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Zusammenfassung

In dieser Dissertation untersuchen wir Symmetrieeigenschaften effektiver Feldtheorien
(EFTs), besonders diejenigen, die schwere Quarks und Antiquarks beinhalten. Vor
allem behandeln wir Raumzeitsymmetrien (i.e., Poincaré Invarianz) in Feldtheorien wie
die non-relativistic QCD (NRQCD) und die potential NRQCD (pNRQCD). Weil diese
Symmetrien deutlich in einer nichtlinearen Art und Weise realisiert sind, entstehen einige
nicht triviale Beziehungen zwischen den Wilson Koeffizienten der non-relativistic EFTs.
Zudem leiten wir einen analytischen Ausdruck der Wilson Koeffizienten, als die Poten-
tiale der nicht perturbativen pNRQCD, her. Dabei verwenden wir die effektive Stringth-
eorie (EST), als ein effektives Modell des ,,QCD flux tube”, das im nicht perturbativen
Bereich gültig ist. Wir konstruktieren die EST für ein System eines gebundenen Zus-
tandes zwischen einem schweren Quark und einem schweren Antiquark, und analysieren
die Potentiale der führenden Ordnung (LO) und der nächsten führenden Ordnung (NLO)
in der EST. Die explizite Realisierung der Poincaré Invarianz in dem Tief-Energie Bere-
ich vereinfacht die Ausdrücke der Potentiale sowohl zur LO als auch zur NLO in der
EST. Schließlich werden die hergeleiteten Potentiale mit den verfügbaren lattice-QCD
Daten in den dazugehörigen Distanzen vergleichen.

Abstract

In this thesis, we investigate symmetric aspects of effective field theories (EFTs), es-
pecially the ones involving heavy quarks and heavy antiquarks. In particular, space-
time symmetries (i.e., Poincaré invariance) are studied in the context of non-relativistic
QCD (NRQCD) and potential NRQCD (pNRQCD). As these fundamental spacetime
symmeties are manifested in a non-linear fashion, there arise some non-trivial relations
between the Wilson coefficients of the non-relativistic EFTs. Then, we investigate the an-
alytic expressions of the Wilson coefficients of pNRQCD in the non-perturbative regime
by utilizing the effective string theory (EST), which is an effective framework of the
QCD flux tube model valid in the non-perturbative regime. We construct the EST suit-
able for the heavy quark-antiquark bound state from the symmetry of the system and
calculate the potentials at leading order (LO) and next-to-leading order (NLO) within
the EST power counting scheme. The explicit realization of the Poincaré invariance in
the low-energy regime eventually simplifies the form of the potentials at LO as well as
at NLO in the EST. Finally, the derived heavy quark potentials are compared to the
available lattice QCD data.
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1.2.1 Poincaré transformations . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Little group formalism . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Spacetime symmeries in quantum field theory . . . . . . . . . . . . . . . . 23
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Introduction

Effective field theory (EFT) has been a standard tool for particle and nuclear physics
at the frontier of research during the last decades. In particle physics, EFT is a mod-
ern technique for investigating physics above the electroweak scale, namely the Beyond
the Standard Model (BSM), or even Dark Matter (DM) theories. Up until now, there
does not exist any well-established underlying theory to compare with the EFT for the
parametrization of physics BSM at the currently available energy scale of the Large
Hadron Collider. In hadronic and nuclear physics, on the other hand, an EFT frame-
work plays a pivotal role in the understanding of the lower-energy regime. In this case,
the corresponding EFTs can be matched to the underlying theory, Quantum Chromo-
dynamics (QCD), at a given energy scale.

The Lagrangian of an EFT is given as an expansion in the heavy scale that has been
integrated out; in the case of non-relativistic EFTs, this is the quark mass M . It contains
all terms allowed by the symmetries of the EFT and can schematically be expressed as

LEFT =
∑
n

cn
On

Mdn−4
, (1)

where the operators On, made up by the fields that describe the effective degrees of
freedom, are of mass dimension dn, and the cn are scalar functions, called matching
or Wilson coefficients, that have zero mass dimension. These coefficients contain all
information from the higher energy scale through the matching to the underlying theory.

In this thesis, we focus on EFTs of QCD. There exists a wide variety of such
EFTs depending on the physical processes, and among them we want to concentrate
on Heavy Quark Effective Theory (HQET), non-relativistic QCD (NRQCD), and po-
tential NRQCD (pNRQCD). While HQET [1–4] is a low-energy EFT for heavy-light
mesons, NRQCD [5, 6] provides a non-relativistic effective description for the dynamics
of heavy quarks and antiquarks, and pNRQCD [7, 8] is an effective theory for heavy
quark-antiquark bound states (heavy quarkonium). In these EFTs, a hierarchy of scales
is assumed such that the mass M of the heavy (anti)quark is much larger than any
other relevant energy scale including ΛQCD, which is the scale at which confinement
takes place.

The Wilson coefficients of these EFTs have to be determined through a matching
calculation to the underlying theory. Beyond leading order in the coupling or the expan-
sion parameter, this can easily become technically involved. For this reason, one would
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like to exploit as much prior knowledge on the Wilson coefficients as possible before
commencing the calculation.

Furthermore, due to the non-relativistic expansions, Poincaré invariance is no longer
manifest in these EFTs. A physical system is symmetric under Poincaré transformations
when the action is invariant under spacetime translations, rotations, and boost trans-
formations. In the late 19th and early 20th century, Lorentz, Poincaré and Einstein
realized this fundamental spacetime symmetry of nature. Consequently, the quantum
theory of fields was built upon this symmetry along with the cluster decomposition prin-
ciple [9]. On the other hand, Dirac, during the 1940’s, showed that the terms of the
quantum mechanical Hamiltonian satisfy nontrivial relations if one imposes the Poincaré
algebra [10]. This discussion was further developed for interacting relativistic composite
systems [11–15], where relations between the relativistic correction terms were derived
using the Poincaré algebra. As these quantum mechanical systems can be generalized
by the framework of non-relativistic EFTs, it is natural to expect that also some non-
trivial relations between the Wilson coefficients of EFTs can be derived from Poincaré
invariance. It is natural to assume this invariance, because the EFT is equivalent to the
low-energy limit of the underlying relativistic quantum field theory, which is manifestly
symmetric under Poincaré transformations.

Another symmetry has been found in low-energy EFTs of QCD, for instance in HQET
or Soft Collinear Effective Theory (SCET) [16–19], which is called reparametrization in-
variance. In these EFTs, the momentum of high energy particles is separated into a
large momentum of the heavy particle and a small residual momentum from the inter-
action with a light particle. This separation is to some extent arbitrary, as a shift of the
residual momentum by a small amount (compensated by a shift in the large momentum)
preserves the scale hierarchy. Performing this shift at the level of the Lagrangian leads to
a number of non-trivial relations between the Wilson coefficients [20, 21], which turn out
to be equivalent to the ones obtained from Poincaré invariance [22]. This tells us that
a shift in the parametrization of the high energy momentum may be interpreted just as
well as a change of the reference frame. Although the implementation of reparametriza-
tion invariance might be more straightforward, its applications are limited. Poincaré
invariance, on the other hand, is a general principle that all quantum field theories have
to observe.

In [22], a direct implementation of Poincaré invariance was applied to two of the
non-relativistic EFTs of QCD, namely, NRQCD and pNRQCD. As one constructs all
generators of the symmetry group in these EFTs, the generators corresponding to space-
time translations and rotations are obtained in the usual way from the associated con-
served Noether currents. The generators of boosts, on the other hand, are derived from
a general ansatz that includes all operators allowed by other symmetries (such as parity,
charge conjugation, and time reversal) up to a certain order in the expansion. As all
generators has to satisfy the commutation relations of the Poincaré algebra, one can ob-
tain relations between the Wilson coefficients of the EFTs. While this approach works
well up to certain orders in the expansion, going into higher order poses a non-trivial
challenge in calculations.
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Recently, an approach was suggested for deriving constraints in EFTs through Poincaré
invariance, which employs Wigner’s induced representation [23]. It was proposed in [24]
that a free nonrelativistic field φ in the rest frame, which has a well defined transfor-
mation behavior under rotations R as φ(x)→ D[R]φ(R−1x), should transform under a
generic Lorentz transformation Λ as

φ(x)→ D[W (Λ, i∂)]φ(Λ−1x) . (2)

The little group element W is a particular rotation associated with Λ and the momentum,
which in position space leads to a dependence of W on derivatives of the field φ. The
resulting expression is then expanded to the same order as the Lagrangian.

Although this approach is valid for non-interacting theories, some issues arise in an
interacting gauge theory. In an interacting theory, one might think that promoting the
derivatives to covariant derivatives would be sufficient, but it introduces some ambiguity
in how the covariant derivatives should be ordered. It is also necessary to introduce
additional gauge field dependent operators to the boost in order to cancel some terms
that would prevent the EFT Lagrangian from being Poincaré invariant. In the end, the
constraints obtained in this way agree with the previous results in NRQCD and non-
relativistic QED (NRQED) [22, 25], and the derivation is somewhat simpler [24], but
this covariantization procedure for an interacting theory seems arbitrary to some extent.

Therefore in this thesis, instead using these methods, we employ the full EFT ap-
proach for investigating the Poincaré invariance (under boost, in particular) in both
NRQCD and pNRQCD: we include all possible terms in the boost generator that are
allowed by the other symmetries of the theory (such as P,C, T ) and assign a generic
coefficient to each of them. Even though we start with the most general expression, we
will exploit the possibility to redefine the effective fields in order to remove redundant
terms from this ansatz. Since the boost generator for the field transformation has to
satisfy the Poincaré algebra, we will also demonstrate how the usual commutation rela-
tions have to be implemented in the case of non-linear boost generators. Requiring all
commutators of the Poincaré algebra to be satisfied will lead to additional constraints on
the coefficients of the terms in the boost generator as well as the Wilson coefficients. In
the end, applying the transformation by the constructed boost generator to the theory,
we obtain some non-trivial relations between the Wilson coefficients; in pNRQCD, such
derived relations from the Poincaré invariance are between the heavy quark potentials.

