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Abstract

This thesis is concerned with the analysis of finite element discretizations for time-optimal
control problems subject to linear parabolic partial differential equations and constraints for
the state evaluated at the free end time. Necessary and sufficient optimality conditions are
provided for the regular case and the case of bang-bang controls. A priori discretization
error estimates are proved for different control discretization strategies. Efficient algorithms
for the numerical solution are discussed.

Zusammenfassung

Diese Arbeit befasst sich mit der Analyse finiter Elemente Diskretisierungen zeitoptimaler
Steuerungsprobleme mit linearer, parabolischer, partieller Differentialgleichung und Zustands-
restriktionen am freien Endzeitpunkt. Notwendige und hinreichende Optimalitätsbedingung-
en werden für den regulären und den bang-bang Fall untersucht. A priori Fehlerabschätzung-
en für verschiedene Diskretisierungen der Kontrolle werden bewiesen. Effiziente Algorithmen
für die numerische Lösung werden diskutiert.
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1. Introduction

In many applications a certain criterion has to be met after some time, which should be
chosen as short as possible; cf., e.g., [2, 132]. For example, the objective could be to steer
a system close to a desired state in the fastest time possible by applying a control to the
system. This class of optimization problems is therefore called time-optimal control. Since
it is in general difficult to give an explicit solution formula, appropriate approximations of
these problems are necessary to compute solutions numerically. In this thesis we analyze
finite element discretizations for a class of time-optimal control problems subject to linear
parabolic partial differential equations.

To set the stage, for T denoting the terminal time, u the state, and q the control, let us
consider the abstract model problem:

Minimize j(T, q) := T +
∫ T

0
L(q(t)) dt,

subject to


T > 0, q ∈ Qad(0, T ),
u = u(q, T ),
‖u(T )− ud‖H ≤ δ0,

(Pmodel)

where Qad(0, T ) is the set of admissible controls, H is an appropriate Hilbert space, and
u(q, T ) denotes the solution to the time-dependent partial differential equation for the time
horizon T > 0 and the control q. In some applications it is necessary to account for control
costs or smoothing terms in the objective functional, cf., e.g., [92, 93, 125]. This motivates
the additional functional L in the problem formulation. Different choices for L and its
implications on the solutions will be detailed below. Many results of this thesis are valid for
more general terminal constraints than the one considered in (Pmodel) and we will introduce
the precise assumptions in Chapter 2.

The task is to steer the system from a given initial state close to a desired state ud ∈ H by an
appropriate choice of the control q : [0, T ]→ Qad and the time horizon T , while minimizing T
plus the running cost L for the control. It is worth mentioning that both the control q and the
terminal time T are optimization variables. In particular, this means that the time horizon of
the state equation is not fixed. For this reason, (Pmodel) is a nonlinear optimization problem
subject to control as well as state constraints which significantly complicates the analysis
and numerical realization of (Pmodel) compared to a linear parabolic optimal control problem
with a fixed T ; see, e.g, [116, 117, 118].

The choice of the functional L will play a central role in this work and we will consider three
different situations:

• Time-optimal control problem: If L ≡ 0, then we obtain the pure time-optimal
problem, where we are plainly interested in steering u0 into the H-ball centered at the
desired state ud in the fastest time possible. This is a classical choice in control theory;
see, e.g., [54, 97, 122, 149, 160] and the overview given in [104, Chapter 7]. Typically
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1. Introduction

the solutions for L ≡ 0 are bang-bang. We call a control bang-bang, if the set where it
does not equal the control bounds is a set of zero measure.

• Regularized time-optimal control problem: A choice different from zero allows
for a regularization strategy of the time-optimal control problem; cf., e.g., [82, 95]. For
example, we can consider

L(q) = α

2 ‖q‖
2
Q for α > 0, (1.1)

where Q is another Hilbert space for the controls. We will frequently choose Q = L2(ω)
with ω the control domain. In this case we are interested in letting the regularization
parameter α tend to zero. Note that for this particular choice of L, the optimal control
q̄ inherits regularity properties of the adjoint state by means of a projection formula
that links optimal control and adjoint state. Hence, the choice of the norm for the
regularization is not arbitrary, because it qualitatively changes the solutions.

• Control costs/Smoothing: Moreover, L can represent inherent control costs or sim-
ply when bang-bang controls are not desirable; cf., e.g., [92, 93, 125]. In the latter, L
can be chosen in a way such that it has a smoothing effect, e.g. the L2-norm of the
control. Moreover, other objective functionals can be more appropriate to model the
control costs in concrete applications such as the L1-norm of the control or a linear
functional in the control variable; cf., e.g., [42, 153].

In a strict definition, if L 6≡ 0 the optimization problem is not “time-optimal”, because we
are not minimizing just T . Nevertheless, it seems that in practice, one is often not interested
in steering the system into the terminal set as fast as possible at any costs. This motivates
to consider the more general problem formulation introduced above with free end time and
control costs in the objective. Hence, by the term time-optimal control, we always refer to
the broader definition.

To deal with the variable time horizon, it is convenient to transform the linear parabolic
partial differential equation onto a fixed reference time interval, which is accomplished by
introducing a transformation variable ν : [0, 1]→ R+ with the relation T =

∫ 1
0 ν(τ) dτ . Con-

sidering the transformation ν as an additional control variable allows to define a control-
to-state mapping (ν, q) 7→ u = S(ν, q) that is (infinitely often) continuously differentiable,
where u denotes the solution to the transformed partial differential equation. Moreover, as
all variables are defined on the same reference time horizon, different solutions (arising for
example from the regularization strategy) can be directly compared with each other. For
these reasons, in this thesis we will mainly work with the transformed state equation. In
particular, it is the basis for the numerical method.

By means of the control-to-state mapping, we can define the reduced and transformed optimal
control problem as

inf
ν>0, q∈Qad(0,1)

j(ν, q) subject to ‖u(1)− ud‖H ≤ δ0, u = S(ν, q). (P̂model)

To calculate solutions to (P̂model) in practice, we have to introduce a discretized version of
the state equation and replace the control space and the state space by finite dimensional
spaces. We obtain the discrete version of (P̂model) as

inf
ν>0, q∈Qad,σ(0,1)

j(ν, q) subject to ‖ukh(1)− ud‖H ≤ δ0, ukh = Skh(ν, q), (P̂model,kh)

where k and h denote the temporal and spatial discretization parameters and σ is an addi-
tional discretization parameter for the controls. A considerable part of this work is devoted
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to the numerical analysis of the discretized optimal control problem (P̂model,kh). On the one
hand, we show a priori discretization error estimates if L is chosen as the L2-norm of the
control similar as in (1.1) for a fixed cost parameter α > 0. Moreover, we are concerned with
the case of variable α, where we investigate the behavior of the discrete solutions if α tends
to zero.

This thesis is structured as follows. In Chapter 2 we discuss first order optimality conditions
for the time-optimal control problem (Pmodel). Since (Pmodel) is subject to state constraints,
a constraint qualification is needed to guarantee optimality conditions in qualified form. Our
approach relies on the concept of weak invariance. We first generalize a characterization of
weak invariance in terms of the so-called lower Hamiltonian condition which is interesting for
itself. This characterization is known for optimal control of ordinary differential equations
and uncontrolled partial differential equations. We show that strengthening of the lower
Hamiltonian condition leads to a sufficient criterion for qualified optimality conditions. In
contrast to typical constraint qualifications our condition can be checked a priori without
having to know the optimal solution. Concrete examples are discussed in Section 2.4. These
results have already appeared in similar form in [18].

Chapter 3 is devoted to sufficient optimality conditions. In the non-bang-bang case, we
formulate second order necessary and sufficient optimality conditions employing a cone of
critical directions that leads to a minimal gap between necessity and sufficiency. Additionally,
the second order sufficient optimality condition is equivalent to a scalar condition that requires
the solution of one linear-quadratic optimization problem. In Section 5.4, we will verify the
second order sufficient optimality condition on the discrete level by numerically computing
the scalar quantity. Most of these results are already contained in [17].

In the bang-bang case, it turns out that the second order sufficient optimality condition
is vacuously true and it is therefore unlikely that this guarantees local optimality. For this
reason, we consider a well-established structural assumption on the adjoint state that provides
a sufficient optimality condition in the bang-bang case. Chapters 2 and 3 form the basis for
the a priori discretization error estimates in Chapter 5.

In Chapter 4 we discuss the theoretical and practical aspects concerning the numerical so-
lution of (Pmodel). In case of α > 0, we consider the augmented Lagrangian method and
briefly discuss its convergence properties. For the solution of the resulting subproblems, we
consider a bilevel approach and a monolithic approach. For the case α = 0, we can solve the
regularized problem for a sequence of regularization parameters with α→ 0. Additionally, we
discuss an alternative approach that relies on an equivalent reformulation of the time-optimal
control problem. This reformulated problem has again a bilevel structure, where we have to
find a root of a certain value function in the outer loop and need to solve convex and control
constrained problems in the inner loop. We consider different methods for the solution of the
optimization problems occurring on each level.

In Chapter 5 we discuss the discretization of the state equation of (Pmodel) and the corre-
sponding adjoint state equation by means of the discontinuous Galerkin method in time and
the continuous Galerkin method in space. Concerning the control variable we consider differ-
ent control discretization strategies. Depending on the concrete discretization, we investigate
the convergence of the solutions of the corresponding discrete variants of (Pmodel) to solutions
of the original problem. In Section 5.3 we prove a priori discretization error estimates for the
terminal time and the control variable in L2 in the case of non-bang-bang controls under the
hypothesis that second order sufficient optimality conditions hold. We verify our theoretical
findings by numerical examples and observe that the estimates are optimal with respect to
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1. Introduction

the control variable. These results are already contained [17] and have been submitted to a
scientific journal recently.

Moreover, in Section 5.5 we prove a priori discretization and regularization error estimates
for the terminal time and the control variable in L1 in the bang-bang case. It is based on
the structural assumption on the adjoint state. For purely time-dependent control, these
estimates directly follow from standard error estimates of the state equation. However, for
distributed control we require pointwise discretization error estimates for the state equation
and thus error estimates for the optimal control problem are associated with further technical
effort. We provide error estimates in case of distributed control for the particular situation
that the control domain has a strict distance to the boundary of the spatial domain. Nu-
merical examples indicate that the structural assumption for purely time-dependent control
is satisfied which leads to optimal error estimates.

Last, in Section 5.6 we present a different approach that leads to discretization error estimates
for the terminal time without a sufficient optimality condition. It relies on the construction of
feasible controls and cross-wise testing. For the construction, we use a discrete version of the
strengthened Hamiltonian condition from Chapter 2. It is worth noting that the strengthened
Hamiltonian condition can be checked a priori in many examples.

Further auxiliary results that are needed in the main chapters are collected in the appendix.
Many of them are well-known. However, in particular for the discretization error estimates,
the precise asymptotic behavior of the constants is required. Hence, we either provide refer-
ences, where the constants are explicitly stated, or give independent proofs.
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2. First order optimality conditions

This chapter is devoted to first order optimality conditions for a class of time-optimal control
problems governed by a linear parabolic equation. It is essentially based on the paper [18]
with Konstantin Pieper. For T denoting the terminal time, u the state, and q the control,
we introduce the problem:

Minimize j(T, q) := T +
∫ T

0
L(q(t)) dt,

subject to



T > 0,
∂tu(t) +Au(t) = Bq(t), t ∈ (0, T ),

u(0) = u0,
u(T ) ∈ U ,
q(t) ∈ Qad, t ∈ (0, T ).

(P )

Here, A : V → V ∗ is a linear, weakly coercive operator for a Gelfand triple V ↪→ H ↪→ V ∗,
Qad ⊂ Q for a Hilbert space Q a closed and bounded set of admissible controls, and B a linear
and bounded control operator mapping Q into a subspace of V ∗. The precise assumptions
will be introduced in Section 2.1. A concrete example of a convection-diffusion equation
satisfying the abstract assumptions will be discussed in Section 3.1.2.

The purpose of this chapter is the derivation of first order optimality conditions for (P )
that can be stated as follows: For any optimal solution (T, q̄, ū), there exists a nontrivial
µ̄ ∈ NU (ū(T )) the normal cone to U at ū(T ), a corresponding adjoint state z̄ with

− ∂tz̄(t) +A∗z̄(t) = 0, t ∈ (0, T ), z̄(T ) = µ̄, (2.1)

and a µ̄0 ∈ { 0, 1 }, such that

0 = 〈Bq̄(t)−Aū(t), z̄(t)〉+ µ̄0[1 + L(q̄(t))], t ∈ (0, T ), (2.2)
q̄(t) = argmin

q∈Qad
[〈Bq, z̄(t)〉+ µ̄0L(q)] , t ∈ (0, T ). (2.3)

This general form is fulfilled in any optimum of (P ) if, e.g., the target set U is of finite
co-dimension in H. We give an independent proof of the general form of the optimality
conditions for (P ) in Theorem 2.26; cf. [40, 104, 134]. In the case that µ̄0 = 1, the optimality
conditions are called qualified.

In order to verify that qualified optimality conditions hold, we rely on the concept of strong
stability. Strong stability (also known as calmness [25, 136] or weak calmness [21]) quantifies
the dependency of the optimal value function of (P ) on small perturbations of the constraint.
Roughly speaking strong stability means that the optimal value function of (P ) (i.e. the
minimal value of j(·, ·)) depends Lipschitz continuously on perturbations of the target set U
of the form Uδ = U + Bδ(0) with δ ≥ 0, where Bδ(0) denotes ball in H of radius δ centered
at zero. We refer to Section 2.3.1 for a precise definition.
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2. First order optimality conditions

NU (u)

Bq −Au = ∂tu

u
U

Figure 2.1.: Geometric interpretation of the lower Hamiltonian condition (2.4) with strengthened
condition (2.5) (dotted).

Assuming strong stability, the qualified form holds; see Theorem 2.25; cf. also [134, Re-
mark 2.2]. More specifically, strong stability implies the existence of an exact penalty func-
tion, which in turn allows to derive qualified optimality conditions, where we use the ap-
proach due to Clarke [39]. We emphasize that Theorem 2.25 does not require any structural
assumptions on U , such as finite co-dimension; see, e.g., [104, Definition 2.1.32]. Moreover,
the multiplier µ̄ satisfies an a priori estimate which is of independent interest. Although it
is generally well-known that “almost all” problems are strongly stable, it remains a difficult
task to verify strong stability of a particular problem; cf. [19, Section 3]. The main objective
of this chapter is to derive conditions on the triple (A,U,BQad) which guarantee that (P ) is
strongly stable for all optimal solutions.

Mathematically, our approach relies on weak invariance of the terminal set. The set U is
called weakly invariant under (A,BQad) if for any initial state u0 ∈ U there is a control such
that the corresponding trajectory with initial value u0 remains in U . The precise meaning of
weak invariance used in this work is given in Definition 2.1. One of the main contributions of
this chapter is the characterization of weak invariance by the conditions that the minimizing
projection onto U in H denoted PU is stable in V , i.e. PU (V ) ⊆ V , and

h(u, ζ) := min
q∈Qad

〈Bq −Au, ζ〉 ≤ 0 for all u ∈ U ∩ V, ζ ∈ NU (u) ∩ V, (2.4)

where h : V ×V → R is the lower Hamiltonian; see Theorem 2.9. This extends known results
for invariance under semigroups, i.e. uncontrolled systems (see, e.g., [127, Section 2.1]), and
results for optimal control of ordinary differential equations (see, e.g., [40, Section 12.1]).

Precisely, our main result can now be stated as follows: Assume that the projection PU is
stable in V and that the strengthened Hamiltonian condition,

h(u, ζ) ≤ −h0‖ζ‖H for all u ∈ U ∩ V, ζ ∈ NU (u) ∩ V, (2.5)

holds for some h0 > 0 (independent of u and ζ). Then, strong stability is satisfied for all solu-
tions of the time-optimal problem; see Theorem 2.18. As already mentioned, strong stability
guarantees that qualified optimality conditions hold. On top of this, condition (2.5) enables
to derive Lipschitz continuity results of the value function for a variety of perturbations of
the problem (P ), not only in the target set. Note, that this corresponds to an estimate for
the optimal time for the pure time-optimal problem, which is of independent interest.

To the best of our knowledge, several of the applications of the sufficient conditions derived
in this work yield new results for concrete problems. In particular, these conditions allow to
derive qualified optimality conditions for several interesting scenarios, such as the control of
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the heat equation into L2-balls around certain target sets. We will discuss these applications
in Section 2.4. In the case of steering the system into a single point, i.e. U = {ud }, we can
compare the results to those of Barbu [10, Section 5.3], who derived the maximum principle for
a nonlinear monotone equation using a quadratic penalty method; cf. also [11] for the Navier-
Stokes equation or [95] for the linear wave equation. Note that the qualifying condition on the
target state in [10, Theorem 5.3.1] is essentially the same as the one obtained from (2.5) in
the case U = {ud }; see Section 2.4.1. However, this condition holds in concrete applications
only for controls which are acting everywhere in space. A different approach, which is based
on controllability, has been proposed by Wang and Zuazua [160]. Here, the equivalence
between time- and norm-optimality (see also [54]) is used in an essential way. In particular,
the conditions (2.1) and (2.3) (which are independent of µ̄0 in this case) are obtained for the
problem of steering the heat equation into zero with pointwise bounded controls restricted
to an arbitrary subset of the underlying domain. In this case, the multiplier is obtained in a
space of distributions, larger than L2. However, this technique seems to be restricted to the
case L ≡ 0 and yields a different condition instead of (2.2) to characterize the optimality of
the time variable.

To further assess the applicability of the strengthened Hamiltonian condition (2.5) in the
context of concrete examples, in Section 2.4 we discuss several cases when A is given by a
general convection-diffusion operator on a bounded domain Ω. On the one hand, we find
that (2.5) always holds for the control of, say, the heat equation into a L2(Ω)-ball centered at
a sufficiently small ud, assuming only that the zero control is admissible. We emphasize that
this already includes the classical setting ud = 0 considered in, e.g., [149, 159, 162], without
further assumptions. On the other hand, we find that it is fulfilled for more restrictive target
sets or more general convection-diffusion operators only under additional assumptions on
the form of the control operator and the admissible set. We compare these requirements
to established controllability assumptions (see, e.g., [167]) and find that our conditions are
stronger, in general. This can be connected to the fact that the cost of the controls resulting
from controllability conditions (see [56]) grows exponentially if the length of the control
horizon is decreased towards zero. However, for general A, we also give an example of a
special target set where (2.5) follows directly from an established stabilizability assumption,
based on the Fattorini criterion, which can be fulfilled even with finite-dimensional controls.

Clearly, as (2.5) implies (2.4), we implicitly only consider systems that are weakly invariant.
This can also be justified from a practical point of view. Note first, that we only require
the state to be inside the target set at the final time T in the mathematical formulation of
the time optimal problem (P ). However, in practice, time continues to advance afterwards
and in many cases we are interested to remain inside of the target set. Therefore, it seems
to be reasonable to restrict attention to systems where this is always possible. Otherwise,
the optimal control might achieve u(T ) ∈ U with small cost, but every trajectory continuing
from u(T ) might be forced to leave the target set again (possibly immediately).

We appreciate that (2.5) might not be fulfilled in all practically relevant cases. However,
we anticipate that it is useful in many situations, where the objective is to steer the system
“sufficiently close” to a weakly invariant, or even asymptotically stable state ud; cf., e.g., [2,
43, 92]. Here, it could also help to guide the choice of appropriate target sets U , which
guarantee both that the terminal state will be close to ud, and that the resulting control
problem will be strongly stable. We also note that, if the optimal trajectory ū is assumed
to be known and U has finite co-dimension with regular normal cone, condition (2.5) can be
weakened to

h(ū(T ), ζ) ≤ −h0‖ζ‖H for all ζ ∈ NU (ū(T )), (2.6)
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while still implying the qualified form of the optimality conditions; see Proposition 2.30.
Furthermore, if the normal cone contains only one element, this condition is already equivalent
to the qualified optimality conditions (see Proposition 2.31), which further clarifies the role
of the strengthened Hamiltonian condition.

Viewing (P ) as an abstract constrained nonconvex optimization problem, one could also
require a constraint qualification (CQ) to guarantee the qualified form of the optimality
conditions. However, the concrete form of the standard CQs does not only depend on the
parametrization of the constraint, but also on objects such as gradients, which require a proper
(but in some sense arbitrary) parametrization of the time variable T ; see Section 2.3.2. There-
fore, strong stability appears to be the more straightforward tool in this context. Comparing
CQs to the strengthened Hamiltonian condition (2.5), we remark that the latter qualifies all
optimal solutions at once, whereas the other considers only one specific, but a priori unknown
solution, similar to (2.6).

This chapter is organized as follows: In Section 2.1 we introduce some notation and state the
main assumptions. Weak invariance is characterized in Section 2.2. The concept of strong
stability is introduced in Section 2.3, where we discuss the time-optimal control problem
and derive optimality conditions. Moreover, we show that strengthening of weak invariance
implies strong stability as well as further perturbation results. Last, Section 2.4 is devoted
to applications. The text will be accompanied by the illustrative example U = {ud } with
fixed ud ∈ H, to make ideas visible to the reader. However, we emphasize that it does not
represent the main application.

2.1. Notation and main assumptions

For any two Banach spaces X and Y we use Y ↪→ X to denote the continuous embedding
and Y ↪→c X for the continuous and compact embedding. The domain of a linear (possibly
unbounded) operator A on X is denoted by DX(A). Let V and H be real Hilbert spaces such
that V ↪→c H ∼= H∗ ↪→ V ∗ form a Gelfand triple. Without restriction suppose ‖v‖V ≥ ‖v‖H
for all v ∈ V . In general, we abbreviate the duality pairing and the inner product and norm
in H by

〈·, ·〉 = 〈·, ·〉V ∗,V , (·, ·) = (·, ·)H , ‖·‖ = ‖·‖H .

Assumption 2.1. Let a : V ×V → R be a continuous bilinear form, which satisfies the Gård-
ing inequality (which is also referred to as weak coercivity): we assume there are constants
α0 > 0 and ω0 ≥ 0 such that

a(u, u) + ω0‖u‖2 ≥ α0‖u‖2V , u ∈ V . (2.7)

We denote by A : V ⊂ V ∗ → V ∗ the unique linear operator with

〈Au, v〉 = a(u, v) for all v ∈ V.

It holds DV ∗(A) = V ; see, e.g., [80, Theorem 3.4]. Due to the Gårding inequality, the
operator −(A+ ω0) generates an analytic semigroup on V ∗; see, e.g., [127, Section 1.4]. We
abbreviate ω0 Id by ω0, where Id is the identity operator on V ∗, to simplify the presentation.
Due to (2.7), we can define fractional powers in the sense of [128, Section 2.6]. For fixed
θ ≥ 0, we abbreviate Xθ = DV ∗((A+ ω0)θ) and introduce the norm on Xθ as

‖·‖Xθ := ‖(A+ ω0)θ·‖V ∗ .
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2.2. Weak invariance

As usual, (V ∗, V )θ,s, respectively [V ∗, V ]θ, stand for the real, respectively complex interpo-
lation couple with θ ∈ (0, 1) and s ∈ (1,∞). Since V is a Hilbert space (and thus V ∗ as
well), the operator (A + ω0) has bounded imaginary powers and it holds for θ ∈ (0, 1) that
Xθ = [V ∗, V ]θ = (V ∗, V )θ,2; see, e.g., [146, Section 1.15.3]. In particular, X1/2 = H; see, e.g.,
[108, Section 1.2.4]. Moreover,

X∗θ = [V ∗, V ]∗θ = [V ∗, V ]1−θ = X1−θ;

see, e.g., [146, Theorems 1.9.3 b), 1.11.3]. Furthermore, using [146, Theorems 1.9.3 b), 1.11.3
and 1.15.3] we find

X1−θ = [V ∗, V ]1−θ = [[V ∗, V ]1/2, V ]1−2θ = [H,V ]1−2θ. (2.8)

For any set S ⊂ Y in a Banach space Y , let dYS (·) denote the distance function

dYS (y) := inf
y′∈S
‖y − y′‖Y .

Furthermore, if Y is a Hilbert space and S is closed and convex, we denote by P YS : Y → S
the minimizing projection to S. Note that P YS is Lipschitz continuous in Y (with Lipschitz
constant one); see, e.g., [12, Proposition 4.8]. We denote by

NY
S (y) := { v ∈ Y ∗ : 〈v, y′ − y〉Y ∗,Y ≤ 0 for all y′ ∈ S }

the normal cone to S at the point y ∈ S. In the case Y = H and S = U (or if no ambiguity
arises), we simply write dU (·), PU , and NU (·).

Concerning the problem (P ), the terminal set U ⊂ H is assumed to be nonempty, closed,
and convex and the initial state satisfies u0 ∈ H.

Assumption 2.2. Let Q be a Hilbert space, and Qad be a closed convex subset. We assume
the control operator B : Q→ Xθ0 ↪→ V ∗ for some θ0 ∈ (0, 1/2] to be linear and continuous. In
addition, we assumeQad to be bounded inQ, and define CQad = maxq∈Qad‖q‖Q. Furthermore,
the functional L : Q→ R+ is Lipschitz continuous on Qad and convex.

In addition, for T > 0 we define Q(0, T ) := L2((0, T );Q) and

Qad(0, T ) = { q ∈ Q(0, T ) : q(t) ∈ Qad a.e. t ∈ (0, T ) } ⊂ L∞((0, T );Q).

Moreover, for T > 0 we use the symbol W (0, T ) to abbreviate H1((0, T );V ∗)∩L2((0, T );V ),
endowed with the canonical norm and inner product. The symbol iT : W (0, T )→ H denotes
the continuous trace mapping iTu = u(T ).

2.2. Weak invariance

We first introduce the notion of weak invariance.

Definition 2.1. The set U ⊂ H is said to be weakly invariant under (A,BQad), if for every
u0 ∈ U there exists a control q : [0,∞)→ Qad such that the solution u to

∂tu+Au = Bq, u(0) = u0,

satisfies u(t) ∈ U for all t ≥ 0. If ambiguity is not to be expected, we simply say U is weakly
invariant.
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2. First order optimality conditions

Remark 2.2. Different terms for weak invariance are being used in the literature, such as
holdability or viability; cf. [141] and [41, Section 1].

The structure of this section is as follows: We first discuss stability of the minimizing pro-
jection PU in V . This is then needed to characterize weak invariance in terms of the lower
Hamiltonian.

2.2.1. Stability of the projection to the target set

We call the minimizing projection PU in H onto U stable in V , if PU (V ) ⊂ V . In general,
stability of PU in V is a non-trivial assumption. However, in the uncontrolled case, it is
known that invariance of U under A (i.e., the property e−tAU ⊂ U for all t ≥ 0, with e−tA
the semigroup generated by −A) implies the stability of PU in V ; see, e.g., [127, Theorem 2.2],
cf. also [4, Section II.6.3] for the nonautonomous case. In the following we generalize this
known sufficient condition for stability of PU in V to controlled systems. This will be a
prerequisite for the characterization of weak invariance of U under (A,BQad).
Example 2.3. As an illustrative example, we consider the set U = {ud }. The projection PU
is given by PU (u) = ud. Clearly, PU is stable in V if and only if ud ∈ V . Now, suppose that
U is weakly invariant under (A,BQad). Then there is a control q : [0,∞) → Qad such that
the corresponding state u satisfies u(t) = ud for all t ≥ 0, i.e. u is the steady state solution.
Thus, 0 = ∂tu(t) = Bq(t) − Aud, which in turn leads to ud ∈ V , in accordance with the
results of this section. Additionally, we infer that invariance of U under the uncontrolled
system (corresponding to weak invariance with the trivial choice Qad = { 0 }) holds only for
Aud = 0; see [127, Theorem 2.2], cf. also Theorem 2.9.

The proof is divided into two steps. Roughly speaking, we first prove that for a weakly
invariant set U , the scaled resolvent of A does not map points in U too far outside of U . We
define for any u ∈ H

Eλu := λ(λ+A)−1u = (1 +A/λ)−1u.

Provided that λ ≥ ω0, where ω0 was defined in (2.7), we find that Eλu ∈ X1 = V is well
defined for any u ∈ X0 = V ∗. Additionally, using a resolvent identity and the interpolation
inequality, there holds the estimate ‖Eλu − u‖V ∗ = λ−1‖AEλu‖V ∗ ≤ c λ−1/2‖u‖ for all
u ∈ H = X1/2. For u ∈ U , an improved estimate for the distance of Eλu to U can be
obtained under weak invariance.

Proposition 2.4. Suppose that U is weakly invariant under (A,BQad) and let θ0 be the
constant from Assumption 2.2. Then, for all u ∈ U and γ ∈ [0, 1/2] it holds

d
Xγ
U (Eλu) ≤ c λ−1+(γ−θ0)+, λ ≥ ω0,

where (·)+ = max { ·, 0 } denotes the positive part, and the constant c depends only on γ, θ0,
A, and Qad.

Proof. By assumption, there is a control such that the state ŭ with initial value u stays in U
for all t ≥ 0. Now, we can estimate the distance of e−tAu to U in Xγ by the distance of ŭ(t),
and obtain

d
Xγ
U (e−tAu) ≤ ‖e−tAu− ŭ(t)‖Xγ ≤ c t

1−(γ−θ0)+ ,

where the last inequality is an application of Proposition A.18 (iii) with θ = min{ γ, θ0 }.
Indeed, the variable w(t) = e−tAu− ŭ(t) solves a parabolic equation with right-hand side in
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2.2. Weak invariance

L∞(0,∞;Xθ) and w(0) = 0. Since the resolvent is the Laplace transform of the semigroup
it holds

Eλu = λ(λ+A)−1u =
∫ ∞

0
λe−λte−tAudt.

Note, that due to u ∈ U ⊂ H = X1/2 and λ ≥ ω0, the integral is defined with values in Xγ

for all γ ≤ 1/2; cf. [128, Sect. 1.7]. Finally, we apply the distance function on both sides of
the equation, and we derive

d
Xγ
U (Eλu) ≤

∫ ∞
0

λe−λtdXγU (e−tAu) dt

≤ c
∫ ∞

0
λe−λtt1−(γ−θ0)+ dt = cΓ(2 + θ − γ)λ−1+(γ−θ0)+ ,

with
∫∞

0 λe−λt = 1, convexity of the distance function, and a generalized Jensen’s inequality;
see, e.g., [129, Theorem 3.10 (ii)].

Remark 2.5. Note that for the result of Proposition 2.4, we only used the assumption that
BQad is a bounded set in Xθ0 (using Assumption 2.2). All the results from this section remain
valid under this modified assumption.

Lemma 2.6. If U is weakly invariant under (A,BQad), then the projection PU is stable in
V , i.e. PU (V ) ⊆ V .

Proof. Let v ∈ V be fix and set u = PU (v) ∈ H. We first prove that u ∈ X(n−1)/n with
n = 2m for all m ≥ 1. Since u ∈ H = X1/2, the assertion holds for m = 1. Proceeding
by induction, we assume it holds for all 1 ≤ m′ ≤ m and show it for 2n = 2m+1. Since
AEλu = λ(u− Eλu), we compute

〈AEλu,Eλu〉 = 〈AEλu,Eλu− u〉+ 〈AEλu, u〉
= λ(u− Eλu,Eλu− u) + 〈AEλu, u〉 = −λ‖u− Eλu‖2 + 〈AEλu, u〉.

Now, we take for any λ a u′λ ∈ U with ‖u′λ − Eλu‖X1/n
≤ 2 dX1/n

U (Eλu). Moreover, since
X∗θ = X1−θ ↪→ V ∗, it holds 〈ϕ,ψ〉 ≤ ‖ϕ‖[V ∗,V ]1−θ‖ψ‖[V ∗,V ]θ for ϕ ∈ X1−θ and ψ ∈ V . Thus,
for v ∈ V with u = PU (v) from the beginning of the proof it holds

〈AEλu,Eλu〉+ λ‖u− Eλu‖2 = 〈AEλu, u− v〉+ 〈AEλu, v〉
= λ(u− u′λ, u− v) + λ(u′λ − Eλu, u− v) + 〈AEλu, v〉
≤ 0 + λ‖u′λ − Eλu‖X1/n

‖u− v‖X(n−1)/n
+ c‖Eλu‖V ‖v‖V

≤ c λ(1/n−θ0)+‖u− v‖X(n−1)/n
+ c‖Eλu‖V ‖v‖V , (2.9)

where we have used (u − u′λ, u − v) = (u − u′λ, PU (v) − v) ≤ 0, the estimate dX1/n
U (Eλu) ≤

cλ−1+(1/n−θ0)+ (from Proposition 2.4 with γ = 1/n), and the continuity of A. Consequently,
with Young’s inequality, we arrive at

〈AEλu,Eλu〉+ λ‖u− Eλu‖2 ≤ c λ(1/n−θ0)+‖u− v‖X(n−1)/n
+ α0

2 ‖Eλu‖
2
V + c‖v‖2V ,

and the Gårding inequality (2.7) yields

α0
2 ‖Eλu‖

2
V + λ‖u− Eλu‖2 ≤ c λ(1/n−θ0)+‖u− v‖X(n−1)/n

+ c‖v‖2V + ω0‖Eλu‖2.
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2. First order optimality conditions

With ‖Eλu‖ ≤ c‖u‖ ≤ c‖v‖ we obtain constants c1 and c2 (depending on the norms of v ∈ V
and u ∈ X(n−1)/n, by the induction hypothesis) such that for all λ ≥ ω0 it holds

‖Eλu‖V + λ1/2‖u− Eλu‖ ≤ c1λ
(1/n−θ0)+/2 + c2.

Note that the constants c1 and c2 depend on n. However, for the proof we only require
finitely many steps which can be estimated a priori by 1/n ≤ θ0. Recall the functional of the
K-method of real interpolation, see, e.g., [146, Section 1.3],

K(u, t, V,H) = inf
ũ∈V

[‖ũ‖V + t‖u− ũ‖] .

By inserting for each t ≥ tmin := max { 1,√ω0 } the values ũ = Eλu for λ = t2, we obtain the
estimate K(u, t, V,H) ≤ c1t

(1/n−θ0)+ + c2. Moreover, inserting ũ = 0 yields K(u, t, V,H) ≤
t‖u‖ ≤ ct. Thereby, we obtain

‖u‖2(V,H)1/n,2
=
∫ ∞

0

(
t−1/nK(u, t, V,H)

)2
t−1 dt

≤ c
∫ tmin

0
t1−2/n dt+

∫ ∞
tmin

(
c1 max { t−1/n, t−θ0 }+ c2t

−1/n
)2

t−1 dt <∞.

As in (2.8) with θ = 1/(2n), we find (V,H)1/n,2 = X1−1/(2n). Therefore, u ∈ X(2n−1)/2n and
we have shown the assertion for 2n = 2m+1.

Finally, let n ∈ N such that 1/n ≤ θ0. Then, in the last step of (2.9) we obtain that

‖Eλu‖2V ≤ c‖u− v‖X1−(n−1)/n
+ c‖v‖2V .

Thus, Eλu is uniformly bounded in V . As Eλu→ u in H, we conclude u ∈ V .

Corollary 2.7. Under the assumptions of Lemma 2.6, there exist constants c1, c2 > 0, such
that

‖PU (v)‖V ≤ c1 + c2‖v‖V . (2.10)

Proof. Let v ∈ V . Then, u = PU (v) ∈ U ∩ V due to Lemma 2.6. As in the last step of
Lemma 2.6, we derive

‖Eλu‖2V ≤ c1 ‖u− v‖V + c2 ‖Eλu‖V ‖v‖V ≤ c1 (‖u‖V + ‖v‖V ) + c2 ‖Eλu‖V ‖v‖V .

Recall that Eλu = λ(λ + A)−1u. Since u ∈ V , it holds Eλu → u in V . Passing to the limit
in the inequality above yields

‖u‖2V ≤ c1 (‖u‖V + ‖v‖V ) + c2 ‖u‖V ‖v‖V .

Dividing by ‖u‖V , we conclude ‖PU (v)‖V ≤ max { 1, c1(1 + ‖v‖V ) + c2‖v‖V } and the asser-
tion follows for appropriately modified constants c1, c2.

2.2.2. Characterization of invariance

Using the result on the stability of the projection, weak invariance can be characterized by
conditions involving either the projection or the normal cone. In the following, we will make
repeated use of the following basic identification.
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Proposition 2.8 (see [12, Proposition 6.46]). Let u ∈ U . Then

NU (u) = { v − u : v ∈ H with PU (v) = u } .

In particular, it holds v−PU (v) ∈ NU (PU (v)) for all v ∈ H, and PU (u+ ζ) = u for all u ∈ U
and ζ ∈ NU (u).

Following [40, Section 12.1], we define the lower Hamiltonian as

h(u, ζ) = min
q∈Qad

〈Bq −Au, ζ〉 for u ∈ V, ζ ∈ V .

Analogous to the corresponding theory for ordinary differential equations, we can now char-
acterize weak invariance in terms of the lower Hamiltonian.

Theorem 2.9. The following conditions are equivalent:

(i) U is weakly invariant,

(ii) PU is stable in V and h(u, ζ) ≤ 0 for all u ∈ U ∩ V and ζ ∈ NU (u) ∩ V ,

(iii) PU is stable in V and h(PU (v), v − PU (v)) ≤ 0 for all v ∈ V .

For the proof of Theorem 2.9 we need an estimate of the distance to the target set for the
controlled system, which is given next. For later use, we prove it in a more general form,
including both the strengthened condition (2.5) as well as the weaker condition (2.4) (which
is the special case for h0 = 0).

Lemma 2.10. Suppose that PU is stable in V and that there is h0 ≥ 0 such that for all v ∈ V
we have

h(u, ζ) ≤ −h0‖ζ‖, where u = PU (v), ζ = v − u. (2.11)
Then, for each u0 ∈ H with dU (u0)ω0 ≤ h0 there exists a control q : [0,∞)→ Qad such that
the solution u to

∂tu+Au = Bq, u(0) = u0,
satisfies

dU (u(t)) ≤ max { 0, dU (u0) + (dU (u0)ω0 − h0) t } for t ≥ 0.

To prove this result, we construct a sequence of feedback controls which have approximately
the desired property, and then we go to the limit. We start with an auxiliary result.

Proposition 2.11. The squared distance function d2
U : H → R is differentiable with

∇d2
U (u) = 2(u− PU (u)).

Moreover, if PU is stable in V , then ∇d2
U is continuous from V to X1−θ0.

Proof. Differentiability of the squared distance function is proved in [12, Corollary 12.30].
Using the expression of the derivative, we infer that ∇d2

U is Lipschitz continuous on H with
Lipschitz constant two, and stable on V due to stability of PU in V ; see Corollary 2.7. The
interpolation inequality [146, Theorem 1.9.3 f)] yields

1
2‖∇d

2
U (u)−∇d2

U (v)‖[H,V ]1−2θ0
≤ 1

2‖∇d
2
U (u)−∇d2

U (v)‖1−2θ0
V ‖∇d2

U (u)−∇d2
U (v)‖2θ0

≤ [2c1 + (1 + c2)(‖v‖V + ‖u‖V )]1−2θ0 ‖u− v‖2θ0 ,

where c1, c2 are from estimate (2.10). Hence, ∇d2
U is continuous from V to [H,V ]1−2θ0 =

X1−θ0 ; see (2.8).
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We now construct the desired sequence of approximate feedback controls.

Proposition 2.12. Let u0 ∈ H, γ > 0 and T > 0. Then the equation

∂tuγ +Auγ = Bqγ,

qγ = PQad

(
−γ−1B∗(uγ − PU (uγ))

)
,

uγ(0) = u0,

(2.12)

possesses a solution uγ ∈W (0, T ) ∩ C((0, T );V ) ∩ C1((0, T );V ∗) and qγ ∈ C((0, T );Q).

Proof. Consider the mapping F : Q(0, T )→ Q(0, T ) defined by

F(q) := PQad

(
−(2γ)−1B∗

[
∇d2

U (S(u0, Bq))
])

,

where S : H × L2((0, T );Xθ0) → W (0, T ) denotes the solution operator of the parabolic
equation with initial value u0 and right-hand side Bq. According to Proposition 2.11, the
function ∇d2

U is continuous from V into X1−θ0 . Moreover, since X∗θ0 = X1−θ0 , and B is
supposed to be continuous from Q to Xθ0 , we infer continuity of B∗ from X1−θ0 to Q∗ = Q.
Continuity of PQad onQ leads to continuity of F fromQ(0, T ) into itself. Using compactness of
q 7→ S(u0, Bq) into L2((0, T );V ) according to Proposition A.19, we deduce that F(Qad(0, T ))
is contained in a compact subset of Q(0, T ).

Finally, Schauder’s fixed point theorem (see, e.g., [163, Theorem 2.A]) yields the existence
of a fixed point F(qγ) = qγ . Setting uγ = S(u0, qγ) proves the existence of a solution
to (2.12). According to Proposition A.18, uγ is continuous on (0, T ] with values in V . Now,
the continuity of the projection PQad on Q yields the improved regularity of qγ . Furthermore,
from ∂tuγ = Bqγ−Auγ we deduce that uγ is continuously differentiable on (0, T ) with values
in V ∗.

Next, we observe that the feedback control qγ is close to the minimizing argument of the
lower Hamiltonian.

Proposition 2.13. For any ζ, u ∈ V and qγ = PQad
(
−γ−1B∗ζ

)
it holds

〈Bqγ −Au, ζ〉 ≤ h(u, ζ) + cγ, (2.13)

where c solely depends on Qad.

Proof. Consider for γ ≥ 0 the family of functions defined by

hγ(u, ζ) = min
q∈Qad

[
〈Bq −Au, ζ〉+ γ

2‖q‖
2
Q

]
. (2.14)

Clearly, h0 is the lower Hamiltonian h. Denote the minimizers of (2.14) by qγ . Then, we
estimate

〈Bqγ −Au, ζ〉 ≤ hγ(u, ζ) ≤ 〈Bq0 −Au, ζ〉+ γ

2‖q0‖2Q ≤ h0(u, ζ) + γ

2 C
2
Qad

.

Furthermore, for γ > 0, from the optimality conditions for (2.14) we infer that the minimizer
qγ is given by qγ = PQad

(
−γ−1B∗ζ

)
.

Now we prove the main result of this section.
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Proof of Lemma 2.10. Clearly, it suffices to show the result for t ∈ (0, T ) for some arbitrary
but fixed T > 0. Let u0 ∈ H be given, let uγ for γ > 0 denote the corresponding solution
to (2.12), and define dγ(t) = dU (uγ(t)). Then, for any 0 < t < T we infer

d
dtd

2
γ(t) = 〈∂tuγ(t),∇d2

U (uγ(t))〉 = 〈Bqγ(t)−Auγ(t),∇d2
U (uγ(t))〉

= 〈Bqγ(t)−APU (uγ(t)),∇d2
U (uγ(t))〉+ 〈APU (uγ(t))−Auγ(t),∇d2

U (uγ(t))〉,

where we have used (2.12). For the last term, the Gårding inequality yields

〈APU (uγ(t))−Auγ(t),∇d2
U (uγ(t))〉 = −1

2〈A∇d
2
U (uγ(t)),∇d2

U (uγ(t))〉

≤ ω0
2 ‖∇d

2
U (uγ(t))‖2 − α0

2 ‖∇d
2
U (uγ(t))‖2V ≤

ω0
2 ‖∇d

2
U (uγ(t))‖2.

Employing (2.13), the Hamiltonian condition (2.11), and

‖∇d2
U (uγ(t))‖ = 2dU (uγ(t)) = 2dγ(t),

we infer
1
2

d
dtd

2
γ(t) ≤ 1

2h(PU (uγ(t)),∇d2
U (uγ(t))) + cγ + ω0

4 ‖∇d
2
U (uγ(t))‖2

≤ −h0dγ(t) + cγ + ω0d
2
γ(t).

(2.15)

Using the fact that d
dtd

2
γ(t) = 2d′γ(t)dγ(t), we obtain from (2.15) that

d′γ(t) ≤ ω0dγ(t) + cγ/dγ(t)− h0 on { t : dγ(t) > 0 } .

According to Proposition A.25 the differential inequality implies

dγ(t) ≤ max {√γ, (dU (u0) +√γ)eω0t + (c√γ − h0)φ(t) } =: Dγ(t), (2.16)

where φ(t) = ω−1
0 (eω0t − 1), if ω0 > 0, and φ(t) = t otherwise.

For γ → 0 we now choose suitable subsequences such that qγ ⇀ q in Q(0, T ) and uγ ⇀ u in
W (0, T ). Clearly, the weak limits satisfy

∂tu+Au = Bq, u(0) = u0.

Thus, with W (0, T ) ↪→ C([0, T ];H) we have uγ(t) ⇀ u(t) in H for all t ∈ [0, T ]. Using weak
lower semicontinuity of the distance function dU (·) and (2.16), we obtain

dU (u(t)) ≤ lim inf
γ→0

dU (uγ(t)) ≤ lim
γ→0

Dγ(t) = max
{

0, dU (u0)eω0t − h0φ(t)
}
.

Now, using the supposition dU (u0)ω0 ≤ h0, the definition of φ, and the fact that φ(t) ≥ t, we
obtain

dU (u(t)) ≤ (dU (u0) + (ω0dU (u0)− h0)φ(t))+ ≤ (dU (u0) + (ω0dU (u0)− h0) t)+

concluding the proof.

Finally, we show the charactization of weak invariance by means of the lower Hamiltonian.
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2. First order optimality conditions

Proof of Theorem 2.9. We separately prove three implications.

(i) ⇒ (ii). The stability of PU in V follows with Lemma 2.6. For the second property, let
u0 ∈ U ∩ V be arbitrary. Then, with weak invariance, there is a control q ∈ Qad(0,∞) such
that the corresponding state satisfies u(0) = u0 and u(t) ∈ U for all t ≥ 0. Additionally,
u(t) ∈ V for all t ≥ 0 follows by Proposition A.18 (i). Let further ζ ∈ NU (u0) ∩ V . It holds
∂tu = Bq −Au in L2((0, s);V ∗) for any s > 0, and we have

0 ≥ 1
s
〈u(s)− u0, ζ〉 =

〈1
s

∫ s

0
[Bq(t)−Au(t)] dt, ζ

〉
. (2.17)

Define the temporal averages q̄s = (1/s)
∫ s

0 q(t) dt and ūs = (1/s)
∫ s

0 u(t) dt. Due to u ∈
C([0, 1];V ), it holds ūs → u0 in V for s→ 0. Furthermore, with q(t) ∈ Qad for all t, it follows
q̄s ∈ Qad (see, e.g., [40, Exercise 2.44]) and we can select a sequence sn → 0 and a q0 ∈ Q
such that q̄sn ⇀ q0 in Q for n→∞. By weak closedness of Qad we have q0 ∈ Qad. Going to
the limit in (2.17), we obtain

0 ≥ 〈Bq0 −Au0, ζ〉 ≥ h(u0, ζ),

using boundedness of B : Q→ V ∗ and A : V → V ∗. Since u0 and ζ were arbitrary, we finish
the proof.

(ii) ⇒ (iii). This follows directly from the fact that u = PU (v) ∈ U ∩ V and v − PU (v) ∈
NU (u) ∩ V for all v ∈ V with the stability of the projection.

(iii) ⇒ (i). The last implication is consequence of Lemma 2.10 (with h0 = 0).

2.3. Time-optimal control problem

We now turn to the time-optimal control problem. In the following, we use the notation u[q]
for the solution of the state equation ∂tu + Au = Bq and u(0) = u0 for a given control q.
Let U ⊂ H denote the terminal set that is assumed to be closed and convex. Furthermore,
to exclude the trivial case with zero optimal time, we assume that u0 ∈ H \U . Problem (P )
can then be restated as:

inf
T>0, q∈Qad(0,T )

j(T, q) subject to u[q](T ) ∈ U .

First, we consider the question of existence of optimal controls. We show that if there exists
a feasible pair (T, q) ∈ R+ ×Qad(0, T ), the problem is well-posed:

Proposition 2.14. Suppose there exists a finite time T > 0 and a feasible control q ∈
Qad(0, T ) such that the corresponding state satisfies u[q](T ) ∈ U . Then, problem (P ) admits
at least one optimal solution (T, q̄) ∈ R+ ×Qad(0, T ).

Proof. The proof is done by standard arguments (the direct method); cf., e.g., [106, Sec-
tion III.17]. We use in particular the boundedness of j for bounded T due to boundedness
of the admissible set Qad, j(T, q) ≥ T and that j is weakly lower semicontinuous in q for
fixed T . Furthermore, we use the W (0, T ) regularity of the solution to the state equation,
the continuity of the trace mapping iT , and the convexity of U .
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2.3. Time-optimal control problem

Remark 2.15. In view of the preceding result, the question of existence reduces to the
question of controllability under constraints. We exemplary state situations where feasible
controls exist. Let Ω ⊂ Rd be a bounded domain with smooth boundary and A = −∆
be the usual Laplace operator equipped with homogeneous Dirichlet boundary conditions.
Moreover, for fixed ud ∈ L2(Ω) and δ0 ≥ 0, suppose the terminal set to be given by U =
{u ∈ L2(Ω) : ‖u− ud‖ ≤ δ0 }.

(i) In case of distributed control on an open subset ω ⊂ Ω, the state equation is known to
be approximately controllable; see, e.g., [138, 167], i.e. for all T > 0, ud ∈ L2(Ω), and
δ0 > 0, there exists a control q ∈ Q(0, T ) such that u[q](T ) ∈ U . Clearly, for sufficiently
large control constraints, feasible controls exist. For estimates concerning the controls,
we refer to [56].

(ii) If ud = 0 and 0 ∈ Qad(0, 1), then for any δ0 > 0, the control q ≡ 0 is feasible for T > 0
sufficiently large, since the semigroup generated by ∆ is exponentially stable in L2(Ω);
see Proposition A.21.

(iii) Furthermore, Lemma 2.10 provides a sufficient condition for existence of feasible points,
under the assumption dU (u0)ω0 < h0 (which is clearly true for ω0 = 0 (since h0 > 0)
or the initial state u0 sufficiently close to U). Note that Lemma 2.10 generalizes the
argument of (ii), since ω0 = 0 in case of homogeneous Dirichlet conditions due to
the Poincaré inequality. In Section 2.4 we will explicitly verify the suppositions of
Lemma 2.10 for concrete terminal constraints U .

2.3.1. Strong stability

We now introduce the strong stability condition on the objective functional with respect to
small perturbations of the terminal constraint set. This will allow for exact penalization of
the constraints which in turn leads to optimality conditions in qualified form. For δ ≥ 0,
define the perturbed control problem

inf
T>0, q∈Qad(0,T )

j(T, q) subject to u[q](T ) ∈ Uδ, (Pδ)

where U is replaced with Uδ = U + Bδ(0) = {u ∈ H : dU (u) ≤ δ }. Evidently, (P0) is equal
to (P ). We define the corresponding value function v : R+ → R+ by

v(δ) = inf (Pδ).

Clearly, v is a monotonously decreasing function with v(dU (u0)) = 0.

Definition 2.16. The problem (Pδ) is called strongly stable (on the right) if there exist ε > 0
and η0 > 0 such that

v(δ)− v(δ′) ≤ η0(δ′ − δ) for all δ′ ∈ [δ, δ + ε]. (2.18)

Remark 2.17. (i) In the case that δ > 0, we can also define stability on the left in an
analogous way; cf. also Figure 2.2. In this work, we only consider stability on the right,
which is meaningful also for the important case δ = 0.
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2. First order optimality conditions

δ δ′ δ + ε

v(δ)

−η0

v(δ)

δ

Figure 2.2.: Illustration of strong stability. The left example is strongly stable on the right at δ with
radius ε and modulus η0. The right example is not strongly stable on the right at δ. Both
examples are strongly stable on the left at δ.

(ii) Strong stability is satisfied almost everywhere. Precisely, if (P ) has feasible controls,
then (Pδ) is strongly stable for all δ ∈ R+ except on a set of Lebesgue measure zero;
see, e.g., [19, Proposition 3.2]. This follows from monotonicity of v, because monotone
functions are differentiable almost everywhere. However, since we consider the terminal
set U to be a given datum, we are interested in conditions assuring strong stability on
the right at δ = 0.

(iii) Strong stability is also referred to as calmness, cf. [25], [136, Chapter 8.F], or weak
calmness, cf. [21, Definition 3.114].

We now prove one of the main results of the chapter, which guarantees strong stability under
a condition which is a direct strengthening of the necessary condition for weak invariance
from Theorem 2.9. We require that there exists a h0 > 0 such that

h(u, ζ) ≤ −h0‖ζ‖ for all u ∈ U ∩ V, ζ ∈ NU (u) ∩ V . (2.19)

Recall that weak invariance of (A,U,BQad) corresponds to the same condition with h0 = 0;
see Theorem 2.9. In the case h0 > 0, strong stability of (Pδ) holds for all small enough δ ≥ 0
(which includes the important case δ = 0).

Theorem 2.18 (Strong stability). Let PU be stable in V and suppose that condition (2.19)
holds for some constant h0 > 0. Then, for all δ ≥ 0 such that ω0δ < h0/2 the problem (Pδ) is
strongly stable on the right with η0 ≤ c/h0, where the constant c only depends on the concrete
choice of L and Qad.

Proof. Fix ε > 0 such that ω0(δ + ε) ≤ h0/2. Then, let δ′ ∈ [δ, δ + ε] be arbitrary and fix
a solution (T ′, q′, u′) to (Pδ′). Consider the auxiliary problem ∂tŭ + Aŭ = Bq̆ with initial
condition ŭ(0) = u′(T ′) and an auxiliary control q̆ : [0,∞) → Qad. Employing Lemma 2.10
we can choose q̆ such that it holds

dU (ŭ(t)) ≤ max { 0, δ′ + (δ′ω0 − h0)t } for t ≥ 0,

considering that dU (ŭ(0)) = dU (u′(T ′)) = δ′. Clearly, it follows that dU (ŭ(δT )) ≤ δ for the
choice δT = (δ′ − δ)/(h0 − δ′ω0). Thus, q ∈ Qad(0, T ′ + δT ) defined by

q(t) =

q′(t) if t ≤ T ′,
q̆(t− T ′) if t > T ′,
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2.3. Time-optimal control problem

is admissible for (Pδ) and we find

v(δ) = inf(Pδ) ≤ j(T ′ + δT, q) = j(T ′, q′) +
∫ T ′+δT

T ′

[
1 + L(q̆(t− T ′))

]
dt

≤ v(δ′) + δT (1 + L∞),

where L∞ = maxq∈Qad L(q). Using ω0δ
′ ≤ h0/2, we obtain that δT ≤ 2(δ′ − δ)/h0, which

results in (2.18) with a choice of η0 = 2(1 + L∞)/h0. This concludes the proof.

2.3.2. Change of variable

In this subsection, we discuss the implications of strong stability on optimality conditions
for (Pδ). To derive optimality conditions we first transform the time interval to the reference
interval (0, 1) (cf. Proposition 4.2 in [92], Proposition 4.1 in [134]). Consider the set of
admissible scaling functions

Nad :=
{
ν ∈ L∞(0, 1) : ess inf

τ∈(0,1)
ν(τ) > 0

}
= {ν ∈ L∞(0, 1) : ν ≥ 0 and 1/ν ∈ L∞(0, 1)}

and define a family of transformations

Tν : [0, 1]→ R+, Tν(t) =
∫ t

0
ν(τ) dτ .

For ν ∈ Nad and any mapping u : (0, 1)→ V we define the transformed elliptic operator

(νAu)(t) = ν(t)Au(t),

and, by a change of variables, we obtain the transformed state equation

∂tu+ νAu = νBq, u(0) = u0.

By standard results, for each right-hand side in L2((0, 1);V ∗) the transformed equation pos-
sesses a unique solution u ∈ W (0, 1) (see, e.g., [46, Theorem 2, Chapter XVIII, §3]). We
introduce the control-to-state mapping as

S : Nad ×Qad(0, 1) ⊂ L∞(0, 1)×Q(0, 1)→W (0, 1), S(ν, q) = u.

The transformed optimal control problem is then given by

inf
ν∈Nad, q∈Qad(0,1)

j(ν, q) subject to i1S(ν, q) ∈ U , (P̂ )

where the objective function is defined as

j(ν, q) :=
∫ 1

0
ν(t) (1 + L(q(t))) dt.

Since no ambiguity arises, we do not rename variables. The definition of the set of admissible
controls Qad transfers to the transformed problem, because the control constraints do not
depend on time. In fact, both problems (P̂ ) and (P ) are equivalent in the following sense.
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2. First order optimality conditions

Proposition 2.19. If (ν, q) is admissible for (P̂ ) and u = S(ν, q), then

(Tν(1), q ◦ Tν , u ◦ Tν)

is admissible for (P ) and j(ν, q ◦ Tν) = j(T, q). If (T, q, u) is admissible for (P ), then for
every ν ∈ Nad such that Tν(1) = T ,

(ν, q ◦ T−1
ν )

is admissible for (P̂ ) and j(ν, q ◦ T−1
ν ) = j(T, q).

Considering ν as an additional control variable, we obtain by standard arguments the follow-
ing differentiability result.

Proposition 2.20. The control-to-state mapping S is (infinitely often) continuously Fréchet-
differentiable. In particular, δu = S′(ν, q)(δν, δq) ∈W (0, 1) is the unique solution to

∂tδu+ νAδu = δν(Bq −Au) + νBδq, δu(0) = 0,

for (δν, δq) ∈ L∞(0, 1)×Q(0, 1). Moreover, δũ = S′′(ν, q)(δν1, δq1; δν2, δq2) ∈ W (0, 1) is the
unique solution to

∂tδũ+ νAδũ = δν1 (Bδq2 −Aδu2) + δν2 (Bδq1 −Aδu1) , δũ(0) = 0,

for (δνi, δqi) ∈ L∞(0, 1)× L2(I × ω) and δui = S′(ν, q)(δνi, δqi), i = 1, 2.

By the previous result and the continuity of the trace mapping i1, the parameter-to-obser-
vation mapping i1S(ν, q) : (ν, q) 7→ u(1) is differentiable. Furthermore, for any fixed µ ∈
H, the gradient of the functional (ν, q) 7→ (i1S(ν, q), µ), which is given by the expression
(i1S′(ν, q))∗ µ, can be characterized by an adjoint equation.

Proposition 2.21. Let ν ∈ Nad and q ∈ Q(0, 1). For any µ ∈ H we have

(
i1S
′(ν, q)

)∗
µ =

(
〈Bq −Au, z〉
νB∗z

)
∈ L1(0, 1)× L2((0, 1);Q),

where z ∈W (0, 1) is the unique solution to the adjoint equation

−∂tz + νA∗z = 0, z(1) = µ,

where A∗ denotes the adjoint operator of A.

Proof. Using Proposition 2.20, integration by parts, and the definition of z we observe

(µ, i1S′(ν, q)(δν, δq)) = (δu(1), µ) = (δu(1), z(1))− (δu(0), z(0)) =
∫ 1

0
〈∂tδu, z〉+

∫ 1

0
〈∂tz, δu〉

=
∫ 1

0
〈∂tδu, z〉+

∫ 1

0
〈νAδu, z〉 =

∫ 1

0
〈δν(Bq −Au) + νBδq, z〉,

where δu = S′(ν, q)(δν, δq). Furthermore, we identify the partial derivative with respect to
ν, i.e. δν 7→

∫ 1
0 δν〈Bq −Au, z〉, with the function 〈Bq −Au, z〉 ∈ L1(0, 1).
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2.3. Time-optimal control problem

The transformed perturbed problems (P̂δ) for δ ≥ 0 are defined analogously:

inf
ν∈Nad, q∈Qad(0,1)

j(ν, q) subject to i1S(ν, q) ∈ Uδ. (P̂δ)

The notion of strong stability for (P̂δ) and (Pδ) are obviously equivalent, since the value
function v is identical. We will derive optimality conditions by adding the terminal constraint
as a penalty term to the objective functional. Under a strong stability assumption the
resulting functional is exact.

Definition 2.22. Let δ ≥ 0 and (ν, q) be a local minimum of (Pδ). The functional

jη(·) = j(·) + η dUδ(i1S(·))

is called an exact penalty function for (Pδ) at (ν, q), if there is η ≥ 0 such that (ν, q) is a local
minimizer of jη.

Proposition 2.23. Let δ ≥ 0 and (ν̄, q̄) be a solution to (Pδ) and let (Pδ) be strongly stable
on the right with constant η0 > 0. Then, jη is an exact penalty function for (Pδ) at (ν̄, q̄) for
any η ≥ η0.

Proof. We give a proof of this well-known result for convenience of the reader: Let η ≥ η0
and (ν, q) be a local minimizer of jη in a suitable small neighborhood of (ν̄, q̄) (such that
dUδ(i1S(ν, q)) ≤ ε), and set δ′ = dUδ(i1S(ν, q)). Due to feasibility of (ν̄, q̄) for (Pδ) and strong
stability on the right, we obtain

jη(ν̄, q̄) = j(ν̄, q̄) ≤ inf(Pδ′) + η(δ′ − δ) ≤ j(ν, q) + η(δ′ − δ)
= j(ν, q) + η dUδ(i1S(ν, q)) = jη(ν, q),

where we have used optimality of (ν, q) for jη in the last step. Whence, (ν̄, q̄) is a local
minimizer for jη.

Remark 2.24. The constraint in (P̂ ) can be written as g(ν, q) = i1S(ν, q) ∈ Uδ and g is
differentiable. If a constraint qualification such as Robinson’s CQ holds,

0 ∈ int
{
g(ν̄, q̄) + g′(ν̄, q̄)(Nad − ν̄, Qad(0, 1)− q̄)− Uδ

}
⊂ H,

then jη is an exact penalty function for (Pδ); see, e.g., [21, Theorem 2.87, Proposition 3.111].
This presents an alternative approach to obtain qualified optimality conditions. We expect
that the sufficient conditions from Section 2.3.4 are related to Robinson’s CQ, but are unable
to prove this in the general setting.

2.3.3. Optimality conditions

We define for any µ0 ∈ R+ the Hamiltonian Hµ0 : Q× V × V → R by

Hµ0(q, u, z) = 〈Bq −Au, z〉+ µ0 [1 + L(q)] .

Based on strong stability, qualified optimality conditions can be derived.
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Theorem 2.25. Let δ ≥ 0 and (Pδ) be strongly stable on the right (with constant η > 0). If
(ν̄, q̄) is a solution of (Pδ) with ū = S(ν̄, q̄), then there exist µ̄ ∈ NUδ(ū(1)), µ̄ 6= 0, ‖µ̄‖ ≤ η,
and a corresponding adjoint state z̄ ∈W (0, 1) with

− ∂tz̄ + ν̄A∗z̄ = 0, z̄(1) = µ̄, (2.20)

such that

min
q∈Qad

H1(q, ū(t), z̄(t)) = H1(q̄(t), ū(t), z̄(t)) = 0, a.e. t ∈ (0, 1). (2.21)

The first equality in (2.21) can be equivalently expressed by

0 ∈ ∂L(q̄(t)) +B∗z̄(t) +NQad(q̄(t)), a.e. t ∈ (0, 1), (2.22)

where ∂L denotes the convex subdifferential of L.

Proof. The proof is based on the minimization of the exact penalty function. Using Proposi-
tion 2.23, (ν̄, q̄) also is a minimizer of the penalty function jη. Since ν̄ ∈ Nad, which is open,
we may restrict the minimization to some neighborhood and neglect the constraints on ν in
the following. We note that jη : L∞(0, 1) × Q(0, 1) → R is locally Lipschitz continuous and
derive the stationary conditions by Fermat’s rule; see [40, Proposition 10.36]. We obtain

0 ∈ ∂Cjη(ν̄, q̄) +NL∞(0,1)×Qad(0,1)(ν̄, q̄)
⊆ ∂Cj(ν̄, q̄) + η ∂C

[
dUδ(i1S(ν̄, q̄))

]
+ { 0 } ×NQad(0,1)(q̄),

(2.23)

where ∂C denotes the generalized subdifferential due to Clarke; see, e.g., [40, Chapter 10].
Using Proposition A.24 and [40, Theorem 10.8] we find

∂Cj(ν̄, q̄) ⊆ {1 + L(q̄)} × ν̄ ∂CL(q̄) = {1 + L(q̄)} × ν̄ ∂L(q̄),

because j is continuously differentiable with respect to ν and convex and Lipschitz continuous
with respect to q due to the corresponding assumptions on L. Concerning the second term,
we employ the chain rule [40, Theorem 10.19] and obtain

∂C [dUδ(i1S(ν̄, q̄))] ⊆ (i1S′(ν̄, q̄))∗ [∂CdUδ(i1S(ν̄, q̄))] . (2.24)

The gradient (i1S′(ν̄, q̄))∗ was computed in Proposition 2.21. Furthermore, the set ∂CdUδ(·)
can be identified with the ordinary convex subdifferential (see [40, Theorem 10.8]) and

∂CdUδ(v) = ∂dUδ(v) = {µ ∈ NUδ(v) : ‖µ‖ ≤ 1 } ,

for all v ∈ Uδ; see, e.g., [12, Proposition 18.22]. Therefore, from (2.23) and (2.24) we obtain
that there exists a µ̄ ∈ NUδ(ū(1)) with ‖µ̄‖ ≤ η, a ξ̄ ∈ ∂L(q̄), and a ζ̄ ∈ NQad(0,1)(q̄), such
that

0 =
(

1 + L(q̄) + 〈Bq̄ −Aū, z̄〉
ν̄(ξ̄ +B∗z̄ + ζ̄)

)
,

where z̄ solves the corresponding adjoint equation (2.20). The first component of this equation
is the second equality in (2.21). Pointwise inspection of the second component for t ∈ (0, 1)
and ν̄(t) > 0 implies (2.22). Now, we observe that (2.22) is the necessary and sufficient
optimality condition for q̄(t) to be the solution of a convex optimization problem, namely

q̄(t) = argmin
q∈Qad

[L(q) + 〈Bq, z̄(t)〉] = argmin
q∈Qad

H1(q, ū(t), z̄(t)).

Finally, assume that µ̄ = 0. This implies z̄ = 0 by unique solvability of the adjoint equation.
Using the Hamiltonian condition (2.21) we infer 1 + L(q̄) = 0 almost everywhere in (0, 1).
This contradicts L ≥ 0, and we conclude µ̄ 6= 0.
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Without strong stability, under a structural assumption on only the constraint set, the gen-
eralized form of the optimality conditions can be derived. To this end, we first introduce the
concept of finite co-dimension; see [104, Definition 4.1.5]. Let X be a Banach space. A subset
S of X is said to be of finite co-dimension in X, if there exists a s0 ∈ coS (the convex hull
of S) such that span {S − s0 } is a finite co-dimensional subspace of X and co {S − s0 } has
a nonempty interior in this subspace.

Note that if δ > 0, then Uδ has finite co-dimension in H, because of span {Uδ − u′ } = H and
the fact that co {Uδ − u′ } = U−u′+Bδ(0) has a non-empty interior for all u′ ∈ U . In contrast,
a point constraint U = {ud } is not of finite co-dimension, since span {U − ud } = { 0 } has
an infinite co-dimension.

Theorem 2.26. Assume that Uδ is of finite co-dimension (or δ > 0); see [104, Defini-
tion 4.1.5]. Let (ν̄, q̄) be a solution of (Pδ), ū = S(ν̄, q̄). Then there exist µ̄ ∈ NUδ(ū(1)),
µ̄ 6= 0, µ̄0 ∈ { 0, 1 } and a corresponding adjoint state z̄ ∈ W (0, 1) which fulfills (2.20), such
that

min
q∈Qad

Hµ̄0(q, ū(t), z̄(t)) = Hµ̄0(q̄(t), ū(t), z̄(t)) = 0, a.e. t ∈ (0, 1). (2.25)

Proof. We only give a short outline of the proof. It combines the one of [40, Theorem 10.47]
with the one of [134, Theorem 4.1]. As before, since Nad is open, we may restrict the
minimization to some neighborhood and neglect the constraints on ν in the following. Define
the function

φε(ν, q) =
√

max { 0, j(ν, q)− j(ν̄, q̄) + ε }2 + dU (i1S(ν, q))2.

Ekeland’s variational principle with λ =
√
ε yields a sequence νε ∈ Nad, qε ∈ Qad(0, 1) such

that (νε, qε)→ (ν̄, q̄) for ε→ 0 and the function

Φε(ν, q) = φε(ν, q) +
√
ε‖ν − νε‖+

√
ε‖q − qε‖

attains a strict (local) minimum at (νε, qε) over L∞(0, 1) × Qad(0, 1); see, e.g., [40, Theo-
rem 5.19]. The Lipschitz constant of Φε can be bounded independently of ε, if 0 < ε ≤ ε0 for
some fixed ε0 > 0. Employing [40, Theorem 10.31] there exists a constant K solely depending
on the Lipschitz constant of Φε, such that the mapping

(ν, q) 7→ Φε(ν, q) +KdQad(0,1)(q)

has a local minimum at (νε, qε). Nonsmooth calculus as in Theorem 2.25 yields

γε ∈ ∂Cφ
ε(νε, qε) + { 0 } ×

(
NQad(0,1)(qε) ∩ BK(0)

)
(2.26)

with γε → 0 in L∞(0, 1)∗ ×Q(0, 1) as ε→ 0.

Now, we define λε ∈ R2
+ by

λε,1 = max { 0, j(νε, qε)− j(ν̄, q̄) + ε } /φε(νε, qε),
λε,2 = dUδ(i1S(νε, qε))/φε(νε, qε).

Clearly, it holds λ2
ε,1 + λ2

ε,2 = 1. By computing the subdifferential ∂Cφ
ε (combining the

arguments of [40, Theorem 10.47] and Theorem 2.25), we obtain sequences of µε ∈ NUδ(uε(1))
with ‖µε‖ ≤ 1, ξε ∈ ∂L(qε), ζε ∈ NQad(0,1)(qε), and ‖ζε‖ ≤ K such that

γε =
(
λε,1 [1 + L(qε)] + λε,2〈Bqε −Auε, zε〉

νε(λε,1ξε + λε,2B
∗zε + ζε)

)
, (2.27)
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2. First order optimality conditions

where zε solves the corresponding adjoint equation (2.20) with terminal value µε. Now, we go
to the limit. Due to boundedness of the sequence (µ, ξ, ζ, λ)ε ∈ H×Q(0, 1)×Q(0, 1)×R2, we
can go to a weak limit on a subsequence (µ, ξ, ζ, λ)n ⇀ (µ̂, ξ̂, ζ̂, λ̂) for n→∞. Moreover, by
combining the general result from [40, Proposition 10.10] with the continuity of the solution
mapping S we can go to the limit in the inclusion (2.26) and obtain µ̂ ∈ NUδ(ū(1)) with
‖µ̂‖ ≤ 1, ξ̂ ∈ ∂L(q̄), ζ̂ ∈ NQad(0,1)(q̄), and λ̂ ∈ R2

+, λ̂2
1 + λ̂2

2 = 1.

Now, we distinguish two cases: In the case λ̂1 > 0, we set (µ̄, ξ̄, ζ̄) = (λ̂2µ̂, ξ̂, ζ̂)/λ̂1, and we
can derive the conditions for µ0 = 1 as in Theorem 2.25. As before, the nontriviality of µ̄
follows. Note that the case λ̂2 = 0 cannot occur, since from the first equation of (2.27) we
would deduce 0 = 1 + L(q̄).

