness of j for bounded T' due to boundedness
of the admissible set Quq, 7(71,q) > T and that j is weakly lower semicontinuous in ¢ for
fixed T. Furthermore, we use the W (0,T) regularity of the solution to the state equation,
the continuity of the trace mapping ir, and the convexity of U. O

16



2.3. Time-optimal control problem

Remark 2.15. In view of the preceding result, the question of existence reduces to the
question of controllability under constraints. We exemplary state situations where feasible
controls exist. Let 2 C R? be a bounded domain with smooth boundary and A = —A
be the usual Laplace operator equipped with homogeneous Dirichlet boundary conditions.
Moreover, for fixed ug € L?(£2) and &y > 0, suppose the terminal set to be given by U =
{u S L2(Q): Hu — udH <y }

(i) In case of distributed control on an open subset w C {2, the state equation is known to
be approximately controllable; see, e.g., [138, 167], i.e. for all T > 0, ug € L?(£2), and
dp > 0, there exists a control ¢ € Q(0,T") such that u[g](T") € U. Clearly, for sufficiently
large control constraints, feasible controls exist. For estimates concerning the controls,
we refer to [56].

(ii) If ug = 0 and 0 € Q4q(0, 1), then for any dp > 0, the control ¢ = 0 is feasible for " > 0
sufficiently large, since the semigroup generated by A is exponentially stable in L?(2);
see Proposition A.21.

(iii) Furthermore, Lemma 2.10 provides a sufficient condition for existence of feasible points,
under the assumption dy(ug)wo < ho (which is clearly true for wy = 0 (since hy > 0)
or the initial state ug sufficiently close to U). Note that Lemma 2.10 generalizes the
argument of (ii), since wp = 0 in case of homogeneous Dirichlet conditions due to
the Poincaré inequality. In Section 2.4 we will explicitly verify the suppositions of
Lemma 2.10 for concrete terminal constraints U.

2.3.1. Strong stability

We now introduce the strong stability condition on the objective functional with respect to
small perturbations of the terminal constraint set. This will allow for exact penalization of
the constraints which in turn leads to optimality conditions in qualified form. For § > 0,
define the perturbed control problem

T>0:ql€%ad(0,T) J(T,q) subject to u[g](T) 5 (Ps)

where U is replaced with Us = U + B5(0) = {u € H: dy(u) <0 }. Evidently, (FPp) is equal
to (P). We define the corresponding value function v: Ry — Ry by

U((S) = inf (P(;)
Clearly, v is a monotonously decreasing function with v(dy(ug)) = 0.

Definition 2.16. The problem (Fy) is called strongly stable (on the right) if there exist € > 0
and ng > 0 such that

v(6) —v(8") <no(6' —6) for all &' € 6,8 + €. (2.18)

Remark 2.17. (i) In the case that 6 > 0, we can also define stability on the left in an
analogous way; cf. also Figure 2.2. In this work, we only consider stability on the right,
which is meaningful also for the important case é = 0.
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2. First order optimality conditions

1) & d+¢ \‘*T]O 1)

Figure 2.2.: lllustration of strong stability. The left example is strongly stable on the right at ¢ with
radius € and modulus 79. The right example is not strongly stable on the right at §. Both
examples are strongly stable on the left at §.

(ii) Strong stability is satisfied almost everywhere. Precisely, if (P) has feasible controls,
then (Pj) is strongly stable for all § € Ry except on a set of Lebesgue measure zero;
see, e.g., [19, Proposition 3.2]. This follows from monotonicity of v, because monotone
functions are differentiable almost everywhere. However, since we consider the terminal
set U to be a given datum, we are interested in conditions assuring strong stability on
the right at 6 = 0.

(iii) Strong stability is also referred to as calmness, cf. [25], [136, Chapter 8.F], or weak
calmness, cf. [21, Definition 3.114].

We now prove one of the main results of the chapter, which guarantees strong stability under
a condition which is a direct strengthening of the necessary condition for weak invariance
from Theorem 2.9. We require that there exists a hg > 0 such that

h(u,¢) < —hol[¢]| forallue UNV, (€ Ny(u)nV. (2.19)

Recall that weak invariance of (A, U, BQ,q) corresponds to the same condition with hy = 0;
see Theorem 2.9. In the case hy > 0, strong stability of (Pj) holds for all small enough § > 0
(which includes the important case 6 = 0).

Theorem 2.18 (Strong stability). Let Py be stable in V' and suppose that condition (2.19)
holds for some constant hy > 0. Then, for all d > 0 such that wod < ho/2 the problem (Pj) is

strongly stable on the right with ng < c¢/hg, where the constant ¢ only depends on the concrete
choice of L and Qqq.

Proof. Fix ¢ > 0 such that w(d 4+ €) < hg/2. Then, let &' € [4,0 + €] be arbitrary and fix
a solution (7”,¢',u’) to (Ps). Consider the auxiliary problem d;i + A# = Bq with initial
condition %(0) = «/(T") and an auxiliary control §: [0,00) = Q.. Employing Lemma 2.10
we can choose ¢ such that it holds

dy(u(t)) <max {0, & + (§'wy — ho)t} fort >0,

considering that dy(1(0)) = dy(v/'(T")) = §'. Clearly, it follows that dy (a(67T)) < ¢ for the
choice 8T = (8" — &) /(ho — 0'wp). Thus, g € Quq(0,T" 4 6T) defined by

q(t ift< T,
q(t) = v() ,
qt—T ift>T,
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2.3. Time-optimal control problem

is admissible for (P5) and we find
T'+6T
o(8) = inf(Py) < (T +0T,q) = J(T' )+ [ [1+ Lgle —T))] e
T/
<v(d') + 6T (1 + L),

where Lo, = maxgeq,, L(q). Using wod’ < ho/2, we obtain that 67" < 2(¢’ — §)/ho, which
results in (2.18) with a choice of 79 = 2(1 4+ Luo)/ho. This concludes the proof. O

2.3.2. Change of variable

In this subsection, we discuss the implications of strong stability on optimality conditions
for (Ps). To derive optimality conditions we first transform the time interval to the reference
interval (0,1) (cf. Proposition 4.2 in [92], Proposition 4.1 in [134]). Consider the set of
admissible scaling functions

Ny = {1/ € L>(0,1): ess((i)rg’u(T) > 0} ={reL>®0,1):v>0and 1/v € L>=(0,1)}
T€(0,

and define a family of transformations
t
T,:[0,1] = Ry, To(t) = / v(r)dr.
0

For v € N,y and any mapping u: (0,1) — V we define the transformed elliptic operator
(vAu) () = v(t) Aut),
and, by a change of variables, we obtain the transformed state equation
Ou+vAu =vBq, u(0) = up.

By standard results, for each right-hand side in L?((0,1); V*) the transformed equation pos-
sesses a unique solution u € W(0,1) (see, e.g., [46, Theorem 2, Chapter XVIII, §3]). We
introduce the control-to-state mapping as

St Nag X Qad(0,1) € L¥(0,1) x Q(0,1) = W(0,1), S(v,q) = u.
The transformed optimal control problem is then given by

inf (Vs subject to 1.5(v,q) € U, p
VGNadvzréQad(O,l)j(V q) ubj 1 (V Q) ( )

where the objective function is defined as

i(v,q) = /01 v(t) (14 L(q(t))) dt.

Since no ambiguity arises, we do not rename variables. The definition of the set of admissible
controls (,q transfers to the transformed problem, because the control constraints do not

A

depend on time. In fact, both problems (P) and (P) are equivalent in the following sense.
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2. First order optimality conditions

Proposition 2.19. If (v,q) is admissible for (P) and u = S(v,q), then
(TI/(]-)) qo Tuv u o TZ/)

is admissible for (P) and j(v,qoT,) = j(T,q). If (T,q,u) is admissible for (P), then for
every v € Ngg such that T,,(1) =T,
(v,qo T, )

is admissible for (P) and j(v,qo T; 1) = (T, q).
Considering v as an additional control variable, we obtain by standard arguments the follow-
ing differentiability result.

Proposition 2.20. The control-to-state mapping S is (infinitely often) continuously Fréchet-
differentiable. In particular, du = S'(v, q)(dv, 6q) € W(0,1) is the unique solution to

Ordu + vAdu = dv(Bq — Au) + vBdq, 6u(0) =0,

for (6v,6q) € L*°(0,1) x Q(0,1). Moreover, 6t = S" (v, q)(0v1,dq1; 6va, dq2) € W(0,1) is the

unique solution to
00t + vAdu = ovy (Bdga — Adug) + 0ve (Bdgqy — Aduy), du(0) =0,
for (0v;,6q;) € L>®(0,1) x L*(I x w) and du; = S"(v, q)(0v;,6¢;), i = 1,2.
By the previous result and the continuity of the trace mapping i1, the parameter-to-obser-
vation mapping i15(v,q): (v,q) — u(l) is differentiable. Furthermore, for any fixed p €

H, the gradient of the functional (v,q) — (i1S(v,q), ), which is given by the expression
(i15'(v,q))" p, can be characterized by an adjoint equation.

Proposition 2.21. Let v € Ny and q € Q(0,1). For any u € H we have

<Bq - AU,Z>

(115" (v, )" p = ( B ) e LY0,1) x L*((0,1); Q),

where z € W(0,1) is the unique solution to the adjoint equation
-0z +VvA*2 =0, 2(1)=upu,

where A* denotes the adjoint operator of A.

Proof. Using Proposition 2.20, integration by parts, and the definition of z we observe

1 1
(115 (4.)(610)) = (Gu(1), ) = (5u(1), (1) ~ (0(0),2(0)) = [ (Do) + [ G0z,
1 1 1
:/0 <8t5u,z>—|-/0 (vAbu, z) :/0 (0v(Bq — Au) + vBéq, z),

where du = S'(v,q)(0v,dq). Furthermore, we identify the partial derivative with respect to
v, ie. dv — fol dv(Bq — Au, z), with the function (Bq — Au, z) € L*(0,1). O
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2.3. Time-optimal control problem

The transformed perturbed problems (135) for § > 0 are defined analogously:

inf i(v,q) subject to i15(v, q) € Us. P
VGNadquréQud(O,l)j(V q) subj i1S(v,q) 5 (Ps)

The notion of strong stability for (155) and (Ps) are obviously equivalent, since the value
function v is identical. We will derive optimality conditions by adding the terminal constraint
as a penalty term to the objective functional. Under a strong stability assumption the
resulting functional is exact.

Definition 2.22. Let 6 > 0 and (v, ¢) be a local minimum of (Pj). The functional
Jn(-) = 3 () +ndus(5())

is called an ezact penalty function for (Ps) at (v, q), if there is n > 0 such that (v, q) is a local
minimizer of j,.

Proposition 2.23. Let § > 0 and (v, q) be a solution to (Ps) and let (Ps) be strongly stable
on the right with constant ng > 0. Then, jy, is an exact penalty function for (Ps) at (v,q) for

any n = Mo.

Proof. We give a proof of this well-known result for convenience of the reader: Let n > ng
and (v,q) be a local minimizer of j, in a suitable small neighborhood of (7,q) (such that
dys(i1S(v,q)) < ¢), and set ' = dy, (115(v, ¢)). Due to feasibility of (v, q) for (Ps) and strong
stability on the right, we obtain

Jn(7,@) = j(©,q) < inf(Py) +n(0" = ) < j(v, q) +n(d" —9)
= j(v,q) + ndus(i15(v, q)) = jn(v, q),

where we have used optimality of (v,q) for j, in the last step. Whence, (v,q) is a local
minimizer for j,. O

Remark 2.24. The constraint in (P) can be written as g(v,q) = i15(v,q) € Us and g is
differentiable. If a constraint qualification such as Robinson’s CQ holds,

0€ lnt{g(ljvq_) +g,<ﬂaq)(Nad - DuQad<O7 1) - (Y) - U5 } - H7
then j, is an exact penalty function for (Ps); see, e.g., [21, Theorem 2.87, Proposition 3.111].
This presents an alternative approach to obtain qualified optimality conditions. We expect

that the sufficient conditions from Section 2.3.4 are related to Robinson’s CQ, but are unable
to prove this in the general setting.

2.3.3. Optimality conditions

We define for any po € Ry the Hamiltonian H,,: Q x V x V — R by
HMO(Q: u, Z) = <Bq - AU, Z> + Ko [1 + L(Q)] :

Based on strong stability, qualified optimality conditions can be derived.
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2. First order optimality conditions

Theorem 2.25. Let § > 0 and (Pj) be strongly stable on the right (with constantn > 0). If
(v,q) is a solution of (Ps) with uw = S(v,q), then there exist p € Ny (u(l)), p # 0, ||a] < n,
and a corresponding adjoint state z € W (0, 1) with

—0E+ A Z=0, (1) =, (2.20)
such that

min Hy(g,u(t), 2(1)) = Ha(g(t). u(0). (1)) = 0, a.e. t € (0,1). (2.21)

The first equality in (2.21) can be equivalently expressed by
0€ 0L(q(t)) + B*2(t) + Ng,,(q(t)), a.e. t € (0,1), (2.22)
where OL denotes the convex subdifferential of L.

Proof. The proof is based on the minimization of the exact penalty function. Using Proposi-
tion 2.23, (v, q) also is a minimizer of the penalty function j,. Since v € N,q4, which is open,
we may restrict the minimization to some neighborhood and neglect the constraints on v in
the following. We note that j,: L>°(0,1) x Q(0,1) — R is locally Lipschitz continuous and
derive the stationary conditions by Fermat’s rule; see [40, Proposition 10.36]. We obtain
0 € dcgn(V,q) + Nreo(0,1)xQua(0,1) (V5 Q)
C 9cj(v,q) +n0cldu, (118, q))] + {0} x Ng,,0,1)(a),

where Jc denotes the generalized subdifferential due to Clarke; see, e.g., [40, Chapter 10].
Using Proposition A.24 and [40, Theorem 10.8] we find

dcj(v,q) S {1+ L(q)} x v9cL(q) = {1 + L(q)} x v OL(q),

because j is continuously differentiable with respect to v and convex and Lipschitz continuous
with respect to ¢ due to the corresponding assumptions on L. Concerning the second term,
we employ the chain rule [40, Theorem 10.19] and obtain

c [du, (11S(7,q))] € (115" (7, 0))" [0cdu, (115 (7, 9))] - (2.24)

The gradient (i1.5'(7, q))* was computed in Proposition 2.21. Furthermore, the set dcdy;(+)
can be identified with the ordinary convex subdifferential (see [40, Theorem 10.8]) and

dcdy, (v) = ddy, (v) = { 1 € Ny (v): [lul] <13,

for all v € Us; see, e.g., [12, Proposition 18.22]. Therefore, from (2.23) and (2.24) we obtain
that there exists a ji € Ny,(u(1)) with ||l < n, a § € L(q), and a ¢ € Ng,,(0,1)(7), such

that
0 < 1+ L(q) + (BG — Au, %) )

(2.23)

v(€+ B*2+()
where Z solves the corresponding adjoint equation (2.20). The first component of this equation
is the second equality in (2.21). Pointwise inspection of the second component for ¢ € (0,1)
and v(t) > 0 implies (2.22). Now, we observe that (2.22) is the necessary and sufficient
optimality condition for g(t) to be the solution of a convex optimization problem, namely
q(t) = argmin [L(q) + (Bq, z(t))] = argmin H;(q, u(t), z(t)).
4€Qud q€Qad
Finally, assume that g = 0. This implies z = 0 by unique solvability of the adjoint equation.

Using the Hamiltonian condition (2.21) we infer 1 + L(g) = 0 almost everywhere in (0, 1).
This contradicts L > 0, and we conclude p # 0. O
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2.3. Time-optimal control problem

Without strong stability, under a structural assumption on only the constraint set, the gen-
eralized form of the optimality conditions can be derived. To this end, we first introduce the
concept of finite co-dimension; see [104, Definition 4.1.5]. Let X be a Banach space. A subset
S of X is said to be of finite co-dimension in X, if there exists a sg € ¢0.5 (the convex hull
of S) such that span { S — s¢ } is a finite co-dimensional subspace of X and ¢ {S — s¢ } has
a nonempty interior in this subspace.

Note that if 6 > 0, then Uy has finite co-dimension in H, because of span{ Us — v/ } = H and
the fact that co { Us — v’ } = U—u'4B5(0) has a non-empty interior for all v’ € U. In contrast,
a point constraint U = {ug } is not of finite co-dimension, since span{U —ug } = {0} has
an infinite co-dimension.

Theorem 2.26. Assume that Us is of finite co-dimension (or 6 > 0); see [104, Defini-
tion 4.1.5]. Let (v,q) be a solution of (Ps), u = S(v,q). Then there exist ji € Ny,(u(1)),
p#0, o € {0,1} and a corresponding adjoint state z € W(0,1) which fulfills (2.20), such
that

min Hy (g 5(0), 2(0)) = Hy, (a(0),0(0),2(0)) = 0. a.e. te(0,1). (2.25)

Proof. We only give a short outline of the proof. It combines the one of [40, Theorem 10.47]
with the one of [134, Theorem 4.1]. As before, since N, is open, we may restrict the
minimization to some neighborhood and neglect the constraints on v in the following. Define
the function

(v, q) = max {0, j(v,q) — j(7.9) + £ } + (i1 S (v, 0))2.

Ekeland’s variational principle with A = /¢ yields a sequence v € Nyg, ¢- € Qq4(0,1) such
that (v¢,q:) — (7, q) for e — 0 and the function

(v, q) = ¢°(v,q) + Vellv = vell + Vellg — ¢

attains a strict (local) minimum at (v, q-) over L>(0,1) X Qqq(0,1); see, e.g., [40, Theo-
rem 5.19]. The Lipschitz constant of &° can be bounded independently of ¢, if 0 < ¢ < g for
some fixed €9 > 0. Employing [40, Theorem 10.31] there exists a constant K solely depending
on the Lipschitz constant of @°, such that the mapping

(V7 q) — QE(Vu q) + KdQud(O,l) (q)
has a local minimum at (v, g-.). Nonsmooth calculus as in Theorem 2.25 yields
Ye € 06" (v, @) + {0} x (Ngyu0.1)(a:) N B (0)) (2.26)
with 7. — 0 in L*°(0,1)* x Q(0,1) as € — 0.
Now, we define A\, € Ri by

)\6,1 = maX{Oaj(Vea QE) - ](Da Q) +e€ } /¢€(V€7q€)7
)\6,2 = dU(;('L'IS(VEy QE))/¢€(V€7(]€)'

Clearly, it holds )\3:,1 + )\3’2 = 1. By computing the subdifferential dc¢® (combining the
arguments of [40, Theorem 10.47] and Theorem 2.25), we obtain sequences of . € Ny, (us(1))
with [[pell <1, & € 0L(ge), ¢ € Ng,,0,1)(¢), and ||¢c|| < K such that

v = )\5,1 [1 + L(Qz—:)] + )\6,2<§q€ - Ausa Zz—:) 7 (2.27)
V&(Aa,lfs + )\E,ZB Ze + CE)
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2. First order optimality conditions

where z. solves the corresponding adjoint equation (2.20) with terminal value p.. Now, we go
to the limit. Due to boundedness of the sequence (i, &, ¢, \)e € H x Q(0,1) x Q(0,1) x R?, we
can go to a weak limit on a subsequence (u,&, ¢, A),, — (ﬂ,é, ¢, 5\) for n — oco. Moreover, by
combining the general result from [40, Proposition 10.10] with the continuity of the solution
mapping S we can go to the limit in the inclusion (2.26) and obtain i € Ny, (u(1)) with
Il <1, € € 8L(q), ¢ € Ng,,0.1)(7), and A € RE, AT + A3 = 1.

Now, we distinguish two cases: In the case \; > 0, we set (i, &,¢) = (5\2,&,5, 5)/5\1, and we
can derive the conditions for py = 1 as in Theorem 2.25. As before, the nontriviality of u
follows. Note that the case Ay = 0 cannot occur, since from the first equation of (2.27) we
would deduce 0 =1+ L(q).

In case A = 0, it follows Ay = 1, and we obtain the desired set of conditions with (11, €,¢) =
(ﬂ,é, f) It remains to verify g # 0. Since 5\7172 — 1, we obtain uy, (1) = 1.5 (Vn, qn) ¢ Us and
pn, = (un(1) — Py, (un(1)))/du, (un(1)), ie., ||un] = 1, for n sufficiently large. Moreover, as
pin, € Nyg(un(1)) we find for all v’ € Uy that

(s " = (1)) < (pny un (1) = u(1)) < [lpnllll5(1) = un(1)]| = 0.

Finally, we use the fact that Us has finite co-dimension with [104, Lemma 4.3.6] to conclude
that 0 # o = i = weak lim,, 00 fin- O

Remark 2.27. As an example, consider the choice L(q) = (a/Q)HqHé for « > 0. In the
qualified case, condition (2.22) reduces to the variational inequality

(aq(t) + B*z(t),q — q(t)) > 0 for all ¢ € Qqq,

which implies the projection formula g(t) = Pg,, (—(1/a)B*Z(t)) for almost all ¢ € (0,1).
In contrast, in the unqualified case fip = 0 the condition (2.25) is independent of the cost
parameter a, and we obtain that

(B*2(t),q — (t)) 2 0 for all ¢ € Quq.

In this case, an unqualified stationary point for any « > 0 corresponds to a stationary point
for the pure time-optimal problem with a = 0. Moreover, if B*z(t) # 0 for almost every
t € (0,1), the control always assumes an extreme value in Qq, i.e., it is bang-bang.

2.3.4. The Hamiltonian condition and qualified optimality conditions

In this subsection we investigate connections between the strengthened Hamiltonian condition
and qualified optimality conditions. We fist give the main result, which is a direct consequence
of the previous results.

Corollary 2.28. Let Py be stable in V' and suppose that the Hamiltonian condition (2.19)
holds for some constant hy > 0. Then, the optimality conditions (2.1)—(2.3) hold for any
optimal solution of (P) in the qualified form (with jip = 1), and additionally ||| < ¢/ho.

Proof. This is a consequence of Theorem 2.18, Theorem 2.25, and the equivalence of the

A~

transformed problem (P) and the original problem (P). O
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2.3. Time-optimal control problem

The Hamiltonian condition (2.19) is required to hold for all u € U NV. Certainly, only
elements of QU NV are relevant; the condition is trivially fulfilled otherwise. However, if
the terminal value u(T") € OU NV of the optimal solutions to (Ps) is assumed to be known,
it appears desirable to weaken (2.19) to a local condition. In fact, at least in case of finite
co-dimension of U and regular normal cones, it is sufficient to require the strengthened
Hamiltonian condition only at the optimal terminal value u(T") to obtain qualified optimality
conditions. We give an auxiliary lemma before the result.

Lemma 2.29. The lower Hamiltonian h: V x V — R is continuous.

Proof. We introduce the support function of Quq as hq,,(-) = sup,eq,,(q, ')Q' Then it holds

h(uv C) = _hQad(_B*g) - <Au7 C>

Employing the facts that support functions are convex and that hg,, is finite (hg,,({) <
CQuallBllggv+lIClly for all ¢ € Q), we infer that h: V x V' — R is continuous, since convex
functions are locally Lipschitz continuous; see, e.g., [40, Theorem 2.34]. ]

Proposition 2.30. Suppose that U has finite co-dimension and an optimal solution (q,T,u)
of (P) is given with Ny(u(T)) CV and

B(a(T),C) < —hollCI|~ for all ¢ € Ny(a(T)), (2.28)

for some constant hg > 0. Then, the optimality conditions (2.20)—(2.2) hold in the qualified
form (with fip = 1), and additionally |||l < ¢/hg.

Proof. We argue by contradiction. Let the conditions of Theorem 2.26 hold with g = O.
Then, u € C((0,T);V), z € C([0,T]; V) according to Proposition A.18, and

A(a(t),5(t)) = min (Bq — Au(t), 5(0)) = (Ba(t) - Aa(t). 5(1)) = 0

for almost all t € (0,7). However, since t — h(u(t),z(t)) is continuous on (0,7] due
to Lemma 2.29, this leads to a contradiction, because h(u(T"),z(T)) = h(u(T), p) < —hol|i]] <
0. Thus, j1gp = 1, and inspection of the Hamiltonian optimality condition yields

—hol|pll = h(u(T), 2(T)) = min [Hi(q,u(T),z(T)) — (14 L(q))]

q€Qqq
> min Hi(q,u(T),z(T)) + min —(1+ L = —(1+ max L = —Loo,
> min Hi(q.a(T),2(T)) + min —~(1+ L(g)) = (1 + max L(g)) = Lo
which implies the estimate for j. O

Clearly, (2.28) is a weaker assumption than (2.19) (given the requirements on the terminal
set U and the normal cone). Additionally, if Ny (u(T")) contains just one direction, condi-
tion (2.28) is already equivalent to the qualified optimality conditions.

Proposition 2.31. Let the qualified optimality conditions (as in Corollary 2.28) hold and
assume that the normal cone Ny (u(T)) C V has dimension one. Then, the condition (2.28)
holds with ho = ||| .
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2. First order optimality conditions
Proof. First, we note that Ny (u(T)) = {A\z: A >0}, since 0 # n € Ny(u(T)), and thus also
f € V. Condition (2.21) implies

0= min Hy(q,a(t),(t)) > min (Bq — Au(t),z(t)) + 1+ min L
nin 1(q, u(t), z(t)) qrenélgd< q— Au(t), z(t)) min (9)

and, since L(q) > 0, we obtain

h(u(t), z(t)) = min (Bq — Au(t), 2(t)) < —1, a.e.t € [0,T). (2.29)

qEQad

0

Recall that the lower Hamiltonian A: V x V' — R is continuous; see Lemma 2.29. Moreover,
according to Proposition A.18 with Z(T) = g € V we find that v € C((0,T];V) and z €
C(]0,T]; V). Thus, we can evaluate the expression (2.29) at ¢t = T and arrive at

h(u(T), i) = qglqiild@q — Au(T), i) < 1.

Let ¢ € Ny (a(T)) as in (2.28). Multiplying both sides by X = ||| "*(|¢|| > 0 in the inequality
above and using the positive homogeneity of the terms on the left and right finishes the
proof. ]

2.3.5. Further perturbation results

Up to this point, we have studied the sensitivity of the objective functional with respect
to perturbations of the terminal constraint. In this subsection, as another consequence of
the theory of Section 2.2, we study perturbations with respect to the initial state ug (cf.
[26, 62]) and the operator A (cf. [149, 162]) of problem (P). In particular, we restrict
attention to the classical case L = 0. In view of the fact that the choice L = 0 results in
J(T,q) = T, an estimate for the optimal value function corresponds to a perturbation estimate
for the optimal time 7', which is of independent interest. In the following, we introduce a
perturbation parameter ¢ > 0 (to be made concrete later) and derive estimates for T' — T,
where T' = Ty and T, denote the optimal times for the original and the perturbed problem,
respectively. Moreover, ¢ > 0 is a generic constant that may have different values at different
appearances.

Perturbations of the initial state ug

For T' > 0, we use u|q, up| to denote the solution to the state equation with control ¢ € Q(0,7T)
and initial state ug € H. Consider the time-optimal control problems with perturbed initial
values ug € H defined as

o oy T Sublect toulg ug)(T) € U- 2.30
750, 06 Qua(0,T) subject to u[g, ug)(T) (2.30)

We suppose that the initial values converge to ug at a rate €, i.e. there is ¢ > 0 such that
|lug — uol| < ce, e>0. (2.31)

Using similar arguments as in the proof of Theorem 2.18 we obtain the following perturbation
result.
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2.3. Time-optimal control problem

Theorem 2.32. Suppose that the projection Py is stable in 'V, the strengthened Hamiltonian
condition (2.11) holds, and the perturbed initial condition fufills (2.31). Then, there exists an
g0 > 0 such that problem (2.30) has solutions for € < ey. Moreover, it holds

T — T <ce, 0<e<ey,
where T is the optimal time to (P) and T is the optimal time to (2.30).

Proof. Let (T,q) be an optimal solution of (P). Since the semigroup e *4 is strongly contin-

uous, for all 77 > 0 there is ¢ > 0 such that He_tAHL(H) < cfor all t € [0,T']. Thus, setting
ur = ulg, u§](T) we find ¢ > 0 such that

dy (i) < ||ulg, ug](T) = ulg, uo](T)[| = lle™"(u§ —uo)| < ce,

because u[q, up|(T) € U. For ¢ > 0 sufficiently small, we may apply Lemma 2.10 to obtain
a control §: [0,00) — Quq such that the corresponding trajectory with initial value up =
ulg, uy)(T) satisfies

dU(u[(j, ZULT] (t)) < max { 0, dU(uT) + (dU(fLT)wo - ho) t} < max { 0, ce + (CE(JJO - ho) t}

for all t > 0. Setting 67 = ce/(ho — cewp) and

q(t ift <T,
q(t) = (f() e
qt-=T) ift>T,

the pair (T + 67T, ¢') is feasible for (2.30). This implies that there exists an optimal solution
(T%, q:) of (2.30). Furthermore, by optimality of 7., we obtain
ce
T.<T+I'=T+ —— <T+ce.
0 — CEWp
In particular, this implies that 7. is uniformly bounded. Hence, we can find an uniform
estimate for ||e™4|| cemy on [0, T¢] € [0, T+ ce] and the same arguments as before (exchanging
the roles of (7', q) and (1%, ¢:)) yield the estimate T' < T, + ce. O

Note that the previous result is essentially a generalization of [26, Theorem 4.1], where a
sufficient condition for the Hamiltonian condition in a specific setting is assumed to hold.

Perturbation of the operator A

Next, we consider perturbations of the operator A. Let A.: V — V* be a family of linear
operators such that for each € > 0 the general assumptions from Section 2.1 are fulfilled and
Ay = A. Moreover, let u.[g] denote the solution to the associated perturbed state equation
for ¢ € Q(0,7) and fixed up € H. We define the corresponding perturbed optimization
problem as

o qiergad(o,T) T subject to u:[q](T) € U. (2.32)

Suppose that for every 77 > 0 there exists ¢ > 0 such that

luelgl(®) —ulg](®)|| < es, 0<t<T', q€Qu(0,TV), &>0. (2.33)
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2. First order optimality conditions

Moreover, suppose that Py is stable in V' and the strengthened Hamiltonian condition (2.11)
holds uniformly with respect to ¢, i.e. there exists hy > 0 such that

he(u, ) = qrellcignd<Bq — Acu, ¢) < —hol[C]], whereu = Py(v), ( =v—u, (2.34)

for all v € V and all € > 0 sufficiently small. These assumptions lead to the following error
estimate.

Proposition 2.33. Let (2.33) and (2.34) hold. Then, there exists a g > 0 such that prob-
lem (2.32) has solutions for € < eo. Moreover, it holds

T —T.| <ce, 0<e<ep,

where T is the optimal time to (P) and T is the optimal time to (2.32).

Proof. This result is shown along the lines of the proof of Theorem 2.32, where we use the
supposition (2.33) instead of (2.31) as well as (2.34). O

We conclude with some comments on the assumptions of the preceding result. In particular,
we show that they are always fulfilled for bounded perturbations of the operator. Concretely,
assume that the perturbation is of the form:

A =A+6A:, where |64l gy < ce (2.35)
We obtain the following result.

Theorem 2.34. Let U be bounded in H. Suppose that Py is stable in V', the strengthened
Hamiltonian condition (2.11) holds, and the perturbed operator is of the form (2.35). Then,
the result of Proposition 2.33 holds true.

Proof. We verify the conditions of Proposition 2.33: Concerning (2.34), we obtain for all
weUNV and ¢ € Ny(u) NV that

he(u,¢) = min (Bq — Acu,¢) = min (Bq — Au, () — (6A4cu, () < —ho|[C]| + cel[ull[[¢]-

qEQad quad
Thus, for € > 0 sufficiently small, condition (2.34) holds uniformly in e.

Concerning (2.33), consider u® = u[g] and u® = wu.[q], and fix some arbitrary 7" > 0. By
straightforward calculations we verify that, for € small enough, A. still satisfies the Garding
inequality (2.7) with slightly modified constants. Thus, by standard energy estimates we
have the estimate [|u®|[ 2o ry,v) < c(l[uoll + [lall 2((0,7),q)) With a constant ¢ independent
of €, ug, and ¢, again for ¢ sufficiently small; see, e.g., [46, Chapter XVIII, §3]. Clearly, the
perturbation du® = u® — u® solves

Ordu® + Adu® = 0A.u®, du-(0) =0.
Hence, we obtain

[ou”(8)]| < C‘|6A€u€||L2((O7T’);V*) < 05Hu€||L2((O,T’);V)
< ce(lluoll + llall oo 0.17),0)) T € [0, T,

with a constant ¢ independent of ug and g. This shows (2.33). O
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2.4. Applications

In Theorem 2.34, we have focused on the fundamental case of a bounded perturbation of
the operator. Note that this includes the perturbation of a reaction diffusion equation in
the lowest order term. In particular, this fully covers the setting considered in [162]. The
uniform Hamiltonian condition (2.34) is automatically fulfilled there, since the perturbed
operators are uniformly coercive (wg = 0), and the target set is a L2-ball around zero; cf.
Proposition 2.37.

Different scenarios are also of interest; see, e.g., [149]. Let us briefly comment on possi-
ble generalizations of Theorem 2.34. Clearly, for the verification of (2.33) it suffices that
[0Aell z(v,y+) < ce (which is still more restrictive than [149], but allows for perturbations
even in the main part of the operator). Additionally, we have to verify the uniform Hamil-
tonian condition (2.34). Even though it cannot simply be derived from the corresponding
condition for € = 0, as in the proof of Theorem 2.34, it can be done directly in concrete
scenarios for the terminal set U. For instance, if the operators are uniformly coercive for
small e, the terminal set is the H ball around zero, and 0 € @Q,q4, then (2.34) holds uniformly
for any perturbation; cf. Proposition 2.37.

2.4. Applications

In this section we derive criteria for strong stability for different terminal sets U. It is
organized as follows: First, we discuss the illustrative example U = {ug } and observe that
this leads to rather restrictive conditions. Significantly weaker conditions can be derived for
the case of a H-ball around ug if the operator A is coercive. In the general case, which
includes unstable systems, we discuss a finite approximate controllability constraint that
stabilizes the system around the zero point. The resulting conditions turn out to require
at least as many controls as there are unstable modes. Finally, we only require a standard
stabilizability assumption to hold, and show that there always exist target sets around zero
such that the resulting optimization problem is strongly stable.

2.4.1. Point target and pointwise constraint

We first consider the example of steering the system in minimal time into a single point ug,
which has been extensively studied in the literature; see, e.g., [10, 54]. Defining U to be the
singleton U = { ug } with ug € V' we obtain the following result.

Proposition 2.35. Suppose that U = {ugq } with Aug € ran(B) and for some hg > 0 it holds
Aug + By (0) C BQqq- (2.36)

Then (P) is strongly stable on the right for all § > 0.

Proof. Clearly, Py(u) = ug. Due to Proposition 2.8 it holds
Ny(ug) ={Mu —ug): x>0, €eV}=V.
We now take ©w = ug and ¢ € V. Then

h — min (Bg— A < ' —A = mi = —hgllC]|.
(u,C) qréléfd< q “d’O*veAqui%%(o)@ ug, ¢) verghlgl(o)@,O ol[<l

Now, Theorem 2.18 yields the assertion. O
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2. First order optimality conditions

We point out that (2.36) is essentially the condition which is used in [10, Theorem 5.3.1] to
guarantee existence of (qualified) multipliers in a similar setting; cf. also [26, Theorem 4.1]
for Lipschitz continuity of the minimal time function with respect to the initial value. From
an application point of view, it is rather restrictive. It is essentially only fulfilled in settings
where Q = H, B is the identity, and (),4 contains a sufficiently large H-ball. For settings
with pointwise bounded control action (BQuq C L>®(£2)) for a domain 2 C RY, controls
restricted to some w C {2, or finite dimensional controls, it is not fulfilled. In this regard we
also mention [160] for the pure time-optimal control (i.e. L = 0) of the heat equation into zero
with pointwise bounded controls active only on a subset of 2. Therein, the authors obtain
Lagrange multipliers in a larger space than L?(£2) (containing distributions) using essentially
the exact null controllability of the heat equation.

Next, we turn to point-wise terminal constraints that are of independent interest in applica-
tions; cf. [97]. As an example, let £2 C R? be a bounded domain and assume H = L?(2).
We consider

U={ueH:|u—ug| <umpax ae. in 2}, (2.37)

where ug € V and umax € R, umax > 0. For simplicity, we consider only an illustrative special
case for A.

Proposition 2.36. Let A = —Vk -V for a coefficient function x € L*(§2;R*?) that is
uniformly elliptic. Suppose that U is defined as in (2.37) with Aug € ran(B) and (2.36) holds
for some hg > 0. Then (P) is strongly stable on the right for all 6 > 0.

Proof. We will verify the supposition of Theorem 2.18. Clearly, it holds
Py(v) = v — (v — Uug — Umax)" + (v + Ug — Umax) -
Due to Proposition 2.8 we infer
Ny(u) = { (v — ug — Umax) T — (0 — g — Umax) s 0 €V, u= Py(u)}.

Take u' € V with Py(u') = v and set ¢ = (v — ug — Umax) " — (' — Ug — Umax) - Then

h(u,¢) = min (Bq — Au, () < min (0)@,() — /Q [(kVPy(u') - V(]

qEQqd vEAud+Bh0
< ~hollC] + (Auas Q) ~ [ (g 9¢] = ~hollC].
{ze: (#0}
Finally, Theorem 2.18 yields the assertion. O

Again we remark that (2.36) is rather restrictive. However, note that for pointwise con-
straints one typically searches for Lagrange multipliers in a space of regular Borel measures
(cf., e.g., [134]), whereas under assumption (2.36), we obtain multipliers in H = L?(£2).
A corresponding extension of the above theory to include multipliers in spaces of measures
(under potentially weaker conditions) is outside of the scope of this chapter.

However, it seems that in applications it is often sufficient to steer the system close to a
desired state ug. In the subsequent subsections we will derive significantly weaker conditions
guaranteeing strong stability for this type of terminal constraint.
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2.4. Applications

2.4.2. H-norm constraint

Let ug € V and §y > 0 be given and consider the set
U={ueH: |[|[u—ug|| <o}

We emphasize that ug € V (instead of just uq € H, ug ¢ V) is required for the minimizing
projection Py to be stable in V', which is necessary for weak invariance; see Lemma 2.6.

If the operator A is coercive (i.e. wy = 0) we can easily verify the strengthened Hamiltonian
condition assuming only the existence of one control ¢ € Q),4 such that B¢ is sufficiently close
to Aug in V*. This condition can be interpreted as the requirement that ug lies sufficiently
close to an asymptotically stable state of the system with fixed control ¢. Note that this
always holds for sufficiently small ug € V and 0 € Q4.

Proposition 2.37. Let (2.7) hold with wy = 0. If there exists § € Qquq such that ||Bq —
Augllyy« < agdo, then (P) is strongly stable on the right for all § > 0.

Proof. Let w € UNV. If |Ju — uql| < dp, we have Ny(u) = {0}, and nothing to show.
Therefore, let ||u — ugq|| = dp. Due to [40, Corollary 10.44] it holds

Ny(u)={7(u—uq): 7>0}.
Without restriction, we can therefore consider { = u — ug. We calculate

h(u,¢) = qunci)nd<Bq — Au, ) = (Aug — Au,u — “d>v*,v + qrenénd<Bq — Aug, )
—ao|lu — ually + (BG — Aug, ¢)
—agllu — ugl|[|lu — uglly + [|BG — Aug

= (—agdo + || Bq — Auglly+) [|<]ly-

Due to the supposition there is hg > 0 such that h(u,() < —hol|¢]l;, < —hol|¢|| and we can
apply Theorem 2.18 to guarantee strong stability on the right. O

<
<

Clly

V=

However, in case wy > 0, the control has to counteract unstable modes of A. We will discuss
this situation in the following example.

2.4.3. Finite-approximate controllability constraint

Motivated by the concept of finite-approximate controllability (see, e.g., [167]), we consider
the constraint
U={ueH:|u|| <d and Fu=0}. (2.38)

Concretely, let { fi1,..., far } €V be pairwise orthonormal in H and set

M

Fu= Z(f“u)fl, u € H.

=1

In this subsection, we will investigate weak invariance in the particular case that ran F' :=
span{ f1,..., fa } is an invariant subspace of A*. Concretely, we require that

A*fiCranF, i=1,...,M. (2.39)
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2. First order optimality conditions

A particularly interesting example is to choose the functions f; as a basis of the unstable
subspace of A* (the real span of all eigenvalues with negative real part). A target set of the
form U = ker F' is then motivated by the desire to steer the system into a stable subspace;
cf. [58]. From an application point of view, it might be desirable not just to steer the system
into a stable subspace but also into a sufficiently small stable state. In this case, the terminal
set is given by (2.38).

First, for the sake of clarity, we will investigate (2.38) with dy = oo, i.e., we will consider
U = ker(F'). The minimizing projection onto ker(F') is given by Peyry = Id —F. By virtue
of Proposition 2.8 for u € U we have

Ny(u)={Fu:v eH u=u—Fu'}.

Proposition 2.38. If 0 € Quq and (2.39) holds, then U = ker(F') is weakly invariant under
(A, BQuq). Moreover, if there is hg > 0 such that for all v’ € V there is ¢ € Qquq such that

(4, B*Fu') < —ho| i/, (2.40)

then (P) with U = ker(F') is strongly stable on the right for all 6 > 0.

Condition (2.40) implies that ker(B*) Nran(F) = {0}. In particular, we require at least
as many controls as dimran(F) = M. Hence, this condition is in general stronger than
approximate controllability (or stabilizability), where the necessary number of controls is
given by the largest geometric multiplicity of the eigenvalues (resp. the unstable eigenvalues);
cf. [9, Section 3.4]. We can also give examples where (2.40) holds: For instance, if the control
acts in an arbitrary open subset w C {2, then (2.40) is satisfied (under certain smoothness
assumptions on the coefficients of A and the domain), since the eigenfunctions of A* restricted
to w are linearly independent; see [58, Theorem 4.1].

Proof of Proposition 2.38. Let v’ € V such that u = «' — Fu’ and set ( = Fu’. Then

h(u,¢) = min (Bq — Au, () < —{(u' — Fu', A*Fu) = 0,

qEQad

since A*Fu’ € ran(F). Theorem 2.9 yields the first assertion. Moreover, the strengthened
Hamiltonian condition is equivalent to (2.40) due to the calculation above proving the second
assertion. 0

Next, we turn to the general case of (2.38) with g < co.

Proposition 2.39. Assume 0 € Quq and let (2.39) and (2.40) hold. Moreover, suppose that
{fi,.... fa } is chosen such that for all ¢ € ker(F) it holds (Ap, ) > wi||p||* with w; > 0.
Then (P) with U = Bs,(0) Nker(F) is strongly stable on the right for all § > 0.

Proof. First, we will show the following formula for the minimizing projection Py:
Py(u) =min{1,do/||lu — Ful| } (u— Fu) = v(u) (u — Fu).
Let u € H. If |[u — Ful| < dp, then for all v’ € U we calculate

(u— Py(u),u — Py(u)) = (Fu,u’ —u+ Fu) = (u, Fu') — (Fu,u — Fu) = 0.
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2.4. Applications

In the other case ||u — F'ul| > dp set v = v(u) and we obtain for all v € U that

(u — Py(u),v — Py(u)) = (1 —v)(u,v — y(u — Fu)) + v(Fu,v) — v*(Fu,u — Fu)
= (1 =) (u— Fu,v) = (1 =)y]u — Ful?
< (L=)llu = Fulllo]l = (1 =)doflu — Ful| <0,

where we have used again that (Fu,v) = (u, Fv) = 0 and (Fu,u — Fu) = 0 in the second
step, and ||v|| < ¢ in the last step. By virtue of Proposition 2.8 for v € U we infer that

Ny(u) ={ (1 —~y()u' + vy )Fu': v € Hyu= Py(u)}
={(1—~W))W - Fu)+ Fu': v € H u=Py()}.

Consider the single terms of the Hamiltonian for v’ € V and set v = y(u’). We consider the
case v < 1, only; the other case is analogous to Proposition 2.38. Then for any g € Q

(Bg,u' — Py(u')) = (1L —7)(Bq, v’ — Fu') + (Bq, Fu')
and, since (A(u' — Fu'), Fu') = 0, we find

—(APy (), v — Py(u)) = —y(1 —y)(A(v' — Fu'),v' — Fu'y — v{A(v — Fu'), Fu')
= —y(1 —y){A@W — Fu'),u' — Fu').

Due to the supposition (A, @) > wi||p||? for all ¢ € ker(F) we infer
—(APy(u),u — Py(u)) < —y(1 = Y[l — Fu'|* = =(1 = y)wido||u’ — Fu'|
from the calculation above. Combining the previous estimates, we obtain

(Bq— APy (u),v' — Py(u')) < (1 —~) [(Bg,u' — Fu') —widp||u’ — Fu'||] + (Bg, Fu')

<
< @ =Blllall = wido)llw' = Fu'l| + (B, Fu').

Assuming that 0 € Quq, choosing ¢ = Ag, A = min {1, (w1d9)/(2||B|l|Igll) }, where ¢ is the
control to realize (2.40), we obtain the strengthened Hamiltonian condition (with a suitably
modified constant hy). O

2.4.4. Stabilization with finite dimensional control

We have seen that the criteria for strong stability of systems with general A and U require
certain assumptions, which are somewhat restrictive. In this section, we will show that there
exist neighbourhoods U of zero such that the resulting problem is strongly stable, assuming
only stabilizability (controllability of the unstable modes).

Here, we suppose that the control is finite dimensional, @ = R, The set of admissible
controls contains a neighborhood of zero, e.g., Qg = {q € RYe: g € [ K, K]} for some
fixed K > 0. We are interested to bring the system into a small neighborhood of the stationary
state zero. Note that we could more generally consider weakly invariant states ug, i.e. {ug}
is weakly invariant under (A, BQuq). A short computation based on Theorem 2.9 reveals that
Aug € BQuq. However, this case follow directly from the case ug = 0 by an affine change of
variables, and we omit it for simplicity of notation.

To ensure that admissible controls for (P) exist, we can employ the concept of stabilizability,
which is widely accepted in the control literature. Concretely, we assume in the following
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2. First order optimality conditions

that (—A, B) should be stabilizable, which can be verified with the Fattorini criterion; see [9]
and the references therein. This means that

A*C =X, ReA<0, B*¢(=0 = (=0.

It is known that this implies the existence of a stabilizing feedback law, such that ||u(t)| <
My exp(—rot)||uo|| for some 9 > 0, which in turn guarantees existence for (P) (given ug
sufficiently small or @, sufficiently large). Additionally, we will show that it is possible to
choose some appropriate neighborhood U of zero, such that the criterion for strong stability
(and thus weak invariance) is guaranteed.

First, we consider the infinite horizon optimization problem
o0

S ulg w)(0)° + lla() [ | dt, 2.41

i a0 + ) 2.41)

where uq, u'] is the solution to the state equation on (0, 00) with control ¢ € L?((0, c0); RNe)
and initial condition v’ € H. This defines a linear, bounded, self-adjoint and nonnegative
operator IT: H — H such that (ITu/,v') is the minimal value of (2.41) and IT satisfies the
following algebraic Riccatti equation

— (A, Y) — (T Ap, ) + (p,9) = (B*Hp, B II{))gn., (2.42)

for all p,¢ € V; see, e.g., [101, Theorem 2.2.1 (a2), (a4)]. Furthermore, IT maps H into
X1-6,, hence II is compact on H; see [101, Theorem 2.2.1 (a3)].

Define the norm |-||; = (II-, )2 induced by the operator II. Let the terminal constraint
be given by

U={ueH: ||ul|;<d}. (2.43)
Thus, u € U corresponds to a constraint on the optimal value function of (2.41) with initial
value u. Since I7 is self-adjoint, according to [40, Corollary 10.44] for all u € OU we have

Ny(u) ={ AMu: A\>0} C V.
Inserting the optimal feedback law § = —B*IIu we estimate

1
h(ua C) = h‘(ua UU) = é%f (Q7 B*HU)RNC - 5(“7 (A*H + HA)U>
q ad
1

< —(B*ITu, B*ITu)gn, — §<u, (A*IT + ITA)u).
This is valid as long as § = —B*IIu € Q4. Since
|B* Mullgr. < 1B Il g pneylull g = 1B T2 g1 20150,
this can be achieved by a sufficiently small choice of dy. Now we use (2.42) to obtain
1 1, 2 1
< —(B* * _ - <0- - < -
Ao, ) < —5(B* I, B T, — gl <0 = gl Tl el < —holl Tl

where hy = do/(2||11 H?Z/(QH)) Thus, strong stability of (P) is guaranteed by Theorem 2.18,

assuming only stabilizability (approximate controllability of the unstable modes).

From a practical point of view, the choice of the target set (2.43) can be interpreted as fol-
lows: Since the norm ||lul|;; corresponds to the optimal value of (2.41), we have in particular
the estimates |[@(t)[[ 20,00, < Ul and [1G(E) [l £2((0,00);mNe) < [lull 7 where w(t) is the tra-
jectory starting at @(0) = u with control given by the feedback law ¢(t) = —B*ITu(t). Thus,
we aim to enter a neighboorhood of zero that contains only states which can be stabilized
at low cost. After the end of the optimization horizon T, the control can be chosen by the

optimal feedback law to keep the trajectory stable.
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3. Second order and sufficient optimality
conditions

A

Since (P) is a nonconvex optimization problem, first order optimality conditions are not suf-
ficient for optimality in general. We therefore discuss second order optimality conditions and
sufficient optimality conditions in the following. In particular, these results will be essential
for proving a priori discretization error estimates in Chapter 5. Generally, this chapter re-
lies on the first order optimality conditions of Chapter 2 and the problem formulation used
therein. However, here we in addition suppose that the terminal set U is given as a sublevel
set of some smooth function G. Moreover, we restrict to the choice

«
L(g) = 5”(]”% for a > 0.

The problem setting will be introduced in detail in Section 3.1, where we also recap the first
order optimality condition for the specific problem. A concrete example of a convection-
diffusion equation subject to mixed boundary conditions for different control scenarios will
be discussed at the end of that section.

As the time-optimal control problems with a > 0 and a = 0 typically lead to different
solutions, we have to distinguish these two cases. This is also reflected in the main structure
of this chapter. In Section 3.2 we will provide second order necessary and sufficient optimality
conditions for the case @ > 0. Employing a critical cone, this leads to a minimal gap between
necessity and sufficiency. Here we rely on the work of Casas and Troltzsch on second order
optimality conditions; see, e.g., [30, 34, 35].

In general, it seems to be a difficult task to verify a second order condition for a given problem
both theoretically and numerically. However, for the problem under consideration, we show
that the second order condition on the (infinite dimensional) critical cone is equivalent to
a scalar condition where we have to solve one (infinite dimensional) linear system. This
condition gives rise to the verification of second order conditions on the discrete level, by
calculating the scalar quantity numerically; see Section 5.4. Furthermore, the scalar condition
can be interpreted in terms of the value function with respect to the time transformation v.
More specifically, we show that the second order sufficient optimality condition holds if and
only if the second derivative of the value function is strictly positive. These results are already
contained in [17] in similar form, however most of them without detailed proofs.

Section 3.3 is devoted to the case o = 0, where we rely on an established structural assumption
on the adjoint state; cf. Remark 3.27 and the references given there. This assumption is
sufficient for optimality and leads to a growth condition in L!(I x w). It is worth mentioning,
that due to the particular structure of the objective functional, we do not require additional
assumptions such as conditions on the second derivative of the Lagrange function. As a
first application, we study the stability of solutions to the regularized time-optimal control
problem. Under certain assumptions we show Lipschitz continuity of the optimal time and
the optimal control in L'(I x w) with respect to the regularization parameter a.
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3. Second order and sufficient optimality conditions
3.1. Problem formulation

In addition to the general assumptions of Section 2.1, we suppose the following problem
setup throughout this chapter. Let (w, o) be a measure space and set Q = L?(w, ). This
notation allows for the unified treatment of different control situations. For example, in
case of a distributed control, we take w C 2 equipped with the usual Lebesgue measure,
where (2 denotes the spatial domain of the parabolic equation. An example of a reaction-
diffusion equation with different control scenarios will be discussed in Section 3.1.2. Since
no ambiguity arises, we simply write L?(w) instead of L?(w, g) in the following. If we write
almost everywhere in w, then this always refers to the respective measure. The space of
admissible controls is defined as

Qud = {q € L*(w): qu < q < qace. in w} C L™®(w)

for qq,qp € L*°(w) with essinf e, (q(z) — qa(z)) > 0. The set I x w is equipped with the
completion of the corresponding product measure. Recall that Q(0,1) :== L2((0,1); L?(w))
and

Qaa(0,1) == {q € L2(I x w): q(t) € Qua a2 t € (0,1)} € L¥(I x w).

Concerning the regularization or cost term L, we suppose that

_ Q2
L(q) = 3 llal72 )

for a > 0. Moreover, in place of the general terminal set U, we assume that U is given as a
sublevel set of a continuously differentiable function G: H — R, precisely,

U={ueH:Glu)<0}.

In this and the next chapters we work again with the state equation transformed to the
reference interval (0,1) by means of a transformation v. Here, we restrict to v € R, for
the following reason: Recall that in the previous chapter we took v € L*°((0,1)) such that
essinf ¢ (o 1) v(r) > 0. With this choice, the transformed and the untransformed problems
are equivalent with the relation 7" = fol v(t)dr. In particular, given T > 0 there is a
sequence vy, € L*((0,1)) such that T'= fol vp(T)dr, vy T, and v, — v =T in L*((0,1)).
Hence, the time transformation v is not locally unique. However, typically second order
sufficient optimality conditions imply local uniqueness and this is also valid in our setting;
see Theorem 3.25. Therefore, we have to take v € Ry for the time transformation, otherwise
a local solution cannot be locally unique. The time-optimal control problem reads as

inf  j(v,q) subject to g(v,q) <0,
V€R+
quad(Ozl)

where the objective function is given by

. o Ya, o
i) =v(1+ [ Sl ).

and the reduced terminal constraint is defined as

9(v,q) = G(i15(v,q)), (v,q) € Ry x Qquq(0,1).

Note that due to continuity of u: [0,1] — H, the optimal solution must fulfill the terminal
constraint with equality (otherwise, a control with a shorter time is still admissible, while
having a smaller objective value). Hence, we can equivalently use g(v,q) < 0 or g(v,q) =0
in the problem formulation above. Furthermore, to avoid confusion with the spatial gradient
V, we denote the gradients of g and G by ¢/(-)* and G'(-)* in the following.
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3.1. Problem formulation

3.1.1. First order optimality conditions

The first order optimality conditions from Chapter 2 still hold if we take v € R, except for the
constancy of the Hamiltonian condition (2.21) where the ’almost everywhere’ is substituted
by the integral over the time interval. For convenience we summarize the first order optimality
conditions for the setting considered in this chapter. We require the following linearized Slater
condition.

