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Abstract

Testable hypotheses have been driving advances in the natural sciences. In physics,
huge efforts were undertaken to acquire the data necessary to test some long-standing
hypotheses. Neuroscience is not falling short in elaborate data acquisition schemes
developed. Following data acquisition, often a plethora of hypotheses were formulated
in terms of computational models aiming to explain these data. Nevertheless, it is still
unknown which of the proposed computational models describes even a local cortical
module best. To date, it has been difficult to compare these models systematically, not
only because most of them lack analytically tractable likelihood functions, but also since
the available data has been specific to certain behavioral paradigms hampering direct
comparison. Neuroscience is about to enter the big data regime through the acquisition
of connectomic data — structural neural network data at cellular resolution — which
are independent of behavioral paradigms and will soon become available at the scale of
local cortical modules. However, it is unclear whether connectomic data will possess the
power to support or falsify models of local cortical computation, or not.

In this thesis, I therefore investigated whether connectomic data will be suitable for
model selection of local cortical computational models. I reviewed the existing literature
and compiled a broad range of relevant models proposed so far. I examined whether
they already satisfied a set of common circuit constraints, corresponding to layer 4 of
mouse primary somatosensory cortex, and adapted them to these constraints if neces-
sary, controlling that they were still able to perform meaningful computations. Lacking
analytically tractable likelihood functions, I propose to use a likelihood-free, approximate
Bayesian model selection method on the adapted models. To cope with the algorithmic
challenges and the high computational demands associated with likelihood-free infer-
ence, I developed a general-purpose, scalable and distributed, likelihood-free inference
software framework, together with a scheme for the adaptive selection of sample sizes for
this framework. Using this framework, I evaluated the proposed model selection method
under different scenarios and designed a feasible connectomic circuit reconstruction
experiment under which the method will become applicable.

The results suggest that connectomic circuit data will likely advance a mechanistic un-
derstanding of cortex through falsification of cortical models. This thesis hence, proposes
a method to foster the fusion of experiment and theory in the neural sciences.
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Zusammenfassung

Testbare Hypothesen haben die Naturwissenschaften seit jeher vorangebracht. In der
Physik wurden immense Anstrengungen unternommen, um die notwendigen Daten zu
akquirieren und damit mehrere etablierte Hypothesen zu überprüfen. Die Neurowissen-
schaften stehen der Physik in der Entwicklung elaborierter Datenakquisemethoden in
nichts nach. Im Anschluss an die Datenakquise wurde häufig eine Vielzahl von Hypothe-
sen als rechenfähige Modelle formuliert, um diese Daten zu interpretieren. Dennoch ist
noch nicht einmal klar, welches Modell auch nur ein lokales kortikales Modul am besten
beschreibt. Bis jetzt war ein systematischer Vergleich dieser Modelle sehr schwierig, nicht
nur, weil die meisten keine analytisch zugängliche Likelihood-Funktion haben, sondern
auch, weil die verfügbaren Daten bestimmten Verhaltensparadigmen eigen waren und
somit den direkten Vergleich erschwerten. Mit der Akquise connectomischer Daten —
zellulär aufgelöster struktureller neuronaler Netzwerkdaten — stehen die Neurowis-
senschaften kurz davor, in die Big Data Ära einzutreten. Diese connectomischen Daten
sind unabhängig von Verhaltensparadigmen und bald in der Größenordnung lokaler,
kortikaler Module verfügbar. Jedoch ist noch nicht klar, ob man mit connectomischen
Daten Modelle lokaler kortikaler Berechnungen wird falsifizieren können oder nicht.

In dieser Dissertation habe ich deshalb untersucht, ob künftige connectomische Daten
geeignet sein werden, um Modellselektion auf lokalen kortikalen rechenfähigen Model-
len durchzuführen. Ich habe den derzeitigen Forschungsstand gesichtet und ein breites
Spektrum bislang vorgeschlagener relevanter Modelle zusammengetragen. Ich habe
dann untersucht, ob diese bereits eine Menge gemeinsamer struktureller Nebenbedin-
gungen, Schicht 4 des primären somatosensorischen Kortex der Maus entsprechend,
erfüllen und habe diese, sofern erforderlich, an die Nebenbedingungen angepasst. Da-
bei habe ich sicher gestellt, dass diese Modelle immer noch sinnvolle Berechnungen
durchführen können. Da die meisten Modelle keine analytisch zugängliche Likelihood-
Funktion besitzen, schlage ich vor, eine Likelihood-freie, approximativ Bayesianische
Modellselektionsmethode auf die angepassten Modelle anzuwenden. Um der algorith-
mischen Herausforderungen und der hohen Anforderungen an die Rechenkapazität
habhaft zu werden, entwickelte ich ein allgemein verwendbares, verteilt arbeitendes
und skalierbares Software Framework zur Likelihood-freien Inferenz, kombiniert mit
einer Methode zur adaptiven Selektion von Sample-Größen für dieses Framework. Mit-
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Zusammenfassung

hilfe dieses Frameworks evaluierte ich die vorgeschlagene Modellselektionsmethode in
verschiedenen Szenarien und entwarf ein durchführbares neuronales Schaltkreisrekon-
struktionsexperiment, mit dem die Methode angewandt werden kann.

Die Resultate weisen darauf hin, dass neuronale Schaltkreisdaten durch die Falsifi-
zierung von kortikalen Modellen ein mechanistisches Verständnis vom Kortex fördern
werden. Diese Dissertation schlägt daher eine Methode vor, die eine Verknüpfung von
Experiment und Theorie in den Neurowissenschaften vorantreibt.
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1. Introduction

1.1. Aspects of the Relation Between Theory and Experiment

The exploration of natural phenomena through the combination of mathematical analysis
and experimental measurements has shaped the natural sciences. In particular, experi-
mental falsification of or experimental support for theoretically proposed hypotheses
plays an essential role in the combination of theory and experiment (Popper 1934). A
mathematical theory accompanying a certain hypothesis might of course be extremely
interesting in its own right, even if it is not related to any experimental finding, but is
then less useful to the natural scientist. Therefore, in some areas of physics, tremendous
efforts were undertaken to support or falsify certain long-standing hypotheses. For exam-
ple, the existence of a particle, now known as Higgs boson, was predicted theoretically
as part of the standard model of particle physics in 1964 (Higgs 1964). Experimental sup-
port for the existence of this particle was found 48 years later, in 2012, by the European
Organization for Nuclear Research (CERN) (Chatrchyan et al. 2012). Another example
is given by gravitational waves. The prediction of gravitational waves was derived from
Einstein’s theory of general relativity in the early 20th century (Einstein 1916). It took a
hundred years – until 2016 – that gravitational waves were experimentally observed by
the Laser Interferometer Gravitational-Wave Observatory (LIGO) group (LIGO Scien-
tific Collaboration and Virgo Collaboration et al. 2016).

In several ways life sciences, and in particular neuroscience, the sub-discipline con-
cerned with the study of the nervous system, do now play a role similar to the one
physics played 100 years ago; albeit neuroscience is not young at all. In fact, neuroscience
dates back to ancient Egypt (Martín-Araguz et al. 2002) but has of course developed
substantially since then. Nowadays it is a diverse multi-disciplinary research field incor-
porating methods and techniques from anatomy, chemistry, genetics and computational
and mathematical modeling. One formidable challenge is trying to understand how cog-
nitive function emerges from cells of the brain (Lisman 2015). The efforts undertaken are
breathtaking: From 2005 to 2016 over 300,000 articles were published (Yeung, Goto, and
Leung 2017). Over 24,000 scientists attended the largest neuroscience conference in the
year 20161. This is accompanied by large-scale public funding. To fund the human brain

1SfN, San Diego: 24,328 scientific attendees and 5,978 non-scientific attendees (https://www.sfn.org/
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1. Introduction

project (Markram 2012), the EU intends to provide one billion Euros. One of the goals
of this project is to build the necessary infrastructure to enable advanced simulations
and multi-scale modeling. Also the USA invest heavily in neuroscientific research. The
Obama administration announced in 2013 the BRAIN initiative, a large-scale coopera-
tive neuroscientific research initiative with the declared goal of obtaining a functional
understanding of the human brain. It might rightfully be asked if all these efforts have
lead to advances in the understanding of cognitive function and information processing
performed in the brain? Has it been possible to support and to falsify theories through
experimental measurements as it has been done in physics before?

1.2. Experimental Neuroscience at the Micro-, Macro- and
Mesoscale

Numerous experiments were performed in the last decades, characterizing the brain
at the micro-, macro- and mesoscale. At the microscale, for example, the anatomy of
single neurons has been described already in the 19th century (Cajal 1888; Golgi 1873).
Single neurons were reconstructed and hand-drawn in great detail (Fig. 1.1a). Studies
of neuronal morphology were later complemented by studies of neuronal activity. The
electrical activity of single neurons has been characterized (Edwards et al. 1989; Hamill
et al. 1981; Lee, Epsztein, and Brecht 2009; Margrie et al. 2003; Sakmann and Neher 1984),
for example through recordings of electrical voltage traces of spiking neurons (Fig. 1.1b).

At the macroscale, brains were characterized over 100 years ago (Brodmann 1909). For
instance, the mammalian brain’s cellular composition (cytoarchitecture) was described
to consist of six layers (Fig. 1.2a). In addition, brain size related studies were carried
out. The human brain consists of around 86 billion neurons (Azevedo et al. 2009) and is
essentially a scaled-up version of a primate brain (Herculano-Houzel 2012). So is size
the distinguishing factor? It has, however, also been observed, that sizes of local cortical
modules, which supposedly fulfill the same function vary by at least a factor of two
(Meyer, R. Egger, et al. 2013). This questions whether the sheer size is the explaining
factor of the computational capacity of the human brain compared to other species.

At the mescoscale, activity of small neuronal populations was described (H. Berger
1929; Blanche et al. 2005; Mittmann et al. 2011; Ogawa et al. 1990) and was, for example,
recorded through Ca2+ imaging (Fig. 1.2b). In terms of anatomy, however, not much
beyond pairwise connectivity statistics is known about smaller populations consisting of

annual-meeting/past-and-future-annual-meetings/annual-meeting-attendance-statistics,
retrieved Oct. 13, 2017)
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1.2. Experimental Neuroscience at the Micro-, Macro- and Mesoscale

a b

Figure 1.1. Shape and activity of single neuronal cells.
(a) Single cell morphology. Drawing of Purkinje cells (A) and granule cells (B) from pigeon cerebellum
(Cajal 1888). (b) Voltage recordings from a rat hippocampal CA1 (Cornu Ammonis 1) pyramidal cell. The
upper panel shows two superimposed whole-cell recordings of voltage responses evoked by a depolarizing
(positive) and a hyperpolarizing (negative) current pulse (± 80 pA, as indicated in the lower panel). The
depolarizing pulse resulted in a train of action potentials. Data was filtered (low-pass) at 2 kHz (-3 dB).
(Edwards et al. 1989, Copyright 1989 by Springer, adapted with permission).

a b

Figure 1.2. Macroscopic and mesoscopic experiments.
(a) Classification of adult human cortex into six cortical layers (Brodmann 1909). (b) In vivo recordings
of Ca2+ transients evoked by whisker deflection. Image of layer 2/3 neurons in vivo in the barrel cortex of
neuronalneuronalneuronala P13 mouse (Stosiek et al. 2003).
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1. Introduction

tens to hundreds of neurons (Feldmeyer, V. Egger, et al. 1999; Helmstaedter 2013; Koelbl
et al. 2015). Only few attempts have been made to describe circuit structure beyond
pairwise connectivity statistics. For example, it has been counted how often small circuit
motives (sub-graphs), such as, e.g., the number of neurons connected in a triangle, occur
in larger networks (Gal et al. 2017; Perin, T. K. Berger, and Markram 2011). How were
these experimental findings across the scales used to advance the understanding of brain
function?

1.3. Theoretical Neuroscience at the Micro-, Macro- and
Mesoscale

Also theoreticalmodeling effortswere undertaken at themicro-,macro- andmesoscale. At
the microscale, detailedmodels describing the dynamics of individual neurons have been
proposed. A well-known example is the model by Hodgkin and Huxley (1952). These
models helped to understand, for instance, the shapes of neuronal spikes (Figure 1.1b),
but cannot explain cortical computations involving more than a single neuron. At the
macroscale, methods from the network sciences have been applied, mostly to small
graphs of entire brain modules instead of large graphs of individual neurons (Bullmore
and Sporns 2009). Such graphs were commonly described by network statistics (Rubinov
and Sporns 2010). For instance, it has been investigated, whether rich-club structure2

can be related to diseases such as schizophrenia (Heuvel et al. 2013) and how costly it is
for a brain to maintain such a rich-club organization (Collin et al. 2014). Other studies
investigated the small-world3 hypothesis for neural networks and asserted that whole
brain networks are arranged in a fractal manner (Sporns 2006). It has also been tried to
relate such structural network properties to functional network properties (Goñi et al.
2014; Sporns, Tononi, and Edelman 2000). Arguments were put forward that network
function cannot be understood without structural description (Sporns 2013; Sporns,
Tononi, and Kötter 2005). However, at the whole-brain scale it was mostly not possible to
obtain insights how computations are performed mechanistically.

At the mescoscale, statistical physics approaches were used to explain the statistics of
firing patterns, for example through mean field models (Vreeswijk and Sompolinsky
1996). Indeed, it is believed, that computation arises through interactions between indi-
vidual neurons (Averbeck, Latham, and Pouget 2006). Due to the nature of these models,

2Informally, a graph is said to possess the rich-club property if high-degree nodes are preferentially
connected to other high-degree nodes.

3Informally, a graph is said to possess the small-world property if the typical distance between two nodes
grows only logarithimically with the number of nodes in the graph. That is, although most nodes are
not directly connected to each other, the average distance between nodes is still small.
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mechanistic insight into neuronal information processing were, however, scarce. It seems,
that despite all these efforts, a mechanistic understanding of how neural computations
are performed is still mostly lacking (Helmstaedter 2013) and that, unfortunately, “com-
putational and theoretical neuroscience, in a similar way to some areas of physics, suffers
from a falsification gap: its practitioners out-think, out-compute and out-simulate what
is actually measured” (Denk, Briggman, and Helmstaedter 2012).

1.4. Connectomic Circuit Data: Decisive Information at the
Mescoscale?

Recently, a new kind of neuroscientific data has emerged: so called “connectomes” or
“connectomic” data. Connectomics is the field within neuroscience dedicated to the
(dense) reconstruction of cortical circuits at single-cell resolution. A “connectome” is the
wiring diagram or circuit diagram of a neuronal network. The oldest dense connectomic
microcircuit reconstruction goes back to J. G. White et al. (1986). There, the connectome
of the nematode Caenorhabditis Elegans, of about 1mm length, was fully reconstructed.
The effort spent was tremendous: The reconstruction was compiled from about 8000
images which were obtained from five different worms and took over a decade of effort.
Much of the labor was performed manually. The complete connectome comprised 302
neurons. Its architecture was later examined in a descriptive fashion (Varshney et al.
2011), for example using techniques from spectral graph theory.

Today, state of the art connectomics relies heavily on electron microscopy (EM). Tradi-
tionally, EM was used for two-dimensional investigations (see for example Gray (1959)),
but is now also used to reconstruct three-dimensional volumes of nervous tissue (Helm-
staedter 2013). One method which leverages EM for connectomics reconstruction is serial
section block face electron microscopy (SBEM) (Denk and Horstmann 2004) (Fig. 1.3a).
In SBEM a block of nervous tissue is imaged slice by slice using scanning electron mi-
croscopy (SEM) (Fig. 1.3b). A thin slice is cut with a diamond knife (Fig. 1.3a). The
surface of the block is then imaged (Fig. 1.3a). The process of cutting and imaging is
repeated several thousand times. Such EM based methods were used to examine the
connectivity in mouse primary visual cortex (Bock et al. 2011), the direction selectivity in
the mouse retina (Briggman, Helmstaedter, and Denk 2011), the Drosophila visual mo-
tion detection circuit (Takemura et al. 2013) and the mammalian retina (Helmstaedter,
Briggman, Turaga, et al. 2013; Kim et al. 2014). But this is only the dawn of the new
neuroscientific sub-discipline connectomics: a research strategy for achieving the still
far fetched goal of obtaining a human connectome has already been discussed (Sporns,
Tononi, and Kötter 2005).
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a b

Figure 1.3. Serial section block face electron microscopy.
(a) Serial section block face electron microscopy. The surface of a block of nervous tissue is imaged with
scanning electron microscopy (SEM). A thin slice of approximately 25 nm thickness is then cut from the
block with a diamond knife. This process is repeated. (b) Electron microscopy data. Imaged tissue, Scale
bar 200 𝜇𝑚 (Hua, Laserstein, and Helmstaedter 2015, licensed under the Creative Commons Attribution
4.0 International license, https://creativecommons.org/licenses/by/4.0/)

Connectomics is challenging in several ways. Although image acquisition already
poses substantial, mostly technical, challenges, the real bottleneck lies in data analysis
(Helmstaedter 2013). The three dimensional image has to be segmented and individual
neurites have to be reconstructed to infer the synaptic connections between neurons.
Current machine learning techniques are still too error prone such that reconstruction
has to be performed with the help of human annotators, which is time consuming,
costly and does not scale well (Helmstaedter, Briggman, and Denk 2011). Substantial
improvement is to be made in EM data analysis to scale connectomics to larger volumes
and to eventually reach the goal of a human connectome.

Despite all these difficulties, the young field of connectomics is developing rapidly.
This begs the question of how connectomic data can be used. Is the data useful at all? The
range of positions is quite extreme. It has been stated that “there is no way to read the
wiring diagram” (Bargmann 2012) and that connectomics was therefore mostly useless
(Bargmann and Marder 2013). At the other extreme, it has been stated, that knowledge
of the brain’s circuit structure at single-cell resolution is indispensable to understand
cortical computations (Denk, Briggman, and Helmstaedter 2012). It seems therefore
necessary to further examine this question and phrase it as concrete research problem.
Can connectomic data be used to falsify or to support models of cortical computation?
Can connectomics help to bridge the falsification gap neuroscience is experiencing (Denk,
Briggman, and Helmstaedter 2012)?
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1.5. Layer 4 of Primary Somatosensory Cortex as Model System
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Figure 1.4. Rodent whisker system.
The whisker pattern is replicated in cortex on the contralateral side. Each whisker is associated with one
barrel. The cortical L4 barrels are analogous to the vibrissae arranged in a grid consisting of five rows A-E.
Each row contains up to nine barrels.

1.5. Layer 4 of Primary Somatosensory Cortex as Model System

Due to availability of data this question is best treated at a concrete, well-examined
model system. A system of utmost importance is certainly the mammalian cortex, which
is thought to be responsible for high-level cognitive functions (Singer 2013). Within
cortex, a particularly well-examined model system is primary somatosensory cortex (S1),
layer 4 (L4), “barrel cortex” (Diamond et al. 2008; Feldmeyer, Brecht, et al. 2013). Its
architecture is modular, consisting of 34 alike barrels on each side (Figure 1.4). Each of
the barrels receives primarily input from one associated whisker. This structure is present
in rodents such as mice and rats and is the first cortical region receiving whisker input
(Diamond et al. 2008; Feldmeyer 2012; Feldmeyer, Brecht, et al. 2013; Helmstaedter, Kock,
et al. 2007). Rodents use their whiskers to explore their environment and to sense and
discriminate surface textures (Morita et al. 2011). It is one of the major model systems of
tactile sensation (Morita et al. 2011).

1.6. Outline and Main Scientific Contributions

In this thesis, I examined if and how connectomic data can be used to falsify or support
hypotheses of local cortical computational models in a concrete model system, a single
barrel of mouse L4, S1. Since connectomic reconstruction experiments are extremely
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expensive and labor-intensive it is necessary to design a useful and reliable analysis–ex-
periment pairing pre hoc. Ideally, it could be analytically evaluated how useful and
reliable a given analysis–experiment paring is, but in the examined scenario this is impos-
sible. Instead, simulations were employed, which are still cheap compared to the efforts
involving real experiments. Here, I focused on the long-standing issue of local cortical
model selection, proposing a method for such model selection and assessing through
numerical simulations with known ground truth which kind of experiment makes this
method reliably applicable.

I assembled seven competing hypotheses and investigated whether they have concrete
implementations satisfying a common set of already known L4, S1 circuit constraints, or
whether some of the hypotheses have to be rejected based on prior knowledge (Chap. 2).
I developed and implemented adaptations of the models to the common circuit con-
straints, turning rather abstract hypotheses into concrete mechanistic model. Moreover, I
controlled the functional viability of these models after adaptation. For model selection,
I pursued a Bayesian approach. Again, an anaytical treatment was impossible, lacking
efficiently computable expressions for the likelihood-functions. I therefore employed
a likelihood-free Approximate Bayesian Computation - Sequential Monte Carlo (ABC-
SMC) scheme. However, it was computationally challenging to apply such a scheme,
primarily because the investigated models have to be simulated repeatedly. In addition,
such a scheme has many tunable options and involves algorithmic challenges as well as
challenges of data organization, making its application rather intricate. Since no available
ABC framework was able to employ distributed hardware for model selection, and none
of the available frameworks was extensible in this respect, it was necessary to develop a
framework, capable to deal with the computational challenges faced here. I therefore
developed a scalable software framework for distributed, likelihood-free ABC-SMC in-
ference (Klinger, Rickert, and Hasenauer 2017) and a scheme for automated selection of
population sizes – a difficult-to-tune option – for this framework (Klinger and Hasenauer
2017) (Chap. 3). This framework is to date the one which scales best with distributed
hardware, and also the most user-friendly and extensible one, allowing not only appli-
cation of ABC-SMC schemes, but also experimentation with new ones. I applied this
ABC-SMC framework to model selection for connectomic circuit data (Chap. 4). The
proposed method proofed robust to noisy experimental conditions allowing to design a
concrete cortical reconstruction experiment (Chap. 4). In this thesis, I hence propose a
method to advance a mechanistic understanding of cortical computation in a concrete
local cortical circuit module to foster the fusion of experiment and theory in the neural
sciences.

The main scientific contributions are

• Proposal, implementation and analysis of the first method which uses structural
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1.6. Outline and Main Scientific Contributions

circuit data at cellular resolution for model selection of local cortical models. The
approach is new in several ways: the to-be-employed data has never been examined
before in such a context, the analysis is pre hoc specified thus possesses greater
power and enforces the formulation of testable hypotheses, and the approach is
mathematically well-grounded.

• Proposal of concrete implementations and adaptations of rather abstract hypotheses
of cortical processing. It is examined whether several long-standing hypotheses are
compatible with known cortical constraints, or whether they had to be dismissed
based on available knowledge.

• Demonstration that structural circuit data combinedwith the here proposedmethod
is decisive for local cortical models. This shows that connectomics, a big-data neu-
roscientific approach, has the potential to advance a mechanistic understanding of
cortical computations, falsifying and supporting theories of cortical computation
via the proposed method instead of merely collecting data.

• Design of a concrete connectomic reconstruction experiment for model selection of
local cortical models. It is quantified with which precision and which fraction of a
circuit need to be reconstructed. The requirements are experimentally satisfiable,
the method is thus practically applicable.

• Design and development of the pyABC general-purpose software framework for
distributed, likelihood-free parameter inference and model selection. According
to benchmarks, this is currently the framework which scales best with distributed
infrastructure. This framework was already used by several groups worldwide.
For example, it was applied to parameterize stochastic models of HIV spread on a
single cell level.

• Development and analysis of a scheme for adaptive selection of population sizes in
Approximate Bayesian Computation - Sequential Monte Carlo (ABC-SMC). This
facilitates practical application of ABC-SMC, reducing the need to manually tune
options.

These contributions are partially already published at peer-reviewed journals or are
currently under review. If applicable, it is indicated at the beginning of chapters, sections,
or in figure captions which manuscripts cover similar content. The relevant manuscripts
are

• Klinger, Emmanuel, and Jan Hasenauer. “A Scheme for Adaptive Selection of
Population Sizes in Approximate Bayesian Computation - Sequential Monte Carlo.”
In Computational Methods in Systems Biology, 128–44. Lecture Notes in Computer
Science. Springer, Cham, 2017.

• Klinger, Emmanuel, Dennis Rickert, and Jan Hasenauer. “pyABC: distributed,
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likelihood-free inference.” Available at BioRxiv, July 17, 2017, 162552. Currently
under review at Oxford Bioinformatics.

• Klinger, Emmanuel, Carsten Marr, Fabian J. Theis, and Moritz Helmstaedter. “Cel-
lular connectomes as arbiters of local computational models in the cerebral cortex”.
Currently under review at Nature Communications.

None of these manuscripts has a shared first authorship. In addition I have been super-
vising the preparation of a manuscript:

• Waibel, Ricardo, Emmanuel Klinger, and Moritz Helmstaedter. “A topologically
invariant errormetric for the comparison of connectomic segmentations”. Currently
in preparation.
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2. Adaptation to Known Constraints and
Functional Viability of Local Cortical
Models

Section is similar to
Klinger, Marr, Theis,
Helmstaedter (under
review)

In this chapter, the graph theoretical notation used throughout the chapter is first intro-
duced. Next, the circuit constraints which all candidate models of layer 4 (L4) of primary
somatosensory cortex (S1) have to satisfy are described. The candidate models were
extracted from or inspired by existing literature where they were mostly proposed in the
form of rather abstract computational concepts. These models are only now, in this thesis,
systematically compiled and their compatibility with known circuit constraints of L4 of
S1 is examined. Each model is concretely adapted (if necessary) and implemented (if
possible) to satisfy the constraints of L4, S1. Additionally, it is verified that the adapted
models are still functional. These models were not until this thesis implemented as con-
crete candidates models for L4, S1. Here, rather abstract concepts are finally turned into
concrete and falsifiable candidate models.

The compiled and adapted models cover a range of structural and computational
hypotheses.

• The feature vector recombination (FEVER) model (Sect. 2.3) is a model of short-
term memory. The short-term memory property is achieved through a connectivity
rule, which aims to form outgoing projections such that the postsynaptic targets’
feature vectors additively recombine to resemble the projecting neuron’s own
feature vector.

• The Erdős-Rényi echo state network (ER-ESN) model (Sect. 2.5) is a model of
general cortical computation. In this model, the synaptic weights of L4 are not
trained. Instead, only the readout neurons’ weights are trained. Connectivity is
pairwise random.

• The exponentially decaying liquid state machine (EXP-LSM) model (Sect. 2.6) is
also a model of general cortical computation. Also in this model, only the readout
neurons’ weights are trained. In contrast to the Erdős-Rényi echo state network
(ER-ESN) model, connectivity is distance dependent.

• The layered network (LAYERED) model (Sect. 2.7) is again a model of general cor-
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tical computation. It is composed of sequentially stacked recurrent neural networks.
In this model, also the L4 neurons are trained. It represents the long-standing hy-
pothesis of hierarchical cortical processing organized in layers.

• The anti phase inhibition (API) model (Sect. 2.8) aims to perform stimulus tuning
or sharpening. Connectivity is formed such that excitatory neurons project prefer-
entially to other neurons which are thought to represent a similar stimulus, while
inhibitory neurons project preferentially to other neurons which are thought to
represent a dissimilar stimulus.

• The self-organizing recurrent neural network (SORN) model (Sect. 2.9) shapes
cortical connections through a set of rules which modify synaptic weights in an
activity dependent manner. For example, connections between neurons which fire
together are strengthened.

• The synfire chain (SYNFIRE) model (Sect. 2.10) examines if and how activity can
be propagated in a synchronous fashion through overlapping chain structures. The
network is recurrent but incorporates aspects of feed-forward processing.

2.1. Graph Theoretical Notation

The number of excitatory neurons is denoted by 𝑛e, the number of inhibitory neurons
by 𝑛i. The size of a network is denoted by 𝑛 = 𝑛e + 𝑛i. Adjacency matrices are denoted
by 𝑊 ∈ ℝ𝑛×𝑛. The excitatory part of the adjacency matrix 𝑊 is denoted by 𝑊E ∈ ℝ𝑛×𝑛e,
(𝑊E)𝑘,𝑙 = 𝑊𝑘,𝑙. The inhibitory part of the adjacency matrix 𝑊 is denoted by 𝑊I ∈ ℝ𝑛×𝑛i,
(𝑊I)𝑘,𝑙 = 𝑊𝑘,𝑙+𝑛e

.
A directed graph 𝐺 is also represented as a pair 𝐺 = (𝑉, 𝐸) of a vertex set 𝑉 and

an edge set 𝐸 ⊂ 𝑉 × 𝑉. In this notation, directed edges are therefore tuples (𝑢, 𝑣) ∈ 𝐸,
meaning that a directed edge, originating at vertex 𝑢 and connecting to vertex 𝑣 exists in
the graph. The vertex 𝑢 is called the outgoing vertex, the vertex 𝑣 the ingoing vertex of
the edge (𝑢, 𝑣). Using neuroscientific terminology, the vertex 𝑢 is also called presynaptic
and the vertex 𝑣 postsynaptic.

2.2. Circuit Constraints

A C2 barrel (Fig. 1.4) is composed of approximately 2000 neurons (Feldmeyer 2012;
Meyer, Schwarz, et al. 2011). Of these neurons, roughly 90% are excitatory and 10% are
inhibitory (Feldmeyer 2012; Meyer, Schwarz, et al. 2011). These neurons establish about
2 million chemical synapses within a single barrel. The fraction of connected cell pairs –
the average connectivity – has often been estimated based on data obtained from whole-
cell recordings as listed in Table 2.1 (Beierlein, Gibson, and Connors 2003; Feldmeyer,
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Neuron
numbers

Primary somatosensory
cortex

Assumed
connectivity
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Excitatory

Inhibitory
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0.15 0.25
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0.5 0.6
0.5 0.6
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L1
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Figure 2.1. Assumed circuit constraints.