In case λ̂1 = 0, it follows λ̂2 = 1, and we obtain the desired set of conditions with (µ̄, ξ̄, ζ̄) =
(µ̂, ξ̂, ζ̂). It remains to verify µ̄ 6= 0. Since λ̂n,2 → 1, we obtain un(1) = i1S(νn, qn) /∈ Uδ and
µn = (un(1) − PUδ(un(1)))/dUδ(un(1)), i.e., ‖µn‖ = 1, for n sufficiently large. Moreover, as
µn ∈ NUδ(un(1)) we find for all u′ ∈ Uδ that

(µn, u′ − ū(1)) ≤ (µn, un(1)− ū(1)) ≤ ‖µn‖‖ū(1)− un(1)‖ → 0.

Finally, we use the fact that Uδ has finite co-dimension with [104, Lemma 4.3.6] to conclude
that 0 6= µ̄ = µ̂ = weak limn→∞ µn.

Remark 2.27. As an example, consider the choice L(q) = (α/2)‖q‖2Q for α ≥ 0. In the
qualified case, condition (2.22) reduces to the variational inequality

(αq̄(t) +B∗z̄(t), q − q̄(t)) ≥ 0 for all q ∈ Qad,

which implies the projection formula q̄(t) = PQad (−(1/α)B∗z̄(t)) for almost all t ∈ (0, 1).
In contrast, in the unqualified case µ̄0 = 0 the condition (2.25) is independent of the cost
parameter α, and we obtain that

(B∗z̄(t), q − q̄(t)) ≥ 0 for all q ∈ Qad.

In this case, an unqualified stationary point for any α > 0 corresponds to a stationary point
for the pure time-optimal problem with α = 0. Moreover, if B∗z̄(t) 6= 0 for almost every
t ∈ (0, 1), the control always assumes an extreme value in Qad, i.e., it is bang-bang.

2.3.4. The Hamiltonian condition and qualified optimality conditions

In this subsection we investigate connections between the strengthened Hamiltonian condition
and qualified optimality conditions. We fist give the main result, which is a direct consequence
of the previous results.

Corollary 2.28. Let PU be stable in V and suppose that the Hamiltonian condition (2.19)
holds for some constant h0 > 0. Then, the optimality conditions (2.1)–(2.3) hold for any
optimal solution of (P ) in the qualified form (with µ̄0 = 1), and additionally ‖µ̄‖ ≤ c/h0.

Proof. This is a consequence of Theorem 2.18, Theorem 2.25, and the equivalence of the
transformed problem (P̂ ) and the original problem (P ).
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2.3. Time-optimal control problem

The Hamiltonian condition (2.19) is required to hold for all u ∈ U ∩ V . Certainly, only
elements of ∂U ∩ V are relevant; the condition is trivially fulfilled otherwise. However, if
the terminal value ū(T ) ∈ ∂U ∩ V of the optimal solutions to (Pδ) is assumed to be known,
it appears desirable to weaken (2.19) to a local condition. In fact, at least in case of finite
co-dimension of U and regular normal cones, it is sufficient to require the strengthened
Hamiltonian condition only at the optimal terminal value ū(T ) to obtain qualified optimality
conditions. We give an auxiliary lemma before the result.

Lemma 2.29. The lower Hamiltonian h : V × V → R is continuous.

Proof. We introduce the support function of Qad as hQad(·) = supq∈Qad(q, ·)Q. Then it holds

h(u, ζ) = −hQad(−B
∗ζ)− 〈Au, ζ〉.

Employing the facts that support functions are convex and that hQad is finite (hQad(ζ) ≤
CQad‖B‖L(Q,V ∗)‖ζ‖V for all ζ ∈ Q), we infer that h : V × V → R is continuous, since convex
functions are locally Lipschitz continuous; see, e.g., [40, Theorem 2.34].

Proposition 2.30. Suppose that U has finite co-dimension and an optimal solution (q̄, T, ū)
of (P ) is given with NU (ū(T )) ⊂ V and

h(ū(T ), ζ) ≤ −h0‖ζ‖ for all ζ ∈ NU (ū(T )), (2.28)

for some constant h0 > 0. Then, the optimality conditions (2.20)–(2.2) hold in the qualified
form (with µ̄0 = 1), and additionally ‖µ̄‖ ≤ c/h0.

Proof. We argue by contradiction. Let the conditions of Theorem 2.26 hold with µ̄0 = 0.
Then, ū ∈ C((0, T ];V ), z̄ ∈ C([0, T ];V ) according to Proposition A.18, and

h(ū(t), z̄(t)) = min
q∈Qad

〈Bq −Aū(t), z̄(t)〉 = 〈Bq̄(t)−Aū(t), z̄(t)〉 = 0

for almost all t ∈ (0, T ). However, since t 7→ h(ū(t), z̄(t)) is continuous on (0, T ] due
to Lemma 2.29, this leads to a contradiction, because h(ū(T ), z̄(T )) = h(ū(T ), µ̄) ≤ −h0‖µ̄‖ <
0. Thus, µ̄0 = 1, and inspection of the Hamiltonian optimality condition yields

−h0‖µ̄‖ ≥ h(ū(T ), z̄(T )) = min
q∈Qad

[H1(q, ū(T ), z̄(T ))− (1 + L(q))]

≥ min
q∈Qad

H1(q, ū(T ), z̄(T )) + min
q∈Qad

−(1 + L(q)) = −(1 + max
q∈Qad

L(q)) = −L∞,

which implies the estimate for µ̄.

Clearly, (2.28) is a weaker assumption than (2.19) (given the requirements on the terminal
set U and the normal cone). Additionally, if NU (ū(T )) contains just one direction, condi-
tion (2.28) is already equivalent to the qualified optimality conditions.

Proposition 2.31. Let the qualified optimality conditions (as in Corollary 2.28) hold and
assume that the normal cone NU (ū(T )) ⊂ V has dimension one. Then, the condition (2.28)
holds with h0 = ‖µ̄‖−1.
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2. First order optimality conditions

Proof. First, we note that NU (ū(T )) = {λµ̄ : λ ≥ 0 }, since 0 6= µ̄ ∈ NU (ū(T )), and thus also
µ̄ ∈ V . Condition (2.21) implies

0 = min
q∈Qad

H1(q, ū(t), z̄(t)) ≥ min
q∈Qad

〈Bq −Aū(t), z̄(t)〉+ 1 + min
q∈Qad

L(q)

and, since L(q) ≥ 0, we obtain

h(ū(t), z̄(t)) = min
q∈Qad

〈Bq −Aū(t), z̄(t)〉 ≤ −1, a.e. t ∈ [0, T ]. (2.29)

Recall that the lower Hamiltonian h : V × V → R is continuous; see Lemma 2.29. Moreover,
according to Proposition A.18 with z̄(T ) = µ̄ ∈ V we find that u ∈ C((0, T ];V ) and z ∈
C([0, T ];V ). Thus, we can evaluate the expression (2.29) at t = T and arrive at

h(ū(T ), µ̄) = min
q∈Qad

〈Bq −Aū(T ), µ̄〉 ≤ −1.

Let ζ ∈ NU (ū(T )) as in (2.28). Multiplying both sides by λ = ‖µ̄‖−1‖ζ‖ ≥ 0 in the inequality
above and using the positive homogeneity of the terms on the left and right finishes the
proof.

2.3.5. Further perturbation results

Up to this point, we have studied the sensitivity of the objective functional with respect
to perturbations of the terminal constraint. In this subsection, as another consequence of
the theory of Section 2.2, we study perturbations with respect to the initial state u0 (cf.
[26, 62]) and the operator A (cf. [149, 162]) of problem (P ). In particular, we restrict
attention to the classical case L ≡ 0. In view of the fact that the choice L ≡ 0 results in
j(T, q) = T , an estimate for the optimal value function corresponds to a perturbation estimate
for the optimal time T , which is of independent interest. In the following, we introduce a
perturbation parameter ε > 0 (to be made concrete later) and derive estimates for T − Tε,
where T = T0 and Tε denote the optimal times for the original and the perturbed problem,
respectively. Moreover, c > 0 is a generic constant that may have different values at different
appearances.

Perturbations of the initial state u0

For T > 0, we use u[q, u0] to denote the solution to the state equation with control q ∈ Q(0, T )
and initial state u0 ∈ H. Consider the time-optimal control problems with perturbed initial
values uε0 ∈ H defined as

inf
T>0, q∈Qad(0,T )

T subject to u[q, uε0](T ) ∈ U . (2.30)

We suppose that the initial values converge to u0 at a rate ε, i.e. there is c > 0 such that

‖uε0 − u0‖ ≤ cε, ε > 0. (2.31)

Using similar arguments as in the proof of Theorem 2.18 we obtain the following perturbation
result.
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2.3. Time-optimal control problem

Theorem 2.32. Suppose that the projection PU is stable in V , the strengthened Hamiltonian
condition (2.11) holds, and the perturbed initial condition fufills (2.31). Then, there exists an
ε0 > 0 such that problem (2.30) has solutions for ε ≤ ε0. Moreover, it holds

|T − Tε| ≤ cε, 0 < ε ≤ ε0,

where T is the optimal time to (P ) and Tε is the optimal time to (2.30).

Proof. Let (T, q̄) be an optimal solution of (P ). Since the semigroup e−tA is strongly contin-
uous, for all T ′ > 0 there is c > 0 such that ‖e−tA‖L(H) ≤ c for all t ∈ [0, T ′]. Thus, setting
ŭT = u[q̄, uε0](T ) we find c > 0 such that

dU (ŭT ) ≤ ‖u[q̄, uε0](T )− u[q, u0](T )‖ = ‖e−TA(uε0 − u0)‖ ≤ cε,

because u[q̄, u0](T ) ∈ U . For ε > 0 sufficiently small, we may apply Lemma 2.10 to obtain
a control q̆ : [0,∞) → Qad such that the corresponding trajectory with initial value ŭT =
u[q̄, uε0](T ) satisfies

dU (u[q̆, ŭT ](t)) ≤ max { 0, dU (uT ) + (dU (ŭT )ω0 − h0) t } ≤ max { 0, cε+ (cεω0 − h0) t }

for all t ≥ 0. Setting δT = cε/(h0 − cεω0) and

q′(t) =

q̄(t) if t ≤ T ,
q̆(t− T ) if t > T ,

the pair (T + δT, q′) is feasible for (2.30). This implies that there exists an optimal solution
(Tε, q̄ε) of (2.30). Furthermore, by optimality of Tε, we obtain

Tε ≤ T + δT = T + cε

h0 − cεω0
≤ T + cε.

In particular, this implies that Tε is uniformly bounded. Hence, we can find an uniform
estimate for ‖e−·A‖L(H) on [0, Tε] ⊆ [0, T +cε] and the same arguments as before (exchanging
the roles of (T, q̄) and (Tε, q̄ε)) yield the estimate T ≤ Tε + cε.

Note that the previous result is essentially a generalization of [26, Theorem 4.1], where a
sufficient condition for the Hamiltonian condition in a specific setting is assumed to hold.

Perturbation of the operator A

Next, we consider perturbations of the operator A. Let Aε : V → V ∗ be a family of linear
operators such that for each ε > 0 the general assumptions from Section 2.1 are fulfilled and
A0 = A. Moreover, let uε[q] denote the solution to the associated perturbed state equation
for q ∈ Q(0, T ) and fixed u0 ∈ H. We define the corresponding perturbed optimization
problem as

inf
T>0, q∈Qad(0,T )

T subject to uε[q](T ) ∈ U . (2.32)

Suppose that for every T ′ > 0 there exists c > 0 such that

‖uε[q](t)− u[q](t)‖ ≤ cε, 0 ≤ t ≤ T ′, q ∈ Qad(0, T ′), ε > 0. (2.33)

27



2. First order optimality conditions

Moreover, suppose that PU is stable in V and the strengthened Hamiltonian condition (2.11)
holds uniformly with respect to ε, i.e. there exists h0 > 0 such that

hε(u, ζ) := min
q∈Qad

〈Bq −Aεu, ζ〉 ≤ −h0‖ζ‖, where u = PU (v), ζ = v − u, (2.34)

for all v ∈ V and all ε > 0 sufficiently small. These assumptions lead to the following error
estimate.

Proposition 2.33. Let (2.33) and (2.34) hold. Then, there exists a ε0 > 0 such that prob-
lem (2.32) has solutions for ε ≤ ε0. Moreover, it holds

|T − Tε| ≤ cε, 0 < ε ≤ ε0,

where T is the optimal time to (P ) and Tε is the optimal time to (2.32).

Proof. This result is shown along the lines of the proof of Theorem 2.32, where we use the
supposition (2.33) instead of (2.31) as well as (2.34).

We conclude with some comments on the assumptions of the preceding result. In particular,
we show that they are always fulfilled for bounded perturbations of the operator. Concretely,
assume that the perturbation is of the form:

Aε = A+ δAε, where ‖δAε‖L(H) ≤ cε. (2.35)

We obtain the following result.

Theorem 2.34. Let U be bounded in H. Suppose that PU is stable in V , the strengthened
Hamiltonian condition (2.11) holds, and the perturbed operator is of the form (2.35). Then,
the result of Proposition 2.33 holds true.

Proof. We verify the conditions of Proposition 2.33: Concerning (2.34), we obtain for all
u ∈ U ∩ V and ζ ∈ NU (u) ∩ V that

hε(u, ζ) = min
q∈Qad

〈Bq −Aεu, ζ〉 = min
q∈Qad

〈Bq −Au, ζ〉 − (δAεu, ζ) ≤ −h0‖ζ‖+ cε‖u‖‖ζ‖.

Thus, for ε > 0 sufficiently small, condition (2.34) holds uniformly in ε.

Concerning (2.33), consider u0 = u[q] and uε = uε[q], and fix some arbitrary T ′ > 0. By
straightforward calculations we verify that, for ε small enough, Aε still satisfies the Gårding
inequality (2.7) with slightly modified constants. Thus, by standard energy estimates we
have the estimate ‖uε‖L2((0,T ′);V ) ≤ c(‖u0‖ + ‖q‖L2((0,T ′);Q)) with a constant c independent
of ε, u0, and q, again for ε sufficiently small; see, e.g., [46, Chapter XVIII, §3]. Clearly, the
perturbation δuε = u0 − uε solves

∂tδu
ε +Aδuε = δAε u

ε, δuε(0) = 0.

Hence, we obtain

‖δuε(t)‖ ≤ c‖δAεuε‖L2((0,T ′);V ∗) ≤ cε‖u
ε‖L2((0,T ′);V )

≤ cε(‖u0‖+ ‖q‖L∞((0,T ′);Q)), t ∈ [0, T ′],

with a constant c independent of u0 and q. This shows (2.33).
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2.4. Applications

In Theorem 2.34, we have focused on the fundamental case of a bounded perturbation of
the operator. Note that this includes the perturbation of a reaction diffusion equation in
the lowest order term. In particular, this fully covers the setting considered in [162]. The
uniform Hamiltonian condition (2.34) is automatically fulfilled there, since the perturbed
operators are uniformly coercive (ω0 = 0), and the target set is a L2-ball around zero; cf.
Proposition 2.37.

Different scenarios are also of interest; see, e.g., [149]. Let us briefly comment on possi-
ble generalizations of Theorem 2.34. Clearly, for the verification of (2.33) it suffices that
‖δAε‖L(V,V ∗) ≤ cε (which is still more restrictive than [149], but allows for perturbations
even in the main part of the operator). Additionally, we have to verify the uniform Hamil-
tonian condition (2.34). Even though it cannot simply be derived from the corresponding
condition for ε = 0, as in the proof of Theorem 2.34, it can be done directly in concrete
scenarios for the terminal set U . For instance, if the operators are uniformly coercive for
small ε, the terminal set is the H ball around zero, and 0 ∈ Qad, then (2.34) holds uniformly
for any perturbation; cf. Proposition 2.37.

2.4. Applications

In this section we derive criteria for strong stability for different terminal sets U . It is
organized as follows: First, we discuss the illustrative example U = {ud } and observe that
this leads to rather restrictive conditions. Significantly weaker conditions can be derived for
the case of a H-ball around ud if the operator A is coercive. In the general case, which
includes unstable systems, we discuss a finite approximate controllability constraint that
stabilizes the system around the zero point. The resulting conditions turn out to require
at least as many controls as there are unstable modes. Finally, we only require a standard
stabilizability assumption to hold, and show that there always exist target sets around zero
such that the resulting optimization problem is strongly stable.

2.4.1. Point target and pointwise constraint

We first consider the example of steering the system in minimal time into a single point ud,
which has been extensively studied in the literature; see, e.g., [10, 54]. Defining U to be the
singleton U = {ud } with ud ∈ V we obtain the following result.

Proposition 2.35. Suppose that U = {ud } with Aud ∈ ran(B) and for some h0 > 0 it holds

Aud + Bh0(0) ⊂ BQad. (2.36)

Then (P ) is strongly stable on the right for all δ ≥ 0.

Proof. Clearly, PU (u) = ud. Due to Proposition 2.8 it holds

NU (ud) = {λ(u′ − ud) : λ ≥ 0, u′ ∈ V } = V .

We now take u = ud and ζ ∈ V . Then

h(u, ζ) = min
q∈Qad

〈Bq −Aud, ζ〉 ≤ min
v∈Aud+Bh0 (0)

〈v −Aud, ζ〉 = min
v∈Bh0 (0)

〈v, ζ〉 = −h0‖ζ‖.

Now, Theorem 2.18 yields the assertion.
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2. First order optimality conditions

We point out that (2.36) is essentially the condition which is used in [10, Theorem 5.3.1] to
guarantee existence of (qualified) multipliers in a similar setting; cf. also [26, Theorem 4.1]
for Lipschitz continuity of the minimal time function with respect to the initial value. From
an application point of view, it is rather restrictive. It is essentially only fulfilled in settings
where Q = H, B is the identity, and Qad contains a sufficiently large H-ball. For settings
with pointwise bounded control action (BQad ⊂ L∞(Ω)) for a domain Ω ⊂ Rd, controls
restricted to some ω ⊂ Ω, or finite dimensional controls, it is not fulfilled. In this regard we
also mention [160] for the pure time-optimal control (i.e. L ≡ 0) of the heat equation into zero
with pointwise bounded controls active only on a subset of Ω. Therein, the authors obtain
Lagrange multipliers in a larger space than L2(Ω) (containing distributions) using essentially
the exact null controllability of the heat equation.

Next, we turn to point-wise terminal constraints that are of independent interest in applica-
tions; cf. [97]. As an example, let Ω ⊂ Rd be a bounded domain and assume H = L2(Ω).
We consider

U = {u ∈ H : |u− ud| ≤ umax a.e. in Ω } , (2.37)

where ud ∈ V and umax ∈ R, umax > 0. For simplicity, we consider only an illustrative special
case for A.

Proposition 2.36. Let A = −∇κ · ∇ for a coefficient function κ ∈ L∞(Ω;Rd×d) that is
uniformly elliptic. Suppose that U is defined as in (2.37) with Aud ∈ ran(B) and (2.36) holds
for some h0 > 0. Then (P ) is strongly stable on the right for all δ ≥ 0.

Proof. We will verify the supposition of Theorem 2.18. Clearly, it holds

PU (v) = v − (v − ud − umax)+ + (v + ud − umax)−.

Due to Proposition 2.8 we infer

NU (u) = { (u′ − ud − umax)+ − (u′ − ud − umax)− : u′ ∈ V , u = PU (u′) }.

Take u′ ∈ V with PU (u′) = u and set ζ = (u′ − ud − umax)+ − (u′ − ud − umax)−. Then

h(u, ζ) = min
q∈Qad

〈Bq −Au, ζ〉 ≤ min
v∈Aud+Bh0 (0)

〈v, ζ〉 −
∫
Ω

[
κ∇PU (u′) · ∇ζ

]
≤ −h0‖ζ‖+ 〈Aud, ζ〉 −

∫
{x∈Ω : ζ 6=0 }

[κ∇ud · ∇ζ] = −h0‖ζ‖.

Finally, Theorem 2.18 yields the assertion.

Again we remark that (2.36) is rather restrictive. However, note that for pointwise con-
straints one typically searches for Lagrange multipliers in a space of regular Borel measures
(cf., e.g., [134]), whereas under assumption (2.36), we obtain multipliers in H = L2(Ω).
A corresponding extension of the above theory to include multipliers in spaces of measures
(under potentially weaker conditions) is outside of the scope of this chapter.

However, it seems that in applications it is often sufficient to steer the system close to a
desired state ud. In the subsequent subsections we will derive significantly weaker conditions
guaranteeing strong stability for this type of terminal constraint.
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2.4. Applications

2.4.2. H-norm constraint

Let ud ∈ V and δ0 > 0 be given and consider the set

U = {u ∈ H : ‖u− ud‖ ≤ δ0 } .

We emphasize that ud ∈ V (instead of just ud ∈ H, ud /∈ V ) is required for the minimizing
projection PU to be stable in V , which is necessary for weak invariance; see Lemma 2.6.

If the operator A is coercive (i.e. ω0 = 0) we can easily verify the strengthened Hamiltonian
condition assuming only the existence of one control q̆ ∈ Qad such that Bq̆ is sufficiently close
to Aud in V ∗. This condition can be interpreted as the requirement that ud lies sufficiently
close to an asymptotically stable state of the system with fixed control q̆. Note that this
always holds for sufficiently small ud ∈ V and 0 ∈ Qad.

Proposition 2.37. Let (2.7) hold with ω0 = 0. If there exists q̆ ∈ Qad such that ‖Bq̆ −
Aud‖V ∗ < α0δ0, then (P ) is strongly stable on the right for all δ ≥ 0.

Proof. Let u ∈ U ∩ V . If ‖u − ud‖ < δ0, we have NU (u) = { 0 }, and nothing to show.
Therefore, let ‖u− ud‖ = δ0. Due to [40, Corollary 10.44] it holds

NU (u) = { τ(u− ud) : τ ≥ 0 }.

Without restriction, we can therefore consider ζ = u− ud. We calculate

h(u, ζ) = min
q∈Qad

〈Bq −Au, ζ〉 = 〈Aud −Au, u− ud〉V ∗,V + min
q∈Qad

〈Bq −Aud, ζ〉

≤ −α0‖u− ud‖2V + 〈Bq̆ −Aud, ζ〉
≤ −α0‖u− ud‖‖u− ud‖V + ‖Bq̆ −Aud‖V ∗‖ζ‖V
= (−α0δ0 + ‖Bq̆ −Aud‖V ∗) ‖ζ‖V .

Due to the supposition there is h0 > 0 such that h(u, ζ) ≤ −h0‖ζ‖V ≤ −h0‖ζ‖ and we can
apply Theorem 2.18 to guarantee strong stability on the right.

However, in case ω0 > 0, the control has to counteract unstable modes of A. We will discuss
this situation in the following example.

2.4.3. Finite-approximate controllability constraint

Motivated by the concept of finite-approximate controllability (see, e.g., [167]), we consider
the constraint

U = {u ∈ H : ‖u‖ ≤ δ0 and Fu = 0 } . (2.38)

Concretely, let { f1, . . . , fM } ⊂ V be pairwise orthonormal in H and set

Fu =
M∑
i=1

(fi, u)fi, u ∈ H.

In this subsection, we will investigate weak invariance in the particular case that ranF :=
span { f1, . . . , fM } is an invariant subspace of A∗. Concretely, we require that

A∗fi ⊂ ranF, i = 1, . . . ,M. (2.39)
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2. First order optimality conditions

A particularly interesting example is to choose the functions fi as a basis of the unstable
subspace of A∗ (the real span of all eigenvalues with negative real part). A target set of the
form U = kerF is then motivated by the desire to steer the system into a stable subspace;
cf. [58]. From an application point of view, it might be desirable not just to steer the system
into a stable subspace but also into a sufficiently small stable state. In this case, the terminal
set is given by (2.38).

First, for the sake of clarity, we will investigate (2.38) with δ0 = ∞, i.e., we will consider
U = ker(F ). The minimizing projection onto ker(F ) is given by Pker(F ) = Id−F . By virtue
of Proposition 2.8 for u ∈ U we have

NU (u) = {Fu′ : u′ ∈ H, u = u′ − Fu′ } .

Proposition 2.38. If 0 ∈ Qad and (2.39) holds, then U = ker(F ) is weakly invariant under
(A,BQad). Moreover, if there is h0 > 0 such that for all u′ ∈ V there is q̆ ∈ Qad such that

〈q̆, B∗Fu′〉 ≤ −h0‖Fu′‖, (2.40)

then (P ) with U = ker(F ) is strongly stable on the right for all δ ≥ 0.

Condition (2.40) implies that ker(B∗) ∩ ran(F ) = { 0 }. In particular, we require at least
as many controls as dim ran(F ) = M . Hence, this condition is in general stronger than
approximate controllability (or stabilizability), where the necessary number of controls is
given by the largest geometric multiplicity of the eigenvalues (resp. the unstable eigenvalues);
cf. [9, Section 3.4]. We can also give examples where (2.40) holds: For instance, if the control
acts in an arbitrary open subset ω ⊂ Ω, then (2.40) is satisfied (under certain smoothness
assumptions on the coefficients of A and the domain), since the eigenfunctions of A∗ restricted
to ω are linearly independent; see [58, Theorem 4.1].

Proof of Proposition 2.38. Let u′ ∈ V such that u = u′ − Fu′ and set ζ = Fu′. Then

h(u, ζ) = min
q∈Qad

〈Bq −Au, ζ〉 ≤ −〈u′ − Fu′, A∗Fu′〉 = 0,

since A∗Fu′ ∈ ran(F ). Theorem 2.9 yields the first assertion. Moreover, the strengthened
Hamiltonian condition is equivalent to (2.40) due to the calculation above proving the second
assertion.

Next, we turn to the general case of (2.38) with δ0 <∞.

Proposition 2.39. Assume 0 ∈ Qad and let (2.39) and (2.40) hold. Moreover, suppose that
{ f1, . . . , fM } is chosen such that for all ϕ ∈ ker(F ) it holds 〈Aϕ,ϕ〉 ≥ ω1‖ϕ‖2 with ω1 > 0.
Then (P ) with U = Bδ0(0) ∩ ker(F ) is strongly stable on the right for all δ ≥ 0.

Proof. First, we will show the following formula for the minimizing projection PU :

PU (u) = min { 1, δ0/‖u− Fu‖ } (u− Fu) =: γ(u) (u− Fu).

Let u ∈ H. If ‖u− Fu‖ ≤ δ0, then for all u′ ∈ U we calculate

(u− PU (u), u′ − PU (u)) = (Fu, u′ − u+ Fu) = (u, Fu′)− (Fu, u− Fu) = 0.
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In the other case ‖u− Fu‖ > δ0 set γ = γ(u) and we obtain for all v ∈ U that

(u− PU (u), v − PU (u)) = (1− γ)(u, v − γ(u− Fu)) + γ(Fu, v)− γ2(Fu, u− Fu)
= (1− γ)(u− Fu, v)− (1− γ)γ‖u− Fu‖2

≤ (1− γ)‖u− Fu‖‖v‖ − (1− γ)δ0‖u− Fu‖ ≤ 0,

where we have used again that (Fu, v) = (u, Fv) = 0 and (Fu, u − Fu) = 0 in the second
step, and ‖v‖ ≤ δ0 in the last step. By virtue of Proposition 2.8 for u ∈ U we infer that

NU (u) = { (1− γ(u′))u′ + γ(u′)Fu′ : u′ ∈ H, u = PU (u′) }
= { (1− γ(u′))(u′ − Fu′) + Fu′ : u′ ∈ H, u = PU (u′) } .

Consider the single terms of the Hamiltonian for u′ ∈ V and set γ = γ(u′). We consider the
case γ < 1, only; the other case is analogous to Proposition 2.38. Then for any q ∈ Q

〈Bq, u′ − PU (u′)〉 = (1− γ)〈Bq, u′ − Fu′〉+ 〈Bq, Fu′〉

and, since 〈A(u′ − Fu′), Fu′〉 = 0, we find

−〈APU (u′), u′ − PU (u′)〉 = −γ(1− γ)〈A(u′ − Fu′), u′ − Fu′〉 − γ〈A(u′ − Fu′), Fu′〉
= −γ(1− γ)〈A(u′ − Fu′), u′ − Fu′〉.

Due to the supposition 〈Aϕ,ϕ〉 ≥ ω1‖ϕ‖2 for all ϕ ∈ ker(F ) we infer

−〈APU (u′), u′ − PU (u′)〉 ≤ −γ(1− γ)ω1‖u′ − Fu′‖2 = −(1− γ)ω1δ0‖u′ − Fu′‖

from the calculation above. Combining the previous estimates, we obtain

〈Bq −APU (u′), u′ − PU (u′)〉 ≤ (1− γ)
[
〈Bq, u′ − Fu′〉 − ω1δ0‖u′ − Fu′‖

]
+ 〈Bq, Fu′〉

≤ (1− γ)(‖B‖‖q‖ − ω1δ0)‖u′ − Fu′‖+ 〈Bq, Fu′〉.

Assuming that 0 ∈ Qad, choosing q = λq̆, λ = min { 1, (ω1δ0)/(2‖B‖‖q̆‖) }, where q̆ is the
control to realize (2.40), we obtain the strengthened Hamiltonian condition (with a suitably
modified constant h0).

2.4.4. Stabilization with finite dimensional control

We have seen that the criteria for strong stability of systems with general A and U require
certain assumptions, which are somewhat restrictive. In this section, we will show that there
exist neighbourhoods U of zero such that the resulting problem is strongly stable, assuming
only stabilizability (controllability of the unstable modes).

Here, we suppose that the control is finite dimensional, Q = RNc . The set of admissible
controls contains a neighborhood of zero, e.g., Qad = { q ∈ RNc : q ∈ [−K,K]Nc } for some
fixedK > 0. We are interested to bring the system into a small neighborhood of the stationary
state zero. Note that we could more generally consider weakly invariant states ud, i.e. {ud }
is weakly invariant under (A,BQad). A short computation based on Theorem 2.9 reveals that
Aud ∈ BQad. However, this case follow directly from the case ud = 0 by an affine change of
variables, and we omit it for simplicity of notation.

To ensure that admissible controls for (P ) exist, we can employ the concept of stabilizability,
which is widely accepted in the control literature. Concretely, we assume in the following
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2. First order optimality conditions

that (−A,B) should be stabilizable, which can be verified with the Fattorini criterion; see [9]
and the references therein. This means that

A∗ζ = λζ, Reλ ≤ 0, B∗ζ = 0 =⇒ ζ = 0.
It is known that this implies the existence of a stabilizing feedback law, such that ‖u(t)‖ ≤
M0 exp(−γ0t)‖u0‖ for some γ0 > 0, which in turn guarantees existence for (P ) (given u0
sufficiently small or Qad sufficiently large). Additionally, we will show that it is possible to
choose some appropriate neighborhood U of zero, such that the criterion for strong stability
(and thus weak invariance) is guaranteed.

First, we consider the infinite horizon optimization problem

min
q∈L2((0,∞);RNc )

∫ ∞
0

[
‖u[q, u′](t)‖2 + ‖q(t)‖2RNc

]
dt, (2.41)

where u[q, u′] is the solution to the state equation on (0,∞) with control q ∈ L2((0,∞);RNc)
and initial condition u′ ∈ H. This defines a linear, bounded, self-adjoint and nonnegative
operator Π : H → H such that (Πu′, u′) is the minimal value of (2.41) and Π satisfies the
following algebraic Riccatti equation

− 〈A∗Πϕ,ψ〉 − 〈ΠAϕ,ψ〉+ (ϕ,ψ) = (B∗Πϕ,B∗Πψ)RNc , (2.42)
for all ϕ,ψ ∈ V ; see, e.g., [101, Theorem 2.2.1 (a2), (a4)]. Furthermore, Π maps H into
X1−θ0 , hence Π is compact on H; see [101, Theorem 2.2.1 (a3)].

Define the norm ‖·‖Π = (Π·, ·)1/2 induced by the operator Π. Let the terminal constraint
be given by

U = {u ∈ H : ‖u‖Π ≤ δ0 } . (2.43)
Thus, u ∈ U corresponds to a constraint on the optimal value function of (2.41) with initial
value u. Since Π is self-adjoint, according to [40, Corollary 10.44] for all u ∈ ∂U we have

NU (u) = {λΠu : λ ≥ 0 } ⊂ V .
Inserting the optimal feedback law q̆ = −B∗Πu we estimate

h(u, ζ) = h(u,Πu) = inf
q∈Qad

(q,B∗Πu)RNc −
1
2〈u, (A

∗Π +ΠA)u〉

≤ −(B∗Πu,B∗Πu)RNc −
1
2〈u, (A

∗Π +ΠA)u〉.

This is valid as long as q̆ = −B∗Πu ∈ Qad. Since
‖B∗Πu‖RNc ≤ ‖B

∗Π1/2‖L(H,RNc )‖u‖Π = ‖B∗Π1/2‖L(H,RNc )δ0,

this can be achieved by a sufficiently small choice of δ0. Now we use (2.42) to obtain

h(u,Πu) ≤ −1
2(B∗Πu,B∗Πu)RNc −

1
2‖u‖

2 ≤ 0− 1
2‖Π‖‖Π1/2‖

‖Πu‖‖u‖Π ≤ −h0‖Πu‖,

where h0 = δ0/(2‖Π‖3/2L(H)). Thus, strong stability of (P ) is guaranteed by Theorem 2.18,
assuming only stabilizability (approximate controllability of the unstable modes).

From a practical point of view, the choice of the target set (2.43) can be interpreted as fol-
lows: Since the norm ‖u‖Π corresponds to the optimal value of (2.41), we have in particular
the estimates ‖ŭ(t)‖L2((0,∞);H) ≤ ‖u‖Π and ‖q̆(t)‖L2((0,∞);RNc ) ≤ ‖u‖Π where ŭ(t) is the tra-
jectory starting at ŭ(0) = u with control given by the feedback law q̆(t) = −B∗Πŭ(t). Thus,
we aim to enter a neighboorhood of zero that contains only states which can be stabilized
at low cost. After the end of the optimization horizon T , the control can be chosen by the
optimal feedback law to keep the trajectory stable.
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3. Second order and sufficient optimality
conditions

Since (P̂ ) is a nonconvex optimization problem, first order optimality conditions are not suf-
ficient for optimality in general. We therefore discuss second order optimality conditions and
sufficient optimality conditions in the following. In particular, these results will be essential
for proving a priori discretization error estimates in Chapter 5. Generally, this chapter re-
lies on the first order optimality conditions of Chapter 2 and the problem formulation used
therein. However, here we in addition suppose that the terminal set U is given as a sublevel
set of some smooth function G. Moreover, we restrict to the choice

L(q) = α

2 ‖q‖
2
Q for α ≥ 0.

The problem setting will be introduced in detail in Section 3.1, where we also recap the first
order optimality condition for the specific problem. A concrete example of a convection-
diffusion equation subject to mixed boundary conditions for different control scenarios will
be discussed at the end of that section.

As the time-optimal control problems with α > 0 and α = 0 typically lead to different
solutions, we have to distinguish these two cases. This is also reflected in the main structure
of this chapter. In Section 3.2 we will provide second order necessary and sufficient optimality
conditions for the case α > 0. Employing a critical cone, this leads to a minimal gap between
necessity and sufficiency. Here we rely on the work of Casas and Tröltzsch on second order
optimality conditions; see, e.g., [30, 34, 35].

In general, it seems to be a difficult task to verify a second order condition for a given problem
both theoretically and numerically. However, for the problem under consideration, we show
that the second order condition on the (infinite dimensional) critical cone is equivalent to
a scalar condition where we have to solve one (infinite dimensional) linear system. This
condition gives rise to the verification of second order conditions on the discrete level, by
calculating the scalar quantity numerically; see Section 5.4. Furthermore, the scalar condition
can be interpreted in terms of the value function with respect to the time transformation ν.
More specifically, we show that the second order sufficient optimality condition holds if and
only if the second derivative of the value function is strictly positive. These results are already
contained in [17] in similar form, however most of them without detailed proofs.

Section 3.3 is devoted to the case α = 0, where we rely on an established structural assumption
on the adjoint state; cf. Remark 3.27 and the references given there. This assumption is
sufficient for optimality and leads to a growth condition in L1(I×ω). It is worth mentioning,
that due to the particular structure of the objective functional, we do not require additional
assumptions such as conditions on the second derivative of the Lagrange function. As a
first application, we study the stability of solutions to the regularized time-optimal control
problem. Under certain assumptions we show Lipschitz continuity of the optimal time and
the optimal control in L1(I × ω) with respect to the regularization parameter α.
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3. Second order and sufficient optimality conditions

3.1. Problem formulation

In addition to the general assumptions of Section 2.1, we suppose the following problem
setup throughout this chapter. Let (ω, %) be a measure space and set Q = L2(ω, %). This
notation allows for the unified treatment of different control situations. For example, in
case of a distributed control, we take ω ⊂ Ω equipped with the usual Lebesgue measure,
where Ω denotes the spatial domain of the parabolic equation. An example of a reaction-
diffusion equation with different control scenarios will be discussed in Section 3.1.2. Since
no ambiguity arises, we simply write L2(ω) instead of L2(ω, %) in the following. If we write
almost everywhere in ω, then this always refers to the respective measure. The space of
admissible controls is defined as

Qad :=
{
q ∈ L2(ω) : qa ≤ q ≤ qb a.e. in ω

}
⊂ L∞(ω)

for qa, qb ∈ L∞(ω) with ess infx∈ω(qb(x) − qa(x)) > 0. The set I × ω is equipped with the
completion of the corresponding product measure. Recall that Q(0, 1) := L2((0, 1);L2(ω))
and

Qad(0, 1) :=
{
q ∈ L2(I × ω) : q(t) ∈ Qad a.a. t ∈ (0, 1)

}
⊂ L∞(I × ω).

Concerning the regularization or cost term L, we suppose that

L(q) = α

2 ‖q‖
2
L2(ω)

for α ≥ 0. Moreover, in place of the general terminal set U , we assume that U is given as a
sublevel set of a continuously differentiable function G : H → R, precisely,

U = {u ∈ H : G(u) ≤ 0 } .

In this and the next chapters we work again with the state equation transformed to the
reference interval (0, 1) by means of a transformation ν. Here, we restrict to ν ∈ R+ for
the following reason: Recall that in the previous chapter we took ν ∈ L∞((0, 1)) such that
ess infτ∈(0,1) ν(τ) > 0. With this choice, the transformed and the untransformed problems
are equivalent with the relation T =

∫ 1
0 ν(τ) dτ . In particular, given T > 0 there is a

sequence νn ∈ L∞((0, 1)) such that T =
∫ 1
0 νn(τ) dτ , νn 6≡ T , and νn → ν := T in L∞((0, 1)).

Hence, the time transformation ν is not locally unique. However, typically second order
sufficient optimality conditions imply local uniqueness and this is also valid in our setting;
see Theorem 3.25. Therefore, we have to take ν ∈ R+ for the time transformation, otherwise
a local solution cannot be locally unique. The time-optimal control problem reads as

inf
ν∈R+

q∈Qad(0,1)

j(ν, q) subject to g(ν, q) ≤ 0,

where the objective function is given by

j(ν, q) = ν

(
1 +

∫ 1

0

α

2 ‖q‖
2
L2(ω)

)
,

and the reduced terminal constraint is defined as

g(ν, q) := G(i1S(ν, q)), (ν, q) ∈ R+ ×Qad(0, 1).

Note that due to continuity of u : [0, 1] → H, the optimal solution must fulfill the terminal
constraint with equality (otherwise, a control with a shorter time is still admissible, while
having a smaller objective value). Hence, we can equivalently use g(ν, q) ≤ 0 or g(ν, q) = 0
in the problem formulation above. Furthermore, to avoid confusion with the spatial gradient
∇, we denote the gradients of g and G by g′(·)∗ and G′(·)∗ in the following.
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3.1. Problem formulation

3.1.1. First order optimality conditions

The first order optimality conditions from Chapter 2 still hold if we take ν ∈ R+, except for the
constancy of the Hamiltonian condition (2.21) where the ’almost everywhere’ is substituted
by the integral over the time interval. For convenience we summarize the first order optimality
conditions for the setting considered in this chapter. We require the following linearized Slater
condition.

Assumption 3.1. We assume that

η̄ := −∂νg(ν̄, q̄) > 0. (3.1)

Note that by Assumption 3.1 and g(ν̄, q̄) = 0, the point χ̆ρ = (ν̄ + ρ, q̄) ∈ R+ × Qad(0, 1)
defined for ρ > 0 fulfills

g(χ̄) + g′(χ̄)(χ̆ρ − χ̄) = −η̄ρ < 0, (3.2)

where χ̄ = (ν̄, q̄), which corresponds to a more familiar presentation of the linearized Slater
condition. We will see that for the particular problem it is not more general to suppose that
first order optimality conditions hold in qualified form than to assume that the linearized
Slater condition in the form of (3.1) is valid (or any other constraint qualification).

In order to state optimality conditions, we introduce the Lagrange function as

L : R+ ×Q(0, 1)× R→ R, L(ν, q, µ) := j(ν, q) + µ g(ν, q).

Now, optimality conditions for (P̂ ) in qualified form can be stated as follows: For given ν̄ > 0
and q̄ ∈ Qad(0, 1) with g(ν̄, q̄) = 0 there exists a µ̄ ≥ 0, such that

∂(ν,q)L(ν̄, q̄, µ̄)(δν, q − q̄) ≥ 0 for all (δν, q) ∈ R×Qad(0, 1). (3.3)

With Assumption 3.1, a multiplier always exists and, due to the special structure, it is always
positive. We summarize this in the next result.

Lemma 3.1. Let (ν̄, q̄) ∈ R+×Qad(0, 1) be a solution of (P̂ ) with associated state ū = S(ν̄, q̄)
and the linearized Slater condition (3.1) holds. Then there exist µ̄ ∈ R and z̄ ∈W (0, 1) such
that

µ̄ > 0, (3.4)∫ 1

0
1 + α

2 ‖q̄(t)‖
2
L2(ω) + 〈Bq̄(t)−Aū(t), z̄(t)〉dt = 0, (3.5)∫ 1

0
〈αq̄(t) +B∗z̄(t), q(t)− q̄(t)〉dt ≥ 0, q ∈ Qad(0, 1), (3.6)

G(ū(1)) = 0, (3.7)

where z̄ is the adjoint state determined by

−∂tz̄ + ν̄A∗z̄ = 0, z̄(1) = G′(ū(1))∗µ̄.

Proof. We first note that the linearized Slater condition allows for exact penalization of (P̂ );
see [21, Theorem 2.87, Proposition 3.111]. The optimality conditions now follow as in the
proof of Theorem 2.25. Since in our setting the multiplier µ̄ belongs to the normal cone
N(−∞,0](0) ⊂ R, we in addition infer µ̄ ≥ 0. If µ̄ = 0, then z̄ = 0, which is a contradiction to
the Hamiltonian condition (3.5). Thus, µ̄ > 0.
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3. Second order and sufficient optimality conditions

The condition (3.5) is equivalent to ∂νL(ν̄, q̄, µ̄) = 0 and (3.6) arises from (3.3) for δν = 0.
Note that the optimality conditions of Lemma 3.1 are consistent with the theory of Chapter 2,
because of the characterization

NU (ū(1)) = {G′(ū(1))∗λ : λ ≥ 0 }

according to [40, Corollary 10.44]. As in Proposition 2.21, for ν ∈ R+, q ∈ Q(0, 1), and µ ∈ R
we have the representation

g′(ν, q)∗µ =
( ∫ 1

0 〈Bq −Au, z〉
νB∗z

)
, (3.8)

where z ∈W (0, 1) is the unique solution to

− ∂tz + νAz = 0, z(1) = G′(i1S(ν, q))∗µ. (3.9)

Constancy of the Hamiltonian (3.5) allows to prove equivalence of qualified optimality con-
ditions and condition (3.1).

Proposition 3.2. The first order optimality conditions of Lemma 3.1 hold in qualified form
if and only if the linearized Slater condition (3.1) is valid.

Proof. According to (3.8) and (3.5) we have

〈∂νg(ν̄, q̄)ρ, µ̄〉 = G′(i1S(ν̄, q̄))i1S′(ν̄, q̄)(ρ, 0)µ̄ =
∫ 1

0
ρ〈Bq̄(t)−Aū(t), z̄(t)〉 dt

= −
∫ 1

0
ρ

(
1 + α

2 ‖q̄(t)‖
2
)

dt < 0

for any ρ > 0. Hence, with the choice ε = −∂νg(ν̄, q̄) > 0, condition (3.1) holds. The
remaining implication is the assertion of Lemma 3.1.

Furthermore, as in the linear parabolic case, see, e.g., [147, Section 3.6], the following pro-
jection formula holds

q̄ = PQad

(
− 1
α
B∗z̄

)
, (3.10)

where PQad (·) denotes the pointwise projection onto the set Qad(0, 1), defined by

PQad : L2(I × ω)→ Qad(0, 1), PQad(r)(t, x) = max {qa(x),min {qb(x), r(t, x)}} .

3.1.2. Example of a convection-diffusion equation

We conclude the introduction of this chapter by an example of a convection-diffusion equation
on a bounded domain subject to mixed boundary conditions that satisfies the abstract as-
sumptions. First, we introduce corresponding function spaces and the operator A. Concrete
examples for the measure space (ω, %) will be given at the end of this subsection.

Let Ω ⊂ Rd with d ∈ { 2, 3, . . . } be a bounded domain with boundary ∂Ω. We use ΓN for
the relatively open subset of ∂Ω denoting the Neumann boundary part and ΓD = ∂Ω \ ΓN
the Dirichlet boundary part. We assume that Ω ∪ ΓN is regular in the sense of Gröger; see
[69, Definition 2]. In addition, we suppose that each mapping φx in the definition of Gröger
regularity is volume-preserving.
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3.1. Problem formulation

Remark 3.3. The notion of Gröger regular has been introduced in [69] and is meanwhile
widely used in the regularity theory for partial differential equations. For clarity, we summa-
rize well-known properties and elaborate on its relation to Lipschitz domains and domains
with Lipschitz boundary:

(i) If Ω ∪ ΓN is regular in the sense of Gröger, then Ω is a Lipschitz domain; see [72,
Theorem 5.1]. Conversely, if Ω is a Lipschitz domain, then Ω and Ω ∪ ∂Ω are Gröger
regular; cf. Definition 1.2.1.2 in [68].

(ii) For simplified characterizations of regular sets we refer to [72, Theorems 5.2 and 5.4].

(iii) Note that the cases ΓD = ∅ or ΓD = ∂Ω are not excluded.

(iv) The additional requirement of volume-preserving bi-Lipschitz transformations is satis-
fied in many practical situations. For example, in spatial dimension three, two crossing
beams allow for a volume-preserving bi-Lipschitz transformation; see Section 7.3 in [73].
Moreover, this is true for domains with Lipschitz boundary; see Remark 3.3 in [73].

As usual, for θ ∈ (0, 1] and p ∈ (1,∞), we define the space Hθ,p
D (Ω) as the closure of

C∞D (Ω) =
{
ψ|Ω : ψ ∈ C∞(Rd), supp (ψ) ∩ ΓD = ∅

}
in the Bessel-potential space Hθ,p(Ω), i.e.

Hθ,p
D (Ω) = C∞D (Ω)H

θ,p(Ω).

If θ = 1, then the space Hθ,p
D (Ω) coincides with the usual Sobolev space that we denote

by W 1,p
D (Ω). Of course, if ΓN = ∅, then Hθ,p

D (Ω) = W θ,p
0 (Ω), and if ΓN = ∂Ω, then

Hθ,p
D (Ω) = W θ,p(Ω). The corresponding dual space of Hθ,p

D (Ω) is denoted by H−θ,p
′

D (Ω),
where p′ denotes the Hölder conjugate 1 = 1/p + 1/p′. In addition, if ΓN = ∅, we write
W−1,p′(Ω) = W−1,p′

D for the dual space of W 1,p
D . These function spaces have the following

properties.

Proposition 3.4. Let θ ∈ (0, 1] and p ∈ (1,∞).

(i) If p ≥ d, then W 1,p
D (Ω) ↪→c L

r(Ω) for 1 ≤ r ≤ dp/(p− d).

(ii) If 1− d/p ≥ θ − d/r, then W 1,p
D (Ω) ↪→ Hθ,r

D (Ω).

Proof. Both injections follow by first extending the functions to B ⊂ Rd an open ball contain-
ing Ω, using the corresponding results for smooth domains, and finally restricting to Ω again.
According to [8, Lemma 3.2 with Remark 3.3 (i)] there is a continuous extension operator
E : W k,p

D (Ω)→W k,p(B) for all p ∈ [1,∞] and k = 0, 1. Thus, [146, Theorem 4.6.1] yields

‖u‖
Hθ,r
D (Ω) = ‖Eu‖

Hθ,r
D (Ω) ≤ ‖Eu‖Hθ,r

D (B) ≤ ‖Eu‖W 1,p(B) ≤ ‖u‖W 1,p
D (Ω).

Compactness of (i) follows from the arguments above and [114, Theorem 1.4.6.2].

Note that the space H−θ,pD (Ω) allows for distributional objects such as surface charge densities
or thermal sources concentrated on hypersurfaces due to the following trace theorem.
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3. Second order and sufficient optimality conditions

Proposition 3.5 ([73, Theorem 3.6]). For all p ∈ (1,∞) and θ ∈ (1/p, 1) there exists a
continuous trace operator

Tr: Hθ,p
D (Ω)→ Lp(ΓN ),

and by duality its adjoint satisfies

Tr∗ : Lp′(ΓN )→ H−θ,p
′

D (Ω).

The function spaces introduced above now allow for the definition of the operator A. It is
given by the bilinear form

a(u, ϕ) =
∫
Ω

[κ∇u · ∇ϕ+ b · ∇uϕ+ c0uϕ] dx+
∫
ΓN

c1uϕds, u, ϕ ∈ H1
D(Ω),

for κ : Ω → Rd×d a coefficient function satisfying the usual uniform ellipticity condition

κ•‖z‖2 ≤
d∑

i,j=1
κij(x)zjzi for all z ∈ Rd and a.a. x ∈ Ω,

and ‖κij‖L∞(Ω) ≤ κ•, i, j = 1, 2, . . . , d, for constants κ•, κ• > 0. Moreover, b ∈ L∞(Ω;Rd),
c0 ∈ L∞(Ω), and c1 ∈ L∞(ΓN ). We note that the first term is the weak formulation of
a convection-diffusion-reaction equation and the second term allows for either the Robin
boundary conditions (κ∂u/∂n+ c1u = 0, where n is the outer normal to Ω) or homogeneous
Neumann boundary conditions by setting c1 = 0. According to [114, Corollary 1.4.7.2] there
is c > 0 such that

‖Tru‖2L2(ΓN ) ≤ c‖u‖L2(Ω)‖u‖H1
D(Ω), u ∈ H1

D(Ω).

Thus, using the assumptions on the coefficients and Young’s inequality, we immediately
infer

a(u, u) ≥ κ•
4 ‖u‖

2
H1
D
−
(
κ•
2 + ‖b‖

2
L∞

2κ•
+ ‖c0‖L∞ + c2‖c1‖2L∞

κ•

)
‖u‖2L2 .

For these reasons, taking V = H1
D(Ω), H = L2(Ω), and V ∗ = H−1

D (Ω), the Gårding inequal-
ity (2.7) holds for α0 = κ•/4 and ω0 = κ•/2 + ‖b‖2L∞/(2κ•) + ‖c0‖L∞ + c2‖c1‖2L∞/κ•. Next,
we turn to the control operator B.

In Chapter 2 we have essentially worked with domains of fractional powers of A. Under the
assumptions of this subsection, we can provide a convenient characterization in terms of the
Bessel-potential spaces. Due to [65, Theorem 3.5] we have

H2θ−1,2
D (Ω) = [H−1

D (Ω), H1
D(Ω)]θ,

1
4 6= θ 6= 3

4.

Since both H1
D and H−1

D are Hilbert spaces, A exhibits bounded imaginary powers. Thus,
from [146, Theorem 1.15.3] we conclude

Xθ = DV ∗(Aθ) = [V ∗,DV ∗(A)]θ = [H−1
D (Ω), H1

D(Ω)]θ = H2θ−1,2
D (Ω).

Finally, we give three examples of concrete control scenarios that satisfy the assumptions of
Chapters 2 and 3.
Example 3.6 (Distributed control). In case of a distributed control on a subset ω ⊂ Ω of the
spatial domain, we simply take B as the extension by zero operator. Clearly, B is linear and
continuous from L2(ω) into L2(Ω) = Xθ0 with θ0 = 1/2.
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3.2. Second order optimality conditions (α > 0)

Example 3.7 (Neumann boundary control). For Neumann boundary control we set ω = ΓN
and B = Tr∗. Since the adjoint of the trace operator Tr∗ is continuous from L2(ΓN ) into
H2θ0−1,2
D (Ω) for any θ0 ∈ (0, 1/4), we infer B : L2(ΓN ) → Xθ0 . Note that this holds true

independently of the spatial dimension.
Example 3.8 (Purely time-dependent controls). Last, we consider the case of purely time-
dependent controls that is of independent interest in theory as well as applications. For
θ0 ∈ (0, 1/4) let e1, . . . , eNc ∈ H

2θ0−1,2
D be given form functions. Define the control operator

as

B : RNc → H2θ0−1,2
D , Bq =

Nc∑
i=1

qiei.

The measure space (ω, %) is defined as ω = {1, 2, . . . , Nc} equipped with the counting measure.
Hence, the control space and the space of admissible controls, respectively, are given by

Q = L2(ω) ∼= RNc , Qad = {q ∈ Q : qa ≤ q ≤ qb},

where qa, qb ∈ RNc and the inequality is to be understood componentwise.

3.2. Second order optimality conditions (α > 0)

We first consider the case with cost term, i.e. α > 0. These results are already contained
in [17], however most of them without detailed proofs. We require the following regularity
assumption concerning the terminal constraint.

Assumption 3.2. The function G : H → R is twice continuously Fréchet-differentiable. In
addition, the mapping η 7→ G′′(u)η2 is weakly lower semicontinuous for all u ∈ H.

Moreover, the product space R×L2(I ×ω) is endowed with the canonical inner product and
we abbreviate its norm as

‖(δν, δq)‖ =
(
|δν|2 + ‖δq‖2L2(I×ω)

)1/2
.

By means of Proposition 2.20, the reduced constraint mapping g : R+ × Qad(0, 1) → R is
twice continuously Fréchet-differentiable. Moreover, recalling

g′′(ν, q)[δν, δq]2 = G′′(u(1))
[
i1S
′(ν, q)(δν, δq)

]2 +G′(u(1))i1S′′(ν, q))[δν, δq]2,

where u = S(ν, q), we have: If δνn → δν and δqn ⇀ δq weakly in L2(I × ω), then

S′(ν, q)(δνn, δqn) ⇀ S′(ν, q)(δν, δq) in W (0, 1),
S′′(ν, q)[δνn, δqn]2 ⇀ S′′(ν, q)[δν, δq]2 in W (0, 1),

thanks to the bilinear structure. Hence, using weak lower semicontinuity of G′′ and that
G′(i1S(ν, q)) is a linear bounded functional, we infer the following result.

Corollary 3.9. Let (ν, q) ∈ R+×Q(0, 1). If δνn → δν in R and δqn ⇀ δq weakly in L2(I×ω),
then

g′′(ν, q)[δν, δq]2 ≤ lim inf
n→∞

g′′(ν, q)[δνn, δqn]2.
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3. Second order and sufficient optimality conditions

We introduce a cone of critical directions (or simply called critical cone) as

C(ν̄,q̄) =
{

(δν, δq) ∈ R× L2(I × ω)
∣∣∣∣∣ δq satisfies the sign condition (3.11), and

g′(ν̄, q̄)(δν, δq) = 0

}
,

where the sign condition is given by

δq(t, x)


≤ 0 if q̄(t, x) = qb(x)
≥ 0 if q̄(t, x) = qa(x)
= 0 if αq̄(t, x) +B∗z̄(t, x) 6= 0

 a.e. in I × ω. (3.11)

3.2.1. Second order necessary optimality conditions

With this definition, we can formulate second order necessary conditions, which hold in any
locally optimal stationary point.

Theorem 3.10. Let (ν̄, q̄) ∈ R+×Qad(0, 1) be a local minimum of (P̂ ) satisfying first order
optimality conditions of Lemma 3.1 and µ̄ > 0. Then the following inequality holds

∂2
(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 ≥ 0 for all (δν, δq) ∈ C(ν̄,q̄). (3.12)

In general, for second order necessary conditions one needs a further constraint qualification.
It is worth mentioning that – in our setting – we may conclude the regularity assumption
from the first order optimality conditions. According to the linearized Slater condition (3.1),
we have g′(ν̄, q̄)(ρ, 0) 6= 0 for any ρ 6= 0. Hence, there is a ν̆ ∈ R such that g′(ν̄, q̄)(ν̆, 0) = 1;
cf. the regularity assumption (2.1) in [35]. For the proof, we require the following auxiliary
result concerning admissible perturbations.

Proposition 3.11. Let (ν, q) ∈ R × Q(0, 1) satisfy g(ν, q) = 0. Moreover, let δν ∈ R and
δq ∈ Q(0, 1) such that g′(ν, q)(δν, δq) = 0. Additionally, suppose ∂νg(ν, q) 6= 0. Then there
are ε > 0 and a function γ : (−ε, ε)→ R of class C2 satisfying

g(ν(θ), q(θ)) = 0, θ ∈ (−ε, ε), γ(0) = γ′(0) = 0,

where ν(θ) = ν + θδν + γ(θ) and q(θ) = q + θδq.

Proof. Due to the supposition, there exists ν̆ ∈ R such that g′(ν, q)(ν̆, 0) = 1. We define

f(θ, ρ) = g(ν + θδν + ρν̆, q + θδq).

According to Assumption 3.2 and Proposition 2.20 f is of class C2 and we have

∂θf(0, 0) = g′(ν, q)(δν, δq) = 0,
∂ρf(0, 0) = g′(ν, q)(ν̆, 0) = 1.

By the implicit function theorem there exist ε > 0 and a C2-function γ̃ : (−ε, ε) → R such
that

f(θ, γ̃(θ)) = f(0, 0) = 0, θ ∈ (−ε, ε), γ̃(0) = 0.

Moreover, differentiating the identity above we infer

∂θf(0, 0) + ∂ρf(0, 0)γ̃′(0) = 0,

so we conclude γ̃′(0) = 0. Last, we set γ = γ̃ν̆.
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3.2. Second order optimality conditions (α > 0)

q̄

qb

qa + 1/n

qb − 1/n

qa

Figure 3.1.: Truncation procedure in the proofs of Theorem 3.10 and Proposition 3.12. Hachured parts
are set to zero, the remaining parts are truncated.

Proof of Theorem 3.10. The assertion can be proved similarly as in [35] with an additional
truncation procedure. Let (δν, δq) ∈ C(ν̄,q̄). For n ∈ N, we introduce the following truncation

δqn =

0 if qa < q̄ < qa + 1/n or qb − 1/n < q̄ < qb,

max{−n,min{n, δq}} else,

almost everywhere in I × ω; see also Figure 3.1. Moreover, we set

δνn = −∂qg(ν̄, q̄)δqn/∂νg(ν̄, q̄),

which is justified because of ∂νg(ν̄, q̄) 6= 0. By construction we have g′(ν̄, q̄)(δνn, δqn) = 0.
According to Proposition 3.11 there is ε > 0 and a function γ : (−ε, ε) → R such that the
state constraints remain active for the pair ν(θ) = ν̄ + θδνn + γ(θ) and q(θ) = q̄+ θδqn. Due
to the sign condition (3.11), we have q̄ + θδqn ∈ Qad(0, 1) for 0 ≤ θ ≤ min { 1/n2, θ0/n },
where θ0 := ess infx∈ω(qb(x) − qa(x)) > 0. Moreover, δν(θ) > 0 for all θ sufficiently small.
Thus, the function

φ : [0, ε)→ R, φ(θ) = L(ν(θ), q(θ), µ̄),
has a local minimum at θ = 0. Since γ′(0) = 0 (see Proposition 3.11) we have

φ′(0) = ∂(ν,q)L(ν(0), q(0), µ̄)
(
δνn + γ′(0), δqn

)
= ∂(ν,q)L(ν̄, q̄, µ̄) (δνn, δqn) .

Using the first order necessary optimality condition

∂νL(ν̄, q̄, µ̄) = 0 (3.13)

as well as condition (3.11) implying δqn = 0 whenever αq̄ +B∗z̄ 6= 0, we find

∂(ν,q)L(ν̄, q̄, µ̄) (δνn, δqn) = ∂qL(ν̄, q̄, µ̄)δqn =
∫ 1

0
ν̄〈αq̄ +B∗z̄, δqn〉 = 0.

Hence, φ′(0) = 0. Therefore, the second order optimality condition has to hold, i.e.

0 ≤ φ′′(0) = ∂2
(ν,q)L(ν(0), q(0), µ̄)[δνn, δqn]2 + ∂(ν,q)L(ν(0), q(0), µ̄)

(
γ′′(0), 0

)
= ∂2

(ν,q)L(ν̄, q̄, µ̄)[δνn, δqn]2 + γ′′(0)∂(ν,q)L(ν̄, q̄, µ̄) (1, 0)
= ∂2

(ν,q)L(ν̄, q̄, µ̄)[δνn, δqn]2,

where we have used again (3.13). Since δqn converges pointwise almost everywhere in I × ω
and |δqn| ≤ |δq|, the dominated convergence theorem implies δqn → δq in L2(I × ω). Thus,
δνn → δν due to g′(ν̄, q̄)(δν, δq) = 0. Hence,

0 ≤ lim
n→∞

∂2
(ν,q)L(ν̄, q̄, µ̄)[δνn, δqn]2 = ∂2

(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2,

where we have used continuity of (δν, δq) 7→ L(ν̄, q̄, µ̄)[δν, δq]2 on R× L2(I × ω), completing
the proof.
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The proof of the second order necessary conditions relied on the construction of feasible
points. Using very similar arguments, we obtain the following result on the existence of
feasible controls for perturbed time transformations. This result is needed for later reference
in Section 3.2.3. In the absence of control constraints, it directly follows from the linearized
Slater condition and the implicit function theorem. However, for the problem with control
constraints, we have to argue as for the second order necessary conditions. We say that
q ∈ Qad(0, 1) satisfies the non-triviality condition, if

|{ (t, x) ∈ I × ω : qa(x) < q(t, x) < qb(x), B∗z(t, x) 6= 0 }| > 0, (3.14)

where z is the solution to the adjoint state equation with terminal value G′(i1S(ν, q))∗. We
will see that (3.14) is satisfied in many situations; cf. Assumption 3.3 and Remark 3.17.

Proposition 3.12. Let (ν, q) ∈ R×Qad(0, 1). Suppose that Assumption 3.1 and (3.14) hold.
Then there exists ε > 0 such that for all ν ′ ∈ (ν − ε, ν + ε) there is an admissible control
q(ν ′) ∈ Qad(0, 1) satisfying g(ν, q(ν)) = 0. Moreover, we have

‖q(ν ′)− q‖L2(I×ω) = O(|ν ′ − ν|) as ν ′ → ν.

Proof. Due to the non-triviality condition (3.14), there exists a subset Λ ⊂ I × ω with non-
trivial measure such that the control constraints are (strictly) not active and 1ΛB

∗z 6= 0.
Taking δq = 1ΛB

∗z yields

∂qg(ν, q)δq = ν(B∗z, δq)L2(I×ω) = ν‖B∗z‖2L2(Λ) > 0

using the adjoint state representation of g′. Moreover, αq+B∗z = 0 on Λ. Hence, δq satisfies
the sign condition on Λ. It also satisfies the sign condition on the complement of Λ, because
there it is identical zero. Then we define δν = −∂qg(ν, q)δq/∂νg(ν, q), which is well-defined
since ∂νg(ν, q) 6= 0 due to the supposition.

As in the proof of Theorem 3.10, we define a truncation of δq by

δqN =

0 if qa < q < qa + 1/N or qb − 1/N < q < qb,

max{−N,min{N, δq}} else,

almost everywhere in I × ω; cf. also Figure 3.1. Moreover, we set

δνN = −∂qg(ν, q)δqN/∂νg(ν, q).

Due to the choice of δq, we have δνN 6= 0 forN sufficiently large as well as g′(ν, q)(δνN , δqN ) =
0. According to Proposition 3.11 there are ε > 0 and a C2-function γ : (−ε, ε)→ R such that
for all θ ∈ (−ε, ε) we have g(ν(θ), q(θ)) = 0, where ν(θ) = ν+θδνN+γ(θ) and q(θ) = q+θδqN .
Furthermore, since δq is nonvanishing only where the control is strictly nonactive, we infer
q(θ) ∈ Qad(0, 1) for θ sufficiently small. Using that γ(0) = γ′(0) = 0, we obtain

ν(θ) = ν(0) + ν ′(0)θ +O(θ2) = ν + δνNθ +O(θ2).

Moreover, from the equality above, we deduce that

|θ| = |ν(θ)− ν||δνN +O(θ2)/θ|−1 ≤ c|ν(θ)− ν|, θ ∈ (ν − ε, ν + ε).

Hence,
‖q(θ)− q‖ = ‖θδqN‖ ≤ c|ν(θ)− ν|.

Taking θ close to zero, yields the assertion for ν ′ := ν(θ) and q(ν ′) := q(θ).
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3.2.2. Second order sufficient optimality conditions

Next, we postulate “minimal-gap” second order sufficient conditions, which result from re-
placing the inequality in (3.10) by a strict inequality.

Theorem 3.13. Suppose (ν̄, q̄, µ̄) ∈ R+ × Qad(0, 1) × R+ satisfies the first order necessary
conditions of Lemma 3.1 and the second order sufficient condition

∂2
(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 > 0 for all (δν, δq) ∈ C(ν̄,q̄) \ {(0, 0)}. (3.15)

Then there exist ε > 0 and c > 0 such that for every admissible pair (ν, q) ∈ R+ ×Qad(0, 1)
the quadratic growth condition

j(ν̄, q̄) + c

2 |ν − ν̄|
2 + c

2‖q − q̄‖
2
L2(I×ω) ≤ j(ν, q), (3.16)

is satisfied if |ν − ν̄|+ ‖q − q̄‖L2(I×ω) ≤ ε.

Proof. We closely follow the ideas of [34, Theorem 4.13] for the semilinear heat equation;
cf. also [30, Section 4] for pointwise state constraints. Assume by contradiction that for all
integer n there exist a time transformation νn ∈ R+ and a control qn ∈ Qad(0, 1) such that
the corresponding state S(νn, qn) is feasible and

‖(νn − ν̄, qn − q̄)‖ <
1
n
, j(ν̄, q̄) + 1

2n‖(νn − ν̄, qn − q̄)‖
2 > j(νn, qn). (3.17)

Set χ̄ = (ν̄, q̄) and χn = (νn, qn). Define ρn = ‖(νn − ν̄, qn − q̄)‖ and

vn = (vνn, vqn) = 1
ρn

(χn − χ̄).

We may assume w.l.o.g. that vνn → vν in R and vqn ⇀ vq in L2(I × ω).

Step 1: ∂χL(χ̄, µ̄)v = 0. Due to the variational inequality (3.3) we have

∂χL(χ̄, µ̄)v = lim
n→∞

∂χL(χ̄, µ̄)vn ≥ 0.

For the reverse inequality, we observe

L(χ̄, µ̄) + 1
2n‖(νn − ν̄, qn − q̄)‖

2 = j(χ̄) + 1
2n‖(νn − ν̄, qn − q̄)‖

2

> j(χn) ≥ L(χn, µ̄), (3.18)

since χn is feasible and µ̄ > 0. The Taylor expansion yields

L(χn, µ̄) = L(χ̄, µ̄) + ρn∂χL(χ̌n, µ̄)vn, (3.19)

for some appropriate χ̌n ∈ R × L2(I × ω). Moreover, χ̌n → χ̄ as n → ∞. Combining (3.18)
and (3.19) we arrive at

∂χL(χ̌n, µ̄)vn ≤
1

2nρn
‖(νn − ν̄, qn − q̄)‖2 = 1

2n‖(νn − ν̄, qn − q̄)‖ <
1

2n2 .
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3. Second order and sufficient optimality conditions

Using continuity of ∂χL we infer

∂χL(χ̄, µ̄)v = lim
n→∞

∂χL(χ, µ̄)vn

≤ lim sup
n→∞

∂χL(χ̌n, µ̄)vn + lim sup
n→∞

[∂χL(χ̄, µ̄)− ∂χL(χ̌n, µ̄)] vn

≤ lim sup
n→∞

1
2n2 ≤ 0.

Step 2: v ∈ C(ν̄,q̄). First, because the set{
δq ∈ L2(I × ω)

∣∣∣∣∣ δq ≤ 0 if q̄(t, x) = qb(x)
δq ≥ 0 if q̄(t, x) = qa(x)

}
,

is closed and convex, it is in particular weakly closed, hence the weak limit satisfies vq(t, x) ≤
0, if q̄(t, x) = qb(x), and vq(t, x) ≥ 0, if q̄(t, x) = qa(x). For this reason, (3.6) implies∫ 1

0

∫
ω
ν̄(αq̄ +B∗z̄)vq dx dt =

∫ 1

0

∫
ω
ν̄|(αq̄ +B∗z̄)vq|dx dt.

Moreover, due to ∂χL(χ̄, µ̄)v = 0 and the first order necessary condition ∂νL(χ̄, µ̄) = 0 we
have the equality

0 = ∂qL(χ̄, µ̄)vq =
∫ 1

0
ν̄(αq̄ +B∗z̄, vq)L2(ω) dt =

∫ 1

0

∫
ω
ν̄|(αq̄ +B∗z̄)vq|dx dt.

Hence, vq = 0, if αq̄ + B∗z̄ 6= 0 almost everywhere in I × ω, and vq satisfies the sign
condition (3.11) as well. Furthermore, according to the assumption on G we have

g′(χ̄)v = lim
n→∞

1
ρn

(g(χ̄+ ρnvn)− g(χ̄)) = lim
n→∞

1
ρn
g(χn) ≤ 0,

since g(χ̄) = 0 and g(χn) ≤ 0. Similarly, using (3.17), we find

j′(χ̄)v = lim
n→∞

1
ρn

(j(χ̄+ ρnvn)− j(χ̄)) ≤ lim
n→∞

1
2n2 = 0.

Due to µ̄ > 0 and ∂χL(χ̄, µ̄)v = j′(χ̄)v + µ̄ g′(χ̄)v = 0 we conclude g′(χ̄)v = 0. In summary,
we have proved that v ∈ C(ν̄,q̄).

Step 3: v = 0. Using again Taylor expansion we have

L(χn, µ̄) = L(χ̄, µ̄) + ρn∂χL(χ̄, µ̄)vn + ρ2
n

2 ∂
2
χL(χ̌n, µ̄)v2

n, (3.20)

with intermediate points χ̌n ∈ R×L2(I ×ω). Plugging (3.20) into (3.18) and dividing by ρ2
n

we obtain
1
ρn
∂χL(χ̄, µ̄)vn + 1

2∂
2
χL(χ̌n, µ̄)v2

n ≤
1
n
.

Hence, using Corollary 3.9 and weak lower semicontinuity of j′′(χ̄), it follows that

∂2
χL(χ̄, µ̄)v2 ≤ lim inf

n→∞
∂2
χL(χ̄, µ̄)v2

n

≤ lim sup
n→∞

∂2
χL(χ̌n, µ̄)v2

n + lim sup
n→∞

[
∂2
χL(χ̄, µ̄)− ∂2

χL(χ̌n, µ̄)
]
v2
n

≤ lim sup
n→∞

[ 2
ρn
∂χL(χ̄, µ̄)vn + ∂2

χL(χ̌n, µ̄)v2
n

]
+ lim sup

n→∞

−2
ρn
∂χL(χ̄, µ̄)vn ≤ 0, (3.21)
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3.2. Second order optimality conditions (α > 0)

where we have used that ∂χL(χ̄, µ̄)vn ≥ 0 for all n ∈ N in the last step. According to the
supposition, this is only possible if v = 0.

