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Abstract— In previous work, we calculated overapproxima-
tive sets of human arm positions using a kinematic parame-
terisation of the human arm, for use in a formally-verifying
robot trajectory planner. This has the drawback that inverse
kinematics calculations are computationally expensive. In this
technical report, we present another method, not requiring
inverse kinematics but using the maximum Cartesian accel-
erations, velocities and positions attainable by a human. This
can offer significant computational advantage, which is critical
for a real-time motion planning application.

I. INTRODUCTION

Predicting the possible future spatial occupancy of a
human is necessary in human-robot co-existence (HRC) for
ensuring robots do not collide with humans when moving.
In a formally verified robot motion planner such as [1] or
[2], conservative predictions of the future occupancies of
nearby humans can be verified against the desired robot path
to generate motion which is guaranteed to respect a safety
criterion.

Much human motion is predictable, especially in a factory
setting where humans and robots may work together. Several
probability-based approaches can predict movement of the
human with high accuracy, for example Ding et al. [3]
uses Hidden Markov Models to predict hand position in
reaching tasks, where as Koppula and Saxena [4] take a more
high-level approach, exploiting the affordances of nearby
objects to infer the intended goal of human reaching motions.
Mainprice and Berenson populate a voxel grid with the
probability of future occupancy using a Gaussian Mixture
Model; these probabilities then inform a motion planner.

Co-working scenarios, however, can become dangerous
when a human performs unexpected movement such as reflex
movements, which are not accounted for in probabilistic
models. When accounting for all human motion, the main
challenge is the speed and unpredictability of human move-
ments, leading to very large possible future occupancies. Ra-
gaglia et Al. [5] estimate future movement using a kinematic
model of the upper body and some assumed dynamic limits
on the model’s velocities, scaling robot motion according to
the distance to the reachable occupancy. In [6] the authors
present a method to bound such occupancies by abstract-
ing the arm to a simple kinematic model and considering
the maximum joint positions, velocities and accelerations
observed in a set of archetypal movements. From these
parameters, reachability analysis is used to calculate the set
of joint positions during a future time interval, from which
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Fig. 1. (a) Long-term plan around expected human movement; (b) short-
term plan with failsafe manoeuvre accounting for unexpected movement.
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Fig. 2. Verifying safety of a short-term plan. The desired trajectory during
time interval [tk+1, tk+2] is determined to be unsafe, as the subsequent
failsafe manoeuvre intersects the reachable occupancy Γ([tk+1, tk+2]).
Hence we execute the failsafe manoeuvre verified in the previous timestep.

the reachable occupancy in Cartesian space is calculated.
Drawbacks of this kinematic-based approach are 1) the
expensive inverse and forward kinematic calculations and
2) the resulting complex volume, which requires a complex
collision-checking algorithm.

We present 3 fast, Cartesian-space methods for predicting
human reachable occupancy which do not require kinematics.
They can be used in parallel to form a tight occupancy for
prediction of human movement up to arbitrary future times.
In particular, this approach is useful in case of sensor failure
and infrequent sensor updates.

In the next section we state the problem of reachable
occupancy prediction in detail within the framework of a for-
mally verified trajectory planner. Sec. III presents the models
in detail and Sec. IV shows how they are parameterised.
Some experimental validation is presented in Sec. V, and
we conclude in Sec. VI.

II. PROBLEM STATEMENT

We consider a formally verified trajectory planner such
as [1], [7]. The principle is that no movement is executed

without being previously verified safe. At every point in time,
we have a long-term trajectory (either predefined or planned
around expected human movement as in [8], [7]) and a short-
term plan, which consists of the currently executing section



of the long-term trajectory from tk to tk+1, followed by a
failsafe manoeuvre until tk+1 + ts. The failsafe manoeuvre
brings the robot to a safe state, for example, a stationary
state. This is illustrated in Fig. 1. Fig. 2 explains the online
verification concept. While executing the current section, it is
verified whether the next short term plan (from tk+1 to tk+2

on the long term trajectory followed by a failsafe manoeuvre)
can be executed safely. If this is the case, the next section
can be said to be verified, and the next short term plan is
executed at time tk+1. If not, the robot continues on the
failsafe manoeuvre from the current short-term plan. Even
while the failsafe manoeuvre is being executed, the robot
can still plan and verify subsequent movements.