A layer 4 (L4) barrel is assumed to consist of 1800 excitatory neurons● and 200 inhibitory neurons○.
A single barreloid of the ventral posteromedial nucleus (VPM), providing input to its corresponding
barrel, is assumed to consists of 200 excitatory neurons ●. The excitatory-excitatory connectivity (𝑝ee)
and excitatory-inhibitory connectivity (𝑝ei) are assumed to lie in the inverval [0.15, 0.25]. The inhibitory-
excitatory connectivity (𝑝ie) and inhibitory-inhibitory connectivity (𝑝ii) are assumed to lie in the inverval
[0.5, 0.6]. The excitatory-excitatory reciprocity (𝑟ee) is assumed to lie in the inverval [0.15, 0.35]. (Figure
similar to Klinger, Marr, Theis, Helmstaedter (under review))

V. Egger, et al. 1999; Gibson, Beierlein, and Connors 1999; Gibson, Beierlein, and Connors
2005; Koelbl et al. 2015; Lübke et al. 2000). It was found that excitatory neurons connect
on average to about 20% of other neurons within the same barrel, inhibitory neurons
connect to about 50%-60% of other neurons within the same barrel. Note the substantial
variance in measured connectivities as obtained by the various studies (Table 2.1) which
might be due to the limited accuracy of whole-cell recordings for connectivity statistics.
These measurements are obtained in slices where the typical dimension of a slice is much
smaller than that of a barrel. Therefore, many connections are cut off. The values listed
in Table 2.1 are therefore to be taken with care and are to be considered as indicators of
a biologically plausible regime, rather than as precise, trustworthy values. Also, these
numbers vary across individual rodents and across barrels (see Fig. 1.4 for the layout
of the individual barrels in primary somatosensory cortex). The numbers taken here
as circuit constraints (Fig. 2.1) constitute therefore what is considered a prototypical
barrel. Once an actual barrel connectome is measured, these numbers are updated with
the actually obtained values. To judge whether connectomes can be used for model
discrimination or not, it is only important to use values roughly in the correct regime.
The results obtained later in this work are robust to the precise chosen values. That is, if
the connectivity is assumed to be 15% or 30% has almost no influence on the results.
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Table 2.1. Pairwise connectivity and reciprocity statistics from paired whole-cell recordings.
Columns. Pub.: the literature reference. Spec.: the species. Pre: the presynaptic neuronal type. Post: the
presynaptic neuronal type. 𝑝: the connectivity, 𝑝 = 𝑛conn/𝑛test. 𝑟: the reciprocity, 𝑟 = 𝑛rec/𝑛conn. 𝑛test: the
number of tested pairs. 𝑛conn: the number of pairs found to be connected. 𝑛rec: the number of pairs found to
be reciprocally connected. Distance: the maximal inter-soma distance of the recorded neurons. Pubs. 1:
Koelbl et al. (2015). 2: Gibson, Beierlein, and Connors (1999). 3: Beierlein, Gibson, and Connors (2003).
4: Gibson, Beierlein, and Connors (2005). Cell types. SS: Spiny stellate (excitatory). RS: Regular spiking
(excitatory). FS: Fast spiking (inhibitory). LTS: Low threshold spiking (inhibitory).Connectivity. Excitatory

connectivity is visualized in blue ( 0.5 means 50% excitatory connectivity), inhibitory connectivity in

orange ( 0.5 means 50% inhibitory connectivity).

Pub. Spec. Pre Post 𝑝 𝑟 𝑛test 𝑛conn 𝑛rec Distance

1 Rat FS SS 0.67 0.69 43 29 20

2 Rat RS RS 0.11 0.00 80 9 0

2 Rat RS FS+LTS 0.41 0.23 54 22 5

2 Rat LTS LTS 0.15 0.00 13 2 0

2 Rat FS LTS 0.34 0.64 32 11 7

2 Rat FS+LTS RS 0.52 0.14 71 37 5

2 Rat LTS FS 0.53 0.41 32 17 7

2 Rat FS FS 0.62 0.25 39 24 6

3 Rat RS RS 0.12 0.09 89 11 1 < 50μm

3 Rat RS FS 0.43 0.46 172 74 34 < 50μm

3 Rat RS LTS 0.57 0.36 63 36 13 < 50μm

3 Rat LTS RS 0.35 0.50 74 26 13 < 50μm

3 Rat FS RS 0.44 0.41 190 83 34 < 50μm

4 Rat LTS LTS 0.08 24 2 < 100μm

4 Rat FS LTS 0.36 55 20 < 100μm

4 Rat LTS FS 0.62 55 34 < 100μm

4 Rat FS FS 0.74 57 42 < 100μm

14



2.3. FEVER: Feature Vector Recombination

2.3. FEVER: Feature Vector Recombination

2.3.1. Key Concepts

Information is persistently represented in cortex over time scales much larger than the
dynamics of an individual neuron permits (Hogan and Flash 1987). Such persistent
representation is possibly explained by an encoding of the information in the popula-
tion activity of a cortical network. A recurrently connected network is able to maintain
activity over larger time scales than individual neurons. The feature vector recombina-
tion (FEVER) network was proposed by Druckmann and Chklovskii (2012) to explain
persistent cortical representations despite time varying neuronal activity. In the FEVER
model, each neuron 𝑖 ∈ {1, … , 𝑛} is associated with a feature vector 𝑓𝑖 ∈ ℝ𝑑f with feature
space dimension 𝑑f. The overall represented state 𝑠 of the network is additively obtained
as the sum over all the feature vectors, weighted by the corresponding neuron’s activity.
In matrix notation,

𝑠 = 𝐷𝑎, (2.1)

in which 𝑎 = (𝑎1, … , 𝑎𝑛)𝑡 denotes the vector of internal neuronal activity and 𝐷 =
(𝑓1, … , 𝑓𝑛) the matrix1 of feature vectors. The internal neuronal activity 𝑎𝑖 ∈ ℝ evolves
over time according to the system of ordinary differential equations

𝜏 ̇𝑎 = −𝜎(𝑎) + 𝑊𝜎(𝑎) + 𝑢(𝑡) (2.2)

in which 𝑊 ∈ ℝ𝑛×𝑛 denotes the adjacency matrix, 𝜏 > 0 is the neuronal time constant,
𝜎 ∶ ℝ𝑛 → ℝ+𝑛 an activation function mapping internal neuronal activity to neuronal
output and 𝑢(𝑡) is the external input to the network. The state 𝑠 is persistently represented
when

̇𝑠 = 0 (2.3)

is satisfied. By elementary calculation, it follows from Eqs. (2.1) to (2.3) for the adjacency
matrix the requirement

𝐷 = 𝐷𝑊, (2.4)

to achieve persistent state representation Eq. (2.3). That is, for each neuron, the sum over
its postsynaptic targets’ feature vectors, weighted by the synaptic weights, recombines
to the neuron’s own feature vector (Fig. 2.2). Notably, this connectivity rule is local in
the sense that each neuron chooses its postsynaptic partners independent of the other
neurons’ postsynaptic partners. In general, Eq. (2.4) has no unique solution. A trivial
solution is given by 𝑊 = 𝐼. However, biologically, this corresponds to a network in which

1The matrix 𝐷 is often called “dictionary” (of feature vectors) in the sparse coding and dictionary learning
literature and is therefore abbreviated by “𝐷” (Aharon, Elad, and Bruckstein 2006; Mairal et al. 2009).
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Feverization

FEVER rule not satisfied
FEVER rule satisfied

Figure 2.2. The FEVER rule.
For each neuron, the sum of its postsynaptic neurons’ feature vectors is intended to approximate the neuron’s
own feature vector. The filled squares “■” represent +1, the empty squares “□” represent −1. The FEVER
rule is not necessarily perfectly satisfied for each neuron.

each neuron makes a single self-connection – an autapse – only. Such self-connections are
extremely rare in biological neuronal networks and are therefore discarded as biologically
not meaningful. To obtain more specific solutions, a sparsity constraint is imposed: a
solution with as few connections as possible is sought. This is biologically meaningful as
it minimizes the cost to build andmaintain the network structure. This sparsity constraint
translates to the minimization problem

min
𝑊

∑
𝑖,𝑘∶𝑊𝑖,𝑘≠0

1 with 𝐷 = 𝐷𝑊, diag𝑊 = 0, (2.5)

which, however, cannot be efficiently solved. Instead, the relaxed minimization problem

min
𝑊

‖𝐷 − 𝐷𝑊‖2
2 + 𝜆‖𝑊‖1, diag𝑊 = 0 (2.6)

is considered for fixed 𝜆 ≥ 0. The parameter 𝜆 governs the sparsity of the solution. For
𝜆 = 0, the solution is generally not sparse but fully populated 𝑊𝑖,𝑘 ≠ 0 ∀𝑖 ≠ 𝑘. The larger
𝜆, the more entries of 𝑊 are exactly zero. Opposed to Eq. (2.5), the relaxed minimization
problem Eq. (2.6) can be efficiently numerically solved with the least absolute shrinkage
and selection operator (LASSO) algorithm (Tibshirani 1996). Note that as result of the
minimization, the FEVER rule is usually not perfectly satisfied, i.e. ‖𝐷 − 𝐷𝑊‖2

2 > 0. This
is acceptable, as the proper functioning of a FEVER network is not evaluated according
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Figure 2.3. Prior over the feature space dimension of the FEVER model.
The feature space dimension 𝑑f ∼ 𝒰ℐ(20, 200) of the FEVER model as cumulative distribution function
(CDF). (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

to the value achieved for ‖𝐷 − 𝐷𝑊‖2
2 > 0, but by the quality of persistent stimulus

representation (Sect. 2.3.3).

2.3.2. Implementation and Adaptation

The model described in Sect. 2.3.1 is not yet sufficient to realize networks. The following
problems arise:

• excitatory and inhibitory neurons are not distinguished, which is not biologically
plausible,

• the feature space dimension 𝑑f and the feature vectors 𝑓𝑖 themselves are not defined,
• the network does not necessarily satisfy the circuit constraints of L4, S1,
• the parameter 𝜆 has to be chosen.

To distinguish between excitatory and inhibitory neurons, the weights of the excitatory
neurons have to be restricted to be positive, the weights of the inhibitory neurons to be
negative.

An upper bound on the feature space dimension 𝑑f is determined from the dimension
of the inputs to the networks. It is unlikely that 𝑑f is larger than the dimension of the input
space. Input to a single barrel is primarily provided by about 200 ventral posteromedial
nucleus (VPM) neurons (Bale et al. 2013; Maravall and Diamond 2014), translating to
the upper bound 200 ≥ 𝑑f. The lower bound should be a small integer number. Here, 20
is assumed. The prior 𝑑f ∼ 𝒰ℐ(20, 200), denoting by 𝒰ℐ(𝑎, 𝑏) the uniform distribution on
the integers 𝑎, … , 𝑏 (including the boundaries), is imposed on the feature space dimension
𝑑f to reflect the uncertainty involved in choosing it (Fig. 2.3). The feature vectors 𝑓𝑖 are
assumed to be uniformly distributed on a unit sphere of dimension 𝑑f,

𝑓𝑖 =
𝜉𝑖

‖𝜉𝑖‖
, 𝜉𝑖 ∼ 𝒩(0, 𝐼𝑑f

), (2.7)
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Figure 2.4. Connectivity and reciprocity of the original FEVER model.
Excitatory-excitatory reciprocity 𝑟ee over excitatory-excitatory connectivity 𝑝ee for the original FEVER model.
The feature space dimension 𝑑f is color coded. The black rectangle indicates the circuit constraints. (Figure
similar to Klinger, Marr, Theis, Helmstaedter (under review))

in which 𝜉𝑖 denote iid. multivariate normally distributed random variables with covari-
ance matrix 𝐼𝑑f

, which is the identity matrix in ℝ𝑑f.
The parameter 𝜆 governs the overall number of connections. By only adjusting 𝜆,

however, only network samples with too small 𝑝ee and too high 𝑟ee are realized (Fig. 2.4).
The overrepresentation of reciprocated connections is a consequence of the symmetry of
Eq. (2.6): outgoing connections of neuron 𝑖 are preferentially made to those neurons 𝑘
whose feature vectors 𝑓𝑘 are similar to the feature vector 𝑓𝑖 and vice versa (Fig. 2.2, e.g.,
the group of neurons with feature vector■■■ in the lower right of the circle, and, e.g.,
the bidirectional motive of the two neurons with feature vectors□■□ on the top
of the circle). Moreover, the achievable connectivity is upper bounded by 𝑑f/𝑛 ≈ 0.1,
which is too small. To remedy these problems, a three-stage process is proposed as
concrete cortical implementation of the FEVER model (Fig. 2.5). Initially (Fig. 2.5, left),
the neurons do not yet possess feature vectors. The network structure is pairwise random.
Each excitatory connection is at this stage realized with initial connection probability 𝑝0,e
and each inhibitory connection with initial connection probability 𝑝0,i, yielding an initial
matrix 𝑊0. Then (Fig. 2.5, middle), feature vectors are generated according to Eq. (2.7).
Lastly (Fig. 2.5, right), connections are made attempting to recombine additively the
postsynaptic neuron’s feature vectors to resemble the neuron’s own feature vector. In the
sparse optimization, the initial connectivity and the signs of the entries of the excitatory
submatrix 𝑊E and the inhibitory submatrix 𝑊I of 𝑊 are now taken into account as well:

min
Δ𝑊

‖𝐷 − 𝐷(Δ𝑊 + 𝑊0)‖2
2 + 𝜆‖Δ𝑊‖1, diagΔ𝑊 = 0, Δ𝑊E,𝑘,𝑙 ≥ 0, Δ𝑊I,𝑘,𝑙 ≤ 0, (2.8)
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Development Feverization

FEVER rule not satisfied
FEVER rule satisfied

Figure 2.5. Adaptation of the FEVER model.
The adapted FEVER model is a process in which connectivity is unorganized at the beginning and then
becomes organized. Left: in the first stage a network is randomly pre-filled with connections; the neurons
do not yet posess feature vectors. Middle: in the second stage, neurons are equipped with feature vectors.
Right: in the third state, the FEVER recombination is applied, but now also taking the initial connectivity
into account. Note that not all neurons have to satisfy the FEVER rule perfectly for a functioning FEVER
network.

in which Δ𝑊 = Δ𝑊𝐸 + Δ𝑊𝐼 is the change of the adjacency matrix due to feverization,
denoting by Δ𝑊𝐸 the excitatory submatrix of the change and by Δ𝑊𝐼 the inhibitory
submatrix, and the final network is 𝑊 = Δ𝑊 + 𝑊0. The sparseness constraint is applied
to the deviation Δ𝑊 of 𝑊 from the initial network 𝑊0. Equation (2.8) is numerically
solved with Alg. 1, a problem specific version of the LASSO algorithm. Algorithm 1 takes
the initial connectivity and the excitatory and inhibitory sign constraints into account.
The inputs are the (dicrionary of) feature vectors 𝐷, the initial adjacency matrix 𝑊0 and
𝜆. The output is the optimized FEVER network 𝑊. In Alg. 1, the sign 𝑠 is positive if an
excitatory neuron is optimized and negative if an inhibitory neuron is optimized. As
no self-connections are allowed, a dictionary 𝐷̃ of feature vectors omitting a neuron’s
𝑘 own feature vectors is created. Similarly, the weight vector 𝑤̃ of dimension 𝑛 − 1,
omitting the optimized neuron 𝑘 is generated. The effective target feature vector 𝑦 is a
modification to the actual target vector 𝑑𝑘, taking into account the neuron’s sign and the
initial connectivity. A coordinate descent algorithm is then used to optimize 𝑤̃. Note,
that in the assignment of 𝑤̃𝑙, a positivity constraints is enforced. The resulting matrix 𝑊
is created from the vectors 𝑤̃, reintroducing the omitted entries and the neuronal signs.

The parameter 𝜆, together with the parameters 𝑝0,e and 𝑝0,i are obtained from the
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2. Adaptation to Known Constraints and Functional Viability of Local Cortical Models

Algorithm 1: Coordinate descent for the adapted FEVER.
Input: 𝐷, 𝑊0, 𝜆
Output: 𝑊

for 𝑘 = 1, … , 𝑛 do
𝑠 ← 1 if 𝑘 ≤ 𝑛e else −1
𝐷̃ ← (𝑑1, … , 𝑑𝑘−1, 𝑑𝑘+1, … , 𝑑𝑛)
𝑤̃ ← (𝐷̃𝑡𝐷̃ + 𝜆)−1𝐷̃𝑡𝑑𝑘
𝑦 ← 𝑠 ⋅ (𝑑𝑘 − 𝐷𝑤0,𝑘)

repeat
for 𝑙 = 1, … , 𝑛 − 1 do

𝑎 ← 2⟨ ̃𝑑𝑙, ̃𝑑𝑙⟩
𝑏 ← 2 ⟨ ̃𝑑𝑙, 𝑦 − 𝐷̃𝑤̃ + 𝑤̃𝑙 ̃𝑑𝑙⟩
𝑤̃𝑙 ← max{0, 𝑏 − 𝜆}/𝑎

end
until converged;
𝑤𝑘 ← 𝑠 ⋅ (𝑤̃1, … , 𝑤̃𝑘−1, 0, 𝑤̃𝑘, … , 𝑤̃𝑛−1)𝑡

end
𝑊 ← (𝑤1, … , 𝑤𝑛)

newly introduced parameter feverization 𝑓r ∈ [0, 1] governing the amount of initial
connectivity and the amount of connections added via the minimization Eq. (2.8). The
initial connectivity is obtained from the feverization 𝑓r as

𝑝0,e = 𝑝e − 𝑓r
𝑑f
𝑛 , 𝑝0,i = 𝑝i − 𝑓r

𝑑f
𝑛 , (2.9)

the remaining connections are obtained from minimizing Eq. (2.8). The parameter 𝜆 is
set through a bisection method on a logarithmic scale such that the overall target con-
nectivities 𝑝e and 𝑝i are satisfied (Alg. 2). To accommodate for the different excitatory
and inhibitory connectivities, 𝜆 was in the actual implementation different for the excita-
tory and inhibitory population, i.e. 𝜆 = (𝜆𝑒, 𝜆𝑖). In Alg. 2, the input 𝑃 is a monotonically
decreasing function 𝑃 ∶ ℝ+ → [0, 1], which maps 𝜆 to a connectivity. The target connec-
tivity is denoted by 𝑝target ∈ [0, 1] and 𝜖 = 0.03 is the accuracy with which 𝑝target is to be
matched. For efficiency reason, this optimization is only performed on a subset of the
network and then extrapolated. This optimization is done with the pre-filled network 𝑊0
already in place2. The maximal number of connections a neuron can make is 𝑑f, assum-
ing 𝑛 ≥ 𝑑f. This translates to a maximally obtainable connectivity fraction 𝑑f/𝑛 which

2Equation (2.9) is not valid for the addition of two random networks. Connectivities do not simply add up.
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Algorithm 2: Interval Bisection for Connectivity Optimization
Input: 𝑃, 𝑝target, 𝜖
Output: 𝜆

𝑃log ← (𝑥 ↦ 𝑃(10−𝑥))
𝑙, 𝑢 ← -2, 20
𝑐 ← 𝑢
𝑝current ← 𝑃log(𝑐)

while |𝑝current/𝑝target − 1| > 𝜖 do
𝑐 ← 𝑙+𝑢

2
𝑝current ← 𝑃log(𝑐)
if 𝑝current > 𝑝target then𝑢 ← 𝑐
else

𝑙 ← 𝑐
end

end
𝜆 ← 10−𝑐

can be obtained from minimizing Eq. (2.8). For 𝑓r = 1, the maximally possible fraction
of connections is realized in the third stage, the minimization Eq. (2.8). For 𝑓r = 0, no
connection is realized via the minimization Eq. (2.8). The network is then a directed
ER graph. The feverization (𝑓r) is upper bounded by 1 ≥ 𝑓r. The lower bound will be
determined by functional validation of the FEVER network (see Sect. 2.3.3). It is expected
that a persistent state representation Eq. (2.3) cannot be maintained for small 𝑓r. This
should yield a lower bound on 𝑓r.

2.3.3. Functional Viability

The FEVER model implements the dynamics in Eq. (2.2) aiming to realize the persistent
state representation Eq. (2.3). As a functional test, it is evaluated whether the concrete
implementation proposed here is capable of maintaining a stimulus representation 𝑠
over 20 neuronal time constants 𝜏, which is much larger than the timespan over which a
single neuron could maintain its activity (namely 𝜏). The ordinary differential equation
(ODE) system Eq. (2.2) is numerically integrated with the Newton method,

𝑎(𝑡 + Δ𝑡) =
Δ𝑡
𝜏 (−𝜎(𝑎(𝑡)) + 𝑊𝜎(𝑎(𝑡)) + 𝑢(𝑡)),
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𝑥0

𝜎(𝑥) 𝜎max

Figure 2.6. Activation function of the FEVER model.
The activation function is a rectified linear function which saturates at 𝜎max.

with Δ𝑡 = 𝜏/100. The activation function 𝜎 acts elementwise

𝜎(𝑥) = min{max{0, 𝑥}, 𝜎max},

with 𝜎max = 0.2 (Fig. 2.6). The external input 𝑢(𝑡) = 𝜎(𝑟/‖𝑟‖)𝐼(𝑡 < 0.05 𝑡max) is obtained
from a random vector 𝑟 with iid. components 𝑟𝑘 = 𝑒𝑘𝛿𝑘, 𝑒𝑘 ∼ 𝒰(−1, 1) and 𝛿𝑘 ∼ Ber(1/10).
The length of the trial is 𝑡max = 20 𝜏. The input is only switched on for the first 5% of the
trial duration to imprint the state to be represented and is then switched off. The state
𝐹𝑉0 = 𝑠(0) at the beginning of the trial and the state 𝐹𝑉end = 𝑠(𝑡end) at the end of the
trial are then compared. Ideally, if the stimulus representation was perfectly maintained,
these two would coincide (Fig. 2.7a). The comparison between the two represented states
is quantitatively performed in terms of their cosine similarity 𝐶sim(𝐹𝑉0, 𝐹𝑉end), which is
defined by

𝐶sim ∶ ℝ𝑑f × ℝ𝑑f → [−1, 1], (𝑥, 𝑦) ↦
⟨𝑥, 𝑦⟩
‖𝑥‖ ‖𝑦‖ .

For 𝑓r > 1/2 the cosine similarity is, independently of 𝑑f, close to 1, indicating almost
perfect stimulus representation (Fig. 2.7b). This yields the remaining lower bound for 𝑓r
to be approximately 1/2. As 𝑓r = 1 corresponds to 𝜆 = 0, which in turn means that no
sparsity constraint is enforced at all, a small margin to 1 is left. This small margin also
helps to avoid numerical instabilities in the LASSO algorithm at the boundary case of
𝜆 ≈ 0. The prior is therefore chosen to be uniform between 1/2 and 9/10, 𝑓r ∼ 𝒰(1/2, 9/10)
(Fig. 2.7c). Importantly, network samples realized according to the so defined prior
distribution lie within the circuit constraints (Fig. 2.7d).

2.4. Texture Discrimination Task

The Erdős-Rényi echo state network (ER-ESN) model, Sect. 2.5, the exponentially decay-
ing liquid statemachine (EXP-LSM)model, Sect. 2.6 and the layered network (LAYERED)
model, Sect. 2.7, are tested to discriminate surface texture profiles. This is a typical task
rodents undergo in behavioral experiments (Diamond et al. 2008). The texture profiles
are obtained from seven natural images (Fig. 2.8a); each image corresponds to one class.
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Figure 2.7. Persistent state representation under the circuit constraints.
(a) State representation of the FEVERmodel illustrated for two independent trials. Amemory represented by
a state vector 𝐹𝑉0 of dimension 𝑑f is imprinted on the network at the beginning of a trial (only 3 dimensions
shown). The state vector 𝐹𝑉end at the end of the trial is then compared to 𝐹𝑉0. These two vectors would
coincide, 𝐹𝑉end = 𝐹𝑉0, if thememorywas perfectly preserved. (b) Evaluation of the stimulus representation
in terms of the cosine similarity. Comparison of the imprinted state vector𝐹𝑉0 at the beginning of a trial to the
state vector 𝐹𝑉end represented by the network at the end of a trial in terms of their cosine similarity (𝐶sim),
which is color coded. The horizontal axis shows the feverization (𝑓r), the vertical axis the feature space
dimension (𝑑f). (c) Prior over the feverization (𝑓r) of the FEVER model as cumulative distribution function
(CDF). (d) Excitatory-excitatory reciprocity 𝑟ee over excitatory-excitatory connectivity 𝑝ee for the adapted
FEVER model. The feature space dimension 𝑑f is color coded. The black rectangle indicates the circuit
constraints. The adapted model realizes networks satisfying the circuit constraints. Compare to Fig. 2.4.
(Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))
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Figure 2.8. Texture discrimination.
(a) Seven images of natural textures are used to create texture profiles of classes 𝑇1 to 𝑇7. The images are lin-
earized in a zigzag fashion tomaintain continuity. Texture profiles are obtained from parts (e.g., blue
bar, 𝑇2) of the linearized images. (Textures are from Mayang’s free texture library, www.mayang.com/tex-
tures). (b) Texture elevation 𝑧(𝑥, 𝑦) is translated into a temporal profile 𝑎in(𝑡) by whisker sweeping. The
depicted profile (blue) corresponds to the region of the blue bar in (a), 𝑇2. (Figure similar to Klinger, Marr,
Theis, Helmstaedter (under review))

Pixel intensity is assumed to encode surface elevation 𝑧, which is in turn assumed to be
transformed into a temporal profile by whisker sweeps along the surface (Fig. 2.8b). To
simulate this process, the images are normalized to [0, 1] by an affine linear transforma-
tion and then linearized in a zigzag fashion yielding linear texture profiles. These
profiles are modeled as ventral posteromedial nucleus (VPM) activity 𝑎in(𝑡) (Figs. 2.9a
and 2.9b, bottom). VPM provides input to L4 mediated by the thalamo-cortical projection
𝑤tc (Figs. 2.9a and 2.9b, middle). The entries of the projection 𝑤tc are iid. random vari-
ables 𝑤tc,𝑘 ∼ 𝛿𝑘𝑢𝑘 with 𝛿𝑘 ∼ Ber(𝑝tc), 𝑝tc = 0.5 and 𝑢𝑘 ∼ 𝒰(0, 1/𝑛in), in which 𝑛in denotes
the number of neurons in the thalamic input-receiving sub-layer of L4. The network’s
temporally evolving 𝑎L4 L4 activity (Fig. 2.9b, middle) is described by the discrete time
dynamics

𝑎L4(𝑡 + 1) = (1 − 𝛼)𝑎L4(𝑡) + 𝛼 𝜎 (𝑊𝑎L4(𝑡) + 𝑤tc 𝑎in(𝑡) + 𝑏) ,

with activation function 𝜎 ∶ ℝ𝑛 → ℝ+𝑛, 𝑥 ↦ max{0, 𝑥}, max acting elementwise,
𝛼 = 0.2 and bias vector 𝑏 ∈ ℝ𝑛. The weighted adjacency matrix 𝑊 (Fig. 2.9a, middle)
is obtained from the network’s binary representation 𝛿𝑘𝑙. Let 𝜔𝑘𝑙 ∼ Lognormal(0, 52)
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Figure 2.9. Network architecture and activity during texture classification.
(a) network architecture and (b) activity. Bottom: input activity (𝑎in) is received first in the ventral pos-
teromedial nucleus (VPM), then projected to layer 4 (L4) via the thalamo-cortical projection 𝑤tc. Middle:
in layer 4 (L4) activity is transformed through recurrent connectivity 𝑊. L4 activity (𝑎L4) is color coded.
Blue (“e”) is excitatory activity; red (“i”) is inhibitory activity. Top: layer 2/3 (L2/3) neurons are activated
by the output projection 𝑊L2/3, yielding the readout activity (𝑎out) of the seven readout neurons 𝑜1, … , 𝑜7

representing the seven texture classes. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

iid., then 𝑊𝑘𝑙 = 𝜔𝑘𝑙𝛿𝑘𝑙. The incoming excitatory weights of each neuron of L4 are then
normalized to 1, the inhibitory weights to −1. L4 activity is read out via a projection
𝑊L2/3 (Figs. 2.9a and 2.9b, top). Each texture class is represented by a dedicated layer
2/3 (L2/3) readout neuron (Fig. 2.9a, top).

Before evaluating the network’s predictive accuracy, it is trained on texture profiles,
different from the ones presented later on for evaluation of the predictive accuracy. During
training, the network’s weights are modified only over the second half of the texture
presentation; the network is allowed to settle dynamically over the first half (Fig. 2.10).
The network weights are modified during the second half according to the adaptive
moment estimation (Adam)method (Kingma andBa 2014),which is a stochastic gradient
descent-like method, with categorical cross entropy

𝐻(𝑊, 𝑏, 𝑊L2/3) = − ∑
𝑛

∑
𝑐

𝛿𝑡𝑛,𝑐 log 𝑦(𝑐|𝑥𝑛)

25



2. Adaptation to Known Constraints and Functional Viability of Local Cortical Models

0 250 500
Texture presentation

time 𝑡 (Δ𝑡)

T1

T7

⋮

Training

Figure 2.10. Texture profiles and training.
Weight modification occurs only during the second half of the texture presentation. Example profiles of
each class are presented for training. These profiles are different from the ones presented during prediction.
(Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

as loss function. Here, 𝑡𝑛 denotes the true class of texture profile 𝑥𝑛 and 𝑦(𝑐|𝑥𝑛) is the
probability assigned to class 𝑐 by the readout on presentation of texture profile 𝑥𝑛. Only
the readout weights 𝑤L2/3 and the bias 𝑏 are trained. During classification, the activity of
each of the readout neurons is integrated over the second half of the texture presentation.
The class with the maximal integrated activity is interpreted as the network’s texture
class prediction. The model is implemented as custom layer of the Keras deep learning
framework (Chollet et al. 2015). The custom layer is implementedwith the Theano library
(Team et al. 2016) and trained on GPU.

2.5. ER-ESN: Erdős-Rényi Echo State Network

2.5.1. Key Concepts

The echo state network (ESN), a recurrent network, was introduced by Jaeger (2001b)3 to
perform general computations, for example, for nonlinear systems identification (Jaeger
2002; Jaeger and Haas 2004). Computations are realized implementing dynamics on a
graph together with a learning rule. Central to ESNs is that only readout weights are
learned, but not the weights within the recurrent network. A certain memory capacity on
short time scales is necessary for many computational tasks. Is is therefore not surprising,
that the short-term memory capacity (Jaeger 2001a; Pascanu and Jaeger 2011) and long
short-term memory capacity (Hochreiter and Schmidhuber 1997; Jaeger 2012) of ESNs

3see Jaeger (2010) for a corrected version
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were examined. In this context, operation near criticality has been investigated (Buehner
and Young 2006; Jaeger 2001b; Jaeger 2007; Jaeger 2010; Manjunath and Jaeger 2013;
Yildiz, Jaeger, and Kiebel 2012).

