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Abstract

In the first part of this work, a modeling and simulation approach
for computational wind engineering is presented for the estimation
of structural wind loads. The model is applied to a parabolic trough
solar collector where it is validated with a boundary layer wind tunnel
experiment for the evaluation of mean, root mean square and peak
wind loads in a simulated atmospheric boundary layer.

In the second part of this work, the numerical approach is ex-
tended to include fluid-structure interaction and an analytical model
problem is presented for benchmarking fluid-structure interaction
algorithms. The presentation includes a survey and assessment of
some partitioned procedures and an analysis of the temporal accuracy
and stability for the selected time discretizations: the generalized-α
method for the structure and the second-order backward difference
formula for the fluid. After assessing its accuracy and stability, the
fluid-structure interaction solver is applied to the aeroelastic simula-
tion of a parabolic trough solar collector.

The aeroelastic study of the parabolic trough solar collector con-
ducted in this work goes beyond existing studies found in the litera-
ture by considering feedback effects of the structural motion on the
wind loads. It is shown that significant self-excited vibrations can
occur when the collector is exposed to vortex shedding from its lead-
ing edge. The extensive numerical results are used to provide insight
into the synchronization of vortex shedding with the vibration of the
collector. The current analysis is discussed in the context of exist-
ing literature on self-excited vibrations. Additionally, fluid-structure
interaction simulation is compared with the classical technique in
which the aerodynamic damping is estimated by controlled periodic
oscillations. The strengths and weaknesses of both approaches are
discussed.
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Zusammenfassung

Der erste Teil dieser Arbeit beschäftigt sich mit der Entwicklung
und Validierung einer numerischen Vorgehensweise für die prädik-
tive Ermittlung von Windlasten. Diese wird zur Berechnung eines
Solarrinnenkollektors eingesetzt. Mittelwerte, quadratische Mittel-
werte und Höchstwerte der in einer simulierten atmosphärischen
Grenzschicht ermittelten aerodynamischen Beiwerte werden mit Er-
gebnissen von einem Windkanalversuch verglichen.

Im zweiten Teil dieser Arbeit wird die vorgeschlagene Herange-
hensweise erweitert, um Fluid-Struktur-Wechselwirkung zu simulie-
ren, und ein analytisches Modell wird präsentiert, um ausgewählte
Kopplungsalgorithmen zu evaluieren. Die Darstellung beinhaltet eine
systematische Bewertung der Kopplungsverfahren und eine Unter-
suchung der Stabilität und Genauigkeit für die gewählten Zeitdis-
kretisierungen: die Generalized-α-Methode für die Struktur und der
Rückwärtsdifferenzenquotient zweiter Ordnung für das Fluid. Nach
der Überprüfung der Genauigkeit und Stabilität wird die komplette
Implementierung eingesetzt, um eine aeroelastische Simulation des
Rinnenkollektors durchzuführen.

Die aeroelastische Analyse des Rinnenkollektors geht über bis-
herige Untersuchungen von Rinnenkollektoren hinaus, indem die
Rückkopplung der Bewegung der Struktur auf die Windlasten berück-
sichtigt wird. Es wird gezeigt, dass erhebliche aeroelastische Effekte
auftreten können, wenn ein wesentlicher Teil der Belastung durch
den Wirbelablösungsprozess an der Vorderkante entsteht. Die um-
fangreichen numerischen Ergebnisse werden detailliert ausgewertet,
um Einsicht in die Synchronisierung des Wirbelablösungsprozesses
mit der Vibration des Rinnenkollektors zu gewinnen. Die numeri-
schen Ergebnisse werden im Zusammenhang mit der Fachliteratur
über aeroelastische Effekte diskutiert. Des Weiteren wird die moder-
ne Fluid-Struktur-Wechselwirkungssimulation mit dem klassischen
Verfahren, in dem die aerodynamische Dämpfung durch kontrollierte
periodische Schwingungen ermittelt wird, verglichen. Die Vor- und
Nachteile beider Verfahren werden dabei erläutert.
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The purpose of computing is
insight, not numbers.

Richard Hamming

Chapter 1

Introduction

Computational wind engineering (CWE) is increasingly being applied to
microscale flow problems, including structural wind engineering, since its
inception nearly 50 years ago [14]. Its emergence has provided researchers
and practitioners with a new tool, enabling the unrestricted measurement
of data at arbitrary scale and the preliminary assessment of structural wind
loads for design.

Despite its potential, computational fluid dynamics (CFD) is not com-
monly used in structural wind engineering. According to [15], this is due to
a limited knowledge about the estimation of wind loads using CFD models
and the required complexity of the (time-dependent) models themselves.
In contrast to environmental wind engineering problems, time-dependent
analysis is generally required for structural wind engineering in order to
predict peak pressures and wind loads [14, 107]. Tamura et. al. [107] further
emphasize the importance of modeling inflow turbulence for wind load
estimation. This is similar to boundary layer wind tunnel (BLWT) experi-
ments, which use spires and roughness elements to simulate the turbulent
characteristics of the upstream flow. In fact, some numerical studies have
directly modeled the BLWT to simulate the approaching flow [108, 115].

1



1 Introduction

Figure 1.1: A parabolic trough solar collector [61].

In order to advance the field, further research into two important as-
pects is required:

1. the development of comprehensive numerical models,

2. extensive experimental validation and cross-comparison between
numerical approaches.

Previous contributions to this research include a 29 m umbrella [73], the
Silsoe cube [62], the long-span roof of the Shenzhen railway station [68],
low-rise buildings [45, 88], high-rise buildings [80, 87, 108], the CAARC tall
building model [34] and a building with a setback [115].

The current work centers around the application of the finite element
method (FEM) for the large-eddy simulation (LES) of wind loads on a
parabolic trough solar collector (PTSC) (figure 1.1). It includes modeling
and simulation of a neutrally-stable atmospheric boundary layer (ABL),
the validation of mean, root mean square (RMS) and peak wind loads
with experimental data from a BLWT, the development of an analytical
fluid-structure interaction (FSI) benchmark problem, an assessment of
several partitioned FSI coupling algorithms and a complete aeroelastic
study of a PTSC section model in a simulated ABL flow at full scale. Using
the validated numerical model, the range of reduced velocities and pitch
angles for which self-excited vibrations can occur is identified and the
mechanism of self-excited vibration is described by a detailed analysis of
the numerical simulation results.
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1 Introduction

The remaining chapters in this thesis are organized as follows:
C H A P T E R 2 discusses properties of the ABL that affect structural wind
loads. Modeling assumptions and simplifications are presented, several tur-
bulence statistics used throughout this work are defined, and the method
used for simulating the ABL is described.
C H A P T E R 3 describes the FEM discretization used for LES in this work.
The description includes the complete set of equations solved at each time
step and the definition of the subgrid scale terms. The near wall modeling
problem is discussed, and the chosen numerical approach is tested using
a backward-facing step experiment.
C H A P T E R 4 presents a validation study for the simulation of wind loads
on a PTSC. The ability of the numerical model to reproduce the turbulence
statistics observed in a BLWT is investigated, a mesh refinement study is
performed to assess the sensitivity of the estimated wind loads to the mesh
size, and the wind load statistics are compared with BLWT measurements
for 9 pitch angle configurations.
C H A P T E R 5 discusses FSI in the context of wind engineering. The ana-
lytical model problem is presented and subsequently used to assess the
accuracy, stability and efficiency of several partitioned coupling proce-
dures. The chapter concludes with a nonlinear benchmark problem and
an assessment of the mesh motion scheme used in this work.
C H A P T E R 6 proceeds with the aeroelastic study of the PTSC in a simu-
lated ABL. The need for an aeroelastic study is first justified by a review of
existing knowledge found in the literature. This is followed by a discussion
of the section model and a dimensional analysis of the parameters used
for the current study. One-way and two-way coupled simulations are used
to quantify the amplification of the response due to feedback effects of
the structural motion. The self-excitation mechanism is then explained
through a detailed analysis of the numerical results. It is shown that the
observed results are consistent with the existing knowledge of self-excited
vibrations found in the literature. Finally, the aerodynamic damping is
estimated through a controlled-oscillation simulation in a smooth flow
and is shown to be consistent with the onset of self-excited vibrations in
ABL flow as predicted by the FSI simulations.
C H A P T E R 7 summarizes the outcomes of this work and provides some
recommendations for future studies.

The publications [5, 7, 8] have resulted from this thesis work.
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Chapter 2

Simulation of Natural Wind

2.1 Surface Layer Characteristics

For the simulation of structural wind loads, wind effects in the region of the
ABL closest to the ground need to be modeled. This region is referred to as
the surface layer. It extends 50-100 m above the ground and is characterized
by constant shear stress in the vertical direction [57].

Within this layer, wind effects depend on the shear stresses resulting
from the friction of the earth and on the vertical gradient of temperature.
At high wind speeds, the buoyancy forces due to temperature gradients
are small compared to surface driven friction forces and may therefore be
neglected for structural wind load simulations. This condition corresponds
to a Richardson number equal to zero, and the surface layer is said to be
neutrally stable.

Ground friction is affected by pressure drag, which normally dominates
viscous surface drag [119]. Pressure drag refers to pressure differences
across obstacles, ranging from soil and grass to forest and urban canopies,
that act as a momentum sink. The local terrain type is characterized by a
roughness height z0, which strongly influences the turbulent conditions
in the vicinity of the structure and the resulting wind loads. Its value for

5



2 Simulation of Natural Wind

various terrain categories is reviewed in detail by [119].
Under the conditions of neutral stability, homogeneous roughness of

the upstream terrain and stationary turbulence, the variation of the mean
velocity with height follows the widely known logarithmic profile

ū (z ) =
u∗
κ

ln

�

z

z0

�

(2.1)

with κ≈ 0.4 the von Kármán constant. The friction velocity u∗ is related to
the shear stress on the ground by

τ0 =ρu 2
∗ (2.2)

and depends on both the terrain and wind speed [57].
An alternative to (2.1), which is commonly used in wind engineering,

is the power law

ū (z ) =Ur e f

�

z

zr e f

�α

(2.3)

where the exponent αmay be computed for a given value of z0 by a curve
fitting of (2.1).

The suitability of (2.1) or (2.3) depends on the distance of the upstream
fetch over which the roughness is approximately uniform. A sudden change
in the upstream roughness results in an internal boundary layer (IBL),
identified by a discontinuity in the velocity gradient ∂ ū

∂ z . The growth of the
IBL is generally considered to be consistent with the growth of a turbulent
boundary layer over a smooth flat plate, which was shown by [97] to scale
with x 0.8 [41]. If the height of the structure is comparable to the height
of the IBL, the mean profile may be better approximated by a modified
power law [116]. In the remainder of this work, only uniform roughness
conditions are considered.

2.2 Wind Gust Statistics

In structural wind engineering, the mean velocity is used to describe the
component of velocity that varies gradually over the course of several hours
or days as a result of changes in weather. Superimposed on this are time-
resolved fluctuations or wind gusts with time scales on the order of seconds

6



2.2 Wind Gust Statistics

and minutes. Gust-induced wind loading, also referred to as buffeting, is
a form of externally-induced excitation [77]. It contributes to the overall
peak wind loads and may cause resonant excitation of structures if the
structural eigenfrequencies coincide with the buffeting frequencies, which
are described by the gust spectrum (also discussed below). If dynamic
effects are negligible, the time-varying fluctuations may be combined with
the mean load using a method such as [59] to obtain static design wind
loads. As in the case of mean velocity, time varying gusts depend strongly
on the terrain roughness.

Modeling turbulent gusts is generally more difficult than modeling the
mean velocity. In the time domain, the velocity fluctuations u′ are defined
by

u′ = u − ū. (2.4)

The spectral gap [114] facilitates the definition of (2.4) where ū and u′

describe the wind effects from the meso- and microscales, respectively.
The latter may be filtered out by averaging the velocity over a period of
approximately 10 minutes.

For the description of the turbulent fluctuations, it is useful to define
the covariance tensor [112]

Ri j (x ;ξ) = u ′i (x )u
′
j (x +ξ) (2.5)

and its Fourier transform, the spectral tensor1

Φi j (x ; k ) =
1

(2π)3

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

Ri j (x ;ξ)exp(−i k ·ξ)dξ. (2.6)

From the practical standpoint, (2.5) cannot be directly calculated since
measurements are usually only available at a small number of measure-
ment positions. Based on these measurements, several useful statistics
can nevertheless be computed. These statistics are defined here to be con-
sistent with the results presented throughout this work. They include the
turbulence intensity

1Under the assumption of homogeneity in the x - and y -direction, the dependence of
statistics on position reduces to Ri j (x ;ξ) =Ri j (z ;ξ) and Φi j (x ; k ) = Φi j (z ; k ).
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2 Simulation of Natural Wind

T .I .=
σu

ū
, (2.7)

withσ2
u = u ′u ′, the one-sided power or energy spectrum

Si ( f ) = 2

∞
∫

−∞

u ′i (t0)u ′i (t0+ t )exp(−2πi f t )d t (2.8)

and the autocorrelation

ρu (t ) =
u ′(t0)u ′(t0+ t )

σ2
u

, (2.9)

which are understood to also depend on the height above the ground.
Here we recall that ρu (t ) =ρu (−t ) and thus Si ( f ) is a real-valued, even

function andσ2
u =

∫∞
0

Su ( f )d f . These statistics, which are based on time
series at a fixed point, are converted to a form based on distance using Tay-
lor’s frozen turbulence hypothesis [109], i.e. by setting (ξx , 0, 0) = (ū t , 0, 0),
and vice versa in order to relate the point statistics to statistics based on
(2.5) and (2.6).

The discrete counterparts to the above statistics are included in ap-
pendix A.

2.3 Synthetic Wind Generator

2.3.1 Generation of Time-Varying Wind

The challenge for the time-resolved simulation of wind is to generate a
physically realistic field of velocity fluctuations from a limited set of statis-
tics such as mean velocity (2.1), turbulence intensity (2.7) and spectrum
(2.8). This transformation is depicted in figure 2.1.

A range of techniques exists for performing this transformation (see,
e.g., [106] and the references therein), all of which involve a set of param-
eters that must be adjusted to fit the data. One of the most obvious tech-
niques mimics the approach used in wind tunnels. Roughness elements
are distributed over the ground and a large-eddy simulation is performed.
The initial size and distribution of roughness elements may be estimated

8
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ū (z )

z z

T .I . f

f Su ( f )

u (z , t ) = ū (z ) +u ′(z , t )

ū (z ) u ′(z , t )

Figure 2.1: Transformation from a statistical description of wind to time-
varying inflow conditions (adapted from [3]).

with the aid of the empirical formula of [67]. The numerical statistics are
then evaluated and compared with the reference data. If the results do not
match, the size and distribution of the roughness elements is adjusted and
the procedure is repeated. Such techniques may be applied to a periodic
domain to reduce the problem size. The domain size must however still
be large enough to capture the range of turbulent length scales existing in
the surface layer. The velocities are extracted and applied in a subsequent
simulation as an inlet boundary condition. Such methods are referred to
as precursor simulations [106].

The alternative to precursor simulation is synthetic generation. Syn-
thesis techniques are based on simplified models with varying degrees
of physical modeling. Their primary advantage over precursor simula-

9



2 Simulation of Natural Wind

White Noise
(no physical
modeling)

Simplified Models
(e.g., linearized
models)

Simulation of the ABL
using LES

Minutes Hours Days Weeks

Figure 2.2: Wind modeling approaches versus computational cost [3].

tion is their lower computational cost, which is typically several orders
of magnitude lower (figure 2.2). When choosing a synthesis method, it is
important to consider the assumptions behind the model and whether
these are sufficient to capture the relevant physics of the problem for the
quantities being investigated. Reviews of some synthesis techniques for
wind field simulation are provided by [49, 72, 90]. Important properties
for such methods include the fulfillment of the divergence free condition,
the ability to model anisotropic spectra and control over the turbulence
length scale. The discretizing and synthesizing random flow generation
(DSRFG) method, proposed by [49] satisfies these criteria. However, the
model is unlikely to reproduce additional physical properties, which are
not explicitly accounted for, since it is not derived from physical principles.
It is shown by [1] that the DSRFG method fails to reproduce the dependency
of coherence on frequency. The same authors propose and extension of
the method, called the consistent DSRFG (CDSRFG) method, to correct
this deficiency by introducing additional tuning parameters and empirical
models. An alternative method satisfying the same criteria is developed by
[71]. This method is derived from physical principles and has been used
by [72] for LES of a large-span umbrella. It is chosen in this work for its
ability to reproduce physical properties, including spectra and coherence,
to a close approximation using a small number of tuning parameters. A
brief review of the J. Mann model in [71] and its implementation in this
work is provided in the remainder of this section to highlight some of the
modeling assumptions.

10



2.3 Synthetic Wind Generator

x

z

Figure 2.3: Uniform shear profile [70].

2.3.2 Linearized Model of Turbulent Shear Flow

The difficulty associated with solving the Navier-Stokes equations is rooted
in their nonlinearity. This problem can be simplified to some extent by
introducing certain assumptions about the nature of the turbulence. Under
the assumption of homogeneous turbulence, the gradient of the mean

velocity ∇ū and the Reynolds stresses ρu ′i u ′j are constant in space. For
uniform ABL flow over flat terrain, the only nonzero component of∇ū is
∂ ū
∂ z and, assuming ∂ ū

∂ z to be constant, ū = z ∂ ū
∂ z as depicted by the uniform

shear profile in figure 2.3.
Based on these assumptions, a set of equations can be obtained that

describe the shearing effect of the mean velocity field on the turbulent fluc-
tuations. Neglecting the nonlinear interaction of the velocity fluctuations
and viscous effects leads to a set of linear ordinary differential equations
based on the wave number in Fourier space, which are referred to as the
rapid distortion equations. The reader is referred to [112] for a detailed
overview.

The assumption of a constant gradient of mean velocity is a clear con-
tradiction to the mean profile in (2.1). Nevertheless, the results show that
it leads to a model of turbulent eddies capable of reproducing several of
the characteristics observed in natural wind to a good approximation.

By solving the rapid distortion equations, [70] presents an explicit
model of the spectral tensor as Φ(βLT ) with βLT = t ∂ ū

∂ z a dimensionless
eddy lifetime. For βLT = 0, the spectral tensor corresponds to isotropic

11



2 Simulation of Natural Wind

turbulence with the von Kármán energy spectrum [58]

E (k ) = E0L 5/3
i s o

(L i s o k )4

(1+ (L i s o k )2)17/6
. (2.10)

The length scale L i s o and coefficient E0 are model parameters, which con-
trol the initial turbulence length scale and turbulence intensity.

The initially isotropic turbulence is distorted by the rapid distortion
equations as βLT increases. A consequence of the linearized model is that
the eddies remain stable as they deform. To simulate real turbulent flow,
an eddy lifetime model is assumed. In [70], the lifetime model

βLT (k ) = ΓLT (L i s o k )−2/3

�

2F1

�

1

3
,

17

6
;

4

3
;−

1

(L i s o k )2

�

�−1/2

(2.11)

is proposed, based on the wave number k and a characteristic velocity
determined from the integral of (2.10) over wave numbers smaller than k .

2F1 is the hypergeometric function and ΓLT is a model parameter, which
controls the anisotropy or stretching of the turbulent eddies. The spectral
tensor model is evaluated at βLT (k ) in order to freeze the stretching of the
eddies.

The velocity fluctuations are generated in a periodic domain on a Carte-
sian grid consisting of N1×N2×N3 grid points with grid spacing∆xi = L i /Ni .
This is done by computing the inverse of the discrete Fourier transforma-
tion (DFT)

u′(x ) =
∑

k

û′(k ) exp(i k ·x )∆k (2.12)

with

û′(k ) =

p

L1L2L3

(2π)3/2
C(k )n(k ). (2.13)

By letting n(k ) be independent Gaussian complex random vectors of unit
variance, the 3×3 matrix C(k ) is related to the spectral tensor by [71]

C ∗i l (k )C j l (k ) = û ′∗i (k )û
′
j (k )

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

Φi j (s )
3
∏

l=1

sinc2

�

(kl − sl )L l

2

�

d s . (2.14)
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2.3 Synthetic Wind Generator

For the s1 component or for wave numbers k > 3/L i s o , the spectral
tensor is nearly constant over the first zero and the sinc function is approx-
imated by a weighted delta distribution [71]. Otherwise, the convolution
integral is carried out numerically (using the midpoint rule) over a domain
restricted to the first zero of the sinc function (|kl − sl |L l /2<π) for compo-
nents s2 and s3. Spectral decomposition is used to factorize the right hand
side of (2.14) with the eigenvalues calculated explicitly by the formulas in
[99]. Finally, since the velocity fluctuations are real numbers, Hermitian
symmetry of the Fourier components û ′i (k ) = û ′∗i (−k ) is enforced.