In the weakly-coupled regime of QCD, one can calculate the analytic expressions
of the heavy quark potentials in a perturbative way [26–30], but at the long-distance
scale (strongly-coupled case), determination of the potentials in a perturbative fashion
is impossible due to color confinement [31]. Color confinement in QCD is one of the
greatest challenges in the modern particle physics community. Around and below the
hadronic scale ΛQCD ∼ 200 MeV, the conventional perturbative approach in non-Abelian
gauge theory for describing color interactions between quarks and gluons is no longer a
feasible theoretical framework, because the expansion parameter αS exceeds the weak
coupling limit. This manifests in experiments, such that only composite forms of par-
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ticles (mesons and baryons) are detected via jets instead of singular quarks or gluons,
due to hadronization; i.e., the detected particles are color-neutral objects.

Since the realization of color confinement in QCD, it was proposed that the dynam-
ics of quark-antiquark bound states at long distance can be described by a flux tube
model [32], in which the quark and antiquark is connected by an open string. The at-
tractive force between the pair increases as the separation distance increases (for which
the length scale is greater than the confining distance), thereby forming a flux in the
shape of a tube due to the increase of the energy density between them. This suggestion
has been verified by lattice QCD simulations [33–43]. The heavy quark and antiquark
in this formulation are treated as static objects, while the gluonic interaction between
the pair is described by vibrational modes of the string. Since the two ends of the string
are fixed at the position of the pair, only the transversal modes of the string act as the
dynamical degrees of freedom. Several years after Nambu’s suggestion of a flux tube
model, Kogut and Parisi extrapolated this idea further, such that the shape of the spin-
spin interaction part of the potential was explicitly shown [44], which was also confirmed
by lattice simulations [45–49].

In this line of investigation, a significant progress concerning the analysis of the long-
distance heavy quark potential has been made during the last few decades. Potential
terms of the heavy quark-antiquark bound state in the static limit were shown to be
equivalent to the Wilson loop expectation value (and the gauge field insertions therein)
via matching calculation between NRQCD and pNRQCD [50, 51]. Based on this result
as well as on the Wilson loop-string partition function equivalence conjecture [52–55],
a few other heavy quark potentials were directly computed through the effective string
picture [56]. Recently, Brambilla et. al. have calculated all of the heavy quark potentials
up to leading order (LO) of the effective string theory (EST) power counting [57]. Full
summation of the heavy quark potential was compared to lattice simulations in order
to constrain some of the parameters, which arise from the effective string picture itself.
As it was pointed out there, however, this leading order calculation is not fully inclusive
because some of the terms from next-to-leading order (NLO) calculation might be of the
same order as the leading order terms of the EST. In other words, some terms arising in
the EST calculation at NLO can alter the leading order coefficients of the potentials. It
is, therefore, necessary for us to employ the proper EFT systematics of the string picture,
so that not only the higher order suppression terms are understood, but all of the missing
terms of LO can also be acquired. Furthermore, a recent comparison between the analytic
result of the potentials at long-distance via EST and LQCD data was presented in [58],
but the discrepancy is not negligible. We estimate that the subleading contributions to
the potential will improve this discrepancy, and this is one of the major subjects of the
thesis.

Therefore, for the detailed discussions of the Poincaré invariance in low-energy EFTs
of QCD and long-distance heavy quark potentials, this thesis is organized as follows: in
Chapter 1, we discuss basic principles of spacetime symmetries in classical physics, quan-
tum mechanics, and quantum field theory. In particular, we discuss Wigner’s induced
representation [23], from which one can derive a boost transformation of an effective field
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in a non-linear fashion. We pose some issues and challenges in employing the induced
representation in applying to the case of an EFT of an interacting gauge theory. In Chap-
ter 2, we discuss basic features of QCD, including degrees of freedom and asymptotic
freedom [59–61], and then, HQET and NRQCD are introduced. Symmetries of these two
EFTs are discussed, Poincaré invariance in particular. As for NRQCD, we present a full
EFT approach for constructing a suitable boost generator, and using the Poincaré alge-
bra condition between two boost generators and the Poincaré invariance of the NRQCD
Lagrangian, we obtain not only the constraints between the Wilson coefficients, but also
constraints on the generic coefficients of the boost generator. In Chapter 3, we apply the
same EFT approach to construct boost generators for both singlet and octet fields, and
we use the field redefinitions to eliminate some redundant terms of the boost. From the
same approach as in the NRQCD case, we obtain some non-trivial relations between the
Wilson coefficients. In Chapter 4, we briefly discuss the matching procedure between
NRQCD and pNRQCD, as well as some general features of the heavy quark potentials
in both weakly-coupled and strongly-coupled regimes of pNRQCD. In order to analyze
the potentials in long-distance regime, we introduce the EST in Chapter 5. Here, we
derive the Nambu-Goto action from a minimal area law spanned by a string, from which
we obtain the EST action by imposing some physical conditions. Introducing the QCD-
to-EST mapping, we calculate the long-distance heavy quark potentials in LO and NLO
in the EST power counting. Due to the Poincaré invariance of QCD, which gives some
non-trivial relations between potentials, leads to constraints between several parameters
arising from the EST calculations. Finally, we compare the simplified expressions of the
potentials to the available LQCD data. Conclusion and outlook are presented in Chap-
ter 6. In Appendix A, detailed derivation of constraints between the Wilson coefficients
at NLO in the four-fermion sector and the calculation of gauge field insertions to the
Wilson loop expectation value are presented.
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Chapter 1

Spacetime symmetries

In this chapter, we briefly discuss spacetime symmetries of classical physics, quantum
mechanics, and quantum field theory. In addition, we show the transformations of
a non-relativistic effective field under the Poincaré group in both non-interacting and
interacting cases.

1.1 Spacetime symmetries in classical physics

In this section, we briefly discuss the development in our understanding of the symmetries
in space and time, from Galilean to general coordinate invariance in classical physics.

1.1.1 Galilean invariance

During the Newtonian mechanics era, space and time were perceived as two separate
entities of the nature, Time was considered a parameter for the spatial trajectory of an
object, while the spatial trajectory does not affect the flow of the time parameter. For
instance, consider two inertial reference frames S and S′, where S uses the coordinate1

(t, x, y, z) and S′ uses (t′, x′, y′, z′). If both frames are moving along the x and x′ axis,
respective, then two of these frames are related by the following set of equations

t′ = t ,

x′ = x− vt ,
y′ = y ,

z′ = z ,

(1.1)

where v is the relative velocity between these frames. The first relation, t′ = t shows
the universality of time, independent of the relative motion of the frame. One can
put this in a more general setting. The line element, which measures the distance in

1We use Cartesian coordinates as a simple example.
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three-dimensional space, of the Newtonian system is given by

ds2 =
3∑
i=1

dx2
i , (1.2)

and one can easily see that the line element is independent of the spatial coordinate
system of the reference frame being used. This is called the Galilean invariance. No
matter on which inertial reference we are at, the distance measure does not change.

The symmetry mentioned in the previous paragraph is the so-called invariance under
boosts. There are two more components of the Galilean symmetries: translations and
rotations. All these transformations are mathematically written as

(t,x)→ (t,x + vt) , (1.3)

(t,x)→ (t+ a,x + b) , (1.4)

(t,x)→ (t,Rx) , (1.5)

where x = (x1, x2, x3), v ∈ R3, a ∈ R and b ∈ R3, and R is the rotation operator, which
maps a three-vector to another three-vector: R : R3 → R3. It is important to note that
the equations of motion from the action principle of classical mechanics are invariant
under these transformations.

In a group theoretic term (Lie group), the Galilean group has ten dimensions: there
are three-dimensional rotations, three-dimensional boosts, and three-dimensional spatial
translations as well as one-dimensional time translation. Each of these group transforma-
tion is caused by generators of group. As we denote H a generator of time translation, P
a generator of spatial translations, J a generator of spatial rotations, and K a generator
of boosts, a set of commutation relations hold between the generators

[H,H] = 0 , (1.6)

[H,Pi] = 0 , (1.7)

[Pi,Pj ] = 0 , (1.8)

[Ji, H] = 0 , (1.9)

[Ki,Kj ] = 0 , (1.10)

[Ji,Jj ] = iεijkJk , (1.11)

[Ji,Pj ] = iεijkPk , (1.12)

[Ji,Kj ] = iεijkKk , (1.13)

[Ki, H] = −iPi , (1.14)

[Ki,Pj ] = 0 , (1.15)

where εijk is a totally antisymmetric rank-3 tensor. In the next section, we will see how
these commutation relations of the Lie algebra change in a more general setting of space
and time.

16



1.1.2 Poincaré invariance

At the turn of twentieth century, our perception of space and time encountered a great
revolution. Until the time of Hendrik Lorentz, Albert Einstein, and Henri Poincaré, time
was considered an absolute entity, which is not affected by any other variables of space.
This is well represented by the example of Eq. (1.1). However, this was only valid for the
case of the relative velocity v much smaller than the speed of light c. This realization was
achieved through the classical theory of electromagnetism. As people tried to measure
the speed of light relative to the presumed substance in the atmosphere [62], the so-called
“luminiferous aether”, such substance was not found. In other words, the notion of the
relative speed does not apply to the speed of light. Thus based upon the mathematical
framework of Henri Poincaré’s Lorentz transformation [63], Einstein postulated [64] two
principles: (i) the speed of light in vacuum c is the same for all observers, regardless of
the motion of the light source, and (ii) the laws of physics are invariant in all inertial
systems (i.e., non-accelerating frames of reference). These two postulates negate the
presumed notion of “absolute frame”, which was the predominant concept before the
relativity era by Einstein.