The Erdős-Rényi (ER) random graph (Erdős and Rényi 1959) is classically described
by a single pairwise connection probability 𝑝. Each possible connection is realized in-
dependently of the others with probability 𝑝. ESNs were often constructed as sparse
ER graphs (Buehner and Young 2006; Jaeger 2001a; Jaeger 2001b; Jaeger 2002; Jaeger
and Haas 2004; Pascanu and Jaeger 2011), realizing only 1% of the possible connections
and rather rarely as less sparse graphs realizing up to 20% of the possible connections
(Buehner and Young 2006; Jaeger 2001b). Beyond the ER topology, also small-world
(Watts and Strogatz 1998) and scale-free (Barabási and Albert 1999) topologies, as well as
topologies generated by spatial growth (Kaiser and Hilgetag 2004) were tested (Liebald
2004). Moreover, modular decoupled ESNs with lateral inhibition were examined (Xue,
Yang, and Haykin 2007) and a hierarchical variant of the ESN was proposed (Jaeger
2007). Problem specific graph optimization was attempted (Jaeger 2012) and recipes
for constructing ESNs with good memory capacities have been given (Yildiz, Jaeger,
and Kiebel 2012). For a review of ESNs and other reservoir computing techniques see
Lukoševičius and Jaeger (2009) and Lukoševičius, Jaeger, and Schrauwen (2012).

While the ER model constitutes a structural null hypothesis, the ESN model proposes
a way of performing computations on this structure. The ER-ESN captures and combines
both aspects.

2.5.2. Implementation and Adaptation

The ER-ESN model is implemented as a directed ER random graph with two subpopula-
tions: an excitatory one and an inhibitory one (Fig. 2.11a). The probability to realize a
graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉 = {1, … , 𝑛e + 𝑛i} and edge set 𝐸 ⊂ 𝑉 × 𝑉 is

𝐸𝑅(𝐺|𝑛e, 𝑛i, 𝑝e, 𝑝i) =
𝑛e+𝑛i

∏
𝑣=1

⎛⎜
⎝

𝑛e

∏
𝑢=1

𝑝𝛿𝑢𝑣
e (1 − 𝑝e)1−𝛿𝑢𝑣⎞⎟

⎠
⎛⎜⎜
⎝

𝑛e+𝑛i

∏
𝑢=𝑛e+1

𝑝𝛿𝑢𝑣
i (1 − 𝑝i)1−𝛿𝑢𝑣⎞⎟⎟

⎠
, (2.10)

in which 𝛿 denotes the indicator function

𝛿𝑢𝑣 =
⎧{
⎨{⎩

1 if (𝑢, 𝑣) ∈ 𝐸
0 otherwise

.

The first index 𝑢 corresponds to the source vertex (presynaptic neuron), the second
index 𝑣 to the target vertex (postsynaptic neuron). The expected value of the excitatory-
excitatory reciprocity 𝑟ee can be analytically calculated. Let 1 ≤ 𝑢, 𝑣 ≤ 𝑛e, then

𝔼[𝑟ee] = 𝐸𝑅 ((𝑢, 𝑣) ∈ 𝐺|(𝑣, 𝑢) ∈ 𝐺) = 𝐸𝑅 ((𝑢, 𝑣) ∈ 𝐺) = 𝑝e.
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Figure 2.11. ER-ESN model.
(a) Small subgraph of an ER-ESN graph. The probability of realizing an edge in the ER-ESN model depends
only on whether the presynaptic ( ) neuron is excitatory (filled circle●) or inhibitory (open circle○). It
does not depend on the type of the postsynaptic ( ) neuron or any other property such as spatial distance
between neurons. The neuron in the center of the plot is highlighted in blue to facilitate distinguishing its
connections. (b) Stochastically realized ER-ESN networks. Excitatory-excitatory connectivity (𝑝ee) is plotted
on the horizontal axis, excitatory-excitatory reciprocity (𝑟ee) on the vertical axis. The ER-ESN model satisfies
the circuit constraints indicated by the black rectangle. (Figure similar to Klinger, Marr, Theis, Helmstaedter
(under review))

The second equality holds since the edges (𝑢, 𝑣) and (𝑣, 𝑢) are independently realized
with probability 𝑝e; conditioning on (𝑣, 𝑢) has therefore no effect. The ER-ESN model
therefore satisfies the circuit constraints in expectation if the connectivity is chosenwithin
the circuit constraints (Fig. 2.11b). Given the size of the networks of about 2000 neurons,
i.e. about 4 million possible connections, the deviations from the expected values are
small (Fig. 2.11b).

2.5.3. Functional Viability

The ER model is functionally to discriminate textures (Sect. 2.4). The L4 weights are
not trained for the ER-ESN model. This follows the ESN paradigm, which is to keep
the weights within L44 constant (this is different for the LAYERED model, Sect. 2.7.3).
Although the readout neurons do not very reliably predict the texture class at individ-

4The recurrent network, here referred to as L4, is often called “reservoir”.
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2.6. EXP-LSM: Exponentially Decaying Liquid State Machine
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Figure 2.12. ER-ESN texture classification performance.
Although the readout neurons do not very reliably predict the texture class at individual timepoints the
overall performance of the ER-ESN model is substantially above chance level. (a), (b), (c), (d), (e) Readouts
of randomly chosen texture profiles. The label on the right side of each panel indicates the ground truth
class. See, Fig. 2.8a for the corresponding textures. (f) Confusion matrix for the ER-ESN model in the texture
classification task. The vertical axis denotes the ground truth class, the horizontal axis the predicted class.
(Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

ual timepoints (Figs. 2.12a to 2.12e), the overall performance of the ER-ESN model is
substantially above chance level achieving 80.8% accuracy (Fig. 2.12f, chance level is
1/7 ≈ 14.2% accuracy). The model is therefore considered functional.

2.6. EXP-LSM: Exponentially Decaying Liquid State Machine

2.6.1. Key Concepts

The liquid state machine (LSM), was proposed as a model of general cortical computa-
tions (Maass, Natschläger, and Markram 2002; Maass, Natschläger, and Markram 2004a).
Different computational properties of LSMs, such as summation of spike rates, nonlin-
ear combinations, coincidence detection, speech recognition and various classification
tasks, were examined (Maass, Joshi, and Sontag 2006; Maass and Markram 2004; Maass,
Natschläger, and Markram 2004b; Schliebs, Fiasché, and Kasabov 2012). Phase space
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2. Adaptation to Known Constraints and Functional Viability of Local Cortical Models

trajectories, in particular with respect to the role of fixed points were examined to gain a
better mechanistic understanding of how computations in LSMs are performed (Sussillo
and Barak 2013). Compared to the ESN literature the theoretical focus was rather on the
input-output mapping properties than on the reservoir properties. They share, however,
the idea of training readout weights only. Initially the p-delta learning rule, a variation of
the perceptron learning rule, (Auer, Burgsteiner, and Maass 2001) was used for readout
training, but alternative learning rules were also proposed (Sussillo and Abbott 2009).
The LSM has also been specifically proposed for cortical layer 4 of somatosensory cortex
(Probst et al. 2012).

The impact of network topology on LSM robustness has been discussed (Hazan and
L. M. Manevitz 2010; Hazan and L. M. Manevitz 2012; L. Manevitz and Hazan 2010).
Random topologies have been compared to hub topologies (Hazan and L. M. Manevitz
2012) and small-world topologies (Watts and Strogatz 1998) with focus on network ro-
bustness (Hazan and L. M. Manevitz 2012). Neurons were often assumed to be located
on the integer points of a three dimensional grid (Maass, Joshi, and Sontag 2006; Maass
and Markram 2004; Maass, Natschläger, and Markram 2002). Maass, Joshi, and Sontag
(2006), Maass and Markram (2004), and Maass, Natschläger, and Markram (2002) as-
sumed a quadratic exponential decay of connection probability with distance whereas
Probst et al. (2012) assumed a linear exponential decay. The recurring theme, however, is
the distance dependent connectivity: connections to closeby neurons are assumed to be
more likely than to distant neurons. For reviews on LSMs see for instance Buonomano
and Maass (2009) and Maass (2010).

2.6.2. Implementation and Adaptation

The exponentially decaying liquid state machine (EXP-LSM) implements distance depen-
dent connectivity. The connection probability decays with increasing inter-soma distance.
The soma locations 𝑥𝑘 ∈ [0, 1]3, 𝑘 = 1, … , 𝑛 uniformly distributed in a barrel. The three
spatial dimensions 𝑙 = 1, … , 3 of the soma location 𝑥𝑘 of neuron 𝑘 are independent and
identically distributed according to 𝑥𝑘𝑙 ∼ 𝒰(0, 1). That is, the barrel is modeled as a cube
(Fig. 2.13a) and the somata are assumed to be uniformly distributed within this cube.
The probability 𝑝((𝑘, 𝑙) ∈ 𝐺|𝑥𝑘, 𝑥𝑙) to realize a (directed) edge from vertex 𝑘 to vertex 𝑙
decays exponentially with inter-soma distance ‖𝑥𝑘 − 𝑥𝑙‖ (Fig. 2.13b)

𝑝((𝑘, 𝑙) ∈ 𝐺|𝑥𝑘, 𝑥𝑙, 𝜆e, 𝜆i) = exp(−‖𝑥𝑘 − 𝑥𝑙‖/𝜆(𝑘))

with

𝜆(𝑘) =
⎧{
⎨{⎩

𝜆e if 𝑘 ≤ 𝑛e

𝜆i otherwise
,
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2.6. EXP-LSM: Exponentially Decaying Liquid State Machine

a

𝑑b

𝑑b 𝑑b

𝑑s

Barrel
b

0 1
Relative inter-soma

distance 𝑑s/𝑑b

0

1

Ex
ci
ta
to
ry

an
d
in
hi
bi
to
ry

co
nn

ec
tiv

ity
𝑝 e

,𝑝
i

Excitatory decay length 𝜆e =0.4

Inhibitory decay length 𝜆i =1.3

c

Excitatory
connectivity 𝑝e ≈ 0.34

d

Inhibitory
connectivity 𝑝i ≈ 0.44

Figure 2.13. Exponentially decaying liquid state machine.
(a) A barrel is modeled as a cube of side length 𝑑b. The intersoma distance is denoted by 𝑑s. (b) The
connection probability decays exponentially with relative inter-soma distance (𝑑s/𝑑b). The excitatory decay
length (𝜆e) and inhibitory decay length (𝜆i) determine how fast connectivity decays with distance. (c) Small
subgraph of an EXP-LSM graph. The probability of realizing an edge in the EXP-LSM model depends on
whether the presynaptic neuron is of excitatory type (filled circle ●) or inhibitory type (open circle ○)
and on the spatial distance between neurons. The neuron in the center of the plot is highlighted in blue to
facilitate distinguishing its connections. (d) As in (c), but inhibitory neuron highlighted. (Figure similar to
Klinger, Marr, Theis, Helmstaedter (under review))
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Figure 2.14. Stochastically realized EXP-LSM networks.
Excitatory-excitatory connectivity (𝑝ee) is plotted on the horizontal axis, excitatory-excitatory reciprocity
(𝑟ee) on the vertical axis. The EXP-LSM model satisfies the circuit constraints. (Figure similar to Klinger,
Marr, Theis, Helmstaedter (under review))

in which 𝑛e denotes the number of excitatory neurons. The speed of the decay is deter-
mined for the excitatory and the inhibitory subpopulation by the excitatory decay length
(𝜆e) and the inhibitory decay length (𝜆i). Small subgraphs of stochastically sampled
EXP-LSM networks are depicted in Figs. 2.13c and 2.13d. Importantly, if 𝜆e and 𝜆i are
set such that excitatory connectivity (𝑝e) and inhibitory connectivity (𝑝i) lie within the
circuit constraints, then the circuit constraints on the excitatory-excitatory reciprocity
(𝑟ee) and on the excitatory-excitatory connectivity (𝑝ee) are also satisfied (Fig. 2.14). No
further adaptation or modification is therefore required for the EXP-LSM model.

2.6.3. Functional Viability

The functional test for the EXP-LSMmodel is the same as for the ER-ESNmodel described
in Sect. 2.4. The EXP-LSM model does not reliably predict the correct texture class at
individual time points (Figs. 2.15a to 2.15e) but performs above chance level (14.2%)
taking the integrated activity as predictor (Fig. 2.15f). The achieved accuracy is 82.1%,
which is comparable to the accuracy achieved by the ER model (Sect. 2.5.3, 80.7%). The
model is therefore considered functional.

2.7. LAYERED: Layered Network

2.7.1. Key Concepts

Layered network (LAYERED) models represent the hypothesis of processing cortical
input via a hierarchy of sequentially stacked layers. The multi-layer perceptron is the
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Figure 2.15. EXP-LSM texture classification performance.
(a), (b), (c), (d), (e) Readouts of randomly chosen texture profiles. The label on the right side of each panel
indicates the ground truth class. See, Fig. 2.8a for the corresponding textures. (f) Confusion matrix for
the EXP-LSM model in the texture classification task. The vertical axis denotes the ground truth class, the
horizontal axis the predicted class. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

earliest example of such a model (Rosenblatt 1961). Hierarchical, layered models were
often used in studies of early sensory processing, in particular visual processing (Griffith
1963;Hubel andWiesel 1962). Layered structures have also been used in the context of self-
organization for translation invariant geometrical pattern recognition (Fukushima 1979;
Fukushima 1980) or as deep neural networks (Ivakhnenko 1971; Ivakhnenko and Lapa
1965; Lecun et al. 1998; LeCun et al. 1989). Beyond the purely feed-forward structures
considered in the studies above, also stacked recurrent neural networks were used as a
model of hierarchical processing (Pascanu, Gulcehre, et al. 2013; Schmidhuber 1992).

2.7.2. Implementation and Adaptation

The excitatory population is subdivided into 𝑛l disjoint sets of approximately equal size
(Fig. 2.16). Denoting the layer boundaries by

𝐵𝑙 = ⌊
𝑙
𝑛l

𝑛e⌋ ,
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Figure 2.16. Exemplary layered network (LAYERED) model.
Illustration of an LAYERED model with number of layers 𝑛l= 3. In the LAYERED model, excitatory neurons
are uniquely grouped into sequentially ordered layers. Layer 𝑙= 1 is the first (thalamic input receiving)
layer, layer 𝑙= 3 is the output layer. Inhibitory neurons provide global inhibition. The excitatory lateral
connectivity 𝑝e,l is the pairwise connetion probability for connections within a layer, the excitatory forward
connectivity 𝑝e,f is the pairwise connetion probability for connections from one layer to the next layer.
(Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

layer 𝑙 consists of the neurons 𝑉𝑙 = {𝑘 ∈ 𝑉|𝐵𝑙−1 < 𝑘 ≤ 𝐵𝑙}, for 𝑙 = 1, … , 𝑛l, denoting by
𝑉 = {1, … , 𝑛} the set of neurons in the network. The pairwise connection probability
𝑝((𝑢, 𝑣)|𝑝e,f, 𝑝e,l, 𝑛l, 𝑝i, 𝑝e, 𝑛e) of realizing an edge (𝑢, 𝑣) from vertex 𝑢 to vertex 𝑣 is

𝑝((𝑢, 𝑣)|𝑝e,f, 𝑝e,l, 𝑛l, 𝑝i, 𝑝e, 𝑛e) =

⎧{{{{{{
⎨{{{{{{⎩

𝑝e,l if ∃𝑙 ∈ {1, … , 𝑛l} ∶ 𝑢 ∈ 𝑉𝑙 and 𝑣 ∈ 𝑉𝑙

𝑝e,f if ∃𝑙 ∈ {1, … , 𝑛l − 1} ∶ 𝑢 ∈ 𝑉𝑙 and 𝑣 ∈ 𝑉𝑙+1

𝑝e if 𝑢 ≤ 𝑛e and 𝑣 > 𝑛e

𝑝i if 𝑢 > 𝑛e

0 otherwise

,

in which 𝑝e,l denotes the excitatory lateral connectivity, 𝑝e,f the excitatory forward connec-
tivity, 𝑛l the number of layers, 𝑝i the inhibitory connectivity, 𝑝e = 𝑝ee = 𝑝ei the excitatory
connectivity, and 𝑛e the number of excitatory neurons. Together, the two parameters
𝑝e,l and 𝑝e,f determine the overall excitatory-excitatory connectivity (𝑝ee). The expected
excitatory-excitatory connectivity is obtained by elementary calculations (Fig. 2.17a)

𝔼[𝑝ee] =
𝑛l𝑝e,l + (𝑛l − 1)𝑝e,f

𝑛2
l

(2.11)

and similarly the expected excitatory-excitatory reciprocity (Fig. 2.17b)
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Figure 2.17. Expected excitatory-excitatory connectivity and expected excitatory-excitatory reciprocity
as function of the excitatory lateral connectivity and the excitatory forward connectivity for a LAYERED
network with three layers.
(a) Expected excitatory-excitatory connectivity 𝔼[𝑝ee] as function of the excitatory lateral connectivity 𝑝e,l

and the excitatory forward connectivity 𝑝e,f. The white isolines indicate the connectivity constraints, the
black dashed lines are the white isolines from (b). (b) Expected excitatory-excitatory reciprocity 𝔼[𝑟ee] as
function of the excitatory lateral connectivity 𝑝e,l and the excitatory forward connectivity 𝑝e,f. The white
isolines indicate the reciprocity constraints, the black dashed lines are the white isolines from (a). (Figure
similar to Klinger, Marr, Theis, Helmstaedter (under review))

𝔼[𝑟ee] =
𝑝2
e,l

𝑛l𝔼[𝑝ee]
.

A LAYERED network with 𝑛l = 3 satisfies the circuit constraints for appropriately
chosen 𝑝e,l and 𝑝e,f (Figs. 2.17a and 2.17b). The LAYERED model is however not able
to satisfy the circuit constraints for arbitrary 𝑛l. For instance, the maximally achievable
connectivity, setting 𝑝e,l = 1 and 𝑝e,f = 1 in Eq. (2.11), decreases as 𝑛l increases (Fig. 2.18).
Realizations of the LAYERED model which do not push 𝑝e,l or 𝑝e,f to their extreme
values are therefore only possible for a moderate range of 𝑛l. This determines the prior
𝑛l ∼ 𝒰ℐ(2, 4) (Fig. 2.19a). The prior over 𝑝e,l and 𝑝e,f is a joint prior (Fig. 2.19b) for which
the circuit constraints are satisfied.

2.7.3. Functional Viability

The functional test of the LAYERED model is the texture discrimination task (Sect. 2.4).
For the LAYERED model, also the forward connections connecting neurons of one layer
𝑉𝑙 to the next 𝑉𝑙+1 are trained. Synaptic normalization is also slightly different compared
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Figure 2.18. Achievable connectivity and reciprocity for the LAYERED model.
The circuit constraints are satisfied for non-extreme excitatory forward connectivity and excitatory lateral
connectivity with two to four layers. The colored areas describe the coverable regime. The boundaries of
the colored areas correspond to the boundary cases of the excitatory lateral connectivity and the excitatory
forward connectivity.
Boundaries:
Bottom: 𝑝e,l = 0, 𝑝e,f ∈ [0, 1].
Right: 𝑝e,l ∈ [0, 1], 𝑝e,f = 1.
Top: 𝑝e,l = 1, 𝑝e,f ∈ [0, 1].
Left: 𝑝e,l ∈ [0, 1], 𝑝e,f = 0.
The white rectangle corresponds to the circuit constraints. (Figure similar to Klinger, Marr, Theis, Helm-
staedter (under review))
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Figure 2.19. Prior of the LAYERED model.
(a) Prior over number of layers (𝑛l) as cumulative distribution function (CDF). (b) Joint prior of the
excitatory lateral connectivity (𝑝e,l) and the excitatory forward connectivity (𝑝e,f). The CDF is color coded.
(Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))
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Figure 2.20. LAYERED texture classification performance.
(a) – (e) Readouts of randomly chosen texture profiles. The label on the right side of each panel indicates
the ground truth class. See, Fig. 2.8a for the corresponding textures. (f) Confusion matrix for the LAYERED
model in the texture classification task. The vertical axis denotes the ground truth class, the horizontal axis
the predicted class. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

to th ER-ESN model and the EXP-LSM model For each excitatory neuron, the incoming
weights of neurons from the same layer are normalized to 1. The incoming weights
from neurons of the predecessor layer are also normalized to 1, separately from the
within-layer connections. The LAYERED model predicts, compared to the ER-ESN and
EXP-LSM model, the true texture class more reliably at individual time points towards
the end of the texture presentation (Figs. 2.20a to 2.20e, compare to Figs. 2.12a to 2.12e
and Figs. 2.15a to 2.15e). The overall achieved accuracy is 91.9%. Compared to the ER-
ESN model and the EXP-LSM model, the overall accuracy is, however, only moderately
higher (Fig. 2.21). The LAYERED model is considered functional.

2.8. API: Anti Phase Inhibition

2.8.1. Key Concepts

The anti phase inhibition (API) model (Kayser and Miller 2002; Troyer et al. 1998) and
similar models of opponent inhibition (Hansen and Neumann 2004) were originally
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Figure 2.21. Comparison of the texture classification accuracy of the ER-ESN, LAYERED and EXP-LSM
model.
The ER model achieves 80.8% accuracy, the EXP-LSM model 82.1% and the LAYERED model 91.9%. Chance
level is 1/7 ≈ 14.3%. The error bars indicate 95% confidence intervals. (Figure similar to Klinger, Marr,
Theis, Helmstaedter (under review))

Excitatory
Inhibitory

Feature vector
(tuning direction)

Figure 2.22. The API model.
Excitatory connections are preferentially made onto neurons with similarly tuned feature vectors, inhibitory
connections onto neurons with antiphasicly (oppositely) tuned feature vectors.

proposed for visual cortex (Hansen and Neumann 2004; Kayser and Miller 2002; Troyer
et al. 1998) but were also suggested in a somatosensory setting to describe the function
of multiple adjacent barrels (Miller, Pinto, and Simons 2001). The central concept is
that neurons excite other neurons with similar feature vectors (receptive fields) and
inhibit neurons with antiphasic (opposite) feature vectors (Fig. 2.22). This mechanism
implements stimulus tuning in the sense that the purely excitatory VPM input leads to
excitation of cortical neurons, which are similarly tuned to the thalamic input, but to
inhibition of cortical neurons, which are dissimilarly tuned to the thalamic input. Due
to the positive nature of the thalamic input, this inhibition has to be provided by the
cortical L4 circuit itself.

2.8.2. Implementation and Adaptation

In the API model, similar to the FEVER model, a feature vector vector 𝐹𝑉𝑘 ∈ ℝ𝑑f is
associated with each neuron 𝑘. The connection probability from neuron 𝑘 to neuron 𝑙
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Figure 2.23. Prior over the selectivity 𝑛pow.
The selectivity 𝑛pow is uniformly distributed 𝑛pow ∼ 𝒰(4, 6). (Figure similar to Klinger, Marr, Theis,
Helmstaedter (under review))

depends on the similarity of these feature vectors, as measured by their cosine similarity
𝑐𝑘𝑙 = 𝐶sim(𝐹𝑉𝑘, 𝐹𝑉𝑙) = ⟨𝐹𝑉𝑘, 𝐹𝑉𝑙⟩/‖𝐹𝑉𝑘‖/‖𝐹𝑉𝑙‖. In the original formulation (Troyer et
al. 1998) feature vectors are assumed to be Gabor like. A connection in the graph 𝐺 is
established with probability

̃𝑝((𝑘, 𝑙) ∈ 𝐺) = 1 − (1 − max{0, 𝑐𝑘𝑙𝑠𝑗}
𝑛pow)

10
, (2.12)

in which 𝑠𝑘 = 1 if neuron 𝑘 is excitatory and 𝑠𝑘 = −1 if neuron 𝑘 is inhibitory. The selec-
tivity 𝑛pow is originally suggested to lie in the range 𝑛pow ∈ [4, 6] (Troyer et al. 1998),
yielding here the prior 𝑛pow ∼ 𝒰(4, 6) (Fig. 2.23). Equation (2.12) describes the probabil-
ity that a binomially distributed random variable 𝑤𝑘𝑙 ∼ Bin(10,max{0, 𝑐𝑘𝑙𝑠𝑗}

𝑛pow) realizes
a non-zero value, ̃𝑝((𝑘, 𝑙) ∈ 𝐺) = 𝑝(𝑤𝑘𝑙 > 0). This can be interpreted in the sense that 10
connection attempts form neuron 𝑘 to neuron 𝑙 are made and each attempt is successful
with probability max{0, 𝑐𝑘𝑙𝑠𝑗}

𝑛pow. The larger 𝑛pow, the less likely are excitatory connec-
tions to neurons with dissimilar feature vectors; i.e. the neuron’s selectivity increases. An
analogous statement holds for inhibitory connections. Notably, excitatory connections
from neurons 𝑘 to neurons 𝑙 are forbidden if 𝑐𝑘𝑙 < 0, and similarly, inhibitory connections
are forbidden if 𝑐𝑘𝑙 > 0. The original formulation does not realize networks satisfying
the circuit constraints: the excitatory-excitatory connectivity (𝑝ee) is too low while the
excitatory-excitatory reciprocity (𝑟ee) is too high (Figs. 2.24a and 2.24b). Variation of
𝑛pow and 𝑑f have only small effects on 𝑝ee and 𝑟ee (Figs. 2.24a and 2.24b). Only a minor
decrease of 𝑟ee with decreasing 𝑛pow is observable (Fig. 2.24b); no systematic influence
on 𝑑f is visible.

Adaptations are applied to generate an implementation that satisfies the circuit con-
straints. The feature vectors are, similar to the FEVER model, drawn from a unit sphere
of dimension 𝑑f according to Eq. (2.7). Cosine similarities 𝑐𝑘𝑙 between the feature vectors
of neurons 𝑘 and 𝑙 are transformed into connection probabilities 𝑝((𝑘, 𝑙) ∈ 𝐺) between
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Figure 2.24. Original API model.
Excitatory-excitatory reciprocity 𝑟ee over excitatory-excitatory connectivity 𝑝ee for the original API model.
The black rectangle indicates the circuit constraints. (a) The feature space dimension (𝑑f) is color coded.
(b) The selectivity (𝑛pow) is color coded. The original model does not realize networks satisfying the circuit
constraints. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

neuron 𝑘 and 𝑙 according to

𝑝((𝑘, 𝑙) ∈ 𝐺) = 1 − (1 − 𝜌𝑘𝑙(𝑛pow))
𝑛𝑠𝑘

bin

, 𝜌𝑘𝑙(𝑛pow) = (
𝑐𝑘𝑙𝑠𝑘 + 1

2 )
𝑛pow

, (2.13)

similar to Eq. (2.12). The connection probabilities can then be expressed in terms of a
binomially distributed variable 𝑤𝑘𝑙

𝑝((𝑘, 𝑙) ∈ 𝐺) = 𝑝(𝑤𝑘𝑙 > 0), 𝑤𝑘𝑙 ∼ Bin (𝑛𝑠𝑘
bin, 𝜌𝑘𝑙(𝑛pow)) .

The coefficient 𝑛bin
𝑠𝑘

is interpreted as the number of connection attempts neuron 𝑘 makes
to any other neuron 𝑙 with probability 𝜌𝑘𝑙(𝑛pow). In contrast to the original formulation
Eq. (2.12), the relaxed rule Eq. (2.13) also permits connections from excitatory neurons 𝑘
to neurons 𝑙 with 𝑐𝑘𝑙 < 0, and similarly, permits connections from inhibitory neurons 𝑘
onto neurons 𝑙 with 𝑐𝑘𝑙 > 0 (Fig. 2.25a). The probability to obtain pairs of neurons with
close to zero cosine similarity increases as 𝑑f increases (Fig. 2.25b). The expected values
of 𝑝e and 𝑝i are upper bounded by 1/2 in the original formulation, since in expectation
half of the neuronal pairs (𝑘, 𝑙) have 𝑐𝑘𝑙 < 0 and the other half 𝑐𝑘𝑙 > 0 (see also Fig. 2.25b).
The same upper bound does not hold for the adapted model. The coefficients 𝑛binomial

𝑥
with 𝑥 ∈ {−1, 1} are fitted to match the specified excitatory and inhibitory connectivity
using the scipy.optimize.fsolve function.

40



2.8. API: Anti Phase Inhibition

a

−1 0 1
Cosine similarity 𝐶sim(𝐹𝑉𝑘, 𝐹𝑉𝑙)

0

1
Ex

ci
ta
to
ry

co
nn

ec
tiv

ity
𝑝 e
,

In
hi
bi
to
ry

co
nn

ec
tiv

ity
𝑝 i

Selectivity 𝑛pow= 5,
Feature space

dimension 𝑑f= 20

Original, Excitatory
Adapted, Excitatory
Original, Inhibitory
Adapted, Inhibitory

b

−1 0 1
Cosine similarity 𝐶sim(𝐹𝑉𝑘, 𝐹𝑉𝑙)

0.0

5.0

PD
F

Feature space
dimension 𝑑f

2
5
20
40

Figure 2.25. Feature vector cosine similarity and pairwise connection probabilities in the original and
the adapted API model.
(a) Pairwise excitatory connectivity 𝑝e and inhibitory connectivity 𝑝i as function of the pairwise feature
vector cosine similarity 𝐶sim. (b) Distribution of the pairwise cosine similarity 𝐶sim for varying feature space
dimension 𝑑f. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

2.8.3. Functional Viability

The key property of the API model is the excitation of cortical L4 neurons which are
similarly tuned to the thalamic input and the inhibition of those which are dissimilarly
tuned. The latter inhibition of antiphasicly tuned neurons has to be provided by the
cortical circuit, as the thalamic input activity 𝑎in is purely excitatory. To evaluate if this
antiphase inhibition property is satisfied the circuit is simulated according to the discrete
time dynamics

𝑎(𝑡 + 1) = (1 − 𝛼 𝑎(𝑡)) + 𝛼 𝑊max{0, 𝑎(𝑡) + 𝑎in},

with 𝛼 = 1/10 and max acting elementwise. The input (𝑎in) 𝑘 received by neuron 𝑘 is
given by

(𝑎in) 𝑘 = max{0, 𝐶sim(𝑆𝑡𝑖𝑚, 𝐹𝑉𝑘)},
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Figure 2.26. Excitatory weight distribution in the anti phase inhibition model.
Probability density function (PDF) of theweight distribution. Selectivity (𝑛pow) and feature space dimension
(𝑑f) are color coded. The weights are smaller on average for higher feature space dimension

in which 𝑆𝑡𝑖𝑚 = 𝐹𝑉𝑘∗ is the feature vector of a randomly chosen neuron 𝑘∗ ∼ 𝒰ℐ(1, 𝑛).
The weights 𝑤𝑙𝑘

5 of the non-zero entries of 𝑊 are proportional to the probability with
which connection (𝑘, 𝑙) is realized: 𝑤𝑙𝑘 = 𝑠𝑘 𝑝((𝑘, 𝑙) ∈ 𝐺) (Fig. 2.26). Notably, all entries
of 𝑎in are positive. The trial duration 𝑡end = 100 time constants. The simulation is imple-
mented in Theano (Team et al. 2016).