Assumption 3.1. We assume that
0= —0,9(v,q) > 0. (3.1)

Note that by Assumption 3.1 and g(v,q) = 0, the point x* = (v + p,q) € Ry X Qqq(0,1)
defined for p > 0 fulfills
9(xX) + ' (O = x) = —ip <0, (3.2)

where Y = (7, q), which corresponds to a more familiar presentation of the linearized Slater
condition. We will see that for the particular problem it is not more general to suppose that
first order optimality conditions hold in qualified form than to assume that the linearized
Slater condition in the form of (3.1) is valid (or any other constraint qualification).

In order to state optimality conditions, we introduce the Lagrange function as

L:Ry xQ(0,1) xR =R, L(v,q,pn) =j(v,q) + pg(v,q).

A

Now, optimality conditions for (P) in qualified form can be stated as follows: For given v > 0
and ¢ € Qqq(0,1) with ¢g(7, q) = 0 there exists a j1 > 0, such that

Ow,) LV, q,11)(0v,q — q) > 0 for all (dv,q) € R x Qquq(0,1). (3.3)

With Assumption 3.1, a multiplier always exists and, due to the special structure, it is always
positive. We summarize this in the next result.

Lemma 3.1. Let (7,q) € Ry xQqaq(0,1) be a solution of (P) with associated state w = S(7, )
and the linearized Slater condition (3.1) holds. Then there exist i € R and z € W(0,1) such
that

>0, (3.4)

/ 1 Q) + (Ba(t) — Au(e). 2(1) dt = 0, (3.5)
/Ol(aq_(t) + B*z(t),q(t) — q(t))dt > 0, q € Qqq(0,1), (3.6)

G(u(1)) =0, (3.7)

where Z is the adjoint state determined by
—0z+vA*Z2=0, z(1)=G"(a(1)) Q.

Proof. We first note that the linearized Slater condition allows for exact penalization of (]5),
see [21, Theorem 2.87, Proposition 3.111]. The optimality conditions now follow as in the
proof of Theorem 2.25. Since in our setting the multiplier i belongs to the normal cone
N(Zs0,0/(0) C R, we in addition infer fi > 0. If = 0, then z = 0, which is a contradiction to
the Hamiltonian condition (3.5). Thus, & > 0. O
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3. Second order and sufficient optimality conditions

The condition (3.5) is equivalent to 9,L(v,q,n) = 0 and (3.6) arises from (3.3) for dv = 0.
Note that the optimality conditions of Lemma 3.1 are consistent with the theory of Chapter 2,
because of the characterization

Ny(a(l)) = {G (a(1))* : A >0}

according to [40, Corollary 10.44]. As in Proposition 2.21, for v € R4, ¢ € Q(0,1), and p € R
we have the representation

1
g w,q)p= ( %iq ~ Au,2) ) , (3.8)

where z € W(0, 1) is the unique solution to
— Oz +vA2=0, 2z(1)=G"(i11S(v,q))" . (3.9)

Constancy of the Hamiltonian (3.5) allows to prove equivalence of qualified optimality con-
ditions and condition (3.1).

Proposition 3.2. The first order optimality conditions of Lemma 3.1 hold in qualified form
if and only if the linearized Slater condition (3.1) is valid.

Proof. According to (3.8) and (3.5) we have
(@007 0)p. 1) = G610 (7, 0) . 0 = [ p(Balt) — Aute) 2())

= [To(1+ Slawi?) a <o

for any p > 0. Hence, with the choice ¢ = —0d,¢(v,q) > 0, condition (3.1) holds. The
remaining implication is the assertion of Lemma 3.1. O

Furthermore, as in the linear parabolic case, see, e.g., [147, Section 3.6], the following pro-
jection formula holds

1
7= g, (—B*Z) ; (3.10)
a
where Pg_, (-) denotes the pointwise projection onto the set Qqq(0, 1), defined by

Pg..: LQ(I X w) = Qqd(0,1), Pg,,(r)(t,x) = max {q,(z), min {gy(x),r(t,z)}} .

3.1.2. Example of a convection-diffusion equation

We conclude the introduction of this chapter by an example of a convection-diffusion equation
on a bounded domain subject to mixed boundary conditions that satisfies the abstract as-
sumptions. First, we introduce corresponding function spaces and the operator A. Concrete
examples for the measure space (w, 9) will be given at the end of this subsection.

Let 2 ¢ R? with d € {2,3,...} be a bounded domain with boundary 9. We use I'y for
the relatively open subset of 02 denoting the Neumann boundary part and I'p = 02\ I'y
the Dirichlet boundary part. We assume that 2 U [y is regular in the sense of Groger; see
[69, Definition 2]|. In addition, we suppose that each mapping ¢, in the definition of Groger
regularity is volume-preserving.
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3.1. Problem formulation

Remark 3.3. The notion of Groger regular has been introduced in [69] and is meanwhile
widely used in the regularity theory for partial differential equations. For clarity, we summa-
rize well-known properties and elaborate on its relation to Lipschitz domains and domains
with Lipschitz boundary:

(i) If 2 U I'y is regular in the sense of Groger, then {2 is a Lipschitz domain; see [72,
Theorem 5.1]. Conversely, if (2 is a Lipschitz domain, then {2 and 2 U 912 are Groger
regular; cf. Definition 1.2.1.2 in [68].

(ii) For simplified characterizations of regular sets we refer to [72, Theorems 5.2 and 5.4].
(iii) Note that the cases I'p = () or I'p = 942 are not excluded.

(iv) The additional requirement of volume-preserving bi-Lipschitz transformations is satis-
fied in many practical situations. For example, in spatial dimension three, two crossing
beams allow for a volume-preserving bi-Lipschitz transformation; see Section 7.3 in [73].
Moreover, this is true for domains with Lipschitz boundary; see Remark 3.3 in [73].

As usual, for 6 € (0,1] and p € (1, 00), we define the space H%p(Q) as the closure of
CF () = {¥la: ¥ € C®®?), supp () N Ip = 0}

in the Bessel-potential space HOP(£2), i.e.

: Faor oy H P ()
H(2) = CF ()" .

If # = 1, then the space H%p (£2) coincides with the usual Sobolev space that we denote
by WEP(£2). Of course, if I'v = 0, then H3P(R2) = WIP(2), and if I'y = 012, then
H%p(_()) = W?%P(£2). The corresponding dual space of H%p(_()) is denoted by HBG’p/(Q),
where p’ denotes the Holder conjugate 1 = 1/p + 1/p/. In addition, if I'y = 0, we write
w-br(2) = Wy LY for the dual space of Wllj’p . These function spaces have the following
properties.

Proposition 3.4. Let 6 € (0,1] and p € (1, 0).

(i) If p > d, then W}jp(ﬂ) —c L7(02) for 1 <r <dp/(p—d).

(ii) If 1 —d/p >0 — d/r, then WEP(2) — H%'(£2).
Proof. Both injections follow by first extending the functions to B C R% an open ball contain-
ing 2, using the corresponding results for smooth domains, and finally restricting to {2 again.

According to [8, Lemma 3.2 with Remark 3.3 (i)] there is a continuous extension operator
E: WEP(£2) — WkP(B) for all p € [1,00] and k = 0,1. Thus, [146, Theorem 4.6.1] yields

H“HH%T(Q) = ”EUHH%T(Q) < ||Eu||H%T(3) < HEUHWLP(B) < HUHWBP(Q)‘

Compactness of (i) follows from the arguments above and [114, Theorem 1.4.6.2]. O

Note that the space Hgg’p (£2) allows for distributional objects such as surface charge densities
or thermal sources concentrated on hypersurfaces due to the following trace theorem.
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3. Second order and sufficient optimality conditions

Proposition 3.5 ([73, Theorem 3.6]). For all p € (1,00) and 0 € (1/p,1) there exists a
continuous trace operator
Tr: HP(Q) = LP(I'y),

and by duality its adjoint satisfies
Tr*: L (I'y) — HL 7 ().

The function spaces introduced above now allow for the definition of the operator A. It is
given by the bilinear form

a(u, p) = /Q [kVu -V +b- Vup + coup] dz + i crupds, u,p € H(12),
N

for k: 2 — R¥? a coefficient function satisfying the usual uniform ellipticity condition

d
kell2||? < Z wij(x)zjzi for all 2 € R and a.a. = € 02,
ij=1
and HHinLOO(Q) < Kk® 4,7 =1,2,...,d, for constants k®, ke > 0. Moreover, b € L®(£2;R?),

co € L>®(£2), and ¢; € L*™(I'y). We note that the first term is the weak formulation of
a convection-diffusion-reaction equation and the second term allows for either the Robin
boundary conditions (kOu/0n + ciju = 0, where n is the outer normal to {2) or homogeneous
Neumann boundary conditions by setting ¢; = 0. According to [114, Corollary 1.4.7.2] there
is ¢ > 0 such that

| Tr UH%Q(FN) < C||U||L2(Q)||U||H}7(Q)a u € Hp(92).

Thus, using the assumptions on the coefficients and Young’s inequality, we immediately
infer

> Ke 2 Ke ||bH%OC CQHC1||%0<> 2
o) 2 "l — (5 gy e )y,

For these reasons, taking V = Hh(§2), H = L*(2), and V* = H;'(£2), the Garding inequal-
ity (2.7) holds for ap = ke/4 and wy = Ke/2 4 [|b]|700 /(2ke) + |Icol| oo + E2[|c1]|700 /Fe. Next,
we turn to the control operator B.

In Chapter 2 we have essentially worked with domains of fractional powers of A. Under the
assumptions of this subsection, we can provide a convenient characterization in terms of the
Bessel-potential spaces. Due to [65, Theorem 3.5] we have

HYI(0) = [HpN(9) HY Dl #60#

Since both Hll) and HBl are Hilbert spaces, A exhibits bounded imaginary powers. Thus,
from [146, Theorem 1.15.3] we conclude

X = Dy+(A%) = [V*, Dy« (A)]g = [Hp' (), HL(2)]g = Hyy (9.

Finally, we give three examples of concrete control scenarios that satisfy the assumptions of
Chapters 2 and 3.

Example 3.6 (Distributed control). In case of a distributed control on a subset w C {2 of the
spatial domain, we simply take B as the extension by zero operator. Clearly, B is linear and
continuous from L?(w) into L?(§2) = X4, with 0y = 1/2.
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3.2. Second order optimality conditions (« > 0)

Example 3.7 (Neumann boundary control). For Neumann boundary control we set w = I'y
and B = Tr*. Since the adjoint of the trace operator Tr* is continuous from L*(Iy) into
H%QO_M(Q) for any 6y € (0,1/4), we infer B: L>(I'y) — Xg,. Note that this holds true
independently of the spatial dimension.

Example 3.8 (Purely time-dependent controls). Last, we consider the case of purely time-
dependent controls that is of independent interest in theory as well as applications. For
0o € (0,1/4) let eq,...,en, € H%QO_I’Q be given form functions. Define the control operator
as

Nc
B: RN — H%9071,2’ Bg = Zqiei.
=1

The measure space (w, ¢) is defined as w = {1,2, ..., N.} equipped with the counting measure.
Hence, the control space and the space of admissible controls, respectively, are given by

Q=L*w) 2R, Qui={1€Q: ¢ <q<aq}

where ¢q, ¢y € RYe and the inequality is to be understood componentwise.

3.2. Second order optimality conditions (« > 0)

We first consider the case with cost term, i.e. @ > 0. These results are already contained
in [17], however most of them without detailed proofs. We require the following regularity
assumption concerning the terminal constraint.

Assumption 3.2. The function G: H — R is twice continuously Fréchet-differentiable. In

addition, the mapping 1 — G”(u)n? is weakly lower semicontinuous for all u € H.

Moreover, the product space R x L?(I x w) is endowed with the canonical inner product and
we abbreviate its norm as

1/2
16,09 = (16 + 1001721 -

By means of Proposition 2.20, the reduced constraint mapping ¢g: Ry X Quq(0,1) — R is
twice continuously Fréchet-differentiable. Moreover, recalling

9" (v, 9)[6v,64)* = G"(u(1)) [i1S" (v, 4) (v, 89))” + G (u(1))ir S" (v, 0))[5v, 6q)’,
where u = S(v, q), we have: If 6v,, — év and dq, — dq weakly in L?(I x w), then

S'(v, q)(6vn, 0qn) — S’ (v,q)(0v,8q) in W(0,1),
S" (v, q)[0vn, 6qn)*> — S" (v, q)[0v, 6¢> in W(0,1),

thanks to the bilinear structure. Hence, using weak lower semicontinuity of G” and that
G'(i15(v, q)) is a linear bounded functional, we infer the following result.

Corollary 3.9. Let (v,q) € Ry xQ(0,1). If v, — dv in R and dq, — dq weakly in L>(I xw),
then

9" (v,q)[0v,6q)* < liminf g" (v, q) 6, 5qn]*.
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3. Second order and sufficient optimality conditions

We introduce a cone of critical directions (or simply called critical cone) as
0q satisfies the sign condition (3.11), and
c(,;@:{(5y,5q)eRxL2(1xW) 1 gn condition (3.11) }
9 (v,q)(0v,0q) =0
where the sign condition is given by
<0if g(t,z) = g()
dq(t,z) < > 0if g(t,x) = qa(x) a.e. in I X w. (3.11)
=0if aq(t,z) + B*2(t,x) # 0

3.2.1. Second order necessary optimality conditions

With this definition, we can formulate second order necessary conditions, which hold in any
locally optimal stationary point.

Theorem 3.10. Let (v,q) € Ry x Quq(0,1) be a local minimum of (ﬁ) satisfying first order
optimality conditions of Lemma 3.1 and i > 0. Then the following inequality holds

O, L0, 4, 1)[6v,6q)° >0 for all (6v,6q) € Czg). (3.12)

(g

In general, for second order necessary conditions one needs a further constraint qualification.
It is worth mentioning that — in our setting — we may conclude the regularity assumption
from the first order optimality conditions. According to the linearized Slater condition (3.1),
we have ¢'(7,q)(p,0) # 0 for any p # 0. Hence, there is a 7 € R such that ¢'(v, q)(7,0) = 1;
cf. the regularity assumption (2.1) in [35]. For the proof, we require the following auxiliary
result concerning admissible perturbations.

Proposition 3.11. Let (v,q) € R x Q(0,1) satisfy g(v,q) = 0. Moreover, let ov € R and
dq € Q(0,1) such that ¢'(v,q)(dv,0q) = 0. Additionally, suppose 0,9(v,q) # 0. Then there
are ¢ > 0 and a function v: (—¢,¢) — R of class C? satisfying

g9(v(0),9(0)) =0, 0 € (=), 7(0)=+(0)=0,

where v(0) = v+ 00v 4+ v(0) and q(0) = q + 0dq.

Proof. Due to the supposition, there exists 7 € R such that ¢'(v, ¢)(7,0) = 1. We define
f(8,p) =g(v+00v+ pr,q+ 06q).
According to Assumption 3.2 and Proposition 2.20 f is of class C? and we have
99.f(0,0) = g'(v, q)(dv,dq) = 0,
9,(0,0) = ¢/ (v, q)(,0) = 1.

By the implicit function theorem there exist ¢ > 0 and a C?-function 7: (—¢,¢) — R such
that

f(0,7(0)) = f(0,0) =0, 0€ (—¢&c¢), 7(0)=0.

Moreover, differentiating the identity above we infer
aef(ov 0) + 8pf(07 0)§,(0) =0,

so we conclude 7'(0) = 0. Last, we set v = 0. O
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3.2. Second order optimality conditions (« > 0)

b
@ —1/n

Ga+1/n

da

Figure 3.1.: Truncation procedure in the proofs of Theorem 3.10 and Proposition 3.12. Hachured parts
are set to zero, the remaining parts are truncated.

Proof of Theorem 3.10. The assertion can be proved similarly as in [35] with an additional
truncation procedure. Let (0v,dq) € C(p ). For n € N, we introduce the following truncation

5 {O if o <q<gqa+1l/norqg—1/n<q<q,
dn =

max{—n,min{n,dq}} else,
almost everywhere in I X w; see also Figure 3.1. Moreover, we set

vy = _&19(7;7 ‘j)&ln/al/g(’;v (j)’

which is justified because of 9,9(7,q) # 0. By construction we have ¢'(v, q)(dvy, dg,) = 0.
According to Proposition 3.11 there is ¢ > 0 and a function v: (—¢,e) — R such that the
state constraints remain active for the pair v(0) = v + 0ov,, +v(0) and ¢(0) = ¢+ 00gy. Due
to the sign condition (3.11), we have g + 05q, € Quq(0,1) for 0 < 0 < min{1/n2 6y/n},
where 0y = essinf,e,(q(z) — ¢a(z)) > 0. Moreover, ov(f) > 0 for all 6 sufficiently small.
Thus, the function

¢:[0,6) = R, ¢(0) = L(¥(0),4q(0), 1),
has a local minimum at 6 = 0. Since 7/(0) = 0 (see Proposition 3.11) we have
¢'(0) = 0, L(1(0),4(0), 12) (6vn +7(0),6Gn) = 0,) L£(¥, q; 1) (8, On) -
Using the first order necessary optimality condition
WL(v,q,n) =0 (3.13)
as well as condition (3.11) implying dg, = 0 whenever ag + B*Z # 0, we find

) (7.3, 1)) (50, 00n) = OgL(7, 7, 7)) = /0 ' Dlag + B2, 54,) = 0.
Hence, ¢/(0) = 0. Therefore, the second order optimality condition has to hold, i.e.
0 < ¢"(0) = 8¢, L((0), 4(0), 1) [6vn, 0qn]? + (1) L(1(0), 4(0), 1) (v(0), 0)
= 00, ) £(7, G 1)[0vn, 0n)* +7"(0)90,) £(7, G, 1) (1, 0)
= 03, L7, 0, 1) [V, 4%,

where we have used again (3.13). Since dg, converges pointwise almost everywhere in I x w
and |dg,| < |d¢g|, the dominated convergence theorem implies §g, — g in L?(I x w). Thus,
dvy, — v due to ¢'(v, q)(dv, dq) = 0. Hence,

0 < lim 8, L(2,q, 1)[0vn, 6qn)* = 87, ) £(7,Q, 1) [6v, 697,

n—o0

where we have used continuity of (6v,dq) — L(7,q, 1)[0v,6q)? on R x L?(I x w), completing
the proof. O
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3. Second order and sufficient optimality conditions

The proof of the second order necessary conditions relied on the construction of feasible
points. Using very similar arguments, we obtain the following result on the existence of
feasible controls for perturbed time transformations. This result is needed for later reference
in Section 3.2.3. In the absence of control constraints, it directly follows from the linearized
Slater condition and the implicit function theorem. However, for the problem with control
constraints, we have to argue as for the second order necessary conditions. We say that
q € Qqq(0,1) satisfies the non-triviality condition, if

H{(t,x) €I xw: qo(z) < q(t,x) < @p(x), B*2(t,z) #0}| >0, (3.14)

where z is the solution to the adjoint state equation with terminal value G'(i1S(v, ¢))*. We
will see that (3.14) is satisfied in many situations; cf. Assumption 3.3 and Remark 3.17.

Proposition 3.12. Let (v,q) € R X Quq(0,1). Suppose that Assumption 3.1 and (3.14) hold.
Then there exists € > 0 such that for all V' € (v —e,v + €) there is an admissible control
q(V") € Qua(0,1) satisfying g(v,q(v)) = 0. Moreover, we have

la() = all 2 (1xy = OV = v]) as v/ —v.
Proof. Due to the non-triviality condition (3.14), there exists a subset A C I x w with non-

trivial measure such that the control constraints are (strictly) not active and 1,B*z # 0.
Taking g = 1,4,B*z yields

049(v,9)6q = v(B*2,0) 1210y = VIB 2|72 > 0

using the adjoint state representation of g’. Moreover, ag+ B*z = 0 on A. Hence, dq satisfies
the sign condition on A. It also satisfies the sign condition on the complement of A, because
there it is identical zero. Then we define dv = —0,9(v, ¢)dq/0,g(v, q), which is well-defined
since d,9(v, q) # 0 due to the supposition.

As in the proof of Theorem 3.10, we define a truncation of dq by
5QN={O if g <q<qu+1/Norgqg—1/N<q<q,
max{—N, min{N,dq}} else,
almost everywhere in I X w; cf. also Figure 3.1. Moreover, we set
Svn = —0q9(v,q)8qn /Ovg (v, q).

Due to the choice of d¢, we have dvy # 0 for N sufficiently large as well as ¢’ (v, q) (dvn, dgn) =
0. According to Proposition 3.11 there are € > 0 and a C?-function : (—¢,¢) — R such that
for all @ € (—¢, ) we have g(v(6),q(8)) = 0, where v(0) = v+00vy+~(0) and q(6) = ¢+00qn.
Furthermore, since dq is nonvanishing only where the control is strictly nonactive, we infer
q(0) € Quq(0,1) for 0 sufficiently small. Using that v(0) = ~/(0) = 0, we obtain

v(0) = v(0) + V' (0)8 + O(H?) = v + dunb + O(H?).
Moreover, from the equality above, we deduce that
0] = [v(8) = v||ovn + O(6%) /6] < clu(8) —v|, € (v—ev+e).

Hence,
la(0) — all = 100an || < c[v(0) —v].
Taking 6 close to zero, yields the assertion for v/ := v(6) and ¢(v') :== ¢q(0). O
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3.2. Second order optimality conditions (a > 0)
3.2.2. Second order sufficient optimality conditions

Next, we postulate “minimal-gap” second order sufficient conditions, which result from re-
placing the inequality in (3.10) by a strict inequality.

Theorem 3.13. Suppose (V,q, 1) € Ry X Qquq(0,1) x Ry satisfies the first order necessary
conditions of Lemma 3.1 and the second order sufficient condition

8(2V7q)£(17, g, iW)[0ov,8q)* >0 for all (6v,6q) € Ciog) \1(0,0)}. (3.15)

Then there exist € > 0 and ¢ > 0 such that for every admissible pair (v,q) € Ry x Qquq(0,1)
the quadratic growth condition

L C ) C ) .
i, q) + 5\’/ -7+ §Hq = allz2(1xw) < 3 (5 0), (3.16)

is satisfied if \v — v| + ||qg — §‘|L2(1xw) <e.

Proof. We closely follow the ideas of [34, Theorem 4.13] for the semilinear heat equation;
cf. also [30, Section 4] for pointwise state constraints. Assume by contradiction that for all
integer n there exist a time transformation v, € R4 and a control ¢, € Q.q(0,1) such that
the corresponding state S(vy, ¢, ) is feasible and

_ B 1 D! B . .
|(vn = Vyqn — Q)| < o J(%@‘F%H(Vn—’/,%—Q)HQ > §(Uns qn)- (3.17)
Set X = (¥,q) and xn = (Vn, qn). Define p,, = ||(vn — ¥, qn — q)|| and

1
vp = (v, 08) = —(Xn — X)-

Pn
We may assume w.l.o.g. that v — v” in R and v¢ — v9 in L?(I x w).

Step 1: 0\ L(X,t)v =0. Due to the variational inequality (3.3) we have

O L(x, p)v = lim O\ L(X, [t)vy, > 0.

n—oo

For the reverse inequality, we observe

_ 1 _ N2 = i = 2
LG + 0 = 7300 = DI = 50 + 51|00 — 700 — D)
> j00n) 2 £xn, ), (3.18)

since Yy, is feasible and g > 0. The Taylor expansion yields

L(xn, 1) = LX) + pnOxL(Xn, [1)Vn, (3.19)

for some appropriate X, € R x L2(I x w). Moreover, X, — X as n — oo. Combining (3.18)
and (3.19) we arrive at

_ _ 1 _ _ 1
(0 = 700 = DI = g 0 = 7200 = D < 5.5

AL (. 1)Uy <
L (X, 1) Un, < 2 5
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3. Second order and sufficient optimality conditions

Using continuity of 0, £ we infer
NL(X, m)v = Tim 9\ L(X, [1)vn
< hmsup8 L(Xn, )vn+hmsup [0\ L(X, 1) — Ox L(Xn, [1)] Un

1
< hmsupz— <0.

n—o00 7’L2 -

Step 2: v € C(yg). First, because the set

{(5q € L*(I x w)

6q < 0if q(t,z) = gp(x)
dq > 0 if q(t,x) = qu(x) ’

is closed and convex, it is in particular weakly closed, hence the weak limit satisfies v?(t, z) <
0, if g(t,x) = qp(x), and v4(t,x) > 0, if (¢, x) = g4(x). For this reason, (3.6) implies

1 1
/ /ﬂ(acj—{—B*E)qumdt:/ /17|(acj—|— B*z)v?| dx dt.

Moreover, due to 0y L(X,t)v = 0 and the first order necessary condition 9,L(x, 1) = 0 we
have the equality

1 1
0= 0,L(x, p)v! = / v(ag+ B 2,07) 2,y dt = / / v|(agq + B*Z)v?| dx dt.
0 0 Jw

Hence, v4 = 0, if ag + B*Z # 0 almost everywhere in I x w, and v? satisfies the sign
condition (3.11) as well. Furthermore, according to the assumption on G we have

g'(x)v = lim L (9(X + pnvn) — g(x)) = lim ig(xn) <0,

since g(x) = 0 and g(x») < 0. Similarly, using (3.17), we find

1 1
Ay — T Ty (= . -
J(Jv = Jim = GO+ pnon) = 5(0) < lim 505 = 0.
Due to 1 > 0 and 0y L(x, 1)v = j'(x)v + £ g'(X)v = 0 we conclude ¢'(x)v = 0. In summary,
we have proved that v € C(y 4).

Step 3: v =0. Using again Taylor expansion we have

2
_ o o p .
L(xn, 1) = LX) + Oy L(X 1) on + 0L (X, 1)V, (3.20)
with intermediate points ¥, € R x L?(I x w). Plugging (3.20) into (3.18) and dividing by p?
we obtain

1 _
0N )+ SOL o 0] <

/—\ Sl

Hence, using Corollary 3.9 and weak lower semicontinuity of j”(), it follows that
ORL(x, i)v? < liminf OLL(X, 1)vy
< limsup a2c<>zn, )i+ limsup [9L(X, 1) — O3 L0Kn, )] v
n—oo n—oo
< lim sup 8 L L(X, )vn—i-a L(Xn, B)v 2}

n—o0 pn

+ lim sup —8X£(>Z,ﬂ)vn <0, (3.21)

n—oo Pn
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3.2. Second order optimality conditions (« > 0)

where we have used that 0, L(X, t)v, > 0 for all n € N in the last step. According to the
supposition, this is only possible if v = 0.

Step 4: Final contradiction. Since ||(vZ,v)|| =1 and v¥ — 0 we finally obtain

n»-n
— — e . 2 . . — 1 2
0<av= owhnrr_1>1£f|](vn, vd)||* = I%Iri)gfau/o [ (D172 dt
Using the specific structure of j”, we see that

1
limnf o [ (072 dt = liminf 7)o}

Hence, employing Corollary 3.9, we conclude that

O<liminfj"( w2 <1 mlnfj "(x)v2 —|—,uhm1nfg "(x)v2
< hm 1nf oN LY mv2 <0,
where we have used again (3.21) in the last inequality, yielding a contradiction. O

The second order sufficient condition (3.15) and the quadratic growth condition (3.16) will
form the basis of the a priori discretization error estimates in Chapter 5. Last, we note that
for the given objective functional coercivity of 8(211 q)E(ﬁ, g, 1t) is equivalent to the seemingly

weaker positivity condition, as already observed for semilinear parabolic PDEs in [34].

Theorem 3.14. Let (v,q, 1) € Ry X Qquq(0,1) x Ry. The positivity condition (3.15) s
equivalent to the coercivity condition

Iy > 0: a%y,q)ﬁ(ﬁ,q, i) [ov, 8> > (|5V|2 + H&]H%?(]xw)) for all (6v,6q) € Cy ). (3.22)

Proof. This result can be proved along the lines of the proof of [34, Theorem 4.11], where we
in particular use that dv is from a finite dimensional space. The proof is given for convenience.
Obviously, the condition of coercivity implies the positivity condition. To prove the reverse
implication, we set

Y= inf {a?y,q)ﬁ(lj’ q, /])[51/7 5Q]2: (51/7 5Q) € C(D,(j)v ||(5Va 5Q)|| = 1} :

Due to the assumptions on j and g, the infimum exists and is nonnegative. Let (dvy, dq,) €
C(v,3 be a minimizing sequence. Without restriction we may assume v, — dv in R and
8qn — 6q in L?(I x w). Now, we distinguish two cases:

Case: (6v,0q) = (0,0). From v, — 0in R and dg, — 0 in L*(I x w), we conclude
1
limint J7(7,2)(6v,. 50,2 = v liminf [ 5.32(.) = v lim nf] (6v,. ) | = o,

where we have used ||(dvp,dqy)|| = 1 in the last step. Moreover, due to Corollary 3.9, we
have
lim inf g" (7, ) (0vn, 6gn) > 0

Since @ > 0, we conclude that

n—oo

1
= hmlnfa oL, 1) [0V, 6qn)* > linl)infa/ ’7”5%“%2(&;) =av > 0.
n—0oo 0
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3. Second order and sufficient optimality conditions

Case: (6v,0q) # (0,0). Using the same arguments as before for j” and Corollary 3.9 we find
v = liminf 0, ) £(7, G, 1)[6vn, 0gn]® = 0, () L(7, 4, 1) [0V, ] > 0,

due to the positivity condition. In both cases we proved that v > 0. Thus, the coercivity
condition holds. O

3.2.3. Reduction to a scalar condition

In general it seems to be difficult to verify whether a second order sufficient optimality
condition is satisfied for a given a problem — both theoretically and numerically. However,
for the problem under consideration, we will provide a scalar condition that is equivalent
to the second order sufficient optimality condition of Theorem 3.13; cf. [82] for a similar
approach for time-optimal control of ODEs. The idea is based on an infinite dimensional
version of the Schur complement. We suppose that G”(u)[-, -] is positive semi-definite for all
u € H. Recall that positive semi-definiteness implies weak lower semicontinuity, see, e.g, [61,
Proposition 3.2], so this a strengthening of Assumption 3.2.

In order to keep the presentation of this section simple, we impose additional assumptions,
which will turn out to be fulfilled in most situations. First, if the critical cone is trivial, i.e.
C(z,g) = 10}, the condition (3.15) is vacuously true. Note that this case typically corresponds
to a bang-bang control. Similarly, to avoid other degenerate cases, we impose the additional
assumption:

Assumption 3.3. We assume that the strict complementarity condition
{ (o) € I xw: 4(t,a) € {au(@). (@) }, adlt, @) + BE(ta) =0} =0, (3.23)
and the non-triviality condition
H{(t,x) €I xw: qo(z) < q(t,x) < @(x), B*Z(t,z) #0}| > 0, (3.24)

hold, where |-| denotes the product-measure associated with I x w.

Under Assumption 3.3 the critical cone C(j 4) is a linear space, which contains elements of
the form (dv,dq) with dv # 0. In the following we show that if the strict complementarity
condition (3.23) holds, then the non-triviality condition (3.24) is equivalent to C(; g) # {0 }.
Moreover, we prove that under an appropriate approximate controllability assumption on the
pair (A, B) strict complementarity holds.

Proposition 3.15. Suppose that the strict complementarity condition (3.23) holds. Let
(7,q) € Ry X Qqq(0,1) satisfy the qualified first order optimality conditions of Lemma 3.1.
Then the non-triviality condition (3.24) is equivalent to Cy g 7 {0 }.

Proof. Clearly, if the non-triviality condition (3.24) holds, then C; ) # { 0 }. Hence, we only
have to show the reverse implication. Suppose that (3.24) is violated. Let (év,dq) € C(z ).
Then we have (B*Z, 5‘1)L2(wa) = 0, because d0g = 0 if ag + B*z # 0 (due to the sign
condition (3.11)), B*z = 0 if ¢, < ¢ < gqp (because (3.24) is violated), and the remaining
case ¢ € {qa,q } and ag + B*zZ = 0 has zero measure (due to the strict complementarity
condition (3.23)). Hence, using the condition ¢'(v, q)(dv, dq) = 0 from the critical cone and
0,9(V,q) # 0 (see Assumption 3.1 and Proposition 3.2), we infer that v = 0. Thus, we
conclude that C(; g = {0}. O
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3.2. Second order optimality conditions (« > 0)

In the case that g is bang-bang, the non-triviality condition (3.24) is clearly violated. Hence,
in view of Proposition 3.15, if strict complementarity and qualified first order optimality
conditions hold, and ¢ is bang-bang, then the critical cone is trivial.

Proposition 3.16. Consider the case of purely time-dependent controls, i.e. B: RNe — V*,
Bq = ZZN:C1 gi€;. Suppose that the solution z € W(0,1) to the adjoint state equation with
terminal state zy € H and time transformation v > 0, i.e.

-0z +VvA*2 =0, z(1) =2,
satisfies a backwards uniqueness property, i.e.
B2=0o0onlgxwy = 2=0 foralllgpxwyCIXuw. (3.25)

Moreover, suppose that
t— z(t) constant = z=0. (3.26)

Let (v,q) € Ry xQaq(0,1) satisfy the qualified first order optimality conditions of Lemma 3.1.
Then the strict complementarity condition (3.23) holds.

Proof. 1f (3.23) is violated, then Bz = —agq,; or BfZ = —agq,; on a subset Iy C I such
that |Ip| # 0 for some i € {1,2,..., N, }. Without restriction suppose that B}z = —aqq,;
on Ip. Hence, the mapping ¢ — ¢(t) = BZ(t) is constant on Iy. Moreover, analyticity
of the semigroup generated by —A* implies that ¢ is also analytic. Thus, ¢ is constant on
I, which means that ¢/ = 0;B}z vanishes on I. We set v = &;z. Since z € CY(I; V), we
observe that v also solves a backwards parabolic equation on (0,1 — ¢) with terminal value
v(l —¢) = 0:2(1 —¢) € V for any small € > 0. Because of Bfv = 8;Bfz = 0 on I, from the
backwards uniqueness property (3.25), we deduce that v = 0 on the time interval (0,1 — &),
which in turn implies that the adjoint state 2z is constant on (0,1 —¢€). Letting ¢ — 0, we see
that z is constant on I. Thus, the second supposition (3.26) implies z = 0. However, this
contradicts the optimality conditions from Lemma 3.1. O

Remark 3.17. We comment on situations, where the suppositions (3.25) and (3.26) of the
preceding proposition are guaranteed to hold:

(i) The backwards uniqueness property (3.25) is equivalent to the assumption that for
each B;: R — V* B;q = qe;, the pair (A, B;) is approximately controllable; see [150,
Definition 11.1.1]. Note that in the context of optimal control for ordinary differential
equations this property would correspond to normality of the pair (A, B); see, e.g., [74,
Section II.16] or [112, Section II1.3]. Employing the fact that ¢ — B*z(t) is analytic
and [150, Theorem 11.2.1, Definition 6.1.1], we infer that (3.25) holds.

(ii) If the Garding inequality (2.7) holds with wg = 0 (e.g. if A = —A with homoge-
neous Dirichlet boundary conditions), then the semigroup generated by —A is uni-
formly exponentially stable in H, i.e. He_tAHﬁ(H) < e ?* for some p > 0 and all
t > 0; see Proposition A.21. Additionally, according to [128, Corollary 1.10.6] we
have e=4" = (e~4)*. Considering the canonical extension of z to (—oo,0), exponential
stability yields limy, o, z(¢t) = 0. Thus, if ¢ — z(¢) is constant, we conclude that z =0
due to analyticity of t — z(t), i.e. (3.26) holds.

(iii) In certain situations, we can dispense with the controllability assumption. Let the con-
trol bounds satisfy ¢, < 0 < g, and Garding’s inequality (2.7) hold with wy = 0. Suppose
that the strict complementarity condition (3.23) is violated. Hence, there is an index
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3. Second order and sufficient optimality conditions

i€{1,2,...,N.} such that (—1/a)B}z(t) = ¢i(t) equals one of the control bounds on
a subset of I. First, we have |B;z(t)| < ||€'||\||Z(t)||;;. Moreover, exponential stability
as before yields

12y < lle” DAY gy e A2(1)]1 5 — 0

as t — —oo (for some small £ > 0), where we have considered the canonical extension
of Z to (—o00,0). Thus, analyticity implies B z(t) = 0 on I, which contradicts the
supposition g, < 0 < gp. Hence, the strict complementarity condition (3.23) is satisfied.
Note that we have used the coupling between ¢ and z on I only, not on (—o0,0).

If Assumption 3.3 holds, the critical cone C(j 4) is a linear space. It consists exactly of the
elements (dv, 6q) with dv € R, éq € Cy, and 9,9(7, ¢)dq + 0,9(V, q)dv = 0, where

Cy:={dq € L*(I xw): dq(t,z) = 0 if ag(t,z) + B*Z(t,z) #0}.

For ease of presentation, we sometimes abbreviate the arguments (7, ¢) and simply write y in
the following. Under Assumption 3.3 we now prove that the second order sufficient optimality
condition is equivalent to a scalar condition.

Lemma 3.18. Let (v,q, i) € Ry X Quq(0,1) X Ry. Assume that Assumption 3.3 holds and
that G"(u)[-,-] is positive semi-definite for all w € H. Then, the second order sufficient
optimality condition of Theorem 3.13 is equivalent to

=0, L, q,1)[1,6q)° > 0, (3.27)
where (0q,0f1) € Cg x R is the unique solution of the linear system

O2L(v,q, [1)[67, 0q] + 01 0gg(V, ))6q = —0,0,L (v, q, i1)[1,0q), 6q € Cyq,

oo o (3.28)
9q9(V,3)0q = —0,9(V, Q).

Proof. We start by proving that (3.27) implies the second order sufficient optimality condi-
tion. Let (0v,0q) € C(pq). We distinguish two cases for év: If dv = 0, we use the fact that
the second derivative of g with respect to ¢ has the form 829()2)[&]]2 = G"(1(1))[i10,5(x)dq)?
to obtain

BRL(%, W) Ioal® = 25V = AP 10alla 1w (3.29)
which immediately implies (3.15).

Now, consider the case dv # 0. Since the expression on the left in (3.15) is bi-linear in dv,
and the critical cone C(j z) is linear, it suffices to consider the case év = 1. By minimizing
the expression on the left for admissible dq (such that (1,0q) € C(34)), writing out the second
derivative in terms of the partial derivatives and dropping constant terms, we arrive at the
following minimization problem:

inf, SORLG MG +2,0,L(0 A)[1,00) subject to ,9(0)80 = ~D,9(0.  (3:30)
Since (1,dq) € Cp ), we have 9,9(x)0q = —0,9(X). Hence, problem (3.30) has admissible
points, and we easily verify existence of a minimizer using the direct method. Moreover, due
to Assumption 3.3 (or using the first order optimality condition d,g(x) # 0 and linearity
of Cz), we have 0,9(x)C; = R, which means that a constraint qualification condition (see,
e.g., [166]) is fulfilled. Thus, we obtain the necessary and sufficient optimality conditions of
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3.2. Second order optimality conditions (« > 0)

the convex problem (3.30) in the form (3.28). Hence, for the positivity condition (3.15) we
only have to require that 4 > 0, which guarantees

9%, L0 WL, 6a)* > 82, ) L(X, W[L,6g)° =7 > 0, (3.31)

for any dq with (1,4dq) € C where g is the solution to (3.28).

(7,9)
Last, we prove that the second order sufficient optimality condition implies (3.27). As already

observed, (3.28) possesses a unique solution (6¢,dp) and (1,¢) € C(yq). From the second
order sufficient optimality condition we obtain 4 > 0. O

Remark 3.19. If the non-triviality condition (3.24) is violated, then C(j 5 contains elements
of the form (0, dq), only. Hence, the second order sufficient condition is always satisfied for
positive semi-definite G”(u)[-,-]. Note that in this degenerate case, the system (3.28) does
not posses a solution, because the second equality cannot be satisfied for ¢ € Cj.

While 4 > 0 implies the second order sufficient conditions from Theorem 3.13, it does not
represent the coercivity constant for the second derivative of the Lagrange function as ob-
tained in Theorem 3.14. Instead, we can derive a lower bound on the coercivity constant in
terms of 7, which also depends explicitly on a > 0.

Proposition 3.20. Adapt the assumptions of Lemma 3.18 and suppose that 5 > 0. Then,
the coercivity constant v from Theorem 3.1/ is bounded from below by

72 (7/3)min{av/(y +e1), 1},

where c¢1 depends on the optimal solution and on «.

Proof. By replacing dq with dg/0v in (3.31) and using linearity we directly obtain

0, L0 )6V, 8¢)> = Alév[* for all (6v,5q) € Cis,g)-
Furthermore, by using the coercivity of agﬁ()z,ﬂ) with constant ar and straightforward
estimates (using Young’s inequality), we can derive that
2, L(x, m)ov.5q? > L |sq)l2 sv)> for all (5v,6
(v,q) (Xvu)[ v, Q] = ?H q||L2(I><w) _Cl| V| or a ( v, Q)v
where ¢; = (|83£()2, )|+ 2[|0,04L(X, 1) ||2/(a13)). By taking a convex combination of (1—6)
times the former and 6 times the latter estimate, where 6 = (2/3)(y/(¥ + c1)), we arrive at

o _ o
0, LG )6, g1 = (1= 0)y — bea) |ov|* + 7||5€J|!i2(1xw)

av

Y 2 2
> 3 (1601 4 5 bl

for all (dv,dq) € C( O

7,q)"
The scalar condition (3.27) still involves the solution of an infinite dimensional problem.
However, the same calculation holds true for the discrete problem, which means that we
can verify the SSC on the discrete level, by computing numerically the constant 4 defined in
Lemma 3.18; see Section 5.4. In this regard we also mention [137] on the numerical verification
of second order optimality conditions.
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3. Second order and sufficient optimality conditions

We can also give a different interpretation of the scalar condition (3.27) in terms of the
curvature of a certain value function with respect to v. To understand the condition (3.27),
we introduce the value function

V(v)= min j(v,q) = L(v,q(v), i(v)), (3.32)
quad(Ozl)
9(v,q)=0
which is obtained by fixing an arbitrary time v and resolving the resulting constraint op-
timization problem for the controls. For well posedness of V(-) in a neighborhood of v we
have to argue that feasible points exist. However, this is the assertion of Proposition 3.12,
provided that Assumption 3.3 holds.

The aim is to show that the value function V is differentiable. For the proof we rely on
established arguments where we refer to [21, Section 5.1] and the review article [20]; cf. also
[67, Proposition 3.16] and [81, Chapter 2]. We first study the stability of the optimal solution
d(v) and the Lagrange multiplier pi(v) with respect to v associated with the minimization
problem (3.32).

Proposition 3.21. Let Assumption 3.8 hold and assume that G"(u)[-,-] is positive semi-
definite for all w € H. There exists § > 0 such that for all v1,vo € Ry with |v; — v| < 0,
1 =1,2, we have

13(1) = qw2)ll L2 (1) + A1) = p(r2)] = O(lv1 — w2])  as 1 —v2| = 0.

Proof. Step 1: Continuity. To begin with, consider the case v1 = v and vy = v for some
given v € Ry. Let L(v,q, ) = j(v, q)+1g(v, q) denote the Lagrange function associated with
the minimization problem (3.32). Since the mapping g — i1.5(v, ¢) is (affine) linear, positive
semi-definiteness of G”[-, -] yields d449(v, ¢)dq* > 0. Therefore, we have

a?lg = 721wy < D L(?,qe, Mg — @)

for any g¢ € L*(I x w). Hence, Taylor expansion of £ at (7, q, 1) implies

av _ _ _ o o _
5 = @iz ) < L0, 1) = L., 1) = 0,L(7,3. 1) (q — )
S](ﬂ7Q)_](DaQ)7

for all ¢ € Q44(0,1) such that g(v,q) = 0. Plugging the admissible control ¢(v) from Propo-
sition 3.12 into the inequality above and using Lipschitz continuity of j, we obtain

j(V7Q(V)) _j(qu_) Sj(y,q(l/))—j(ﬂ,(j) :O(‘V_DD;

i.e. g(v) is an e-optimal solution of order O(|v — v|). Thus, [21, Proposition 4.41] with the
quadratic growth condition of the unperturbed problem implies

UV2) asv — 1.

12(v) = @ll L2 (1) = Ol — 7|

Step 2: Uniqueness of p(v). Due to the non-triviality condition, the control ¢ = g(v) is not
bang-bang and there exists a subset A C I x w such that ¢ = (—1/a)B*z # 0 on A. Since
v+ q(v) is (Hélder) continuous at 7 in L?(I x w), we have q(v) = —(1/a)B*z(v) # 0 on a
(possibly smaller set) A for all v close to v using the Theorem of Egorov. If y is a different
multiplier, then

qv) = (-1/a)uB*z = (—1/a)u(z)B*z,
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3.2. Second order optimality conditions (« > 0)

where 7z is the adjoint state with terminal value G'(i1S(v, q(v)))*. Hence, u = p(v).
Step 3: Hélder stability. Arguments similar as above yield

[07%
5 lan) = a(v2) 172 1)

< L(v2,q(1n), fi(va)) = L(v2, 4(v2), 1(va)) = 9gL(va, q(va), p(v2))(d(11) — 4(v2))
< L(vz, q(v1), iv2)) = L(v1, (1), p(v2)) + 51, 3(1)) = 5 (v2,4(v2)).

Lipschitz continuity of j and g as well as boundedness of fi(v2) imply

L(v2,q(11), i(r2)) — L(v1,q(v1), i(r2)) < clvr — val.

Moreover, since v — ¢(v) is continuous, the non-triviality condition (3.14) for g(r2) used in
Proposition 3.12 is satisfied for vy sufficiently close to v. Using the admissible control ¢(v1)
from Proposition 3.12, we get

31, q(rn)) — (e, q(v2)) < j(vi,q(v1)) — j(ve, q(v2)) = O(Jv1 — 1a)).

Due to [21, Proposition 4.41], we have
_ _ 1/2
1G(1) = @) | 121wy = Ol = wa]'/2).

Step 4: Lipschitz stability. Finally, we would like to apply [21, Theorem 4.51] with G(q,v) =
(9(v,q),q) and constraint K := {0 } X Qqq(0, 1), and verify its assumptions. The non-triviality
condition yields 9,9(v, ¢(v))Q(0,1) = R. Hence, Robinson’s constraint qualification holds at
the tuple (¢(v),v). Moreover, upper Lipschitz continuity of the multifunction defined in
[21, (4.116)], follows from surjectivity of DG(q(v),v) and [21, Remark 4.45 (i)]. Last, the
second order condition holds on ((0,1) (not only on the approximate critical cone). Since
the Lagrange multiplier fi(v) is unique, the inequality [21, (4.127)] yields the assertion. [J

In order to show that the value function is differentiable, we require the notion of polyhedricity
that we will introduce next; see, e.g., [21, Definition 3.51].

Definition 3.22. Let K be a closed convex set of a Banach space Y. K is called polyhedric
at z € K, if for any v € Ng(x) the identity

Tk (z) Nkerv = R (Z) Nkerv
holds, where Ni denotes the normal cone, Tk the tangent cone, and
Rk (z) ={0x € Y: 3t > 0 such that z + tdz € K }

the radial cone with Tr (Z) = Rk (Z). It is called polyhedric, if it is polyhedric for all z € K.

The radial cone is also referred to as the cone of feasible directions; cf. [33]. In the case of
pointwise control constraints, the set QQ,4(0,1) is polyhedric.

Proposition 3.23. Let (w, 0) be a finite measure space. If
Qud = {q € L}(w): qa < q< q ace. in w} C L™®(w)

for qa, qp € L>®(w) with q, < qy almost everywhere, then Qquq(0,1) is polyhedric in L*(I x w).
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Proof. Due to Ty, ,0,1)(7) = Rq,,0,1)(q), the right-hand side in Definition 3.22 is automati-
cally contained in the left-hand side. Let v € Ng_,0,1y(q) and dq € Ty, ,0,1)(7) Nkerv. We
define almost everywhere

5 0 if o <q<gqa+1l/norq—1/n<q<q,
q =
! max{—n, min{n, dq}} else.

Then ¢, == G + pndq, for p, = min{1/n? (q, — q.)/n } satisfies ¢, < g < g almost every-
where in I x w. Hence, dgn, € Rg,,0,1)(7)- Let A C I x w denote the subset where v > 0
and let A_ C I X w denote the subset where v < 0. Inspection of the variational inequality
from the definition of the normal cone, cf., e.g., [147, Lemma 2.26], yields ¢ = ¢, on A and
qd = qo on A_ almost everywhere. Therefore, we have dg, < 0 on A, and dq, > 0 on A_,
and the same holds for §¢q. Using the definition of d¢,, we infer that d¢, < dq a.e. on Ay and

—6q < —dgn a.e. on A_. Since v € Ng_,0,1)(q) and 6g,, € Rg,,(0,1)(7), we deduce

0 < —(0,0qn) L2 (1xw) = —(0:0qn) 24, ) = (0:0Gn) 204y < —(0,09) [2(1x0) = 0

i.e. d¢, € kerv. Since dg, converges pointwise almost everywhere and |dg,| < |dq|, the
dominated convergence theorem implies dg, — dq in L2(I x w). O

With these preparation, we will verify that the value function V is two times differentiable.
Furthermore, the scalar condition (3.27) can be identified with the value of the second deriva-
tive of V' at the optimal time v, i.e. the scalar condition (3.27) describes the curvature of the
value function.

Proposition 3.24. Let Assumption 3.8 hold and assume that G"(u)[-,-] is positive semi-
definite for alluw € H. Then the value function V is two times differentiable in a neighborhood
of v and the expression

V") = 80,0 L7, 3, 1)[1, 4]
holds, where §q is the solution to (3.28).

Proof. Let v € Ry and 7, € R such that ,, — 0. Set v, = v + 7, n = ¢(vn), and
fin, = fi(vy). Using Proposition 3.21 we infer that the quotients (5qn = 7.4q, — q(v)) and
Sty = 7, (jin, — fi(v)) are bounded. Thus, by taking a subsequence if necessary, dg, — dq(v)
in L?(I x w) and Sp, — Sp(v).

We would like to apply [21, Theorem 5.10] again with G(¢,v) = (g(v,¢q),q) and constraint
K :={0} x Quq(0,1), and verify its assumptions. First, the non-triviality condition yields
0q9(v,q(v))Q(0,1) = R. Therefore, upper Lipschitz continuity of the solution mapping follows
from surjectivity of DG(g(v),v) and [21, Remark 4.45 (i)]. According to [21, Proposition 3.76],
the mapping G(quﬁ(y, q(v), u(v)) is a Legendre form. Furthermore, Robinson’s constraint
qualification holds at q(v), since J,9(v, q¢(v))Q(0,1) = R. According to [21, Theorem 5.10],
the weak limit dg(v) is in fact a strong limit and (dg(v), du(v)) satisfies a so-called linearized
generalized equality. More specifically, there exists a triple (dgq(v),0u(v), d§(v)) such that

9qqL(v,q(w), n(¥))[6q(v), | + 6p(v)0qg (v, q(v))" + Oy L(v, q(v), p(v))[1, -] = =6&(v),
Oq9(v,q(v))dq(v) + Dug(v, q( )

dq(v) €

(€(¥),6q(v)g0,1)

(06(1),09) o) <0 Voq € Tq, 4001)(a(v)) with (£(v),09) 0,1

0,
€ Tg,.0,1)(@(v)),
0,
0,
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3.2. Second order optimality conditions (« > 0)

where £(v) is the Lagrange multiplier corresponding to the constraint ¢(v) € Q44(0,1). Note
first that for v = v we have

Cq =109 € Tq,,01)(@): (£(),09)q01) =0}

Since the critical cone Cj is a subspace due to strict complementarity, the last condition in
the system above is an equality for v = v. Hence, this is exactly the linear system (3.28).
Therefore, we deduce

Vi) = lim 7 (V(v) = V() = lim 7 (L, do

= 0L(v,q(v), p(v))[1

= al/[’(yv 6.7(7/)7 la(y))

As v — @(v) and v — [i(v) are continuous, we infer that V is continuously differentiable.
Turning to the second derivative, the chain rule yields

V' (v) = 0 L(v,q(v), () + v L(v, 4(v), 1)), 6q(v)] + 61u(v)Dpg (v, 4(v)).

Therefore, setting v = v, we obtain the expression

 fin) — L(v,q(v), 1(v)))
,0q(v), 0p(v)]

V" (0) = 0, L(7, G, 1) + Dug £(v, G, 1)1, 6] + 619 (v, q) = 8, ) L(7, 7, )1, 607,

proving the assertion. ]

We would like to verify (3.27) numerically, to get at least an indicator, whether a second
order sufficient optimality condition holds. Due to the dimension of the linear system (3.28),
iterative solvers seem to be appropriate for its solution. Hence, we have to efficiently calculate
products of the system (3.28) times (dg,dp). From the definition of the critical cone and
employing (3.8) we find the condition

1
0 = fig (7. @)(6v.00) = | (6v(B— Aw) + 7Bdg. 2).
0

Thus, 8,9(7,q) = [y (ov(Bq — Au), z) and 9,9(v,q)* = vB*z. For the second derivative of
the Lagrange function we obtain

O 0.0, 6 " = by + 20 [ 60(50,0) + g 7, )l 6l
with
g (7,q)[6v, 5q)* = /01 év(2Bdq — Adu, z) + /01(5V(Bq — Au) + vBdq, 0z),
where du = S'(v, q)(dv,dq) and §z is a second adjoint state solving
—00z + VA*Sz = —vA*z, 6z2(1) = pG"(u(1))[du(1),-].
Considering the splitting §z = dvZ + 523, where £ solves
-2+ vA*Z=—-A"zZ, (1) =0,
we obtain

1 1 1
_ / Su(ASu, 2) = bv / (Su, (—8, + DA*) 2) = 6v / (6v(Bi — Aw) + 7Béq, 3),
0 0 0

95



3. Second order and sufficient optimality conditions

and

1 1
/ (6v(Bg — Ati) + 0Bbq,62) = aG" (a(1))[6u(1)]2 + 6v / (6v(B — Aw) + vBbq, 3).
0 0

Let S = (0 + I?A)_1 be the solution operator to the state equation with homogeneous

initial condition. Moreover, let G”(u(1)): H — H denote the operator representation of
G"(u(1))[-,-] and set E = (i1.5)*G"(u(1))(i1S). Then

G"(u(1))[6u(1)]? = (E(0v(Bq — Au) + vBdq), Sv(Bq — Au) + vB8q) 4
= 6v*(E(Bq — Au), Bq — Au)y
+ 26v(E(Bq — Au),vBéq) ; + v*(EBdq, Béq)

This in summary leads to

04 L(V,q, 1) = av1d +i* B*EB
g L(7,q )* = ag+ B*Z +0B* (2 + iE(Bq — Au))

1
0, L(7,3, i) = f(E(Bf — Ai), B — Awl) 5y + 2 / (B — Ai, 2).
0

For these reasons, the application of J¢L(V,q, 1) to dg can be calculated by solving two
partial differential equations. Given the adjoint state z, the application of J,g(7,q) to dq
can be easily calculated by solving the resulting integral. These expressions directly transfer
to the discrete problems discussed in Chapter 5. Using an iterative solver the corresponding
discrete set of equations to (3.28) can be efficiently evaluated numerically without building
the matrix OyqLin(Vkh, Qkh, Lkn). Based on this approach, in Section 5.4 we will eventually
verify the second order sufficient optimality condition on the discrete level.