Step 4: Final contradiction. Since ‖(vνn, vqn)‖ = 1 and vνn → 0 we finally obtain

0 < αν̄ = αν̄ lim inf
n→∞

‖(vνn, vqn)‖2 = lim inf
n→∞

αν̄

∫ 1

0
‖vqn(t)‖2L2(ω) dt.

Using the specific structure of j′′, we see that

lim inf
n→∞

αν̄

∫ 1

0
‖vqn(t)‖2L2(ω) dt = lim inf

n→∞
j′′(χ̄)v2

n.

Hence, employing Corollary 3.9, we conclude that

0 < lim inf
n→∞

j′′(χ̄)v2
n ≤ lim inf

n→∞
j′′(χ̄)v2

n + µ̄ lim inf
n→∞

g′′(χ̄)v2
n

≤ lim inf
n→∞

∂2
χL(χ̄, µ̄)v2

n ≤ 0,

where we have used again (3.21) in the last inequality, yielding a contradiction.

The second order sufficient condition (3.15) and the quadratic growth condition (3.16) will
form the basis of the a priori discretization error estimates in Chapter 5. Last, we note that
for the given objective functional coercivity of ∂2

(ν,q)L(ν̄, q̄, µ̄) is equivalent to the seemingly
weaker positivity condition, as already observed for semilinear parabolic PDEs in [34].

Theorem 3.14. Let (ν̄, q̄, µ̄) ∈ R+ × Qad(0, 1) × R+. The positivity condition (3.15) is
equivalent to the coercivity condition

∃γ > 0: ∂2
(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 ≥ γ

(
|δν|2 + ‖δq‖2L2(I×ω)

)
for all (δν, δq) ∈ C(ν̄,q̄). (3.22)

Proof. This result can be proved along the lines of the proof of [34, Theorem 4.11], where we
in particular use that δν is from a finite dimensional space. The proof is given for convenience.
Obviously, the condition of coercivity implies the positivity condition. To prove the reverse
implication, we set

γ := inf
{
∂2

(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 : (δν, δq) ∈ C(ν̄,q̄), ‖(δν, δq)‖ = 1
}
.

Due to the assumptions on j and g, the infimum exists and is nonnegative. Let (δνn, δqn) ∈
C(ν̄,q̄) be a minimizing sequence. Without restriction we may assume δνn → δν in R and
δqn ⇀ δq in L2(I × ω). Now, we distinguish two cases:

Case: (δν, δq) = (0, 0). From δνn → 0 in R and δqn ⇀ 0 in L2(I × ω), we conclude

lim inf
n→∞

j′′(ν̄, q̄)[δνn, δqn]2 = αν̄ lim inf
n→∞

∫ 1

0
‖δqn‖2L2(ω) = αν̄ lim inf

n→∞
‖(δνn, δqn)‖2 = αν̄,

where we have used ‖(δνn, δqn)‖ = 1 in the last step. Moreover, due to Corollary 3.9, we
have

lim inf
n→∞

g′′(ν̄, q̄)(δνn, δqn) ≥ 0.

Since µ̄ > 0, we conclude that

γ = lim inf
n→∞

∂2
(ν,q)L(ν̄, q̄, µ̄)[δνn, δqn]2 ≥ lim inf

n→∞
α

∫ 1

0
ν̄‖δqn‖2L2(ω) = αν̄ > 0.
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3. Second order and sufficient optimality conditions

Case: (δν, δq) 6= (0, 0). Using the same arguments as before for j′′ and Corollary 3.9 we find

γ = lim inf
n→∞

∂2
(ν,q)L(ν̄, q̄, µ̄)[δνn, δqn]2 ≥ ∂2

(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 > 0,

due to the positivity condition. In both cases we proved that γ > 0. Thus, the coercivity
condition holds.

3.2.3. Reduction to a scalar condition

In general it seems to be difficult to verify whether a second order sufficient optimality
condition is satisfied for a given a problem – both theoretically and numerically. However,
for the problem under consideration, we will provide a scalar condition that is equivalent
to the second order sufficient optimality condition of Theorem 3.13; cf. [82] for a similar
approach for time-optimal control of ODEs. The idea is based on an infinite dimensional
version of the Schur complement. We suppose that G′′(u)[·, ·] is positive semi-definite for all
u ∈ H. Recall that positive semi-definiteness implies weak lower semicontinuity, see, e.g, [61,
Proposition 3.2], so this a strengthening of Assumption 3.2.

In order to keep the presentation of this section simple, we impose additional assumptions,
which will turn out to be fulfilled in most situations. First, if the critical cone is trivial, i.e.
C(ν̄,q̄) = { 0 }, the condition (3.15) is vacuously true. Note that this case typically corresponds
to a bang-bang control. Similarly, to avoid other degenerate cases, we impose the additional
assumption:

Assumption 3.3. We assume that the strict complementarity condition

|{ (t, x) ∈ I × ω : q̄(t, x) ∈ { qa(x), qb(x) } , αq̄(t, x) +B∗z̄(t, x) = 0 }| = 0, (3.23)

and the non-triviality condition

|{ (t, x) ∈ I × ω : qa(x) < q̄(t, x) < qb(x), B∗z̄(t, x) 6= 0 }| > 0, (3.24)

hold, where |·| denotes the product-measure associated with I × ω.

Under Assumption 3.3 the critical cone C(ν̄,q̄) is a linear space, which contains elements of
the form (δν, δq) with δν 6= 0. In the following we show that if the strict complementarity
condition (3.23) holds, then the non-triviality condition (3.24) is equivalent to C(ν̄,q̄) 6= { 0 }.
Moreover, we prove that under an appropriate approximate controllability assumption on the
pair (A,B) strict complementarity holds.

Proposition 3.15. Suppose that the strict complementarity condition (3.23) holds. Let
(ν̄, q̄) ∈ R+ × Qad(0, 1) satisfy the qualified first order optimality conditions of Lemma 3.1.
Then the non-triviality condition (3.24) is equivalent to C(ν̄,q̄) 6= { 0 }.

Proof. Clearly, if the non-triviality condition (3.24) holds, then C(ν̄,q̄) 6= { 0 }. Hence, we only
have to show the reverse implication. Suppose that (3.24) is violated. Let (δν, δq) ∈ C(ν̄,q̄).
Then we have (B∗z̄, δq)L2(I×ω) = 0, because δq = 0 if αq̄ + B∗z̄ 6= 0 (due to the sign
condition (3.11)), B∗z̄ = 0 if qa < q̄ < qb (because (3.24) is violated), and the remaining
case q̄ ∈ { qa, qb } and αq̄ + B∗z̄ = 0 has zero measure (due to the strict complementarity
condition (3.23)). Hence, using the condition g′(ν̄, q̄)(δν, δq) = 0 from the critical cone and
∂νg(ν̄, q̄) 6= 0 (see Assumption 3.1 and Proposition 3.2), we infer that δν = 0. Thus, we
conclude that C(ν̄,q̄) = { 0 }.
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3.2. Second order optimality conditions (α > 0)

In the case that q̄ is bang-bang, the non-triviality condition (3.24) is clearly violated. Hence,
in view of Proposition 3.15, if strict complementarity and qualified first order optimality
conditions hold, and q̄ is bang-bang, then the critical cone is trivial.

Proposition 3.16. Consider the case of purely time-dependent controls, i.e. B : RNc → V ∗,
Bq =

∑Nc
i=1 qiei. Suppose that the solution z ∈ W (0, 1) to the adjoint state equation with

terminal state z1 ∈ H and time transformation ν > 0, i.e.

−∂tz + νA∗z = 0, z(1) = z1,

satisfies a backwards uniqueness property, i.e.

B∗z ≡ 0 on I0 × ω0 ⇒ z = 0 for all I0 × ω0 ⊆ I × ω. (3.25)

Moreover, suppose that
t 7→ z(t) constant ⇒ z = 0. (3.26)

Let (ν̄, q̄) ∈ R+×Qad(0, 1) satisfy the qualified first order optimality conditions of Lemma 3.1.
Then the strict complementarity condition (3.23) holds.

Proof. If (3.23) is violated, then B∗i z̄ = −αqa,i or B∗i z̄ = −αqb,i on a subset I0 ⊆ I such
that |I0| 6= 0 for some i ∈ { 1, 2, . . . , Nc }. Without restriction suppose that B∗i z̄ = −αqa,i
on I0. Hence, the mapping t 7→ φ(t) := B∗i z̄(t) is constant on I0. Moreover, analyticity
of the semigroup generated by −A∗ implies that φ is also analytic. Thus, φ is constant on
I, which means that φ′ = ∂tB

∗
i z̄ vanishes on I. We set v = ∂tz̄. Since z̄ ∈ C1(I;V ), we

observe that v also solves a backwards parabolic equation on (0, 1 − ε) with terminal value
v(1 − ε) = ∂tz̄(1 − ε) ∈ V for any small ε > 0. Because of B∗i v = ∂tB

∗
i z̄ = 0 on I, from the

backwards uniqueness property (3.25), we deduce that v = 0 on the time interval (0, 1− ε),
which in turn implies that the adjoint state z̄ is constant on (0, 1− ε). Letting ε→ 0, we see
that z̄ is constant on I. Thus, the second supposition (3.26) implies z̄ = 0. However, this
contradicts the optimality conditions from Lemma 3.1.

Remark 3.17. We comment on situations, where the suppositions (3.25) and (3.26) of the
preceding proposition are guaranteed to hold:

(i) The backwards uniqueness property (3.25) is equivalent to the assumption that for
each Bi : R → V ∗, Biq = qei, the pair (A,Bi) is approximately controllable; see [150,
Definition 11.1.1]. Note that in the context of optimal control for ordinary differential
equations this property would correspond to normality of the pair (A,B); see, e.g., [74,
Section II.16] or [112, Section III.3]. Employing the fact that t 7→ B∗z(t) is analytic
and [150, Theorem 11.2.1, Definition 6.1.1], we infer that (3.25) holds.

(ii) If the Gårding inequality (2.7) holds with ω0 = 0 (e.g. if A = −∆ with homoge-
neous Dirichlet boundary conditions), then the semigroup generated by −A is uni-
formly exponentially stable in H, i.e. ‖e−tA‖L(H) ≤ e−ρt for some ρ > 0 and all
t > 0; see Proposition A.21. Additionally, according to [128, Corollary 1.10.6] we
have e−·A∗ = (e−·A)∗. Considering the canonical extension of z to (−∞, 0), exponential
stability yields limt→−∞ z(t) = 0. Thus, if t 7→ z(t) is constant, we conclude that z = 0
due to analyticity of t 7→ z(t), i.e. (3.26) holds.

(iii) In certain situations, we can dispense with the controllability assumption. Let the con-
trol bounds satisfy qa < 0 < qb and Gårding’s inequality (2.7) hold with ω0 = 0. Suppose
that the strict complementarity condition (3.23) is violated. Hence, there is an index
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i ∈ { 1, 2, . . . , Nc } such that (−1/α)B∗i z̄(t) = q̄i(t) equals one of the control bounds on
a subset of I. First, we have |B∗i z̄(t)| ≤ ‖ei‖V ∗‖z̄(t)‖V . Moreover, exponential stability
as before yields

‖z̄(t)‖V ≤ ‖e
−(1−t−ε)AA1/2‖L(H)‖e

−εAz̄(1)‖H → 0

as t → −∞ (for some small ε > 0), where we have considered the canonical extension
of z̄ to (−∞, 0). Thus, analyticity implies B∗i z̄(t) = 0 on I, which contradicts the
supposition qa < 0 < qb. Hence, the strict complementarity condition (3.23) is satisfied.
Note that we have used the coupling between q̄ and z̄ on I only, not on (−∞, 0).

If Assumption 3.3 holds, the critical cone C(ν̄,q̄) is a linear space. It consists exactly of the
elements (δν, δq) with δν ∈ R, δq ∈ Cq̄, and ∂qg(ν̄, q̄)δq + ∂νg(ν̄, q̄)δν = 0, where

Cq̄ := { δq ∈ L2(I × ω) : δq(t, x) = 0 if αq̄(t, x) +B∗z̄(t, x) 6= 0 } .

For ease of presentation, we sometimes abbreviate the arguments (ν̄, q̄) and simply write χ̄ in
the following. Under Assumption 3.3 we now prove that the second order sufficient optimality
condition is equivalent to a scalar condition.

Lemma 3.18. Let (ν̄, q̄, µ̄) ∈ R+ ×Qad(0, 1)× R+. Assume that Assumption 3.3 holds and
that G′′(u)[·, ·] is positive semi-definite for all u ∈ H. Then, the second order sufficient
optimality condition of Theorem 3.13 is equivalent to

γ̄ := ∂2
(ν,q)L(ν̄, q̄, µ̄)[1, δq̄]2 > 0, (3.27)

where (δq̄, δµ̄) ∈ Cq̄ × R is the unique solution of the linear system

∂2
qL(ν̄, q̄, µ̄)[δq̄, δq] + δµ̄ ∂qg(ν̄, q̄)δq = −∂ν∂qL(ν̄, q̄, µ̄)[1, δq], δq ∈ Cq̄,

∂qg(ν̄, q̄)δq̄ = −∂νg(ν̄, q̄).
(3.28)

Proof. We start by proving that (3.27) implies the second order sufficient optimality condi-
tion. Let (δν, δq) ∈ C(ν̄,q̄). We distinguish two cases for δν: If δν = 0, we use the fact that
the second derivative of g with respect to q has the form ∂2

qg(χ̄)[δq]2 = G′′(ū(1))[i1∂qS(χ̄)δq]2
to obtain

∂2
qL(χ̄, µ̄)[δq]2 ≥ ∂2

q j(χ̄)[δq]2 = αν̄‖δq‖2L2(I×ω), (3.29)

which immediately implies (3.15).

Now, consider the case δν 6= 0. Since the expression on the left in (3.15) is bi-linear in δν,
and the critical cone C(ν̄,q̄) is linear, it suffices to consider the case δν = 1. By minimizing
the expression on the left for admissible δq (such that (1, δq) ∈ C(ν̄,q̄)), writing out the second
derivative in terms of the partial derivatives and dropping constant terms, we arrive at the
following minimization problem:

inf
δq∈Cq̄

1
2∂

2
qL(χ̄, µ̄)[δq]2 + ∂ν∂qL(χ̄, µ̄)[1, δq] subject to ∂qg(χ̄)δq = −∂νg(χ̄). (3.30)

Since (1, δq) ∈ C(ν̄,q̄), we have ∂qg(χ̄)δq = −∂νg(χ̄). Hence, problem (3.30) has admissible
points, and we easily verify existence of a minimizer using the direct method. Moreover, due
to Assumption 3.3 (or using the first order optimality condition ∂νg(χ̄) 6= 0 and linearity
of Cq̄), we have ∂qg(χ̄)Cq̄ = R, which means that a constraint qualification condition (see,
e.g., [166]) is fulfilled. Thus, we obtain the necessary and sufficient optimality conditions of
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3.2. Second order optimality conditions (α > 0)

the convex problem (3.30) in the form (3.28). Hence, for the positivity condition (3.15) we
only have to require that γ̄ > 0, which guarantees

∂2
(ν,q)L(χ̄, µ̄)[1, δq]2 ≥ ∂2

(ν,q)L(χ̄, µ̄)[1, δq̄]2 = γ̄ > 0, (3.31)

for any δq with (1, δq) ∈ C(ν̄,q̄), where δq̄ is the solution to (3.28).

Last, we prove that the second order sufficient optimality condition implies (3.27). As already
observed, (3.28) possesses a unique solution (δq̄, δµ̄) and (1, δq̄) ∈ C(ν̄,q̄). From the second
order sufficient optimality condition we obtain γ̄ > 0.

Remark 3.19. If the non-triviality condition (3.24) is violated, then C(ν̄,q̄) contains elements
of the form (0, δq), only. Hence, the second order sufficient condition is always satisfied for
positive semi-definite G′′(u)[·, ·]. Note that in this degenerate case, the system (3.28) does
not posses a solution, because the second equality cannot be satisfied for δq̄ ∈ Cq̄.

While γ̄ > 0 implies the second order sufficient conditions from Theorem 3.13, it does not
represent the coercivity constant for the second derivative of the Lagrange function as ob-
tained in Theorem 3.14. Instead, we can derive a lower bound on the coercivity constant in
terms of γ̄, which also depends explicitly on α > 0.

Proposition 3.20. Adapt the assumptions of Lemma 3.18 and suppose that γ̄ > 0. Then,
the coercivity constant γ from Theorem 3.14 is bounded from below by

γ ≥ (γ̄/3) min {αν̄/(γ̄ + c1), 1 } ,

where c1 depends on the optimal solution and on α.

Proof. By replacing δq with δq/δν in (3.31) and using linearity we directly obtain

∂2
(ν,q)L(χ̄, µ̄)[δν, δq]2 ≥ γ̄|δν|2 for all (δν, δq) ∈ C(ν̄,q̄).

Furthermore, by using the coercivity of ∂2
qL(χ̄, µ̄) with constant αν̄ and straightforward

estimates (using Young’s inequality), we can derive that

∂2
(ν,q)L(χ̄, µ̄)[δν, δq]2 ≥ αν̄

2 ‖δq‖
2
L2(I×ω) − c1|δν|2 for all (δν, δq),

where c1 =
(
|∂2
νL(χ̄, µ̄)|+ 2‖∂ν∂qL(χ̄, µ̄)‖2/(αν̄)

)
. By taking a convex combination of (1−θ)

times the former and θ times the latter estimate, where θ = (2/3)(γ̄/(γ̄ + c1)), we arrive at

∂2
(ν,q)L(χ̄, µ̄)[δν, δq]2 ≥ ((1− θ)γ̄ − θc1) |δν|2 + θα

2 ‖δq‖
2
L2(I×ω)

≥ γ̄

3

(
|δν|2 + αν̄

γ̄ + c1
‖δq‖2L2(I×ω)

)
for all (δν, δq) ∈ C(ν̄,q̄).

The scalar condition (3.27) still involves the solution of an infinite dimensional problem.
However, the same calculation holds true for the discrete problem, which means that we
can verify the SSC on the discrete level, by computing numerically the constant γ̄ defined in
Lemma 3.18; see Section 5.4. In this regard we also mention [137] on the numerical verification
of second order optimality conditions.
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We can also give a different interpretation of the scalar condition (3.27) in terms of the
curvature of a certain value function with respect to ν. To understand the condition (3.27),
we introduce the value function

V (ν) = min
q∈Qad(0,1)
g(ν,q)=0

j(ν, q) = L(ν, q̄(ν), µ̄(ν)), (3.32)

which is obtained by fixing an arbitrary time ν and resolving the resulting constraint op-
timization problem for the controls. For well posedness of V (·) in a neighborhood of ν̄ we
have to argue that feasible points exist. However, this is the assertion of Proposition 3.12,
provided that Assumption 3.3 holds.

The aim is to show that the value function V is differentiable. For the proof we rely on
established arguments where we refer to [21, Section 5.1] and the review article [20]; cf. also
[67, Proposition 3.16] and [81, Chapter 2]. We first study the stability of the optimal solution
q̄(ν) and the Lagrange multiplier µ̄(ν) with respect to ν associated with the minimization
problem (3.32).

Proposition 3.21. Let Assumption 3.3 hold and assume that G′′(u)[·, ·] is positive semi-
definite for all u ∈ H. There exists δ > 0 such that for all ν1, ν2 ∈ R+ with |νi − ν̄| ≤ δ,
i = 1, 2, we have

‖q̄(ν1)− q̄(ν2)‖L2(I×ω) + |µ̄(ν1)− µ̄(ν2)| = O(|ν1 − ν2|) as |ν1 − ν2| → 0.

Proof. Step 1: Continuity. To begin with, consider the case ν1 = ν and ν2 = ν̄ for some
given ν ∈ R+. Let L(ν, q, µ) = j(ν, q)+µg(ν, q) denote the Lagrange function associated with
the minimization problem (3.32). Since the mapping q 7→ i1S(ν, q) is (affine) linear, positive
semi-definiteness of G′′[·, ·] yields ∂qqg(ν, q)δq2 ≥ 0. Therefore, we have

αν̄‖q − q̄‖2L2(I×ω) ≤ ∂qqL(ν̄, qξ, µ̄)[q − q̄]2

for any qξ ∈ L2(I × ω). Hence, Taylor expansion of L at (ν̄, q̄, µ̄) implies

αν̄

2 ‖q − q̄‖
2
L2(I×ω) ≤ L(ν̄, q, µ̄)− L(ν̄, q̄, µ̄)− ∂qL(ν̄, q̄, µ̄)(q − q̄)

≤ j(ν̄, q)− j(ν̄, q̄),

for all q ∈ Qad(0, 1) such that g(ν̄, q) = 0. Plugging the admissible control q(ν) from Propo-
sition 3.12 into the inequality above and using Lipschitz continuity of j, we obtain

j(ν, q̄(ν))− j(ν̄, q̄) ≤ j(ν, q(ν))− j(ν̄, q̄) = O(|ν − ν̄|),

i.e. q̄(ν) is an ε-optimal solution of order O(|ν − ν̄|). Thus, [21, Proposition 4.41] with the
quadratic growth condition of the unperturbed problem implies

‖q̄(ν)− q̄‖L2(I×ω) = O(|ν − ν̄|1/2) as ν → ν̄.

Step 2: Uniqueness of µ̄(ν). Due to the non-triviality condition, the control q̄ = q̄(ν̄) is not
bang-bang and there exists a subset Λ ⊂ I × ω such that q̄ = (−1/α)B∗z̄ 6= 0 on Λ. Since
ν 7→ q̄(ν) is (Hölder) continuous at ν̄ in L2(I × ω), we have q̄(ν) = −(1/α)B∗z̄(ν) 6= 0 on a
(possibly smaller set) Λ for all ν close to ν̄ using the Theorem of Egorov. If µ is a different
multiplier, then

q̄(ν) = (−1/α)µB∗z = (−1/α)µ̄(z)B∗z,
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3.2. Second order optimality conditions (α > 0)

where z is the adjoint state with terminal value G′(i1S(ν, q̄(ν)))∗. Hence, µ = µ̄(ν).

Step 3: Hölder stability. Arguments similar as above yield

αν2
2 ‖q̄(ν1)− q̄(ν2)‖2L2(I×ω)

≤ L(ν2, q̄(ν1), µ̄(ν2))− L(ν2, q̄(ν2), µ̄(ν2))− ∂qL(ν2, q̄(ν2), µ̄(ν2))(q̄(ν1)− q̄(ν2))
≤ L(ν2, q̄(ν1), µ̄(ν2))− L(ν1, q̄(ν1), µ̄(ν2)) + j(ν1, q̄(ν1))− j(ν2, q̄(ν2)).

Lipschitz continuity of j and g as well as boundedness of µ̄(ν2) imply

L(ν2, q̄(ν1), µ̄(ν2))− L(ν1, q̄(ν1), µ̄(ν2)) ≤ c|ν1 − ν2|.

Moreover, since ν 7→ q̄(ν) is continuous, the non-triviality condition (3.14) for q̄(ν2) used in
Proposition 3.12 is satisfied for ν2 sufficiently close to ν̄. Using the admissible control q(ν1)
from Proposition 3.12, we get

j(ν1, q̄(ν1))− j(ν2, q̄(ν2)) ≤ j(ν1, q(ν1))− j(ν2, q̄(ν2)) = O(|ν1 − ν2|).

Due to [21, Proposition 4.41], we have

‖q̄(ν1)− q̄(ν2)‖L2(I×ω) = O(|ν1 − ν2|1/2).

Step 4: Lipschitz stability. Finally, we would like to apply [21, Theorem 4.51] with G(q, ν) :=
(g(ν, q), q) and constraint K := { 0 }×Qad(0, 1), and verify its assumptions. The non-triviality
condition yields ∂qg(ν, q̄(ν))Q(0, 1) = R. Hence, Robinson’s constraint qualification holds at
the tuple (q̄(ν), ν). Moreover, upper Lipschitz continuity of the multifunction defined in
[21, (4.116)], follows from surjectivity of DG(q̄(ν), ν) and [21, Remark 4.45 (i)]. Last, the
second order condition holds on Q(0, 1) (not only on the approximate critical cone). Since
the Lagrange multiplier µ̄(ν) is unique, the inequality [21, (4.127)] yields the assertion.

In order to show that the value function is differentiable, we require the notion of polyhedricity
that we will introduce next; see, e.g., [21, Definition 3.51].

Definition 3.22. Let K be a closed convex set of a Banach space Y . K is called polyhedric
at x̄ ∈ K, if for any v ∈ NK(x̄) the identity

TK(x̄) ∩ ker v = RK(x̄) ∩ ker v

holds, where NK denotes the normal cone, TK the tangent cone, and

RK(x̄) = { δx ∈ Y : ∃t > 0 such that x̄+ tδx ∈ K }

the radial cone with TK(x̄) = RK(x̄). It is called polyhedric, if it is polyhedric for all x̄ ∈ K.

The radial cone is also referred to as the cone of feasible directions; cf. [33]. In the case of
pointwise control constraints, the set Qad(0, 1) is polyhedric.

Proposition 3.23. Let (ω, %) be a finite measure space. If

Qad :=
{
q ∈ L2(ω) : qa ≤ q ≤ qb a.e. in ω

}
⊂ L∞(ω)

for qa, qb ∈ L∞(ω) with qa < qb almost everywhere, then Qad(0, 1) is polyhedric in L2(I ×ω).
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Proof. Due to TQad(0,1)(q̄) = RQad(0,1)(q̄), the right-hand side in Definition 3.22 is automati-
cally contained in the left-hand side. Let v ∈ NQad(0,1)(q̄) and δq ∈ TQad(0,1)(q̄) ∩ ker v. We
define almost everywhere

δqn =

0 if qa < q̄ < qa + 1/n or qb − 1/n < q̄ < qb,

max{−n,min{n, δq}} else.

Then qn := q̄ + ρnδqn for ρn = min { 1/n2, (qb − qa)/n } satisfies qa ≤ qn ≤ qb almost every-
where in I × ω. Hence, δqn ∈ RQad(0,1)(q̄). Let Λ+ ⊆ I × ω denote the subset where v > 0
and let Λ− ⊆ I × ω denote the subset where v < 0. Inspection of the variational inequality
from the definition of the normal cone, cf., e.g., [147, Lemma 2.26], yields q̄ = qb on Λ+ and
q̄ = qa on Λ− almost everywhere. Therefore, we have δqn ≤ 0 on Λ+ and δqn ≥ 0 on Λ−,
and the same holds for δq. Using the definition of δqn, we infer that δqn ≤ δq a.e. on Λ+ and
−δq ≤ −δqn a.e. on Λ−. Since v ∈ NQad(0,1)(q̄) and δqn ∈ RQad(0,1)(q̄), we deduce

0 ≤ −(v, δqn)L2(I×ω) = −(v, δqn)L2(Λ+) − (v, δqn)L2(Λ−) ≤ −(v, δq)L2(I×ω) = 0,

i.e. δqn ∈ ker v. Since δqn converges pointwise almost everywhere and |δqn| ≤ |δq|, the
dominated convergence theorem implies δqn → δq in L2(I × ω).

With these preparation, we will verify that the value function V is two times differentiable.
Furthermore, the scalar condition (3.27) can be identified with the value of the second deriva-
tive of V at the optimal time ν̄, i.e. the scalar condition (3.27) describes the curvature of the
value function.

Proposition 3.24. Let Assumption 3.3 hold and assume that G′′(u)[·, ·] is positive semi-
definite for all u ∈ H. Then the value function V is two times differentiable in a neighborhood
of ν̄ and the expression

V ′′(ν̄) = ∂2
(ν,q)L(ν̄, q̄, µ̄)[1, δq̄]2

holds, where δq̄ is the solution to (3.28).

Proof. Let ν ∈ R+ and τn ∈ R such that τn → 0. Set νn = ν + τn, q̄n = q̄(νn), and
µ̄n = µ̄(νn). Using Proposition 3.21 we infer that the quotients δqn = τ−1

n (q̄n − q̄(ν)) and
δµn = τ−1

n (µ̄n− µ̄(ν)) are bounded. Thus, by taking a subsequence if necessary, δqn ⇀ δq(ν)
in L2(I × ω) and δµn → δµ(ν).

We would like to apply [21, Theorem 5.10] again with G(q, ν) := (g(ν, q), q) and constraint
K := { 0 } × Qad(0, 1), and verify its assumptions. First, the non-triviality condition yields
∂qg(ν, q̄(ν))Q(0, 1) = R. Therefore, upper Lipschitz continuity of the solution mapping follows
from surjectivity ofDG(q̄(ν), ν) and [21, Remark 4.45 (i)]. According to [21, Proposition 3.76],
the mapping ∂2

(q,µ)L(ν, q̄(ν), µ̄(ν)) is a Legendre form. Furthermore, Robinson’s constraint
qualification holds at q̄(ν), since ∂qg(ν, q̄(ν))Q(0, 1) = R. According to [21, Theorem 5.10],
the weak limit δq(ν) is in fact a strong limit and (δq(ν), δµ(ν)) satisfies a so-called linearized
generalized equality. More specifically, there exists a triple (δq(ν), δµ(ν), δξ(ν)) such that

∂qqL(ν, q̄(ν), µ̄(ν))[δq(ν), ·] + δµ(ν)∂qg(ν, q̄(ν))∗ + ∂νqL(ν, q̄(ν), µ̄(ν))[1, ·] = −δξ(ν),
∂qg(ν, q̄(ν))δq(ν) + ∂νg(ν, q̄(ν)) = 0,

δq(ν) ∈ TQad(0,1)(q̄(ν)),
(ξ(ν), δq(ν))Q(0,1) = 0,

(δξ(ν), δq)Q(0,1) ≤ 0 ∀δq ∈ TQad(0,1)(q̄(ν)) with (ξ(ν), δq)Q(0,1) = 0,
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3.2. Second order optimality conditions (α > 0)

where ξ(ν) is the Lagrange multiplier corresponding to the constraint q̄(ν) ∈ Qad(0, 1). Note
first that for ν = ν̄ we have

Cq̄ = { δq ∈ TQad(0,1)(q̄) : (ξ(ν̄), δq)Q(0,1) = 0 } .

Since the critical cone Cq̄ is a subspace due to strict complementarity, the last condition in
the system above is an equality for ν = ν̄. Hence, this is exactly the linear system (3.28).
Therefore, we deduce

V ′(ν) = lim
n→∞

τ−1
n (V (νn)− V (ν)) = lim

n→∞
τ−1
n (L(νn, q̄n, µ̄n)− L(ν, q̄(ν), µ̄(ν)))

= ∂L(ν, q̄(ν), µ̄(ν))[1, δq(ν), δµ(ν)]
= ∂νL(ν, q̄(ν), µ̄(ν)).

As ν 7→ q̄(ν) and ν 7→ µ̄(ν) are continuous, we infer that V is continuously differentiable.
Turning to the second derivative, the chain rule yields

V ′′(ν) = ∂ννL(ν, q̄(ν), µ̄(ν)) + ∂νqL(ν, q̄(ν), µ̄(ν))[1, δq(ν)] + δµ(ν)∂νg(ν, q̄(ν)).

Therefore, setting ν = ν̄, we obtain the expression

V ′′(ν̄) = ∂ννL(ν̄, q̄, µ̄) + ∂νqL(ν̄, q̄, µ̄)[1, δq̄] + δµ̄∂νg(ν̄, q̄) = ∂2
(ν,q)L(ν̄, q̄, µ̄)[1, δq̄]2,

proving the assertion.

We would like to verify (3.27) numerically, to get at least an indicator, whether a second
order sufficient optimality condition holds. Due to the dimension of the linear system (3.28),
iterative solvers seem to be appropriate for its solution. Hence, we have to efficiently calculate
products of the system (3.28) times (δq, δµ). From the definition of the critical cone and
employing (3.8) we find the condition

0 = µ̄g′(ν̄, q̄)(δν, δq) =
∫ 1

0
〈δν(Bq̄ −Aū) + ν̄Bδq, z̄〉.

Thus, ∂νg(ν̄, q̄) =
∫ 1

0 〈δν(Bq̄ − Aū), z̄〉 and ∂qg(ν̄, q̄)∗ = ν̄B∗z̄. For the second derivative of
the Lagrange function we obtain

∂2
(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 = αν̄‖δq‖2L2(I×ω) + 2α

∫ 1

0
δν(δq, q̄) + µ̄g′′(ν̄, q̄)[δν, δq]2,

with

µ̄g′′(ν̄, q̄)[δν, δq]2 =
∫ 1

0
δν(2Bδq −Aδu, z̄) +

∫ 1

0
(δν(Bq̄ −Aū) + ν̄Bδq, δz̄),

where δu = S′(ν̄, q̄)(δν, δq) and δz̄ is a second adjoint state solving

−∂tδz̄ + ν̄A∗δz̄ = −δνA∗z̄, δz̄(1) = µ̄G′′(ū(1))[δu(1), · ].

Considering the splitting δz̄ = δνẑ + δz̄2, where ẑ solves

−∂tẑ + ν̄A∗ẑ = −A∗z̄, ẑ(1) = 0,

we obtain

−
∫ 1

0
δν(Aδu, z̄) = δν

∫ 1

0
(δu, (−∂t + ν̄A∗) ẑ) = δν

∫ 1

0
(δν(Bq̄ −Aū) + ν̄Bδq, ẑ),
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and∫ 1

0
(δν(Bq̄ −Aū) + ν̄Bδq, δz̄) = µ̄G′′(ū(1))[δu(1)]2 + δν

∫ 1

0
(δν(Bq̄ −Aū) + ν̄Bδq, ẑ).

Let S = (∂t + ν̄A)−1 be the solution operator to the state equation with homogeneous
initial condition. Moreover, let G′′(ū(1)) : H → H denote the operator representation of
G′′(ū(1))[·, ·] and set E = (i1S)∗G′′(ū(1))(i1S). Then

G′′(ū(1))[δu(1)]2 = (E(δν(Bq̄ −Aū) + ν̄Bδq), δν(Bq̄ −Aū) + ν̄Bδq)H
= δν2(E(Bq̄ −Aū), Bq̄ −Aū)H

+ 2δν(E(Bq̄ −Aū), ν̄Bδq)H + ν̄2(EBδq,Bδq)H .

This in summary leads to

∂qqL(ν̄, q̄, µ̄) = αν̄ Id +µ̄ν̄2B∗EB

∂νqL(ν̄, q̄, µ̄)∗ = αq̄ +B∗z̄ + ν̄B∗ (ẑ + µ̄E(Bq̄ −Aū))

∂ννL(ν̄, q̄, µ̄) = µ̄(E(Bq̄ −Aū), Bq̄ −Aū)H + 2
∫ 1

0
(Bq̄ −Aū, ẑ).

For these reasons, the application of ∂qqL(ν̄, q̄, µ̄) to δq can be calculated by solving two
partial differential equations. Given the adjoint state z̄, the application of ∂qg(ν̄, q̄) to δq
can be easily calculated by solving the resulting integral. These expressions directly transfer
to the discrete problems discussed in Chapter 5. Using an iterative solver the corresponding
discrete set of equations to (3.28) can be efficiently evaluated numerically without building
the matrix ∂qqLkh(ν̄kh, q̄kh, µ̄kh). Based on this approach, in Section 5.4 we will eventually
verify the second order sufficient optimality condition on the discrete level.

3.2.4. Local uniqueness of local solutions

In related context it is known that second order sufficient optimality conditions imply local
uniqueness of local solutions. Using similar arguments as in the proof of Theorem 3.13 we
obtain local uniqueness in R×L2(I × ω), if the second order sufficient optimality conditions
for (P̂ ) hold. Note that this does not automatically follow from Taylor’s expansion and the
coercivity condition (3.22), since we formulated the second order condition employing a cone
of critical directions.

Theorem 3.25. Let (ν̄, q̄) ∈ R+×Qad(0, 1) be a local solution of (P̂ ) such that the (qualified)
first order optimality conditions of Lemma 3.1 and the second order sufficient optimality
conditions of Theorem 3.13 hold. Then (ν̄, q̄) is locally unique in the sense of R×L2(I ×ω).

Proof. Suppose that (ν̄, q̄) not locally unique, i.e. there exist locally optimal solutions χ̄n =
(ν̄n, q̄n) ∈ R+ ×Qad(0, 1), n ∈ N, such that (ν̄n, q̄n)→ (ν̄, q̄) = χ̄ in R×Q(0, 1).

Define ρn = ‖(ν̄n − ν̄, q̄n − q̄)‖ and

vn = (vνn, vqn) = 1
ρn

(χ̄n − χ̄).

We may assume w.l.o.g. that vνn → vν in R and vqn ⇀ vq in L2(I × ω).
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Step 0: Preparation. Since ∂νg(χ̄) < 0 according to (3.1), the convergence χ̄n → χ̄, and since
∂νg is continuous, there exists g0 > 0 such that ∂νg(χ̄n) < −g0 for all n sufficiently large,
which is a constraint qualification. Therefore, qualified first order optimality conditions hold
for χ̄n, i.e. there exist multipliers µ̄n > 0 such that

0 = ∂νL(χ̄n, µ̄n) = ∂νj(χ̄n) + µ̄n∂νg(χ̄n).

Clearly, we also have 0 = ∂νL(χ̄, µ̄) = ∂νj(χ̄) + µ̄∂νg(χ̄). Adding both equalities implies

|µ̄− µ̄n| ≤ |∂νg(χ̄)|−1|∂νj(χ̄)− ∂νj(χ̄n)|+ |∂νg(χ̄)− ∂νg(χ̄n)|
|∂νg(χ̄)∂νg(χ̄n)| ∂νj(χ̄n)

≤ c‖χ̄− χ̄n‖, (3.33)

where we have used that ∂νj(χ) =
∫

(1 + α
2 ‖q‖

2).

Step 1: ∂χL(χ̄, µ̄)v = 0. Clearly, since q̄n ∈ Qad(0, 1), it holds ∂χL(χ̄, µ̄)v ≥ 0. To show the
reverse inequality, from the first order optimality conditions

∂χL(χ̄n, µ̄n)(χ− χ̄n) ≥ 0, χ ∈ R×Qad(0, 1),

for χ = χ̄ we obtain

∂χL(χ̄, µ̄)v = ∂χ [L(χ̄, µ̄)− L(χ̄n, µ̄n)] v + ∂χL(χ̄n, µ̄n)v ≤ c (‖χ̄− χ̄n‖+ |µ̄− µ̄n|) ,

which tends to zero as n→∞ due to the estimate (3.33).

Step 2: v ∈ C(ν̄,q̄). As both χ̄n and χ̄ are (locally) optimal, we have

g′(χ̄)v = lim
n→∞

1
ρn

[g(χ̄+ ρnvn)− g(χ̄)] = lim
n→∞

1
ρn

[g(χ̄n)− g(χ̄)] = 0.

Moreover, because the set{
δq ∈ L2(I × ω)

∣∣∣∣∣ δq ≤ 0 if q̄(t, x) = qb(x)
δq ≥ 0 if q̄(t, x) = qa(x)

}
,

is closed and convex, it is in particular weakly closed. Moreover, due to feasibility of qn every
(qn − q̄)/ρn belongs to the set above, so does the weak limit. Thus, v satisfies vq ≤ 0, if
q̄(t, x) = qb(x), and vq ≥ 0, if q̄(t, x) = qa(x). For this reason, (3.6) implies∫ 1

0

∫
ω
ν̄(αq̄ +B∗z̄)vq dx dt =

∫ 1

0

∫
ω
ν̄|(αq̄ +B∗z̄)vq| dx dt.

Moreover, due to ∂χL(χ̄, µ̄)v = 0 and the first order necessary condition ∂νL(χ̄, µ̄) = 0 we
have the equality

0 = ∂qL(χ̄, µ̄)vq =
∫ 1

0
ν̄(αq̄ +B∗z̄, vq)L2(ω) dt =

∫ 1

0

∫
ω
ν̄|(αq̄ +B∗z̄)vq| dx dt.

Hence, vq = 0, if αq̄(t, x) +B∗z̄(t, x) 6= 0, and vq satisfies the sign condition (3.11) as well.

Step 3: v = 0. Employing Taylor expansion of L we find

0 = ∂χ [L(χ̄n, µ̄)− L(χ̄, µ̄)] (χ̄n − χ̄)− ∂2
χL(χ̆n, µ̄)[χ̄n − χ̄]2
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with some appropriate χ̌n satisfying χ̌n → χ̄ as n→∞. Using the optimality conditions for
χ̄n and χ̄, i.e.

∂χL(χ̄, µ̄)(χ̄n − χ̄) ≥ 0, ∂χL(χ̄n, µ̄n)(χ̄− χ̄n) ≥ 0,

we find
0 ≤ ∂χ [L(χ̄n, µ̄)− L(χ̄n, µ̄n)] (χ̄n − χ̄)− ∂2

χL(χ̌n, µ̄)[χ̄n − χ̄]2

Thus, adding ∂2
χL(χ̄, µ̄) and dividing by ρ2

n we arrive at

∂2
χL(χ̄, µ̄)v2

n ≤ ρ−1
n ∂χ [L(χ̄n, µ̄)− L(χ̄n, µ̄n)] vn + ∂2

χ [L(χ̄, µ̄)− L(χ̌n, µ̄)] v2
n. (3.34)

For the first term of the right-hand side of (3.34) we have

ρ−1
n ∂χ [L(χ̄n, µ̄)− L(χ̄n, µ̄n)] vn = ρ−1

n (µ̄− µ̄n)g′(χ̄n)vn
= ρ−1

n (µ̄− µ̄n)
[
g′(χ̄) + (g′(χ̄n)− g′(χ̄))

]
vn → 0,

using again the estimate (3.33), the fact that g′(χ̄)v = 0 (step 1), and convergence χ̄n → χ̄
with continuity of g′. In summary, inequality (3.34), weak lower semicontinuity of ∂2

χL(χ̄, µ̄),
and continuity of ∂2

χL yield

∂2
χL(χ̄, µ̄)v2 ≤ lim inf

n→∞
∂2
χL(χ̄, µ̄)v2

n ≤ 0.

The second order sufficient optimality condition implies v = 0.

Step 4: Final contradiction. Using ‖(vνn, vqn)‖ = 1 and vν → 0 we obtain

0 < αν̄ = αν̄ lim inf
n→∞

‖(vνn, vqn)‖2 = αν̄ lim inf
n→∞

‖vqn‖
2
L2(I×ω) = lim inf

n→∞
α

∫ 1

0
ν̄‖vqn(t)‖2L2(ω) dt.

Using the specific structure of j′′, we see that

lim inf
n→∞

α

∫ 1

0
ν̄‖vqn(t)‖2L2(ω) dt = lim inf

n→∞
j′′(χ̄)[vνn, vqn]2.

Thus, employing Corollary 3.9 we conclude that

0 < lim inf
n→∞

j′′(χ̄)[vνn, vqn]2 ≤ lim inf
n→∞

j′′(χ̄)[vνn, vqn]2 + µ̄ lim inf
n→∞

g′′(χ̄)[vνn, vqn]2

≤ lim inf
n→∞

∂2
χL(χ̄, µ̄)[vνn, vqn]2 ≤ 0,

where we have used again (3.34) in the last inequality.

3.3. Sufficient optimality conditions for bang-bang controls (α = 0)

After the discussion of second order optimality conditions for a fixed cost parameter α > 0,
we now turn to the case of variable α that typically leads to bang-bang controls in the limit
case α→ 0. For α ≥ 0 we introduce the regularized and transformed problem

inf
ν∈R+

q∈Qad(0,1)

jα(ν, q) subject to g(ν, q) ≤ 0, (P̂α)

where the objective function is given by

jα(ν, q) = ν

(
1 +

∫ 1

0

α

2 ‖q‖
2
L2(ω)

)
.
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As before L(ν, q, µ) := jα(ν, q) + µ g(ν, q) denotes the Lagrange function associated to (P̂α).
In order to simplify the notation, we neglect the α-dependence in the symbol L.

Let (ν̄, q̄) ∈ R+×Qad(0, 1) be a locally optimal solution for (P̂α) with α = 0. Then, from the
optimality conditions of Lemma 3.1 we infer

q̄(t, x) =

qa(x) if (B∗z̄)(t, x) > 0,
qb(x) if (B∗z̄)(t, x) < 0,

and

(B∗z̄)(t, x)


≥ 0 if q̄(t, x) = qa(x),
≤ 0 if q̄(t, x) = qb(x),
= 0 if qa(x) < q̄(t, x) < qb(x).

(3.35)

In this section we are interested in the case when q̄ is a bang-bang control. If

|{ (t, x) ∈ I × ω : (B∗z̄)(t, x) = 0 }| = 0, (3.36)

where |·| denotes the measure associated with I × ω, then from the first order necessary op-
timality condition (3.35) we conclude that the control q̄ is bang-bang. The condition (3.36)
on the set of zeros can be deduced from a backwards uniqueness property. For example, if Ω
is a bounded domain, A = −∆ equipped with homogeneous Dirichlet boundary conditions,
and B : L2(ω) → L2(Ω) for ω ⊂ Ω open is the extension by zero operator, then the back-
wards uniqueness property is valid; see Holmgren’s uniqueness theorem [79, Theorem 5.3.3]
or [105]. The bang-bang property for time-optimal control problems subject to parabolic
partial differential equations has been extensively studied; see, e.g., [88, 96, 157].

Note that if (3.36) holds, then the critical cone used in the formulation of the second order
necessary and sufficient optimality conditions in the preceding section is trivial, i.e. C(ν̄,q̄) =
{ (0, 0) }. This immediately follows from Proposition 3.15, because (3.36) and the bang-bang
property imply the strict complementarity condition (3.23). Therefore, the second order
sufficient optimality condition from Theorem 3.13 is vacuously true and does not provide any
additional information.

However, it should be noted that global uniqueness of a solution can still be guaranteed.
First, in view of j(ν, q) = ν due to α = 0, the optimal time T = ν̄ is unique. Concerning the
control variable, we can state the following criterion.

Proposition 3.26. Let G be convex and (ν̄, q̄) ∈ R+×Qad(0, 1) be a global solution to (P̂0).
Suppose that C(ν̄,q̄) = { 0 }. Then (ν̄, q̄) is globally unique.

Proof. As already noted ν̄ is uniquely determined because of α = 0. Let (ν̄, q) ∈ R+ ×
Qad(0, 1) be another global solution to (P̂0). We set qλ = λq + (1 − λ)q̄ for λ ∈ [0, 1].
Convexity of G and linearity of the control-to-state mapping (for fixed ν̄) imply

g(ν̄, qλ) ≤ λg(ν̄, q) + (1− λ)g(ν̄, q̄) = 0.

Hence, qλ is also feasible for (P̂0). Moreover, a simple contradiction argument shows that qλ
is also optimal for (P̂0). In particular, g(ν̄, qλ) = 0. Therefore,

∂qL(ν̄, q̄, µ̄)(q − q̄) = lim
λ∈(0,1]
λ→0

1
λ

[L(ν̄, qλ, µ̄)− L(ν̄, q̄, µ̄)] = 0.
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Hence, q − q̄ satisfies the sign condition (3.11), because q ∈ Qad(0, 1). Moreover,

∂qg(ν̄, q̄)(q − q̄) = lim
λ∈(0,1]
λ→0

1
λ

[g(ν̄, qλ)− g(ν̄, q̄)] = 0.

Thus, g′(ν̄, q̄)(0, q − q̄) = 0 and we conclude that (0, q − q̄) ∈ C(ν̄,q̄). Since the critical cone is
supposed to be trivial, this implies q = q̄.

Alternatively, if the terminal value of the adjoint state equation is unique, then from (3.36)
we deduce uniqueness of the control variable. Uniqueness of the terminal value for the adjoint
state equation can be shown for certain problems, e.g., employing a dual problem such as in
[160, Theorem 3.2].

However, to quantify local uniqueness we require an additional condition. To this end, in
this section we assume that there are constants C > 0 and κ > 0 such that the adjoint state
z̄ satisfies

|{ (t, x) ∈ I × ω : − ε ≤ (B∗z̄)(t, x) ≤ ε }| ≤ Cεκ for all ε > 0. (3.37)
Note that the structural assumption (3.37) (that is sometimes also referred to as measure
condition, see, e.g., [44, Assumption 7]) is a strengthening of the condition (3.36) that ensures
the bang-bang property. We collect situations where (3.37) is guaranteed to hold and relate
it to similar conditions from the literature.

Remark 3.27. (i) Similar assumptions on the adjoint state as in (3.37) have been used
in related contexts; see, e.g., [36, 37, 44, 47, 145, 152, 155, 156] for PDE-constrained
optimization problems. In the context of optimal control problems with ODEs, one
typically assumes that the differentiable switching function σ : I → R has only finitely
many zeros with nonvanishing first derivatives; see, e.g., [55, 113]. Condition (3.37) can
be considered to be a generalization to the distributed control case. Furthermore, (3.37)
is a strengthened complementarity condition.

(ii) If B∗z̄ ∈ C1(I × ω) and if there exists a constant c > 0 such that

|∇(t,x)B
∗z̄(t, x)| ≥ c

for all (t, x) ∈ I×ω such that B∗z̄(t, x) = 0, then the condition (3.37) holds with κ = 1;
see [47, Lemma 3.2].

(iii) Condition (3.37) is also compatible with purely time-dependent controls; see Exam-
ple 3.8. In this case ω would be a discrete set equipped with the counting measure
and the control operator is defined by Bq =

∑Nc
i=1 qiei, where ei ∈ V ∗ are given form

functions. The adjoint operator of B is (B∗ϕ)i = 〈ei, ϕ〉 for i = 1, 2 . . . , Nc. Hence, the
measure condition (3.37) can be written as

Nc∑
i=1
|{ t ∈ I : |(B∗z̄(t))i| ≤ ε }| ≤ Cεκ.

(iv) Consider the case of purely time-dependent controls and suppose B∗z̄ 6= 0 (otherwise
(3.36) is clearly violated). Since −A generates an analytic semigroup e−·A, the function
t 7→ (B∗z̄(t))i can have only finitely many zeros on the interval (0, 1−ε) for all ε ∈ (0, 1).
However, these zeros may accumulate at t = 1. If e−·A is an analytic group, then
(B∗z̄(t))i is analytic on R. Consequently it can have only finitely many zeros and not
all derivatives vanish. Therefore, there is κ > 0 such that (3.37) is satisfied; cf. also [88,
Theorem 1.1].
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(v) For a particular situation we can verify (3.37) also in the case that −A is the infinitesimal
generator of a semigroup. Suppose that z̄(1) =

∑n
j=1 vj with Avj = λjvj , vj ∈ V , and

λj ∈ R. Employing [128, Lemma 2.2.2], for purely time-dependent controls as considered
in Example 3.8 we obtain

(B∗z̄(t))i =
n∑
j=1

eλjt〈ei, vj〉, i = 1, 2, . . . , Nc.

Since t 7→ (B∗z̄(t))i is analytic, it can have only finitely many zeros and not all deriva-
tives vanish. Thus, there is κ > 0 such that (3.37) is satisfied.

3.3.1. Sufficient optimality conditions

We will show that (3.37) is sufficient for optimality of (ν̄, q̄). Throughout this section, we
suppose the following assumption to hold.

Assumption 3.4. The function G : H → R is twice continuously Fréchet-differentiable. In
addition, we assume that

G′′(u)δu2 ≥ 0 for all u, δu ∈ H.

The proof of sufficiency of the structural assumption for a pair (ν̄, q̄) to be locally optimal
will rely on the following observation.

Proposition 3.28. Let (ν̄, q̄, µ̄) ∈ R+ × Qad(0, 1) × R+ and (3.37) hold. Then there is a
constant c0 > 0 such that

∂qL(ν̄, q̄, µ̄)(q − q̄) ≥ c0ν̄‖q − q̄‖1+1/κ
L1(I×ω) for all q ∈ Qad(0, 1). (3.38)

Proof. The proof is along the lines of [37, Proposition 2.7] and we give it for convenience of
the reader. For q ∈ Qad(0, 1), set

ε :=
(
2‖qb − qa‖L∞(ω)C

)−1/κ
‖q − q̄‖1/κL1(I×ω)

and Eε := { (t, x) ∈ I × ω : |B∗z̄(t, x)| ≥ ε }. Then due to (3.35) we see that

∂qL(ν̄, q̄, µ̄)(q − q̄) = ν̄

∫ 1

0

∫
ω
(q − q̄)B∗z̄ = ν̄

∫ 1

0

∫
ω
|q − q̄||B∗z̄| ≥ ν̄

∫
Eε
|q − q̄||B∗z̄|

≥ εν̄‖q − q̄‖L1(Eε) = εν̄
(
‖q − q̄‖L1(I×ω) − ‖q − q̄‖L1((I×ω)\Eε)

)
.

According to (3.37) we have |(I × ω) \ Eε| ≤ Cεκ. Hence,

‖q − q̄‖L1((I×ω)\Eε) ≤ ‖qb − qa‖L∞(ω)Cε
κ.

Therefore, we arrive at

∂qL(ν̄, q̄, µ̄)(q − q̄) ≥ εν̄
(
‖q − q̄‖L1(I×ω) − ‖q − q̄‖L1((I×ω)\Eε)

)
≥ εν̄

(
‖q − q̄‖L1(I×ω) − ‖qb − qa‖L∞(ω)Cε

κ
)

= εν̄

2 ‖q − q̄‖L1(I×ω) = c0ν̄‖q − q̄‖1+1/κ
L1(I×ω)

with c0 = 1
2

(
2‖qb − qa‖L∞(ω)C

)−1/κ
.
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Definition 3.29. The tuple (ν̄, q̄) ∈ R+ ×Qad(0, 1) is called a local solution in the sense of
L1 with radius ε > 0 for (P̂0), if the inequality

ν̄ ≤ ν

holds for all admissible tuple (ν, q) ∈ R+ ×Qad(0, 1) with |ν − ν̄|+ ‖q − q̄‖L1(I×ω) ≤ ε.

The structural assumption of the adjoint state allows to prove the following growth condition
without two norm discrepancy. We emphasize that due to the particular objective functional
we do not require any additional assumption such as a condition on the second derivative of
the Lagrange function; cf. [28, Theorem 2.2] and [37, Theorem 2.8].

Theorem 3.30. Let (ν̄, q̄, µ̄) ∈ R+×Qad(0, 1)×R+ satisfy the first order necessary optimality
conditions of Lemma 3.1. Assume that the associated adjoint state satisfies the structural
assumption (3.37). Then there are constants ε > 0 and c > 0 such that the growth condition

c‖q − q̄‖1+1/κ
L1(I×ω) ≤ ν − ν̄ [= j0(ν, q)− j0(ν̄, q̄)] (3.39)

holds for all admissible (ν, q) ∈ R+ ×Qad(0, 1) with |ν − ν̄| ≤ ε.

Note that a localization with respect to q is implicitly contained in Theorem 3.30, due to

c‖q − q̄‖1+1/κ
L1(I×ω) ≤ ν − ν̄ ≤ ε.

To prove the result, we first observe that under Assumption 3.4 the second derivative of the
Lagrange function can be bounded from below as follows.

Proposition 3.31. Let (ν̄, q̄) ∈ R+ ×Qad(0, 1), µ̄ > 0, and 0 < νmin < νmax. There is c > 0
such that

∂2
(ν,q)L(νξ, qξ, µ̄)[ν − ν̄, q − q̄]2 ≥ −c|ν − ν̄|2 − c|ν − ν̄|‖q − q̄‖L2(I×ω)

for all ν, νξ ∈ R+, q, qξ ∈ Qad(0, 1) with νmin ≤ ν, νξ ≤ νmax.

Proof. Set δν = ν − ν̄ and δq = q − q̄. Define u = S(νξ, qξ), δu = S′(νξ, qξ)(δν, δq), and
δũ = S′′(νξ, qξ)[δν, δq]2. Moreover, let zξ be the corresponding adjoint state with terminal
value µ̄G′(uξ(1))∗. Then we observe

µ̄G′(u(1))δũ(1) = (zξ(1), δũ(1))− (zξ(0), δũ(0))

=
∫ 1

0
〈∂tδũ, zξ〉+

∫ 1

0
〈∂tzξ, δũ〉 =

∫ 1

0
〈∂tδũ, zξ〉+

∫ 1

0
〈ν̄Aδũ, zξ〉

= 2δν
∫ 1

0
〈Bδq −Aδu, zξ〉dt.

Thus, because α = 0, and using Assumption 3.4 on G′′, we find

∂2
(ν,q)L(νξ, qξ, µ̄)[δν, δq]2 = µ̄G′′(uξ(1))[δu(1)]2 + 2δν

∫ 1

0
〈Bδq −Aδu, zξ〉 dt

≥ −2|δν|
∫ 1

0
|〈Bδq −Aδu, zξ〉|dt.
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3.3. Sufficient optimality conditions for bang-bang controls (α = 0)

The Cauchy-Schwarz inequality and the stability estimates for u, δu, and z, see Proposi-
tion A.26, further imply

∂2
(ν,q)L(νξ, qξ, µ̄)[δν, δq]2 ≥ −|δν|

(
‖Bδq‖L2(I;V ∗) + ‖δu‖L2(I;V )

)
‖zξ‖L2(I;V )

≥ −c|δν|
(
‖Bδq‖L2(I;V ∗) + |δν|

νξ

(
‖Bqξ‖L2(I;V ∗) + ‖uξ‖L2(I;V )

)) µ̄
√
νξ
‖G′(uξ(1))∗‖H .

Since qξ is uniformly bounded due to boundedness of Qad(0, 1) as well as νξ is uniformly
bounded from below and from above, there exists a constant c > 0 such that

∂2
(ν,q)L(νξ, qξ, µ̄)[δν, δq]2 ≥ −c|δν|2 − c|δν|‖δq‖L2(I×ω)

proving the assertion.

Proof of Theorem 3.30. Let (ν, q) ∈ R+ × Qad(0, 1) be admissible with |ν − ν̄| ≤ ν̄/2. Set
δν = ν − ν̄ and δq = q− q̄. Using feasibility of (ν, q), the fact that µ̄ > 0 from the first order
necessary optimality conditions for (ν̄, q̄), as well as Taylor expansion we find

ν − ν̄ = j0(ν, q)− j0(ν̄, q̄) ≥ j0(ν, q) + µ̄g(ν, q)− (j0(ν̄, q̄) + µ̄g(ν̄, q̄))
= L(ν, q, µ̄)− L(ν̄, q̄, µ̄)

= ∂(ν,q)L(ν̄, q̄, µ̄)(δν, δq) + 1
2∂

2
(ν,q)L(νξ, qξ, µ̄)[δν, δq]2,

with appropriate νξ = ν̄+ ξν(ν− ν̄) and qξ = q̄+ ξq(q− q̄) for 0 ≤ ξν , ξq ≤ 1. Thus, according
to Proposition 3.31 there is c1 > 0 such that

ν − ν̄ ≥ ∂(ν,q)L(ν̄, q̄, µ̄)(δν, δq)− c1|δν|2 − c1|δν|‖δq‖L2(I×ω).

Since ∂νL(ν̄, q̄, µ̄) = 0 and using Proposition 3.28, this further implies

ν − ν̄ ≥ c0ν̄‖q − q̄‖1+1/κ
L1(I×ω) − c1|δν|2 − c1|δν|‖δq‖L2(I×ω).

Applying Young’s inequality to the last term with p = 2 + 2/κ and p′ = p/(p− 1) yields

|δν|‖δq‖L2(I×ω) ≤
1
p′

( |δν|
ε

)p′
+ εp

p
‖δq‖2+2/κ

L2(I×ω)

for any ε > 0. Clearly, we have

‖δq‖L2(I×ω) ≤ ‖δq‖
1/2
L∞(I×ω)‖δq‖

1/2
L1(I×ω) ≤ ‖qb − qa‖

1/2
L∞(ω)‖δq‖

1/2
L1(I×ω).

Choosing ε = (c0ν̄p/(2c1))1/p ‖qb − qa‖
−1/2
L∞(ω) we obtain

c1|δν|‖δq‖L2(I×ω) ≤ c2|δν|p
′
+ c0ν̄

2 ‖δq‖
1+1/κ
L1(I×ω),

where c2 > 0 is a new constant only depending on the quantities c0, c1, κ, qa, and qb. Hence,
it follows that

δν + c2|δν|p
′
+ c1|δν|2 ≥

c0ν̄

2 ‖q − q̄‖
1+1/κ
L1(I×ω).

For |δν| ≤ min { (3c1)−1, (3c2)−1/(p′−1) } we deduce that

δν + 2
3 |δν| ≥

c0ν̄

2 ‖q − q̄‖
1+1/κ
L1(I×ω),

which in particular implies that ν − ν̄ = δν ≥ 0 and we conclude the growth condition with
ε = min { ν̄/2, (3c1)−1, (3c2)−1/(p′−1) } and c = 3c0ν̄/10.
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3.3.2. Stability analysis with respect to α

Last, we discuss the stability of (P̂0) with respect to the regularization parameter α. Let a
locally optimal solution (ν̄, q̄) of (P̂0), i.e. with α = 0 be given. We would like to approximate
this solution by locally optimal solutions (ν̄α, q̄α) for (P̂α) with regularization parameter
α > 0. Of course, we are interested in estimating the order of convergence.

Proposition 3.32. Let (ν̄, q̄) be a globally optimal solution to (P̂0) and (ν̄α, q̄α) be a globally
optimal solution to (P̂α) for some α > 0. Then

0 ≤ ν̄α − ν̄ ≤
ν̄

2CQad α, (3.40)

where CQad = maxq∈Qad‖q‖
2
L2(ω).

Proof. Since ν̄ is globally optimal for (P̂0), we infer ν̄ ≤ ν̄α. Similarly, as (ν̄α, q̄α) is globally
optimal for (P̂α), we have

ν̄α ≤ jα(ν̄α, q̄α) ≤ jα(ν̄, q̄) = ν̄

(
1 + α

2

∫ 1

0
‖q̄‖2L2(ω)

)
.

Combining both estimates yields

ν̄α ≤ ν̄
(

1 + α

2

∫ 1

0
‖q̄‖2L2(ω)

)
≤ ν̄

(
1 + α

2CQad
)
,

where CQad = maxq∈Qad‖q‖
2
L2(ω), from which we conclude (3.40).

Proposition 3.33. Let {(ν̄α, q̄α)}α>0 be a sequence of global solutions of (P̂α). Then ν̄α → ν̄
in R+ and q̄α → q∗ in Lr(I × ω) as α → 0 for some q∗ ∈ Qad(0, 1) and any r ∈ [1,∞).
Moreover, the pair (ν̄, q∗) is a global solution of (P̂0).

Proof. From Proposition 3.32 we immediately infer ν̄α → ν̄. Moreover, due to boundedness
of q̄α in Qad(0, 1), there is a subsequence, denoted in the same way for simplicity, such that
q̄α ⇀ q∗ in Ls(I ×ω) with some fixed s > 2 and q∗ ∈ Qad(0, 1). In the last step we have used
sequentially compactness of Qad(0, 1) with respect to the weak star topology.

Employing feasibility of (ν̄α, q̄α) for (P̂α), i.e. g(ν̄α, q̄α) ≤ 0, we find

g(ν̄, q∗) ≤ g(ν̄α, q̄α) + |g(ν̄, q∗)− g(ν̄α, q̄α)| = |g(ν̄, q∗)− g(ν̄α, q̄α)|.

Hence, complete continuity of the mapping (ν, q) 7→ i1S(ν, q), see Proposition A.20, and
passing to the limit α → 0 imply feasibility of the pair (ν̄, q∗) for (P̂0). In summary, (ν̄, q∗)
is a global solution of (P̂0) and it remains to verify the convergence.

Since (ν̄, q∗) is also feasible for (P̂α), we infer

ν̄α

(
1 + α

2

∫ 1

0
‖q̄α‖2L2(ω)

)
= jα(ν̄α, q̄α) ≤ jα(ν̄, q∗) = ν̄

(
1 + α

2

∫ 1

0
‖q∗‖2L2(ω)

)
.

Because ν̄ ≤ ν̄α, the above estimate implies∫ 1

0
‖q̄α‖2L2(ω) ≤

∫ 1

0
‖q∗‖2L2(ω).
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Using weak lower semicontinuity we obtain∫ 1

0
‖q∗‖2L2(ω) ≤ lim inf

α→0

∫ 1

0
‖q̄α‖2L2(ω) ≤ lim sup

α→0

∫ 1

0
‖q̄α‖2L2(ω) ≤

∫ 1

0
‖q∗‖2L2(ω).

This gives
∫ 1

0 ‖q̄α‖
2
L2(ω) →

∫ 1
0 ‖q∗‖

2
L2(ω) as α → 0, which implies q̄α → q∗ in L2(I × ω) due to

weak convergence. The convergence result in Lr(I × ω) for r ∈ [1,∞) follows from Hölder’s
inequality and the control constraints.

Theorem 3.34. Let (ν̄, q̄) be a local solution to (P̂0) and suppose that there exist constants
ε > 0, c > 0, and κ > 0 such that the growth condition

c‖q − q̄‖1+1/κ
L1(I×ω) ≤ ν − ν̄, (3.41)

holds for all admissible (ν, q) ∈ R+ ×Qad(0, 1) with |ν − ν̄|+ ‖q − q̄‖L1(I×ω) ≤ ε. Then there
are constants α0, c > 0, and a sequence of local solutions {(ν̄α, q̄α)}α>0 of (P̂α) such that

0 ≤ ν̄α − ν̄ ≤ cα and ‖q̄α − q̄‖L1(I×ω) ≤ cα
κ

for all 0 < α ≤ α0.

Proof. We apply a localization argument, cf. [32], and introduce the auxiliary problem

inf
να∈R+

qα∈Qad(0,1)

jα(να, qα) subject to

 g(να, qα) ≤ 0,
|να − ν̄|+ ‖qα − q̄‖L1(I×ω) ≤ ρ,

(3.42)

where ρ = ε > 0 is from the growth condition (3.41). Noting that g(ν̄, q̄) = 0, i.e. the
admissible set for (3.42) is nonempty, existence of at least one solution (ν̄ρα, q̄ρα) to (3.42) follows
by standard arguments. Moreover, similar as in the proofs of Propositions 3.32 and 3.33 one
can verify that

0 ≤ ν̄ρα − ν̄ ≤ cα,

and q̄ρα → q∗ in L1(I×ω) for some q∗ ∈ Qad(0, 1). Hence, the growth condition (3.41) implies

‖q∗ − q̄‖L1(I×ω) ≤ ‖q
∗ − q̄ρα‖L1(I×ω) + ‖q̄ρα − q̄‖L1(I×ω)

≤ ‖q∗ − q̄ρα‖L1(I×ω) + c (ν̄ρα − ν̄)κ/(1+κ)

≤ ‖q∗ − q̄ρα‖L1(I×ω) + cακ/(1+κ) → 0

as α → 0. This clearly forces q∗ = q̄. Therefore, for α > 0 sufficiently small the auxiliary
constraint in (3.42) is not active and (ν̄ρα, q̄ρα) is a local solution to (P̂α), so that we will omit
the additional super-index ρ in the following.

Using again the growth condition and feasibility of (ν̄, q̄) for (P̂α), we find

c‖q̄α − q̄‖1+1/κ
L1(I×ω) + α

2 ν̄α
∫ 1

0
‖q̄α‖2L2(ω) ≤ ν̄α − ν̄ + α

2 ν̄α
∫ 1

0
‖q̄α‖2L2(ω) = jα(ν̄α, q̄α)− ν̄

≤ jα(ν̄, q̄)− ν̄ = α

2 ν̄
∫ 1

0
‖q̄‖2L2(ω).
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Thus, since ν̄ ≤ ν̄α, we obtain

c‖q̄α − q̄‖1+1/κ
L1(I×ω) ≤

α

2

(
ν̄

∫ 1

0
‖q̄‖2L2(ω) − ν̄α

∫ 1

0
‖q̄α‖2L2(ω)

)
≤ α

2 ν̄α
(∫ 1

0
‖q̄‖2L2(ω) −

∫ 1

0
‖q̄α‖2L2(ω)

)
= α

2 ν̄α
∫ 1

0
(q̄ + q̄α, q̄ − q̄α) ≤ cα‖q̄α − q̄‖L1(I×ω),

where we have used Hölder’s inequality and that q̄α, q̄ ∈ Qad(0, 1) ⊂ L∞(I ×ω) with uniform
bound independent of α in the last inequality.
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4. Optimization algorithms

This chapter is devoted to the theoretical and practical aspects concerning the numerical
solution of the time-optimal control problem (P ). We consider the general formulation of
Chapter 2, where we in addition restrict ourselves to the choice

L(q) = α

2 ‖q‖
2
Q for α ≥ 0.

In the case α > 0, the resulting problems can be solved by standard methods. Therefore, in
Section 4.1 we will only discuss one method, namely the augmented Lagrangian method to
deal with the state constraint. For the particular case that U is the sublevel set of a smooth
function G, i.e.

U = {u ∈ H : G(u) ≤ 0 } ,

we will prove convergence of the augmented Lagrangian method under certain assumptions.
Here, we essentially follow the presentation from [81, Chapter 3]. For the subproblems aris-
ing in the augmented Lagrangian method we will briefly discuss a bilevel optimization and a
monolithic approach; cf. [92, 93]. Since all algorithms will be analyzed in a function space set-
ting, we expect that appropriate realizations of the algorithms will show mesh independence,
i.e. the number of iterations is essentially independent of the number of degrees of freedom
of a concrete discretization. The discretization of the state and adjoint state equations by
means of the Galerkin method will be discussed in detail in Chapter 5.

In order to solve the time-optimal control problem in the case α = 0, a straightforward
approach consists in solving the regularized problems for a monotonically decreasing sequence
of regularization parameters α1 > α2 > . . . > 0 such that limn→∞ αn = 0. In view of the
stability results from Section 3.3.2, the corresponding solutions to the regularized problems
converge to a solution of the original problem. However, with decreasing values of αn the
associated problems become computationally very expensive. To this end, in Section 4.2 we
will discuss a different approach that relies on a certain equivalence of minimal time and
minimal distance controls. This allows for a reformulation of (P ), where we can separate
the nonconvex influence of T and the convex structure of the remaining problem. Leading
again to a bilevel optimization problem, we will discuss different methods for the numerical
treatment of the outer and inner minimization problems. Numerical examples indicate that
the resulting algorithm is capable to solve the problem up to high precision in reasonable time.
Thus, it seems to be at least competitive with the regularization strategy. The equivalence of
minimal time and minimal distance controls can be related to the equivalence of minimal time
and minimal norm controls that is well-known in the literature; see, e.g, [54, 62, 89, 160]. In
[160, Remark 3.3] the latter equivalence has been proposed for the algorithmic treatment of
time-optimal control problems. Inspired by [160], an algorithm based on the bisection method
for the numerical solution of time-optimal control problems subject to ordinary differential
equations has been discussed in [109]. However, to the best of the authors knowledge an
algorithm for the setting subject to partial differential equations has not been studied so far.
We will compare these different approaches concerning the bang-bang case at the end of the
chapter.
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4.1. Optimization algorithms for α > 0

In this section we discuss the algorithmic solution of (P ) in the case α > 0 by means of
the augmented Lagrangian method. For the following considerations, we suppose that the
terminal set U can be expressed as a sublevel set of a two times continuously differentiable
function G : H → R, precisely,

U = {u ∈ H : G(u) ≤ 0 } .