Indeed, antiphasically tuned neurons (with negative 𝐶sim) are in effect inhibited at
𝑡end despite the excitatory input 𝑎in they receive (Fig. 2.27). The effectiveness of the
antiphase inhibition is summarized by considering the whole population’s activity
𝑎(𝑡end). The higher the correlation of {(𝑎(𝑡end)𝑘, 𝐶sim(𝐹𝑉𝑘, 𝑆𝑡𝑖𝑚))}𝑛

𝑘=1 the more effec-
tive is the antiphase inhibition. Of particular interest are the antiphasicly tuned neu-
rons 𝑘 with 𝐶sim(𝐹𝑉𝑘, 𝑆𝑡𝑖𝑚) < 0. Therefore, the correlation 𝐶|𝐶sim<0 of the points in
the set {(𝑎(𝑡end)𝑘, 𝐶sim(𝐹𝑉𝑘, 𝑆𝑡𝑖𝑚)|1 ≤ 𝑘 ≤ 𝑛, 𝐶sim(𝐹𝑉𝑘, 𝑆𝑡𝑖𝑚) < 0)} is considered. The
antiphase inhibition property vanishes with increasing 𝑑f (Figs. 2.28a and 2.28b, see
Fig. 2.28c for an example of the population activity 𝑎(𝑡end) with efficient antiphasic inhi-
bition and Fig. 2.28d for less efficient inhibition, i.e. less pronounced correlation). This
behavior is explained by an increasing number of neuronal pairs with feature vector
cosine similarity close to zero for increasing feature space dimension (Fig. 2.25b). If no
dissimilarly tuned (𝐶sim close to -1) neurons exists they cannot be inhibited. From the
above analysis is the prior 𝑑f ∼ 𝒰ℐ(5, 50) derived (Fig. 2.29), as the anti phase inhibition
is still efficient for 𝑑f ≤ 50. The adapted model is therefore considered functional under
the chosen prior. Moreover, the adapted model satisfies the circuit constraints (Figs. 2.30a
and 2.30b).

5𝑤𝑙𝑘 is the weight for a connection (𝑘, 𝑙) from 𝑘 to 𝑙. The indices are reversed.
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Figure 2.27. Stimulus tuning in the API model.
All neurons receive positive thalamic input. Neurons tuned antiphasicly relative to the thalamic input are
inhibited in the APImodel through cortical projections. (Figure similar to Klinger,Marr, Theis, Helmstaedter
(under review))
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Figure 2.28. Efficiency of the anti phase inhibition as function of the feature space dimension.
(a) Correlation of the network’s activity over feature space dimension 𝑑f. (b) Correlation of the activity of
the subset of neurons with antiphasicly tuned feature vectors (relative to thalamic input) over feature space
dimension 𝑑f; the dashed lines indicate 𝑑f = 5 and 𝑑f = 50 which are the boundaries of the uniform prior
over 𝑑f. The two population activities 𝑎(𝑡end) corresponding to the highlighted points (● and● are shown
in Fig. 2.28c and Fig. 2.28d). (c) Complete network’s activity 𝑎(𝑡end) from which the correlation restricted
to antiphasicly tuned neurons is calculated in (b) for the highlighted point ●. (d) Complete network’s
activity 𝑎(𝑡end) from which the correlation restricted to antiphasicly tuned neurons is calculated in (b) for
the highlighted point●. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))
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Figure 2.29. Prior over the feature space dimension 𝑑f.
The feature space dimension 𝑑f is uniformly distributed 𝑑f ∼ 𝒰ℐ(5, 50). (Figure similar to Klinger, Marr,
Theis, Helmstaedter (under review))
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Figure 2.30. Adapted API model.
Excitatory-excitatory reciprocity 𝑟ee over excitatory-excitatory connectivity 𝑝ee for the adapted API model.
The black rectangle indicates the circuit constraints. (a) The feature space dimension (𝑑f) is color coded.
(b) The selectivity (𝑛pow) is color coded. The adapted model realizes networks satisfying the circuit con-
straints. (Compare to Figs. 2.24a and 2.24b.) (Figure similar to Klinger, Marr, Theis, Helmstaedter (under
review))
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2.9. SORN: Self-Organizing Recurrent Neural Network

2.9.1. Key Concepts

With the self-organizing recurrent neural network (SORN) model (Lazar, Pipa, and
Triesch 2009; Zheng, Dimitrakakis, and Triesch 2013) the hypothesis that barrel circuitry
is shaped over time by local, self-organizing learning rules is investigated (Fig. 2.31a).
The SORN was proposed by Lazar, Pipa, and Triesch (2007) and further analyzed by
Lazar, Pipa, and Triesch (2009). However, similar ideas have also been investigated
earlier (Bienenstock 1995; Hertz and Prügel-Bennett 1996; Levy et al. 2001). Lazar, Pipa,
and Triesch (2009) considered several mechanisms, supposedly shaping the network
structure: an intrinsic plasticity rule (Desai, Rutherford, and Turrigiano 1999; Zhang
and Linden 2003), spike timing dependent plasticity (STDP) (Bi and Poo 1998; Gerstner
et al. 1996; Markram et al. 1997) and synaptic normalization (Turrigiano et al. 1998)
(Fig. 2.31b). Further plasticity rules, namely inhibitory STDP and structural plasticity
(Fig. 2.31b) were added later and their topological effects were investigated (Zheng,
Dimitrakakis, and Triesch 2013; Zheng and Triesch 2014). Reward-modulated learning
was also examined (Aswolinskiy and Pipa 2015).

2.9.2. Implementation and Adaptation

The original SORN (Zheng, Dimitrakakis, and Triesch 2013) does not satisfy the circuit
constraints (Fig. 2.32). The STDP rule prunes almost all reciprocated connections; the
network has close to zero reciprocity (Fig. 2.32). Moderate alterations are thus necessary.
In the following, the original and the adapted formulation are described and contrasted.

The initial adjacency matrix 𝑊 is drawn as directed ER graph according to 𝑊 ∼
𝐸𝑅(𝑛e, 𝑛i, 𝑝e, 𝑝i) as defined in Eq. (2.10). Each possible excitatory connection is realized
with probability 𝑝e, each possible inhibitory connection with probability 𝑝i. A weight
normalized adjacency matrix 𝑊 is generated from 𝑊. The weights 𝑤𝑢𝑣 of 𝑊 are obtained
by normalizing the incoming excitatory weights of each neuron to 1 and the incoming
inhibitory weights of each neuron to -1,

𝑤𝑢𝑣 =
⎧{{
⎨{{⎩

𝑤̃𝑢𝑣

∑𝑛e
𝑣′=1 𝑤̃𝑢𝑣′

if 𝑣 ≤ 𝑛e

− 𝑤̃𝑢𝑣

∑𝑛
𝑣′=𝑛e+1 𝑤̃𝑢𝑣′

otherwise
.

No self-connections are allowed. The network 𝑊 is then modified by dynamical learning
rules over a temporal evolution. Neurons are modeled as binary threshold units with
noisy input

𝑥(𝑡 + Δ𝑡) = Θ(𝑊𝑥(𝑡) + 𝜉 − 𝑇),
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Figure 2.31. Learning rules in the SORN model.
(a) The network evolves from time 𝑡 to 𝑡 + Δ𝑡 applying four learning rules. (b) Spike timing dependent
plasticity (STDP): aweight fromneuron𝑛 to neuron𝑛post is increased by𝜂STDP if𝑛fires an action potential
at time Δ𝑡 before neuron 𝑛post or at the same time. A weight from neuron 𝑛 to neuron 𝑛pre is decreased by
𝜂STDP if 𝑛pre fires an action potential at time Δ𝑡 before neuron 𝑛. Synaptic connections are pruned if
the weight decrease would render a connection negative. Synaptic normalization: the incoming excitatory
weights of each neuron are normalized to 1. Structural plasticity: new connections are randomly created
with probability 𝑝add. Intrinsic plasticity: the firing threshold 𝑇 is increased by 𝜂i(1 − 𝑓0) if the neuron fires
and decreased by 𝜂i𝑓0 if it does not fire. The target firing rate is 𝑓0.
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Figure 2.32. Excitatory-excitatory connectivity and excitatory-excitatory reciprocity for the original
SORN model.
The circuit constraints (indicated by the black rectangle) are not satisfied by the original SORN model.
(Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))
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in which 𝑥 ∈ {0, 1}𝑛 is the activity of the network, 𝜉 denotes stochastic white noise input,
𝜉𝑘 ∼ 𝒩(0, 𝜎2) iid., 𝜎 = 0.05 and Θ is the Heaviside step function

Θ(𝑥) =
⎧{
⎨{⎩

1 if 𝑥 > 0
0 otherwise

acting element-wise, and 𝑇 ∈ ℝ𝑛 is the vector of firing thresholds. In this model, a
neuron 𝑘 fires if the sum of its synaptic inputs is greater than its firing threshold 𝑇𝑘. Six
consecutive functional transformations are applied to evolve the network form one time
step 𝑡 to the next time step 𝑡 + Δ𝑡, altering network properties such as the number of
synapses (Figs. 2.33a to 2.33c). The neuronal activity 𝑥 ∈ {0, 1}𝑛 is initialized 𝑥𝑘 = 0∀𝑘
and the past activity 𝑥− ∈ {0, 1}𝑛 as well, 𝑥−

𝑘 = 0∀𝑘. The firing thresholds are initialized
𝑇𝑘 = 1∀𝑘.

1. Propagation The neuronal state vector 𝑥 is updated 𝑥 ← Θ(𝑊𝑥 + 𝜉 − 𝑇).
2. Intrinsic plasticity The firing thresholds are updated 𝑇 ← 𝑇 + 𝜂i(𝑥 − 𝑓0), in which

𝑓0 = 1/10 denotes the target firing rate and 𝜂i the intrinsic learning rate (Fig. 2.31b).
3. Synaptic normalization The excitatory incoming weights of each neuron are normal-

ized to 1 (Fig. 2.31b).
4. STDP The excitatory-excitatory weights are updated according to the STDP rule 𝑤𝑘𝑙 ←

𝑤𝑘𝑙 + 𝜂STDP (𝑥𝑘𝑥−
𝑙 + 𝑥𝑘𝑥𝑙 − 𝑥−

𝑘 𝑥𝑙) for 𝑘 ≠ 𝑙. The past state 𝑥− is afterwards updated
𝑥− ← 𝑥 (Fig. 2.31b).

5. Pruning Negative weights 𝑤𝑘𝑙 generated by the STDP rule are pruned: 𝑤𝑘𝑙 ← 0∀𝑘, 𝑙 ∶
𝑤𝑘𝑙 < 0, 𝑙 ≤ 𝑛e (Figs. 2.33a and 2.33b).

6. Structural plasticity Random synapse creation attempts are made. It is attempted
to add 𝑛add = 𝑛2

e𝑝e−𝑛s
1−𝑝e

synapses between randomly chosen neuronal pairs (𝑘, 𝑙),
𝑘, 𝑙 ∼ 𝒰ℐ(0, 𝑛e), denoting by 𝑛s = ∑𝑘,𝑙∶𝑤𝑘𝑙>0 1 the number of excitatory synapses
in the network (Figs. 2.31b and 2.33b). The synapse creation attempt fails if 𝑘 = 𝑙
or if a connection from neuron 𝑘 to neuron 𝑙 already exists. A failed attempt is not
substituted by a new attempt. The weight of a newly created synapse is 𝑤add = 1/𝑛.

The model is implemented in Cython and parallelized with OpenMP for efficiency.
Is is taken care to reduce memory access as far as possible due to its impact on the
computational speed.

Compared to the original formulation (Zheng, Dimitrakakis, and Triesch 2013), mod-
erate alterations are introduced. The STDP rule did originally not affect neuronal weights
between neurons firing at the same time. The structural plasticity rule prescribed origi-
nally a constant number of synapse creation attempts per time step (Fig. 2.33c). Here, a
homeostatic plasticity rule is introduced through which the number of addition attempts
is adaptively adjusted (Fig. 2.33c). The overall number of synapses in the network stays
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Figure 2.33. Effect of the learning rates on the number of synapses.
(a) The SORN learning rules affect the number of synapses present in the network on a sub-time step scale.
Pruned synapses are approximately replaced through newly added synapses. (b) Synapses are pruned by
the STDP rule and added by the structural plasticity rule resulting in a decrease followed by an increase of
𝑝ee. (c) Originally, a small but constant number of synapse addition attempts is made each time step. In the
adapted formulation, this is replaced by a homeostatic structural plasticity rule. (Figure similar to Klinger,
Marr, Theis, Helmstaedter (under review))
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Figure 2.34. Connectivity, reciprocity and weight distribution of the adapted SORNmodel over time.
(a) The excitatory-excitatory connectivity 𝑝ee stays approximately constant; so does the excitatory-excitatory
reciprocity 𝑟ee after an initial decay phase. (b) Synapse density 𝜌syn over synaptic weights 𝑤 at the beginning
𝑡0 = 1 and at the end 𝑡end = 10000. New synapses are created through the structural plasticity rule with
weight 𝑤add. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

approximately constant (Fig. 2.34a). The distribution of synaptic weights gets smeared
out over time (Fig. 2.34b). Initially, at 𝑡0, the distribution is narrower than at the end 𝑡end.

2.9.3. Functional Viability

The SORN model was tested by Lazar, Pipa, and Triesch (2009) for healthy activity
structure as measured by the correlation 𝑐 between neuronal spiking – the closer to zero
the better – and the spike source entropy (SSE) – the higher the better. The correlation
𝑐𝑘,𝑙 of the neuronal pair (𝑘, 𝑙) is calculated as

𝑐𝑘,𝑙 =
∑𝑡end

𝑡=𝑡0
(𝑥𝑘(𝑡) − 𝑥𝑘)(𝑥𝑙(𝑡) − 𝑥𝑙)

√∑𝑡end
𝑡=𝑡0

(𝑥𝑘(𝑡) − 𝑥𝑘)2 ∑𝑡end
𝑡=𝑡0

(𝑥𝑙(𝑡) − 𝑥𝑙)2
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in which

𝑥𝑘 =
1

𝑡end

𝑡end
∑
𝑡=𝑡0

𝑥𝑘(𝑡)

denotes the mean firing rate and 𝑡0 = 1. The obtained coefficients 𝑐𝑘,𝑙 of the neuronal
pairs are summarized as the median correlation med(𝑐N,N). This quantifies how syn-
chronized the network activity is. Overly synchronized activity is regarded pathological
and therefore implausible. The spike source entropy (SSE) is defined by

SSE =
∑𝑛

𝑘=1 𝑥𝑘 log 𝑥𝑘
− log𝑛 ,

which is the normalized entropy of the spike rates. Thus 0 ≤ SSE ≤ 1. The maximal
value SSE = 1 is attained if all the spike rates 𝑥𝑘 = 𝑥∀𝑘 are identical and 0 < 𝑥 < 1. The
minimal value SSE = 0 is attained if, for example 𝑥𝑘 = 1∀𝑘, 𝑥𝑘 = 0∀𝑘 or 𝑥𝑘 = 0 for some
neurons 𝑘 ∈ 𝑍 and 𝑥𝑘 = 1 for some other neurons 𝑥𝑘 ∈ 𝑂, 𝑍 ∩ 𝑂 = ∅. The SSE quantifies
if the whole network spikes equally or if only a subpopulation spikes. The latter behavior
is regarded pathological.

The median correlation med(𝑐N,N) increases with increasing 𝜂STDP (Fig. 2.35a) but
depends also on 𝜂i. For appropriately chosen 𝜂STDP and 𝜂i, med(𝑐N,N) is very low, the
network’s activity decorrelated (Figs. 2.35a and 2.35c). For too large 𝜂STDP, the network
is very synchronized and its activity pathological (Fig. 2.35d). The spike source entropy
(SSE) is comparatively unaffected by changes in 𝜂STDP or 𝜂i, always very close to 1
(Fig. 2.35b). Within the bounds of the priors over 0.05 ≤ 𝜂i < 0.1 and 0.0006 ≤ 𝜂STDP <
0.0014 (Figs. 2.35e and 2.35f) the network’s activity correlation remains below 0.0422
and the SSE is greater than 0.99, similar to Lazar, Pipa, and Triesch (2009). The SORN
model is hence regarded functional under the chosen prior. The adapted SORN model
satisifes the circuit constraints (Fig. 2.36).

51



2. Adaptation to Known Constraints and Functional Viability of Local Cortical Models

a

0 0.01
STDP learning

rate 𝜂STDP

0.0

0.4
M

ed
ia
n

co
rr
el
at
io
n
m
ed

(𝑐
N

,N
)

0.0

0.4

In
tr
in
si
c
le
ar

ni
ng

ra
te

𝜂 i

b

0 0.01
STDP learning

rate 𝜂STDP

0

1

Sp
ik
e
so

ur
ce

en
tr
op

y
SS

E

c

0 100
Time 𝑡

0

10

20N
eu

ro
n E

I

d

0 100
Time 𝑡

0

10

20N
eu

ro
n E

I

e

0.0 0.4
Intrinsic learning

rate 𝜂i

0

1

C
D
F

f

0.000 0.002
STDP learning

rate 𝜂STDP

0

1

C
D
F

Figure 2.35. Prior and functional viability for the SORN model.
(a) Median correlation (med(𝑐N,N)) over STDP learning rate (𝜂STDP); the intrinsic learning rate (𝜂i) is color
coded. The activity at the highlighted parameters ○ and ○ is depicted in (c) and (d) respectively. The
dashed lines indicate the boundaries of the support of the priors as depicted in (e) and (f). (b) Spike source
entropy (SSE) over STDP learning rate (𝜂STDP); the intrinsic learning rate (𝜂i) is color coded. (c) Spiking
activity of a SORN network with parameters corresponding to ○ in (a). Only a subset of the complete
population is shown. Excitatory spikes (“E”) are depicted in black, inhibitory spikes (“I”) are depicted
in white. (d) Spiking activity of a SORN network with parameters corresponding to ○ in (a). (e) Prior
over the intrinsic learning rate (𝜂i) as cumulative distribution function (CDF). (f) Prior over the STDP
learning rate (𝜂STDP) as cumulative distribution function (CDF). (Figure similar to Klinger, Marr, Theis,
Helmstaedter (under review))
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review))

53



2. Adaptation to Known Constraints and Functional Viability of Local Cortical Models

a

𝑝e,f = 1

𝑝e,l = 0

𝑃𝑖+1

𝑃𝑖
𝑟ee = 0

Disjoint
b

𝑃𝑖+1

𝑃𝑖
𝑟ee > 0

Overlapping

Excitatory
Inhibitory

Figure 2.37. The synfire chain.
(a) Disjoint pools. Forward connections from pool 𝑃𝑖 to pool 𝑃𝑖+1 are realized all-to-all, i.e. with
pairwise connection probability 𝑝e,f = 1. No within-pool connections are realized, 𝑝e,l = 0 and therefore
𝑟ee = 0. The inhibitory population is also organized in a pool structure, parallel to the excitatory pool
structure. Excitatory-inhibitory connections are realized between corresponding pool pairs. Inhibitory-
excitatory connections are realized onto each excitatory neuron with independently with probability
𝑝i. (b) Overlapping pools. Reciprocated connections emerge between neurons participating in more
than one pool, consequently 𝑟ee > 0. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

2.10. SYNFIRE: Synfire Chain

2.10.1. Key Concepts

The synfire chain (SYNFIRE) model was proposed by Abeles (1982) as explanation for
cortical synchrony (Abeles 1991; Abeles 1982). In its simplest formulation, a SYNFIRE is
a sequence of neuronal pools6 with connections formone pool to the next pool (Fig. 2.37a).
It has been proposed that SYNFIRE patternswere the fundamental computational units in
cortex (Bienenstock 1995) and that composed or hierarchical mental representations were
implemented by interacting SYNFIREs (Abeles, Hayon, and Lehmann 2004; Bienenstock
1995). Storage capacity, embedding and computational properties of SYNFIREs were
examined (Aviel, Horn, and Abeles 2005; Aviel, Mehring, et al. 2003; Bienenstock 1995;
Gewaltig, Diesmann, and Aertsen 2001; Goedeke and Diesmann 2008; Herrmann, Hertz,
and Prügel-Bennett 1995;Hertz 1997; Kumar, Rotter, andAertsen 2008;Mehring et al. 2003;
Trengove, Leeuwen, andDiesmann 2012) but also the question of how to find evidence for
the implementation of SYNFIREs has been addressed (Schrader et al. 2008). SYNFIREs
were used for translation-invariant pattern recognition in pictures (Arnoldi, Englmeier,

6A neuronal pool is a set of neurons
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2.10. SYNFIRE: Synfire Chain

and Brauer 1999), to parse and classify French sentences (Jacquemin 1994), for auditory
scene analysis (Wrigley and Brown 1999) and in compositional systems to address the
binding problem, i.e. the binding of many simple components to a meaningful mental
representation of a composite object (Aertsen and Braitenberg 1996; Hayon, Abeles, and
Lehmann 2005).

The simplest implementations were networks with connections only between subse-
quent pools (Fig. 2.37a) and a single chain only (Gewaltig, Diesmann, and Aertsen 2001;
Griffith 1963). Other studies allowed multiple chains in a SYNFIRE network (Abeles
1982; Abeles, Hayon, and Lehmann 2004; Aviel, Mehring, et al. 2003; Bienenstock 1995;
Herrmann, Hertz, and Prügel-Bennett 1995; Schrader et al. 2008). Pools were also allowed
to overlap (Abeles 1991; Abeles 1982; Aviel, Horn, and Abeles 2005; Aviel, Mehring, et al.
2003; Bienenstock 1995; Herrmann, Hertz, and Prügel-Bennett 1995; Schrader et al. 2008;
Trengove, Leeuwen, and Diesmann 2012) thereby forming a recurrent network which
still operated, similar to multilayer perceptrons (Rosenblatt 1961), in a feed forward fash-
ion (Abeles 1991) (Fig. 2.37b). Neurons have been restricted to participate in each chain
only once while still being allowed to participate in several chains (Schrader et al. 2008).
The emergence of SYNFIREs by plasticity mechanisms was suggested (Bienenstock 1995;
Hertz and Prügel-Bennett 1996; Levy et al. 2001; Zheng and Triesch 2014). A tendency
towards short cycles formed by 4 to 5 pools and under certain input conditions up to 20
pools was observed (Hertz and Prügel-Bennett 1996; Levy et al. 2001; Zheng and Triesch
2014). SYNFIREs embedded in other networks have been examined (Abeles, Hayon,
and Lehmann 2004; Aviel, Horn, and Abeles 2005; Aviel, Mehring, et al. 2003; Kumar,
Rotter, and Aertsen 2008; Mehring et al. 2003). SYNFIREs were either assumed to be
complete, i.e. featuring all-to-all connectivity between pools (Abeles 1991; Abeles 1982;
Bienenstock 1995; Gewaltig, Diesmann, and Aertsen 2001; Mehring et al. 2003) or were
allowed to be incomplete (Abeles 1991; Abeles 1982; Abeles, Hayon, and Lehmann 2004;
Bienenstock 1995). It was also proposed hat connections could omit layers by means of
non-constant conduction delays (Bienenstock 1995). Furthermore, continuous synfire
braids (Bienenstock 1995), relying on non-uniform conduction delays, and other related
models were proposed (Izhikevich 2006; Izhikevich, Gally, and Edelman 2004; Paugam-
Moisy, Martinez, and Bengio 2008). For a review on SYNFIREs see for example Abeles
(2009).

2.10.2. Implementation and Adaptation

The SYNFIRE formulation employed in this work follows Trengove, Leeuwen, and Dies-
mann (2012) implementing a single chain with overlapping pools. This implementation
is chosen since disjoint pools would yield no reciprocated connections (Fig. 2.37a) and
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could therefore not satisfy the circuit constraints. To construct the chain, neuronal pools
are consecutively randomly drawn and then connected (Fig. 2.37b) as described in Alg. 3:
(1) an initial excitatory source pool 𝑃source

E of pool size 𝑠pool is uniformly drawn from the

Algorithm 3: Synfire chain construction
Input: 𝑉, 𝑝e, 𝑝i, 𝑠pool, 𝑛e
Output: 𝐺
𝐸 ← ∅

𝑛pool ←
⎢
⎢
⎢
⎢
⎣

log(1−𝑝e)

log⎛⎜⎜
⎝

1−
𝑠2
pool
𝑛2e

⎞⎟⎟
⎠

⎥
⎥
⎥
⎥
⎦

𝑉E ← {𝑣 ∈ 𝑉|𝑣 ≤ 𝑛e}
𝑉I ← 𝑉 ∖ 𝑉E
𝑛i ← |𝑉| − 𝑛e
𝑠pool,i ← ⌊ 𝑛i

𝑛e
𝑠pool⌋

𝑃source
E ∼ 𝒰({𝑉′|𝑉′ ⊂ 𝑉E, |𝑉| = 𝑠pool})

for 𝑘 = 1 to 𝑛pools do
𝑃target
E ∼ 𝒰({𝑉′|𝑉′ ⊂ 𝑉E, |𝑉′| = 𝑠pool})

𝑃target
I ∼ 𝒰({𝑉′|𝑉′ ⊂ 𝑉I, |𝑉′| = 𝑠pool,i})

𝐸 ← 𝐸 ∪ 𝑃source
E × (𝑃target

E ∪ 𝑃target
I )

𝑃source
E ← 𝑃target

E
end
𝐺 ← (𝑉, 𝐸)

foreach (𝑢, 𝑣) ∈ 𝑉I × 𝑉E do
𝑏 ∼ Bin(𝑝i)
if 𝑏 = 1 then

𝐸 ← 𝐸 ∪ {(𝑢, 𝑣)}
end

end

excitatory population. (2) Next, an excitatory target pool 𝑃target
E of size 𝑠pool is uniformly

drawn from the excitatory population and an inhibitory target pool 𝑃target
I of size 𝑠pool,i is

uniformly drawn from the inhibitory population. The excitatory source and target pools
are allowed to share neurons, i.e. the pools are allowed to overlap. (3) The excitatory
source pool is connected all-to-all to the excitatory target pool and is also connected
all-to-all to the inhibitory target pool. (4) The excitatory target pool becomes the excita-
tory source pool in the next iteration. Steps (1) to (4) are repeated 𝑛pool times, so that
the connectivity 𝑝e is attained in expectation. The number of pools 𝑛pool is obtained by

56



2.10. SYNFIRE: Synfire Chain

a

10 190
Number of pools 𝑛pool

10

190

Po
ol

si
ze

𝑠 p
oo

l

0.15
0.25

0

1

Ex
ci
ta
to
ry

-e
xc

ita
to
ry

co
nn

ec
tiv

ity
𝑝 e

e

b

10 190
Number of pools 𝑛pool

10

190

Po
ol

si
ze

𝑠 p
oo

l

0.15
0.35

0

1

Ex
ci
ta
to
ry

-e
xc

ita
to
ry

re
ci
pr

oc
ity

𝑟 e
e

Figure 2.38. Connectivity and reciprocity of the synfire chain.
(a) Pool size (𝑠pool) over number of pools (𝑛pool); the excitatory-excitatory connectivity (𝑝ee) is color coded.
The white isolines indicate the circuit constraints. The black-dashed lines are the white isolines from (b).
(b) Pool size (𝑠pool) over number of pools (𝑛pool); the excitatory-excitatory reciprocity (𝑟ee) is color coded.
The white isolines indicate the circuit constraints. The black-dashed lines are the white isolines from (a).
(Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

solving Eq. (2.14) for 𝑛pool

𝑝ee = 1 − ⎛⎜⎜
⎝

1 −
𝑠2
pool

𝑛2
e

⎞⎟⎟
⎠

𝑛pool

. (2.14)

In Eq. (2.14),
𝑠2
pool

𝑛2
e

is the fraction of connections attempted to be added in each iteration,
i.e. the probability with which an excitatory-excitatory connection is realized, which
yields the formula for 𝑛pool in Alg. 3. Similarly, setting 𝑠pool,i ← ⌊ 𝑛i

𝑛e
𝑠pool⌋ in Alg. 3 ensures

that 𝑝ei = 𝑝e. Inhibitory-excitatory connections are independently realized with pairwise
connection probability 𝑝i.

The SYNFIRE model satisfies the circuit constraints for appropriate choices of 𝑠pool
and 𝑛pool (Figs. 2.38a and 2.38b). The excitatory-excitatory reciprocity 𝑟ee increases with
increasing 𝑠pool (Fig. 2.39). However, a lower bound on 𝑠pool is expected from a functional
consideration since stable propagation of activity seems unlikely for very small pool
sizes.

2.10.3. Functional Viability

The SYNFIRE model aims for synchronous propagation of spike groups along the chain
(Abeles 1982; Trengove, Leeuwen, and Diesmann 2012). The SYNFIRE is therefore func-
tionally tested to achieve such propagation stably (Fig. 2.40a). For this, the first pool is
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Figure 2.39. Excitatory-excitatory reciprocity of the synfire chain as function of the pool size.
The excitatory-excitatory reciprocity 𝑟ee increases with increasing pool size 𝑠pool for constant excitatory-
excitatory connectivity 𝑝ee. The dashed lines indicate the circuit constraints. (Figure similar to Klinger, Marr,
Theis, Helmstaedter (under review))
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Figure 2.40. Pool activation in the synfire chain model.
(a) Neurons in the SYNFIRE model are grouped into pools 𝑃1, … , 𝑃𝑛pool

(here 𝑛pool = 6 and only a fraction
of the neurons of the network is depicted). Each neuron is allowed to be member of more than a single pool.
(b) Pool 𝑃1 is initially activated. The remaining pools are sequentially activated ny their predecessor pool
as time 𝑡 progresses. The number of activated pools determines the quality of the SYNFIRE implementation.
(c) Fractional pool activation (𝑓PA) over time (𝑡). (Figure similar to Klinger, Marr, Theis, Helmstaedter
(under review))
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Table 2.2. Parameters of the dynamical SYNFIRE model.
The index 𝑖 refers to pools, the indices 𝑘 and 𝑙 to neurons. (Figure similar to Klinger,Marr, Theis, Helmstaedter
(under review))

Parameter Symbol Value
neuronal time constant 𝜏p 20ms
excitatory reversal potential 𝑣reversal,exc 0mV
inhibitory reversal potential 𝑣reversal,inh -80mV
spiking threshold 𝑣threshold -55mV
resting potential 𝑣rest -70mV
excitatory refractory period 𝜏ref,exc 2ms
inhibitory refractory period 𝜏ref,inh 1ms
inter pool delay 𝑑pool

𝑖 𝒰(0.5, 2), iid.
excitatory inter pool jitter 𝑑jitter,exc

𝑘𝑙 𝒰(0, 0.3), iid.
inhibitory inter pool jitter 𝑑jitter,inh

𝑘𝑙 𝒰(0.3, 0.9), iid.
efficacy jitter 𝑔jitter 0.7

initially fully activated. The remaining neurons are initially inactive and are subsequently
activated by their respective predecessor pools (Fig. 2.40b). Pools have to be activated
in the correct sequence; no pool should be skipped or prematurely activated. A pool is
considered activated if at least half of its constituting neurons are activated (Fig. 2.40c).