The complete model has three adjustable parameters (ΓLT , L i s o , E0),
which control the statistical properties of the synthesized turbulence, in-
cluding anisotropy or stretching of the eddies, a length scale of the initial
isotropic turbulence and the turbulence intensity. These parameters are
chosen in an optimal way, for example, by minimization of the nonlinear
least-squares problem, to fit experimental data. The current work uses the
Kaimal spectra given by [56]:

f Su ( f )
u 2
∗
=

105 f z/ū

(1+33 f z/ū )5/3
, (2.15)

f Sv ( f )
u 2
∗
=

17 f z/ū

(1+9.5 f z/ū )5/3
, (2.16)

f Sw ( f )
u 2
∗
=

2 f z/ū

1+5.3( f z/ū )5/3
. (2.17)

The corresponding model parameters are provided in table 2.1.

L i s o E0 ΓLT

0.59z 3.2u 2
∗/z 2/3 3.9

Table 2.1: Kaimal model parameters [71].

To illustrate the approximation quality, longitudinal spectra of the uni-
form shear model are compared with the reference spectra in figure 2.4.

The spatially varying turbulent fluctuations are transformed to tempo-
rally varying inlet data using Taylor’s frozen turbulence hypothesis [109].
The time-dependent inlet velocities are computed on the yz-plane slicing

13
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Figure 2.4: Model spectra fitted to Kaimal spectra from [56].

through the frozen wind field at the x-coordinate x (t ) = x0−UB t with x0

an arbitrary starting position and UB taken as the average of (2.1) over the
domain height. Choosing UB to be constant satisfies the assumption of
homogeneity and preserves the structure and divergence free condition
of the fluctuations. However, eddies with characteristic size D before the
inlet are stretched or compressed in the streamwise direction to ū (z )/UB D
after the inlet as depicted in figure 2.5.

2.3.3 Library Implementation

In this work the wind simulation model is implemented in the C library
[4] with support for distributed memory parallelism using MPI. The in-
verse DFT in equation (2.12) is computed by the FFTW3 library in [39]
with complexity O(N logN ). As a consequence of this transformation, the
entire wind field must be generated before the inlet data can be used. This

14
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Before Inlet After Inlet

ū (z )/UB > 1

ū (z )/UB ≈ 1

ū (z )/UB < 1

Figure 2.5: Characteristic eddy sizes before and after the inlet [3].
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Statistics

Figure 2.6: Workflow for simulating wind loads [3].

typically results in large data sets. A small subset of data is read by the flow
solver at each time step and assigned as time-varying velocities on the
inlet boundary. The wind field is stored efficiently in the self-describing,
portable HDF5 format. The HDF5 library [111] supports shared file ac-
cess and collective reading and writing across MPI processes and provides
the necessary functionality for accessing metadata and data subsets, thus
greatly reducing the programming overhead required to add the wind inlet
boundary condition to existing flow solvers. In addition to the file format
and API, tools such as HDFView [111] and h5py [25] are available for view-
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Figure 2.7: Transformation from a frozen wind field to time-varying inlet
boundary conditions on an LES domain [3].
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2.3 Synthetic Wind Generator

ing and manipulating HDF5 formatted files. The complete workflow for
simulating wind loads using the current modeling approach is shown in
figure 2.6. The transformation from the frozen wind field generated by the
uniform shear model to a time-varying inlet boundary condition on an
discretized LES domain is depicted in figure 2.7.
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Chapter 3

Large-Eddy Simulation

3.1 Finite Element Formulation

The finite element implementation developed in the work of [27]within
the open source software Kratos [28] is used for the simulations presented
in this work. A brief review of the finite element formulation and some of
its properties is given in this section.

The incompressible Navier-Stokes equations are discretized using sim-
plicial Lagrange finite elements with linear shape functions for both veloc-
ity and pressure. Formally, the finite element spaces are given by1

Ṽh = {vh ∈ [C0(Ωh )]
d : vh |K ∈ [P1]

d , ∀K ∈ Th} (3.1)

and

Q̃h = {qh ∈ C0(Ωh ) : qh |K ∈P1, ∀K ∈ Th} (3.2)

where Th is the mesh of simplices (triangles in 2D or tetrahedra in 3D). It
is well known that this choice of finite element spaces leads to spurious

1The notation used here closely follows that of [36].
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3 Large-Eddy Simulation

pressure modes in the Stokes problem due to the violation of the Babuška-
Brezzi condition (see, e.g., §4.2, [36]). Some pressure stability based on
the time step size is recovered by applying the fractional-step method [22].
However, this is not sufficient for second-order schemes. An additional
problem arising from the standard Galerkin method is the loss of coercivity
in the advection-diffusion problem with increasing Péclet number (see,
e.g., §3.5, [36]).

The fractional-step solver in Kratos overcomes both of these issues by
using quasi-static orthogonal subgrid-scale stabilization (OSS) as intro-
duced in [23] and discussed by [27]. Denoting the part of the boundary
where the velocity has the prescribed value uD by ΓD

2, we define the finite
element subspaces

Wh = {wh ∈ Ṽh : wh |ΓD
= uD }, (3.3)

Vh = {vh ∈ Ṽh : vh |ΓD
= 0}, (3.4)

and

Qh = {qh ∈ Q̃h : qh |∂ Ωh−ΓD
= 0}. (3.5)

For consistency with chapters 5 and 6, the mesh velocity δtψh is also
included here. Both here and in chapter 4, its value is understood to be zero.
At each time step, the solution variables are initialized by the their values
at the previous time step. For example, velocity and pressure are initialized
by un ,0

h = un−1
h and p n ,0

h = p n−1
h . A sequence of pressure iterations, denoted

by the superscript m , are then performed by solving the fractional-step
problem shown below. For simplicity, we drop the superscript denoting the
current time step and simply write un ,m

h = um
h and p n ,m

h = p m
h for velocity

and pressure with similar notation for the subscale projections πh c , πhp

and πhd . For the time discretization, the second-order BDF2 scheme is
used.

2Here uD and ΓD are assumed to conform to the finite element discretization.
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3.1 Finite Element Formulation

Fractional-Step Solver: m t h pressure iteration.

Given um−1
h ,un−1

h ,un−2
h ,δtψ

m
h ,πm−1

h c ,πm−1
hp , p m−1

h ,πm−1
hd :

1. Seek ũm
h ∈Wh such that :

∫

Ωh

vh ·ρδt ũ
m
h dΩh +

∫

Ωh

vh ·ρ(ũm
h −δtψ

m
h ) ·∇ũ

m
h dΩh

+

∫

Ωh

2µ

�

ε(vh ) : ε(ũ
m
h )−

1

3
(∇·vh )(∇· ũm

h )

�

dΩh

+
∑

K ∈Th

∫

K

ρ(ũm
h −δtψ

m
h ) ·∇vh ·τ1ρ(ũ

m
h −δtψ

m
h ) ·∇ũ

m
h d K

+
∑

K ∈Th

∫

K

(∇·vh )τ2(∇· ũm
h )d K

=

∫

Ωh

(∇·vh )p
m−1
h dΩh +

∫

Ωh

vh ·ρfB dΩh

+
∑

K ∈Th

∫

K

ρ(ũm
h −δtψ

m
h ) ·∇vh ·τ1π

m−1
h c d K

+
∑

K ∈Th

∫

K

(∇·vh )τ2π
m−1
hd d K , ∀vh ∈Vh . (3.6)

2. Seek p m
h ∈Qh such that :

−
∫

Ωh

2∆t

3ρ
∇qh ·∇(p m

h −p m−1
h )dΩh

−
∑

K ∈Th

∫

K

τ1∇qh ·∇p m
h d K =

∫

Ωh

qh

�

∇· ũm
h

�

dΩh

−
∑

K ∈Th

∫

K

∇qh ·τ1(ρfB +π
m−1
hp )d K , ∀qh ∈Qh . (3.7)
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3 Large-Eddy Simulation

Fractional-Step Solver: m t h pressure iteration (continued).

3. Seek um
h ∈Wh such that :

∫

Ωh

vh · (um
h − ũ

m
h )dΩh

=
2∆t

3ρ

∫

Ωh

(∇·vh )(p
m
h −p m−1

h )dΩh , ∀vh ∈Vh . (3.8)

4. Seek πm
h c ,πm

hp ∈ Ṽh ,πm
hd ∈ Q̃h such that :

∫

Ωh

vh ·πm
h c dΩh =

∫

Ωh

vh ·ρ(ũm
h −δtψ

m
h ) ·∇ũ

m
h dΩh , ∀vh ∈ Ṽh , (3.9)

∫

Ωh

vh ·πm
hp dΩh =

∫

Ωh

vh · (∇p m
h −ρfB )dΩh , ∀vh ∈ Ṽh , (3.10)

∫

Ωh

qhπ
m
hd dΩh =

∫

Ωh

qh∇· ũm
h dΩh , ∀qh ∈ Q̃h . (3.11)

The stabilization parameters are defined as

τ1 =



ρ

�

τd y n

∆t
+4

ν

h 2
K

+2
|ũm

h −δtψ
m
h |

hK

�





−1

(3.12)

and

τ2 =ρ

�

ν+
1

2
hK |ũm

h −δtψ
m
h |
�

. (3.13)

Moreover, the element integrals on the left-hand sides of (3.8)-(3.11) are
computed with the quadrature points on the nodes, resulting in lumped
mass matrices.

In the case of a deforming domain, all integrals in the above algorithm
are computed at the current time step. According to [37], this ensures
geometric conservation in the sense that it preserves a constant velocity
field.
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3.2 Near Wall Model

In addition to providing stabilization, variational multiscale methods
(VMMs), including the OSS method described above, can also be applied
as implicit LES models for turbulent flows [26, 40, 83]. This idea follows
from their interpretation as a model for the unresolved component of the
continuous velocity and pressure fields as originally presented by [51]. The
interested reader is referred to [27] for a detailed analysis of the turbulence
modeling properties of the subgrid-scale models in Kratos.

3.2 Near Wall Model

LES uses simplified subgrid scale models for the small scales, which are
assumed to have a universal structure. Although the required resolution of
the interior domain is typically a fixed fraction of the geometric scale, the
number of degrees of freedom required in the near wall region increases
approximately with the square of the Reynolds number [10, 19].

One approach to alleviate the resolution requirements in the wall layer
is to use a hybrid RANS/LES model or detached eddy simulation (DES)
[102]. The approach uses a RANS model for the wall layer while LES is
used to model the flow in the interior of the domain. A review of DES
and its formulations can be found in [100]. Meshing requirements are
discussed by [101]. DES requires anisotropic grid refinement to within the
viscous sublayer in the wall normal direction. This significantly increases
the meshing difficulty compared to isotropic mesh generation for complex
geometries and may lead to problems with shape-regularity as well as
robustness under mesh deformation when simulating FSI. Moreover, the
study of [62] showed that when DES is applied on coarse grids with high
Reynolds numbers, the LES zone may behave similar to a RANS zone,
resulting in poor accuracy compared to LES models with a wall function.
For these reasons, DES is not considered further in this work.

Another possibility consists of using simplified boundary layer the-
ory in the near wall region. In this approach, a boundary layer grid with
refinement in the wall normal direction is embedded in the LES mesh
between the wall and the first LES grid point. The pressure and velocity
of the first LES grid point are applied as upper boundary conditions and
a no-slip condition is applied at the wall. This approach, introduced in
[12], is referred to as a two-layer model and has been used successfully for
predicting channel flow, favourable and adverse pressure gradients [117]
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u(yw )

yw

Figure 3.1: Wall function parameters in a tetrahedron element.

and separated flows [17]. Due to the complexity of creating a second mesh
of the wall layer and coupling with the initial mesh, this approach is not
considered further here.

Wall stress models using equilibrium laws such as the log-law provide
the simplest solution to the near wall problem. A one-dimensional problem
is solved based on the values of the flow variables and possibly their gradi-
ents at a point with a distance yw from the wall in order to compute the wall
stress. The wall stress is then applied as a boundary condition in the wall
tangent direction. The one-dimensional problem eliminates the meshing
problem associated with the more sophisticated models described earlier.
On the other hand, the reduction in dimensionality leads to essential sim-
plifications of the physical models, which are often based on channel flow,
and modeling errors may be expected for more complex problems such as
flows with separation [17, 76]. Even relatively simple problems such as flow
through a square duct can result in significant variation of the empirical
constants [43].

In this work, the one-dimensional wall function model is used in combi-
nation with tetrahedral finite elements as shown in figure 3.1. The integral
of the wall stress is calculated over the element face using a one point
quadrature. The choice of yw is not constrained by the wall stress model.
The classical approach for applying wall functions in the finite volume
method uses the flow values at the first off the wall grid point. In [60], it is
argued that this approach leads to under-resolved flow information being
supplied to the wall stress model which adds to the modeling errors. It
is proposed to instead use better resolved flow information from interior
grid points. In order to restrict the implementation to the local element
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Outer region Focus regionΓs

Γi Γo

Γwx/Hs

Figure 3.2: Backward-facing step domain and mesh regions.

level, the choice of yw is taken to be the intersection point of the boundary
face normal director with the interior face as illustrated in figure 3.1. This
choice maximizes the weight given to the interior node which is assumed
to have better resolution properties than the wall nodes. The velocity used
by the wall stress model is computed as the projection of the instantaneous
velocity onto the plane defined by the boundary face. The model can be
combined with any one-dimensional wall model. In this work it has been
combined with the models of [118] and [98].

3.3 Backward-Facing Step

The backward-facing step problem is simulated as an initial test case for the
flow solver used in this work. The results are compared with the experiment
of [54], which was conducted at NASA Ames Research Center at a Reynolds
number of Re=5000 based on the step size.

In the experiment, an initial channel of width 30.5 cm and height 9.6 cm
is suddenly expanded by a step of height 0.98 cm. The turbulence inten-
sity upstream of the step is below 1%, allowing a steady inlet boundary
condition to be used in the numerical simulation. The experimental data
includes skin friction, mean velocity profiles and Reynolds stress profiles
downstream of the step. The measurements are estimated to be within
±2% for the mean velocity and ±15% for the Reynolds stresses. The reat-
tachment is estimated to occur at x/Hs = 6±0.15.

The simulation domain and mesh parameters are shown in figure 3.2
and table 3.1, respectively. The mean velocity profile on the inlet boundary
Γi at x/Hs =−3.12 is prescribed by the experimental measurement data at
the same position. A slip condition is prescribed on the upper boundary
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Mesh
Mesh Size (Hs /h) yw u∗

ν Ne l
Focus Outer

Coarse 6.5 2.6 30 694293

Fine 9.8 2.6 20 1907304

Table 3.1: Backward-facing step mesh settings.

Γs , a zero pressure outlet condition is applied on the outlet Γo , and the
wall function in [98] is applied on the bottom boundary Γw . The domain
dimension perpendicular to the plane is 6Hs , and a periodic boundary is
used.

The simulation results are shown in figure 3.3. For both meshes, the
mean velocity behind the step is in close agreement with the experiment.
Larger differences are observed for the Reynolds stress or RMS velocity
fluctuations. On the experimental side, the measurement uncertainty is
larger for the RMS velocity fluctuations than for the mean velocity. Addi-
tionally, the numerical results are more sensitive to the difference in mesh
size. The appearance of larger uncertainties in RMS results compared to
mean results is observed consistently throughout this work.

The skin friction appears to be well approximated by the fine mesh but
fails to predict the profile in the recirculation region on the coarser mesh.
Thus, if the quantity of interest depends on the accurate prediction of skin
friction, high near wall resolution may still be necessary when using the
current modeling approach.
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Figure 3.3: Comparison of backward-facing step simulation results with
experimental results from [54].
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Chapter 4

Boundary Layer Wind Tunnel
Validation

When validating numerical models of ABL flows, one must either com-
pare with field measurements or with experimental data obtained from a
BLWT. Field measurement data for PTSCs is quite limited. At the time of
this writing, the only known available study is by [44]. Further, variability
in wind conditions during field measurements may introduce additional
uncertainty in the data. This can result in larger differences between mea-
sured data and numerical results than would otherwise be observed if the
wind conditions could be more precisely determined. Alternatively, BLWT
experiments offer an environment in which conditions such as roughness,
wind direction and wind speed can be more carefully controlled, enabling
a more precise comparison of physical measurement with numerical sim-
ulation. For these reasons, the conditions measured in a BLWT experiment
are simulated using the numerical approach presented in this work and
the estimated wind loads are compared.

Still, uncertainties in the simulated wind conditions cannot be com-
pletely eliminated since often only a limited set of point data is available.
The ability of numerical models to reproduce the conditions of a wind
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tunnel experiment is ultimately limited by the amount and quality of infor-
mation from the wind tunnel. This presents a significant challenge for the
field of CWE, which is not yet established as a reliable alternative to wind
tunnel experiments. Presently, wind tunnel experiments are still consid-
ered to be more reliable for the assessment of wind loads on solar collectors
[105].

The primary aim of this chapter is to investigate the ability of the pro-
posed numerical model to simulate wind loads on a PTSC in an ABL flow.
The broader aim is to contribute a high quality comparison of numerical
simulation with physical experiment for the estimation of structural wind
loads to the field of CWE. The need for such studies has recently been
emphasized by [14]. Part of the work presented in this chapter has been
published in [7]where the FEM results were further compared with results
from the lattice Boltzmann method. It is included here with permission
from the publisher.

In section 4.1, the wind tunnel experiment used in this work is de-
scribed. The computational domain, boundary conditions and discretiza-
tion parameters are described in section 4.2. The turbulent conditions
in the simulated ABL are calibrated from experimental data in section
4.3. Wind loads are then simulated at wind tunnel scale on three different
meshes in section 4.4 and compared with measurement data.

4.1 Experimental Setup

The experimental model consists of a 1:25 scale isolated collector module
with the dimensions shown in figure 4.1. Mean, RMS, maximum and mini-
mum values of drag Fx , lift Fz and base moment Mb are determined for
the 9 pitch angles depicted in figure 4.2 for the case of uniform upstream
roughness. At full scale, the roughness is z0 = 0.02m and corresponds to
open country terrain [119]. In all cases, the wind direction is perpendicular
to the pitch axis. Based on the study of [47], this is expected to result in the
largest aerodynamic wind loads.

The wind tunnel experiment was carried out at the Boundary Layer
Wind Tunnel Laboratory at Western University, Canada, and reported by
[110]. The Reynolds number was Re= 85000 and is defined as

Re=
Ur e f W

ν
. (4.1)
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Figure 4.1: Model geometry with force and moment definitions [110].
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Figure 4.2: Pitch angle configurations [74].

Here Ur e f is the mean reference velocity measured at a reference height
of zr e f = 0.4m, W = 0.2m is the aperture of the collector and ν = 1.5×
10−5 m2/s is the kinematic viscosity of air. Time series of forces and mo-
ment were measured using a JR3 multi-axis force-torque sensor [55]. The
uncertainty range of the sensor is given as ±0.25% of the standard mea-
suring range for the drag, lift and pitching moment, respectively, and is
constant over all pitch angle configurations.

The force and moment measurements are transformed into aerody-
namic load coefficients defined according to

CD =
Fx

0.5ρU 2
r e f BW

, (4.2)

CL =
Fz

0.5ρU 2
r e f BW

, (4.3)

CMb
=

Mb

0.5ρU 2
r e f BW 2

. (4.4)
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Figure 4.3: BLWT model [110].

In addition to the force and moment statistics, mean velocity and tur-
bulence intensity profiles were provided along with a time series of the
modulus of velocity at the reference height. Statistics are computed from
time series with a total time of approximately W /Ur e f ×104.

The BLWT experiment is shown in figure 4.3. As requested by Abengoa1,
aerodynamic load coefficients presented in this chapter are normalized
by the maximum experimental value.

4.2 Computational Setup

The parameters of the numerical model are chosen to approximate the
BLWT experiment as accurately as possible for the given information. The
simulations are performed at the wind tunnel scale and Reynolds number.
The cross section of the LES domain is identical to that of the wind tunnel
with dimensions 3.5 m wide × 2.6 m high. The length in the streamwise
direction is truncated to 4.1 m with the collector located 1.4 m from the
inlet.

In the present study, the limitations of wind tunnel size restrict the
Reynolds number. This is not a major concern since it is generally ac-
cepted that variations in Reynolds number above 104 do not significantly
influence aerodynamic wind loads of parabolic troughs [47, 86]. For more
complicated problems such as modeling the effects of ridges and escarp-
ments, it becomes more difficult to restrict the blockage ratio to acceptable

1The experimental data used in this chapter is provided by Abengoa.
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4.2 Computational Setup

levels. In such cases, a numerical approach is less restrictive. Relatively
large domain sizes can be efficiently modeled on unstructured meshes to
effectively reduce blockage ratios. An alternative approach is the develop-
ment of more realistic boundary conditions on the sides, top and outlet
of the domain such as the boundary condition proposed in [32]. As the
current investigation is restricted to uniform, flat terrain, these alternatives
are not considered further here.