3.2.4. Local uniqueness of local solutions

In related context it is known that second order sufficient optimality conditions imply local
uniqueness of local solutions. Using similar arguments as in the proof of Theorem 3.13 we
obtam local uniqueness in R x L?(I x w), if the second order sufficient optimality conditions
for (P) hold. Note that this does not automatically follow from Taylor’s expansion and the
coercivity condition (3.22), since we formulated the second order condition employing a cone
of critical directions.

Theorem 3.25. Let (7,q) € Ry xQqq(0,1) be a local solution of (P) such that the (qualified)
first order optimality conditions of Lemma 3.1 and the second order sufficient optimality
conditions of Theorem 3.13 hold. Then (,q) is locally unique in the sense of R x L*(I x w).

Proof. Suppose that (7, q) not locally unique, i.e. there exist locally optimal solutions x,, =
(7 Gn) € R X Qaa(0, 1), 1 € N, such that (7, @a) — (7,) = X in R x Q(0, 1).

Define p,, = ||(¥n — 7, qn — q)| and

1
vp = (v, vh) = —(Xn — X)-

n

We may assume w.l.o.g. that v — v” in R and v¢ — v? in L*(I x w).
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3.2. Second order optimality conditions (« > 0)

Step 0: Preparation. Since 0,g(x) < 0 according to (3.1), the convergence y,, — X, and since
0yg is continuous, there exists gop > 0 such that 9,9(xn) < —go for all n sufficiently large,
which is a constraint qualification. Therefore, qualified first order optimality conditions hold
for X, i.e. there exist multipliers fi,, > 0 such that

0 = 0y L(Xn, fin) = Oj(Xn) + 100ug(Xn)-
Clearly, we also have 0 = 9, L(x, 1) = 0,j(x) + 10, g(X). Adding both equalities implies

_ N = L = 10b9(X) — Ovg(Xn)| o .,
|,LL - Hn| < |8ug(X)| 1’81/]()() - au](Xn)| + |3yg()2)5yg(>2n)| 61/ (Xn)

< dlIX — ¥l (3.33)

where we have used that 9,5(x) = [(1 + %|q//*).

Step 1: 0, L(X,p)v = 0. Clearly, since ¢, € Qqq(0,1), it holds 0, L(x, it)v > 0. To show the
reverse inequality, from the first order optimality conditions

NL(Xns in)(X = Xn) =0, X € R x Qqa(0,1),
for y = ¥ we obtain
L v = O [L(X; 1) = L(Xns )] v + OxL(Xn, fin)v < € ([IX = Xall + [ = finl) ,
which tends to zero as n — oo due to the estimate (3.33).

Step 2: v € C(pq)- As both X, and x are (locally) optimal, we have

(0 = lim — [g(X + putm) — 9(0)] = lim — [g(%n) — 9(0)] = 0.

Moreover, because the set

{5q € L*(I x w)

6q < 0if q(t,z) = qp(x)
§q > 0if q(t,z) = qo(x) |’

is closed and convex, it is in particular weakly closed. Moreover, due to feasibility of ¢, every

(gn — q)/pn belongs to the set above, so does the weak limit. Thus, v satisfies v? < 0, if
q(t,x) = gp(x), and v? > 0, if G(t,x) = ga(x). For this reason, (3.6) implies

1 1
/ / v(ag+ B*z)vldxdt = / / v|(aq + B*zZ)v?| dx dt.
0 Jw 0 Jw

Moreover, due to 9, L(X,r)v = 0 and the first order necessary condition 9,L(x, ) = 0 we
have the equality

1 1
0= 0,L(x, p)v? = / v(aq+ B 2,07) 12, dt = / / v|(aq + B*z)v?| dx dt.
0 0 Jw

Hence, v? = 0, if aq(t, =) + B*Z(t,z) # 0, and v? satisfies the sign condition (3.11) as well.

Step 3: v = 0. Employing Taylor expansion of £ we find

0 = Oy [L(Xn> 1)) — L )] (Xn — X) — O3 L (X i8) [Xn — X]°
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3. Second order and sufficient optimality conditions

with some appropriate x,, satisfying ¥, — X as n — oo. Using the optimality conditions for
Xn and Y, i.e.
8)(‘6()2’ ﬂ)()zn - X) Z Oa 3)('6()2717 [Ln)(x - Xn) 2 0,

we find
Thus, adding 83(5()2, ji) and dividing by p? we arrive at

ORLX, Yo, < pi 'O [L(Xns ) = L(Xns fin)] vn + O [C(X, 1) = LK )] 07 (3.34)
For the first term of the right-hand side of (3.34) we have

P O [L(Xns 18) = LK Fin)] 00 = o, (7 = Fin)g' (Xn)vn

= pn (= in) [9'(X) + (9'(Xn) = ¢' ()] va = O,

using again the estimate (3.33), the fact that ¢’(x)v = 0 (step 1), and convergence Y, — X
with continuity of ¢’. In summary, inequality (3.34), weak lower semicontinuity of 8X£(x, i),
and continuity of 8>2<£ yield

82£(X v < hmmf@ LOX i)v2 < 0.

The second order sufficient optimality condition implies v = 0.

Step 4: Final contradiction. Using ||(vk,v2)|| = 1 and v¥ — 0 we obtain

n’» -’n
_ — qe . 2 — 1. . 2 . . 1 — 2
0 < av = arlim il (v}, o> = ol ol Fa sy = limint o [ 7d (0] .

nr-n

Using the specific structure of j”, we see that

1
nnrgiogfa/o P (1) 22,y dt = lim in 5 (), 08
Thus, employing Corollary 3.9 we conclude that

0<hm1nfj "(x) v, vi)? <hm1nfj "(x) v, vd)? +Mhm1nfg( )Y, vd]?

< hmmf@zﬁ( )L, vi)? <0,
where we have used again (3.34) in the last inequality. O

3.3. Sufficient optimality conditions for bang-bang controls (« = 0)

After the discussion of second order optimality conditions for a fixed cost parameter @ > 0,
we now turn to the case of variable « that typically leads to bang-bang controls in the limit
case @ — (. For a > 0 we introduce the regularized and transformed problem

inf  jo(v,q) subject to g(v,q) <0, (P.)
V€R+
quad(Ovl)

where the objective function is given by

. . 1 10( 2
olrra) =v (14 [ Slallagy )
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3.3. Sufficient optimality conditions for bang-bang controls (« = 0)

As before L(v,q, 1) = jo(v,q) + 1 g(v,q) denotes the Lagrange function associated to (lf’a)
In order to simplify the notation, we neglect the a-dependence in the symbol L.

A

Let (7,q) € R4 x Qqq(0,1) be a locally optimal solution for (P, ) with & = 0. Then, from the
optimality conditions of Lemma 3.1 we infer

_ _ Jaa(z) i (B*Z)(t,2) >0,
q(t,z) = s
ap(z) if (B*2)(t,x) <0,

and
>0 if g(t,z) = qa(2),
(B*2)(t,z) § <0 if g(t,z) = g(x), (3.35)
=0 if ga(2) < q(t,z) < g(2).

In this section we are interested in the case when ¢ is a bang-bang control. If
{(t,z) e I xw: (B*2)(t,x) =0} =0, (3.36)

where |-| denotes the measure associated with I x w, then from the first order necessary op-
timality condition (3.35) we conclude that the control ¢ is bang-bang. The condition (3.36)
on the set of zeros can be deduced from a backwards uniqueness property. For example, if {2
is a bounded domain, A = —A equipped with homogeneous Dirichlet boundary conditions,
and B: L*(w) — L*(£2) for w C §2 open is the extension by zero operator, then the back-
wards uniqueness property is valid; see Holmgren’s uniqueness theorem [79, Theorem 5.3.3]
or [105]. The bang-bang property for time-optimal control problems subject to parabolic
partial differential equations has been extensively studied; see, e.g., [88, 96, 157].

Note that if (3.36) holds, then the critical cone used in the formulation of the second order
necessary and sufficient optimality conditions in the preceding section is trivial, i.e. Cp 4) =
{(0,0) }. This immediately follows from Proposition 3.15, because (3.36) and the bang-bang
property imply the strict complementarity condition (3.23). Therefore, the second order
sufficient optimality condition from Theorem 3.13 is vacuously true and does not provide any
additional information.

However, it should be noted that global uniqueness of a solution can still be guaranteed.
First, in view of j(v,q) = v due to a = 0, the optimal time 7" = v is unique. Concerning the
control variable, we can state the following criterion.

Proposition 3.26. Let G be convez and (7,q) € Ry X Qqaq(0,1) be a global solution to (Fy).
Suppose that C(p g ={0}. Then (v,q) is globally unique.

Proof. As already noted v is uniquely determined because of &« = 0. Let (v,q) € Ry x
Q44(0,1) be another global solution to (Fp). We set gx = Ag + (1 — A\)g for A € [0,1].
Convexity of G and linearity of the control-to-state mapping (for fixed ) imply

9, qx) < Ag(v,q) + (1 — Ng(v,q) = 0.

Hence, ¢ is also feasible for (ﬁo). Moreover, a simple contradiction argument shows that g
is also optimal for (Pp). In particular, g(v,gy) = 0. Therefore,

o _ . 1 _ _ o
8q£(1/a QHU)(q - Q) = ,\él(%lu X [E(V7q>\mu) - £(V7 (L/J)} =0.
A—0
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3. Second order and sufficient optimality conditions

Hence, q — ¢ satisfies the sign condition (3.11), because ¢ € Q44(0,1). Moreover,

_ _ N _
9q9(v,q)(q — q) = am l9(7,ax) — 9(7,q)] = 0.
A—>6
Thus, ¢'(7,¢)(0,q — @) = 0 and we conclude that (0,q — q) € C(z ). Since the critical cone is

supposed to be trivial, this implies ¢ = q. ]

Alternatively, if the terminal value of the adjoint state equation is unique, then from (3.36)
we deduce uniqueness of the control variable. Uniqueness of the terminal value for the adjoint
state equation can be shown for certain problems, e.g., employing a dual problem such as in
[160, Theorem 3.2].

However, to quantify local uniqueness we require an additional condition. To this end, in
this section we assume that there are constants C' > 0 and « > 0 such that the adjoint state
Z satisfies

H(t,x) el xw: —e < (B*2)(t,z) <e}| <Ce® foralle>0. (3.37)

Note that the structural assumption (3.37) (that is sometimes also referred to as measure
condition, see, e.g., [44, Assumption 7]) is a strengthening of the condition (3.36) that ensures
the bang-bang property. We collect situations where (3.37) is guaranteed to hold and relate
it to similar conditions from the literature.

Remark 3.27. (i) Similar assumptions on the adjoint state as in (3.37) have been used
in related contexts; see, e.g., [36, 37, 44, 47, 145, 152, 155, 156] for PDE-constrained
optimization problems. In the context of optimal control problems with ODEs, one
typically assumes that the differentiable switching function o: I — R has only finitely
many zeros with nonvanishing first derivatives; see, e.g., [55, 113]. Condition (3.37) can
be considered to be a generalization to the distributed control case. Furthermore, (3.37)
is a strengthened complementarity condition.

(i) If B*z € C1(I x w) and if there exists a constant ¢ > 0 such that
|v(t,x)B*2(t7x)| =>c

for all (¢,z) € I xw such that B*z(t,z) = 0, then the condition (3.37) holds with x = 1;
see [47, Lemma 3.2].

(iii) Condition (3.37) is also compatible with purely time-dependent controls; see Exam-
ple 3.8. In this case w would be a discrete set equipped with the counting measure
and the control operator is defined by Bg = ZlN:cl g;ei, where e; € V* are given form
functions. The adjoint operator of B is (B*p); = (e;, ) for i = 1,2..., N.. Hence, the
measure condition (3.37) can be written as

Nc
STHtel: (B 2(t))| <e}] < Cem.
=1

(iv) Consider the case of purely time-dependent controls and suppose B*Zz # 0 (otherwise
(3.36) is clearly violated). Since —A generates an analytic semigroup e~ the function
t — (B*Z(t)); can have only finitely many zeros on the interval (0,1—¢) for all e € (0, 1).
However, these zeros may accumulate at ¢ = 1. If e~/ is an analytic group, then
(B*Z(t)); is analytic on R. Consequently it can have only finitely many zeros and not
all derivatives vanish. Therefore, there is k > 0 such that (3.37) is satisfied; cf. also [88,
Theorem 1.1].
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3.3. Sufficient optimality conditions for bang-bang controls (« = 0)

(v) For a particular situation we can verify (3.37) also in the case that —A is the infinitesimal
generator of a semigroup. Suppose that z(1) = Z;”:l v; with Av; = A\ju;, v; € V, and
Aj € R. Employing [128, Lemma 2.2.2], for purely time-dependent controls as considered
in Example 3.8 we obtain

n
(B*2(t)i = > eM¥esvy), i=1,2,...,N,.
j=1

Since t — (B*z(t)); is analytic, it can have only finitely many zeros and not all deriva-
tives vanish. Thus, there is k > 0 such that (3.37) is satisfied.

3.3.1. Sufficient optimality conditions
We will show that (3.37) is sufficient for optimality of (7,q). Throughout this section, we
suppose the following assumption to hold.

Assumption 3.4. The function G: H — R is twice continuously Fréchet-differentiable. In
addition, we assume that
G"(u)éu? >0 for all u,éu € H.

The proof of sufficiency of the structural assumption for a pair (7,q) to be locally optimal
will rely on the following observation.

Proposition 3.28. Let (v,q,i1) € Ry x Qqqa(0,1) x Ry and (3.37) hold. Then there is a
constant cq > 0 such that

0L, 0, 0)(a — @) > colla — all 1/, for all g € Qaa(0,1). (3.38)

Proof. The proof is along the lines of [37, Proposition 2.7] and we give it for convenience of
the reader. For g € Q,4(0,1), set

—1/!{” 1/1‘%

e = (20— tallx@w)C) e =l

and E. == {(t,z) € [ xw: |B*Z(t,z)| > e}. Then due to (3.35) we see that

ocvana-0-v [ [a-omz=v[ [la-alzz20 [ -dipa
> enllg = all s,y = &7 (la = @ll s (1) — la - quwm\&)) -
According to (3.37) we have |(I x w) \ E;| < Ce". Hence,
g = all Lrrswp ) < @6 = dall oo () CE™
Therefore, we arrive at
0uL(,G. ) (0~ 1) > 7 (Ila = Al s 1wy — 19— Tl (i)
> e (Jla = ll 12 (1) = 25 = dall e o) C=)

_ — 1+1
= g = lpareny = eoPlla — al;i )

. —-1/k
with ¢ = % (2qu - anLoo(w)C) ) .
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3. Second order and sufficient optimality conditions

Definition 3.29. The tuple (7,q) € Ry x Qqq(0,1) is called a local solution in the sense of
L' with radius ¢ > 0 for (Py), if the inequality

v<v

holds for all admissible tuple (v, q) € Ry x Quq(0,1) with |v — | + |l — ¢l ;1 <e.

(Ixw)

The structural assumption of the adjoint state allows to prove the following growth condition
without two norm discrepancy. We emphasize that due to the particular objective functional
we do not require any additional assumption such as a condition on the second derivative of
the Lagrange function; cf. [28, Theorem 2.2] and [37, Theorem 2.8].

Theorem 3.30. Let (v,q, 1) € Ry xQqq(0,1) xRy satisfy the first order necessary optimality
conditions of Lemma 3.1. Assume that the associated adjoint state satisfies the structural
assumption (3.37). Then there are constants € > 0 and ¢ > 0 such that the growth condition

cla—dalliife, <v-v [=hwq) - i@ q) (3.39)

holds for all admissible (v,q) € Ry X Qqq(0,1) with |v —v| < e.

Note that a localization with respect to ¢ is implicitly contained in Theorem 3.30, due to

141 _
clla—allytif, <v-

IN
™

To prove the result, we first observe that under Assumption 3.4 the second derivative of the
Lagrange function can be bounded from below as follows.

Proposition 3.31. Let (v,q) € Ry X Quq(0,1), i > 0, and 0 < Vpin < Vmax. There is ¢ >0
such that

_ _ _ _2 _ _
O, ) Le, ae, m)lv = 7,9 — @ = —clv = 0> = clv = 7lllg = dll g2

for all v,ve € Ry, q,q¢ € Qaa(0,1) with Vmin < v, Ve < Vmax.

Proof. Set v = v — v and 6q = ¢ — q. Define u = S(vg,q¢), ou = S'(vg, ge)(0v,q), and
5t = S"(vg, q¢)[6v,g)?. Moreover, let z¢ be the corresponding adjoint state with terminal
value uG'(ug(1))*. Then we observe

AG (u(1))du(1) = (2¢(1),da(1)) — (2¢(0), da(0))
1 1 1 1
- /0 (0,58, z¢) + /0 (Ouze, 50) = /O (0450, z¢) + /0 (DAST, z)

1
= 2(51// (Bdq — Adu, z¢) dt.
0
Thus, because o = 0, and using Assumption 3.4 on G”, we find

1
O, (v, e, 1) 6, 00)% = G (ue(1)) u(1))? + 26w | (Bog — Adu, z¢)dt

1
> —2|5V|/ (BSq — Adu, z¢)| dt.
0
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The Cauchy-Schwarz inequality and the stability estimates for u,du, and z, see Proposi-
tion A.26, further imply

8(2V,q)£<yf’q57la>[6y7 (5(]]2 > _‘51/’ (HB(quLQ(I;V*) + H(SU’HLQ(I;V)) HZEHLQ(I;V)

ov Iz x
> —c|ov]| HB5QHL2(I;V*) | | ”B%HL? (v T HU5HL2 (I;V) —— G (ue(1) | -
Ve vV

Since g¢ is uniformly bounded due to boundedness of Q.q(0,1) as well as v¢ is uniformly
bounded from below and from above, there exists a constant ¢ > 0 such that

Oy L (e, g, 1) [0V, 4% > —clov[® — c|ov]]|3q]| 27 v
proving the assertion. ]
Proof of Theorem 3.30. Let (v,q) € Ry X Qqq(0,1) be admissible with |v — 7| < /2. Set

dv =v —v and dq¢ = q — q. Using feasibility of (v, q), the fact that g > 0 from the first order
necessary optimality conditions for (v, q), as well as Taylor expansion we find

V-V = jO(Vv Q) *jO(D’Q) > jO(Va Q) +/lg(u,q) - (jo(ﬂ,(j) +ﬂg(ﬂa6>)
:‘C(V7Q7ﬂ)_‘c(ﬂ Qaﬂ)

:a(u,q)ﬁ(y Qa )(5V 5Q)+ a(uq)‘C(V&Q&ﬂ)[éV’ 5Q]27

with appropriate v = v+, (v —7) and q¢ = ¢+ &4(q¢—q) for 0 < &, &, < 1. Thus, according
to Proposition 3.31 there is ¢; > 0 such that

v — 7> 0y, L0, 1) (v, 69) — c1]ov* — c1|0v][16a]l 121 x):
Since 0,L(V,q, i) = 0 and using Proposition 3.28, this further implies

1+1/k

2
v—U2>cobllqg— QHL1 (Ixw) — crlov|” — Cl|6V|||5QHL2(I><w)'

Applying Young’s inequality to the last term with p =2+ 2/k and p' = p/(p — 1) yields

el < 5 (20)" + Lz,
for any € > 0. Clearly, we have
1600 221y < 106112 e 1001 1%y < s = all 2 (o 18017 1y
Choosing ¢ = (coﬁp/(ch))l/p llgp — %HZOO () We obtain

1+1/k

e1lov]18al| () < c2ldv ] +7||5 Izt (1)

where co > 0 is a new constant only depending on the quantities ¢y, c1, K, qq, and g,. Hence,

it follows that _
/ 14
v + ea|0v” + erlov? > 2L lq — *Hl;l/jw
For |dv| < min { (3¢1)~", (3¢2) /@' =D} we deduce that

—”1+1/H

2 %
ov + 5\5V‘ 2 < lla = dllr (7w

which in particular implies that v — v = v > 0 and we conclude the growth condition with
e =min{7/2,(3¢1)"", (3c2)"Y® =D} and ¢ = 3¢yr7/10. O
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3. Second order and sufficient optimality conditions

3.3.2. Stability analysis with respect to «

Last, we discuss the stability of (150) with respect to the regularization parameter a. Let a
locally optimal solution (7, q) of (]30), i.e. with a = 0 be given. We would like to approximate
this solution by locally optimal solutions (7, G.) for (ﬁa) with regularization parameter
a > 0. Of course, we are interested in estimating the order of convergence.

Proposition 3.32. Let (7,q) be a globally optimal solution to (Py) and (Va,qa) e a globally
optimal solution to (Py) for some a > 0. Then

0<vq—v< %CQM a, (340)
where Cq,, = manEQaquH%Q(w)

Proof. Since v is globally optimal for (]50), we infer v < v,. Similarly, as (¥, ¢o) is globally
optimal for (P,), we have

o < JalFas ) < a0 =7 (145 [l

Combining both estimates yields

_ _ (07 1,2 _ (%
7o <7 (145 [ Naltae ) <7 (1+5C0.).

where Cg,, = maxquaquHig(w), from which we conclude (3.40). O

Proposition 3.33. Let {(Va, Ga) }a>0 be a sequence of global solutions of (ﬁa) Then Uy — U
in Ry and g — ¢* in L"(I X w) as a — 0 for some q¢* € Quq(0,1) and any r € [1,00).
Moreover, the pair (v,q*) is a global solution of (Fp).

Proof. From Proposition 3.32 we immediately infer v, — v. Moreover, due to boundedness
of Go in Quq(0,1), there is a subsequence, denoted in the same way for simplicity, such that
do — q¢" in L*(I X w) with some fixed s > 2 and ¢* € Q,4(0,1). In the last step we have used
sequentially compactness of Q,4(0,1) with respect to the weak star topology.

Employing feasibility of (4, qn) for (P, P )y 1-€. §(Vay Go) < 0, we find
9V, q0") < 9(Va, 4a) + 9V, ") — 9(Va, @0)| = [9(V,0") — 9(Va, Ga)|-

Hence, complete continuity of the mapping (v,q) — i1.5(v,q), see Proposition A.20, and
passing to the limit & — 0 imply feasibility of the pair (v,q¢*) for (Fy). In summary, (v, q*)
is a global solution of (Pp) and it remains to verify the convergence.

Since (7, ¢*) is also feasible for (P,), we infer

,;a( 2/anHLZ,M)ga(z/o(,qa)<ja(vq —D( 2/\\ 172 )

Because v < 7, the above estimate implies
! 2 ! 2
— *
| 1@l < [ e,
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3.3. Sufficient optimality conditions for bang-bang controls (« = 0)

Using weak lower semicontinuity we obtain

1 1 1 1
2 .. — 2 . — 112 2
/O g 172 Shgggf/o 1al72 () Shrgjgp/o 1alz2(w) S/O " IZ2 )

This gives fochjaH%g(w) — folHq*Hig(w) as a — 0, which implies g, — ¢* in L*(I x w) due to
weak convergence. The convergence result in L" (I x w) for r € [1,00) follows from Holder’s
inequality and the control constraints. O

Theorem 3.34. Let (7,q) be a local solution to (Py) and suppose that there exist constants
€>0,c>0, and k > 0 such that the growth condition

clla—allyiifs, <v-m (3.41)
holds for all admissible (v,q) € Ry x Qqa(0,1) with [v — |+ |lg = ql[ 11 (1x.) < €. Then there

are constants ag, ¢ > 0, and a sequence of local solutions {(Va, Ga)}as0 of (Pa) such that
0<va—v<ca and |[qa—qllp (e < co”

for all 0 < a < ag.

Proof. We apply a localization argument, cf. [32], and introduce the auxiliary problem

9(Va,qa) <0,

B ~ (3.42)
Va = V| + [|ga — QHLl(wa) <p

inf  jo(Va,qa) subject to {
VQERJ,_

do EQad(Ovl)

where p = ¢ > 0 is from the growth condition (3.41). Noting that g(v,q) = 0, i.e. the
admissible set for (3.42) is nonempty, existence of at least one solution (2, g%) to (3.42) follows
by standard arguments. Moreover, similar as in the proofs of Propositions 3.32 and 3.33 one
can verify that

0< v —v<ca,

and @© — ¢* in L*(I x w) for some ¢* € Quq(0,1). Hence, the growth condition (3.41) implies

Hq* — (jHLl(wa) < ”q* _ QQHD(IXW) + Hqg — CjHLl(wa)
<l¢" - qopéHLl(IXw) +c (V8 — D)H/(l—i-n)
< ”q* - (jgéHLl([Xw) + Ca"{/(1+ﬁ) -0
as a — 0. This clearly forces ¢* = ¢. Therefore, for o > 0 sufficiently small the auxiliary

constraint in (3.42) is not active and (72, ¢£) is a local solution to (P,), so that we will omit
the additional super-index p in the following.

Using again the growth condition and feasibility of (v, q) for (ﬁa), we find
1+1/k a_ (1o _ _a_ o (s = _
|| Ga — QHLl (I xw) + 5’/04 0 ”%Hm(w) S Vo=Vt 5’/& HchHL2 (w) = Ja(Vas Qo) — v

< jal,d) ~ 0= 5 /IquLz(w
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3. Second order and sufficient optimality conditions

Thus, since v < ,, we obtain

1 1
141 o 112 _ _ 2
o=l < 5 (7 [ Nale — 7 [ aaliag)
1 1
o _ —12 = 12
<57 ([ Malia — [ Naal )
a_ [ o
= S [ @+ da = ) < callda = e

where we have used Holder’s inequality and that gn, ¢ € Qqq(0,1) C L*°(I X w) with uniform
bound independent of « in the last inequality. O
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4. Optimization algorithms

This chapter is devoted to the theoretical and practical aspects concerning the numerical
solution of the time-optimal control problem (P). We consider the general formulation of
Chapter 2, where we in addition restrict ourselves to the choice

(6
L(q) = 5HQH% for a > 0.

In the case a > 0, the resulting problems can be solved by standard methods. Therefore, in
Section 4.1 we will only discuss one method, namely the augmented Lagrangian method to
deal with the state constraint. For the particular case that U is the sublevel set of a smooth
function G, i.e.

U={ueH:Gu)<0},

we will prove convergence of the augmented Lagrangian method under certain assumptions.
Here, we essentially follow the presentation from [81, Chapter 3]. For the subproblems aris-
ing in the augmented Lagrangian method we will briefly discuss a bilevel optimization and a
monolithic approach; cf. [92, 93]. Since all algorithms will be analyzed in a function space set-
ting, we expect that appropriate realizations of the algorithms will show mesh independence,
i.e. the number of iterations is essentially independent of the number of degrees of freedom
of a concrete discretization. The discretization of the state and adjoint state equations by
means of the Galerkin method will be discussed in detail in Chapter 5.

In order to solve the time-optimal control problem in the case a = 0, a straightforward
approach consists in solving the regularized problems for a monotonically decreasing sequence
of regularization parameters a; > a9 > ... > 0 such that lim, _,., a,, = 0. In view of the
stability results from Section 3.3.2, the corresponding solutions to the regularized problems
converge to a solution of the original problem. However, with decreasing values of «,, the
associated problems become computationally very expensive. To this end, in Section 4.2 we
will discuss a different approach that relies on a certain equivalence of minimal time and
minimal distance controls. This allows for a reformulation of (P), where we can separate
the nonconvex influence of T" and the convex structure of the remaining problem. Leading
again to a bilevel optimization problem, we will discuss different methods for the numerical
treatment of the outer and inner minimization problems. Numerical examples indicate that
the resulting algorithm is capable to solve the problem up to high precision in reasonable time.
Thus, it seems to be at least competitive with the regularization strategy. The equivalence of
minimal time and minimal distance controls can be related to the equivalence of minimal time
and minimal norm controls that is well-known in the literature; see, e.g, [54, 62, 89, 160]. In
[160, Remark 3.3] the latter equivalence has been proposed for the algorithmic treatment of
time-optimal control problems. Inspired by [160], an algorithm based on the bisection method
for the numerical solution of time-optimal control problems subject to ordinary differential
equations has been discussed in [109]. However, to the best of the authors knowledge an
algorithm for the setting subject to partial differential equations has not been studied so far.
We will compare these different approaches concerning the bang-bang case at the end of the
chapter.
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4. Optimization algorithms
4.1. Optimization algorithms for a > 0

In this section we discuss the algorithmic solution of (P) in the case o > 0 by means of
the augmented Lagrangian method. For the following considerations, we suppose that the
terminal set U can be expressed as a sublevel set of a two times continuously differentiable
function G: H — R, precisely,

U={ueH: Glu)<0}.

As before, we use g(v,q) = G(i1S(v, q)) for (v,q) € Ry X Qq4(0,1) to denote the reduced ter-
minal constraint. Furthermore, we generally suppose that (7, q) € Ry x Quq(0,1) is a locally
optimal solution to (P) that satisfies the qualified optimality conditions of Lemma 3.1.

4.1.1. Augmented Lagrangian method

The augmented Lagrangian method has been introduced by Hestenes [75] and Powell [133].
It can be seen as a hybrid method combining the multiplier and the penalty method. For
any ¢ > 0, we define the augmented Lagrangian as

2

. C
['C(V)qnu) :](V,Q) +:U’g(V7Q) + §|g(u,q)\

Let ce > 0 be fixed. Consider a sequence (¢y)nen of nondecreasing penalty parameters to be
specified later such that ¢, > c,. In each iteration, for p,_1 from the previous iteration, we
determine (v, gn) as the solution to

min L., (v,q, un—1) subject to (v,q) € Ry x Qqq(0,1). (4.1)

Clearly, for the choice p,—1 = 0 we obtain the quadratic penalty method and for ¢, = 0
the multiplier method. The advantage of the augmented Lagrangian method over penalty
methods is that it avoids the necessity of increasing the penalization parameter ¢, to infinity,
which typically leads to ill-conditioning of the involved problems. The Lagrange multiplier
is updated by the rule

Pn = pPn—1 + (Cn - C.)g(l/n, Qn)-

We summarize the resulting method in Algorithm 1.

Algorithm 1: Augmented Lagrangian method

Choose g > 0 and set n = 1;
do
Find a solution (v, g,) to

min L., (v, q, in—1) subject to  (v,q) € Ry X Qqq(0,1)

Update pi,, = pin—1 + (¢ — Ce)g(Vn, qn) and set n =n + 1;
while ’g(Vm QH)’ > Etol;

The augmented Lagrangian method has been extensively studied in the context of finite di-
mensional problems; see in addition to the references given above [14, 15] and [57, Chapter 1].
For the infinite dimensional case we can refer to [131, 142] as well as the monographs [57,
Chapter 3] and [81, Chapter 3]. We have the following convergence result.
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4.1. Optimization algorithms for o« > 0

Proposition 4.1. Suppose there are ce > 0, € > 0, and § > 0 such that the quadratic growth
condition

0
2
holds for all (v,q) € Ry X Qqa(0,1) such that |v — 7> + ||q — q”é(o,l) < e. Consider a
sequence of penalty parameters with ¢, > ce. Let (Vy,qn) and py, be defined by the augmented

Lagrangian method and suppose that v, — 0|* + ||qn — Q_Hé(o,l) <e. Then for any n > 1 and
On = Cp, — Ce the estimate

. d _ _ _
i) + 5l =7+ Slla = @l < Le(via. /)

i i 1 L1 .
Olvm = 7 + 8llan = dligo) + = ltm — A" < —lpn—1 — A (4.2)
n n

holds. In particular, this implies

1 1
=12 =112 —12 —12
lvn = V7 + [lan — @llg0,1) < amn—l — " < Tndf,uo — ji (4.3)
and

[e.e]

1
12 12 _2
>~ ou (Jvn =71 +llan = @l ) < 5luo - AP (4.4)
n=1

Proof. The result can be shown as in [81, Theorem 3.8]. Since the proof is short and instruc-
tive, we give it for the convenience of the reader. First, we have

. C
»Ccn(Vna qn, Mn—l) = ](VWQn) + Nn—lg(VWQn) + ?n|g(qun)‘2

= »Cc. (Vm Qnaﬂ) + (Hn—l - ﬁ)g(Vm Qn) +

Cn, — Ce

2

‘g(Vm Qn)‘Z
_ _ 1
= LeeWn, gns 1) + (pn—1 — 1)g(Vn, qn) + E(Mn — pn—1)9(Vn, qn)

_ 1 _
= Lc. (an Qnmu) + g (anl + pn — 2,“/) (Hn - /‘Lnfl)
n

I i _
= Lea(Vnsgn: 1) + 5~ (Itn = B = | = %) -

Since L, (Vn, Gn, in—1) < Le, (V, @, in—1) = j(¥, q), we arrive at
! | il* < j(7,q) = Led( i) + ! | il
— |, — v,q) — v, — |1 — |”.
2Un Hn M > JW,q ce \VnsQny b 2O_n Hn—1 M

Finally, the growth condition yields the first estimate (4.2). The last estimates (4.3) and (4.4)
follow from the first. O

Remark 4.2. The quadratic growth condition of Proposition 4.1 can be deduced from a
strong second order sufficient optimality condition. It would be desirable to prove the sup-
position of Proposition 4.1 assuming only that the second order sufficient condition of Theo-
rem 3.13 holds.

Proposition 4.3. Adapt the assumptions of Proposition 4.1. There is ¢ > 0 independent of
n such that

_ & _
| — 1] < \/ﬁ‘ﬂ'n—l — i
n
for alln > 1.
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4. Optimization algorithms

Proof. Since the constraint for v is not active, we can still argue as in the proof of [81,
Theorem 3.10], even though the problem with controls in a convex and closed set Q,4(0, 1)
is not included in the setting considered in [81, Chapter 3]. From the optimality conditions
for (4.1) and the optimality conditions for the original problem we infer that

al/j(yn; Qn) + (Mn—l + Cng(VTw qn)) 61/9(”71; Qn> = O,
0,j(7,q) + pdyg(v,q) = 0.

Abbreviating fin, = pin—1 + ¢ng(Vn, gn) and summing both equalities imply

- _ — = o _ — = -
(fn = ROy, ) = 5 (HQHé(o,l) - ||QTLH2Q(O,1)) + (0v9(v,@) = 0ug(Wn, qn)) fin- (4.5)

Moreover, fin, — ftn, = Ceg(Vn,qn). Hence, fi,, is uniformly bounded due to boundedness of
(Vn, Gn, pin) that is guaranteed by Proposition 4.1. Since

Hn — 0 = (/ln - [L) + Ce (g(Vnan) _g(ﬂv(j))

the desired estimate follows from (4.5), Lipschitz continuity of g and ¢’, and (4.3). Here we
have used that qualified optimality conditions hold at (v, q), i.e. d,g(7,q) # 0. O

In view of Proposition 4.1 for ¢, sufficiently large, the iterates (v, q,) converge to (v, q) at
least at the same rate as p, converges to . If ¢, — ¢® for n — oo with some ¢® < oo and
cn > co sufficiently large, then from Proposition 4.3 we deduce that p, converges g-linearly
to . If ¢®* = 0o, then we even obtain g-superlinear convergence of .

It seems that for the choice of the sequence of penalty parameters ¢, there is no general
rule. In the numerical experiments we therefore take the heuristic from [14, p. 405]. If the
constraint violation measured in |g(vp,¢,)| is not decreased by a certain factor, then the
penalty parameter is multiplied by a factor (say 2 — 10).

4.1.2. Bilevel optimization

In order to implement Algorithm 1, we have to determine a solution to (4.1) for given pu,—1
and ¢,. A bilevel approach consists of splitting the optimization in two steps, where we
optimize for v in the outer loop and for ¢ in the inner loop. Whence, we obtain

min  min L. (v, q, tn—1)- 4.6
SO ety Cen (0 0 tin) (46)

Clearly, the optimization problems (4.1) and (4.6) are equivalent. In the context of time-
optimal control problems a bilevel approach has also been proposed in [93, 94].

Let us introduce the value function of the subproblem as

Viv)= min L., (v,q, ptn—1)-
) = _min | Lo, 1)

We denote by ¢(v) an optimal solution to the minimization problem above. For the solution of
the outer problem we are interested in continuity and differentiability properties of V. To this
end we require the notion of polyhedricity; see Definition 3.22. Recall from Proposition 3.23
that in case of box constraints for the control the set of admissible controls is polyhedric.
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4.1. Optimization algorithms for o« > 0

Proposition 4.4. Let v € Ry and pn—1 € Ry, Suppose that Quq(0,1) is polyhedric and that
G" (u)[-, -] is positive semi-definite for allu € H. Moreover, let pip—1+cng(v,q(v)) > 0. Then
the value function V is differentiable with locally Lipschitz continuous derivative and we have
the expression

a 1
Vi) = 1+ 10000 + (et + engla0) [ (BaW) = Auz), (@)
where uw = S(v,q(v)) and z € W(0,1) satisfies
— Oz +vA*Z2=0, 2(1)=G"(u(1))". (4.8)

Moreover, V admits a second order directional derivative

1
V()60 = (jin1 + eng(v, 4(1))) [ /0 (Bq(v) — Au,82) — (Adu, z)]
1 1
e /0 (Bi(v) — Au, 2) /0 (Bi(v) — Au+ vBsq(5v), 2),

where dq(dv) is the directional derivative of q(v) in direction év that is determined by a
variational inequality (given in the proof below), du = S'(v,q(v))(dv,0q(dv)), and 6z is the
solution to

— 00z + VA Sz = —dvA*z,  62(1) = G"(u(1))[du(l), ]*. (4.9)

Proof. The proof relies on established arguments where we refer to [21, Section 5.1]; cf. also
[67, Proposition 3.16] and [81, Chapter 2]. For convenience we abbreviate

f(yv Q) = ECn (1/7 q, ,unfl)‘
The chain rule yields
9af (v, 0)0q = av(q,6q) p2(rxw) T+ (Bn—1 + cng (v, @) 9qg(v, @)dq.
Since g — 115(v, q) is affine linear and G”(u) is positive semi-definite we obtain
Ouaf (1, 7(1))04% = avlBal D01y + n (Bug(v, G + (it + eng (v, 7(1))) Dgag (v, 4(1))06°
2
2 0”/||5QHQ(0,1)

for all d¢ € Q(0,1). Hence, f satisfies a strong second order sufficient optimality condition.
Therefore, according to [21, Proposition 5.2 (ii)], the mapping v +— ¢(v) is locally Lipschitz
continuous.

Let v € R4 and 7; € R such that 7; — 0. Set ¢; = ¢(v + 7;) and ¢ = ¢(v). Employing local
Lipschitz continuity of v +— ¢(v), we conclude that the quotient Tj_l(qj —q) converges weakly
to some dq € Q(0,1). In addition, since 0,4 f(v, q) is elliptic, it defines a Legendre form; see
[21, Proposition 3.76]. According to [21, Theorem 5.5], the weak limit dq is in fact a strong
limit and satisfies a so-called linearized variational inequality: Find d¢q € C such that

F(6v,6q)(§ —dq) >0 for all £ € Cy,),
where C; denotes the critical cone

Cq=Tq,,00) N{0q € L*(I x w): 9,f(v,q)0qg =0},
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4. Optimization algorithms

and the functional F' is defined by

F<5V7 5Q)() - O‘<5VQ(V) + vdgq, ')LQ(IXUJ)
+ (bn—1 + cng(v,q(v))) (Ovqg(v; 4(v)) (v, ) + Dgqg(v, a(v))[0g; )
+ cn (Ovg(v,q(v))0v + 9gg(v, q(v))dq) Dgg (v, q(v))(-).

Since 9, f(v,q)dq = 0, we finally obtain

Tj_l [V(V+Tj) - V(V)] = Tj_l [f(V+Tj7Qj) - f(V7 Qj) + f(V)Qj) - f(Vv Q)]
— 61/f(yv Q) + 8qf(l/a Q)(Sq = 8Vf(ya Q)'

The concrete expression (4.7) for 9, f(v,q) follows as in Proposition 2.21. Moreover, from
(4.7), local Lipschitz continuity of v — q(v), and Lipschitz stability of the solution to the state
and adjoint state equation, we further deduce that v — V’/(v) is locally Lipschitz continuous.

The formula for the second derivative follows by total directional differentiation of the ex-
pression for V'(v) and using again 9, f (v, ¢)dg = 0. O

Note that if p,—1 > 0 the additional assumption p,—1 + ¢,9(v, ¢(v)) > 0 in Proposition 4.4
is satisfied at least close to an optimal solution (v, q).

In view of Proposition 4.4 in order to solve the outer loop of the bilevel optimization problem,
we have to determine v € R, such that V’/(r) = 0. Thus, the second derivative of V allows for
a semismooth Newton method to solve the optimization problem; cf. also [94, Algorithm 2].
Alternatively, one can employ a derivative free optimization method such as a bisection type
method to find a minimum of the value function V. This avoids the calculation of the
directional derivative dg(ov).

4.1.3. Monolithic optimization

We next discuss an alternative approach to the bilevel optimization for the solution of the
subproblem (4.1) arising in the augmented Lagrangian method. In contrast to the previous
subsection, we consider the joint optimization for the free terminal time and the control in one
combined optimization variable (v, q) € Ry X Qq4(0,1). We therefore refer to this approach
as the monolithic optimization; cf. also [92].

The resulting optimization problem is nonlinear and subject to control constraints. Using the
differentiability results for the control-to-state mapping Proposition 2.20 we infer that the
reduced objective functional is twice continuously differentiable. Hence, one can use standard
optimization methods for the solution of (4.1). To efficiently deal with the control constraints,
we employ the semismooth Newton method proposed in [92] for time-optimal control of the
monodomain equations. It is based on an equivalent reformulation of the problem by means
of the normal map due to Robinson [135].

The method from [92] can be directly applied to our setting with slight modifications. Instead
of the terminal tracking formulation of [92, Section 3.2], we take the augmented Lagrangian
as the objective functional. We sketch the main steps in the derivation of the method and
define the "normal map” for our purposes as

F(Va w) = 8(1/,q)£cn(1/7 PQad (w) aun—l)* + ( 0 (Va 1/1) € R-l— X Q(O, 1)

av(y = Fo,, (¥)) ) ’
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4.2. An algorithmic approach for bang-bang controls (o = 0)

The crucial observation is that if (v, ¢,) € RxQ44(0, 1) is a local solution to (4.1), then there
exists ¥, € Q(0,1) such that ¢, = Pg,, (¢¥n) and F(vy,v¥y,) = 0; cf. [130, Proposition 3.5] or
[92, Proposition 5.6]. Hence, in order to solve the minimization problem (4.1), we have to
determine zeros of F'.

In the following we abbreviate ¢ = Pg,, (¢) and fi, = pin—1 + cng(v,q). Since the term
avPg,, (1) in the second component of F' cancels out, we have the expression

1+ $llal3 0. + fin Jo (Bg — Au, z) )

F(v,¢) = ( v b+ Vi B

where u = S(v, q) denotes the state and z is the solution to the adjoint state equation (4.8).
To apply a Newton type method to F(v,1) = 0, we require the linearization of F. In the
case of box constraints for Q.4 defined on a measure space (w, 9), the generalized differential
of Pg,, can be given as DPg_, (v) 09 = 176%, where 17 denotes the indicator function
associated to the set of inactive constraints

T={(t,x) eI xw: qu(z) <Y(t,x) < gp(x) }.

With a chain rule for nonsmooth operators, we calculate the generalized derivative of F' at
the point (v,1) as

a(q,09) (o) + fin Jy [(Bq — Au, 62) + (Boq — Adu, z)] dt

+cn [fol (Bq — Au, z) dt} fol [(Bq — Au, z)ov + v(B*z, 5q)Q} dt
DF (v, ) (dv,6¢) = :
a[dv + v + iy, [0vB*z + vB*)z]

+vey, fol [(Bq — Au, z)év + (B*z, 5q)Q} dt B*z

where 6¢ = 176%, du = S'(v,q)(év,dq) denotes the linearized state, and 0z is the solution
to the second adjoint state equation (4.9). For the convergence analysis of this semismooth
Newton method and globalization approaches we refer to [130, Chapter 3].

4.2. An algorithmic approach for bang-bang controls (o = 0)

After the discussion of algorithms for the time-optimal control problems with a fixed cost
parameter o > 0, we now consider an algorithmic approach for the case of bang-bang controls,
i.e. @« = 0. First of all we will prove the equivalence of minimal time and minimal distance
controls. This gives rise to a reformulation of the time-optimal control problem (P) which
allows to separate the minimization for the terminal time T" and for the control q.

4.2.1. Equivalence of time and distance optimal controls

For given 6 > 0 consider the perturbed time-optimal control problem

%I;f;) T subject to ulq](T) € Us, (Ps)

4€Qud (OvT)

where Us = U + Bs(0) = {u € H: dy(u) <4 }. Here, u[g] € W(0,T) denotes the solution to
the state equation defined above.
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4. Optimization algorithms

Moreover, for fixed T' > 0 we consider the minimal distance control problem

Lt du(ula (D)), (51)

where diy(-) denotes the distance function

() = inf Jlu— .

We define the value functions T': [0, 00) — [0, 00] and §: [0,00) — [0,00) as
T() =inf (Ps) and d(7T) = inf (o7).

From boundedness of @4, linearity of the control-to-state mapping (for fixed T > 0), and
weak lower semicontinuity of the distance function, we immediately infer that the value
function 6(+) is well-defined. However, to verify well-posedness of T'(-) we require an additional
assumption; cf. also Proposition 2.14 and Remark 2.15.

Proposition 4.5. Let § > 0. If (Ps) has a feasible point, then T(-) is well-defined on [J, o).
Proof. This result follows by standard arguments using the direct method. O

Throughout the rest of this chapter we assume that there exists a feasible point for § = 0.

Proposition 4.6. Set §* = dy(ug). The function T': [0,0°] — [0, 00) is strictly monotonically
decreasing and right-continuous.

Proof. Step 1: T strictly decreasing. Clearly, T' is monotonically decreasing. To show strict
monotonicity, let §; > d > 0. We have to show T'(61) < T'(d2). Suppose T(d1) = T(d2) and
let (T'(di),¢i) € Ry X Qaa(0,7(6;)) be optimal solutions to (Pj,), i = 1,2. Since

dy (u[ge](T'(62))) = 02 < 01,

we infer that (7'(d2), g2) is also feasible for (Ps, ). Note that in the problem formulation we can
equivalently use dir(u[g](T)) < 0 and dy(u[g](T")) = 6. From continuity of u[ge]: [0,T(d2)] —
H and T(61) = T(d2) we deduce that (T'(d1),q1) cannot be optimal for the time-optimal
problem (Pj, ). This contradicts the assumption and we conclude T'(61) < T'(d2).

Step 2: T is right-continuous. Consider a sequence d; > d2 > ... >, — 6 € [0,0°). We
have to show lim, oo T(6,) = T'(J). Assume that lim, oo T'(d,) # T(0). Then, due to
monotonicity of T, there is € > 0 such that

lim T(5,) = T(6) — e.

n—o0

Let ¢ = gn(0n, T(0r)) € Qaa(0,T(y)) denote an optimal control to (Ps,). We can extend
each ¢, to the time-interval (0,7°(d)) so that ¢, € Qqq(0,7°(5)) for all n € N. Due to
boundedness of Q,q, there is a subsequence denoted in the same way such that ¢, — ¢ in
Q(0,7(5)) with ¢ € Qaa(0,7(6)). Now, Lipschitz continuity of d7(-) implies

i dp(ulga) (T(5,))) > Tim dyy(ulg)(T(6,))) — ¢ Jim [ulg)(T(5,)) — ulgn)(T(52))]

> lim du(ulg)(T(6,)) = ¢ lim  sup [ulg](t) — ulgn] (1)]
t€[0,7(9)]

= lim dU(u[q] (T(dn)))ﬂ

n—oo
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4.2. An algorithmic approach for bang-bang controls (o = 0)

where in the last step we have used compactness of the control-to-state mapping from
Qaq(0,T(0)) to C([0,T(d)]; H); see Proposition A.20. Therefore, continuity of u[g]: [0,T(0)] —
H yields

6= lim 5, = lim du(ulg.)(T(65,))) = du(ulg)(T(5) - ).

n—oo

Thus, (T(6) — ¢, q) is admissible for (Ps), contradicting optimality of T'(¢). O

Proposition 4.7. Let T(-) be left-continuous. Then §(-) is continuous and strictly mono-
tonically decreasing. Moreover,

T(T)) =T for all T' €[0,T(0)] (4.10)

and
(T (8)) =68 forall & €10,5%. (4.11)

Proof. First, since T is strictly decreasing, its inverse 7! is continuous. Moreover, as T is
continuous, 7~ is defined everywhere on [0, T(0)]; see, e.g., [5, Theorem I11.5.7].

Let T" > 0. Then there exists ¢ € Qq(0,7") such that dy(ulq](T)) = o(T). Hence, it holds
T(6(T)) < T. Suppose that T(6(T)) < T. Then by continuity of T" there exists ¢’ < 6(T")
such that T'(8") = T. Let ¢’ € Quq(0,T) be an optimal control to (Pys). Then

0" < o(T) < dy(ulg)(T)) < ¢,

a contradiction, which proves (4.10).

Moreover, (4.10) implies that T'(6(T'(6"))) = T(8") for all & € [0,4°]. Strict monotonicity of
T therefore yields (4.11). For these reasons, § = T~ ! and we conclude that § is continuous
and strictly monotonically decreasing. O

After this preparation we can now prove equivalence of time and distance optimal controls.

Lemma 4.8. Let T(-) be left-continuous. If T > 0 and q € Quq(0,T) is distance-optimal
for (or), then (T,q) is also time-optimal for (Psry). Conversely, if 6 > 0 and (T,q) €
Ry X Qud(0,T) is time-optimal for (Ps), then q is also distance-optimal for (dr).

Proof. Let T > 0 and ¢ € Quq(0,T) be distance-optimal for (ér), i.e. §(T) = dy(u[q](T)).
Due to (4.10) we have T'(6(T")) =T Thus, (T q) is also time-optimal for (Ps(r)).

Conversely, let 6 > 0 and (T, q) € Ry X Quq(0,T) be time-optimal for (Ps). In particular,
this gives dy(u[q](T)) = 6. Using (4.11) we infer that

i.e. ¢ is also distance-optimal for (7). O

Remark 4.9. The assumption that the value function T'(-) is left-continuous used in Propo-
sition 4.7 and Lemma 4.8 generally depends on the state equation, the set of admissible
controls, and the terminal constraint. Recall that in Theorem 2.18 we derived a sufficient
condition for Lipschitz continuity of T'(-) from the right. By similar techniques, we can derive
a condition that guarantees Lipschitz continuity of 7'(-) from the left. As seen in Section 2.4,
such conditions can be verified explicitly for many examples.
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4. Optimization algorithms

If (Pj) is strongly stable on the right at § = 0, we immediately infer an estimate for the
optimal times in terms of the minimal distances. Recall that strong stability on the right is
defined as

T(O) ~ () <md, o €[0,e],

for constants 19 > 0 and £ > 0; see Definition 2.16. Since T'(-) and 4(-) are inverse to each
other, this implies the following estimate.

Corollary 4.10. If (Pj) is strongly stable on the right at § = 0, then
0<T T <nyd(T

for all (T —eng)™ <T' < T, where T = T(0) is the optimal time for § = 0.

4.2.2. Regularization of the minimal distance problem

We will suppose throughout the rest of this section that 7() is left continuous. In view of
Lemma 4.8, we are interested in finding a root of the value function §(-) in order to solve
the time-optimal control problem (P). This will generally lead to a bi-level optimization
problem: In the outer loop we optimize for 7" and the inner loop determines for each given T’
a control with minimal distance to the target set. For the outer optimization we will discuss
a bisection and a Newton method. Concerning the inner optimization, we will consider the
conditional gradient method and the primal-dual active set strategy. Before we turn to the
optimization methods, we will first introduce a regularized version of (7).

Since dy (ulg](T)) = 0 if and only if d?,(u[g](T)) = 0, we can alternatively minimize the
squared distance function. For fixed T' > 0 and a > 0 we consider the regularized minimum
squared distance control problem

. 15 « 2
o 5 () + Sl (412)

We emphasize that the unregularized case a = 0 is not excluded. Again, we transform the
problem (4.12) onto the reference interval I = (0,1) and obtain the optimization problem

. 1 2 /. (0% 2
qulfif(O,l) §dU(115(V, q)) + 5””@”@(0,1)- (4.13)

As in Proposition 2.19 we find that the problems (4.12) and (4.13) are equivalent. For given
a >0 and v € Ry, we define q,(v) as

Jo(v) € argmin {dQU(ilS(V, q)) + OWHQH2Q(0,1)} ) (4.14)
quad(Ovl)

i.e. @o(v) is a solution to (4.13). Since the distance function is convex, the objective functional
in (4.13) is strictly convex in case a > 0 and whence the optimal solution g, (v) is uniquely
determined. In case that o = 0, there might be several minimizers g, (r). We consider the
value function V,: Ry — R associated with (4.13) defined by

1 ) _ a
Va(v) = 56%(215(% da(v))) + §V‘|qa(’/)”z}(0,1)'

Then we easily obtain the following a priori regularization error estimate.
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4.2. An algorithmic approach for bang-bang controls (o = 0)
Proposition 4.11. Let v € Ry. If §(v) € Qquq(0,1) is a solution to (4.13) with o = 0, then

0% S (1S 0u0) — 38 (1151, 8() < Valv) ~ Vo(¥) < a2 ]la:) o,

for all a > 0.
Proof. This follows as in Proposition 3.32 using optimality of ¢(v) and g (v). O

The minimizers of (4.14) satisfy the following necessary optimality conditions.

Lemma 4.12. Let v € Ry and o > 0. Then qo(v) € Qua(0,1) is locally optimal for (4.13)
if and only if

1
/O (aga(v) + B 2a;q — Ga(v)) 2 0 for all g € Qqa(0,1),
where the associated adjoint state z, € W(0,1) is the solution to

Oyza + VA 2 =0, za(1) = i18(v, Ga(v)) — Pu(i1S(v, u(v))).

Proof. Since the squared distance function d#(-) is convex and Fréchet differentiable with
Vd? (u) = 2 (u — Py(u)), see Proposition 2.11, the result follows by standard arguments; see,
e.g., [147, Lemma 2.21]. O

Depending on the choice of the optimization methods for the inner and outer loops, we
might require @ > 0. To determine Vy(r) we are therefore interested in continuity and
differentiability properties of g, (v) and V,,(v) with respect to «. In particular, these results
will be used for a path-following approach for the solution of the inner problem by means of
the primal-dual active set strategy.