To dynamically simulate the SYNFIRE model, a conductance based, spiking neuronal
model

̇𝑣 = (𝑣rest − 𝑣)/𝜏p

is employed, inwhich 𝜏p = 20msdenotes the neuronal time constant and 𝑣 themembrane
potential. The membrane potential 𝑣𝑙 of neuron 𝑙 is increased by 𝑔𝑘𝑙(𝑣reversal,𝑘 − 𝑣𝑙) when
neuron 𝑘 spikes and (𝑘, 𝑙) ∈ 𝐸; it is not affected otherwise. The efficacy 𝑔𝑘𝑙 is a function
of the pool size (Fig. 2.41) and the neuronal type

𝑔𝑘𝑙 ∼
⎧{
⎨{⎩

𝑔𝑒(𝑠pool)(1 + 𝑢) if 𝑘 ≤ 𝑛e

𝑔𝑖(𝑠pool)(1 + 𝑢) otherwise
, 𝑢 ∼ 𝒰(−𝑔jitter/2, 𝑔jitter/2).

The efficacy decreases with increasing pool size (Fig. 2.41). This is compensated by the
larger number of neurons providing input to a single postsynaptic neuron. Themembrane
potential of neuron 𝑘 is set to the reversal potential 𝑣rest after a spike is emitted by neuron
𝑘. A neuron spikes if its membrane potential surpasses 𝑣threshold. An excitatory neuron is
deactivated after a spike over the excitatory refractory period 𝜏ref,exc, an inhibitory neuron
over the inhibitory refractory period 𝜏ref,inh. The synaptic delay, i.e. the time between
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Figure 2.41. Synaptic efficacies as function of the pool size.
Log-synaptic efficacy over pool size (𝑠pool). The functional form of 𝑔𝑒 and 𝑔𝑖 are obtained by optimizing the
fractional chain activation. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

spiking of neuron 𝑘 and arrival of the spike at neuron 𝑙, between consecutive pools 𝑃𝑖
and 𝑃𝑖+1 is 𝑑pool

𝑖 . The delay varies additionally per connection (𝑘, 𝑙) between these pools
with 𝑑jitter,exc

𝑘𝑙 . Several connection attempts are possibly made between each pair (𝑘, 𝑙).
In such a case, the delay between 𝑘 and 𝑙 is the one of the last connection attempt. The
overall delay 𝑑𝑘𝑙 is hence

𝑑𝑘𝑙 = 𝑑pool
̂𝑖 + 𝑑jitter,exc

𝑘𝑙 , ̂𝑖 = max{𝑖 ∶ (𝑘, 𝑙) ∈ 𝑃𝑖 × 𝑃𝑖+1}.

The delay is 𝑑jitter,inh
𝑘𝑙 for inhibitory synapses (𝑘, 𝑙). The parameters’ values are listed in

Table 2.2. The model is implemented in the “Brian 2” simulation environment (Goodman
and Brette 2008; Goodman and Brette 2009).

The fractional chain activation 𝑓CA is calulcated as follows: let 𝑛𝑖(𝑡) denote the number
of active neurons in pool 𝑃𝑖 at time 𝑡. Define the pool activity indicator

𝛿𝑖(𝑡) =
⎧{
⎨{⎩

1 if 𝑛𝑖(𝑡) >
𝑠pool

2 , 𝑛𝑗(𝑡) < ̂𝑛𝑖(𝑡)∀𝑗 ≠ 𝑖
0 otherwise

.

That is, a pool 𝑃𝑖 is considered active at time 𝑡, 𝛿𝑖(𝑡) = 1, if at least half of its neurons are
active, and it is the unique pool with the maximum number of active neurons at time 𝑡
(all other pools are less active). Denote the cumulative activity of pool 𝑃𝑖 up to time 𝑡, i.e.
the number of spikes emitted by the pool during its activity

𝑐𝑖(𝑡) = ∑
𝑡′∶≤𝑡

𝑛𝑖(𝑡′)𝛿𝑖(𝑡′).
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2.10. SYNFIRE: Synfire Chain
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Figure 2.42. Functional viability of the synfire chain under the prior parameter distribution.
(a) Fractional chain activation (𝑓CA) over pool size (𝑠pool). (b) The pool size (𝑠pool) is uniformly distributed
𝑠pool ∼ 𝒰ℐ(80, 300). (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

The end time of a trial is 𝑡end = max{𝑡|𝑐𝑖(𝑡) < 𝛼 𝑠pool∀𝑖}, 𝛼 = 1.2. That is, if at least one pool
hasmore than 𝛼𝑠pool cumulative spikes during its periods of activity, the trial is considered
terminated. The number of activated pools 𝑁 is the number of pools activated before the
end time 𝑁 = |{𝑖|∃𝑡 < 𝑡end and 𝛿𝑖(𝑡) = 1}|. The fractional activation 𝑓CA = 𝑁/𝑛pool is the
number of activated pools normalized by the total number of pools 𝑛pool.

The average fractional activation of the chain is robustly greater than 95% for 𝑠pool ≥ 100
and still achieves about 80% for 𝑠pool = 80. The prior is therefore chosen uniform on
the integers in [80, 300] (Fig. 2.42b). The circuit constraints are satisfied under the prior
(Figs. 2.38a, 2.38b and 2.39) and the SYNFIRE model is considered functional.
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3. Distributed and Adaptive Approximate
Bayesian Computation

In this chapter, an explorative connectomic analysis approach is first examined and its
shortcomings are demonstrated (Sect. 3.1). A more systematic approach to model se-
lection is then introduced (Sect. 3.2). To cope with the high computational demands
associated with this approach, pyABC (Sect. 3.3), a distributed inference software frame-
work used here for model selection, and a scheme which adaptively selects one of the
main options of this framework, the population size (Sect. 3.4), are developed.

3.1. The Insufficiency of Explorative Connectome Analysis and
the Need for a Systematic Approach

Section is similar to
Klinger, Marr, Theis,
Helmstaedter (under
review)

It is necessary to falsify or to find evidence for theories of cortical computation to improve
the understanding of these (Denk, Briggman, and Helmstaedter 2012). Here, having
established a range of competing hypotheses (Chap. 2) it is now necessary to establish a
method which enables to select the models which explain a given local cortical module
best. So far, it is largely unclear how this goal can be achieved. In the past it was tried to
find the best fitting model out of a range of competing models on the basis of functional
data (Barak et al. 2013). But alternatively, structural (connectomic) data might be used
as well. These data have the advantage of being independent of behavioral paradigms or
anesthesia conditions. The data (once available) allows to extract a directed graph, with
neurons represented as its nodes and connections as its edges.

However, it is so far largely unclear whether structural data is informative about local
computational cortical models or not (Bargmann and Marder 2013; Denk, Briggman,
and Helmstaedter 2012; Jonas and Kording 2017; Morgan and Lichtman 2013). The
positions are quite extreme: on the one hand it is argued, that structural data might
be hard to interpret (Bargmann 2012; Jonas and Kording 2017), on the other hand it is
argued, that structural data might be highly relevant to understand functional properties
(Denk, Briggman, and Helmstaedter 2012). It is here explored to which extent structural
data aids to discriminate models of cortical computational models. The focus lies on a
concrete circuit module: a layer 4 “barrel”.
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To which extent can exploratory approaches yield insights about the likely imple-
mented models? For simplicity and practical applicability only unweighted graphs are
considered in the following and the problem of relatingmorphological properties such as
synapse sizes andnumbers to connection strengths is not treated.Networks are commonly
depicted in adjacency matrix representation. A naive, exploratory approach to cortical
model selection is to ask whether inspection of the adjacency matrix might reveal inter-
esting structures. Amongst the models considered here (Chap. 2), the LAYERED model
is one of the models with the most clearly defined and best understandable structure.
Inspecting the adjacency matrix, however, not even the structure of a LAYERED model is
visually discernible (Fig. 3.1, left column, first row from top). Of course, the structure per-
ceived by the human eye in such a matrix depends highly on the sorting of the rows and
columns. Since the neurons do not carry labels, all joint permutations of the rows and
columns describe the same network structure, but transmit a visually quite different ex-
perience. One possible route to find a meaningful permutation is fitting a stochastic block
model (SBM) (H. C. White, Boorman, and Breiger 1976). The SBM attempts to detect hid-
den (latent) groups in the network. The network is organized in a block structure if such
groups exist. Therefore, SBMs are fitted to connectomes sampled from the different mod-
els using the graph-tool software (https://graph-tool.skewed.de) for Python with
the default settings of the graph_tool.inference.minimize.minimize_blockmodel_dl
function.

Examination of connectome samples obtained from the investigated model classes
shows, that the SBM indeed reveals the layered structure of the LAYEREDmodel (Fig. 3.1,
left column, second row from top, same network as directly above). This is expected,
since the LAYERED model is explicitly organized into blocks. The ordering of the blocks
𝑏1, … 𝑏4 is 𝑏1 → 𝑏3 → 𝑏4 → 𝑏2. Also the EXP-LSM, SYNFIRE and API model exhibit some
structure. However, for the API and EXP-LSM model not much beyond the existence of
some notion of similarity of neurons and organization of the network by such a principle
can be said. In the SYNFIRE case, the interpretation of the SBM fit is less obvious. Even
worse, the SORN, ER-ESN and FEVER model seem not to possess any structure at all.

The SBM approach raises at least two questions: First, does the failure of the SBM
approach to model selection imply that connectomes sampled from theses model classes
are not structurally discriminable or is the SBM just not suitable to discriminate the
underlying models? Second, and even more importantly, how to decide from the SBM fit
which model is the most likely implemented one? The explorative SBM approach seems
to be insufficient for the model selection task – and so is any other exploratory approach,
since the second question will remain unanswered in any case. A more systematic
approach is required.

64

https://graph-tool.skewed.de
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Figure 3.1. Stochastic block model fits do not discriminate the underlying models.
Upper left panel: layered network with random neuron permutation. Remaining panels: neuron sorting
according to a stochastic block model fit. Although similarities between, e.g., EXP-LSM and API and
dissimilarities between, e.g. SORN and LAYERED are visible, stochastic block model fits do not allow for
systematic model selection. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))
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Connectome 𝐶
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Figure 3.2. Parameter inference for a simulator model.
Forward direction: model simulations of a parameter 𝜃 are realized by a stochastic simulator. This generates
artificial connectomes 𝐶.
Inverse direction: a connectome 𝐶 is experimentally obtained. The Approximate Bayesian Computation
(ABC) approach, implemented in pyABC, uses the simulator model to infer the parameters 𝜃 which likely
explain the observed connectome 𝐶.

3.2. A Systematic Approach to Likelihood-free Model Selection
and Parameter Inference: Approximate Bayesian
Computation - Sequential Monte Carlo

Ideally, model selection would be performed systematically in a fully Bayesian way, in-
stead of by mere explorative inspection. Ideally, the posterior probability 𝑝(𝑚|𝐶) of a
model class 𝑚 given a connectome 𝐶 could be calculated. However, many of the local
cortical candidate models (Chap. 2) are formulated as simulator models only. Lacking ef-
ficiently computable expressions of these models’ likelihood functions, the fully Bayesian
approach is severely complicated.

The problem encountered here is a widely encountered one. By themeans of numerical
simulations, modeling efforts (such as here the modeling of a local cortical module) can
be extended into regimes which are not analytically amenable anymore. These models
are equipped with a set of parameters which have to be inferred from experimentally
observed data to enable predictions from the model or to select the most likely parameter
(Fig. 3.2). However, it is more difficult to select the model parameters which likely
explain an experimental finding, than simulating the finding artificially given the correct
parameters (Beaumont 2010).

No tailored approaches exist for the connectomic model selection problem, although
tailored approaches exist for some other model classes, which exploit certain character-
istics of these model classes. For example, specialized toolboxes exist for the parame-
terization of ordinary differential equations (Raue et al. 2015). Similarly, methods such
as “accelerated maximum likelihood” (Daigle et al. 2012) or the “generalized method
of moments” (Lück and Wolf 2016) are specialized to parameterize chemical reaction
networks. However, similarly specific methods do not exist for other model classes, such
as multi-scale models or the models considered here (Chap. 2). These models have to be
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Approximate Bayesian Computation - Sequential Monte Carlo
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Figure 3.3. Approximate Bayesian Computation - Sequential Monte Carlo scheme.
Proposal parameters (and models) are sampled based on the population of generation 𝑡. The model is
simulated for these parameters. If the corresponding simulated connectome 𝐶 is close to the observed con-
nectome, the parameter is accepted for the next population; it is rejected otherwise. For the next population
𝑡 + 1, the approximation quality of the posterior is increased by decreasing the acceptance threshold 𝜖, i.e.,
the maximally allowed distance an artificially generated connectome may have such that its parameter is
still accepted for the subsequent generation.

considered as black-boxes, i.e. they can be simulated but their internal structure cannot
be exploited for inference.

The main problem is, that to perform analytical Bayesian model selection it is necessary
to compute the likelihood function. In the aforementioned cases, of multi-scale models
andmany of the models introduced in Chap. 2 this is unfortunately not possible anymore
as only algorithmic descriptions of how to simulate data from these models are available.
To enable parameter inference – and also model selection – in cases where the likelihood
is not tractable but the model can still be simulated, likelihood-free approaches such as
ABC have been developed (Beaumont, Zhang, and Balding 2002; Marjoram et al. 2003).
One particularly popular and computationally efficient class of ABC schemes are the
ABC-SMC schemes (Sisson, Fan, and Tanaka 2007; Toni and Stumpf 2010; Toni, Welch,
et al. 2009).

In ABC-SMC, the posterior distribution of a parameter, given some (observed) data,
is approximated through a sample from the posterior distribution or an approximate
posterior distribution. This sample is commonly referred to as (particle) population. The
populations are iteratively refined over the course of several consecutive generations
of the ABC-SMC scheme to approximate the posterior increasingly well (Fig. 3.3). The
model is repeatedly numerically evaluated to obtain those samples.

ABC-SMC methods are actively researched. Contributions were made on the question
of how to generate proposal parameters for the subsequent population from the previous
generation tomaximize the fraction of accepted particles (Filippi et al. 2013; Koutroumpas
et al. 2016), how to adjust the acceptance threshold from generation to generation (Silk,
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Filippi, and Stumpf 2013), and how to choose the summary statistics to describe and
compare the observed data and artificially sampled data (Marin et al. 2014; Nunes and
Balding 2010). Beyond these questions, two key questions which are relevant for the
practical application of ABC-SMC in the context of connectmic model selection are
addressed here:

1. Parallelization of the model simulations on distributed hardware.
2. Selection of the population sizes.

Efficient and scalable parallelization is essential to infer parameters for even the most
computationally demanding models or in regimes of very low acceptance rates (Jagiella
et al. 2017). Here, the simulation runtimes are very heterogeneous. While some models
simulate within less than a second on modern hardware (ER-ESN, EXP-LSM), others
are more demading (FEVER, SORN). The problem of choosing the population size
adequately has been noted in the literature before: “It appears unfortunately difficult
to give useful general guidelines how to select [the population size] as it is highly case
dependent” (Moral, Doucet, and Jasra 2012). If the population size is chosen too small,
the approximation error might be large, if it is chosen too large, the ABC-SMC scheme
might become computationally inefficient. These two key questions are addressed by

1. implementing pyABC, a general-purpose distributed ABC-SMC framework for
Python 3 (Sect. 3.3, http://pyabc.readthedocs.io), and

2. the development of a scheme for the adaptive selection of population sizes in
ABC-SMC (Sect. 3.4).

The pyABC framework was used for connectomic model selection (Chap. 4). The scheme
for automated selection of population sizes was added later and was not applied to
connectomic model simulation, but instead analyzed with the help of a range of example
applications.

3.3. pyABC: Distributed, Likelihood-free Inference
Section is similar to
Klinger, Rickert, Hase-
nauer (under review)

3.3.1. Usage

Some ABC-SMC frameworks for Python exist already. However, these support Python 2
only (Ishida et al. 2015; Jennings and Madigan 2017; Kangasrääsiö et al. 2016; Liepe et al.
2010) and have a range of other shortcomings. They lack flexible customization options
such as (adaptive) acceptance threshold schedules or transition kernels (Kangasrääsiö
et al. 2016), only implement parallelization strategies which do not scale well (Jennings
and Madigan 2017), can only parallelize in a multi-core setting (Ishida et al. 2015), or do
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only use GPUs for parallelization but cannot exploit distributed infrastructure (Liepe
et al. 2010). The combination of features present in pyABC is unique:

• single-core, multi-core and distributed execution
• distributed model selection
• less scalable computation-minimizing and more scalable runtime-minimizing par-

allelization strategies, for both multi-core and distributed execution
• adaptive, local transition kernels, adaptive acceptance threshold schedules, adap-

tive population size selection
• web interface for the visualization of posterior parameter distributions, acceptance

threshold, configuration options and other relevant information
• early stopping of model simulation
• easy interruption and continuation of ABC-SMC runs
• interface to the R language to support execution of models defined in R
• pluggable, extensible architecture facilitating experimentation with new ABC-SMC

schemes without alteration of pyABC’s source code.

pyABC is applicable to model selection and parameter inference. It is user-friendly, in
particular to new users, as model definitions can be as simple as defining a function
taking the model’s parameters as input and returning the simulated data or the summary
statistics of them:

import scipy as sp
def model(parameter):

return {"trajectory": sp.cumsum(sp.randn(100) + parameter.delta)}

It is a conscious decision as part of pyABC’s design not to enforce usage of model
definition languages such as the Systems BiologyMarkup Language (SBML). If necessary,
SBML simulators can be called internally. A distance function 𝑑 can be defined as function
with two parameters 𝑥 and 𝑦 returning their distance, for example

import scipy as sp
def distance(x , y):

return sp.absolute(x.trajectory - y.trajectory).sum()

Priors can be conveniently defined with the help of the scipy.stats package. For exam-
ple, a uniformly distributed random variable 𝑥 ∼ 𝒰(0, 1) can be defined by

from pyabc import RV
x = RV("uniform", 0, 1)
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Post-processing ofABC-SMC runs is facilitated throughpyABC’sAPI for data querying,
providing the user with Pandas data frames for further analysis. Beyond the provided
functionality, custom query routines are easily implemented on top of the relational
database used by pyABC for logging and storage of the ABC-SMC runs. pyABC is
extensively documented, featuring an API documentation, a user’s guide, a developer’s
guide, tutorial style examples and how-to guides (http://pyabc.readthedocs.io).

3.3.2. Distributed Computation

pyABC is designed to be particularly suitable for distributed computing in cloud or cluster
environments. Distributed computation is highly important for ABC inference since
the often very computational demanding models have to be simulated repeatedly. Only
efficient parallelization schemes render ABC model selection possible at all. The pyABC
framework therefore supports a variety of distributed execution modes, including ad
hoc clusters, such as the Dask distributed cluster or the IPython cluster. It runs on bare
grid submission systems such as SGE or UGE. Moreover, it ships with a low-latency
distributed execution engine which leverages Redis as a message broker. pyABC supports
two different parallelization strategies: static scheduling (STAT) and dynamic scheduling
(DYN). In the following, let 𝑛 denote the population size.

Static Scheduling (STAT) In the STAT strategy,𝑛parallel tasks (jobs, processes or threads)
run independently of each other. Each tasks samples new parameter proposals from
the proposal distribution of the current generation and evaluates the model until
exactly one parameter is found whose corresponding simulated data is accepted
(Fig. 3.4a, left). Once the tasks obtains one accepted parameter it terminates. It is
waited until all 𝑛 tasks are finished. Even if the number of available cores is larger
than 𝑛, this strategy only uses 𝑛 cores. If the number of available cores is smaller
than 𝑛, the tasks are queued (e.g. by the job submission system such as SGE).

Dynamic Scheduling (DYN) In the DYN strategy all parallel tasks sample proposal
parameters and simulate the model continuously on all available hardware until
𝑛 particles are accepted (Fig. 3.4a, right). Once this is the case, it is waited for
each task to finish its current model simulation (which might be accepted or not),
yielding potentially 𝑚 ≥ 𝑛 accepted particles. The 𝑛 accepted particles which were
started first (not necessarily accepted first due to non-constant model simulation
times) are then included in the next generation. The remaining 𝑚 − 𝑛 particles
are discarded. This is necessary to prevent a bias towards parameters with shorter
model simulation times.

The STAT and the DYN strategy are optimized for different purposes and have different
advantages and drawbacks. For the STAT strategy, the degree of parallelism is always
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Figure 3.4. Comparison of the sampling strategies implemented in pyABC.
(a) Static Scheduling (STAT) and Dynamic Scheduling (DYN) illustrated for 5 particles and 8 cores. The
model simulation times are exponentially distributed and are the same for STAT and DYN. The coloring
indicates whether a particle is accepted and included in the next generation, accepted but discarded, or
rejected. The cumulative number of accepted particles over time is also depicted. For DYN, the number of
accepted particles surpasses the target population size of 5 particles in this example. (b) Average of relative
runtime ratios and relative amount of computation of STAT relative to DYN as function of the population
size and the number of available cores. The DYN strategy is faster than the STAT strategy (left), but the
STAT strategy performs less computation overall (right) and is therefore less resource demanding. (Figure
similar to Klinger, Rickert, Hasenauer (under review))
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limited to the population size 𝑛. It decreases even over the course of a population, as
particles get accepted (Fig. 3.4a, left). The DYN strategy, in contrast, uses all available
hardware until 𝑛 particles are accepted. The degree of parallelism decreases therefore
only for a comparatively short period of time (on the order of a single model evaluation)
towards the very end of a population. Even this decrease can be eliminated if model
simulations are interrupted, which might be safe if no clean-up, such as e.g. deleting
temporary files generated duringmodel simulation, has to be done. Importantly, the DYN
strategy is more scalable, scaling further even if the number of available cores is larger
than the population size 𝑛 (Fig. 3.4b, left). However, it also performs more computation
overall (Fig. 3.4b, right), which can be problematic if the computational resources are
scarce. Additionally, the DYN strategy requires worker-server communication after each
accepted particle. If the model simulation times are very short (much less than a second)
and the network is comparatively slow, the communication overhead might be notable.
The STAT strategy requires only two worker-server interactions per accepted particle. For
typical acceptance rates as low as 10−3 or 10−5, as sometimes encountered in the very
last populations, this implies several orders more worker-server interactions.

3.3.3. Configuration, Extension and Development

pyABC follows established design patterns (Gamma et al. 1994) and best software-
engineering practices to achieve a highly configurable and extensible ABC framework.
From the five “SOLID” principles (Martin 2013), in particular the “open/closed prin-
ciple” is respected. As a result, many ABC options, such as transition kernels, accep-
tance threshold schedules, distance functions, summary statistics, execution engines,
population size selection strategies, database back ends and more can be configured
and customized through user provided implementations without alterations of pyABC’s
source code. Therefore, pyABC is not only ideally suited for the applied user, wishing to
perform ABC-SMC inference on a particular problem, but also well suited for the ad-
vanced and research oriented users experimenting with and developing new ABC-SMC
schemes. One example of pyABC’s advanced usage pattern is “early stopping” in model
simulation. For applications such as Markov Jump Processes or stochastic differential
equations, the distance function is often a cumulative sum over the time points in the
simulation and can be calculated during model simulation instead of at the end (see
for example Sect. 3.4.6). Once this sum surpasses the allowed acceptance threshold, the
simulation cannot be accepted anymore. In such cases, performance improvement is
gained by stopping the simulation early. pyABC is well tested, shipping with a large set
of unit and integration tests. Continuous integration is performed with the help of the
Travis continuous integration system.
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Monte Carlo

Algorithm 4: ABC-SMC scheme
Input: 𝑡max, 𝜖min, 𝑛0, 𝑝0, 𝑠obs, KDE, 𝑑
Output: 𝑃

𝑡 ← 0
𝐾 ← 𝑝0
𝜖 ← ∞
𝑛 ← 𝑛0

while 𝑡 < 𝑡max and 𝜖 > 𝜖min do
(𝑃, 𝐷) ← sample_population(𝐾, 𝑝0, 𝜖, 𝑛, 𝑠obs, 𝑑)
𝐾 ← KDE(𝑃)
𝑛 ←adapt_population_size(𝑃,KDE)
𝜖 ← adapt_threshold(𝐷)
𝑡 ← 𝑡 + 1

end

3.4. Adaptive Population Size Selection in Approximate
Bayesian Computation - Sequential Monte Carlo

Section is similar to
Klinger, Hasenauer
(2017)

3.4.1. ABC-SMC Scheme

In ABC-SMC, the posterior distribution of the models of interest and their parameters is
approximated through a particle population 𝑃 = {(𝑤𝑖, 𝜃𝑖)}𝑛

𝑖=1 of 𝑛 parameter samples
𝜃𝑖 ∈ ℝ𝑑par of parameter dimension 𝑑par with associatedweights𝑤𝑖 > 0 and∑𝑖 𝑤𝑖 = 1. The
curly braces {} denote here a sequence – not a set – since parameter weight combinations,
albeit unlikely, might occur multiple times in a single populations. The ABC-SMC scheme
considered here, and provided in Alg. 4, is based on the scheme proposed by Toni,
Welch, et al. (2009). The particle population is sequentially refined, yielding a sequence of
populations approximating the posterior distribution increasingly well. For this, proposal
parameters are drawn from a proposal density 𝐾 and themodel is stochastically simulated
yielding the simulated data 𝑠 ∈ 𝒮 (Fig. 3.3). The proposal density 𝐾 is obtained from a
kernel density estimator KDE ∶ 𝑃 ↦ 𝐾 mapping the population 𝑃 to a density estimate
𝐾 ∶ ℝ𝑑par → ℝ+, ∫ 𝐾 = 1. Toni, Welch, et al. (2009) formulated the ABC-SMC scheme in
terms of a perturbation kernel, instead of a kernel density estimate. However, application
of a perturbation kernel is a special case of sampling from a kernel density estimate. After
each generation, this density is updatedwith an estimate from the current population. The
newly obtained estimate 𝐾 serves then as proposal for the subsequent population. Initially,
the proposal density 𝐾 = 𝑝0 is the prior distribution 𝑝0. The observed data 𝑠obs ∈ 𝒮 is
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compared to the simulated data 𝑠 with the help of a distance function 𝑑 ∶ 𝒮 × 𝒮 → ℝ+

(Fig. 3.3). A parameter 𝜃 is accepted if the distance 𝛿 = 𝑑(𝑠, 𝑠obs) of its generated data 𝑠 to
the observed data 𝑠obs is smaller than the current acceptance threshold 𝜖: 𝛿 < 𝜖. Thereby
a sequence 𝐷 = {(𝑤𝑖, 𝛿𝑖)}𝑛

𝑖=1 of weighted distances is constructed for the population 𝑃.
The acceptance threshold 𝜖 is decreased from generation to generation to improve the
approximation quality sequentially. Throughout this work, the acceptance threshold is
adapted through the function adapt_threshold ∶ 𝐷 ↦ 𝜖 which sets as new threshold
the (weighted) median of the weighted distances 𝐷 of the previous generation. The
population size is adapted from generation to generation via adapt_population_size
(see Sect. 3.4.3 for a detailed treatment of this adaptation and Alg. 6 for pseudo code).
The adaptation scheme is detailed in Sect. 3.4.3. Initially, the population size is set to
𝑛0 ∈ ℕ. The sampling procedure is stopped when either the acceptance threshold is
small enough, 𝜖 < 𝜖min for a predefined 𝜖min > 0, or the maximally allowed number of
generations 𝑡max is reached.

Sampling of a new population is implemented in the function sample_population,
explained in Alg. 5. The population 𝑃 and the corresponding weighted distances 𝐷 are
initialized as empty sequences {}. Then, a single tentative parameter 𝜃 is sampled from
the proposal density 𝐾. Since the proposal density might yield parameters outside the
support of the prior distribution 𝑝0, this process is repeated until a parameter 𝜃 with
𝑝0(𝜃) > 0 is obtained. Stochastic model simulation is implemented in the function
simulate ∶ 𝜃 ↦ 𝑠, which simulates the model for parameter 𝜃 and returns stochastically
realized data 𝑠. The parameter 𝜃, together with its corresponding weight 𝑤 is appended
to the population 𝑃 only if its distance 𝛿 = 𝑑(𝑠, 𝑠obs) to the observed data 𝑠obs is less than
𝜖. In this case, the weighted distance (𝑤, 𝛿) is also appended to the sequence of weighted
distances 𝐷. Here, concatenation of sequences is denoted by the + operator.

In the model selection case, the parameter 𝜃, the prior 𝑝0 and the proposal density
𝐾 decompose into a component over the model classes and into a component over
the model specific parameters. Let 𝑀 denote the total number of models. For model
selection, the parameter 𝜃 is a sequence of model specific parameters (𝜃𝑚)𝑀

𝑚=1 with
𝜃𝑚 ∈ ℝ𝑑par,m in which 𝑑par,m denotes the dimension of the parameter space of model
𝑚. The prior factorizes similarly into a component over the models and one over the
parameters according to 𝑝0(𝜃) = 𝑝0(𝜃𝑚|𝑚)𝑝(𝑚); the proposal density analogously 𝐾(𝜃) =
𝐾(𝜃𝑚|𝑚)𝐾(𝑚). The output of the ABC-SMC scheme fromAlg. 4 is an approximate sample
from the posterior distribution. The algorithm is implemented in the pyABC framework
(http://pyabc.readthedocs.io).
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Algorithm 5: sample_population
Input: 𝐾, 𝑝0, 𝜖, 𝑛, 𝑠obs, 𝑑
Output: (𝑃, 𝐷)

𝑃 ← {}
𝐷 ← {}
𝑍 ← 0

while |𝑃| < 𝑛 do
repeat

repeat
𝜃 ← sample_parameter(𝐾)

until 𝑝0(𝜃) > 0;
𝑠 ← simulate(𝜃)
𝛿 ← 𝑑(𝑠, 𝑠obs)

until 𝛿 < 𝜖;
𝑤 ← 𝑝0(𝜃)/𝐾(𝜃)
𝑍 ← 𝑍 + 𝑤
𝑃 ← 𝑃 + {(𝑤, 𝜃)}
𝐷 ← 𝐷 + {(𝑤, 𝛿)}

end
𝑃 ← {(𝑤/𝑍, 𝜃)|(𝑤, 𝜃) ∈ 𝑃}
𝐷 ← {(𝑤/𝑍, 𝛿)|(𝑤, 𝛿) ∈ 𝐷}

3.4.2. Kernel Density Estimation

To refine the populations from generation to generation, new parameter proposals are
sampled based on the particles accepted in the previous population. This is often (Toni,
Welch, et al. 2009) achieved by selecting an accepted parameterwith probability according
to its weight and perturbing it with a perturbation kernel. This process is a special case of
sampling from a non-parametric distribution approximation – a kernel density estimate.
Here, all employed kernel density estimators share the same common structure.