Suppose there are two reference frames S which has coordinates (t, x, y, z) and S′

with coordinates (t′, x′, y′, z′). If the relative speed between these two frames (along the
x- and x′-axis) is v, then the relation between the coordinates is the modified expresstion
of Eq. (1.1)

t′ = γ
(
t− vx

c2

)
,

x′ = γ (x− vt) ,
y′ = y ,

z′ = z ,

(1.16)

where the Lorentz factor γ is given by

γ =

(
1− v2

c2

)− 1
2

. (1.17)

One can reproduce Eq. (1.1) from Eq. (1.16) by taking the limit c → ∞, which is
the case for a non-relativistic relative speed between the frames, where v � c. The
remarkable implication of the Lorentz transformation is the fact that time is no longer
an independent parameter. If the relative velocity between two inertial reference frames
is relativistic, v . c, the relation between two different time frames becomes non-trivial.
Furthermore, as we observe in the expression of the Lorentz factor, there is a speed limit
in the relative velocity, otherwise, γ becomes imaginary, and we encounter an issue of
causality2. The consequence of this special theory of relativity [64] is elucidated by the
phenomenon like time dilation, length contraction, and simultaneity3.

2In fact, a hypothetical object which exhibits the causality problem is called the tachyon.
3More detailed discussions on the consequence of the special relativity are found in standard text-

books, such as in [65].
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As the notion of absolute time is changed, the definition of distance in space and
time changes as well. The line element we discussed in the Galilean symmetry, Eq. (1.2),
now incorporates the time element as well, which is given by

ds2 = −c2dx2
0 +

3∑
i=1

dx2
i , (1.18)

where we denote x0 = t. Using the convention c = 1 (i.e., the relative velocity is
compared to the speed of light by v < 1), this can more concisely be written as

ds2 = ηµνdx
µdxν , (1.19)

where ηµν is a diagonal four-by-four matrix with the diagonal entries (−1, 1, 1, 1). This
notation elucidates the unification of space and time on the equal footing: we call it a
spacetime. The matrix (or a symmetric rank-2 tensor) ηµν is called the Minkowski met-
ric in four-dimensional spacetime. The metric determines the distance and curvature
of the four-dimensional Minkowski spacetime; note that, the curvature is in this case
zero, meaning that the Minkowski spacetime is flat. In this thesis, we will be using an
opposite convention of the metric: η would be the Minkowski metric with mostly minus
convention; i.e., (1,−1,−1,−1) on the diagonal entries.

In a group theoretic term, the symmetry group of the Lorentz transformations con-
sists of generators of dimension six. The generator for rotations J has three components,
the boost generator K has three components. Furthermore, there are four additional
components generator for spacetime translation, H and P, which are responsible for
time and space translations, respectively. The generators for the Lorentz group and
the generators for spacetime translations altogether are the generators of the so-called
Poincaré group, and the generators satisfy the following commutation relations:

[H,H] = 0 , (1.20)

[H,Pi] = 0 , (1.21)

[Pi,Pj ] = 0 , (1.22)

[Ji, H] = 0 , (1.23)

[Ki,Kj ] = −iεijkJk , (1.24)

[Ji,Jj ] = iεijkJk , (1.25)

[Ji,Pj ] = iεijkPk , (1.26)

[Ji,Kj ] = iεijkKk , (1.27)

[Ki, H] = −iPi , (1.28)

[Ki,Pj ] = −iHδij . (1.29)

Comparing to the commutations in the Galilean group, Eqs. (1.6) - (1.15), we observe
some non-trivial modifications, especially of the boost generators. Compare Eq. (1.10)
to Eq. (1.24), and Eq. (1.15) to Eq. (1.29). A successive action of the Lorentz boost,
generated by the generator K, does not commute, but it is non-trivially related to the
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rotation, which is generated by J. Also, the last commutation relation, Eq. (1.29), tells
us that the actions of boosting the reference frame and spatial translations are no longer
independent to each other, but it is now related by the time translation. This is the
mathematical description that space and time are no longer independent entities. We
will see the commutation relation between the boost generators, Eq. (1.24), again in the
next two chapters.

1.1.3 General coordinate invariance

Unification of the space and time with the corresponding symmetries do not end here.
Symmetries of the special theory of relativity [64] are only limited to the case of inertial
reference frames, and Einstein, after ten years of the special relativity, extended the
notion of spacetime to the case of accelerating frames [66], (or in a mathematically
speaking, to the differentiable manifold equipped with a generic metric, which is the
Riemannian manifold). In his general theory of relativity, the motion of a point particle
(or a body) under gravitation is described by a geodesics on the given surface of the
geometric background. In other words, the force of gravity is dictated by the shape of
the spacetime on which the object is living. This is mathematically described by the
much celebrated Einstein equations of motion

Rµν −
1

2
Rgµν = 8πGTµν , (1.30)

where Rµν and R are the Ricci tensor and the Ricci scalar, respectively, and Tµν is the
stress-energy tensor for any particle or energy being embedded on the given background
gµν . Also, G is the Newton’s constant, which is also given in Newton’s universal law
of gravitation. Here, gµν is the solution of the equations, such that the Ricci tensor
and scalars are expressed in terms of this metric. In other words, gµν is responsible
for measuring distance and curvature of the background spacetime, such that the line
element is then changed by

ds2 = gµν(x)dxµdxν . (1.31)

Unlike in Eqs. (1.2) and (1.19), the metric tensor is now spacetime dependent; this tells
us that the background spacetime features some non-trivial curvature. It is important
to notice from Eq. (1.31) that the change of coordinate system, x→ x̃, does not change
the line element:

ds′2 = gµν(x̃)dx̃µdx̃ν

= gµν(x̃)
∂x̃µ

∂xα
∂x̃ν

∂xβ
dxαdxβ

= gαβ(x)dxαdxβ = ds2 ,

(1.32)

where the last line is due to the Jacobian map. In other words, the given geometry of
spacetime is independent of the choice of coordinates, and this symmetry is called the
general coordinate invariance. This is the key symmetric feature of the general theory

19



of relativity. We can see this symmetry more vividly from the action principle. As
Eq. (1.30) is derived by solving the equations of motion from the action, the so-called
Einstein-Hilbert action, we also see that the action itself is invariant under the coordinate
transformation (by setting Tµν = 0 for vacuum and normalizing the Newton’s constant
G = 1)

SEH =

∫
d4x
√
−gR , (1.33)

where g is the determinant of the metric gµν . Replacing x by a new coordinate x̃ would
not change the action overall.

It is important to note that the relativity in an inertial reference frame is merely a
special case (as the name indicates) of the general theory, such that if gµν → ηµν , the
Einstein-Hilbert action vanishes, and we recover the expression of the line element as in
Eq. (1.19). Furthermore, at the local level of the generic spacetime, one can approximate
the curvature to be flat (Minkowski) due to the weak equivalence principle. This can
mathematically be utilized by the Riemann normal coordinates, such as in [67, 68].

If there is a small fluctuation around the given spacetime, one can apply a pertur-
bative method to analyze the dynamics of the small fluctuation. Let us call hµν a small
fluctuation around the background g̃µν , such that |hµν | � |gµν |, then one can expand
the action, Eq. (1.33) as the following expression with respect to hµν

S =
1

2

∫
d4x
√
−g [(∇µhµν)(∇νh)− (∇µhρσ)(∇ρhµσ)

+
1

2
(∇µhρσ)(∇νhρσ)− 1

2
gµν(∇µh)(∇νh)

]
,

(1.34)

where ∇ is a covariant derivative associated with a curved background gµν . This is
the action of the gravitational field on a curved background, and the detection of this
fluctuation (the gravitational wave) has recently been announced [69]. The general
coordinate invariance of the Einstein-Hilbert action is now translated into the invariance
under the field transformation as

hµν → hµν +∇µξν +∇νξµ , (1.35)

in which ξµ is a generic vector field. This is also called the gauge symmetry in field
theories. It is interesting to see that the general coordinate invariance at the level of
background spacetime is now rewritten in the form of gauge symmetry. If we go into
the asymptotic limit of the spacetime, where gµν → ηµν , this symmetry transformation
is reminiscent of the gauge symmetry of the electromagnetic field.

1.2 Spacetime symmetries in quantum mechanics

After exploring spacetime symmetries in classical physics, now we discuss symmetries in
quantum mechanics. Since we will eventually be discussing symmetries in quantum field
theory, it is a useful guide to observe how quantum states transform under the Poincaré
transformations. In particular, we briefly discuss Wigner’s little group formalism [23].
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1.2.1 Poincaré transformations

In quantum mechanics, physical states are represented by vectors Φp,σ (with momentum
p and spin σ) and Ψp′,σ′ in Hilbert space [9], which satisfies the following conditions

(Φp,σ,Ψp′,σ′) = (Ψp′,σ′ ,Φp,σ)∗ ,

(Φp,σ, c1Ψp′1,σ
′
1

+ c2Ψp′2,σ
′
2
) = c1(Φp,σ,Ψp′1,σ

′
1
) + c2(Φp,σ,Ψp′2,σ

′
2
) ,

(d1Φp1,σ1 + d2Φp2,σ2 ,Ψp′,σ′) = d∗1(d1Φp1,σ1 ,Ψp′,σ′) + d∗2(Φp2,σ2 ,Ψp′,σ′) ,

(1.36)

where c1, c2 ∈ C and d1, d2 ∈ C. Also, For such state vectors, transformations under
Poincaré group are given by a unitary operator4 U(Λ, a) such that

(UΦp,σ, UΨp′,σ′) = (Φp,σ,Ψp′,σ′) . (1.37)

Here Λ is a Lorentz transformation matrix (which is either boosts or rotations) acting
on the coordinates, and a is for translations in spacetime:

x′µ = Λµνx
ν + aµ . (1.38)

For the continuous symmetry transformation like Poincaré transformations, one can take
an infinitesimal expansion of this unitary operator by expanding its argument Λ (Lorentz
transformations) and a (spacetime translations)

Λµν = δµν + ωµν , and aµ = εµ . (1.39)