Proposition 4.13. Let v > 0 and a1, az € Ry. Then

|y — g

1o () = Gas (V) [l 0,1y < 130> ()l 0.1y

Proof. This follows along the lines of the proof of [130, Proposition 2.31]. In particular, we
use the optimality conditions of Lemma 4.12 and the fact that Vd? (i1.S(v,q)) is monotone
since d%(i15(v, q)) is convex; see [12, Proposition 17.10]. O

In related contexts, it is well-known that the value function is differentiable and concave with
respect to the regularization parameter «; see, e.g., [130, Section 2.5.2] and the references
given therein. This is also valid in our situation. More specifically, we obtain

Proposition 4.14. The function Ry > a — V,(v) is continuously differentiable and concave.
Additionally, the expression

d

- 2
1 Vo) = 5llaaWlgey, v e R+, (4.15)

holds for all o € (0, 00).
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4. Optimization algorithms

Proof. Let v € R;. We first show that o — V,(v) is concave. Let 6 € (0,1), ag, a1 > 0 be
given and set ap = fap + (1 — 0)a;. Using optimality of ¢,, and g,, yields

oy () + (1 = Vo, () < & (1 (1) + €000y () .1
5 (08t (1)) + 10y () )
= Vae(’/>v

where we have set uq, = S(v, Gq,(v)). Concavity of the mapping a — V,,(v) implies that it
is locally Lipschitz continuous; see, e.g., [12, Proposition 8.28]. Hence, using Rademacher’s
theorem we infer that it is differentiable almost everywhere; see, e.g., [53, Section 3.1.2].

To verify the expression for the first derivative, from (4.15), we observe that for e > 0 the
difference quotient is bounded from below and above by

1 1 _
~ Vase0) = Val2) = o (@8 (wal1)) + (@ + a0 o
— d (ua (1)) = o]lGa (B0
v, _ 2 1
= 5“‘101@)”@(0,1) < - (Va(v) = Va—e(v)).
Hence, for ¢ — 0 we find that
v, _ _
AEValv) < 2 laa)ligon) < daValw),

where d} and d; denote the directional derivatives with respect to « in positive and negative
direction. Thus, we conclude (4.15). Finally, Proposition 4.13 yields that a — [[Gall g 1) i
continuous completing the proof. O

Proposition 4.15. The function Ry > a — V,(v) is two times differentiable almost every-
where. Furthermore, the estimate
2

v, _ 2
0< _@Va(u) < a”fla(’/)HQ(O,l)

holds for almost all o € Ry and all v € R4

Proof. Since —V,, is convex with respect to o due to Proposition 4.14, existence of the second
derivative almost everywhere is consequence of Alexandrov’s theorem; see, e.g., [53, Sec-
tion 6.4]. Additionally, from convexity of —V,,, we infer that its derivative is monotone; see
[12, Proposition 17.10]. Thus

d d
il - < .
<daVa+T(V) daVa(V)> 7<0, 7TeR, a+7>0

Dividing by 72 and letting 7 — 0, yields %Va(y) < 0. For the remaining estimate, using
Proposition 4.13, for any 7 € R such that o + 7 > 0 we obtain
C Vot (V) — S Val0) = 2 ot (V) — Go(0). s () (1)
do a+r\V do alV —2Qa+TV qo\V), Qa+7\V qa\V
v, _ _ _ _
< §an+7(u) - Qa(’/)HQ(o,1)H(Ia+r(V) + Qa(V)HQ(O,l)

vit| 7, _ - 2
< Y0 (“th-FT(V)”Q(O,l)”qOé(V)HQ(O,l) + HQa(V)HQ(o,l)) :

Finally, dividing by |7| and letting 7 — 0 yields the remaining estimate. O
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4.2. An algorithmic approach for bang-bang controls (o = 0)

4.2.3. Bisection method for the outer optimization

In view of Lemma 4.8, in the limit case o = 0, we find that V(v) = 0 if and only if v =T is
time-optimal for (P5) with § = 0. Therefore, to solve the time-optimal control problem (P),
we can equivalently determine the root of Vj(+). Since d(+) is strictly monotonically decreasing,
see Proposition 4.7, so is Vj(+). Hence, a first approach would be to use the bisection method
to iteratively find a root of Vj(-). For simplicity, we suppose that U is weakly invariant
under (A, BQ,q); see Definition 2.1. This automatically implies that Vo(v + 7) = 0 for all
7 > 0. Note that the standard bisection method is applied to functions that have a zero with
nonvanishing first derivative at that point. Since V| equals zero for times larger than , this
leads to the modified bisection algorithm sketched in Algorithm 2.

Due to the fact the time interval is halved in each iteration, its accuracy can be controlled
by the number of iterations denoted nmax. More specifically, to reach the tolerance e, we
require

. log(vy — vg) — log el
log 2
number of iterations. Under strong stability, we immediately obtain g-linear convergence for
the value function.

Algorithm 2: Bisection method for solution of minimal distance problem (outer loop)

Choose v, < vp;
Calculate d,, = Vp(ve) and dp = Vo(vp);
if d, =0 or dy # 0 then
‘ Error: Optimal time is not contained in [v,, vp);
end
Set vy = (Vg + 1) /2;
for n =0 to nypa.x do

Calculate d,, = Vp(vn);
if d,, = 0 then
‘ Set vy, = vp;
else
‘ Set v, = vp;
end
Set Vi1 = (Vo + 1) /2;
end

Proposition 4.16. Let v € Ry be the optimal time for (P) with a = 0 and suppose that U
is weakly invariant under (A, BQuq). Moreover, let v, < vy, be such that v, < v < vp. If (Fy)
is strongly stable on the right at § = 0, then for |v, — v| sufficiently small we have

1 — v, \?
0< Volva) — Vo(?) < » (”"”) g2,
2 Mo

where v, denote the iterates generated by the bisection method; see Algorithm 2.

Proof. Due to strong stability on the right, we have

ST = 8(T) <" (T —1T").
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4. Optimization algorithms

for all (T — eng)t < T" < T. Moreover, by definition of Algorithm 2, the iterates satisfy
lvn — 1| < 27™(vp — v,). Hence, if v, < v, it holds

0 < Vo(vn) = Vo(B) < ng % (v — va) 272"

because of Vy(r) = 0. For the remaining case v, > v we have Vy(v,) — Vo(v) = 0, due to
weak invariance. O

Hence, we have to determine go(v), in order to iteratively solve the time-optimal control
problem. We will come back to this question in the following. Let us first discuss a Newton
method for the outer loop that leads to improved order of convergence under appropriate
assumptions.

4.2.4. Newton method for the outer optimization

In order to apply the Newton method to efficiently compute a root of the value function V,,
we require differentiability of V,, with respect to v. For the following considerations, we in
addition suppose that the terminal constraint U is given by

U={ueH: ||lu—uqlly <d}

for some dyp > 0 and ug € H. Then, we easily find a simple reformulation of (4.13). Instead
of minimizing the squared distance function, we can equivalently consider the minimization
of the squared norm, i.e.

. 1. s 0« 2
qeégif(m) S8, @) —uall”™ = 5~ + S vldllge,)- (4.16)

By an abuse of notation for given o > 0 and v € R, we define ¢,(v) as

Go(v) € argmin [[[i1S(v.q) — ual® + avlglde )|
quad(Ozl)

Furthermore, we consider the associated value function V,,: Ry — R defined by

1,. _ o 0 o 2
Va(v) = 5\\215@&(1/)) —ugl|” — ) + 5””%(”)”@(0,1)'

In this case, the necessary and sufficient optimality conditions of (4.16) are given by

1
[ (@) + B zsq ~ () dt > 0 for all g € Qua(0,1),
0
where the associated adjoint state z, € W(0, 1) is the solution to
— Ozq VA 24 =0,  24(1) = ua(l) — ug, (4.17)

with uq = 115(v,qa(v)). As before, we obtain the following a priori regularization error
estimate

0 < [[i1S (v, @a(v)) — uall® = 1S (v, a(v)) — wall* < avlla)[Ie.1y; (4.18)

cf. Proposition 4.11. Moreover, for differentiability of the value function, we require the
notion of polyhedricity; see Definition 3.22. Recall from Proposition 3.23 that in case of box
constraints for the controls the set of admissible controls is polyhedric.
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4.2. An algorithmic approach for bang-bang controls (o = 0)

Proposition 4.17. Let « € Ry and v € Ry. Suppose that Q.q(0,1) is polyhedric and that
U = Bs,(ugq). Then the value function Vy is differentiable with locally Lipschitz continuous
derivative and the expression

I a
Vi) = [ (Btav) = Aua, z0) + 5 () 0.1y (419)
holds, where zo € W(0,1) satisfies
—0za + VA 20 =0, 24(1) = ua(l) — ug,

and uq = S(v, Go(v)).

Proof. This follows as in Proposition 4.4. We give the proof for the convenience of the reader.
Set

1,. Q
d(v,q) = 5[[15(w,q) —ually and  f(v,q) = d(v,q) + ¥l

Since ¢ — i1.5(v, q) is affine linear, we immediately infer that

Dgaf (v, 9)0¢* > aszéqHé(OJ) for all ¢,dq € Q(0,1)

and f satisfies a strong second order sufficient optimality condition. Therefore, according to
[21, Proposition 5.2 (ii)], the mapping v — ¢, (v) is locally Lipschitz continuous.

Let v € R4 and 7, € R such that 7, — 0. Set ¢, = ¢o(v + 7) and ¢ = ¢, (v). Employing
local Lipschitz continuity of v + g, (), we conclude that the quotient 7, !(g, — q) converges
weakly to some d¢ € Q(0,1). In addition, since Jgqf(v, q) is elliptic, it defines a Legendre
form; see [21, Proposition 3.76]. According to [21, Theorem 5.5], the weak limit dq is in fact a
strong limit and satisfies a so-called linearized variational inequality. The latter in particular
implies that 9, f(v, ¢)0g = 0, because dg belongs to the critical cone.

For these reasons, we finally obtain

7'7?1 Va(v+m) = Va(v)] = 7'1;1 [fW+Tn,qn) = f(Vsan) + f(Vgn) — f(v,9)]
— 8yf(V7 Q) + aqf(ya Q)(Sq = al/f<1/7 Q)'

The concrete expression (4.19) for 9, f(v, q) follows as in Proposition 2.21. Moreover, from
(4.19), local Lipschitz continuity of v — ¢4(v), and Lipschitz stability of the solution to
the state and adjoint state equation, we further deduce that v — V! (v) is locally Lipschitz
continuous. O

Remark 4.18. It would be desirable to prove differentiability of V, for o = 0 under a
structural assumption on the adjoint state such as the one used in Section 3.3. This would
probably lead to a setting in L'. However, [21, Theorem 5.5 relied on reflexivity of the
underlying space.

We emphasize that given the solution g, (v), it is computationally very cheap to evaluate the
derivative V/(v). Indeed, using for instance the primal-dual active set strategy to solve (4.16),
then all variables required for the computation of V! (v) have already been computed for the
inner loop and we simply have to calculate the inner product and the norm in (4.19). For
this reason, one step of the Newton method has approximately the same computational costs
as one step of the bisection method; see Algorithm 2.
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Basically without additional costs, we can use the following Newton method to find a root of
Va(+). Given v, > 0, we calculate the next iterate vy, by the formula

Va ()

Upnt1 = Vn — V/(I/ )
[e% n

We have to argue that the Newton iterates are well-posed, i.e. we have to show that V.
is uniformly bounded away from zero in some neighborhood of v. The following proposi-
tion provides a sufficient condition for well-posedness, under the assumption that qualified
optimality conditions hold for all solutions to the original problem.

Proposition 4.19. Let (v,q) denote an optimal solution to (P) Suppose that qualified
optimality conditions hold for all optimal solutions to (P) with o = 0. Then for v > 0
sufficiently small, we have V) (v) < 0.

Proof. Consider a sequence of optimal controls ¢,(7) with @« — 0. Due to boundedness
of Quq(0,1), there is a subsequence denoted in the same way converging weakly to some
q € Qqq(0,1). Hence, the corresponding states u, = S(v, qo(v)) satisfy uq, — u in W(0,1)
and uq(1) — w(1l) in H due to compactness of the control-to-observation mapping; see
Proposition A.20. The latter implies z, — z in W (0, 1). Moreover, employing (4.18) we have

[u(l) = ugll < llua(l) — uall = [Ja(1) = ugll + 6o + [|u(1) — ua(1)||
< cva+ dp + cf|u(l) — uq(1)]] — do.

For this reason, we infer that (v, q) is feasible for (P). Due to optimality of v and o = 0, we
further deduce that the tuple (7,q) is an optimal solution to (Pp). Let u € Ny(u(1)) be an
associated Lagrange multiplier. According to Proposition 2.8 and [40, Corollary 10.44], since
U = Bs,(uq), the normal cone is given by

Ny(u) ={ Mu—ug): A >0} ={v—wu:veHwith Py(v) =u}

for all w € H with ||u — ug|| = dp. Thus, there is pp > 0 such that u = po(u(l) — ug). In
summary, we get

1 a 9
20) = [ (B1a®) = Aua z0) + 5 1) 0.
1 1 «
< 1o +/0 (B(da(9) — q) — Alug —u), 2) +/O (Bal#) ~ Aty 20— 2) + 5 Cl,

due to the qualified optimality conditions. Weak convergence of ¢,(7) — ¢ and u, — u as
well as convergence of z, — z imply the existence of o > 0 such that V() < 0 for all
a < ag. OJ

We summarize the Newton method for the outer loop of the optimization in Algorithm 3. By
means of Proposition 4.17 and well-known properties of the Newton method, see, e.g., [126,
Theorem 11.2], we infer fast local convergence of Algorithm 3.

Proposition 4.20. Adopt the assumptions of Proposition 4.17 and suppose V() # 0. Then
the sequence v, generated by Algorithm 8 converges locally q-quadratically to v.

In order to implement this method in practice, as for the bisection algorithm one has to
efficiently calculate g, (). We will discuss two approaches in the sequel.
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4.2. An algorithmic approach for bang-bang controls (o = 0)

Algorithm 3: Newton method for solution of minimal distance problem (outer loop)

Let a > 0 be given. Choose vy > 0;
for n =0 to nya.x do
Calculate ¢, = Go(vn) and u, = S(vp, qn);
if Vo (vn) < €407 then
‘ return;
end
Evaluate V. (v,) using (4.19);
Set vpi1 = vy — Va(n) V()Y
end

4.2.5. Conditional gradient method for the inner optimization

For both the bisection and the Newton method we have to determine the solution to (4.14) for
a sequence of v. Following the presentation from [50], we introduce the conditional gradient
method (cG) as follows. For convenience we abbreviate

1 ) «
fla) = §dz2f(115(1/, q)) + 5””‘]”2@(0,1)

neglecting the v and « dependence for a moment. Clearly, we are interested in minimizing f
over Qq4(0,1). Let g denote an optimal control. We emphasize that all statements also hold
for the case a = 0 that is of particular interest in this section. By means of Propositions 2.11,
2.20 and 2.21, we infer that f: Q(0,1) — R is continuously differentiable and its gradient can
be expressed as

f'(@)" =v(ag+ B"z),
where z € W(0, 1) satisfies
—Oiz+vA*2 =0, z(1)=u(l)— Py(u(l)),

and u = S(v,q). Given ¢, € Qu4(0,1), we take

Gnt1/2 €14 € Qua(0,1): f'(gn)(q — an) = UeQier(o ) f(gn)(v —an) }- (4.20)

In many cases g,1/7 is directly given by a simple formula. For example, if @ = L?(w) with
(w, 0) a finite measure space and box constraints

Qua={q€L?w):q<qx)<qae rcw},

where g4, qp € R, ¢4 < qp, we obtain the explicit expression

Ga, if ag, + B*z, >0,
dn+1/2 =
iy db, if agn + B*z, < 0,

almost everywhere. Moreover, we determine the optimal convex combination of ¢, and g, 112
as

An = argmin f((1 — A)gn + Agny1/2)- (4.21)
0<A<1
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For example, in the case that U = Bs,(uq), the expression can be analytically determined,
employing the fact that ¢ — S(v, q) is affine linear. Finally, the next iterate is defined by the
minimizing argument from (4.21), i.e.

dn+1 = (1 - )\n)Qn + )\nQn-i-l/Q'

Using convexity of f and the definition of g,41/2, we immediately obtain the following a
posteriori error estimator

0< flan) — f(@) < f'(gn)(gn —q) < elax | F (@) (an — @) = f(qn)(@n — dny1)2)-

The expression on the right-hand side can be efficiently evaluated using the adjoint repre-
sentation and serves as a termination criterion for the conditional gradient method. The
algorithm is summarized in Algorithm 4.

The conditional gradient method has the following convergence properties.

Proposition 4.21. Let (qn)n be a sequence generated by the conditional gradient method.
Then f(qn) decreases monotonically and

flao) = f(9)

0< flan) - flg) < TS

n >0,

with a constant ¢ exclusively depending on the Lipschitz constant of f on Qqq(0,1), the initial
residuum, and Qqq(0,1).

Proof. This follows from [50, Theorem 3.1 (i)], since both f and Q,4(0,1) are convex. O

Under additional assumptions, improved order of convergence can be shown. To this end, we
assume that Q = L?(w) for a finite measure space (w, o). If the control operator B defines a
linear bounded operator from L'(w) to H, then under a structural assumption on the adjoint
state, the objective values converges g-linearly. Recall that a similar assumption has been
used for sufficient optimality conditions in case of bang-bang controls; cf. Section 3.3. We will
encounter this condition again in Section 5.5 in the context of finite element discretization
error estimates for bang-bang controls.

Proposition 4.22. Let Q = L*(w), a =0, and B: L'(w) — H. Moreover, let z denote the
adjoint state associated to q. Suppose that there is C' > 0 such that

H{(t,z) eI xw: —e < (B*2)(t,x) <e}| <Ce
for all e > 0. Then there is A € [1/2,1) such that

0< flgn) = f(@) < [f(2) = F(@] A", n=0.

The constant X\ exclusively depends on C, qa, q», w, and the Lipschitz constant of f' on
Q44(0,1). Moreover, for a constant ¢ > 0 we have

lgn = @l 1 (1xe) < A2, 0> 0.
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Algorithm 4: Conditional gradient method for solution of (4.13)

Let o > 0 and v > 0 be given. Choose gy € Qq4(0,1);
for n =0 to nya.x do
Calculate u, = S(v,q,) and z,;
Choose g,,41/2 as in (4.20);
if f'(qn)(gn — @ns1/2) < €101 then
‘ return;
end
Calculate A\, by (4.21);
Set gni1 = (1 = An)a@n + Annt1/2;
end

Proof. Since B: L'(w) — H, the variation of constants formula implies that the control-to-
state mapping is linear and continuous from L'(I x w) to C([0,1]; H). Hence, f as a mapping
defined on L'(I x w) is (infinitely often) continuously differentiable. Furthermore, as in the
proof of Proposition 3.28, we find that

F(@a—D = colla—al7rrxw)y ¢ € Qaal0,1),
for some constant ¢g > 0. Therefore, the assertion follows from [50, Theorem 3.1 (iii)]. O
In practice, the desired tolerance ey, for the inner loop can be heuristically chosen based on

the current iterate. If V,(v,) > 0, then for the outer loop it is sufficient to solve the inner
optimization only up to a coarser tolerance. This suggests the heuristic

Etol = max{etargetv ﬁf(qn)}

with a suitable chosen € (0,1) and egarget denoting the target tolerance at the optimum.
We observe good results in our numerical examples with 3 = 1073,

4.2.6. Primal-dual active set strategy for the inner optimization

In order to solve the minimization problem (4.13), in this subsection we consider an alternative
method to the first order method discussed before. We will discuss the solution of (4.14)
by means of the primal-dual active set strategy (PDAS), where we essentially follow the
presentation of [81, Chapter 7]. In the following, we suppose o > 0.

As before for the Newton method for the outer optimization, we restrict to the special case
when the terminal constraint U is given by

U={ueH: |lu—ug|lg<d}

for some &y > 0 and ug € H. Moreover, we assume @ = L?(w) as before and box constraints
for Quq. Let C: L?(I x w) — H denote the (affine linear) control-to-observation operator
associated with the state equation for fixed v, i.e. Cq = i15(v, q). We abbreviate

1 9 2
flq) = §||Cq —ugllz + §V\|Q||L2(1xw)

neglecting the v and « dependence for a moment. Clearly, we are interested in minimizing f
over Q44(0,1). The primal-dual active set strategy is introduced as follows. We choose d > 0
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and an initial control ¢y € Q(0,1). By a slight abuse of notation, in each iteration, we compute
the associated state u,, = Cg,, (evaluated at the terminal time) and the corresponding adjoint
state z, = (C")*(un—uq). Note that z, is not the adjoint state as before, because it is already
multiplied by B*. Moreover, we set

1
Hn = ——2n — Q4n,
(6%

and the active index sets are defined as

A ={(t,z) € I x w: pp(t, ) + d(gn(t,x) — qa(z)) <0},
A, = {(t,2) € I xw: pn(t, @) + d(gn(t, z) — gu()) > 0}

The PDAS can be seen as a prediction strategy that predicts on the basis of (g, ) the true
active and inactive sets. Given the current iterate g,, the new iterate ¢,1 is determined as
the solution to the linear system

Ga on A%,
Unp+1 = CQnJrl,

n+1 = @ on Ab
Zp1 = (C) (Upg1 —ua), 4 "

—éznﬂ else.
The system above can be equivalently written as

Znt1 — (C") uny1 = —(C") uq, (4.22)

(1—Tag — L) 2ns1 + Gns1 = Laaga + 1 g g,
where 144 and 1 4, denote the characteristic functions associated with A7 and Ab | respec-
tively. Note that (4.22) can be efficiently solved numerically employing an iterative solver
such as GMRES or BICGSTAB; see, e.g., [139, Sections 6.5, 7.4.2] and [52, Section 7.1].

If A2 = A% | and A% = A% | then the optimal solution is found. In practice it is frequently
observed, that this condition can be used as a termination criterion; see [81, Remark 7.1.1]
and the reference therein. However, scattering might occur and therefore we use the norm of
the indicator function of changed indices as a stopping criterion; cf. also [83, Example 5.3].
The PDAS for the solution of (4.14) is summarized in Algorithm 5.

Algorithm 5: Primal-dual active set strategy for solution of (4.13)
Let o > 0 and v > 0 be given. Choose gy € Q44(0,1) and d > 0;
for n =0 to npyax do

Determine active sets A% and A%;

Set 1y = (A7, # Al _1) V (A, # AD_y);

if [[rollp2(rxw) < Etor then

‘ return;
end
Calculate solution ¢,11 to (4.22);
end

Under suitable assumptions on the regularization parameter o and the parameter d, Algo-
rithm 5 is guaranteed to converge globally, i.e. independent of the initial value gp.
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4.2. An algorithmic approach for bang-bang controls (o = 0)

Proposition 4.23. Let d > 0 as in Algorithm 5. Suppose there is v > 0 such that

2 2

+y<d< + =
o+ 7y o= — + —.
7ol

Then ¢, — Go(v) in L*(I x w) as n — oo.

Proof. Noting that the control-to-observation operator is affine linear and compact from
Q44(0,1) into H, see Proposition A.20, this follows as in [91, Theorem 3]. O

Choosing v = « in Proposition 4.23, we obtain the following sufficient criterion for global
convergence
211 < a.

It is well-known that the PDAS can be interpreted as a semismooth Newton method; see
[76]. We therefore can expect fast convergence, if the initial value is sufficiently close to the
solution.

Proposition 4.24. Let « > 0 and v € Ry. Suppose that B*: V. — LP(w) for some p > 2.
The primal-dual active set strategy converges locally q-superlinearly.

Proof. Since q — CJq is affine linear, we obtain

1@ > av||8q]|F2 (140 404 € Q(0,1),

which is a strong second order sufficient optimality condition. Moreover, the mapping g — Cq
is continuous from L2(I x w) into V. In addition, (C")* is linear and continuous from V into
C(]0,1]; LP(w)) < LP(I x w) for some p > 2 due to the supposition on B*. In summary,
(C")*Cq is continuous from L?(I x w) into LP(I x w). Hence, arguing as in [76, Theorem 4.1]
yields the assertion; cf. also [151]. O

Remark 4.25. The regularity assumption on the adjoint of the control operator can be
satisfied for all prototypical control scenarios considered in Section 3.1.2.

(i) In case of a distributed control, B* is the restriction to w operator. According to
Proposition 3.4, we have H}(£2) < LP(£2) for p > 2. For these reasons, we obtain
B*:V — LP(w) for some p > 2.

(ii) For Neumann boundary control, we take B* = Tr, where Tr denotes the trace operator.
According to Proposition 3.5, we have Tr: H%p(()) — LP(I'y) for 0 € (1/p,1). Employ-
ing Proposition 3.4, we find H}(£2) < H%p(ﬁ) for 1 —d/2 > 60 — d/p or, equivalently,
d(@ — 1+ d/2) > p. Hence, the supposition is satisfied for, e.g., § = 3/4. Since d > 2,
we have p > 2 for all § > 0, so in particular for § =1 — 26y with 6y € (0,1/4).

(iii) In case of purely time-dependent control, we have B*: X;_y, — L?(w) due to As-
sumption 2.2. Since V < X; 4, and L?(w) = RNe 2 [P(w) the supposition is clearly
satisfied.

In practice, a path-following strategy with respect to the regularization parameter « is recom-
mendable. For a systematic derivation we adapt the idea of an appropriate model function,
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where we follow [77]. Motivated by the a priori estimate of Proposition 4.11, we consider an
affine linear model function

Va(v) = my(a) = my o + mp 1o

for parameters my, 9, my,1 to be calibrated in each iteration of the path-following strategy.
For a,, > 0, based on current data, we require

mn(n) = Vo (), () = = Vi, ().

Hence, Proposition 4.14, implies
v, 2
Mo = Vo, (V) = Mpiom,  mp = §‘|Qan(V)||L2(IXw)'

Using Proposition 4.15 and Taylor’s expansion of V,(v) at «,, immediately imply

an 42

V. ' ap)dd < .
[ a2V )la’ —a0)da’ < man)

Vao (V) = mn(ao) +
for 0 < ag < . Letting ap — 0, yields 0 < my,(0) — Vp(v). Moreover, from Proposition 4.11
we infer that

v, _
1 (0) = Vo(v) = Vi () = 1100 = Vo(0) < 2170321
In summary, we have the error estimate
v, _
0 < mu(0) = Vo(v) < anqu(V)Hingw)'

Using the model function we will deduce an update strategy to get the next regularization
parameter a,11. Ideally for a sequence of 7,, € (0,1) we would like to have

Va1 () = Vo(W)| < | Ve, (v) = Vo(v).

Plugging the model function into the inequality for Vy(v) and V,, ., (v), due to linearity of

Qn 41
my, we simply obtain a1 = .

4.2.7. Numerical examples

Last, we conduct two numerical examples in order to verify our findings of the preceding
subsections in practice. The discretization scheme of the state equation, the adjoint state
equation, and the control variable will be discussed in detail in Chapter 5. Therefore, we
will be brief here. The discretization is based on a Galerkin method. The state and adjoint
state equations are discretized by piecewise constant in time and continuous and cellwise
linear functions in space. Since we expect the control to be bang-bang, the control variable
is discretized by temporally and spatially piecewise and cellwise constant functions.

We use both the bisection method and the Newton method for the computation of the optimal
time. The inner optimization problems are solved using the conditional gradient method. In
addition, we have implemented the following acceleration strategy for the conditional gradient
method: Instead of minimizing the convex combination of the last iterate g, and the new
point ¢, y1/2 in (4.21), we search for the best convex combination of all previous iterates
plus the new point g,,/5. For the acceleration strategy, we use CVX to solve the arising
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convex subproblems; see [63, 64]. To keep the memory requirements moderate, points that
are associated with small coefficients in the convex combination are being deleted from the
stock. In practice, we observe that this strategy significantly improves the convergence. This
is of particular interest for problems, where the structural assumption of Proposition 4.22 is
not fulfilled and, hence, g-linear convergence is not guaranteed. However, we are not able
to give conditions that guarantee fast convergence of the accelerated conditional gradient
method. For further details on improved convergence of variants of the conditional gradient
method in finite dimensions we also refer to [98].

Moreover, we compare the conditional gradient method and the primal dual active set strategy
with path following for the inner optimization. For the path following strategy we use the
heuristic choice of 7,, given by

Tpt1 = max { Tmin, M { Tmax, (|Gl 27 xw)/ (dotn + anll 2(150)) } (4.23)

where d, Tmin, and Tyhax have to be calibrated manually. We obtain good numerical results
for d = 1000, Tyin = 0.1, and Tax € [0.8,0.95].

Numerical example with purely time-dependent control

As a first example, we consider the case of purely time-dependent controls. We control
the heat equation on a bounded domain 2 C R? with homogeneous Dirichlet boundary
conditions. The precise problem data reads as

2 =1(0,1)2 w =(0,0.5) % (0,1), wy=(0.5,1) x (0,0.5),
B:R? - L*(2), Bq=ql,, +¢l,,,

G(u) = ull72 — 363, o= 15,

Qaa(0,1) = {qg € L*((0,1);R?): —1.5<q <0}, wup(x)=4sin(nz?)sin(rz3),

where 1, and 1,, denote the characteristic functions on w; and ws. The spatial mesh is
chosen such that the boundaries of wy and wy coincide with edges of the mesh. We will revisit
this example again in Sections 5.4.2 and 5.7.1 on a priori discretization error estimates. The
corresponding value function is depicted in Figure 4.1.

For the outer optimization, we observe linear convergence of the bisection method and
quadratic convergence of the Newton method; see Figure 4.2. This is almost in accordance
with the theory, except for the fact that we do not know that the value function is differ-
entiable with Lipschitz continuous derivative for a« = 0. Concerning the inner optimization,
we observe that the conditional gradient method without and with acceleration converges
faster than the primal-dual active set strategy; see Figure 4.3. However, for high accuracy
the conditional gradient method with acceleration and the primal-dual active set strategy
perform better than the pure conditional gradient method that shows sublinear convergence
at some point.
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0.29

V()(V)
VQ(V)

0.1

Figure 4.1.: Value function V() for the example with purely time dependent control (left) and the
example with distributed control (right). Dotted lines indicate the first Newton steps.
Function values calculated by the Newton method for & = 0 and the conditional gradient
method with acceleration strategy.
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Figure 4.2.: Absolute error v, — 7| (left) and |Vo(vy,)| (right) for the example with purely time
dependent control over the iteration number in the outer loop. For each fixed v,, the inner
problem is solved using the conditional gradient method with acceleration strategy.
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107 E .
)
c
[
o
'_E’ 1078 1 - N |
S — PDAS (path-following)
w —— cG (accelerated)
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Figure 4.3.: Error |f(g,) — f(q)| for the inner loop calculated by different methods for the example with
purely time-dependent control and fixed T'= v = 1.6 over the iteration number. The PDAS
is embedded into a path-following strategy as described in Section 4.2.6, where we take
ap = 1072 and the update a,, 1 = T, with 7,, determined by (4.23) and Tpax = 0.8.
The c¢G method is carried out for a = 0.

Numerical example with distributed control

As a second numerical example, we consider the distributed control on the whole domain,
i.e. w = £2. More specifically, let

2=(0,1? w=(0,1?% & =3,

G(u) = §ull72 — 363, o= 15,

Qaa={q€ L*(I xw): —1.5<q<0},

up(x) = 4sin(mr?) sin(mas)?.

The corresponding value function is plotted in Figure 4.1 (right). Snapshots of the optimal
control are depicted in Figure 4.6. As before, we observe linear convergence of the bisection
method and quadratic convergence of the Newton method; see Figure 4.4. Moreover, we
compare the different methods for the solution of the inner optimization problem. The
accelerated conditional gradient method performs slightly better than the pure conditional
gradient method; see Figure 4.5. However, it is difficult to solve the minimal distance problem
to the same hight accuracy as in the first example.

4.2.8. Comparison to other approaches

The equivalence of time and distance optimal controls as stated in Lemma 4.8 can be related
to the equivalence of time and norm optimal controls. We will give a brief overview and
introduce two problems. Let p € [1,00] be fixed. First, for any p > 0, we introduce the
minimal time problem as

inf T subject to ula)(T) €U, alloryg) < P (4.24)

q€Q(0,7)

Here the set of admissible controls is defined by the additional constraint ||g[| (0. 1).q) < P
instead of Q44(0,1) used in our problem formulation. Note that in (Pj5) we studied pertur-
bations on the terminal constraint set, whereas in (4.24) we consider perturbations in the
control constraints in terms of the parameter p.
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Figure 4.4.: Absolute error |v, — | (left) and |Vo(vy,)| (right) for the example with distributed control
over the iteration number in the outer loop. For each fixed v,, the inner problem is solved
using the conditional gradient method with acceleration strategy.
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Figure 4.5.: Error |f(g,) — f(q)| for the inner loop calculated by different methods for the example with
distributed control for fixed T'= v = 1.1 over the iteration number. The PDAS is
embedded into a path-following strategy as described in Section 4.2.6, where we take
ap = 1072 and the update a,, 1 = T, with 7, determined by (4.23) and Typax = 0.95.
The cG method is carried out for ao = 0.
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t =0.004

t = 0.296

t =0.522

t = 0.698

Figure 4.6.: Logarithmically spaced snapshots of control for example with distributed control. Solution

calculated by the Newton method Algorithm 3 for @ = 0 and the conditional gradient

method Algorithm 4 for ei) = 10~8. White and black denote the lower and the upper

control bound, respectively.
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Second, for given T' > 0 we introduce the minimal norm problem as

inf P . subject to u|q|(T") € U. 4.25
4€Q(0,7) lallze om0 J [q](T) (4.25)

For each problem, we can define corresponding value functions
T(p) =inf (4.24) and M(T) = inf (4.25).

The connection of (4.24) and (4.25) has been extensively investigated; see, e.g, [54, 62, 89,
97, 160, 164]. More specifically, under certain conditions, it has been shown that 7'(-) and
M () are inverse to each other. For example, if U = {0} and the system is null controllable
by LP controls, then according to [62, Theorem 4.1] the value function M is implicitly defined
by the relation

M(T(p)) =p, p>0.

Recall that a system is called null controllable by LP controls, if for each T" > 0 and initial
condition ug € H there exists a control ¢ € LP((0,T); Q) such that u[ug, ¢/(T") = 0. Moreover,
equivalence of (4.24) and (4.25) in the sense above has been shown for the heat equation with
distributed control on a subset of the spatial domain with p = co and again U = {0 }; see
[160, Theorem 2.1].

In fact, the idea to build algorithms based on an equivalent reformulation of the time-optimal
control problem is not new. Wang and Zuazua proposed in [160, Remark 3.3] to solve the
minimal norm problem in order to solve the time-optimal control problem by means of the
equivalence of time and norm optimal controls. Inspired by [160], a bisection method has been
used to solve time-optimal control problems subject to ordinary differential equations in [109];
cf. also [164, Theorem 1.2]. However, to the best of the authors knowledge, neither theoretical
results nor numerical examples have been published so far in the context of partial differential
equations. An equivalence that is similar to the one of this section has been shown in [158] for
the situation of delaying the activation of the control as long as possible. Moreover, a related
approach has been developed in [70] for time-optimal control of a one-dimensional vibrating
system with controls in a subspace of L? determined by certain moment equations.

We note that both approaches require different assumptions: While the equivalence of mini-
mal time and minimal norm controls relies on exact null controllability with LP controls, our
approach requires that a certain value function is left continuous; see Lemma 4.8. It seems
to be difficult to compare these assumptions with each other. Independently, they essentially
rely on the state equation under consideration.

In comparison with the approach based on the equivalence of time and distance optimal con-
trols, we observe that the minimum norm problem (4.25) is still subject to state constraints,
in contrast to the minimal distance problem (d7) that is convex and subject to control con-
straints. For the latter class of optimization problems, efficient algorithms are available, while
the algorithmic solution of state constrained control problems is generally more difficult.

Additionally we note that, in view of the equivalence of minimal time and minimal distance
controls as well as the equivalence of minimal time and minimal norm controls, the distance
optimal solution also solves the minimal norm problem. Whence, our approach also provides
a solution to the minimal norm problem, which seems to be a nontrivial optimization problem
itself.

In the particular case of purely time-dependent controls, an alternative algorithm can be
described as follows: It directly solves the time-optimal control problem by parametrizing
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the switching points by its location and optimize for the parametrization; see, e.g., [85, 86]
for time-optimal control problems subject to ordinary differential equations. However, in the
case of distributed control such an ansatz would require to parametrize the time-dependent
switching hyperplanes which seems to cause further difficulties.

Last, the approaches based on equivalent reformulations discussed in Section 4.2 can be
compared to the augmented Lagrangian method from Section 4.1 equipped with a path-
following strategy in the regularization parameter .. Here, we would consider a sequence of
regularization parameters a; > ag > ... > 0 such that lim, . «,, = 0. For each such «, we
solve the regularized time-optimal control problem with the method discussed in Section 4.1.
In view of the stability results from Section 3.3.2, the corresponding terminal times converge
at the rate a and the optimal controls converge to a solution of the unregularized problem.
Moreover, under additional assumptions the control variable is guaranteed to converge in
LY (I x w) at the same rate a. However, for small regularization parameters the resulting
optimization problems become computationally very expensive. Comparing running times
for the numerical examples we observe that our approach based on the equivalence of minimal
time and minimal distance controls is at least competitive with the regularization approach.
However, it is difficult to find a fair measure for the comparison as the total running time
depends on various aspects. For example, the augmented Lagrangian approach equipped with
a path-following strategy in the regularization parameter strongly depends on the choice of
the initial value for the optimization. In contrast, the approach discussed in this section is
not very sensitive to the initial time for the outer optimization.

For a numerical realization there are of course further error contributions besides the error due
to regularization such as the discretization error and the modelling error between the model
and the real problem. Clearly, one is interested in controlling the overall approximation
and regularization error; see also Section 5.5 for a detailed discussion on the quantitative
behavior of the discretization and regularization error. Therefore, one could argue that we
do not have to consider « arbitrarily small as long as other error contributions dominate the
total error. However, this is only half an argument, as we wish to have control over each
error contribution.
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5. A priori discretization error estimates

This chapter is devoted to a priori discretization error estimates for the time-optimal control
problem. To set the stage, we consider the following model problem:

T
, a
Minimize j(T,q) =T + 5/ ||Q(t)|&2(w) dt,
0

T >0,
Oyu — Au = Bq, in (0,7) x £2,
) u =0, on (0,7) x 012,
subject to .
u(0) = wo, in £2,
G(u(T)) <0,
qa < Q(t) < @, in w,te (07T>

With the notation of the preceding chapters, A = —A denotes the usual Laplace operator
on a bounded domain 2 C R¢ equipped with homogeneous Dirichlet boundary conditions.
Accordingly, we take V = HE(§2) and H = L?(2). Moreover, for a finite measure space (w, o)
as in Chapter 3, the control operator B maps from L?(I x w) into L?(I x §2). This allows to
treat different control scenarios such as purely time-dependent control or distributed control
with one consistent notation. The parameter o > 0 models control costs or is a regularization
parameter. Its implications on error estimates will be discussed in detail below.

We start by giving a brief overview on related literature. Although time-optimal control is
considered to be a classical subject in control theory, to the best of our knowledge there are
only a few publications concerning the numerical solutions of such problems in the context
of parabolic equations. The existing contributions have in common that the terminal set
is given by an L2-ball around a desired state (often assumed to be zero), the objective
functional is j(T',q) = T, and the state is discretized only in space by means of continuous
linear finite elements. In [140] convergence of optimal times for a one dimensional heat
equation is proved based on a bang-bang principle. Purely time-dependent controls acting
on the boundary have been considered in [87]. For ug € H?3/?(£2) the author proved the
error estimate O(h3/27¢) with arbitrary small ¢ > 0 for the optimal times. Furthermore,
convergence of optimal times and the controls for the terminal set the L2-ball centered at
some ug with ug,uq € HY/?~¢ (£2) for boundary control has been shown in [100]. More
recently, for distributed control and ug € HE(§2) the error estimate O(h) has been proved in
[159] for the linear heat equation and for a semilinear heat equation in [165]. Both articles
use cellwise linear discretization for the control and the set of admissible controls is defined
by Qua = {q € L>((0,00); L*(w)): [|q(t)]|;2 <1 a.a. t}. Employing the variational control
discretization the error estimates O(h) for T and O(h!~¢) for the control and the state have
been shown in [60]. Convergence of optimal times and controls for a class of abstract evolution
equations has been recently shown in [148] with terminal set a closed ball centered at the
origin. We point out that the authors impose less regularity on the initial value as in the
references before, which in our setting would correspond to the assumption ug € L2(§2).
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5. A priori discretization error estimates

In contrast to the contributions mentioned above, we consider fully space-time discretization
of all variables. The state and the adjoint state equation are being discretized by means of
the discontinuous Galerkin scheme in time and the continuous Galerkin scheme in space. In
this regard we also mention [117, 118] on a priori discretization error estimates for linear
parabolic and [124] for semilinear parabolic optimal control problems. Moreover, pointwise
control constraints are included in our setting compared to L*((0,T); L?(w)) constraints
that are typically considered in the contributions mentioned above. Furthermore, we allow
for more general terminal sets and we may deal with different control discretizations.

As in the preceding chapter, we will discuss the case of bang-bang controls and non-bang-bang
controls (i.e. & > 0) separately. The results for a > 0 are already contained in [17] in similar
form. We prove optimal convergence rates in L?(I x w) for the control variable in the case
«a > 0 for different control discretization strategies. For example, in case of the variational
control discretization we obtain the convergence rate k+h? in all variables up to a logarithmic
term with k£ and h denoting the temporal and spatial mesh size, respectively. The proof is
done in two steps and strongly depends on the second order sufficient optimality condition
of Section 3.2. First, we obtain a suboptimal convergence rate for the control variable,
where we rely on a quadratic growth condition that follows from a second order sufficient
optimality condition (SSC). Conceptionally the discretization error is related to differences of
the objective functional for the continuous and the discrete solutions, where we have to take
square roots in the end. In the context of pointwise state constraints this is often acceptable,
as low regularity of the problem prevents better convergence; cf., e.g., [123]. However, the
solutions of (P) exhibit improved regularity if @ > 0, so we can expect an improved rate
of convergence. For the proof we adapt ideas from [31] for unconstrained problems to the
constrained case. In this second step, the discretization error is conceptionally related to
differences of derivatives of the Lagrange function which avoids taking square roots.

In contrast, for the discretization error estimates for bang-bang controls (i.e. & = 0), we rely
on the structural assumption on the adjoint state from Section 3.3. Here, we show convergence
rates in L'(I x w) for the control variable that are optimal, if the structural assumption
(3.37) holds with x = 1. For example, for purely time-dependent controls we prove the
convergence rate a + k 4+ h%. It is worth mentioning that all three quantities are independent
of each other and which also justifies the terminology robust error estimates. It seems that
there is a growing interest in the numerical analysis of optimal control problems with bang-
bang solutions which is reflected in a number of articles that have appeared recently. The
variational control discretization for a linear elliptic equation has been considered in [47] and
for a linear parabolic equation in [152] subject to pointwise control constraints. Moreover,
a bilinear optimal control has been investigated in [36]. The latter contribution is based on
second order sufficient optimality conditions from [37] that use both a structural assumption
(3.37) as well as a condition on the second derivative.

However, it is in general difficult to validate the structural assumption without the optimal
solution. Recall that in Section 2.3.5 we proved that the value function is Lipschitz con-
tinuous with respect to certain perturbations of the terminal set, the initial state, and the
operator under a condition that is a direct strengthening of the lower Hamiltonian condition.
In view of a = 0, this immediately implies an estimate for the optimal time. This moti-
vates the derivation of a sufficient condition that allows to construct feasible points for the
discretized problems. The sufficient condition is basically the strengthened Hamiltonian con-
dition (2.19) for the discrete problems. Since aw = 0, two-way testing yields an error estimate
for the optimal times; cf. [87]. However, estimates with rates for the controls, require further
assumptions; cf. [47] (in the context of finite element discretizations) and [37].
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5.1. Assumptions and optimality conditions

This chapter is structured as follows. In Section 5.1 we recap the optimality conditions for the
concrete problem that imply improved regularity of the solution in the case a > 0. Thereafter,
we introduce the discretization scheme and provide general discretization error estimates in
Section 5.2. Section 5.3 is devoted to a priori discretization error estimates for the case
a > 0, where we rely on second order sufficient optimality conditions. Last, we turn to case
of bang-bang controls, i.e. @« = 0. Based on the structural assumption from Section 3.3, we
show discretization error estimates for the control variable in Section 5.5. Error estimates
based on the strengthened Hamiltonian condition are presented in Section 5.6. Each part of
this chapter is accompanied by numerical examples to validate the theoretical findings.

5.1. Assumptions and optimality conditions

We summarize the main assumptions used throughout this chapter.

Assumption 5.1. We assume 2 C R? with d € {2, 3} to be a polygonal or polyhedral and
convex domain and the initial value satisfies ug € H}(£2).

Concerning the control operator we consider one of the following situations:

(i) Distributed control: Let w C {2 be the control domain that is polygonal or polyhedral
as well. The control operator B: L?(w) — L?(2) is the extension by zero operator.
Clearly, its adjoint B*: L?(2) — L?(w) is the restriction to w operator.

(ii) Purely time-dependent control: Let w be a discrete set equipped with the counting
measure. The control operator is defined by Bq = vazcl giei, where e; € L?({2) are given
form functions. Then L?(w) = RYe and B*: L%(§2) — RMe with (B*y); = (€i, ©) 12
fori=1,2,..., N..

The space of admissible controls is defined as
Qad = {q € L*(w): qu < q < qae. in w} C L™®(w)
for qu, q» € R with g, < g5. Recall that Q(0,1) := L?(I; L?(w)) and
Qaa(0,1) == {q € L*(I x w): q(t) € Quq a2 t € (0,1)} C L¥(I x w).

Concerning the state equation, we suppose that A = —A is the usual Laplace operator
equipped with homogeneous Dirichlet boundary conditions. As usual, HE(£2) is the Sobolev
space with zero trace and the corresponding dual space is denoted by H~'(2). The duality
pairing between HJ(f2) and H~!(2) is denoted (-,-). If ambiguity is not to be expected,
we drop the spatial domain {2 from the notation of the spaces. Moreover, we use W(0,1)
to abbreviate H'((0,1); H=') N L?((0,1); H3), endowed with the canonical norm and inner
product. The symbol i;: W(0,1) — H denotes the trace mapping i;u = u(1). We also define
B: L*(I x w) — L*(I x {2) by setting (Bq)(t) = Bgq(t) for all t € (0,1) and any control
q € L*(I; L*(w)) =& L*(I x w). Last, R x L*(I x w) is endowed with the canonical inner
product and we abbreviate its norm as

1/2
16,09 = (16w + 110017210 -
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5. A priori discretization error estimates

Assumption 5.2. The terminal constraint G is defined by

1 9 62
G(u) = 5”“ - ud”LQ(Q) Ty

for fixed ug € H}(£2) and Jp > 0.

Remark 5.1. (i) The regularity assumption ug € H}(2) is required for optimal order of
convergence. Since G'(u)* = u — uy defines the terminal value of the adjoint equation,
this leads to improved regularity of the adjoint equation, which in turn allows to prove
full order of convergence.

(ii) In addition, we would like to justify the regularity assumption ugy € Hg(£2) from a
different perspective, namely that of weak invariance. Recall that the target set U =
{u € L?(N2): G(u) <0} is called weakly invariant under the state equation if for any ug
satisfying G(up) < 0 there is a admissible control ¢(t) € Qg such that the corresponding
trajectory with initial value ug satisfies G(u(t)) < 0 for all times; cf. Section 2.2. Since
the formulation of (P) only requires the state to be inside the target set at the final
time 7' (but not at later times), it seems to be desirable to require the target set to
be weakly invariant, since this guarantees that G(u(t)) < 0 can be maintained for
t > T. However, this requirement already implies that the minimizing projection Py to
U in L?(2) is stable in H}(£2); see Lemma 2.6. This further leads to the requirement
G'(Py(u))* = Py(u)—uq € HY(R) for allu € HE(§2), which implies the desired property
for uq.

(iii) The error analysis remains valid for more general terminal constraints. Precisely, we
require that G is two times continuously Fréchet-differentiable, the mapping n —
G" (u)[n)? is weakly lower semicontinuous, and G is bounded on bounded sets in L*(£2).
Furthermore, G'(u)* € H{ for any u € H{.

Assumption 5.3. There exist a finite time 7" > 0 and a feasible control ¢ € Q44(0,7T) such
that the solution to the state equation of (P) satisfies G(u(T")) < 0. To exclude the trivial
case, we additionally assume G(ug) > 0.

Under Assumption 5.3 the time-optimal control problem is well-posed; cf. Proposition 2.14.
Moreover, we assume that the constraint qualification from Assumption 3.1 holds, i.e.

n = —0,9(v,q) > 0.

As in Chapter 3 we define the reduced terminal constraint by ¢(v,q) = G(i15(v, q)). For v
bounded uniformly from below and above, the derivatives of g can be estimated by uniform
constants, which will be important in the following.

Proposition 5.2. Let 0 < vpin < Vmax be given. Then there exists ¢ > 0 such that for all
dv € R and 6q € L*(I x w) the stability estimates

l9'(v, @) (6v, 6q)| < cl|(dv, g).
9" (v, ) 6w, 69]| < €ll(5v, 6q) |,

hold for all Vmin <V < Umax and q € Qqq(0,1). Moreover,

|(gl(V17Q1) - g,(VQaQQ)) (61/’ 6Q)| < CH(Vl — 2,41 — q2)||||(51/7 5Q)||7

for all vimin < v1,v2 < Vmax and q1,q2 € Qqa(0,1).
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5.1. Assumptions and optimality conditions

Proof. Since g(v,q) = G(i15(v,q)) the result is a consequence of Proposition A.26 and the
assumptions on G; see Assumption 5.2. O

Under these assumptions, the first order optimality conditions of Lemma 3.1 imply improved
regularity of the optimal solution. More specifically, we infer from the optimality condi-
tion (3.6) that

1
/ (ag+ B*zZ,q—q) > 0 for all ¢ € Quq(0,1).
0

In particular, if o > 0 this implies (almost everywhere) in I X w
(5.1)

Furthermore, as in the linear parabolic case, see, e.g., [147, Section 3.6], if a > 0, then the
following projection formula

1
q= PQad (—B*E) (5.2)
a
holds, where Pg,_, (-) denotes the pointwise projection onto the set QQ44(0, 1), defined by
Pg..: L3I x w) = Qaa(0,1), Pg,,(r)(t,z) = max {q,, min {qy, (¢, z)}}.

Proposition 5.3. The optimal state u and the adjoint state z to (]3) exhibit the improved
reqularity

u,z € HY(I; L*) N L*(I; H* N HY) — C([0,1]; HY).
Additionally, in case of distributed control with o > 0, we have
g€ H'(I; L*(w)) N L*(I; H (w)).

Moreover, if ug € Wy for some p € [2,00), then it holds Z € C([0,1]; W) and (for
distributed control with a > 0) we have g € C([0,1]; W'P(w)).

Proof. We first note that elliptic regularity yields Dy2(—A) = H? N H{, since 2 is convex;
see, e.g., [68, Theorem 3.2.1.2]. Furthermore, since —A exhibits maximal parabolic regularity
on L?, see, e.g., [99, Theorem 1], we infer u € C([0,1]; H}) due to Dy2((—A)Y?) = H].
According to Assumption 5.2 we have z(1) = G'(u(1))*n = u(u(1) — ug) € Hi. Hence,

z € HY(I; L*) N LX(I; D2(—A)) — C([0,1]; HY).
The projection formula (5.2) leads to ¢ € H'(I; L?(w)) N L?(I; H'(w)).
According to [45, Corollary 3.12], it holds Dy-1.,(—A) = Wol’p for any p € [2,00), because {2
is a convex polyhedron. Moreover, since —A generates an analytic semigroup on W =P, see,

e.g., [8, Theorem 11.5 (i)], we have z € C([0, 1]; Dyy-1,,(—A)) due to [128, Theorem 4.3.5 (ii)].
The projection formula (5.2) yields the last assertion. O
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5. A priori discretization error estimates
5.2. Finite element discretization

Consider a partitioning of the (reference) time interval [0, 1] given as
0,1]={0} UL ULU...Uly
with disjoint subintervals I,,, = (ty,—1, tm] of size k,, defined by the time points
O=to<ti<...<ty1 <ty =1

We abbreviate the time discretization by the parameter k defined as the piecewise constant
function by setting k|7, = ky, for all m = 1,2,..., M. Simultaneously, we denote by k the
maximal size of the time steps, i.e. k = max k,,. Moreover, we assume the following regularity
conditions on the time mesh:

(i) There are constants ¢, 5 > 0 independent on k such that

min ky, > ck?®,
m

(ii) There is a constant kyatic > 0 independent of k such that

kratlo —

§ kratiOa
km+1

(iii) Last, £ < 1/4 holds.

Concerning the spatial discretization, we consider a discretization consisting of triangular
or tetrahedral cells K that constitute a non-overlapping cover of the domain {2. We define
the discretization parameter h as the cellwise constant function h|x = hx with diameter
hgi of the cell K. Moreover, we set h = max hg. The corresponding mesh is denoted by
T = {K}. We suppose throughout that 7y, is regular; see Definition A.31. Let Vj, C H}
denote the subspace of continuous and cellwise linear functions associated with 7,. We define
the spatial L2-projection II,: L? — Vj, by

(u—Tpu, )2 =0 for all ¢ € V.
The corresponding space-time finite element space is constructed in a standard way by
Xpn = {Ukh S L2(I; Vi) vknlr,, € Po(Lm; Vi), m=1,2,.. .,M} ,

where Py(1,,; V1) denotes the space of constant functions on the time interval I,,, with values
in Vj,. For any function ¢y, € Xy, we set @k = @r(tm) with m =1,2,..., M, as well as

(Oklm = Chmt1 — Phm, m=1,2,... .M —1.

Now, we define the trilinear form B: R x X}, x X3, — R as

M
B(V ukh,gokh Z at%hﬂ%h L2(I;L2)
m=1

M
+ v(Vurn, Veorn) parrzy + O (Wenlm—1, @knm) + (ukn1s oxna)- - (5.3)

m=2
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5.2. Finite element discretization

Note that the definition of B above can be directly extended on the larger space X}, ,+W (0, 1),
which allows to formulate Galerkin orthogonality. Given v € Ry and ¢ € Q(0, 1) the discrete
state equation reads as follows: Find a state ug, € Xy, satisfying

B(v, ukh, okn) = V(B 0kn) p2(1,02) + (U0, Pkna) 2 for all pp € X (5.4)

We define the discrete control-to-state mapping Skn: Ry x Q(0,1) = Xy, Skn(v,q) = ugh,
where gy, is the solution to (5.4). In addition, for v € Ry and ¢ € L?(I x w) we introduce
the discrete version of the reduced constraint mapping as

9kn (v, q) = G(i1Skn (v, q))-

In the following we verify that Si; is well-defined and prove stability estimates as well as
differentiability properties. This will be imported for discretization error estimates for the
reduced constraint mapping.