Structure of the Density Estimators

The density estimate 𝐾 = KDE(𝑃) is a superposition of normal kernels

𝐾(𝜃′) = ∑
(𝑤,𝜃)∈𝑃

𝑤 𝒩(𝜃′|𝜃, Σ(𝑃, 𝜃)),

in which 𝑃 denotes the particle population and 𝒩(𝜃′|𝜃, Σ(𝑃, 𝜃)) is a normal density with
mean 𝜃 and covariance Σ(𝑃, 𝜃), evaluated at 𝜃′. The covariance matrix is in the following
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referred to as bandwidth. Notably, the bandwidth Σ(𝑃, 𝜃) is, in general, a function of the
complete population 𝑃 and the location 𝜃 around which the kernel is centered. Three
different bandwidths selection strategies are employed: global bandwidth selection
(Silverman 1986), local bandwidth selection (Filippi et al. 2013) and cross-validated
bandwidth selection (Bowman 1984; Rudemo 1982; M. Stone 1974).

Global Bandwidth Selection

In the global bandwidth selection strategy, the bandwidth does not depend on the (local)
parameter 𝜃 around which the kernel is centered, that is Σ(𝑃, 𝜃) = Σ. It is therefore
called “global”. The global bandwidth is proportional to the covariance cov𝑃 of the
entire population

cov𝑃 = ∑
(𝑤,𝜃)∈𝑃

𝑤(𝜃 − 𝜃)(𝜃 − 𝜃)𝑡, 𝜃 = ∑
(𝑤,𝜃)∈𝑃

𝑤 𝜃.

The factor of proportionality 𝑏Silv is determined according to Silverman’s rule of thumb
(Silverman 1986)

𝑏Silv = ⎛⎜
⎝

4
𝑛eff(𝑑par + 2)

⎞⎟
⎠

1
𝑑par+4

,

in which 𝑑par denotes the parameter dimension, 𝑛eff the effective population size

𝑛eff =
1

∑𝑤∈{𝑤} 𝑤2

and {𝑤} is the sequence of weights of 𝑃. The kernel bandwidth Σ is finally obtained as
Σ = 𝑏2

Silv cov𝑃.

Local Bandwidth Selection

The global bandwidth selection strategy can yield poor approximations of the underlying
distribution (Salgado-Ugarte and Perez-Hernandez 2003; Silverman 1986). It does not
take into account possible local distribution properties such as, multimodality. Therefore,
local bandwidths Σ𝑘,nn(𝑃, 𝜃) are considered which are constructed individually for each
parameter 𝜃 form its 𝑘 nearest neighbors (measured in Euclidean distance). Hence, let
Σ𝑘,nn(𝑃, 𝜃) denote twice the covariance of the 𝑘 nearest neighbors of 𝜃. The local density
𝐾 is defined as

𝐾(𝜃′) = ∑
(𝑤,𝜃)∈𝑃

𝑤 𝒩(𝜃′|𝜃, Σ𝑘,nn(𝑃, 𝜃)).

This form of density estimation has been analyzed with respect to acceptance rates in
ABC-SMC before and was shown to perform well (Filippi et al. 2013).
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Cross-Validated Bandwidth Selection

The cross-validated bandwidth selection strategy is also a global bandwidth selection
strategy since the same bandwidth is used for all kernels. Silverman’s rule of thumb is
known to yield too large bandwidths, i.e. over smoothing density estimates (Silverman
1986). It is therefore considered to replace Silverman’s rule of thumb by cross-validated
selection of the scaling factor of the population covariance matrix cov𝑃. A grid consisting
of five different scaling factors is probed. The largest scaling factor 𝑏0 = 𝑏Silv is the one
obtained according to Silverman’s rule of thumb, the other factors 𝑏1 > 𝑏2 > 𝑏3 > 𝑏4 are
obtained by down-scaling on an exponential scale

𝑏𝑐 = 2− 𝑐
2𝐶 𝑏Silv,

with 𝑐 ∈ {0, … , 𝐶} and 𝐶 = 4. The quality of a scaling factor 𝑏𝑐 is determined according
to the score function

𝑆(𝐾𝑐, 𝑃′) = ∑
(𝑤,𝜃)∈𝑃′

𝑤 log𝐾𝑐(𝜃),

in which 𝑃′ ⊂ 𝑃 is a sub-population of 𝑃 and 𝐾𝑐 the density estimated on its complement
𝑃′ with bandwidth 𝑏𝑐 (the score function is always evaluated on the sub-population
which was not used for density estimation). Five fold cross-validation is applied and the
scaling factor 𝑏𝑐∗ yielding the highest cumulative score is selected. The density estimation
is then repeated on the complete population 𝑃 with the scaling factor 𝑏𝑐∗ yielding the
final density estimate 𝐾.

3.4.3. Population Size Adaptation

In ABC-SMC schemes a trade-off between efficiency (computational cost) and accuracy
has to be made. Besides the strategy applied to generate proposal parameters for the
subsequent population, an important parameter is the population size. Increasing the
population size improves the accuracy but also increases the total amount of computation
necessary, and thereby decreases the ABC-SMC scheme’s efficiency. Not only the size of
the last population, but also the sizes of all the intermediate populations have material
influence. If intermediate populations are chosen too large, more computation than
necessary is performed, if they are chosen too small, information about the posterior
might get lost which cannot be efficiently recovered in the last population, rendering the
ABC-SMC scheme inaccurate.

For instance, assume that the true posterior has two modes, but the second mode
has a comparatively small mass. Small intermediate populations might lack samples
in the second mode. It is unlikely, that this mode is recovered in the last population,
unless the last population is chosen very large. However, this would render ABC-SMC

77



3. Distributed and Adaptive Approximate Bayesian Computation
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Figure 3.5. Effect of the population size on the density variation.
True density (density estimate on the current population) and kernel density estimates (KDEs) on popula-
tions of varying size 𝑛. The populations are sampled from the true distribution, the samples are depicted
as points below the densities. The weighted differential density variation is obtained by calculating the
pointwise variation at each parameter 𝜃 and weighting it by the true density at this parameter. The den-
sity variation is the integral over the weighted differential density variation. It decreases with increasing
population size. (Figure similar to Klinger, Hasenauer (2017))

inefficient again, essentially equivalent to rejection sampling and maybe even worse since
the proposal distribution is now centered at the first mode, having potentially less mass
at the second mode than the prior distribution. Similar scenarios can be thought of in the
model selection case. If one of the models has only a small posterior mass, it is likely to
become extinct in one of the intermediate populations. Hence, it is crucial to guarantee a
consistent approximation quality across all the generations of an ABC-SMC scheme to
obtain an accurate and efficient scheme.

Therefore, anABC-SMC scheme inwhich a target accuracy is pre-specified is presented.
The population sizes, across all generations, are then automatically adapted to match the
specified target accuracy. The target accuracy is expressed in terms of the variation of
kernel density estimates on the populations. A lower variation corresponds to a larger
accuracy. To predict the appropriate population size for the next population, the effect of
increasing or decreasing the population size is estimated based on the current population
(Fig. 3.5). If the current variation is too large, the population size is increased for the next
populations; if the current variation is too small, the population size is decreased for
the next population. To this end, bootstrapped populations of varying sizes are drawn.
Their variation is calculated and the population size of the next generation is selected by
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interpolating to smaller population sizes or extrapolating to larger population sizes with
the help of a parametric approximation of the population size dependent variation.

To present the proposed scheme for adaptive population size selection, let 𝐸𝐶𝑉 denote
the desired target density variation. The initial population size of generation 𝑡 = 0 is
𝑛0 and is pre-specified. Given the current population 𝑃𝑡 = {(𝑤𝑖, 𝜃𝑖)}𝑛𝑡

𝑖=1, 𝑡 ≥ 0, of size 𝑛𝑡,
tentative population sizes 𝑛∗

𝑡,𝑞, evenly spaced between ⌊𝑛𝑡/3⌋ and 2 𝑛𝑡 are probed at step
size ⌊𝑛𝑡/10⌋. Hence,

𝑛∗
𝑡,𝑞 = ⌊𝑛𝑡/3⌋ + (𝑞 − 1)⌊𝑛𝑡/10⌋, 𝑞 ∈ {1, … , 𝑄}, 𝑄 = max{𝑞|𝑛∗

𝑡,𝑞 ≤ 2𝑛𝑡}. (3.1)

The variation is estimated for each tentative population size 𝑛∗
𝑡,𝑞. To do so, 𝐵 = 5 boot-

strapped populations 𝑃𝑡,𝑞,𝑏, 𝑏 = 1, … , 𝐵, each of size 𝑛∗
𝑡,𝑞, are drawn from the current

density estimate 𝐾 = KDE(𝑃𝑡). Usually, 𝐵 ≈ 5 bootstrapped populations are employed.
For each of these bootstrapped populations, a density estimate 𝐾𝑡,𝑞,𝑏 = KDE(𝑃𝑡,𝑞,𝑏) is
calculated. The estimated density variation 𝐸𝐶𝑉(𝑛∗

𝑡,𝑞) is calculated for each tentative pop-
ulation size 𝑛∗

𝑡,𝑞 as

𝐸𝐶𝑉(𝑛∗
𝑡,𝑞) = ∑

(𝑤,𝜃)∈𝑃𝑡

𝑤 CV ({𝐾𝑡,𝑞,𝑏(𝜃)}𝐵
𝑏=1) , (3.2)

with the coefficient of variation CV defined by

CV ({𝑘𝑏}𝐵
𝑏=1) =

std ({𝑘𝑏}𝐵
𝑏=1)

mean ({𝑘𝑏}𝐵
𝑏=1)

and mean and (biased) standard deviation given by

mean ({𝑘𝑏}𝐵
𝑏=1) =

1
𝐵

𝐵
∑
𝑏=1

𝑘𝑏

and

std ({𝑘𝑏}𝐵
𝑏=1) = ⎛⎜

⎝
1
𝐵

𝐵
∑
𝑏=1

(𝑘𝑏 − mean ({𝑘𝑏}𝐵
𝑏=1))2⎞⎟

⎠

1/2

.

A parametrized functional approximation 𝑓 is used to facilitate interpolation and extrap-
olation of 𝐸𝐶𝑉. The functional form of 𝑓 is motivated by the scaling of the kernel density
mean squared error as function of the population size 𝑛 (Bowman and Azzalini 1997).
Silverman (1986) showed that the kernel density mean squared error decreases with
𝛼 𝑛−𝑏, depending on the employed kernel density estimator and distribution properties.
Here, 𝐸𝐶𝑉 is approximated by this functional form. Non-linear least squares and the
Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt 1963) are employed to
fit the open parameters 𝛼 and 𝛽 of 𝑓 (𝑛; 𝛼, 𝛽) to the points {(𝑛∗

𝑡,𝑞, 𝐸𝐶𝑉(𝑛∗
𝑡,𝑞))}𝑄

𝑞=1 (Fig. 3.6,
“bootstrap”). The population size 𝑛𝑡+1 = round(𝑓 −1(𝐸𝐶𝑉; 𝛼, 𝛽)) of the subsequent popu-
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Figure 3.6. Estimation of the subsequent population size.
The density variation 𝐸𝐶𝑉 is parametrized as 𝐸𝐶𝑉(𝑛; 𝛼, 𝛽). It is fitted to the variations obtained from the
bootstrapped populations (black points, “Bootstrap”). The bootstrapped populations are drawn from the
kernel density estimate on the current population 𝑡. The tentative population sizes 𝑛∗

𝑡,𝑞 of these points are
calculated according to Eq. (3.1), the corresponding variations according to Eq. (3.2). The population size
𝑛𝑡+1 of the subsequent population 𝑡 + 1 is obtained from the functional approximation (interpolation and
extrapolation) as to match the specified target variation 𝐸𝐶𝑉 (green dashed line). To evaluate the quality
of the approximation, control estimates (“Control”) were directly obtained from the underlying density.
The bandwidth was selected according to the global bandwidth selection strategy (Sect. 3.4.2), following
Silverman’s rule. (Figure similar to Klinger, Hasenauer (2017))

lation is determined by inverting the functional approximation 𝑓 (Fig. 3.6). For model
selection, this scheme is applied to the full joint parameter space.

The algorithm is outlined in Alg. 6. There, a list of tentative population sizes 𝑁∗ is
created. Then, the variation associated with each population size is estimated with
estimate_cv (Alg. 7). The functional approximation 𝑓 is obtained from fitting with
the Levenberg-Marquardt algorithm, implemented in fit. The next population size is
calculated by inverting 𝑓. In Alg. 7, sample(𝐾, 𝑛∗) denotes drawing 𝑛∗ samples from the
density 𝐾.

Notably, the population size is selected before the sampling of a population starts.
Alternatively, one might think of checking if the population size is sufficient after accep-
tance of each particle in a continuous fashion during sampling. However, this has at least
two drawbacks. First, kernel density estimation can be costly for some estimators, thus
increasing the computational cost. Second, and more importantly, this might introduce
a bias towards distributions which yield lower variations for the same population size.
This might be the case for distributions of “simpler” shapes such as unimodal compared
to multimodal.
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Algorithm 6: adapt_population_size
Input: P, KDE
Output: 𝑛
𝑁∗ ← [𝑛∗

1, … , 𝑛∗
𝑄]

𝐶∗ ← [estimate_cv(𝑛∗,KDE, 𝑃)|𝑛∗ ∈ 𝑁∗]
𝑓 ← fit(𝑁∗, 𝐶∗)
𝑛 ← round(𝑓 −1(𝐸𝐶𝑉))

Algorithm 7: estimate_cv
Input: 𝑛∗,KDE, 𝑃
Output: cv
𝐾 ← KDE(𝑃)
𝐾∗ ← [KDE(sample(𝐾, 𝑛∗))|𝑏 ∈ {1, … , 𝐵}]
cv ← ∑(𝑤,𝜃)∈𝑃 𝑤 CV([𝐾′(𝜃)|𝐾′ ∈ 𝐾∗])

3.4.4. Evaluation of the Adaptation Scheme

To evaluate the proposed adaptation scheme, it is applied to analytical and practically rel-
evant problems (Table 3.1). First, it is assessed if the proposed parameterized functional
approximation appropriately predicts the variation at different population sizes. Then,
the method is applied to an example with multiple posterior modes and its stability is
investigated (Sect. 3.4.5). This model is a symmetrized multivariate Gaussian model
such that the posterior features several modes. Next, it is applied to model selection
for Markov Jump Processes (Sect. 3.4.6). The Markov Jump Process describes a chem-
ical reaction and is simulated with the Gillespie algorithm (Gillespie 1977). Finally, a
computationally demanding multi-scale tumor growth model (Jagiella et al. 2017) is
investigated (Sect. 3.4.7). This model is a hybrid, discrete-continuum model, employing
an agent-based model for the individual cells and a PDE-based model for the extracel-
lular matrix. Markov chains and decision rules model the intracellular mechanisms of
cell-division. The model is in the initial (temporal) phase highly stochastic, since the
cell-numbers are then still low. Averaging effects occur in the later (temporal) phases
due to higher cell numbers and the model is then less stochastic.

First, the quality of the functional approximation 𝐸𝐶𝑉(𝑛) = 𝑓 (𝑛; 𝛼, 𝛽) is assessed. This
approximation does not have to be perfect. It is only required that the approximation is
good enough such that the population size evolves towards the population size yield-
ing the desired target variation. Fluctuations are tolerable. A simple unimodal model
shows, that the chosen functional approximation is appropriate (Fig. 3.6, “Extrapola-
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Table 3.1. Models evaluated for population size adaptation.
All three models are stochastic but employ different simulation algorithms. Model selection is also evaluated.
The models have between two and seven parameters which are inferred.

Name Stochastic
Model
Selection

Parameters Simulation

Symmetrized
Gaussian

Yes No 2 Mersenne Twister

Markov Jump
Process

Yes
Yes, 2
models

1 per model
and mixture
probability

Gillespie

Multi-scale
Model

Yes No 7

Hybrid,
discrete-continuum,
agent-based, PDE,
Markov Chain,
decision rules

tion”). Although it seems to overestimate 𝐸𝐶𝑉 slightly on average in the extrapolated
regime (Fig. 3.6), it captures the overall relation between 𝐸𝐶𝑉 and the population size 𝑛
reasonably well.

3.4.5. Stability for a Symmetrized Gaussian Model

The symmetrized Gaussian features 1, 2 or 4 posterior modes, similar to the example
treated by Koutroumpas et al. (2016). With this example, the stability of the adaptive
population size selection scheme over the course of the generations, the influence of
the kernel density estimator, and the effect of the posterior modes are investigated. The
density variation is estimated with 𝐵 = 10 bootstrapped populations. The simulated
data 𝑠 ∈ ℝ2 are obtained from the model 𝑠 ∼ 𝒩(sq(𝜃, 𝑛modes), 𝜎2𝐼), denoting by 𝐼 the
identity matrix in ℝ2 and 𝜎2 > 0. The number of posterior modes is determined by
𝑛modes through the function sq ∶ {1, 2, 4} × ℝ2 → ℝ2 which performs element-wise
squaring on a subset of the dimensions. Let 𝜃 = (𝜃1, 𝜃2). Define

sq(𝜃, 𝑛modes) =

⎧{{{
⎨{{{⎩

(𝜃1, 𝜃2) if 𝑛modes = 1
(𝜃2

1, 𝜃2) if 𝑛modes = 2
(𝜃2

1, 𝜃2
2) if 𝑛modes = 4

.

The function sq ensures that the number of posterior modes equals 𝑛modes. For 𝑛modes = 2,
sq((𝜃1, 𝜃2), 2) = sq((−𝜃1, 𝜃2), 2). This symmetry generates a second mode. Similarly,
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Figure 3.7. ABC-SMC inference for a model with a multimodel posterior.
(a) First six generations of an ABC-SMC runwith 𝐸𝐶𝑉 = 0.1, initial population size 𝑛0 = 500, observed data
(set to) 𝑠obs = (1, 1). The model parameters are in this example 𝜎2 = 0.5 and 𝑛modes = 4. Global bandwidth
selection is performed (Sect. 3.4.2). The probability density is color coded. The four posterior modes are
captured after four generations. (b) Acceptance threshold 𝜖, population size 𝑛 and effective population
size 𝑛eff for the ABC-SMC run from Fig. 3.7a. The population size remains approximately constant. (Figure
similar to Klinger, Hasenauer (2017))

for 𝑛modes = 4, sq((𝜃1, 𝜃2), 4) = sq((−𝜃1, 𝜃2), 4) = sq((𝜃1, −𝜃2), 4) = sq((−𝜃1, −𝜃2), 4)
generating four posterior modes. The parameter 𝜃 ∈ [−10, 10]2 is subject to posterior
inference. The prior over 𝜃 is uniform 𝜃 ∼ 𝒰([−10, 10]2). Distance is measured in the ℓ1
norm: 𝑑(𝑠, 𝑠obs) = ‖𝑠 − 𝑠obs‖1.

ABC-SMC runs with 𝑛modes ∈ {1, 2, 4}, 𝑠obs = (1, 2), 𝜎2 = 2 and 𝐸𝐶𝑉 = 0.1 reveal that
in all scenarios the the posterior modes are correctly captured after a few generations
(Fig. 3.7a, for 𝑛modes = 4). The acceptance threshold 𝜖 decreases substantially over the
course of the generations (Fig. 3.7b, top). Surprisingly, the population size and effective
population size decay slightly (Fig. 3.7b, bottom).

To evaluate the effect of the initial population size 𝑛0 on the population sizes of the
subsequent populations, ABC-SMC runs with varying initial population sizes 𝑛0 ∈
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Figure 3.8. Effect of the initial population size and matching the target variation.
(a) For each initial population size 𝑛0 ∈ {101, 102, 103, 104} ten independent ABC-SMC runs are performed
and their population sizes are averaged. The model parameters are 𝑛modes = 4, 𝜎2 = 2, 𝑠obs = (1, 1) and
𝐸𝐶𝑉 = 0.05. The population sizes converge after a few generation and are not further influence by the initial
population size. (b) Target variation (dashed) and actual variation (solid) for varying target variation 𝐸𝐶𝑉.
The parameters are 𝜎2 = 0.5, 𝑠obs = (1, 1), 𝑛modes = 4 and initial population size 𝑛0 = 500 On average, the
specified target variation is matched well. (Figure similar to Klinger, Hasenauer (2017))

{101, 102, 103, 104} are performed. For each initial population size 10 ABC-SMC runs
are performed and the obtained population sizes are averaged. The population size
converges after a few generations (Fig. 3.8a). The attained value is independent of the
initially chosen population size 𝑛0 (Fig. 3.8a).

Varying the target variation 𝐸𝐶𝑉 ∈ {0.05, 0.1, 0.2}, it is examined if the specified target
variation is actually attained.Here, ABC-SMC runswith𝜎2 = 0.5, 𝑠obs = (1, 1), 𝑛modes = 4
and initial population size 𝑛0 = 500 are performed. On average, the achieved variation
matches the target variation well (Fig. 3.8b). The lower the target variation is set, the less
fluctuation in the achieved variation is observed (Fig. 3.8b).

To examine the effect of the target variation 𝐸𝐶𝑉 on the population size, ABC-SMC
runs with 𝑠obs = (1, 1), 𝜎2 = 0.5, 𝑛modes = 4 for varying 𝐸𝐶𝑉 are performed. The
population sizes remain approximately constant for each target 𝐸𝐶𝑉 (Fig. 3.9, left). The
median population size over each complete ABC-SMC run is then calculated. Themedian
population size decrease with increasing target variation (Fig. 3.9, right).

To investigate whether the number of posterior modes influences the selected popula-
tion size, ABC-SMC runs with one, two and four posterior modes are performed. Since
the employed density estimator is expected to influence the results, global, local and
cross-validated bandwidth selection strategies are examined (Sect. 3.4.2). Surprisingly,
there is no visible or systematic dependency of the population size on the number of
posterior modes (Fig. 3.10). However, the employed density estimator influences the se-
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Figure 3.9. Dependence of the population size on the specified target variation.
Left: selected population sizes for varying 𝐸𝐶𝑉 over the course of the generations. The parameters are
𝜎2 = 2, 𝑠obs = (1, 1), 𝜎2 = 2, 𝑛modes = 4. The population sizes remain approximately constant. Right:
median population size over target density variation. The median population size decreases with increasing
target variation. (Figure similar to Klinger, Hasenauer (2017))
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Figure 3.10. Influence of the bandwidth selection strategy on the population sizes.
Population size 𝑛 depicted as af function of the number of posterior modes and the employed bandwidth
selection strategy (color coded). Global, local and cross-validated bandwidth selection strategies are probed
(Sect. 3.4.2). The target variation is 𝐸𝐶𝑉 = 0.1, the model parameters are 𝜎2 = 2 and 𝑠obs = (1, 1). Although
the number of posterior modes does not influence the selected population size, the employed density
estimator does so. (Figure similar to Klinger, Hasenauer (2017))
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lected population sizes. The cross-validated estimator yields the largest population sizes.
(Sect. 3.4.9). This is reasonable since it is the estimator featuring the smallest bandwidth.

3.4.6. Model Selection for a Markov Jump Process

Markov jump processes constitute a class of models which is of high practical relevance.
For example, chemical reaction equations belong to this class. Conveniently, Markov
jump processes can be simulated exactly with the Gillespie algorithm (Gillespie 1977).
An important application in this context is model selection between competing models
(Souza et al. 2013; Westerhuis et al. 2004). It is therefore next investigated whether
the adaptive population size scheme is applicable to model selection for Markov Jump
Processes at the example of chemical reaction kinetics models.

The two chemical reaction kinetics models 𝑚1 and 𝑚2 for conversion of chemical
species 𝑋 into species 𝑌,

𝑚1 ∶ 𝑋 + 𝑌
𝑘1−→ 2 𝑌

and
𝑚2 ∶ 𝑋

𝑘2−→ 𝑌

with reaction rates 𝑘1 and 𝑘2, are studied. This model has been considered before (Eigen
1996; Prusiner 1982) and was used to analyze ABC-SMC schemes (Toni, Welch, et al.
2009). The Gillespie algorithm (Gillespie 1977) is used to simulate these models from
𝑡 = 0 to 𝑡 = 𝑇 = 0.1. The initial concentrations are always 𝑋(𝑡) = 40 and 𝑌(0) = 3.
Representative realizations are depicted in Fig. 3.11. For ABC-SMC the distance between
a trajectory 𝑠 = (𝑋, 𝑌) and 𝑠′ = (𝑋′, 𝑌′) is defined as cumulative sum over the absolute
differences of the concentrations at individual times evenly spread over the interval [0, 𝑇]

𝑑(𝑠, 𝑠′) =
𝑛

∑
𝑛=1

|𝑋(𝑡𝑛) − 𝑋′(𝑡𝑛)|, 𝑡𝑛 =
𝑛
𝑁𝑇, 𝑁 = 20.

The observed data is generated from model 𝑚1 with reaction rate 𝑘1 = 2.1 (log10 𝑘1 ≈
0.32). The prior over the model is uniform 𝑝0(𝑚 = 𝑚1) = 𝑝0(𝑚 = 𝑚2) = 1/2. The
priors over the reaction rates are uniform on a logarithmic scale, log10 𝑘1 ∼ 𝒰(−2, 2) and
log10 𝑘2 ∼ 𝒰(−2, 2) for both models. The proposal densities for the log-reaction rates are
obtained by kernel density estimation. The probability 𝐾𝑡(𝑚) of proposing model 𝑚 in
generation 𝑡 is

𝐾𝑡(𝑚) =
⎧{
⎨{⎩

𝑝stay𝑝𝑡(𝑚) + (1 − 𝑝stay)𝑝𝑡(𝑚) if 𝑝𝑡(𝑚)𝑝𝑡(𝑚) > 0
𝑝𝑡(𝑚) otherwise

in which 𝑚 denotes the other model 𝑚1 = 𝑚2 and 𝑚2 = 𝑚1 and 𝑝stay = 0.7.
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Figure 3.11. Example simulations from two competing chemical reaction kinetics models.
Species concentrations 𝑋 and 𝑌 over simulation time 𝑡. The reaction rates are 𝑘1 = 2.1 for model 𝑚1 and
𝑘2 = 30 for model 𝑚2. (Figure similar to Klinger, Hasenauer (2017))

To examine the adaptive population size scheme for model selection, an ABC-SMC run
with 𝐸𝐶𝑉 = 0.05 is performed, taking as observed data a trajectory which is artificially
generated from model 𝑚1 with 𝑘1 = 2.1. In the first generations, the posterior probability
at model 𝑚1 is still comparable to the posterior probability at model 𝑚2 (Fig. 3.12, top
left). However, as the generations progress, model 𝑚1 gains more probability and model
𝑚2 extinguishes slowly (Fig. 3.12, top left). At the end of the run, the true model is
hence selected. Also the log-reaction rates become narrower as the generations progress
(Fig. 3.12, right). The true rates is included in the posterior distribution of the last
generation. Note, however, that since the observed data was generated stochastically, the
true rate does not necessarily coincide with the maximum a posteriori estimate, not even
for an exact posterior. Interestingly, the population size and effective population size
decay during the later generations systematically (Fig. 3.12, bottom left).

To examine the quality of the posterior distribution approximation and its dependency
on the target density variation 𝐸𝐶𝑉, the adaptive population size posteriors are compared
to a reference posterior. In case of the present model, posterior inference is not analytically
tractable. Therefore, the reference posterior is generated from ABC-SMC, runs with large
and constant population sizes. Four ABC-SMC runs are repeated, each run with 60000
particles, and the results are averaged to generate the reference posterior.

The reference posterior assigns non-zero mass to both models 𝑚1 and 𝑚2 (Fig. 3.13a).
However, themass assigned tomodel𝑚2 is very low, (Fig. 3.13a, 𝑝(𝑚 = 𝑚2|𝑠obs) ≈ 0.0038).
No mass is assigned to model 𝑚2 for adaptive population size ABC-SMC runs with
𝐸𝐶𝑉 = 0.2, 0.1. (Fig. 3.13a). But for the smaller 𝐸𝐶𝑉 = 0.05 model 𝑚2 has posterior
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Figure 3.12. Single ABC-SMC run for two competing chemical reaction kinetics models.
The observe data is generated from model 𝑚1 with reaction rate 𝑘1 = 2.1 (log10 𝑘1 ≈ 0.32) and 𝐸𝐶𝑉 = 0.05.
Top left: posterior distributions over the models during the generations of the ABC-SMC run. Bottom left:
population size 𝑛 and effective population size 𝑛eff depicted over the course of the generations 𝑡. Right:
posterior distribution over the log-reaction rate of of model 𝑚1 for different generations together with the
true reaction rated (dashed line) used to simulate the observed data. The posterior gains more mass close
to the true rate as the populations progress. (Figure similar to Klinger, Hasenauer (2017))

mass again. The error in the log-rate posteriors is quantified in terms of the Kolmogorov-
Smirnov (KS) distance between the adaptive population size runs and the reference
posterior (Fig. 3.13b). First, the distances of the individual large, constant population
size runs to the reference posterior are examined. Since the reference posterior is their
average, this comparison reveals whether the constant population size is chosen large
enough. Indeed, the KS distance is very small compared to the KS distances of the
adaptive population size runs (Fig. 3.13b), confirming the validity of the reference
posterior. As expected, the KS distance increases with increasing 𝐸𝐶𝑉. However, also the
selected population size decreases with increasing 𝐸𝐶𝑉 (Fig. 3.13c), resulting in a lower
computational burden.