This type of trajectory planner needs an overapproximative
prediction of the occupancy of set of positions of the
human over the time interval of the short-term plan; such a
prediction is called a reachable occupancy Γ([ti, tf ]), defined
as the entire set in space that the human arm could possibly
occupy from initial time ti until time horizon tf . Since we
assume no prior knowledge of the human’s intention, this
set is governed by the dynamics of the human arm and since
these can be fast, Γ([ti, tf ]) grows quickly as tf increases.
Hence critical to performance is a fast overapproximative
model which gives as small a volume as possible while being
conservative.

Below, we present the models to be evaluated and detail
how the extreme movement data of the human is used to
parameterise the models.

III. METHODS FOR CALCULATION OF REACHABLE

OCCUPANCY

A reachable occupancy from a kinematic model as in [1]
or [5] is advantageous as it automatically exploits the rigid
structure of the arm links and their coupling. However, in-
verse kinematics can be time consuming, and the conversion
from a reachable set of joint angles to an occupancy in space
is computationally expensive and creates a complex volume.
We therefore present a simpler, fast-to-calculate Cartesian-
space approach consisting of unions of simple capsules and
spheres, which are easy to collision-check during verification
against the planned path.

Since it is quicker to compute multiple simple, overap-
proximative models than one complex model, our approach
uses three models using position, velocity and acceleration
limits respectively, along with the current speed and velocity
of the human, to compute the reachable occupancy. If the
models are all overapproximative, the sets calculated ac-
cording to them all include the exact reachable occupancy

ΓEX([ti, tf ]), i.e. the set of all possible positions of the arm
during time interval [ti, tf ]. We therefore check all of these
models against the occupancy of the robot along the short-
term plan to be verified; if any of the reachable occupancies
generated by these models are safe (i.e. do not collide with
the robot), then the exact reachable occupancy is safe and
the short-term plan is verified.

The arm is considered to be enclosed by two capsules,
CU running from the shoulder to the elbow, and CF from
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Fig. 3. (a) Enclosure of the arm in two capsules and a sphere, (b) Markers
on the right arm and local base coordinate system. The shoulder point is
taken as 40mm below RSHO, the elbow is at RELB and the wrist is taken
as the midpoint of RWRA and RWRB.

the elbow to the wrist, and a sphere SH centred on the
wrist, as shown in Fig. 3a. The radius of CU and CF is
taken as 0.1m, and that of SH is taken as 0.205m which
is the 95th percentile length of British human hand [9]. In
our implementation, the positions of the shoulder, elbow and
wrist points were determined from infrared motion capture
data of markers placed on the arm. Fig. 3b illustrates this.
We next describe the novel Cartesian Space approaches to
calculating the reachable occupancy.

A. Terminology

We first define some terminology and operators. Let
B(p; r) be the closed ball of radius r centred at p:

B(p; r) = {x | ∥x− p∥ ≤ r}

A Sphere-Swept Volume (SSV) is the Minkowski sum of
a polytope and a sphere (the Minkowski sum is defined on
sets A and B as: A ⊕ B = {a + b | a ∈ A, b ∈ B}). A
capsule is an SSV where the polytope is a line segment. In
the following models we often enclose two balls in another
ball or a capsule, the operators for which we call BE and
CE respectively. To define BE or CE on two balls B(p1; r1)
and B(p2; r2), we must define the following terms:

i = indmax(r1, r2), j = indmin(r1, r2)

x = pi − pj , α = max(ri − rj , ∥x∥)