5.2.1. Stability estimates for the PDE

We introduce the discrete analogue —Ap: Vj, — Vj, to the operator —A as

—(Apun, on)r2 = (Vun, Vop) 2, on € Va.

For the discretization error estimates we require stability estimates for the state, linearized
state, and adjoint state.

Proposition 5.4. For every tuple (v,q) € Ry x Q(0,1) there exists a unique solution ugy €
Xk.,n to the discrete state equation. Moreover, the stability estimates

lun (D72 + vlwrnllZe oy < e (VHBQHiQ(I;H—l) + HHhuOH%Q(I;LQ)) ; (5.5)
2 2 2
vl|Anurnlze < e (VIBal ez + [Mauoln) (5.6)
1
V(D> < (VIBal o + 5 IMrols) (5.7)

hold with a constant ¢ > 0 that is independent of k, h, v, q, ug, and ugp.

Proof. We proceed as in [117]. Setting ugp 0 = IIug the equation (5.4) can be written as

v(Vugp, VSOkh)L?(Im;B) + ([ukn]m—1, €rnm) L2 = v(Bg, SOkh)L?(Im;LQ) (5.8)

for all m = 1,2,..., M and all ¢y, € Xj 5. Hence, existence of a solution for each time
interval follows by the lemma of Lax-Milgram. Concatenation of the interval-wise defined
solutions yields ugp € Xgp. Concerning the stability estimates, first testing with ¢ = ugp
implies for allm=1,2,..., M

1 1
IV nllnria) + g llownamllie = gllurnm-alzs < V(B w)a(r
where we have used that

1
5 (lemlZe + 1elm 1122 = lom112) = (-1, om)z2. (5.9)

Summation over all m = 1,2,..., M, using Poincaré’s and Young’s inequalities, yields (5.5).
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5. A priori discretization error estimates

Concerning the second stability estimate (5.6), testing in (5.8) with ¢ = —Apugp, using the
definition of —Ay,, the identity (5.9), and summation over all m = 1,2,..., M lead to

1 2 1 d 2 2
§Hvukh(1)”LQ t3 > IVugnlm-1l72 + VIIAnugnlT2r. 12y
m=1

< (Bg, —Anugn) g2z, 2y + | VITnuo| 72
Whence, from Young’s inequality we conclude
2 2 2 2
[Vueh (D72 + vIIAnugnl72i,2) < ¢ (VHBQHLQ(I;L?) + HHhUon) :

This proves (5.6). Moreover, if uy = 0, then the estimate above immediately yields (5.7). Pro-
ceeding by superposition, it thus remains the case ¢ = 0. We argue as in [116, Theorem 4.5].
Testing in (5.8) with ¢ = —t,,, Apug, gives

Vtm”Ahuth%Q(Im;LQ) + tm([vukh]m—b Vukh7m>L2 =0.
Then (5.9) with the relations t,, = t,,—1 + kn, and ky, < Kpatiokm—1 implies

t | Vitknml| 72 + 20tml| Anrnl[72(7,,.12) = tml| Vurnm-1l72 = tml|[Vernlm-1]l72

<itm-1 ”VUkth—l ||%2 + Eratiokm—1 ||Vukh,m—1 H%Q

Summations yields

M M
IVurn(DI72 + 20 Yt Avusn | Z2(r,..z2) < kil Vw72 + kratio D 1| Vurnll Z2(,. 12y

<1+ kratiO)Hvuth%?(IxQ)'
Finally, (5.5) and superposition of the result for ug = 0 proves (5.7). O

Corollary 5.5. Let ugn, € Xy be the state corresponding to (v,q) € Ry x Q(0,1). For all
(0v,0q) € R x Q(0,1) there are unique solutions Suyy, € Xy p and 0y, € X, to the discrete
linearized and second linearized state equation, i.e.

B(v, dugp, prn) = (0v(Bq + Apugn) + vBoq, orn) r2(1.12)s
B(v, 0tkn, prn) = 2(0v(Boq + Apdukn), Prn) 121,12

for all pin, € Xy . Moreover, the estimates
1
2 2 2 2 2
ISuin()1E < e (10011 BalEacrmmsy + 5 WMaoll3e) + w11 Bol gz, ).
- 2 2 2 2
10k (1) |72 < clév] (HBQHLQ(I;H—l) + Héukh”LQ(I;Hl)) )
hold. The constant ¢ > 0 is independent of k, h, dv, v, dq, q, dugp, and Stgp,.

Similarly, we obtain for the auxiliary adjoint equation the following stability result.

Proposition 5.6. For every triple (v, f,z1) € Ry x L?(I;L?) x H} there evists a unique
solution Zyp € Xy p, to

B(v, orn: Zen) = v(f, orn) 21,12y + (21, 060(1)) - for all pn € Xip.
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5.2. Finite element discretization

Moreover,
- 1
1Zknll 2,11y < € HfHLz(I;m)+\ﬁHHh21HL2 , (5.10)
- 1
1ARZknl 21,02y < € (1 F 202y + —= Tnzall g ) (5.11)
(1;L2) (1;L?) NG

and the constant ¢ > 0 is independent of k, h, v, f, z1, and Zgp.
Proof. Existence of a solution and the stability estimates follow as in Proposition 5.4. 0

As in the continuous case we obtain a discrete analogue to Proposition 5.2 using the stability
estimates of Proposition 5.4 and Corollary 5.5 for the discrete states.

Proposition 5.7. Let 0 < vpin < Vmax be given. Then there exists ¢ > 0 independent of k
and h such that for all v € R and §q € L*(I x w) we have

|9kn (v, @) 0V, 0q)| < c||(dv, dq), (5.12)
|9k (v, )[6v, 69| < €ll (6, 6q) 1, (5.13)

for all vmin < v < vpax and q¢ € Quq(0,1). Moreover, g and g;h are Lipschitz continuous
on bounded sets.

5.2.2. Discretization error estimates for the terminal constraint

Based on the discretization error estimates for the state that are collected in Appendix A.7,
we establish discretization error estimates concerning the reduced terminal constraint.

Proposition 5.8. Let 0 < Vpin < Vmax and (V,q) € [Vmin, Vmax] X Qad(0,1). For the adjoint
state z defined in (3.9) associated with u = u(v, q) and the discrete adjoint state zxp, associated
with ugp = ugpn (v, q), i.e. zgy satisfies

B(v, @k, 2kn) = p(urn(1) — ug, ern(1))  for all prp € Xgp,

the estimate
Iz = znlagroney < cllog k{Gk + Al (1Bl ooy + luoll 2 ) (5.14)
holds. If additionally I, is stable in H', then
192 — Vainll o rizey < ellog k|5 + )l (1Ball o 1) + ol 2) (5.15)
The constant ¢ > 0 is independent of k, h, v, u, q, ug, z, and zgp.
Proof. We consider the splitting
Z—zZpp =2— 2+ Z— z1n, (5.16)
where Z denotes the solution to

—0iZ2 —vAZ=0, Z(1) = p(urn(l) — uq).
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5. A priori discretization error estimates

By means of the stability estimates of Proposition A.26 for v and Proposition 5.4 for wugy
as well as boundedness of ¢ € Quq(0,1) and v € [Vmin, Vmax] We find that u(1) and wugp(1)
are uniformly bounded in L?. Employing a stability result similar as Proposition A.26 and
Lipschitz continuity of G’ on bounded sets in L? we infer

N |
1z = 2l 2.y < CWHU(l) — ugn (1)l 2

< (vmin: vins) il log k1 (k + 12) (1Bl ooy + luolly2) . (5.17)

where we have used the discretization error estimate (A.42) in the last step. The second term
in (5.16) is a pure discretization error, therefore,

12 = 2knll 2.2y < ek + W) plllukn (1) = wall g
||V§ — VZthLz(I;[g) < C(k1/2 + h)\ﬂ‘”“kh(l) - ud”Hl;

cf. (A.31) and (A.32). The assertion follows from (5.17), the two preceding estimates and the
stability estimates (5.5) and (5.7) applied for ugy,. O

Proposition 5.9. Let 0 < vpin < Vmax be fized. Consider (v,q) € [Vmin, Vmax] X Qad(0,1)
and (6v,0q) € R x Q(0,1). Then

19v,0) — 91 (. @)| < cllog k| + 1) (I Bal ez + ol 2 (5.18)

If additionally 11}, is stable in H', then

(6 (v, 0) — g (v, )60, 3)| < cllog kl(k + h2) (I Bl 1,5 + ol ) 15,60l (5.19)
The constant ¢ > 0 is independent of k, h, dv, v, dq, q, and ug.
Proof. From the discretization error estimate (A.42) and Lipschitz continuity of G on bounded
sets in L? we conclude

19(v, @) = grn (v, )] < ¢(Vmin, Vimax) Ju(1) = upn (1) 12
< c(thmin, Vimax) /108 K| (k + 1) (11Ball oo (1,12 + l1uoll2) -

To prove (5.19), we use the adjoint representation (3.8) and its discrete analogue. Let pu € R,
then )
Bq, z — zgp) + (Au, z) — (Apugn, zip) dt
16/ (,0) — gl )] a = 0BT~ k) ¥ (Aot 2) = (Bt ) dE)
vB*(z — zkp)

Clearly, the terms involving z — zxj, can be estimated using (5.14). Concerning the remaining
terms of the first component, we have

(Au, z) — (Apugh, zkn) = —(ukh — u, Az) + (Vugn — Vu, Vagy, — Vz) — (Au, 2, — 2).
Since Au, Az € L?(I; L?), we conclude
[(Anukh, 2en) — (Au, 2)| < C(Hukh - U||L2(I;L2)|M| + ll2en — ZHL?(];L?)
Vs = Vull a(rip [Vzmn = Vallagrpe)
< c{Vmins Vinax) 108 K|k + W1 (1Bl o 15z + o1
according to (A.31), (5.14), (A.32), and (5.15). Thus,

119/ (2.9) — ghn (s D Kl < (vhmins Vana) o kI (k4 12 1] (1 Ball oy + ol 1)

which implies (5.19) due to linearity of [¢'(v, ¢) — g5, (v, @)]* O
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5.3. Error estimates for controls (o > 0)

5.3. Error estimates for controls (o > 0)

In this section we establish a priori discretization error estimates in the case that e > 0. The
results are already contained in [17] in similar form. Throughout this section we suppose that
the general regularity conditions concerning the temporal and spatial mesh from Section 5.2
are satisfied. Moreover, we assume that the projection IIj, onto V}, is stable in H'. This is
satisfied if, e.g., the mesh is quasi-uniform but weaker conditions are known; cf. [23].

To consider different control discretizations at the same time, we introduce the operator I,
onto the (possibly discrete) control space Q,(0,1) C L*(I x w) with an abstract parameter
o for the control discretization. In case of distributed control, we additionally assume that a
subset denoted 7 of the mesh 7}, is a non-overlapping cover of w to simplify the discussion.
We use the symbol o(k, h) to denote the error due to control discretization, i.e.

16— ol 21wy < ok, Bl (5.20)
where |||, stands for a potentially different norm on Q(0,1). We suppose o(k,h) — 0 as
k,ho— 0 and 1,Qad(0,1) C Qqa(0,1). Moreover, we assume |[|g[, < oo and [|q]| 2(;xy) <

llq]|,- For notational simplicity we write I5(v,q) = (v,15¢) using the same symbol. Concrete
discretization strategies for the control will be discussed in Section 5.3.3. For convenience we

define Qaa,0(0,1) = Qo (0,1) N Qaq(0, 1).

The discrete optimal control problem now reads as follows:

inf J(Wkn, qrn)  subject to  gen(Vkn, qrn) < 0. (Prn)
veh ER4

kn€Qad,s(0,1)

At this point, the well-posedness of (th) is not clear. In the following, as a by-product of
the error analysis, we will show existence of feasible points (for & and h sufficiently small),
local uniqueness, and optimality conditions. Note that the linearized Slater condition (3.1)
is sufficient to ensure existence (for k, h sufficiently small), whereas the SSC is essential for
the local uniqueness and rates of convergence of the optimization variables.

5.3.1. Construction of feasible controls

In order to deal with local solutions, we apply a standard localization argument, cf. [32]. For
a given locally optimal control (7,q) of (P) in Q.q N B,(¥,q) with p > 0 sufficiently small
satisfying first-order optimality conditions, we introduce the auxiliary problem

Vkh, <07 >
inf J(Vkh, qkn)  subject to 9kn(Vichs Ghn) < (PE)

Vkh €ER4 Uiy — U — |l < p.
€ (0,1) | (Vkn JQkn — Ol < p

We first construct a sequence of tuples {(vy,¢,)},>0 converging to (7,q) as v — 0 that is
feasible for the localized problem. In particular, this implies existence of solutions to (p,fh)
Thereafter we construct a sequence {(v-, ¢;) }r>0 converging to (74, q,,) as T — 0 that is fea-
sible for (P). Feasibility of the 7-sequence for (P) with the quadratic growth condition (3.16)
yields convergence of discrete solutions to (7, q) at a suboptimal rate. The convergence result

will later be the basis for the improved convergence rate in Section 5.3.3.
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5. A priori discretization error estimates

Proposition 5.10. Let (v,q) be a locally optimal control of problem (P) There exists a
sequence {(Vy,qy)}y>0 of controls with v = ~(k,h) that are feasible for (Pf,) for k,h,p
sufficiently small. Moreover,

vy = 7+ llay = @l 21 xwy < o (ks h) + log k| (k + h?)).

Proof. The proof follows the one of [123, Lemma 4.2]. We abbreviate x = (v, 7). Moreover,
for v > 0 to be determined in the course of the proof we set

Xy = IoX" = (V +7,159).

Employing the supposition on I, see (5.20), we obtain

Ixy = Xl <7+ ok, h)llql,- (5.21)
Moreover, using Taylor expansion of gg at I,y we find

2
91062) = 9 (130) + 793 (o X)(1,0) + L9 (x)[1, 01

Using the triangle inequality we estimate the first term by

gkn(Iox) < g(x) +19(X) = gkn ()| + clllox — x|
< ci([log k|(k + h?) + o (k, h)) = 61 (k, h) (5.22)

with Lipschitz continuity of gip, and Proposition 5.9. For the second term, we estimate
similarly

9 (1X)(1,0) < ¢'()(1,0) + e3 (log k|(k + h?) + ok, b)) < =i+ s(k,h).  (5.23)

using Assumption 3.1 and ¢'(x)(1,0) = d,9(x) = —7 < 0. Finally, for the third term, we find
due to (5.13) that

Gn(x)[, 012 < e3v2.

Collecting all estimates, we have

gkn(Xy) < c101(k, h) — v (17 — cada(k, h) — c37).

Note that the first component of ., is bounded below by  and bounded above by v + 1, so
that all constants of Propositions 5.7 and 5.9 can be chosen to be independent of x,. Taking

3c161(k, h
__ sen(kh)

g g?)% and  cada(k, h) <

w3

for k, h sufficiently small, we obtain ggs(xy) < 0. From the definition of v we further deduce
5 =k, h) = O(o(k, h) + [log k| + h2)).

Moreover, it holds ||xy — x|| < p for v, k, h sufficiently small due to (5.21). In summary, we
have that the sequence x- is feasible for (P7)). O

In particular, Proposition 5.10 guarantees that for h, k, and p sufficiently small, the set of
admissible controls of the discrete problem (P} ) is nonempty. Hence, by standard arguments
we obtain that the localized discrete problem is well-posed.
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5.3. Error estimates for controls (o > 0)

Corollary 5.11. Let h, k, and p be sufficiently small. Then there exists a solution X}, =
(Thn> @) € Ry X Qad,0(0,1) to (Pg,).

In order to ensure that the constants in the following arguments are independent of D,’;h, we
have to guarantee that ©{, is strictly and uniformly bounded from zero; cf., e.g., Proposi-
tions 5.7 and 5.9 and Appendix A.7. To this end, we always assume in the following that
p < /2, which implies 7/2 < 7, < (3/2)7 by the localization in (Pf},).

If k, h, and p are sufficiently small, then we easily verify that the linearized Slater condition
holds at x%, for the discrete problem.

Proposition 5.12. For k, h, and p sufficiently small we have
A gin(Xpp) < —1/2 < 0.
Proof. This follows with Assumption 3.1 and

8V9kh(>_(zh) < az/gb_() + ’augkh(yézh) - 81,g()_(zh)] + ‘81/9(92@}1) - 81/9(92)’7

using the error estimate (5.19), the Lipschitz-continuity of 0, g from Proposition 5.2, and the
fact that ||x%, — x|l < p by the construction of (Pf,). O

Last, we construct a sequence that is feasible for (P) and its distance to (U, @op) converges
at the rate |log k|(k + h?).

Proposition 5.13. Let k, h, and p be sufficiently small. Moreover, let (v,q) be a locally
optimal solution of (P) and let (v}, ,q4,) be any globally optimal control of (Pf,). Then

there exists a sequence {vy}r0 with T = 7(k, h) such that (vr,@5,) is feasible for (P) and
that fulfill

vy — 7| < cllog k|(k + h).

Proof. We set
Xr = (Vryar) = (Vg + 7, 8).

for some 7 € (0,1] to be determined later. Now, the proof proceeds along the lines of the
proof of Proposition 5.10, interchanging the roles of ¥ and X, and g and g, and using the
result of Proposition 5.12 instead of Assumption 3.1. Clearly, we have

s = Xinll < 7

Moreover, using Taylor expansion of g at x7, we find

2
9(x+) = 9(Xp) + 79" (o) (1,0) + % 9" (x¢)[1,0]%.

Using the triangle inequality, we estimate the first term by

9(xX0) < gin(Xhn) + larn () — 9(Xi)| < e |log k|(k + h?)

with Proposition 5.9. For the second term, we estimate similarly

9 (Xn)(1,0) < gk (X ) (1,0) + c2 [log k| (k + h?).
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5. A priori discretization error estimates

Due to Proposition 5.12, it holds g}, (X7,)(1,0) = dygkn(Xs,) = —71/2 < 0. Finally, for the
third term, we find that g”(x¢)[7,0]*> < c372. Collecting all estimates, we have

g(x-) < 1 flogk|(k + %) — 7 (7/2 — e [log k| (k + h?) — c37) .

Note that the first component of x; is bounded below by vf, > /2 and bounded above by
vp,+1 < (3/2)r+1, so that all constants of Proposition 5.9 can be chosen to be independent
of x-. Taking

1 2 n N
72601|0gk:7|(k:+h ) < T and 02|logk|(k+h2)gﬁ
n 6c3 6
for k and h sufficiently small, we obtain g(x,) < 0. From the definition of 7 we further

deduce 7 = 7(k,h) = O(Jlogk|(k + h?)). In summary, we have that the sequence y, is
feasible for (P). O

5.3.2. Suboptimal error estimates for controls

Two-way insertion of the auxiliary sequences constructed in the preceding subsections with
the quadratic growth condition yields a first convergence result.

A

Proposition 5.14. Let (v,q) be a local solution to (P). Moreover, let {(k,h)} be a sequence
of positive mesh sizes converging to zero and { (V4 , @ky,) tk,n>0 be a sequence of globally optimal
solutions to (ﬁ,fh) for p > 0 sufficiently small such that the quadratic growth condition (3.16)
as well as Propositions 5.10 and 5.13 hold. Then (U4, dy,) converges to (,q) and

7= D] + 1 = Tl 2y < € (o, )2 + [log kY2 (k12 + 1)) .

Proof. Because the tuple (v-,q,,) from Proposition 5.13 is feasible for (P), we may use the
quadratic growth condition (3.16) to estimate

o, o2 L
21 = ve = )1 < oniy) — 30.)
< 3 e, @) = 3P Gon) + 3 Wns @) — 3 (Vs ay) + 5 (v, ay) = §(,0)
S j(VTa (jgh) - j(]j]g]ﬁ QIgh) + j(V’W Q’Y) - J(Du q)v
where the last inequality follows from optimality of the pair (7%, , 47, ) and feasibility of (v, ¢,)
for (Pf,). Then, we observe

. _ . _ _ o
§ns ) = 5 tf) = O = o) (1 S
<c (1 + Z) llog k|(k + h?)
due to Proposition 5.13 and boundedness of g},,. Similarly,
. R _ (6% 2
vy, ay) —3(0,q) = (vy — ) ( 1+ §Hq'7HL2(I><UJ)
e _ _
+ 5 llay + dllz2xa ey = 2w
<e (1 + ‘;) (o(k, ) + [log k| (k + h?))

employing Proposition 5.10. Taking square roots yields the assertion. O
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5.3. Error estimates for controls (o > 0)

Lemma 5.15. Let (v,q) be a local solution to (ﬁ) satisfying the quadratic growth condi-
tion (3.16) and {(k,h)} be a sequence of positive mesh sizes converging to zero. There is a
sequence {(Vkh, Qkn) trp>0 of local solutions to problem (Pyp) such that

17 = Znl + 1 = Gonll 2y < € (o, )2 + [log k2 (K12 + 1)) , (5.24)

where ¢ > 0 is independent of k, h, Ugp, and qgn. Moreover, there exists a Lagrange multiplier
in such that the following optimality system is satisfied:

Pk > 0, (5.25)
[ SOy + B (1) + A 0) 7 (0) =0, (5.26)
/01 Ukn(QGkn + B*Zkn, ¢ — Gkn) > 0, q € Qaa(0,1),  (5.27)
G(ugn(1)) =0, (5.28)
where Ugp = Skh(Vkh, Gkn) and Zgy, € X s the solution to the discrete adjoint equation

B(Ukh, Pkhs Zkn) = fkn(Ukn(1) — ua, orn(1)),  @rn € Xeph-

Proof. The assertion follows from Proposition 5.14 noting that global solutions of (ﬁ,fh)
are local solutions of (Pyy,), since the constraint ||(vin — 7, qxn — §)|| < p is not active for
sufficiently small k,h > 0 due to the convergence result of Proposition 5.14. Furthermore,
Proposition 5.12 guarantees the existence of KKT multipliers satisfying the optimality system
stated above. O

Proposition 5.16. Adopt the assumptions of Lemma 5.15. Then it holds

it = ikn] < ¢ (log k[ (k + h) + |(7 = D, @ — @) ) (5.29)

with a constant ¢ > 0 independent of k, h, Ukn, Qrn, and -

Proof. We abbreviate x = (v,q) and Xgn = (Vgh, Gkn). Combining the optimality conditions
for (P) and (Pgp) we obtain

i = ik = 0ug(X) ™ 00J (X) — Bugien(Xkn) ™ 0 (Xkn)-
Now, we may use the discretization error estimate (5.19) to infer

i — el < 1009(X) ™" = Ougin(X) 1003 (X)
+ 100910 (X) " 0vF(X) — Ougren ()" 00 (Xan)|
10b9(X) = Ovgrn(X)| o ., —v  10vgkn(X) — Ougrn(Xen)| o .,
— —to + — - 0
3,908,900 2 T 8,00 (08ugun ()] )
+ [0vgrn (Xen) 1005 (X) — Ovd (Xin)|
< cllog k|(k + h?) + cllX — Xknll,

where we have used that 9,j(x) = fol(l + (o/2)|lq|I*) and that |0, grn(X)| = 1/2 for k and h
small enough, using again the discretization error estimate (5.19). O
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5. A priori discretization error estimates

5.3.3. Optimal error estimates for controls

Using the convergence result of the preceding subsection, we now prove optimal order of
convergence with respect to the control variable. While the previous result is based on the
quadratic growth condition, we now directly rely on the second order sufficient optimality
condition and thus avoid taking square roots in the end. The improved convergence result
will be consequence of the following Lemma.

Lemma 5.17. Let (7,q) be a local solution to (P) satisfying the second order sufficient
optimality condition (3.15) and let {(k,h)} be a sequence of positive mesh sizes such that
log k|(k + k%) — 0. Let {(Vkh, Gkn) }e.n>0 be a sequence of local solutions to (ﬁkh) converging
in R x L?(I x w) and associated Lagrange multipliers jig; converging in R. Then there are
constants ¢ > 0 and kg, hg > 0 such that

(7 = Dkn, G — @) |* < c [llog FI(k + %) 417 = aknll T2 (rxw) + 00 L0, @, ) (arn — CY)} (5.30)

for all qrp, € Quar(0,1) and all k < ko and h < hy.

Proof. We adapt the ideas of the proof of Theorem 2.14 in [31] for optimal control problems
without state constraints. Instead of working with the objective functional, we use the
Lagrange function £ and the corresponding second order sufficient optimality condition (3.15).

We abbreviate x = (7,7) and Xen = (Zkn, Gn) With the norm ||x| = (Jv|* + Hquz(lxw))l/? on
the product space.

Step 0: Preparation. Since (v, q) is optimal for (]5), it holds
NLX ) (X —x) =20 (5.31)
for all x € Ry X Qqq(0,1), and by the same arguments for the discrete problem (th)
O Lieh (Xehs eh) (Xkh — Xkh) 2 0 (5.32)
for all xzn € Ry X Qaa,0(0,1).
Using (5.31) and the fact that Q,(0,1) C Q(0,1), we find
Ox [L(Xkns 1) — LOG )] (Xkn — X) < O L (X 1) (Xkn — X)
< Oy [L(Xkns 1) — L(Xkns Bkn)] (Xen — X) + O L(Xwons Ben) (Xen — X)- - (5.33)
The first term on the right-hand side of (5.33) satisfies
O [L(Xkh» 1) = L(Xrns b)) (Xen — X) = (B — fkn)g' (Xkn) (Xkn — X)-

Concerning the second term on the right-hand side of (5.33), using (5.32) and inserting
additional terms with some arbitrary xxn € Ry X Qua,0(0,1) yield

O L(Xkhs kn) (Xkh — X) < O L(Xkhy kn) Xk — X) + OxLien(Xkhs Bken) (Xkn — Xkn)
= Ox [Lrn(Xkhs Bkn) — L(Xkhs ren)] (X — Xkn) + OxLin(Xkhs Bkn) (Xken — X)
= Oy [Lrn(Xkns Bkn) — L(Xkhs frn)] (X — Xkn)
+ Oy [Ln(Xkhs kn) — L(Xkhs Brn)] (Xkn — X)
+ Oy [L(Xkhs fkn) — LOG rn)] (Xkeh — X) + O LG Hkn) (Xkh — X)- (5.34)
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5.3. Error estimates for controls (o > 0)

Concerning the first term on the right-hand side, we find
Oy [Lan (X iken) — L(Xwens Bkn)] (X = Xkn) = Bn [9rn (Xen) — 9" (Xen)] (X — Xkn)
< cllog k|(k + h?)|Ix — xall,

where we have used boundedness of the Lagrange multipliers fig;, due to Proposition 5.16 and
the estimate (5.19). Similarly for the second term of (5.34), it holds

Oy [Lxn(Xkhs fkn) — LOkns fixn)] (xen — X) < cllog k| (k + 1) |l xen — X|I-

The third term of (5.34) is estimated using Lipschitz continuity of 0, L (due to Lipschitz
continuity of ¢’ on bounded sets)

O [L(Xkhs Bn) — LOG Hien)] (Xen — X) < ellXen — XlXxen — X-
Since L is two times continuously differentiable we find
ORL(Xkns 1) Xk — XI* = Oy [L (X 1) = LOX )] (Xikn = X) (5.35)
with X, in between x and Yg,. Together with the estimates above, we obtain
O3 L(Xkn» 1) [Xen — X < cllog k|(k + B?) (I1x — xrnll + [1X = xenll)
+ cl[xen — XIxkn = X|| + O LX Brn) (Xkn — X) (5.36)
+ 11 = firnllg’ (Xen) (Xen — X)1-
We argue by contradiction. Suppose that (5.30) is false, then there exist a subsequence of
mesh sizes {ky, h,} converging to zero and (7n,qn) € Ry X Qad,»(0,1) such that (7, q,) —
(7, ) with
X = X117 > |(1og Fnl(kn + 1)) + g = @721y + OaLCG 1) (g0 — 0]

where we use for convenience the short notation v, = vy, 5, and £, = Ly, p, etc. Setting
Xn = (¥, qn), the inequality is equivalent to

1 (llog kn|(kn + h2))2 n=XIP AL ) (X — X
1 (logkn|(kn + hi})) +Hx ol L % O 1) Oen = X).

- —112 - _i2 - _— (5.37)
n 1Xn — X X — Xl X — Xl
Define py = (7 — 7,4 — 4)] and
v L o_ -
vn = (U, 03) = —(Xn — X)-
Pn

We may assume w.l.o.g. that v — v” in R and v4 — v in L?(I x w) and set v = (v¥,v9).
Step 1: 0, L(X,r)v = 0. The optimality condition (3.3) implies

NL(X, v = Tim 9\ L(X, [1)vn = 0.
To show the reverse inequality, we consider

ONL(X, ) = lim OVL(X, F)vn (5.39)
= lim O LK, fin)vn + By [L(X, ) — £ fin)] v
= lim_ O\ L (s in)on
1m0y (£ fin) — Lo )] v
1m0y [£(%. in) — £ (X in)] v (5.39)
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The limit in (5.38) exists due to weak convergence of (v¥,v%). Concerning the second limit
in (5.39) we observe

[3x/3(>_<n, ﬂn) - 8x£n()_6m ﬂn)] Un

lim
n—oo
= nh_{go fin [9'(Xn) = gn(Xn)] vn < Cnli_{go\log kn|(kn + B7) = 0,
where we have used boundedness of fi,, and (5.19). Using Lipschitz continuity we estimate
the third limit as

n—oo
since ||vy|| = 1. Thus, the first limit in (5.39) must exist as well.
Using continuity of 9,.£ in R x L*(I x w) and the optimality condition (5.32) for X, = (¥n, Gn)
with x,, = (7, ¢,) we find
6)([:()27 ﬁ)v < nlgIolo 8x£n ()Zna ﬂn)vn

. 1 o _ o
= lim — [8x£n(Xm Nn)(07 qn — Q) + 6x£n(Xn7 Mn)(yn —V,4n — Qn)]

n—o0 pn

.1 - =

n=%0 py,
Since for any ¢ € R x L?(I x w) it holds
N Ln(Xns i) < O L(Xns An)p| + [0 Ln(Xns fin) — OxL(Xn, fin)] ]|
< ¢ (1+ log kel (kn + 12)) 116", I,
we conclude

g — (jHL2(I><w)
Pn

WL )0 < lim ¢ (1+ [log kn|(kn + 52)) =0,

due to (5.37). In summary, we proved 0, L(X, t)v = 0.
Step 2: ¢'(x)v =0. Using g(X) = gn(Xn) = 0, (5.18), (5.37), and step 1 we infer

700 = Jim = (i) = 5001 = lim, = (£ 1) = £(%,7)
= T (L0 (%) — £ )+ £(Ts 1) — L%, )

n—00 pn

< lim sup i|10g Fen|(Kn, + R2) + 0, L (X, it)v = 0.
n—oo

n

Similarly, we calculate

g'(x)v = lim L [9(Xn) — 9(X)] = lim L [(9n(Xn) — 9(X)) + (9(Xn) — gn(Xn))]

< lim sup —[log kn|(kn + h2) = 0.
n—oo  Pn
Hence, from
LN, v =7 (X)v + g (X)v =0
and ot > 0 (see (3.4)), we conclude ¢'(x)v = 0.
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5.3. Error estimates for controls (o > 0)

Step 3: v € C(y 4. Because the set

2
{MGL(IXW 5q > 0 if g(t, ) = qa

5q <0 if g(t,z) :%}

is closed and convex, it is in particular weakly closed. Moreover, due to feasibility of g, every
(gn — q)/pn belongs to the set above, so does the weak limit. Thus, v satisfies v? < 0, if
q(t,x) = qp, and v? > 0, if q(t,z) = q,. For this reason, (5.1) implies

1 1
/ / v(ag+ B*z)v?dxdt = / / v|(aqg+ B*z)v?| dz dt.
0 Jw 0 Jw

Moreover, due to 0y L(X,t)v = 0 and the first order necessary condition 9,L(x, 1) = 0 we
have the equality

1 1
0= 0,L(x, p)v? = / v(aq+ B 2,07) 12,y dt = / / v|(aq + B*zZ)v?| dz dt.
0 0 Jw
Hence, v? = 0, if aq(t,x) + B*z(t,x) # 0, and v? satisfies the sign condition (3.11) as well.
With step 1 we have proved that v € Cy 4).

Step 4: v = 0. Since ¥, — X in R x L?(I x w), it holds ¥, — ¥, where X,, was defined
n (5.35). Thus, continuity of 9, L in R x L?(I x w) yields

lim 1nf8 L (Xn,s v > lim inf 625( v + lim 1nf8 L (X 1) — L(x, )2
= lim inf 92 LY i)v2 (5.40)

n—oo

Due to (5.29) and (5.37) we have

1 o o _ 1 _ _
p*gax [L(X i) — L(X, )] (Xn — X) = 2 (fin — )9 (X) (Xn — X)
2= fin| |Ixn = X|| <|10gkn|(kn+h%) > c
S Gy = - S = - — +1| < — 5.41
%~ Xl n —xl = VA \ [t Z
Similarly, using (5.29) and since |¢'(x)vn| — 0 by step 2, it holds
B — Hnllg A — Hn =
= tinllg Cn)On =01 < JEZ 0l 11530, 4 /() — o (DD )
1xn — xII? 1Xn — X
log k| (K + h2 _
=¢ <‘ gHX‘(— A )y ) (I9'C)vnl + [IxXn = xII) = 0. (5.42)

Employing (5.40) and (5.36) we infer

lim inf 62 L0 i)v? <hm1nf8 L (X, i)v2 <hmsup82[,(xn, p)v?

n—o0

1 n n 2 n - n - X
< lim sup <C| 08 Fin|(kn + 1) (1 L Ix X”) 4 lxn =X
n—sc0 lxn — x|l Xn — Xl 1xn — Xl
. LG ) (Xn —X) | Ox LG n) — LOG )] (Xn — X)
1%n — XII° %0 — X|I°
s
Ixn — Xl
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5. A priori discretization error estimates

Here, we have used (5.37) to estimate the first three summands, (5.41) for the second last term,
and (5.42) for the last term. Last, weak lower semicontinuity of j” and ¢”, and Corollary 3.9
lead to

OYL(Y. p)v” < liminf L(X, A)v;, < 0.

From the second order sufficient condition (3.15) we conclude v = (v”,v%) = 0. Note that
this in particular implies v — 0 in R.

Step 5: Final contradiction. Using ||(vY,v)|| = 1 and v¥ — 0 we obtain

n»-n

n»vn

1
- _ 7. . v q 2 . . = q 2
0<av= avllnrr_1>1£f\|(v v|IF = 11nH_l>ggf04/0 VHUn(t)HLQ(w) dt.

Using the specific structure of j” and again strong convergence v/ — 0 in R, it holds

1
. _ 2 e e e N[
limnf o [ 70d(0) 3 d = imind 7" (O e o2
Due to ¢”(x)[0,0]2 = 0 and weak lower semicontinuity, see Corollary 3.9, we conclude
e N D e e e M\ D Dy e g1y 2
0 < liminf 5" (X)v;, < liminf j%(Y)v, 4 pliminf g" () v,
< liminf 93L(X, i)v; <0,
where we have used again (5.43) in the last inequality. O

Finally we prove the main result of this section, i.e. a priori discretization error estimates that
are optimal with respect to the control variable. We consider different control discretization
strategies.

Variational discretization of controls

As proposed in [78] for elliptic equations, cf. also [118] for parabolic equations, the state and
adjoint equations are discretized, only. The control is then implicitly discretized employing
the optimality conditions, precisely the discrete analogue to (5.2). In this case, the operator
I, is the identity and o(k, h) = 0.

Theorem 5.18 (Variational discretization). Let the assumptions of Lemma 5.15 hold and

suppose the variational control discretization, i.e. Q»(0,1) = Q(0,1). Then there is a constant
c > 0 not depending on k, h, Uk, and qi, such that

|7 — Drn| + 17 = Gl 2(1x) < cllog k[(k + h).

Proof. Lemma 5.15 guarantees the existence of a sequence of local solutions converging
strongly in R x L?(I x w). Hence, we can apply Lemma 5.17 with gz = q. O

In case of purely time-dependent control, the set w is already discrete and the space L?(w) =2
RNe does not need to be discretized; cf. Assumption 5.1. Moreover, in view of the projection
formula

_ 1 .-
akh = PQ,q (—aB Zkh) , (5.44)

which can be deduced from (5.27) with Qua,+(0,1) = Qqq(0,1), the optimal control gy,
obtained by the variational approach is piecewise constant in time with values in RNe. Based
on this observation, the controls constructed in Theorem 5.18 are already contained in a
discrete space, and we obtain the following corollary.
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5.3. Error estimates for controls (o > 0)

Corollary 5.19 (Parameter control). Let the assumptions of Lemma 5.15 hold, suppose that
w 1s discrete, and choose the piecewise constant discrete control space

Qo(0,1) = {v € Q(0,1): vls,, € Po(Ly; R), m=1,2,..., M}.
Then there is a constant ¢ > 0 not depending on k, h, vy, and qgp such that

|7 — Dyn| + 17 = Gl 21y < cllog k| (k + R?).

In the case of a distributed control, the variational control discretization has an additional im-
plementation effort in practice. Fully discrete strategies are therefore of independent interest
and we will investigate different variants in the following.

Cellwise constant control approximation

As the case of purely time-dependent controls is already covered by Corollary 5.19, in the
following we restrict to the situation of a distributed control on a subset w C {2 of the spatial
domain. The discrete space of controls is defined as follows

Qs(0,1) ={v e Q(0,1): v|1,,xx € Po(Im x K) forall K € T, m=1,2,...,M}.
Abbreviating 7, = {1,2,..., M }, on any tuple (I, K) € Zj x T, we define the piecewise
constant projection Iy : L2(I x w) = Qy(0,1) via

1

(Hkhv)(tv x) = k?m’K|

/ /Kv(s,g) deds, (tz) € Iy, x K, (5.45)

for v € L*(I X w). Moreover, we introduce the L2-projection onto the piecewise constant
functions in time as

(Mo)(t) = 1 [ v©)de, 1€ ln, (5.46)

for every v € L?(I; L?) and m € {1,2,..., M }. Then, for any v € H*(I; L?) N L*(I; H') we
obtain the projection error estimate

Ikpv = vl 27,22y < [Menv = Wev| 2.2y + (kv — | 27,129
< ChHVUHm(I;L?) + CkH3W”L2(1;L2)- (5.47)

We obtain the following error estimate for the discretization by cellwise constant controls.

Note that also in this case Lemma 5.15 only provides a suboptimal estimate of order (k +
h)'/2.

Theorem 5.20 (Cellwise constant controls). Let the assumptions of Lemma 5.15 hold and
suppose the piecewise constant control discretization. Then there is a constant ¢ > 0 not
depending on k, h, vy, and qgp such that

V= k| + 14 = Grnll L2 (1 xw) < cllog k|(K + h).

Proof. We would like to apply Lemma 5.17 with I, = Iz, and gz = I,q. Using the adjoint
state, we write the derivative of the Lagrangian as

1
0L 0.0 = [ #(0q+B'50) 2
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5. A priori discretization error estimates

Orthogonality of IIz, and v € R yield

1

LW, q,1)1oq —q) = | v(ag+ B*2154 = @) 12,

S—

=7 | (aq+ B*z2 =1, (aq+ B*2) 1,4 — @) 12

w)

I
NI

0
1
|
0
! 2
/0 (B*z2 = 1,B"%,15q — (j)L2(w) —av|lyq - qHLQ(wa)'
Hence, the improved regularity ¢, B*z € H'(I; L*(w)) N L?(I; H'(w)), see Proposition 5.3,
the fact that o, v > 0, and [[I5¢ — ql| ;2(f,12) < c(k + h) due to (5.47), imply the estimates
9LV, @ 1) (qrn — @) < v[|B*Z2 = 1o B 2| 201 o) 1o @ — @ll 121 xw)
<ec(k+h)?*.

Lemma 5.17 yields the assertion. O

Cellwise linear control approximation

The discrete space of controls is defined as follows

Qn={veC): v|g € Pi(K) for all K € T;’},
Qs(0,1) ={v e Q(0,1): v|1,,xx € Po(Im;Qp) for all m =1,2,..., M}.
Let Ij,: C(w) — Qp, denote the Lagrange interpolant on w. As before, let 7, = {1,2,..., M }
and decompose the set Z;, x T, as
Si={(m,K) €Ly xTy: |ag+ B*z| >0ae. in I, x K},
So={(m,K) ey xTy:aqg+ B*zZ=0ae. in I, x K},
S3 = (Ik X 77;0) \ (81 USQ) .

Under an additional assumption we obtain the following convergence result.

Theorem 5.21 (Cellwise linear controls). Adapt the assumption of Lemma 5.15 and suppose
the temporal piecewise constant and spatial piecewise linear control discretization. Assume
that there is p > d such that G'(u(1))* € Wol’p(ﬂ) and that there is ¢ > 0 such that

> kmlK| < ch. (5.48)
(m,K)eSs
Then there is a constant ¢ > 0 not depending on k, h, vy, and qgp such that

17— Dl + 118 = Gl 21y < cllog k| (k + B/271/P).

Remark 5.22. Since u(1) € Wol’p for every p € (1,00), see Proposition A.22, for the proto-
typical problem the assumption on G'(u(1))* reduces to the requirement uy € Wol P Thus,
assuming ug € Wol’oo, yields O(|log k|(k + h3/27¢)) for any ¢ > 0. However, the constant in
Theorem 5.21 will depend on p, hence also on €.

Similar assumptions to (5.48) have been used in related publications for cellwise linear control
discretization; see, e.g., [118, Section 5.2] for a linear parabolic equation and [31, Theorem 4.5]
for a quasilinear elliptic equation. The assumption can be justified by the observation that
in practice the boundary of the active set of ¢ often has zero measure.
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5.3. Error estimates for controls (o > 0)

Proof of Theorem 5.21. We set 1, = I,II; with II; being the piecewise constant in time
projection defined in (5.46) and apply Lemma 5.17 with g, = 1,q.

Clearly, if (m, K) € &, then either ¢(t,z) = g, or q(t,x) = qp for (t,x) € I, x K, whence
q—Iyllgg = 0 in I, x K. If (m,K) € Sy, then it holds ¢(t,z) = —a 'B*z(t,z) for
(t,x) € I, x K. According to [24, Theorem 4.4.4] it holds

TG = TnT0kq ] 121, i) < PPN Lor, a2 i)y < PPN L2210 -

Hence,

> Mg — Iaq”QLQ(Ime) <cht > HZHQLQ(Im;HQ(K)) < Ch4H5H%2(I;H2(Q))'
(m,K)eSs (m,K)€Ss

Moreover, for (m, K) € S we have the error estimate
IMeq = Wkdll 1o (1, x 6y < IRl o1, w10 (50y) < Pl o1, w10 (50 (5.49)
see [24, Theorem 4.4.4]. Using Holder’s inequality, we find

Y M- Ll < Sl KD 270G — Wl
(m,K)ES;g (m,K)GSg

<ch® 3 Rl KD w000
(m,K)eSs

1-2/p
112
< ch? |l 2o rwrn(w)) ( > k?m|K|)
(m,K)eSs
—2/p =12
< BNl Lo
due to g € LP(I; W'P(w)); see Proposition 5.3. In summary, we obtain the estimate
1G = arnll 221wy < 17 = Tl g2 (1) + TG = To@ll 21y < clk + RP271P).
Next, we consider the term 0,L(v, q, it)(qxn — ). Using orthogonality of II;, we find

1
0,L(0 i) (T = 0) = 7 [ (o + B2, = D)2,

1
=7 [ (@+B'Z = i(aq + B'2). 1 — D)2,
1 1
— aD/O (¢ — kg, kg — (j)p(w) + D/o (B*(z — yz), g — CY)LZ(UJ)

”Z — HkZHLQ(I;LQ)Hq - HquLQ(I;LQ)

IN
N

< k(1002 || 21,1210l L2 1. 2
Moreover, due to the definitions of &1 and Sy it holds

( ;3 /[ (a(j—l-B*E’L(j_E)Lz(K)‘F( %):S /I (a(j—i-B*z,I,,(j—Hk(j)Lz(K) =0.
m,K)eS1 "™ -0 m,K)ESs i N——

Last, for each (m, K) € Sz there is (f,,, #x) such that aq(tm, 2x) + B*Z(tm, 21 ) = 0. There-
fore, abbreviating w := ag + B*Z we find

/I (’l,l)?Io'q__Hkq)LQ(K) = /] (w_w(£m7j:K)7IO'(j_HkQ)L2(K)

< (km’K|)1_2/p||w - w(fm’aAjK)HLp(Ime)HIU(j_ HquLP(ImXK)'
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5. A priori discretization error estimates

Moreover, the improved regularity ¢ € C([0,1]; W'P(w)) and z € C([0,1]; Wol’p), see Propo-
sition 5.3, as well as p > d + 1 imply

1/p
lw = w(Em, 25| o1, x50) < (b + ) (Hath]ip(Ime) + vaH]ZP(ImXK)) .

m

Summation over all (m, K) € S, Holder’s inequality, and using assumption (5.48) as well as
the error estimate (5.49) yield

/I(w,lo(j— Hk@)Lz(w) = Z / w,l,q — szQ)Lz( K)

(m,K)eSs

< Z (km| K )" 2/pr - w(tm7$K)HLp(1me)|’Io(7 - Hk(jHLP(ImXK)
(m,K)€ESs

1-2/p
k;+h( 3 k:m|K!) 110G — Tkql| 1o (1 x0)
(m,K)€eSs3

< ChlfQ/p(k + h)h < C(k + h3/271/p)2.

Lemma 5.17 yields the result. O

5.4. Numerical examples

To validate the theoretical findings of the preceding section in practice, we consider different
numerical examples. All examples are implemented in MATLAB®. We use the augmented
Lagrangian method as presented in Section 4.1 in order to deal with the state constraint,
where we employ the parameter updates suggested in [15, Proposition 2] and [14, p. 414ff.].
The resulting optimal control problem is then solved using the trust-region semismooth New-
ton algorithm from [92] in a monolithic way, i.e. we optimize for the pair (v, q) instead of a
bilevel optimization. If the absolute value of the terminal constraint is smaller than 107,
the augmented Lagrangian method is stopped.

5.4.1. Example with analytic reference solution

First, we consider an academic test problem, where a solution can be given explicitly. Let

N=w=(012 a=1, §

0
G(u) = %Hu — udH%Q — %68, ug(x) = —2sin(mzy ) sin(mze),

I
w\»—\

up(x) = sin(7zy) sin(mtxe),

without control constraints. Moreover, we use the operator —cA with ¢ = 1/(27?) for conve-
nience. The optimal state and adjoint state are given by

u(t,x) =2 (e_f’t - ef’(t_l)> uo(x), Z(t,x) = 4" Vg (z),

with optimal time 7' = v = log(2). To verify the second order sufficient optimality condition,
consider the second derivative of the Lagrange function that is given by

1
8(2V,q)£(177 q, ﬂ)[éya 6Q]2 = DH(SQH%Z(IXQ) + 251//0 (6q7 Q) + ﬁg”(ﬂ7(j)[5yv 5Q]2
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5.4. Numerical examples
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Figure 5.1.: Discretization error for Example 5.4.1 with variational control discretization and refinement
of the time interval for N = 16641 nodes (left) and refinement of the spatial discretization
for M = 512 time steps (right).

Introducing an additional adjoint state Z defined as the solution to

-0z —veAz = Az, 2(1) =0,
we obtain

1 1
fig" (7, 96w, 641 = il Su(1)|2 + 200 /0 (6q,7 + 72) + 260 /0 (@+ AT, 5);

see Section 3.2.3 for details. Using that g > 0, Cauchy’s and Young’s inequalities, and
q = —Z, we find

1 1
O, £, 0, )0V, 80]? = P00]} () + 2000 [ (00.2)+ 2002 [ @+ eAi, )
1
> _176V2H2H%2(I><Q) + 2(51/2/0 ((I—i— CAﬁ, 2)
The solution of the additional adjoint equation is given by
3(t,z) = 4(t — 1)e” Vg (z).

We calculate

- log(2) <—6 +log?(4) + log(16)>
V|2l 2 (rx ) = o’ @) ~ —0.33968,

3+ log?(4) — log(4)

~ 1.8397.
log?(4)

1
2/ (G + A, 5) =
0

Therefore, the second order sufficient optimality condition of Theorem 3.13 is satisfied on the
whole space R x L2(I x £2). Note that as in Lemma 3.18 it suffices to verify the second order
sufficient optimality condition for dv # 0. In case dv = 0 the SSC is trivially fulfilled.

Since no control constraints are active this situation corresponds to the variational control
discretization. We observe linear order of convergence with respect to the temporal and
quadratic order of convergence with respect to the spatial discretization; see Figure 5.1.
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5. A priori discretization error estimates

M N a=1 a=0.1 a = 0.01 a = 0.001

40 1089 7439 4.548_; 17.28 4.958_5 1.523;3 6.133_3 2.422.4 6.151_4
80 1089 7.555 4.560_; 17.66 4.895_5 251343 6.052_3 2.958,¢ 6.062_4
160 1089 7.546 4.531_; 18.09 4.875_5 250543 6.008_3 1.369,¢ 6.019_4
320 1089 7.509 4.505_; 18.29 4.864_5 246643 5.986_3 5.33745 5.997_4
640 25 8.949 5534_; 19.22 5812_, 1.68543 6.829_3 1.954,5 6.844_,4
640 81 7.754  4.7737_; 1844 5.080_o 221443 6.182_35 2.179,5 6.194_4
640 289 7.549 4.542_; 18.30 4.896_5 2.39943 6.016_5 2.10045 6.027_4
640 1089 7.507 4.495_; 18.24 4.849_5 247343 5.975_3 2.95345 5.986_4
Inactive constraints 96% 62% 5% < 1%

Table 5.1.: Numerical verification of second order sufficient optimality condition for Example 5.4.2.
Table shows the quantity (3.27) of Lemma 3.18 and the coercivity constant of
Proposition 3.20 for different temporal and spatial degrees of freedoms and cost parameter «.

5.4.2. Example with purely time-dependent control

Next, we consider a time-optimal control problem with purely time-dependent controls for
fixed spatially dependent functions. Let

2=1(0,1)2, w; =(0,0.5) x (0,1), wy=(0.5,1) x (0,0.5), a=10"2
B:R?* - L*(2), Bq=qly, +¢l,,

G(u) = 3llu—ugll?> — 363, wa(z) =0, &= 5,
Qaa(0,1) = {qg € L*(I;R?*): —1.5< ¢ <0}, wug(z) = 4sin(nz?)sin(nzd),

where 1,, and 1., denote the characteristic functions on w; and wy. The spatial mesh is
chosen such that the boundaries of w; and wy coincide with edges of the mesh, so that the
control operator B can be easily implemented.

Since the control constraints are constants numbers, this corresponds to a variational control
discretization and Theorem 5.18 applies. The solutions of the discrete problem are compared
to a discrete solution calculated on a sufficiently fine mesh as we do not know the solution
of the continuous problem. The optimal time is 7' ~ 1.79931. We observe linear convergence
with respect to the temporal mesh size and quadratic order of convergence with respect to
the spatial mesh size; see Figure 5.2.

To assess the validity of the second order sufficient optimality hypothesis, we verify the
scalar condition of Lemma 3.18 for the discrete problem. Since the linear system (3.28)
defines a symmetric but not a positive definite matrix, we calculate a solution using MINRES
without assembling the matrix. We observe that for all choices of the cost parameter a the
condition is satisfied on the discrete level; see Table 5.1. Note that the SSC for the discrete
problem does not guarantee that the SSC for the continuous problem holds. However, the
fact that the numbers are robust with respect to mesh refinement can serve as an indication
for the continuous problem. In accordance with Proposition 3.20, we observe that the number
of (3.27) from Lemma 3.18 increases as « decreases. In contrast, the constant 7 increases.
This can be explained as follows: Since we fix v = 1, the variable 6¢ has to counteract the
decrease of Cy in order to satisfy the linear constraint g;;, (Zxn, Gkn) (1, 0¢) = 0 resulting in an
increase of the norm of d4q.
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5.4. Numerical examples
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Figure 5.2.: Discretization error for Example 5.4.2 with variational control discretization and refinement
of the time interval for N = 1089 nodes (left) and refinement of the spatial discretization
for M = 320 time steps (right).
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Figure 5.3.: Solution for example with purely time-dependent control.
---a=0.100 | -
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Figure 5.4.: Optimal control ¢; (top) and g2 (bottom) for example with purely time-dependent control
for different regularization parameters. In order to compare the solutions, the variables have
been transformed to the reference time interval. The optimal times are approximately
1.8357, 1.8089, 1.7993, and 1.7991 (M = 320, N = 1089). Hence, the optimal T is not
verify sensitive with respect to « for small . We will investigate this behavior in detail in
Section 5.5.
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5. A priori discretization error estimates

M N a=1 a=0.1 a = 0.01 a = 0.001

20 4225 19.68 2.456_; 27.49 1.550_o 4.641,, 3.852_3 1.622,, 4.227_4
40 4225 17.32  2.289_; 27.11 1.511_o 457345 3.765_3 1.515,4 4.135_4
80 4225 16.14 2.203_; 26.94 1.493_5 4.567,o 3.725_3 1.4704,4 4.089_4
160 4225 1555 2.159_; 26.90 1.487_5 4.578;5 3.706_3 1.477,4 4.067_4
320 25 2.740 5.633_o 23.62 1.201_5 3.3074o 2.681_3 4.002.4 2.957_4
320 81 9.968 1.519_; 26.54 1.344_5 3.809;, 3.275_3 1.749,4 3.655_4
320 289 13.69 1.968_; 26.52 1.437_5 4.459,5 3.588_3 1.57644 3.946_4
320 1089 1492 2.102_; 26.81 1.474_5 4.6024, 3.677_3 1.39044 4.032_4
Inactive constraints 98% 67% 19% 6%

Table 5.2.: Numerical verification of second order sufficient optimality condition for Example 5.4.3.
Table shows the quantity (3.27) of Lemma 3.18 and the coercivity constant of
Proposition 3.20 for different temporal and spatial degrees of freedoms and cost parameter «.

5.4.3. Example with distributed control on subdomain

Last, we consider an example with distributed control on a subset of the domain. As before
we compare to a reference solution obtained numerically on a fine grid. The problem data is
given by

2=(0,1? w=1(0,075?% a=10"2 & =1,

G(U) = %”U - ud”%2 - %68’ Ud(x) = _Qmin{xlv 1- zy,T2, 1—x9 }7

Qad(0,1) ={qe L’ Ixw): —5<¢<0},

up(z) = 4sin(m?) sin(mas).

We consider the operator —cA with ¢ = 0.03. Note that the control acts only on a subset
w C 2. Moreover, the control constraints as well as the regularization parameter are chosen
in a way such that the constraints on the control are active in a large region.