3.4.7. A Computationally Challenging Problem: Multi-scale Model of Tumor
Growth

The computational complexity of the models examined in the previous two sections is
comparatively low. Typical simulation run times are less than a second and the models
posses only up to two unknown parameters. To investigate whether the proposedmethod
is also suitable for higher-dimensional parameter estimation problems and for models
with longer simulation times, a multi-scale model of tumor growth on a two-dimensional
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Figure 3.13. Model posterior error, parameter error and population size dependency on the target vari-
ation.
(a) Model posterior distribution for large, constant population size and adaptive population size selection.
The inset shows the mass at model 𝑚2 only. For every run, sampling of new generations is stopped as soon
as the acceptance threshold falls below 1.5. The accuracy decreases with increasing 𝐸𝐶𝑉. (b) Kolmogorov-
Smirnoff (KS) distances relative to the reference posterior. The reference posterior is obtained from the
large, constant population size ABC-SMC runs. The KS distance of the large, constant population size run is
small compared to the adaptive population size runs. (c) Population size and target density variation for
model selection. The population size 𝑛 is averaged over all generations and decreases with increasing target
variation 𝐸𝐶𝑉. (Figure similar to Klinger, Hasenauer (2017))
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Figure 3.14. Multi-scale model simulations of tumor growth data.
100 independent samples obtained from the reference parameters as defined by Jagiella et al. (2017). The
data are: the spheroid radius over time, the fraction of proliferating cells over distance to the spheroid
rim, and the extracellular matrix intensity over distance to the spheroid rim. (Figure similar to Klinger,
Hasenauer (2017))

plane, as described by Jagiella et al. (2017), is considered. This model possesses seven
unknown parameters and the average simulation time is approximately 22.3 s. While
ABC-SMC inference for the previous two models is still feasible in a multi-core setting on
a singlemachine, themulti-scalemodel considered here requires distributed computation
to achieve reasonable run times of the ABC-SMC scheme.

The model’s output is described in terms of three summary statistics: spheroid radius,
fraction of proliferating cells and extracellular matrix intensity (Fig. 3.14). The ground
truth (observed) data 𝑠obs is generated by averaging 100 independent samples drawn
from the reference parameters (Fig. 3.15, cross, “True”) described by Jagiella et al. (2017).
Inference is performed in the log10 domain. To do so, a prior on each parameter which
is uniform in the log domain is imposed. The support of these priors is the same as
specified by Jagiella et al. (2017). Also, the employed distance function is the same as
the one used by Jagiella et al. (2017). To perform ABC-SMC runs the local bandwidth
selection strategy (Sect. 3.4.2) is used. That is, only the 20% nearest neighbors of each
particle are considered for calculation of the covariance matrix of the kernel centered at
that particle.

The populations contract slowly close to the reference parameters (Fig. 3.15). The
posterior is, except for the parameter 𝑘proe , still widely spread out at generation 𝑡 = 13 and
only starts to cluster slowly (Fig. 3.15). At the later generation 𝑡 = 40, all the parameters,
except for 𝑒div, feature very narrow posteriors (Fig. 3.15). To examine if the ABC-SMC
scheme is converged, the distances relative to the ground truth data of samples drawn
from theMAP estimate at generation 𝑡 = 40 are considered. These distances are compared
to the distances of the same 100 samples which generate the ground truth data relative to
the ground truth data. Indeed, the distributions of distances are comparable (Fig. 3.16a).
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Figure 3.15. Evolution of the generations of the multi-scale tumor growth model.
The posterior distribution is obtained from adaptive population size ABC-SMC inference with 𝐸𝐶𝑉 = 0.25.
The axis limits correspond to the support of the prior distribution. The prior is uniform in the log domain.
The crosses and dashed lines (True) indicate the reference parameter used for generation of the ground
truth (observed) data 𝑠obs. Lower triangle: distribution of generation 𝑡 = 13. Upper triangle: distribution
of generation 𝑡 = 40. Diagonal: distributions over the course of the generations from earlier generations
(lighter color) to later generations (darker color). (Figure similar to Klinger, Hasenauer (2017))
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Figure 3.16. Evolution of the populations and approximation quality of the multi-scale tumor growth
ABC-SMC run.
(a) Distance distribution of maximum a posteriori samples and ground truth samples. True: distances of the
same 100 samples which are used to generate the ground truth data via averaging, relative to the ground
truth data. MAP: distances of 100 maximum a posteriori samples, relative to the ground truth data. Both
distance distributions are comparable. (b) Evolution of the population sizes and the acceptance threshold
for the multi-scale model. Acceptance threshold, population size and effective population size over the
generations 𝑡. The effective population size decreases although the population size increases. (Figure similar
to Klinger, Hasenauer (2017))

The ground truth samples are only slightly closer to the (average) ground truth data
than the MAP samples (Fig. 3.16a). This result indicates that the proposed population
size adaptation scheme is successfully combined with the local density estimator.

Next, the evolution of the population sizes over the course of the generations is ex-
amined. The acceptance threshold decreases as expected from the acceptance threshold
adaptation scheme (Fig. 3.16b). Interestingly, the effective population size decays despite
the increasing population size.

3.4.8. Complexity and Computational Cost of the Adaptation Scheme

Since ABC-SMC is already a computationally challenging undertaking, the proposed
adaptation scheme should preferentially not add substantially to the already high com-
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putational cost. The complexity of the proposed scheme, with respect to the population
size 𝑛𝑡 and the parameter dimension 𝑑par, is therefore analyzed in this section and its
overhead is benchmarked for the practically relevant multi-scale example (Sect. 3.4.7).

The function adapt_population_size (Alg. 6) is called once per generation (Alg. 4).
The number of tentative populations 𝑄 is constant (Alg. 6). Therefore, the generation
of 𝑁∗, and fit(𝑁∗, 𝐶∗) in Alg. 6 are both 𝒪(1); the final round operation in Alg. 6 is
also 𝒪(1). The function estimate_cv is called 𝑄 times. In summary, since the complexity
of no operation in adapt_population_size — with exception of estimate_cv — de-
pends on 𝑛𝑡 or 𝑑par, the overall complexity per iteration is 𝑄 times the complexity of
estimate_cv.

In estimate_cv (Alg. 7), a KDE fit is performed once on the entire population (which
can be cached), and then 𝐵 times on populations of sizes 𝑛∗, with ⌊𝑛𝑡/3⌋ ≤ 𝑛∗ ≤ 2𝑛𝑡. Sam-
pling of a population of size 𝑛∗ from a fitted KDE is also performed 𝐵 times. The probabil-
ity density functions 𝐾′ are evaluated 𝐵𝑛𝑡 times to calculate the variation cv (last line of
Alg. 7). The overall complexity of the adaptation scheme per iteration emerges therefore
from thee factors: (FIT) fitting the KDE 𝑄(𝐵+1) times on populations of size 𝒪(𝑛𝑡) each,
(RVS) drawing samples from a fitted KDE 𝒪(𝑄𝐵𝑛𝑡) times, and (PDF) evaluating the
probability density function of a fitted KDE 𝑄𝐵𝑛𝑡 times. However, 𝑄 and 𝐵 are constants
with respect to 𝑛𝑡 and 𝑑par and can thus be ignored in the following.

For rather simplistic implementations of the global and local bandwidth selection, the
complexity is bounded as follows: (FIT) For global bandwidth selection (Sect. 3.4.2),
fitting a KDE can be performed by calculating a single covariance matrix, which is
of 𝒪(𝑛𝑡𝑑2

par), as well as calculating the inverse covariance matrix and its determinant,
which can be performed in 𝒪(𝑑3

par) or better. For local bandwidth selection (Sect. 3.4.2),
covariance calculation, matrix inversion and determinant calculation are performed 𝑛𝑡
times, the complexity is therefore 𝒪(𝑛2

𝑡 𝑑2
par + 𝑛𝑡𝑑3

par). (RVS) Drawing 𝑛𝑡 samples from a
local or global density can be performed by one vector–matrix multiplication of 𝒪(𝑑2

par)
per sample and is therefore of 𝒪(𝑛𝑡𝑑2

par) in both cases. (PDF) The probability density
function is evaluated 𝒪(𝑛𝑡) times, each evaluation is of 𝒪(𝑛𝑡𝑑2

par). The complexity is
hence 𝒪(𝑛2

𝑡 𝑑2
par) in both, the local and global case.

In summary, the adaptation scheme is for global bandwidth selection bounded by
𝒪(𝑛2

𝑡 𝑑2
par +𝑑3

par) and for local bandwidth selection by 𝒪(𝑛2
𝑡 𝑑2

par +𝑛𝑡𝑑3
par). The complexity

can differ for other KDE methods or different implementations. For example, matrix mul-
tiplication and inversion can be performed in 𝒪(𝑑2.376

par ) with the Coppersmith-Winograd
algorithm (Coppersmith and Winograd 1987). Independent of the implementation de-
tails, in the standard ABC-SMC scheme, (FIT) KDE fitting is already performed once
in Alg. 4, (RVS) sampling from a fitted density is already performed 𝒪(𝑛𝑡) times in
Alg. 5, and (PDF) evaluating the probability density function is already performed 𝑛𝑡
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times in Alg. 5. The overall complexity of the entire ABC-SMC scheme is therefore never
increased by the proposed adaptation scheme.

Practically, the highest computational cost emerges often from model simulations, al-
though only 𝒪(𝑛𝑡) such simulations are performed per generation. But often, simulation
runtimes are very long, outweighing all other steps in an ABC-SMC scheme. However,
the adaptation schemes does not perform additional model simulation. In the multi-scale
example considered in Sect. 3.4.7, the adaptation took only about 0.00208% of the total
model simulation time. The computational overhead caused by the adaptation scheme is
therefore practically negligible.

3.4.9. Discussion of the Population Size Adaptation Scheme

The parameterization of complex computational models is a task many model develop-
ers face in systems biology and neuroscience. In principle, ABC-SMC schemes are well
suited for this task, since they require neither analytical expressions of the likelihood
functions nor do they make assumptions on the model structure. In practice, however,
the need to manually tune population sizes limits the applicability of ABC-SMC schemes.
So far, tuning population sizes has been a task which required substantial experience
(or luck). The method presented here aims to simplify population size selection. It com-
plements existing methods for the selection of perturbation kernels (Filippi et al. 2013),
acceptance thresholds (Silk, Filippi, and Stumpf 2013), and summary statistics (Marin
et al. 2014; Nunes and Balding 2010). As illustrated, the method is applicable to model
selection and parameter inference. It is compatible with a range of density estimation
methods and is scalable to computationally demanding, higher-dimensional parameter
inference problems, such as posed by multi-scale models.

In the proposed method, the desired target approximation quality is expressed in
terms of the target density variation 𝐸𝐶𝑉, which has to be chosen adequately. However,
the presented method does not merely replace manual tuning of population sizes by
manual tuning of yet another parameter (the density variation 𝐸𝐶𝑉). The parameter
𝐸𝐶𝑉 is better accessible because it is easier to interpret. Moreover, the examples with
decreasing, increasing or approximately constant population size show that the proposed
method is not a simple re-parameterization. Empirically, 0.1 ≤ 𝐸𝐶𝑉 ≤ 0.2 works in many
examined examples. It might therefore be possible to make a default choice, such as
𝐸𝐶𝑉 = 0.15, and alleviate the model developer completely from selecting population size
related parameters. Such a default choice is not directly possible for the population size.

The proposed method can in principle be applied with arbitrary density estimators.
The selection of the population size, however, depends on the choice of the estimator.
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Figure 3.17. Influence of the bandwidth on the population sizes.
(a) Illustration of bandwidth variation. True, unimodal normal distribution and bandwidths 𝑏 relative to
the Silverman bandwidth 𝑏silv. The population size is 𝑛 = 103 in this illustration. (b) Density variation for
kernels with bandwidth 𝑏 and population size 𝑛 = 103. The density variation is estimated from drawing
250 bootstrapped populations for each bandwidth. (Figure similar to Klinger, Hasenauer (2017))

Over-smoothing estimators require lower population sizes than estimators with narrower
bandwidths. This is consistent with the lower density variation associated with larger
bandwidths (Figs. 3.17a and 3.17b).

Alterations of the proposed scheme are of course possible. For example, it is possible
to bootstrap directly from the particle population instead of from the density estimate.
This comes, however, with the disadvantage of likely drawing the same particles repeat-
edly since the bootstrapping has to be performed with replacement. This possibility was
indeed investigated, but no obvious differences were found and it was therefore decided
to rather bootstrap from the density. Also, the functional relationship assumed between
the population size and the density variation, which is motivated by the Silverman rule
(Silverman 1986) might be further improved. However, for the examples considered
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here, this relationship predicts the required population sizes sufficiently well.

The difficulty of choosing population sizes has been noted in the literature before
(Moral, Doucet, and Jasra 2012). To the best of my knowledge this work here is the first
attempt towards automated and adaptive population size selection. The results suggest
that probing population sizes over an order of magnitude (Jagiella et al. 2017) can be
avoided. In the future, the interplay between density estimators, population sizes and
acceptance rates could be examined further. The effect of density estimators on acceptance
rates has been already investigated (Filippi et al. 2013; Koutroumpas et al. 2016) but has
not yet been related to population sizes and the overall number of samples required for
an ABC-SMC inference run. Additional information, such as the effective population
size, could also be incorporated. For instance, it might be aimed to keep the effective
population size constant or in a certain range. It might be interesting to compare ABC-
SMC approaches to these methods as well. In summary, the compatibility with virtually
any existing ABC-SMC scheme, paired with the generality of ABC-SMC schemes lead to
expect that the proposed method will be applied to a wide range of model selection and
parameter inference tasks.
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4. Approximate Bayesian Connectomic
Model Selection

Section is similar to
Klinger, Marr, Theis,
Helmstaedter (under
review)

Since explorative approaches to local cortical connectomicmodel selection are insufficient
(Sect. 3.1) the more systematic approach of approximate Bayesian model selection is
pursued here (Chap. 3). First, summary statistics for ABC-SMC based on the description
of graphs via permutation invariant functions mapping these graphs to real numbers
are introduced (Sect. 4.1). The (experimental) conditions under which the proposed
approachworks reliably are examined (Sect. 4.2), thereby giving guidelines for a concrete
connectomic reconstruction experiment.

4.1. Circuit Motifs as Summary Statistics

Neuronal networks were in the past characterized by the frequencies with which certain
networkmotifs occur (Kretschmar 2013; Milo et al. 2002; Perin, T. K. Berger, andMarkram
2011; Song et al. 2005). Similar approaches were also widely applied in the social network
sciences (Newman 2010) and for macroscopic connectomics, where graphs consist of few
nodes, each node representing a whole brain area (Rubinov and Sporns 2010; Shi et al.
2013). The question hence arises whether such network motifs are suitable summary
statistics for ABC-SMC (Chap. 3).

Different types of motifs as summary statistics for ABC-SMC are probed. Denoting by
𝑛 the number of neurons, by 𝑛e the number of excitatory neurons and by 𝑛i the number
of inhibitory neurons, the excitatory-excitatory connectivity (𝑝ee) is estimated from the
adjacency matrix 𝑊 according to

𝑝ee =
|{(𝑘, 𝑙)|1 ≤ 𝑘, 𝑙 ≤ 𝑛e, 𝑤𝑘𝑙 ≠ 0}|

(𝑛e − 1)2

and similarly the excitatory-inhibitory connectivity

𝑝ei =
|{(𝑘, 𝑙)|1 ≤ 𝑙 ≤ 𝑛e, 𝑛e < 𝑘 ≤ 𝑛, 𝑤𝑘𝑙 ≠ 0}|

𝑛e 𝑛i
.

The reciprocities are defined by

𝑟ee =
|{(𝑘, 𝑙)|1 ≤ 𝑘, 𝑙 ≤ 𝑛e, 𝑤𝑘𝑙 𝑤𝑙𝑘 ≠ 0}|

(𝑛e − 1)2
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𝑟rel,ee 𝑟rel,ei

𝑟(5) 𝑟i/o

Figure 4.1. Network summary statistics used for connectome description.
The summary statistics are relative excitatory-excitatory reciprocity 𝑟rel,ee, relative excitatory-inhibitory
reciprocity 𝑟rel,ei, relative number of cycles of length 5 𝑟(5) and in-out-degree correlation 𝑟i/o. (Figure similar
to Klinger, Marr, Theis, Helmstaedter (under review))

and
𝑟ei =

|{(𝑘, 𝑙)|1 ≤ 𝑘, 𝑙 ≤ 𝑛e, 𝑤𝑘𝑙 𝑤𝑙𝑘 ≠ 0}|
𝑛e 𝑛i

.

Based on the previous analysis and adaptation of the models to the circuit constraints,
the investigated connectome samples are expected to differ in their relative excitatory-
excitatory reciprocity 𝑟rel,ee and in their relative excitatory-inhibitory reciprocity 𝑟rel,ei
(Fig. 4.1). These are defined by

𝑟rel,ee =
𝑟ee
𝑝ee

and
𝑟rel,ei =

𝑟ei
𝑝ei

.

The recurrency of a network is quantified in terms of its relative number of cycles 𝑟(ℓ)

of length ℓ. This statistic describes how much of the information processed within the
network flows back to the network itself. It is defined by

𝑟(ℓ) =
tr𝑊ℓ

E
(𝑛e𝑝ee)ℓ .

Here, ℓ = 5 is used as trade-off between descriptiveness and computational efficiency.
Moreover, the correlation 𝑟i/o between in-degree and out-degree of the network is quan-
tified (Fig. 4.1). This statistic indicates whether an organization in input neurons and
output neurons is present (negative correlation), or, whether the network is organized
into more central and less central neurons (positive correlation). The in-out-degree corre-
lation (𝑟i/o) is the Pearson correlation coefficient of the in- and out-degrees of the neurons
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𝑚

Figure 4.2. Complete graphical model.
Every model has the parameters number of neurons (𝑛), fraction of inhibitory neurons (𝑟i), excitatory
connectivity (𝑝e), 𝑝i, noise (𝜉) and reconstruction fraction (𝑓s). The latter two are only important in the case
of noisy, incompletely reconstructed connectomes. The LAYERED model has additionally the parameters
number of layers (𝑛l), excitatory lateral connectivity (𝑝e,l) and excitatory forward connectivity (𝑝e,f); the
SYNFIRE model pool size (𝑠pool); the FEVER model feature space dimension (𝑑f) and feverization (𝑓r); the
API model selectivity (𝑛pow) and feature space dimension (𝑑f). Every model generates a connectome 𝐶.
The connectome is then described by the four summary statistics relative excitatory-excitatory reciprocity
(𝑟rel,ee), relative excitatory-inhibitory reciprocity (𝑟rel,ei), relative number of cycles of length 5 (𝑟(5)) and
in-out-degree correlation (𝑟i/o). (Figure similar to Klinger, Marr, Theis, Helmstaedter (under review))

of the excitatory subpopulation (Fig. 4.1). Other, stochastic, network statistics (App. A.2)
were also briefly probed, but not further evaluated due to their computational cost.

To assess the performance and discriminative power of the proposed summary statis-
tics, these are evaluated on samples drawn from the full (noise free) models (Fig. 4.2).
Normal distributions are fitted to the summary statistics obtained from 50 samples from
the models (Figs. 4.3a to 4.3d). As expected, some of the models are distinct in terms of
their relative excitatory-excitatory reciprocity (𝑟rel,ee) (Fig. 4.3a). However, this summary
statistic alone is not sufficient to discriminate all the models (Fig. 4.3a). Similarly, the dis-
tributions of the remaining summary statistics are not completely overlapping indicating
that the selected summary statistics do possess discriminative power. But again, none of
the summary statistics alone can discriminate between all the model classes (Figs. 4.3b
to 4.3d). An alternative view on the data is provided by a t-SNE embedding (Maaten and
Hinton 2008). The t-SNE embedding shows that the samples from the different model
classes lie in distinct regions of the embedding manifold (Fig. 4.4). The discriminative
power of the selected circuit motifs motivates to further pursue an Approximate Bayesian
model selection approach mediated by these motifs as summary statistics.
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Figure 4.3. Connectomic network summary statistics are discriminative, but no summary statistic
alone suffices.
Probability density functions of Gaussian fits of 50 samples drawn form each of the network models: (a):
relative excitatory-excitatory reciprocity (𝑟rel,ee). (b): relative excitatory-inhibitory reciprocity (𝑟rel,ei). (c):
relative number of cycles of length 5 (𝑟(5)). (d): in-out-degree correlation (𝑟i/o). (Figure similar to Klinger,
Marr, Theis, Helmstaedter (under review))

4.2. Evaluation of the Approximate Bayesian Connectomic
Model Selection Scheme

Approximate Bayesian connectomic model selection is evaluated for several scenar-
ios using the ABC-SMC scheme presented in Chap. 3, with constant population size
2000, implemented in the pyABC framework (Sect. 3.3). The presented circuit motifs
(Sect. 4.1) are used as summary statistics. Frist, perfect, noise-free experimental condi-
tions are considered (Sect. 4.2.1). Then, the more realistic setting of noisy, i.e. erroneous
connectomes (Sect. 4.2.1) and the case of fractional (incomplete) connectomic recon-
struction (Sect. 4.2.3) are examined. It is systematically explored how much and with
which accuracy it is necessary to reconstruct connectomes for successful model selection
(Sect. 4.2.4). Last, the model selection approach is applied to connectome samples which
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Figure 4.4. t-SNE embedding of connectome samples mediated via summary statistics separates the
model classes.
t-SNE embedding performedwith original data being the four network summary statistics relative excitatory-
excitatory reciprocity 𝑟rel,ee, relative excitatory-inhibitory reciprocity 𝑟rel,ei, relative number of cycles of length
5 𝑟(5) and in-out-degree correlation 𝑟i/o.

are not generated by the candidate models, but by modifications of these (Sect. 4.2.5).

4.2.1. Noise-free Connectomic Reconstruction

The method is first evaluated for the scenario of perfect, noise-free, and complete con-
nectomic reconstruction. A single connectome sample is drawn from each of the seven
models and model selection is performed on this sample. A uniform prior over the mod-
els is imposed. The posterior has in all cases mass one at the original model (Fig. 4.5).
The connectome samples are thus perfectly discriminated. Although the model selec-
tion works well so far, the assumption of perfect experimental conditions made is rather
unrealistic.

4.2.2. Noisy Connectomic Reconstruction

Under real conditions, noise from several sources is expected. One possible source of noise
are reconstruction errors. Today, connectomic reconstruction is still relying on human
annotation. These annotations however contain errors (Boergens et al. 2017; Helmstaedter,
Briggman, and Denk 2011). For example, annotators, when tracing dense nervous tissue
might erroneously “jump” from one wire to another one. Moreover, the quality with
which a connectome is reconstructed depends also on the accuracy of synapse classifiers,
which are also not perfect (Becker et al. 2012; Kreshuk, Funke, et al. 2015; Kreshuk, Koethe,
et al. 2014; Kreshuk, Straehle, et al. 2011). Amore subtle source of noisemight be biological
implementation errors. Assuming that one of these models is implemented by biology, it
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Figure 4.5. Noise-free connectomic model selection.
A connectome is drawn from each model and then subjected to the proposed ABC-SMC model selection
method (see Chap. 3). Here, perfect, noise-free and complete reconstruction is assumed. The samples are
perfectly discriminated. Each row is the result of a single ABC-SMC run. (Figure similar to Klinger, Marr,
Theis, Helmstaedter (under review))

might still be erroneously implemented or the implementation might become perturbed
due to external influences (for example chemicals, mechanical forces). Therefore, noisy
(erroneous) connectomic reconstruction is modeled. Let 𝜉 ∈ [0, 1] denote the noise
level to be applied on the binary network 𝐺 = (𝑉, 𝐸). Then, 𝑛Δ = ⌊𝜉 |𝐸|⌋ edges of 𝐸
are randomly removed from 𝐸, regardless of their excitatory or inhibitory type. After
that, 𝑛Δ new edges are randomly re-inserted into 𝐸, irrespective of their excitatory or
inhibitory type. This procedure does not preserve the number of excitatory or inhibitory
connections or the degree distribution. Degree-preserving connectome perturbations
were also implemented (App. A.1) but not explored in detail because they are less severe
and rely on more assumptions.

First, the case of 𝜉 = 0.15 reconstruction noise is inspected (Figs. 4.6a and 4.6b).
The posterior is substantially less sharply peaked at the original model (Fig. 4.6a). The
posterior of the LAYERED connectome sample has now 68%mass at the incorrect FEVER
model and only 32% mass at the correct LAYERED model. The maximum a posteriori
(MAP) estimate is wrong in this case. Similarly, the sample drawn from the SORN model
has 51% posterior mass at the incorrect ER-ESN model and only 49% mass at the correct
SORN model. Although the estimate is better than the one of the LAYERED model, the
MAP estimate is still wrong.
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Figure 4.6. Noisy connectomic model selection.
(a) A connectome is drawn from each model, perturbed by random edge rewiring and then subjected to the
proposed model selection method. Each row is the result of a single ABC-SMC run. Discrimination is not
perfect anymore. For example the LAYERED sample has posterior mass at both the LAYERED model and
the SORN model. (b) Cumulative distribution function (CDF) over the noise (𝜉), which is not modeled
in the prior. The dashed line indicates the applied noise, 𝜉 = 0.15. (Figure similar to Klinger, Marr, Theis,
Helmstaedter (under review))

The proposed model selection method is only applicable under realistic settings if it
can be applied under noisy conditions. Noisy reconstruction was so far not modeled in
the prior distribution (Fig. 4.6b). Instead, 𝜉 = 0 (Fig. 4.6b) has been assumed. However,
a noise model can be explicitly included in the full generative model considered here
(Fig. 4.2). The corresponding error rates can be obtained from the evaluation of automated
reconstruction methods (Dorkenwald et al. 2017; Kreshuk, Straehle, et al. 2011) and
analysis of human tracing accuracy (Boergens et al. 2017; Helmstaedter, Briggman,
Turaga, et al. 2013; Takemura et al. 2013; Wanner et al. 2016). The prior 𝜉 ∼ Beta(2, 10) is
imposed on the reconstruction noise (Fig. 4.7a). The proposed model selection method
is again evaluated on seven connectome samples, one sample drawn from each model
and perturbed by noise 𝜉 = 0.15. The explicit noise model is beneficial and model
discrimination is perfect again (Fig. 4.7b).

103



4. Approximate Bayesian Connectomic Model Selection

a

0 1
Noise 𝜉

0

1

C
D
F

b

A
PI

ER
-E

SN
FE

V
ER

EX
P-
LS

M
LA

YE
RE

D
ST

D
P-
SO

RN
SY

N
FI
RE

Estimated model

API
ER-ESN
FEVER

EXP-LSM
LAYERED

STDP-SORN
SYNFIRE

O
rig

in
al

m
od

el

𝜉 = 0.15

0

1

Po
st
er
io
rp

ro
ba

bi
lit

y
𝑝

Figure 4.7. Noisy connectomic model selection with noise model.
(b) Cumulative distribution function (CDF) over the noise (𝜉) prior, which is modeled as Beta(2, 10)
distribution. The dashed line indicates the applied noise, 𝜉 = 0.15. (a) A connectome is drawn from each
model, perturbed by random edge rewiring and then subjected to the proposed model selection method.
Here, an explicit noise model is included in the full generative model. Each row is the result of a single
ABC-SMC run. Discrimination is perfect again. (Figure similar to Klinger, Marr, Theis, Helmstaedter (under
review))

4.2.3. Fractional Connectomic Reconstruction

Beside the challenges associated with reconstruction noise, connectomic measurements
are severely limited by the many human annotation hours currently necessary for recon-
struction. Assuming a barrel volume of (300 𝜇m)3, a reconstruction speed of 1.5mm/h
(Boergens et al. 2017) and 5km to 10 km path length per cubic millimeter cortical tis-
sue, a full reconstruction required between 90 000 and 180 000 human annotator hours.
Clearly, the reconstruction of connectomes for the purpose of model selection would
be rendered much more realistic if it was sufficient to reconstruct only a fraction of the
connectome (Fig. 4.8a). It is hence investigated if reconstruction of only a fraction 𝑓s of
the entire connectome is sufficient for model selection purposes. The proposed method
is thus applied to model selection of connectomes which are only reconstructed with
reconstruction fraction 𝑓s = 0.3 under noise-free conditions. Perfect model discrimination
is obtained (Fig. 4.8b).
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Figure 4.8. Fractional connectomic reconstruction.
(a) Illustration of fractional (incomplete) connectomic reconstruction with reconstruction fraction 𝑓s = 0.3
(only 30% of the neurons are reconstructed). (b) A connectome is drawn from each model and incomplete
reconstruction is simulated. It is then subjected to the proposed model selection method. Each row is
the result of a single ABC-SMC run. Discrimination is perfect. (Figure similar to Klinger, Marr, Theis,
Helmstaedter (under review))

4.2.4. How Much and How Accurate to Reconstruct?

Having validated, that the proposed method is applicable under noisy conditions and
for fractionally reconstructed connectomes, it is next evaluated which magnitudes of
noise can be tolerated and which fraction of the connectome is required to recover the
underlying model with a given probability. From these results, it is expected to design a
concrete connectomic reconstruction experiment, defining the requirements for synapse
classifier accuracy and human annotator hours. The noise prior 𝜉 ∼ Beta(2, 10) is kept
fixed and the applied noise (𝜉) and reconstruction fraction (𝑓s) are varied. For each
combination of 𝜉 and 𝑓s one connectome sample is drawn from each model and the model
discrimination performance is evaluated in two different ways. The average probability
assigned to the original (correct) model and the average MAP accuracy are evaluated.
The average probability at the original model decays slowly with increasing noise and
with decreasing reconstruction fraction (Fig. 4.9a). Surprisingly, the MAP estimate is
highly reliable up to 𝑓s = 0.1 and 𝜉 = 0.3 (Fig. 4.9b). This implies, that only 18 000 instead
of 180 000 work hours have to be invested to perform connectomic model selection. The
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Figure 4.9. Discrimination performance for varying noise and reconstruction fraction.
For each combination of noise (𝜉) and reconstruction fraction (𝑓s), 3 connectome sample are drawn from
each of the 7models, such that each entry is assembled from 21 ABC-SMC inference runs. The discrimination
performance is quantified in twoways (a) average probability at the original (correct)model, and (b) average
MAP accuracy. The latter is calculated as the fraction of correct MAP estimates. (Figure similar to Klinger,
Marr, Theis, Helmstaedter (under review))

so far largest undertaken connectomic reconstruction efforts invested between 14 000 and
25 000 work hours (Helmstaedter, Briggman, Turaga, et al. 2013; Takemura et al. 2013;
Wanner et al. 2016). A rather challenging reconstruction is thereby rendered much more
realistic.