As before, we use g(ν, q) = G(i1S(ν, q)) for (ν, q) ∈ R+×Qad(0, 1) to denote the reduced ter-
minal constraint. Furthermore, we generally suppose that (ν̄, q̄) ∈ R+×Qad(0, 1) is a locally
optimal solution to (P̂ ) that satisfies the qualified optimality conditions of Lemma 3.1.

4.1.1. Augmented Lagrangian method

The augmented Lagrangian method has been introduced by Hestenes [75] and Powell [133].
It can be seen as a hybrid method combining the multiplier and the penalty method. For
any c > 0, we define the augmented Lagrangian as

Lc(ν, q, µ) = j(ν, q) + µg(ν, q) + c

2 |g(ν, q)|2.

Let c• ≥ 0 be fixed. Consider a sequence (cn)n∈N of nondecreasing penalty parameters to be
specified later such that cn ≥ c•. In each iteration, for µn−1 from the previous iteration, we
determine (νn, qn) as the solution to

minLcn(ν, q, µn−1) subject to (ν, q) ∈ R+ ×Qad(0, 1). (4.1)

Clearly, for the choice µn−1 = 0 we obtain the quadratic penalty method and for cn = 0
the multiplier method. The advantage of the augmented Lagrangian method over penalty
methods is that it avoids the necessity of increasing the penalization parameter cn to infinity,
which typically leads to ill-conditioning of the involved problems. The Lagrange multiplier
is updated by the rule

µn = µn−1 + (cn − c•)g(νn, qn).

We summarize the resulting method in Algorithm 1.

Algorithm 1: Augmented Lagrangian method
Choose µ0 > 0 and set n = 1;
do

Find a solution (νn, qn) to

minLcn(ν, q, µn−1) subject to (ν, q) ∈ R+ ×Qad(0, 1)

Update µn = µn−1 + (cn − c•)g(νn, qn) and set n = n+ 1;
while |g(νn, qn)| > εtol;

The augmented Lagrangian method has been extensively studied in the context of finite di-
mensional problems; see in addition to the references given above [14, 15] and [57, Chapter 1].
For the infinite dimensional case we can refer to [131, 142] as well as the monographs [57,
Chapter 3] and [81, Chapter 3]. We have the following convergence result.
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Proposition 4.1. Suppose there are c• ≥ 0, ε > 0, and δ > 0 such that the quadratic growth
condition

j(ν̄, q̄) + δ

2 |ν − ν̄|
2 + δ

2‖q − q̄‖
2
Q(0,1) ≤ Lc•(ν, q, µ̄)

holds for all (ν, q) ∈ R+ × Qad(0, 1) such that |ν − ν̄|2 + ‖q − q̄‖2Q(0,1) ≤ ε. Consider a
sequence of penalty parameters with cn > c•. Let (νn, qn) and µn be defined by the augmented
Lagrangian method and suppose that |νn − ν̄|2 + ‖qn − q̄‖2Q(0,1) ≤ ε. Then for any n ≥ 1 and
σn = cn − c• the estimate

δ|νn − ν̄|2 + δ‖qn − q̄‖2Q(0,1) + 1
σn
|µn − µ̄|2 ≤

1
σn
|µn−1 − µ̄|2 (4.2)

holds. In particular, this implies

|νn − ν̄|2 + ‖qn − q̄‖2Q(0,1) ≤
1
σnδ
|µn−1 − µ̄|2 ≤

1
σnδ
|µ0 − µ̄|2 (4.3)

and
∞∑
n=1

σn
(
|νn − ν̄|2 + ‖qn − q̄‖2Q(0,1)

)
≤ 1
δ
|µ0 − µ̄|2. (4.4)

Proof. The result can be shown as in [81, Theorem 3.8]. Since the proof is short and instruc-
tive, we give it for the convenience of the reader. First, we have

Lcn(νn, qn, µn−1) = j(νn, qn) + µn−1g(νn, qn) + cn
2 |g(νn, qn)|2

= Lc•(νn, qn, µ̄) + (µn−1 − µ̄)g(νn, qn) + cn − c•
2 |g(νn, qn)|2

= Lc•(νn, qn, µ̄) + (µn−1 − µ̄)g(νn, qn) + 1
2(µn − µn−1)g(νn, qn)

= Lc•(νn, qn, µ̄) + 1
2σn

(µn−1 + µn − 2µ̄) (µn − µn−1)

= Lc•(νn, qn, µ̄) + 1
2σn

(
|µn − µ̄|2 − |µn−1 − µ̄|2

)
.

Since Lcn(νn, qn, µn−1) ≤ Lcn(ν̄, q̄, µn−1) = j(ν̄, q̄), we arrive at

1
2σn
|µn − µ̄|2 ≤ j(ν̄, q̄)− Lc•(νn, qn, µ̄) + 1

2σn
|µn−1 − µ̄|2.

Finally, the growth condition yields the first estimate (4.2). The last estimates (4.3) and (4.4)
follow from the first.

Remark 4.2. The quadratic growth condition of Proposition 4.1 can be deduced from a
strong second order sufficient optimality condition. It would be desirable to prove the sup-
position of Proposition 4.1 assuming only that the second order sufficient condition of Theo-
rem 3.13 holds.

Proposition 4.3. Adapt the assumptions of Proposition 4.1. There is c > 0 independent of
n such that

|µn − µ̄| ≤
c√
σnδ
|µn−1 − µ̄|

for all n ≥ 1.
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Proof. Since the constraint for ν is not active, we can still argue as in the proof of [81,
Theorem 3.10], even though the problem with controls in a convex and closed set Qad(0, 1)
is not included in the setting considered in [81, Chapter 3]. From the optimality conditions
for (4.1) and the optimality conditions for the original problem we infer that

∂νj(νn, qn) + (µn−1 + cng(νn, qn)) ∂νg(νn, qn) = 0,
∂νj(ν̄, q̄) + µ̄∂νg(ν̄, q̄) = 0.

Abbreviating µ̃n = µn−1 + cng(νn, qn) and summing both equalities imply

(µ̃n − µ̄)∂νg(ν̄, q̄) = α

2
(
‖q̄‖2Q(0,1) − ‖qn‖

2
Q(0,1)

)
+ (∂νg(ν̄, q̄)− ∂νg(νn, qn)) µ̃n. (4.5)

Moreover, µ̃n − µn = c•g(νn, qn). Hence, µ̃n is uniformly bounded due to boundedness of
(νn, qn, µn) that is guaranteed by Proposition 4.1. Since

µn − µ̄ = (µ̃n − µ̄) + c• (g(νn, qn)− g(ν̄, q̄))

the desired estimate follows from (4.5), Lipschitz continuity of g and g′, and (4.3). Here we
have used that qualified optimality conditions hold at (ν̄, q̄), i.e. ∂νg(ν̄, q̄) 6= 0.

In view of Proposition 4.1 for cn sufficiently large, the iterates (νn, qn) converge to (ν̄, q̄) at
least at the same rate as µn converges to µ̄. If cn → c• for n → ∞ with some c• < ∞ and
cn ≥ c• sufficiently large, then from Proposition 4.3 we deduce that µn converges q-linearly
to µ̄. If c• =∞, then we even obtain q-superlinear convergence of µn.

It seems that for the choice of the sequence of penalty parameters cn there is no general
rule. In the numerical experiments we therefore take the heuristic from [14, p. 405]. If the
constraint violation measured in |g(νn, qn)| is not decreased by a certain factor, then the
penalty parameter is multiplied by a factor (say 2− 10).

4.1.2. Bilevel optimization

In order to implement Algorithm 1, we have to determine a solution to (4.1) for given µn−1
and cn. A bilevel approach consists of splitting the optimization in two steps, where we
optimize for ν in the outer loop and for q in the inner loop. Whence, we obtain

min
ν∈R+

min
q∈Qad(0,1)

Lcn(ν, q, µn−1). (4.6)

Clearly, the optimization problems (4.1) and (4.6) are equivalent. In the context of time-
optimal control problems a bilevel approach has also been proposed in [93, 94].

Let us introduce the value function of the subproblem as

V (ν) = min
q∈Qad(0,1)

Lcn(ν, q, µn−1).

We denote by q̄(ν) an optimal solution to the minimization problem above. For the solution of
the outer problem we are interested in continuity and differentiability properties of V . To this
end we require the notion of polyhedricity; see Definition 3.22. Recall from Proposition 3.23
that in case of box constraints for the control the set of admissible controls is polyhedric.
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Proposition 4.4. Let ν ∈ R+ and µn−1 ∈ R+. Suppose that Qad(0, 1) is polyhedric and that
G′′(u)[·, ·] is positive semi-definite for all u ∈ H. Moreover, let µn−1 +cng(ν, q̄(ν)) ≥ 0. Then
the value function V is differentiable with locally Lipschitz continuous derivative and we have
the expression

V ′(ν) = 1 + α

2 ‖q̄(ν)‖2Q(0,1) + (µn−1 + cng(ν, q̄(ν)))
∫ 1

0
〈Bq̄(ν)−Au, z〉, (4.7)

where u = S(ν, q̄(ν)) and z ∈W (0, 1) satisfies

− ∂tz + νA∗z = 0, z(1) = G′(u(1))∗. (4.8)

Moreover, V admits a second order directional derivative

V ′′(ν)δν = (µn−1 + cng(ν, q̄(ν)))
[∫ 1

0
〈Bq̄(ν)−Au, δz〉 − 〈Aδu, z〉

]
+ cn

∫ 1

0
〈Bq̄(ν)−Au, z〉

∫ 1

0
〈Bq̄(ν)−Au+ νBδq(δν), z〉,

where δq(δν) is the directional derivative of q̄(ν) in direction δν that is determined by a
variational inequality (given in the proof below), δu = S′(ν, q̄(ν))(δν, δq(δν)), and δz is the
solution to

− ∂tδz + νA∗δz = −δνA∗z, δz(1) = G′′(u(1))[δu(1), ·]∗. (4.9)

Proof. The proof relies on established arguments where we refer to [21, Section 5.1]; cf. also
[67, Proposition 3.16] and [81, Chapter 2]. For convenience we abbreviate

f(ν, q) := Lcn(ν, q, µn−1).

The chain rule yields

∂qf(ν, q)δq = αν(q, δq)L2(I×ω) + (µn−1 + cng(ν, q)) ∂qg(ν, q)δq.

Since q 7→ i1S(ν, q) is affine linear and G′′(u) is positive semi-definite we obtain

∂qqf(ν, q̄(ν))δq2 = αν‖δq‖2Q(0,1) + cn (∂qg(ν, q̄(ν)))2 + (µn−1 + cng(ν, q̄(ν))) ∂qqg(ν, q̄(ν))δq2

≥ αν‖δq‖2Q(0,1)

for all δq ∈ Q(0, 1). Hence, f satisfies a strong second order sufficient optimality condition.
Therefore, according to [21, Proposition 5.2 (ii)], the mapping ν 7→ q̄(ν) is locally Lipschitz
continuous.

Let ν ∈ R+ and τj ∈ R such that τj → 0. Set qj = q̄(ν + τj) and q = q̄(ν). Employing local
Lipschitz continuity of ν 7→ q̄(ν), we conclude that the quotient τ−1

j (qj − q) converges weakly
to some δq ∈ Q(0, 1). In addition, since ∂qqf(ν, q) is elliptic, it defines a Legendre form; see
[21, Proposition 3.76]. According to [21, Theorem 5.5], the weak limit δq is in fact a strong
limit and satisfies a so-called linearized variational inequality: Find δq ∈ C such that

F (δν, δq)(ξ − δq) ≥ 0 for all ξ ∈ Cq̄(ν),

where Cq denotes the critical cone

Cq := TQad(0,1) ∩ { δq ∈ L2(I × ω) : ∂qf(ν, q)δq = 0 } ,
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and the functional F is defined by

F (δν, δq)(·) = α(δνq̄(ν) + νδq, ·)L2(I×ω)

+ (µn−1 + cng(ν, q̄(ν))) (∂νqg(ν, q̄(ν))(δν, ·) + ∂qqg(ν, q̄(ν))[δq, ·])
+ cn (∂νg(ν, q̄(ν))δν + ∂qg(ν, q̄(ν))δq) ∂qg(ν, q̄(ν))(·).

Since ∂qf(ν, q)δq = 0, we finally obtain

τ−1
j [V (ν + τj)− V (ν)] = τ−1

j [f(ν + τj , qj)− f(ν, qj) + f(ν, qj)− f(ν, q)]
→ ∂νf(ν, q) + ∂qf(ν, q)δq = ∂νf(ν, q).

The concrete expression (4.7) for ∂νf(ν, q) follows as in Proposition 2.21. Moreover, from
(4.7), local Lipschitz continuity of ν 7→ q̄(ν), and Lipschitz stability of the solution to the state
and adjoint state equation, we further deduce that ν 7→ V ′(ν) is locally Lipschitz continuous.

The formula for the second derivative follows by total directional differentiation of the ex-
pression for V ′(ν) and using again ∂qf(ν, q)δq = 0.

Note that if µn−1 > 0 the additional assumption µn−1 + cng(ν, q̄(ν)) ≥ 0 in Proposition 4.4
is satisfied at least close to an optimal solution (ν̄, q̄).

In view of Proposition 4.4 in order to solve the outer loop of the bilevel optimization problem,
we have to determine ν̄ ∈ R+ such that V ′(ν̄) = 0. Thus, the second derivative of V allows for
a semismooth Newton method to solve the optimization problem; cf. also [94, Algorithm 2].
Alternatively, one can employ a derivative free optimization method such as a bisection type
method to find a minimum of the value function V . This avoids the calculation of the
directional derivative δq(δν).

4.1.3. Monolithic optimization

We next discuss an alternative approach to the bilevel optimization for the solution of the
subproblem (4.1) arising in the augmented Lagrangian method. In contrast to the previous
subsection, we consider the joint optimization for the free terminal time and the control in one
combined optimization variable (ν, q) ∈ R+ ×Qad(0, 1). We therefore refer to this approach
as the monolithic optimization; cf. also [92].

The resulting optimization problem is nonlinear and subject to control constraints. Using the
differentiability results for the control-to-state mapping Proposition 2.20 we infer that the
reduced objective functional is twice continuously differentiable. Hence, one can use standard
optimization methods for the solution of (4.1). To efficiently deal with the control constraints,
we employ the semismooth Newton method proposed in [92] for time-optimal control of the
monodomain equations. It is based on an equivalent reformulation of the problem by means
of the normal map due to Robinson [135].

The method from [92] can be directly applied to our setting with slight modifications. Instead
of the terminal tracking formulation of [92, Section 3.2], we take the augmented Lagrangian
as the objective functional. We sketch the main steps in the derivation of the method and
define the ”normal map” for our purposes as

F (ν, ψ) = ∂(ν,q)Lcn(ν, PQad (ψ) , µn−1)∗ +
(

0
αν(ψ − PQad (ψ))

)
, (ν, ψ) ∈ R+ ×Q(0, 1).
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The crucial observation is that if (νn, qn) ∈ R×Qad(0, 1) is a local solution to (4.1), then there
exists ψn ∈ Q(0, 1) such that qn = PQad (ψn) and F (νn, ψn) = 0; cf. [130, Proposition 3.5] or
[92, Proposition 5.6]. Hence, in order to solve the minimization problem (4.1), we have to
determine zeros of F .

In the following we abbreviate q = PQad (ψ) and µ̃n = µn−1 + cng(ν, q). Since the term
ανPQad (ψ) in the second component of F cancels out, we have the expression

F (ν, ψ) =
(

1 + α
2 ‖q‖

2
Q(0,1) + µ̃n

∫ 1
0 〈Bq −Au, z〉

ανψ + νµ̃nB
∗z

)
,

where u = S(ν, q) denotes the state and z is the solution to the adjoint state equation (4.8).
To apply a Newton type method to F (ν, ψ) = 0, we require the linearization of F . In the
case of box constraints for Qad defined on a measure space (ω, %), the generalized differential
of PQad can be given as DPQad (ψ) δψ = 1Iδψ, where 1I denotes the indicator function
associated to the set of inactive constraints

I := { (t, x) ∈ I × ω : qa(x) ≤ ψ(t, x) ≤ qb(x) } .

With a chain rule for nonsmooth operators, we calculate the generalized derivative of F at
the point (ν, ψ) as

DF (ν, ψ)(δν, δψ) =


α(q, δq)Q(0,1) + µ̃n

∫ 1
0 [〈Bq −Au, δz〉+ 〈Bδq −Aδu, z〉] dt

+cn
[∫ 1

0 〈Bq −Au, z〉dt
] ∫ 1

0

[
〈Bq −Au, z〉δν + ν(B∗z, δq)Q

]
dt

α [δνψ + νδψ] + µ̃n [δνB∗z + νB∗δz]
+νcn

∫ 1
0

[
〈Bq −Au, z〉δν + (B∗z, δq)Q

]
dtB∗z

 ,

where δq = 1Iδψ, δu = S′(ν, q)(δν, δq) denotes the linearized state, and δz is the solution
to the second adjoint state equation (4.9). For the convergence analysis of this semismooth
Newton method and globalization approaches we refer to [130, Chapter 3].

4.2. An algorithmic approach for bang-bang controls (α = 0)

After the discussion of algorithms for the time-optimal control problems with a fixed cost
parameter α > 0, we now consider an algorithmic approach for the case of bang-bang controls,
i.e. α = 0. First of all we will prove the equivalence of minimal time and minimal distance
controls. This gives rise to a reformulation of the time-optimal control problem (P ) which
allows to separate the minimization for the terminal time T and for the control q.

4.2.1. Equivalence of time and distance optimal controls

For given δ ≥ 0 consider the perturbed time-optimal control problem

inf
T>0

q∈Qad(0,T )

T subject to u[q](T ) ∈ Uδ, (Pδ)

where Uδ = U + Bδ(0) = {u ∈ H : dU (u) ≤ δ }. Here, u[q] ∈ W (0, T ) denotes the solution to
the state equation defined above.
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Moreover, for fixed T > 0 we consider the minimal distance control problem

inf
q∈Qad(0,T )

dU (u[q](T )), (δT )

where dU (·) denotes the distance function

dU (u) := inf
u′∈U
‖u− u′‖H .

We define the value functions T : [0,∞)→ [0,∞] and δ : [0,∞)→ [0,∞) as

T (δ) = inf (Pδ) and δ(T ) = inf (δT ).

From boundedness of Qad, linearity of the control-to-state mapping (for fixed T > 0), and
weak lower semicontinuity of the distance function, we immediately infer that the value
function δ(·) is well-defined. However, to verify well-posedness of T (·) we require an additional
assumption; cf. also Proposition 2.14 and Remark 2.15.

Proposition 4.5. Let δ ≥ 0. If (Pδ) has a feasible point, then T (·) is well-defined on [δ,∞).

Proof. This result follows by standard arguments using the direct method.

Throughout the rest of this chapter we assume that there exists a feasible point for δ = 0.

Proposition 4.6. Set δ• = dU (u0). The function T : [0, δ•]→ [0,∞) is strictly monotonically
decreasing and right-continuous.

Proof. Step 1: T strictly decreasing. Clearly, T is monotonically decreasing. To show strict
monotonicity, let δ1 > δ2 ≥ 0. We have to show T (δ1) < T (δ2). Suppose T (δ1) = T (δ2) and
let (T (δi), qi) ∈ R+ ×Qad(0, T (δi)) be optimal solutions to (Pδi), i = 1, 2. Since

dU (u[q2](T (δ2))) = δ2 < δ1,

we infer that (T (δ2), q2) is also feasible for (Pδ1). Note that in the problem formulation we can
equivalently use dU (u[q](T )) ≤ δ and dU (u[q](T )) = δ. From continuity of u[q2] : [0, T (δ2)]→
H and T (δ1) = T (δ2) we deduce that (T (δ1), q1) cannot be optimal for the time-optimal
problem (Pδ1). This contradicts the assumption and we conclude T (δ1) < T (δ2).

Step 2: T is right-continuous. Consider a sequence δ1 ≥ δ2 ≥ . . . ≥ δn → δ ∈ [0, δ•). We
have to show limn→∞ T (δn) = T (δ). Assume that limn→∞ T (δn) 6= T (δ). Then, due to
monotonicity of T , there is ε > 0 such that

lim
n→∞

T (δn) = T (δ)− ε.

Let qn = qn(δn, T (δn)) ∈ Qad(0, T (δn)) denote an optimal control to (Pδn). We can extend
each qn to the time-interval (0, T (δ)) so that qn ∈ Qad(0, T (δ)) for all n ∈ N. Due to
boundedness of Qad, there is a subsequence denoted in the same way such that qn ⇀ q in
Q(0, T (δ)) with q ∈ Qad(0, T (δ)). Now, Lipschitz continuity of dU (·) implies

lim
n→∞

dU (u[qn](T (δn))) ≥ lim
n→∞

dU (u[q](T (δn)))− c lim
n→∞

‖u[q](T (δn))− u[qn](T (δn))‖

≥ lim
n→∞

dU (u[q](T (δn)))− c lim
n→∞

sup
t∈[0,T (δ)]

‖u[q](t)− u[qn](t)‖

= lim
n→∞

dU (u[q](T (δn))),
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where in the last step we have used compactness of the control-to-state mapping from
Qad(0, T (δ)) to C([0, T (δ)];H); see Proposition A.20. Therefore, continuity of u[q] : [0, T (δ)]→
H yields

δ = lim
n→∞

δn = lim
n→∞

dU (u[qn](T (δn))) ≥ dU (u[q](T (δ)− ε)).

Thus, (T (δ)− ε, q) is admissible for (Pδ), contradicting optimality of T (δ).

Proposition 4.7. Let T (·) be left-continuous. Then δ(·) is continuous and strictly mono-
tonically decreasing. Moreover,

T (δ(T ′)) = T ′ for all T ′ ∈ [0, T (0)] (4.10)

and
δ(T (δ′))) = δ′ for all δ′ ∈ [0, δ•]. (4.11)

Proof. First, since T is strictly decreasing, its inverse T−1 is continuous. Moreover, as T is
continuous, T−1 is defined everywhere on [0, T (0)]; see, e.g., [5, Theorem III.5.7].

Let T > 0. Then there exists q ∈ Qad(0, T ) such that dU (u[q](T )) = δ(T ). Hence, it holds
T (δ(T )) ≤ T . Suppose that T (δ(T )) < T . Then by continuity of T there exists δ′ < δ(T )
such that T (δ′) = T . Let q′ ∈ Qad(0, T ) be an optimal control to (Pδ′). Then

δ′ < δ(T ) ≤ dU (u[q′](T )) ≤ δ′,

a contradiction, which proves (4.10).

Moreover, (4.10) implies that T (δ(T (δ′))) = T (δ′) for all δ′ ∈ [0, δ•]. Strict monotonicity of
T therefore yields (4.11). For these reasons, δ = T−1 and we conclude that δ is continuous
and strictly monotonically decreasing.

After this preparation we can now prove equivalence of time and distance optimal controls.

Lemma 4.8. Let T (·) be left-continuous. If T > 0 and q ∈ Qad(0, T ) is distance-optimal
for (δT ), then (T, q) is also time-optimal for (Pδ(T )). Conversely, if δ ≥ 0 and (T, q) ∈
R+ ×Qad(0, T ) is time-optimal for (Pδ), then q is also distance-optimal for (δT ).

Proof. Let T > 0 and q ∈ Qad(0, T ) be distance-optimal for (δT ), i.e. δ(T ) = dU (u[q](T )).
Due to (4.10) we have T (δ(T )) = T . Thus, (T, q) is also time-optimal for (Pδ(T )).

Conversely, let δ ≥ 0 and (T, q) ∈ R+ × Qad(0, T ) be time-optimal for (Pδ). In particular,
this gives dU (u[q](T )) = δ. Using (4.11) we infer that

δ(T (δ)) = δ = dU (u[q](T )),

i.e. q is also distance-optimal for (δT ).

Remark 4.9. The assumption that the value function T (·) is left-continuous used in Propo-
sition 4.7 and Lemma 4.8 generally depends on the state equation, the set of admissible
controls, and the terminal constraint. Recall that in Theorem 2.18 we derived a sufficient
condition for Lipschitz continuity of T (·) from the right. By similar techniques, we can derive
a condition that guarantees Lipschitz continuity of T (·) from the left. As seen in Section 2.4,
such conditions can be verified explicitly for many examples.
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If (Pδ) is strongly stable on the right at δ = 0, we immediately infer an estimate for the
optimal times in terms of the minimal distances. Recall that strong stability on the right is
defined as

T (0)− T (δ′) ≤ η0 δ
′, δ′ ∈ [0, ε],

for constants η0 > 0 and ε > 0; see Definition 2.16. Since T (·) and δ(·) are inverse to each
other, this implies the following estimate.

Corollary 4.10. If (Pδ) is strongly stable on the right at δ = 0, then

0 ≤ T − T ′ ≤ η0 δ(T ′)

for all (T − εη0)+ ≤ T ′ ≤ T , where T = T (0) is the optimal time for δ = 0.

4.2.2. Regularization of the minimal distance problem

We will suppose throughout the rest of this section that T (·) is left continuous. In view of
Lemma 4.8, we are interested in finding a root of the value function δ(·) in order to solve
the time-optimal control problem (P ). This will generally lead to a bi-level optimization
problem: In the outer loop we optimize for T and the inner loop determines for each given T
a control with minimal distance to the target set. For the outer optimization we will discuss
a bisection and a Newton method. Concerning the inner optimization, we will consider the
conditional gradient method and the primal-dual active set strategy. Before we turn to the
optimization methods, we will first introduce a regularized version of (δT ).

Since dU (u[q](T )) = 0 if and only if d2
U (u[q](T )) = 0, we can alternatively minimize the

squared distance function. For fixed T > 0 and α ≥ 0 we consider the regularized minimum
squared distance control problem

inf
q∈Qad(0,T )

1
2d

2
U (u[q](T )) + α

2 ‖q‖
2
Q(0,T ). (4.12)

We emphasize that the unregularized case α = 0 is not excluded. Again, we transform the
problem (4.12) onto the reference interval I = (0, 1) and obtain the optimization problem

inf
q∈Qad(0,1)

1
2d

2
U (i1S(ν, q)) + α

2 ν‖q‖
2
Q(0,1). (4.13)

As in Proposition 2.19 we find that the problems (4.12) and (4.13) are equivalent. For given
α ≥ 0 and ν ∈ R+, we define q̄α(ν) as

q̄α(ν) ∈ argmin
q∈Qad(0,1)

[
d2
U (i1S(ν, q)) + αν‖q‖2Q(0,1)

]
, (4.14)

i.e. q̄α(ν) is a solution to (4.13). Since the distance function is convex, the objective functional
in (4.13) is strictly convex in case α > 0 and whence the optimal solution q̄α(ν) is uniquely
determined. In case that α = 0, there might be several minimizers q̄α(ν). We consider the
value function Vα : R+ → R associated with (4.13) defined by

Vα(ν) = 1
2d

2
U (i1S(ν, q̄α(ν))) + α

2 ν‖q̄α(ν)‖2Q(0,1).

Then we easily obtain the following a priori regularization error estimate.
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Proposition 4.11. Let ν ∈ R+. If q̄(ν) ∈ Qad(0, 1) is a solution to (4.13) with α = 0, then

0 ≤ 1
2d

2
U (i1S(ν, q̄α(ν)))− 1

2d
2
U (i1S(ν, q̄(ν))) ≤ Vα(ν)− V0(ν) ≤ αν2‖q̄(ν)‖2Q(0,1)

for all α > 0.

Proof. This follows as in Proposition 3.32 using optimality of q̄(ν) and q̄α(ν).

The minimizers of (4.14) satisfy the following necessary optimality conditions.

Lemma 4.12. Let ν ∈ R+ and α ≥ 0. Then q̄α(ν) ∈ Qad(0, 1) is locally optimal for (4.13)
if and only if ∫ 1

0
(αq̄α(ν) +B∗zα, q − q̄α(ν)) ≥ 0 for all q ∈ Qad(0, 1),

where the associated adjoint state z̄α ∈W (0, 1) is the solution to

−∂tzα + νA∗zα = 0, zα(1) = i1S(ν, q̄α(ν))− PU (i1S(ν, q̄α(ν))).

Proof. Since the squared distance function d2
U (·) is convex and Fréchet differentiable with

∇d2
U (u) = 2 (u− PU (u)), see Proposition 2.11, the result follows by standard arguments; see,

e.g., [147, Lemma 2.21].

Depending on the choice of the optimization methods for the inner and outer loops, we
might require α > 0. To determine V0(ν) we are therefore interested in continuity and
differentiability properties of q̄α(ν) and Vα(ν) with respect to α. In particular, these results
will be used for a path-following approach for the solution of the inner problem by means of
the primal-dual active set strategy.

Proposition 4.13. Let ν > 0 and α1, α2 ∈ R+. Then

‖q̄α1(ν)− q̄α2(ν)‖Q(0,1) ≤
|α1 − α2|

α1
‖q̄α2(ν)‖Q(0,1).

Proof. This follows along the lines of the proof of [130, Proposition 2.31]. In particular, we
use the optimality conditions of Lemma 4.12 and the fact that ∇d2

U (i1S(ν, q)) is monotone
since d2

U (i1S(ν, q)) is convex; see [12, Proposition 17.10].

In related contexts, it is well-known that the value function is differentiable and concave with
respect to the regularization parameter α; see, e.g., [130, Section 2.5.2] and the references
given therein. This is also valid in our situation. More specifically, we obtain

Proposition 4.14. The function R+ 3 α 7→ Vα(ν) is continuously differentiable and concave.
Additionally, the expression

d
dαVα(ν) = ν

2‖q̄α(ν)‖2Q(0,1), ν ∈ R+, (4.15)

holds for all α ∈ (0,∞).
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Proof. Let ν ∈ R+. We first show that α 7→ Vα(ν) is concave. Let θ ∈ (0, 1), α0, α1 > 0 be
given and set αθ = θα0 + (1− θ)α1. Using optimality of q̄α0 and q̄α1 yields

θVα0(ν) + (1− θ)Vα1(ν) ≤ θ

2
(
d2
U (uαθ(1)) + α0ν‖q̄αθ(ν)‖2Q(0,1)

)
+ 1− θ

2
(
d2
U (uαθ(1)) + α1ν‖q̄αθ(ν)‖2Q(0,1)

)
= Vαθ(ν),

where we have set uαθ = S(ν, q̄αθ(ν)). Concavity of the mapping α 7→ Vα(ν) implies that it
is locally Lipschitz continuous; see, e.g., [12, Proposition 8.28]. Hence, using Rademacher’s
theorem we infer that it is differentiable almost everywhere; see, e.g., [53, Section 3.1.2].

To verify the expression for the first derivative, from (4.15), we observe that for ε > 0 the
difference quotient is bounded from below and above by

1
ε

(Vα+ε(ν)− Vα(ν)) ≤ 1
2ε
(
d2
U (uα(1)) + (α+ ε)ν‖q̄α(ν)‖2Q(0,1)

− d2
U (uα(1))− αν‖q̄α(ν)‖2Q(0,1)

)
= ν

2‖q̄α(ν)‖2Q(0,1) ≤
1
ε

(Vα(ν)− Vα−ε(ν)) .

Hence, for ε→ 0 we find that

d+
αVα(ν) ≤ ν

2‖q̄α(ν)‖2Q(0,1) ≤ d−αVα(ν),

where d+
α and d−α denote the directional derivatives with respect to α in positive and negative

direction. Thus, we conclude (4.15). Finally, Proposition 4.13 yields that α 7→ ‖q̄α‖Q(0,1) is
continuous completing the proof.

Proposition 4.15. The function R+ 3 α 7→ Vα(ν) is two times differentiable almost every-
where. Furthermore, the estimate

0 ≤ − d2

dα2Vα(ν) ≤ ν

α
‖q̄α(ν)‖2Q(0,1)

holds for almost all α ∈ R+ and all ν ∈ R+.

Proof. Since −Vα is convex with respect to α due to Proposition 4.14, existence of the second
derivative almost everywhere is consequence of Alexandrov’s theorem; see, e.g., [53, Sec-
tion 6.4]. Additionally, from convexity of −Vα, we infer that its derivative is monotone; see
[12, Proposition 17.10]. Thus( d

dαVα+τ (ν)− d
dαVα(ν)

)
τ ≤ 0, τ ∈ R, α+ τ > 0.

Dividing by τ2 and letting τ → 0, yields d2

dα2Vα(ν) ≤ 0. For the remaining estimate, using
Proposition 4.13, for any τ ∈ R such that α+ τ > 0 we obtain

d
dαVα+τ (ν)− d

dαVα(ν) = ν

2 (q̄α+τ (ν)− q̄α(ν), q̄α+τ (ν) + q̄α(ν))

≤ ν

2‖q̄α+τ (ν)− q̄α(ν)‖Q(0,1)‖q̄α+τ (ν) + q̄α(ν)‖Q(0,1)

≤ ν|τ |
2α

(
‖q̄α+τ (ν)‖Q(0,1)‖q̄α(ν)‖Q(0,1) + ‖q̄α(ν)‖2Q(0,1)

)
.

Finally, dividing by |τ | and letting τ → 0 yields the remaining estimate.
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4.2.3. Bisection method for the outer optimization

In view of Lemma 4.8, in the limit case α = 0, we find that V0(ν) = 0 if and only if ν = T is
time-optimal for (Pδ) with δ = 0. Therefore, to solve the time-optimal control problem (P̂ ),
we can equivalently determine the root of V0(·). Since δ(·) is strictly monotonically decreasing,
see Proposition 4.7, so is V0(·). Hence, a first approach would be to use the bisection method
to iteratively find a root of V0(·). For simplicity, we suppose that U is weakly invariant
under (A,BQad); see Definition 2.1. This automatically implies that V0(ν̄ + τ) = 0 for all
τ > 0. Note that the standard bisection method is applied to functions that have a zero with
nonvanishing first derivative at that point. Since V0 equals zero for times larger than ν̄, this
leads to the modified bisection algorithm sketched in Algorithm 2.

Due to the fact the time interval is halved in each iteration, its accuracy can be controlled
by the number of iterations denoted nmax. More specifically, to reach the tolerance εtol, we
require

n = log(νb − νa)− log εtol
log 2

number of iterations. Under strong stability, we immediately obtain q-linear convergence for
the value function.

Algorithm 2: Bisection method for solution of minimal distance problem (outer loop)
Choose νa < νb;
Calculate da = V0(νa) and db = V0(νb);
if da = 0 or db 6= 0 then

Error: Optimal time is not contained in [νa, νb];
end
Set ν0 = (νa + νb)/2;
for n = 0 to nmax do

Calculate dn = V0(νn);
if dn = 0 then

Set νb = νn;
else

Set νa = νn;
end
Set νn+1 = (νa + νb)/2;

end

Proposition 4.16. Let ν̄ ∈ R+ be the optimal time for (P̂ ) with α = 0 and suppose that U
is weakly invariant under (A,BQad). Moreover, let νa < νb be such that νa < ν̄ < νb. If (Pδ)
is strongly stable on the right at δ = 0, then for |νa − ν̄| sufficiently small we have

0 ≤ V0(νn)− V0(ν̄) ≤ 1
2

(
νb − νa
η0

)2
2−2n,

where νn denote the iterates generated by the bisection method; see Algorithm 2.

Proof. Due to strong stability on the right, we have

δ(T ′)− δ(T ) ≤ η−1
0 (T − T ′).
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for all (T − εη0)+ ≤ T ′ ≤ T . Moreover, by definition of Algorithm 2, the iterates satisfy
|νn − ν̄| ≤ 2−n(νb − νa). Hence, if νn ≤ ν̄, it holds

0 ≤ V0(νn)− V0(ν̄) ≤ η−2
0 (νb − νa)22−2n+1

because of V0(ν̄) = 0. For the remaining case νn > ν̄ we have V0(νn) − V0(ν̄) = 0, due to
weak invariance.

Hence, we have to determine q̄0(ν), in order to iteratively solve the time-optimal control
problem. We will come back to this question in the following. Let us first discuss a Newton
method for the outer loop that leads to improved order of convergence under appropriate
assumptions.

4.2.4. Newton method for the outer optimization

In order to apply the Newton method to efficiently compute a root of the value function Vα,
we require differentiability of Vα with respect to ν. For the following considerations, we in
addition suppose that the terminal constraint U is given by

U = {u ∈ H : ‖u− ud‖H ≤ δ0 }

for some δ0 > 0 and ud ∈ H. Then, we easily find a simple reformulation of (4.13). Instead
of minimizing the squared distance function, we can equivalently consider the minimization
of the squared norm, i.e.

inf
q∈Qad(0,1)

1
2‖i1S(ν, q)− ud‖2 −

δ2
0
2 + α

2 ν‖q‖
2
Q(0,1). (4.16)

By an abuse of notation for given α ≥ 0 and ν ∈ R+, we define q̄α(ν) as

q̄α(ν) ∈ argmin
q∈Qad(0,1)

[
‖i1S(ν, q)− ud‖2 + αν‖q‖2Q(0,1)

]
.

Furthermore, we consider the associated value function Vα : R+ → R defined by

Vα(ν) = 1
2‖i1S(ν, q̄(ν))− ud‖2 −

δ2
0
2 + α

2 ν‖q̄α(ν)‖2Q(0,1).

In this case, the necessary and sufficient optimality conditions of (4.16) are given by∫ 1

0
(αq̄α(ν) +B∗zα, q − q̄α(ν)) dt ≥ 0 for all q ∈ Qad(0, 1),

where the associated adjoint state zα ∈W (0, 1) is the solution to

− ∂tzα + νA∗zα = 0, zα(1) = uα(1)− ud, (4.17)

with uα = i1S(ν, q̄α(ν)). As before, we obtain the following a priori regularization error
estimate

0 ≤ ‖i1S(ν, q̄α(ν))− ud‖2 − ‖i1S(ν, q̄(ν))− ud‖2 ≤ αν‖q̄(ν)‖2Q(0,1); (4.18)

cf. Proposition 4.11. Moreover, for differentiability of the value function, we require the
notion of polyhedricity; see Definition 3.22. Recall from Proposition 3.23 that in case of box
constraints for the controls the set of admissible controls is polyhedric.
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Proposition 4.17. Let α ∈ R+ and ν ∈ R+. Suppose that Qad(0, 1) is polyhedric and that
U = Bδ0(ud). Then the value function Vα is differentiable with locally Lipschitz continuous
derivative and the expression

V ′α(ν) =
∫ 1

0
〈Bq̄α(ν)−Auα, zα〉+ α

2 ‖q̄α(ν)‖2Q(0,1) dt (4.19)

holds, where zα ∈W (0, 1) satisfies

−∂tzα + νA∗zα = 0, zα(1) = uα(1)− ud,

and uα = S(ν, q̄α(ν)).

Proof. This follows as in Proposition 4.4. We give the proof for the convenience of the reader.
Set

d(ν, q) := 1
2‖i1S(ν, q)− ud‖2H and f(ν, q) := d(ν, q) + α

2 ν‖q‖
2
Q(0,1).

Since q 7→ i1S(ν, q) is affine linear, we immediately infer that

∂qqf(ν, q)δq2 ≥ αν‖δq‖2Q(0,1) for all q, δq ∈ Q(0, 1)

and f satisfies a strong second order sufficient optimality condition. Therefore, according to
[21, Proposition 5.2 (ii)], the mapping ν 7→ q̄α(ν) is locally Lipschitz continuous.

Let ν ∈ R+ and τn ∈ R such that τn → 0. Set qn = q̄α(ν + τn) and q = q̄α(ν). Employing
local Lipschitz continuity of ν 7→ q̄α(ν), we conclude that the quotient τ−1

n (qn − q) converges
weakly to some δq ∈ Q(0, 1). In addition, since ∂qqf(ν, q) is elliptic, it defines a Legendre
form; see [21, Proposition 3.76]. According to [21, Theorem 5.5], the weak limit δq is in fact a
strong limit and satisfies a so-called linearized variational inequality. The latter in particular
implies that ∂qf(ν, q)δq = 0, because δq belongs to the critical cone.

For these reasons, we finally obtain

τ−1
n [Vα(ν + τn)− Vα(ν)] = τ−1

n [f(ν + τn, qn)− f(ν, qn) + f(ν, qn)− f(ν, q)]
→ ∂νf(ν, q) + ∂qf(ν, q)δq = ∂νf(ν, q).

The concrete expression (4.19) for ∂νf(ν, q) follows as in Proposition 2.21. Moreover, from
(4.19), local Lipschitz continuity of ν 7→ q̄α(ν), and Lipschitz stability of the solution to
the state and adjoint state equation, we further deduce that ν 7→ V ′α(ν) is locally Lipschitz
continuous.

Remark 4.18. It would be desirable to prove differentiability of Vα for α = 0 under a
structural assumption on the adjoint state such as the one used in Section 3.3. This would
probably lead to a setting in L1. However, [21, Theorem 5.5] relied on reflexivity of the
underlying space.

We emphasize that given the solution q̄α(ν), it is computationally very cheap to evaluate the
derivative V ′α(ν). Indeed, using for instance the primal-dual active set strategy to solve (4.16),
then all variables required for the computation of V ′α(ν) have already been computed for the
inner loop and we simply have to calculate the inner product and the norm in (4.19). For
this reason, one step of the Newton method has approximately the same computational costs
as one step of the bisection method; see Algorithm 2.
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Basically without additional costs, we can use the following Newton method to find a root of
Vα(·). Given νn > 0, we calculate the next iterate νn+1 by the formula

νn+1 = νn −
Vα(νn)
V ′α(νn) .

We have to argue that the Newton iterates are well-posed, i.e. we have to show that V ′α
is uniformly bounded away from zero in some neighborhood of ν̄. The following proposi-
tion provides a sufficient condition for well-posedness, under the assumption that qualified
optimality conditions hold for all solutions to the original problem.

Proposition 4.19. Let (ν̄, q̄) denote an optimal solution to (P̂ ). Suppose that qualified
optimality conditions hold for all optimal solutions to (P̂ ) with α = 0. Then for α > 0
sufficiently small, we have V ′α(ν̄) < 0.

Proof. Consider a sequence of optimal controls q̄α(ν̄) with α → 0. Due to boundedness
of Qad(0, 1), there is a subsequence denoted in the same way converging weakly to some
q ∈ Qad(0, 1). Hence, the corresponding states uα = S(ν̄, q̄α(ν̄)) satisfy uα ⇀ u in W (0, 1)
and uα(1) → u(1) in H due to compactness of the control-to-observation mapping; see
Proposition A.20. The latter implies zα → z in W (0, 1). Moreover, employing (4.18) we have

‖u(1)− ud‖ ≤ ‖uα(1)− ud‖ − ‖ū(1)− ud‖+ δ0 + ‖u(1)− uα(1)‖
≤ c
√
α+ δ0 + c‖u(1)− uα(1)‖ → δ0.

For this reason, we infer that (ν̄, q) is feasible for (P ). Due to optimality of ν̄ and α = 0, we
further deduce that the tuple (ν̄, q) is an optimal solution to (P̂0). Let µ ∈ NU (u(1)) be an
associated Lagrange multiplier. According to Proposition 2.8 and [40, Corollary 10.44], since
U = Bδ0(ud), the normal cone is given by

NU (u) = {λ(u− ud) : λ ≥ 0 } = { v − u : v ∈ H with PU (v) = u }

for all u ∈ H with ‖u − ud‖ = δ0. Thus, there is µ0 > 0 such that µ = µ0(u(1) − ud). In
summary, we get

V ′α(ν̄) =
∫ 1

0
〈Bq̄α(ν̄)−Auα, zα〉+ α

2 ‖q̄α(ν̄)‖2Q(0,1)

≤ −µ0 +
∫ 1

0
〈B(q̄α(ν̄)− q)−A(uα − u), z〉+

∫ 1

0
〈Bq̄α(ν̄)−Auα, zα − z〉+ α

2CQad

due to the qualified optimality conditions. Weak convergence of q̄α(ν̄) ⇀ q and uα ⇀ u as
well as convergence of zα → z imply the existence of α0 > 0 such that V ′α(ν̄) < 0 for all
α < α0.

We summarize the Newton method for the outer loop of the optimization in Algorithm 3. By
means of Proposition 4.17 and well-known properties of the Newton method, see, e.g., [126,
Theorem 11.2], we infer fast local convergence of Algorithm 3.

Proposition 4.20. Adopt the assumptions of Proposition 4.17 and suppose V ′α(ν̄) 6= 0. Then
the sequence νn generated by Algorithm 3 converges locally q-quadratically to ν̄.

In order to implement this method in practice, as for the bisection algorithm one has to
efficiently calculate q̄α(ν). We will discuss two approaches in the sequel.
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Algorithm 3: Newton method for solution of minimal distance problem (outer loop)
Let α > 0 be given. Choose ν0 > 0;
for n = 0 to nmax do

Calculate qn = q̄α(νn) and un = S(νn, qn);
if Vα(νn) < εtol then

return;
end
Evaluate V ′α(νn) using (4.19);
Set νn+1 = νn − Vα(νn)V ′α(νn)−1;

end

4.2.5. Conditional gradient method for the inner optimization

For both the bisection and the Newton method we have to determine the solution to (4.14) for
a sequence of ν. Following the presentation from [50], we introduce the conditional gradient
method (cG) as follows. For convenience we abbreviate

f(q) = 1
2d

2
U (i1S(ν, q)) + α

2 ν‖q‖
2
Q(0,1)

neglecting the ν and α dependence for a moment. Clearly, we are interested in minimizing f
over Qad(0, 1). Let q̄ denote an optimal control. We emphasize that all statements also hold
for the case α = 0 that is of particular interest in this section. By means of Propositions 2.11,
2.20 and 2.21, we infer that f : Q(0, 1)→ R is continuously differentiable and its gradient can
be expressed as

f ′(q)∗ = ν (αq +B∗z) ,

where z ∈W (0, 1) satisfies

−∂tz + νA∗z = 0, z(1) = u(1)− PU (u(1)),

and u = S(ν, q). Given qn ∈ Qad(0, 1), we take

qn+1/2 ∈ { q ∈ Qad(0, 1) : f ′(qn)(q − qn) = inf
v∈Qad(0,1)

f ′(qn)(v − qn) } . (4.20)

In many cases qn+1/2 is directly given by a simple formula. For example, if Q = L2(ω) with
(ω, %) a finite measure space and box constraints

Qad = { q ∈ L2(ω) : qa ≤ q(x) ≤ qb a.e. x ∈ ω } ,

where qa, qb ∈ R, qa < qb, we obtain the explicit expression

qn+1/2 =

qa, if αqn +B∗zn > 0,
qb, if αqn +B∗zn < 0,

almost everywhere. Moreover, we determine the optimal convex combination of qn and qn+1/2
as

λn = argmin
0≤λ≤1

f((1− λ)qn + λqn+1/2). (4.21)
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For example, in the case that U = Bδ0(ud), the expression can be analytically determined,
employing the fact that q 7→ S(ν, q) is affine linear. Finally, the next iterate is defined by the
minimizing argument from (4.21), i.e.

qn+1 = (1− λn)qn + λnqn+1/2.

Using convexity of f and the definition of qn+1/2, we immediately obtain the following a
posteriori error estimator

0 ≤ f(qn)− f(q̄) ≤ f ′(qn)(qn − q̄) ≤ max
q∈Qad(0,1)

f ′(qn)(qn − q) = f ′(qn)(qn − qn+1/2).

The expression on the right-hand side can be efficiently evaluated using the adjoint repre-
sentation and serves as a termination criterion for the conditional gradient method. The
algorithm is summarized in Algorithm 4.

The conditional gradient method has the following convergence properties.

Proposition 4.21. Let (qn)n be a sequence generated by the conditional gradient method.
Then f(qn) decreases monotonically and

0 ≤ f(qn)− f(q̄) ≤ f(q0)− f(q̄)
1 + cn

, n ≥ 0,

with a constant c exclusively depending on the Lipschitz constant of f ′ on Qad(0, 1), the initial
residuum, and Qad(0, 1).

Proof. This follows from [50, Theorem 3.1 (i)], since both f and Qad(0, 1) are convex.

Under additional assumptions, improved order of convergence can be shown. To this end, we
assume that Q = L2(ω) for a finite measure space (ω, %). If the control operator B defines a
linear bounded operator from L1(ω) to H, then under a structural assumption on the adjoint
state, the objective values converges q-linearly. Recall that a similar assumption has been
used for sufficient optimality conditions in case of bang-bang controls; cf. Section 3.3. We will
encounter this condition again in Section 5.5 in the context of finite element discretization
error estimates for bang-bang controls.

Proposition 4.22. Let Q = L2(ω), α = 0, and B : L1(ω)→ H. Moreover, let z̄ denote the
adjoint state associated to q̄. Suppose that there is C > 0 such that

|{ (t, x) ∈ I × ω : − ε ≤ (B∗z̄)(t, x) ≤ ε }| ≤ Cε

for all ε > 0. Then there is λ ∈ [1/2, 1) such that

0 ≤ f(qn)− f(q̄) ≤ [f(q0)− f(q̄)]λn, n ≥ 0.

The constant λ exclusively depends on C, qa, qb, ω, and the Lipschitz constant of f ′ on
Qad(0, 1). Moreover, for a constant c > 0 we have

‖qn − q̄‖L1(I×ω) ≤ cλ
n/2, n ≥ 0.
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Algorithm 4: Conditional gradient method for solution of (4.13)
Let α > 0 and ν > 0 be given. Choose q0 ∈ Qad(0, 1);
for n = 0 to nmax do

Calculate un = S(ν, qn) and zn;
Choose qn+1/2 as in (4.20);
if f ′(qn)(qn − qn+1/2) < εtol then

return;
end
Calculate λn by (4.21);
Set qn+1 = (1− λn)qn + λnqn+1/2;

end

Proof. Since B : L1(ω) → H, the variation of constants formula implies that the control-to-
state mapping is linear and continuous from L1(I×ω) to C([0, 1];H). Hence, f as a mapping
defined on L1(I × ω) is (infinitely often) continuously differentiable. Furthermore, as in the
proof of Proposition 3.28, we find that

f ′(q̄)(q − q̄) ≥ c0‖q − q̄‖2L1(I×ω), q ∈ Qad(0, 1),

for some constant c0 > 0. Therefore, the assertion follows from [50, Theorem 3.1 (iii)].

In practice, the desired tolerance εtol for the inner loop can be heuristically chosen based on
the current iterate. If Vα(νn) � 0, then for the outer loop it is sufficient to solve the inner
optimization only up to a coarser tolerance. This suggests the heuristic

εtol = max{εtarget, βf(qn)}

with a suitable chosen β ∈ (0, 1) and εtarget denoting the target tolerance at the optimum.
We observe good results in our numerical examples with β = 10−3.

4.2.6. Primal-dual active set strategy for the inner optimization

In order to solve the minimization problem (4.13), in this subsection we consider an alternative
method to the first order method discussed before. We will discuss the solution of (4.14)
by means of the primal-dual active set strategy (PDAS), where we essentially follow the
presentation of [81, Chapter 7]. In the following, we suppose α > 0.

As before for the Newton method for the outer optimization, we restrict to the special case
when the terminal constraint U is given by

U = {u ∈ H : ‖u− ud‖H ≤ δ0 }

for some δ0 > 0 and ud ∈ H. Moreover, we assume Q = L2(ω) as before and box constraints
for Qad. Let C : L2(I × ω) → H denote the (affine linear) control-to-observation operator
associated with the state equation for fixed ν, i.e. Cq = i1S(ν, q). We abbreviate

f(q) = 1
2‖Cq − ud‖

2
H + α

2 ν‖q‖
2
L2(I×ω)

neglecting the ν and α dependence for a moment. Clearly, we are interested in minimizing f
over Qad(0, 1). The primal-dual active set strategy is introduced as follows. We choose d > 0
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and an initial control q0 ∈ Q(0, 1). By a slight abuse of notation, in each iteration, we compute
the associated state un = Cqn (evaluated at the terminal time) and the corresponding adjoint
state zn = (C ′)∗(un−ud). Note that zn is not the adjoint state as before, because it is already
multiplied by B∗. Moreover, we set

µn = − 1
α
zn − qn,

and the active index sets are defined as

Aan = { (t, x) ∈ I × ω : µn(t, x) + d(qn(t, x)− qa(x)) < 0 } ,
Abn = { (t, x) ∈ I × ω : µn(t, x) + d(qn(t, x)− qb(x)) > 0 } .

The PDAS can be seen as a prediction strategy that predicts on the basis of (qn, µn) the true
active and inactive sets. Given the current iterate qn, the new iterate qn+1 is determined as
the solution to the linear system

un+1 = Cqn+1,

zn+1 = (C ′)∗(un+1 − ud),
qn+1 =


qa on Aan,
qb on Abn,
− 1
αzn+1 else.

The system above can be equivalently written as

un+1 − Cqn+1 = 0,
zn+1 − (C ′)∗un+1 = −(C ′)∗ud,

(1− 1Aan − 1Abn)α−1zn+1 + qn+1 = 1Aanqa + 1Abnqb,

(4.22)

where 1Aan and 1Abn denote the characteristic functions associated with Aan and Abn, respec-
tively. Note that (4.22) can be efficiently solved numerically employing an iterative solver
such as GMRES or BICGSTAB; see, e.g., [139, Sections 6.5, 7.4.2] and [52, Section 7.1].

If Aan = Aan−1 and Abn = Abn−1, then the optimal solution is found. In practice it is frequently
observed, that this condition can be used as a termination criterion; see [81, Remark 7.1.1]
and the reference therein. However, scattering might occur and therefore we use the norm of
the indicator function of changed indices as a stopping criterion; cf. also [83, Example 5.3].
The PDAS for the solution of (4.14) is summarized in Algorithm 5.

Algorithm 5: Primal-dual active set strategy for solution of (4.13)
Let α > 0 and ν > 0 be given. Choose q0 ∈ Qad(0, 1) and d > 0;
for n = 0 to nmax do

Determine active sets Aan and Abn;
Set rn = (Aan 6= Aan−1) ∨ (Abn 6= Abn−1);
if ‖rn‖L2(I×ω) < εtol then

return;
end
Calculate solution qn+1 to (4.22);

end

Under suitable assumptions on the regularization parameter α and the parameter d, Algo-
rithm 5 is guaranteed to converge globally, i.e. independent of the initial value q0.
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Proposition 4.23. Let d > 0 as in Algorithm 5. Suppose there is γ > 0 such that

α+ γ < d < α− α2

γ
+ α2

‖C ′‖2
.

Then qn → q̄α(ν) in L2(I × ω) as n→∞.

Proof. Noting that the control-to-observation operator is affine linear and compact from
Qad(0, 1) into H, see Proposition A.20, this follows as in [91, Theorem 3].

Choosing γ = α in Proposition 4.23, we obtain the following sufficient criterion for global
convergence

2‖C ′‖2 < α.

It is well-known that the PDAS can be interpreted as a semismooth Newton method; see
[76]. We therefore can expect fast convergence, if the initial value is sufficiently close to the
solution.

Proposition 4.24. Let α > 0 and ν ∈ R+. Suppose that B∗ : V → Lp(ω) for some p > 2.
The primal-dual active set strategy converges locally q-superlinearly.

Proof. Since q 7→ Cq is affine linear, we obtain

f ′′(q)δq2 ≥ αν‖δq‖2L2(I×ω), q, δq ∈ Q(0, 1),

which is a strong second order sufficient optimality condition. Moreover, the mapping q 7→ Cq
is continuous from L2(I × ω) into V . In addition, (C ′)∗ is linear and continuous from V into
C([0, 1];Lp(ω)) ↪→ Lp(I × ω) for some p > 2 due to the supposition on B∗. In summary,
(C ′)∗Cq is continuous from L2(I ×ω) into Lp(I ×ω). Hence, arguing as in [76, Theorem 4.1]
yields the assertion; cf. also [151].

Remark 4.25. The regularity assumption on the adjoint of the control operator can be
satisfied for all prototypical control scenarios considered in Section 3.1.2.

(i) In case of a distributed control, B∗ is the restriction to ω operator. According to
Proposition 3.4, we have H1

D(Ω) ↪→ Lp(Ω) for p > 2. For these reasons, we obtain
B∗ : V → Lp(ω) for some p > 2.

(ii) For Neumann boundary control, we take B∗ = Tr, where Tr denotes the trace operator.
According to Proposition 3.5, we have Tr: Hθ,p

D (Ω)→ Lp(ΓN ) for θ ∈ (1/p, 1). Employ-
ing Proposition 3.4, we find H1

D(Ω) ↪→ Hθ,p
D (Ω) for 1− d/2 ≥ θ − d/p or, equivalently,

d(θ − 1 + d/2) ≥ p. Hence, the supposition is satisfied for, e.g., θ = 3/4. Since d ≥ 2,
we have p > 2 for all θ > 0, so in particular for θ = 1− 2θ0 with θ0 ∈ (0, 1/4).

(iii) In case of purely time-dependent control, we have B∗ : X1−θ0 → L2(ω) due to As-
sumption 2.2. Since V ↪→ X1−θ0 and L2(ω) ∼= RNc ∼= Lp(ω) the supposition is clearly
satisfied.

In practice, a path-following strategy with respect to the regularization parameter α is recom-
mendable. For a systematic derivation we adapt the idea of an appropriate model function,
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where we follow [77]. Motivated by the a priori estimate of Proposition 4.11, we consider an
affine linear model function

Vα(ν) ≈ mn(α) = mn,0 +mn,1α

for parameters mn,0, mn,1 to be calibrated in each iteration of the path-following strategy.
For αn > 0, based on current data, we require

mn(αn) = Vαn(ν), m′n(αn) = d
dαVαn(ν).

Hence, Proposition 4.14, implies

mn,0 = Vαn(ν)−mn,1αn, mn,1 = ν

2‖q̄αn(ν)‖2L2(I×ω).

Using Proposition 4.15 and Taylor’s expansion of Vα(ν) at αn immediately imply

Vα0(ν) = mn(α0) +
∫ αn

α0

d2

dα2Vα′(ν)(α′ − α0) dα′ ≤ m(α0).

for 0 < α0 < αn. Letting α0 → 0, yields 0 ≤ mn(0)−V0(ν). Moreover, from Proposition 4.11
we infer that

mn(0)− V0(ν) = Vαn(ν)−mn,1αn − V0(ν) ≤ αn
ν

2‖q̄(ν)‖2L2(I×ω).

In summary, we have the error estimate

0 ≤ mn(0)− V0(ν) ≤ αn
ν

2‖q̄(ν)‖2L2(I×ω).

Using the model function we will deduce an update strategy to get the next regularization
parameter αn+1. Ideally for a sequence of τn ∈ (0, 1) we would like to have

|Vαn+1(ν)− V0(ν)| ≤ τn|Vαn(ν)− V0(ν)|.

Plugging the model function into the inequality for V0(ν) and Vαn+1(ν), due to linearity of
mn, we simply obtain αn+1 = τnαn.

4.2.7. Numerical examples

Last, we conduct two numerical examples in order to verify our findings of the preceding
subsections in practice. The discretization scheme of the state equation, the adjoint state
equation, and the control variable will be discussed in detail in Chapter 5. Therefore, we
will be brief here. The discretization is based on a Galerkin method. The state and adjoint
state equations are discretized by piecewise constant in time and continuous and cellwise
linear functions in space. Since we expect the control to be bang-bang, the control variable
is discretized by temporally and spatially piecewise and cellwise constant functions.

We use both the bisection method and the Newton method for the computation of the optimal
time. The inner optimization problems are solved using the conditional gradient method. In
addition, we have implemented the following acceleration strategy for the conditional gradient
method: Instead of minimizing the convex combination of the last iterate qn and the new
point qn+1/2 in (4.21), we search for the best convex combination of all previous iterates
plus the new point qn+1/2. For the acceleration strategy, we use CVX to solve the arising
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convex subproblems; see [63, 64]. To keep the memory requirements moderate, points that
are associated with small coefficients in the convex combination are being deleted from the
stock. In practice, we observe that this strategy significantly improves the convergence. This
is of particular interest for problems, where the structural assumption of Proposition 4.22 is
not fulfilled and, hence, q-linear convergence is not guaranteed. However, we are not able
to give conditions that guarantee fast convergence of the accelerated conditional gradient
method. For further details on improved convergence of variants of the conditional gradient
method in finite dimensions we also refer to [98].

Moreover, we compare the conditional gradient method and the primal dual active set strategy
with path following for the inner optimization. For the path following strategy we use the
heuristic choice of τn given by

τn+1 = max { τmin,min { τmax, ‖qn‖L2(I×ω)/(dαn + ‖qn‖L2(I×ω)) } } , (4.23)

where d, τmin, and τmax have to be calibrated manually. We obtain good numerical results
for d = 1000, τmin = 0.1, and τmax ∈ [0.8, 0.95].

Numerical example with purely time-dependent control

As a first example, we consider the case of purely time-dependent controls. We control
the heat equation on a bounded domain Ω ⊂ R2 with homogeneous Dirichlet boundary
conditions. The precise problem data reads as

Ω = (0, 1)2, ω1 = (0, 0.5)× (0, 1), ω2 = (0.5, 1)× (0, 0.5),
B : R2 → L2(Ω), Bq = q11ω1 + q21ω2 ,

G(u) = 1
2‖u‖

2
L2 − 1

2δ
2
0 , δ0 = 1

10 ,

Qad(0, 1) = {q ∈ L2((0, 1);R2) : − 1.5 ≤ q ≤ 0}, u0(x) = 4 sin(πx2
1) sin(πx3

2),

where 1ω1 and 1ω2 denote the characteristic functions on ω1 and ω2. The spatial mesh is
chosen such that the boundaries of ω1 and ω2 coincide with edges of the mesh. We will revisit
this example again in Sections 5.4.2 and 5.7.1 on a priori discretization error estimates. The
corresponding value function is depicted in Figure 4.1.

For the outer optimization, we observe linear convergence of the bisection method and
quadratic convergence of the Newton method; see Figure 4.2. This is almost in accordance
with the theory, except for the fact that we do not know that the value function is differ-
entiable with Lipschitz continuous derivative for α = 0. Concerning the inner optimization,
we observe that the conditional gradient method without and with acceleration converges
faster than the primal-dual active set strategy; see Figure 4.3. However, for high accuracy
the conditional gradient method with acceleration and the primal-dual active set strategy
perform better than the pure conditional gradient method that shows sublinear convergence
at some point.
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Figure 4.1.: Value function V0(ν) for the example with purely time dependent control (left) and the
example with distributed control (right). Dotted lines indicate the first Newton steps.
Function values calculated by the Newton method for α = 0 and the conditional gradient
method with acceleration strategy.
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Figure 4.2.: Absolute error |νn − ν̄| (left) and |V0(νn)| (right) for the example with purely time
dependent control over the iteration number in the outer loop. For each fixed νn the inner
problem is solved using the conditional gradient method with acceleration strategy.
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Figure 4.3.: Error |f(qn)− f(q)| for the inner loop calculated by different methods for the example with
purely time-dependent control and fixed T = ν = 1.6 over the iteration number. The PDAS
is embedded into a path-following strategy as described in Section 4.2.6, where we take
α0 = 10−2 and the update αn+1 = τnαn with τn determined by (4.23) and τmax = 0.8.
The cG method is carried out for α = 0.

Numerical example with distributed control

As a second numerical example, we consider the distributed control on the whole domain,
i.e. ω = Ω. More specifically, let

Ω = (0, 1)2, ω = (0, 1)2, δ0 = 1
10 ,

G(u) = 1
2‖u‖

2
L2 − 1

2δ
2
0 , δ0 = 1

10 ,

Qad = {q ∈ L2(I × ω) : − 1.5 ≤ q ≤ 0},
u0(x) = 4 sin(πx2

1) sin(πx2)3.

The corresponding value function is plotted in Figure 4.1 (right). Snapshots of the optimal
control are depicted in Figure 4.6. As before, we observe linear convergence of the bisection
method and quadratic convergence of the Newton method; see Figure 4.4. Moreover, we
compare the different methods for the solution of the inner optimization problem. The
accelerated conditional gradient method performs slightly better than the pure conditional
gradient method; see Figure 4.5. However, it is difficult to solve the minimal distance problem
to the same hight accuracy as in the first example.

4.2.8. Comparison to other approaches

The equivalence of time and distance optimal controls as stated in Lemma 4.8 can be related
to the equivalence of time and norm optimal controls. We will give a brief overview and
introduce two problems. Let p ∈ [1,∞] be fixed. First, for any ρ > 0, we introduce the
minimal time problem as

inf
T>0

q∈Q(0,T )

T subject to u[q](T ) ∈ U, ‖q‖Lp((0,T );Q) ≤ ρ. (4.24)

Here the set of admissible controls is defined by the additional constraint ‖q‖Lp((0,T );Q) ≤ ρ
instead of Qad(0, 1) used in our problem formulation. Note that in (Pδ) we studied pertur-
bations on the terminal constraint set, whereas in (4.24) we consider perturbations in the
control constraints in terms of the parameter ρ.
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Figure 4.4.: Absolute error |νn − ν̄| (left) and |V0(νn)| (right) for the example with distributed control
over the iteration number in the outer loop. For each fixed νn the inner problem is solved
using the conditional gradient method with acceleration strategy.
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Figure 4.5.: Error |f(qn)− f(q)| for the inner loop calculated by different methods for the example with
distributed control for fixed T = ν = 1.1 over the iteration number. The PDAS is
embedded into a path-following strategy as described in Section 4.2.6, where we take
α0 = 10−2 and the update αn+1 = τnαn with τn determined by (4.23) and τmax = 0.95.
The cG method is carried out for α = 0.
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t = 0.004 t = 0.296 t = 0.522 t = 0.698

−2

−1

0

1

t = 0.838 t = 0.945 t = 1.027 t = 1.093

t = 1.142 t = 1.183 t = 1.212 t = 1.236

t = 1.253 t = 1.269 t = 1.277 t = 1.282

t = 1.286 t = 1.290 t = 1.294 t = 1.298

t = 1.302 t = 1.306 t = 1.310 t = 1.314

Figure 4.6.: Logarithmically spaced snapshots of control for example with distributed control. Solution
calculated by the Newton method Algorithm 3 for α = 0 and the conditional gradient
method Algorithm 4 for εtol = 10−8. White and black denote the lower and the upper
control bound, respectively.
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Second, for given T > 0 we introduce the minimal norm problem as

inf
q∈Q(0,T )

‖q‖Lp((0,T );Q) subject to u[q](T ) ∈ U. (4.25)

For each problem, we can define corresponding value functions

T (ρ) = inf (4.24) and M(T ) = inf (4.25).

The connection of (4.24) and (4.25) has been extensively investigated; see, e.g, [54, 62, 89,
97, 160, 164]. More specifically, under certain conditions, it has been shown that T (·) and
M(·) are inverse to each other. For example, if U = { 0 } and the system is null controllable
by Lp controls, then according to [62, Theorem 4.1] the value functionM is implicitly defined
by the relation

M(T (ρ)) = ρ, ρ > 0.

Recall that a system is called null controllable by Lp controls, if for each T > 0 and initial
condition u0 ∈ H there exists a control q ∈ Lp((0, T );Q) such that u[u0, q](T ) = 0. Moreover,
equivalence of (4.24) and (4.25) in the sense above has been shown for the heat equation with
distributed control on a subset of the spatial domain with p = ∞ and again U = { 0 }; see
[160, Theorem 2.1].

In fact, the idea to build algorithms based on an equivalent reformulation of the time-optimal
control problem is not new. Wang and Zuazua proposed in [160, Remark 3.3] to solve the
minimal norm problem in order to solve the time-optimal control problem by means of the
equivalence of time and norm optimal controls. Inspired by [160], a bisection method has been
used to solve time-optimal control problems subject to ordinary differential equations in [109];
cf. also [164, Theorem 1.2]. However, to the best of the authors knowledge, neither theoretical
results nor numerical examples have been published so far in the context of partial differential
equations. An equivalence that is similar to the one of this section has been shown in [158] for
the situation of delaying the activation of the control as long as possible. Moreover, a related
approach has been developed in [70] for time-optimal control of a one-dimensional vibrating
system with controls in a subspace of L2 determined by certain moment equations.

We note that both approaches require different assumptions: While the equivalence of mini-
mal time and minimal norm controls relies on exact null controllability with Lp controls, our
approach requires that a certain value function is left continuous; see Lemma 4.8. It seems
to be difficult to compare these assumptions with each other. Independently, they essentially
rely on the state equation under consideration.

In comparison with the approach based on the equivalence of time and distance optimal con-
trols, we observe that the minimum norm problem (4.25) is still subject to state constraints,
in contrast to the minimal distance problem (δT ) that is convex and subject to control con-
straints. For the latter class of optimization problems, efficient algorithms are available, while
the algorithmic solution of state constrained control problems is generally more difficult.

Additionally we note that, in view of the equivalence of minimal time and minimal distance
controls as well as the equivalence of minimal time and minimal norm controls, the distance
optimal solution also solves the minimal norm problem. Whence, our approach also provides
a solution to the minimal norm problem, which seems to be a nontrivial optimization problem
itself.

In the particular case of purely time-dependent controls, an alternative algorithm can be
described as follows: It directly solves the time-optimal control problem by parametrizing
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the switching points by its location and optimize for the parametrization; see, e.g., [85, 86]
for time-optimal control problems subject to ordinary differential equations. However, in the
case of distributed control such an ansatz would require to parametrize the time-dependent
switching hyperplanes which seems to cause further difficulties.

Last, the approaches based on equivalent reformulations discussed in Section 4.2 can be
compared to the augmented Lagrangian method from Section 4.1 equipped with a path-
following strategy in the regularization parameter α. Here, we would consider a sequence of
regularization parameters α1 > α2 > . . . > 0 such that limn→∞ αn = 0. For each such αn we
solve the regularized time-optimal control problem with the method discussed in Section 4.1.
In view of the stability results from Section 3.3.2, the corresponding terminal times converge
at the rate α and the optimal controls converge to a solution of the unregularized problem.
Moreover, under additional assumptions the control variable is guaranteed to converge in
L1(I × ω) at the same rate α. However, for small regularization parameters the resulting
optimization problems become computationally very expensive. Comparing running times
for the numerical examples we observe that our approach based on the equivalence of minimal
time and minimal distance controls is at least competitive with the regularization approach.
However, it is difficult to find a fair measure for the comparison as the total running time
depends on various aspects. For example, the augmented Lagrangian approach equipped with
a path-following strategy in the regularization parameter strongly depends on the choice of
the initial value for the optimization. In contrast, the approach discussed in this section is
not very sensitive to the initial time for the outer optimization.

For a numerical realization there are of course further error contributions besides the error due
to regularization such as the discretization error and the modelling error between the model
and the real problem. Clearly, one is interested in controlling the overall approximation
and regularization error; see also Section 5.5 for a detailed discussion on the quantitative
behavior of the discretization and regularization error. Therefore, one could argue that we
do not have to consider α arbitrarily small as long as other error contributions dominate the
total error. However, this is only half an argument, as we wish to have control over each
error contribution.
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This chapter is devoted to a priori discretization error estimates for the time-optimal control
problem. To set the stage, we consider the following model problem:

Minimize j(T, q) := T + α

2

∫ T

0
‖q(t)‖2L2(ω) dt,

subject to



T > 0,
∂tu−∆u = Bq, in (0, T )×Ω,

u = 0, on (0, T )× ∂Ω,
u(0) = u0, in Ω,

G(u(T )) ≤ 0,
qa ≤ q(t) ≤ qb, in ω, t ∈ (0, T ).