Time-varying velocities computed from the wind simulation technique
described in section 2.3 are prescribed on the inlet of the truncated LES
domain in order to model the effects from the uniform upstream roughness.
On the ground and surface of the collector, the wall function technique
described in section 3.2 is used with the wall function model described
in [98]. The effects of ground roughness due to pressure drag were not
explicitly modeled in the wall function in this study since the smooth
wall function was found to accurately reproduce the mean velocity and
turbulence intensity profiles in the vicinity of the collector. Nevertheless,
wall roughness models may be included and could be useful in future
studies where the distance from the inlet to the structure is larger. Given
the maximum blockage ratio of the collector as 0.7%, the effects of the sides
and top of the wind tunnel on the aerodynamic loads are expected to be
negligible. To avoid the need to resolve the fine boundary layers developing
on these surfaces, slip boundary conditions are applied to the top and sides
of the LES domain. Finally, a zero pressure boundary condition is applied
on the outlet.

The computational domain is subdivided into a focus region, extending
from the inlet until approximately 80W downstream with a cross section
of 7W wide × 3W high centered around the collector, and an outer region
encompassing the remainder of the domain. Aerodynamic loads are cal-
culated using three meshes in order to quantify the extent to which the
results depend on the mesh. The primary mesh has a mesh size of 0.02W
on the surface of the collector and transitions to approximately 0.16W
in the focus region. The second mesh differs from the first in the focus
region where the mesh size is halved to 0.08W . This mesh is used to see
the sensitivity of results to the resolution in the approach flow and wake
region. The third mesh uses the same mesh size as the first in the focus
region but halves the mesh size on the surface of the collector. This mesh is
used to investigate the sensitivity of results to the mesh resolution next to
the surface of the collector. In all three meshes, the mesh size of the outer
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Figure 4.4: Finite element mesh 1.

region is fixed to 0.7W . The three meshes are summarized in table 4.1.

W/h Surface Focus region Outer region

Mesh 1 50 6.25 1.4

Mesh 2 50 12.5 1.4

Mesh 3 100 6.25 1.4

Table 4.1: Mesh sizes for the BLWT validation.

The first mesh is shown in figure 4.4 with a cut through the center plane. The
time step size is∆t = 0.003 s for all simulations and satisfies Ur e f ∆t /h ≈
0.6 based on the mesh size h = 0.16W .
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4.3 Wind Simulation

4.3 Wind Simulation

4.3.1 Generation of Inlet Data

The time-varying inlet data was generated by fitting the model parameters
to the conditions measured in the wind tunnel. The log roughness z0 was
chosen to minimize the difference between the measured mean velocity
profile and the log mean profile in the Euclidean norm, and the height
parameter z (table 2.1) was chosen based on the turbulence length scale of
approximately 1 m calculated from the autocorrelation of the velocity sig-
nal measured at the reference height. The generated velocity fluctuations
were calculated based on the roughness z0 = 0.0008 m (0.02 m at full-scale)
rather than the roughness obtained from fitting of the mean velocity profile
because this resulted in a better approximation of the turbulence intensity
profile at the position of the collector in an empty channel simulation
(section 4.3.2). A summary of the wind generation parameters is given in
table 4.2.

Parameter Value

UB 7.44 m/s
L x × L y × Lz 896 m × 3.5 m × 3.5 m

Nx ×Ny ×Nz 32768 × 128 × 128

∆x ×∆y ×∆z 0.0273 m × 0.0273 m × 0.0273 m

z 0.25 m

ū (z ) 5.8 m/s
z0 0.00076 m

Table 4.2: Wind simulation parameters for 1:25 scale model.

The velocity fluctuations are generated using the Kaimal spectrum [56]. Es-
timated spectra of the generated fluctuations for each velocity component
are plotted in figure 4.5.

4.3.2 Empty Channel Simulation

The purpose of the empty channel simulation is to verify the statistics of
the simulated ABL in the LES domain. The statistics are presented here for
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Figure 4.5: Spectra of generated wind (GEN) and Kaimal spectra (KML) for
simulation of BLWT experiment.
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mesh 1 of table 4.1.

The spectrum of the velocity signal measured at the reference height
is compared with the spectrum of the BLWT at the position of the col-
lector in figure 4.6. The numerical and experimental spectra are in close
agreement for W f /Ur e f < 0.4. At higher frequencies the spectrum of the
numerical simulation decays rapidly. This is caused by a filtering effect of
the finite element mesh on the small scale fluctuations. This filtering effect
is unavoidable in numerical simulations and may be shifted to higher fre-
quencies either by choosing a numerical scheme with improved resolution
characteristics or refining the mesh.

Also shown in figure 4.6 is the autocorrelation. The autocorrelation is
useful for quantifying the characteristic time scale of wind gusts. Using
Taylor’s frozen turbulence hypothesis [109], this may also be interpreted
as the spatial extent in the streamwise direction. The gust sizes in the
transverse and vertical directions of the experiment cannot be estimated
from the available data and are unknown.

Mean velocity and turbulence intensity profiles are calculated at 7
equidistant positions from the inlet until x/zr e f = 3.9 and plotted in fig-
ures 4.7 and 4.8. Profiles from the wind tunnel experiment are plotted for
comparison at the position of the collector (i.e., x/zr e f = 3.25).

The first profile at x/zr e f = 0 lies on the inlet boundary and has a
steep gradient of velocity next to the ground which is approximated in the
figure by a linear interpolation to the first interior measurement point. This
corresponds approximately with the first element height. At the ground,
the mean inlet velocity is zero and results in infinite turbulence intensity.
For this reason, the turbulence intensity profile is only plotted over the
interior points. The mean velocity increases with increasing distance from
the inlet as it adjusts to the wall condition. This results in the decreasing
values of turbulence intensity observed adjacent to the ground.

Farther from the ground, the turbulence intensity initially increases
after the inlet. The model of [71] generates turbulent fluctuations in a
periodic domain under the assumption of homogeneity. Therefore, the
inlet fluctuations are not consistent with the zero penetration condition
on the ground of the LES domain. As a result, fluctuations with a vertical
velocity component close to the ground are forced to redirect in the hori-
zontal direction as they react to the ground, contributing to higher velocity
fluctuations in the streamwise direction.
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Closer to the position of the collector, the profiles change more gradu-
ally and are in good agreement with the experimental profiles.

4.4 Wind Load Simulation

The instantaneous flow field for the pitch angle 30o is visualized in figure 4.9.
Upstream from the collector, velocity fluctuations are seen with scales on
the same order as the collector dimension. These large-scale fluctuations
or gusts are a consequence of the time-varying inlet boundary condition
and largely affect the peak and RMS wind loads. As demonstrated above,
their statistics are in close agreement with the experimental data and they
are expected to be a realistic representation of the turbulent conditions in
the BLWT experiment. The influence of the collector on the flow field is
seen in the wake region downstream of the collector with regions of high
and low velocity separated by the thin shear layer originating from the
separation point at the edge of the collector.

Drag statistics computed from the meshes in table 4.1 are compared
with experimental results in figure 4.10. Mean and RMS drag are in close
agreement for all three meshes, indicating that the results are nearly inde-
pendent of mesh size. The largest differences in mean drag occur for 30o.
For this pitch angle, the drag from mesh 1 differs from the experiment by
13%. Meshes 2 and 3 differ from the experiment by 9% and 10%, respec-
tively. Based on these results, the mesh uncertainty is estimated to be on
the order of a few percent. For RMS drag, the relative differences between
numerical and experimental results are slightly larger and are in the range
15-17% for 0o and 180o. Larger variations in numerical results occur for
peak values which are generally more difficult to estimate. Nevertheless,
the peaks show good overall agreement with the largest difference between
meshes 1 and 2 at 0o on the order of 18%. Additionally, the tendency of
numerical results to overpredict RMS drag is not observed in the peak
values.

Lift statistics are plotted in figure 4.11. The largest differences occur
for the pitch angle 60o. This corresponds to the most severe loading in the
vertical direction. At this pitch angle, the relatively sharp peaks in the mean
and RMS are underpredicted by the numerical results of mesh 1 by 21%
and 15%, respectively. The results of mesh 3 are in better agreement with a
12% underprediction in the mean and 3% in the RMS. At the remaining
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Figure 4.6: Statistics measured at reference height zr e f in the empty chan-
nel for BLWT experiment (EXP) and finite element method (FEM).

39



4 Boundary Layer Wind Tunnel Validation

0.0

0.2

0.4

0.6

0.8

1.0

z
/z

re
f

x/zr e f = 0 x/zr e f = 0.65

0.0

0.2

0.4

0.6

0.8

1.0

z
/z

re
f

x/zr e f = 1.3 x/zr e f = 1.95

0.0

0.2

0.4

0.6

0.8

1.0

z
/z

re
f

x/zr e f = 2.6 x/zr e f = 3.25

EXP FEM

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
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Figure 4.7: Mean velocity profiles for empty channel simulation. The mea-
sured profile from the BLWT experiment is plotted at the position of the
collector.
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The measured profile from the BLWT experiment is plotted at the position
of the collector.
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Figure 4.9: Instantaneous velocity contours for pitch angle 30o.

pitch angles the lift statistics are relatively insensitive to the variation in
mesh size and are in close agreement with the experimental values.

The base moment statistics are plotted in figure 4.12 and follow a similar
trend to the drag.

4.5 Summary

Overall, the mean, RMS and peak values of aerodynamics loads obtained
from the numerical results are in good agreement with the values from
the BLWT experiment. This confirms that the essential physics affecting
wind loads on the collector are correctly modeled. A mesh study revealed
that the largest mesh dependence for drag occurred close to the pitch
angle 30o with uncertainty estimated to be on the order of a few percent.
Slightly larger mesh dependence was observed for lift at the pitch angle
60o. For this pitch angle, the lift forces appeared especially sensitive to the
mesh size close to the surface of the collector. Better agreement with the
experimental results was observed with mesh refinement.
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Figure 4.10: Statistics of drag coefficient: BLWT experiment (EXP) is com-
pared with simulations from meshes 1-3. Error bars indicate the uncer-
tainty due to the force-torque sensor.
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Figure 4.11: Statistics of lift coefficient: BLWT experiment (EXP) is com-
pared with simulations from meshes 1-3. Error bars indicate the uncer-
tainty due to the force-torque sensor.
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Figure 4.12: Statistics of moment coefficient: BLWT experiment (EXP) is
compared with simulations from meshes 1-3. Error bars indicate the un-
certainty due to the force-torque sensor.
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Chapter 5

Fluid-Structure Interaction

The subject of FSI is generally concerned with the interdependence of
motions of a fluid and a structure in contact with each other. The extent to
which the motions of either fluid or structure subsystem depends on the
other is problem dependent.

For example, the difference between the period of a gravity pendulum
in a vacuum and in air is relatively small. As a result, Earth’s gravity can be
estimated to within reasonable accuracy from a simple pendulum experi-
ment. Increases in measurement precision of early gravity experiments
led to additional terms to correct for the effects of air. In 1828, Bessel [13]
observed that the force due to gravity acts not only on the body but also
on the mass of fluid accelerated by the body. Today this is known as the
added-mass effect. Bessel’s work resulted in a new correction for high pre-
cision pendulum experiments accounting for the increase in the moment
of inertia in addition to the correction for buoyancy. It was later found that
experiments on the added mass of a pendulum had been reported 50 years
earlier by Du Buat [11].

While the added-mass effect is relatively small for the pendulum oscil-
lating in air, it can be quite significant in other problems. As an example,
Lamb [66] conducted a theoretical study based on the problem of subma-
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rine signaling. He considered a circular plate of radius R and thickness
hs clamped at its edge and in contact with water. An expression for the
eigenfrequency of the first symmetric mode of vibration was determined
to have the form

fn =
fn0

p

1+α f s
(5.1)

with fn0 the eigenfrequency of the plate in a vacuum and

α f s = 0.6689
ρ f R

ρs hs
. (5.2)

For a 1/8-inch thick iron plate with a diameter of 7 inches, the eigenfre-
quency was found to be lowered by a factor of 0.542 due to the increase in
inertia caused by the water. The increase in inertia by the water is equiva-
lent to the addition of a second mass equal to the structural mass scaled by
α f s . As a result, the factor α f s is sometimes referred to as the added-mass
ratio. Lamb further noted that for “a plate vibrating in segments separated
by nodal lines, the effect of the inertia of the water will be less, owing to the
freedom of lateral motion near the surface, between adjacent segments in
opposite phases” [66]. Thus, the largest added-mass effects occur for the
lowest structural eigenfrequencies.

A more destructive form of FSI, which would later become known as
flutter, was discovered after repeated instances of violent oscillations and
catastrophic failures occurred in flight around the time of the First World
War. The problem is characterized by [42]:

Because it must be light, an airplane necessarily deforms appre-
ciably under load. Such deformations change the distribution
of the aerodynamic load, which in turn changes the deforma-
tions; the interacting feedback process may lead to flutter, a
self-excited oscillation, often destructive, wherein energy is
absorbed from the airstream.

The term flutter is also used in civil engineering to describe self-excited
vibrations which depend on torsional motions or on the combination of
torsional and translational motions. One of the most famous examples of
this is the collapse of the Tacoma Narrows Bridge in 1940. The cause of the
collapse was initially unknown but was later found to be due to torsional
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flutter [75]. Unlike classical flutter, the mechanism driving the transfer of
energy from the fluid to the structure depends on flow separation and
vortex shedding. For this reason, it is sometimes referred to as stall flutter.
In the case of stall flutter, airfoil theory based on potential flow equations
is no longer valid and generally leads to erroneous results [96]. Instead,
flutter derivatives must be estimated using wind tunnel experiments or
numerical simulation.

Other classical examples of self-excited vibrations, otherwise referred
to as aeroelastic instabilities, include galloping and the lock-in effect. Gal-
loping occurs if the mean lift coefficient changes with angle of attack such
that the aerodynamic follower force associated with small-amplitude trans-
verse vibrations performs positive net work on the structure over each cycle
of oscillation. It is known to cause large-amplitude vertical vibrations of
frost-covered power lines and can also arise in slender, cable-like struc-
tures such as conveyor suspension bridges [33]. In contrast, self-excited
vibrations due to the lock-in effect occur as a result of a synchronization be-
tween the transverse vibrations and vortex shedding process of prismatic
bodies such as tall, cylindrical chimney stacks [121]. Synchronization of
vortex shedding with transverse vibrations may occur when the ratio be-
tween the two frequencies is close to 1 and can result in significantly larger
amplitudes than would otherwise be observed solely on the basis of me-
chanical resonance. According to the Eurocode [35], cross-wind forces due
to vortex shedding should be considered for structures with slenderness
ratios greater than 6. For smaller ratios, the transverse force coefficient of
circular cylinders is close to zero [91]. Similar effects occur for rectangular
cylinders [94]. Recently, the cause of the unexpected destruction of two
non-prismatic roadside signboards has been identified as the lock-in effect
[92].

In order to correctly capture these phenomena, FSI effects must be
properly modeled. Otherwise, the model may significantly underestimate
the response of the real structure. The primary aim of this chapter is to
investigate numerical methods for the study of FSI problems encountered
in civil engineering. We begin by studying an analytical model problem in
section 5.1. The analytical model is then used to investigate the accuracy,
stability and efficiency of several coupling algorithms in sections 5.2 and
5.3. A staggered coupling algorithm is studied in section 5.4. Finally, the
performance of a mesh motion scheme is tested on a nonlinear benchmark
problem in section 5.5.
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Figure 5.1: Fluid-structure interface.

The analysis of inviscid and viscous model problems presented in this
chapter is based on [5]where the analytical model problem was originally
proposed for analyzing FSI algorithms.

5.1 Analytical Model Problem

The problem of FSI is generally formulated using a continuum mechanics
description. For a viscous fluid, the conservation of momentum on the
fluid-structure interface Γ f s is enforced by the constraint

σ f ·n f =σs ·n f on Γ f s (t ), 0< t , (5.3)

with σ f ,σs the Cauchy stress tensor of the fluid and structure and n f the
outward pointing normal of the fluid domain (figure 5.1). Additionally, the
conservation of mass is enforced by the constraint

u f ·n f =
∂ ds
∂ t ·n f on Γ f s (t ), 0< t . (5.4)

Finally, for a viscous fluid, the physical requirement of finite shear stress
on the interface requires that the difference between the tangential com-
ponents of velocity in the fluid and structure vanishes at the interface Γ f s .
The final set of constraints for the continuous problem is

u f =
∂ ds
∂ t ,

σ f ·n f =σs ·n f on Γ f s (t ), 0< t . (5.5)
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Figure 5.2: Fluid-structure model problem [5].

The two-dimensional model problem considered in this section (figure
5.2) is a modification of the standing wave problem for an incompressible
fluid driven by surface tension [65]. The fluid domain consists of the half-
plane y < 0. An infinite elastic beam or membrane structure is in contact
with the fluid along the boundary y = 0. A single mode of vibration of the
elastic structure is considered with the form

ds (x , t ) = d̂s (t ) cos

�

2π

L
x

�

. (5.6)

5.1.1 Inviscid Fluid Problem

The inviscid solution of the standing wave problem is given in [65]. A
derivation of the fluid solution based on a Fourier series representation
is included here for completeness of the solution to the FSI problem and
because it was not found in the literature. The fluid subproblem for a
prescribed interface velocity a,t is











ρ f
∂ u f

∂ t +∇pf = 0 in Ω f × (0, T ),
∇·u f = 0 in Ω f × (0, T ),
u f ·n f = a,t cos

�

2π
L x

�

on Γ f s .

(5.7)
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Only small perturbations are considered here such that the interface con-
dition may be replaced by

v f = a,t cos
�

2π

L
x
�

on y = 0. (5.8)

Additionally, the fluid velocity is assumed to be small such that the nonlin-
ear convection term is negligible.

The inviscid flow is irrotational and may be expressed by a potentialφ
as u f =∇φ. Substituting the Fourier series expansion

φ =
∑

m≥1

�

φ̂c (m , y , t )cos
�

2πm

L
x
�

+ φ̂s (m , y , t )sin
�

2πm

L
x
�

�

(5.9)

into the divergence free condition results in

∑

m≥1

��

∂ 2φ̂c
∂ y 2 (m , y , t )−

�

2πm

L

�2

φ̂c (m , y , t )
�

cos

�

2πm

L
x

�

+
�

∂ 2φ̂s
∂ y 2 (m , y , t )−

�

2πm

L

�2

φ̂s (m , y , t )
�

sin
�

2πm

L
x
��

= 0. (5.10)

This leads to a set of second-order linear homogeneous differential equa-
tions for φ̂c (m , y , t ) and φ̂s (m , y , t ). The general solution is

φ̂c (m , y , t ) = g̃c (m , t )exp
�

2πm

L
y
�

+ h̃c (m , t )exp
�

−
2πm

L
y
�

, (5.11)

φ̂s (m , y , t ) = g̃ s (m , t )exp
�

2πm

L
y
�

+ h̃s (m , t )exp
�

−
2πm

L
y
�

. (5.12)

The requirement that the solution remains bounded as y →−∞ implies
h̃s = h̃c = 0. The remaining boundary condition at y = 0 is

∂ φ
∂ y =

∑

m≥1

�

g̃c (m , t )
�

2πm

L

�

cos
�

2πm

L
x
�

+ g̃ s (m , t )
�

2πm

L

�

sin
�

2πm

L
x
��

= a,t cos
�

2π

L
x
�

, (5.13)

which is satisfied for g̃ s = 0 and

g̃c (m , t ) =

(

L
2πa,t (t ) if m = 1,

0 else.
(5.14)
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Substituting into equations (5.11), (5.12) and (5.9), the final form of the
velocity potential is

φ(x , y , t ) =
L

2π
a,t (t )exp

�

2π

L
y
�

cos

�

2π

L
x

�

. (5.15)

The pressure is obtained from the conditions

∂ pf

∂ x =−ρ f
∂ u f

∂ t =ρ f a,t t (t )exp
�

2π

L
y
�

sin

�

2π

L
x

�

, (5.16)

∂ pf

∂ y =−ρ f
∂ v f

∂ t =−ρ f a,t t (t )exp
�

2π

L
y
�

cos

�

2π

L
x

�

. (5.17)

The additional condition lim
y→−∞

pf = 0 implies

pf (x , y , t ) =−
ρ f L

2π
a,t t (t )exp

�

2π

L
y
�

cos

�

2π

L
x

�

. (5.18)

Finally, the complete potential solution is











u f (x , y , t ) =−a,t (t ) exp
�

2π
L y

�

sin
�

2π
L x

�

,

v f (x , y , t ) = a,t (t ) exp
�

2π
L y

�

cos
�

2π
L x

�

,

pf (x , y , t ) =−ρ f L
2π a,t t (t ) exp

�

2π
L y

�

cos
�

2π
L x

�

.