The optimal time we obtain numerically is approximately T =~ 1.22198. Figures 5.5 and 5.7
show the optimal state and control. The control is discretized by cellwise constant functions
in space. In accordance with Theorem 5.20 we observe linear convergence in time and space
for the control variable; see Figure 5.8. In contrast, for the optimal time and the state
we obtain quadratic order of convergence in h. The improved convergence rate cannot be
explained by the theory so far. However, we expect that one can also prove full order of
convergence for all variables if the control is post-processed in an appropriate way by using
the projection formula for the optimal control; see, e.g., [118, 121].

As before, we assess the validity of the second order sufficient optimality hypothesis, by
verifying the scalar condition of Lemma 3.18 for the discrete problem. For all choices of the
regularization parameter o, we observe that the condition is satisfied; see Table 5.2. However,
if the functional in (3.30) is minimized over the whole space L?(I x w) instead of the subspace
Cy we observe that this (strong) second order sufficient optimality condition is not satisfied
for small «; see Table 5.3. Therefore, it is essential to work with the critical cone C; ) in
the formulation of the second order conditions.
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5.4. Numerical examples

Figure 5.5.: Snapshots of optimal state for Example 5.4.3.

Figure 5.6.: Snapshots of state for uncontrolled equation for Example 5.4.3.

Figure 5.7.: Snapshots of optimal control for Example 5.4.3. Black and white denote the lower and the
upper control bound, respectively.
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5. A priori discretization error estimates
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Figure 5.8.: Discretization error for Example 5.4.3 with cellwise constant control discretization and
refinement of the time interval for N = 1089 nodes (left) and refinement of the spatial
discretization for M = 320 time steps (right).

M N a=1 a=0.1 a=0.01 «=0.001
20 4225 20.50 5.795 2.444 —11.85
40 4225 18.15 5.028 1.638 —14.35
80 4225 16.99 4.674 1.251 —15.71
160 4225 16.40 4.503 1.055 —16.46
320 25 2.857 2.432 7.985_1 —17.15
320 81 10.40 2.588 —4.119_,4 —19.84
320 289 14.40 3.764 4.669_4 —17.53
320 1089 15.73 4.273 8.503_1 —16.95

Table 5.3.: The quantity (3.27) of Lemma 3.18 as in Table 5.2 is shown, but here we minimize the
functional in (3.30) over the whole space L?(I x w) instead of the subspace Cj. We observe
that this second order sufficient criterion is not satisfied for small values of «. Therefore, a
strong second order condition is not fulfilled in this example and for this reason it is essential
to work with the critical cone C'(; 4) in the formulation of the second order conditions.
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5.5. Robust error estimates for bang-bang controls (o = 0)

5.5. Robust error estimates for bang-bang controls (« = 0)

This section is devoted to discretization error estimates in case of bang-bang controls based
on the structural assumption of the adjoint state (3.37). We first would like to motivate the
“correct” choice of the norm. If the control is discretized by piecewise constant functions
in time and space, then in case of bang-bang controls we cannot expect linear order of
convergence in L?. Precisely, we expect

1G = Grnll 2 (rxwy < ek + 1)

In contrast, changing the norm to L', we can get
1G = @kl 1 (1xwy < (ki +B).

Therefore, it seems to be reasonable to work with the L'-norm instead of the L?-norm as in
the case with strictly positive regularization parameter a.

Combining the stability result Theorem 3.34 of the preceding chapter (with x = 1) and the
discretization error estimates of Section 5.3.3 directly implies the estimate

17 = Gknoll 1 (1xw) 1T = Goll 1 (1xw) + 180 = Grnall L1 (1xw)

< ca+ c()|log k|(k + h?),

here for the variational control discretization, i.e. o(k,h) = 0, for simplicity. However, the
constant ¢(a) depends on « with ¢(a) — oo as o — 0. Therefore, the error due to regu-
larization and the error due to discretization have to be balanced. Unfortunately, since the
proof of the optimal order convergence result for the case a > 0 relies on a contradiction
argument, see Lemma 5.17, we cannot give the explicit dependence on a. Besides this, it
would be desirable to have robust error estimates with respect to the regularization and the
discretization, i.e. without any coupling between «, k, and h; cf. [152, 154].

In this section we suppose that the general assumptions from Sections 5.1 and 5.2 hold.
Moreover, we assume that the projection Il is stable in H'. To consider different control
discretization schemes at the same time, we introduce the operator I, onto the (possibly
discrete) control space Q,(0,1) C L?(I x w) with an abstract parameter o for the control
discretization. In case of distributed control, we additionally assume that a subset denoted
T of the mesh 7}, is a non-overlapping cover of w. As already mentioned, due to the bang-
bang structure, we have to consider a different norm than L? in order to obtain optimal error
estimates. We use the symbols o1 (k, h) and oo(k, h) to denote the errors in L!(I x w) and
L?(I; H~') due to control discretization. Concretely, we suppose

17 = Lol 11 1wy < o1(R R)llall,, (5.50)
187 = Lo@)ll2(7;1-1) < o2(k, h)ldll,,, (5.51)

where ||-[|,, and [|-[[,, stand for potentially different norms on Q(0,1). We suppose that
o1(k,h) — 0 and oo(k,h) — 0 as k,h — 0 and 1,Q44(0,1) C Quq(0,1). Moreover, we assume
lgll,, < oo and ||g||,, < oo. For notational simplicity we write I,(v,q) = (v,15q) using the
same symbol. Last, we define Quq,(0,1) = Q5(0,1) N Quq(0,1). Concrete discretization
strategies for the control will be discussed at the end of this section.
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5. A priori discretization error estimates

For any a > 0 we define the discrete optimal control problem by

inf Ja(Vkh,as Qkh,a) subject to  gun(Vkhas Qkha) < 0. (Prn.o)
Vih,a €R4

Qich,a€Qad,s(0,1)

As before, we apply a localization argument. Let (7,q) € Ry x Quq(0,1) be a local solution
to (Pp). For p > 0 we introduce the problem

kb (Vih,as Qeh,a) < 0,

i . (Plha)
|(Vkha — U, Gkha — Q)| < ps “

inf Jo(Vkh,a»> Qkh,a) subject to {

Vkh,a ER4
q}ch,aeQad,o (Oal)

where we recall that the norm on the product space R x Q(0,1) is given by

1/2
16,891 = (18 + 10017210 -

Similar as in Section 5.3.1 we construct two auxiliary sequences. First, we construct the
sequence {(Vy, ¢y) }y>0 converging to (7, q) as v — 0 that is feasible for the localized problem.
In particular, this implies existence of solutions to (P,fh’ o). Thereafter, we build a sequence
{(vr,¢r)}7>0 converging to (77, o, Qhp.o) @8 T — 0 that is feasible for (P,). Since the solu-
tion operator to the state equation is continuous for right-hand sides from L?(I; H~!) into
W(0,1) — C([0,1]; L?), we may use (5.51) for all estimates concerning the state or the lin-
earized state, whereas (5.50) is needed for the estimate for the controls in L'. Note that all
sequences constructed in Section 5.3.1 are independent of the regularization parameter «.

Proposition 5.23. Let (v,q) be a locally optimal control of problem (]50). There exists a
sequence {(Vy,qy)}y>0 of controls with v = ~(k,h) that are feasible for (Pf, ) for k,h,p
sufficiently small. Moreover,

vy =2+ 1y — @l 1y < € (910k 1) + 0a(k, 1) + [log |k + 7))

Proof. The sequence can be constructed as in Proposition 5.10 with slight modifications. In
(5.21) we use o1 instead of o. In (5.22) and (5.23) we replace o by o9 that is allowed since
the stability estimates for the discrete state equation also hold for Bq € L?(I; H~1). O

In particular, Proposition 5.23 guarantees that for h, k, and p sufficiently small, the set
of admissible controls of the discrete problem (Pf, ) is nonempty. Hence, by standard
arguments we obtain well-posedeness of the localized discrete problem; cf. Corollary 5.11.

Corollary 5.24. Let h, k, and p be sufficiently small. Then there exists a solution X}, ., =
(Poh.oo o) € R X Qud,r(0,1) to (Pl o)

Proposition 5.25. Let k,h,p > 0 be sufficiently small. Moreover, let (v,q) be a locally
optimal solution of (Py) and let (Dgh’a, Qhp, o) be any globally optimal control of (Pf, ). Then

there exists a sequence {v:}r~o with T = 7(k, h) such that (v;,q}, ) is feasible for (Py) and

vy — 7y o] < cllog k|(k + h2).

Proof. This result can be proved as in Proposition 5.13. O
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5.5. Robust error estimates for bang-bang controls (a = 0)
5.5.1. General regularization and discretization error estimates

First, we establish a robust error estimate with respect to regularization and discretization
with a suboptimal rate concerning the control variable. Please note that Lemma 5.26 also
holds in the case o = 0 yielding an error estimate for the problems without regularization;
cf. [47] for a linear-quadratic elliptic problem. Moreover, we emphasize that the convergence
rate for the terminal time is independent of the value of s from (3.37).

Lemma 5.26. Let (7,q) be a local solution to (Py) satisfying the growth condition (3.41).
Moreover, let {(k,h,a)} be a sequence of positive mesh sizes and reqularization parame-
ters converging to zero. Then there exists a sequence {(Vkh,a,Qkh,a)}kha Of local solutions
to (Puna) converging to (7,q) such that

17 = Zrnal + 118 = Genall 11y < ¢ (@ + o1(k h) + 02(k, h) + log kl(k + %)), (5.52)

where ¢ > 0 is independent of k, h, o, Ugp«, and Qpno. Moreover, there exists a Lagrange
multiplier [igh.o such that the following optimality system is satisfied:

Hkh,a > 0, (5.53)
1 o
/0 b Equh,aH%%w) + (Bkh,a + Anlikh,a; Zkha) dt =0, (5.54)
1
/o (Q@kh,a + B Zkhar @ — Qkho) dt >0, q € Qua o (0,1), (5.55)
G (Ukh,a(1)) =0, (5.56)

where Ugh o = Skh(Vkh,a, Qkh,a) and Zkh.a € X is the solution to the discrete adjoint equation

B(Ukh,a» Pkhs Zkh,a) = Bkha(Ukh,a(1) — g, 0kn(1)),  @rn € Xip.

Proof. Let p > 0 be sufficiently small such that the quadratic growth condition (3.41) as well
as Propositions 5.23 and 5.25 hold. Moreover, let {(7g, ., @, o)} Pe a sequence of globally

optimal solutions to (th ,) that is guaranteed due to Corollary 5.24. Because the pair
(Vr, @4y ) is feasible for (Py), we may use the growth condition (3.41) to estimate

_ 1+1 _ . _ .o _Q 9
cllg - qkhaHLl I/:w = T_VSJO((VTvqlgh,a)_jOt(V?q)"i_VEHqHLQ(IXw)

< Ja(vr, q_lgh,oz) o ja(ljl/c)h,a’ Cjlgh,oz) + ja(ﬂlsh,a7 (jlgh,a) B ja(V’Y’ q’Y)
+ Ja(Vy: @y) = Ja(V, @) + ca
< Jalvr, Cjzh@) - ja(ﬂlgh@a qzhﬂ) + Ja(Vy, @y) = Ja(¥,q) + ca,  (5.57)

where the last inequality follows from optimality of the pair (7}, ., %, ) for (]Skph ) and
feasibility of (v, ¢y) for (P,f,h .)- Then, we observe that

. _ . /= _ _ (07 2
Ja(vr, qlgh,a) - ja(ylgh,a’ qih,a) = (vr — Vlsh,a) <1 + 2||qZh,a||L2(IXw)>

<c (1 + ;‘) llog k| (K + h2)
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5. A priori discretization error estimates

due to Proposition 5.25. Similarly,

. . — «
i) = a5, < (1, = ) (14 G r s
_Q _ _
+ V§qu + qHLZ(IXw)HQ'Y - Q||L2(wa)
< c(o1(k,h) + oa(k. 1) + o+ [loghl(k + 7))

employing Proposition 5.23 and boundedness of Q,4(0,1). Collecting all estimates above we
arrive at
18 = @pall hhny < ¢ (@ o1(k, h) + 02(k, b) + log k|(k + 7))

Moreover, from Proposition 5.25 and (5.57) we further deduce
P = 71 < |7 — vel + v =7 < (@t 01(k, B) + 0a(k, h) + [log k|(k + h?)) .

In summary, the two preceding estimates establish the stated error estimate for the localized
solutions. Furthermore, Holder’s inequality and uniform boundedness of (jzh € Qqq(0,1) in
L>(I x w) imply

1/2

_ p o 1/2 _
<llg— qzh,a”Ll(IXw la qkhaHLoo Ixw) S clld— qkhaHLl (Ixw)”

14 = @ ol L2 (1xw)
In particular, for k, h, o > 0 sufficiently small the solution (7, ..k, ,) does not lie on the
boundary of the localization. Therefore, (77, ., @4, ) is a local solution to (Pyp.q) and we
can drop the super index p. Finally, the convergence result and the fact that ¢'(v,q) # 0
yields the optimality conditions in qualified form as stated above. O

Proposition 5.27. Adopt the assumptions of Lemma 5.26. The Lagrange multipliers jip o
satisfy fih,o — 1 as k,h,o — 0.

Proof. This follows as in Proposition 5.16 using the convergence result of Lemma 5.26. [

While the estimate of Lemma 5.26 is optimal for the terminal time in the case of a variational
control discretization, it is suboptimal with respect to the control variable. Under certain
conditions we will eventually provide an improved estimate that is based on the following
result.

Proposition 5.28. Adopt the assumptions of Lemma 5.26 and let (3.37) hold. Moreover,
we assume that 1, is an orthogonal projection onto Q,(0,1) in L*(I x w). In case of a
distributed control, suppose in addition that ug € (LP,Drp(—A))1_1/s, for s,p € (1,00) such
that d/(2p) +1/s < 1. There is a constant ¢ > 0 independent of k, h, &, Ugha, and Qiha
such that

_ 1 — = *z *z
g — Qkh,a‘|L/1[ZI><w) = c(“ 7= Penal +1B°2 = 1o B2 oo (1)
+ ||B* (Ek:h,oz — Z(Ijkh,on Cjkh@))”LOO(wa))’

where z2(Ukh o, Gkh,a) € W(0,1) denotes the solution to the adjoint equation with time trans-
formation vy, o and terminal value figp o (015 (Vkh,as Qkh,a) — Ud)-

For the proof of Proposition 5.28 we require the following Lipschitz estimate of the solution
to the state equation with respect to the time transformation.
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5.5. Robust error estimates for bang-bang controls (o = 0)

Proposition 5.29. Let Vpax > Vmin > 0. There is ¢ > 0 such that for any ug € L?, f €
L*(I; H™Y), and v1,vs € [Vmin, Ymax] the solutions to the state equation u(v1) = u(vy,uo, f)
and u(vy) = u(ve, ug, f) satisfy the estimate

Ju(v1) — U(V2)”C([o,1];L2) < cln — vy (HfHL2(I;H—1) + HUOHLZ’) )

where ¢ > 0 is independent of v, f, and ug.

Proof. Set u; = u(v1) and ug = u(r2). Then the difference w = u; — ug satisfies
Ow — v Aw = (1) —e) (Aug + f), w(0) =0.
Hence, standard energy estimates lead to

lwll g (m-1yne @y < clvi = velll=Auz + fll 2 g1y
< elvn = val (I1f 2y + ol 2 ) -
Last, the assertion follows from the embedding H*(I; H~') N L*(I; H') — C([0,1]; L?). O
Proposition 5.30. Let Vmax > Vmin > 0 and s,p € (1,00) such that d/(2p)+1/s < 1. There
is ¢ > 0 such that for any ug € (LP, Drr(—A))1-1/s,s, [ € L*(I;LP), and v1, v € [Vmin, Vmax]

the solutions to the state equation u(vi) = u(vi,ug, f) and u(ve) = u(ve,uo, f) satisfy the
estimate

Ju(v1) — U(V2)||Loo([xn) < cv1 — 1 (Hf”LS(I;LP) + ||U0H(LP,DLP(—A))I_I/M) )

where ¢ > 0 is independent of v, f, and ug.

Proof. Maximal parabolic regularity of —A on LP, see, e.g., [49, Theorem 2.9 b)], yields that
the solution u = u(v, f,ug) satisfies the estimate

lullwrs(rzmnLs (1o (-a) < € (Hf”LS(I;LP) T H“0||<LP,DLp(—A))171/S,S> :

Moreover, continuity of v +— (9; — vA)™1, v > 0, as well as compactness of [Viin, Vmax] imply
that the constant in the estimate above can be chosen uniformly with respect to v. Set
uyp = u(v1) and ug = u(v2). Then the difference w = u; — ug satisfies

ow — 1 Aw = (11 — ) (Aug + f), w(0) =0.
Hence,
”wHWl’s(I;LP)ﬂLS(I;DLp(fA)) < 1 — val[|[—Aug + fHLS(I;LP)
< el = vl (Il ocrim + Noll o pyn -y 1)) -
Finally, the assertion follows from the embedding
Ws(I; LP) 0 L3 (I; Do (—A)) — C(T x 2);

see the proof of [49, Theorem 3.1]. O
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5. A priori discretization error estimates

Proof of Proposition 5.28. We use ideas from the proof of [152, Theorem 31]. Setting ¢ =
Jkh,o in (3.38) and multiplication by figs o/ > 0 yield

1
— 1+1 % /- = - -
clli = nall il < = [ (B'0..0 - Gna) ooy (5.58)

where z(v, q) is the solution to the adjoint equation with time transformation v and terminal
value fign o (i15(V, @) —uq). Note that we have used Proposition 5.27 in order to guarantee that
the constant ¢ is independent of k, h, and a. The optimality condition (5.55) of Lemma 5.26
for qip,o with ¢ = 1,¢ can be written as

1
aHIJ(j - Qkh,aH%Z([Xw) < /0 (04106_7 + B*zkh,a, I,q — Qkh,a)LQ(w)- (559)
Summation of (5.58) and (5.59) implies

1+1/ = _ = 2
ch Qkh aHLl([:w) +a”10q_qkhaHL2 (Ixw)

1
< 04/0 o, 160G = Grn,a) 12(w) +/ (Zkha — 2(,0) , 1oq = Qrna) [2(0)

1
+/0 (B*2(7,0), 164 — @) 2(,)-  (5-60)

We first consider the last term of the right-hand side of (5.60). Since I, is the L*(I x w)-
projection onto Q,(0,1), we have

1 1
/0 (B*Z(Da (j)alaq__g)LQ(w) :/0 (B*Z(Da Cj) _IO'B*Z(Euq)vq1€h,a - q_)LQ(w) (561)

7 1
kh .o oo _
= u/ (B"Z2 = 16B"Z, Grha — @) 12 ()
i Jo
< el|B*z2 = 1o B*Z|| poo (1xe) 1T = Thnall L1 (1)
In the last step we have used that the multipliers iz o are uniformly bounded; see Proposi-
tion 5.27. The first term of (5.60) can be easily estimated by
o 1 o o
oz/o (0G0, 10 — Qrna) 12(0) = a/o (I510q, @ — Qkha) r2(0) < allq — Grnall i (rxw)

using that I, is an orthogonal projection as well as I, € Qq4(0,1) C L>®(I X w). Concerning
the second term of the right-hand side of (5.60), we have

1 1
/0 (B* (Zkh,a — 2(V,0)) s 4 = Qkha) [2(0) = /0 (B* (Zkh,a — 2(Vkh,ar Qkh,a)) » 4 — Qkh,o) £2(0)

+ / 2(Ukh,as Qhya) = 2V Qkha)) - @ = Qkhia) [2(w)

+/ (27, @) = 2(7.0)) 2@ — G 120

Note that all adjoint states appearing above correspond to the same multiplier fig, o, which
is uniformly bounded with respect to «, k, and h due to Proposition 5.27. For the first term
on the right-hand side, we apply Holder’s inequality and obtain

1
/0 (B* (Zkh,a — 2(Vkh,as Qkh,a)) @ = Qkhio) 12(w)

< B* (Zkh,a = 2(Vkh,as Teh,o)|l Loo (1xu) 1T = @knall L1 rxe)-
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5.5. Robust error estimates for bang-bang controls (o = 0)

The second term can be estimated using Proposition 5.29 for purely time-dependent control
and Proposition 5.30 for distributed control as

1
/0 (B” (2(Vkh,as Geh,a) = 2V, Gknia)) @ = Qrhia) 2(w) < ClVkha — V|14 — @

(Ixw)*
The third term is less than or equal to zero. In summary, we arrive at
1+ — — _ _ _
17 — qrnall I/:w) < C(Oé + Vkho — V| + | B* (Zkh,a — Z(th,a7qkh,oz))”Loo(I><w)
+[|B*z — IUB*2||L°°(I><w)> q (Ixw)"
Last, dividing by [|¢ — kn,all 11 (1xw) Yields the desired estimate. O

If the controls are explicitly discretized by cellwise constant functions and if x < 1, the term
|B*Z — 1o B* 2| 1,00 (1 () limits the overall convergence rate in Proposition 5.28. Alternatively,
n (5.61), we can estimate

! * (= = — — ,akha 1 * = —
/0 (B*2(7,4), 1600 — @) 12() = ﬂ/o (B*2,100 = @) 20y < /(B2 160 = @) 2 (x|

Proceeding with the remaining terms as in the proof above, we in summary obtain

1+1/ L
Hq - QkhaHLl Ifw < c\(B*z,qu - Q)L2(1m)\

+e (a + [Vkha — V1 + | B" (Zkn,a — 2(Pkh,a; f?kh,a))HLooaxw)) (Ixw)"

Furthermore, Young’s inequality yields

1+1 _ _ —
17 = @l < ABZ 0@ = @) 1)
_ _ % o _ _ 1+kK
+ (@ +1Phna = 71+ |1B” Grna — 2Ornas Gina) e (ney) -

Last, the fact that (1 + )/(1 + 1/k) = k implies the alternative estimate

_ 1 _ % /- _ _
1@ = Gonall i) < € (@+ 17 = Zrnal + 1B (Grnia = 2@rns @ino)) o (1x0))
+ /(B2 150G — @) 21wy /T (5.62)

under the same conditions as Proposition 5.28. If x < 1, then (5.62) might lead to better
estimates. However, also the convergence rate for v in the theory so far is limited by o
and oy. Therefore, we stay with the estimate in Proposition 5.28 and keep prospective
improvements in mind. Note that in Theorem 5.57 we obtain the error estimate k + h3/2
for v under a different condition than the structural assumption. Indeed, in the numerical
examples we always observe the full convergence rate k + h? for v independent of the control
discretization; see Section 5.7.

5.5.2. Purely time-dependent controls

In case of purely time-dependent controls we immediately derive an error estimate (that is
optimal if x = 1) using the L>°(I; L?) discretization error estimate for the variational control
discretization. Note that besides theoretical advantages purely time-dependent controls are
also interesting in practice as distributed controls are typically difficult to implement.

133



5. A priori discretization error estimates

Theorem 5.31 (Parameter control, variational). Adopt the assumptions of Lemma 5.26 and
let (3.37) hold. Additionally, suppose purely time-dependent controls with variational control
discretization, i.e. Q,(0,1) = Q(0,1). There is a constant ¢ > 0 not depending on k, h, «,
Ukh,a» @A Qiho Such that

7 = Thnal + 17— Genoll 1y < (o + llogk|(h+1?)) .

Proof. This follows from Lemma 5.26 and Proposition 5.28, since in case of purely time-
dependent control we may use the L>°(I; L?) discretization error estimate, see Lemma A.39,
for the state and adjoint state equation to obtain

HB* (Ekh,a - Z(ﬂkh,av Qkh,a))HLoc(]Xw) < cllog k|(k + h2).

In addition, I, = Id, o1(k,h) = 0, and o2(k,h) = 0, as we do not explicitly discretize the
control variable. The remaining estimate for v is proved in Lemma 5.26. O

If @ > 0, by virtue of the projection formula
_ I
Tkho = PQaq (aB Zlch,a) ) (5.63)

which can be deduced from (5.55) with Quq,(0,1) = Qqq(0,1), the optimal control gxp q
obtained by the variational approach is piecewise constant in time with values in Re. Hence,
in the case o > 0, the variational control discretization is equivalent to the piecewise constant
control discretization. However, in the case o = 0, the estimate of Theorem 5.31 is still valid,
but the discrete optimal control g, ¢ is not necessarily piecewise constant with the same time
mesh as the state and adjoint state. Nevertheless, the optimality conditions for gy, ¢ imply

B*Zknolr,, > 0= Gkhol1, = das
B*Zknolr,, < 0= Gkholn., = @,

for all m = 1,2,..., M, where the conditions are to be understood componentwise. Let Il
denote the projection onto the piecewise constant functions in time, i.e.

W)(0) = = [ v(©de teln,

m m

for every v € L?(I; L?) and m € {1,2,...,M }. Clearly, if B*Zg 0|1, > 0, then IxGrnolr, =
Qa, and if B*Zpp 0|1, < 0, then Igqinolr,, = gp. For this reason, we are only interested
in those time intervals I,,,, where at least one component of B*Zz o is identical zero. We
define

S = {m =1,2,...,M: (B*Ekh,o)(tm,.f) =0,z € w},

and suppose that there exists ¢ > 0 independent of k and h such that
> km <ck®, k> 0. (5.64)

meSk
Note that a similar assumption has been used to prove optimal error estimates in Theo-
rem 5.21 for cellwise linear control discretization. Employing the estimate of Theorem 5.31
we obtain

1 = Mk@knoll 11 (1xwy < 1= Tknoll L1 (1xwy + 1@kn0 — MkGrnoll 1 (1<)
<c(Moghkl(k+0%)" +e > km < c(Jlogh|(k+h?)" .

meSk
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5.5. Robust error estimates for bang-bang controls (o = 0)

Furthermore, since Il is a projection, we have

(Bkh,0> €kh) 121,12y = (BIk@kn,05 Pkn) 21,2y for all gpn € Xigp,

and the controls gy and IIqry 0 have the same associated discrete state. In addition, the
objective functional does not change, because of a = 0. Therefore, the pair (Ugp,0, I1xqrn0)
is also optimal for (th,a) with a = 0. Based on this observation, we have the following
corollary; cf. also Corollary 5.19.

Corollary 5.32 (Parameter control, discrete). Adopt the assumptions of Lemma 5.26 and
let the assumption (3.37) hold. Moreover, suppose that w is discrete, and choose the piecewise
constant discrete control space

Qo(0,1) = {v € Q(0,1): vls,, € Po(I; R), m=1,2,...,M}.

If a = 0 assume in addition that (5.64) holds. Then there is a constant ¢ > 0 not depending
on k, h, vxp, and qrp, such that

_ _ _ _ 1
7 = Pital + 10 = Benall e < cllog kl(k + 7).

5.5.3. Interlude: Interior pointwise error estimates

In order to apply Proposition 5.28 in case of a distributed control, we require pointwise
error estimates for the solutions to the state and adjoint state equation. For simplicity, we
consider the case of smooth initial data only. In the sequel we will prove the following interior
pointwise error estimate that was obtained jointly with Dominik Hafemeyer. We generally
assume that h is sufficiently small, precisely we suppose that h < e~*. Moreover, we assume
that the family of triangulations is quasi-uniform; see Definition A.31.

Lemma 5.33. Let v € [Vmin, Vmax| for fixted 0 < Vpin < Vmax. Moreover, consider w C {2
open such that W C 2. Given f € L®(I x 2) and ug € Dp~(—A), let u be the solution to
the state equation with right-hand side f, time transformation v, initial value ug, and ugp its
discrete counterpart. Then the estimate

= k| e 1y < cllog kP log A Gk + 12) (ILf] e iy + llpy () )

holds, where the constant ¢ > 0 is independent of k, h, v, [, ug, u, and ugp.

For the proof of Lemma 5.33 we require several auxiliary results. We will frequently use the
following embeddings for spaces of maximal parabolic regularity; see Proposition A.8. Let X
and Y be Banach spaces such that Y <45 X and s € (1,00). Then

WY(LX)NLY(LY) = C([0,T]; (X, Y)1-1/s.6)- (5.65)
If 7 €(0,1—1), then

1
W LX) N L (1Y) < CH (X Y)r), 0Sa<l-_ T (5.66)

Furthermore, the constants for both embeddings can be chosen uniformly for all s € [2,00)
and 7 € (0,1).

Using the error estimates for the Lagrange interpolant I, from Proposition A.32, we establish
the following L°°(I; L?(£2)) error estimates. Recall that ig: C([0,1]; Vi) — Xj  denotes the
nodal interpolation defined by

ipu(ty) = u(ty), m=1,2,...,M.
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5. A priori discretization error estimates

Proposition 5.34. Let v € [Vmin, Vmax] With 0 < Vmin < Vmax. Given f € L®(I; L%(12))
and ug € Dr2(—A), let u be the solution to the state equation with right-hand side f, time
transformation v, and initial value ug. Then the estimate

[ = irInull oo (1,12(2)) + RV (u = ikIn)l poo (1,02
< c[log k[[log h|(k + h?) (||f||LO°(I;L2(Q)) + HU0||DL2(_A)))

holds, where the constant ¢ > 0 is independent of k, h, v, f, ug, and u.

Proof. First, we have the standard embedding
W (I L2(2)) = CV Y1 L2(R2), e (1,00),

(with embedding constant one) that easily follows from

ults) —u(ty) = :2 dyu(r) dr,

see, e.g., [4, Section II1.1.2], and Hélder’s inequality. Hence
lw = ixull oo 1,202y < kNl 2200y
due to the definition of ¢x. The norm of the right-hand side depends on r. Precisely, we have

2
,
lullwrr ez (@pnrr (rm,2 -8y < €7 (Hf”LT(I;LQ(Q)) + HuoH(L?(Q),DLQ(fA))H/m) ;

see, e.g., [7, Theorem 1.3.2]. Thus, using the fact Dy2(—A) — (LQ(Q),DLz(—A))l_l/W
with uniform embedding constant for r > rg > 1 for some 79 > 1 (see Proposition A.1 and
Remark A.2) and taking r = |log k|, we obtain

[ = igull oo r;12(02)) < cllog Kk (HfHLOO(I;L2(Q)) + HUOHDLQ(fA)) :

Note that we have used k < e~! and |log k| > 1 which holds since k < 1/4 < e~!. Similarly,
according to the embedding (5.66) we have

W (I; L2(2)) N L7 (I; D2 (—A)) «— C*(I; (L3(2), Dr2(=A))r1), 7€ (0,1—1/7),
for 0 <a <1—1/r— 7. Moreover,
(L2(02), Dp2(—=A))r1 = Dp2((—A)7) = Dpa((—A)?) = H(02),

for 7 > 1/2; see Propositions A.12 and A.13. The embedding constant of the first injection
is well-behaved by Remark A.14. Moreover, the embedding constant for the second injection
is bounded by max {1, H(_A)l/2_THE,(L2)} according to Proposition A.12. Since —A has
bounded imaginary powers (see [110, Theorem 4.3.5]), the mapping z — (—A)? is continuous
on the half plane Re z < 0; see [110, Lemma 4.2.5]. Hence, the second embedding constant
is uniformly bounded if 7 — 1/2. Thus, taking a =1 — 2/r — 7 yields

IVu = ik Vull oo 1200y < k' 2TV ullor-a/er (1,200

< ck! T HuHleT(I;LQ(Q))ﬂLT(I;DLQ (=A)-
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5.5. Robust error estimates for bang-bang controls (o = 0)

Hence, with r = |log k| as before and letting 7 — 1/2 we arrive at

IV = i Vul| oo 1,202y < cllog k[k'/? (HfHLoo(z;LZ(n)) + HUOHDLz(*A)) '

Next, we consider the error due to spatial discretization. First, according to Proposition A.5
we have

(L*(£2), Dr2(=A)1-1/mr = (L2(£2), Dpz(=A))1-2/r2- (5.67)

By Remark A.6 the embedding constant is uniformly bounded. Moreover, since {2 is convex,
the characterization Dy2(—A) = Hg(£2) N H%(§2) with equivalence of norms holds; see, e.g.,
[68, Theorem 3.2.1.2]. Thus, the definition of the interpolation space implies

(LZ(“Q)? DL2 (_A))1—2/r,2 — (LZ(‘Q>7 H2(Q))l—2/r,27 (568)

where the embedding constant is given by the embedding constant of Dy2(—A) into H?(2).
Last, we employ Proposition A.29 for r > 4

(L2(£2), H2(2))1_a/ra = W*m2(02), (5.69)

where we have used the fact that {2 has a Lipschitz boundary, since it is convex; see [68,
Corollary 1.2.2.3]. The embedding constant has the asymptotic behavior ~ r for r — oo.
Combining (5.67) — (5.69) we arrive at

(LQ(‘Q)a DL2 (_A))lfl/r,r — W274/r’2(9)7

with embedding constant ~ r as r — oco. Using the embedding (5.65) that becomes in the
particular case

W (I; L2(£2)) 0 LT (I; Dr2(—A)) = C([0,1]; (L*(2), Dr2(—A))1-1/r),
we find for r > 4 that
ik (u = Inw) || oo (r.r2(0)) < 1= Tnull poo (11202
S CTh2(172/r) HUHC([O,l];W2(l_2/T)’2(-Q))7
and
IVik (v = LWl oo r.12(0y) < IV (0 = 1ol oo .22 (02

< erP? 027 ull g o a2 22y

where we have used the error estimates of Proposition A.33. Now, we can argue as before
(taking r = |log h|) completing the proof. O

Proposition 5.35. For allp € (1,00) and 7 € (0,1) such that d/(2p) < T we have
(LP(2),Dre(—=A))r1 — C(02).
Moreover, the embedding constant is bounded by

cl'(r - d/(2p))
I(7)

with ¢ > 0 independent of T and p.
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5. A priori discretization error estimates

Proof. According to Proposition A.13 we have
(LP(02),Drp(—A))r1 = Dro((—A)7).

Note that the embedding constant can be bounded independently of 7; see Remark A.14.
As in the proof of [49, Theorem 2.10 c)], for w > 0 to be specified later, we use the integral
representation of the fractional operator

1 oo
—A 1)"7T = tT—l —t(—A4w+1) dt:

see, e.g., [128, Equation (6.9), Chapter 2|. Employing [49, Theorem 2.10 b)], there are ¢ > 0
and w > 0 such that for x > 0 sufficiently small we find

c > T—1,— —K — T
[ull gry < F(T)/O 71 ORI TR (A w + 1) L) At

where the constants ¢ > 0 and w are independent of x, p, and 7. For the integral we have
the expression
o0
/ {14/ PR /26t 4 — D(r — d/(2p) — K/2).
0
Employing that Dr»((—A)") = Drr((—A + w + 1)7) with equivalence of norms independent
of p, see (A.11), we infer that

Drp((—A)7) = C(2), d/(2p) <.

Finally, going to the limit £ — 0 yields the bound on the embedding constant as specified in
the proposition. O

Remark 5.36. It is worth mentioning that Proposition 5.35 holds for fairly general domains
and divergence form operators even with mixed boundary conditions. We will elaborate
on the assumptions of [49] in our setting. In case of homogeneous Dirichlet conditions [49,
Assumptions 2.3 and 2.5] are vacuously true. Moreover, [49, Assumptions 2.4] requires the
Dirichlet boundary part to be a (d — 1)-set; see [84, Chapter II]. Since {2 is a Lipschitz
domain and there is no Neumann boundary part, from [120, Theorem 4.3] we conclude that
082 is a (d — 1)-set. Furthermore, [49] considers operators of the form A = —V - uV, where
p is a uniformly elliptic and essentially bounded coefficient function that is clearly satisfied
in our setting. For further details we also refer to [16, Appendix A] and the references given
therein.

Proposition 5.37. Let ' C 2 such that w' has a C*°-boundary. Then
lellwzogy < e (Iull o) + I=Aullpge) » € Din(=4),
with ¢, ~ p as p — oo.
Proof. Let u € Dppy(—A) and set f = —Au € LP(§2). Then the stated estimate follows
from [59, Theorem 9.11]. The exact form of the constant ¢, can be traced from the proof of

[59, Theorem 9.9] and is given by the Holder conjugate of the constant from the Marcinkiewicz
interpolation theorem. ]
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5.5. Robust error estimates for bang-bang controls (o = 0)

Proof of Lemma 5.33. Since @w C {2, there is an open set @ C w’ such that w’ C 2 and w’ has
a C*°-boundary. We use the interior pointwise best approximation result [103, Theorem 2]
[ = uh | Lo (1xw) < cllog k[[log 7]

wkhig)f(k’h (”U - <thHL<>o(IXw') + [Ju— SﬁthLoo(I;L?(Q)) + h[[V(u— Sth)”Loo(I;L2(Q)))

and would like to choose ¢y, = ixlpu. Note that even though [103, Theorem 2] is formulated
for w’ being a ball, its proof requires that @ C w’ and w’ C 2 only. The global errors on the
right-hand side can be estimated using Proposition 5.34. Hence, we only have to estimate
the first term on the right-hand side and consider the splitting

llu— ikIhUHLOO(wa’) < lu— ikU||Loo([xw/) + [l (u — IhU)HLoo(wa)-
Recall that due to (5.66), the continuous injection
W (1 LP(2)) N LT (1; Do (= A)) < C([0,1]; (LP(£2), Do (=A))r1), 7€ (0,1 1/r)
holds, where 0 < « < 1 —1/r — 7. Furthermore, for 7 > d/(2p), we have
(LP(£2), Do (=A))71 = C(92);
see Proposition 5.35. Taking 7 = d/p, its embedding constant is bounded by

CF(T - d/(2p)) — cF(d/(Qp)) — 92 as p — 0.

I'(7) I'(d/p)

Hence, choosing o = 1 — 2/r — d/p with sufficiently large r we arrive at

= ikt oo 1wy < KRl Lo ()L D (- )

The r-dependence of the latter norm can be explicitly given as

cr
lallw e qrizo@yors gy < ~g (IFlr ey + 1ol o) Do -an,iyn,)

see, e.g., [7, Theorem 1.3.2]. Using the fact that
Dreo(—A) = Dro(—A) < (LP(2), Drr(—A))1-1/rs

with uniform embedding constants for » > ry > 1 for some ry > 1 (see Proposition A.1 and
Remark A.2) and taking r = |log k| > 1 yields

= iktl] oo 1y < cllog bl (111l e (rx2) + 10l —a)) -
Next, we turn to the error due to spatial discretization. Using (5.66), we find the continuous
injection
WL LP (W) N LT (I WP (o) = O([0, 15 (LP(W'), WP ()11 /rs)-

Now let p,r > 2+4d/2. If 1 — 1/r > 7 > max(1/2,d/(2p)), we have according to Proposi-
tions A.5 and A.29

c(r,1-1/r,r,p) c(T)
—

(LP(w'), W2P(') 11 (LP(@), WP (W) rp = WP ().
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5. A priori discretization error estimates

We take 7 = 1 — 2/r and abbreviate ¢,, = ¢(1 —2/r,1 —1/r,r,p). The constant ¢(7) from
Proposition A.29 has the asymptotic behavior ~ (1 —7)~! for 7 — 1. Since (1—17)"! =1r/2,
we obtain

ik (v = Inw)l| oo 1wy < N1t = Tntull poo (1)
< kP22l oyt 1ywaa-2m ()
< crprh® TP | g oy (e )

where we have used the interpolation error estimate from Proposition A.33. Furthermore,
Proposition 5.37 implies the estimate

lullwrr (g zo@norrasweewy) < eollullwrr@e@)ar- @ -a)
where we have assumed without loss that ¢, > 1. As above this yields

2
. CCr pTCpT
i (0= )l ey € 2 (1 iz + oll o) Dy -apy ) - (5:70)

Taking r = p = [logh| > 2 4 d/2, from Remark A.6 we infer the asymptotic behavior
crp=c(l1—=1/r,1—=2/r,r,r) ~7rasr — oco. Hence, we have the estimate

3
r—

where we remind the reader that ¢, ~ p as p — oo. Finally, (5.70) implies

ik (w = Tpt) | oo (rxery < cllog h[*h? (HfHLOO(IxQ) + HUOHDLOO(—A)) :

This completes the proof. ]

5.5.4. Variational control discretization

In the following we consider the case of a distributed control on a subset w C {2 starting with
the variational control discretization. As before, suppose that the family of triangulations
is quasi-uniform; see Definition A.31. For regularity reasons, we suppose that @ C §2. The
following error estimates might also hold, if, e.g., w touches {2 such that 92N dw is smooth.
However, to avoid further technicalities, we stick to the case, when w has a strict distance to
the boundary of w.

Introducing an additional term zgp, = 2kn(Vkh,a, 1.5 (Vkh.a, Gkh,a)) being the solution to the
discrete adjoint equation with terminal value figy o (915 (Vkh,a» Qkh,a) — tq) and time transfor-
mation Vg o, we split the error

1B* (Zka = 2(Pk,s @) | Lo (1)

< IB* (Zkh,a — 2kh) | oo (1xw) T 1B™ 2k = 2Pk Qo)) oo (rxwys (5:71)

i.e. g is the discrete counterpart to the continuous adjoint state z(Ugn « qkh,o) With discrete
data. We will treat both terms of the right-hand side of (5.71) separately.

In order to apply the point-wise error estimate Lemma 5.33 for the second term of (5.71) we
require 415 (Vkh s Qkh,a) — Ud € Dreo(—A). This will follow from the following proposition at
the price of an additional logarithmic factor.
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5.5. Robust error estimates for bang-bang controls (o = 0)

Proposition 5.38. Let p € (1,00), v € Ry, ug € LP(2) and f € L*(I;LP(2)). For all
€ (0,1) the solution u to the state equation with right-hand side f and initial value wgy
satisfies

N8 (W) gy < v (loll ooy + 2= 7)1 o100

with a constant ¢ > 0 independent of v, ug, f, and T.
Proof. Using [128, Theorem 2.6.13], we find for all 7 € (0, 1) that
H=A) u()l| o) < I(=A) el o + v / =AY 2 o 1) oy ds

1
< CTV—THUOHLP(.Q Fver| fllpe I;LP(Q))V_T/O (1—s)""ds

= v (Juoll gy + v =) Ml ooy ) -

The constant ¢, depends on the resolvent estimate (A.13) for —A which does not depend on
p. Last, the constant ¢, can be chosen to be independent of 7. O

Note that in the proof of Lemma 5.33 we have used the embedding
Dres(=A) = (LP(£2), Dro(=A))1-1/rs-
Indeed, we have
Drr((=A)7) = (LP(82), Drp(=A))r00 = (LP(12), Dro(=A))1-1 /s

for 7 > 1—1/r; see Propositions A.4 and A.15. We emphasize that the embedding constants
do not depend on p; see Remark A.17. Choosing 7 =1 —1/(2r), the embedding constant of
the first injection is uniformly bounded as r — co. Furthermore, the embedding constant of
the second injection satisfies

=c(l—-1/r,1=1/(2r),00,r) = <2r+ ri1> [Tmin{l _ i’i}]l_l/r .

as 1 — 0o. Using Proposition 5.38, the state u = S(Ugh o, Gkho) Satisfies
Hu(l)||(Lp(Q),DLp(—A))1,1/r,r <ce,(1-7)7Y T>1-1/r
Hence, choosing 7 = 1 — 1/(2r), or, equivalently, 2r = (1 — 7)~!, and using the embedding
above in the proof of Lemma 5.33, the second term of (5.71) can be estimated as
1B (zkn = 2(Pkhcs Gkn,o)) || Lo (1)
4 7
< c|log k|*|log Al (k + h2) ( @)+ HudHDLOO(fA)) . (5.72)

Next, we consider the first term of the right-hand side of (5.71). For this, we require a
pointwise stability result for the adjoint state equation.

Proposition 5.39. Let v € [Vmin, Vmax) for fited 0 < Vmin < Vmax. Moreover, consider
w C wy C §2 open sets, w C wi, w1 C {2, and suppose that wi has a smooth boundary.
The solution to the discrete adjoint equation zg, € Xy with terminal value z1 and time
transformation v satisfies the estimate

2kl oo (rxw) < € (HZHLoo(wal) + 121l oo (1,22(02)) hHVZHLoo(I;L2(Q))) ,

where z is the continuous counterpart to zxp. The constant ¢ > 0 is independent of k, h, v,
z1, 2, and zgp,.

141



5. A priori discretization error estimates

Proof. The result is shown in the proof of [103, Theorem 2|, where the stated estimate can
be found at the bottom of page 1382. Again, even though [103, Theorem 2] is formulated for
w1 being a ball, its proof requires that w C wy and wy C {2, only. O

Proposition 5.40. Let v € [Vmin, Vmax| for fited 0 < Vipin < Vmax and wy C we C 2 be open
such that Wy C wo. Moreover, let 21 € L?(82) such that z1|., € L™ (w2). The solution z to

—Oiz —vAz=0, 2(1)==z,
satisfies the estimate

12l oo (1) < € (1211 o0 umy + 121022002 )

with ¢ > 0 independent of v, z1, and z.

For the proof of Proposition 5.40, we require the following standard stability estimate.

Proposition 5.41. Let v € [Unmin, Vmax) for fixted 0 < Vmin < Vmax, [ € L°(I;LP), and
vg € L™ with d/(2p) < 1—1/s and s,p € (1,00). The solution v to

o —vAv = f, v(0) = v,
satisfies the estimate

ol ooy < € (1l ocrszoqay + vollpomay)

with ¢ > 0 independent of v, f, vy, and v.

Proof. If f = 0, then this follows from the fact that the semigroup generated by A is con-
tractive on L*(£2); see, e.g., [66, Theorem 4.12]. If vy = 0, we apply [49, Theorem 3.1].
Superposition of both estimates yields the assertion for any fixed v. Furthermore, continuity
of the mapping v — (9; — vA)~! from R into L(L*(I; LP(£2)), L°°(I x §2)) and compactness
Of [Vimin, Vmax) implies that the constant can be chosen to be independent of v. O

Proof of Proposition 5.40. Let w' be a further subdomain with smooth boundary such that
w1 C w' C wy. Moreover, let £: 2 — R be a smooth cut-off function such that £(z) = 1 if
z €wp and £(x) =0 if z € 2\ w'. Then for all ¢ € H}(§2) the expression

—(A(€2),0) = (EV2, Vo) + (2VE, V)
= —(Az,&p) —2(Vz - VE, ) — (zAE, p)

holds. Hence,
—0i(€z) —VA(Ez) = &(—0iz —vAzZ) — 2UV 2z - VE —vzAE = —2UV 2z - VE — vz AL,
i.e. v = &z solves
0w —vAv = =2vVz - VE —vzAE, (1) = (€2)(1).

Using Proposition 5.41 with p = 4 and some s € (8/5,2) we infer that

HZHLOO(Ile) < HUHLoo(wa/) <c (HZHLS(I;WIA(M)) + HzluLoo(w/)) :
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5.5. Robust error estimates for bang-bang controls (o = 0)

To arrive at the stated estimate, we have to bound the term ||zl ps(,y1.4(,,))- Consider a
new cut-off function £: 2 — R such that {(z) =1 if x € W’ and {(x) = 0 if z € 2\ wa. Since
¢z =zand V(£2) = Vz in &/, we have

120 Lo rwragnyy = 1620 Lo crwraqnyy < €20 Lo (rwraqyy-
Using that Dy —1.4(—A) = Wy (£2), see [45, Corollary 3.12], we deduce that

HZHLS(I;WlA(w’)) < CHfZHLS(I;Dw,lA(—A))'

Then maximal parabolic regularity of —A on W—54(£2), see, e.g., [8, Theorem 11.5], and the
fact that —2Vz - V& — 2Af = =2V - (2VE) + zA¢ imply

10l s (12D, a(-a)) S € <H—2V - (2VE) + 2A¢ || Lo w140y HleH(W1,4(9),ng4(9))11/3’5\) :

Since the mapping v + (9; — vA)~! is continuous, the constant above can be chosen uni-
formly with respect to v € [Vmin, Vmax). Moreover, according to [65, Lemma 3.4] and [146,
Theorems 1.15.2 d), 1.3.3 e)] the embedding

LY () = W), Wo (D)2 = (W H4(02), Wa ™ (92))1/2,00
— (W_M(Q),W()1’4(9))1—1/s,s

holds, if 1/2 > 1 — 1/s, or, equivalently, if s < 2. Thus,
HleH(W‘l"‘(Q),Wol"l(ﬂ))l_l/s,s < C||Z1HL4(UJ2) < CHzlnLOQ(UJQ)'
For the remaining term, we estimate
=2V - (2V&) + 28| s (ryw—14(0)) < CllzllLs(r500(0)) < llzlliem ) < cllzallpz )
where we have used the Sobolev embedding H} (£2) — L*(§2) in the second last step. O
Proposition 5.40 allows to estimate the L°°(I x wq) term of the right-hand side of Proposi-

tion 5.39. To estimate the remaining terms of the right-hand side of Proposition 5.39, we
observe that the solution z from Proposition 5.39 in addition satisfies the estimates

2l oo (1,202 < cllzll 2oy
V2| oo (122(02)) < €llV21ll 20y

Hence, combination of Propositions 5.39 and 5.40 immediately implies the estimate
1B G = )l 1y < (1) = w(D)]] o
(1) = w ()| + IV (1) = w1l ). (5.73)

where we have set ury, = ©1.5kh (Vkh,a) Qkh,o) a0d ©u = S(Ugh.a, Qkh,a) for convenience. The
first term of the right-hand side is estimated using Lemma 5.33 (with w = wy). To estimate
the remaining terms, we use Lemma A.39 and the following estimates: Let R denote the
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5. A priori discretization error estimates

Ritz projection. Then an inverse estimate, see, e.g., [24, Theorem 4.5.11], and the best
approximation property of the Ritz projection in H& lead to

IV (ukn(1) = w(D)l 202 < IV (urn(1) = Bau(1))l| 20y + IV (Rru(1) — u(1))] 2o
< hHlun (1) = Rupu(D)l| 2oy + IV (Inu(1) = (1))l p2(0)-
Using again Lemma A.39 and the error estimate (A.28) for R, we find
[urn (1) = Buu(D)| 2 () < llurn(1) = u(D)lp2(q) + [u(l) = Bau(D)]] 120
< cllog k|(k + B?) + ch'* T [[u(1) 1472 -
Moreover, according to Proposition A.33, it holds
IV (Inu(l) = u()ll g2y < b lu(D)llwr+rz )

To estimate the W!+™2 norm, we employ Proposition A.16 and obtain

Dpa((—A)7) = (H'(2), H*(2) N H§(2))72 — (H'(2), H*(2))r2 = WHT2(02),

where we have used Proposition A.27 in the last step. Note that the constant of the first
embedding constant is bounded by

1+ (=2cos(mr)D(=2r))2 ~ (1= 7)7Y2 as T — 1.
The remaining embedding constants can be bounded uniformly. Finally, Proposition 5.38
with (1 — 7)~! = |log h| implies
1/2 .
[u(1)[ly1172(0) < clloghl / (HBQkh,CYHLoo(I;LQ(Q)) + HUOHL2(Q)) :

Collecting all estimates we have

IV (ugn(1) — U(l))”L2(Q)
< cllog klllog Af*'* (k + 12) (1Bl 120y + Il agey) - (5:74)
Hence, from (5.73), Lemmas 5.33 and A.39 as well as (5.74), we obtain
1B (Zkta — 2l oo (1) < cllog k| [log Al (k + h?). (5.75)
Finally, (5.72) and (5.75) yield the following estimate that we summarize for later reference.

Proposition 5.42. Let w C 2. Suppose that ug,uq € Dre(—A). Then there exists a
constant ¢ > 0 such that

1B (Zkha — (ks Gen,o)) | oo (1) < Cllog k[*log " (k + h?),
where ¢ > 0 is independent of k, h, o, Zgh.a, and 2(Vkha, Qkh,a) -
By means of Propositions 5.28 and 5.42 we finally infer the following error estimate for the
variational control discretization.

Theorem 5.43 (Variational discretization). Adopt the assumptions of Lemma 5.26 and let
(3.37) hold. Moreover, suppose the variational control discretization, i.e. Qy(0,1) = Q(0,1).
In addition, assume W C 2 as well as ug,uqg € Dpoe(—A). Then there is a constant ¢ > 0
not depending on k, h, o, Ugp o, and qgpo such that

7= Pl + 118 = Gonall i1y < € (o + Roghllog bl (b +5%))

Proof. This result immediately follows from Lemma 5.26 and Propositions 5.28 and 5.42, since
for the variational control discretization we have I, = Id and o1(k,h) = o2(k, h) = 0. O
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5.5. Robust error estimates for bang-bang controls (o = 0)

5.5.5. Cellwise constant control discretization

Next, we consider the case of a distributed control on a subset w C {2 with controls discretized
by cellwise constant functions in space. Recall that oy denotes the projection error onto Q.
measured in L' and o9 denotes the same error measured in L?(I; H~!); see (5.50) and (5.51).
Since the control variable possesses less regularity (compared to the case oo > 0), for cellwise
constant control discretization, we cannot expect order k of convergence in L? in time. We
therefore propose a semivariational control discretization. To this end, let the discrete space
of controls be defined as follows

Qn = {v € L*(w): vk € Po(K) for all K € 77{"} ,
Qo(0,1) = L*(; Q).
Hence, the controls are explicitly discretized in space but not explicitly discretized in time.
Note that in case of v > 0, then the optimal controls g are implicitly discretized by
means of the projection formula (5.44); cf. also the discussion after Theorem 5.31. From the

perspective of the numerical realization, one often uses o > 0, because the problems for o = 0
are typically difficult to solve numerically.

On any K € 7T;, we define the cellwise constant projection IIj o via

1
Mgo)(t,2) = o [ o(t.€)dg, te 1)z e K.
K| Jk
Moreover, for almost every ¢ € [0, 1] we set
Snt =T \{K € Ty’: 4(t)|x = qa 0r 4(t)|x = @b},
for all v € L?(I; L?). We first establish the required estimates for o1 and o9 with I, = I} .

Proposition 5.44. Suppose there are functions &, € L'(I), h > 0, and a constant ¢ > 0
such that
> IK| < 0u(t), ae te[0,1], h>0, (5.76)
KeSh

and ||0p ||y < ch for all h > 0. Then the estimates

||Hh,0(j - CYHLl(IXw) < ch, (5.77)
|B (T1h,0q — Q)||L2(1;H—1) < Ch3/2, (5.78)

hold with a constant ¢ > 0 not depending on h.