Plugging these into U(Λ, a), the unitary operator is expanded by

U(1 + ω, ε) = 1 +
i

2
ωαβJ

αβ − iερP ρ +O(ω2; ε2) , (1.40)

where Jαβ and Pµ are operators independent of the parameters ω and ε. Since ω is
antisymmetric, we find the operator J is antisymmetric as well, Jαβ = −Jβα. This
implies that the operator has six independent components. It turns out that three
components of the operator are responsible for the rotation J = {J23, J31, J12} and
the other three components are boosts K = {J01, J02, J03}. Then naturally, the other
operator is for spacetime translations, P ρ = {H,P 1, P 2, P 3}. We saw in the previous
section that these operators observe a set of commutation reltaions:

[H,H] = 0 , (1.41)

[H,Pi] = 0 , (1.42)

[Pi,Pj ] = 0 , (1.43)

[Ji, H] = 0 , (1.44)

[Ki,Kj ] = −iεijkJk , (1.45)

[Ji,Jj ] = iεijkJk , (1.46)

4This is due to Wigner’s theorem [70].
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[Ji,Pj ] = iεijkPk , (1.47)

[Ji,Kj ] = iεijkKk , (1.48)

[Ki, H] = −iPi , (1.49)

[Ki,Pj ] = −iHδij . (1.50)

As the momentum operator acts on the state vector Φ we observe PµΦp,σ = pµΦp,σ, we
extrapolate to the case of the unitary operator associated with spacetime translations,

U(1, ε)Φp,σ = e−iε·pΦp,σ . (1.51)

In case of the unitary operator associated with Lorentz transformations Λ (which could
be either rotations or boosts), it transforms a momentum eigenstate with momentum p
to another state vector with momentum Λp due to the relation

PµU(Λ, 0)Φp,σ = U(Λ, 0)U−1(Λ, 0)PµU(Λ, 0)Φp,σ

= U(Λ, 0)(Λ−1) µ
ρ P

ρΦp,σ

= Λµρp
ρU(Λ, 0)Φp,σ ,

(1.52)

where the second equality is due to the identity

U(Λ, a)P ρU−1(Λ, a) = Λ ρ
µ P

µ . (1.53)

Thus, one can rewrite this eigenstate as a linear combination of new state vectors

U(Λ, 0)Φp,σ =
∑
σ′

Cσ′,σ(Λ, p)ΦΛp,σ , (1.54)

where the coefficients Cσ′,σ ∈ C .

1.2.2 Little group formalism

Eq. (1.54) is a generic expression for the Lorentz transformations of a one-particle state
vector5. We can analyze its more concrete expression by choosing a particular reference
frame. Suppose we choose a four-momentum vector kµ of a particle (in particular, kµ

can be a rest frame of the particle), and one can boost this vector into a generic four-
momentum vector pµ by taking a Lorentz transformation

pµ = Lµν(p)kν , (1.55)

where L(p) is the standard Lorentz transformation, which depends on the momentum
p to which we are boosting. Then one can express the generic Lorentz transformation
of a generic state vector in terms of the standard Lorentz transformation as well as the
chosen state vector. As the generic state vector and a chosen one are related by

Φp,σ = U(L(p), 0)Φk,σ , (1.56)

5In particular, there are not much information given for Cσ,σ′

22



the Lorentz transformations of the a generic state vector are given by

U(Λ, 0)Φp,σ = U(Λ, 0)U(L(p), 0)Φk,σ

= U(L(Λp), 0)U(L−1(Λp)ΛL(p), 0)Φk,σ

≡ U(L(Λp), 0)U(W (Λ, p), 0)Φk,σ ,

(1.57)

in which

W (Λ, p) ≡ L−1(Λp)ΛL(p) , (1.58)

is the so-called little group element. This maps the chosen vector k to k. From the
generic expression of the Lorentz transformations of the states, Eq. (1.54), one can see
that the fixed state vector transforms under the little group by

U(W, 0)Φk,σ =
∑
σ′

Dσ′,σ(W )Φk,σ′ , (1.59)

where Dσ′,σ(W ) is the representation of the little group. Then, by inserting Eq. (1.59)
into Eq. (1.57), we obtain the finalized expression of the Lorentz transformation of the
generic state vector in terms of the representation of the little group

U(Λ, 0)Φp,σ =
∑
σ′

Dσ′,σ(W (Λ, p))ΦΛp,σ . (1.60)

As we compare this to Eq. (1.54), there is a substantial improvement on the right-hand
side. The generic notation for the coefficients in Eq. (1.54) is now replaced by the
representation of the little group. It is left that one has to find the expression of the
representation. This method is called the Wigner’s induced representations [23]. We
will make use of Eq. (1.60) for the case of quantum field theory, in the next section.

1.3 Spacetime symmeries in quantum field theory

Quantum field theory is built upon Poincaré invariance and cluster decomposition prin-
ciple. Thus, it is obvious that the field theory would be invariant under Poincaré trans-
formations.

1.3.1 Poincaré transformations

As the action of a generic quantum field theory is symmetric under the Poincaré group,
we observe that a (free) quantum field transforms under the Lorentz group as

φa(x)→M(Λ)abφb(Λ
−1x) , (1.61)

where M(Λ) is a finite dimensional representation of the Lorentz group, and index a is
for the representation of the field (scalar, spinor, vector, and so on). This is analogous
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to the expression in quantum mechanics, Eq. (1.54). Then in the infinitesimal form, the
transformation of the field under the Poincaré group is written as

φ→ [1 + i(a0h− a · p− θ · j + η · k)]φ , (1.62)

in which a0,a,θ, and η are the infinitesimal parameters of time and spatial translations,
rotations and boost, respectively. The generators of the Poincaré group are written by

h = i∂t , (1.63)

p = −i∇ , (1.64)

j = r× p + Σ , (1.65)

k = rh− tp± iΣ , (1.66)

where Σ is the (2s+1)-dimensional matrix generators of the spin-s representation of the
rotations. In this thesis, we work on the Poincaré transformations of the effective field
whose mass is heavy. The transformations given above, Eqs. (1.61) and (1.62), are not
the most suitable representation in such cases.

1.3.2 Little group transformations

In the field theories with the mass scale M , it is useful to fix a reference frame6 v (which
is time like) such that a corresponding standard Lorentz transformation maps v into a
generic vector w:

L(w, v)µνv
ν = wµ . (1.67)

Then by setting v = k/M and w = p/M (such that k2 = p2 = M2), we realize that
L(w, v) is a rotation in the plane of v = k/M and w = p/M , which is given by [20]

L(w, v)µν =gµν −
1

1 + v · w
(wµwν + vµvν) + wµvν − vµwν

+
v · w

1 + v · w
(wµvν + vµwν) , (1.68)

L1/2(w, v) =
1 + /w/v√

2(1 + v · w)
, (1.69)

in which the first equation is for the vector representation7, and the second one is the
spinor representation. In the effective field theories with heavy mass scale, all the other
components of the little group elements are intact (i.e., expressions are identical to the
generic case), but the only components that show major change are the boosts. Thus,
let us focus on the little group element associated with boosts.

For the infinitesimal boost (with parameter η)

B(v + η, v)v = v + η , (1.70)

6A rest frame of the particle v = (1, 0, 0, 0) is a usual choice.
7Here, the metric g is the Minkowski metric.
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the transformed vector shows 1 = v2 = (v + η)2 and v · η = O(η2) . The concrete
expression of the infinitesimal boosts in the case of a vector and a spinor representations
are given by

B(η)µν = gµν − (vµην − ηµvν) +O(η2) , (1.71)

B1/2(η) = 1 +
1

2
/η/v +O(η2) , (1.72)

and using the definition of the little group element, Eq. (1.58), as well as Eqs. (1.68)
and (1.69), we finally obtain the expression of the little group element in the case of the
infinitesimal boosts

W (B(η), p) =L−1(B(η)p)B(η)L(p) (1.73)

=1 +
i

2

[
1

M + v · p
(ηαpβ⊥ − p

α
⊥η

β)Jαβ
]

+O(η2) (1.74)

where pβ⊥ ≡ p
β − (v · p)pβ, and

J αβ1/2 =
i

4
[γα, γβ] , (1.75)

(J αβ)µν = i(gαµg
β
ν − gβµgαν) . (1.76)

We can use this expression of the little group for the field transformation under the
boosts

φa →
[
1 + iη ·

(
ir∂0 + it∂ ± i Σ× ∂

M +
√
M2 − ∂2

)]
ab

φb , (1.77)

in which the rest frame v = (1, 0, 0, 0) is chosen. From this it is clear that the boost
generator is

k = ir∂0 + it∂ ± i Σ× ∂
M +

√
M2 − ∂2

. (1.78)

Comparing to the generic expression of the boost generator, Eq. (1.66), now we have a
non-linear expression. These two are supposed to deliver the same results, but the differ-
ence is that we are now referring to a particular reference frame v = (1, 0, 0, 0), whereas
Eq. (1.66) is a generic expression. This is the method of the induced representation [23]
in quantum field theory.

1.4 Spacetime symmetries in effective field theory

In this section, we want to apply the little group transformations to effective field theories
(EFTs). First we briefly introduce the concept of EFTs and show how the non-linear
transformations under the Poincaré group (especially boosts) are implemented in the
case of EFTs involving heavy mass scale M . Also, we discuss the transformations of the
interacting fields, in which the covariantization procedure is non-trivial.
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1.4.1 Effective field theory

Effective field theory (EFT) has been a standard tool for studying problems involving
multiple widely-separated energy scales in particle and nuclear (or even gravitational)
physics during the last decades. In particle physics, EFT is a modern technique for in-
vestigating physics above the electroweak scale, namely the Beyond the Standard Model
(BSM) or even Dark Matter (DM) theories. Up until now, there does not exist any
well-established underlying theory to compare with the EFT for the parametrization
of physics BSM at the currently available energy scale (∼ 1TeV) of the Large Hadron
Collider. In hadronic and nuclear physics, on the other hand, an EFT framework plays
a pivotal role in the understanding of the lower-energy regime. In this case, the corre-
sponding EFTs can be matched to the underlying theory, Quantum Chromodynamics
(QCD), at a given energy scale. Since in the construction of an EFT one is not bound
to only renormalizable operators, the number of free parameters increases rapidly when
going to higher orders in the expansion.