With the notation of the preceding chapters, A = −∆ denotes the usual Laplace operator
on a bounded domain Ω ⊂ Rd equipped with homogeneous Dirichlet boundary conditions.
Accordingly, we take V = H1

0 (Ω) and H = L2(Ω). Moreover, for a finite measure space (ω, %)
as in Chapter 3, the control operator B maps from L2(I × ω) into L2(I ×Ω). This allows to
treat different control scenarios such as purely time-dependent control or distributed control
with one consistent notation. The parameter α ≥ 0 models control costs or is a regularization
parameter. Its implications on error estimates will be discussed in detail below.

We start by giving a brief overview on related literature. Although time-optimal control is
considered to be a classical subject in control theory, to the best of our knowledge there are
only a few publications concerning the numerical solutions of such problems in the context
of parabolic equations. The existing contributions have in common that the terminal set
is given by an L2-ball around a desired state (often assumed to be zero), the objective
functional is j(T, q) = T , and the state is discretized only in space by means of continuous
linear finite elements. In [140] convergence of optimal times for a one dimensional heat
equation is proved based on a bang-bang principle. Purely time-dependent controls acting
on the boundary have been considered in [87]. For u0 ∈ H3/2(Ω) the author proved the
error estimate O(h3/2−ε) with arbitrary small ε > 0 for the optimal times. Furthermore,
convergence of optimal times and the controls for the terminal set the L2-ball centered at
some ud with u0, ud ∈ H1/2−ε(Ω) for boundary control has been shown in [100]. More
recently, for distributed control and u0 ∈ H1

0 (Ω) the error estimate O(h) has been proved in
[159] for the linear heat equation and for a semilinear heat equation in [165]. Both articles
use cellwise linear discretization for the control and the set of admissible controls is defined
by Qad := { q ∈ L∞((0,∞);L2(ω)) : ‖q(t)‖L2 ≤ 1 a.a. t }. Employing the variational control
discretization the error estimates O(h) for T and O(h1−ε) for the control and the state have
been shown in [60]. Convergence of optimal times and controls for a class of abstract evolution
equations has been recently shown in [148] with terminal set a closed ball centered at the
origin. We point out that the authors impose less regularity on the initial value as in the
references before, which in our setting would correspond to the assumption u0 ∈ L2(Ω).
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In contrast to the contributions mentioned above, we consider fully space-time discretization
of all variables. The state and the adjoint state equation are being discretized by means of
the discontinuous Galerkin scheme in time and the continuous Galerkin scheme in space. In
this regard we also mention [117, 118] on a priori discretization error estimates for linear
parabolic and [124] for semilinear parabolic optimal control problems. Moreover, pointwise
control constraints are included in our setting compared to L∞((0, T );L2(ω)) constraints
that are typically considered in the contributions mentioned above. Furthermore, we allow
for more general terminal sets and we may deal with different control discretizations.

As in the preceding chapter, we will discuss the case of bang-bang controls and non-bang-bang
controls (i.e. α > 0) separately. The results for α > 0 are already contained in [17] in similar
form. We prove optimal convergence rates in L2(I × ω) for the control variable in the case
α > 0 for different control discretization strategies. For example, in case of the variational
control discretization we obtain the convergence rate k+h2 in all variables up to a logarithmic
term with k and h denoting the temporal and spatial mesh size, respectively. The proof is
done in two steps and strongly depends on the second order sufficient optimality condition
of Section 3.2. First, we obtain a suboptimal convergence rate for the control variable,
where we rely on a quadratic growth condition that follows from a second order sufficient
optimality condition (SSC). Conceptionally the discretization error is related to differences of
the objective functional for the continuous and the discrete solutions, where we have to take
square roots in the end. In the context of pointwise state constraints this is often acceptable,
as low regularity of the problem prevents better convergence; cf., e.g., [123]. However, the
solutions of (P ) exhibit improved regularity if α > 0, so we can expect an improved rate
of convergence. For the proof we adapt ideas from [31] for unconstrained problems to the
constrained case. In this second step, the discretization error is conceptionally related to
differences of derivatives of the Lagrange function which avoids taking square roots.

In contrast, for the discretization error estimates for bang-bang controls (i.e. α = 0), we rely
on the structural assumption on the adjoint state from Section 3.3. Here, we show convergence
rates in L1(I × ω) for the control variable that are optimal, if the structural assumption
(3.37) holds with κ = 1. For example, for purely time-dependent controls we prove the
convergence rate α+ k+h2. It is worth mentioning that all three quantities are independent
of each other and which also justifies the terminology robust error estimates. It seems that
there is a growing interest in the numerical analysis of optimal control problems with bang-
bang solutions which is reflected in a number of articles that have appeared recently. The
variational control discretization for a linear elliptic equation has been considered in [47] and
for a linear parabolic equation in [152] subject to pointwise control constraints. Moreover,
a bilinear optimal control has been investigated in [36]. The latter contribution is based on
second order sufficient optimality conditions from [37] that use both a structural assumption
(3.37) as well as a condition on the second derivative.

However, it is in general difficult to validate the structural assumption without the optimal
solution. Recall that in Section 2.3.5 we proved that the value function is Lipschitz con-
tinuous with respect to certain perturbations of the terminal set, the initial state, and the
operator under a condition that is a direct strengthening of the lower Hamiltonian condition.
In view of α = 0, this immediately implies an estimate for the optimal time. This moti-
vates the derivation of a sufficient condition that allows to construct feasible points for the
discretized problems. The sufficient condition is basically the strengthened Hamiltonian con-
dition (2.19) for the discrete problems. Since α = 0, two-way testing yields an error estimate
for the optimal times; cf. [87]. However, estimates with rates for the controls, require further
assumptions; cf. [47] (in the context of finite element discretizations) and [37].
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5.1. Assumptions and optimality conditions

This chapter is structured as follows. In Section 5.1 we recap the optimality conditions for the
concrete problem that imply improved regularity of the solution in the case α > 0. Thereafter,
we introduce the discretization scheme and provide general discretization error estimates in
Section 5.2. Section 5.3 is devoted to a priori discretization error estimates for the case
α > 0, where we rely on second order sufficient optimality conditions. Last, we turn to case
of bang-bang controls, i.e. α = 0. Based on the structural assumption from Section 3.3, we
show discretization error estimates for the control variable in Section 5.5. Error estimates
based on the strengthened Hamiltonian condition are presented in Section 5.6. Each part of
this chapter is accompanied by numerical examples to validate the theoretical findings.

5.1. Assumptions and optimality conditions

We summarize the main assumptions used throughout this chapter.

Assumption 5.1. We assume Ω ⊂ Rd with d ∈ {2, 3} to be a polygonal or polyhedral and
convex domain and the initial value satisfies u0 ∈ H1

0 (Ω).

Concerning the control operator we consider one of the following situations:

(i) Distributed control: Let ω ⊆ Ω be the control domain that is polygonal or polyhedral
as well. The control operator B : L2(ω) → L2(Ω) is the extension by zero operator.
Clearly, its adjoint B∗ : L2(Ω)→ L2(ω) is the restriction to ω operator.

(ii) Purely time-dependent control: Let ω be a discrete set equipped with the counting
measure. The control operator is defined by Bq =

∑Nc
i=1 qiei, where ei ∈ L2(Ω) are given

form functions. Then L2(ω) ∼= RNc and B∗ : L2(Ω) → RNc with (B∗ϕ)i = (ei, ϕ)L2(Ω)
for i = 1, 2, . . . , Nc.

The space of admissible controls is defined as

Qad :=
{
q ∈ L2(ω) : qa ≤ q ≤ qb a.e. in ω

}
⊂ L∞(ω)

for qa, qb ∈ R with qa < qb. Recall that Q(0, 1) := L2(I;L2(ω)) and

Qad(0, 1) :=
{
q ∈ L2(I × ω) : q(t) ∈ Qad a.a. t ∈ (0, 1)

}
⊂ L∞(I × ω).

Concerning the state equation, we suppose that A = −∆ is the usual Laplace operator
equipped with homogeneous Dirichlet boundary conditions. As usual, H1

0 (Ω) is the Sobolev
space with zero trace and the corresponding dual space is denoted by H−1(Ω). The duality
pairing between H1

0 (Ω) and H−1(Ω) is denoted 〈·, ·〉. If ambiguity is not to be expected,
we drop the spatial domain Ω from the notation of the spaces. Moreover, we use W (0, 1)
to abbreviate H1((0, 1);H−1) ∩ L2((0, 1);H1

0 ), endowed with the canonical norm and inner
product. The symbol i1 : W (0, 1)→ H denotes the trace mapping i1u = u(1). We also define
B : L2(I × ω) → L2(I × Ω) by setting (Bq)(t) = Bq(t) for all t ∈ (0, 1) and any control
q ∈ L2(I;L2(ω)) ∼= L2(I × ω). Last, R × L2(I × ω) is endowed with the canonical inner
product and we abbreviate its norm as

‖(δν, δq)‖ =
(
|δν|2 + ‖δq‖2L2(I×ω)

)1/2
.
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5. A priori discretization error estimates

Assumption 5.2. The terminal constraint G is defined by

G(u) := 1
2‖u− ud‖

2
L2(Ω) −

δ2
0
2 .

for fixed ud ∈ H1
0 (Ω) and δ0 > 0.

Remark 5.1. (i) The regularity assumption ud ∈ H1
0 (Ω) is required for optimal order of

convergence. Since G′(u)∗ = u− ud defines the terminal value of the adjoint equation,
this leads to improved regularity of the adjoint equation, which in turn allows to prove
full order of convergence.

(ii) In addition, we would like to justify the regularity assumption ud ∈ H1
0 (Ω) from a

different perspective, namely that of weak invariance. Recall that the target set U =
{u ∈ L2(Ω) : G(u) ≤ 0 } is called weakly invariant under the state equation if for any u0
satisfying G(u0) ≤ 0 there is a admissible control q(t) ∈ Qad such that the corresponding
trajectory with initial value u0 satisfies G(u(t)) ≤ 0 for all times; cf. Section 2.2. Since
the formulation of (P ) only requires the state to be inside the target set at the final
time T (but not at later times), it seems to be desirable to require the target set to
be weakly invariant, since this guarantees that G(u(t)) ≤ 0 can be maintained for
t > T . However, this requirement already implies that the minimizing projection PU to
U in L2(Ω) is stable in H1

0 (Ω); see Lemma 2.6. This further leads to the requirement
G′(PU (u))∗ = PU (u)−ud ∈ H1

0 (Ω) for all u ∈ H1
0 (Ω), which implies the desired property

for ud.

(iii) The error analysis remains valid for more general terminal constraints. Precisely, we
require that G is two times continuously Fréchet-differentiable, the mapping η 7→
G′′(u)[η]2 is weakly lower semicontinuous, and G′′ is bounded on bounded sets in L2(Ω).
Furthermore, G′(u)∗ ∈ H1

0 for any u ∈ H1
0 .

Assumption 5.3. There exist a finite time T > 0 and a feasible control q ∈ Qad(0, T ) such
that the solution to the state equation of (P ) satisfies G(u(T )) ≤ 0. To exclude the trivial
case, we additionally assume G(u0) > 0.

Under Assumption 5.3 the time-optimal control problem is well-posed; cf. Proposition 2.14.
Moreover, we assume that the constraint qualification from Assumption 3.1 holds, i.e.

η := −∂νg(ν̄, q̄) > 0.

As in Chapter 3 we define the reduced terminal constraint by g(ν, q) = G(i1S(ν, q)). For ν
bounded uniformly from below and above, the derivatives of g can be estimated by uniform
constants, which will be important in the following.

Proposition 5.2. Let 0 < νmin < νmax be given. Then there exists c > 0 such that for all
δν ∈ R and δq ∈ L2(I × ω) the stability estimates

|g′(ν, q)(δν, δq)| ≤ c‖(δν, δq)‖,
|g′′(ν, q)[δν, δq]2| ≤ c‖(δν, δq)‖2,

hold for all νmin ≤ ν ≤ νmax and q ∈ Qad(0, 1). Moreover,

|
(
g′(ν1, q1)− g′(ν2, q2)

)
(δν, δq)| ≤ c‖(ν1 − ν2, q1 − q2)‖‖(δν, δq)‖,

for all νmin ≤ ν1, ν2 ≤ νmax and q1, q2 ∈ Qad(0, 1).
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Proof. Since g(ν, q) = G(i1S(ν, q)) the result is a consequence of Proposition A.26 and the
assumptions on G; see Assumption 5.2.

Under these assumptions, the first order optimality conditions of Lemma 3.1 imply improved
regularity of the optimal solution. More specifically, we infer from the optimality condi-
tion (3.6) that ∫ 1

0
〈αq̄ +B∗z̄, q − q̄〉 ≥ 0 for all q ∈ Qad(0, 1).

In particular, if α > 0 this implies (almost everywhere) in I × ωq̄(t, x) = qa if αq̄(t, x) +B∗z̄(t, x) > 0,
q̄(t, x) = qb if αq̄(t, x) +B∗z̄(t, x) < 0.

(5.1)

Furthermore, as in the linear parabolic case, see, e.g., [147, Section 3.6], if α > 0, then the
following projection formula

q̄ = PQad

(
− 1
α
B∗z̄

)
(5.2)

holds, where PQad (·) denotes the pointwise projection onto the set Qad(0, 1), defined by

PQad : L2(I × ω)→ Qad(0, 1), PQad(r)(t, x) = max {qa,min {qb, r(t, x)}} .

Proposition 5.3. The optimal state ū and the adjoint state z̄ to (P̂ ) exhibit the improved
regularity

ū, z̄ ∈ H1(I;L2) ∩ L2(I;H2 ∩H1
0 ) ↪→ C([0, 1];H1

0 ).

Additionally, in case of distributed control with α > 0, we have

q̄ ∈ H1(I;L2(ω)) ∩ L2(I;H1(ω)).

Moreover, if ud ∈ W 1,p
0 for some p ∈ [2,∞), then it holds z̄ ∈ C([0, 1];W 1,p

0 ) and (for
distributed control with α > 0) we have q̄ ∈ C([0, 1];W 1,p(ω)).

Proof. We first note that elliptic regularity yields DL2(−∆) = H2 ∩H1
0 , since Ω is convex;

see, e.g., [68, Theorem 3.2.1.2]. Furthermore, since −∆ exhibits maximal parabolic regularity
on L2, see, e.g., [99, Theorem 1], we infer ū ∈ C([0, 1];H1

0 ) due to DL2((−∆)1/2) = H1
0 .

According to Assumption 5.2 we have z̄(1) = G′(ū(1))∗µ̄ = µ̄(ū(1)− ud) ∈ H1
0 . Hence,

z̄ ∈ H1(I;L2) ∩ L2(I;DL2(−∆)) ↪→ C([0, 1];H1
0 ).

The projection formula (5.2) leads to q̄ ∈ H1(I;L2(ω)) ∩ L2(I;H1(ω)).

According to [45, Corollary 3.12], it holds DW−1,p(−∆) = W 1,p
0 for any p ∈ [2,∞), because Ω

is a convex polyhedron. Moreover, since −∆ generates an analytic semigroup on W−1,p, see,
e.g., [8, Theorem 11.5 (i)], we have z̄ ∈ C([0, 1];DW−1,p(−∆)) due to [128, Theorem 4.3.5 (ii)].
The projection formula (5.2) yields the last assertion.
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5. A priori discretization error estimates

5.2. Finite element discretization

Consider a partitioning of the (reference) time interval [0, 1] given as

[0, 1] = {0} ∪ I1 ∪ I2 ∪ . . . ∪ IM

with disjoint subintervals Im = (tm−1, tm] of size km defined by the time points

0 = t0 < t1 < . . . < tM−1 < tM = 1.

We abbreviate the time discretization by the parameter k defined as the piecewise constant
function by setting k|Im = km for all m = 1, 2, . . . ,M . Simultaneously, we denote by k the
maximal size of the time steps, i.e. k = max km. Moreover, we assume the following regularity
conditions on the time mesh:

(i) There are constants c, β > 0 independent on k such that

min
m

km ≥ ckβ,

(ii) There is a constant kratio > 0 independent of k such that

k−1
ratio ≤

km
km+1

≤ kratio,

(iii) Last, k ≤ 1/4 holds.

Concerning the spatial discretization, we consider a discretization consisting of triangular
or tetrahedral cells K that constitute a non-overlapping cover of the domain Ω. We define
the discretization parameter h as the cellwise constant function h|K = hK with diameter
hK of the cell K. Moreover, we set h = max hK . The corresponding mesh is denoted by
Th = {K}. We suppose throughout that Th is regular; see Definition A.31. Let Vh ⊂ H1

0
denote the subspace of continuous and cellwise linear functions associated with Th. We define
the spatial L2-projection Πh : L2 → Vh by

(u−Πhu, ϕ)L2 = 0 for all ϕ ∈ Vh.

The corresponding space-time finite element space is constructed in a standard way by

Xk,h =
{
vkh ∈ L2(I;Vh) : vkh|Im ∈ P0(Im;Vh), m = 1, 2, . . . ,M

}
,

where P0(Im;Vh) denotes the space of constant functions on the time interval Im with values
in Vh. For any function ϕk ∈ Xk,h we set ϕk,m := ϕk(tm) with m = 1, 2, . . . ,M, as well as

[ϕk]m := ϕk,m+1 − ϕk,m, m = 1, 2, . . . ,M − 1.

Now, we define the trilinear form B: R×Xk,h ×Xk,h → R as

B(ν, ukh, ϕkh) :=
M∑
m=1
〈∂tukh, ϕkh〉L2(Im;L2)

+ ν(∇ukh,∇ϕkh)L2(I;L2) +
M∑
m=2

([ukh]m−1, ϕkh,m) + (ukh,1, ϕkh,1). (5.3)
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5.2. Finite element discretization

Note that the definition of B above can be directly extended on the larger spaceXk,h+W (0, 1),
which allows to formulate Galerkin orthogonality. Given ν ∈ R+ and q ∈ Q(0, 1) the discrete
state equation reads as follows: Find a state ukh ∈ Xk,h satisfying

B(ν, ukh, ϕkh) = ν(Bq, ϕkh)L2(I;L2) + (u0, ϕkh,1)L2 for all ϕkh ∈ Xk,h. (5.4)

We define the discrete control-to-state mapping Skh : R+ ×Q(0, 1) → Xk,h, Skh(ν, q) = ukh,
where ukh is the solution to (5.4). In addition, for ν ∈ R+ and q ∈ L2(I × ω) we introduce
the discrete version of the reduced constraint mapping as

gkh(ν, q) := G(i1Skh(ν, q)).

In the following we verify that Skh is well-defined and prove stability estimates as well as
differentiability properties. This will be imported for discretization error estimates for the
reduced constraint mapping.

5.2.1. Stability estimates for the PDE

We introduce the discrete analogue −∆h : Vh → Vh to the operator −∆ as

−(∆huh, ϕh)L2 = (∇uh,∇ϕh)L2 , ϕh ∈ Vh.

For the discretization error estimates we require stability estimates for the state, linearized
state, and adjoint state.

Proposition 5.4. For every tuple (ν, q) ∈ R+ ×Q(0, 1) there exists a unique solution ukh ∈
Xk,h to the discrete state equation. Moreover, the stability estimates

‖ukh(1)‖2L2 + ν‖ukh‖2L2(I;H1
0 ) ≤ c

(
ν‖Bq‖2L2(I;H−1) + ‖Πhu0‖2L2(I;L2)

)
, (5.5)

ν‖∆hukh‖2L2 ≤ c
(
ν‖Bq‖2L2(I;L2) + ‖Πhu0‖2H1

)
, (5.6)

‖∇ukh(1)‖2L2 ≤ c
(
ν‖Bq‖2L2(I;L2) + 1

ν
‖Πhu0‖2L2

)
, (5.7)

hold with a constant c > 0 that is independent of k, h, ν, q, u0, and ukh.

Proof. We proceed as in [117]. Setting ukh,0 = Πhu0 the equation (5.4) can be written as

ν(∇ukh,∇ϕkh)L2(Im;L2) + ([ukh]m−1, ϕkh,m)L2 = ν(Bq, ϕkh)L2(Im;L2) (5.8)

for all m = 1, 2, . . . ,M and all ϕkh ∈ Xk,h. Hence, existence of a solution for each time
interval follows by the lemma of Lax-Milgram. Concatenation of the interval-wise defined
solutions yields ukh ∈ Xkh. Concerning the stability estimates, first testing with ϕ = ukh
implies for all m = 1, 2, . . . ,M

ν‖∇ukh‖2L2(Im;L2) + 1
2‖ukh,m‖

2
L2 −

1
2‖ukh,m−1‖2L2 ≤ ν(Bq, ukh)L2(Im;L2),

where we have used that
1
2
(
‖ϕm‖2L2 + ‖[ϕ]m−1‖2L2 − ‖ϕm−1‖2L2

)
= ([ϕ]m−1, ϕm)L2 . (5.9)

Summation over all m = 1, 2, . . . ,M , using Poincaré’s and Young’s inequalities, yields (5.5).
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5. A priori discretization error estimates

Concerning the second stability estimate (5.6), testing in (5.8) with ϕ = −∆hukh, using the
definition of −∆h, the identity (5.9), and summation over all m = 1, 2, . . . ,M lead to

1
2‖∇ukh(1)‖2L2 + 1

2

M∑
m=1
‖[∇ukh]m−1‖2L2 + ν‖∆hukh‖2L2(I;L2)

≤ ν(Bq,−∆hukh)L2(I;L2) + ‖∇Πhu0‖2L2 .

Whence, from Young’s inequality we conclude

‖∇ukh(1)‖2L2 + ν‖∆hukh‖2L2(I;L2) ≤ c
(
ν‖Bq‖2L2(I;L2) + ‖Πhu0‖2H1

)
.

This proves (5.6). Moreover, if u0 = 0, then the estimate above immediately yields (5.7). Pro-
ceeding by superposition, it thus remains the case q = 0. We argue as in [116, Theorem 4.5].
Testing in (5.8) with ϕ = −tm∆hukh gives

νtm‖∆hukh‖2L2(Im;L2) + tm([∇ukh]m−1,∇ukh,m)L2 = 0.

Then (5.9) with the relations tm = tm−1 + km and km ≤ kratiokm−1 implies

tm‖∇ukh,m‖2L2 + 2νtm‖∆hukh‖2L2(Im;L2) = tm‖∇ukh,m−1‖2L2 − tm‖[∇ukh]m−1‖2L2

≤ tm−1‖∇ukh,m−1‖2L2 + kratiokm−1‖∇ukh,m−1‖2L2 .

Summations yields

‖∇ukh(1)‖2L2 + 2ν
M∑
m=2

tm‖∆hukh‖2L2(Im;L2) ≤ k1‖∇ukh,1‖2L2 + kratio

M∑
m=2
‖∇ukh‖2L2(Im;L2)

≤ (1 + kratio)‖∇ukh‖2L2(I×Ω).

Finally, (5.5) and superposition of the result for u0 = 0 proves (5.7).

Corollary 5.5. Let ukh ∈ Xk,h be the state corresponding to (ν, q) ∈ R+ × Q(0, 1). For all
(δν, δq) ∈ R×Q(0, 1) there are unique solutions δukh ∈ Xk,h and δũkh ∈ Xk,h to the discrete
linearized and second linearized state equation, i.e.

B(ν, δukh, ϕkh) = (δν(Bq + ∆hukh) + νBδq, ϕkh)L2(I;L2),
B(ν, δũkh, ϕkh) = 2(δν(Bδq + ∆hδukh), ϕkh)L2(I;L2),

for all ϕkh ∈ Xk,h. Moreover, the estimates

‖δukh(1)‖2L2 ≤ c
(
|δν|2(‖Bq‖2L2(I;H−1) + 1

ν
‖Πhu0‖2L2) + ν‖Bδq‖2L2(I;L2)

)
,

‖δũkh(1)‖2L2 ≤ c|δν|2
(
‖Bq‖2L2(I;H−1) + ‖δukh‖2L2(I;H1)

)
,

hold. The constant c > 0 is independent of k, h, δν, ν, δq, q, δukh, and δũkh.

Similarly, we obtain for the auxiliary adjoint equation the following stability result.

Proposition 5.6. For every triple (ν, f, z1) ∈ R+ × L2(I;L2) × H1
0 there exists a unique

solution z̃kh ∈ Xk,h to

B(ν, ϕkh, z̃kh) = ν(f, ϕkh)L2(I;L2) + (z1, ϕkh(1)) for all ϕkh ∈ Xk,h.
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5.2. Finite element discretization

Moreover,

‖z̃kh‖L2(I;H1
0 ) ≤ c

(
‖f‖L2(I;L2) + 1√

ν
‖Πhz1‖L2

)
, (5.10)

‖∆hz̃kh‖L2(I;L2) ≤ c
(
‖f‖L2(I;L2) + 1√

ν
‖Πhz1‖H1

)
, (5.11)

and the constant c > 0 is independent of k, h, ν, f , z1, and z̃kh.

Proof. Existence of a solution and the stability estimates follow as in Proposition 5.4.

As in the continuous case we obtain a discrete analogue to Proposition 5.2 using the stability
estimates of Proposition 5.4 and Corollary 5.5 for the discrete states.

Proposition 5.7. Let 0 < νmin < νmax be given. Then there exists c > 0 independent of k
and h such that for all δν ∈ R and δq ∈ L2(I × ω) we have

|g′kh(ν, q)(δν, δq)| ≤ c‖(δν, δq)‖, (5.12)
|g′′kh(ν, q)[δν, δq]2| ≤ c‖(δν, δq)‖2, (5.13)

for all νmin ≤ ν ≤ νmax and q ∈ Qad(0, 1). Moreover, gkh and g′kh are Lipschitz continuous
on bounded sets.

5.2.2. Discretization error estimates for the terminal constraint

Based on the discretization error estimates for the state that are collected in Appendix A.7,
we establish discretization error estimates concerning the reduced terminal constraint.

Proposition 5.8. Let 0 < νmin < νmax and (ν, q) ∈ [νmin, νmax]×Qad(0, 1). For the adjoint
state z defined in (3.9) associated with u = u(ν, q) and the discrete adjoint state zkh associated
with ukh = ukh(ν, q), i.e. zkh satisfies

B(ν, ϕkh, zkh) = µ(ukh(1)− ud, ϕkh(1)) for all ϕkh ∈ Xk,h,

the estimate

‖z − zkh‖L2(I;L2) ≤ c|log k|(k + h2)|µ|
(
‖Bq‖L∞(I;L2) + ‖u0‖L2

)
(5.14)

holds. If additionally Πh is stable in H1, then

‖∇z −∇zkh‖L2(I;L2) ≤ c|log k|(k1/2 + h)|µ|
(
‖Bq‖L∞(I;L2) + ‖u0‖L2

)
. (5.15)

The constant c > 0 is independent of k, h, ν, µ, q, u0, z, and zkh.

Proof. We consider the splitting

z − zkh = z − z̃ + z̃ − zkh, (5.16)

where z̃ denotes the solution to

−∂tz̃ − ν∆z̃ = 0, z̃(1) = µ(ukh(1)− ud).
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5. A priori discretization error estimates

By means of the stability estimates of Proposition A.26 for u and Proposition 5.4 for ukh
as well as boundedness of q ∈ Qad(0, 1) and ν ∈ [νmin, νmax] we find that u(1) and ukh(1)
are uniformly bounded in L2. Employing a stability result similar as Proposition A.26 and
Lipschitz continuity of G′ on bounded sets in L2 we infer

‖z − z̃‖L2(I;H1) ≤ c
|µ|√
ν
‖u(1)− ukh(1)‖L2

≤ c(νmin, νmax)|µ||log k|(k + h2)
(
‖Bq‖L∞(I;L2) + ‖u0‖L2

)
, (5.17)

where we have used the discretization error estimate (A.42) in the last step. The second term
in (5.16) is a pure discretization error, therefore,

‖z̃ − zkh‖L2(I;L2) ≤ c(k + h2)|µ|‖ukh(1)− ud‖H1 ,

‖∇z̃ −∇zkh‖L2(I;L2) ≤ c(k
1/2 + h)|µ|‖ukh(1)− ud‖H1 ;

cf. (A.31) and (A.32). The assertion follows from (5.17), the two preceding estimates and the
stability estimates (5.5) and (5.7) applied for ukh.

Proposition 5.9. Let 0 < νmin < νmax be fixed. Consider (ν, q) ∈ [νmin, νmax] × Qad(0, 1)
and (δν, δq) ∈ R×Q(0, 1). Then

|g(ν, q)− gkh(ν, q)| ≤ c|log k|(k + h2)
(
‖Bq‖L∞(I;L2) + ‖u0‖L2

)
. (5.18)

If additionally Πh is stable in H1, then

|(g′(ν, q)− g′kh(ν, q))(δν, δq)| ≤ c|log k|(k + h2)
(
‖Bq‖L∞(I;L2) + ‖u0‖H1

)
‖(δν, δq)‖. (5.19)

The constant c > 0 is independent of k, h, δν, ν, δq, q, and u0.

Proof. From the discretization error estimate (A.42) and Lipschitz continuity ofG on bounded
sets in L2 we conclude

|g(ν, q)− gkh(ν, q)| ≤ c(νmin, νmax)‖u(1)− ukh(1)‖L2

≤ c(νmin, νmax)|log k|(k + h2)
(
‖Bq‖L∞(I;L2) + ‖u0‖L2

)
.

To prove (5.19), we use the adjoint representation (3.8) and its discrete analogue. Let µ ∈ R,
then

[g′(ν, q)− g′kh(ν, q)]∗µ =
( ∫ 1

0 〈Bq, z − zkh〉+ 〈∆u, z〉 − 〈∆hukh, zkh〉dt
νB∗(z − zkh)

)
.

Clearly, the terms involving z−zkh can be estimated using (5.14). Concerning the remaining
terms of the first component, we have

〈∆u, z〉 − 〈∆hukh, zkh〉 = −〈ukh − u,∆z〉+ 〈∇ukh −∇u,∇zkh −∇z〉 − 〈∆u, zkh − z〉.

Since ∆u,∆z ∈ L2(I;L2), we conclude

|〈∆hukh, zkh〉 − 〈∆u, z〉| ≤ c
(
‖ukh − u‖L2(I;L2)|µ|+ ‖zkh − z‖L2(I;L2)

+ ‖∇ukh −∇u‖L2(I;L2)‖∇zkh −∇z‖L2(I;L2)

)
≤ c(νmin, νmax)|log k|(k + h2)|µ|

(
‖Bq‖L∞(I;L2) + ‖u0‖H1

)
according to (A.31), (5.14), (A.32), and (5.15). Thus,

‖[g′(ν, q)− g′kh(ν, q)]∗µ‖ ≤ c(νmin, νmax)|log k|(k + h2)|µ|
(
‖Bq‖L∞(I;L2) + ‖u0‖H1

)
,

which implies (5.19) due to linearity of [g′(ν, q)− g′kh(ν, q)]∗.
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5.3. Error estimates for controls (α > 0)

In this section we establish a priori discretization error estimates in the case that α > 0. The
results are already contained in [17] in similar form. Throughout this section we suppose that
the general regularity conditions concerning the temporal and spatial mesh from Section 5.2
are satisfied. Moreover, we assume that the projection Πh onto Vh is stable in H1. This is
satisfied if, e.g., the mesh is quasi-uniform but weaker conditions are known; cf. [23].

To consider different control discretizations at the same time, we introduce the operator Iσ
onto the (possibly discrete) control space Qσ(0, 1) ⊂ L2(I × ω) with an abstract parameter
σ for the control discretization. In case of distributed control, we additionally assume that a
subset denoted T ωh of the mesh Th is a non-overlapping cover of ω to simplify the discussion.
We use the symbol σ(k, h) to denote the error due to control discretization, i.e.

‖q̄ − Iσ q̄‖L2(I×ω) ≤ σ(k, h)‖q̄‖σ, (5.20)

where ‖·‖σ stands for a potentially different norm on Q(0, 1). We suppose σ(k, h) → 0 as
k, h → 0 and IσQad(0, 1) ⊂ Qad(0, 1). Moreover, we assume ‖q̄‖σ < ∞ and ‖q̄‖L2(I×ω) ≤
‖q̄‖σ. For notational simplicity we write Iσ(ν, q) = (ν, Iσq) using the same symbol. Concrete
discretization strategies for the control will be discussed in Section 5.3.3. For convenience we
define Qad,σ(0, 1) = Qσ(0, 1) ∩Qad(0, 1).

The discrete optimal control problem now reads as follows:

inf
νkh∈R+

qkh∈Qad,σ(0,1)

j(νkh, qkh) subject to gkh(νkh, qkh) ≤ 0. (P̂kh)

At this point, the well-posedness of (P̂kh) is not clear. In the following, as a by-product of
the error analysis, we will show existence of feasible points (for k and h sufficiently small),
local uniqueness, and optimality conditions. Note that the linearized Slater condition (3.1)
is sufficient to ensure existence (for k, h sufficiently small), whereas the SSC is essential for
the local uniqueness and rates of convergence of the optimization variables.

5.3.1. Construction of feasible controls

In order to deal with local solutions, we apply a standard localization argument, cf. [32]. For
a given locally optimal control (ν̄, q̄) of (P̂ ) in Qad ∩ Bρ(ν̄, q̄) with ρ > 0 sufficiently small
satisfying first-order optimality conditions, we introduce the auxiliary problem

inf
νkh∈R+

qkh∈Qad,σ(0,1)

j(νkh, qkh) subject to

 gkh(νkh, qkh) ≤ 0,
‖(νkh − ν̄, qkh − q̄)‖ ≤ ρ.

(P̂ ρkh)

We first construct a sequence of tuples {(νγ , qγ)}γ>0 converging to (ν̄, q̄) as γ → 0 that is
feasible for the localized problem. In particular, this implies existence of solutions to (P̂ ρkh).
Thereafter we construct a sequence {(ντ , qτ )}τ>0 converging to (ν̄ρkh, q̄

ρ
kh) as τ → 0 that is fea-

sible for (P̂ ). Feasibility of the τ -sequence for (P̂ ) with the quadratic growth condition (3.16)
yields convergence of discrete solutions to (ν̄, q̄) at a suboptimal rate. The convergence result
will later be the basis for the improved convergence rate in Section 5.3.3.
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Proposition 5.10. Let (ν̄, q̄) be a locally optimal control of problem (P̂ ). There exists a
sequence {(νγ , qγ)}γ>0 of controls with γ = γ(k, h) that are feasible for (P̂ ρkh) for k, h, ρ
sufficiently small. Moreover,

|νγ − ν̄|+ ‖qγ − q̄‖L2(I×ω) ≤ c(σ(k, h) + |log k|(k + h2)).

Proof. The proof follows the one of [123, Lemma 4.2]. We abbreviate χ̄ = (ν̄, q̄). Moreover,
for γ > 0 to be determined in the course of the proof we set

χγ := Iσχ̆γ = (ν̄ + γ, Iσ q̄).

Employing the supposition on Iσ, see (5.20), we obtain

‖χγ − χ̄‖ ≤ γ + σ(k, h)‖q̄‖σ. (5.21)

Moreover, using Taylor expansion of gkh at Iσχ̄ we find

gkh(χγ) = gkh(Iσχ̄) + γg′kh(Iσχ̄)(1, 0) + γ2

2 g
′′
kh(χζ)[1, 0]2.

Using the triangle inequality we estimate the first term by

gkh(Iσχ̄) ≤ g(χ̄) + |g(χ̄)− gkh(χ̄)|+ c‖Iσχ̄− χ̄‖
≤ c1(|log k|(k + h2) + σ(k, h)) =: δ1(k, h) (5.22)

with Lipschitz continuity of gkh and Proposition 5.9. For the second term, we estimate
similarly

g′kh(Iσχ̄)(1, 0) ≤ g′(χ̄)(1, 0) + c2
(
|log k|(k + h2) + σ(k, h)

)
≤ −η̄ + δ2(k, h). (5.23)

using Assumption 3.1 and g′(χ̄)(1, 0) = ∂νg(χ̄) = −η̄ < 0. Finally, for the third term, we find
due to (5.13) that

g′′kh(χζ)[γ, 0]2 ≤ c3γ
2.

Collecting all estimates, we have

gkh(χγ) ≤ c1δ1(k, h)− γ (η̄ − c2δ2(k, h)− c3γ) .

Note that the first component of χγ is bounded below by ν̄ and bounded above by ν̄ + 1, so
that all constants of Propositions 5.7 and 5.9 can be chosen to be independent of χγ . Taking

γ = 3c1δ1(k, h)
η̄

≤ η̄

3c3
and c2δ2(k, h) ≤ η̄

3

for k, h sufficiently small, we obtain gkh(χγ) ≤ 0. From the definition of γ we further deduce

γ = γ(k, h) = O(σ(k, h) + |log k|(k + h2)).

Moreover, it holds ‖χγ − χ̄‖ ≤ ρ for γ, k, h sufficiently small due to (5.21). In summary, we
have that the sequence χγ is feasible for (P̂ ρkh).

In particular, Proposition 5.10 guarantees that for h, k, and ρ sufficiently small, the set of
admissible controls of the discrete problem (P̂ ρkh) is nonempty. Hence, by standard arguments
we obtain that the localized discrete problem is well-posed.
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Corollary 5.11. Let h, k, and ρ be sufficiently small. Then there exists a solution χ̄ρkh =
(ν̄ρkh, q̄

ρ
kh) ∈ R+ ×Qad,σ(0, 1) to (P̂ ρkh).

In order to ensure that the constants in the following arguments are independent of ν̄ρkh, we
have to guarantee that ν̄ρkh is strictly and uniformly bounded from zero; cf., e.g., Proposi-
tions 5.7 and 5.9 and Appendix A.7. To this end, we always assume in the following that
ρ ≤ ν̄/2, which implies ν̄/2 ≤ ν̄ρkh ≤ (3/2)ν̄ by the localization in (P̂ ρkh).

If k, h, and ρ are sufficiently small, then we easily verify that the linearized Slater condition
holds at χ̄ρkh for the discrete problem.

Proposition 5.12. For k, h, and ρ sufficiently small we have

∂νgkh(χ̄ρkh) ≤ −η̄/2 < 0.

Proof. This follows with Assumption 3.1 and

∂νgkh(χ̄ρkh) ≤ ∂νg(χ̄) + |∂νgkh(χ̄ρkh)− ∂νg(χ̄ρkh)|+ |∂νg(χ̄ρkh)− ∂νg(χ̄)|,

using the error estimate (5.19), the Lipschitz-continuity of ∂νg from Proposition 5.2, and the
fact that ‖χ̄ρkh − χ̄‖ ≤ ρ by the construction of (P̂ ρkh).

Last, we construct a sequence that is feasible for (P̂ ) and its distance to (ν̄ρkh, q̄
ρ
kh) converges

at the rate |log k|(k + h2).

Proposition 5.13. Let k, h, and ρ be sufficiently small. Moreover, let (ν̄, q̄) be a locally
optimal solution of (P̂ ) and let (ν̄ρkh, q̄

ρ
kh) be any globally optimal control of (P̂ ρkh). Then

there exists a sequence {ντ}τ>0 with τ = τ(k, h) such that (ντ , q̄ρkh) is feasible for (P̂ ) and
that fulfill

|ντ − ν̄ρkh| ≤ c|log k|(k + h2).

Proof. We set
χτ = (ντ , qτ ) = (ν̄ρkh + τ, q̄ρkh).

for some τ ∈ (0, 1] to be determined later. Now, the proof proceeds along the lines of the
proof of Proposition 5.10, interchanging the roles of χ̄ and χ̄kh and g and gkh and using the
result of Proposition 5.12 instead of Assumption 3.1. Clearly, we have

‖χτ − χ̄ρkh‖ ≤ τ .

Moreover, using Taylor expansion of g at χ̄ρkh we find

g(χτ ) = g(χ̄ρkh) + τ g′(χ̄ρkh)(1, 0) + τ2

2 g′′(χζ)[1, 0]2.

Using the triangle inequality, we estimate the first term by

g(χ̄ρkh) ≤ gkh(χ̄ρkh) + |gkh(χ̄ρkh)− g(χ̄ρkh)| ≤ c1 |log k|(k + h2)

with Proposition 5.9. For the second term, we estimate similarly

g′(χ̄ρkh)(1, 0) ≤ g′kh(χ̄ρkh)(1, 0) + c2 |log k|(k + h2).
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Due to Proposition 5.12, it holds g′kh(χ̄ρkh)(1, 0) = ∂νgkh(χ̄ρkh) = −η̄/2 < 0. Finally, for the
third term, we find that g′′(χζ)[τ, 0]2 ≤ c3τ

2. Collecting all estimates, we have

g(χτ ) ≤ c1 |log k|(k + h2)− τ
(
η̄/2− c2 |log k|(k + h2)− c3τ

)
.

Note that the first component of χτ is bounded below by ν̄ρkh ≥ ν̄/2 and bounded above by
ν̄ρkh+1 ≤ (3/2)ν̄+1, so that all constants of Proposition 5.9 can be chosen to be independent
of χτ . Taking

τ = 6c1 |log k|(k + h2)
η̄

≤ η̄

6c3
and c2 |log k|(k + h2) ≤ η̄

6
for k and h sufficiently small, we obtain g(χτ ) ≤ 0. From the definition of τ we further
deduce τ = τ(k, h) = O(|log k|(k + h2)). In summary, we have that the sequence χτ is
feasible for (P̂ ).

5.3.2. Suboptimal error estimates for controls

Two-way insertion of the auxiliary sequences constructed in the preceding subsections with
the quadratic growth condition yields a first convergence result.

Proposition 5.14. Let (ν̄, q̄) be a local solution to (P̂ ). Moreover, let {(k, h)} be a sequence
of positive mesh sizes converging to zero and {(ν̄ρkh, q̄

ρ
kh)}k,h>0 be a sequence of globally optimal

solutions to (P̂ ρkh) for ρ > 0 sufficiently small such that the quadratic growth condition (3.16)
as well as Propositions 5.10 and 5.13 hold. Then (ν̄ρkh, q̄

ρ
kh) converges to (ν̄, q̄) and

|ν̄ − ν̄ρkh|+ ‖q̄ − q̄
ρ
kh‖L2(I×ω) ≤ c

(
σ(k, h)1/2 + |log k|1/2(k1/2 + h)

)
.

Proof. Because the tuple (ντ , q̄ρkh) from Proposition 5.13 is feasible for (P̂ ), we may use the
quadratic growth condition (3.16) to estimate

δ

2‖(ν̄ − ντ , q̄ − q̄
ρ
kh)‖2 ≤ j(ντ , q̄ρkh)− j(ν̄, q̄)

≤ j(ντ , q̄ρkh)− j(ν̄ρkh, q̄
ρ
kh) + j(ν̄ρkh, q̄

ρ
kh)− j(νγ , qγ) + j(νγ , qγ)− j(ν̄, q̄)
≤ j(ντ , q̄ρkh)− j(ν̄ρkh, q̄

ρ
kh) + j(νγ , qγ)− j(ν̄, q̄),

where the last inequality follows from optimality of the pair (ν̄ρkh, q̄
ρ
kh) and feasibility of (νγ , qγ)

for (P̂ ρkh). Then, we observe

j(ντ , q̄ρkh)− j(ν̄ρkh, q̄
ρ
kh) = (ντ − ν̄ρkh)

(
1 + α

2 ‖q̄
ρ
kh‖

2
L2(I×ω)

)
≤ c

(
1 + α

2

)
|log k|(k + h2)

due to Proposition 5.13 and boundedness of q̄ρkh. Similarly,

j(νγ , qγ)− j(ν̄, q̄) = (νγ − ν̄)
(

1 + α

2 ‖qγ‖
2
L2(I×ω)

)
+ ν̄

α

2 ‖qγ + q̄‖L2(I×ω)‖qγ − q̄‖L2(I×ω)

≤ c
(

1 + α

2

)
(σ(k, h) + |log k|(k + h2))

employing Proposition 5.10. Taking square roots yields the assertion.
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Lemma 5.15. Let (ν̄, q̄) be a local solution to (P̂ ) satisfying the quadratic growth condi-
tion (3.16) and {(k, h)} be a sequence of positive mesh sizes converging to zero. There is a
sequence {(ν̄kh, q̄kh)}k,h>0 of local solutions to problem (P̂kh) such that

|ν̄ − ν̄kh|+ ‖q̄ − q̄kh‖L2(I×ω) ≤ c
(
σ(k, h)1/2 + |log k|1/2(k1/2 + h)

)
, (5.24)

where c > 0 is independent of k, h, ν̄kh, and q̄kh. Moreover, there exists a Lagrange multiplier
µ̄kh such that the following optimality system is satisfied:

µ̄kh > 0, (5.25)∫ 1

0
1 + α

2 ‖q̄kh(t)‖2L2(ω) + 〈Bq̄kh(t) + ∆hūkh(t), z̄kh(t)〉 dt = 0, (5.26)∫ 1

0
ν̄kh〈αq̄kh +B∗z̄kh, q − q̄kh〉 ≥ 0, q ∈ Qad,σ(0, 1), (5.27)

G(ūkh(1)) = 0, (5.28)

where ūkh = Skh(ν̄kh, q̄kh) and z̄kh ∈ Xk,h is the solution to the discrete adjoint equation

B(ν̄kh, ϕkh, z̄kh) = µ̄kh(ūkh(1)− ud, ϕkh(1)), ϕkh ∈ Xk,h.

Proof. The assertion follows from Proposition 5.14 noting that global solutions of (P̂ ρkh)
are local solutions of (P̂kh), since the constraint ‖(νkh − ν̄, qkh − q̄)‖ ≤ ρ is not active for
sufficiently small k, h > 0 due to the convergence result of Proposition 5.14. Furthermore,
Proposition 5.12 guarantees the existence of KKT multipliers satisfying the optimality system
stated above.

Proposition 5.16. Adopt the assumptions of Lemma 5.15. Then it holds

|µ̄− µ̄kh| ≤ c
(
|log k|(k + h2) + ‖(ν̄ − ν̄kh, q̄ − q̄kh)‖

)
, (5.29)

with a constant c > 0 independent of k, h, ν̄kh, q̄kh, and µ̄kh.

Proof. We abbreviate χ̄ = (ν̄, q̄) and χ̄kh = (ν̄kh, q̄kh). Combining the optimality conditions
for (P̂ ) and (P̂kh) we obtain

µ̄− µ̄kh = ∂νg(χ̄)−1∂νj(χ̄)− ∂νgkh(χ̄kh)−1∂νj(χ̄kh).

Now, we may use the discretization error estimate (5.19) to infer

|µ̄− µ̄kh| ≤ |∂νg(χ̄)−1 − ∂νgkh(χ̄)−1|∂νj(χ̄)
+ |∂νgkh(χ̄)−1∂νj(χ̄)− ∂νgkh(χ̄kh)−1∂νj(χ̄kh)|

≤ |∂νg(χ̄)− ∂νgkh(χ̄)|
|∂νg(χ̄)∂νgkh(χ̄)| ∂νj(χ̄) + |∂νgkh(χ̄)− ∂νgkh(χ̄kh)|

|∂νgkh(χ̄)∂νgkh(χ̄kh)| ∂νj(χ̄)

+ |∂νgkh(χ̄kh)−1||∂νj(χ̄)− ∂νj(χ̄kh)|
≤ c|log k|(k + h2) + c‖χ̄− χ̄kh‖,

where we have used that ∂νj(χ) =
∫ 1

0 (1 + (α/2)‖q‖2) and that |∂νgkh(χ̄)| ≥ η/2 for k and h
small enough, using again the discretization error estimate (5.19).
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5.3.3. Optimal error estimates for controls

Using the convergence result of the preceding subsection, we now prove optimal order of
convergence with respect to the control variable. While the previous result is based on the
quadratic growth condition, we now directly rely on the second order sufficient optimality
condition and thus avoid taking square roots in the end. The improved convergence result
will be consequence of the following Lemma.

Lemma 5.17. Let (ν̄, q̄) be a local solution to (P̂ ) satisfying the second order sufficient
optimality condition (3.15) and let {(k, h)} be a sequence of positive mesh sizes such that
|log k|(k + h2)→ 0. Let {(ν̄kh, q̄kh)}k,h>0 be a sequence of local solutions to (P̂kh) converging
in R × L2(I × ω) and associated Lagrange multipliers µ̄kh converging in R. Then there are
constants c > 0 and k0, h0 > 0 such that

‖(ν̄− ν̄kh, q̄− q̄kh)‖2 ≤ c
[
|log k|2(k + h2)2 + ‖q̄ − qkh‖2L2(I×ω) + ∂qL(ν̄, q̄, µ̄)(qkh − q̄)

]
(5.30)

for all qkh ∈ Qad,σ(0, 1) and all k ≤ k0 and h ≤ h0.

Proof. We adapt the ideas of the proof of Theorem 2.14 in [31] for optimal control problems
without state constraints. Instead of working with the objective functional, we use the
Lagrange function L and the corresponding second order sufficient optimality condition (3.15).
We abbreviate χ̄ = (ν̄, q̄) and χ̄kh = (ν̄kh, q̄kh) with the norm ‖χ‖ = (|ν|2 + ‖q‖2L2(I×ω))1/2 on
the product space.

Step 0: Preparation. Since (ν̄, q̄) is optimal for (P̂ ), it holds

∂χL(χ̄, µ̄)(χ− χ̄) ≥ 0 (5.31)

for all χ ∈ R+ ×Qad(0, 1), and by the same arguments for the discrete problem (P̂kh)

∂χLkh(χ̄kh, µ̄kh)(χkh − χ̄kh) ≥ 0 (5.32)

for all χkh ∈ R+ ×Qad,σ(0, 1).

Using (5.31) and the fact that Qσ(0, 1) ⊂ Q(0, 1), we find

∂χ [L(χ̄kh, µ̄)− L(χ̄, µ̄)] (χ̄kh − χ̄) ≤ ∂χL(χ̄kh, µ̄)(χ̄kh − χ̄)
≤ ∂χ [L(χ̄kh, µ̄)− L(χ̄kh, µ̄kh)] (χ̄kh − χ̄) + ∂χL(χ̄kh, µ̄kh)(χ̄kh − χ̄). (5.33)

The first term on the right-hand side of (5.33) satisfies

∂χ [L(χ̄kh, µ̄)− L(χ̄kh, µ̄kh)] (χ̄kh − χ̄) = (µ̄− µ̄kh)g′(χ̄kh)(χ̄kh − χ̄).

Concerning the second term on the right-hand side of (5.33), using (5.32) and inserting
additional terms with some arbitrary χkh ∈ R+ ×Qad,σ(0, 1) yield

∂χL(χ̄kh, µ̄kh)(χ̄kh − χ̄) ≤ ∂χL(χ̄kh, µ̄kh)(χ̄kh − χ̄) + ∂χLkh(χ̄kh, µ̄kh)(χkh − χ̄kh)
= ∂χ [Lkh(χ̄kh, µ̄kh)− L(χ̄kh, µ̄kh)] (χ̄− χ̄kh) + ∂χLkh(χ̄kh, µ̄kh)(χkh − χ̄)
= ∂χ [Lkh(χ̄kh, µ̄kh)− L(χ̄kh, µ̄kh)] (χ̄− χ̄kh)

+ ∂χ [Lkh(χ̄kh, µ̄kh)− L(χ̄kh, µ̄kh)] (χkh − χ̄)
+ ∂χ [L(χ̄kh, µ̄kh)− L(χ̄, µ̄kh)] (χkh − χ̄) + ∂χL(χ̄, µ̄kh)(χkh − χ̄). (5.34)
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Concerning the first term on the right-hand side, we find

∂χ [Lkh(χ̄kh, µ̄kh)− L(χ̄kh, µ̄kh)] (χ̄− χ̄kh) = µ̄kh
[
g′kh(χ̄kh)− g′(χ̄kh)

]
(χ̄− χ̄kh)

≤ c|log k|(k + h2)‖χ̄− χ̄kh‖,

where we have used boundedness of the Lagrange multipliers µ̄kh due to Proposition 5.16 and
the estimate (5.19). Similarly for the second term of (5.34), it holds

∂χ [Lkh(χ̄kh, µ̄kh)− L(χ̄kh, µ̄kh)] (χkh − χ̄) ≤ c|log k|(k + h2)‖χkh − χ̄‖.

The third term of (5.34) is estimated using Lipschitz continuity of ∂χL (due to Lipschitz
continuity of g′ on bounded sets)

∂χ [L(χ̄kh, µ̄kh)− L(χ̄, µ̄kh)] (χkh − χ̄) ≤ c‖χ̄kh − χ̄‖‖χkh − χ̄‖.

Since L is two times continuously differentiable we find

∂2
χL(χ̌kh, µ̄)[χ̄kh − χ̄]2 = ∂χ [L(χ̄kh, µ̄)− L(χ̄, µ̄)] (χ̄kh − χ̄) (5.35)

with χ̌kh in between χ̄ and χ̄kh. Together with the estimates above, we obtain

∂2
χL(χ̌kh, µ̄)[χ̄kh − χ̄]2 ≤ c|log k|(k + h2) (‖χ̄− χ̄kh‖+ ‖χ̄− χkh‖)

+ c‖χ̄kh − χ̄‖‖χkh − χ̄‖+ ∂χL(χ̄, µ̄kh)(χkh − χ̄)
+ |µ̄− µ̄kh||g′(χ̄kh)(χ̄kh − χ̄)|.

(5.36)

We argue by contradiction. Suppose that (5.30) is false, then there exist a subsequence of
mesh sizes {kn, hn} converging to zero and (ν̄n, q̄n) ∈ R+ × Qad,σ(0, 1) such that (ν̄n, q̄n) →
(ν̄, q̄) with

‖χ̄n − χ̄‖2 > n
[
(|log kn|(kn + h2

n))2 + ‖qn − q̄‖2L2(I×ω) + ∂qL(χ̄, µ̄)(qn − q̄)
]
,

where we use for convenience the short notation ν̄n = ν̄knhn and Ln = Lknhn etc. Setting
χn = (ν̄, qn), the inequality is equivalent to

1
n
>

(|log kn|(kn + h2
n))2

‖χ̄n − χ̄‖2
+ ‖χn − χ̄‖

2

‖χ̄n − χ̄‖2
+ ∂χL(χ̄, µ̄)(χn − χ̄)

‖χ̄n − χ̄‖2
. (5.37)

Define ρn = ‖(ν̄n − ν̄, q̄n − q̄)‖ and

vn = (vνn, vqn) = 1
ρn

(χ̄n − χ̄).

We may assume w.l.o.g. that vνn → vν in R and vqn ⇀ vq in L2(I × ω) and set v = (vν , vq).

Step 1: ∂χL(χ̄, µ̄)v = 0. The optimality condition (3.3) implies

∂χL(χ̄, µ̄)v = lim
n→∞

∂χL(χ̄, µ̄)vn ≥ 0.

To show the reverse inequality, we consider

∂χL(χ̄, µ̄)v = lim
n→∞

∂χL(χ̄, µ̄)vn (5.38)

= lim
n→∞

∂χL(χ̄, µ̄n)vn + ∂χ [L(χ̄, µ̄)− L(χ̄, µ̄n)] vn

= lim
n→∞

∂χLn(χ̄n, µ̄n)vn

+ lim
n→∞

∂χ [L(χ̄n, µ̄n)− Ln(χ̄n, µ̄n)] vn

+ lim
n→∞

∂χ [L(χ̄, µ̄n)− L(χ̄n, µ̄n)] vn. (5.39)
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The limit in (5.38) exists due to weak convergence of (vνn, vqn). Concerning the second limit
in (5.39) we observe

lim
n→∞

[∂χL(χ̄n, µ̄n)− ∂χLn(χ̄n, µ̄n)] vn

= lim
n→∞

µ̄n
[
g′(χ̄n)− g′n(χ̄n)

]
vn ≤ c lim

n→∞
|log kn|(kn + h2

n) = 0,

where we have used boundedness of µ̄n and (5.19). Using Lipschitz continuity we estimate
the third limit as

lim
n→∞

[∂χL(χ̄, µ̄n)− ∂χL(χ̄n, µ̄n)] vn ≤ c lim
n→∞

‖χ̄− χ̄n‖ = 0,

since ‖vn‖ = 1. Thus, the first limit in (5.39) must exist as well.

Using continuity of ∂χL in R×L2(I×ω) and the optimality condition (5.32) for χ̄n = (ν̄n, q̄n)
with χn = (ν̄, qn) we find

∂χL(χ̄, µ̄)v ≤ lim
n→∞

∂χLn(χ̄n, µ̄n)vn

= lim
n→∞

1
ρn

[∂χLn(χ̄n, µ̄n)(0, qn − q̄) + ∂χLn(χ̄n, µ̄n)(ν̄n − ν̄, q̄n − qn)]

≤ lim
n→∞

1
ρn
∂χLn(χ̄n, µ̄n)(0, qn − q̄).

Since for any ϕ ∈ R× L2(I × ω) it holds

∂χLn(χ̄n, µ̄n)ϕ ≤ |∂χL(χ̄n, µ̄n)ϕ|+ |[∂χLn(χ̄n, µ̄n)− ∂χL(χ̄n, µ̄n)]ϕ||

≤ c
(
1 + |log kn|(kn + h2

n)
)
‖(ϕν , ϕq)‖,

we conclude

∂χL(χ̄, µ̄)v ≤ lim
n→∞

c
(
1 + |log kn|(kn + h2

n)
) ‖qn − q̄‖L2(I×ω)

ρn
= 0,

due to (5.37). In summary, we proved ∂χL(χ̄, µ̄)v = 0.

Step 2: g′(χ̄)v = 0. Using g(χ̄) = gn(χ̄n) = 0, (5.18), (5.37), and step 1 we infer

j′(χ̄)v = lim
n→∞

1
ρn

[j(χ̄n)− j(χ̄)] = lim
n→∞

1
ρn

[Ln(χ̄n, µ̄)− L(χ̄, µ̄)]

= lim
n→∞

1
ρn

[Ln(χ̄n, µ̄)− L(χ̄n, µ̄) + L(χ̄n, µ̄)− L(χ̄, µ̄)]

≤ lim sup
n→∞

c

ρn
|log kn|(kn + h2

n) + ∂χL(χ̄, µ̄)v = 0.

Similarly, we calculate

g′(χ̄)v = lim
n→∞

1
ρn

[g(χ̄n)− g(χ̄)] = lim
n→∞

1
ρn

[(gn(χ̄n)− g(χ̄)) + (g(χ̄n)− gn(χ̄n))]

≤ lim sup
n→∞

c

ρn
|log kn|(kn + h2

n) = 0.

Hence, from
∂χL(χ̄, µ̄)v = j′(χ̄)v + µ̄ g′(χ̄)v = 0

and µ̄ > 0 (see (3.4)), we conclude g′(χ̄)v = 0.
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5.3. Error estimates for controls (α > 0)

Step 3: v ∈ C(ν̄,q̄). Because the set{
δq ∈ L2(I × ω)

∣∣∣∣∣ δq ≤ 0 if q̄(t, x) = qb

δq ≥ 0 if q̄(t, x) = qa

}
,

is closed and convex, it is in particular weakly closed. Moreover, due to feasibility of qn every
(qn − q̄)/ρn belongs to the set above, so does the weak limit. Thus, v satisfies vq ≤ 0, if
q̄(t, x) = qb, and vq ≥ 0, if q̄(t, x) = qa. For this reason, (5.1) implies∫ 1

0

∫
ω
ν̄(αq̄ +B∗z̄)vq dx dt =

∫ 1

0

∫
ω
ν̄|(αq̄ +B∗z̄)vq| dx dt.

Moreover, due to ∂χL(χ̄, µ̄)v = 0 and the first order necessary condition ∂νL(χ̄, µ̄) = 0 we
have the equality

0 = ∂qL(χ̄, µ̄)vq =
∫ 1

0
ν̄(αq̄ +B∗z̄, vq)L2(ω) dt =

∫ 1

0

∫
ω
ν̄|(αq̄ +B∗z̄)vq| dx dt.

Hence, vq = 0, if αq̄(t, x) + B∗z̄(t, x) 6= 0, and vq satisfies the sign condition (3.11) as well.
With step 1 we have proved that v ∈ C(ν̄,q̄).

Step 4: v = 0. Since χ̄n → χ̄ in R × L2(I × ω), it holds χ̌n → χ̄, where χ̌n was defined
in (5.35). Thus, continuity of ∂χL in R× L2(I × ω) yields

lim inf
n→∞

∂2
χL(χ̌n, µ̄)v2

n ≥ lim inf
n→∞

∂2
χL(χ̄, µ̄)v2

n + lim inf
n→∞

∂2
χ[L(χ̌n, µ̄)− L(χ̄, µ̄)]v2

n

= lim inf
n→∞

∂2
χL(χ̄, µ̄)v2

n. (5.40)

Due to (5.29) and (5.37) we have

1
ρ2
n

∂χ [L(χ̄, µ̄n)− L(χ̄, µ̄)] (χn − χ̄) = 1
ρ2
n

(µ̄n − µ̄)g′(χ̄)(χn − χ̄)

≤ c |µ̄− µ̄n|
‖χ̄n − χ̄‖

‖χn − χ̄‖
‖χ̄n − χ̄‖

≤ c√
n

(
|log kn|(kn + h2

n)
‖χ̄n − χ̄‖

+ 1
)
≤ c√

n
. (5.41)

Similarly, using (5.29) and since |g′(χ̄)vn| → 0 by step 2, it holds

|µ̄− µ̄n||g′(χ̄n)(χ̄n − χ̄)|
‖χ̄n − χ̄‖2

≤ |µ̄− µ̄n|
‖χ̄n − χ̄‖

(
|g′(χ̄)vn|+ |[g′(χ̄n)− g′(χ̄)]vn|

)
≤ c

(
|log kn|(kn + h2

n)
‖χ̄n − χ̄‖

+ 1
)(
|g′(χ̄)vn|+ ‖χ̄n − χ̄‖

)
→ 0. (5.42)

Employing (5.40) and (5.36) we infer

lim inf
n→∞

∂2
χL(χ̄, µ̄)v2

n ≤ lim inf
n→∞

∂2
χL(χ̌n, µ̄)v2

n ≤ lim sup
n→∞

∂2
χL(χ̌n, µ̄)v2

n

≤ lim sup
n→∞

(
c|log kn|(kn + h2

n)
‖χ̄n − χ̄‖

(
1 + ‖χn − χ̄‖
‖χ̄n − χ̄‖

)
+ c
‖χn − χ̄‖
‖χ̄n − χ̄‖

+ ∂χL(χ̄, µ̄)(χn − χ̄)
‖χ̄n − χ̄‖2

+ ∂χ [L(χ̄, µ̄n)− L(χ̄, µ̄)] (χn − χ̄)
‖χ̄n − χ̄‖2

+ |µ̄− µ̄n||g
′(χ̄n)(χ̄n − χ̄)|

‖χ̄n − χ̄‖2

)
= 0. (5.43)
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5. A priori discretization error estimates

Here, we have used (5.37) to estimate the first three summands, (5.41) for the second last term,
and (5.42) for the last term. Last, weak lower semicontinuity of j′′ and g′′, and Corollary 3.9
lead to

∂2
χL(χ̄, µ̄)v2 ≤ lim inf

n→∞
∂2
χL(χ̄, µ̄)v2

n ≤ 0.

From the second order sufficient condition (3.15) we conclude v = (vν , vq) = 0. Note that
this in particular implies vν → 0 in R.

Step 5: Final contradiction. Using ‖(vνn, vqn)‖ = 1 and vν → 0 we obtain

0 < αν̄ = αν̄ lim inf
n→∞

‖(vνn, vqn)‖2 = lim inf
n→∞

α

∫ 1

0
ν̄‖vqn(t)‖2L2(ω) dt.

Using the specific structure of j′′ and again strong convergence vνn → 0 in R, it holds

lim inf
n→∞

α

∫ 1

0
ν̄‖vqn(t)‖2L2(ω) dt = lim inf

n→∞
j′′(χ̄)[vνn, vqn]2.

Due to g′′(χ̄)[0, 0]2 = 0 and weak lower semicontinuity, see Corollary 3.9, we conclude

0 < lim inf
n→∞

j′′(χ̄)v2
n ≤ lim inf

n→∞
j′′(χ̄)v2

n + µ̄ lim inf
n→∞

g′′(χ̄)v2
n

≤ lim inf
n→∞

∂2
χL(χ̄, µ̄)v2

n ≤ 0,

where we have used again (5.43) in the last inequality.

Finally we prove the main result of this section, i.e. a priori discretization error estimates that
are optimal with respect to the control variable. We consider different control discretization
strategies.

Variational discretization of controls

As proposed in [78] for elliptic equations, cf. also [118] for parabolic equations, the state and
adjoint equations are discretized, only. The control is then implicitly discretized employing
the optimality conditions, precisely the discrete analogue to (5.2). In this case, the operator
Iσ is the identity and σ(k, h) = 0.
Theorem 5.18 (Variational discretization). Let the assumptions of Lemma 5.15 hold and
suppose the variational control discretization, i.e. Qσ(0, 1) = Q(0, 1). Then there is a constant
c > 0 not depending on k, h, ν̄kh, and q̄kh such that

|ν̄ − ν̄kh|+ ‖q̄ − q̄kh‖L2(I×ω) ≤ c|log k|(k + h2).

Proof. Lemma 5.15 guarantees the existence of a sequence of local solutions converging
strongly in R× L2(I × ω). Hence, we can apply Lemma 5.17 with qkh = q̄.

In case of purely time-dependent control, the set ω is already discrete and the space L2(ω) ∼=
RNc does not need to be discretized; cf. Assumption 5.1. Moreover, in view of the projection
formula

q̄kh = PQad

(
− 1
α
B∗z̄kh

)
, (5.44)

which can be deduced from (5.27) with Qad,σ(0, 1) = Qad(0, 1), the optimal control q̄kh
obtained by the variational approach is piecewise constant in time with values in RNc . Based
on this observation, the controls constructed in Theorem 5.18 are already contained in a
discrete space, and we obtain the following corollary.

116



5.3. Error estimates for controls (α > 0)

Corollary 5.19 (Parameter control). Let the assumptions of Lemma 5.15 hold, suppose that
ω is discrete, and choose the piecewise constant discrete control space

Qσ(0, 1) =
{
v ∈ Q(0, 1) : v|Im ∈ P0(Im;RNc), m = 1, 2, . . . ,M

}
.

Then there is a constant c > 0 not depending on k, h, ν̄kh, and q̄kh such that

|ν̄ − ν̄kh|+ ‖q̄ − q̄kh‖L2(I;RNc ) ≤ c|log k|(k + h2).

In the case of a distributed control, the variational control discretization has an additional im-
plementation effort in practice. Fully discrete strategies are therefore of independent interest
and we will investigate different variants in the following.

Cellwise constant control approximation

As the case of purely time-dependent controls is already covered by Corollary 5.19, in the
following we restrict to the situation of a distributed control on a subset ω ⊂ Ω of the spatial
domain. The discrete space of controls is defined as follows

Qσ(0, 1) = {v ∈ Q(0, 1) : v|Im×K ∈ P0(Im ×K) for all K ∈ T ωh , m = 1, 2, . . . ,M} .

Abbreviating Ik = { 1, 2, . . . ,M }, on any tuple (Im,K) ∈ Ik × Th we define the piecewise
constant projection Πkh : L2(I × ω)→ Qσ(0, 1) via

(Πkhv)(t, x) = 1
km|K|

∫
Im

∫
K
v(s, ξ) dξ ds, (t, x) ∈ Im ×K, (5.45)

for v ∈ L2(I × ω). Moreover, we introduce the L2-projection onto the piecewise constant
functions in time as

(Πkv)(t) = 1
km

∫
Im
v(ξ) dξ, t ∈ Im, (5.46)

for every v ∈ L2(I;L2) and m ∈ { 1, 2, . . . ,M }. Then, for any v ∈ H1(I;L2) ∩ L2(I;H1) we
obtain the projection error estimate

‖Πkhv − v‖L2(I;L2) ≤ ‖Πkhv −Πkv‖L2(I;L2) + ‖Πkv − v‖L2(I;L2)

≤ ch‖∇v‖L2(I;L2) + ck‖∂tv‖L2(I;L2). (5.47)

We obtain the following error estimate for the discretization by cellwise constant controls.
Note that also in this case Lemma 5.15 only provides a suboptimal estimate of order (k +
h)1/2.

Theorem 5.20 (Cellwise constant controls). Let the assumptions of Lemma 5.15 hold and
suppose the piecewise constant control discretization. Then there is a constant c > 0 not
depending on k, h, ν̄kh, and q̄kh such that

|ν̄ − ν̄kh|+ ‖q̄ − q̄kh‖L2(I×ω) ≤ c|log k|(k + h).

Proof. We would like to apply Lemma 5.17 with Iσ = Πkh and qkh = Iσ q̄. Using the adjoint
state, we write the derivative of the Lagrangian as

∂qL(ν̄, q̄, µ̄)v =
∫ 1

0
ν̄(αq̄ +B∗z̄, v)L2(ω).
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5. A priori discretization error estimates

Orthogonality of Πkh and ν̄ ∈ R yield

∂qL(ν̄, q̄, µ̄)(Iσ q̄ − q̄) =
∫ 1

0
ν̄(αq̄ +B∗z̄, Iσ q̄ − q̄)L2(ω)

= ν̄

∫ 1

0
(αq̄ +B∗z̄ − Iσ (αq̄ +B∗z̄) , Iσ q̄ − q̄)L2(ω)

= ν̄

∫ 1

0
(B∗z̄ − IσB∗z̄, Iσ q̄ − q̄)L2(ω) − αν̄‖Iσ q̄ − q̄‖

2
L2(I×ω).

Hence, the improved regularity q̄, B∗z̄ ∈ H1(I;L2(ω)) ∩ L2(I;H1(ω)), see Proposition 5.3,
the fact that α, ν̄ > 0, and ‖Iσ q̄ − q̄‖L2(I;L2) ≤ c(k + h) due to (5.47), imply the estimates

∂qL(ν̄, q̄, µ̄)(qkh − q̄) ≤ ν̄‖B∗z̄ − IσB∗z̄‖L2(I×ω)‖Iσ q̄ − q̄‖L2(I×ω)

≤ c (k + h)2 .

Lemma 5.17 yields the assertion.

Cellwise linear control approximation

The discrete space of controls is defined as follows

Qh = {v ∈ C(ω) : v|K ∈ P1(K) for all K ∈ T ωh } ,
Qσ(0, 1) = {v ∈ Q(0, 1) : v|Im×K ∈ P0(Im;Qh) for all m = 1, 2, . . . ,M} .

Let Ih : C(ω)→ Qh denote the Lagrange interpolant on ω. As before, let Ik = { 1, 2, . . . ,M }
and decompose the set Ik × T ωh as

S1 = { (m,K) ∈ Ik × T ωh : |αq̄ +B∗z̄| > 0 a.e. in Im ×K } ,
S2 = { (m,K) ∈ Ik × T ωh : αq̄ +B∗z̄ = 0 a.e. in Im ×K } ,
S3 = (Ik × T ωh ) \ (S1 ∪ S2) .

Under an additional assumption we obtain the following convergence result.

Theorem 5.21 (Cellwise linear controls). Adapt the assumption of Lemma 5.15 and suppose
the temporal piecewise constant and spatial piecewise linear control discretization. Assume
that there is p > d such that G′(ū(1))∗ ∈W 1,p

0 (Ω) and that there is c > 0 such that∑
(m,K)∈S3

km|K| ≤ ch. (5.48)

Then there is a constant c > 0 not depending on k, h, ν̄kh, and q̄kh such that

|ν̄ − ν̄kh|+ ‖q̄ − q̄kh‖L2(I×ω) ≤ c|log k|(k + h3/2−1/p).