Next, it is examined how far the requirements on noise and reconstruction fraction
can be relaxed, assuming precise knowledge on the applied noise. The noise prior is
now varied as well and is specified as uniform prior with width 0.08, centered at the
applied 𝜉. Although this might not be realistic in an experimental setting, it hints on
how much noise the approach might tolerate in principle. As expected, knowledge of the
noise (𝜉) increases reconstruction accuracy (Figs. 4.10a and 4.10b) compared to the case
without precise knowledge of the noise (Figs. 4.9a and 4.9b). However, the classification
performance decays with 𝑓s in a way comparable to the scenario with fixed noise prior. In
summary, this indicates, that precise estimations on the reconstruction increase model
selection performance.
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Figure 4.10. Discrimination performance for varying noise, reconstruction fraction and noise prior.
For each combination of noise (𝜉) and reconstruction fraction (𝑓s), a connectome sample is drawn from each
model. The prior on the noise 𝜉 is set to the applied noise. The discrimination performance is quantified in
two ways (a) average probability at the original (correct) model, and (b) average MAP accuracy. Precise
knowledge of the present noise allows for less accurate reconstruction.

4.2.5. Incorrect Assumptions on the Model Priors

A weakness – and at the same time a strength – of the Bayesian model selection approach
is that the investigated hypotheses have to be precisely defined. It is impossible to ob-
tain posterior mass where no prior mass was defined. The posterior support is always
included in the prior support. However, what if none of the investigated models is ac-
tually implemented in a barrel? What if none of the investigated models is the “right”
model? Can meaningful information still be deduced from the proposed model selection
method?

By including a wide range of possible candidate models in the hypothesis space (the
prior), the chance to miss structurally distinct models is minimized. However, the data
observed in terms of the selected summary statistics might still be generated by another
model or by some kind of mixture of the investigated models. To examine the behavior of
the proposed method under such circumstances, a family of models which interpolates
between the ER-ESN and EXP-LSM model is introduced. The EXP-LSM model turns into
the ER-ESN model for very large decay lengths 𝜆e → ∞ and 𝜆i → ∞ (Fig. 4.11a). The
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Figure 4.11. Model interpolation.
(a) In the EXP-LSM model, connections to closeby neurons are preferred. In the ER-ESN model, the
connection probability does not depend on distance (b) The ER-ESN model is obtained for 𝑑EXP = 0, the
EXP-LSM model for 𝑑EXP = 1. (c) In the ER limit (𝑑EXP = 0.1), the ER model is recovered, in the EXP-LSM
limit (𝑑EXP = 0.9) the EXP-LSM model is recovered. In between it is interpolated between these models with
a non-dominant contribution of the FEVER model. (Figure similar to Klinger, Marr, Theis, Helmstaedter
(under review))
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newly introduced parameter 𝑑EXP governs the connection probability 𝑝0 for zero distance
according to 𝑝0 = 𝑝 + (1 − 𝑝)𝑑EXP, denoting by 𝑝 the overall connectivity. Hence, for
𝑑EXP = 1, the EXP-LSM model is obtained, for 𝑑EXP = 0 the ER-ESN model (Fig. 4.11b).
As expected for small 𝑑EXP, connectome samples from this model are classified as ER-
ESN samples (Fig. 4.11c). Similarly, for larger 𝑑EXP the samples are classified as EXP-LSM
samples (Fig. 4.11c). Surprisingly, in the intermediate regime, the posterior probability is
an interpolation between the ER-ESN and the EXP-LSMmodel, with mass at both models
with a non dominant contribution fo the FEVER model (Fig. 4.11c). This indicates, that
the method is in fact stable against model mixing and that the posterior encodes model
similarity in an interpretable way.

In a second experiment it is investigated to which extent the input statistics influence
the network structure shaped by the STDP rule (Sect. 2.9). A family of SORN models,
which differ in the number of input patterns 𝑛p they receive as input is introduced. The
𝑛p distinct input patterns are repeated after 𝑛p time steps (Fig. 4.12a). For high enough
𝑛p, connectome samples from this model are identified as SORN samples (Fig. 4.12b).
However, for 𝑛p ≤ 500, the LAYERED model gains posterior mass (Fig. 4.12b) and the
median correlation increases in this regime (Fig. 4.12c). It has been noted before, that the
SORN model produces LAYERED like structures for specific input statistics (Zheng and
Triesch 2014). The interpolation performed by the posterior is therefore in accordance
with the literature. Themethod is sufficiently robust to variation in themodel formulation
and interpolates model classes in a meaningful way.

4.3. Conclusion

In conclusion, it is shown that binary connectomic data (i.e. connectomic data which
ignores the strength of connections) contains already sufficient information to discrimi-
nate cortical, computational models in local modules of primary somatosensory cortex.
The proposed method guides the necessary reconstruction experiments with respect
to the required annotation time and reconstruction accuracy. Importantly, it suffices to
reconstruct only 10% of a connectome as long as the noise (𝜉) stays below 30%. This re-
quires about 18 000 hours reconstruction time, which is realistic already today and in the
range of or even less than the reconstruction times of former experiments (Helmstaedter,
Briggman, Turaga, et al. 2013; Takemura et al. 2013; Wanner et al. 2016). Connectomic
measurements are rendered highly informative through the method proposed here.
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Figure 4.12. Input statistics of the SORN model.
(a) Illustration of the number of input patterns 𝑛p of the SORN model. The input to the network is repeated
after 𝑛p patterns. (b) Posterior probability of connectome samples generated with 𝑛p input patterns. (c) Me-
dian correlation med(𝑐N,N) of the SORN network activity with 𝑛p input patterns. (Figure similar to Klinger,
Marr, Theis, Helmstaedter (under review))
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5. Discussion and Conclusion

5.1. Summary

A major challenge in neuroscience today is to close the falsification gap it is experiencing
(Denk, Briggman, and Helmstaedter 2012). In this thesis I therefore developed a method
that falsifies or supports theories of cortical computation, narrowing the falsification gap.
Specifically, it was demonstrated that local connectomes (circuits) serve as arbiters of
local computational models in the cerebral cortex and falsify or support these. Seven
competing hypotheses of local cortical computational models were selected and imple-
mented as concrete circuit models adapting them to known constraints (Chap. 2). It was
demonstrated that these models were functionally meaningful after their adaptation
(Chap. 2). It was then examined how to select the models which describe a particular
(experimentally determined) local cortical circuit best, given only the structural (net-
work) data. To computationally tackle this problem, a general-purpose framework for
distributed Approximate Bayesian Computation - Sequential Monte Carlo inference was
developed (Chap. 3). This framework scales to thousands of CPU cores and can bewidely
applied throughout systems biology and beyond. This framework was extended with a
scheme for the automated selection of population sizes (Chap. 3), which is a main prac-
tical issue in the application of Approximate Bayesian Computation (Moral, Doucet, and
Jasra 2012). The specific Approximate Bayesian Computation - Sequential Monte Carlo
scheme proposed for cortical model selection was demonstrated to be robust to noise
and applicable to model selection in realistic experimental settings (Chap. 4). Moreover,
this thesis work guides the design of concrete reconstruction experiments giving con-
crete requirements to the percentage of neurons in a circuit to be reconstructed and the
tolerable reconstruction errors. For model selection purposes the reconstruction effort
can be cut down by a factor of 10 through the proposed method (compared to full, dense
reconstruction), making such an undertaking much more realistic. Beyond model selec-
tion, a framework for the interpretation of network models is provided, relating them to
the seven concrete models examined here.
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5.2. Robustness, Generality and Scalability

A strength of the proposed method lies in its probabilistic nature. The method does not
only classify connectomes but treats the model selection problem in a fully Bayesian way.
In this thesis a flat prior over the model classes was assumed. Evidently, the posterior
probabilities would be multiplied by the prior probabilities if the prior was chosen non-
uniform. In a concrete experiment preconceptions on the expected computational models
could be implemented as non-uniform prior. The probabilistic treatment ensures the
usefulness of the proposed method even if a measured connectome is strongly perturbed
by noise or is a superposition of different models. At the same time, the method detects
reliably the original model for moderate noise levels. Importantly, since any connectome
reconstructed in the near future will be a partial one, the demonstrated robustness to
fractional reconstruction makes the method applicable to real experiments. Using easily
interpretable network summary statistics also facilitates the interpretation of measured
connectomes and provides concrete constraints to theoretical modeling efforts once
cortical connectomes become available. The proposed method is computationally and
conceptually feasible since it does not require analytical access to likelihoods, which
are often expensive to compute, if at all possible. The method is therefore expected to
be applicable to new network models as well. Moreover, the method works for rather
large connectomes of thousands of neurons and even if the precise neuron number is
unknown. More efficient implementations of the employed algorithms and scaling up
computational power will likely allow to examine connectomes much larger than the
ones used in this study. The method was also proven to be robust to details of model
implementations. The method is not sensitive to precise parameter choices, or the exact
neuronal numbers. It was taken care to verify the correctness of many algorithms using
an extensive set of unit tests.

5.3. Related Structural Network Analysis

Structural description and comparison of networks has a long history in the social network
sciences (Newman 2010). The focus was often the description of social networks in terms
of specific network properties such as, e.g., to which extent networks are clustered or
high-degree nodes connect preferentially to other high-degree nodes (Newman 2010).
Other studies spanned across different categories of networks. For example, general
sparse networks were categorized and grouped in a non-probabilistic fashion (Onnela
et al. 2012). The examined networks were quite diverse, ranging from neuronal data
to political data (Onnela et al. 2012). Onnela et al. (2012) showed that, in terms of
dendrograms, similar network categories were often grouped together by their method.
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5.4. Functional Testing as Alternative and Complement to Structural Testing

Not surprisingly, methods from the social network sciences were also applied to neuronal
networks (Rubinov and Sporns 2010). Suchmethods were often used together with small
networks in which — in contrast to the present thesis — the nodes did not represent
individual cells but whole brain regions consisting of millions of cells each (Rubinov
and Sporns 2010). Those networks consisted typically of less than 100 nodes (in contrast
to the 2000 node networks considered here) and were obtained from diffusion magnetic
resonance imaging or functional magnetic resonance imaging. In addition, the node
identity (label) was well-defined in these networks as these corresponded to specific,
known brain regions. Here however, the permutation invariance resulting from the
absence of node labels resulted in an additional difficulty. In small whole-brain networks,
specific structural network properties were related to diseases such as schizophrenia
(Heuvel et al. 2013). The gender of patients has been classified based on such networks
(Vogelstein and Priebe 2015) and it was quantified to which extent loosing the label
information degraded classification performance. It was also attempted to approximately
solve the graphmatching problem for graph classification (Vogelstein, Conroy, et al. 2015;
Vogelstein and Priebe 2015). However, graph matching based approaches are currently
not computationally feasible for larger unlabeled networks such as these considered
in this study due to the emerging combinatorial complexity (Vogelstein, Conroy, et al.
2015).

5.4. Functional Testing as Alternative and Complement to
Structural Testing

Functional neuronal model testing is an alternative to structural model testing which has
been pursued using temporally resolved recordings (functional data) of small neuronal
population of tens or hundreds of neurons (Barak et al. 2013). Barak et al. (2013) com-
pared three models of delayed discrimination. In that study, dynamic properties of the
examined models were compared with experimental data to select the best-fitting model.
However, the criteria defining similarity and ultimately leading to the model selection
were not well defined. The best fitting model was selected on a (partially subjective)
discussion of different properties, but not as result of a mathematical model selection
procedure. This is not a limitation of functional data, but rather of the employed method.
Functional testing can also be performed through, e.g., an ABC-SMC method, in a more
rigorous and well defined fashion. However, a functional approach has other drawbacks:
it relies necessarily on a certain behavioral paradigm and anesthesia conditions which
influence the neuronal network dynamics. The structural approach in comparison, is
independent of the momentary behavior of the animal or anesthesia conditions but de-
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pends most likely on the complete history of the animal. Functional model testing can be
complementary to structural model testing. Ideally, both approaches are combined.

5.5. Design Decisions and Limitations

The proposed method (such as many sampling based methods) is computationally
limited by the efficiency with which the (network) models can be numerically simulated.
These simulations are performed repeatedly during the ABC-SMC procedure. It is also
necessary to find computationally efficient and at the same time descriptive (network)
summary statistics. If the computation of the summary statistics takes very long, then
the same problem is faced as with long running model simulations. The descriptiveness
of the summary statistics is important as well: ABC methods might yield biased results
if the summary statistics are poorly chosen (Fay et al. 2015; Robert et al. 2011). The
proposed summary statistics (relative excitatory-excitatory reciprocity 𝑟rel,ee, relative
excitatory-inhibitory reciprocity 𝑟rel,ei, relative number of cycles of length 5 𝑟(5) and in-
out-degree correlation 𝑟i/o) workmost reliably for networks of the order of approximately
100 neurons or more. While the method can also be applied to smaller networks, e.g.,
10 or 20 neurons, it is in this scenario less robust to noise and fractional connectomic
reconstruction. However, such small networks were not the scope of this study. Different
summary statistics, such as, e.g., spectral statistics or motif counts are an alternative
to the summary statistics employed here. In fact, approximate network motif counts
as summary statistics were evaluated here as well (App. A.2). However, these motif
counts did not improve model selection performance. Instead, since these motif counts
rely on Monte Carlo sampling, they introduced additional stochasticity and increased
the computational cost. Therefore, computationally efficient network statistics which
did not require Monte Carlo sampling were used. All the statistics used here were
calculated on an unweighted (binary) graph representation, but the proposed method
can also be extended to take synaptic weights into account. For example, only the sub-
connectomes consisting of the strongest (largest) or weakest (smallest) connections could
be considered. Alternatively, the connectionweights or the number of synapses ofwhich a
connection consists could be directly incorporated into the summary statistics. But taking
the connection weights into account complicates data pre-processing. The connection
strength would have to be inferred, for example exploiting the correlation between
synapse strength and morphological properties such as synapse size and shape (Branco,
Marra, and Staras 2010; Harris and Stevens 1989; Murthy et al. 2001). In comparison, it is
much easier to only determine whether a synapse between two neurons is present at all
or not, irrespective of its strength.
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5.6. The Importance of Systematic Pre Hoc Analysis

Connectomic data of whole barrels (as local circuit modules) is not available yet. Why
design the analysis before the connectome is reconstructed? Would it not be easier to
explore the connectome and “look” for discriminative features once it is there (R. Gütig,
personal communication)? The pre hoc design of the analysis is beneficial in several ways:
First, the statistical power of tests with pre hoc defined endpoints is higher than the power
of tests with post hoc defined endpoints (Pocock and G.W. Stone 2016; Wilson, Karakasis,
and Oza 2015). Definition of pre hoc endpoints is therefore standard in the design of
clinical studies (Pocock and G. W. Stone 2016). This is especially important in the field of
connectomics asmost studies rely so far on a single connectome (Helmstaedter, Briggman,
Turaga, et al. 2013; Kasthuri et al. 2015; Varshney et al. 2011; J. G.White et al. 1986). Second,
in terms of experimental design, the pre hoc analysis has the advantage to specify with
which accuracy it has to be reconstructed and how much has to reconstructed. It has
been noted that one of the problems in connectomics is, that “you never know when
you are done” (L. Scheffer, connectomics conference 2017, Berlin). Here, it is specifed
how much is needed to be reconstructed and with which precision. Third, exploratory
analysis is subjective and not systematic. It is rather unclear how to discriminate models
by exploratory analysis (Sect. 3.1).

5.7. Future Directions

Several extensions are possible for future studies: For example, a focus could be set
on the precise inference of the individual models’ parameters. The proposed method
was not optimized for inferring individual model parameters as precisely as possible.
In fact to save computational resources, ABC-SMC sampling stopped as soon as one
model had probability 1 since the interested lied in the models’ probabilities only. To
obtain more accurate posteriors on the models’ parameters more intensive ABC-SMC
sampling would likely be necessary, maybe even accompanied by additional summary
statistics. Other types of network reconstruction noise and their effects on connectome
classification could be examined in a systematic fashion. Types of noise that preserve all
degrees were implemented and examined (App. A.1). However, such perturbation is less
severe. Therefore the more drastic approach of adding and removing edges randomly
was pursued. Apart from model selection on individual animals, comparative studies
could be performed through the proposed network summary statistics. The structure of
the same barrel across animals and across animal development, the structure of different
barrels within an animal or even mouse and rat barrels could be compared for differences
beyond size. The proposed method is also general enough to be extended to other brain
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areas, such as visual cortex.

5.8. Conclusion

The present thesis is one of the very first attempts to make connectomic data usable for
analysis and interpretation in a systematic fashion. It was shown that a connectome can
be used to select the most likely implemented model out of a range of candidate models
under realistic experimental conditions. In addition the necessary tools to perform such
inference on distributed hardware are provided. Concrete connectomic data is leveraged
to constrain cortical computational models, providing a step towards a mechanistic
understanding of computations performed in local cortical modules.
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A. Appendix

A.1. Degree-Preserving Noise

Let 𝑝(𝑢|𝑣) denote the transition matrix of the Markov chain with transitions defined
by the canonical moves, the square swap and the triangle swap (Roberts and Coolen
2012), on a graph (connectome) (Fig. A.1). In this Markov chain the states are graphs
(connectomes) themselves and a transition from one state 𝑢 to a second state 𝑣 exists
if 𝑢 can be transformed into 𝑣 by applying one of the canonical moves on a subset of
the 4 nodes (square swap) or 3 nodes (triangle swap) of the state (which is a graph) 𝑢.
For simplicity, focus first on the case of excitatory neurons. On the associated Markov
graph 𝐺M = (𝑉M, 𝐸M) states (connectomes) are represented by nodes 𝑣 ∈ 𝑉M and
edges 𝑒 ∈ 𝐸M exist between states with strictly positive transition probability (Fig. A.2).
The transition probability from a graph (connectome) 𝑢 to a graph (connectome) 𝑣 is
positive if 𝑢 can be transformed into 𝑣 by application of one of the canonical moves. Let
𝑛(𝑣) = |{𝑒 ∈ 𝐸M|∃𝑢 ∈ 𝐺M ∶ 𝑒 = (𝑣, 𝑢)}| denote the number of neighbors of state 𝑣. By
finiteness of the graph there exists 𝜌 > 0 with max{𝜌𝑛(𝑣)|𝑣 ∈ 𝑉M} < 1. The transition
matrix is chosen such that the transition from a given state to each neighboring state
occurs with constant probability 𝜌 for all neighboring states. The probability of staying

Square Swap Triangle Swap

Before
After

Figure A.1. Canonical network moves preserve the degree distribution.
The square swap and the triangle swap constitute the canonical moves on a directed network. Both actions
are degree distribution preserving. Any two networks with the same degree distribution can be transformed
into each other by these moves.
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𝑢1

𝑢2

𝑣
𝜌𝜌

𝑝(𝑣|𝑣) = 1 − 𝑛(𝑣)𝜌

Figure A.2. Uniform degree preserving shuffling.
Transitions from node to node are realized with probability 𝜌. The probability 𝑝(𝑣|𝑣) to stay at a node 𝑣
depends on its degree 𝑛(𝑣).

in a state is therefore 1 − 𝜌𝑛(𝑣) and the transition matrix

𝑝(𝑢|𝑣) =

⎧{{{
⎨{{{⎩

𝜌 𝑢 ∼ 𝑣
1 − 𝜌𝑛(𝑣) 𝑢 = 𝑣
0 otherwise

.

The so defined Markov chain is ergodic. Aperiodicity holds as long as the Markov graph
has at least one self-loop, which is given in all practical cases. Irreducibility holds by
connectedness of the Markov graph. The Markov graph is connected since the canonical
moves allow to transition from any graph with a given degree distribution to any other
graph with the same degree distribution. A stationary state exists by symmetry of the
transition matrix 𝑝(𝑢|𝑣) = 𝑝(𝑣|𝑢). Thus, the uniform distribution 𝜋𝑣 = 𝑐 for 𝑐 = 1

|𝑉M| is a
stationary distribution. By aperiodicity and irreducibility it is also the unique stationary
distribution. The same argument holds within the inhibitory population only and can be
similarly applied to the excitatory-to-inhibitory submatrix and the inhibitory-to-excitatory
submatrix.

A.2. Stochastic Network Measures

A stochastic alternative to the recurrency measure introduced in Sect. 4.1 is the stochastic
sampling of cycle network motifs employing path sampling (Kretschmar 2013). Here, an
efficient version of the algorithm presented by Kretschmar (2013), achieving a perfor-
mance improvement by a factor of 900 is implemented. A factor of approximately 30 is
gained by using more efficient data structures and another factor of 30 by an implemen-
tation in Cython as opposed to Matlab. Since only the cycle counts and path counts are
of interest, only these are returned but not the nodes of which these consist.
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A.2.1. Strong Path Sampling

For strong path sampling, i.e. sampling of strong directed paths, Alg. 8 is employed.
There, paths up to length 𝑁max are sampled from a graph 𝐺. Lists 𝑐path and 𝑐cycle are

Algorithm 8: Strong Path Sampling
Input: 𝐺, 𝑁max, 𝑝extend
Output: 𝑐path, 𝑐cycle
(𝑉, 𝐸) ← 𝐺
𝑐path ← zeros(𝑁max)
𝑐cycle ← zeros(𝑁max)

foreach 𝑣 ∈ 𝑉 do
if 𝒰(0, 1) < 𝑝extend then

extend_strong([𝑣], 𝑐path, 𝑐cycle𝑁max, 𝐺, 𝑝extend)
end

end

initialized, which hold the counts of paths and cycles of length 𝑛 at position 𝑛. For
each node in the vertex set 𝑉 of 𝐺, a path extension attempt is made with probability
𝑝extend. The extension proceeds recursively according to Alg. 9. There, the path counter

Algorithm 9: extend_strong
Input: 𝑃, 𝑐path, 𝑐cycle, 𝑁max, 𝐺, 𝑝extend

𝑐path[|𝑃|] += 1
if 𝑃 is a strong cycle then

𝑐cycle[|𝑃|] += 1
end
if |𝑃| > 𝑁max then

return
end
foreach 𝑣 ∈ target nodes of the last node of 𝑃 do

if 𝑣 ∉ 𝑃 and 𝒰(0, 1) < 𝑝extend then
extend_strong(𝑃 + [𝑣], 𝑐path, 𝑐cycle, 𝑁max, 𝐺, 𝑝extend)

end
end

is increased first. If the path is a cycle (i.e. the last node in 𝑃 is connected by a directed
edge to the first node in 𝑃), then also the cycle counter is increased. If the maximum path
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𝑢 𝑣

Figure A.3. Strong path sampling.
The strong path sampling Alg. 8 visits each path of length 𝑛 with probability 𝑝𝑛

extend. A random walk would
visit the blue path with higher probability than the orange path.

length 𝑁max is reached, the algorithm returns; if not, then each of the target nodes 𝑣 of
the last node in the current path 𝑃 is probed for extension. Only if 𝑣 is not already in the
path, the path is extended with probability 𝑁max and Alg. 9 is called recursively.

The obtained counts 𝑐path and 𝑐cycle are compared with counts obtained from perturba-
tions of the graph 𝐺, e.g. by the degree-preserving randomization procedure described
in App. A.1, to assess whether directed cycles occurred with higher-than-expected fre-
quency. Also, the fractions of paths which are cycles can be assessed for varying lengths.

Algorithm 8 visits each path of length 𝑛 with probability 𝑝𝑛
extend. This is in contrast to

a random walk on the graph. Consider the example in Fig. A.3. A random walk would
choose the start nodes 𝑢 and 𝑣 with the same probability. If 𝑢 is chosen, the only possible
path of length 3 is the blue path. In contrast, if 𝑣 is chosen, there are 5 possible paths of
length 3 to choose from; the orange path is only one of them. Therefore, the probability
of visiting the orange path is one fifth of the probability of visiting the blue path in
a random walk on this example graph. However, Alg. 8 visits both paths with equal
probability but the total number of visited paths is not fixed. In case 𝑣 is chosen, the
number of visited paths is likely higher than in the case of choosing 𝑢 as start node.

A.2.2. Weak Path Enumeration Sampling

Weak path enumeration sampling ignores the direction of the edges. Aweak path or cycle
in a directed graph is one that is a path or cycle irrespective of the edge direction. Sampling
weak paths or cycles hence amounts to sampling paths or cycles in an undirected graph.
To ensure uniform sampling, an enumeration technique is applied (Kretschmar 2013;
Wernicke 2006). A strict total order ≻ is introduced on the edges 𝐸 of a graph 𝐺 = (𝑉, 𝐸)
which exists by finiteness of 𝐸. Each edge 𝑒 of the graph is probed as starting edge 𝑒start
of a weak path 𝑃 and is attempted to be extended (Alg. 10). The extension proceeds
according to Alg. 11. It is first checked whether the weak path 𝑃 is an open path, defines a
balanced cycle or an unbalanced cycle (Alg. 11, Fig. A.4). A weak cycle is called balanced
if a traversal of the cycle traverses the same number of edges in-direction as in opposite
direction. A balanced cycle consists always of an even number of edges. A weak cycle
that is not balanced is called unbalanced. It is attempted to expand the weak path 𝑃 at its

120



A.2. Stochastic Network Measures

Algorithm 10: Weak Path Enumeration Sampling
Input: 𝐺, 𝑁max, 𝑝extend
Output: 𝑐open, 𝑐balanced, 𝑐unbalanced
(𝑉, 𝐸) ← 𝐺
𝑐open ← zeros(𝑁max)
𝑐balanced ← zeros(𝑁max)
𝑐unbalanced ← zeros(𝑁max)

foreach 𝑒 ∈ 𝐸 do
if 𝒰(0, 1) < 𝑝extend then

extend_weak(𝑒, 𝐺, 𝑇𝑟𝑢𝑒, 𝑐, 𝑝extend)
end

end

last node 𝑣end (Alg. 11). A set 𝐸candidate of candidate edges for extension is assembled
from all edges adjacent to last node 𝑣end of the path but not to any other node of the
path. The path is extended only if a candidate edge 𝑒 is a successor of the first edge 𝑒start
in the weak path 𝑃 (Fig. A.4). To reduce the number of visited paths, this extension is
performed with probability 𝑝extend. The start of the weak path 𝑃 is extended similarly to
the end of the path 𝑃. However, an extension of the start does not trigger an extension of
the end in the next recursive call; the argument 𝑒𝑥𝑡𝑒𝑛𝑑_𝑏𝑜𝑡ℎ is set to 𝐹𝑎𝑙𝑠𝑒. The number
of open paths, balanced cycles and uncounted cycles visited over the recursive calls is
tracked through counts stored in 𝑐 (Alg. 11, Fig. A.4).

Algorithm 10 visits all weak paths of length 𝑛 with probability 𝑝𝑛
extend (Wernicke 2006).

Consider first the simple case of 𝑝extend = 1. Each path 𝑃 of length 𝑛 is visited exactly
once. Let 𝑒min denote the unique edge in 𝑃 with 𝑒′ ≻ 𝑒min∀𝑒′ ∈ 𝑃 ∖ {𝑒}. This edge was
chosen as the first edge added to the path, which is by definition of the algorithm the
minimum edge of 𝑃. If the path consists of 𝑛 additional edges appended to the path
and 𝑚 edges prepended to the path, then the path is visited by extending 𝑛 times at the
end (𝑒𝑥𝑡𝑒𝑛𝑑_𝑏𝑜𝑡ℎ = 𝑇𝑟𝑢𝑒), followed by 𝑚 extensions at the start (𝑒𝑥𝑡𝑒𝑛𝑑_𝑏𝑜𝑡ℎ = 𝐹𝑎𝑙𝑠𝑒).
No other calling sequence yields this path, so every path is visited exactly once. The
probability 𝑝𝑛

extend follows from executing the recursive calls with probability 𝑝extend.
The counts of open paths, balanced and unbalanced cycles obtained from a graph 𝐺

can be compared to the counts obtained from reshuffled version of 𝐺 to assess over- or
underrepresentation of these motifs.
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Algorithm 11: extend_weak
Input: 𝑃, 𝐺, 𝑒𝑥𝑡𝑒𝑛𝑑_𝑏𝑜𝑡ℎ, 𝑁max, 𝑐, 𝑝extend
if 𝑃 is an open path then

𝑐open[|𝑃|]+ = 1
end
if 𝑃 is a balanced cycle then

𝑐balanced[|𝑃|]+ = 1
end
if 𝑃 is an unbalanced cycle then

𝑐unbalanced[|𝑃|]+ = 1
end
if |𝑃| > 𝑁max then

return
end
(𝑉, 𝐸) ← 𝐺
𝑒start ← (𝑃1, 𝑃2)

if extend_both then
# Extend the end of 𝑃
𝑣end ← 𝑃|𝑃|
𝐸candidate ← {𝑒 ∈ 𝐸|𝑒 ∩ 𝑃 = {𝑣end}}
foreach 𝑒 ∈ 𝐸candidate do

if 𝑒 ≻ 𝑒start and 𝒰(0, 1) < 𝑝extend then
{𝑣𝑒𝑥𝑡} ← 𝑒 ∖ {𝑣end}
extend_weak(𝑃 + [𝑣𝑒𝑥𝑡], 𝐺, 𝑇𝑟𝑢𝑒, 𝑁max, 𝑐, 𝑝extend)

end
end

end

# Extend the start of 𝑃
𝑣start ← 𝑃1
𝐸candidate ← {𝑒 ∈ 𝐸|𝑒 ∩ 𝑃 = {𝑣start}}
foreach 𝑒 ∈ 𝐸candidate do

if 𝑒 ≻ 𝑒start and 𝒰(0, 1) < 𝑝extend then
{𝑣𝑒𝑥𝑡} ← 𝑒 ∖ {𝑣start}
extend_weak([𝑣𝑒𝑥𝑡] + 𝑃, 𝐺, 𝐹𝑎𝑙𝑠𝑒, 𝑁max, 𝑐, 𝑝extend)

end
end
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1
2

3

4
5

6 Order “≻”

Minimum

Maximum

𝑒min

Call sequence: 1, … , 7

𝑢
𝑣7

Figure A.4. Weak path enumeration sampling.
The edges are ordered according to “≻”. The numbers indicate the sequence in which edges are added to
the path through recursive calls of Alg. 11. The minimal edge 𝑒min is by construction the first edge in the
path. Subsequently added edges 𝑒 have to satisfy 𝑒 ≻ 𝑒min. The path is a weak path, edges in the path are
not necessarily aligned. The presence or absence and possible direction of an edge from 𝑢 to 𝑣 (gray dashed
line) determines whether the path is open, defines a balanced cycle or an unbalanced cycle. In this example,
the path is open if no edge from node 𝑢 to node 𝑣 exists, the path defines a balanced cycle if an edge with
direction from 𝑣 to 𝑢 exists and an unbalanced cycle if an edge with direction from 𝑢 to 𝑣 exists.
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