The Lagrangian of an EFT is given as an expansion in the heavy scale that has been
integrated out, which is M . It contains all terms allowed by the symmetries of the EFT
(such as charge, parity, time reversal, and gauge invariance) and can schematically be
expressed as

LEFT =
∑
n

cn
On

Mdn−4
, (1.79)

where the operators On, made up by the fields that describe the effective degrees of
freedom, are of mass dimension dn, and the cn are scalar functions, called matching
or Wilson coefficients, that have zero mass dimension. These coefficients contain all
information from the higher-energy scale through the matching to the underlying theory.
In other words, the high-energy information (at the energy scale above M) is factorized
from the low-energy ones8 (at energy scale µ which is much below the heavy scale M)
by this expansion.

Such expansion is most useful in the theories of quarks and hadrons, QCD, as there
are six flavors of quarks with different mass scales as well as the hadronic scale ΛQCD.
In this thesis, we focus on non-relativistic EFTs of QCD. There exists a wide variety of
EFTs of QCD depending on the physical processes, and among them we concentrate on
Heavy Quark Effective Theory (HQET), non-relativistic QCD (NRQCD), and potential
NRQCD (pNRQCD). While HQET [1–4] is a low-energy EFT for heavy-light mesons,
NRQCD [5, 6] provides a non-relativistic effective description for the dynamics of heavy
quarks and antiquarks, and pNRQCD [7, 8] is an effective theory for heavy quark-
antiquark bound states (heavy quarkonium). In these EFTs, a hierarchy of scales is
assumed such that the mass M of the heavy (anti)quark is much larger than any other
relevant energy scale including ΛQCD, which is the scale at which confinement takes
place.

Keeping these applications in mind, let us first discuss how a free effective field would
transform under the Poincaré transformations.

8The dynamics at low-energy is encoded in the effective degrees of freedom.
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1.4.2 Poincaré symmetries in effective field theory

Free theories

In the non-interacting effective field theories with heavy mass scale M , one can directly
apply the little group transformations by expanding Eq. (1.78) with respect to p/M � 1.
As we take the non-relativistic normalization of the free field φ

φ′′a =

(
M2

M2 − ∂2

)−1/4

eiMtφa , (1.80)

then the normalized field φ′′ transforms under the boost, Eq (1.78), as

φ′′a(x)→
{

1 + iMη · x− iη · ∂
2M

+
iη · ∂∂2

4M3

+
(Σ× η) · ∂

2M

[
1 +

∂2

4M2
+O(1/M4)

]}
φ′′a(B−1x) . (1.81)

This is the boost transformations of the non-interacting and non-relativistic field9. How-
ever, in order to apply this transformation to the non-relativistic EFTs, we need a cor-
responding expression for the interacting case.

Interacting theories

For interacting theories, one might think that replacing partial derivatives with gauge
covariant derivatives (preserving the gauge symmetry) would be sufficient [24]

φ′′a(x)→
{

1 + iMη · x− iη ·D
2M

+
iη ·DD2

4M3

+
(Σ× η) ·D

2M

[
1 +

D2

4M2
+O(g; 1/M4)

]}
φ′′a(B−1x) . (1.82)

However, this implementation introduces some ambiguity in how the covariant deriva-
tives should be ordered (in a non-Abelian gauge theory like QCD). It is also necessary
to introduce additional gauge field dependent operators to the boost generator in order
to cancel some terms that would prevent the corresponding EFT action from being in-
variant. Once the transformation is covariantized with respect to the gauge group, then
there has to be a generic coefficient to each term involving a gauge field. In other words,
a direct correspondence to the Wigner’s induced representation for the Poincaré trans-
formations is only limited to the case of a non-interacting field theory. In the interacting
theories, some modifications to such expression, Eq. (1.82), is inevitable in order to cope
with the Poincaré invariance of the corresponding action. In the next two chapters,
we want to address these issues by employing the most generalized EFT approach to
derive the proper implementation of the Poincaré transformations in low-energy EFTs
of QCD. Before proceeding, we briefly discuss the Wilson coefficients that appear in the
EFT actions.

9Rotations as well as the spacetime translations are identical to the relativistic field theories.
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Wilson coefficients

Wilson coefficients of the EFTs are the scalar functions (with zero mass dimension),
which contain information from the higher-enery scale. They have to be determined
through a matching calculation to the underlying theory. Beyond leading order in the
coupling or the expansion parameter, the matching calculation can easily become tech-
nically involved, and even more so for a theory with more than one expansion parameter
(such as pNRQCD). For this reason, one would like to exploit as much prior knowledge
on the Wilson coefficients as possible before commencing the calculation.

Also, Poincaré invariance is no longer manifest in the actions of the non-relativistic
EFTs, as it is schematically shown in Eq. (1.79). Before quantum field theory was fully
established, Poincaré symmetry in a quantum mechanical system was already under
discussion during the 1940’s [10]. Dirac showed that the terms of the quantum mechan-
ical Hamiltonian satisfy non-trivial relations if one imposes the Poincaré algebra. This
discussion was further extrapolated and developed for interacting relativistic composite
systems [11–15], where relations between the relativistic correction terms were derived
using the Poincaré algebra. As these quantum mechanical systems can be generalized
by the framework of EFTs, it is natural to expect that also some non-trivial relations
between the Wilson coefficients of non-relativistic EFTs can be deduced in a systematic
way from Poincaré invariance. It is well justified to assume this invariance, as the EFT
is equivalent to the low-energy limit of the underlying relativistic quantum field theory,
which is symmetric under Poincaré transformations.

In the next chapter, we investigate the Poincaré transformations (boosts, in particu-
lar) of the non-relativistic effective fields of QCD with employing a full EFT approach,
where one includes all possible terms in the boost transformation that are allowed by
the other symmetries of the theory (such as charge, parity, and time reversal) and gives
a generic coefficient to each of them.
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Chapter 2

Spacetime symmetries in effective
theories of QCD

In this chapter, we discuss effective field theories of QCD involving heavy quarks,
which are heavy quark effective theory (HQET) and non-relativistic QCD (NRQCD).
Reparametrization in HQET is briefly discussed, and Poincaré transformation of the
heavy quark field of NRQCD is discussed in detail. From these symmetry transforma-
tions, we obtain some non-trivial constraining equations between the Wilson coefficients.

2.1 Basics of QCD at high-energy

In the Standard Model of particle physics, Quantum Chromodynamics (QCD) is a rel-
ativistic quantum field theory of color interactions between quarks and gluons, which
constitute composite particles such as protons and neutrons. Within the gauge group
of SU(3)×SU(2)× U(1) in the Standard Model, QCD is the non-abelian gauge theory
with the gauge group SU(3). In this section, we discuss some basic features of QCD in
the high-energy regime.

2.1.1 Degrees of freedom

QCD Lagrangian is given by the quark sector and a gluon sector, which are represented
by the Dirac and the Yang-Mills Lagrangian

LQCD =
∑
f

ψ̄f ( /D −mf )ψf −
1

4
F aµνF

a,µν , (2.1)

where the summation index f stands for the flavors of the quark (thus, mf is the quark
mass with flavor f) and the covariant derivative acting on the quark field ψ is defined
by

Dµψ = ∂µψ − igAaµT aψ , (2.2)
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and the field strength term is given by

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.3)

Also, T a is the generator of the SU(3) gauge group, which satisfies the commutation
relation

[T a, T a] = ifabcTc , (2.4)

where fabc is a structure constant1 of SU(3) group. As the relativistic quantum field
theory is built upon the Poincaré symmetry, thus, LQCD is manifestly invariant under
the Poincaré transformations.

2.1.2 Asymptotic freedom

One of the most important features of QCD is the asymptotic freedom [59–61]. At
one-loop level, the running coupling parameter αS is given by solving the differential
equation

µ2dαS
dµ2

= − 1

4π

(
11−

2Nf

3

)
α2
S (2.5)

where Nf is the number of quark flavors. By solving this renormalization equation, we
obtain expression of the running coupling in terms of the energy scale µ at one loop

αS(µ) =
12π

(33− 2Nf ) ln(µ2/Λ2
QCD)

, (2.6)

where ΛQCD is the hadronic scale in QCD. This implies that if Nf < 17, the strength
of the coupling decrease when the scale µ increases, and the perturbative description
is more accurate. This feature is called the asymptotic freedom. The running coupling
behavior is shown2 in Fig. 2.1.

On the other hand, when the scale reaches near ΛQCD, the coupling αS becomes
close to unity or exceeds the weak-coupling limit, and the perturbative description breaks
down. This is called the color confinement in QCD [31]. We discuss more about the color
confinement in the chapter of heavy quark potentials in the non-perturbative regime.

2.2 Heavy quark effective theory

Heavy quark effective theory (HQET) [1–4] is a theory involving a heavy quark and a
light quark, which constitute hadrons such as B mesons. The heavy quark mass M
is much greater than the hadronic scale ΛQCD and the light quark masses, while the
momentum between the heavy and light quarks as well as the gluon scales around at
ΛQCD. This implies that HQET is obtained by an expansion in the powers of ΛQCD/M .

1This structure constant is totally antisymmetric.
2Q in FIG. 2.1 corresponds to µ in our expressions.
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Figure 2.1: Running coupling parameter αS [71].

2.2.1 Convention

For the rest of this chapter, we use the convention

D0 = ∂0 + igA0 , and D = ∇− igA , (2.7)

for the sign of the coupling constant g in the covariant derivatives, from which one
obtains the chromoelectric and chromomagnetic fields as

E =
1

ig
[D0,D] , and B =

i

2g
{D×,D} . (2.8)

And σ denotes the three Pauli matrices written together as a vector. The commutator
or anticommutator with a cross product is defined as[

X×,Y
]

= X × Y − Y ×X and
{
X×,Y

}
= X × Y + Y ×X , (2.9)

and equivalently for the dot product3.