(5.19)

5.1.2 Membrane Problem

The initial value problem for the case of a membrane is


















ρs hs
∂ 2ds
∂ t 2 −σs hs

∂ 2ds
∂ x 2 = ps in (0, L )× (0, T ),

∂ ds
∂ x = 0 on x = 0, x = L ,

ds (x , 0) = d̂s 0 cos
�

2π
L x

�

,
∂ ds
∂ t (x , 0) = v̂s 0 cos

�

2π
L x

�

,

(5.20)

with surface load ps and tensionσs . From (5.19), the pressure at the fluid-
structure interface has the form

ps (x , t ) = pf (x , 0, t ) =−
ρ f L

2π
a,t t (t ) cos

�

2π

L
x
�

. (5.21)
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Therefore, the membrane problem admits a solution of the form

ds (x , t ) = d̂s (t ) cos

�

2π

L
x

�

. (5.22)

The solution to the coupled FSI problem is obtained by solving










�

ρs hs +
ρ f L
2π

�

d̂s ,t t +
4π2σs hs

L 2 d̂s = 0,

d̂s (0) = d̂s 0,

d̂s ,t (0) = v̂s 0.

(5.23)

The solution,

d̂s (t ) =

√

√

√

d̂ 2
s 0+

v̂ 2
s 0

ω2
n

sin

 

ωn t + tan−1

�

ωn d̂s 0

v̂s 0

�

!

, (5.24)

has the same form as a membrane vibrating in a vacuum. The added-
mass of the fluid results in a modified frequency of oscillationωn , which
is related to the frequency in a vacuumωn0 =

p

4π2σs /ρs L 2 by

ωn =
ωn0

p

1+α f s
(5.25)

with the added-mass ratio

α f s =
ρ f L

2πρs hs
. (5.26)

Here, the added-mass ratio is equivalent to the ratio between the fluid
mass in a semicircle with an arc length of L and the mass of a membrane
segment of length L .

5.1.3 Beam Problem

The initial value problem for the case of a thin beam is






























ρs hs
∂ 2ds
∂ t 2 +

E h 3
s

12
∂ 4ds
∂ x 4 = ps in (0, L )× (0, T ),

∂ ds
∂ x = 0 on x = 0, x = L ,
∂ 3ds
∂ x 3 = 0 on x = 0, x = L ,

ds (x , 0) = d̂s 0 cos
�

2π
L x

�

,
∂ ds
∂ t (x , 0) = v̂s 0 cos

�

2π
L x

�

,

(5.27)
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which admits a solution of the form given by (5.22). The analog of (5.23)
for the beam problem is











�

ρs hs +
ρ f L
2π

�

d̂s ,t t +
4π4 E h 3

s
3L 4 d̂s = 0,

d̂s (0) = d̂s 0,

d̂s ,t (0) = v̂s 0.

(5.28)

Thus, the solution to the beam FSI problem has the form of (5.24), (5.25)
and (5.26) withωn0 =

Æ

4π4E h 2
s /3ρs L 4.

5.1.4 Viscous Fluid Problem

The above inviscid fluid problem is useful for numerical analysis of FSI al-
gorithms and verification of software implementations. In order to also test
numerical solutions for viscous fluid problems, the FSI problem described
above is extended to include viscous effects in this section.

In order to simplify the solution, only the normal component of the
traction is considered. The traction boundary conditions applied on the
fluid-structure interface are

−pf +2µ f
∂ v f

∂ y =−ps (5.29)

and

µ f

�

∂ v f

∂ x +
∂ u f

∂ y

�

= 0 (5.30)

with µ f the dynamic viscosity. The fluid problem is










ρ f
∂ u f

∂ t +∇pf −µ f ∇2u f = 0 in Ω f × (0, T ),
∇·u f = 0 in Ω f × (0, T ),
u f ·n f = a,t cos

�

2π
L x

�

on Γ f s .

(5.31)

The solution to the viscous FSI problem is based on the work of [84] for
the viscous standing wave problem. The interface motion has the form of
(5.6) where d̂s (t ) satisfies























d̂s ,ττ+4ε∗d̂s ,τ+ d̂s

−4εε∗
∫ τ

0

�

exp(−ε(τ−s ))p
πε(τ−s )

−erfc
p

ε(τ− s )
�

d̂s ,τ(s )d s = 0,

d̂s (0) = d̂s 0,

d̂s ,τ(0) = v̂s 0/ωn ,

(5.32)
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with

τ=ωn t , ε=
µ f

ρ f

4π2

L 2ωn
, ε∗ =

�

µ f

ρ f +2πρs hs /L

�

4π2

L 2ωn
. (5.33)

A derivation of the initial value problem is given in appendix B. It’s solution
is

d̂s (τ) =
4εε∗d̂s 0
8εε∗+1 erfc

p
ετ

+
∑4

j=1
z j

σ j

�

d̂s 0

z 2
j −ε
− v̂s 0
ωn

�

exp((z 2
j −ε)τ) erfc(z j

p
τ),

(5.34)

with −z j the roots of the polynomial

z 4+ (4ε∗−2ε)z 2−4
p
εε∗z +1+ε2 (5.35)

andσ j =
∏

l 6= j (zl − z j ).

5.2 Time-Discrete Problem

The inviscid FSI problem in section 5.1 reduces to











�

1+α f s

�

d̂s ,t t +ω2
n0d̂s = 0,

d̂s (0) = d̂s 0,

d̂s ,t (0) = v̂s 0.

(5.36)

Numerical methods for FSI are generally formulated using separate vari-
ables for the fluid and structure and adding the coupling conditions on the
interface. Therefore, a more useful form of (5.36) for numerical analysis is







































v̂ f ,t =− 1
α f s

f̂ f ,

v̂ f = d̂s ,t ,

d̂s ,t t +ω2
n0d̂s = f̂s ,

f̂s = f̂ f ,

d̂s (0) = d̂s 0,

d̂s ,t (0) = v̂s 0.

(5.37)
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Problem (5.37) provides a useful basis for the numerical analysis of
time discretizations and partitioning algorithms for FSI problems involv-
ing incompressible fluids. It is the analog of the SDOF problem used to
study the numerical properties of time discretization schemes in struc-
tural dynamics (see, e.g., [50]). Causin et al. [18] derived the SDOF system
for a similar problem by analyzing the spectrum of the added-mass op-
erator. The SDOF system was subsequently used in [9] to analyze Robin
transmission conditions of partitioned FSI problems. Similarly, an abstract
SDOF model problem has been used in the works of [31, 53] to analyze the
stability and accuracy of partitioned FSI algorithms.

In this work, the fluid is discretized using the BDF2 scheme:

3v̂ n
f −4v̂ n−1

f + v̂ n−2
f

2∆t
=−

1

α f s
f̂ n

f , (5.38)

v̂ n
f =

3d̂ n
s −4d̂ n−1

s + d̂ n−2
s

2∆t
. (5.39)

The structural problem is discretized using the generalized-αmethod [21]:

δt t d̂ n−αm
s +ω2

n0d̂
n−α f
s = f̂

n−α f
s , (5.40)

δt t d̂ n−αm
s =αmδt t d̂ n−1

s + (1−αm )δt t d̂ n
s , (5.41)

d̂
n−α f
s =α f d̂ n−1

s + (1−α f )d̂
n
s , (5.42)

f̂
n−α f

s =α f f̂ n−1
s + (1−α f ) f̂

n
s . (5.43)

The update equations, relating velocity and acceleration to displacement,
are given by the Newmark method [79]:

δt d̂ n
s =δt d̂ n−1

s + (1−γ)∆tδt t d̂ n−1
s +γ∆tδt t d̂ n

s , (5.44)

d̂ n
s = d̂ n−1

s +∆tδt d̂ n
s + (

1

2
−β )∆t 2δt t d̂ n−1

s +β∆t 2δt t d̂ n
s . (5.45)

The generalized-αmethod defines the algorithm’s 4 parameters as func-
tions of a single user-defined parameter ρ∞:

αm =
2ρ∞−1

ρ∞+1
, α f =

ρ∞
ρ∞+1

, (5.46)

β =
1

4
(1−αm +α f )

2, γ=
1

2
−αm +α f . (5.47)
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The parameter ρ∞ determines the spectral radius of the amplification
matrix in the high-frequency limit. For values less than one, it adds numer-
ical dissipation at frequencies that are not accurately resolved by the time
step size. The solution of the discrete problem for one time step can be
obtained by solving

A 1yn = A 2yn−1 (5.48)

with

yn =
�

d̂ n−1
s d̂ n

s ∆tδt d̂ n
s ∆t 2δt t d̂ n

s ∆t v̂ n−1
f ∆t v̂ n

f ∆t 2 f̂ n
f

�T
, (5.49)

A 1 =



























0 (1−α f )(ωn0∆t )2 0 1−αm 0 0 −(1−α f )
0 0 1 −γ 0 0 0

0 1 0 −β 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1.5 1
α f s

0 −1.5 0 0 0 1 0

0 0 0 0 1 0 0



























, (5.50)

and

A 2 =

























0 −α f (ωn0∆t )2 0 −αm 0 0 α f

0 0 1 1−γ 0 0 0

0 1 1 0.5−β 0 0 0

0 1 0 0 0 0 0

0 0 0 0 −0.5 2 0

0.5 −2 0 0 0 0 0

0 0 0 0 0 1 0

























. (5.51)

For the linear problem, the solution at every time step can be expressed as

y n = (A−1
1 A 2)y

n−1 = Ay n−1. (5.52)
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The matrix A is called the amplification matrix. Its usefulness comes from
the fact that the solution at any time step y n can be expressed as

y n = Ay n−1 = A2y n−2 = · · ·= An y 0. (5.53)

Let the characteristic polynomial of A be denoted by

pA (s ) = s p −
p
∑

k=1

cp−k s p−k = 0. (5.54)

Then applying the Cayley-Hamilton theorem pA (A) = 0 and

y n = Ap An−p y 0

=

 

p
∑

k=1

cp−k Ap−k

!

An−p y 0

=
p
∑

k=1

cp−k y n−k . (5.55)

Equation (5.55) is a homogeneous linear difference equation, which may
be used to solve for the value of any variable y n

i in (5.49) provided the
variable’s last p values are known. At this point, the stability and accuracy
of the mixed time discretization of the monolithic FSI problem can be
analyzed using established techniques for linear multistep methods (see,
e.g., [104]).

The solution to (5.55) is stable if the following root condition is satis-
fied1:

1. all roots of the characteristic polynomial pA (λk ) = 0 satisfy |λk | ≤ 1,

2. any roots on the unit circle have multiplicity of one.

Here the roots are the eigenvalues of the amplification matrix A. Thus,
the root condition is equivalent to stating that the spectral radius of the
amplification matrix, defined byρ(A) =maxpA (λk )=0|λk |, is less than or equal
to one with all eigenvalues of multiplicity greater than one being strictly
less than one. An alternative development leading to the same stability
condition is outlined in [50].

1This is sometimes referred to as zero-stability, spectral stability or Dahlquist stability.
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The amplification matrix is a function of three parameters: ωn0∆t ,
ρ∞ and α f s . Verification of the stability for all possible combinations of
these parameters is difficult due to the complicated symbolic expressions
involved. Therefore, following the approach of [31], the stability has been
verified for several combinations of numerical parameters in figure 5.3.
From figure 5.3, it is concluded that the coupling of the fluid problem (BDF2
scheme) and the structure problem (generalized-α scheme) satisfies the
root condition for all time step sizes. Therefore, the algorithm is expected
to behave unconditionally stable in time.

After verifying stability, the solution accuracy is checked by calculating
the local truncation error of the update equation (5.55). The local trunca-
tion error is defined as the error caused by a single update step computed
from the exact solution. For example, let d̂s (t n ) denote the exact displace-
ment of the structure at time t n as obtained from the solution of (5.36).
Then a single update step gives

d̂ n
s =

p
∑

k=1

cp−k d̂s (t
n−k ). (5.56)

The local truncation error is then

d̂s (t
n )− d̂ n

s = d̂s (t
n )−

p
∑

k=1

cp−k d̂s (t
n−k ) =O(∆t r+2). (5.57)

The order O(∆t r+2) can be found by replacing the exact solution at each
time instant by a Taylor series expansion around a single time instant.
Repeating the same procedure for∆tδt d̂s and∆t 2δt t d̂s results in local
truncation errors for the velocity and acceleration of O(∆t r+1) and O(∆t r ),
respectively. Here r denotes the order of the method. For all numerical
parameters tested for the monolithic problem, it is found that r = 2 and
thus the second-order accuracy of the BDF2 and generalized-αmethods
is preserved for the coupled FSI problem.

5.3 Iterative Coupling

The concurrent solution of fluid and structure subproblems combined
with the interface transmission conditions for FSI simulations requires
the tight integration of numerical algorithms from both disciplines. The
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Figure 5.3: Spectral radius (left) and corresponding root diagram in the
complex plane (right) for mixed BDF2 and generalized-α time discretiza-
tions.
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development of coupling algorithms for FSI problems originated more
than 40 years ago [81]. Since that time, FSI simulation has been applied
to various problems ranging from biomechanics to bridge aerodynamics.
This has led to a broad range of coupling techniques with various properties.
When choosing a suitable coupling algorithm for a specific problem, it is
important to consider these properties in relation to the problem under
consideration in order to achieve a sensible tradeoff between simulation
cost and modularity on the one hand and robustness and stability on the
other.

Coupling techniques are normally classified as partitioned or mono-
lithic. Monolithic approaches solve the coupled fluid and structure sub-
problems as a single system of equations. This approach is known to be
robust with respect to the choice of system parameters, but it is generally
known to suffer from ill-conditioned system matrices. As a result, specially
designed preconditioners [46] and modified forms of the incompressible
Navier-Stokes equations [93]may be required to improve the efficiency and
make the simulation of large problems feasible. Alternatively, partitioned
solvers split the coupled problem by solving the fluid and structure sub-
problems separately and updating the interface values between solution
steps. For incompressible fluids, this procedure is normally performed iter-
atively until a desired level of convergence is achieved. By solving the fluid
and structure subproblems separately, the efficiency and modularity of
existing fluid and structure solvers is preserved. For this reason, partitioned
solvers are commonly used.

Arguably, the most decisive factor affecting the choice of solver type
is the added-mass ratio introduced at the beginning of this chapter and
included in the analytical model problem described above. For low added-
mass ratios, the dominant part of the inertia of the coupled system resides
in the subdomain of the structure. As a result, structural deformations are
tightly coupled to the inertial terms through the structural equations of
motion. With increasing added-mass ratio, the dominant part of the iner-
tia shifts to the fluid domain and the coupling of structural deformations
with inertial terms occurs across the FSI interface. This has significant
implications for partitioned solution procedures which solve the fluid and
structure subproblems separately, updating the interface deformations
and forces between solutions. For large added-mass ratios, small interface
motions result in large forces, which are necessary in order to acceler-
ate the relatively large fluid mass. This leads to well-known added-mass
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instabilities [18].
In order to extend the range of applications for partitioned solvers and

improve their efficiency, numerous partitioned algorithms have been pro-
posed. Among the simplest algorithms are those employing block Gauss-
Seidel iterations based on Dirichlet-Neumann partitioning with relaxation
[63]. These methods are commonly used with black box solvers since the
only requirement is the ability to update displacements on the fluid bound-
ary and tractions on the structure boundary between solution steps. Such
methods are often sufficient to solve FSI problems with moderate to low
added-mass ratios, but they can fail at higher added-mass ratios. One strat-
egy to improve the stability and convergence of the coupling iterations is
to use quasi-Newton iterative schemes [30]. The main idea behind such
schemes is to build an approximation of the Jacobian for the interface
residual using information from previous iterations and use this to update
the interface variables between iterations.

Depending on the accessibility of the internals of the flow solver, slightly
more intrusive methods may also be applied. Such methods include the
use of Robin boundary conditions on the FSI interface instead of the usual
Dirichlet boundary condition [9] and the closely related method of artificial
interface compressibility [85].

In this section, three iterative techniques based on Dirichlet-Neumann
partitioning are reviewed and numerical experiments are performed to
compare their performance and stability. It is noted that while we restrict
the discussion of coupling techniques to a linear problem, general FSI
problems are highly nonlinear. This does not pose a significant problem
since the partitioned algorithm is applied to solve the linear system of
equations arising at each nonlinear iteration. In practice however, the
system of equations is often updated with the latest solution values in each
coupling iteration. Nevertheless, the changes in the system matrix due to
the nonlinear convective term and mesh motion within a time step are
expected to be small, and the conclusions drawn from the linear problem
are normally considered to hold for the nonlinear problem as well.

Before proceeding with the discussion of the coupling algorithms,
Dirichlet-Neumann partitioning is demonstrated for the example of equa-
tions (5.38) through (5.47) or, equivalently, system (5.48). Here we omit
the superscript n for all variables at the current time step to simplify the
notation. The fluid partition is solved at each iteration, denoted by the
superscript m , by applying a Dirichlet boundary condition on the interface
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using the most recent estimate for the interface position d̂ m−1
s :































Given (d̂ m−1
s , d̂ n−2

s , d̂ n−1
s , v̂ n−2

f , v̂ n−1
f ), solve

δt d̂ m−1
s = (3d̂ m−1

s −4d̂ n−1
s + d̂ n−2

s )/2∆t ,

v̂ n
f =δt d̂ m−1

s ,

δt v̂ m
f = (3v̂ m

f −4v̂ n−1
f + v̂ n−2

f )/2∆t ,

δt v̂ m
f =−

1
α f s

f̂ m
f .

(5.58)

In a similar manner, the structure partition is solved using a Neumann
boundary condition based on the force obtained from the solution of the
fluid partition:















































Given (d̂ n−1
s ,δt d̂ n−1

s ,δt t d̂ n−1
s , f̂ m

s , f̂ n−1
s ), solve

f̂
n−α f ,m

s =α f f̂ n−1
s + (1−α f ) f̂ m

s ,

δt t d̃ n−αm ,m
s +ω2

n0d̃
n−α f ,m
s = f̂

n−α f ,m
s ,

δt t d̃ n−αm ,m
s =αmδt t d̂ n−1

s + (1−αm )δt t d̃ m
s

d̃
n−α f ,m
s =α f d̂ n−1

s + (1−α f )d̃ m
s ,

d̃ m
s = d̂ n−1

s +∆tδt d̃ m
s + (

1
2 −β )∆t 2δt t d̂ n−1

s +β∆t 2δt t d̃ m
s ,

δt d̃ m
s =δt d̂ n−1

s + (1−γ)∆tδt t d̂ n−1
s +γ∆tδt t d̃ m

s .

(5.59)

5.3.1 Relaxation

Relaxation schemes calculate a new estimate for the interface position as
a weighted combination of d̂ m−1

s and d̃ m
s as follows:

d̂ m
s =η

m−1d̃ m
s + (1−η

m−1)d̂ m−1
s . (5.60)

Constant under-relaxation uses a fixed valueηm =η. By choosing the relax-
ation factor to be sufficiently small, convergence of the coupling iterations
can be realized. This can be seen by formulating the coupling iteration as
the fixed point problem

d̂ m
s =R ◦S ◦F (d̂ m−1

s ;α f s ,ωn0∆t ,η) (5.61)

where S ◦ F denotes the composition of the fluid (5.58) and structure
(5.59) subproblems and R denotes the relaxation (5.60). For the BDF2 and
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generalized-α schemes, the fluid and structure subsystems are

f̂ m
f =−

9α f s

4∆t 2
d̂ m−1

s +C1 (5.62)

and

d̃ m
s =

(1−α f )β∆t 2

(1−αm ) + (1−α f )β (ωn0∆t )2
f̂ m

s +C2. (5.63)

An expression for (5.61) is obtained by substituting (5.62) into (5.63) and
applying (5.60) to obtain

d̂ m
s =



1−η

�

1−αm + (1−α f )β (9α f s /4+ (ωn0∆t )2)

1−αm + (1−α f )β (ωn0∆t )2

�



 d̂ m−1
s +C3.