Remark 5.22. Since ū(1) ∈ W 1,p
0 for every p ∈ (1,∞), see Proposition A.22, for the proto-

typical problem the assumption on G′(ū(1))∗ reduces to the requirement ud ∈ W 1,p
0 . Thus,

assuming ud ∈ W 1,∞
0 , yields O(|log k|(k + h3/2−ε)) for any ε > 0. However, the constant in

Theorem 5.21 will depend on p, hence also on ε.

Similar assumptions to (5.48) have been used in related publications for cellwise linear control
discretization; see, e.g., [118, Section 5.2] for a linear parabolic equation and [31, Theorem 4.5]
for a quasilinear elliptic equation. The assumption can be justified by the observation that
in practice the boundary of the active set of q̄ often has zero measure.
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5.3. Error estimates for controls (α > 0)

Proof of Theorem 5.21. We set Iσ = IhΠk with Πk being the piecewise constant in time
projection defined in (5.46) and apply Lemma 5.17 with qkh = Iσ q̄.

Clearly, if (m,K) ∈ S1, then either q̄(t, x) = qa or q̄(t, x) = qb for (t, x) ∈ Im ×K, whence
q̄ − IhΠkq̄ ≡ 0 in Im × K. If (m,K) ∈ S2, then it holds q̄(t, x) = −α−1B∗z̄(t, x) for
(t, x) ∈ Im ×K. According to [24, Theorem 4.4.4] it holds

‖Πkq̄ − IhΠkq̄‖L2(Im×K) ≤ ch
2‖Πkq̄‖L2(Im;H2(K)) ≤ ch

2‖q̄‖L2(Im;H2(K)).

Hence, ∑
(m,K)∈S2

‖Πkq̄ − Iσ q̄‖2L2(Im×K) ≤ ch
4 ∑

(m,K)∈S2

‖z̄‖2L2(Im;H2(K)) ≤ ch
4‖z̄‖2L2(I;H2(Ω)).

Moreover, for (m,K) ∈ S3 we have the error estimate

‖Πkq̄ − IhΠkq̄‖Lp(Im×K) ≤ ch‖Πkq̄‖Lp(Im;W 1,p(K)) ≤ ch‖q̄‖Lp(Im;W 1,p(K)); (5.49)

see [24, Theorem 4.4.4]. Using Hölder’s inequality, we find∑
(m,K)∈S3

‖Πkq̄ − Iσ q̄‖2L2(Im×K) ≤
∑

(m,K)∈S3

(km|K|)1−2/p‖Πkq̄ − IhΠkq̄‖2Lp(Im×K)

≤ ch2 ∑
(m,K)∈S3

(km|K|)1−2/p‖q̄‖2Lp(Im;W 1,p(K))

≤ ch2‖q̄‖2Lp(I;W 1,p(ω))

 ∑
(m,K)∈S3

km|K|

1−2/p

≤ ch3−2/p‖q̄‖2Lp(I;W 1,p(ω)),

due to q̄ ∈ Lp(I;W 1,p(ω)); see Proposition 5.3. In summary, we obtain the estimate

‖q̄ − qkh‖L2(I×ω) ≤ ‖q̄ −Πkq̄‖L2(I×ω) + ‖Πkq̄ − Iσ q̄‖L2(I×ω) ≤ c(k + h3/2−1/p).

Next, we consider the term ∂qL(ν̄, q̄, µ̄)(qkh − q̄). Using orthogonality of Πk we find

∂qL(ν̄, q̄, µ̄)(Πkq̄ − q̄) = ν̄

∫ 1

0
(αq̄ +B∗z̄,Πkq̄ − q̄)L2(ω)

= ν̄

∫ 1

0
(αq̄ +B∗z̄ −Πk(αq̄ +B∗z̄),Πkq̄ − q̄)L2(ω)

= αν̄

∫ 1

0
(q̄ −Πkq̄,Πkq̄ − q̄)L2(ω) + ν̄

∫ 1

0
(B∗(z̄ −Πkz̄),Πkq̄ − q̄)L2(ω)

≤ ν̄‖z̄ −Πkz̄‖L2(I;L2)‖q̄ −Πkq̄‖L2(I;L2)

≤ ck2‖∂tz̄‖L2(I;L2)‖∂tq̄‖L2(I;L2).

Moreover, due to the definitions of S1 and S2 it holds∑
(m,K)∈S1

∫
Im

(αq̄ +B∗z̄, Iσ q̄ −Πkq̄︸ ︷︷ ︸
=0

)L2(K) +
∑

(m,K)∈S2

∫
Im

(αq̄ +B∗z̄︸ ︷︷ ︸
=0

, Iσ q̄ −Πkq̄)L2(K) = 0.

Last, for each (m,K) ∈ S3 there is (t̂m, x̂K) such that αq̄(t̂m, x̂K) +B∗z̄(t̂m, x̂K) = 0. There-
fore, abbreviating w := αq̄ +B∗z̄ we find∫

Im
(w, Iσ q̄ −Πkq̄)L2(K) =

∫
Im

(w − w(t̂m, x̂K), Iσ q̄ −Πkq̄)L2(K)

≤ (km|K|)1−2/p‖w − w(t̂m, x̂K)‖Lp(Im×K)‖Iσ q̄ −Πkq̄‖Lp(Im×K).
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Moreover, the improved regularity q̄ ∈ C([0, 1];W 1,p(ω)) and z̄ ∈ C([0, 1];W 1,p
0 ), see Propo-

sition 5.3, as well as p > d+ 1 imply

‖w − w(t̂m, x̂K)‖Lp(Im×K) ≤ c(k + h)
(
‖∂tw‖pLp(Im×K) + ‖∇w‖pLp(Im×K)

)1/p
.

Summation over all (m,K) ∈ S3, Hölder’s inequality, and using assumption (5.48) as well as
the error estimate (5.49) yield∫

I
(w, Iσ q̄ −Πkq̄)L2(ω) =

∑
(m,K)∈S3

∫
Im

(w, Iσ q̄ −Πkq̄)L2(K)

≤
∑

(m,K)∈S3

(km|K|)1−2/p‖w − w(t̂m, x̂K)‖Lp(Im×K)‖Iσ q̄ −Πkq̄‖Lp(Im×K)

≤ c(k + h)

 ∑
(m,K)∈S3

km|K|

1−2/p

‖Iσ q̄ −Πkq̄‖Lp(I×ω)

≤ ch1−2/p(k + h)h ≤ c(k + h3/2−1/p)2.

Lemma 5.17 yields the result.

5.4. Numerical examples

To validate the theoretical findings of the preceding section in practice, we consider different
numerical examples. All examples are implemented in MATLAB R©. We use the augmented
Lagrangian method as presented in Section 4.1 in order to deal with the state constraint,
where we employ the parameter updates suggested in [15, Proposition 2] and [14, p. 414ff.].
The resulting optimal control problem is then solved using the trust-region semismooth New-
ton algorithm from [92] in a monolithic way, i.e. we optimize for the pair (ν, q) instead of a
bilevel optimization. If the absolute value of the terminal constraint is smaller than 10−9,
the augmented Lagrangian method is stopped.

5.4.1. Example with analytic reference solution

First, we consider an academic test problem, where a solution can be given explicitly. Let

Ω = ω = (0, 1)2, α = 1, δ0 = 1
2 ,

G(u) = 1
2‖u− ud‖

2
L2 − 1

2δ
2
0 , ud(x) = −2 sin(πx1) sin(πx2),

u0(x) = sin(πx1) sin(πx2),

without control constraints. Moreover, we use the operator −c∆ with c = 1/(2π2) for conve-
nience. The optimal state and adjoint state are given by

ū(t, x) = 2
(
e−ν̄t − eν̄(t−1)

)
u0(x), z̄(t, x) = 4eν̄(t−1)u0(x),

with optimal time T = ν̄ = log(2). To verify the second order sufficient optimality condition,
consider the second derivative of the Lagrange function that is given by

∂2
(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 = ν̄‖δq‖2L2(I×Ω) + 2δν

∫ 1

0
(δq, q̄) + µ̄g′′(ν̄, q̄)[δν, δq]2.
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5.4. Numerical examples
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Figure 5.1.: Discretization error for Example 5.4.1 with variational control discretization and refinement
of the time interval for N = 16641 nodes (left) and refinement of the spatial discretization
for M = 512 time steps (right).

Introducing an additional adjoint state ẑ defined as the solution to

−∂tẑ − ν̄c∆ẑ = ∆z̄, ẑ(1) = 0,

we obtain

µ̄g′′(ν̄, q̄)[δν, δq]2 = µ̄‖δu(1)‖2L2 + 2δν
∫ 1

0
(δq, z̄ + ν̄ẑ) + 2δν2

∫ 1

0
(q̄ + c∆ū, ẑ);

see Section 3.2.3 for details. Using that µ̄ > 0, Cauchy’s and Young’s inequalities, and
q̄ = −z̄, we find

∂2
(ν,q)L(ν̄, q̄, µ̄)[δν, δq]2 ≥ ν̄‖δq‖2L2(I×Ω) + 2ν̄δν

∫ 1

0
(δq, ẑ) + 2δν2

∫ 1

0
(q̄ + c∆ū, ẑ)

≥ −ν̄δν2‖ẑ‖2L2(I×Ω) + 2δν2
∫ 1

0
(q̄ + c∆ū, ẑ).

The solution of the additional adjoint equation is given by

ẑ(t, x) = 4(t− 1)eν̄(t−1)u0(x).

We calculate

−ν̄‖ẑ‖2L2(I×Ω) =
log(2)

(
−6 + log2(4) + log(16)

)
log3(4)

≈ −0.33968,

2
∫ 1

0
(q̄ + c∆ū, ẑ) = 3 + log2(4)− log(4)

log2(4)
≈ 1.8397.

Therefore, the second order sufficient optimality condition of Theorem 3.13 is satisfied on the
whole space R×L2(I ×Ω). Note that as in Lemma 3.18 it suffices to verify the second order
sufficient optimality condition for δν 6= 0. In case δν = 0 the SSC is trivially fulfilled.

Since no control constraints are active this situation corresponds to the variational control
discretization. We observe linear order of convergence with respect to the temporal and
quadratic order of convergence with respect to the spatial discretization; see Figure 5.1.
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5. A priori discretization error estimates

M N α = 1 α = 0.1 α = 0.01 α = 0.001

40 1089 7.439 4.548−1 17.28 4.958−2 1.523+3 6.133−3 2.422+6 6.151−4
80 1089 7.555 4.560−1 17.66 4.895−2 2.513+3 6.052−3 2.958+6 6.062−4
160 1089 7.546 4.531−1 18.09 4.875−2 2.505+3 6.008−3 1.369+6 6.019−4
320 1089 7.509 4.505−1 18.29 4.864−2 2.466+3 5.986−3 5.337+5 5.997−4

640 25 8.949 5.534−1 19.22 5.812−2 1.685+3 6.829−3 1.954+5 6.844−4
640 81 7.754 4.737−1 18.44 5.080−2 2.214+3 6.182−3 2.179+5 6.194−4
640 289 7.549 4.542−1 18.30 4.896−2 2.399+3 6.016−3 2.100+5 6.027−4
640 1089 7.507 4.495−1 18.24 4.849−2 2.473+3 5.975−3 2.953+5 5.986−4

Inactive constraints 96% 62% 5% < 1%

Table 5.1.: Numerical verification of second order sufficient optimality condition for Example 5.4.2.
Table shows the quantity (3.27) of Lemma 3.18 and the coercivity constant of
Proposition 3.20 for different temporal and spatial degrees of freedoms and cost parameter α.

5.4.2. Example with purely time-dependent control

Next, we consider a time-optimal control problem with purely time-dependent controls for
fixed spatially dependent functions. Let

Ω = (0, 1)2, ω1 = (0, 0.5)× (0, 1), ω2 = (0.5, 1)× (0, 0.5), α = 10−2,

B : R2 → L2(Ω), Bq = q11ω1 + q21ω2 ,

G(u) = 1
2‖u− ud‖

2
L2 − 1

2δ
2
0 , ud(x) = 0, δ0 = 1

10 ,

Qad(0, 1) = {q ∈ L2(I;R2) : − 1.5 ≤ q ≤ 0}, u0(x) = 4 sin(πx2
1) sin(πx3

2),

where 1ω1 and 1ω2 denote the characteristic functions on ω1 and ω2. The spatial mesh is
chosen such that the boundaries of ω1 and ω2 coincide with edges of the mesh, so that the
control operator B can be easily implemented.

Since the control constraints are constants numbers, this corresponds to a variational control
discretization and Theorem 5.18 applies. The solutions of the discrete problem are compared
to a discrete solution calculated on a sufficiently fine mesh as we do not know the solution
of the continuous problem. The optimal time is T ≈ 1.79931. We observe linear convergence
with respect to the temporal mesh size and quadratic order of convergence with respect to
the spatial mesh size; see Figure 5.2.

To assess the validity of the second order sufficient optimality hypothesis, we verify the
scalar condition of Lemma 3.18 for the discrete problem. Since the linear system (3.28)
defines a symmetric but not a positive definite matrix, we calculate a solution using MINRES
without assembling the matrix. We observe that for all choices of the cost parameter α the
condition is satisfied on the discrete level; see Table 5.1. Note that the SSC for the discrete
problem does not guarantee that the SSC for the continuous problem holds. However, the
fact that the numbers are robust with respect to mesh refinement can serve as an indication
for the continuous problem. In accordance with Proposition 3.20, we observe that the number
of (3.27) from Lemma 3.18 increases as α decreases. In contrast, the constant γ̄ increases.
This can be explained as follows: Since we fix δν = 1, the variable δq̄ has to counteract the
decrease of Cq̄ in order to satisfy the linear constraint g′kh(ν̄kh, q̄kh)(1, δq̄) = 0 resulting in an
increase of the norm of δq̄.
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5.4. Numerical examples
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Figure 5.2.: Discretization error for Example 5.4.2 with variational control discretization and refinement
of the time interval for N = 1089 nodes (left) and refinement of the spatial discretization
for M = 320 time steps (right).
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Figure 5.3.: Solution for example with purely time-dependent control.
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Figure 5.4.: Optimal control q̄1 (top) and q̄2 (bottom) for example with purely time-dependent control
for different regularization parameters. In order to compare the solutions, the variables have
been transformed to the reference time interval. The optimal times are approximately
1.8357, 1.8089, 1.7993, and 1.7991 (M = 320, N = 1089). Hence, the optimal T is not
verify sensitive with respect to α for small α. We will investigate this behavior in detail in
Section 5.5.
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5. A priori discretization error estimates

M N α = 1 α = 0.1 α = 0.01 α = 0.001

20 4225 19.68 2.456−1 27.49 1.550−2 4.641+2 3.852−3 1.622+4 4.227−4
40 4225 17.32 2.289−1 27.11 1.511−2 4.573+2 3.765−3 1.515+4 4.135−4
80 4225 16.14 2.203−1 26.94 1.493−2 4.567+2 3.725−3 1.470+4 4.089−4
160 4225 15.55 2.159−1 26.90 1.487−2 4.578+2 3.706−3 1.477+4 4.067−4

320 25 2.740 5.633−2 23.62 1.201−2 3.307+2 2.681−3 4.002+4 2.957−4
320 81 9.968 1.519−1 26.54 1.344−2 3.809+2 3.275−3 1.749+4 3.655−4
320 289 13.69 1.968−1 26.52 1.437−2 4.459+2 3.588−3 1.576+4 3.946−4
320 1089 14.92 2.102−1 26.81 1.474−2 4.602+2 3.677−3 1.390+4 4.032−4

Inactive constraints 98% 67% 19% 6%

Table 5.2.: Numerical verification of second order sufficient optimality condition for Example 5.4.3.
Table shows the quantity (3.27) of Lemma 3.18 and the coercivity constant of
Proposition 3.20 for different temporal and spatial degrees of freedoms and cost parameter α.

5.4.3. Example with distributed control on subdomain

Last, we consider an example with distributed control on a subset of the domain. As before
we compare to a reference solution obtained numerically on a fine grid. The problem data is
given by

Ω = (0, 1)2, ω = (0, 0.75)2, α = 10−2, δ0 = 1
10 ,

G(u) = 1
2‖u− ud‖

2
L2 − 1

2δ
2
0 , ud(x) = −2 min {x1, 1− x1, x2, 1− x2 } ,

Qad(0, 1) = { q ∈ L2(I × ω) : − 5 ≤ q ≤ 0 } ,
u0(x) = 4 sin(πx2

1) sin(πx2)3.

We consider the operator −c∆ with c = 0.03. Note that the control acts only on a subset
ω ( Ω. Moreover, the control constraints as well as the regularization parameter are chosen
in a way such that the constraints on the control are active in a large region.

The optimal time we obtain numerically is approximately T ≈ 1.22198. Figures 5.5 and 5.7
show the optimal state and control. The control is discretized by cellwise constant functions
in space. In accordance with Theorem 5.20 we observe linear convergence in time and space
for the control variable; see Figure 5.8. In contrast, for the optimal time and the state
we obtain quadratic order of convergence in h. The improved convergence rate cannot be
explained by the theory so far. However, we expect that one can also prove full order of
convergence for all variables if the control is post-processed in an appropriate way by using
the projection formula for the optimal control; see, e.g., [118, 121].

As before, we assess the validity of the second order sufficient optimality hypothesis, by
verifying the scalar condition of Lemma 3.18 for the discrete problem. For all choices of the
regularization parameter α, we observe that the condition is satisfied; see Table 5.2. However,
if the functional in (3.30) is minimized over the whole space L2(I×ω) instead of the subspace
Cq̄ we observe that this (strong) second order sufficient optimality condition is not satisfied
for small α; see Table 5.3. Therefore, it is essential to work with the critical cone C(ν̄,q̄) in
the formulation of the second order conditions.
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5.4. Numerical examples
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Figure 5.5.: Snapshots of optimal state for Example 5.4.3.
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Figure 5.6.: Snapshots of state for uncontrolled equation for Example 5.4.3.
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Figure 5.7.: Snapshots of optimal control for Example 5.4.3. Black and white denote the lower and the
upper control bound, respectively.
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5. A priori discretization error estimates
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Figure 5.8.: Discretization error for Example 5.4.3 with cellwise constant control discretization and
refinement of the time interval for N = 1089 nodes (left) and refinement of the spatial
discretization for M = 320 time steps (right).

M N α = 1 α = 0.1 α = 0.01 α = 0.001

20 4225 20.50 5.795 2.444 −11.85
40 4225 18.15 5.028 1.638 −14.35
80 4225 16.99 4.674 1.251 −15.71
160 4225 16.40 4.503 1.055 −16.46

320 25 2.857 2.432 7.985−1 −17.15
320 81 10.40 2.588 −4.119−1 −19.84
320 289 14.40 3.764 4.669−1 −17.53
320 1089 15.73 4.273 8.503−1 −16.95

Table 5.3.: The quantity (3.27) of Lemma 3.18 as in Table 5.2 is shown, but here we minimize the
functional in (3.30) over the whole space L2(I × ω) instead of the subspace Cq̄. We observe
that this second order sufficient criterion is not satisfied for small values of α. Therefore, a
strong second order condition is not fulfilled in this example and for this reason it is essential
to work with the critical cone C(ν̄,q̄) in the formulation of the second order conditions.

126



5.5. Robust error estimates for bang-bang controls (α = 0)

5.5. Robust error estimates for bang-bang controls (α = 0)

This section is devoted to discretization error estimates in case of bang-bang controls based
on the structural assumption of the adjoint state (3.37). We first would like to motivate the
”correct” choice of the norm. If the control is discretized by piecewise constant functions
in time and space, then in case of bang-bang controls we cannot expect linear order of
convergence in L2. Precisely, we expect

‖q̄ − q̄kh‖L2(I×ω) ≤ c(k + h)1/2.

In contrast, changing the norm to L1, we can get

‖q̄ − q̄kh‖L1(I×ω) ≤ c(k + h).

Therefore, it seems to be reasonable to work with the L1-norm instead of the L2-norm as in
the case with strictly positive regularization parameter α.

Combining the stability result Theorem 3.34 of the preceding chapter (with κ = 1) and the
discretization error estimates of Section 5.3.3 directly implies the estimate

‖q̄ − q̄kh,α‖L1(I×ω) ≤ ‖q̄ − q̄α‖L1(I×ω) + ‖q̄α − q̄kh,α‖L1(I×ω)

≤ cα+ c(α)|log k|(k + h2),

here for the variational control discretization, i.e. σ(k, h) = 0, for simplicity. However, the
constant c(α) depends on α with c(α) → ∞ as α → 0. Therefore, the error due to regu-
larization and the error due to discretization have to be balanced. Unfortunately, since the
proof of the optimal order convergence result for the case α > 0 relies on a contradiction
argument, see Lemma 5.17, we cannot give the explicit dependence on α. Besides this, it
would be desirable to have robust error estimates with respect to the regularization and the
discretization, i.e. without any coupling between α, k, and h; cf. [152, 154].

In this section we suppose that the general assumptions from Sections 5.1 and 5.2 hold.
Moreover, we assume that the projection Πh is stable in H1. To consider different control
discretization schemes at the same time, we introduce the operator Iσ onto the (possibly
discrete) control space Qσ(0, 1) ⊂ L2(I × ω) with an abstract parameter σ for the control
discretization. In case of distributed control, we additionally assume that a subset denoted
T ωh of the mesh Th is a non-overlapping cover of ω. As already mentioned, due to the bang-
bang structure, we have to consider a different norm than L2 in order to obtain optimal error
estimates. We use the symbols σ1(k, h) and σ2(k, h) to denote the errors in L1(I × ω) and
L2(I;H−1) due to control discretization. Concretely, we suppose

‖q̄ − Iσ q̄‖L1(I×ω) ≤ σ1(k, h)‖q̄‖σ1
, (5.50)

‖B (q̄ − Iσ q̄)‖L2(I;H−1) ≤ σ2(k, h)‖q̄‖σ2
, (5.51)

where ‖·‖σ1
and ‖·‖σ2

stand for potentially different norms on Q(0, 1). We suppose that
σ1(k, h)→ 0 and σ2(k, h)→ 0 as k, h→ 0 and IσQad(0, 1) ⊂ Qad(0, 1). Moreover, we assume
‖q̄‖σ1

< ∞ and ‖q̄‖σ2
< ∞. For notational simplicity we write Iσ(ν, q) = (ν, Iσq) using the

same symbol. Last, we define Qad,σ(0, 1) = Qσ(0, 1) ∩ Qad(0, 1). Concrete discretization
strategies for the control will be discussed at the end of this section.
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5. A priori discretization error estimates

For any α ≥ 0 we define the discrete optimal control problem by

inf
νkh,α∈R+

qkh,α∈Qad,σ(0,1)

jα(νkh,α, qkh,α) subject to gkh(νkh,α, qkh,α) ≤ 0. (P̂kh,α)

As before, we apply a localization argument. Let (ν̄, q̄) ∈ R+ ×Qad(0, 1) be a local solution
to (P̂0). For ρ > 0 we introduce the problem

inf
νkh,α∈R+

qkh,α∈Qad,σ(0,1)

jα(νkh,α, qkh,α) subject to

 gkh(νkh,α, qkh,α) ≤ 0,
‖(νkh,α − ν̄, qkh,α − q̄)‖ ≤ ρ,

(P̂ ρkh,α)

where we recall that the norm on the product space R×Q(0, 1) is given by

‖(δν, δq)‖ =
(
|δν|2 + ‖δq‖2L2(I×ω)

)1/2
.

Similar as in Section 5.3.1 we construct two auxiliary sequences. First, we construct the
sequence {(νγ , qγ)}γ>0 converging to (ν̄, q̄) as γ → 0 that is feasible for the localized problem.
In particular, this implies existence of solutions to (P̂ ρkh,α). Thereafter, we build a sequence
{(ντ , qτ )}τ>0 converging to (ν̄ρkh,α, q̄

ρ
kh,α) as τ → 0 that is feasible for (P̂α). Since the solu-

tion operator to the state equation is continuous for right-hand sides from L2(I;H−1) into
W (0, 1) ↪→ C([0, 1];L2), we may use (5.51) for all estimates concerning the state or the lin-
earized state, whereas (5.50) is needed for the estimate for the controls in L1. Note that all
sequences constructed in Section 5.3.1 are independent of the regularization parameter α.

Proposition 5.23. Let (ν̄, q̄) be a locally optimal control of problem (P̂0). There exists a
sequence {(νγ , qγ)}γ>0 of controls with γ = γ(k, h) that are feasible for (P̂ ρkh,α) for k, h, ρ
sufficiently small. Moreover,

|νγ − ν̄|+ ‖qγ − q̄‖L1(I×ω) ≤ c
(
σ1(k, h) + σ2(k, h) + |log k|(k + h2)

)
.

Proof. The sequence can be constructed as in Proposition 5.10 with slight modifications. In
(5.21) we use σ1 instead of σ. In (5.22) and (5.23) we replace σ by σ2 that is allowed since
the stability estimates for the discrete state equation also hold for Bq ∈ L2(I;H−1).

In particular, Proposition 5.23 guarantees that for h, k, and ρ sufficiently small, the set
of admissible controls of the discrete problem (P̂ ρkh,α) is nonempty. Hence, by standard
arguments we obtain well-posedeness of the localized discrete problem; cf. Corollary 5.11.

Corollary 5.24. Let h, k, and ρ be sufficiently small. Then there exists a solution χ̄ρkh,α =
(ν̄ρkh,α, q̄

ρ
kh,α) ∈ R+ ×Qad,σ(0, 1) to (P̂ ρkh,α).

Proposition 5.25. Let k, h, ρ > 0 be sufficiently small. Moreover, let (ν̄, q̄) be a locally
optimal solution of (P̂0) and let (ν̄ρkh,α, q̄

ρ
kh,α) be any globally optimal control of (P̂ ρkh,α). Then

there exists a sequence {ντ}τ>0 with τ = τ(k, h) such that (ντ , q̄ρkh,α) is feasible for (P̂0) and

|ντ − ν̄ρkh,α| ≤ c|log k|(k + h2).

Proof. This result can be proved as in Proposition 5.13.
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5.5. Robust error estimates for bang-bang controls (α = 0)

5.5.1. General regularization and discretization error estimates

First, we establish a robust error estimate with respect to regularization and discretization
with a suboptimal rate concerning the control variable. Please note that Lemma 5.26 also
holds in the case α = 0 yielding an error estimate for the problems without regularization;
cf. [47] for a linear-quadratic elliptic problem. Moreover, we emphasize that the convergence
rate for the terminal time is independent of the value of κ from (3.37).

Lemma 5.26. Let (ν̄, q̄) be a local solution to (P̂0) satisfying the growth condition (3.41).
Moreover, let {(k, h, α)} be a sequence of positive mesh sizes and regularization parame-
ters converging to zero. Then there exists a sequence {(ν̄kh,α, q̄kh,α)}k,h,α of local solutions
to (P̂kh,α) converging to (ν̄, q̄) such that

|ν̄ − ν̄kh,α|+ ‖q̄ − q̄kh,α‖
1+1/κ
L1(I×ω) ≤ c

(
α+ σ1(k, h) + σ2(k, h) + |log k|(k + h2)

)
, (5.52)

where c > 0 is independent of k, h, α, ν̄kh,α, and q̄kh,α. Moreover, there exists a Lagrange
multiplier µ̄kh,α such that the following optimality system is satisfied:

µ̄kh,α > 0, (5.53)∫ 1

0
1 + α

2 ‖q̄kh,α‖
2
L2(ω) + 〈Bq̄kh,α + ∆hūkh,α, z̄kh,α〉dt = 0, (5.54)∫ 1

0
〈αq̄kh,α +B∗z̄kh,α, q − q̄kh,α〉dt ≥ 0, q ∈ Qad,σ(0, 1), (5.55)

G(ūkh,α(1)) = 0, (5.56)

where ūkh,α = Skh(ν̄kh,α, q̄kh,α) and z̄kh,α ∈ Xk,h is the solution to the discrete adjoint equation

B(ν̄kh,α, ϕkh, z̄kh,α) = µ̄kh,α(ūkh,α(1)− ud, ϕkh(1)), ϕkh ∈ Xk,h.

Proof. Let ρ > 0 be sufficiently small such that the quadratic growth condition (3.41) as well
as Propositions 5.23 and 5.25 hold. Moreover, let {(ν̄ρkh,α, q̄

ρ
kh,α)} be a sequence of globally

optimal solutions to (P̂ ρkh,α) that is guaranteed due to Corollary 5.24. Because the pair
(ντ , q̄ρkh,α) is feasible for (P̂0), we may use the growth condition (3.41) to estimate

c‖q̄ − q̄ρkh,α‖
1+1/κ
L1(I×ω) ≤ ντ − ν̄ ≤ jα(ντ , q̄ρkh,α)− jα(ν̄, q̄) + ν̄

α

2 ‖q̄‖
2
L2(I×ω)

≤ jα(ντ , q̄ρkh,α)− jα(ν̄ρkh,α, q̄
ρ
kh,α) + jα(ν̄ρkh,α, q̄

ρ
kh,α)− jα(νγ , qγ)

+ jα(νγ , qγ)− jα(ν̄, q̄) + cα

≤ jα(ντ , q̄ρkh,α)− jα(ν̄ρkh,α, q̄
ρ
kh,α) + jα(νγ , qγ)− jα(ν̄, q̄) + cα, (5.57)

where the last inequality follows from optimality of the pair (ν̄ρkh,α, q̄
ρ
kh,α) for (P̂ ρkh,α) and

feasibility of (νγ , qγ) for (P̂ ρkh,α). Then, we observe that

jα(ντ , q̄ρkh,α)− jα(ν̄ρkh,α, q̄
ρ
kh,α) = (ντ − ν̄ρkh,α)

(
1 + α

2 ‖q̄
ρ
kh,α‖

2
L2(I×ω)

)
≤ c

(
1 + α

2

)
|log k|(k + h2)
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5. A priori discretization error estimates

due to Proposition 5.25. Similarly,

jα(νγ , qγ)− jα(ν̄, q̄) ≤ (νγ − ν̄)
(

1 + α

2 ‖qγ‖
2
L2(I×ω)

)
+ ν̄

α

2 ‖qγ + q̄‖L2(I×ω)‖qγ − q̄‖L2(I×ω)

≤ c
(
σ1(k, h) + σ2(k, h) + α+ |log k|(k + h2)

)
employing Proposition 5.23 and boundedness of Qad(0, 1). Collecting all estimates above we
arrive at

‖q̄ − q̄ρkh,α‖
1+1/κ
L1(I×ω) ≤ c

(
α+ σ1(k, h) + σ2(k, h) + |log k|(k + h2)

)
.

Moreover, from Proposition 5.25 and (5.57) we further deduce

|ν̄ρkh,α − ν̄| ≤ |ν̄
ρ
kh,α − ντ |+ ντ − ν̄ ≤ c

(
α+ σ1(k, h) + σ2(k, h) + |log k|(k + h2)

)
.

In summary, the two preceding estimates establish the stated error estimate for the localized
solutions. Furthermore, Hölder’s inequality and uniform boundedness of q̄ρkh ∈ Qad(0, 1) in
L∞(I × ω) imply

‖q̄ − q̄ρkh,α‖L2(I×ω) ≤ ‖q̄ − q̄
ρ
kh,α‖

1/2
L1(I×ω)‖q̄ − q̄

ρ
kh,α‖

1/2
L∞(I×ω) ≤ c‖q̄ − q̄

ρ
kh,α‖

1/2
L1(I×ω).

In particular, for k, h, α > 0 sufficiently small the solution (ν̄ρkh,α, q̄
ρ
kh,α) does not lie on the

boundary of the localization. Therefore, (ν̄ρkh,α, q̄
ρ
kh,α) is a local solution to (P̂kh,α) and we

can drop the super index ρ. Finally, the convergence result and the fact that g′(ν̄, q̄) 6= 0
yields the optimality conditions in qualified form as stated above.

Proposition 5.27. Adopt the assumptions of Lemma 5.26. The Lagrange multipliers µ̄kh,α
satisfy µ̄kh,α → µ̄ as k, h, α→ 0.

Proof. This follows as in Proposition 5.16 using the convergence result of Lemma 5.26.

While the estimate of Lemma 5.26 is optimal for the terminal time in the case of a variational
control discretization, it is suboptimal with respect to the control variable. Under certain
conditions we will eventually provide an improved estimate that is based on the following
result.

Proposition 5.28. Adopt the assumptions of Lemma 5.26 and let (3.37) hold. Moreover,
we assume that Iσ is an orthogonal projection onto Qσ(0, 1) in L2(I × ω). In case of a
distributed control, suppose in addition that u0 ∈ (Lp,DLp(−∆))1−1/s,s for s, p ∈ (1,∞) such
that d/(2p) + 1/s < 1. There is a constant c > 0 independent of k, h, α, ν̄kh,α, and q̄kh,α
such that

‖q̄ − q̄kh,α‖
1/κ
L1(I×ω) ≤ c

(
α+ |ν̄ − ν̄kh,α|+ ‖B∗z̄ − IσB∗z̄‖L∞(I×ω)

+ ‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)

)
,

where z(ν̄kh,α, q̄kh,α) ∈ W (0, 1) denotes the solution to the adjoint equation with time trans-
formation ν̄kh,α and terminal value µ̄kh,α(i1S(ν̄kh,α, q̄kh,α)− ud).

For the proof of Proposition 5.28 we require the following Lipschitz estimate of the solution
to the state equation with respect to the time transformation.
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Proposition 5.29. Let νmax > νmin > 0. There is c > 0 such that for any u0 ∈ L2, f ∈
L2(I;H−1), and ν1, ν2 ∈ [νmin, νmax] the solutions to the state equation u(ν1) = u(ν1, u0, f)
and u(ν2) = u(ν2, u0, f) satisfy the estimate

‖u(ν1)− u(ν2)‖C([0,1];L2) ≤ c|ν1 − ν2|
(
‖f‖L2(I;H−1) + ‖u0‖L2

)
,

where c > 0 is independent of ν, f , and u0.

Proof. Set u1 = u(ν1) and u2 = u(ν2). Then the difference w = u1 − u2 satisfies

∂tw − ν1∆w = (ν1 − ν2) (∆u2 + f) , w(0) = 0.

Hence, standard energy estimates lead to

‖w‖H1(I;H−1)∩L2(I;H1) ≤ c|ν1 − ν2|‖−∆u2 + f‖L2(I;H−1)

≤ c|ν1 − ν2|
(
‖f‖L2(I;H−1) + ‖u0‖L2

)
.

Last, the assertion follows from the embedding H1(I;H−1) ∩ L2(I;H1) ↪→ C([0, 1];L2).

Proposition 5.30. Let νmax > νmin > 0 and s, p ∈ (1,∞) such that d/(2p) + 1/s < 1. There
is c > 0 such that for any u0 ∈ (Lp,DLp(−∆))1−1/s,s, f ∈ Ls(I;Lp), and ν1, ν2 ∈ [νmin, νmax]
the solutions to the state equation u(ν1) = u(ν1, u0, f) and u(ν2) = u(ν2, u0, f) satisfy the
estimate

‖u(ν1)− u(ν2)‖L∞(I×Ω) ≤ c|ν1 − ν2|
(
‖f‖Ls(I;Lp) + ‖u0‖(Lp,DLp (−∆))1−1/s,s

)
,

where c > 0 is independent of ν, f , and u0.

Proof. Maximal parabolic regularity of −∆ on Lp, see, e.g., [49, Theorem 2.9 b)], yields that
the solution u = u(ν, f, u0) satisfies the estimate

‖u‖W 1,s(I;Lp)∩Ls(I;DLp (−∆)) ≤ c
(
‖f‖Ls(I;Lp) + ‖u0‖(Lp,DLp (−∆))1−1/s,s

)
.

Moreover, continuity of ν 7→ (∂t− ν∆)−1, ν > 0, as well as compactness of [νmin, νmax] imply
that the constant in the estimate above can be chosen uniformly with respect to ν. Set
u1 = u(ν1) and u2 = u(ν2). Then the difference w = u1 − u2 satisfies

∂tw − ν1∆w = (ν1 − ν2) (∆u2 + f) , w(0) = 0.

Hence,

‖w‖W 1,s(I;Lp)∩Ls(I;DLp (−∆)) ≤ c|ν1 − ν2|‖−∆u2 + f‖Ls(I;Lp)

≤ c|ν1 − ν2|
(
‖f‖Ls(I;Lp) + ‖u0‖(Lp,DLp (−∆))1−1/s,s

)
.

Finally, the assertion follows from the embedding

W 1,s(I;Lp) ∩ Ls(I;DLp(−∆)) ↪→ C(I ×Ω);

see the proof of [49, Theorem 3.1].
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5. A priori discretization error estimates

Proof of Proposition 5.28. We use ideas from the proof of [152, Theorem 31]. Setting q =
q̄kh,α in (3.38) and multiplication by µ̄kh,α/µ̄ > 0 yield

c‖q̄ − q̄kh,α‖
1+1/κ
L1(I×ω) ≤ −

∫ 1

0
(B∗z(ν̄, q̄), q̄ − q̄kh,α)L2(ω), (5.58)

where z(ν̄, q̄) is the solution to the adjoint equation with time transformation ν̄ and terminal
value µ̄kh,α(i1S(ν̄, q̄)−ud). Note that we have used Proposition 5.27 in order to guarantee that
the constant c is independent of k, h, and α. The optimality condition (5.55) of Lemma 5.26
for q̄kh,α with q = Iσ q̄ can be written as

α‖Iσ q̄ − q̄kh,α‖2L2(I×ω) ≤
∫ 1

0
(αIσ q̄ +B∗z̄kh,α, Iσ q̄ − q̄kh,α)L2(ω). (5.59)

Summation of (5.58) and (5.59) implies

c‖q̄ − q̄kh,α‖
1+1/κ
L1(I×ω) + α‖Iσ q̄ − q̄kh,α‖2L2(I×ω)

≤ α
∫ 1

0
(Iσ q̄, Iσ q̄ − q̄kh,α)L2(ω) +

∫ 1

0
(B∗ (z̄kh,α − z(ν̄, q̄)) , Iσ q̄ − q̄kh,α)L2(ω)

+
∫ 1

0
(B∗z(ν̄, q̄), Iσ q̄ − q̄)L2(ω). (5.60)

We first consider the last term of the right-hand side of (5.60). Since Iσ is the L2(I × ω)-
projection onto Qσ(0, 1), we have∫ 1

0
(B∗z(ν̄, q̄), Iσ q̄ − q̄)L2(ω) =

∫ 1

0
(B∗z(ν̄, q̄)− IσB∗z(ν̄, q̄), q̄kh,α − q̄)L2(ω) (5.61)

= µ̄kh,α
µ̄

∫ 1

0
(B∗z̄ − IσB∗z̄, q̄kh,α − q̄)L2(ω)

≤ c‖B∗z̄ − IσB∗z̄‖L∞(I×ω)‖q̄ − q̄kh,α‖L1(I×ω).

In the last step we have used that the multipliers µ̄kh,α are uniformly bounded; see Proposi-
tion 5.27. The first term of (5.60) can be easily estimated by

α

∫ 1

0
(Iσ q̄, Iσ q̄ − q̄kh,α)L2(ω) = α

∫ 1

0
(I∗σIσ q̄, q̄ − q̄kh,α)L2(ω) ≤ cα‖q̄ − q̄kh,α‖L1(I×ω)

using that Iσ is an orthogonal projection as well as Iσ q̄ ∈ Qad(0, 1) ⊂ L∞(I ×ω). Concerning
the second term of the right-hand side of (5.60), we have∫ 1

0
(B∗ (z̄kh,α − z(ν̄, q̄)) , q̄ − q̄kh,α)L2(ω) =

∫ 1

0
(B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α)) , q̄ − q̄kh,α)L2(ω)

+
∫ 1

0
(B∗ (z(ν̄kh,α, q̄kh,α)− z(ν̄, q̄kh,α)) , q̄ − q̄kh,α)L2(ω)

+
∫ 1

0
(B∗ (z(ν̄, q̄kh,α)− z(ν̄, q̄)) , q̄ − q̄kh,α)L2(ω).

Note that all adjoint states appearing above correspond to the same multiplier µ̄kh,α, which
is uniformly bounded with respect to α, k, and h due to Proposition 5.27. For the first term
on the right-hand side, we apply Hölder’s inequality and obtain∫ 1

0
(B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α)) , q̄ − q̄kh,α)L2(ω)

≤ ‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)‖q̄ − q̄kh,α‖L1(I×ω).
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The second term can be estimated using Proposition 5.29 for purely time-dependent control
and Proposition 5.30 for distributed control as∫ 1

0
(B∗ (z(ν̄kh,α, q̄kh,α)− z(ν̄, q̄kh,α)) , q̄ − q̄kh,α)L2(ω) ≤ c|ν̄kh,α − ν̄|‖q̄ − q̄kh,α‖L1(I×ω).

The third term is less than or equal to zero. In summary, we arrive at

‖q̄ − q̄kh,α‖
1+1/κ
L1(I×ω) ≤ c

(
α+ |ν̄kh,α − ν̄|+ ‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)

+ ‖B∗z̄ − IσB∗z̄‖L∞(I×ω)

)
‖q̄ − q̄kh,α‖L1(I×ω).

Last, dividing by ‖q̄ − q̄kh,α‖L1(I×ω) yields the desired estimate.

If the controls are explicitly discretized by cellwise constant functions and if κ < 1, the term
‖B∗z̄− IσB∗z̄‖L∞(I×ω) limits the overall convergence rate in Proposition 5.28. Alternatively,
in (5.61), we can estimate∫ 1

0
(B∗z(ν̄, q̄), Iσ q̄ − q̄)L2(ω) = µ̄kh,α

µ̄

∫ 1

0
(B∗z̄, Iσ q̄ − q̄)L2(ω) ≤ c|(B

∗z̄, Iσ q̄ − q̄)L2(I×ω)|.

Proceeding with the remaining terms as in the proof above, we in summary obtain

‖q̄ − q̄kh,α‖
1+1/κ
L1(I×ω) ≤ c|(B

∗z̄, Iσ q̄ − q̄)L2(I×ω)|

+ c
(
α+ |ν̄kh,α − ν̄|+ ‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)

)
‖q̄ − q̄kh,α‖L1(I×ω).

Furthermore, Young’s inequality yields

‖q̄ − q̄kh,α‖
1+1/κ
L1(I×ω) ≤ c|(B

∗z̄, Iσ q̄ − q̄)L2(I×ω)|

+ c
(
α+ |ν̄kh,α − ν̄|+ ‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)

)1+κ
.

Last, the fact that (1 + κ)/(1 + 1/κ) = κ implies the alternative estimate

‖q̄ − q̄kh,α‖
1/κ
L1(I×ω) ≤ c

(
α+ |ν̄ − ν̄kh,α|+ ‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)

)
+ c|(B∗z̄, Iσ q̄ − q̄)L2(I×ω)|

1/(1+κ) (5.62)

under the same conditions as Proposition 5.28. If κ < 1, then (5.62) might lead to better
estimates. However, also the convergence rate for ν in the theory so far is limited by σ1
and σ2. Therefore, we stay with the estimate in Proposition 5.28 and keep prospective
improvements in mind. Note that in Theorem 5.57 we obtain the error estimate k + h3/2

for ν under a different condition than the structural assumption. Indeed, in the numerical
examples we always observe the full convergence rate k+ h2 for ν independent of the control
discretization; see Section 5.7.

5.5.2. Purely time-dependent controls

In case of purely time-dependent controls we immediately derive an error estimate (that is
optimal if κ = 1) using the L∞(I;L2) discretization error estimate for the variational control
discretization. Note that besides theoretical advantages purely time-dependent controls are
also interesting in practice as distributed controls are typically difficult to implement.

133



5. A priori discretization error estimates

Theorem 5.31 (Parameter control, variational). Adopt the assumptions of Lemma 5.26 and
let (3.37) hold. Additionally, suppose purely time-dependent controls with variational control
discretization, i.e. Qσ(0, 1) = Q(0, 1). There is a constant c > 0 not depending on k, h, α,
ν̄kh,α, and q̄kh,α such that

|ν̄ − ν̄kh,α|+ ‖q̄ − q̄kh,α‖
1/κ
L1(I×ω) ≤ c

(
α+ |log k|(k + h2)

)
.

Proof. This follows from Lemma 5.26 and Proposition 5.28, since in case of purely time-
dependent control we may use the L∞(I;L2) discretization error estimate, see Lemma A.39,
for the state and adjoint state equation to obtain

‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω) ≤ c|log k|(k + h2).

In addition, Iσ = Id, σ1(k, h) = 0, and σ2(k, h) = 0, as we do not explicitly discretize the
control variable. The remaining estimate for ν̄ is proved in Lemma 5.26.

If α > 0, by virtue of the projection formula

q̄kh,α = PQad

(
− 1
α
B∗z̄kh,α

)
, (5.63)

which can be deduced from (5.55) with Qad,σ(0, 1) = Qad(0, 1), the optimal control q̄kh,α
obtained by the variational approach is piecewise constant in time with values in RNc . Hence,
in the case α > 0, the variational control discretization is equivalent to the piecewise constant
control discretization. However, in the case α = 0, the estimate of Theorem 5.31 is still valid,
but the discrete optimal control q̄kh,0 is not necessarily piecewise constant with the same time
mesh as the state and adjoint state. Nevertheless, the optimality conditions for q̄kh,0 imply

B∗z̄kh,0|Im > 0⇒ q̄kh,0|Im = qa,

B∗z̄kh,0|Im < 0⇒ q̄kh,0|Im = qb,

for all m = 1, 2, . . . ,M , where the conditions are to be understood componentwise. Let Πk

denote the projection onto the piecewise constant functions in time, i.e.

(Πkv)(t) = 1
km

∫
Im
v(ξ) dξ, t ∈ Im,

for every v ∈ L2(I;L2) and m ∈ { 1, 2, . . . ,M }. Clearly, if B∗z̄kh,0|Im > 0, then Πkq̄kh,0|Im =
qa, and if B∗z̄kh,0|Im < 0, then Πkq̄kh,0|Im = qb. For this reason, we are only interested
in those time intervals Im, where at least one component of B∗z̄kh,0 is identical zero. We
define

Sk = {m = 1, 2, . . . ,M : (B∗z̄kh,0)(tm, x) = 0, x ∈ ω } ,
and suppose that there exists c > 0 independent of k and h such that∑

m∈Sk

km ≤ ckκ, k > 0. (5.64)

Note that a similar assumption has been used to prove optimal error estimates in Theo-
rem 5.21 for cellwise linear control discretization. Employing the estimate of Theorem 5.31
we obtain

‖q̄ −Πkq̄kh,0‖L1(I×ω) ≤ ‖q̄ − q̄kh,0‖L1(I×ω) + ‖q̄kh,0 −Πkq̄kh,0‖L1(I×ω)

≤ c
(
|log k|(k + h2)

)κ
+ c

∑
m∈Sk

km ≤ c
(
|log k|(k + h2)

)κ
.
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Furthermore, since Πk is a projection, we have

(Bq̄kh,0, ϕkh)L2(I;L2) = (BΠkq̄kh,0, ϕkh)L2(I;L2) for all ϕkh ∈ Xk,h,

and the controls q̄kh,0 and Πkq̄kh,0 have the same associated discrete state. In addition, the
objective functional does not change, because of α = 0. Therefore, the pair (ν̄kh,0,Πkq̄kh,0)
is also optimal for (P̂kh,α) with α = 0. Based on this observation, we have the following
corollary; cf. also Corollary 5.19.
Corollary 5.32 (Parameter control, discrete). Adopt the assumptions of Lemma 5.26 and
let the assumption (3.37) hold. Moreover, suppose that ω is discrete, and choose the piecewise
constant discrete control space

Qσ(0, 1) =
{
v ∈ Q(0, 1) : v|Im ∈ P0(Im;RNc), m = 1, 2, . . . ,M

}
.

If α = 0 assume in addition that (5.64) holds. Then there is a constant c > 0 not depending
on k, h, ν̄kh, and q̄kh such that

|ν̄ − ν̄kh,α|+ ‖q̄ − q̄kh,α‖
1/κ
L1(I;RNc ) ≤ c|log k|(k + h2).

5.5.3. Interlude: Interior pointwise error estimates

In order to apply Proposition 5.28 in case of a distributed control, we require pointwise
error estimates for the solutions to the state and adjoint state equation. For simplicity, we
consider the case of smooth initial data only. In the sequel we will prove the following interior
pointwise error estimate that was obtained jointly with Dominik Hafemeyer. We generally
assume that h is sufficiently small, precisely we suppose that h < e−4. Moreover, we assume
that the family of triangulations is quasi-uniform; see Definition A.31.
Lemma 5.33. Let ν ∈ [νmin, νmax] for fixed 0 < νmin < νmax. Moreover, consider ω ⊂ Ω
open such that ω ⊂ Ω. Given f ∈ L∞(I × Ω) and u0 ∈ DL∞(−∆), let u be the solution to
the state equation with right-hand side f , time transformation ν, initial value u0, and ukh its
discrete counterpart. Then the estimate

‖u− ukh‖L∞(I×ω) ≤ c|log k|2|log h|5(k + h2)
(
‖f‖L∞(I×Ω) + ‖u0‖DL∞ (−∆)

)
holds, where the constant c > 0 is independent of k, h, ν, f , u0, u, and ukh.

For the proof of Lemma 5.33 we require several auxiliary results. We will frequently use the
following embeddings for spaces of maximal parabolic regularity; see Proposition A.8. Let X
and Y be Banach spaces such that Y ↪→d X and s ∈ (1,∞). Then

W 1,s(I;X) ∩ Ls(I;Y ) ↪→ C([0, T ]; (X,Y )1−1/s,s). (5.65)

If τ ∈ (0, 1− 1
s ), then

W 1,s(I;X) ∩ Ls(I;Y ) ↪→ Cα(I; (X,Y )τ,1), 0 ≤ α < 1− 1
s
− τ . (5.66)

Furthermore, the constants for both embeddings can be chosen uniformly for all s ∈ [2,∞)
and τ ∈ (0, 1).

Using the error estimates for the Lagrange interpolant Ih from Proposition A.32, we establish
the following L∞(I;L2(Ω)) error estimates. Recall that ik : C([0, 1];Vh)→ Xk,h denotes the
nodal interpolation defined by

iku(tm) = u(tm), m = 1, 2, . . . ,M .
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Proposition 5.34. Let ν ∈ [νmin, νmax] with 0 < νmin < νmax. Given f ∈ L∞(I;L2(Ω))
and u0 ∈ DL2(−∆), let u be the solution to the state equation with right-hand side f , time
transformation ν, and initial value u0. Then the estimate

‖u− ikIhu‖L∞(I;L2(Ω)) + h‖∇ (u− ikIhu)‖L∞(I;L2(Ω))

≤ c|log k||log h|(k + h2)
(
‖f‖L∞(I;L2(Ω)) + ‖u0‖DL2 (−∆))

)
holds, where the constant c > 0 is independent of k, h, ν, f , u0, and u.

Proof. First, we have the standard embedding

W 1,r(I;L2(Ω)) ↪→ C1−1/r(I;L2(Ω)), r ∈ (1,∞),

(with embedding constant one) that easily follows from

u(t2)− u(t1) =
∫ t2

t1
∂tu(τ) dτ,

see, e.g., [4, Section III.1.2], and Hölder’s inequality. Hence

‖u− iku‖L∞(I;L2(Ω)) ≤ ck
1−1/r‖u‖W 1,r(I;L2(Ω))

due to the definition of ik. The norm of the right-hand side depends on r. Precisely, we have

‖u‖W 1,r(I;L2(Ω))∩Lr(I;DL2 (−∆)) ≤ c
r2

r − 1
(
‖f‖Lr(I;L2(Ω)) + ‖u0‖(L2(Ω),DL2 (−∆))1−1/r,r

)
;

see, e.g., [7, Theorem 1.3.2]. Thus, using the fact DL2(−∆) ↪→ (L2(Ω),DL2(−∆))1−1/r,r
with uniform embedding constant for r ≥ r0 > 1 for some r0 > 1 (see Proposition A.1 and
Remark A.2) and taking r = |log k|, we obtain

‖u− iku‖L∞(I;L2(Ω)) ≤ c|log k|k
(
‖f‖L∞(I;L2(Ω)) + ‖u0‖DL2 (−∆)

)
.

Note that we have used k < e−1 and |log k| > 1 which holds since k ≤ 1/4 < e−1. Similarly,
according to the embedding (5.66) we have

W 1,r(I;L2(Ω)) ∩ Lr(I;DL2(−∆)) ↪→ Cα(I; (L2(Ω),DL2(−∆))τ,1), τ ∈ (0, 1− 1/r),

for 0 ≤ α < 1− 1/r − τ . Moreover,

(L2(Ω),DL2(−∆))τ,1 ↪→ DL2((−∆)τ ) ↪→ DL2((−∆)1/2) = H1
0 (Ω),

for τ > 1/2; see Propositions A.12 and A.13. The embedding constant of the first injection
is well-behaved by Remark A.14. Moreover, the embedding constant for the second injection
is bounded by max { 1, ‖(−∆)1/2−τ‖L(L2) } according to Proposition A.12. Since −∆ has
bounded imaginary powers (see [110, Theorem 4.3.5]), the mapping z 7→ (−∆)z is continuous
on the half plane Re z ≤ 0; see [110, Lemma 4.2.5]. Hence, the second embedding constant
is uniformly bounded if τ → 1/2. Thus, taking α = 1− 2/r − τ yields

‖∇u− ik∇u‖L∞(I;L2(Ω)) ≤ ck
1−2/r−τ‖∇u‖C1−2/r−τ (I;L2(Ω))

≤ ck1−2/r−τ‖u‖W 1,r(I;L2(Ω))∩Lr(I;DL2 (−∆)).
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Hence, with r = |log k| as before and letting τ → 1/2 we arrive at

‖∇u− ik∇u‖L∞(I;L2(Ω)) ≤ c|log k|k1/2
(
‖f‖L∞(I;L2(Ω)) + ‖u0‖DL2 (−∆)

)
.

Next, we consider the error due to spatial discretization. First, according to Proposition A.5
we have

(L2(Ω),DL2(−∆))1−1/r,r ↪→ (L2(Ω),DL2(−∆))1−2/r,2. (5.67)

By Remark A.6 the embedding constant is uniformly bounded. Moreover, since Ω is convex,
the characterization DL2(−∆) = H1

0 (Ω) ∩H2(Ω) with equivalence of norms holds; see, e.g.,
[68, Theorem 3.2.1.2]. Thus, the definition of the interpolation space implies

(L2(Ω),DL2(−∆))1−2/r,2 ↪→ (L2(Ω), H2(Ω))1−2/r,2, (5.68)

where the embedding constant is given by the embedding constant of DL2(−∆) into H2(Ω).
Last, we employ Proposition A.29 for r > 4

(L2(Ω), H2(Ω))1−2/r,2 ↪→W 2−4/r,2(Ω), (5.69)

where we have used the fact that Ω has a Lipschitz boundary, since it is convex; see [68,
Corollary 1.2.2.3]. The embedding constant has the asymptotic behavior ∼ r for r → ∞.
Combining (5.67) – (5.69) we arrive at

(L2(Ω),DL2(−∆))1−1/r,r ↪→W 2−4/r,2(Ω),

with embedding constant ∼ r as r → ∞. Using the embedding (5.65) that becomes in the
particular case

W 1,r(I;L2(Ω)) ∩ Lr(I;DL2(−∆)) ↪→ C([0, 1]; (L2(Ω),DL2(−∆))1−1/r,r),

we find for r > 4 that

‖ik (u− Ihu)‖L∞(I;L2(Ω)) ≤ ‖u− Ihu‖L∞(I;L2(Ω))

≤ crh2(1−2/r)‖u‖C([0,1];W 2(1−2/r),2(Ω)),

and

‖∇ik (u− Ihu)‖L∞(I;L2(Ω)) ≤ ‖∇ (u− Ihu)‖L∞(I;L2(Ω))

≤ crh2(1−2/r)−1‖u‖C([0,1];W 2(1−2/r),2(Ω)),

where we have used the error estimates of Proposition A.33. Now, we can argue as before
(taking r = |log h|) completing the proof.

Proposition 5.35. For all p ∈ (1,∞) and τ ∈ (0, 1) such that d/(2p) < τ we have

(Lp(Ω),DLp(−∆))τ,1 ↪→ C(Ω).

Moreover, the embedding constant is bounded by

cΓ(τ − d/(2p))
Γ(τ)

with c > 0 independent of τ and p.
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Proof. According to Proposition A.13 we have

(Lp(Ω),DLp(−∆))τ,1 ↪→ DLp((−∆)τ ).

Note that the embedding constant can be bounded independently of τ ; see Remark A.14.
As in the proof of [49, Theorem 2.10 c)], for ω > 0 to be specified later, we use the integral
representation of the fractional operator

(−∆ + ω + 1)−τ = 1
Γ(τ)

∫ ∞
0

tτ−1e−t(−∆+ω+1) dt;

see, e.g., [128, Equation (6.9), Chapter 2]. Employing [49, Theorem 2.10 b)], there are c > 0
and ω > 0 such that for κ > 0 sufficiently small we find

‖u‖Cκ(Ω) ≤
c

Γ(τ)

∫ ∞
0

tτ−1t−d/(2p)−κ/2e−t‖(−∆ + ω + 1)τu‖Lp(Ω) dt,

where the constants c > 0 and ω are independent of κ, p, and τ . For the integral we have
the expression ∫ ∞

0
tτ−1−d/(2p)−κ/2e−t dt = Γ(τ − d/(2p)− κ/2).

Employing that DLp((−∆)τ ) = DLp((−∆ + ω + 1)τ ) with equivalence of norms independent
of p, see (A.11), we infer that

DLp((−∆)τ ) ↪→ C(Ω), d/(2p) < τ.

Finally, going to the limit κ→ 0 yields the bound on the embedding constant as specified in
the proposition.

Remark 5.36. It is worth mentioning that Proposition 5.35 holds for fairly general domains
and divergence form operators even with mixed boundary conditions. We will elaborate
on the assumptions of [49] in our setting. In case of homogeneous Dirichlet conditions [49,
Assumptions 2.3 and 2.5] are vacuously true. Moreover, [49, Assumptions 2.4] requires the
Dirichlet boundary part to be a (d − 1)-set; see [84, Chapter II]. Since Ω is a Lipschitz
domain and there is no Neumann boundary part, from [120, Theorem 4.3] we conclude that
∂Ω is a (d − 1)-set. Furthermore, [49] considers operators of the form A = −∇ · µ∇, where
µ is a uniformly elliptic and essentially bounded coefficient function that is clearly satisfied
in our setting. For further details we also refer to [16, Appendix A] and the references given
therein.

Proposition 5.37. Let ω′ ⊂ Ω such that ω′ has a C∞-boundary. Then

‖u‖W 2,p(ω′) ≤ cp
(
‖u‖Lp(Ω) + ‖−∆u‖Lp(Ω)

)
, u ∈ DLp(−∆),

with cp ∼ p as p→∞.

Proof. Let u ∈ DLp(Ω)(−∆) and set f := −∆u ∈ Lp(Ω). Then the stated estimate follows
from [59, Theorem 9.11]. The exact form of the constant cp can be traced from the proof of
[59, Theorem 9.9] and is given by the Hölder conjugate of the constant from the Marcinkiewicz
interpolation theorem.
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Proof of Lemma 5.33. Since ω ⊂ Ω, there is an open set ω ⊂ ω′ such that ω′ ⊂ Ω and ω′ has
a C∞-boundary. We use the interior pointwise best approximation result [103, Theorem 2]

‖u− ukh‖L∞(I×ω) ≤ c|log k||log h|

inf
ϕkh∈Xk,h

(
‖u− ϕkh‖L∞(I×ω′) + ‖u− ϕkh‖L∞(I;L2(Ω)) + h‖∇(u− ϕkh)‖L∞(I;L2(Ω))

)
and would like to choose ϕkh = ikIhu. Note that even though [103, Theorem 2] is formulated
for ω′ being a ball, its proof requires that ω ⊂ ω′ and ω′ ⊂ Ω only. The global errors on the
right-hand side can be estimated using Proposition 5.34. Hence, we only have to estimate
the first term on the right-hand side and consider the splitting

‖u− ikIhu‖L∞(I×ω′) ≤ ‖u− iku‖L∞(I×ω′) + ‖ik (u− Ihu)‖L∞(I×ω′).

Recall that due to (5.66), the continuous injection

W 1,r(I;Lp(Ω)) ∩ Lr(I;DLp(−∆)) ↪→ Cα([0, 1]; (Lp(Ω),DLp(−∆))τ,1), τ ∈ (0, 1− 1/r)

holds, where 0 ≤ α < 1− 1/r − τ . Furthermore, for τ > d/(2p), we have

(Lp(Ω),DLp(−∆))τ,1 ↪→ C(Ω);

see Proposition 5.35. Taking τ = d/p, its embedding constant is bounded by

cΓ(τ − d/(2p))
Γ(τ) = cΓ(d/(2p))

Γ(d/p) → 2 as p→∞.

Hence, choosing α = 1− 2/r − d/p with sufficiently large r we arrive at

‖u− iku‖L∞(I×ω′) ≤ ck
1−2/r−d/p‖u‖W 1,r(I;Lp(Ω))∩Lr(I;DLp (−∆)).

The r-dependence of the latter norm can be explicitly given as

‖u‖W 1,r(I;Lp(Ω))∩Lr(I;DLp (−∆)) ≤
cr2

r − 1
(
‖f‖Lr(I;Lp(Ω)) + ‖u0‖(Lp(Ω),DLp (−∆))1−1/r,r

)
;

see, e.g., [7, Theorem 1.3.2]. Using the fact that

DL∞(−∆) ↪→ DLp(−∆) ↪→ (Lp(Ω),DLp(−∆))1−1/r,r

with uniform embedding constants for r ≥ r0 > 1 for some r0 > 1 (see Proposition A.1 and
Remark A.2) and taking r = |log k| > 1 yields

‖u− iku‖L∞(I×ω′) ≤ c|log k|k
(
‖f‖L∞(I×Ω) + ‖u0‖DL∞ (−∆)

)
.

Next, we turn to the error due to spatial discretization. Using (5.66), we find the continuous
injection

W 1,r(I;Lp(ω′)) ∩ Lr(I;W 2,p(ω′)) ↪→ C([0, 1]; (Lp(ω′),W 2,p(ω′))1−1/r,r).

Now let p, r > 2 + d/2. If 1 − 1/r > τ > max(1/2, d/(2p)), we have according to Proposi-
tions A.5 and A.29

(Lp(ω′),W 2,p(ω′))1−1/r,r
c(τ,1−1/r,r,p)
↪−−−−−−−−→ (Lp(ω′),W 2,p(ω′))τ,p

c(τ)
↪−−→W 2τ,p(ω′).
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5. A priori discretization error estimates

We take τ = 1 − 2/r and abbreviate cr,p = c(1 − 2/r, 1 − 1/r, r, p). The constant c(τ) from
Proposition A.29 has the asymptotic behavior ∼ (1− τ)−1 for τ → 1. Since (1− τ)−1 = r/2,
we obtain

‖ik (u− Ihu)‖L∞(I×ω′) ≤ ‖u− Ihu‖L∞(I×ω′)

≤ ch2(1−2/r)−d/p‖u‖C([0,1];W 2(1−2/r),p(ω′))

≤ ccr,prh2(1−2/r)−d/p‖u‖W 1,r(I;Lp(ω′))∩Lr(I;W 2,p(ω′)),

where we have used the interpolation error estimate from Proposition A.33. Furthermore,
Proposition 5.37 implies the estimate

‖u‖W 1,r(I;Lp(ω′))∩Lr(I;W 2,p(ω′)) ≤ cp‖u‖W 1,r(I;Lp(Ω))∩Lr(I;DLp (−∆)),

where we have assumed without loss that cp ≥ 1. As above this yields

‖ik (u− Ihu)‖L∞(I×ω′) ≤
ccr,prcpr

2

r − 1
(
‖f‖Lr(I;Lp(Ω)) + ‖u0‖(Lp(Ω),DLp (−∆))1−1/r,r

)
. (5.70)

Taking r = p = |log h| > 2 + d/2, from Remark A.6 we infer the asymptotic behavior
cr,p = c(1− 1/r, 1− 2/r, r, r) ∼ r as r →∞. Hence, we have the estimate

ccr,pcpr
3

r − 1 ≤ c|log h|4,

where we remind the reader that cp ∼ p as p→∞. Finally, (5.70) implies

‖ik (u− Ihu)‖L∞(I×ω′) ≤ c|log h|4h2
(
‖f‖L∞(I×Ω) + ‖u0‖DL∞ (−∆)

)
.

This completes the proof.

5.5.4. Variational control discretization

In the following we consider the case of a distributed control on a subset ω ⊂ Ω starting with
the variational control discretization. As before, suppose that the family of triangulations
is quasi-uniform; see Definition A.31. For regularity reasons, we suppose that ω ⊂ Ω. The
following error estimates might also hold, if, e.g., ω touches Ω such that ∂Ω ∩ ∂ω is smooth.
However, to avoid further technicalities, we stick to the case, when ω has a strict distance to
the boundary of ω.

Introducing an additional term zkh = zkh(ν̄kh,α, i1S(ν̄kh,α, q̄kh,α)) being the solution to the
discrete adjoint equation with terminal value µ̄kh,α(i1S(ν̄kh,α, q̄kh,α)− ud) and time transfor-
mation ν̄kh,α, we split the error

‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)

≤ ‖B∗ (z̄kh,α − zkh)‖L∞(I×ω) + ‖B∗ (zkh − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω), (5.71)

i.e. zkh is the discrete counterpart to the continuous adjoint state z(ν̄kh,α, q̄kh,α) with discrete
data. We will treat both terms of the right-hand side of (5.71) separately.

In order to apply the point-wise error estimate Lemma 5.33 for the second term of (5.71) we
require i1S(ν̄kh,α, q̄kh,α)− ud ∈ DL∞(−∆). This will follow from the following proposition at
the price of an additional logarithmic factor.
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Proposition 5.38. Let p ∈ (1,∞), ν ∈ R+, u0 ∈ Lp(Ω) and f ∈ L∞(I;Lp(Ω)). For all
τ ∈ (0, 1) the solution u to the state equation with right-hand side f and initial value u0
satisfies

‖(−∆)τu(1)‖Lp(Ω) ≤ cν
−τ
(
‖u0‖Lp(Ω) + ν(1− τ)−1‖f‖L∞(I;Lp(Ω))

)
with a constant c > 0 independent of ν, u0, f , and τ .

Proof. Using [128, Theorem 2.6.13], we find for all τ ∈ (0, 1) that

‖(−∆)τu(1)‖Lp(Ω) ≤ ‖(−∆)τeν∆u0‖Lp(Ω) + ν

∫ 1

0
‖(−∆)τeν(1−s)∆‖L(Lp)‖f(s)‖Lp(Ω) ds

≤ cτν−τ‖u0‖Lp(Ω) + νcτ‖f‖L∞(I;Lp(Ω))ν
−τ
∫ 1

0
(1− s)−τ ds

= cτν
−τ
(
‖u0‖Lp(Ω) + ν(1− τ)−1‖f‖L∞(I;Lp(Ω))

)
.

The constant cτ depends on the resolvent estimate (A.13) for −∆ which does not depend on
p. Last, the constant cτ can be chosen to be independent of τ .

Note that in the proof of Lemma 5.33 we have used the embedding

DL∞(−∆) ↪→ (Lp(Ω),DLp(−∆))1−1/r,r.

Indeed, we have

DLp((−∆)τ ) ↪→ (Lp(Ω),DLp(−∆))τ,∞ ↪→ (Lp(Ω),DLp(−∆))1−1/r,r

for τ > 1− 1/r; see Propositions A.4 and A.15. We emphasize that the embedding constants
do not depend on p; see Remark A.17. Choosing τ = 1− 1/(2r), the embedding constant of
the first injection is uniformly bounded as r →∞. Furthermore, the embedding constant of
the second injection satisfies

cr := c(1− 1/r, 1− 1/(2r),∞, r) =
(

2r + r

r − 1

)[
rmin

{
1− 1

r
,
1
r

}]1−1/r
∼ r

as r →∞. Using Proposition 5.38, the state u = S(ν̄kh,α, q̄kh,α) satisfies

‖u(1)‖(Lp(Ω),DLp (−∆))1−1/r,r
≤ ccr(1− τ)−1, τ > 1− 1/r.

Hence, choosing τ = 1 − 1/(2r), or, equivalently, 2r = (1 − τ)−1, and using the embedding
above in the proof of Lemma 5.33, the second term of (5.71) can be estimated as

‖B∗ (zkh − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω)

≤ c|log k|4|log h|7
(
k + h2

) (
‖u0‖L∞(Ω) + ‖Bq̄kh,α‖L∞(I;L∞(Ω)) + ‖ud‖DL∞ (−∆)

)
. (5.72)

Next, we consider the first term of the right-hand side of (5.71). For this, we require a
pointwise stability result for the adjoint state equation.

Proposition 5.39. Let ν ∈ [νmin, νmax] for fixed 0 < νmin < νmax. Moreover, consider
ω ⊂ ω1 ⊂ Ω open sets, ω ⊂ ω1, ω1 ⊂ Ω, and suppose that ω1 has a smooth boundary.
The solution to the discrete adjoint equation zkh ∈ Xk,h with terminal value z1 and time
transformation ν satisfies the estimate

‖zkh‖L∞(I×ω) ≤ c
(
‖z‖L∞(I×ω1) + ‖z‖L∞(I;L2(Ω)) + h‖∇z‖L∞(I;L2(Ω))

)
,

where z is the continuous counterpart to zkh. The constant c > 0 is independent of k, h, ν,
z1, z, and zkh.
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Proof. The result is shown in the proof of [103, Theorem 2], where the stated estimate can
be found at the bottom of page 1382. Again, even though [103, Theorem 2] is formulated for
ω1 being a ball, its proof requires that ω ⊂ ω1 and ω1 ⊂ Ω, only.

Proposition 5.40. Let ν ∈ [νmin, νmax] for fixed 0 < νmin < νmax and ω1 ⊂ ω2 ⊂ Ω be open
such that ω1 ⊂ ω2. Moreover, let z1 ∈ L2(Ω) such that z1|ω2 ∈ L∞(ω2). The solution z to

−∂tz − ν∆z = 0, z(1) = z1,

satisfies the estimate

‖z‖L∞(I×ω1) ≤ c
(
‖z1‖L∞(ω2) + ‖z1‖L2(Ω)

)
with c > 0 independent of ν, z1, and z.

For the proof of Proposition 5.40, we require the following standard stability estimate.

Proposition 5.41. Let ν ∈ [νmin, νmax] for fixed 0 < νmin < νmax, f ∈ Ls(I;Lp), and
v0 ∈ L∞ with d/(2p) < 1− 1/s and s, p ∈ (1,∞). The solution v to

∂tv − ν∆v = f, v(0) = v0,

satisfies the estimate

‖v‖L∞(I×Ω) ≤ c
(
‖f‖Ls(I;Lp(Ω)) + ‖v0‖L∞(Ω)

)
with c > 0 independent of ν, f , v0, and v.

Proof. If f = 0, then this follows from the fact that the semigroup generated by ∆ is con-
tractive on L∞(Ω); see, e.g., [66, Theorem 4.12]. If v0 = 0, we apply [49, Theorem 3.1].
Superposition of both estimates yields the assertion for any fixed ν. Furthermore, continuity
of the mapping ν 7→ (∂t− ν∆)−1 from R+ into L(Ls(I;Lp(Ω)), L∞(I ×Ω)) and compactness
of [νmin, νmax] implies that the constant can be chosen to be independent of ν.