2.2.2 HQET Lagrangian

HQET Lagrangian is derived by integrating out the heavy quark mass scale from the
QCD Lagrangian. As a heavy quark Q interacts with light degrees of freedom at ΛQCD,

3Because of the antisymmetry of the cross product, the roles of commutator and anticommutator are
actually reversed: {X×,Y }i = εijk[Xj , Yk] and [X×,Y ]i = εijk{Xj , Yk}.
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terms are expanded with respect to ΛQCD/M . The four-momentum of the heavy quark
is parametrized by

pµ = Mvµ + kµ , (2.10)

where vµ is the light-like (v2 = 1) four-vector, which represents the reference frame of
the heavy particle, and kµ is the residual momentum at the scale of ΛQCD. The residual
momentum is due to the interaction between the heavy particle and the light degrees of
freedom. We redefine the heavy quark field by

ψ(x) = e−iMv·x[hv(x) +Hv(x)] , (2.11)

where

hv(x) = eiMv·x 1 + /v

2
ψ(x) , and Hv(x) = eiMv·x 1− /v

2
ψ(x) , (2.12)

in which hv represents a heavy particle field, and Hv is a heavy anti-particle field; i.e.,
the projection operator (1±/v)/2 projects out the particle and anti-particle components,
respectively, and the following properties hold:

/vhv = hv , and /vHv = −/vHv . (2.13)

As we insert Eq. (2.12) into the QCD Lagrangian, we obtain

LHQET = hv iv ·Dhv −Hv(iv ·+2M)Hv + hv i /D⊥Hv +Hvi /D⊥hv , (2.14)

where the orthogonal derivative is defined by

Dµ
⊥ ≡ D

µ − vµ(v ·D) . (2.15)

As we solve the equations of motion of Hv

Hv =
1

iv ·D + 2M
i /D⊥hv , (2.16)

which is suppressed by ΛQCD/M . Thus, as we insert this back into the Lagrangian,
Eq. (2.14) and expanding the terms up to 1/M , we obtain the Lagrangian of the heavy
quark sector up to 1/M (h on the superscript denotes the heavy quark sector)

LhHQET = hv

(
iv ·D −

/D⊥ /D⊥
2M

+O(1/M2)

)
hv , (2.17)

which is valid at tree level. In fact, one can rewrite the 1/M term using the Clifford
algebra

/D⊥ /D⊥ = D2
⊥ +

σµνgF
µν
⊥

2
, (2.18)
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where

σµν =
i

2
[γµ, γν ] . (2.19)

Furthermore, if we specify the heavy particle reference frame as the rest frame v =
(1, 0, 0, 0), the HQET Lagrangian is given by

LhHQET = h

(
iD0 +

D2

2M
+
S · gB
M

+O(1/M2)

)
hv , (2.20)

We observe that the second operator is responsible for the kinetic energy of the recoiling
heavy quark and the second term is the spin-magnetic interaction part (where S = σ/2).
In a similar fashion, we insert Eq. (2.16) into the Lagrangian and expanding it up to
order 1/M2, and choosing the reference frame v = (1, 0, 0, 0) we obtain the heavy quark
sector of the HQET Lagrangian up to 1/M2.

While Eq. (2.20) is the expression only at tree level, if we include the loop corrections
from the matching to QCD, the HQET Lagrangian up to 1/M2 is derived as follows [25]:

LHQET =hv

[
iD0 −

c2

2M
D2 − cF

2M
gB · σ

− cD
8M2

[D·, gE] +
icS

8M2
[D×, gE] · σ +O(1/M3)

]
hv

+ LYM + Llight

(2.21)

where c2, cF , cD, and cS are the Wilson coefficients to be matched to the underlying
theory, and the Yang-Mills sector is [72–74]

LYM = −d1

4
F aµνF

µν,a +
d2

M2
F aµνD

2Fµν,a +
d3

M2
gfabcF

a
µνF

b
µαF

c
να +O(1/M4) . (2.22)

d1, d2, and d3 are also the Wilson coefficients. The light quark sector Llight contains∑
l q̄li /Dql (where ql is the light quark field with the flavor index l) and 1/M suppressed

corrections, but these are highly suppressed contributions, so we neglect these corrections
here.

2.2.3 Heavy quark symmetry

One can see from the heavy quark sector of the HQET Lagrangian, Eq. (2.21), if one
takes the limit M →∞, the Lagrangian would only contain the first term

lim
M→∞

[LHQET] = hviD0hv . (2.23)

This implies that all flavors the heavy quarks behave the same way as far as only strong
interactions are concerned, and this symmetry is called heavy quark symmetry [75].
Furthermore, there is also spin symmetry here because at this limit, there is no spin-
dependent terms like cF

2M gB · σ in Eq. (2.21). In other words, the U(Nf ) symmetry
(where Nf is the number of the heavy quark flavor) along with SU(2) symmetry for
the spin are embedded in the U(2Nf ) group, and this is called the heavy quark spin
symmetry.
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2.2.4 Reparametrization invariance

As it is shown in Eq. (2.10), we parametrize the heavy quark momentum in terms of the
reference frame of the particle vµ and the residual momentum kµ. If one chooses vµ a
particular frame (for instance, v = (1, 0, 0, 0) as we have done in deriving Eq. (2.21)), it
might seem that the Poincaré invariance is violated because there is a preferred inertial
reference frame. However, the choice of the reference frame vµ is arbitrary up to redefi-
nitions of order ΛQCD/M . One can explicitly show this by reparametrizing the reference
frame as well as the residual momentum

vµ → v′µ = vµ +
qµ

M
, and kµ → k′µ = kµ − qµ , (2.24)

where q is of order ΛQCD. Square of the light-like reference frame v′2 = 1 requires v·q = 0.
Under this reparametrization, the heavy quark field hv transforms into h′v, so does the
corresponding Lagrangian. As the heavy quark field with respect to the new reference
frame v′ has to preserve the property in Eq. (2.13), we want to express hv′ in terms of
the field with respect to the old reference frame hv. Denoting hv′ = hv + δhv (where δhv
is counted as O(1/M) suppression), Eq. (2.13) is rewritten with using Eq. (2.24)(

/v +
/q

M

)
(hv + δhv) = hv + δhv , (2.25)

and at O(1/M), following relation holds

(1− /v) δhv =
/q

M
hv . (2.26)

One can choose δhv as

δhv =
/q

2M
hv . (2.27)

Overall, the heavy quark field transforms by

hv → eiq·x
(

1 +
/q

2M

)
hv , (2.28)

in which the factor eiq·x is for the reparametrization of the residual momentum, kµ →
kµ − qµ. When we apply Eqs. (2.24) and Eq. (2.28), to the Lagrangian

LhHQET = hv

(
iv ·D − c2

D2
⊥

2M
− cF

σαβgF
αβ

4M
+O(1/M2)

)
hv , (2.29)

it transforms to

(LhHQET)′ = LhHQET + (1− c2)hvi
q ·D
M

hv +O(1/M2) . (2.30)
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As the Lagrangian is to be invariant under the reparametrization, the Wilson coefficient
c2 has to be unity. This is called the reparametrization invaraince [20, 21]. One can
implement these transformations, Eqs. (2.24) and (2.28), at higher orders of the 1/M2

expansion in the HQET Lagrangian, and the invariance gives another constraint on the
Wilson coefficients [25]:

cS = 2cF − 1 , (2.31)

in which cS and cF appear in Eq. (2.21).
One can derive these constraining equations between the Wilson coefficients by using

the Poincaré invariance. This is not surprising, since they are closely related: a shift in
the parametrization of the momentum may be interpreted just as well as a change of
the reference frame. Whereas the implementation of reparametrization invariance might
be more straightforward in calculations, its applications are limited only to the theories
which can be parametrized like in Eq. (2.24). On the other hand, Poincaré invariance
is a general principle that all quantum field theories have to obey. We will discuss the
implementation of the Poincaré invariance in NRQCD in the next section.

2.3 Non-relativistic QCD

Non-relativistic QCD (NRQCD) is an effective theory of QCD involving a heavy quark
and a heavy antiquark, which constitute a heavy meson like charmonium or bottomo-
nium. [5, 6]. There are four relevant scales in NRQCD: heavy (anti-)quark mass M ,
relative momentum between a heavy quark and a heavy antiquark p ∼ Mv (where
v is the relative velocity), relative kinetic energy Mv2, and the hadronic scale ΛQCD.
As the scale M is heavy, the relative velocity between the quark and the antiquark is
non-relativistic, so the hierarchy of scales in NRQCD is given by M � Mv � Mv2,
ΛQCD.

2.3.1 NRQCD Lagrangian

NRQCD Lagrangian is obtained from QCD after integrating out the scale of the heavy
quark mass M [5, 6]. The effective degrees of freedom are non-relativistic Pauli spinor
fields ψ and χ, where ψ annihilates a heavy quark and χ creates a heavy antiquark, as
well as gluon fields Aµ and light quark fields ql with four-momenta constrained to take
values much smaller than M . Its Lagrangian up to O

(
M−2

)
is given by

LNRQCD = ψ†
{
iD0 +

c2

2M
D2 +

cF
2M

gB · σ +
cD

8M2

[
D·, gE

]
+

icS
8M2

[
D×, gE] · σ

}
ψ

+ χ†
{
iD0 −

c2

2M
D2 − cF

2M
gB · σ +

cD
8M2

[
D·, gE

]
+

icS
8M2

[
D×, gE] · σ

}
χ

+
1

M2

{
f1(1S0)ψ†χχ†ψ + f1(3S1)ψ†σχ · χ†σψ

+ f8(1S0)ψ†T aχχ†T aψ + f1(3S1)ψ†σT aχ · χ†σT aψ
}
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− d1

4
F aµνF

µν,a +
d2

M2
F aµνD

2Fµν,a +
d3

M2
gfabcF

a
µνF

b
µαF

c
να + Llight

+O(1/M4) , (2.32)

where the bilinear part of the heavy quark sector is identical to Eq. (2.21) in HQET.
The Wilson coefficients c2, cF , cD, and cS of the heavy quark sector can be calculated
by matching in perturbation theory to QCD. They are functions of αS and depend
logarithmically on the scale that is being integrated out: i.e., the coefficients are functions
of ln(M/µ), where the factorization scale µ is smaller than M . Note that all degrees of
freedom in this Lagrangian have four momenta smaller than µ. The coefficients f ’s to
the four-fermion terms will be discussed in Sec. 2.4.5. Furthermore, d’s are the Wilson
coefficients of the Yang-Mills sector [72–74]. Llight is the light quark sector which contains∑

l q̄li /Dql plus 1/M correction terms, which are highly suppressed.
We have made use of the equations of motion4 to remove all higher time derivatives

and also removed the constant term −Mψ†ψ + Mχ†χ through the field redefinitions,
ψ → e−iMtψ and χ→ eiMtχ.