(5.64)

Here Ci , i = 1,2,3, describe all terms which depend on historical values
and remain constant during the coupling iterations. Neither these terms
nor the starting value d̂ n ,0

s are relevant to the convergence of the coupling
iterations2. By observing that for 0 ≤ ρ∞ ≤ 1, 0.5 ≤ 1−αm ≤ 2 and 0.5 ≤
1−α f ≤ 1, it can be verified that the condition

0<η<
2(1−αm ) +2(1−α f )β (ωn0∆t )2

1−αm + (1−α f )β (9α f s /4+ (ωn0∆t )2)
(5.65)

makes the fixed point iteration (5.64) a contraction. Under this condition,
the contraction mapping theorem (see, e.g., [78]) ensures that the iterations
converge. For the single mode, the choice

ηo p t =
1−αm + (1−α f )β (ωn0∆t )2

1−αm + (1−α f )β (9α f s /4+ (ωn0∆t )2)
(5.66)

results in a convergent solution in one iteration. This optimal convergence
property is not realizable for general FSI problems because these usually

2In real FSI applications, the starting value must provide a reasonable approximation for
the interface position so that the nonlinear fluid and structure subproblems converge.
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consist of many modes, which cannot be efficiently decoupled. Neverthe-
less, the stability condition provides a useful way to choose the relaxation
parameter after estimating the largest modal added-mass ratio.

The Aitken method [52] is sometimes used to accelerate coupling it-
erations by computing a dynamic relaxation factor based on two prior
iterations. It has been used extensively for FSI problems and is reviewed
in [63]where it is explained in terms of the secant method. Applied to the
root finding problem

r m = S ◦F (d̂ m−1
s )− d̂ m−1

s = d̃ m
s − d̂ m−1

s , (5.67)

the secant method estimates the updated position as

d̂ m
s =

d̃ m
s d̂ m−2

s − d̃ m−1
s d̂ m−1

s

d̂ m−2
s − d̃ m−1

s − d̂ m−1
s + d̃ m

s

. (5.68)

This can be written as

d̂ m
s = d̂ m−1

s +ηm−1r m (5.69)

with

ηm−1 =−
d̂ m−1

s − d̂ m−2
s

r m − r m−1
. (5.70)

This leads to its interpretation as a finite difference approximation of New-
ton’s method where the dynamic relaxation factor ηm may be interpreted
as an approximation relating variations in the residual to variations in
the input variable. The Aitken method provides a way to compute ηm for
vector quantities. In such cases, the problem is overdetermined and the
scalar ηm must be estimated from a least-squares approximation:

ηm−1 =−
(d m−1

s −d m−2
s ) · (r m − r m−1)

|r m − r m−1|2

=−ηm−2 r m−1 · (r m − r m−1)
|r m − r m−1|2

. (5.71)

A comparison of the Aitken algorithm with other quasi-Newton methods
is discussed in [30].
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Γm−1
f s

Ωm

∂ Ωm −Γm−1
f s

Γm
f s

−(dm
s −d

m−1
s ) ·n f

Figure 5.4: Fluid interface deformation for the m t h coupling iteration.

5.3.2 Interface Compressibility

A modification to the divergence free condition at the fluid-structure inter-
face was presented by [85]. The method attempts to model the incompress-
ibility constraint by approximating the interface motion between coupling
iterations in order to improve stability and convergence of the coupling.
Due to its similarity to artifical compressibility techniques used in CFD
(see, e.g., §4.4.3, [36]), the method is sometimes referred to as artificial
compressibility or interface (artificial) compressibility.

To illustrate the method, an arbitrary control volume is depicted adja-
cent to the fluid side of the fluid-structure interface in figure 5.4 at the m th

iteration. In Dirichlet-Neumann partitioning, the fluid problem is solved
using the interface displacement dm−1

s calculated in the previous iteration.
This leads to added-mass instabilities when the fluid mass displaced by
the interface is large relative to the structural mass. The displacement
of the fluid occurs through the pressure, which is determined by the in-
compressibility constraint. Thus, it is preferable to apply the divergence
free condition based on the interface motion of the current iteration dm

s .
Since this is not known at the time the fluid problem is solved, it must be
approximated. The divergence free condition is decomposed into a part
that is known and a part that must be approximated:

∫

Ωm

∇·um
f dΩ =

∫

∂ Ωm−Γm−1
f s

um
f ·n f dΓ +

∫

Γm−1
f s

δt d
m−1
s ·n f dΓ
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+

∫

Γm
f s

δt d
m
s ·n f dΓ −

∫

Γm−1
f s

δt d
m−1
s ·n f dΓ . (5.72)

The second part of (5.72) is approximated by
∫

Γm
f s

δt d
m
s ·n f dΓ −

∫

Γm−1
f s

δt d
m−1
s ·n f dΓ

≈
∫

Γm−1
f s

(δt d
m
s −δt d

m−1
s ) ·n f dΓ

≈
∫

Γm−1
f s

1

γI C
(p m

f −p m−1
f )dΓ . (5.73)

The parameter γI C relates variations in the normal component of the
interface velocity to variations in the fluid pressure. One way to estimate
this parameter is by building a reduced-order model based on the values
of interface pressure and velocity from previous iterations in a similar
approach as is done with quasi-Newton methods for approximating the
interface Jacobian. Another is to use a model problem similar to the one
presented in section 5.1. This approach was used by [9]who investigated
the use of a Robin boundary condition. The similarity between the Robin
fluid boundary condition and interface compressibility can be seen by
expressing the latter as

γI Cδt d
m
s ·n f −p m

f = γI Cδt d
m−1
s ·n f −p m−1

f (5.74)

and was discussed in the context of the finite volume method by [29].
For the numerical studies conducted in this work, the simplified model

problem is used to estimate γI C . Using the linear structural model (5.59),
a change in pressure is related to a change in interface motion by

p̂ m
s − p̂ m−1

s =ρs hs ( f̂
m

s − f̂ m−1
s )

=
ρs hs (1−αm )
(1−α f )

(δt t d̂ m
s −δt t d̂ m−1

s ) +ρs hsω
2
n0(d̂

m
s − d̂ m−1

s )

=ρs hs

�

(1−αm )
γ∆t (1−α f )

+

�

1+
β

γ

�

∆tω2
n0

�

(δt d̂ m
s −δt d̂ m−1

s ).

(5.75)
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L d̂s 0 v̂s 0 σs hs ρs ρ f α f s

2π 2π×10−4 0 12π2×103 0.001 2000 1 0.5

Table 5.1: FSI membrane benchmark parameters.

Because artifical added-mass instabilities are caused by the structural
modes with the lowest eigenfrequencies,ωn0∆t is expected to be small
and γI C can be simplified as

γI C =
ρs hs (1−αm )
γ∆t (1−α f )

. (5.76)

Equation (5.76) is used for the comparison of the interface compressibility
method with the other coupling approaches discussed in this chapter.

5.3.3 Variation of Mesh Resolution

The aims of this section are the assessment of mesh resolution require-
ments for tracking the interface motion and the verification of the solution
accuracy of the coupled FSI solver. The membrane version of the ana-
lytical model problem is used to create a benchmark problem with the
parameters given in table 5.1.

The chosen parameters result in an inviscid period of T = 1. Three uni-
form meshes are considered with the mesh sizes h=L/8, L/16 and L/32. A
time step size of∆t = 0.005 corresponding to 200 steps per inviscid period
is used for each mesh. This time step size was found to be sufficiently small
such that the errors in the numerical solution are primarily due to the mesh
resolution. For the generalized-αmethod, a spectral radius of ρ∞ = 0.8 is
used. The Euclidean norm of the nodal interface displacements is used
to determine the convergence of the coupling iterations with an absolute
convergence tolerance of 1× 10−11. A symmetry boundary condition is
applied on the left and right boundaries, and a zero pressure boundary
condition is applied on the lower boundary, which has a distance of L to
the interface. At this distance, disturbances to the fluid have decayed to
less than 0.2% of their values at the interface.

The initial pressure distribution and interface deformation are depicted
in figure 5.5 for a single mode of wavelength L . The interface displacements
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Figure 5.5: Initial pressure distribution and interface deformation (x400)
for a single mode.

of inviscid (ν f = 0) and viscous (ν f = 1) simulations are computed over
4 periods of oscillation and plotted in figures 5.6 and 5.7. The interface
error is quantified using the norms

||ds h −ds ||0 =





∫ T

0

||ds h (t )−ds (t )||2L 2(0,L )d t





1/2

(5.77)

and

||ds h −ds ||1 =
�

||ds h −ds ||20+ ||
∂ ds h
∂ x −

∂ ds
∂ x ||

2
0

�1/2
(5.78)

with || · ||L 2(0,L ) defined as the usual L 2 norm over the interface (see [36] for
a detailed description). Table 5.2 shows the normalized interface errors
for the inviscid and viscous simulations.
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Figure 5.6: Interface displacement for a single mode with ν f = 0.
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Figure 5.7: Interface displacement for a single mode with ν f = 1.
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Mesh Size

(L/h)

||ds h −ds ||0/d̂s 0

p
LT ||ds h −ds ||1/d̂s 0

p
LT

ν f = 0 ν f = 1 ν f = 0 ν f = 1

8 0.1661 0.0499 0.2576 0.0878

16 0.0462 0.0133 0.0846 0.0333

32 0.0125 0.0038 0.0284 0.0126

Table 5.2: Interface error for FSI membrane benchmark.

L d̂s 0,k v̂s 0,k E hs ρs ν f

2π 0.5π×10−4 0 144π2×109 0.001 2000 0.1

Table 5.3: Parameters for 4 mode FSI beam benchmark.

5.3.4 Performance of Coupling Algorithms

Next the performance of the different iterative algorithms is compared
using the model problem. A beam is considered with 4 superimposed
modes such that the resulting displacement has the form

ds (x , t ) =
4
∑

k=0

d̂s ,k (t )cos

�

2πk

L
x

�

(5.79)

with the model parameters given in table 5.3. The fluid density is varied
in order to control the added-mass ratio. The FSI problem is solved for
each coupling algorithm for a time interval equal to the inviscid period
of the first mode. The time step size and mesh size are chosen such that
the highest mode is resolved with 16 elements per wavelength and 40 time
steps per inviscid period of oscillation. The absolute convergence tolerance
of the interface displacements is set to 1×10−7.

Figure 5.8 shows the interface displacement for the above settings with
an added-mass ratio of α f s = 8. Constant relaxation, interface compress-
ibility and the Aitken method are combined with the first-order predictor
(P1)

d n ,0
s = d n−1

s (5.80)

and the second-order predictor (P2)

d n ,0
s = d n−1

s +∆tδt d n−1
s . (5.81)
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Figure 5.8: Interface displacement for 4 modes with α f s = 8.

For constant relaxation and for the initial Aitken iteration, the relaxation
factor is given by (5.66).

The number of coupling iterations required for each algorithm is plot-
ted against the added-mass ratio in figure 5.9. The least stable algorithm
for the solvers used was the Aitken algorithm which failed to converge for
α f s = 1 and above. The best performance was obtained for the interface
compressibility algorithm with the number of coupling iterations remain-
ing nearly constant across the range of added-mass ratios considered. In
contrast, the number of iterations increases steadily for constant relax-
ation. A significant reduction in coupling iterations was realized for all
algorithms by using a the second-order predictor (5.81). Simulations using
a higher order predictor did not result in a significant improvement over
the second-order predictor and are therefore omitted from figure 5.9 for
the sake of clarity.
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Figure 5.9: Comparison of the number of coupling iterations for constant
relaxation (CR), interface compressibility (IC) and Aitken algorithms with
first (P1) and second (P2) order predictors.

5.4 Staggered Coupling

Presently, the majority of coupling algorithms used in the context of parti-
tioned FSI procedures for incompressible fluid models are iterative. Three
techniques from within this class were compared in the previous section.
Another class of partitioned procedures is known as staggered or explicit
algorithms. In contrast to iterative algorithms, staggered algorithms only
solve the fluid and structure subproblems once at each time step as illus-
trated in figure 5.10. Due to the fact that most currently available staggered
algorithms become unstable even at relatively low added-mass ratios [38],
these algorithms are less commonly applied to problems with incompress-
ible fluid models. A noteworthy exception to this general rule is the sta-
bilized algorithm based on a Robin boundary condition for the structure
and Nitsche’s method for imposing the Dirichlet boundary condition on
the fluid as proposed by [16]. This algorithm is however not considered for
the current work due to the complexity of the choice of parameters and
their effects on the solution accuracy as well as the need for additional

74



5.4 Staggered Coupling
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Figure 5.10: (a) Staggered coupling and (b) iterative coupling patterns for
partitioned FSI simulations [8].

defect-correction iterations to recover optimal accuracy in time.
The staggered algorithm presented by [31]was shown to be stable up

to moderate added-mass ratios while retaining second-order accuracy in
time. The algorithm consists of a force predictor

f n
p = 2 f n−1− f n−2, (5.82)

which is applied to the structural problem at the new time step to obtain
the updated displacements

d n
s = S( f n

p ). (5.83)

The fluid problem is then solved using the updated displacements

f̃ n =F (d n
s ), (5.84)

and the interface forces are computed as a weighted combination of the
force predictor and the forces from the fluid solver

f n =βSC f̃ n + (1−βSC ) f
n

p (5.85)

with 0<βSC ≤ 1. The algorithm is summarized below.
The stability and accuracy of the staggered algorithm was analyzed by

[31] for the case that the generalized-αmethod is used for both fluid and
structure subproblems. The analysis procedure uses the same techniques
as described in section 5.2 where the amplification matrix of the monolithic
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Staggered Coupling Procedure (from [31]).

For each time step n :

1. Predict the interface force: f n
p = 2 f n−1− f n−2.

2. Solve structure: d n
s = S( f n

p ).

3. Solve fluid: f̃ n =F (d n
s ).

4. Update interface force f n =βSC f̃ n + (1−βSC ) f n
p .

system is replaced by that of the staggered system. By applying the same
analysis to the case where the generalized-α method is applied to the
structure and the BDF2 discretization is applied to the fluid, the same
conclusion of second-order accuracy in time is found to hold and is not
discussed further here.

The amplification matrix of the staggered problem depends on the pa-
rametersωn0∆t ,α f s ,βSC and ρ∞. For a fixed set of parameters α f s , βSC

andρ∞, the staggered algorithm is unconditionally stable if the root condi-
tion discussed in section 5.2 is satisfied for allωn0∆t > 0. In order to investi-
gate the unconditional stability as a function of the remaining parameters,
an upper bound of the added-mass ratio denoted by ᾱ f s (βSC ,ρ∞) is de-
fined as the largest added-mass ratio for which the algorithm remains
unconditionally stable. The upper bound is evaluated numerically for sev-
eral combinations of βSC and ρ∞ and plotted in figure 5.11. Based on this,
the spectral radius of the generalized-αmethod for the structure is chosen
to be ρ∞ = 0.16 in the remainder of this work.

Next, the stability of the staggered algorithm is investigated on the
fully discretized model for different combinations of coupling parameter
βSC and added-mass ratio α f s . The discrete model introduces additional
effects due to the spatial discretization and the segregated solution of the
velocity and pressure which influence the stability. The focus here is on
the effect due to the segregated or fractional-step solver. The segregated
solution may be interpreted as the solution to a modified monolithic fluid
problem [22]. By omitting convection and stabilization terms for simplicity,
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Figure 5.11: Contours of the largest stable added-mass ratio ᾱ f s (βSC ,ρ∞).

the modified form of the Stokes problem can be expressed as3

Mδt u n +G p n = f n (5.86)

D u n =−
2∆t

3

�

D M −1G − L
� �

p n −p n−1
�

(5.87)

where −L is the positive semi-definite Laplacian matrix, G is the gradient
matrix and D = −G T is the divergence matrix. Thus, the velocity of the
uncorrected fractional-step algorithm is not weakly divergence free in the
sense that the right-hand side of (5.87) is no longer zero. It is shown in [22]
that the operator D M −1G − L is positive semi-definite. The effect of this
additional term is demonstrated using the inviscid membrane FSI model
problem with parameters given in table 5.4 with the fluid density ρ f used
to adjust the added-mass ratio and a fixed time step size corresponding to
200 time steps per period.

By iteratively performing pressure corrections on the segregated solver,
the pertubation to the monolithic system goes to zero and the segregated
solution converges to the monolithic solution. To assess the stability be-
havior between the two limiting cases of fractional-step and monolithic

3The derivation of (5.86) and (5.87) follows readily from equations (73)-(75) of [24].
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L d̂s 0 v̂s 0 σs hs ρs

2π 2π×10−4 0 8π2×103 0.003 2000

Table 5.4: FSI membrane parameters for varying βSC and α f s .

solvers, simulations are carried out for a fixed number of pressure correc-
tions per time step. Here we denote the number of pressure corrections
per time step by Nc o r r . Moreover, the fluid-structure interface is not up-
dated between pressure corrections and thus no FSI coupling iterations
are performed. The model problem is solved over 4 periods of oscillation
for 0<βSC ≤ 0.3 with∆βSC = 0.05 and 0<α f s ≤ 1 with∆α f s = 0.1. If the

displacement exceeds 1.1d̂s 0 at any point in the simulation, the solution
is considered unstable and no error measure is reported. Otherwise the
interface error is computed according to (5.77). The stability regions and
errors for Nc o r r = 1,2,3 and 4 are plotted in figure 5.12. The results show
that the staggered algorithm becomes more stable as the fractional-step
solution converges to the monolithic solution. It can also be seen that for
a fixed time step size, the interface error tends to increase with increasing
added-mass and decreasing βSC .

The effect of changing the time step size is considered in figure 5.13.
The simulations are carried out with pressure corrections with a pressure
convergence tolerance of 1×10−3 and are thus comparable to the mono-
lithic solution. For the two time step sizes shown, the stability region does
not change as is expected for the case that the staggered algorithm is uncon-
ditionally stable. Further, the decrease in the maximum error from 0.105
to 0.024 when the time step size is reduced by half is consistent with the
second-order accuracy determined from the analysis of the amplification
matrix.

5.5 Verification of Mesh Motion Solver

5.5.1 Description of Mesh Motion Solver

In this work, the motion of the fluid boundary is tracked using an arbi-
trary Lagrangian-Eulerian (ALE) description. This description retains the
accuracy of the body fitted mesh near the boundary since it allows the
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Figure 5.12: Interface error norm ||ds h−ds ||0 of the staggered FSI simulation
for fractional-step fluid solver with (a) Nc o r r = 1, (b) Nc o r r = 2, (c) Nc o r r = 3
and (d) Nc o r r = 4 pressure corrections.

interface motion to be tracked by updating the position of the fluid bound-
ary according to the displacements of the structure. Additionally, using the
BDF2 scheme to compute the mesh velocity δtψ

n
h preserves second-order

accuracy in time [37]. The main drawback is that the mesh topology be-
comes distorted for large interface motions, causing the solver to fail unless
remeshing is performed. This is not a problem for the current study since
the structural deformations considered are relatively small. Nevertheless,
the choice of mesh motion algorithm is critical for ensuring robust and
accurate solutions in the wind engineering context. Specifically, the mesh
quality must be preserved over long time intervals on the order of one hour
and involving thousands of oscillations. Any deterioration with time may
result in a loss of accuracy in the statistics or cause the simulation to be-
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Figure 5.13: Interface error norm ||ds h−ds ||0 of the staggered FSI simulation
with pressure correction for time step sizes (a) ∆t = T /200 [6] and (b)
∆t = T /400.

come unstable and fail. The algorithm used in this work was implemented
by [120] and is based on the method presented in [103]. An extension of the
technique based on a predictor-corrector scheme was recently proposed
by [48].

The model is based on the equations of linear elasticity where the
elements are stiffened by the inverse of det(JK ) raised to some power. Here
det(JK ) is the determinant of the element Jacobian matrix. From numerical
tests (not shown here) det(JK )−1 was found to perform well over a range of
structural motions and is used in this study. The mesh motion, denoted by
ψn

h , is computed from a prescribed structural displacement d n
s h |Γ f s

using
the algorithm below.

The choice of mesh motion has a strong impact on the robustness of
the coupled solution. By solving for the mesh displacement on the unde-
formed mesh, the mesh motion at the current time step does not depend
on its displacement history and returns to the initial configuration upon
setting the interface displacement to zero. Therefore, the mesh quality
depends only on the range of structural motions and not on the number
of time steps to be solved. As a result, long-time simulations may be com-
puted to obtain nearly converged statistics without degrading the quality
of the mesh or remeshing. Moreover, the Jacobian-based stiffening helps
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Mesh Displacement

Given dn
s h |Γ f s

, seek ψn
h ∈ Ṽh , ψn

h = 0 on ∂ Ωh − Γ f s , ψn
h = d

n
s h on Γ f s such

that4:

∑

K ∈Th

∫

K

det(JK )
−1σ(ψn

h ) : ε(vh )d K = 0 (5.88)

for all vh ∈ Ṽh , vh = 0 on ∂ Ωh .
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y

Figure 5.14: Domain for cylinder and flag FSI problem [113].

to preserve the mesh quality in the vicinity of the structure where elements
are typically much smaller by transferring the mesh deformation to the
regions consisting of larger elements which are of less interest.