Proof of Proposition 5.40. Let ω′ be a further subdomain with smooth boundary such that
ω1 ⊂ ω′ ⊂ ω2. Moreover, let ξ : Ω → R be a smooth cut-off function such that ξ(x) = 1 if
x ∈ ω1 and ξ(x) = 0 if x ∈ Ω \ ω′. Then for all ϕ ∈ H1

0 (Ω) the expression

−〈∆(ξz), ϕ〉 = 〈ξ∇z,∇ϕ〉+ 〈z∇ξ,∇ϕ〉
= −〈∆z, ξϕ〉 − 2〈∇z · ∇ξ, ϕ〉 − 〈z∆ξ, ϕ〉

holds. Hence,

−∂t(ξz)− ν∆(ξz) = ξ(−∂tz − ν∆z)− 2ν∇z · ∇ξ − νz∆ξ = −2ν∇z · ∇ξ − νz∆ξ,

i.e. v = ξz solves

−∂tv − ν∆v = −2ν∇z · ∇ξ − νz∆ξ, v(1) = (ξz)(1).

Using Proposition 5.41 with p = 4 and some s ∈ (8/5, 2) we infer that

‖z‖L∞(I×ω1) ≤ ‖v‖L∞(I×ω′) ≤ c
(
‖z‖Ls(I;W 1,4(ω′)) + ‖z1‖L∞(ω′)

)
.
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To arrive at the stated estimate, we have to bound the term ‖z‖Ls(I;W 1,4(ω2)). Consider a
new cut-off function ξ : Ω → R such that ξ(x) = 1 if x ∈ ω′ and ξ(x) = 0 if x ∈ Ω \ω2. Since
ξz = z and ∇(ξz) = ∇z in ω′, we have

‖z‖Ls(I;W 1,4(ω′)) = ‖ξz‖Ls(I;W 1,4(ω′)) ≤ ‖ξz‖Ls(I;W 1,4(Ω)).

Using that DW−1,4(−∆) = W 1,4
0 (Ω), see [45, Corollary 3.12], we deduce that

‖z‖Ls(I;W 1,4(ω′)) ≤ c‖ξz‖Ls(I;DW−1,4 (−∆)).

Then maximal parabolic regularity of −∆ on W−1,4(Ω), see, e.g., [8, Theorem 11.5], and the
fact that −2∇z · ∇ξ − z∆ξ = −2∇ · (z∇ξ) + z∆ξ imply

‖v‖Ls(I;DW−1,4 (−∆)) ≤ c
(
‖−2∇ · (z∇ξ) + z∆ξ‖Ls(I;W−1,4(Ω)) + ‖ξz1‖(W−1,4(Ω),W 1,4

0 (Ω))1−1/s,s

)
.

Since the mapping ν 7→ (∂t − ν∆)−1 is continuous, the constant above can be chosen uni-
formly with respect to ν ∈ [νmin, νmax]. Moreover, according to [65, Lemma 3.4] and [146,
Theorems 1.15.2 d), 1.3.3 e)] the embedding

L4(Ω) = [W−1,4(Ω),W 1,4
0 (Ω)]1/2 ↪→ (W−1,4(Ω),W 1,4

0 (Ω))1/2,∞

↪→ (W−1,4(Ω),W 1,4
0 (Ω))1−1/s,s

holds, if 1/2 > 1− 1/s, or, equivalently, if s < 2. Thus,

‖ξz1‖(W−1,4(Ω),W 1,4
0 (Ω))1−1/s,s

≤ c‖z1‖L4(ω2) ≤ c‖z1‖L∞(ω2).

For the remaining term, we estimate

‖−2∇ · (z∇ξ) + z∆ξ‖Ls(I;W−1,4(Ω)) ≤ c‖z‖Ls(I;L4(Ω)) ≤ c‖z‖L2(I;H1
0 (Ω)) ≤ c‖z1‖L2(Ω),

where we have used the Sobolev embedding H1
0 (Ω) ↪→ L4(Ω) in the second last step.

Proposition 5.40 allows to estimate the L∞(I × ω1) term of the right-hand side of Proposi-
tion 5.39. To estimate the remaining terms of the right-hand side of Proposition 5.39, we
observe that the solution z from Proposition 5.39 in addition satisfies the estimates

‖z‖L∞(I;L2(Ω)) ≤ c‖z1‖L2(Ω)),

‖∇z‖L∞(I;L2(Ω)) ≤ c‖∇z1‖L2(Ω)).

Hence, combination of Propositions 5.39 and 5.40 immediately implies the estimate

‖B∗ (z̄kh,α − z)‖L∞(I×ω) ≤ c
(
‖ukh(1)− u(1)‖L∞(ω2)

+ ‖ukh(1)− u(1)‖L2(Ω) + h‖∇ (ukh(1)− u(1))‖L2(Ω)

)
, (5.73)

where we have set ukh = i1Skh(ν̄kh,α, q̄kh,α) and u = S(ν̄kh,α, q̄kh,α) for convenience. The
first term of the right-hand side is estimated using Lemma 5.33 (with ω = ω2). To estimate
the remaining terms, we use Lemma A.39 and the following estimates: Let Rh denote the
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5. A priori discretization error estimates

Ritz projection. Then an inverse estimate, see, e.g., [24, Theorem 4.5.11], and the best
approximation property of the Ritz projection in H1

0 lead to

‖∇ (ukh(1)− u(1))‖L2(Ω) ≤ ‖∇ (ukh(1)−Rhu(1))‖L2(Ω) + ‖∇ (Rhu(1)− u(1))‖L2(Ω)

≤ ch−1‖ukh(1)−Rhu(1)‖L2(Ω) + ‖∇ (Ihu(1)− u(1))‖L2(Ω).

Using again Lemma A.39 and the error estimate (A.28) for Rh we find

‖ukh(1)−Rhu(1)‖L2(Ω) ≤ ‖ukh(1)− u(1)‖L2(Ω) + ‖u(1)−Rhu(1)‖L2(Ω)

≤ c|log k|(k + h2) + ch1+τ‖u(1)‖W 1+τ,2(Ω).

Moreover, according to Proposition A.33, it holds

‖∇ (Ihu(1)− u(1))‖L2(Ω) ≤ ch
τ‖u(1)‖W 1+τ,2(Ω).

To estimate the W 1+τ,2 norm, we employ Proposition A.16 and obtain

DL2((−∆)τ ) ↪→ (H1(Ω), H2(Ω) ∩H1
0 (Ω))τ,2 ↪→ (H1(Ω), H2(Ω))τ,2 ↪→W 1+τ,2(Ω),

where we have used Proposition A.27 in the last step. Note that the constant of the first
embedding constant is bounded by

1 + (−2 cos(πτ) Γ(−2τ))1/2 ∼ (1− τ)−1/2 as τ → 1.

The remaining embedding constants can be bounded uniformly. Finally, Proposition 5.38
with (1− τ)−1 = |log h| implies

‖u(1)‖W 1+τ,2(Ω) ≤ c|log h|1/2
(
‖Bq̄kh,α‖L∞(I;L2(Ω)) + ‖u0‖L2(Ω)

)
.

Collecting all estimates we have

h‖∇ (ukh(1)− u(1))‖L2(Ω)

≤ c|log k||log h|3/2(k + h2)
(
‖Bq̄kh,α‖L∞(I;L2(Ω)) + ‖u0‖L2(Ω)

)
. (5.74)

Hence, from (5.73), Lemmas 5.33 and A.39 as well as (5.74), we obtain

‖B∗ (z̄kh,α − zkh)‖L∞(I×ω) ≤ c|log k|2|log h|5(k + h2). (5.75)

Finally, (5.72) and (5.75) yield the following estimate that we summarize for later reference.
Proposition 5.42. Let ω ⊂ Ω. Suppose that u0, ud ∈ DL∞(−∆). Then there exists a
constant c > 0 such that

‖B∗ (z̄kh,α − z(ν̄kh,α, q̄kh,α))‖L∞(I×ω) ≤ c|log k|4|log h|7(k + h2),

where c > 0 is independent of k, h, α, z̄kh,α, and z(ν̄kh,α, q̄kh,α).

By means of Propositions 5.28 and 5.42 we finally infer the following error estimate for the
variational control discretization.
Theorem 5.43 (Variational discretization). Adopt the assumptions of Lemma 5.26 and let
(3.37) hold. Moreover, suppose the variational control discretization, i.e. Qσ(0, 1) = Q(0, 1).
In addition, assume ω ⊂ Ω as well as u0, ud ∈ DL∞(−∆). Then there is a constant c > 0
not depending on k, h, α, ν̄kh,α, and q̄kh,α such that

|ν̄ − ν̄kh,α|+ ‖q̄ − q̄kh,α‖
1/κ
L1(I×ω) ≤ c

(
α+ |log k|4|log h|7(k + h2)

)
.

Proof. This result immediately follows from Lemma 5.26 and Propositions 5.28 and 5.42, since
for the variational control discretization we have Iσ = Id and σ1(k, h) = σ2(k, h) = 0.
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5.5. Robust error estimates for bang-bang controls (α = 0)

5.5.5. Cellwise constant control discretization

Next, we consider the case of a distributed control on a subset ω ⊂ Ω with controls discretized
by cellwise constant functions in space. Recall that σ1 denotes the projection error onto Qσ
measured in L1 and σ2 denotes the same error measured in L2(I;H−1); see (5.50) and (5.51).
Since the control variable possesses less regularity (compared to the case α > 0), for cellwise
constant control discretization, we cannot expect order k of convergence in L2 in time. We
therefore propose a semivariational control discretization. To this end, let the discrete space
of controls be defined as follows

Qh =
{
v ∈ L2(ω) : v|K ∈ P0(K) for all K ∈ T ωh

}
,

Qσ(0, 1) = L2(I;Qh).

Hence, the controls are explicitly discretized in space but not explicitly discretized in time.
Note that in case of α > 0, then the optimal controls q̄kh,α are implicitly discretized by
means of the projection formula (5.44); cf. also the discussion after Theorem 5.31. From the
perspective of the numerical realization, one often uses α > 0, because the problems for α = 0
are typically difficult to solve numerically.

On any K ∈ Th we define the cellwise constant projection Πh,0 via

(Πh,0v)(t, x) = 1
|K|

∫
K
v(t, ξ) dξ, t ∈ [0, 1], x ∈ K.

Moreover, for almost every t ∈ [0, 1] we set

Sh,t := T ωh \ {K ∈ T ωh : q̄(t)|K ≡ qa or q̄(t)|K ≡ qb},

for all v ∈ L2(I;L2). We first establish the required estimates for σ1 and σ2 with Iσ = Πh,0.

Proposition 5.44. Suppose there are functions δh ∈ L1(I), h > 0, and a constant c > 0
such that ∑

K∈Sh,t

|K| ≤ δh(t), a.e. t ∈ [0, 1], h > 0, (5.76)

and ‖δh‖L1(I) ≤ ch for all h > 0. Then the estimates

‖Πh,0q̄ − q̄‖L1(I×ω) ≤ ch, (5.77)

‖B (Πh,0q̄ − q̄)‖L2(I;H−1) ≤ ch
3/2, (5.78)

hold with a constant c > 0 not depending on h.

Proof. Because Πh,0q̄(t)|K ≡ qa, if q̄(t)|K ≡ qa, and the same for the upper bound qb, we
obtain

‖Πh,0q̄(t)− q̄(t)‖L1(ω) ≤ c
∑

K∈Sh,t

|K| ≤ δh(t),

for almost every t ∈ (0, 1), where we have used that q̄(t) ∈ L∞(ω) and (5.76). Integration
with respect to t implies the first estimate (5.77). Moreover, for any v ∈ H1 and K ∈ T ωh we
have

(Πh,0q̄(t)− q̄(t), v)L2(K) = (Πh,0q̄(t)− q̄(t), v −Πh,0v)L2(K)

≤ ‖Πh,0q̄(t)− q̄(t)‖L2(K)‖Πh,0v − v‖L2(K)

≤ ch‖Πh,0q̄(t)− q̄(t)‖L2(K)‖∇v‖L2(K),
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5. A priori discretization error estimates

since Πh,0 is a projection. Hence, using Hölder’s inequality, we infer that

‖B (Πh,0q̄(t)− q̄(t))‖H−1 = sup
v∈H1

0

(Πh,0q̄(t)− q̄(t), v)L2

‖v‖H1

≤ ch sup
v∈H1

0

‖v‖−1
H1

∑
K∈Sh,t

‖Πh,0q̄(t)− q̄(t)‖L2(K)‖∇v‖L2(K)

≤ ch sup
v∈H1

0

‖v‖−1
H1

 ∑
K∈Sh,t

‖Πh,0q̄(t)− q̄(t)‖2L2(K)

1/2

‖∇v‖L2

≤ ch

 ∑
K∈Sh,t

|K|

1/2

≤ ch (δh(t))1/2 ,

for almost every t ∈ (0, 1), where we have used (5.76) in the last estimate. Integration with
respect to t leads to (5.78).

Note that the condition (5.76) allows for certain accumulation of switching hyperplanes which
might occur for bang-bang controls. Employing the structural assumption of the adjoint
state (3.37), we can derive the following sufficient condition for (5.76); cf. also the proof
of [36, Theorem 4.4]. We emphasize, that the condition (5.76) is less restrictive than to
suppose that (3.37) holds with κ = 1. This is also observed in the numerical examples; see
Section 5.7.3.

Proposition 5.45. If B∗z̄ ∈ L1(I;C1(ω)) and (3.37) holds with κ = 1, then (5.76) is valid.

Proof. Let t ∈ [0, 1] andK ∈ Sh,t, i.e. z̄(t) changes sign inK. Hence, there exists xK ∈ K ⊂ ω
such that B∗z̄(t, xK) = 0. Using the assumed regularity for B∗z̄, we find for all x ∈ K that

|B∗z̄(t, x)| = |B∗ (z̄(t, x)− z̄(t, xK))| ≤ ch‖B∗z̄(t)‖C1(ω).

Thus, ⋃
K∈Sh,t

(t,K) ⊂ { (t, x) : x ∈ ω, |B∗z̄(t, x)| ≤ ch‖B∗z̄(t)‖C1(ω) } .

Now, the inclusion above and (3.37) with κ = 1 imply∑
K∈Sh,t

|K| ≤ ch‖z̄(t)‖C1(ω) =: δh(t).

Integration yields ‖δh‖L1 = ch.

Finally, we provide an error estimate for cellwise constant control discretization.

Theorem 5.46 (Cellwise constant controls). Adopt the assumptions of Lemma 5.26 and let
(3.37) hold. Moreover, suppose the variational in time and cellwise constant control discretiza-
tion in space, i.e. Qσ(0, 1) = L2(I;Qh). In addition, assume ω ⊂ Ω, u0, ud ∈ DL∞(−∆), and
that (5.76) is satisfied. There is a constant c > 0 not depending on k, h, α, ν̄kh,α, and q̄kh,α
such that

|ν̄ − ν̄kh,α|+ ‖q̄ − q̄kh,α‖
1/κ
L1(I×ω) ≤ c

(
α+ |log k|4|log h|7(k + h)

)
.
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5.6. Robust error estimates without sufficient optimality condition (α = 0)

Proof. We first note that for p > d and using Proposition 5.37 we have the estimate

‖B∗z̄ −Πh,0B
∗z̄‖L∞(I×ω) ≤ ch‖z̄‖L∞(I;W 2,p(ω)) ≤ ch‖z̄‖L∞(I;DLp (−∆)) ≤ ch.

Hence, employing Lemma 5.26, Propositions 5.28 and 5.42 as well as the estimates for σ1 and
σ2 from Proposition 5.44 yield the desired estimate.

5.6. Robust error estimates for bang-bang controls (α = 0)
without sufficient optimality condition

While the error estimates of the preceding section essentially used a structural assumption
on the adjoint state that is in general difficult to verify, in this section we will provide
error estimates for the terminal time that rely on a condition that can be verified a priori.
The estimates are based on the construction of feasible controls and crosswise testing. The
techniques can be applied to relatively general problems and – because this will not lead to
unnecessarily overloaded notation – we will discuss the main tool for a general autonomous
evolution equation formulated in a Gelfand triple V ↪→c H ↪→ V ∗. Moreover, the terminal
set U ⊂ H is assumed to be closed and convex.

Recall from Chapter 2, the lower Hamiltonian is defined by

h(u, ζ) = min
q∈Qad

〈Bq −Au, ζ〉, for u, ζ ∈ V .

Suppose that PU is stable in V and that there is h0 ≥ 0 such that for all v ∈ V it holds

h(u, ζ) ≤ −h0‖ζ‖, where u = PU (v), ζ = v − u.

Then, according to Lemma 2.10, for each u0 ∈ H with dU (u0)ω0 ≤ h0 there exists a control
q : [0,∞)→ Qad such that the solution u to

∂tu+Au = Bq, u(0) = u0,

satisfies
dU (u(t)) ≤ max { 0, dU (u0) + (dU (u0)ω0 − h0) t } , t ≥ 0.

We will prove a discrete analog to Lemma 2.10 that will be used to construct feasible controls
for the discrete problem. First, recall the Gårding inequality

〈Au, u〉+ ω0‖u‖2 ≥ α0‖u‖2V , u ∈ V ,

concerning the operator A. For h > 0, let Vh ⊂ V be finite dimensional subspaces (equipped
with the inner product and norm of V ) and consider operators Ah : Vh → V ∗h

∼= Vh satisfying
Gårding’s inequality on Vh, precisely

〈Ahu, u〉+ ω0‖u‖2 ≥ α0‖u‖2V , u ∈ Vh,

for all h > 0 sufficiently small, where ω0 and α0 are fixed. For any T > 0, consider a
partitioning of the time interval [0, T ] given as

[0, T ] = {0} ∪ I1 ∪ I2 ∪ . . . ∪ IM
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5. A priori discretization error estimates

with disjoint subintervals Im = (tm−1, tm] of size km defined by the time points

0 = t0 < t1 < . . . < tM−1 < tM = T .

We abbreviate the time discretization by the parameter k defined as the piecewise constant
function by setting k|Im = km for all m = 1, 2, . . . ,M . Simultaneously, we denote by k the
maximal size of the time steps, i.e. k = max km. Given the temporal mesh, for any Banach
space Y , we introduce the space of piecewise constant functions

Xk(Y ) :=
{
v ∈ L2((0, T );Y ) : v|(tm−1,tm] ∈ P0((tm−1, tm];Y ), m = 1, 2, . . . ,M

}
.

In addition, let Qh ⊂ Q be a subspace (not necessarily finite dimensional) and we define
the set of admissible controls Qad,h = Qh ∩ Qad. For simplicity, we write q ∈ Xk(Qad,h) if
q ∈ Xk(Qh) and q|(tm−1,tm] ∈ P0((tm−1, tm];Qad,h) for all m = 1, 2, . . . ,M .

5.6.1. The discrete Hamiltonian and the contruction of feasible controls

For the construction of feasible points, we prove a discrete analog to Lemma 2.10. The proof
presented here is based on a preliminary version of [18]. We introduce the discrete lower
Hamiltonian for Ah on Vh as

hh(u, ζ) = min
q∈Qad,h

〈Bq −Ahu, ζ〉, for u, ζ ∈ Vh;

cf. the lower Hamiltonian on the continuous level.

Lemma 5.47. Let PU be stable in Vh, i.e. PU (Vh) ⊂ Vh, and k < 1/ω0. Suppose there is
h0 ≥ 0 such that for all v ∈ Vh it holds

hh(u, ζ) ≤ −h0‖ζ‖, where u = PU (v), ζ = v − u. (5.79)

Then, for each u0 ∈ Vh with dU (u0) ≤ h0/(4ω0) there exists a control qkh ∈ Xk(Qad,h) such
that the solution ukh ∈ Xk(Vh) to the discrete state equation, i.e.

∫ T

0
〈Ahukh, ϕkh〉+

M∑
m=2

([ukh]m−1, ϕkh,m) + (ukh,1, ϕkh,1) = (u0, ϕkh,1) +
∫ T

0
〈Bqkh, ϕkh〉

for all ϕkh ∈ Xk(Vh), satisfies

dU (ukh(tm)) ≤ max { 0, dU (u0)− (h0/2)tm } , m = 1, 2, . . . ,M .

To prove this result, we first regularize the distance function on U . For γ ≥ 0 consider the
mapping φγ : R+ → R+ defined as

φγ(t) =
{
t2/(2γ) if 0 ≤ t < γ,
t− γ/2 if t ≥ γ.

Then, the regularized distance function is given by dγ(u) = φγ(dU (u)). Clearly, we have

dU (u)− γ/2 ≤ dγ(u) ≤ dU (u) for all u ∈ H.
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Lemma 5.48. For all γ > 0 and u ∈ H the regularized distance function is differentiable
with

∇dγ(u) =
φ′γ(dU (u))
dU (u) (u− PU (u)), where φ′γ(t) =

t/γ if 0 ≤ t < γ,
1 if t ≥ γ.

Furthermore, the gradient ∇dγ : H → H is Lipschitz continuous with

‖∇dγ(u)−∇dγ(v)‖ ≤ γ−1‖u− v‖.

Proof. First we note that the choice of dγ is not arbitrary. In fact, this is precisely the
Moreau-envelope for the parameter γ of the distance function

dγ(u) = dγU (u) = min
v∈H

[ 1
2γ ‖v − u‖

2 + dU (v)
]
;

cf., e.g., [12, Section 12.4]. The differentiability and the Lipschitz continuity of the gradient
follow directly from that; see, e.g., [12, Proposition 12.29]. Concerning the concrete form
of the derivative, we note that for dU (u) > 0, dU (u) is differentiable with ∇dU (u) = (u −
PU (u))/dU (u) (see, e.g., [12, Proposition 18.22 (i)]). Therefore, we can apply the chain rule.
For dU (u) = 0, we can provide a direct proof.

Now, for ζ ∈ Vh, we define for γ > 0 the controls of the form

qγ = Πad,h

{
−1
γ
B∗ζ

}
, (5.80)

where Πad,h denotes the Hilbert space projection onto Qad,h, i.e.

q = Πad,h{z} ⇔ (q − z, q′ − q)Q ≥ 0 for all q′ ∈ Qad,h.

The controls qγ approximate the minimizers from the definition of the discrete lower Hamil-
tonian.

Proposition 5.49. For any ζ, u ∈ Vh and qγ as in (5.80) we have

〈Bqγ −Ahu, ζ〉 ≤ hh(u, ζ) + cγ, (5.81)

where c solely depends on Qad,h.

Proof. This follows as in Proposition 2.13 noting that Qad,h ⊂ Qad due to Qh ⊂ Q.

For the following considerations, we define Bh : Qh → V ∗h as

〈Bhq, ϕh〉 = 〈Bq, ϕh〉 for all ϕh ∈ Vh.

Proposition 5.50. Let γ > 0. Suppose that PU (Vh) ⊂ Vh. For any um−1 ∈ Vh and km ∈
(0, 1/ω0], the system of equations

(I + kmAh)um = um−1 + kmBhqm,
qm = Πad,h {−(1/γ)B∗h∇dγ(um)} ,

(5.82)

possesses a solution (um, qm) ∈ Vh ×Qad,h.
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Proof. Consider the mapping

F(q) := Πad,h

{
−1
γ
B∗h

[
∇dγ

(
(I + kmAh)−1(um−1 + kmBhq)

)]}
.

First, because B is continuous from Q to V ∗, we infer that Bh is continuous from Qh to V ∗h .
Moreover, since (I+kmAh) is continuously invertible, we have (I+kmAh)−1 : V ∗h ∼= Vh → Vh.
Additionally, ∇dγ is Lipschitz continuous on H due to Lemma 5.48. Equivalence of norms
in finite dimensions implies that ∇dγ is continuous on Vh. Last, continuity of B∗h : Vh → Qh
and Πad,h on Qh lead to continuity of F from Qh into itself. Furthermore, since Vh ⊂ V and
Vh is finite dimensional, F(Qad,h) is contained in a compact subset of Qh.

In summary, F : Qad,h → Qad,h is a continuous mapping with F(Qad,h) compact. Therefore,
Schauder’s fixed point theorem (see, e.g., [163, Theorem 2.A]) yields the existence of a fixed
point F(qm) = qm. Setting um = (I + kmAh)−1(um−1 + kmBhqm) proves existence of a
solution to (5.82).

With this preparation, we are ready to prove the lemma.

Proof of Lemma 5.47. Let u0 ∈ Vh be given as specified. By iteration of (5.82), we construct
a function u = ukh ∈ Xk(Vh) with

(I + kmAh)um = um−1 + kmBhqm,

qm = Πad,h

{
−1
γ
B∗h∇dγ(um)

}
.

Then, convexity of dγ and the definition of um+1 yield

dγ(um+1) ≤ dγ(um) + (∇dγ(um+1), um+1 − um)
= dγ(um) + km+1〈Bhqm+1 −Ahum+1,∇dγ(um+1)〉
= dγ(um) + km+1〈Bhqm+1 −AhPU (um+1),∇dγ(um+1)〉

+ km+1〈Ah(PU (um+1)− um+1),∇dγ(um+1)〉.

Lemma 5.48 and the Gårding inequality further imply

〈Ah(PU (um+1)− um+1),∇dγ(um+1)〉 ≤ −α0
φ′γ(dU (um+1))
dU (um+1) ‖um+1 − PU (um+1)‖2V

+ ω0
φ′γ(dU (um+1))
dU (um+1) ‖um+1 − PU (um+1)‖2

≤ ω0φ
′
γ(dU (um+1))dU (um+1)

≤ ω0dU (um+1)

since φ′γ(dU (um+1)) ≤ 1. Setting ζm+1 = ∇dγ(um+1) and employing (5.81) and (5.79) we
infer that

dγ(um+1) ≤ dγ(um) + km+1 [hh(um+1, ζm+1) + cγ + ω0dU (um+1)]
≤ dγ(um) + km+1 [−h0‖ζm+1‖+ cγ + ω0dU (um+1)]

≤ dγ(um) + km+1
[
−h0φ

′
γ(dU (um+1)) + ω0dγ(um+1) + (c+ ω0/2)γ

]
,
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5.6. Robust error estimates without sufficient optimality condition (α = 0)

since ‖ζm‖ = φ′γ(dU (um)) and dU (·) ≤ dγ(·) + γ/2. In the following, we replace (c+ω0/2) by
the generic constant c, just depending on Qad and ω0. Thus, we have shown that

dγ(um+1) ≤ dγ(um) + km+1
[
−h0φ

′
γ(dU (um+1)) + ω0dγ(um+1) + cγ

]
. (5.83)

Since km < 1/ω0, we have the fundamental inequality

(1− ω0km)−1 ≤ (1 + 2ω0km) ≤ exp(2ω0km),

which will be useful below.

By induction, we now show the following estimate for all m:

dγ(um) ≤ fγ(tm) :=

cγ exp(2ω0tm)tm for h0 = 0,
max { γ, dγ(u0)− (h0/2− cγ)tm } for h0 > 0.

(5.84)

Clearly, the inequality holds for m = 0 due to the assumption dU (u0) ≤ h0/(2ω0). In the
following, we assume that the estimate dU (uk) ≤ fγ(tk) is established for all k ≤ m, and
proceed separately for h0 = 0 and h0 > 0.

Case h0 = 0: From (5.83), we obtain

dγ(um+1) ≤ dγ(um) + km+1 [ω0dγ(um+1) + cγ] ,

which is equivalent to

dγ(um+1) ≤ (1− ω0km+1)−1(dγ(um) + km+1cγ).

Now, by using (1− ω0km+1)−1 ≤ exp(2ω0km+1), the assumption dγ(um) ≤ cγ exp(2ω0tm)tm,
and km+1cγ ≤ cγ exp(2ω0tm)km+1, and tm+1 = tm + km+1, we obtain the desired inequality
for m+ 1.

Case h0 > 0: In the following, we will choose γ sufficiently small such that cγ < h0/2. For each
m+1, we have two situations: Either, it holds dU (um+1) ≤ γ, which means that dγ(um+1) ≤ γ,
and we are done. Or, we have dU (um+1) > γ, and we can use φ′γ(dU (um+1)) = 1. In this
situation, we rewrite (5.83) as

dγ(um+1) ≤ (1− ω0km+1)−1(dγ(um) + km+1(cγ − h0)).

Now, by using (1− ω0km+1)−1 ≤ (1 + 2km+1ω0), we obtain

dγ(um+1) ≤ dγ(um) + 2ω0km+1dγ(um) + km+1(1 + 2ω0km+1)(cγ − h0)
= dγ(um) + 2ω0km+1(dγ(um) + cγ − h0) + km+1(cγ − h0)
≤ dγ(um) + km+1h0/2 + km+1(cγ − h0)
= dγ(um) + km+1(cγ − h0/2),

using the hypotheses dγ(um) ≤ fγ(tm) ≤ dγ(u0) ≤ h0/(4ω0) and that (cγ − h0) ≤ 0. Em-
ploying the induction hypothesis, we obtain the desired estimate (5.84) for m+ 1.

Finally, since

dU (um) ≤ dγ(um) + γ

2 ≤ max { γ, dγ(u0)− (h0/2− cγ)tm }+ γ

2 ,

and going to the limit γ → 0 proves Lemma 5.47.
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5. A priori discretization error estimates

5.6.2. Robust regularization and discretization error estimates

Based on the discrete strengthened Hamiltonian condition (5.79) we now prove discretization
error estimates for the optimal times. For simplicity, let again A = −∆ equipped with
homogeneous Dirichlet boundary conditions as in Section 5.1. Hence, we choose V = H1

0 (Ω),
H = L2(Ω), and V ∗ = H−1(Ω). It is worth pointing out that the techniques can be used for
fairly general elliptic operators; see also Remark 5.53.

Suppose that the regularity conditions concerning the temporal mesh 0 = t0 < t1 < . . . <
tM−1 < tM = 1 and the spatial mesh Th from Section 5.2 are satisfied. Let Vh ⊂ V denote
the subspace of continuous and cellwise linear functions associated with the mesh Th. Con-
cerning the discretization of the controls, we propose a semivariational control discretization.
Precisely, the controls are not explicitly discretized in time but can be explicitly discretized
in space. The reasons are as follows: First, for a discretization in time, we would require an
estimate for the controls in L2 in time. However, for bang-bang controls we cannot expect an
optimal order estimate in L2. Second, as we consider the piecewise constant discretization
of the state and adjoint state equation, in view of the projection formula (5.44), if α > 0
the optimal controls to the discrete problem are piecewise constant as well. Hence, the semi-
variational and the discretization by piecewise constant functions in time are equivalent; cf.
also Corollary 5.19. Last, there is a technical reason. Since the proof of the following error
estimate is based on cross-wise testing, we have to extend an optimal control from the con-
tinuous problem in a way such that the auxiliary control is feasible for the discrete problem.
In a semivariational control discretization we avoid the necessity of projecting the auxiliary
control onto the given temporal mesh.

Recall that Qh ⊂ Q is a subspace (not necessarily finite dimensional) and define the set of
admissible controls Qad,h = Qh ∩Q. Moreover, we set

Qad,h(0, 1) := { q ∈ Q(0, 1) : q(t) ∈ Qad,h a.a. t ∈ (0, 1) } .

For any α ≥ 0, the regularized and discretized problem reads as

inf
νkh,α∈R+

qkh,α∈Qad,h(0,1)

jα(νkh,α, qkh,α) subject to gkh(νkh,α, qkh,α) ≤ 0. (5.85)

As for the continuous result, the discrete strengthened Hamiltonian condition in particular
implies that the discrete problems are well-posed; cf. Remark 2.15. Even better, we obtain
the following robust estimate that eventually leads to discretization error estimates.

Lemma 5.51. Let (ν̄, q̄) be a global solution to (P̂0) and {(k, h, α)} be a sequence of positive
mesh sizes and regularization parameters converging to zero. Moreover, suppose that the
conditions of Lemmas 2.10 and 5.47 hold with h0 > 0. Then there exist δ > 0 and a sequence
{(ν̄kh,α, q̄kh,α)} of global solutions to problem (5.85) such that

|ν̄ − ν̄kh,α| ≤ c
(
α+ |log k|(k + h2) + ‖B (qh − q̄)‖L2(I;H−1)

)
for any qh ∈ Qad,h(0, 1) with ‖B (qh − q̄)‖L2(I;H−1) ≤ δ.

Proof. The proof is based on the construction of feasible controls and cross-wise testing. We
start by constructing a feasible point for the discrete problem. Here we have to take care of
the fact that we cannot simply add time steps to the temporal mesh. Instead we divide the
temporal mesh in two parts; see also Figure 5.9.
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5.6. Robust error estimates without sufficient optimality condition (α = 0)

Step 1: Feasible control for the discrete problem. Let (ν̄, q̄) be a (global) solution to (P̂0).
Moreover, let m′ ∈ { 1, 2, . . . ,M } be arbitrary that will be determined in the course of the
proof. Given qh, q̆ ∈ Qad,h(0, 1), we construct a new control by

q′h(t) =

qh(t−1
m′ t) if t ≤ tm′ ,

q̆((t− tm′)(1− tm′)−1) else.

Let u′kh be the piecewise constant function with values in Vh satisfying

ν̄t−1
m′

∫ tm

tm−1
(∇u′kh,∇ϕh) + ([u′kh]m−1, ϕh) = ν̄t−1

m′

∫ tm

tm−1
〈Bq′h, ϕh〉 for all ϕh ∈ Vh,

for all m = 1, 2, . . . ,m′, i.e. u′kh is the discrete state on the temporal mesh t0 < t1 < t2 <
. . . < tm′ with time transformation ν̄ and the control qh transformed to (0, tm′). Define
ν = (t−1

m′ − 1)ν̄ or, equivalently, ν̄t−1
m′ = ν̄ + ν. Then

itm′Skh(ν̄ + ν, q′h) = u′kh(tm′).

Moreover,
itm′S(ν̄ + ν, q′h) = i1S(ν̄, qh).

Thus, we have the estimate

dU (u′kh(tm′)) ≤ dU (i1S(ν̄, q̄)) + ‖i1S(ν̄, qh)− i1S(ν̄, q̄)‖L2

+ ‖itm′Skh(ν̄ + ν, q′h)− itm′S(ν̄ + ν, q′h)‖L2

≤ c‖B (qh − q̄)‖L2(I;H−1) + δ(k, h,m′),

where we have used linearity of the solution operator (for fixed ν̄) and δ(k, h,m′) denotes
the discretization error to be discussed later. Now Lemma 5.47 guarantees the existence of a
control q̆kh such that the corresponding state ŭkh as defined in Lemma 5.47 with initial state
u′kh(tm′) satisfies

dU (ŭkh(t̆m)) ≤ max { 0, c‖B (qh − q̄)‖L2(I;H−1) + δ(k, h,m′)− (h0/2)t̆m } (5.86)

for m = 1, 2, . . . on an arbitrary temporal mesh 0 = t̆0 < t̆1 < . . ., because ω0 = 0 due to
homogeneous Dirichlet boundary conditions. Let ν̆ > 0 such that

c‖B (qh − q̄)‖L2(I;H−1) + δ(k, h,m′)− (h0/2)ν̆ = 0.

Since ‖B (qh − q̄)‖L2(I;H−1) ≤ δ, we obtain the upper bound

ν̆ ≤ 2
h0

(
cδ + δ(k, h,m′)

)
. (5.87)

For the following considerations we assume that ν̆ ≤ ν̄ for δ, k, and h sufficiently small and
postpone the rigorous proof of this estimate to step 2. Take m′ ∈ { 1, 2, . . . ,M − 1 } such
that

ν̄

ν̄ + ν̆
= tm′ + τkm′+1

with tm′ from the reference time mesh and some τ ∈ [0, 1). Note that the case m′ = M is
impossible due to ν̆ > 0. We will argue that ν̆ can be slightly increased to some ν such that
ν̄/(ν̄ + ν) = tm′ as well as

ν ≤ c‖B (qh − q̄)‖L2(I;H−1) + ck + δ(k, h,m′)
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Reference mesh
0 1tm′

Real mesh
0 ν̄ ν̄ + ν

Extension
t̆0 t̆1 t̆2

Figure 5.9.: Temporal meshes in the proof of Lemma 5.51.

(with a possibly different constant c) hold. A simple calculation reveals

ν = 1− tm′
tm′

ν̄ = ν̆ + τkm′+1
ν̄ + ν̆

tm′
.

Moreover, we have the lower bound

1 > tm′ = ν̄

ν̄ + ν
− τkm′+1 ≥

ν̄

ν̄ + ν̆
− k ≥ 1

2 − k.

Since k ≤ 1/4 we have tm′ ≥ 1/4. Thus ν ≤ ν̆ + ck(ν̄ + ν̆) and ν satisfies the required
properties. Recall that for the constructed control q̆kh from Lemma 5.47, we have the freedom
to choose the temporal mesh. We set

t̆j = (ν̄ + ν)
j∑
i=1

km′+i, j = 1, 2, . . . ,M −m′;

see also Figure 5.9. This gives t̆M−m′ = ν and dU (ŭkh(t̆M−m′)) = 0 due to estimate (5.86).
We define a new control as above by

q′h(t) =

qh(t (ν̄ + ν)/ν̄) if t ≤ ν̄/(ν̄ + ν),
q̆kh(t (ν̄ + ν)/ν − ν̄/ν) else.

Now since the new pair (ν̄ + ν, q′h) is feasible for (5.85), we obtain

ν̄kh,α ≤ jα(ν̄kh,α, q̄kh,α) ≤ jα(ν̄ + ν, q′h)
≤ ν̄ + c‖B (qh − q̄)‖L2(I;H−1) + ck + δ(k, h,m′) + cα. (5.88)

In particular, since there exist feasible controls for (5.85), we deduce that there is (at least)
one optimal control for the discrete problem.

Step 2: Discretization error δ(k, h,m′). We are left with the task of determining the dis-
cretization error δ(k, h,m′). Similar as in Lemma A.39, we can prove the error estimate

δ(k, h,m′) = ‖itm′Skh(ν̄ + ν, q′h)− itm′S(ν̄ + ν, q′h)‖L2

≤ c|log k|(k + h2)(1 + ν̄ + ν)
≤ c|log k|(k + h2)(1 + δ + δ(k, h,m′))

for all m′ ∈ { 1, 2, . . . M }, where we have used the upper bound (5.87) for ν̆. Note that
the constant is independent of qh and q̆ due to boundedness of Qad,h(0, 1). In particular,
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5.6. Robust error estimates without sufficient optimality condition (α = 0)

the above estimate implies that δ(k, h,m′) is arbitrary small for k and h sufficiently small.
Hence, ν̆ ≤ ν̄ is guaranteed for δ, k, and h small. Finally, from (5.88) we infer that

ν̄kh,α − ν̄ ≤ c
(
α+ ‖B (qh − q̄)‖L2(I;H−1) + |log k|(k + h2)

)
.

Step 3: Feasible control for the continuous problem. For the reverse inequality we proceed
in a similar way. Let (ν̄kh,α, q̄kh,α) be a solution to (5.85) and set ūkh,α = S(ν̄kh,α, q̄kh,α).
According to the error estimate Lemma A.39 we get

dU (ūkh,α(1)) ≤ dU (i1Skh(ν̄kh,α, q̄kh,α)) + ‖i1S(ν̄kh,α, q̄kh,α)− i1Skh(ν̄kh,α, q̄kh,α)‖L2

≤ c|log k|(k + h2).

By means of Lemma 2.10 there exists an admissible control q̆ such that the corresponding
solution to the state equation ŭ satisfies

dU (ŭ(t)) ≤ max { 0, c|log k|(k + h2)− h0t }

for all t ≥ 0. Hence, setting ν = c|log k|(k + h2)/h0 and

q′(t) =

q̄kh,α(t (ν̄kh,α + ν)/ν̄kh,α) if t ≤ ν̄kh,α/(ν̄kh,α + ν),
q̆(t (ν̄kh,α + ν)/ν − ν̄kh,α/ν) else,

the pair (ν̄kh,α + ν, q′) is feasible for (P̂α), and we obtain

ν̄ ≤ ν̄kh,α + ν = ν̄kh,α + c|log k|(k + h2). (5.89)

Combination of the estimates (5.88) and (5.89) proves the assertion.

Similar as in Section 2.4, the assumptions of Lemma 5.51 can be explicitly verified in con-
crete situations. For the particular case that A = −∆, we can state the following sufficient
condition.

Proposition 5.52. Suppose that U = Bδ0(ud) with ud ∈ Vh ⊂ V and δ0 > 0. If there exists
a control q̆h ∈ Qad,h ⊂ Qad such that

‖Bq̆h + ∆hud‖H−1 <
c2
P

1 + c2
P

δ0, (5.90)

with cP denoting the Poincaré constant, then the assumptions of Lemmas 2.10 and 5.47 are
satisfied.

Proof. We first note that in our case α0 = c2
P /(1 + c2

P ). The assumptions of Lemma 2.10 are
verified in Proposition 2.37 provided that (5.90) holds. Since ud ∈ Vh, for the verification of
the discrete strengthened Hamiltonian condition (5.79) we can use similar arguments as in
Proposition 2.37.

Remark 5.53. (i) The techniques used in the proof of Lemma 5.51 can also be applied
to obtain error estimates for Neumann boundary control and for general autonomous
parabolic equations, if discretization error estimates for the state equation are available.
The only requirements are the strengthened Hamiltonian conditions in Lemmas 2.10
and 5.47 that can be verified to hold for fairly general operators and other control
situations. In particular, the classical problem with U = Bδ0(0) and distributed control
on a subset of the spatial domain is included in our setting; see Proposition 5.52.
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5. A priori discretization error estimates

(ii) Note that all conditions of Lemma 5.51 except for ’k, h, and δ sufficiently small’ can be
verified a priori, in contrast to Proposition 5.28 that relied on the structural assumption
that can be hardly checked a priori.

(iii) Lemma 5.51 generalizes the convergence result of [87, Theorem 4] to more general ter-
minal sets than the L2-ball centered at zero. The proof of [87, Theorem 4] essentially
relies on the fact that ∆ generates an exponentially stable semigroup on L2 to con-
struct feasible controls; cf. also Proposition A.21. In our framework this is hidden in
Lemmas 2.10 and 5.47.

(iv) The case with α = 0 is included in Lemma 5.51.

(v) Lemma 5.47 requires the stability of PU in Vh. For the prototypical example U = Bδ0(ud)
this is equivalent to ud ∈ Vh. The proof of Lemma 5.51 can be easily modified if
ud ∈ V \ Vh, by using the projected desired state Πhud with a corresponding error
estimate for ud.

While Lemma 5.51 potentially provides optimal error estimates for the optimal times, we
cannot show strong convergence of the controls without any additional assumption as in
Section 3.3.2 or Section 5.5; cf. also [37, 47, 148, 162]. By standard arguments, merely weak
convergence to a control q∗ ∈ Qad(0, 1) that is also optimal for (P̂0) is guaranteed.

Proposition 5.54. Adapt the assumptions of Lemma 5.51. If there is a sequence (qh)h>0,
qh ∈ Qad,h(0, 1), such that ‖B (qh − q̄)‖L2(I;H−1) → 0 as h → 0. Then ν̄kh,α → ν̄ and
q̄kh,α ⇀ q∗ in Lr(I;Q) for any r ∈ (1,∞). Moreover, the pair (ν̄, q∗) is optimal for (P̂0).

Proof. First, Lemma 5.51 and the supposition imply ν̄kh,α → ν̄. From uniform boundedness
of q̄kh,α ∈ Qad,h(0, 1) ⊂ Qad(0, 1) we conclude the existence of a subsequence converging
weakly to some q∗ ∈ Qad(0, 1) in Lr(I;Q) for r > 2. Feasibility of q∗ for (P̂0) follows from

dU (i1S(ν̄, q∗)) ≤ dU (i1Skh(ν̄kh,α, q̄kh,α)) + c‖i1S(ν̄kh,α, q̄kh,α)− i1Skh(ν̄kh,α, q̄kh,α)‖H
+ c‖i1S(ν̄, q∗)− i1S(ν̄kh,α, q̄kh,α)‖H ,

the error estimate Lemma A.39, and complete continuity of the control-to-state mapping
Proposition A.20. Due to α = 0, the pair (ν̄, q∗) is also optimal for (P̂0).

However, under additional assumptions, we can verify strong convergence of the controls for
the unregularized problems; cf. the proof of [100, Theorem 3.1]. Without restriction suppose
that the control bounds are symmetric (i.e. −qa = qb) by adding a fixed right-hand side to
the state equation which does not affect the preceding results. If q̄ is bang-bang, which in
particular implies uniqueness of q̄ (cf. Proposition 3.26), then we automatically have q∗ = q̄.
Hence,

‖q̄kh,0 − q̄‖2L2(I×ω) = ‖q̄kh,0‖2L2(I×ω) − 2(q̄kh,0, q̄)L2(I×ω) + ‖q̄‖2L2(I×ω)

≤ 2|I × ω|2q2
b − 2(q̄kh,0, q̄)L2(I×ω).

Thus, weak convergence of q̄kh,0 to q̄ implies strong convergence in L2(I × ω).
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5.6. Robust error estimates without sufficient optimality condition (α = 0)

Variational discretization of controls

Since Qh was not assumed to be finite dimensional, we can still take Qh = Q and directly
obtain an error estimate for the variational control discretization as proposed in [78] for
elliptic equations, cf. also [118] for parabolic equations.

Theorem 5.55 (Variational discretization). Let the assumptions of Lemma 5.51 hold and
suppose the variational control discretization, i.e. Qh = Q. Then there is a constant c > 0
not depending on k, h, α, and ν̄kh,α such that

|ν̄ − ν̄kh,α| ≤ c
(
α+ |log k|(k + h2)

)
.

Proof. We apply Lemma 5.51 with qh = q̄ that is allowed due to Qh = Q.

In case of purely time-dependent controls and if α > 0, the variational control discretization
and the discretization by piecewise constant functions in time are equivalent due to the
projection formula (5.63). Whereas if α = 0, the optimal control q̄kh,0 to (P̂kh,0) is not
necessarily piecewise constant with the same time mesh. Defining a new control Πkq̄kh,0 that
is the projection of q̄kh,0 onto the space of piecewise constant functions in time, we observe

(Bq̄kh,0, ϕkh)L2(I;L2) = (BΠkq̄kh,0, ϕkh)L2(I;L2) for all ϕkh ∈ Xk,h,

i.e. the controls q̄kh,0 and Πkq̄kh,0 have the same associated discrete state. Hence, in case
α = 0, we can always find a feasible control that belongs to the discrete space of controls
with the same objective function value. In contrast to the comment after Theorem 5.31, we
do not require any assumption on the set of switching points, since convergence of the controls
cannot be guaranteed anyway by the techniques in this section. Based on this observation
we obtain the following corollary.

Corollary 5.56 (Parameter control). Let the assumptions of Lemma 5.51 hold, suppose that
ω is discrete, and choose the piecewise constant discrete control space

Qσ(0, 1) =
{
v ∈ Q(0, 1) : v|Im ∈ P0(Im;RNc), m = 1, 2, . . . ,M

}
.

Then there is a constant c > 0 not depending on k, h, ν̄kh, and q̄kh such that

|ν̄ − ν̄kh,α| ≤ c
(
α+ |log k|(k + h2)

)
.

Cellwise constant control approximation

Last, we consider the explicit discretization of controls by cellwise constant functions. Note
that we still do not discretize the controls explicitly in time. The discrete space of controls
is defined as follows

Qh = {v ∈ Q : v|K ∈ P0(K) for all K ∈ T ωh } .

On any K ∈ Th we define the piecewise constant projection Πh,0 via

(Πh,0v)(t, x) = 1
|K|

∫
K
v(t, ξ) dξ, x ∈ K.
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Moreover, for each t ∈ [0, 1] we set

Sh,t := T ωh \ {K ∈ T ωh : q̄(t)|K ≡ qa or q̄(t)|K ≡ qb}.

Under a structural assumption on the set with switching we can derive the following dis-
cretization error estimate; cf. Theorem 5.46.
Theorem 5.57 (Cellwise constant controls). Let the assumptions of Lemma 5.51 hold and
suppose the cellwise constant control discretization. Moreover, suppose that (5.76) holds, i.e.
there are functions δh ∈ L1(I), h > 0, and a constant c > 0 such that∑

K∈Sh,t

|K| ≤ δh(t), a.e. t ∈ [0, 1], h > 0,

and ‖δh‖L1(I) ≤ ch for all h > 0. Then there is a constant c > 0 not depending on k, h, α,
and ν̄kh,α such that

|ν̄ − ν̄kh,α| ≤ c
(
α+ |log k|(k + h3/2)

)
.

Proof. According to the supposition on Sh,t and Proposition 5.44, we have

‖Πh,0q̄ − q̄‖L2(I;H−1) ≤ ch
3/2.

Since ‖Πh,0q̄ − q̄‖L2(I;H−1) → 0 as h→ 0, we can apply Lemma 5.51 with qh = Πh,0q̄, which
yields the desired estimate.

5.7. Numerical examples for bang-bang controls

We continue the numerical examples of Section 5.4 for the case of bang-bang controls. The
aim is again the numerical verification of the theoretically obtained error estimates for reg-
ularization and discretization. In all examples, we consider the operator −c∆ with c = 0.03
instead of −∆, which clearly does not effect the results of this chapter.

5.7.1. Example with purely time-dependent control

We take again the example from Section 5.4.2 with purely time-dependent controls for fixed
spatially dependent functions. Let

Ω = (0, 1)2, ω1 = (0, 0.5)× (0, 1), ω2 = (0.5, 1)× (0, 0.5),
B : R2 → L2(Ω), Bq = q11ω1 + q21ω2 ,

G(u) = 1
2‖u− ud‖

2
L2 − 1

2δ
2
0 , ud(x) = 0, δ0 = 1

10 ,

Qad(0, 1) = {q ∈ L2((0, 1);R2) : − 1.5 ≤ q ≤ 0}, u0(x) = 4 sin(πx2
1) sin(πx3

2),

where 1ω1 and 1ω2 denote the characteristic functions on ω1 and ω2. The spatial mesh is
chosen such that the boundaries of ω1 and ω2 coincide with edges of the mesh, which ensures
that B can be easily implemented.

Since the exact solution is unknown, we calculate a numerical solution on a sufficiently fine
grid for a small regularization parameter. In accordance with Theorem 5.31 (provided that
(3.37) holds with κ = 1), we observe linear convergence in all variables with respect to
α up to a threshold, where the error due to discretization dominates to total error; cf.
Figure 5.10. Concerning the discretization error, in Figure 5.11 we observe linear order in k
for the temporal discretization and quadratic order in h for the spatial discretization.
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Figure 5.10.: Discretization error for Example 5.7.1 with variational control discretization and refinement
of the regularization parameter for N = 289 nodes and M = 80 time steps (left) and
N = 4225 nodes and M = 320 time steps (right).
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‖ū− ūkh‖L2

O(h2)

Figure 5.11.: Discretization error for Example 5.7.1 with variational control discretization and refinement
of the time interval for N = 4225 nodes (left) and refinement of the spatial discretization
for M = 320 time steps (right) for α = 10−3. The reference solution is calculated for
α = 0 using the algorithmic approach from Section 4.2.
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Figure 5.12.: Discretization error for Example 5.7.2 with cellwise constant control discretization and
refinement of the regularization parameter for N = 81 nodes and M = 80 time steps (left)
and N = 1089 nodes and M = 320 time steps (right).

5.7.2. Example with distributed control on subdomain

Next, we consider the example from Section 5.4.3 with distributed control on a subset of the
domain. As before we compare to a reference solution obtained numerically on a fine mesh
for a small regularization parameter. The problem data is

Ω = (0, 1)2, ω = (0, 0.75)2, δ0 = 1
10 ,

G(u) = 1
2‖u− ud‖

2
L2 − 1

2δ
2
0 , ud(x) = −2 min {x1, 1− x1, x2, 1− x2 } ,

Qad(0, 1) = {q ∈ L2(I × ω) : − 5 ≤ q ≤ 0},
u0(x) = 4 sin(πx2

1) sin(πx2)3.

The mesh is chosen such that the boundary of the control domain coincides with edges of the
spatial mesh. We use cellwise constant functions for the discretization of the control variable.
Since ω does not have a strict distance to the boundary of the spatial domain, this example
does not fit into the setting considered in Section 5.5.5. However, we expect that one can
show similar results for the peculiar problem on the unit square.

From Figure 5.12 we approximately deduce the convergence rate 1/2 with respect to α for the
control variable measured in L1(I×ω). Moreover, we observe approximately order 1/2 for the
error due to temporal discretization and linear order for the error due to spatial discretization
of the control variable; see Figure 5.13. As already observed in Section 5.4.3, the error for
the terminal time decreases at the full rate k + h2. Taking into account the structure of
the adjoint state depicted in Figure 5.15, it seems that the structural assumption (3.37) is
not satisfied with κ = 1 in this case. For this reason, Theorem 5.46 does not guarantee the
rate α+ k+ h for the control variable. Numerically evaluating the condition (3.37) seems to
confirm the hypothesis. In Example 5.7.1 we observe linear decrease while in Example 5.7.2
it is hard to determine the rate of decrease; see Figure 5.14. Nevertheless, the decrease for
Example 5.7.2 is for sure less than linear. Note that for the terminal time we only require
(3.37) to hold for some κ > 0 to obtain the rate α due to Lemma 5.26.
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Figure 5.13.: Discretization error for Example 5.7.2 with cellwise constant control discretization and
refinement of the time interval for N = 1089 nodes (left) and refinement of the spatial
discretization for M = 160 time steps (right) for α = 10−4. The reference solution is
calculated for α = 10−5.
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Figure 5.14.: Numerical verification of structural assumption on the adjoint state (3.37) for
Example 5.7.1 (left) and Example 5.7.2 (right).
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Figure 5.15.: Snapshots of adjoint state of Example 5.7.2 for α = 10−5.
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5.7.3. Example with distributed control on domain

Last, let us consider again the example from Section 4.2.7 with distributed control on the
whole domain. The main difference to the preceding example is that we take ud ≡ 0 to ease
the computation. As before we compare to a reference solution obtained numerically on a
fine mesh for a small regularization parameter. The problem data is

Ω = (0, 1)2 = ω, δ0 = 1
10 ,

G(u) = 1
2‖u− ud‖

2
L2 − 1

2δ
2
0 , ud(x) = 0,

Qad(0, 1) = {q ∈ L2(I × ω) : − 2 ≤ q ≤ 1},
u0(x) = 10 sin(πx2

1) sin(πx2)3.

The control variable is discretized by cellwise constant functions in space. We observe ap-
proximately order 1/2 of convergence with respect to α for the control variable in L1(I ×ω);
see Figure 5.16. Moreover, in Figure 5.17 we observe order 1/2 of convergence with respect
to k and linear order with respect to h. Concerning the structural assumption (3.37), from
Figure 5.18 we numerically find κ ≈ 1/2. Hence, the convergence rate for the regularization
error seems to be in accordance with the theory.

Additionally, from the numerical verification Figure 5.18 (right) it seems that the assump-
tion (5.76) used in the proof for cellwise constant control discretization is fulfilled. Hence,
by virtue of Theorem 5.46, we can expect the overall convergence rate k1/2 + h1/2 for the
control variable. While the convergence rate for the temporal discretization is in accordance
with the theory, for the spatial discretization we observe better order of convergence. In the
theory there are two reasons for the limited convergence rate in h: First, we expect that the
estimate in (5.61) can be improved in the case κ < 1; see also the comment after the proof of
Proposition 5.28. Second, in the numerical examples we always observe the full rate k + h2

for ν. However, Lemma 5.26 guarantees the rate k+h, only. As this quantity directly enters
into the estimate of Proposition 5.28, the suboptimal rate for ν limits the convergence rate
for q. It is worth mentioning that from Theorem 5.57 we could expect the rate k + h3/2 for
the optimal times, which is better but still not optimal.
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Figure 5.16.: Discretization error for Example 5.7.3 with cellwise constant control discretization and
refinement of the regularization parameter for N = 81 nodes and M = 80 time steps (left)
and N = 1089 nodes and M = 320 time steps (right).
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Figure 5.17.: Discretization error for Example 5.7.3 with cellwise constant control discretization and
refinement of the time interval for N = 289 nodes (left) and refinement of the spatial
discretization for M = 160 time steps (right) for α = 10−4. The reference solution is
calculated for α = 0 using the algorithmic approach from Section 4.2.
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Figure 5.18.: Numerical verification of structural assumption on adjoint state (3.37) (left) and
assumption (5.76) (right) for Example 5.7.3. Quantities estimated from numerical solution
for α = 0, N = 4225 nodes, and M = 160 time steps that was calculated by the
algorithmic approach from Section 4.2 with εtol = 10−8.
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6. Outlook and perspectives

In this thesis we considered the numerical analysis and algorithmic solution of time-optimal
control problems. Especially we focused on discretizing both the temporal and the spatial
component of the involved partial differential equation by means of the finite element method.
There are of course many open questions that could not be tackled in this thesis leading
to several possible directions for future investigations on this research topic. As already
mentioned in the introduction, different objective functionals than the here regarded L2-
norm of the controls could be of interest. Other norms may be more appropriate to represent
inherent control costs or may lead to a more natural regularization strategy. For example one
could choose the L1-norm of the control in the objective; see [29] for corresponding second
order optimality conditions.

Since many processes in natural sciences or engineering require nonlinear models and also
time-optimal control formulations are of interest, this gives rise to the numerical analysis
of time-optimal control problems subject to nonlinear state equations. For example quasi-
linear parabolic partial differential equations that arise in, e.g., heat conduction problems in
electrical engineering [90] and semiconductors [143] are important in applications. First and
second order optimality conditions for an optimal control problem on a fixed time horizon
without state constraints have been analyzed in [16] for quasilinear elliptic operators of di-
vergence type; see also [27]. It would be interesting to combine these results with those of
this thesis for the numerical analysis of time-optimal control problems subject to nonlinear
state equations.

Moreover, pointwise constraints for the state are important, both theoretically and prac-
tically; see, e.g., [119]. To extend the results presented in this thesis to pointwise state
constrained optimal control problems, one could rely on recent advances in the regularity
theory for parabolic partial differential equations. In particular, Hölder continuity in time
and space can be guaranteed for very general spatial domains and nonsmooth right-hand
sides; see [49]. Corresponding results for discrete solutions for finite element discretizations
have been proved recently; see, e.g., [102, 103]. However, as we exploited the regularity of the
Lagrange multiplier in several arguments in this thesis, a direct extension of the presented
results to pointwise state constraints is not straightforward.

Even though in many applications regular controls are needed, there is an independent interest
in bang-bang control problems. For its efficient algorithmic solution in the context of time-
optimal control, adaptive mesh refinement strategies should be considered. This seems to be
particularly important, as in the numerical examples we observed that the control variable
is relatively constant for large parts of the time horizon but tends to vary towards its end.
Hence, adaptive algorithms may pay of and help to reduce the computational cost.

Furthermore, in the context of bang-bang controls, we proposed an algorithm based on an
equivalent reformulation of the optimization problem; see Section 4.2. Concretely, we search
for a root of a certain value function. To evaluate the value function, we have to solve
convex and control constrained optimization problems. Different methods for the solution

165



6. Outlook and perspectives

of the inner problem have been considered. In particular, for the solution by means of the
conditional gradient method equipped with an acceleration strategy we obtained promising
results numerically. Hence, it would be desirable to investigate conditions under which fast
convergence of the accelerated conditional gradient method in infinite dimensional spaces
can be guaranteed. This would be of independent interest, as the pure conditional gradient
method exhibits in general slow convergence, but higher order methods are not be applicable
in every situation.
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A. Appendix

A.1. Interpolation spaces

We collect several well-known properties of interpolation spaces. For further information
we refer to the monographs [13, 110, 146]. To facilitate access to the individual topics,
this appendix is rendered as self-contained as possible. Furthermore, since for the pointwise
discretization error estimate we require the precise dependencies of the constants, we will
state them explicitly. This section is part of a joint work with Dominik Hafemeyer.

Let X and Y be real or complex Banach spaces. The couple {X,Y } is called an interpolation
couple, if both X and Y are continuously embedded into a linear Hausdorff space V. Then
the space X ∩ Y equipped with the norm

‖u‖X∩Y = max { ‖u‖X , ‖u‖Y }

is a linear subspace of V. Moreover, the space X + Y with the norm

‖u‖X+Y = inf
x∈X,y∈Y
u=x+y

‖x‖X + ‖y‖Y

is also a linear subspace of V. The interpolation theory is concerned with intermediate spaces,
i.e. is any Banach space E such that

X ∩ Y ↪→ E ↪→ X + Y.

An intermediate space E is called interpolation space, if for every linear operator T ∈ L(X+Y )
whose restriction to X belongs to L(X) and whose restriction to Y belongs to L(Y ), the
restriction of T to E belongs to L(E).

In the following we will introduce the K-method and the trace method that lead to the
so-called real interpolation spaces. Thereafter, we will discuss the connection of real interpo-
lation spaces and domains of fractional powers of sectorial operators.

Given a Banach space X, let Ls∗(R+;X) denote the space of s integrable functions with values
in X with respect to the measure dt/t. Moreover, we set L∞∗ (R+;X) = L∞(R+;X). For
X = R and any s we write Ls(R+;R) =: Ls(R+).

The K-method

Let {X,Y } be an interpolation couple. For t ∈ (0,∞) and u ∈ V the K-functional is defined
as

K(t, u,X, Y ) = inf
x∈X,u−x∈Y

[‖x‖X + t‖u− x‖Y ] .

167



A. Appendix

For τ ∈ (0, 1) and 1 ≤ s ≤ ∞ we define the real interpolation space

(X,Y )τ,s := {u ∈ X + Y : t 7→ t−τK(t, u,X, Y ) ∈ Ls∗(R+) }

equipped with the norm
‖u‖τ,s = ‖t−τK(t, u,X, Y )‖Ls∗(R+);

see, e.g., [110, Section 1.1]. If ambiguity is not to be expected, we simply writeK(t, u) instead
of K(t, u, Y,X). In this notes the norm of the real interpolation space is always defined by
the K-functional as above, if not indicated otherwise.

Proposition A.1. Let τ ∈ (0, 1), 1 ≤ s ≤ ∞, and {X,Y } an interpolation couple such that
Y ↪→ X with embedding constant C. Then for any u ∈ (X,Y )τ,s

‖u‖τ,s ≤
(

s

(s− τ)τ

)1/s
C1−τ/s‖u‖Y

if s <∞ and
‖u‖τ,∞ ≤ C

1−τ‖u‖Y .

Remark A.2. If s ∈ (s0,∞) for some s0 > 1 and τ = 1 − 1/s, then the constant from
Proposition A.1 remains bounded for large s. This follows easily from the estimate

(
s

(s− τ)τ

)1/s
=
(

s

(s− 1 + 1/s)(1− 1/s)

)1/s
≤
(

s2

(s− 1)2

)1/s

≤ 1
(s0 − 1)2

(
s1/s

)2
.

Proof of Proposition A.1. Let τ ∈ (0, 1), 1 ≤ s ≤ ∞, and u ∈ (X,Y )τ,s. Then by the
definition of the K-functional we obtain

K(t, u,X, Y ) ≤ min { t‖u‖Y , ‖u‖X } ≤ min { t, C } ‖u‖Y .

For s =∞ we now immediately see

‖u‖τ,∞ ≤ sup
t∈(0,∞)

t−τ min { t, C } ‖u‖Y ≤ C
1−τ‖u‖Y .

For s <∞ we split the integral in the definition of the norm and obtain

‖u‖sτ,s ≤
∫ C

0
t−τ ts‖u‖sY

dt
t

+
∫ ∞
C

t−τCs‖u‖sY
dt
t

=
( 1
s− τ

+ 1
τ

)
Cs−τ‖u‖sY .

Taking the s-th root yields the claim.

Proposition A.3. Let τ ∈ (0, 1), 1 ≤ s1 ≤ s2 ≤ ∞. Then

(X,Y )τ,s1 ↪→ (X,Y )τ,s2

with embedding constant bounded by c(τ, s1, s2) = [s1 min { τ, 1− τ }]1/s1−1/s2.

Proof. See proof of [110, Proposition 1.1.3].

Proposition A.4. Suppose Y ↪→ X. If 0 < τ1 < τ2 < 1, then

(X,Y )τ2,∞ ↪→ (X,Y )τ1,1

with embedding constant bounded by c(τ1, τ2) = (τ2 − τ1)−1 + τ−1
1 .
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Proof. See proof of [110, Proposition 1.1.4].

Combination of Propositions A.3 and A.4 immediately implies the following embedding; see
also [146, Theorem 1.3.3 e)].

Proposition A.5. Suppose Y ↪→ X. If 0 < τ1 < τ2 < 1 and 1 ≤ s1, s2 ≤ ∞, then

(X,Y )τ2,s1 ↪→ (X,Y )τ1,s2

with embedding constant bounded by c(τ1, τ2, s1, s2) = c(τ2, s1,∞)c(τ1, τ2)c(τ1, 1, s2).

Remark A.6. For the particular choice τ1 = 1 − 2/r, τ2 = 1 − 1/r, s1 = r, and s2 = p for
any r > 2 and r ≥ p > 1, the embedding constant of Proposition A.5 is bounded by

c(1− 2/r, 1− 1/r, r, p) =
[
rmin

{
1− 1

r
,
1
r

}]1/r
(
r +

(
1− 1

r

)−1
)[

pmin
{

1− 2
r
,
2
r

}]1−1/p

≤ r1/r(r + 1) min
{
p− 2p

r
,
2p
r

}
≤ cp.

The trace method

Let i0 denote the trace mapping, i.e. i0u = u(0). Moreover, for τ ∈ (0, 1) set

v0,1−τ (t) = t1−τv(t) and v1,1−τ (t) = t1−τ∂tv(t)

and introduce the trace space as

V (s, 1− τ, Y,X) := { i0v : v0,1−τ ∈ Ls∗(R+;Y ), v1,1−τ ∈ Ls∗(R+;X) } ,

equipped with the norm

‖u‖Tr
τ,s = inf { ‖v0,1−τ‖Ls∗(R+;Y ) + ‖v1,1−τ‖Ls∗(R+;X) : i0v = u } .

It is well-known that the trace method is equivalent to the K-method and thus leads to the
same interpolation spaces. More specifically, it holds

Proposition A.7. Let {X,Y } be an interpolation couple, τ ∈ (0, 1), 1 ≤ s ≤ ∞. Then

V (s, 1− τ, Y,X) = (X,Y )τ,s

with equivalent norms. Precisely, it holds

‖u‖τ,s ≤
1
τ
‖u‖Tr

τ,s ≤
2
τ

(
2 + 1

τ

)
‖u‖τ,s.

Proof. See [110, Proposition 1.2.2], where also constants are given explicitly in the proof.

The trace method yields an important embedding result for spaces of maximal parabolic
regularity.
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Proposition A.8. Let T > 0 and X,Y be Banach spaces such that Y ↪→d X. If s ∈ (1,∞),
then

W 1,s((0, T );X) ∩ Ls((0, T );Y ) ↪→ C([0, T ]; (X,Y )1−1/s,s). (A.1)

If τ ∈ (0, 1− 1
s ), then

W 1,s((0, T );X) ∩ Ls((0, T );Y ) ↪→ Cα((0, T ); (X,Y )τ,1), 0 ≤ α < 1− 1
s
− τ . (A.2)

Moreover, the embedding constants are bounded by

c(A.1)(s) = cs

s− 1 and c(A.2)(τ, s) = 2
(
c(A.1)(s)

)τ/(1−1/s)
.

Proof. The embedding constant for (A.2) is explicitly verified in [49, Lemma 3.4 b)]. Precisely,
the constant for (A.2) is bounded by 2cλ with λ = τ/(1 − 1/s) and c from (A.1). For these
reasons, it remains to verify the dependencies of (A.1), where we follow the ideas of [4,
Theorem III.4.10.2].

For the particular choice τ = 1− 1/s, the trace space becomes

V (s, 1/s, Y,X) := { i0v : v ∈W 1,s(R+;X) ∩ Ls(R+;Y ) } ,

equipped with the norm

‖u‖Tr
1−1/s,s = inf { ‖v‖W 1,s(R+;X)∩Ls(R+;Y ) : i0v = u } .

Clearly, the trace mapping i0 : W 1,s(R+;X) ∩ Ls(R+;Y ) → V (s, 1/s, Y,X) is linear and
continuous with norm less than or equal to one.

Let λt denote the semigroup of left translations, i.e. λtu(t′) = u(t + t′) for all t, t′ ≥ 0. It is
easily verified that λt is a contraction semigroup on W 1,s(R+;X) ∩Ls(R+;Y ). Moreover, λt
is strongly continuous; cf. [4, Lemma III.4.10.1 (i)]. Noting that i0λtu = u(t), we infer

‖u(t)‖Tr
1−1/s,s ≤ ‖λtu‖W 1,s(R+;X)∩Ls(R+;Y ) ≤ ‖u‖W 1,s(R+;X)∩Ls(R+;Y ), t ≥ 0.

Furthermore, if 0 ≤ t < t′ <∞, we have

‖u(t′)− u(t)‖Tr
1−1/s,s ≤ ‖λt(λt′−t − 1)u‖W 1,s(R+;X)∩Ls(R+;Y )

≤ ‖(λt′−t − 1)u‖W 1,s(R+;X)∩Ls(R+;Y )

for all u ∈ W 1,s(R+;X) ∩ Ls(R+;Y ). Employing strong continuity of λt, we deduce that
u : R+ → V (s, 1/s, Y,X) is continuous. In summary,

W 1,s(R+;X) ∩ Ls(R+;Y ) ↪→ C(R+;V (s, 1/s, Y,X))

with embedding constant less than or equal to one.

To prove (A.1), we use the result on R+ combined with a retraction/coretraction argument.
Let u ∈ D([0, T );Y ), where D([0, T );Y ) denotes the space of Y valued C∞-functions on [0, T )
with compact supports. We define the reflection of u as

û(t) =

u(t), if 0 ≤ t ≤ T,
u(2T − t), if T < t ≤ 2T.
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Let η ∈ C∞(R+) be a smooth cut-off function such that η equals one on [0, (4/3)T ] and
vanishes on [(5/3)T,∞). Then we define the extension of u by Eu = ηû. Since D([0, T );Y )
is dense in W 1,s((0, T );X) ∩ Ls((0, T );Y ), we obtain

‖Eu‖W 1,s(R+;X)∩Ls(R+;Y ) ≤ 2‖η‖C1(R+)‖u‖W 1,s((0,T );X)∩Ls((0,T );Y )

for all u ∈W 1,s((0, T );X) ∩ Ls((0, T );Y ). Thus, for any t ∈ [0, T ),

‖u(t)‖Tr
1−1/s,s = ‖(Eu)(t)‖Tr

1−1/s,s ≤ ‖Eu‖W 1,s(R+;X)∩Ls(R+;Y )

≤ c‖u‖W 1,s((0,T );X)∩Ls((0,T );Y ),

with c = 2‖η‖C1(R+), which is independent of s. Finally, according to Proposition A.7 it
holds V (s, 1/s, Y,X) = (X,Y )1−1/s,s and

‖u‖1−1/s,s ≤
s

s− 1‖u‖
Tr
1−1/s,s,

which yields (A.1).

Intermediate spaces and the reiteration theorem

Let {X,Y } be an interpolation couple, 0 ≤ θ ≤ 1, and E be an intermediate space, i.e.
X ∩ Y ↪→ E ↪→ X + Y . The space E is said to belong to the class Jθ(X,Y ) between X and
Y if there is c > 0 such that

‖x‖E ≤ c‖x‖
1−θ
X ‖x‖θY , x ∈ X ∩ Y.

We write E ∈ Jθ(X,Y ) for short. The following result is one half of the reiteration theorem
for real interpolation spaces.