2.4 Symmetries in NRQCD

In this section, we discuss symmetries in NRQCD, including discrete symmetries like
parity, charge conjugation, and time reversal (P,C, T ), as well as Poincaré invariance.
For the latter case, we take a general approach, in such a way that we allow all possible
terms for the generator of the Poincaré group (boost, in particular) as long as the
terms behave properly under the discrete symmetry (P,C, T ) transformations. After
constructing the boost generator, we apply it to the NRQCD Lagrangian. Due to the
invariance of the theory after the transformation, we obtain constraints between Wilson
coefficients as well as on the generic coefficients of the generator.

2.4.1 Discrete symmetries

Under the parity, charge conjugation, and time reversal, the coordinates and fields trans-
form as the following list:

(t, r)
P−→ (t,−r) , (t, r)

C−→ (t, r) , (t, r)
T−→ (−t, r) , (2.33)

ψ
P−→ ψ , ψ

C−→ −iσ2χ
∗ , ψ

T−→ iσ2ψ , (2.34)

χ
P−→ −χ , χ

C−→ iσ2ψ
∗ , χ

T−→ iσ2χ , (2.35)

D0
P−→ D0 , D0

C−→ D∗0 , D0
T−→ −D0 , (2.36)

D
P−→D , D

C−→D∗ , D
T−→D , (2.37)

E
P−→ −E , E

C−→ −E∗ , E
T−→ E , (2.38)

4This is equivalent to performing certain field redefinitions, as shown in [76].
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B
P−→ B , B

C−→ −B∗ , B
T−→ −B , (2.39)

and we expect the boosted fields to transform in exactly the same way under these
discrete symmetries, i.e.,

Pφ′ = P (1− iη ·K)φ = (1− i(−η) · (PK))Pφ , (2.40)

Cφ′ = C(1− iη ·K)φ = (1− iη · (CK))Cφ , (2.41)

Tφ′ = T (1− iη ·K)φ = (1 + i(−η) · (TK))Tφ , (2.42)

where we have also reversed the direction of the infinitesimal velocity η for P and T 5.
We take from this that the boost generators for the heavy quark and antiquark fields,
kψ and kχ, respectively, need to satisfy

Pkψ = −kψ , Ckψ = −σ2k
∗
χσ2 , Tkψ = σ2kψσ2 , (2.43)

Pkχ = −kχ , Ckχ = −σ2k
∗
ψσ2 , Tkχ = σ2kχσ2 , (2.44)

where the expressions on the left-hand sides mean that the transformed fields and co-
ordinates according to Eqs. (2.33)-(2.39) are to be inserted into the explicit expressions
for kψ and kχ.

2.4.2 Poincaré transformation

Before going into details, we need to clarify our notion of transformation. In general,
performing a field transformation means to replace any field φ as well as its derivatives in
the Lagrangian or other field-dependent objects by a new field φ′, called the transformed
field, and its derivatives. In the quantized theory, this corresponds to a change of
variables φ→ φ′ in the path integral. The transformation constitutes a symmetry if the
action remains invariant under this change of variables (in the quantized theory also the
path integral measure needs to be considered).

In the case of coordinate transformations, the value of the field itself is not changed,
it is just associated with a different spacetime coordinate. In the case of non-scalar
fields, also the orientation with respect to the coordinate axes needs to be adjusted. So
we can write

φi(x)
T−→ φ′i(x) ≡ T (R)

ij φj
(
T −1x

)
, (2.45)

where T denotes a generic spacetime transformation and the representation R corre-
sponds to the spin of the field φ. Note that the arrow in Eq. (2.45) represents the
change of the function φ to φ′, not its individual value at a certain position in space-
time; thus, the coordinate x is not assumed to have the same value on both sides of the
arrow, and it should rather be considered as an index, just like the vector or spin index
i does not imply the same polarization axis before and after the transformation. Instead
the relation between the two fields is given on the right-hand side of Eq. (2.45): the
value of the transformed field at position x is given by the value of the original field at

5Also remember that T takes the complex conjugate of numerical coefficients.
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the same point, which in the old coordinates corresponds to T −1x, while its orientation
is also adapted to the new polarization axes by T (R). Also note that the notion of active
or passive transformations6 does not affect the form of Eq. (2.45), it just changes the
sign of the generators of T . For the record, we will assume passive transformations.

Spacetime translations

The spacetime translations act only on the coordinates, shifting the origin by a constant
vector aµ. The transformed field in the new coordinate system corresponds to the original
field at the coordinates before the transformation. The form of the translation generator
Pµ for a generic field φ(x) can then be obtained from a Taylor expansion to first order:

φ(x)
Pµ−→ φ′(x) = φ(x+ a) =

[
1 + aµ∂µ +O

(
a2
)]
φ(x) ≡

[
1− iaµPµ +O

(
a2
)]
φ(x) .

(2.46)
From this we take Pµ = i∂µ, or in non-relativistic notation P0 = i∂0 and P = −i∇. This
is already the final form of the translation generator for the light quark and gluon fields,
but for the heavy (anti)quark fields we need to include the effect of the field redefinitions
performed to remove the mass term in the Lagrangian. This modifies the generator to

Pµ = e±iMt(i∂µ)e∓iMt = i∂µ ± δµ0M , (2.47)

so P0ψ = (i∂0 +M)ψ and P0χ = (i∂0 −M)χ.
Rotations act both on the coordinates and on the field components. The coordinates

are transformed under infinitesimal rotations such that r in the new coordinate system
corresponds to r+α×r in the old, where the direction of α gives the rotation axis and its
absolute value gives the infinitesimal rotation angle. The components of the Pauli spinor
fields are rotated with the Pauli matrix σ/2, while the gauge fields transform as vectors,
whose behavior follows directly from the coordinate transformations and Eq. (2.45):

A0(x)
J−→ A′0(x) = A0(x) +

[
α · (r ×∇), A0(x)

]
≡ (1 + iα · j0)A0(x) , (2.48)

ψ(x)
J−→ ψ′(x) =

(
1 +

i

2
α · σ

)
ψ(x) +

[
α · (r ×∇), ψ(x)

]
≡
(
1 + iα · j1/2

)
ψ(x) ,

(2.49)

χ(x)
J−→ χ′(x) =

(
1 +

i

2
α · σ

)
χ(x) +

[
α · (r ×∇), χ(x)

]
≡
(
1 + iα · j1/2

)
χ(x) ,

(2.50)

A(x)
J−→ A′(x) = A(x)−α×A(x) +

[
α · (r ×∇),A(x)

]
≡ (1 + iα · j1)A(x) ,

(2.51)

where again we have written universal term r×(−i∇) for the coordinate transformations
in the form of a commutator. We use a capital J to denote the generators of rotations
in general, and a lowercase j with an index for a particular representation.

6An active transformation changes the position or orientation of a physical object with respect to a
fixed coordinate system, while a passive transformation keeps the object fixed and changes the coordi-
nates.
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Again, we can convert the transformation of the gauge field Aµ into a relation for
the covariant derivatives:

D′0 = ∂0 + igA′0 = D0 +
[
α · (r ×∇), D0

]
, (2.52)

D′ = ∇− igA′ = D −α×D +
[
α · (r ×∇),D

]
. (2.53)

From these, it also follows that the chromoelectric and chromomagnetic fields E and B
transform as vectors under rotations.

Boost

Boost transformations are a priori not defined for the heavy (anti)quark fields. We will
investigate how such a transformation can be constructed for the heavy quark fields, but
this will no longer be linear in the fields. Gluons and light quarks are still relativistic
fields and transform in the usual way under boosts. We will not discuss the light quark
fields (they do not appear in any operator of interest in this discussion), but since
the NRQCD Lagrangian is written in an explicitly non-relativistic fashion, we will also
discuss the transformations of gluon fields, distinguishing between their space and time
components.