5.5.2 Flow-Induced Vibration of a Flexible Beam

The analytical benchmark tests of sections 5.3 and 5.4 are useful for evaluat-
ing the performance and accuracy of FSI coupling algorithms, but they are
restricted to small deformations. In order to test the mesh motion solver,
the nonlinear benchmark problem of a flexible beam undergoing large
displacements while interacting with a laminar flow as proposed in [113]
is solved using the partitioned solver with interface compressibility for
stabilization of the coupling iterations. The problem consists of a flexible
beam mounted to a fixed cylinder in a laminar channel flow (Fig. 5.14) with
inlet Γi , outlet Γo and wall Γw boundaries. The benchmark includes test

4Equation (5.88) is computed on the undeformed mesh using the equations of linear
elasticity as described in [103].
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5 Fluid-Structure Interaction

cases for the structural solver, the fluid solver and the coupled FSI solver.
We refer to [113] for a complete description of the test cases.

The reference quantities for comparison include the total drag and lift
acting on the cylinder and flag as well as the vertical and horizontal tip
displacement of the flag. Close to steady state, the forces and displacements
vary periodically. In this regime, the range of force and displacement values
are reported as

mean±amplitude [frequency], (5.89)

with

mean=
1

2
(max+min), (5.90)

amplitude=
1

2
(max−min), (5.91)

and

frequency=
1

T
. (5.92)

An extensive mesh refinement study was performed independently for
both the fluid and structure. The results of three representative meshes of
decreasing mesh size are presented for each subproblem below.

CSM3 Test Case

The structural model for the flag is discretized using solid hexahedral ele-
ments and the generalized-α time discretization. A single element is used
in the z-dimension with plane strain condition applied to model the two-
dimensional problem, resulting in twice the number of degrees of freedom
compared with a two-dimensional quadrilateral element. Three structured
meshes of decreasing mesh size are defined in table 5.5.

The tip displacement is computed for the beam in a vacuum under
gravity load corresponding to the settings of the CSM3 benchmark. The
time evolution is plotted for mesh 2 in figure 5.15 and the results from the
three meshes are compared with the reference values in table 5.6.

The tip displacements, computed over three meshes and two time
step sizes, have a maximum difference of 3.1% ± 3.1% [0.5%] for the x-
displacement and 1.9% ± 1.0% [0.5%] for the y-displacement. The rela-
tive differences between the reference and mesh 3 (∆t = 0.005) are 0.3%
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5.5 Verification of Mesh Motion Solver

Mesh ∆x ∆y Ne l Nd o f

1 0.00319 0.00200 1100 (110×10) 4884

2 0.00234 0.00143 2100 (150×14) 9060

3 0.00201 0.00125 2800 (175×16) 11968

Table 5.5: Structure mesh sizes for FSI cylinder and flag benchmark.
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Figure 5.15: CSM3 tip displacement for mesh 2.

Mesh (∆t ) ds x [x 10−3] ds y [x 10−3]

1 (0.005) -14.030 ± 14.031 [1.0989] -63.064 ± 64.327 [1.0989]
2 (0.005) -14.212 ± 14.212 [1.0929] -63.416 ± 64.824 [1.0929]
3 (0.005) -14.263 ± 14.264 [1.0929] -63.520 ± 64.964 [1.0929]

3 (0.0025) -14.469 ± 14.470 [1.0929] -64.251 ± 64.780 [1.0959]

Ref. [113] -14.305 ± 14.305 [1.0995] -63.607 ± 65.160 [1.0995]

Table 5.6: CSM3 tip displacement.
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Near region Outer region Far region

Figure 5.16: Mesh refinement regions for CFD of cylinder and flag.

Mesh
Mesh Size

Ne l Nd o f
Cylinder front Near Outer Far

1 0.0009 0.003 0.01 0.015 45479 70290

2 0.0006 0.002 0.01 0.015 78229 120162

3 0.0003 0.001 0.005 0.0075 264369 402180

Table 5.7: Fluid mesh sizes for FSI cylinder and flag benchmark.

± 0.3% [0.6%] for the x-displacement and 0.1% ± 0.3% [0.6%] for the y-
displacement.

CFD3 Test Case

The CFD3 benchmark is used to test the fluid model and consists of a
parabolic inlet profile of velocity with a bulk velocity equal to 2 and a
Reynolds number of 200. A manual mesh generation procedure was used
with mesh refinement regions shown in figure 5.16. The height of the near
region was chosen to enclose the upper and lower shear layers originating
from the cylinder. Additionally, a finer surface mesh size was applied to
the front half of the cylinder. The three fluid mesh sizes are given in table
5.7.

The total lift and drag force on the cylinder and flag are plotted in figure
5.17. The forces are compared with the reference in table 5.8. The drag
and lift forces, computed over three meshes and two time step sizes, have
a maximum difference of 0.3% ± 4.6% [0.4%] and 19.4% ± 3.1% [1.3%],
respectively. The relative differences between the reference and mesh 3
(∆t = 0.002) are 0.04% ± 0.7% [0.7%] and 9.6% ± 0.3% [0.7%].
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Figure 5.17: CFD3 forces for mesh 2.

Mesh (∆t ) Drag Lift

1 (0.002) 440.83 ± 5.4185 [4.4248] -14.735 ± 425.66 [4.3860]
2 (0.002) 440.32 ± 5.5153 [4.4248] -12.344 ± 431.91 [4.4248]
3 (0.002) 439.63 ± 5.6584 [4.4248] -13.038 ± 439.04 [4.4248]
3 (0.001) 439.60 ± 5.6658 [4.4444] -13.374 ± 438.01 [4.4444]

Ref. [113] 439.45 ± 5.6183 [4.3956] -11.893 ± 437.81 [4.3956]

Table 5.8: Forces on cylinder and flag for CFD3.

FSI3 Test Case

The FSI3 benchmark is simulated for meshes 1 and 2. In both cases, the
FSI mesh is constructed from the meshes of the CSM3 and CFD3 test cases
with the same index. The iterative partitioned algorithm with interface
compressibility is applied using a second-order predictor. This choice of
partitioned algorithm is due to the relatively high added mass of the bench-
mark problem. In all cases, the relative and absolute convergence tolerance
for the FSI coupling iterations are 1×10−3 and 1×10−9, respectively. Pres-
sure contours are plotted over approximately one period in figure 5.18. The
deformation of mesh 2 is shown in figure 5.19.
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Figure 5.18: FSI3 pressure contours over one period of oscillation.
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Figure 5.19: FSI3 mesh deformation at t = 14.67.

Mesh (∆t ) ds x [x 10−3] ds y [x 10−3]

1 (0.001) -2.67 ± 2.51 [11.0] 1.41 ± 34.26 [5.5]
2 (0.001) -2.67 ± 2.51 [11.0] 1.41 ± 34.30 [5.5]

2 (0.0005) -2.67 ± 2.51 [11.0] 1.41 ± 34.29 [5.5]

Ref. [113] -2.69 ± 2.53 [10.9] 1.48 ± 34.38 [5.3]

Table 5.9: Tip displacement for FSI3.

Mesh (∆t ) Drag Lift

1 (0.001) 465.7 ± 24.17 [11.1] 2.08 ± 157.74 [5.3]
2 (0.001) 465.7 ± 24.00 [11.1] 2.68 ± 155.47 [5.5]

2 (0.0005) 465.7 ± 23.97 [11.2] 2.20 ± 155.26 [5.5]

Ref. [113] 457.3 ± 22.66 [10.9] 2.22 ± 149.78 [5.3]

Table 5.10: Forces on cylinder and flag for FSI3.

Tip displacement of the flexible flag and the lift and drag forces acting
on the cylinder and flag are shown in figure 5.20. A quantitative comparison
of the results is made with the reference values in tables 5.9 and 5.10. The
relative differences between the reference and mesh 2 (∆t = 0.001) are
0.7% ± 0.8% [0.9%] for the x-displacement, 5.0% ± 0.2% [3.8%] for the y-
displacement, 1.8% ± 5.9% [1.8%] for the drag and 20.7% ± 3.8% [3.6%] for
the lift.
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Figure 5.20: FSI3 tip displacement and forces acting on the cylinder and
flag for mesh 2.

The average number of coupling iterations required at each time step
for the interface compressibility algorithm is given in table 5.11.

5.6 Summary

The coupled FSI solver was verified using a combination of analytical and
fully nonlinear benchmark problems. Numerical analysis and experiments
based on a linear model problem both confirm the second-order accuracy
of the interface motion in time for the mixed time discretization based on
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Mesh (∆t ) FSI Iterations

1 (0.001) 7.6

2 (0.001) 7.6

2 (0.0005) 7.5

Table 5.11: Average number of FSI coupling iterations for FSI3.

the BDF2 and generalized-α schemes for the fluid and structure, respec-
tively.

For the fractional-step algorithm, the stable range of added-mass ra-
tios of the staggered algorithm in [31]may be increased by performing a
small number of pressure corrections (figure 5.12). In the numerical ex-
periments of this chapter, Nc o r r = 4 was sufficient to recover the stability
of the monolithic solver. The accuracy of the interface motion appeared
relatively insensitive to the number of pressure corrections.

For large added-mass ratios, small values of the coupling parameterβSC

are required to ensure the stability of the staggered algorithm. This leads
to larger errors in the interface motion, which are reduced by decreasing
the time step size (figure 5.13). Within this range, it may be more efficient
to switch to the iterative coupling technique with interface compressibility
and a second-order predictor for which the number of coupling iterations
remains relatively constant over a range of moderate to high added-mass
ratios (figure 5.9).
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Chapter 6

Aeroelastic Simulation

PTSCs are long slender structures, which rotate about their pitching axis in
order to capture the direct radiation from the sun over the course of a day.
Any deviation from the tracking position due to wind-induced vibrations
can lead to a loss of efficiency. Therefore, it is important to obtain an
accurate assessment of the wind-induced response for regular operating
conditions as well as for ultimate design wind loads. The assessment of
wind effects during regular operating conditions requires an analysis of
the response for various pitch angles and wind speeds as well as a clear
understanding of the various excitation mechanisms involved.

When determining whether aeroelastic effects should be considered,
it is useful to review other works involving geometrically similar struc-
tures. Specifically, dish-shaped structures such as radio telescopes and
paraboloidal solar collectors are mentioned in the literature [64, 77, 89].
These structures may be prone to stall flutter, an aeroelastic instability
caused by the synchronization of large-scale vortex shedding from the
leading edge with the rotational vibration of the structure. Therefore, the
conditions under which stall flutter of a PTSC may occur should be deter-
mined.
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6 Aeroelastic Simulation

In this chapter, computational FSI is used to study the wind-excited
aeroelastic response of a PTSC. At the time this study was performed, the
literature on wind loads for PTSCs was limited to wind tunnel and CFD
studies of rigid models1. Therefore, this chapter aims at identifying aeroe-
lastic effects, which were not considered in previous studies, by combining
the wind load simulation model validated in chapter 4 with the staggered
FSI algorithm of [31] discussed in chapter 5. By modeling FSI, the addi-
tional physics due to feedback effects of the structural vibration on the
wind loads, which the rigid models neglect, are included.

In section 6.1, we discuss the section model used to investigate the
aeroelastic response. A dimensional analysis is performed in section 6.2,
and the significance of several dimensionless groups is reviewed. The equa-
tion of motion for the section model is given in section 6.3, and the one-way
and two-way simulations, used to distinguish between self-excited vibra-
tions and the dynamic response due purely to wind buffeting, are explained
in section 6.4. Section 6.5 discusses the choice of problem parameters used
for this study. Statistics of the simulated full-scale ABL are given in section
6.6, and the effect of varying the pitch angle is investigated in section 6.7.
The pitch angles showing significant self-excited vibrations are studied in
detail in sections 6.8 and 6.9, and the underlying excitation mechanisms
are identified. For comparison, the results of a purely resonant response
are provided in section 6.10. Finally, the effect of varying the reduced ve-
locity is investigated in section 6.11. This includes a comparison of the
onset of self-excited vibrations detected from the FSI simulations with a
study of the aerodynamic damping obtained from controlled oscillation
simulations.

Part of the work presented in this chapter has been published in [8]. It
is included here with permission from the publisher.

6.1 Section Model

Before selecting a model, it is important to clearly define the purpose of
the study. A detailed structural model of a specific collector design at a par-
ticular location in an array may be expected to provide the most realistic
estimate of the response for that particular configuration. This choice leads

1In the case of the wind tunnel, rigid refers to the fact that the model is sufficiently stiff
so that the measured loads are not affected by structural vibration.
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to a large number of design parameters whose influences on the quantity of
interest may be indistinguishable from one another. Moreover, it results in
relatively expensive computational models and generally makes a system-
atic variation of different design parameters infeasible. Without any further
understanding of the underlying excitation mechanisms, such studies may
be inconclusive as to whether or not motion-induced excitations are rele-
vant in the design of PTSCs or how the response may change with changes
in design variables. If, on the other hand, the aim of the study is to identify
the underlying excitation mechanisms that are relevant to the response
of PTSCs and which design variables affect their behavior, then studying
a baseline model corresponding to a specific excitation mechanism may
provide more insight. The latter approach is taken in this study.

PTSCs are constructed as a sequence of modules connected in series
along a common pitching axis. The pitch angle of the collector is controlled
by a mechanical drive with the applied torque transmitted from one mod-
ule to the next through connector plates. The torsional eigenfrequencies
depend on both the module design and the number of modules connected
in series. Torsional stall flutter is characterized as the mutual interaction
of a single torsional degree of freedom with vortex shedding from the
leading edge of the bluff body. For elastic structures, the lowest torsional
eigenfrequency is most critical. Therefore, it is desirable to characterize
the structural behavior in terms of a single mass and stiffness parameter
corresponding to the first torsional eigenfrequency and investigate the
aeroelastic behavior in terms of these parameters.

One possibility is to choose an existing collector design and perform
model order reduction based on the first torsional eigenmode. This has the
advantage that the mode of vibration is more accurately modeled over the
length of the chosen collector. The drawbacks are that the computational
cost of LES increases significantly when the entire collector is modeled and
the accuracy gained may only be valid for the chosen design. Hence, such
a reduced order model may be better suited for a subsequent investigation
of a design specific case.

Another possibility is to model a section of the collector that includes
the properties most critical to torsional stall flutter: the geometric cross
section and the mass, damping and stiffness parameters of the first tor-
sional eigenfrequency. This is referred to as a section model and has proven
to be useful in the established field of long-span bridge aerodynamics [95].
As the length of a single module is typically much smaller than the length
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Figure 6.1: Aeroelastic model parameters.

of the collector, the single module is chosen as a representative section
model for the entire collector.

6.2 Dimensional Analysis

The parameters of the section model are depicted in figure 6.1. An ABL flow
based on the Kaimal spectra is chosen as the approach flow with mean
velocity Ur e f at the reference height zr e f and the roughness height z0. The
description of the trough geometry and orientation includes the aperture
W , the length of the module L , the height of the pitching axis H , the offset
from the pitching axis to the mirror’s vertex δ and the pitch angle α. The
mirror geometry is the full-scale equivalent of the model in figure 4.1. The
elastic center is located at the center of gravity, which coincides with the
pitching axis. The angle of deformation around the pitching axis is denoted
by θ , and the moment of inertia, mechanical damping ratio and torsional
stiffness are denoted by J , ζ and kθ , respectively.

Assuming geometric similarity and omitting discretization parameters,
the response is a function of the variables Ur e f , zr e f , z0, α, W , ρ, ν, J , ζ,
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kθ . The dimensional matrix is written as





Ur e f zr e f z0 W L δ ρ ν J kθ
M 0 0 0 0 0 0 1 0 1 1
L 1 1 1 1 1 1 −3 2 2 2
T −1 0 0 0 0 0 0 −1 0 −2



 (6.1)

with α and ζ omitted since they are already in dimensionless form. A
reduced set of dimensionless variables of the form

πi =U αi 1

r e f z αi 2

r e f z αi 3
0 W αi 4 Lαi 5δαi 6ραi 7ναi 8 J αi 9 kαi 10

θ (6.2)

is constructed according to the Buckingham-π theorem by constructing a
basis for the null space of matrix (6.1):

α1 = [ 1, 0, 0, 1, 0, 0, 0, −1, 0, 0]T ,

α2 = [ 0, 0, 0, 4, 1, 0, 1, 0, −1, 0]T ,

α3 = [ 1, 0, 0, −1, 0, 0, 0, 0, 0.5, −0.5]T ,

α4 = [ 0, 1, 0, −1, 0, 0, 0, 0, 0, 0]T ,

α5 = [ 0, 0, 1, −1, 0, 0, 0, 0, 0, 0]T ,

α6 = [ 0, 0, 0, −1, 1, 0, 0, 0, 0, 0]T ,

α7 = [ 0, 0, 0, −1, 0, 1, 0, 0, 0, 0]T .

The final set of dimensionless parameters is

π1 =Ur e f W /ν, π2 =ρLW 4/J , π3 =Ur e f /ωn0W ,

π4 = zr e f /W , π5 = z0/W , π6 = L/W ,

π7 =δ/W , π8 = ζ, π9 =α.

Here π1 is the usual Reynolds number R e =Ur e f W /ν. π2 is a form of
added-mass ratio and is denoted by2 mr =ρLW 4/J . π3 is often referred
to as the reduced velocity. It describes the ratio between fluid and struc-
ture frequencies. The definition of reduced velocity used in this work is
Ur =Ur e f /W fn0 with fn0 the natural frequency of the structure in cycles

2Here mr is used instead of α f s , since mr does not necessarily satisfy the relation (5.25).
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per second (ωn0 = 2π fn0). The simulated ABL is described by π4 and π5.
π4 relates the length scales in the ABL to the model size, and π5 describes
the turbulence intensity. π6 andπ7 are geometric parameters. Their values
are fixed based on the chosen geometry and are not considered further
in this study. Finally, π8 and π9 are used to denote the two initially di-
mensionless parameters ζ and α, respectively. For aeroelastic studies, it is
common to present the mechanical damping ratio in combination with
the mass ratio in the form of a Scruton number, which is defined here as
S c = 4πJ ζ/ρLW 4 = 4πζ/mr . This eliminates one of the dimensionless
parameters, but it is less general than the above presentation. Therefore,
we discuss ζ and mr separately.

6.3 Equation of Motion

The equation of motion for the section model is given by

θ,t t +2ζωn0θ,t +ω
2
n0θ =

1

J
M (6.3)

and can be transformed into the dimensionless form

θ ′′+
4πζ

Ur
θ ′+

4π2

U 2
r

θ =
1

2
mr CM (6.4)

with moment coefficient

CM (t ) =
M (t )

1
2ρU 2

r e f LW 2
(6.5)

and non-dimensional form of derivative (·)′ =W (·),t /Ur e f .

6.4 One-Way and Two-Way Coupling

For the solution of the FSI problem, equation (6.3) must be coupled with
the solution of the fluid problem. The coupled FSI simulation is computed
using the staggered algorithm discussed in chapter 5 and is referred to as
a two-way coupled simulation due to the coupling of both moment and
rotation.
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As the primary aim of this study is to determine the extent to which
feedback effects of the collector motion affect the wind loads, it is useful to
compare the two-way coupled simulation with a simulation in which the
moment computed from a CFD simulation with a fixed domain boundary
is applied to the structure (i.e., the boundary of the fluid domain is not
updated with the rotation of the collector). We refer to this approach as
one-way coupling since it only implies coupling of the moment.

The one-way coupled solution is obtained by performing an additional
CFD simulation with a fixed boundary. The computed time-series of the
moment acting on the collector is then explicitly applied to the right-hand
side of equation (6.3). One-way coupling is sufficient for simulating me-
chanical resonance, but it is not capable of capturing aeroelastic effects
such as torsional stall flutter. Therefore, by performing an additional one-
way coupled simulation, one can determine the extent to which the motion
of the boundary affects the response.

One-way and two-way coupled approaches are depicted in figure 6.2.

6.5 Design of Experiment

By considering an appropriate section model and performing dimensional
analysis in section 6.2, the number of variables is reduced to a set of 9
dimensionless parameters. Since evaluating the response at each combi-
nation of these parameters requires a separate time-resolved simulation,
it is not feasible to explore the entire space of dimensionless parameters.
Therefore, the purpose of this section is to discuss the choice of parameters
used in this study.