Proof. Because IIj, 0q(t)|k = ¢a, if ¢(t)|k = ¢a, and the same for the upper bound g, we
obtain
M,00(8) = @)l 1y < ¢ D K] < (D),
KESh,
for almost every t € (0, 1), where we have used that q(t) € L*°(w) and (5.76). Integration
with respect to ¢ implies the first estimate (5.77). Moreover, for any v € H' and K € T we
have

~—

(T 0d(t) — (t),v) g2, = (Mhodt) — alt
< 1M06) — G06) L2 sy Thnow — ol o s
< ch|Mh0q(t) = 4O L200) VOl L2 (k)

, U — thov)Lz(K)

~—

145



5. A priori discretization error estimates

since 11}, o is a projection. Hence, using Holder’s inequality, we infer that

(Mp,0q(t) — q(t),v) 2

1B (Ih,0q(t) = q(t)) |l -2 = sup

T ol
1 _ _
<ch sup ol D Taod(t) = G| 20 I VOl 2 )
UGH[% KGS}L,t

1/2
<ch sup |[vlln | Y IMaod(t) — a(®)ll72k Vol L2
s (K)

'UGHO Kesh,t

KESh,t

1/2
< ch( > \K|) < ch (3n(8))"/?,

for almost every ¢ € (0,1), where we have used (5.76) in the last estimate. Integration with
respect to ¢ leads to (5.78). O

Note that the condition (5.76) allows for certain accumulation of switching hyperplanes which
might occur for bang-bang controls. Employing the structural assumption of the adjoint
state (3.37), we can derive the following sufficient condition for (5.76); cf. also the proof
of [36, Theorem 4.4]. We emphasize, that the condition (5.76) is less restrictive than to
suppose that (3.37) holds with k = 1. This is also observed in the numerical examples; see
Section 5.7.3.

Proposition 5.45. If B*z € LY(I; CY(@)) and (3.37) holds with k = 1, then (5.76) is valid.

Proof. Lett € [0,1] and K € Spy4, i.e. Z(t) changes sign in K. Hence, there exists zx € K C w
such that B*z(t,zx) = 0. Using the assumed regularity for B*z, we find for all z € K that

|B*2(t, x)| = |B* (2(t, x) — 2(t, 2x))| < chl|B*Z(t) || o1 -

Thus,
U &K) c{(t2): 2 €w,|B*2(t,2)| < ch||B*2(t)ll o1 } -
KeSh ¢

Now, the inclusion above and (3.37) with x = 1 imply

Y K| < chlZ(®)] o) = o).
KGShyt

Integration yields ||0p ||, = ch. O

Finally, we provide an error estimate for cellwise constant control discretization.

Theorem 5.46 (Cellwise constant controls). Adopt the assumptions of Lemma 5.26 and let
(3.37) hold. Moreover, suppose the variational in time and cellwise constant control discretiza-
tion in space, i.e. Qy(0,1) = L2(I;Qy). In addition, assume @ C £2, ug,uq € D (—A), and
that (5.76) is satisfied. There is a constant ¢ > 0 not depending on k, h, o, Ugp o, and Qrhq
such that

7= inal 12 = Ginall3(ry < (0 + Noml'llog A" (k + 1))
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5.6. Robust error estimates without sufficient optimality condition (o = 0)

Proof. We first note that for p > d and using Proposition 5.37 we have the estimate
1B*Z = 0B 2| oo (1xw) < ChllZl| Lo (rwm(wy) < €2l oo 10,0~ a)) < €

Hence, employing Lemma 5.26, Propositions 5.28 and 5.42 as well as the estimates for o1 and
o2 from Proposition 5.44 yield the desired estimate. O

5.6. Robust error estimates for bang-bang controls (« = 0)
without sufficient optimality condition

While the error estimates of the preceding section essentially used a structural assumption
on the adjoint state that is in general difficult to verify, in this section we will provide
error estimates for the terminal time that rely on a condition that can be verified a priori.
The estimates are based on the construction of feasible controls and crosswise testing. The
techniques can be applied to relatively general problems and — because this will not lead to
unnecessarily overloaded notation — we will discuss the main tool for a general autonomous
evolution equation formulated in a Gelfand triple V' <. H — V*. Moreover, the terminal
set U C H is assumed to be closed and convex.

Recall from Chapter 2, the lower Hamiltonian is defined by

h(u,¢) = min (Bq — Au,(), foru,( € V.

q€Qad

Suppose that Py is stable in V' and that there is hg > 0 such that for all v € V' it holds
h(“’uC) < _hOHCH, Whereu:PU(v), C:U—u.

Then, according to Lemma 2.10, for each ug € H with dy(ug)wo < hg there exists a control
q: [0,00) = Qquq such that the solution u to

Ou+ Au = Bq, u(0) = uyp,

satisfies
dy(u(t)) < max {0, dy(uo) + (du(uo)wo — ho)t }, t=0.

We will prove a discrete analog to Lemma 2.10 that will be used to construct feasible controls
for the discrete problem. First, recall the Garding inequality

(Au,u) +wollull* = aollully, weV,

concerning the operator A. For h > 0, let V}, C V be finite dimensional subspaces (equipped
with the inner product and norm of V') and consider operators A : V}, — V;* =2V}, satisfying
Géarding’s inequality on V}, precisely

(Apu,u) + wollul® = aollulli,, € Vi,

for all h > 0 sufficiently small, where wg and «g are fixed. For any T > 0, consider a
partitioning of the time interval [0, 7] given as

[O,T]:{O}UflLJIQU...UIM
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5. A priori discretization error estimates

with disjoint subintervals Ip,, = (ty,—1, t;] of size k,, defined by the time points
O=to<ti<...<tyy1<ty="T.

We abbreviate the time discretization by the parameter k£ defined as the piecewise constant
function by setting k|1, = ky, for all m = 1,2,..., M. Simultaneously, we denote by k the
maximal size of the time steps, i.e. k = maxk,,. Given the temporal mesh, for any Banach
space Y, we introduce the space of piecewise constant functions

XMYM:{UEL%meY%m( eiﬂﬁmAJMﬂﬂﬂn:LGwﬂq.

tm—1 7tm]

In addition, let @ C @ be a subspace (not necessarily finite dimensional) and we define
the set of admissible controls Quqn = Qn N Qaq. For simplicity, we write ¢ € Xi(Qaa,n) if
qc Xk(Qh) and q|(tm71,tm] € 'Po((tm_l,tm}; Qad,h) for all m = 1, 2, Ceey M.

5.6.1. The discrete Hamiltonian and the contruction of feasible controls

For the construction of feasible points, we prove a discrete analog to Lemma 2.10. The proof
presented here is based on a preliminary version of [18]. We introduce the discrete lower
Hamiltonian for Ay on Vj, as

hh(“’a C) = min <Bq - Ah’LL,C>, for UaC € Vh;

q€Qad,n
cf. the lower Hamiltonian on the continuous level.

Lemma 5.47. Let Py be stable in Vy, i.e. Py(Vy) C Vi, and k < 1/wg. Suppose there is
ho > 0 such that for all v € V}, it holds

hh(ua C) < _hOHCHv ’LUheTe’LL:PU(’U), (=v—u. (579)

Then, for each ug € Vi, with dy(ug) < ho/(4wp) there exists a control qrp, € Xp(Qad,n) such
that the solution ugp € Xi(Vy) to the discrete state equation, i.e.

T M T
/0 (Anturn, rn) + Y ([Ukhlm—1, rhm) + (Ukh,1, Pri1) = (U0, Prn,1) +/0 (Bakn, Prn)

m=2
for all prn € Xk (V), satisfies

dU(Ukh(tm)) < maX{O, dU(uo) - (h()/2)tm }, m = 1,2, NP ,M.

To prove this result, we first regularize the distance function on U. For v > 0 consider the
mapping ¢,: Ry — Ry defined as

2 )(2y) fo<t<n,
¢%ﬂ_{t—7ﬁ if t > 7.

Then, the regularized distance function is given by d,(u) = ¢,(dy(u)). Clearly, we have

dy(u) —v/2 < dy(u) < dy(u) foralluec H.
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5.6. Robust error estimates without sufficient optimality condition (o = 0)

Lemma 5.48. For all v > 0 and uw € H the regularized distance function is differentiable
with

¢ du(w)
- du(u)

Furthermore, the gradient Vd: H — H s Lipschitz continuous with

t/y if0<t<r,

Vd(u
1) 1 ift>n.

(u— Py(u)), where gf)fy(t) = {

IVd,(u) = Vd, ()] <57 lu—ll.

Proof. First we note that the choice of d, is not arbitrary. In fact, this is precisely the
Moreau-envelope for the parameter v of the distance function

. 1
() = s () = mip | ol 4o (v)|

cf., e.g., [12, Section 12.4]. The differentiability and the Lipschitz continuity of the gradient
follow directly from that; see, e.g., [12, Proposition 12.29]. Concerning the concrete form
of the derivative, we note that for dy(u) > 0, dy(u) is differentiable with Vdy(u) = (u —
Py(w))/dy(u) (see, e.g., [12, Proposition 18.22 (i)]). Therefore, we can apply the chain rule.
For dy(u) = 0, we can provide a direct proof. ]

Now, for ¢ € Vj, we define for v > 0 the controls of the form

1 *
¢y = Hadn {—B C} : (5.80)
Y
where Il,q 5, denotes the Hilbert space projection onto Qguq,n, i-e.

q=Maan{z} & (1—24-q)g>0 foralgq € Quip-

The controls ¢, approximate the minimizers from the definition of the discrete lower Hamil-
tonian.

Proposition 5.49. For any (,u € V}, and ¢, as in (5.80) we have
(Bgy — Apu, ¢) < hi(u, ¢) + ¢, (5.81)

where c solely depends on Qua,p-
Proof. This follows as in Proposition 2.13 noting that Quq,n C Quq due to Q) C Q. O

For the following considerations, we define Bj,: Q) — V;* as

(Bna, pn) = (Bq,pn) for all ¢, € V.

Proposition 5.50. Let v > 0. Suppose that Py(Vy) C V. For any upm—1 € Vi, and ky, €
(0,1/wo], the system of equations

(I + kmAh)um = Um—1 + kmBth,

m = Maqp {—(1/7)B;Vdy (um)}, (5.82)

possesses a solution (U, qm) € Vi, X Qud,h-
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5. A priori discretization error estimates

Proof. Consider the mapping

F(a) = o { =2 B [V, ((1+ b ) (s + 1) ]}

First, because B is continuous from () to V*, we infer that By, is continuous from @)}, to V}'.
Moreover, since (I + kmAp) is continuously invertible, we have (I +kmAp)~t: ViF 2V, — V.
Additionally, Vd, is Lipschitz continuous on H due to Lemma 5.48. Equivalence of norms
in finite dimensions implies that Vd, is continuous on Vj,. Last, continuity of By : Vj, — Qy,
and Il,q 5 on @ lead to continuity of F from (), into itself. Furthermore, since V;, C V' and
V}, is finite dimensional, F(Qgq,,) is contained in a compact subset of Qp,.

In summary, F: Qua,n — Qad,n is a continuous mapping with F(Qguq) compact. Therefore,
Schauder’s fixed point theorem (see, e.g., [163, Theorem 2.A]) yields the existence of a fixed
point F(gm) = gm. Setting um = (I + kmAp) " (Um—1 + kmBrgm) proves existence of a
solution to (5.82). O

With this preparation, we are ready to prove the lemma.

Proof of Lemma 5.47. Let ug € V}, be given as specified. By iteration of (5.82), we construct
a function u = ug;, € X (V) with

(I + kmAh)um = Um—1+ kmthmv

Lo
qm = Had,h {_,)/Bthy(um)} .
Then, convexity of d, and the definition of u,,41 yield

dy(Um+1) < dy(um) + (Vdy (Uni1), Umt1 — tm)
= d~(um) + kmt1(Brgm+1 — Antims1, Vdy (tmi1))
= dy(um) + kmt1(Brgm+1 — AnPu(um+1), Vdy (tm1))
+ Em1 (An(Pu (Umt1) — Umt1), Vd'y(um-i-l»'

Lemma 5.48 and the Garding inequality further imply

/ d m
(An(Py(ums1) — Ume1), Vdy (um1)) < —CYOMHUW+1 = Pu(umsn)ly
dU(Um—I—l)
/ d m
2D o — o)

< wod’, (dy (um+1))du (tm+1)
< wody (Um+1)

since ¢ (dy(um+1)) < 1. Setting (my1 = Vdy(um+1) and employing (5.81) and (5.79) we
infer that

dry () + kg1 [Pa(Umi1, Gmy1) + ¢y + wody (Um1)]
d’y(um) + karl [_h0||Cm+1 || +cy+ WOdU(uerl)]
d

(W) + K | ~hot (du(wm41)) + wody (ume1) + (e + wo/2)7]

d’y(um—H)

VANVAN

IN
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5.6. Robust error estimates without sufficient optimality condition (o = 0)

since [|Gn |l = &7, (dy (um)) and dy(-) < d,(-) +v/2. In the following, we replace (c+wo/2) by
the generic constant ¢, just depending on Q,q and wg. Thus, we have shown that

(1) < dy () + kg1 [~hod, (du (1)) + wody (wmir) +e7] . (5.83)
Since kp, < 1/wp, we have the fundamental inequality
(1 — wokm) ™" < (14 2wokm) < exp(2wokn,),

which will be useful below.

By induction, we now show the following estimate for all m:

ey exp(2wotim ) tm for hg = 0,

(5.84)
max {7, dy(ug) — (ho/2 — c¥)tm } for hy > 0.

doy(um) < fy(tm) = {

Clearly, the inequality holds for m = 0 due to the assumption dy(up) < ho/(2wp). In the
following, we assume that the estimate dy(ux) < f,(tx) is established for all k& < m, and
proceed separately for hg = 0 and hg > 0.

Case hg = 0: From (5.83), we obtain

d’y(um—i-l) < d’y(um) + kmt1 [dev(um—&-l) + ],

which is equivalent to
dy (um+1) < (1= kam#—l)il(dv(um) + kmt107).

Now, by using (1 — wokm+1) " < exp(2wokm+1), the assumption d (u,) < ¢y exp(2wots )tm,
and k107 < eyexp(2wotm)km+1, and tym+1 = tm + kmy1, we obtain the desired inequality
for m + 1.

Case hog > 0: In the following, we will choose 7 sufficiently small such that ¢y < hy/2. For each
m+1, we have two situations: Either, it holds dy(um+1) < 7, which means that dy (upm+1) <7,
and we are done. Or, we have dy(um+1) > 7, and we can use ¢, (dy(um+1)) = 1. In this
situation, we rewrite (5.83) as

d'y(um+1) < (1 - kam—&-l)_l(dw(um) + kmy1(cy — ho)).

Now, by using (1 — wokmi1) ™" < (1 + 2ky,41wo), we obtain

dy(Um+1) < dy(Um) + 2w0km1dy (Um) + Emy1 (1 4+ 2wokm41)(cy — ho)
= dv(“m) + 2W0km+1(d'y(um) + ¢y = ho) + km+1(cy — ho)
< d’y(um) + km+1ho/2 + ki1 (cy — ho)
= dy(tm) + km+1(cy — ho/2),

using the hypotheses dy(uy,) < fy(tm) < dy(uog) < ho/(4wo) and that (cy — hy) < 0. Em-
ploying the induction hypothesis, we obtain the desired estimate (5.84) for m + 1.

Finally, since

Ay (um) < do () + 3 < max {1y, dy(uo) = (ho/2 = Y)tm } + 7.

and going to the limit v — 0 proves Lemma 5.47. O
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5. A priori discretization error estimates

5.6.2. Robust regularization and discretization error estimates

Based on the discrete strengthened Hamiltonian condition (5.79) we now prove discretization
error estimates for the optimal times. For simplicity, let again A = —A equipped with
homogeneous Dirichlet boundary conditions as in Section 5.1. Hence, we choose V = H}(2),
H = L*(2), and V* = H-(§2). It is worth pointing out that the techniques can be used for
fairly general elliptic operators; see also Remark 5.53.

Suppose that the regularity conditions concerning the temporal mesh 0 = g < t; < ... <
tyr—1 < tyr = 1 and the spatial mesh 7;, from Section 5.2 are satisfied. Let V;, C V denote
the subspace of continuous and cellwise linear functions associated with the mesh 7;. Con-
cerning the discretization of the controls, we propose a semivariational control discretization.
Precisely, the controls are not explicitly discretized in time but can be explicitly discretized
in space. The reasons are as follows: First, for a discretization in time, we would require an
estimate for the controls in L? in time. However, for bang-bang controls we cannot expect an
optimal order estimate in L?. Second, as we consider the piecewise constant discretization
of the state and adjoint state equation, in view of the projection formula (5.44), if & > 0
the optimal controls to the discrete problem are piecewise constant as well. Hence, the semi-
variational and the discretization by piecewise constant functions in time are equivalent; cf.
also Corollary 5.19. Last, there is a technical reason. Since the proof of the following error
estimate is based on cross-wise testing, we have to extend an optimal control from the con-
tinuous problem in a way such that the auxiliary control is feasible for the discrete problem.
In a semivariational control discretization we avoid the necessity of projecting the auxiliary
control onto the given temporal mesh.

Recall that @, C @ is a subspace (not necessarily finite dimensional) and define the set of
admissible controls Quqn = @ N Q. Moreover, we set

Qadn(0,1) :={q € Q(0,1): ¢(t) € Quap a.a.te€ (0,1)}.

For any a > 0, the regularized and discretized problem reads as

inf Ja(Vkh,as Qkh,a)  subject to  grn(Vih,ar Gkh,a) < 0. (5.85)
Vkh,a ER4

dkh,a EQad,h (071)

As for the continuous result, the discrete strengthened Hamiltonian condition in particular
implies that the discrete problems are well-posed; cf. Remark 2.15. Even better, we obtain
the following robust estimate that eventually leads to discretization error estimates.

Lemma 5.51. Let (v, q) be a global solution to (150) and {(k, h, )} be a sequence of positive
mesh sizes and reqularization parameters converging to zero. Moreover, suppose that the
conditions of Lemmas 2.10 and 5.47 hold with hg > 0. Then there exist § > 0 and a sequence
{(Tkh.a» Gkh o)} of global solutions to problem (5.85) such that

17— Zhnal < c o+ Noghl(k+h2) + B (on — Dll (s 1))
for any g € Quan(0,1) with | B (@h — @)l sz < 9.
Proof. The proof is based on the construction of feasible controls and cross-wise testing. We
start by constructing a feasible point for the discrete problem. Here we have to take care of

the fact that we cannot simply add time steps to the temporal mesh. Instead we divide the
temporal mesh in two parts; see also Figure 5.9.
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5.6. Robust error estimates without sufficient optimality condition (o = 0)

Step 1: Feasible control for the discrete problem. Let (v,q) be a (global) solution to (lf’o).
Moreover, let m’ € {1,2,..., M } be arbitrary that will be determined in the course of the
proof. Given gy, € Qq4,1(0,1), we construct a new control by

' (1) = an(tt) it <ty
Gt —tm) (1 —tm)™ 1) else.

Let uy,;, be the piecewise constant function with values in V}, satisfying

to tm
ﬂt;,;/t (Vugy, Von) + ([Unlm—1, on) = Ijt;l}/t (Bqy,, ¢n) for all ), € Vj,
m—1 m—1

for all m = 1,2,...,m/, i.e. u}, is the discrete state on the temporal mesh ty < t; < ty <
. <ty with time transformation v and the control ¢, transformed to (0,%¢,,). Define
v = (t; — 1)v or, equivalently, ¥t ; = © + v. Then

it Sen (7 + 1, 41,) = W, ().
Moreover,
it, S0+ v, q,) = 015(7, qn).

Thus, we have the estimate

dy (g, (tn)) < dy(i1S(v, @) + |i1S (@, qn) — 0187, @) 12
+ |lit,, Skn (7 + v, qp,) — i, , ST + v, q3) || .2
< CHB (qh - (j)”LQ(l;H_l) + 5(k7 h,m’),

where we have used linearity of the solution operator (for fixed v) and d6(k,h,m’) denotes
the discretization error to be discussed later. Now Lemma 5.47 guarantees the existence of a
control §xp such that the corresponding state gy as defined in Lemma 5.47 with initial state
uyp, () satisfies

du (it (b)) < max {0,¢]B (an — @)l oqrupr 1) +3(k. ') — (ho/Dim ) (5.86)

for m = 1,2,... on an arbitrary temporal mesh 0 = f, < #; < ..., because wg = 0 due to
homogeneous Dirichlet boundary conditions. Let 7 > 0 such that

c|B (gn — Dl 2 (r.pg-1y + 6(k, hym') = (ho/2) = 0.

Since ||B (gn — @)l p2(;,r—1) < 0, we obtain the upper bound

2
v < " (cd + 6(k,h,m')) . (5.87)
0
For the following considerations we assume that v < v for 4, k, and h sufficiently small and
postpone the rigorous proof of this estimate to step 2. Take m’ € {1,2,...,M — 1} such

that

v

v+v
with ¢, from the reference time mesh and some 7 € [0,1). Note that the case m’ = M is
impossible due to 7 > 0. We will argue that ¥ can be slightly increased to some v such that
v/(V+v) =ty as well as

=ty + Tkm’Jrl

v S C”B (Qh - q_)HL2(I;H*1) + Ck + 5(k7 h7m/)
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Reference mesh |
0 ty 1

Real mesh } : : : — % % =
0 v vV+v

Extension P

to t to

Figure 5.9.: Temporal meshes in the proof of Lemma 5.51.

(with a possibly different constant ¢) hold. A simple calculation reveals

1—1t,, v+U
v= T =0+ Tk +
Ly m

Moreover, we have the lower bound

1>tm/:,L—Tkm/+1>
v+v B

1
—— — k> - —k.
v+v 2

Since k < 1/4 we have ¢,y > 1/4. Thus v < U + ck(v + ) and v satisfies the required
properties. Recall that for the constructed control ¢ from Lemma 5.47, we have the freedom
to choose the temporal mesh. We set

j
5j=(17+V)Zk?mf+u j=1,2,....M —m/;
i=1

see also Figure 5.9. This gives {y/_n = v and dy (tgn(far—me)) = 0 due to estimate (5.86).
We define a new control as above by

g () = an(t (v +v)/v) ift <w/(v+v),
" Gt (v+v)/v—v/v) else.
Now since the new pair (v + v, q),) is feasible for (5.85), we obtain

Vkha < Jo(Tkhas Teha) < Ja (T + v, q))
<v+c|Blan — Dl p2ep-1y + ck + 0(k, h, m') + ca. (5.88)

In particular, since there exist feasible controls for (5.85), we deduce that there is (at least)
one optimal control for the discrete problem.

Step 2: Discretization error 6(k,h,m’). We are left with the task of determining the dis-
cretization error §(k, h,m’). Similar as in Lemma A.39, we can prove the error estimate

5(k> hv m/) = ||Z.tm/5’kh(lj + v, q;L) - itm,S(I; + v, q;L)HLQ
< cllogk|(k +h*) (1 + v +v)
< cllog k|(k + h*) (1 + 6 4 6(k, h,m'))

for all m’" € {1,2,... M }, where we have used the upper bound (5.87) for . Note that
the constant is independent of ¢, and ¢ due to boundedness of Quq4(0,1). In particular,
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5.6. Robust error estimates without sufficient optimality condition (o = 0)

the above estimate implies that 6(k, h,m') is arbitrary small for k and h sufficiently small.
Hence, 7 < v is guaranteed for ¢, k, and h small. Finally, from (5.88) we infer that

Vkho —V S C (04 + HB (Qh - q)HLQ(I;Hfl) + Hogk](k + h2)) .

Step 8: Feasible control for the continuous problem. For the reverse inequality we proceed
in a similar way. Let (Ugh.a,qkh,a) be a solution to (5.85) and set Ukna = S(Vkh,a) Qkh,a)-
According to the error estimate Lemma A.39 we get

du (Ukn,a(1)) < du(i1Skn(Vkh,as Grhya)) + 1918 (Vkhas Grhya) — 11Sk0 (Vkh,as Qih,a) |l 12
< c|log k|(k + h?).

By means of Lemma 2.10 there exists an admissible control ¢ such that the corresponding
solution to the state equation % satisfies

dy ((t)) < max {0, c|log k|(k + h?) — hot }
for all ¢t > 0. Hence, setting v = c|log k|(k + h?)/ho and

v

) = Teha(t (Tkhoo + V) Ukhoa) it t < Uph,of (Vkho + V),
Gt (Vkh,a +v)/V = Ukna/v)  else,

the pair (Dpp.q + v, ¢') is feasible for (P,), and we obtain
U < Upho + V = Dgna + cllog k[ (k + h). (5.89)

Combination of the estimates (5.88) and (5.89) proves the assertion. O

Similar as in Section 2.4, the assumptions of Lemma 5.51 can be explicitly verified in con-
crete situations. For the particular case that A = —A, we can state the following sufficient
condition.

Proposition 5.52. Suppose that U = Bs,(uq) with ug € Vi, CV and §g > 0. If there exists
a control ¢y, € Quan C Qad such that

2
c
B, + A o< —L 5, 5.90
| Bdn + Apugl| -1 1+ 0 ( )
with cp denoting the Poincaré constant, then the assumptions of Lemmas 2.10 and 5.47 are
satisfied.

Proof. We first note that in our case ag = ¢%/(1 + ¢%). The assumptions of Lemma 2.10 are
verified in Proposition 2.37 provided that (5.90) holds. Since ugq € Vj, for the verification of
the discrete strengthened Hamiltonian condition (5.79) we can use similar arguments as in
Proposition 2.37. O

Remark 5.53. (i) The techniques used in the proof of Lemma 5.51 can also be applied
to obtain error estimates for Neumann boundary control and for general autonomous
parabolic equations, if discretization error estimates for the state equation are available.
The only requirements are the strengthened Hamiltonian conditions in Lemmas 2.10
and 5.47 that can be verified to hold for fairly general operators and other control
situations. In particular, the classical problem with U = Bj,(0) and distributed control
on a subset of the spatial domain is included in our setting; see Proposition 5.52.
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5. A priori discretization error estimates

(ii) Note that all conditions of Lemma 5.51 except for 'k, h, and ¢ sufficiently small’ can be
verified a priori, in contrast to Proposition 5.28 that relied on the structural assumption
that can be hardly checked a priori.

(iii) Lemma 5.51 generalizes the convergence result of [87, Theorem 4] to more general ter-
minal sets than the L2-ball centered at zero. The proof of [87, Theorem 4] essentially
relies on the fact that A generates an exponentially stable semigroup on L? to con-
struct feasible controls; cf. also Proposition A.21. In our framework this is hidden in
Lemmas 2.10 and 5.47.

(iv) The case with a = 0 is included in Lemma 5.51.

(v) Lemma 5.47 requires the stability of Py in Vj,. For the prototypical example U = By, (uq)
this is equivalent to uqy € V,. The proof of Lemma 5.51 can be easily modified if
ug € V' \ Vi, by using the projected desired state ITjug with a corresponding error
estimate for ug.

While Lemma 5.51 potentially provides optimal error estimates for the optimal times, we
cannot show strong convergence of the controls without any additional assumption as in
Section 3.3.2 or Section 5.5; cf. also [37, 47, 148, 162]. By standard arguments, merely weak
convergence to a control ¢* € Q,4(0,1) that is also optimal for (ﬁo) is guaranteed.

Proposition 5.54. Adapt the assumptions of Lemma 5.51. If there is a sequence (qn)p>0,
an € Qadp(0,1), such that |B(qn — @)l r2(rg-1) — 0 as b — 0. Then Ugpa — v and

Qkho — ¢ in L"(1;Q) for any r € (1,00). Moreover, the pair (v,q*) is optimal for (Py).

Proof. First, Lemma 5.51 and the supposition imply vy, o —+ . From uniform boundedness
of Grha € Qadn(0,1) C Qqa(0,1) we conclude the existence of a subsequence converging
weakly to some ¢* € Quq(0,1) in L"(I;Q) for r > 2. Feasibility of ¢* for (PO) follows from

dy(i18(v,q%)) < du(i1Skn(Vkh,ar Gkh,a)) + cllitS (Trh,as Grha) — 11560 (Vh,as QGehe) | 7
+c|linS(7, ¢*) — 018 (Vkh,ar Teho) | s

the error estimate Lemma A.39, and complete continuity of the control-to-state mapping
Proposition A.20. Due to o = 0, the pair (v, ¢*) is also optimal for (Fp). O

However, under additional assumptions, we can verify strong convergence of the controls for
the unregularized problems; cf. the proof of [100, Theorem 3.1]. Without restriction suppose
that the control bounds are symmetric (i.e. —¢, = ¢) by adding a fixed right-hand side to
the state equation which does not affect the preceding results. If ¢ is bang-bang, which in
particular implies uniqueness of ¢ (cf. Proposition 3.26), then we automatically have ¢* = q.
Hence,

_ 112 — 2 — — (12
akn0 = @llz2 (1 xw) = N1@kn0l 7201 0wy = 2(@kR05 @) 1201 xw) + 11172 (1w

< 2|T x w|?¢? — 2(§kh,o,§)L2(1xw)'

Thus, weak convergence of gy ¢ to ¢ implies strong convergence in L3(I x w).
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5.6. Robust error estimates without sufficient optimality condition (o = 0)

Variational discretization of controls

Since @) was not assumed to be finite dimensional, we can still take @), = @ and directly
obtain an error estimate for the variational control discretization as proposed in [78] for
elliptic equations, cf. also [118] for parabolic equations.

Theorem 5.55 (Variational discretization). Let the assumptions of Lemma 5.51 hold and
suppose the variational control discretization, i.e. Qn = Q. Then there is a constant ¢ > 0
not depending on k, h, o, and vy, o such that

7= inal < e o+ loghl(k+1%)).
Proof. We apply Lemma 5.51 with ¢, = ¢ that is allowed due to @y = Q. ]

In case of purely time-dependent controls and if a > 0, the variational control discretization
and the discretization by piecewise constant functions in time are equivalent due to the
projection formula (5.63). Whereas if o = 0, the optimal control gxno to (Pk:h,o) is not
necessarily piecewise constant with the same time mesh. Defining a new control IIj gy o that
is the projection of g o0 onto the space of piecewise constant functions in time, we observe

(Bkn,0, Pkn) 121,12y = (BILk@rn,0, Prn) 21,2y for all gpn € Xip,

i.e. the controls g0 and Ilxqx,o have the same associated discrete state. Hence, in case
a = 0, we can always find a feasible control that belongs to the discrete space of controls
with the same objective function value. In contrast to the comment after Theorem 5.31, we
do not require any assumption on the set of switching points, since convergence of the controls
cannot be guaranteed anyway by the techniques in this section. Based on this observation
we obtain the following corollary.

Corollary 5.56 (Parameter control). Let the assumptions of Lemma 5.51 hold, suppose that
w 1s discrete, and choose the piecewise constant discrete control space

Qo(0,1) = {v € Q(0,1): v]s,, € Po(In; R), m=1,2,..., M }.
Then there is a constant ¢ > 0 not depending on k, h, Vg, and g such that

7= il < ¢ (a+ loghl(k +1%))

Cellwise constant control approximation
Last, we consider the explicit discretization of controls by cellwise constant functions. Note

that we still do not discretize the controls explicitly in time. The discrete space of controls
is defined as follows

Qn={veQ:v|g € Po(K) for all K € T’}

On any K € 7T;, we define the piecewise constant projection IIj o via

1
Waov)(t2) = rr [ vt €)de, we K
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5. A priori discretization error estimates

Moreover, for each ¢ € [0, 1] we set

She =T \{K € Tp: q(t)|x = qa or 4(t)|x = a}-
Under a structural assumption on the set with switching we can derive the following dis-
cretization error estimate; cf. Theorem 5.46.

Theorem 5.57 (Cellwise constant controls). Let the assumptions of Lemma 5.51 hold and
suppose the cellwise constant control discretization. Moreover, suppose that (5.76) holds, i.e.
there are functions 6, € LY(I), h > 0, and a constant ¢ > 0 such that

Z |K| < 6p(t), a.e.tel0,1], h>0,
KES}LJ

and Héh”Ll(I) < ch for all h > 0. Then there is a constant ¢ > 0 not depending on k, h, «,
and Uyp o such that

7 = Dol < c(a+ logh|(k+h*?)) .

Proof. According to the supposition on Sy, ; and Proposition 5.44, we have
HHh,OCj - q_HLQ(I;H—l) < ch3/2,

Since |[ITj,0q — (IHLz(I;Hq) — 0 as h — 0, we can apply Lemma 5.51 with g, = Il g, which
yields the desired estimate. O

5.7. Numerical examples for bang-bang controls

We continue the numerical examples of Section 5.4 for the case of bang-bang controls. The
aim is again the numerical verification of the theoretically obtained error estimates for reg-
ularization and discretization. In all examples, we consider the operator —cA with ¢ = 0.03
instead of —A, which clearly does not effect the results of this chapter.

5.7.1. Example with purely time-dependent control

We take again the example from Section 5.4.2 with purely time-dependent controls for fixed
spatially dependent functions. Let

2=(0,12, w =(0,0.5)x (0,1), ws=(0.5,1) x (0,0.5),
B:R? - LQ(Q), Bqg = q1ly, + q21.,,

G(u) = 3llu—uall7 — 363, wa(z) =0, & =1

Qad(0,1) = {g € L*((0,1);R?): —1.5<¢ <0}, wup(x) = 4sin(nz?)sin(nzd),

where 1, and 1,, denote the characteristic functions on w; and ws. The spatial mesh is
chosen such that the boundaries of w1 and wsy coincide with edges of the mesh, which ensures
that B can be easily implemented.

Since the exact solution is unknown, we calculate a numerical solution on a sufficiently fine
grid for a small regularization parameter. In accordance with Theorem 5.31 (provided that
(3.37) holds with x = 1), we observe linear convergence in all variables with respect to
a up to a threshold, where the error due to discretization dominates to total error; cf.
Figure 5.10. Concerning the discretization error, in Figure 5.11 we observe linear order in k
for the temporal discretization and quadratic order in h for the spatial discretization.
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Figure 5.10.: Discretization error for Example 5.7.1 with variational control discretization and refinement
of the regularization parameter for N = 289 nodes and M = 80 time steps (left) and
N = 4225 nodes and M = 320 time steps (right).
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Figure 5.11.: Discretization error for Example 5.7.1 with variational control discretization and refinement
of the time interval for N = 4225 nodes (left) and refinement of the spatial discretization
for M = 320 time steps (right) for « = 1073. The reference solution is calculated for

« = 0 using the algorithmic approach from Section 4.2.
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Figure 5.12.: Discretization error for Example 5.7.2 with cellwise constant control discretization and
refinement of the regularization parameter for N = 81 nodes and M = 80 time steps (left)
and N = 1089 nodes and M = 320 time steps (right).

5.7.2. Example with distributed control on subdomain

Next, we consider the example from Section 5.4.3 with distributed control on a subset of the
domain. As before we compare to a reference solution obtained numerically on a fine mesh
for a small regularization parameter. The problem data is

2=(0,1)%, w=1(0,0.75)%, & = 15,

G(u) = %Hu — udH%Q — %68, ug(x) = —2min{ z1,1 — x1,29,1 — 22 },

Qad(0,1) ={qg e L*(I xw): —5<¢q<0},

uo(z) = 4sin(mz?) sin(mas)?.

The mesh is chosen such that the boundary of the control domain coincides with edges of the
spatial mesh. We use cellwise constant functions for the discretization of the control variable.
Since w does not have a strict distance to the boundary of the spatial domain, this example
does not fit into the setting considered in Section 5.5.5. However, we expect that one can
show similar results for the peculiar problem on the unit square.

From Figure 5.12 we approximately deduce the convergence rate 1/2 with respect to « for the
control variable measured in L' (I x w). Moreover, we observe approximately order 1/2 for the
error due to temporal discretization and linear order for the error due to spatial discretization
of the control variable; see Figure 5.13. As already observed in Section 5.4.3, the error for
the terminal time decreases at the full rate k 4+ h?. Taking into account the structure of
the adjoint state depicted in Figure 5.15, it seems that the structural assumption (3.37) is
not satisfied with k = 1 in this case. For this reason, Theorem 5.46 does not guarantee the
rate a + k + h for the control variable. Numerically evaluating the condition (3.37) seems to
confirm the hypothesis. In Example 5.7.1 we observe linear decrease while in Example 5.7.2
it is hard to determine the rate of decrease; see Figure 5.14. Nevertheless, the decrease for
Example 5.7.2 is for sure less than linear. Note that for the terminal time we only require
(3.37) to hold for some x > 0 to obtain the rate a due to Lemma 5.26.
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Figure 5.14.: Numerical verification of structural assumption on the adjoint state (3.37) for
Example 5.7.1 (left) and Example 5.7.2 (right).

Figure 5.15.: Snapshots of adjoint state of Example 5.7.2 for e = 107°.
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5. A priori discretization error estimates

5.7.3. Example with distributed control on domain

Last, let us consider again the example from Section 4.2.7 with distributed control on the
whole domain. The main difference to the preceding example is that we take uq = 0 to ease
the computation. As before we compare to a reference solution obtained numerically on a
fine mesh for a small regularization parameter. The problem data is

2=(0,1?%=w, & =15,

Gu) = Lllu—uql7> — 303, wa(z) =0,

Qad(0,1) = {g € L*(I xw): —2<¢<1},

uo(z) = 10sin(ma?) sin(mry)?.

The control variable is discretized by cellwise constant functions in space. We observe ap-
proximately order 1/2 of convergence with respect to « for the control variable in L'(I x w);
see Figure 5.16. Moreover, in Figure 5.17 we observe order 1/2 of convergence with respect
to k and linear order with respect to h. Concerning the structural assumption (3.37), from
Figure 5.18 we numerically find x ~ 1/2. Hence, the convergence rate for the regularization
error seems to be in accordance with the theory.

Additionally, from the numerical verification Figure 5.18 (right) it seems that the assump-
tion (5.76) used in the proof for cellwise constant control discretization is fulfilled. Hence,
by virtue of Theorem 5.46, we can expect the overall convergence rate k'/2 + hl/2 for the
control variable. While the convergence rate for the temporal discretization is in accordance
with the theory, for the spatial discretization we observe better order of convergence. In the
theory there are two reasons for the limited convergence rate in h: First, we expect that the
estimate in (5.61) can be improved in the case k < 1; see also the comment after the proof of
Proposition 5.28. Second, in the numerical examples we always observe the full rate k + h?
for v. However, Lemma 5.26 guarantees the rate k + h, only. As this quantity directly enters
into the estimate of Proposition 5.28, the suboptimal rate for v limits the convergence rate
for ¢. It is worth mentioning that from Theorem 5.57 we could expect the rate k 4+ h3/? for
the optimal times, which is better but still not optimal.
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assumption (5.76) (right) for Example 5.7.3. Quantities estimated from numerical solution
for « =0, N = 4225 nodes, and M = 160 time steps that was calculated by the
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6. Outlook and perspectives

In this thesis we considered the numerical analysis and algorithmic solution of time-optimal
control problems. Especially we focused on discretizing both the temporal and the spatial
component of the involved partial differential equation by means of the finite element method.
There are of course many open questions that could not be tackled in this thesis leading
to several possible directions for future investigations on this research topic. As already
mentioned in the introduction, different objective functionals than the here regarded L?-
norm of the controls could be of interest. Other norms may be more appropriate to represent
inherent control costs or may lead to a more natural regularization strategy. For example one
could choose the L!-norm of the control in the objective; see [29] for corresponding second
order optimality conditions.

Since many processes in natural sciences or engineering require nonlinear models and also
time-optimal control formulations are of interest, this gives rise to the numerical analysis
of time-optimal control problems subject to nonlinear state equations. For example quasi-
linear parabolic partial differential equations that arise in, e.g., heat conduction problems in
electrical engineering [90] and semiconductors [143] are important in applications. First and
second order optimality conditions for an optimal control problem on a fixed time horizon
without state constraints have been analyzed in [16] for quasilinear elliptic operators of di-
vergence type; see also [27]. It would be interesting to combine these results with those of
this thesis for the numerical analysis of time-optimal control problems subject to nonlinear
state equations.

Moreover, pointwise constraints for the state are important, both theoretically and prac-
tically; see, e.g., [119]. To extend the results presented in this thesis to pointwise state
constrained optimal control problems, one could rely on recent advances in the regularity
theory for parabolic partial differential equations. In particular, Holder continuity in time
and space can be guaranteed for very general spatial domains and nonsmooth right-hand
sides; see [49]. Corresponding results for discrete solutions for finite element discretizations
have been proved recently; see, e.g., [102, 103]. However, as we exploited the regularity of the
Lagrange multiplier in several arguments in this thesis, a direct extension of the presented
results to pointwise state constraints is not straightforward.

Even though in many applications regular controls are needed, there is an independent interest
in bang-bang control problems. For its efficient algorithmic solution in the context of time-
optimal control, adaptive mesh refinement strategies should be considered. This seems to be
particularly important, as in the numerical examples we observed that the control variable
is relatively constant for large parts of the time horizon but tends to vary towards its end.
Hence, adaptive algorithms may pay of and help to reduce the computational cost.

Furthermore, in the context of bang-bang controls, we proposed an algorithm based on an
equivalent reformulation of the optimization problem; see Section 4.2. Concretely, we search
for a root of a certain value function. To evaluate the value function, we have to solve
convex and control constrained optimization problems. Different methods for the solution
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of the inner problem have been considered. In particular, for the solution by means of the
conditional gradient method equipped with an acceleration strategy we obtained promising
results numerically. Hence, it would be desirable to investigate conditions under which fast
convergence of the accelerated conditional gradient method in infinite dimensional spaces
can be guaranteed. This would be of independent interest, as the pure conditional gradient
method exhibits in general slow convergence, but higher order methods are not be applicable
in every situation.
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A. Appendix

A.1. Interpolation spaces

We collect several well-known properties of interpolation spaces. For further information
we refer to the monographs [13, 110, 146]. To facilitate access to the individual topics,
this appendix is rendered as self-contained as possible. Furthermore, since for the pointwise
discretization error estimate we require the precise dependencies of the constants, we will
state them explicitly. This section is part of a joint work with Dominik Hafemeyer.

Let X and Y be real or complex Banach spaces. The couple { X, Y } is called an interpolation
couple, if both X and Y are continuously embedded into a linear Hausdorff space V. Then
the space X NY equipped with the norm

[ull xry = maxc { [Jull . [elly }

is a linear subspace of V. Moreover, the space X + Y with the norm

lulxy =, inf_llzlly + Iyl

u=z+y
is also a linear subspace of V. The interpolation theory is concerned with intermediate spaces,
i.e. is any Banach space E such that

XNY—>FE—X+Y.

An intermediate space E is called interpolation space, if for every linear operator T' € L(X+Y")
whose restriction to X belongs to £(X) and whose restriction to Y belongs to £(Y), the
restriction of 7' to E belongs to L(E).

In the following we will introduce the K-method and the trace method that lead to the
so-called real interpolation spaces. Thereafter, we will discuss the connection of real interpo-
lation spaces and domains of fractional powers of sectorial operators.

Given a Banach space X, let L{(R; X) denote the space of s integrable functions with values
in X with respect to the measure dt/t. Moreover, we set L$°(Ry; X) = L*(Ry;X). For
X =R and any s we write L°(Ry;R) = L*(R).

The K-method

Let {X,Y} be an interpolation couple. For ¢ € (0,00) and u € V the K-functional is defined
as

K(t,u,X,Y) = inf

ol llall + e = ally).
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For 7 € (0,1) and 1 < s < 0o we define the real interpolation space
(X,V)ps ={u€ X +Y:tm t "K(t,u,X,Y) € L3(R}) }

equipped with the norm

lullr s = IE77 K@ w, X, V) sy 3

see, e.g., [110, Section 1.1]. If ambiguity is not to be expected, we simply write K (¢, u) instead
of K(t,u,Y,X). In this notes the norm of the real interpolation space is always defined by
the K-functional as above, if not indicated otherwise.

Proposition A.1. Let 7 € (0,1), 1 < s < o0, and {X,Y} an interpolation couple such that
Y — X with embedding constant C. Then for any v € (X,Y ),

S 1/s —7/s
s S <(S_T)T> T ully

lull 0o < C' Ty

T,00 —

I

if s < oo and

Remark A.2. If s € (sg,00) for some s9p > 1 and 7 = 1 — 1/s, then the constant from
Proposition A.1 remains bounded for large s. This follows easily from the estimate

1/s s 1/s 2 1/s e
(o=7) = (e=rmo=m) =(62m) =@t

Proof of Proposition A.1. Let 7 € (0,1), 1 < s < o0, and u € (X,Y);,. Then by the
definition of the K-functional we obtain

K(t,u, X,Y) <min {t||u|ly, vl x } <min{t,C}[ull.

For s = oo we now immediately see

lull oo < sup ¢ min {t,C} [lully < CTTully.

€(0,00
For s < oo we split the integral in the definition of the norm and obtain

¢ _ dt < dt 1 1 _
ko< [ el T [Tl S = (2 7) ¢l

Taking the s-th root yields the claim. O
Proposition A.3. Let 7 € (0,1), 1 < s1 < s9 < 00. Then
(X,Y)rsr = (X, Y )7,

with embedding constant bounded by (T, s1,s82) = [symin{ 7,1 —7 }]1/8171/32.

Proof. See proof of [110, Proposition 1.1.3]. O
Proposition A.4. Suppose Y — X. If0 <11 <719 <1, then
(Xa Y)T2,<>O — (Xa Y)Thl

with embedding constant bounded by (11, 79) = (79 — 1)L + 7 L.
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Proof. See proof of [110, Proposition 1.1.4]. O

Combination of Propositions A.3 and A.4 immediately implies the following embedding; see
also [146, Theorem 1.3.3 e)].

Proposition A.5. Suppose Y — X. If0 <1 <719 <1 and1 < s1,s9 < 00, then
(X, Y )51 = (X, Y )rp s
with embedding constant bounded by c(71, T2, $1, $2) = ¢(712, $1,00)c(11, 72) (71, 1, $2).

Remark A.6. For the particular choice 74 =1 —2/r, o =1—1/r, s = r, and sy = p for
any r > 2 and r > p > 1, the embedding constant of Proposition A.5 is bounded by

c(1-2/r1—1/r,r,p) = {rmin{l — i,iHm <r+ (1 — i>_1> [prnin{l _ %7 i}]l_l/p

2p 2
< Tl/r(r+1)min {p— :),f} < cp.

The trace method

Let ip denote the trace mapping, i.e. iopu = u(0). Moreover, for 7 € (0,1) set
vo1-~(t) =t Tu(t) and wvii_,(t) =t Ow(t)
and introduce the trace space as
V(s,1—=7,Y,X) = {igv: vo1-r € Li(R1;Y),v11-7 € L{(Ry; X) },
equipped with the norm
lull 2 = inf { floo,—rll sy + 0017 ps e, x) : dov =}

It is well-known that the trace method is equivalent to the K-method and thus leads to the
same interpolation spaces. More specifically, it holds

Proposition A.7. Let {X,Y} be an interpolation couple, 7 € (0,1), 1 < s < oco. Then
V(37 - T, Y7 X) = (X, Y)T,S

with equivalent norms. Precisely, it holds
1 o 2 1
Jul < Tl < 2 (24 1)
Proof. See [110, Proposition 1.2.2], where also constants are given explicitly in the proof. [

The trace method yields an important embedding result for spaces of maximal parabolic
regularity.
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Proposition A.8. Let T > 0 and X,Y be Banach spaces such that Y <4 X. If s € (1,00),
then
WE((0,7); X) N L*((0,T);Y) = C([0, TT; (X, Y )1-1/5,6)- (A1)

If 7€ (0,1—1), then

W ((0,7); X) N L*((0,T); Y) — C((0,T); (X, Y)r1), 0<a<l— é —T. (A.2)

Moreover, the embedding constants are bounded by

CS
can(s) =—7 and cay(r,s)=2 (C(A.l)(3>

)r/ufl/s) .

Proof. The embedding constant for (A.2) is explicitly verified in [49, Lemma 3.4 b)|. Precisely,
the constant for (A.2) is bounded by 2¢* with A = 7/(1 — 1/s) and ¢ from (A.1). For these
reasons, it remains to verify the dependencies of (A.1), where we follow the ideas of [4,
Theorem I11.4.10.2].

For the particular choice 7 = 1 — 1/s, the trace space becomes
V(s,1/8,Y,X) = {igv: v € WH(R; X)N L (Ry;Y) Y,

equipped with the norm

Tr . .
||u”1—1/s,s = inf { ||UHWLS(R+;X)OLS(R+;Y): v =1u}.

Clearly, the trace mapping io: W*(Ry; X) N L¥(R4;Y) — V(s,1/s,Y, X) is linear and
continuous with norm less than or equal to one.

Let A; denote the semigroup of left translations, i.e. lyu(t') = u(t +t') for all ¢,¢ > 0. It is
easily verified that \; is a contraction semigroup on Wh*(R; X) N L*(Ry;Y). Moreover, )\;
is strongly continuous; cf. [4, Lemma I11.4.10.1 (i)]. Noting that igpA;u = u(t), we infer

T
Hu(t)Hlil/s,s < H/\tuHW1¢~9(R+;X)0LS(R+;Y) < Hu"Wl’S(R+;X)ﬂL'S(R+;Y)7 t=0.
Furthermore, if 0 <t < t' < 0o, we have
Tr
Ju(t") — u(t)Hl—l/s,s < [Ae(A—e — 1)u||W175(R+;X)mLS(R+;Y)
< -t = Dullwrsw,xnps®eyv)

for all u € WhS(Ry; X) N L*(R4;Y). Employing strong continuity of );, we deduce that
u: Ry — V(s,1/s,Y, X) is continuous. In summary,

W Ry X) N1 LA (R Y) = C(Ry: V(s 1/s,Y, X))

with embedding constant less than or equal to one.

To prove (A.1), we use the result on R} combined with a retraction/coretraction argument.
Let u € D([0,7);Y), where D(]0,T);Y') denotes the space of Y valued C*°-functions on [0,7")
with compact supports. We define the reflection of u as

. u(t), ifo<t<T,
a(t) =
uw(2T —t), if T <t <2T.
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Let n € C*°(R4) be a smooth cut-off function such that n equals one on [0, (4/3)T] and
vanishes on [(5/3)T,00). Then we define the extension of u by Fu = na. Since D([0,T);Y)
is dense in W14((0,T); X) N L*((0,7T);Y), we obtain

”EUHWLS(IR+;X)OLS(R+;Y) < 2”””01(R+)Hu”les((O,T);X)ﬂLS((O,T);Y)
for all w € WH5((0,7); X) N L*((0,T);Y). Thus, for any ¢ € [0,7T),
”u(t)“rfil/s,s = H(Eu)(t)Hrlril/s,s < ”EUHWLS(]R_;,_;X)HLS(R_,_;Y)
< cllullwrso,m):x)0L5 (0,17
with ¢ = 2|[n|[c1(g, ), which is independent of s. Finally, according to Proposition A.7 it
holds V' (s,1/5,Y, X) = (X,Y);_1/s, and
s
”qufl/s,s < ;Hfu’nrlril/s,s7

which yields (A.1). O

Intermediate spaces and the reiteration theorem

Let {X,Y} be an interpolation couple, 0 < # < 1, and E be an intermediate space, i.e.
XNY — E<— X +Y. The space E is said to belong to the class Jg(X,Y’) between X and
Y if there is ¢ > 0 such that

1-0 0
lzllp < cllzlxllelly, =eXnY.

We write E € Jyp(X,Y) for short. The following result is one half of the reiteration theorem
for real interpolation spaces.

Proposition A.9. Let 0 <0y < 0; <1 and 7€ (0,1). If E; € Jp,(X,Y), i = 0,1, then
(X,Y)(1=r)0g+701,s — (Eo, E1)rs, s € [1,00].
Moreover, the embedding constant is bounded by
2(01 — 00) (1430 (eo+ a1 = 7)) (24 77)

where ¢; denotes the constant from the definition of the class Jp,(X,Y) and 0 :== (1—7)00+716,.

Before we give a proof of Proposition A.9, we have to trace the constants mentioned in [110,
Remark 1.2.4].

Proposition A.10. For eachv € V(p,1—0,Y, X)), with 6 € (0,1), the mean of v defined by

satisfies the estimate

”t1—9w| t2—0

)
W'l R, vy + ¢! W'l e, x)

< (143/6) (Ilvo1-oll sz v) + o110l 2y ix)) - (A3)

r@yy)

We also have igw = 1gv.
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Proof. Let v and w be as above. First note that the derivative of w is given by

W () = —tlQ /Otv(s) ds + %v(t)

) Lt (A4)
= 2 (—w(t) + o(t) = 3/ —u(s) + v(t) ds.
t t= Jo
We estimate the first summand in (A.3), using [110, Corollary A.3.1]
160l age v < G lszgessm) = llooaol (A5
wlip@y) < gt lliee,yy = gllvoa-elle@, vy :
As a consequence, the second summand in (A.3) can now be estimated as
[amand LP(Ry;Y) = [0 (—w(t) + o) r ey y)
< w0l e @,y + 18 0O o,y (A.6)

< (1 + 9_1) lvoa-ollze @, v)-

The third summand in (A.3) can be estimated employing the last expression of (A.4). Thus,

1t ot
o' () x < t—guf0 / o/ (o) do ds||x
1 t t , 1 t .
< [ [IW@lxdrds <3 [0l do-
t=Jo Jo tJo

Now we have

o dt o t do\? dt
1-6, 1P 1=py,,, IP —0p !
[t w HLQ(RJF;X) _/0 t lwll% 7 < /0 t (/0 ollv'(o)llx p ) -

Now the Hardy-Young inequality, see, e.g., [110, Equation (A.3.1)], leads to

B oo ds
I a0 < 077 [~ Gl ) S
(A7)

00 ds
_ n— 1-0 / — N
=077 [ SO ()5S = 0P o1l

Thus, the desired inequality follows by adding (A.5), (A.6), and the p-th root of (A.7). The
last statement directly follows from continuity of v: For ¢ > 0, we have

|1/ o) ds — igv| = |1/Otv(s)—v(0)ds] < sup [v(s) — v(0)].

t
0 s€[0,]

Continuity of v on [0,00) and going to the limit ¢ — 0 in the inequality above yields
¢

o — i T _
iow tgr(l)w(t) lim - ; v(s)ds = ipv,

concluding the proof. O

Proof of Proposition A.9. This is a standard result in interpolation theory. To trace the
constants, we follow the proof of [110, Theorem 1.3.5] that relies on the trace method. Set
0 = (1—171)0 + 701 and let u € (X,Y)gs. Then there exists v € WLS(I; X) N L¥(1;Y)
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such that w is the trace of v at t = 0, i.e. igv = u. Defining w by the mean of v as in

Proposition A.10 we obtain

1t =% (1)

LiRy;x) T ”t2_0w/(t)HL;j(R+;Y) < c(0,v),

where ¢(0,v) == (1+3071) (HUO,1—9‘|Li(R+;Y) + ”U1,1—9HLi(R+;X)> and vg1_g and vy 1_g are

defined as in the trace method. We have to verify that

g(t) = w(t/@=%)), ¢ >0,

belongs to V(s,1 — 7, Ey, E1). This will imply that u = igv = jopw = igg belongs to the

interpolation space (Ey, E'1)rs. Let ¢; be such that

_Qi ‘

1 0;
2l g, < cillzllx ™ ll=ly, »eXnY.