β = min(ri − rj , ∥x∥) pk = pj +
x

∥x∥
· β

The operators indmax and indmin return the indices of
the maximum and minimum of the arguments. We can then
define the operators:

BE(B(p1; r1), B(p2; r2)) := B
(pi + pk

2
;
ri + rj + α

2

)

,

CE(B(p1; r1), B(p2; r2)) := pi,pk ⊕B(0; ri),

where 0 ∈ R3 is the zero vector and pi,pk denotes the line
segment between pi and pk Where one ball fully contains
the other, i.e. B(pj ; rj) ⊂ B(pi; ri), then pi = pk.

In the following discussion, the subscripts S, E, W, U, F

and H refer to the shoulder, elbow, wrist, upper arm, forearm

and the hand.
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Fig. 4. Occupancy ΓACC of the human arm for time interval
[ta, tb] using the acceleration model.

B. Model of Acceleration Limits

Fig. 4 illustrates the acceleration model. The position of
point y after time t is:

y(t) = y(0) + ẏ(0) · t+

∫ t

0

∫ τ ′

0

ÿ(τ)dτdτ ′,

where y(0) and ẏ(0) are initial position and speed. Where
ay,max is the maximum magnitude of acceleration of y,
we consider that ∥ÿ∥ ≤ ay,max, thus for the last term,
∫ t

0

∫ τ ′

0
ÿ(τ)dτdτ ′ ≤ ay,max

t2

2
holds. We let δy and δẏ ∈ R

be maximum measurement uncertainties in the position and
velocity measurement; the reachable occupancy of a point
y ∈ R3 at time t according to the acceleration model is:

Ry(t) = B(y(0); δy) ⊕ B(ẏ(0) · t; δẏ · t) ⊕ B(0;
amax

2
· t2).

(1)
We obtain the reachable set of time interval [ta, tb], denoted
by Ry([ta, tb]), by BE(Ry(ta),Ry(tb)). We omit the proof
that this encloses the reachable set of the interval for brevity.
In this way, we calculate the reachable sets of shoulder,
elbow and wrist, RS([ta, tb]), RE([ta, tb]) and RW ([ta, tb]).
We omit time dependency for the rest of the derivation for
clarity. The occupancy of the forearm RF and of the upper
arm RU are capsules enclosing RW and RE , and RE and
RS , respectively (by the property of convexity, the whole of
the forearm and upper arm are included by enclosing their
respective end points). RF and RU are extended by 0.1m to
account for the arm thickness. As motivated above, the hand
is inside a sphere centred on the wrist of radius 0.205m. The
reachable set of the hand RH is therefore RW extended by
0.205m:

RU ([ta, tb]) = CE(RS([ta, tb]),RE([ta, tb]))⊕B(0; 0.1),

RF ([ta, tb]) = CE(RE([ta, tb]),RW ([ta, tb]))⊕B(0; 0.1),

RH([ta, tb]) = RW ([ta, tb])⊕B(0, 0.205).
(2)

ΓACC is the union of two capsules and a sphere:

ΓACC([ta, tb]) = RF ([ta, tb]) ∪RU ([ta, tb]) ∪RH([ta, tb]).

C. Model of Velocity Limits

Although the acceleration model is usually accurate, when
the human is moving near to its maximum velocity, the
acceleration model does not consider that the human cannot
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Fig. 5. Occupancy ΓV EL of the human arm for time interval
[ta, tb] using the velocity model.
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Fig. 6. Occupancy ΓPOS of the human arm for time interval
[ta, tb] using the position model.

accelerate further in the direction of motion, and will include
some areas which are not reachable. A model based on
velocity limits can account for this. The model of velocity
limits is similar to that of acceleration limits:

y(t) = y(0) +

∫ t

0

ẏ(τ)dτ

We consider ẏ≤vy,max, in which case
∫ t

0
ẏ(τ)dτ ≤vy,max·t.