The Reynolds number is an important parameter for aerodynamic
loads of some bluff bodies with moving separation points. A classical ex-
ample is the aerodynamic loading on a circular cylinder [2, 121]. Bluff
bodies with fixed separation points such as rectangular cylinders are nor-
mally less sensitive at high Reynolds numbers. The effect of changes in
Reynolds number on the aerodynamic load coefficients of PTSCs has been
assessed in wind tunnel studies (see, e.g., [47, 86]) and is not expected to
be significant. Based on this conclusion, the Reynolds number is fixed in
this study with a value of R e = 3.3×106.

The added-mass parameter mr is similar to the added mass discussed
in chapter 5. Because of the low density of air, the shift in eigenfrequency
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Figure 6.2: One-way and two-way simulations.

due to added mass is expected to be small. This was confirmed by a nu-
merical simulation. The collector was allowed to oscillate in quiescent air
with a maximum tip displacement of 1 mm, and the period of oscillation
was compared with that of the collector in a vacuum. The added mass
of air resulted in a decrease in the eigenfrequency by approximately 5%.
Therefore, mr is fixed throughout this study. Its value is chosen based on
the EuroTrough design [69].

The ABL parameters π4 and π5 affect the length scale of the turbulent
eddies and the turbulence intensity according to the synthetic wind field
simulation model discussed in chapter 2. The correlation length of pressure
over the surface of the structure increases with the turbulence length scale.
This follows from the observation that a gust with a spatial extent much
smaller than the size of the structure results in smaller aerodynamic loads
than a gust that is much larger than the structure. In the frequency domain,
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the dependence of aerodynamic loads on the size of turbulent eddies
relative to the characteristic dimension of the structure is often expressed
in terms of an aerodynamic admittance function, which has a value of
1 at low frequencies and decreases to 0 at high frequencies. Due to the
truncated length of the section model, the size of wind gusts relative to
the length of the collector cannot be modeled. This is expected to lead
to a conservative estimate of the response since the surface pressures
are more correlated on the shorter model. In this study, the length scale
of the simulated ABL is fixed and is of a similar magnitude to the length
scales found in natural wind. The turbulence intensity affects the relative
magnitude of the velocity fluctuations. Larger turbulence intensities result
in larger peak velocities, which may influence the onset of self-excited
vibrations. This effect is discussed in section 6.11. The turbulence intensity
is fixed in this study and is chosen based on homogeneous, grass-covered,
open country terrain [119]. The turbulence statistics of the simulated ABL
are presented in the following section.

The mechanical damping parameter represents the contributions to
damping from the material of the structure, the joints and the founda-
tion. The total damping is a combination of the mechanical damping and
the aerodynamic damping, which results from the transfer of energy be-
tween the fluid and the structure by work. A positive aerodynamic damping
indicates a net transfer of energy from the structure to the fluid while a
negative aerodynamic damping indicates the transfer from the fluid to
the structure. The onset of self-excited vibrations may be considered as
the point where the negative aerodynamic damping balances the posi-
tive mechanical damping such that any further decrease in aerodynamic
damping results in a growing amplitude of vibration. For a linear problem,
oscillations grow unbounded when the total damping is negative. Due to
the nonlinear nature of stall flutter, the aerodynamic damping depends
on the amplitude. Therefore, the oscillations grow until a new equilib-
rium of finite amplitude is reached for which the net damping is again
zero. For structures susceptible to stall flutter, the aerodynamic damping
is positive for low reduced velocities and transitions to negative values
at higher reduced velocities. The aerodynamic damping of the section
model is estimated in section 6.11.1 and transitions from 0 to -10% over a
relatively small range of reduced velocities. Because mechanical damping
is typically within the range of 2-5%, its value is not expected to have a
significant effect on the onset of stall flutter. Therefore, its value is fixed at
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Roughness height z0 0.02 m

Mirror aperture W 5 m

Mirror length L 7.92 m

Pitching axis height H 2.84 m

Pitching axis offset δ 0.2 m

Reference height zr e f 10 m

Damping ratio ζ 0.05

Reynolds number R e 3.3×106

Mass ratio mr 1.1

Table 6.1: Constant model parameters.

5% throughout this study.

The reduced velocity and pitch angle have a strong influence on the
aeroelastic response. On the one hand, the pitch angle determines the po-
sition of the separation point with respect to the bluff body. Stall flutter de-
pends on the interaction of the vortex shedding process, which originates at
the separation point, and the portion of the bluff body located downstream
from the separation point. Moreover, the onset of self-excited vibrations
coincides with a critical reduced velocity, denoted by Ur,c r . Above Ur,c r ,
the amplitude of oscillation grows as the aerodynamic damping decreases
with increasing reduced velocity. Both variations in reduced velocity and
pitch angle are investigated in this study. First, the reduced velocity is fixed
to Ur = 3.5 and the pitch angles α=−30o, 0o, 30o, 60o, 90o, 120o, 150o, 180o

and 210o are investigated. For a maximum operating wind speed of 22
m/s [105] and aperture of 5 m, a reduced velocity of 3.5 corresponds to a
torsional eigenfrequency of 1.26 Hz. Upon identifying the pitch angles for
which self-excited vibrations are observed, the effect of varying reduced
velocity for the unstable pitch angle configurations is considered.

The remaining geometric parameters π6 and π7 are fixed throughout
the study.

The set of fixed parameters used in this study is summarized in table
6.1. The reduced velocity is varied by fixing the reference wind speed to
Ur e f = 9.7 m/s and varying the torsional eigenfrequency in the range 0.5≤
fn0 ≤ 1 by controlling the stiffness. The wind speed 9.7 m/s was determined
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from a preliminary study such that the maximum rotation does not exceed
15o.

The statistics reported in this study are computed over a time interval
of approximately 5000W /Ur e f . The time step size chosen for the study
resulted in a temporal resolution of Ur e f ∆t /h ≈ 0.3 for the fluid problem
with h the mesh size in the volume around the collector and fn0∆t ≈
0.015 for the structure problem (approximately 67 time steps per period of
oscillation).

6.6 Full-Scale Wind Simulation

In order to measure the statistics of the simulated ABL, a full-scale empty
channel simulation is performed with the settings in the previous sec-
tion. Velocity time series are measured at the position of the structure at
21 points evenly distributed from the ground until the reference height.
The resulting mean velocity and turbulence intensity profiles are shown
together with the one-sided power spectrum and autocorrelation at the
reference height in figure 6.3. Above the frequency f ≈ 0.6Ur e f /W , the
power spectrum begins to decay rapidly due to the dissipation of turbulent
eddies with length scales close to the mesh size. The largest structural
eigenfrequency considered in this study is fn0 ≈ 0.51Ur e f /W . Therefore,
the artificial decay in spectral density at higher frequencies is not expected
to have a significant impact on the analysis.

6.7 Effect of Varying Pitch Angle

One-way and two-way simulations are performed for 9 pitch angle config-
urations at the reduced velocity Ur = 3.5. Mean, maximum, minimum and
RMS statistics of the moment coefficient and rotation are plotted in figures
6.4 and 6.5. The mean results are unaffected by the choice of one-way
or two-way simulation. This confirms past wind tunnel studies since the
mean aerodynamic coefficients reported in those studies are based on
rigid models. In both one-way and two-way simulations, the most signifi-
cant vibrations occur for pitch angles 60o, 90o and 120o. Unlike the mean
statistics, the maximum, minimum and RMS results are considerably dif-
ferent for the pitch angles 60o and 90o. At these pitch angles, the results of
the two-way simulation are larger in magnitude than the one-way results.
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Figure 6.3: (a) Mean velocity, (b) turbulence intensity, (c) power spectrum
and (d) autocorrelation of the simulated wind.

The differences are largest for 90o with the RMS rotation of the two-way
simulation approximately double the value of the one-way simulation. In
contrast, the results at 120o are nearly identical.

For the one-way simulation, the RMS rotation for 90o is similar to the
value at 120o despite the RMS moment coefficient being smaller by a factor
of approximately one half. This suggests considerably greater resonance
at 90o compared to 120o. A similar argument may be made for 60o. Given
that the same wind is used for all simulations, the excitation frequencies
contained in the wind fluctuations are the same for all simulations. Thus,
the results suggest that an additional excitation due to bluff-body aero-
dynamics contributes to the resonant response at 60o and 90o. The larger

102



6.7 Effect of Varying Pitch Angle

-30 0 30 60 90 120 150 180 210
α

-0.4

-0.2

0.0

0.2

0.4

0.6
C

M

One-Way Two-Way

(a) Mean, maximum and miminum

-30 0 30 60 90 120 150 180 210
α

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
C
′ M

(b) Root mean square

Figure 6.4: Aeroelastic moment coefficient statistics for Ur = 3.5.
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Figure 6.5: Aeroelastic rotation statistics for Ur = 3.5.
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60o 90o 120o

Figure 6.6: Pitch angles 60o, 90o and 120o.

RMS rotation observed for two-way coupling indicates that the response
is not purely a resonant response and that self-excited vibrations due to
feedback effects of the structural vibration on the bluff-body aerodynamics
also occur.

The additional excitation due to bluff-body aerodynamics may be at-
tributed to flow instabilities such as vortex shedding originating from the
separation point. Such instabilities originating from the structure may be
sensitive to structural vibrations. Thus, it is not surprising that self-excited
vibrations coincide with the pitch angles at which significant resonant ex-
citation due to bluff-body aerodynamics are observed. The extent to which
vortex shedding contributes to aerodynamic loading and self-excited vi-
brations depends on the size and shape of the afterbody3. The importance
of the size and shape of the afterbody as a precondition for self-excited
vibrations is discussed by [82]. The pitch angle configurations for 60o, 90o

and 120o are plotted in figure 6.6. The afterbody at 90o is exposed to vortex
shedding from the leading edge until near the trailing edge. In contrast, the
afterbody at 60o continues downstream nearly horizontally before curv-
ing upwards and away from the vortex shedding. At 120o the afterbody
moves away from the separation point more rapidly. Thus, both the 60o and
90o cases satisfy the precondition for self-excited vibrations in the sense
that their afterbodies may be in close proximity to vortices shed from the
leading edge while the 120o case is less likely to fulfill this requirement,
resulting in a weaker interaction between the structural vibration and the
aerodynamic loading.

3Here, afterbody refers to the part of the structure downstream from the leading separa-
tion point.
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Figure 6.7: Moment coefficient and rotation time series for 60o.

6.8 Wind-Excited Response for Pitch Angle α= 60o

6.8.1 Comparison of One-Way and Two-Way Solutions

The wind-excited response at α= 60o is investigated for both one-way and
two-way coupling in this section. Time series of moment coefficient and
rotation are plotted over a time interval of 1250W /Ur e f in the left side of
figure 6.7. The time interval shown is one quarter of the total time used to
compute the statistics in the previous section. Therefore, the peaks may be
smaller than the values reported in figures 6.4 and 6.5. Although both one-
way and two-way simulations are performed separately, the time-varying
inlet boundary condition used to simulate the ABL is identical for both
simulations, which allows for a direct comparison of the two time series.

The largest differences between the two simulations appear near the
peaks. The right side of figure 6.7 shows the interval around the largest peak.
The absence of a dominant high frequency component in the one-way
moment coefficient indicates that the fluctuations are primarily caused
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6.8 Wind-Excited Response for Pitch Angle α= 60o

by turbulence buffeting. Initially, the two-way moment coefficient closely
follows that of the one-way simulation. As the one-way moment coefficient
drops, the two-way moment coefficient appears to synchronize with the
rotation and oscillates close to the natural frequency of the structure. In
this interval, both the moment coefficient and rotation reach amplitudes
significantly larger than the one-way results.

The drop in the one-way moment coefficient is attributed to an in-
crease in wind speed around the section model. This can be reasoned by
imagining a simplified model of the wind gust whose length scale is much
larger than that of the section model. This way the spatial variation of the
gust may be neglected and its aerodynamic admittance can be taken as
equal to 1. The dependence of the moment on the wind fluctuation is
estimated from the linearization

M (t )≈
1

2
ρLW 2(Ur e f +u ′(t ))2C̄M (6.6)

≈
1

2
ρLW 2U 2

r e f C̄M +ρLW 2Ur e f u ′(t )C̄M .

The corresponding moment coefficient is

CM (t )≈ C̄M +2
u ′(t )
Ur e f

C̄M . (6.7)

For 60o the mean moment coefficient is C̄M = −0.062. As a result, an in-
crease in the fluctuation u ′ causes a decrease in the moment coefficient
CM . Thus, the drop in the moment coefficient of the one-way simulation
and the appearance of self-excited vibrations in the two-way simulation
coincide with an increase in wind speed around the structure.

This is confirmed by plotting velocity contours on isosurfaces of Q-
criterion for 4 equally spaced instants in time around the peak in figure
6.8. The wind speed is initially low at Ur e f t /W = 641.7. After the onset of
the peak, the wind speed has increased noticeably and a regular vortex
shedding pattern can be seen atUr e f t /W = 659.0. During synchronization,
a vortex appears to shed from the upper edge as the mirror reaches its
minimum angle of rotation with the period of vortex shedding coinciding
with the period of oscillation. The velocity remains high at Ur e f t /W =
672.6 before dropping of at the end (Ur e f t /W = 690.1).

The one-sided power spectra of the moment coefficient and rotation are
plotted in figure 6.9. The clearly visible peak in spectral density of the two-
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Ur e f t /W = 641.7 Ur e f t /W = 659.0

Ur e f t /W = 672.6 Ur e f t /W = 690.1

Figure 6.8: Isosurfaces of Q-criterion (Q=0.2) colored by velocity for the
two-way simulation at α= 60o.

way moment coefficient, which drops off abruptly at higher frequencies, in-
dicates stronger vortex shedding compared to the one-way simulation. The
dominant shedding frequency coincides with the frequency of vibration
with fs h = fo = 0.21Ur e f /W . This is considerably lower than the frequency
of oscillation for the one-way simulation with fo ≈ fn = 0.29Ur e f /W .

6.8.2 Synchronization Process

A detailed investigation of the flow field over two cycles of self-excited
vibrations is presented in order to better understand the synchronization
process at α = 60o. Figure 6.10 shows the pressure distribution around
the center section according to the phase of rotation. On the downstroke,
the rotation decreases and the leading edge of the collector drops. As this
happens, the suction on the back side of the leading edge increases (figure
6.10g), indicating the formation of a vortex. The vortex sheds shortly after
the minimum rotation is reached (6.10b), and the region of high suction

108



6.8 Wind-Excited Response for Pitch Angle α= 60o

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

f
S C

M

(a) (b)

10-3 10-2 10-1 100 101
W f /Ur e f

10-6
10-5
10-4
10-3
10-2
10-1
100
101

f
S θ

(c)

10-3 10-2 10-1 100 101
W f /Ur e f

(d)

Figure 6.9: Power spectra for (a) one-way moment coefficient, (b) two-way
moment coefficient, (c) one-way rotation and (d) two-way rotation for
α= 60o.

moves downstream along the back of the mirror. As the vortex continues
downstream, the suction on the back of the collector decreases (figure
6.10d) until a new vortex begins to form and the cycle repeats itself.

The sychronization process is visualized for one cycle of vibration be-
ginning with the maximum rotation in figures 6.11 and 6.12. Figure 6.11
shows the vortex shedding from the upper edge of the collector during the
downstroke. The vortex core appears as a small circular region of negative
pressure behind the upper edge shortly before the collector reaches its
minimum rotation in figure 6.12. At the same time, a second vortex core
is developing at the lower edge. As the collector begins the upstroke, the
vortex sheds from the lower edge and moves along the back of the collector
while the vortex shed from the upper edge expands and convects down-
stream. Midway through the upstroke, the two regions of negative pressure
combine as they continue to expand and convect downstream.
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Figure 6.10: Synchronization of pressure with rotation for two-way coupled
simulation. Positive pressure (solid) and negative pressure (dash-dot) are
plotted for approximately 2 cycles of motion for α= 60o.
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Figure 6.11: Isosurfaces of Q-criterion (Q=0.2) colored by velocity during
synchronization of vortex shedding with collector rotation for α= 60o.

6.9 Wind-Excited Response for Pitch Angle α= 90o

6.9.1 Comparison of One-Way and Two-Way Solutions

Time series of moment coefficient and rotation for 90o are plotted in figure
6.13. In contrast to 60o, the mean moment coefficient for 90o is positive.
Substituting the mean moment coefficient C̄M = 0.082 in equation (6.7),
it is reasoned that an increase in wind speed causes an increase in the
moment coefficient. On the right side of figure 6.13, the two moment coef-
ficients are initially similar and diverge as the one-way moment coefficient
increases, indicating an increase in wind speed. The oscillations in the
one-way moment coefficient have a smaller amplitude and occur over a
range of frequencies close to the natural frequency of the structure. These
oscillations are attributed to vortex shedding from the leading edge of
the collector and explain the large resonant excitation observed for 90o in
section 6.7. The feedback of the collector vibration close to the shedding
frequency causes the two-way moment coefficient to synchronize with
the rotation and both undergo smooth large-amplitude oscillations at a
single frequency. The synchronization ends as the wind speed decreases
and the one-way moment coefficient drops.
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Figure 6.12: Pressure and velocity contours during synchronization of
vortex shedding with collector rotation for α= 60o.

Power spectra of the moment coefficient and rotation are shown in
figure 6.14. The fluctuations of the one-way moment coefficient appear
as a clearly visible broad-banded peak around W fs h/Ur e f = 0.23 in figure
6.14a. From figure 6.14c, the dominant frequency of oscillation for the
one-way simulation occurs at W fo/Ur e f = 0.29 and corresponds to the
natural frequency of the structure. In the two-way simulation, the peaks in
spectral density for moment coefficient and oscillation occur at the same
frequency W fs h/Ur e f =W fo/Ur e f = 0.24. The peak in spectral density is
also significantly higher for both moment coefficient and rotation with the
spectral density of the moment coefficient dropping off sharply at higher
frequencies. The high spectral density of the moment coefficient is also
concentrated around a narrow band of frequencies.
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Figure 6.13: Moment coefficient and rotation time series for α= 90o.

6.9.2 Synchronization Process

The synchronization of the vortex shedding process with the rotation is
further investigated by plotting the pressure distributions according to
phase of rotation around the center section of the model. Since the self-
excited vibrations are sustained over a longer time interval than forα= 60o,
the pressure distributions are included over 5 cycles of vibration in figure
6.15. In the case α = 60o, the primary contribution of vortex shedding
to the aerodynamic loading occurs as a vortex forms on the lower side
of the leading edge during the downstroke (decreasing θ ). Figure 6.15,
shows a region of high suction developing on the upper side of the leading
edge during the upstroke (increasing θ ). This is due to the fact that the
shear layer originating from the leading edge is located on the lower side
for α = 60o and on the upper side for α = 90o. In both cases, the vortex
sheds as the leading edge is close to the maximum deformation. After the
vortex sheds, the high suction on the upper side is replaced by a region of
small positive pressure. Thus, less energy is transferred back to the fluid
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Figure 6.14: Power spectra for (a) one-way moment coefficient, (b) two-
way moment coefficient, (c) one-way rotation and (d) two-way rotation
for α= 90o.

on the downstroke. In addition to the periodic vortex shedding on the
upper side, the stagnation pressure on the lower side of the leading edge
increases as the edge tilts upward and the adjacent suction bubble shifts
from the mirror’s center towards the trailing edge. On the downstroke, the
stagnation pressure drops and the suction bubble moves back towards the
center of the collector.

6.10 Wind-Excited Response for Pitch Angle α= 120o

As a comparison, the time series of the moment coefficient and rotation
are plotted for α = 120o in figure 6.16. On the right side, the same gust
that was observed on the right side of figure 6.13 causes an increase in the
moment coefficient. Despite the increase in wind speed, the one-way and
two-way results remain in close agreement, and the feedback effects of the
collector motion on the aerodynamic loads are negligible.
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Figure 6.15: Synchronization of pressure with rotation for two-way simula-
tion. Positive pressure (solid) and negative pressure (dash-dot) are plotted
for approximately 5 cycles of motion for α= 90o.
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Figure 6.16: Moment coefficient and rotation time series for α= 120o.

6.11 Effect of Varying Reduced Velocity

The effect of varying reduced velocity is investigated for the pitch angle
α= 90o. Changes in reduced velocity may reflect changes in the torsional
eigenfrequency due to different structural models or changes in wind
speed. For fixed structural parameters, the reduced velocity increases with
increasing mean wind speed. The shedding frequency scales with the mean
wind speed according to the Strouhal number. The Strouhal number used
in this study is defined as St =W fs h/Ur e f and is based on the mean wind
speed at a height of 10 m. For low wind speeds, the shedding frequency
is much lower than the torsional eigenfrequency and synchronization of
the vortex shedding with collector oscillation is not observed. As the wind
speed increases and the shedding frequency approaches the frequency
of vibration, the vortex shedding may synchronize with the frequency
of vibration, resulting in self-excited vibrations. As discussed above, the
threshold at which the onset of self-excited vibrations occurs is herein
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referred to as the critical reduced velocity and is denoted by Ur,c r . The
goal of this section is to estimate Ur,c r for the pitch angle α= 90o and to
investigate the structural response as the reduced velocity transitions from
pre-critical to post-critical reduced velocities.