Clearly, it holds

- 1-0; || 42— 0; .
lw'(2) 1 @) 1T (@)l i =0, 1.

e, < s
Whence, from the equalities

bp+1—-0=1—-7(61—6y), 61+1—-0=1+4+(1—7)(01—0p),
we infer

”tlf‘r(el 790)’11)/(15) |
Ht1+(17T)(91 790)’11)/(15) |

Li(Rys3Ey) < C0c(8,0);

Ls(RysEy) < €1c(0,0).

Substitution in the integral yields

1" g(t)]

Li®y:Ey) = (01— 90)_1/8Ht(l_ﬂ(@l_%)w(t)|’Lg(R+;E1)-

Furthermore, using w(t) = — [ w'(0) do, inequality (A.9), and the Hardy-Young inequality,

we get
CIC<T7 U)

(1=7)(0:1—60) . <
& wOleswem) = T 0 = 00)

and thus
C1 C(T7 U)

(1=7)(0r = 6o)

119l sz < (61— 60)7H°

Moreover, since
/() = (81 — o)~ HV O Oo)y! (10100

we obtain, by (A.8),

170 (O s a0y = (01 — 00) /2O =00/ (1) o oy

< (01 — 0p) " 3 eqe(0, 0).

This and (A.1) yields the estimate

179" )l s ey ety + 1790 s ey omyy < (01— 00) ™ 5 (co + ea (1= 7) " H)e(8, v).
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This implies, by the definition of the trace norm (note igg = u) and its equivalence to the
K-method, see Proposition A.7, that

-1 T
lull o, m1)rs < T Null (g, ),

170 Ol sy ) + 19O @) »
<77 M0 — 00) " V¥ (co + e (1 — 1) H)e(8,v),
=701 — 00) o (co+er(l—1)7)

(1+3071) (llvo.1ol

,S

IN

@) + ol e, ) -

Finally, taking the infimum over all v with igv = u, we find

lll g ) < 7710 = 00) 7o+ ea (1= 7)) (143071 flull Ky,

T,8

2
<7710y — )Y 1—n) Y (143071 = (24771
<m0 —00) (ot (1= (143071) 2 (2477 fullxy,

concluding the proof. O

The real interpolation method and domains of fractional operators

In this paragraph we consider a linear operator A on a Banach space X with p(A4) D (—o0,0).
Suppose there exists M > 0 such that

HzR(z,A)HL(X) <M, z<0.
The real interpolation space between X and the domain of A can be characterized as follows.

Proposition A.11. Let 7 € (0,1) and 1 < s < oo. Then
(X, Dx(A)rs = {2 € X1t 2,(t) = 7| AR(=t, A)z | € LI(R)},

and the norms |- , and
l27s = el x + el s -

are equivalent. Precisely,

lall,, < (24 M1 =7)8)" ) 2l ll2ll;, < (M + D)2l

7,8’ T, —
Proof. This follows from the proof of [110, Proposition 3.1.1]. O

A linear operator A on a Banach space is called sectorial, if there exists M > 0 such that
p(A) D (—00,0) and
M

1+ 2]

||R(ZaA)”c(X) = z<0.

This allows to define fractional powers of A by means of the Dunford-Taylor integral; see,
e.g., [146, Section 1.15] and [110, Chapter 4]. The theory of interpolation spaces is closely
related to domains of fractional operators. We summarize some of these properties in the
sequel.
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Proposition A.12. Let 21,20 € C such that Rez; < Rezo. Then
Dx(A*?) — Dx(A*)

and the embedding constant is bounded by max {1, [|A*772[[; vy }.

Proof. From the proof of [110, Theorem 4.1.6] we have
[ A% ]l < [[AZ72 ]| ox) 1A ] x
for all z € Dx (A*). O
Proposition A.13. Let A be a sectorial operator on a Banach space X. Then
(X, Dx(A)r1 = Dx (A7), 7€(0,1),
where the embedding constant is bounded by (M + 1) max {1, (T'(7)T'(1 — 7))~ }.

Remark A.14. For 7 € (0,1) we have I'(7) > 1 — e~ ! and thus max(1,(T'(7) (1 — 7))~ 1)
in Proposition A.13 is bounded by a constant independently of 7. This can be seen from the
definition of the gamma function

o) 1 1
I(r) = / tTle ! dt > / et dt > / efdt=1-e"">0.
0 0 0

Proof of Proposition A.13. We closely follow the proof of [110, Proposition 4.1.7]. Consider
xz € (X,Dx(A))r1. Due to Proposition A.11, the mapping ¢t — t"||AR(—t, A)z|| y belongs to
Li(Ry). Using the representation formula for A7, see, e.g., [110, Equation (4.1.7)], we obtain

o0 dt
472l < | rIARC Al <

1 . *
T(r)T(1—7) Jo meTHLi(RH'

Hence, using again Proposition A.11 we obtain,

lzllx + A7y < max {1,(D(r)T1 - 7))~ }lll7,
< (M + 1 max {1, (D(r) D1 =7) 7"} [lzll,,y,

concluding the proof. O
Proposition A.15. Let A be a sectorial operator on a Banach space X. Then
Dx(A") = (X,Dx(A))r00, 7€ (0,1),

where the embedding constant is bounded by

(2+M)M(M+1)2( 1 +1>‘

T1-71TA+7) \1-7 7

Proof. We closely follow the proof of [110, Proposition 4.1.7]. Let x € Dx(A"). According
to Proposition A.11 we have

x|, < (2+ M) sup tT|AR(—t, A)z||x-
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Using the representation formula

1 o0
—T _ A2
r(1—7)r(1+r)/0 2T R(=z Az dz,

see [110, Equation (4.1.8)], we obtain

A_T_1$ —

A%R(—t, A)
r(1—7)r(1+

AR(—t,A)x = / 2 TR(—z,A)? ATz dz.
7) Jo

Moreover, for any ¢t > 0 we estimate

(M +1)

M ! —« T o —aM T
[ ARGt Aally < 7= [ =720+ DAl + Q1 + 1) [ e ATl
Hence,
M (M + 1)* t 1 1
t"||AR(—t, A < —][|A7
[AR(~t, Ayl < grmmm— (s + 7 ) 472l
concluding the proof. O

In the Hilbert space case, we can give the following embedding.

Proposition A.16. Let A be a sectorial, self-adjoint operator on a Hilbert space H. Then
Dy (A7) = (H,Du(A))r2,
where the embedding constant is bounded by

1+ (—2cos(mr) T(—27)) /2.

Proof. Following the proof of [146, Theorem 1.18.10], the constant ¢ in step 2 is given by

oo lelt — 1]* dt
/ JeT — 17 dt = —2cos(mr) I'(—27).
0

(tp)* ¢
Taking square roots yields the bound. O
Last, we verify the resolvent estimates of this subsection for the concrete example A = —A

that we will consider in the main text on error estimates. Note that the arguments do not
employ the homogeneous Dirichlet boundary conditions of —A, which allows applying them
to fairly general operators and different boundary conditions.

Remark A.17. First, according to [66, Theorem 5.1], we have the estimate

M
I1R(z, =)l gerry < Bk Rez <0, z#0, (A.10)

where the constant M can be chosen to be independent of p € (1,00). The resolvent esti-
mate (A.10) ensures that for all fixed wp > 0 we have

Dio((—A +w)7) = Do ((—A)7) (A.11)
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with equivalence of norms independent of p € (1,00), 7 € [0,1], and w € [0, wp]; see, e.g.,
[110, Lemma 4.1.11]. Moreover, [66, Theorem 5.1] in addition yields resolvent estimates for

—A + 1, precisely

M

Using the equivalence of norms (A.11), we can equivalently consider —A or —A + 1 in the
results of this section.

Employing the power series expansion, see, e.g., [71, Proposition A.2.3], the estimates (A.10)
and (A.12) can be extended to hold on a sector. To this end, consider z = A\el?+7/2 for A > 0
and ¢ € (—m/2,7/2). Then

RAPT™2 _A) = R(iX, —A) Y (1 — e®)™[IAR(IN, —A)]™.
m=0

Choose 0 € (0,7/2) sufficiently small such that |1 —e'¥| < (2M)~?! for all |p| < 0. Using the
submultiplicity of the operator norm and the resolvent estimate (A.10) we obtain

i+ m 2M
IR T2, —A)|l 1y < IIREA, =A) | g1y Z 2" ST
m=0
Hence, there are constants M’ > 0 and 6 € (0,7t/2) such that
M/
1R(z, =A)llzry < IER €C\ Xy, =z#0, (A.13)

where

Yo ={z€C\{0}: largz| < 0}.

Analogously, we obtain sectoriality of —A + 1 by extending (A.12) to a sector.

A.2. Regularity of the state equation

We summarize several regularity results for the state equation and give short proofs. Through-
out this section we assume that the operator A is given by a bilinear form satisfying Gardings
inequality; see Assumption 2.1. The symbol e~# denotes the semigroup generated by —A.

Proposition A.18. Let T > 0, 6 € (0,1/2], f € L*>®((0,T); Xyg), up € V*. Consider the
solution u to
ou+ Au= f, u(0)=ug.

Then:
(i) If ug € V, then u is continuous from [0,T] into V,
(i) If ug € H, then u is continuous from (0,T] into V,
(iii) If up =0 and v € [0, 1], then
lu(@)llx, < ellfllpsoryxy t 7 0<t<T,

with ¢ > 0 depending on 0,7, but independent of f.
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Proof. The unique solution is given by the variation of constants formula
t
u(t) = e My +/ e =941(s)ds, te[0,T). (A.14)
0

According to Theorem 2.6.13 ¢) in [128], for # > 0 there is a constant My > 0 such that it
holds
e e o]y, = [I(A + wo) e Ayl < Mot~|Jo]

forallve V*and t > 0.

e (A.15)

(#i): Employing (A.15) we obtain

t t
fu@)llx, =1 [ e 21 (s) dslly, < [ 104+ w0~ e DA+ ) f(5) - s

t
< M,_ge"°||(A+ wo)GfIILoo((O,t);v*) /0 sV ds < Ct1+9_’y||f||L°°((0,t);Xg)'

(i), (ii): If ug € V, it holds (A + wo)e *uy = e (A + wo)ug; see, e.g., [128, Theo-
rem 2.6.13 b)]. Whence, continuity of ¢ — e *4uy from [0,7] into V follows from [128,
Corollary 1.2.3]. If ug € H, we find for any ¢,7 > 0 that

(74 — et ) gl = [le™ (74 = 1) wolly, < My et (74 = 1) wo . -

tA

This proves continuity of ¢ — e *?ug in V for ¢ > 0, using that —A induces a continuous

semigroup also on H = X .

Now we turn to the second term of (A.14). Since A exhibits maximal parabolic regularity,
both on V* and H, it also possesses maximal regularity on the interpolation space Xp; see [73,
Lemma 5.3]. Hence, for f € L"((0,T), Xp), the function i(t) = [je~(=94f(s)ds has the
regularity 4 € W5 ((0,T); Xg) N L"((0,T); X14¢) for any r € (1,00). Furthermore, by the
trace theorem, there holds the embedding

WH((0,7); Xo) N L7((0,T); X116) = C([0, T1; (Xo, X140)1-1/rr);

see, e.g., [4, Theorem II1.4.10.2]. Choose r > 1/6, which is equivalent to 1 — 0 < 1 —1/r.
Thus,

(Xo, X140)1-1/rr — (X, X110)1-0,1 — [Xg, X140]1-0 = Dy=(A+wo) =V

due to [146, Theorems 1.3.3 e), 1.15.2 d) and 1.15.3]. In summary, we conclude the proof of
(i) and (ii). O

Proposition A.19. Let T > 0 and ug € H. The solution operator f — u with
Ou+ Au= f, u(0)=wuo,

is continuous and compact from L?((0,T); Xg,) into L*((0,T); V).
Proof. Let S denote the solution operator of the parabolic state equation, i.e. u = S(uyg, f)
satisfies dyu + Au = f, u(0) = up. Since A exhibits maximal parabolic regularity, both on

V* and H, it also possesses maximal regularity on the interpolation space Xg,; see, e.g., [73,
Lemma 5.3]. Hence, f — S(0, f) is continuous from L2((0,7T); Xg,) into H((0,T); Xa,) N
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L%((0,T); X1.44,), where we have used the identification Dx,, (A) = Xi44,. Clearly, X114, <
Dy«(A) =V <. H — Xp,. Employing [4, Theorem I1.2.11.1] we deduce Xiig, —c
[X0ys X146,]1-0, = V, where we have used [146, Theorem 1.15.3] in the last step. There-
fore, the Aubin-Lions Lemma (see, e.g., [107, Théoréme 1.5.1]) yields the compact injection

Hl((oa T);XQO) N LQ((()’T); X1+00) e L2((07T); V)

Furthermore, S(ug,0) € W(0,T) < L?((0,T); V). Whence, the assertion follows from the
splitting S(uo, f) = S(up,0) + S(0, f). O

Proposition A.20. Let s > 2 and ug € H. The mapping (v,q) — S(v,q) is completely
continuous from R x L*(I; Q) into C([0,1]; H).

Proof. Consider first the case ug = 0. According to [3, Theorem 3] we have the compact
embedding

1
WhS(LVYNLLV) e CYI(VH,V)r1), 0<a<1— L
for any 7 € (0,1 —1/s) due to V <. V*. Since s > 2 we may choose 7 = 1/2 and obtain
(V*,V)r1 <= Dy« (AY?) = H;

see [146, Theorem 1.15.2d)]. Therefore, for each fixed v € R4 we find that ¢ — S(v,q) is
completely continuous from L*([; Q) into C(]0,1]; H). Note that continuity of the control
operator from @ into V* is sufficient for the argument above. Moreover, using that R is finite
dimensional, we conclude that the mapping (v,q) — S(v,q) is completely continuous from
R4 X Qaa(0,1) into C([0,1]; H). If ug # 0, then the variation of constants formula yields the
additional term e~"“ug, which is continuous in v. We conclude the proof by superposition of
both cases. O

Proposition A.21. Let Gardings inequality hold with wg = 0. Then

He*tAHl:(H) <e ' forall t>0.

Proof. Let p € [0,ap). Then the form b(u,v) == a(u,v) — p(u,v)y is coercive. Let B denote
the operator associated with the form b. Employing [6, Theorem 4.2] we infer that —B
generates a contractive semigroup e~ B. Hence

A _ _IB _
le™ Ml zeay = e le™ Pl ay < e,

where we have used the representation —A = —B — pI. Choosing a sequence p,, € [0, o)
such that p, — g and using the estimate above yields the result. O

Moreover, for discretization error estimates with cellwise linear controls, see Theorem 5.21,
we have to assume improved regularity of the adjoint state. It can be reduced to a regularity
assumption on the desired state by means of the following proposition; see Remark 5.22.

Proposition A.22. Let 2 C R? be a bounded and convex domain with polygonal boundary.
Suppose that A = —A is equipped with homogeneous Dirichlet boundary conditions. In ad-
dition, assume distributed control, i.e. B: L*(w) — L*(£2) for all s € (1,00]. For any tuple
(v,q) € Ry X Quq(0,1) and p € (1,00) the solution u to the state equation has the improved
regularity u(1) € W, P(£2).
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Proof. First, it holds e"?ug € Dy -1,(—A) = Wol’p, see [128, Theorem 2.6.13 (a)], since
ug € Hi — W12, Furthermore, due to Dy -1,(—A) = Wol’p, see [45, Corollary 3.12], the
operator —A: Wol’p — W~LP is an isomorphism. Hence, putting X = [LP, W~1P], with
¢ =1—1/2p we obtain for 7 =1 — 1/4p that

(X, Dx (=A))r1 = Wy™;

see [73, Lemma 6.6 (i)]. Since —A satisfies maximal parabolic regularity both on LP and
W=LP also on the complex interpolation space X; see [73, Lemma 5.3]. Thus, the solution
to the state equation with homogeneous initial condition belongs to

Whs(I; X) N LS (I; Dx (—A)) — C*(I; (X, Dx(=A))r1)

with k£ > 0 small, provided that 0 < 7 < 1—1/s; see [3, Theorem 3]. Due to the control con-
straints, we can take s € (1,00) arbitrary large so that 7 =1—1/4p < 1 —1/s. Combination
of both embeddings yields u(1) € W,*. O

A.3. Clarke’s generalized subdifferential

The generalized directional derivative at x from a Banach space X for any function f: X — R
that is Lipschitz near x is given by [40, Section 10.1]

fo(@yv) = limsup 7 [f(y + 7v) — f(y)]. (A.16)

y—x, 7,0

Then ¢ € X* belongs to the generalized gradient Oc f(x) if and only if f°(x;v) > ((,v) for
all v e X.

Let X1, X5 be Banach spaces and f: X; x Xo — R Lipschitz near 1 € X; and xo € Xo.
We define the partial generalized directional derivatives and partial generalized gradients f7 ,
o, 0c.z, f, and Oc 5, f analogously to (A.16).

)

Proposition A.23. If f7 (71, 72;v1) = f°(z1,72;v1,0) and f7, (v1,72;v2) = f°(1,72;0,v2)
for all vi € X1 and vo € Xo, then

Ocf(x1,@2) C Oc, f(x1,22) X Oc 20 f(21,X2).

Proof. ¢ € Ocf(x1,z2) if and only if f°(x1,x9;v1,v2) > ((1,v1) + ((2,v2) for all v; € X; and
vy € Xo. Taking v; = 0 and ve = 0 implies f°(x1,x2;v1,0) > ((1,v1) for all v; € X7 and
fo(x1,22;0,v2) > ((2,v2) for all v € Xy. Using the suppositions on fp and f7 we finish
the proof. O

Proposition A.24. For j from problem (f’), it holds
8Cj(7;a (j) C aC,Vj(Dv (j) X aC,qj(lja Cj) .

Proof. In our case the assumptions of the preceding proposition are satisfied for j. Regarding
the differentials with respect to v, we obtain for all jv € L*°(0,1) that

1
§°(0,q;0v,0) = limsup 7' [j(v + 76V, q) — j(v,q)] = lim sup/ dv(l1+ L(q))dt
0

v—v, g—q, 70 q—q

_ /01 dv(1+4 L(q))dt = j, (v, q; 0v),
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using the fact that j is linear in v in the first and last step. In the other case, we estimate

450, 6q) = limsup 7" [(,q + 78q) — j(v,q)] < j°(7,;0,6q)
q—q, 710

1
= limsup 7'_1/0 v[L(q+7éq) — L(q)] dt

v—, g—q, 7.0

1
<y assg)+ lmswp 7 [y —5][L(g+ dg) - Lig))dt
0

v—v, g—q, 7,0

1
< Jg(n,@:00) +limsup ci. [ = F6qlq dt = (7, :0).

V—V

for all 6g € Q(0,1), where ¢y, is the Lipschitz constant of L. O

A.4. Comparison principle

For any wg > 0, define ¢: Ry — R by
P(t) = wy (et — 1), if wy > 0, and ¢(t) = ¢, if wy = 0.
We easily verify that ¢(t) > ¢ for all ¢ > 0.

Proposition A.25. Let ¢,y > 0 and wo,ho > 0. Moreover, let d, be continuously differen-
tiable on (0,00) and continuous on [0,00) with dy > 0 such that

d.(t) <wody(t) 4+ cy/dy(t) —ho on {t|d,(t) >0}, (A.17)
Then it holds
4y (t) < max { 3, (d,(0) + VA + (/T — ho)o() } = Do), (A18)

Proof. We argue by contradiction: Suppose that (A.18) is not satisfied and let ¢y be the first
time such that d,(tg) = D,(to) and d,(t) > D,(t) for t € (to,t1). This implies d,(t) > /7
and therefore from (A.17) we infer d’,(t) < wod,(t) + c\/y — ho for t € (to,11).

The unique solution of 2'(t) = woz(t) + ¢/7 — ho with z(tg) = d4(to) is given by
2(t) = dy (to)e* ™) 4 (ey/7 — ho)d(t — to).

The comparison principle yields d.(t) < z(t) for t € [to,t1). Now we distinguish two cases: If
dy(to) = D (to) = (dy(0) + /7)e“°™ + (¢ /7 — ho)¢(to), we obtain

dy(t) < 2(t) = dy(to)e”™10) + (cy/7 — ho)@(t — to)
= (dy(0) + /7)) + (ey/7 — ho)d(to)e o =10) + (/5 — ho)d(t — to)

= (dy(0) + /7)™ + (ey/7 = ho)o(t)
< Dy (t) < dy(2),

for t € (to, 1), yielding a contradiction. Otherwise, it holds

V7 = dy(t) = Dy (to) > (d(0) + yA)E + (ey/F — ho)(to)
= dy(0) + /7 + ((c + wo)v/7 + wody (0) — ho) d(to)
and we necessarily must have ((c+ wo)/7 + wod,(0) — ho) < 0. Thus, we have

VY <dy(t) < 2(t) = 7+ (e +wo)vy — ho)o(t —to) <7,

for t € (to, 1), also yielding a contradiction. O
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A.5. Stability estimates

We collect stability estimates for the state and the linearized state. Suppose that the as-
sumptions from Section 2.1 hold and recall that I = (0,1) is the reference time interval.

Proposition A.26. There exists a constant ¢ > 0 such that for allv > 0, ¢ € Q(0,1), and
initial conditions ug € H the estimates

||U||c([0,1];H) + \/DHUHLQ(I;V) <c (\/DHBQHLQ(I;V*) + HUOHH) ’ (A.19)

ov
Ioullcoagan + VoIBulrwy < el (VBallaqryey + sy + VoI BSal sz
(A.20)

ov
16l oo + VEIGE 2y < 24 (1Bballagrivm + 160l o ) (A.21)
([0,1]; NG

hold, where u = S(v,q), du = S'(v,q)(0v,6q) and di = S"(v,q)[dv,dq]* for Sv € R and
8q € L*(I;V*). Furthermore, for q1,q2 € Qqq(0,1) we have
lur — w2l o,17.m) + VVillur — wall 2y < o (|V1 —va| + 1 B(q1 — @)l 12, V*)> (A.22)
[ = 6uslxgo.erny < 1 (11— wal + [1Blar = @)llzrav-)) (161 + 1Bl () ) » (A23)
where u; = S(v;,q;) and du; = S' (v, ¢;)(0v,0q) fori=1,2 and
co = co(vi,12) = ¢//rimax{1,1/\/ve,1n },
c1 = er(vi,ve) = ¢/ rmax { 1,1/v1, 1/ (viy/D3), 1/va, 1/vi* o /11 } .

The constant ¢ > 0 depends exclusively on Poincaré’s constant, Qqq, and ug.

Proof. For v,dv € R with v > 0 and f,g € L?(I; V*) and vy € H consider the solution v to
the linear parabolic equation

O +vAv =vf +ovg, v(0)=vp.
Standard energy estimates, see for instance [161, §26], yield

ov
1ol ey + VPOl L2y < € (ﬁ”fHLQ(I;V* ‘\[‘ 9l 270y + HUOHH) (A.24)

with ¢ depending exclusively on Poincaré’s constant. This establishes (A.19) — (A.21). Con-
cerning (A.22), set u; = S(v1,q1) and ug = S(v2, g2). The difference w = u; — ug satisfies
Ow + v Aw = (v — v1)Aug + 1 Bq1 — 19Bqa,  w(0) = 0.
Estimating the right-hand side yields
[(v2 — v1)Auz + 1 Bqr — vaBaal| 2,4
< (1 = vel (| Auz + Barll a(r)) + 2l Blar = @)l agrvy) -
From (A.24), the estimate

[Ausll 21y < ellBaall 2+ +

- [|uol|
u
o Oll s

and boundedness of Q,q we conclude (A.22). Concerning the last estimate, the difference
dw = duy — dug satisfies Jw(0) = 0 and

Opdw + v Adw = (v — 1) Adug + SvB(q1 — q2) + OvA(up — ug) + (11 — 1) Bdg.
Similarly as above, the estimate (A.23) follows from (A.19), (A.22), and (A.20). O
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A.6. Fractional Sobolev spaces

We summarize well-known properties of fractional Sobolev spaces that are also called Sobolev-
Slobodeckij spaces. For more details, we refer to the monograph [1, Chapter 7]; see also [48] for
an introduction to this topic. This section is part of a joint work with Dominik Hafemeyer.

Let §2 C R? be an open set with d € N. For 6 € (0,1) and p € [1,00) we define

. D 1/p
o= f, ], 220 o)

the Gagliardo (semi)norm of f and define the norm of the fractional Sobolev space on {2
denoted WP (02) by

1/p
| Fllwoscay = (1£ 500 + Fpe) " -

If & > 1 and @ is not an integer, then we write § = m + o with m € N and ¢ € (0,1), and
define the norm of W%P(£2) by

1/p
1 o = (nfn’;vm,p(m Y [Dafﬁ,p,g) -

|a|=m

Here, a denotes the multindex and || = Z?ZI a;. It is worth mentioning that the fractional
Sobolev norm does not reproduce the (classical) Sobolev norm in the limit cases § — k with
k € N; cf. [22, Remark 5] and [115, Theorem 1].

For the point-wise error estimates in Section 5.5.3 we require the embedding of the real
interpolation space between Sobolev spaces into the fractional Sobolev space. To clearly see
the dependencies of the constants, we give an independent proof that relies on elementary
arguments. Note that in the following even equality holds (up to equivalent norms), but we
only need one injection.

Proposition A.27. For any p € [1,00) and 6 € (0,1) one has
(WmP(RY), WP (RY))g , — WTHP(RY), meN, (A.25)
where the embedding constant is bounded by
(min {0,1-0}p+ 22pcd,m> r ,

and cq.m exclusively depends on the spatial dimension d and the parameter m.

Proof. We follow the proof of [110, Example 1.1.8]; cf. also [1, Theorem 7.47].

Step 1: m = 0. Let u € (LP(R%), WHP(RY))y .. Consider a splitting u = v+w with v € LP(R?)
and w € WHP(R?). Recall that

(@ + k) —w(@)P dz < AP Vew|[Z,.
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Therefore, using Jensen’s inequality twice, we see that

gy < o(@ +h) — v(@)P pﬁ/*/ w(z + h) — w(z)?
/Rd /Rd e drdht2 . e da dh

—d—6 _
SAMJ P (2272l + 27 P ol ) b

<2272 [ (ol + Bl db
Hence, by means of the definition of the K-functional, we obtain
g, <2272 [ K]0

6,p
o
< 221’—2/ t_l_epK(tju)pdt/
0 0.

where the constant ¢y exclusively depends on the spatial dimension d. Furthermore, we have

do = 227 2¢,||u|?
o Jull

. 1
lll o < Nl pogwio = K (L, P, W) < Jullg o < (pmin{ 6,1 =017 |[ull,,

due to Proposition A.3. Hence,
1/p . 1/p
lulwoo = (lullfs + [h,) ™" < (pmin{6,1= 03 +2%c0) " [ully -

Step 2: m > 1. The general case m > 1 follows by analogous arguments as above, where
we simply replace the spaces LP by WP and WP by W™+TLP, Moreover, we estimate the

seminorm [D%ul, , instead of [u], ,. Thus,

—d—6
[Doulf, < 2%~ Q/d!h\ P (lvllyms + Alllwllymrs)” dh.

Using that the number of multiindices with |«| = m only depends on d and m, the W%P-norm
can be estimated as in the first step with a constant cq,, (instead of ¢g). O

Lemma A.28. For any p € [1,00) and 6 € (0,1) \ {1/2} one has
(L (RY), WP (RT))g, > WHP(RY).

Furthermore, the embedding constant is bounded by c(0) that is uniform in p € [1,00) and
satisfies ¢(0) ~ (1 —0)"' as 0 — 1 and ¢(0) ~ [1/2 — 07" as 6 — 1/2.

Proof. According to [114, Corollary 1.4.7.1] we have

IVull o < cpllullyf, lullfs’ for all u e W2P(RY),
where ¢, < cK ;/ P and K, denotes the volume of the d dimensional unit ball. Thus,

lullypre < (14 KD |ullifa, ullfy for all u € W2P(RY).

Whence, the space W1P(R?) belongs to the class JI/Q(LP(Rd), W?2P(R?)). For these reasons,
if 0 > 1/2, then the reiteration theorem Proposition A.9 (with 6y = 1/2 and 6; = 1) and the
embedding (A.25) imply

(LP,W2P)g s (WP W2P)gg g ) s W2OP,
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Similarly, if 8 < 1/2, then the reiteration theorem (with 6y = 0 and 61 = 1/2) yields
D 2,p P 1,p 20,p
(L,W )97p‘—>(L,W )29,p‘—>W .
Moreover, the embedding constants from the reiteration theorem are bounded by
(20 = 1) 121 (cg + ea(2 - 20)71) (14 3071)2(1 - 20) ! (24 (1 - 20) ")
in the first case, and by
(20) 7121 VP) (co + e1 (1 — 20) 1) (1 +30)07 12+ (20) )

in the second case. With the constant from Proposition A.27 we obtain the asymptotic
behavior of the embedding constant as stated in the proposition. O

Proposition A.29. Let 2 C RY be a bounded domain with a Lipschitz boundary. For all
0€(0,1)\{1/2} and p € (1,00) the embedding

(LP(2), WPP(02))g,p = WP (02)
holds. Furthermore, the embedding constant is bounded by c(0) that is uniform in p € [1,00)
and satisfies ¢(0) ~ (1 —0)"" as @ — 1 and c(0) ~ |1/2— 0|7 as 6 — 1/2.
For the proof, we require the extension theorem due to Stein:

Lemma A.30. Let 2 C R? be a bounded domain with Lipschitz boundary and m € N. Then
there exists an extension operator E mapping WP (£2) continuously into WP(R?) for all
k=0,1,...,m and p € [1,00). Moreover, there is ¢ > 0 such that

IEfllwrrmay < clfllwrray [ € WHP($2),

and the constant is independent of p, k, and f.

Proof. This result is proved in [144, Theorem VI.3.5]. The bound on the norm of E as stated
above can be found in [144, Chapter V1.3, Equation (32)]. O

Proof of Proposition A.29. The proof is based on the corresponding result on R¢ by first
extending the functions from 2 to R? and retraction afterwards. According to Lemma A.30,
there exists an extension operator E: WHP(£2) — WH*P(R9) for all k = 0,1,2 and its norm is
independent of p. Hence

1 2oy = 1EFllwera) < 1Elwerogay
< ATES (e @aywor@ay),., < O Lo@ayw2r@ay,,»
where we have used the interpolation result Lemma A.28 on R? in the second inequality and
a general interpolation principle for linear operators, see, e.g., [146, Section 1.2.2], in the last

inequality. Note that for the above estimate it is essential that the extension operator F is
the same for k = 0 and k = 2 in order to interpolate operators. ]
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A.7. Discretization error estimates for the state equation

We collect general discretization error estimates for the state equation. To this end, we first
summarize error estimates for finite element discretizations of elliptic equations. For further
information we refer to, e.g., the monographs [24, 38].

Consider a discretization of the convex and polygonal domain £2 C R?, d € {2,3}, consisting
of triangular or tetrahedral cells K that constitute a non-overlapping cover of the domain. The
corresponding mesh is denoted by 7;, = {K}. Let hx denote the diameter of the cell K € Ty,
and let px denote the diameter of the largest ball that can be inscribed in K. We define the
discretization parameter h as the cellwise constant function h|x = hx. Simultaneously, we
denote by h the maximal diameter, i.e. h = max hg.

Definition A.31. Let {7} },-, be a family of triangulations.

(i) The family is called regular, if there exists a constant o > 0 such that px > ohy for all
cells K € T, and h € (0, 1].

(ii) The family is called quasi-uniform, if the exists a o > 0 such that px > oh for all cells

K € T, and h € (0,1].

Associated with the mesh 7}, we define V), C H& as the subspace of continuous and cellwise
linear functions. Let Ij,: C(£2) — V}, denote the Lagrange interpolant on (2; see, e.g., [24,
Definition 3.3.9]. We have the following interpolation error estimate.

Proposition A.32 ([24, Theorem 4.4.20]). Let { T}, } be a family of regular triangulations.
Then there is ¢ > 0 such that

u—Thull 2 < chllu — Thul o < ch?||V3ull,2, w€ H* N H]. (A.26)

Moreover, we require interpolation error estimates with fractional Sobolev spaces; see Ap-
pendix A.6. Note that the following estimate also follows from the corresponding result for
Sobolev spaces with integer differentiability index and real interpolation. However, since we
are interested in estimates that are uniform in 7 and p, we directly use the fractional norm
to avoid the identification of the real interpolation space with the fractional Sobolev space.

Proposition A.33. Let {7} },-o be a family of regular triangulations, p € [1,00), and
2>71>d/p. Then for allu e W™PN H&, the interpolation error estimate

lw = Thull o + AV (u = Tpu)[p < chT||ullyrs,

le = Tyull oo < h™= VP ullyrr-

is valid, where the constant ¢ > 0 is independent of h, p, and u. Moreover, for fixred T¢ > d/p
the constant ¢ can be chosen uniformly with respect to T € [Te,1).

Proof. This well-known result is proved by transformation to a reference cell and using [51,
Theorem 6.1]. Back transformation to the cell K follows as in [51, Example 3]. O

Next, we define the Ritz projection Ry : HE — Vj, by
(V(u — Rpu),Vep) =0 for all ¢, € Vj,.

The following projection error estimate is valid.
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Proposition A.34. Let { Ty, };,5 be a family of regular triangulations. Then there is ¢ > 0
such that

|u — Rpull 2 < chllu — Ryullgn < ch®||V2ul| 2, w € H?* N Hp. (A.27)
Moreover, the estimate
w— Rpul|;2 < b ||ullyisre, we W20 HE, A.28
L w 0

holds for all 2 > 1 > d /2.

Proof. The first estimate is proved in [24, Theorem 5.4.8] based on (A.26). The second
estimate follows from the first and Proposition A.33. O

Define the spatial L?-projection II;,: L? — V}, by
(u—Ipu, )2 =0 forall p € V.
We have the following projection error estimate.

Proposition A.35. Let { Ty}, be a family of regular triangulations. Then there is ¢ > 0
such that

|u—Thull 2 < ch?||V3ull2, w€ H?NH]. (A.29)

If in addition, the projection I}, is stable in H', then
|V (u—Tpu)|| 2 < ch||V2ull 2, w€ H*NH]. (A.30)
For quasi-uniform meshes, the stability of ITj, in H' directly follows from an inverse estimate

and an error estimate for IIj, in L?. However, weaker conditions are known such as local
quasi-uniformity; cf. [23].

Proof of Proposition A.35. For the estimate (A.29) we use the best approximation property
of ITj, in L? and the error estimate (A.26) for Ij, to deduce that

o = Tull o < Jlu — Tyl o < ch?| V20 2.
To show (A.30), we calculate

V(v = Tpu) |l 12 < V(v — TpRpu) || g2 + VI (u — Rpu)ll o
< (1+0)|V(u— Rpw)l| 2 < (1 + ¢)h||V?u| 12,

where we have used the projection property and the stability of II; as well as the error
estimate (A.27) for Ry,. O
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Discretization error estimates for the state in L*(I; L?) and L*(I; H')

Our objective is to show the following error estimates for the state equation measured in
L?(I; L?) and L?(I; H'). Thereafter, we provide discretization error estimates for the state
evaluated at the terminal time. We suppose throughout that { 7} };,- is a family of regular
triangulations.

Lemma A.36. Let v € R, and f € L?((0,1); L?). For the solution u = u(v, f) to the state
equation with right-hand side f and the discrete solution uygp, = ugn(v, f) to equation (5.4)
with right-hand side f the estimate

Ju— Ukh”L?(I;L?) <c (kHatuHm(I;L?) + hQHAuHLQ(I;LQ)) (A.31)
holds. If additionally I, is stable in H', then
[Vu — vukh”L2(I;L2) < C(kl/z + h) (HatUHL?(];L?) + HAUHLQ(I;L?)) : (A.32)

The constant ¢ > 0 is independent of k, h, v, f, ug, u, and ugp.

To discuss the error due to temporal and spatial discretization separately, let us introduce
the nodal interpolation iy : C([0,1]; H}) — X} as

iku(tm) = u(ty), m=1,2,...,M, (A.33)

where
Xy, = {vx € LA(I; HY): vilr,, € Po(L; HY), m =1,2,..., M}

is the semi-discrete state space. The following interpolation error estimates are valid.
Proposition A.37 ([130, Lemma A.7)). Ifu € H'(I; L?)N L*(I; H?> N H}), then
lu =ikl 27,02y < ckllOvull L2, 12), (A.34)
o — il gy < ek (10l pagropey + 180l agrzzy) - (A.35)

The constant ¢ > 0 is independent of k, v, and u.

Let u be the solution to the continuous state equation for (v, q) € Ry xQ(0,1) and ug, € Xin
the corresponding discrete solution to (5.4). Using a density argument one may show that u
satisfies the discrete equation (5.4) as well. Therefore, the Galerkin orthogonality

B(v,w — ugp, prn) =0 for all g, € X p, (A.36)
holds. We consider the splitting
u— ugp = u — pigu + Ipigu — ugn = Cen + Ekn-
Proposition A.38. Let the terms (i and &g be defined as above. Then
B(v, Ckns okn) = v(VCkhy Vorn)r2rir2y  for all orn € X p, (A.37)

and

IVEnll L2 (r,r2) < IVGiall L2122y (A.38)
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Proof. The follows as in [117, Section 5.1]. First note that for all g, ry € X n we have

M—1
B(v, kn, Ukn) = (VN @rn, VR L2(1302) — D (Okhams [Vknlm) + (prn(1), ¥rn(1)).  (A.39)

m=1

Consider the splitting (pp = u — igu + ipu — pigu = ¢ + (4. Then (i, = 0 due to the
definition of i and (Cpm, [Ykn]m) = 0 according to the definition of IIj,. Using (A.39) we
conclude the first identity (A.37). Moreover, using (5.3), we obtain

M-1
B(v, s 0kn) = V(V@rn Vooun) parzzy + D ([@rnlms @rnm+1) + (Orn1, @rna). (A40)

m=1
Thus, testing (A.39) with %, = ¢k, and summation of (A.39) and (A.40) implies
B(v, ¢rn, 0xn) > VHVSOth%Z(];[;) (A.41)

for all pi, € Xi . Therefore, using Galerkin orthogonality we find

VIVEnlT2 102y < B, &kny Ekn) = =B, Cens €kn) = —1(V ks Véin) 12(151.2),
where we have used (A.37) in the last step and &, € Xj . Finally, (A.38) follows from the
Cauchy-Schwarz inequality. O

Proof of Lemma A.36, Estimate (A.31). The estimate (A.31) follows by standard arguments;
see, e.g., [117, Section 5.1]. We give a detailed proof to clearly see the dependence on v.
Consider

vllu—wenllF2(r.2) = v(Chnr = wkn) £2(r,2) + v(Ekny = k) 2102y = J1 + Ja.
Using the Cauchy-Schwarz inequality and stability of the projection IIj, in L?, we find
1 < vlCnll o2yl — wrnll 2152
< v (= Tyl g2y + Nl = ixull par e ) Nl = wnll 21, 2y-
To estimate Jo, consider Z, € Xy the solution to
B(v, orn, Zkn) = v(kns w — Ukn) r2(r, 12y, Prh € Xk

Due to Galerkin orthogonality, (A.37), the properties of the Ritz projection Rp, and the
definition of the discrete Laplacian —Aj, we obtain that
V(&khs w — ukn) p2(1,02y = B(W, &k Zkn) = —B(v, Gen, Zin)
= —v(V(u — pikw), V) 121, 12)
= v(Rpu — Hpigu, Ahékh)Lz(I;Lg)
< v|[Ha(Raw — iew)ll o102y 1 AnZknll L2 1,12y
< vl Rpu — igull 2,2y llu — urnll L2 1,2

< v (B = ull 2 ryp2) + Il = ixull 2 rip2) ) 1w = wenll o r.2y,
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where we have used the stability estimate (5.10) for ApZg, and stability of the projection IIj,
in L2. Employing the interpolation and projection error estimates (A.34), (A.29), and (A.27)
we obtain

J1+Ja <wve (”U — Wpull 2,2y + lw = iwull 2 (g p2) + ([ Rhu — UHL?(I;L?)) lw = uknll L2(1,2)
< v (N9l g2 1) + W2IVull p2r02)) 1= wnll 2,2

Finally, elliptic regularity theory yields the estimate ||[V2ul[;> < c||Aul|;2, see, e.g., [68,
Theorem 3.1.1.2], completing the proof of (A.31).

Estimate (A.32). We observe
HVU — Vuth%z(I;Lz) = (VU — Vukh, VCkh)L2(];L2) + (VU — Vukh, ngh)Lz(I;LQ)
< |IVu = Vugn| 27,12y (||VCkh||L2(1;L2) + vathL?(I;LQ))
< 2[|Vu — vuthLQ(I;LQ)HVCthLQ(I;LQ)a

where we have used (A.38). From the stability of the L2-projection in H' and the interpola-
tion and projection error estimates (A.35) and (A.30) we obtain

”VCthLZ(l;L?) <|V(u— HhU)HLQ(I;L2) + [ VI (u — ikU)Hm(I;L?)
sc (th2u”L2(I;L2) + K2 (HatUHL?(I;L?) + ||AUHL2(1;L2))> .

Again elliptic regularity theory yields (A.32). O

Discretization error estimates for the state at the terminal time

Furthermore, we require estimates for the discretization error at the terminal time that will
be verified subsequently. We generally suppose that the regularity conditions concerning the
temporal mesh from Section 5.2 are valid and { 7, },- is a family of regular triangulations.

Lemma A.39. Let v € Ry and f € L>((0,1); L?). For the solution u = u(v, f) to the state
equation with right-hand side f and the discrete solution ug, = ugp(v, f) to equation (5.4)
with right-hand side f the estimates

= wnll oo 112y < cllog bl (k+h2) (L D)1 Fll oo rpzy + v M lwoll ) (A42)
lw = wnll oo riz2y < ellog bl (k+B2) (14 ) (1 F]l oo (1102) + Aol 12 ) (A.43)

hold, where the constant ¢ > 0 is independent of k, h, v, f, ug, u, and ugp.

To prove the estimates, we need several auxiliary results for solutions to dual equations.

Proposition A.40. For z; € L? let = € HY(I;L?) N L*(I; H?> N H}) the continuous and
zi € Xj, denote the semidiscrete adjoint state with let z(1) = z1 and zi(1) = 21, i.e.

B(v, or, 2x) = (21, 0,m)  for all v, € Xy
Then
Iz = 2kl 1 ryp2) < e (1+v772) flog k[ 21]] 2, (A.44)
12(0) = 2kl 2 < cvbllzalle, (A.45)

where the constant ¢ > 0 is independent of k, v, z1, z, and z.
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Proof. This is the assertion of [116, Lemma 5.2] and we give the proof to clearly see the
dependence on v. To this end, we introduce the nodal interpolation as

ir: C([0,1]; HY) — Xy, idjulr, = u(tm_1), m=1,2,..., M.

Define (i = i3z — z;. By means of Galerkin orthogonality and the definition of 47, for all
or € X N L2(I; H?) it holds

1
B(v.ou. ) = Bl oz = 42) = v [ (Apuz = i) e
M
=V Z </ (Asok,ma Z(t))LQ dt — km(A@b Z(tml))L2>

=v Z / ) (APkm, 0pz(t)) 2 dt.
This expression is equivalent to the following set of equations

v [ (V0.VG)s = (onelGlwlre = v | (tn = (A0, 0h=(0) 2 . (A.46)

for all ¢ € Po(I,n; H> N HY) and for all m =1,2,..., M.

Estimate (A.45). Testing in (A.46) with ¢ = A~2(;, integrating by parts, and using the
identity 0z = —vAz we find

- V/I (A7 G Gr) e — (AT G [AT Gkl 2 = —VQ/I (tm — 0)(Cky 2(8)) 2 dt. (AAT)

The right-hand side can be estimated as

2 [ (b= 002 dt =0 [ (0~ VAT Ta0)
%/ VAT Gll72 + 352 m|]Vz(t)H%2dt.
Applying the identity
% (Hsommliz — | [lmll72 — IIsomHiz) = ([¢lm m) L2 (A.48)

to the left-hand side of (A.47) and using that
v [ (@7 =v [ IVATGIE.
yield
A7 Gl +v [ IVATGIE < JA Gl 40 [ V20t

Summation of the above inequality for all m = 1,..., M, the stability estimate (A.19), as
well as equivalence of the norms ||[A™:||;2 and ||| 5-2 imply

Gkl -2 + VHVAACI:HH(I;L?) < CV3/2kHVZHL2(I;L2) < cvk||z1| 2. (A.49)

191



A. Appendix

Since 2(0) — 21 = (k,1, this concludes the proof of (A.45).
Estimate (A.44). First, it holds

z— 11z ) S/ z— 112 —I—/ z— 1z
Iz = iteln < [ ezl + [ el

< ck (/ [0e2]| 2 + SUPHZ(t)”L2> .
NIy tel

Hence, [116, Theorem 4.4] and the stability estimate (A.19) imply
Iz — izz“Ll(I;LQ) < ckllogk!”2IIZ1HLz-

Testing in (A.46) with ¢ = —A~!(; after integrating by parts yields

v [ 16kl = (VA G, [FA™ )2 = = [ (b = (G, D12(0) 2

m

Estimating the right-hand side as

v [ = 0G0z < 5 [ 1G5 [ = 1020,

and applying the identity (A.48) implies

v [ 16 + VAT Gl < IVAT G2+ [ (= 021052] 2.

m

Multiplication by (1 — ¢,,,—1), using that (1 —¢,,,) = (1 — t;,—1) + km, and summation for all
m=1,2,..., M yield

M
v 30 (0= tner) [ GG + VAT G2
m=1 m

M M
< Z kaVAflgk,m-HH%? tv Z (1 - tm—l)/I (tm - t)2”8tZH%2'
m=1 m=1 m

Moreover, since ky, < kratiokm+1, and using (A.49) we estimate

M
Z kaVA_ICk,m-l—lH%Q < kratioHVA_ICkH%Q I;L%) = Ck; ||21HL2
m=1
For any m < M — 1 and t € I,,,, we have
1-—- tm—l < 1— tm + kratiokm—‘rl < (1 - tm)(l + kratio) < (1 - t)(l + kratio)‘

Hence,

M
S (1= tno) [ (tn = 0200212 < Zk? JACETIE

m=1

+ k’M/ 1 —t ||8tZ||L2 = ( +kratio)k2 /1(1 _t)HatZH%Q'
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Therefore, from [116, Theorem 4.4] we infer

M
(1= tnr) [ Gl < e (14971) R

m=1

In summary, we have

M M
km,
”Ck”%l([;fﬁ) < <Z 1t . 1) (Z(l —tm—l)kaCk,m\%2>

m=1 m=1

<c(1+07") Noghl?|la1] 2,
where we have used k£ < 1/4 in the last step. Finally, we obtain
12 = 2kl L2y < 12 = iRzl o ey + ez = 26l Loz
<e(1+v712) log klk| 1) 1,
concluding the proof. O

Proposition A.41. For z; € L? let z, € Xi and zp, € Xpn denote the semidiscrete,
respectively, discrete adjoint state with zx(1) = z1 and zgp(1) = z1. Then

12k = 2kl g1 1,2y < cllog kIR?||z1 ]l 2, (A.50)
2k1 = zknall g2 < ch?llzall 2, (A.51)
where the constant ¢ > 0 is independent of k, h, v, z1, 2, and 2.
Proof. Estimate (A.51) is proved in [116, Lemma 5.8] with a constant ¢ > 0 that can be

checked to be independent of k, h, v, 21, zx, and zg;,. Estimate (A.50) is proved as in [116,
Theorem 5.10]: Using [116, Lemmas 5.9 and 5.8] we have

M
—1
||Zk - Zkh”Ll(I;L?) < mZZI km(l - tmfl) m:rlr,12a,.}.(.7M||Zk’m - Zkh,m”[,2

< cllog k||| zi,0r — zkn,r ]l 2 < cllog kIh®||z1 ]| 2,

where we have used that k < 1/4 in the second last step. O

Proof Lemma A.39, Estimate (A.43). For simplicity, we only consider the last time interval.
Let 2 € HY(I; L*) N L*(I; H?> N H}) and Zg, € X s be the solutions to the adjoint equation
with (1) = Zkp(1) = u(1) — ugn(1). Due to Galerkin orthogonality we obtain

Hu(l) — Ukh(l)H%Z = B(V, U — Ukh, 5) = B(I/,u — Ukh, zZ— Zkh) = B(V,’U,, zZ— Zkh)
1
= [ (F.2 = 2)sa + (w0, 2(0) = 2 0)
0

S VIl oo r,e2) 12 = Zknllpar 2y + 1 Auoll 2[12(0) = Zkna

H-2:

Propositions A.40 and A.41 and dividing by ||u(1) — ugp(1)]|;2 imply the result, where we
have used the estimate v¥/2 + v < 1 + 2v.

Estimate (A.42). Consider first the case ug = 0. Then this is exactly (A.43). In the case ¢ =0,
we combine Theorems 1 and 2 from [111] with clearly stated time dependency. Superposition
of both estimates yields (A.42). O
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Symbols

General

N,R,R,;,C

Ny (u)
Py, P
Ty (u)

Natural numbers, real numbers, (strictly) positive real num-
bers, complex numbers

Positive part of z, i.e. T = max {0,z }

Real part of complex number

Gamma function

Convex subdifferential

Clarke’s generalized subdifferential

Directional derivatives in positive and negative direction
Distance function to U in Hilbert space H

Normal cone to U at the point u

Minimizing projection onto U in Hilbert space H

Tangent cone to U at the point u

Linear operators, Function spaces, and Interpolation

Continuous embedding

Continuous and compact embedding
Continuous and dense embedding
Complex interpolation space

Real interpolation space

Dual space to X

Linear and bounded operators between X and Y
Domain of operator A in Banach space X
Resolvent set of A

Resolvent of A

Null space of linear operator A

Range of linear operator A

Linear span of vectors

Trace mapping, i.e. if u: [0,7] — X, then i;u = u(t) for
t€[0,T]

Holder continuous functions on I with values in X

180

167
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Symbols

HOP
HY(I; X)
LP(I; X)
Wkp
WkP(I; X)
W(0,T)

Optimal control

<'7 >

Discretization

208

Bessel potential space

Short for Wh2(T; X)

Lebesgue p-integrable functions on I with values in X
Sobolev/Sobolev-Slobodeckij space

Sobolev space on I with values in X

Short for H((0,T); V*) N L2((0,T); V)

problem

Duality pairing between V* and V'
Inner product in H

Measure space for control space

Norm on H

Norm on product space R x L2(I x w)

Weakly coercive operator A: V. — V* defined by bilinear
forma: VxV =R

Control operator from @ into Xp,

Critical cone

Lower Hamiltonian

Hamiltonian

Pivot space of Gelfand triple V —, H — V*

Set of admissible scaling functions

Space of controls and subset of admissible controls
Pointwise projection onto set of admissible controls
Control-to-state mapping

Domain of fractional powers of A, i.e. Xg = Dy« ((A+wp)?)

Domain of linear operator A constituting the Gelfand triple
Ve H—=V*

Trilinear form for Galerkin scheme

Jump terms in discontinuous Galerkin scheme

Discrete Laplace operator

Discrete lower Hamiltonian

Interpolation onto piecewise constant functions in time
Interpolation onto cellwise linear and continuous functions
Projection/Interpolation operator onto set of controls Q,

L2-projection onto piecewise constant functions in time

39

39, 183

36

41

42
13
21

19
9, 36
38, 101
19

102
102
103
148
188
186
107, 127
117



Symbols

Iy L?-projection onto Vj, 187
I o L?-projection onto cellwise constant functions in space 145
Iy L?-projection onto piecewise constant functions in time and 117
cellwise constant functions in space
Iaan Hilbert space projection onto Quq.p 149
Po(I; X) Space of constant functions on I with values in X 102
Qo, Qud,o Space of temporally and spatially discrete controls and sub- 107, 127
set of admissible controls
Qhn, Qad,h Space of spatially discrete controls and subset of admissible 148
controls
Ry, Ritz projection 186
o(k,h) Projection/Interpolation error of I, in L?(I x w) 107
o1(k,h) Projection/Interpolation error of I, in L'(I x w) 127
oa(k, h) Projection/Interpolation error of I, in L?(I; H~1) 127
Skh Discrete control-to-state mapping 103
T, Tr° Spatial mesh for finite element discretization 102, 107
Vi Space of continuous and cellwise linear functions 102
X Semi-discrete state space 188
Xi(Y) Piecewise constant functions with values in Y 148
Xin Discrete state space 102

209



	Introduction
	First order optimality conditions
	Notation and main assumptions
	Weak invariance
	Stability of the projection to the target set
	Characterization of invariance

	Time-optimal control problem
	Strong stability
	Change of variable
	Optimality conditions
	The Hamiltonian condition and qualified optimality conditions
	Further perturbation results

	Applications
	Point target and pointwise constraint
	H-norm constraint
	Finite-approximate controllability constraint
	Stabilization with finite dimensional control


	Second order and sufficient optimality conditions
	Problem formulation
	First order optimality conditions
	Example of a convection-diffusion equation

	Second order optimality conditions (> 0)
	Second order necessary optimality conditions
	Second order sufficient optimality conditions
	Reduction to a scalar condition
	Local uniqueness of local solutions

	Sufficient optimality conditions for bang-bang controls (= 0)
	Sufficient optimality conditions
	Stability analysis with respect to 


	Optimization algorithms
	Optimization algorithms for > 0
	Augmented Lagrangian method
	Bilevel optimization
	Monolithic optimization

	An algorithmic approach for bang-bang controls (= 0)
	Equivalence of time and distance optimal controls
	Regularization of the minimal distance problem
	Bisection method for the outer optimization
	Newton method for the outer optimization
	Conditional gradient method for the inner optimization
	Primal-dual active set strategy for the inner optimization
	Numerical examples
	Comparison to other approaches


	A priori discretization error estimates
	Assumptions and optimality conditions
	Finite element discretization
	Stability estimates for the PDE
	Discretization error estimates for the terminal constraint

	Error estimates for controls (> 0)
	Construction of feasible controls
	Suboptimal error estimates for controls
	Optimal error estimates for controls

	Numerical examples
	Example with analytic reference solution
	Example with purely time-dependent control
	Example with distributed control on subdomain

	Robust error estimates for bang-bang controls (= 0)
	General regularization and discretization error estimates
	Purely time-dependent controls
	Interlude: Interior pointwise error estimates
	Variational control discretization
	Cellwise constant control discretization

	Robust error estimates without sufficient optimality condition (= 0)
	The discrete Hamiltonian and the contruction of feasible controls
	Robust regularization and discretization error estimates

	Numerical examples for bang-bang controls
	Example with purely time-dependent control
	Example with distributed control on subdomain
	Example with distributed control on domain


	Outlook and perspectives
	Appendix
	Interpolation spaces
	Regularity of the state equation
	Clarke's generalized subdifferential
	Comparison principle
	Stability estimates
	Fractional Sobolev spaces
	Discretization error estimates for the state equation

	Bibliography
	Symbols