Proposition A.9. Let 0 ≤ θ0 < θ1 ≤ 1 and τ ∈ (0, 1). If Ei ∈ Jθi(X,Y ), i = 0, 1, then

(X,Y )(1−τ)θ0+τθ1,s ↪→ (E0, E1)τ,s, s ∈ [1,∞].

Moreover, the embedding constant is bounded by

2(θ1 − θ0)−1−1/s(1 + 3θ−1)(c0 + c1(1− τ)−1)τ−2
(
2 + τ−1

)
where ci denotes the constant from the definition of the class Jθi(X,Y ) and θ := (1−τ)θ0+τθ1.

Before we give a proof of Proposition A.9, we have to trace the constants mentioned in [110,
Remark 1.2.4].

Proposition A.10. For each v ∈ V (p, 1− θ, Y,X), with θ ∈ (0, 1), the mean of v defined by

w(t) := 1
t

∫ t

0
v(s) ds, t > 0,

satisfies the estimate

‖t1−θw‖Lp∗(R+;Y ) + ‖t2−θw′‖Lp∗(R+;Y ) + ‖t1−θw′‖Lp∗(R+;X)

≤ (1 + 3/θ)
(
‖v0,1−θ‖Lp∗(R+;Y ) + ‖v1,1−θ‖Lp∗(R+;X)

)
. (A.3)

We also have i0w = i0v.
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Proof. Let v and w be as above. First note that the derivative of w is given by

w′(t) = − 1
t2

∫ t

0
v(s) ds+ 1

t
v(t)

= 1
t

(−w(t) + v(t)) = 1
t2

∫ t

0
−v(s) + v(t) ds.

(A.4)

We estimate the first summand in (A.3), using [110, Corollary A.3.1]

‖t1−θw‖Lp∗(R+;Y ) ≤
1
θ
‖t1−θv‖Lp∗(R+;Y ) = 1

θ
‖v0,1−θ‖Lp∗(R+;Y ). (A.5)

As a consequence, the second summand in (A.3) can now be estimated as

‖t2−θw′‖Lp∗(R+;Y ) = ‖t1−θ(−w(t) + v(t))‖Lp∗(R+;Y )

≤ ‖t1−θw(t)‖Lp∗(R+;Y ) + ‖t1−θv(t)‖Lp∗(R+;Y )

≤
(
1 + θ−1

)
‖v0,1−θ‖Lp∗(R+;Y ).

(A.6)

The third summand in (A.3) can be estimated employing the last expression of (A.4). Thus,

‖w′(t)‖X ≤
1
t2
‖
∫ t

0

∫ t

s
v′(σ) dσ ds‖X

≤ 1
t2

∫ t

0

∫ t

0
‖v′(σ)‖X dσ ds ≤ 1

t

∫ t

0
‖v′(σ)‖X dσ.

Now we have

‖t1−θw′‖p
Lp∗(R+;X) =

∫ ∞
0

t(1−θ)p‖w′‖pX
dt
t
≤
∫ ∞

0
t−θp

(∫ t

0
σ‖v′(σ)‖X

dσ
σ

)p dt
t
.

Now the Hardy-Young inequality, see, e.g., [110, Equation (A.3.1)], leads to

‖t1−θw′‖p
Lp∗(R+;X) ≤ θ

−p
∫ ∞

0
s−θp

(
s‖v′(s)‖X

)p ds
s

= θ−p
∫ ∞

0
s(1−θ)p‖v′(s)‖pX

ds
s

= θ−p‖v1,1−θ‖pLp∗(R+;X).

(A.7)

Thus, the desired inequality follows by adding (A.5), (A.6), and the p-th root of (A.7). The
last statement directly follows from continuity of v: For t > 0, we have

|1
t

∫ t

0
v(s) ds− i0v| = |

1
t

∫ t

0
v(s)− v(0) ds| ≤ sup

s∈[0,t]
|v(s)− v(0)|.

Continuity of v on [0,∞) and going to the limit t→ 0 in the inequality above yields

i0w = lim
t→0

w(t) = lim
t→0

1
t

∫ t

0
v(s) ds = i0v,

concluding the proof.

Proof of Proposition A.9. This is a standard result in interpolation theory. To trace the
constants, we follow the proof of [110, Theorem 1.3.5] that relies on the trace method. Set
θ = (1 − τ)θ0 + τθ1 and let u ∈ (X,Y )θ,s. Then there exists v ∈ W 1,s(I;X) ∩ Ls(I;Y )
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such that u is the trace of v at t = 0, i.e. i0v = u. Defining w by the mean of v as in
Proposition A.10 we obtain

‖t1−θw′(t)‖Ls∗(R+;X) + ‖t2−θw′(t)‖Ls∗(R+;Y ) ≤ c(θ, v),

where c(θ, v) :=
(
1 + 3θ−1) (‖v0,1−θ‖Ls∗(R+;Y ) + ‖v1,1−θ‖Ls∗(R+;X)

)
and v0,1−θ and v1,1−θ are

defined as in the trace method. We have to verify that

g(t) = w(t1/(θ1−θ0)), t > 0,

belongs to V (s, 1 − τ, E0, E1). This will imply that u = i0v = i0w = i0g belongs to the
interpolation space (E0, E1)τ,s. Let ci be such that

‖x‖Ei ≤ ci‖x‖
1−θi
X ‖x‖θiY , x ∈ X ∩ Y.

Clearly, it holds

‖w′(t)‖Ei ≤
ci

tθi+1−τ ‖t
1−τw′(t)‖1−θiX ‖t2−τw′(t)‖θiY , i = 0, 1.

Whence, from the equalities

θ0 + 1− θ = 1− τ(θ1 − θ0), θ1 + 1− θ = 1 + (1− τ)(θ1 − θ0),

we infer

‖t1−τ(θ1−θ0)w′(t)‖Ls∗(R+;E0) ≤ c0c(θ, v), (A.8)

‖t1+(1−τ)(θ1−θ0)w′(t)‖Ls∗(R+;E1) ≤ c1c(θ, v). (A.9)

Substitution in the integral yields

‖t1−τg(t)‖Ls∗(R+;E1) = (θ1 − θ0)−1/s‖t(1−τ)(θ1−θ0)w(t)‖Ls∗(R+;E1).

Furthermore, using w(t) = −
∫∞
t w′(σ) dσ, inequality (A.9), and the Hardy-Young inequality,

we get

‖t(1−τ)(θ1−θ0)w(t)‖Ls∗(R+;E1) ≤
c1c(τ, v)

(1− τ)(θ1 − θ0) ,

and thus
‖t1−τg(t)‖Ls∗(R+;E1) ≤ (θ1 − θ0)−1/s c1c(τ, v)

(1− τ)(θ1 − θ0) .

Moreover, since
g′(t) = (θ1 − θ0)−1t−1+1/(θ1−θ0)w′(t1/(θ1−θ0)),

we obtain, by (A.8),

‖t1−τg′(t)‖Ls∗(R+;E0) = (θ1 − θ0)−1−1/s‖t1−τ(θ1−θ0)w′(t)‖Ls∗(R+;E0)

≤ (θ1 − θ0)−1−1/sc0c(θ, v).

This and (A.1) yields the estimate

‖t1−τg′(t)‖Ls∗(R+;E0) + ‖t1−τg(t)‖Ls∗(R+;E1) ≤ (θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)c(θ, v).
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This implies, by the definition of the trace norm (note i0g = u) and its equivalence to the
K-method, see Proposition A.7, that

‖u‖(E0,E1)τ,s ≤ τ
−1‖u‖Tr

(E0,E1)τ,s

≤ τ−1
(
‖t1−τg′(t)‖Ls∗(R+;E0) + ‖t1−τg(t)‖Ls∗(R+;E1)

)
,

≤ τ−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)c(θ, v),
= τ−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)(

1 + 3θ−1
) (
‖v0,1−θ‖Lp∗(R+;Y ) + ‖v1,1−θ‖Lp∗(R+;X)

)
.

Finally, taking the infimum over all v with i0v = u, we find

‖u‖(E0,E1)τ,s ≤ τ
−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)

(
1 + 3θ−1

)
‖u‖Tr

(X,Y )τ,s

≤ τ−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)
(
1 + 3θ−1

) 2
τ

(
2 + τ−1

)
‖u‖(X,Y )τ,s

concluding the proof.

The real interpolation method and domains of fractional operators

In this paragraph we consider a linear operator A on a Banach space X with ρ(A) ⊃ (−∞, 0).
Suppose there exists M > 0 such that

‖zR(z,A)‖L(X) ≤M, z < 0.

The real interpolation space betweenX and the domain ofA can be characterized as follows.

Proposition A.11. Let τ ∈ (0, 1) and 1 ≤ s ≤ ∞. Then

(X,DX(A))τ,s =
{
x ∈ X : t 7→ xτ (t) := tτ‖AR(−t, A)x‖X ∈ L

s
∗(R+)

}
,

and the norms ‖·‖τ,s and
‖x‖∗τ,s := ‖x‖X + ‖xτ‖Ls∗(R+).

are equivalent. Precisely,

‖x‖τ,s ≤
(
2 +M((1− τ)s)−1/s

)
‖x‖∗τ,s, ‖x‖

∗
τ,s ≤ (M + 1)‖x‖τ,s.

Proof. This follows from the proof of [110, Proposition 3.1.1].

A linear operator A on a Banach space is called sectorial, if there exists M > 0 such that
ρ(A) ⊃ (−∞, 0) and

‖R(z,A)‖L(X) ≤
M

1 + |z| , z ≤ 0.

This allows to define fractional powers of A by means of the Dunford-Taylor integral; see,
e.g., [146, Section 1.15] and [110, Chapter 4]. The theory of interpolation spaces is closely
related to domains of fractional operators. We summarize some of these properties in the
sequel.
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Proposition A.12. Let z1, z2 ∈ C such that Re z1 < Re z2. Then

DX(Az2) ↪→ DX(Az1)

and the embedding constant is bounded by max { 1, ‖Az1−z2‖L(X) }.

Proof. From the proof of [110, Theorem 4.1.6] we have

‖Az1x‖X ≤ ‖A
z1−z2‖L(X)‖A

z2x‖X

for all x ∈ DX(Az2).

Proposition A.13. Let A be a sectorial operator on a Banach space X. Then

(X,DX(A))τ,1 ↪→ DX(Aτ ), τ ∈ (0, 1),

where the embedding constant is bounded by (M + 1) max { 1, (Γ(τ) Γ(1− τ))−1 }.

Remark A.14. For τ ∈ (0, 1) we have Γ(τ) ≥ 1 − e−1 and thus max(1, (Γ(τ) Γ(1 − τ))−1)
in Proposition A.13 is bounded by a constant independently of τ . This can be seen from the
definition of the gamma function

Γ(τ) =
∫ ∞

0
tτ−1e−t dt ≥

∫ 1

0
tτ−1e−t dt ≥

∫ 1

0
e−t dt = 1− e−1 > 0.

Proof of Proposition A.13. We closely follow the proof of [110, Proposition 4.1.7]. Consider
x ∈ (X,DX(A))τ,1. Due to Proposition A.11, the mapping t 7→ tτ‖AR(−t, A)x‖X belongs to
L1
∗(R+). Using the representation formula for Aτ , see, e.g., [110, Equation (4.1.7)], we obtain

‖Aτx‖X ≤
1

Γ(τ) Γ(1− τ)

∫ ∞
0

tτ‖AR(−t, A)x‖X
dt
t
≤ 1

Γ(τ) Γ(1− τ)‖xτ‖
∗
L1
∗(R+).

Hence, using again Proposition A.11 we obtain,

‖x‖X + ‖Aτx‖X ≤ max { 1, (Γ(τ) Γ(1− τ))−1 } ‖x‖∗τ,1
≤ (M + 1) max { 1, (Γ(τ) Γ(1− τ))−1 } ‖x‖τ,1,

concluding the proof.

Proposition A.15. Let A be a sectorial operator on a Banach space X. Then

DX(Aτ ) ↪→ (X,DX(A))τ,∞, τ ∈ (0, 1),

where the embedding constant is bounded by

(2 +M)M(M + 1)2

Γ(1− τ) Γ(1 + τ)

( 1
1− τ + 1

τ

)
.

Proof. We closely follow the proof of [110, Proposition 4.1.7]. Let x ∈ DX(Aτ ). According
to Proposition A.11 we have

‖x‖τ,s ≤ (2 +M) sup
t>0

tτ‖AR(−t, A)x‖X .
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Using the representation formula

A−τ−1x = 1
Γ(1− τ) Γ(1 + τ)

∫ ∞
0

z−τR(−z,A)2x dz,

see [110, Equation (4.1.8)], we obtain

AR(−t, A)x = A2R(−t, A)
Γ(1− τ) Γ(1 + τ)

∫ ∞
0

z−τR(−z,A)2Aτx dz.

Moreover, for any t > 0 we estimate

‖AR(−t, A)x‖X ≤
M

1 + t

∫ t

0
z−α(M + 1)2‖Aτx‖X + (M + 1)

∫ ∞
t

z−α
M(M + 1)

1 + z
‖Aτx‖X .

Hence,

tτ‖AR(−t, A)x‖X ≤
M(M + 1)2

Γ(1− τ) Γ(1 + τ)

(
t

1 + t

1
1− τ + 1

τ

)
‖Aτx‖X

concluding the proof.

In the Hilbert space case, we can give the following embedding.

Proposition A.16. Let A be a sectorial, self-adjoint operator on a Hilbert space H. Then

DH(Aτ ) ↪→ (H,DH(A))τ,2,

where the embedding constant is bounded by

1 + (−2 cos(πτ) Γ(−2τ))1/2.

Proof. Following the proof of [146, Theorem 1.18.10], the constant c in step 2 is given by

∫ ∞
0

|eitµ − 1|2

(tµ)2τ
dt
t

= −2 cos(πτ) Γ(−2τ).

Taking square roots yields the bound.

Last, we verify the resolvent estimates of this subsection for the concrete example A = −∆
that we will consider in the main text on error estimates. Note that the arguments do not
employ the homogeneous Dirichlet boundary conditions of −∆, which allows applying them
to fairly general operators and different boundary conditions.

Remark A.17. First, according to [66, Theorem 5.1], we have the estimate

‖R(z,−∆)‖L(Lp) ≤
M

|z|
, Re z ≤ 0, z 6= 0, (A.10)

where the constant M can be chosen to be independent of p ∈ (1,∞). The resolvent esti-
mate (A.10) ensures that for all fixed ω0 > 0 we have

DLp((−∆ + ω)τ ) = DLp((−∆)τ ) (A.11)
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with equivalence of norms independent of p ∈ (1,∞), τ ∈ [0, 1], and ω ∈ [0, ω0]; see, e.g.,
[110, Lemma 4.1.11]. Moreover, [66, Theorem 5.1] in addition yields resolvent estimates for
−∆ + 1, precisely

‖R(z,−∆ + 1)‖L(Lp) ≤
M

1 + |z| , Re z ≤ 0. (A.12)

Using the equivalence of norms (A.11), we can equivalently consider −∆ or −∆ + 1 in the
results of this section.

Employing the power series expansion, see, e.g., [71, Proposition A.2.3], the estimates (A.10)
and (A.12) can be extended to hold on a sector. To this end, consider z = λeiϕ+iπ/2 for λ > 0
and ϕ ∈ (−π/2,π/2). Then

R(λeiϕ+iπ/2,−∆) = R(iλ,−∆)
∞∑
m=0

(1− eiϕ)m[iλR(iλ,−∆)]m.

Choose θ ∈ (0,π/2) sufficiently small such that |1− eiϕ| < (2M)−1 for all |ϕ| < θ. Using the
submultiplicity of the operator norm and the resolvent estimate (A.10) we obtain

‖R(λeiϕ+iπ/2,−∆)‖L(Lp) ≤ ‖R(iλ,−∆)‖L(Lp)

∞∑
m=0

2−m ≤ 2M
|z|

.

Hence, there are constants M ′ > 0 and θ ∈ (0,π/2) such that

‖R(z,−∆)‖L(Lp) ≤
M ′

|z|
, z ∈ C \Σθ, z 6= 0, (A.13)

where
Σθ := {z ∈ C \ {0} : |arg z| < θ} .

Analogously, we obtain sectoriality of −∆ + 1 by extending (A.12) to a sector.

A.2. Regularity of the state equation

We summarize several regularity results for the state equation and give short proofs. Through-
out this section we assume that the operator A is given by a bilinear form satisfying Gårdings
inequality; see Assumption 2.1. The symbol e−·A denotes the semigroup generated by −A.

Proposition A.18. Let T > 0, θ ∈ (0, 1/2], f ∈ L∞((0, T );Xθ), u0 ∈ V ∗. Consider the
solution u to

∂tu+Au = f , u(0) = u0.

Then:

(i) If u0 ∈ V , then u is continuous from [0, T ] into V ,

(ii) If u0 ∈ H, then u is continuous from (0, T ] into V ,

(iii) If u0 = 0 and γ ∈ [θ, 1], then

‖u(t)‖Xγ ≤ c‖f‖L∞((0,T );Xθ) t
1+θ−γ, 0 ≤ t ≤ T ,

with c > 0 depending on θ, γ, but independent of f .
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Proof. The unique solution is given by the variation of constants formula

u(t) = e−tAu0 +
∫ t

0
e−(t−s)Af(s) ds, t ∈ [0, T ]. (A.14)

According to Theorem 2.6.13 c) in [128], for θ > 0 there is a constant Mθ > 0 such that it
holds

e−ω0t‖e−tAv‖Xθ = ‖(A+ ω0)θe−t(A+ω0)v‖V ∗ ≤Mθt
−θ‖v‖V ∗ (A.15)

for all v ∈ V ∗ and t > 0.

(iii): Employing (A.15) we obtain

‖u(t)‖Xγ = ‖
∫ t

0
e−(t−s)Af(s) ds‖Xγ ≤

∫ t

0
‖(A+ ω0)γ−θe−(t−s)A(A+ ω0)θf(s)‖V ∗ ds

≤Mγ−θetω0‖(A+ ω0)θf‖L∞((0,t);V ∗)

∫ t

0
sθ−γ ds ≤ c t1+θ−γ‖f‖L∞((0,t);Xθ).

(i), (ii): If u0 ∈ V , it holds (A + ω0)e−tAu0 = e−tA(A + ω0)u0; see, e.g., [128, Theo-
rem 2.6.13 b)]. Whence, continuity of t 7→ e−tAu0 from [0, T ] into V follows from [128,
Corollary 1.2.3]. If u0 ∈ H, we find for any t, τ > 0 that

‖
(
e−(t+τ)A − e−tA

)
u0‖V = ‖e−tA

(
e−τA − 1

)
u0‖V ≤M1/2eω0tt−1/2‖

(
e−τA − 1

)
u0‖X1/2

.

This proves continuity of t 7→ e−tAu0 in V for t > 0, using that −A induces a continuous
semigroup also on H = X1/2.

Now we turn to the second term of (A.14). Since A exhibits maximal parabolic regularity,
both on V ∗ and H, it also possesses maximal regularity on the interpolation space Xθ; see [73,
Lemma 5.3]. Hence, for f ∈ Lr((0, T ), Xθ), the function ŭ(t) =

∫ t
0 e−(t−s)Af(s) ds has the

regularity ŭ ∈ W 1,r((0, T );Xθ) ∩ Lr((0, T );X1+θ) for any r ∈ (1,∞). Furthermore, by the
trace theorem, there holds the embedding

W 1,r((0, T );Xθ) ∩ Lr((0, T );X1+θ) ↪→ C([0, T ]; (Xθ, X1+θ)1−1/r,r);

see, e.g., [4, Theorem III.4.10.2]. Choose r > 1/θ, which is equivalent to 1 − θ < 1 − 1/r.
Thus,

(Xθ, X1+θ)1−1/r,r ↪→ (Xθ, X1+θ)1−θ,1 ↪→ [Xθ, X1+θ]1−θ = DV ∗(A+ ω0) = V

due to [146, Theorems 1.3.3 e), 1.15.2 d) and 1.15.3]. In summary, we conclude the proof of
(i) and (ii).

Proposition A.19. Let T > 0 and u0 ∈ H. The solution operator f 7→ u with

∂tu+Au = f , u(0) = u0,

is continuous and compact from L2((0, T );Xθ0) into L2((0, T );V ).

Proof. Let S denote the solution operator of the parabolic state equation, i.e. u = S(u0, f)
satisfies ∂tu + Au = f , u(0) = u0. Since A exhibits maximal parabolic regularity, both on
V ∗ and H, it also possesses maximal regularity on the interpolation space Xθ0 ; see, e.g., [73,
Lemma 5.3]. Hence, f 7→ S(0, f) is continuous from L2((0, T );Xθ0) into H1((0, T );Xθ0) ∩
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L2((0, T );X1+θ0), where we have used the identification DXθ0 (A) = X1+θ0 . Clearly, X1+θ0 ↪→
DV ∗(A) = V ↪→c H ↪→ Xθ0 . Employing [4, Theorem I.2.11.1] we deduce X1+θ0 ↪→c

[Xθ0 , X1+θ0 ]1−θ0 = V , where we have used [146, Theorem 1.15.3] in the last step. There-
fore, the Aubin-Lions Lemma (see, e.g., [107, Théorème I.5.1]) yields the compact injection

H1((0, T );Xθ0) ∩ L2((0, T );X1+θ0) ↪→c L
2((0, T );V ).

Furthermore, S(u0, 0) ∈ W (0, T ) ↪→ L2((0, T );V ). Whence, the assertion follows from the
splitting S(u0, f) = S(u0, 0) + S(0, f).

Proposition A.20. Let s > 2 and u0 ∈ H. The mapping (ν, q) 7→ S(ν, q) is completely
continuous from R× Ls(I;Q) into C([0, 1];H).

Proof. Consider first the case u0 = 0. According to [3, Theorem 3] we have the compact
embedding

W 1,s(I;V ∗) ∩ Ls(I;V ) ↪→c C
α(I; (V ∗, V )τ,1), 0 ≤ α < 1− 1

s
− τ,

for any τ ∈ (0, 1− 1/s) due to V ↪→c V
∗. Since s > 2 we may choose τ = 1/2 and obtain

(V ∗, V )τ,1 ↪→ DV ∗(A1/2) = H;

see [146, Theorem 1.15.2d)]. Therefore, for each fixed ν ∈ R+ we find that q 7→ S(ν, q) is
completely continuous from Ls(I;Q) into C([0, 1];H). Note that continuity of the control
operator from Q into V ∗ is sufficient for the argument above. Moreover, using that R is finite
dimensional, we conclude that the mapping (ν, q) 7→ S(ν, q) is completely continuous from
R+×Qad(0, 1) into C([0, 1];H). If u0 6= 0, then the variation of constants formula yields the
additional term e−νAu0, which is continuous in ν. We conclude the proof by superposition of
both cases.

Proposition A.21. Let Gårdings inequality hold with ω0 = 0. Then

‖e−tA‖L(H) ≤ e−α0t for all t > 0.

Proof. Let ρ ∈ [0, α0). Then the form b(u, v) := a(u, v)− ρ(u, v)H is coercive. Let B denote
the operator associated with the form b. Employing [6, Theorem 4.2] we infer that −B
generates a contractive semigroup e−·B. Hence

‖e−tA‖L(H) = e−ρt‖e−tB‖L(H) ≤ e−ρt,

where we have used the representation −A = −B − ρI. Choosing a sequence ρn ∈ [0, α0)
such that ρn → α0 and using the estimate above yields the result.

Moreover, for discretization error estimates with cellwise linear controls, see Theorem 5.21,
we have to assume improved regularity of the adjoint state. It can be reduced to a regularity
assumption on the desired state by means of the following proposition; see Remark 5.22.

Proposition A.22. Let Ω ⊂ Rd be a bounded and convex domain with polygonal boundary.
Suppose that A = −∆ is equipped with homogeneous Dirichlet boundary conditions. In ad-
dition, assume distributed control, i.e. B : Ls(ω) → Ls(Ω) for all s ∈ (1,∞]. For any tuple
(ν, q) ∈ R+ ×Qad(0, 1) and p ∈ (1,∞) the solution u to the state equation has the improved
regularity u(1) ∈W 1,p

0 (Ω).
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Proof. First, it holds eν∆u0 ∈ DW−1,p(−∆) = W 1,p
0 , see [128, Theorem 2.6.13 (a)], since

u0 ∈ H1
0 ↪→ W−1,p. Furthermore, due to DW−1,p(−∆) = W 1,p

0 , see [45, Corollary 3.12], the
operator −∆: W 1,p

0 → W−1,p is an isomorphism. Hence, putting X = [Lp,W−1,p]ζ with
ζ = 1− 1/2p we obtain for τ = 1− 1/4p that

(X,DX(−∆))τ,1 ↪→W 1,p
0 ;

see [73, Lemma 6.6 (i)]. Since −∆ satisfies maximal parabolic regularity both on Lp and
W−1,p, also on the complex interpolation space X; see [73, Lemma 5.3]. Thus, the solution
to the state equation with homogeneous initial condition belongs to

W 1,s(I;X) ∩ Ls(I;DX(−∆)) ↪→ Cκ(I; (X,DX(−∆))τ,1)

with κ > 0 small, provided that 0 < τ < 1− 1/s; see [3, Theorem 3]. Due to the control con-
straints, we can take s ∈ (1,∞) arbitrary large so that τ = 1− 1/4p < 1− 1/s. Combination
of both embeddings yields u(1) ∈W 1,p

0 .

A.3. Clarke’s generalized subdifferential

The generalized directional derivative at x from a Banach space X for any function f : X → R
that is Lipschitz near x is given by [40, Section 10.1]

f◦(x; v) := lim sup
y→x, τ↓0

τ−1 [f(y + τv)− f(y)] . (A.16)

Then ζ ∈ X∗ belongs to the generalized gradient ∂Cf(x) if and only if f◦(x; v) ≥ 〈ζ, v〉 for
all v ∈ X.

Let X1, X2 be Banach spaces and f : X1 × X2 → R Lipschitz near x1 ∈ X1 and x2 ∈ X2.
We define the partial generalized directional derivatives and partial generalized gradients f◦x1 ,
f◦x2 , ∂C,x1f , and ∂C,x2f analogously to (A.16).

Proposition A.23. If f◦x1(x1, x2; v1) = f◦(x1, x2; v1, 0) and f◦x2(x1, x2; v2) = f◦(x1, x2; 0, v2)
for all v1 ∈ X1 and v2 ∈ X2, then

∂Cf(x1, x2) ⊂ ∂C,x1f(x1, x2)× ∂C,x2f(x1, x2).

Proof. ζ ∈ ∂Cf(x1, x2) if and only if f◦(x1, x2; v1, v2) ≥ 〈ζ1, v1〉+ 〈ζ2, v2〉 for all v1 ∈ X1 and
v2 ∈ X2. Taking v1 = 0 and v2 = 0 implies f◦(x1, x2; v1, 0) ≥ 〈ζ1, v1〉 for all v1 ∈ X1 and
f◦(x1, x2; 0, v2) ≥ 〈ζ2, v2〉 for all v2 ∈ X2. Using the suppositions on f◦x1 and f◦x2 we finish
the proof.

Proposition A.24. For j from problem (P̂ ), it holds

∂Cj(ν̄, q̄) ⊂ ∂C,νj(ν̄, q̄)× ∂C,qj(ν̄, q̄).

Proof. In our case the assumptions of the preceding proposition are satisfied for j. Regarding
the differentials with respect to ν, we obtain for all δν ∈ L∞(0, 1) that

j◦(ν̄, q̄; δν, 0) = lim sup
ν→ν̄, q→q̄, τ↓0

τ−1 [j(ν + τδν, q)− j(ν, q)] = lim sup
q→q̄

∫ 1

0
δν(1 + L(q)) dt

=
∫ 1

0
δν(1 + L(q̄)) dt = j◦ν(ν̄, q̄; δν),
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using the fact that j is linear in ν in the first and last step. In the other case, we estimate

j◦q (ν̄, q̄; δq) = lim sup
q→q̄, τ↓0

τ−1 [j(ν̄, q + τδq)− j(ν̄, q)] ≤ j◦(ν̄, q̄; 0, δq)

= lim sup
ν→ν̄, q→q̄, τ↓0

τ−1
∫ 1

0
ν [L(q + τδq)− L(q)] dt

≤ j◦q (ν̄, q̄; δq) + lim sup
ν→ν̄, q→q̄, τ↓0

τ−1
∫ 1

0
[ν − ν̄] [L(q + τδq)− L(q)] dt

≤ j◦q (ν̄, q̄; δq) + lim sup
ν→ν̄

cL

∫ 1

0
|ν − ν̄|‖δq‖Q dt = j◦q (ν̄, q̄; δq),

for all δq ∈ Q(0, 1), where cL is the Lipschitz constant of L.

A.4. Comparison principle

For any ω0 ≥ 0, define φ : R+ → R+ by

φ(t) = ω−1
0 (eω0t − 1), if ω0 > 0, and φ(t) = t, if ω0 = 0.

We easily verify that φ(t) ≥ t for all t ≥ 0.
Proposition A.25. Let c, γ > 0 and ω0, h0 ≥ 0. Moreover, let dγ be continuously differen-
tiable on (0,∞) and continuous on [0,∞) with dγ ≥ 0 such that

d′γ(t) ≤ ω0dγ(t) + cγ/dγ(t)− h0 on { t | dγ(t) > 0 } . (A.17)

Then it holds

dγ(t) ≤ max {√γ, (dγ(0) +√γ)eω0t + (c√γ − h0)φ(t) } =: Dγ(t). (A.18)

Proof. We argue by contradiction: Suppose that (A.18) is not satisfied and let t0 be the first
time such that dγ(t0) = Dγ(t0) and dγ(t) > Dγ(t) for t ∈ (t0, t1). This implies dγ(t) > √γ
and therefore from (A.17) we infer d′γ(t) ≤ ω0dγ(t) + c

√
γ − h0 for t ∈ (t0, t1).

The unique solution of z′(t) = ω0z(t) + c
√
γ − h0 with z(t0) = dγ(t0) is given by

z(t) = dγ(t0)eω0(t−t0) + (c√γ − h0)φ(t− t0).

The comparison principle yields dγ(t) ≤ z(t) for t ∈ [t0, t1). Now we distinguish two cases: If
dγ(t0) = Dγ(t0) = (dγ(0) +√γ)eω0t0 + (c√γ − h0)φ(t0), we obtain

dγ(t) ≤ z(t) = dγ(t0)eω0(t−t0) + (c√γ − h0)φ(t− t0)
= (dγ(0) +√γ)eω0t + (c√γ − h0)φ(t0)eω0(t−t0) + (c√γ − h0)φ(t− t0)
= (dγ(0) +√γ)eω0t + (c√γ − h0)φ(t)
≤ Dγ(t) < dγ(t),

for t ∈ (t0, t1), yielding a contradiction. Otherwise, it holds
√
γ = dγ(t0) = Dγ(t0) > (dγ(0) +√γ)eω0t0 + (c√γ − h0)φ(t0)

= dγ(0) +√γ + ((c+ ω0)√γ + ω0dγ(0)− h0)φ(t0)

and we necessarily must have ((c+ ω0)√γ + ω0dγ(0)− h0) < 0. Thus, we have
√
γ < dγ(t) ≤ z(t) = √γ + ((c+ ω0)√γ − h0)φ(t− t0) < √γ,

for t ∈ (t0, t1), also yielding a contradiction.
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A.5. Stability estimates

We collect stability estimates for the state and the linearized state. Suppose that the as-
sumptions from Section 2.1 hold and recall that I = (0, 1) is the reference time interval.
Proposition A.26. There exists a constant c > 0 such that for all ν > 0, q ∈ Q(0, 1), and
initial conditions u0 ∈ H the estimates

‖u‖C([0,1];H) +
√
ν‖u‖L2(I;V ) ≤ c

(√
ν‖Bq‖L2(I;V ∗) + ‖u0‖H

)
, (A.19)

‖δu‖C([0,1];H) +
√
ν‖δu‖L2(I;V ) ≤ c

|δν|√
ν

(
‖Bq‖L2(I;V ∗) + ‖u‖L2(I;V )

)
+
√
ν‖Bδq‖L2(I;V ∗),

(A.20)

‖δũ‖C([0,1];H) +
√
ν‖δũ‖L2(I;V ) ≤ c

|δν|√
ν

(
‖Bδq‖L2(I;V ∗) + ‖δu‖L2(I;V )

)
, (A.21)

hold, where u = S(ν, q), δu = S′(ν, q)(δν, δq) and δũ = S′′(ν, q)[δν, δq]2 for δν ∈ R and
δq ∈ L2(I;V ∗). Furthermore, for q1, q2 ∈ Qad(0, 1) we have

‖u1 − u2‖C([0,1];H) +
√
ν1‖u1 − u2‖L2(I;V ) ≤ c0

(
|ν1 − ν2|+ ‖B(q1 − q2)‖L2(I;V ∗)

)
, (A.22)

‖δu1 − δu2‖C([0,1];H) ≤ c1
(
|ν1 − ν2|+ ‖B(q1 − q2)‖L2(I;V ∗)

) (
|δν|+ ‖Bδq‖L2(I;V ∗)

)
, (A.23)

where ui = S(νi, qi) and δui = S′(νi, qi)(δν, δq) for i = 1, 2 and
c0 = c0(ν1, ν2) = c/

√
ν1 max { 1, 1/

√
ν2, ν2 } ,

c1 = c1(ν1, ν2) = c/
√
ν1 max { 1, 1/ν1, 1/(ν1

√
ν2), 1/ν2, 1/ν3/2

2 , ν2/ν1 } .
The constant c > 0 depends exclusively on Poincaré’s constant, Qad, and u0.

Proof. For ν, δν ∈ R with ν > 0 and f, g ∈ L2(I;V ∗) and v0 ∈ H consider the solution v to
the linear parabolic equation

∂tv + νAv = νf + δνg, v(0) = v0.

Standard energy estimates, see for instance [161, §26], yield

‖v‖C([0,1];H) +
√
ν‖v‖L2(I;V ) ≤ c

(√
ν‖f‖L2(I;V ∗) + |δν|√

ν
‖g‖L2(I;V ∗) + ‖u0‖H

)
, (A.24)

with c depending exclusively on Poincaré’s constant. This establishes (A.19) – (A.21). Con-
cerning (A.22), set u1 = S(ν1, q1) and u2 = S(ν2, q2). The difference w = u1 − u2 satisfies

∂tw + ν1Aw = (ν2 − ν1)Au2 + ν1Bq1 − ν2Bq2, w(0) = 0.
Estimating the right-hand side yields

‖(ν2 − ν1)Au2 + ν1Bq1 − ν2Bq2‖L2(I;V ∗)

≤
(
|ν1 − ν2|

(
‖Au2 +Bq1‖L2(I;V ∗)

)
+ ν2‖B(q1 − q2)‖L2(I;V ∗)

)
.

From (A.24), the estimate

‖Au2‖L2(I;V ∗) ≤ c‖Bq2‖L2(I;V ∗) + c
√
ν2
‖u0‖H ,

and boundedness of Qad we conclude (A.22). Concerning the last estimate, the difference
δw = δu1 − δu2 satisfies δw(0) = 0 and

∂tδw + ν1Aδw = (ν2 − ν1)Aδu2 + δνB(q1 − q2) + δνA(u1 − u2) + (ν1 − ν2)Bδq.
Similarly as above, the estimate (A.23) follows from (A.19), (A.22), and (A.20).
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A.6. Fractional Sobolev spaces

We summarize well-known properties of fractional Sobolev spaces that are also called Sobolev-
Slobodeckij spaces. For more details, we refer to the monograph [1, Chapter 7]; see also [48] for
an introduction to this topic. This section is part of a joint work with Dominik Hafemeyer.

Let Ω ⊆ Rd be an open set with d ∈ N. For θ ∈ (0, 1) and p ∈ [1,∞) we define

[f ]θ,p,Ω :=
(∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|d+θp dx dy
)1/p

the Gagliardo (semi)norm of f and define the norm of the fractional Sobolev space on Ω
denoted W θ,p(Ω) by

‖f‖W θ,p(Ω) :=
(
‖f‖pLp(Ω) + [f ]pθ,p,Ω

)1/p
.

If θ > 1 and θ is not an integer, then we write θ = m + σ with m ∈ N and σ ∈ (0, 1), and
define the norm of W θ,p(Ω) by

‖f‖W θ,p(Ω) :=

‖f‖pWm,p(Ω) +
∑
|α|=m

[Dαf ]pσ,p,Ω

1/p

.

Here, α denotes the multindex and |α| =
∑d
j=1 αj . It is worth mentioning that the fractional

Sobolev norm does not reproduce the (classical) Sobolev norm in the limit cases θ → k with
k ∈ N; cf. [22, Remark 5] and [115, Theorem 1].

For the point-wise error estimates in Section 5.5.3 we require the embedding of the real
interpolation space between Sobolev spaces into the fractional Sobolev space. To clearly see
the dependencies of the constants, we give an independent proof that relies on elementary
arguments. Note that in the following even equality holds (up to equivalent norms), but we
only need one injection.

Proposition A.27. For any p ∈ [1,∞) and θ ∈ (0, 1) one has

(Wm,p(Rd),Wm+1,p(Rd))θ,p ↪→Wm+θ,p(Rd), m ∈ N, (A.25)

where the embedding constant is bounded by

(
min { θ, 1− θ } p+ 22pcd,m

)1/p
,

and cd,m exclusively depends on the spatial dimension d and the parameter m.

Proof. We follow the proof of [110, Example 1.1.8]; cf. also [1, Theorem 7.47].

Step 1: m = 0. Let u ∈ (Lp(Rd),W 1,p(Rd))θ,p. Consider a splitting u = v+w with v ∈ Lp(Rd)
and w ∈W 1,p(Rd). Recall that∫

Rd
|w(x+ h)− w(x)|p dx ≤ |h|p‖∇w‖pLp .
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Therefore, using Jensen’s inequality twice, we see that

[u]pθ,p ≤ 2p−1
∫
Rd

∫
Rd

|v(x+ h)− v(x)|p

|h|d+θp dx dh+ 2p−1
∫
Rd

∫
Rd

|w(x+ h)− w(x)|p

|h|d+θp dx dh

≤
∫
Rd
|h|−d−θp

(
22p−2‖v‖pLp + 2p−1|h|p‖w‖pW 1,p

)
dh

≤ 22p−2
∫
Rd
|h|−d−θp (‖v‖Lp + |h|‖w‖W 1,p)p dh.

Hence, by means of the definition of the K-functional, we obtain

[u]pθ,p ≤ 22p−2
∫
Rd
|h|−d−θpK(|h|, u)p dh

≤ 22p−2
∫ ∞

0
t−1−θpK(t, u)p dt

∫
∂B1(0)

dσ = 22p−2cd‖u‖pθ,p,

where the constant cd exclusively depends on the spatial dimension d. Furthermore, we have

‖u‖Lp ≤ ‖u‖Lp+W 1,p = K(1, u, Lp,W 1,p) ≤ ‖u‖θ,∞ ≤ (pmin { θ, 1− θ })1/p ‖u‖θ,p,

due to Proposition A.3. Hence,

‖u‖W θ,p =
(
‖u‖pLp + [u]pθ,p

)1/p
≤
(
pmin { θ, 1− θ }+ 22pcd

)1/p
‖u‖θ,p.

Step 2: m ≥ 1. The general case m ≥ 1 follows by analogous arguments as above, where
we simply replace the spaces Lp by Wm,p and W 1,p by Wm+1,p. Moreover, we estimate the
seminorm [Dαu]θ,p instead of [u]θ,p. Thus,

[Dαu]pθ,p ≤ 22p−2
∫
Rd
|h|−d−θp (‖v‖Wm,p + |h|‖w‖Wm+1,p)p dh.

Using that the number of multiindices with |α| = m only depends on d and m, theW θ,p-norm
can be estimated as in the first step with a constant cd,m (instead of cd).

Lemma A.28. For any p ∈ [1,∞) and θ ∈ (0, 1) \ {1/2} one has

(Lp(Rd),W 2,p(Rd))θ,p ↪→W 2θ,p(Rd).

Furthermore, the embedding constant is bounded by c(θ) that is uniform in p ∈ [1,∞) and
satisfies c(θ) ∼ (1− θ)−1 as θ → 1 and c(θ) ∼ |1/2− θ|−1 as θ → 1/2.

Proof. According to [114, Corollary 1.4.7.1] we have

‖∇u‖Lp ≤ cp‖u‖
1/2
W 2,p‖u‖1/2Lp for all u ∈W 2,p(Rd),

where cp ≤ cK1/p
d and Kd denotes the volume of the d dimensional unit ball. Thus,

‖u‖W 1,p ≤ (1 + cK
1/p
d )‖u‖1/2W 2,p‖u‖1/2Lp for all u ∈W 2,p(Rd).

Whence, the space W 1,p(Rd) belongs to the class J1/2(Lp(Rd),W 2,p(Rd)). For these reasons,
if θ > 1/2, then the reiteration theorem Proposition A.9 (with θ0 = 1/2 and θ1 = 1) and the
embedding (A.25) imply

(Lp,W 2,p)θ,p ↪→ (W 1,p,W 2,p)2θ−1,p ↪→W 2θ,p.
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Similarly, if θ < 1/2, then the reiteration theorem (with θ0 = 0 and θ1 = 1/2) yields

(Lp,W 2,p)θ,p ↪→ (Lp,W 1,p)2θ,p ↪→W 2θ,p.

Moreover, the embedding constants from the reiteration theorem are bounded by

(2θ − 1)−121+1/p(c0 + c1(2− 2θ)−1)(1 + 3θ−1)2(1− 2θ)−1
(
2 + (1− 2θ)−1

)
in the first case, and by

(2θ)−121+1/p)(c0 + c1(1− 2θ)−1)(1 + 3θ)θ−1(2 + (2θ)−1)

in the second case. With the constant from Proposition A.27 we obtain the asymptotic
behavior of the embedding constant as stated in the proposition.

Proposition A.29. Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary. For all
θ ∈ (0, 1) \ { 1/2 } and p ∈ (1,∞) the embedding

(Lp(Ω),W 2,p(Ω))θ,p ↪→W 2θ,p(Ω)

holds. Furthermore, the embedding constant is bounded by c(θ) that is uniform in p ∈ [1,∞)
and satisfies c(θ) ∼ (1− θ)−1 as θ → 1 and c(θ) ∼ |1/2− θ|−1 as θ → 1/2.

For the proof, we require the extension theorem due to Stein:

Lemma A.30. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary and m ∈ N. Then
there exists an extension operator E mapping W k,p(Ω) continuously into W k,p(Rd) for all
k = 0, 1, . . . ,m and p ∈ [1,∞). Moreover, there is c > 0 such that

‖Ef‖Wk,p(Rd) ≤ c‖f‖Wk,p(Ω), f ∈W k,p(Ω),

and the constant is independent of p, k, and f .

Proof. This result is proved in [144, Theorem VI.3.5]. The bound on the norm of E as stated
above can be found in [144, Chapter VI.3, Equation (32)].

Proof of Proposition A.29. The proof is based on the corresponding result on Rd by first
extending the functions from Ω to Rd and retraction afterwards. According to Lemma A.30,
there exists an extension operator E : W k,p(Ω)→W k,p(Rd) for all k = 0, 1, 2 and its norm is
independent of p. Hence

‖f‖W 2τ,p(Ω) = ‖Ef‖W 2τ,p(Ω) ≤ ‖Ef‖W 2τ,p(Rd)

≤ c(τ)‖Ef‖(Lp(Rd),W 2,p(Rd))τ,p ≤ c(τ)‖f‖(Lp(Rd),W 2,p(Rd))τ,p ,

where we have used the interpolation result Lemma A.28 on Rd in the second inequality and
a general interpolation principle for linear operators, see, e.g., [146, Section 1.2.2], in the last
inequality. Note that for the above estimate it is essential that the extension operator E is
the same for k = 0 and k = 2 in order to interpolate operators.
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A.7. Discretization error estimates for the state equation

We collect general discretization error estimates for the state equation. To this end, we first
summarize error estimates for finite element discretizations of elliptic equations. For further
information we refer to, e.g., the monographs [24, 38].

Consider a discretization of the convex and polygonal domain Ω ⊂ Rd, d ∈ { 2, 3 }, consisting
of triangular or tetrahedral cellsK that constitute a non-overlapping cover of the domain. The
corresponding mesh is denoted by Th = {K}. Let hK denote the diameter of the cell K ∈ Th
and let ρK denote the diameter of the largest ball that can be inscribed in K. We define the
discretization parameter h as the cellwise constant function h|K = hK . Simultaneously, we
denote by h the maximal diameter, i.e. h = max hK .

Definition A.31. Let { Th }h>0 be a family of triangulations.

(i) The family is called regular, if there exists a constant σ > 0 such that ρK ≥ σhK for all
cells K ∈ Th and h ∈ (0, 1].

(ii) The family is called quasi-uniform, if the exists a σ > 0 such that ρK ≥ σh for all cells
K ∈ Th and h ∈ (0, 1].

Associated with the mesh Th, we define Vh ⊂ H1
0 as the subspace of continuous and cellwise

linear functions. Let Ih : C(Ω) → Vh denote the Lagrange interpolant on Ω; see, e.g., [24,
Definition 3.3.9]. We have the following interpolation error estimate.

Proposition A.32 ([24, Theorem 4.4.20]). Let { Th }h>0 be a family of regular triangulations.
Then there is c > 0 such that

‖u− Ihu‖L2 ≤ ch‖u− Ihu‖H1 ≤ ch2‖∇2u‖L2 , u ∈ H2 ∩H1
0 . (A.26)

Moreover, we require interpolation error estimates with fractional Sobolev spaces; see Ap-
pendix A.6. Note that the following estimate also follows from the corresponding result for
Sobolev spaces with integer differentiability index and real interpolation. However, since we
are interested in estimates that are uniform in τ and p, we directly use the fractional norm
to avoid the identification of the real interpolation space with the fractional Sobolev space.

Proposition A.33. Let { Th }h>0 be a family of regular triangulations, p ∈ [1,∞), and
2 > τ > d/p. Then for all u ∈W τ,p ∩H1

0 , the interpolation error estimate

‖u− Ihu‖Lp + h‖∇ (u− Ihu)‖Lp ≤ ch
τ‖u‖W τ,p ,

‖u− Ihu‖L∞ ≤ ch
τ−d/p‖u‖W τ,p .

is valid, where the constant c > 0 is independent of h, p, and u. Moreover, for fixed τ• > d/p
the constant c can be chosen uniformly with respect to τ ∈ [τ•, 1).

Proof. This well-known result is proved by transformation to a reference cell and using [51,
Theorem 6.1]. Back transformation to the cell K follows as in [51, Example 3].

Next, we define the Ritz projection Rh : H1
0 → Vh by

(∇(u−Rhu),∇ϕh) = 0 for all ϕh ∈ Vh.

The following projection error estimate is valid.
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Proposition A.34. Let { Th }h>0 be a family of regular triangulations. Then there is c > 0
such that

‖u−Rhu‖L2 ≤ ch‖u−Rhu‖H1 ≤ ch2‖∇2u‖L2 , u ∈ H2 ∩H1
0 . (A.27)

Moreover, the estimate

‖u−Rhu‖L2 ≤ ch1+τ‖u‖W 1+τ,2 , u ∈W τ,2 ∩H1
0 , (A.28)

holds for all 2 > τ > d/2.

Proof. The first estimate is proved in [24, Theorem 5.4.8] based on (A.26). The second
estimate follows from the first and Proposition A.33.

Define the spatial L2-projection Πh : L2 → Vh by

(u−Πhu, ϕ)L2 = 0 for all ϕ ∈ Vh.

We have the following projection error estimate.

Proposition A.35. Let { Th }h>0 be a family of regular triangulations. Then there is c > 0
such that

‖u−Πhu‖L2 ≤ ch2‖∇2u‖L2 , u ∈ H2 ∩H1
0 . (A.29)

If in addition, the projection Πh is stable in H1, then

‖∇(u−Πhu)‖L2 ≤ ch‖∇2u‖L2 , u ∈ H2 ∩H1
0 . (A.30)

For quasi-uniform meshes, the stability of Πh in H1 directly follows from an inverse estimate
and an error estimate for Πh in L2. However, weaker conditions are known such as local
quasi-uniformity; cf. [23].

Proof of Proposition A.35. For the estimate (A.29) we use the best approximation property
of Πh in L2 and the error estimate (A.26) for Ih to deduce that

‖u−Πhu‖L2 ≤ ‖u− Ihu‖L2 ≤ ch2‖∇2u‖L2 .

To show (A.30), we calculate

‖∇(u−Πhu)‖L2 ≤ ‖∇(u−ΠhRhu)‖L2 + ‖∇Πh(u−Rhu)‖L2

≤ (1 + c)‖∇(u−Rhu)‖L2 ≤ (1 + c)h‖∇2u‖L2 ,

where we have used the projection property and the stability of Πh as well as the error
estimate (A.27) for Rh.
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Discretization error estimates for the state in L2(I;L2) and L2(I;H1)

Our objective is to show the following error estimates for the state equation measured in
L2(I;L2) and L2(I;H1). Thereafter, we provide discretization error estimates for the state
evaluated at the terminal time. We suppose throughout that { Th }h>0 is a family of regular
triangulations.

Lemma A.36. Let ν ∈ R+ and f ∈ L2((0, 1);L2). For the solution u = u(ν, f) to the state
equation with right-hand side f and the discrete solution ukh = ukh(ν, f) to equation (5.4)
with right-hand side f the estimate

‖u− ukh‖L2(I;L2) ≤ c
(
k‖∂tu‖L2(I;L2) + h2‖∆u‖L2(I;L2)

)
(A.31)

holds. If additionally Πh is stable in H1, then

‖∇u−∇ukh‖L2(I;L2) ≤ c(k
1/2 + h)

(
‖∂tu‖L2(I;L2) + ‖∆u‖L2(I;L2)

)
. (A.32)

The constant c > 0 is independent of k, h, ν, f , u0, u, and ukh.

To discuss the error due to temporal and spatial discretization separately, let us introduce
the nodal interpolation ik : C([0, 1];H1

0 )→ Xk as

iku(tm) = u(tm), m = 1, 2, . . . ,M , (A.33)

where
Xk =

{
vk ∈ L2(I;H1

0 ) : vk|Im ∈ P0(Im;H1
0 ), m = 1, 2, . . . ,M

}
is the semi-discrete state space. The following interpolation error estimates are valid.

Proposition A.37 ([130, Lemma A.7]). If u ∈ H1(I;L2) ∩ L2(I;H2 ∩H1
0 ), then

‖u− iku‖L2(I;L2) ≤ ck‖∂tu‖L2(I;L2), (A.34)

‖u− iku‖L2(I;H1) ≤ ck
1/2
(
‖∂tu‖L2(I;L2) + ‖∆u‖L2(I;L2)

)
. (A.35)

The constant c > 0 is independent of k, ν, and u.

Let u be the solution to the continuous state equation for (ν, q) ∈ R+×Q(0, 1) and ukh ∈ Xk,h

the corresponding discrete solution to (5.4). Using a density argument one may show that u
satisfies the discrete equation (5.4) as well. Therefore, the Galerkin orthogonality

B(ν, u− ukh, ϕkh) = 0 for all ϕkh ∈ Xk,h (A.36)

holds. We consider the splitting

u− ukh = u−Πhiku+ Πhiku− ukh =: ζkh + ξkh.

Proposition A.38. Let the terms ζkh and ξkh be defined as above. Then

B(ν, ζkh, ϕkh) = ν(∇ζkh,∇ϕkh)L2(I;L2) for all ϕkh ∈ Xk,h, (A.37)

and
‖∇ξkh‖L2(I;L2) ≤ ‖∇ζkh‖L2(I;L2). (A.38)

188



A.7. Discretization error estimates for the state equation

Proof. The follows as in [117, Section 5.1]. First note that for all ϕkh, ψkh ∈ Xk,h we have

B(ν, ϕkh, ψkh) = (ν∇ϕkh,∇ψkh)L2(I;L2) −
M−1∑
m=1

(ϕkh,m, [ψkh]m) + (ϕkh(1), ψkh(1)). (A.39)

Consider the splitting ζkh = u − iku + iku − Πhiku =: ζk + ζh. Then ζk,m = 0 due to the
definition of ik and (ζh,m, [ψkh]m) = 0 according to the definition of Πh. Using (A.39) we
conclude the first identity (A.37). Moreover, using (5.3), we obtain

B(ν, ϕkh, ϕkh) = ν(∇ϕkh,∇ϕkh)L2(I;L2) +
M−1∑
m=1

([ϕkh]m, ϕkh,m+1) + (ϕkh,1, ϕkh,1). (A.40)

Thus, testing (A.39) with ψkh = ϕkh and summation of (A.39) and (A.40) implies

B(ν, ϕkh, ϕkh) ≥ ν‖∇ϕkh‖2L2(I;L2) (A.41)

for all ϕkh ∈ Xk,h. Therefore, using Galerkin orthogonality we find

ν‖∇ξkh‖2L2(I;L2) ≤ B(ν, ξkh, ξkh) = −B(ν, ζkh, ξkh) = −ν(∇ζkh,∇ξkh)L2(I;L2),

where we have used (A.37) in the last step and ξkh ∈ Xk,h. Finally, (A.38) follows from the
Cauchy-Schwarz inequality.

Proof of Lemma A.36, Estimate (A.31). The estimate (A.31) follows by standard arguments;
see, e.g., [117, Section 5.1]. We give a detailed proof to clearly see the dependence on ν.
Consider

ν‖u− ukh‖2L2(I;L2) = ν(ζkh, u− ukh)L2(I;L2) + ν(ξkh, u− ukh)L2(I;L2) =: J1 + J2.

Using the Cauchy-Schwarz inequality and stability of the projection Πh in L2, we find

J1 ≤ ν‖ζkh‖L2(I;L2)‖u− ukh‖L2(I;L2)

≤ ν
(
‖u−Πhu‖L2(I;L2) + ‖u− iku‖L2(I;L2)

)
‖u− ukh‖L2(I;L2).

To estimate J2, consider z̃kh ∈ Xk,h the solution to

B(ν, ϕkh, z̃kh) = ν(ϕkh, u− ukh)L2(I;L2), ϕkh ∈ Xk,h.

Due to Galerkin orthogonality, (A.37), the properties of the Ritz projection Rh, and the
definition of the discrete Laplacian −∆h, we obtain that

ν(ξkh, u− ukh)L2(I;L2) = B(ν, ξkh, z̃kh) = −B(ν, ζkh, z̃kh)
= −ν(∇(u−Πhiku),∇z̃kh)L2(I;L2)

= ν(Rhu−Πhiku,∆hz̃kh)L2(I;L2)

≤ ν‖Πh(Rhu− iku)‖L2(I;L2)‖∆hz̃kh‖L2(I;L2)

≤ ν‖Rhu− iku‖L2(I;L2)‖u− ukh‖L2(I;L2)

≤ ν
(
‖Rhu− u‖L2(I;L2) + ‖u− iku‖L2(I;L2)

)
‖u− ukh‖L2(I;L2),
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where we have used the stability estimate (5.10) for ∆hz̃kh and stability of the projection Πh

in L2. Employing the interpolation and projection error estimates (A.34), (A.29), and (A.27)
we obtain

J1 + J2 ≤ νc
(
‖u−Πhu‖L2(I;L2) + ‖u− iku‖L2(I;L2) + ‖Rhu− u‖L2(I;L2)

)
‖u− ukh‖L2(I;L2)

≤ cν
(
k‖∂tu‖L2(I;L2) + h2‖∇2u‖L2(I;L2)

)
‖u− ukh‖L2(I;L2).

Finally, elliptic regularity theory yields the estimate ‖∇2u‖L2 ≤ c‖∆u‖L2 , see, e.g., [68,
Theorem 3.1.1.2], completing the proof of (A.31).

Estimate (A.32). We observe

‖∇u−∇ukh‖2L2(I;L2) = (∇u−∇ukh,∇ζkh)L2(I;L2) + (∇u−∇ukh,∇ξkh)L2(I;L2)

≤ ‖∇u−∇ukh‖L2(I;L2)

(
‖∇ζkh‖L2(I;L2) + ‖∇ξkh‖L2(I;L2)

)
≤ 2‖∇u−∇ukh‖L2(I;L2)‖∇ζkh‖L2(I;L2),

where we have used (A.38). From the stability of the L2-projection in H1 and the interpola-
tion and projection error estimates (A.35) and (A.30) we obtain

‖∇ζkh‖L2(I;L2) ≤ ‖∇(u−Πhu)‖L2(I;L2) + ‖∇Πh(u− iku)‖L2(I;L2)

≤ c
(
h‖∇2u‖L2(I;L2) + k1/2

(
‖∂tu‖L2(I;L2) + ‖∆u‖L2(I;L2)

))
.

Again elliptic regularity theory yields (A.32).

Discretization error estimates for the state at the terminal time

Furthermore, we require estimates for the discretization error at the terminal time that will
be verified subsequently. We generally suppose that the regularity conditions concerning the
temporal mesh from Section 5.2 are valid and { Th }h>0 is a family of regular triangulations.

Lemma A.39. Let ν ∈ R+ and f ∈ L∞((0, 1);L2). For the solution u = u(ν, f) to the state
equation with right-hand side f and the discrete solution ukh = ukh(ν, f) to equation (5.4)
with right-hand side f the estimates

‖u− ukh‖L∞(I;L2) ≤ c|log k|
(
k + h2

) (
(1 + ν)‖f‖L∞(I;L2) + ν−1‖u0‖L2

)
(A.42)

‖u− ukh‖L∞(I;L2) ≤ c|log k|
(
k + h2

)
(1 + ν)

(
‖f‖L∞(I;L2) + ‖∆u0‖L2

)
(A.43)

hold, where the constant c > 0 is independent of k, h, ν, f , u0, u, and ukh.

To prove the estimates, we need several auxiliary results for solutions to dual equations.

Proposition A.40. For z1 ∈ L2 let z ∈ H1(I;L2) ∩ L2(I;H2 ∩ H1
0 ) the continuous and

zk ∈ Xk denote the semidiscrete adjoint state with let z(1) = z1 and zk(1) = z1, i.e.

B(ν, ϕk, zk) = (z1, ϕk,M ) for all ϕk ∈ Xk.

Then

‖z − zk‖L1(I;L2) ≤ c
(
1 + ν−1/2

)
k|log k|‖z1‖L2 , (A.44)

‖z(0)− zk,1‖H−2 ≤ cνk‖z1‖L2 , (A.45)

where the constant c > 0 is independent of k, ν, z1, z, and zk.
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Proof. This is the assertion of [116, Lemma 5.2] and we give the proof to clearly see the
dependence on ν. To this end, we introduce the nodal interpolation as

i∗k : C([0, 1];H1
0 )→ Xk, i∗ku|Im = u(tm−1), m = 1, 2, . . . ,M .

Define ζk := i∗kz − zk. By means of Galerkin orthogonality and the definition of i∗k, for all
ϕk ∈ Xk ∩ L2(I;H2) it holds

B(ν, ϕk, ζk) = −B(ν, ϕk, z − i∗kz) = ν

∫ 1

0
(∆ϕk, z − i∗kz)L2 dt

= ν
M∑
m=1

(∫
Im

(∆ϕk,m, z(t))L2 dt− km(∆ϕk, z(tm−1))L2

)

= ν
M∑
m=1

∫
Im

(tm − t)(∆ϕk,m, ∂tz(t))L2 dt.

This expression is equivalent to the following set of equations

ν

∫
Im

(∇ϕ,∇ζk)L2 − (ϕm, [ζk]m)L2 = ν

∫
Im

(tm − t)(∆ϕ, ∂tz(t))L2 dt, (A.46)

for all ϕ ∈ P0(Im;H2 ∩H1
0 ) and for all m = 1, 2, . . . ,M .

Estimate (A.45). Testing in (A.46) with ϕ = ∆−2ζk, integrating by parts, and using the
identity ∂tz = −ν∆z we find

− ν
∫
Im

(∆−1ζk, ζk)L2 − (∆−1ζk, [∆−1ζk]m)L2 = −ν2
∫
Im

(tm − t)(ζk, z(t))L2 dt. (A.47)

The right-hand side can be estimated as

−ν2
∫
Im

(tm − t)(ζk, z(t))L2 dt = ν2
∫
Im

(tm − t)(∇∆−1ζk,∇z(t))L2 dt

≤ ν

2

∫
Im
‖∇∆−1ζk‖2L2 + ν3k2

m

2

∫
Im
‖∇z(t)‖2L2 dt.

Applying the identity

1
2
(
‖ϕm+1‖2L2 − ‖[ϕ]m‖2L2 − ‖ϕm‖2L2

)
= ([ϕ]m, ϕm)L2 (A.48)

to the left-hand side of (A.47) and using that

−ν
∫
Im

(∆−1ζk, ζk)L2 = ν

∫
Im
‖∇∆−1ζk‖2L2 ,

yield

‖∆−1ζk,m‖2L2 + ν

∫
Im
‖∇∆−1ζk‖2L2 ≤ ‖∆−1ζk,m+1‖2L2 + ν3k2

∫
Im
‖∇z(t)‖2L2 dt.

Summation of the above inequality for all m = 1, . . . ,M , the stability estimate (A.19), as
well as equivalence of the norms ‖∆−1·‖L2 and ‖·‖H−2 imply

‖ζk,1‖H−2 + ν‖∇∆−1ζk‖L2(I;L2) ≤ cν
3/2k‖∇z‖L2(I;L2) ≤ cνk‖z1‖L2 . (A.49)
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Since z(0)− zk,1 = ζk,1, this concludes the proof of (A.45).

Estimate (A.44). First, it holds

‖z − i∗kz‖L1(I;L2) ≤
∫
I\IM
‖z − i∗kz‖L2 +

∫
IM

‖z − i∗kz‖L2

≤ ck
(∫

I\IM
‖∂tz‖L2 + sup

t∈I
‖z(t)‖L2

)
.

Hence, [116, Theorem 4.4] and the stability estimate (A.19) imply

‖z − i∗kz‖L1(I;L2) ≤ ck|log k|1/2‖z1‖L2 .

Testing in (A.46) with ϕ = −∆−1ζk after integrating by parts yields

ν

∫
Im
‖ζk‖2L2 − (∇∆−1ζk,m, [∇∆−1ζk]m)L2 = −ν

∫
Im

(tm − t)(ζk, ∂tz(t))L2 .

Estimating the right-hand side as

−ν
∫
Im

(tm − t)(ζk, ∂tz(t))L2 ≤
ν

2

∫
Im
‖ζk‖2L2 + ν

2

∫
Im

(tm − t)2‖∂tz‖2L2 ,

and applying the identity (A.48) implies

ν

∫
Im
‖ζk‖2L2 + ‖∇∆−1ζk,m‖2L2 ≤ ‖∇∆−1ζk,m+1‖2L2 + ν

∫
Im

(tm − t)2‖∂tz‖2L2 .

Multiplication by (1− tm−1), using that (1− tm) = (1− tm−1) + km, and summation for all
m = 1, 2, . . . ,M yield

ν
M∑
m=1

(1− tm−1)
∫
Im
‖ζk‖2L2 + ‖∇∆−1ζk,1‖2L2

≤
M∑
m=1

km‖∇∆−1ζk,m+1‖2L2 + ν
M∑
m=1

(1− tm−1)
∫
Im

(tm − t)2‖∂tz‖2L2 .

Moreover, since km ≤ kratiokm+1, and using (A.49) we estimate

M∑
m=1

km‖∇∆−1ζk,m+1‖2L2 ≤ kratio‖∇∆−1ζk‖2L2(I;L2) ≤ ck
2‖z1‖2L2 .

For any m ≤M − 1 and t ∈ Im, we have

1− tm−1 ≤ 1− tm + kratiokm+1 ≤ (1− tm)(1 + kratio) ≤ (1− t)(1 + kratio).

Hence,

M∑
m=1

(1− tm−1)
∫
Im

(tm − t)2‖∂tz‖2L2 ≤
M−1∑
m=1

k2
m

∫
Im

(1− tm−1)‖∂tz‖2L2

+ k2
M

∫
IM

(1− t)‖∂tz‖2L2 ≤ (1 + kratio)k2
∫
I
(1− t)‖∂tz‖2L2 .

192



A.7. Discretization error estimates for the state equation

Therefore, from [116, Theorem 4.4] we infer
M∑
m=1

(1− tm−1)
∫
Im
‖ζk‖2L2 ≤ c

(
1 + ν−1

)
k2‖z1‖2L2 .

In summary, we have

‖ζk‖2L1(I;L2) ≤
(

M∑
m=1

km
1− tm−1

)(
M∑
m=1

(1− tm−1)km‖ζk,m‖2L2

)
≤ c

(
1 + ν−1

)
|log k|k2‖z1‖2L2 ,

where we have used k ≤ 1/4 in the last step. Finally, we obtain

‖z − zk‖L1(I;L2) ≤ ‖z − i
∗
kz‖L1(I;L2) + ‖i∗kz − zk‖L1(I;L2)

≤ c
(
1 + ν−1/2

)
|log k|k‖z1‖L2 ,

concluding the proof.

Proposition A.41. For z1 ∈ L2 let zk ∈ Xk and zkh ∈ Xk,h denote the semidiscrete,
respectively, discrete adjoint state with zk(1) = z1 and zkh(1) = z1. Then

‖zk − zkh‖L1(I;L2) ≤ c|log k|h2‖z1‖L2 , (A.50)

‖zk,1 − zkh,1‖H−2 ≤ ch2‖z1‖L2 , (A.51)

where the constant c > 0 is independent of k, h, ν, z1, zk, and zkh.

Proof. Estimate (A.51) is proved in [116, Lemma 5.8] with a constant c > 0 that can be
checked to be independent of k, h, ν, z1, zk, and zkh. Estimate (A.50) is proved as in [116,
Theorem 5.10]: Using [116, Lemmas 5.9 and 5.8] we have

‖zk − zkh‖L1(I;L2) ≤
M∑
m=1

km(1− tm−1)−1 max
m=1,2,...,M

‖zk,m − zkh,m‖L2

≤ c|log k|h2‖zk,M − zkh,M‖L2 ≤ c|log k|h2‖z1‖L2 ,

where we have used that k ≤ 1/4 in the second last step.

Proof Lemma A.39, Estimate (A.43). For simplicity, we only consider the last time interval.
Let z̃ ∈ H1(I;L2) ∩ L2(I;H2 ∩H1

0 ) and z̃kh ∈ Xk,h be the solutions to the adjoint equation
with z̃(1) = z̃kh(1) = u(1)− ukh(1). Due to Galerkin orthogonality we obtain

‖u(1)− ukh(1)‖2L2 = B(ν, u− ukh, z̃) = B(ν, u− ukh, z̃ − z̃kh) = B(ν, u, z̃ − z̃kh)

= ν

∫ 1

0
(f, z̃ − z̃kh)L2 + (u0, z̃(0)− z̃kh(0))

≤ ν‖f‖L∞(I;L2)‖z̃ − z̃kh‖L1(I;L2) + ‖∆u0‖L2‖z̃(0)− z̃kh,1‖H−2 .

Propositions A.40 and A.41 and dividing by ‖u(1) − ukh(1)‖L2 imply the result, where we
have used the estimate ν1/2 + ν ≤ 1 + 2ν.

Estimate (A.42). Consider first the case u0 = 0. Then this is exactly (A.43). In the case q = 0,
we combine Theorems 1 and 2 from [111] with clearly stated time dependency. Superposition
of both estimates yields (A.42).
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Symbols

General

N,R,R+,C Natural numbers, real numbers, (strictly) positive real num-
bers, complex numbers

x+ Positive part of x, i.e. x+ = max { 0, x }
Re Real part of complex number
Γ Gamma function
∂ Convex subdifferential
∂C, ∂C,x Clarke’s generalized subdifferential 180
d+,d− Directional derivatives in positive and negative direction
dU (·), dHU (·) Distance function to U in Hilbert space H 9
NU (u) Normal cone to U at the point u 9
PU , P

H
U Minimizing projection onto U in Hilbert space H 9

TU (u) Tangent cone to U at the point u

Linear operators, Function spaces, and Interpolation

↪→ Continuous embedding
↪→c Continuous and compact embedding
↪→d Continuous and dense embedding
[X,Y ]θ Complex interpolation space
(X,Y )θ,p Real interpolation space 167
X∗ Dual space to X
L(X,Y ) Linear and bounded operators between X and Y
DX(A) Domain of operator A in Banach space X
ρ(A) Resolvent set of A
R(z,A) Resolvent of A
kerA Null space of linear operator A
ranA Range of linear operator A
span Linear span of vectors
it Trace mapping, i.e. if u : [0, T ] → X, then itu = u(t) for

t ∈ [0, T ]
9

Cα(I;X) Hölder continuous functions on I with values in X
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Symbols

Hθ,p Bessel potential space 39
H1(I;X) Short for W 1,2(I;X)
Lp(I;X) Lebesgue p-integrable functions on I with values in X
W k,p Sobolev/Sobolev-Slobodeckij space 39, 183
W k,p(I;X) Sobolev space on I with values in X
W (0, T ) Short for H1((0, T );V ∗) ∩ L2((0, T );V )

Optimal control problem

〈·, ·〉 Duality pairing between V ∗ and V 8
(·, ·) Inner product in H 8
(ω, %) Measure space for control space 36
‖·‖ Norm on H 8
‖(·, ·)‖ Norm on product space R× L2(I × ω) 41
A, a(·, ·) Weakly coercive operator A : V → V ∗ defined by bilinear

form a : V × V → R
8

B Control operator from Q into Xθ0 9
C(ν̄,q̄) Critical cone 42
h(·, ·) Lower Hamiltonian 13
Hµ0 Hamiltonian 21
H Pivot space of Gelfand triple V ↪→c H ↪→ V ∗ 8
Nad Set of admissible scaling functions 19
Q,Qad Space of controls and subset of admissible controls 9, 36
PQad Pointwise projection onto set of admissible controls 38, 101
S Control-to-state mapping 19
Xθ Domain of fractional powers of A, i.e. Xθ = DV ∗((A+ω0)θ) 8
V Domain of linear operator A constituting the Gelfand triple

V ↪→c H ↪→ V ∗
8

Discretization

B(·, ·, ·) Trilinear form for Galerkin scheme 102
[ · ]m Jump terms in discontinuous Galerkin scheme 102
∆h Discrete Laplace operator 103
hh(·, ·) Discrete lower Hamiltonian 148
ik Interpolation onto piecewise constant functions in time 188
Ih Interpolation onto cellwise linear and continuous functions 186
Iσ Projection/Interpolation operator onto set of controls Qσ 107, 127
Πk L2-projection onto piecewise constant functions in time 117
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Symbols

Πh L2-projection onto Vh 187
Πh,0 L2-projection onto cellwise constant functions in space 145
Πkh L2-projection onto piecewise constant functions in time and

cellwise constant functions in space
117

Πad,h Hilbert space projection onto Qad,h 149
P0(I;X) Space of constant functions on I with values in X 102
Qσ, Qad,σ Space of temporally and spatially discrete controls and sub-

set of admissible controls
107, 127

Qh, Qad,h Space of spatially discrete controls and subset of admissible
controls

148

Rh Ritz projection 186
σ(k, h) Projection/Interpolation error of Iσ in L2(I × ω) 107
σ1(k, h) Projection/Interpolation error of Iσ in L1(I × ω) 127
σ2(k, h) Projection/Interpolation error of Iσ in L2(I;H−1) 127
Skh Discrete control-to-state mapping 103
Th, T ωh Spatial mesh for finite element discretization 102, 107
Vh Space of continuous and cellwise linear functions 102
Xk Semi-discrete state space 188
Xk(Y ) Piecewise constant functions with values in Y 148
Xk,h Discrete state space 102
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