Then (1) becomes:

Ry(t) = B(y(0); δy + vy,max · t), (3)

where vy,max is the maximum velocity. As can be seen from
Fig. 5, the reachable occupancy strictly encloses previous
reachable occupancies, so ΓV EL([ta, tb]) = ΓV EL(tb). The
sets RF ([ta, tb]), RU ([ta, tb]) and RH([ta, tb]) are calcu-
lated as in (2), and similarly:

ΓV EL([ta, tb]) = RF ([ta, tb]) ∪RU ([ta, tb]) ∪RH([ta, tb]).

D. Model of Position Limits

The aforementioned models do not consider that body
parts do not change in length and the extension of the
reachable set from the shoulder cannot be more than the
length of the outstretched arm. That is, the entire arm’s
workspace is within a ball whose radius is the length of the
arm, and centred at the shoulder. Pathologically, we know
that the reachable occupancy lies within the arm workspace,
so this ball is an overapproximative set enclosing the exact
reachable occupancy and hereby our simplest model. The
lengths of the arm segments are the distances from shoulder
to elbow and elbow to wrist, plus 0.205m, as motivated
earlier in this section. The ball is centered on the shoulder,
the position of which we model using the velocity model



from (3), i.e. xS(t) ∈ B(xS(0), vS,max · t). See Fig. 6.

ΓPOS([ta, tb]) = B(xS(0); vS,max · t+ ∥xS(0)− xE(0)∥

+ ∥xE(0)− xW (0)∥ + δy + 0.205)

IV. DATA COLLECTION AND PARAMETRISATION OF

MODEL

The parameters of maximum velocity and acceleration of
the parts of the shoulder, elbow and wrist, vS,max, vE,max,
vW,max, aS,max, aE,max and aW,max, must represent the
maxima attained over all movement that can occur in a HRC
scenario.

Overapproximative prediction of human movement relies
on capturing accurate data on the limits of human motion.
We therefore captured infrared motion capture data from a
representative range of humans performing several move-
ments. 38 test subjects (12 female, 26 male) aged between 18
and 49 years, performed punching and sideways-sweeping
movements as fast as possible; these movements were de-
signed to resemble possible reflex movements or unexpected
motions in a production line environment. Motion capture
was at 120Hz and simple distance checks between markers
were used to detect and ignore timesteps where the tracking
system failed to correctly track relevant markers.

Offline, we simultaneously filter the data and extract the
velocity and accelerations using a Kalman filter. The state
of the system for the filter is the marker coordinates, their
velocities and their accelerations. The error covariance was a
diagonal matrix of 0.0001m and the process covariance was
a diagonal matrix of zeros for the position and velocity parts
of the state and 500ms−2 for the acceleration part, which
adequately removes noise without attenuating accelerations.

The maximum velocity and acceleration magnitudes at the
shoulder, elbow and wrist, vS,max, vE,max, vW,max, aS,max,
aE,max and aW,max, are found directly from the obtained
velocities and accelerations of the shoulder, elbow and wrist
points, ẋS , ẋE , ẋW , ẍS , ẍE and ẍW .

V. EVALUATION

We evaluate the approach on a publicly available dataset
from the Graphics Lab at Carnegie Mellon University1. In a
previous work [6], we used an extensive dataset and classified
movements into Everyday, Sport, Dance and Acrobatics

movements. Here we use a subset of this and list the exact
subjects and movements used for clarity, because Acrobatics

movements from the previous dataset would not be found in
industrial scenarios, and certain Everyday movements were
also unrealistic for human-robot co-operation scenarios.

Our datasets are:

1) subject 62: construction work/random (25 motions);
2) subject 70: carrying a suitcase; (10 motions)
3) subject 80: everyday motions (44 motions);
4) subject 82: jumping, pushing, banging (10 motions);
5) subject 76: swatting at bug (1 motion);
6) subject 94, Indian dance (16 motions);
7) subject 102, basketball (32 motions);

1Available mocap.cs.cmu.edu, accessed 11.08.15.