Two approaches exist for investigating self-excited vibrations. The first
approach, referred to as controlled-oscillation simulation, forces the struc-
ture to oscillate with a prescribed frequency and amplitude4. A time series
of the moment is measured and is used to calculate the aerodynamic damp-
ing corresponding to the prescribed frequency and amplitude. Controlled-
oscillation simulations have the advantage that an FSI simulation is not
required. However, the aerodynamic damping can only be determined in
terms of the frequency of oscillation. As shown above, the frequency of
oscillation changes if the coupled FSI simulation is performed. This shift in
frequency cannot be directly determined from the controlled-oscillation
simulation. Another limitation of controlled oscillation is that a smooth
approach flow is generally required in order to calculate the aerodynamic
damping. Thus, the dependence of self-excited vibrations on turbulence
buffeting cannot be directly studied.

The second approach is referred to as free vibration simulation and
corresponds to the two-way coupled simulation described above. Using
this approach, the frequency of oscillation can be determined for a given
structural eigenfrequency. Free vibration simulations are normally com-
puted for smooth approach flows, but the response can also be computed
for realistic turbulent conditions. In the case that the response is simulated
in an ABL flow, the computational cost increases due to the need to com-
pute for longer simulation times in order to evaluate statistics. Moreover,
the response changes with changes in roughness conditions.

Both approaches are considered in this study. First, a controlled-oscillation
simulation is performed for a smooth approach flow to determine the aero-
dynamic damping ratio. The aerodynamic damping ratio is combined with
the distribution of wind velocities computed for the given roughness in
order to estimate the onset of self-excited vibrations. The estimated critical
reduced velocity is then compared with the two-way coupled simulation of
the collector in the simulated ABL, and the variation in moment coefficient
and rotation statistics as a function of reduced velocity is determined. Fi-

4A more detailed description can be found in [77].
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nally, the behavior of the shedding and oscillation frequencies for one-way
and two-way coupled simulations are compared.

6.11.1 Controlled-Oscillation Simulation

The rotation of the controlled-oscillation simulation is prescribed as

θ (t ) = θ0sin(2π fo t ) (6.8)

with amplitude θ0 = 4o and frequency of oscillation fo = 0.55Hz. The
inlet boundary condition is prescribed by the roughness in table 6.1 and
the velocity at the reference height according to the logarithmic profile.
The time-varying fluctuations from the simulated ABL are not included,
resulting in a smooth approach flow. The time series of the moment is
measured for varying approach velocities and the fitting parameters A,B
and M̄ are computed for the function

M (t ) =−Aθ̇ −Bθ + M̄ . (6.9)

The aerodynamic damping ratio is computed as the component of the
moment signal in phase with the angular velocity as

ζa =
A

2Jωn0
. (6.10)

Equation (6.10) depends on the natural frequencyωn0 = 2π fn0. The
natural frequency corresponding to the prescribed frequency of oscillation
is estimated from the results of the two-way simulation in section 6.9. Its
value is fixed to fn0/ fo = 1.2 here. Based on this, the aerodynamic damping
is plotted as a function of u/W fn0 in figure 6.17. Here, u is the velocity
of the approach flow at the reference height. The onset of self-excited
vibrations occurs when the total damping drops below zero. The stability
threshold of the aerodynamic damping corresponds to the negative value
of the structural damping and is included in figure 6.17. The unstable
region begins when the velocity of the approach flow exceeds the critical
velocity uc r = 4.1W fn0. This estimate is valid for a smooth approach flow
but changes when turbulent fluctuations are considered.

In order to estimate the effect of the turbulent fluctuations on the onset
of self-excited vibrations, we consider the distribution of instantaneous
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Figure 6.17: Aerodynamic damping ratio (ζa ) measured from forced vibra-
tion simulation with amplitude θ0 = 4o at α= 90o. The stability threshold
(−ζ) is plotted as a dotted line.
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Figure 6.18: Normalized wind distribution.
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velocities normalized by the mean velocity at the reference height in figure
6.18. Dividing uc r by Ur e f results in a normalized critical velocity, which
depends on the reduced velocity uc r /Ur e f = 4.1/Ur . Thus, velocities sat-
isfying u/Ur e f < 4.1/Ur are not expected to cause self-excited vibrations.
The maximum normalized velocity in figure 6.18 is u/Ur e f ≈ 1.64. From
this, the onset of self-excited vibrations in the ABL flow is estimated to be
Ur = 2.5. As the reduced velocity increases above this threshold, the dis-
tribution of velocities crosses into the unstable region and an increase in
self-excited vibration is observed. This is the case for the reduced velocity
Ur = 3.5 of section 6.7. As seen from figure 6.18, the mean wind veloc-
ity Ur e f lies in the stable region, but wind gusts result in instantaneous
velocities, which are higher than the stability threshold.

6.11.2 Two-Way Coupled Analysis

The one-way and two-way responses of the collector in the simulated
ABL are computed for reduced velocities in the range 2.1<Ur < 3.5. The
reduced velocity is controlled by using the torsional stiffness to adjust the
eigenfrequency. For the one-way simulation, the boundary of the fluid
domain does not deform with the collector motion. As a result, the CFD
simulation is independent of the structural eigenfrequency and only one
simulation is performed. The structural response is then computed from
the time series of the moment for 5 equally spaced reduced velocities. In
the case of two-way coupling, FSI simulations are performed for each of
the 5 reduced velocities.

Maximum and RMS statistics of the moment coefficient and rotation
are plotted in figure 6.19. The one-way and two-way statistics are similar
for Ur < 2.4. At higher reduced velocities, self-excited vibrations become
significant and the one-way simulation significantly underestimates the
response. The estimate of the critical reduced velocity Ur,c r = 2.5 from the
previous section is in good agreement with the observed response. As the
maximum wind speed exceeds the stability threshold, two-way coupled
simulations or aeroelastic models are needed to estimate wind loads and
the magnitude of the structural response.

Figure 6.20 compares the frequency of oscillation and the shedding
frequency of the one-way and two-way simulations for varying reduced
velocity. The frequencies are computed from the peaks in spectral densities
of the moment coefficient and rotation. For example, the shedding fre-
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Figure 6.19: Comparison of moment and rotation for varying reduced
velocity at α= 90o.

quency of the one-way simulation for Ur = 3.5 corresponds to the peak in
spectral density in figure 6.14a while the oscillation frequency is obtained
from figure 6.14c. The peaks in figures 6.14b and 6.14d give the frequencies
for the two-way simulation. The frequency of oscillation for the one-way
simulation corresponds to the natural frequency, and hence the corre-
sponding curve in figure 6.20 varies according to 1/Ur . In contrast, the
shedding frequency of the one-way simulation is independent of the natu-
ral frequency and remains constant with varying Ur . The frequencies of the
two-way simulation lie between these two limits. At low reduced velocities,
the shedding frequency and oscillation frequency are different from one
another. As the reduced velocity increases, the vortex shedding frequency
approaches the eigenfrequency and the two frequencies synchronize in
the two-way simulation. At this point self-excited vibrations occur and
the response of the two-way simulation becomes larger than that of the
one-way simulation. As the eigenfrequency and shedding frequency of the
one-way simulation become closer, the frequency of synchronization ap-
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Figure 6.20: Comparison of oscillation and shedding frequencies for vary-
ing reduced velocity at α= 90o.

proaches the natural shedding frequency and the amplitude of self-excited
vibrations grows.

6.12 Summary

The aeroelastic simulations conducted in this chapter have confirmed that
self-excited vibrations may occur at pitch angles for which the collector’s af-
terbody is in close proximity to the vortices shed from the leading edge. At
other pitch angles, the response is due to externally-induced excitation and
can be simulated without considering FSI effects. The onset of self-excited
vibrations in an ABL flow may be estimated from the aerodynamic damp-
ing, obtained from a controlled-oscillation simulation, and the largest gust
wind speed for the ABL flow considered. An advantage of this approach
is that the simulations may be performed independently from the ABL
conditions. FSI simulations should be performed if the coupled shedding
or oscillation frequency is needed or if the response amplitude should be
estimated.
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Chapter 7

Conclusions and Outlook

In this thesis work, a modeling and simulation approach for computational
wind engineering has been presented and applied for the evaluation of
wind loads on a parabolic trough solar collector. It was shown that the
numerical approach is capable of producing estimates of mean, RMS and
peak wind loads, which are in close agreement with measurements from a
boundary layer wind tunnel experiment.

The numerical model was extended to include fluid-structure interac-
tion and several coupling algorithms were evaluated using a recently pro-
posed analytical benchmark problem. It was found that the combination
of the generalized-αmethod for the structural time discretization and the
second-order backward difference formula for the fluid time discretization
results in a second-order accurate scheme for the coupled fluid-structure
problem. The inclusion of FSI effects increases the modeling complexity
significantly since the efficiency and stability of the various coupling algo-
rithms are problem dependent. Among the algorithms considered in this
work, the staggered algorithm proposed by [31] and the iterative algorithm
using artificial compressibility as presented by [85] performed the best.
Due to its low added mass, the staggered algorithm was used to study the
aeroelastic response of the solar collector in this thesis.
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7 Conclusions and Outlook

The aeroelastic study was used to investigate possible feedback effects
of the structural motion on aerodynamic loads caused by the vortex shed-
ding process. It was shown that significant self-excited vibrations can occur
when the afterbody of the collector is exposed to vortex shedding from the
leading edge. Self-excitation occurs as a result of increased suction near
the leading edge due to the formation of a vortex, which synchronizes with
the vibration of the collector about its pitching axis. The synchronization
process was found to be consistent with stall flutter as discussed in the
context of existing knowledge found in the literature. The prediction of
self-excited vibrations using FSI simulations was confirmed by a more
classical technique based on controlled-oscillation simulations. The util-
ity of the latter approach was illustrated through a comparison with the
current state-of-the-art analysis. Its main advantages are that it does not
require the use of FSI algorithms and that the aerodynamic damping, ob-
tained from a simulation in a smooth flow, can be reused with various wind
velocity distributions to estimate the onset of self-excited vibrations. Its
limitations include the modeling simplifications due to the requirement
of a smooth approach flow, which may become more decisive for larger
structures, and its inability to predict the response of the collector.

Concerning the parabolic trough solar collector, a number of effects
were not considered in this work. These include the influence of fences
and surrounding collectors on the response. Such investigations may be
part of future studies. It is also recommended to verify the results of the
aeroelastic study with wind tunnel tests. Besides reducing the exposure
of the collectors to the wind, it is recommended to investigate the use of
passive flow control devices around the edges of the collector (see, e.g., [20])
for mitigation of vortex-induced resonance and self-excited vibrations.

Recommendations for research into numerical models for computa-
tional wind engineering include the reduction of simulation times and
proper validation studies. One topic, which was not covered in this work,
is the performance optimization of simulation codes to exploit recent
computer architectures for high performance computing. Efforts in this
direction are important for improving the efficiency of simulation codes
and thus expanding the range of applications for computational wind engi-
neering. Another interesting research topic is the development of effective
local mesh error indicators for LES to accelerate mesh refinement studies.
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Appendix A

Calculation of Statistics

The definitions of the statistics for a time series of wind velocity {u n}N−1
n=0

as presented in this work are given below.

A.1 Mean Velocity

Mean velocity is computed as

ū =
N−1
∑

k=0

u k

N
. (A.1)

A.2 Standard Deviation

Standard deviation is computed as

σu =

√

√

√

N−1
∑

k=0

|u ′k |2
N

. (A.2)
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A Calculation of Statistics

A.3 Spectral Density

The discrete Fourier transform of the velocity fluctuation is computed as

û ′m =

p
2T

N

N−1
∑

k=0

u ′k exp

�

−
2πi mk

N

�

, m = 0 . . . N −1. (A.3)

The spectral density at the frequency f =m/T is given by

S m
u = |û ′m |2 (A.4)

and is estimated by dividing the total time series into subintervals (usually
8 or 16), computing (A.3) on each subinterval and averaging the results.

A.4 Autocorrelation

The autocorrelation at the time delay τ=m∆t is either computed as

ρm
u =

1

σ2
u N

N−1
∑

k=0

u ′k u ′m+k mod N (A.5)

or, using the convolution theorem, as

ρm
u =

1

2Tσ2
u

N−1
∑

k=0

S k
u exp

�

2πi mk

N

�

. (A.6)
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Appendix B

Viscous Fluid-Structure
Interaction Model Problem

The derivation in this section for the viscous FSI problem (5.32) is based
on the solution of the small-amplitude surface wave presented in [84].

The solution is decomposed into an inviscid solution, denoted byup , pp ,
and a viscous correction, denoted by uv , pv , according to

u = up +uv , (B.1)

p = pp +pv . (B.2)

The solution of the inviscid part is determined in section 5.1.1. The viscous
correction is required to satisfy

∂ uv
∂ t +

1

ρ f
∇pv −ν f ∇2uv = 0 in Ω f × (0, T ), (B.3)

∇·uv = 0 in Ω f × (0, T ), (B.4)

vv = 0 on y = 0. (B.5)

Taking the curl of (B.3) results in

∂ ωz
∂ t = ν f ∇2ωz (B.6)
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B Viscous Fluid-Structure Interaction Model Problem

withωz =
∂ vv
∂ x −

∂ uv
∂ y the vorticity1. Moreover, equation (B.4) is satisfied by

choosing

uv =−
∂ ψz
∂ y , vv =

∂ ψz
∂ x (B.7)

withψz the stream function. At the boundary y = 0, the zero shear condi-
tion2 together with (5.8) results in the vorticity boundary condition

ωz (x , 0, t ) = 2 ∂ v
∂ x =−

4π

L
a,t (t ) sin

�

2π

L
x

�

. (B.8)

The vorticity is solved by substituting

ωz (x , y , t ) =Ωz (y , t ) sin

�

2π

L
x

�

(B.9)

into (B.6) and (B.8) and imposing lim
y→−∞

ωz = 0. The resulting problem is

∂ Ωz
∂ t = ν f

∂ 2Ωz
∂ y 2 −

�

2π

L

�2

ν f Ωz , (B.10)

Ωz (0, t ) =−
4π

L
a,t (t ), (B.11)

lim
y→−∞

Ωz = 0. (B.12)

For the case of zero initial vorticity, the solution in the Laplace domain is

L[Ωz ](y , s ) =−
4π

L
L[a,t ](s ) exp

��

4π2

L 2
+

s

ν f

�1/2

y
�

. (B.13)

Defining3

L[g ](y , s ) =−
4π

L
exp

�

−
�

4π2 y 2

L 2
+

y 2

ν f
s
�1/2�

, (B.14)

1Here we use the fact that∇×up = .
2The zero shear condition, (5.30), is used to simplify the derivation leading to an explicit

benchmark solution.
3The domain of interest is the lower half-plane y ≤ 0 such that y =−|y |.
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the inverse Laplace transform of (B.13) is

Ωz (y , t ) =

∫ t

0

g (y , t − s )a,t (s )d s

=

∫ t

0

2
p
πy

L
Æ

ν f (t − s )3
exp

�

−
4π2ν f (t − s )

L 2

�

exp
� −y 2

4ν f (t − s )

�

a,t (s )d s . (B.15)

It remains to determine the stream function and thus the viscous part
of the fluid solution from the vorticity. Equations (B.7) and (5.8) admit a
stream function of the form

ψz (x , y , t ) = Ψz (y , t )sin
�

2π

L
x
�

. (B.16)

Substituting (B.9) and (B.16) into the identity

ωz =∇2ψz (B.17)

and using (B.5) with (B.7) together with the condition of boundedness as
y →−∞ gives

∂ 2Ψz
∂ y 2 −

4π2

L 2
Ψz =Ωz , (B.18)

Ψz (0, t ) = 0, (B.19)

lim
y→−∞

Ψz (y , t ) = 0. (B.20)

Using the method of variation of parameters, the solution is found to be

Ψz (y , t ) =
L

4π
exp

�

2π

L
y
��

0
∫

−∞

exp
�

2π

L
s
�

Ωz (s , t )d s +

y
∫

0

exp
�

−
2π

L
s
�

Ωz (s , t )d s
�

−
L

4π
exp

�

−
2π

L
y
�

y
∫

−∞

exp
�

2π

L
s
�

Ωz (s , t )d s . (B.21)
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By differentiating (B.21) with respect to time, eliminating ∂ Ωz
∂ t with (B.10)

and integrating by parts, one obtains

∂ Ψz
∂ t (y , t ) = ν f

�

Ωz (y , t )−Ωz (0, t )exp
�

2π

L
y
��

. (B.22)

Substituting (B.7) into (B.3) and using (B.17), (B.9), (B.16) and (B.22), the
viscous part of the pressure pv must satisfy

∂ pv
∂ x =−

�

2π

L

�

µ f Ωz (0, t )exp
�

2π

L
y
�

sin
�

2π

L
x
�

, (B.23)

∂ pv
∂ y =

�

2π

L

�

µ f Ωz (0, t )exp
�

2π

L
y
�

cos
�

2π

L
x
�

. (B.24)

Upon solving for the pressure with the condition lim
y→−∞

p = 0, the viscous

solution of the fluid problem

vv (x , y , t ) =
1

2

�

exp
�

2π

L
y
�

0
∫

−∞

exp
�

2π

L
s
�

Ωz d s

+exp
�

2π

L
y
�

y
∫

0

exp
�

−
2π

L
s
�

Ωz d s

−exp
�

−
2π

L
y
�

y
∫

−∞

exp
�

2π

L
s
�

Ωz d s
�

cos
�

2π

L
x
�

, (B.25)

pv (x , y , t ) =µ f Ωz (0, t )exp
�

2π

L
y
�

cos
�

2π

L
x
�

(B.26)

is combined with the potential solution from (5.19)

vp (x , y , t ) = a,t exp

�

2π

L
y

�

cos

�

2π

L
x

�

, (B.27)

pp (x , y , t ) =−
ρ f L

2π
a,t t exp

�

2π

L
y

�

cos

�

2π

L
x

�

(B.28)
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and substituted into the pressure boundary condition (5.29) to obtain the
surface pressure distribution on the fluid-structure interface

ps (x , t ) =−
�ρ f L

2π
a,t t (t )−µ f Ωz (0, t ) +

4π

L
µ f a,t (t )

+
4π

L
µ f

0
∫

−∞

exp
�

2π

L
s
�

Ωz (s , t )d s
�

cos
�

2π

L
x
�

. (B.29)

Equation (B.29) is applied to the right-hand side of the membrane problem
(5.20) or beam problem (5.27). After substituting (B.11) and rearranging
terms, the general form of the initial value problem may be expressed as

d̂s ,t t +
16π2

L 2

ν f

1+ 1
α f s

d̂s ,t +ω
2
n d̂s

+
8π2

L 2

ν f

1+ 1
α f s

0
∫

−∞

exp
�

2π

L
s
�

Ωz (s , t )d s = 0, (B.30)

Ωz (y , t ) =

∫ t

0

2
p
πy

L
Æ

ν f (t − s )3
exp

�

−
4π2ν f (t − s )

L 2

�

exp
� −y 2

4ν f (t − s )

�

d̂s ,t (s )d s , (B.31)

d̂s (0) = d̂s 0, (B.32)

d̂s ,t (0) = v̂s 0. (B.33)

After substituting (B.31) into (B.30) and interchanging the integrals, the
last term on the left-hand side of (B.30) becomes

−
16π3

L 3

ν f

1+ 1
α f s

t
∫

0

1
Æ

πν f (t − s )3
exp

�

−
4π2

L 2
ν f (t − s )

�

(B.34)







∞
∫

0

y exp

�

−
y 2

4ν f (t − s )

�

exp

�

−
2π

L
y

�

d y






d̂s ,t (s )d s .
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The inner integral in (B.34) may be evaluated using standard Laplace trans-
form techniques. The resulting initial value problem is

d̂s ,t t +
16π2

L 2

ν f

1+ 1
α f s

d̂s ,t +ω
2
n d̂s −4

ν2
f

1+ 1
α f s

16π4

L 4

·

t
∫

0





exp
�

− 4π2

L 2 ν f (t − s )
�

q

π 4π2

L 2 ν f (t − s )
−erfc

√

√4π2

L 2
ν f (t − s )



 d̂s ,t d s , (B.35)

d̂s (0) = d̂s 0, (B.36)

d̂s ,t (0) = v̂s 0. (B.37)

The dimensionless form of (B.35) is given by (5.32) with the dimensionless
parameters defined in (5.33).
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