TABLE I

CHECKS OF OVERAPPROXIMATION FOR 8 DATASETS

Dataset ΓACC ΓV EL ΓPOS

1 (25 motions) 25 25 25

2 (10 motions) 10 10 10

3 (44 motions) 44 44 44

4 (10 motions) 10 10 10

5 (1 motion) 1 1 1

6 (16 motion) 16 16 16

7 (32 motion) 31 32 32

8 (13 motion) 9 13 13

TABLE II

VOLUME COMPARISON OVER A SAMPLE OF DATA (m3)

Prediction interval (ms) ΓACC ΓV EL ΓPOS

[8.3, 16.7] 0.08 0.44 2.05

[25.0, 33.3] 0.22 1.51 2.39

[41.7, 50.0] 0.67 3.87 2.76

[58.3, 66.7] 2.23 7.98 3.17

8) subject 124, sport-related motions (13 motions)

The first 5 were similar to movements expected at a worksta-
tion, and the last 3 were to test the limits of the prediction.
For every timestep of every movement and for both arms we
check whether the reachable occupancy during a time interval
[ti, tf ] encloses the arm – in this case, all the markers on
the arm at time tf . From a sample of the data, we measure
the average volume (volume calculations take too long to
perform on all data). Position uncertainty is estimated at
0.01m and velocity uncertainty at 0.1ms−1. The time inter-
vals we test are [ti, tf ] = [8.3, 16.7]; [25.0, 33.3]; [41.7, 50.0]
and [58.3, 66.7] (times in ms)2. In Tab. I, measurements are
said to be included only if all markers at tf are always
included in the prediction for each time interval tested, for
both arms. As can be seen in Tab. I, all approaches correctly
account for all movement in the first 5 datasets, but not
in datasets 6–8. The arm dynamics in dancing and sport
movements may be faster than the dynamics in the data used
to parameterise the model in Sec. IV, hence our assumptions
do not hold.

The value ΓV EL is always bigger than ΓACC . However,
during high-speed movements near the velocity limit, ΓACC

may include some volume which is actually not reachable,
since the acceleration model does not consider velocity lim-
its. Here ΓV EL may be verified safe, meaning the trajectory
is verified safe. Sometimes sensors may be obscured or may
not update frequently. At times greater than 50ms, both
ΓV EL and ΓACC become extremely large and could claim
areas far from the shoulder as unsafe. Since ΓPOS models
the constraint that the arm has a fixed total length, this could

2The test data was sampled at 60 and 120Hz, so tf corresponded to a
whole number of timesteps in both.

mocap.cs.cmu.edu


TABLE III

COMPARISON OF PREDICTION TIMES (ALL VALUES ms)

Method Method from [6] ΓACC ΓV EL ΓPOS

Time (averaged
over all time
intervals)

0.46 0.23 0.21 0.18

help verify the trajectory at larger time horizons. A projection
of the reachable sets for ΓACC is shown in Fig. 7.

Fig. 7. Arm, shoulder at top and hand at bottom, underlaid with projections
of reachable sets Γ([8.3, 16.7]ms) in white, Γ([25.0, 33.3]ms) in grey and
Γ([41.7, 50.0]ms) in black. Acceleration model; scale in metres

Computation times are shown in Tab. III. As can be
seen, the approach from [6] using a kinematic arm model
takes longer. Since the three approaches can be calculated
in parallel, the overall time for calculation of the reachable
occupancy may be shorter than the approach with a kinematic
model.

VI. CONCLUSION

We present a Cartesian-space approach to predicting the
human reachable occupancy in the context of a formally veri-
fying path planner. The approaches work well in combination
with each other, and since they are all overapproximative, the
tightest approach at any time can be chosen. The approaches
are computationally efficient enough to be used online within
the context of an formally verified trajectory planner.
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