The coordinates (t, r) in a reference frame moving with the infinitesimal velocity η
correspond to (t+η ·r, r+ηt) in a resting frame, where we will always neglect terms of
O
(
η2
)

or higher. The gluons are described by vector fields, whose transformations are
identical to those of the coordinates, so Eq. (2.45) implies that

A′0(t, r) = A0(t+ η · r, r + ηt)− η ·A(t, r) , (2.54)

A′(t, r) = A(t+ η · r, r + ηt)− ηA0(t, r) . (2.55)

It is convenient to perform a Taylor expansion to first order in η on all fields with
transformed coordinates, in order to consistently work only with at most linear terms
of this infinitesimal parameter. Since the gluon fields never appear individually in the
Lagrangian but always inside covariant derivatives, we can also write the boost trans-
formations explicitly for those:

D′0 = ∂0 + igA′0 = D0 + [η · t∇ + η · r∂0, D0] + η ·D , (2.56)

D′ = ∇− igA′ = D + [η · t∇ + η · r∂0,D] + ηD0 . (2.57)

Notice that the sign of the last terms has changed compared to Eqs. (2.54) and (2.55),
which is a consequence of the fact that D0 and D in the non-relativistic notation involve
the gauge fields with opposite signs. The commutator in the middle terms serves two
purposes: first, the commutator with the gauge field ensures that the derivatives (from
the Taylor expansion) act exclusively on the gauge field and not on any other field
that may be present in the Lagrangian. Second, the commutator with the derivative
can easily be calculated and exactly cancels the derivative in the last term, ensuring
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that overall the derivatives on both sides of Eqs. (2.56), and (2.57) agree7. Finally, the
transformations for the chromoelectric and chromomagnetic fields follow directly from
their expressions in terms of the covariant derivatives:

E′ = E + [η · t∇ + η · r∂0,E] + η ×B , (2.58)

B′ = B + [η · t∇ + η · r∂0,B]− η ×E . (2.59)

In the following, we will use K to denote the generator for boosts as an operator in
general, which may act on any kind of field, and kφ for the explicit expression for the
field φ:

φ(x)
K−→ φ′(x) = (1− iη ·K)φ(x) = (1− iη · kφ)φ(x) . (2.60)

Since each field has the same coordinate transformations, the term it∇ + ir∂0 appears
in any kφ, so we can write

kφ = it∇ + ir∂0 + k̂φ . (2.61)

Now k̂φ denotes the part of the boost transformation acting only on the components
of φ and not the coordinates. The previously introduced notation of writing the co-
ordinate transformations as commutators is particularly convenient when considering
transformations of products of fields, as by the product rule of commutators we can
write

φ′1φ
′
2 = φ1φ2 + [η · t∇ + η · r∂0, φ1]φ2 + φ1[η · t∇ + η · r∂0, φ2]

+ (−iη · k̂1φ1)φ2 + φ1(−iη · k̂2φ2)

= φ1φ2 + [η · t∇ + η · r∂0, φ1φ2] + (−iη · k̂1φ1)φ2 + φ1(−iη · k̂2φ2) . (2.62)

In this way, the coordinate transformations can always be decoupled from the component
transformations.

For relativistic fields, k̂φ is some constant matrix (as it is shown in Eq. (1.66)), but
for the heavy (anti)quark fields, which are non-relativistic, it takes the form of a function
depending on the fields or their derivatives. Apart from the coordinate transformations,
all derivatives have to be covariant, so we can write

ψ(x)
K−→ ψ′(x) =

(
1− iη · kψ(D,E,B, ψ, χ, x)

)
ψ(x) , (2.63)

χ(x)
K−→ χ′(x) =

(
1− iη · kχ(D,E,B, ψ, χ, x)

)
χ(x) . (2.64)

In principle, k̂φ depends on the coordinates only implicitly through the fields; however,
the field redefinitions we have performed in order to remove the heavy mass terms from
the Lagrangian also affect the boost transformations. So instead of the usual coordinate
transformations generated by it∇ + ir∂0, we have

e±iMt(it∇ + ir∂0)e∓iMt = it∇ + ir∂0 ±Mr , (2.65)

7As stated above, we replace derivatives of fields in the Lagrangian by derivatives of the transformed

fields: ∂xφ(x)
T−→ ∂xφ

′(x). The typical transformation of derivatives as vectors arises only when the
transformed fields are replaced by the right-hand side of Eq. (2.45).
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and we will include the terms Mr and −Mr in the definitions of k̂ψ and k̂χ, respectively.
Then the most general expressions for kψ and kχ satisfying these conditions up to

O(M−3) are given by8 [77]

kψ(D,E,B, ψ, χ, x) = it∇ + ir∂0 +Mr − kD
2M

D − ikDS
4M

D × σ +
kE

8M2
gE

+
ikES
8M2

gE × σ − kD3

4M3
D(D2)− ikD3S

16M3
(D × σ)(D2)

+
ikB1

16M3
[D×, gB] +

ikB2

16M3
{D×, gB}+

kBS1

16M3
[D, (gB · σ)]

+
kBS2

16M3
{D, (gB · σ)}+

kBS3

16M3
[(D · σ), gB]

+
kBS4

16M3
{(D · σ), gB}+

kBS5

16M3
{D·, gB}σ , (2.66)

kχ(D,E,B, ψ, χ, x) = it∇ + ir∂0 −Mr +
kD
2M

D +
ikDS
4M

D × σ +
kE

8M2
gE

+
ikES
8M2

gE × σ +
kD3

4M3
D(D2) +

ikD3S

16M3
(D × σ)(D2)

− ikB1

16M3
[D×, gB]− ikB2

16M3
{D×, gB} − kBS1

16M3
[D, (gB · σ)]

− kBS2

16M3
{D, (gB · σ)} − kBS3

16M3
[(D · σ), gB]

− kBS4

16M3
{(D · σ), gB} − kBS5

16M3
{D·, gB}σ . (2.67)

Temporal derivatives do not appear (aside from the coordinate transformations), because
we assume that they have already been substituted through the equations of motion.
Also terms that do not transform as a vector under rotations have already been removed,
as they would violate one of the relations of the Poincaré algebra. In the following, it will
be sufficient to discuss only the heavy quark sector, since the antiquark sector follows
directly from charge conjugation.

The non-linear boost transformations constructed in this way have to satisfy the
Poincaré algebra[

P0, Pi
]

= 0 ,
[
P0, Ji

]
= 0 ,

[
P0,Ki

]
= −iPi ,[

Pi, Pj
]

= 0 ,
[
Pi, Jj

]
= iεijkPk ,

[
Pi,Kj

]
= −iδijP0 ,[

Ji, Jj
]

= iεijkJk ,
[
Ki, Jj

]
= iεijkKk ,

[
Ki,Kj

]
= −iεijkJk , (2.68)

where P0 is the generator of time translations, P is the generator of space translations,
and J is the generator for rotations9.

8Note that, in particular, k̂ψ/χ = ±iσ are not allowed, even though they would satisfy all commuta-
tors of the Poincaré algebra, because they do not reproduce the right P or T transformation behavior.
They would be appropriate for Weyl spinors, but here we deal with Pauli spinors.

9We are not using covariant notation here and in the rest of this paper; unless otherwise specified,
we write all vector indices as lower indices.
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The commutation relations of the Poincaré algebra not involving a boost generator
are trivially satisfied, but for the boost they provide non-trivial information. It is also
straightforward to check that the commutators of a boost generator with the generators
of spacetime translations or rotations are satisfied. The commutator of two boosts,
however, gives new constraints on the parameters from the boost generators.

Conceptually, the commutator between any two transformations is defined as the
difference in performing them in opposite orders. In the case of linear transformations,
this can be written simply as the commutator of two matrices, but in these non-linear
transformations corresponding to the boost of a heavy (anti)quark field, one has to
be careful to express the second transformation in terms of fields which have already
undergone the first transformation.

It will be more convenient to calculate the commutator of two infinitesimal boost
transformations rather than the commutator of two boost generators:

[1− iξ ·K, 1− iη ·K] = i(ξ × η) · J , (2.69)

since then we may apply the left-hand side directly to the heavy quark field and write
the two successive boosts as

ψ(x)
Kη−→ ψ′η(x) =

(
1− iη · kψ(D,E,B, ψ, χ, x)

)
ψ(x) , (2.70)

ψ′η(x)
Kξ−→ ψ′′ξη(x) =

(
1− iξ · kψ(D′η,E

′
η,B

′
η, ψ

′
η, χ
′
η, x)

)
ψ′η(x) . (2.71)

Expanding the commutator to linear order in ξ and η gives

[1− iξ ·K, 1− iη ·K]ψ(x) = ψ′′ξη(x)− ψ′′ηξ(x)

=
(

1− iξ · kψ(D′η,E
′
η,B

′
η, ψ

′
η, χ
′
η, x)

)
ψ′η(x)−

(
1− iη · kψ(D′ξ,E

′
ξ,B

′
ξ, ψ
′
ξ, χ
′
ξ, x)

)
ψ′ξ(x)

= (ξ × η) · (r ×∇)ψ(x)−
[
ξ · k̂ψ(D,E,B, ψ, χ, x),η · k̂ψ(D,E,B, ψ, χ, x)

]
ψ(x)

− iξ · k̂ψ(D + ηD0,E + η ×B,B − η ×E, (1− iη · k̂ψ)ψ, (1− iη · k̂χ)χ, x)ψ(x)

+ iη · k̂ψ(D + ξD0,E + ξ ×B,B − ξ ×E, (1− iξ · k̂ψ)ψ, (1− iξ · k̂χ)χ, x)ψ(x) ,
(2.72)

where in the last two lines only linear orders of ξ or η are supposed to be kept. These
last two lines contain new terms (compared to the naive application of the commutator
in the previous line) arising from the non-linear nature of the boost transformation.

Inserting the explicit expression of Eq. (2.66) into Eq. (2.72), we obtain the following
expression at O(M−2):

ψ′′ξη(x)− ψ′′ηξ(x) = i(ξ × η) ·
{
r × (−i∇) +

kDS
2
σ +

ikDS
2M

σD0 +
kD3S

4M2
σ(D2)

+
1

16M2
(k2
DS − kD3S) {D,D · σ}

− 1

16M2
(4kE − 4k2

D + k2
DS + 8kD3 + 4kB1) gB
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− i

16M2
(2kES − 2kDkDS + kD3S − 2kBS4 + 2kBS5) (gB × σ)

}
ψ(x) .

(2.73)

In order to replace the temporal derivative, we use the equation of motion for the heavy
quark field at O(M−1)

iD0ψ(x) =
{
− c2

2M
D2 − cF

2M
gB · σ

}
ψ(x) . (2.74)

Then, the resulting expression has to satisfy the commutation relation of Eq. (2.69),
such that

i(ξ×η) ·
{
r × (−i∇) +

kDS
2
σ

+
1

4M2
(kD3S − kDSc2)σ(D2) +

1

16M2
(k2
DS − kD3S)

{
D, (D · σ)

}
− 1

16M2
(4kDScF + 4kE − 4k2

D + k2
DS + 8kD3 + 4kB1) gB

− i

16M2
(4kDScF + 2kES − 2kDkDS + kD3S − 2kBS4 + 2kBS5)(gB × σ)

}
ψ(x)

!
= i(ξ × η) ·

{
r × (−i∇) +

1

2
σ

}
ψ(x) . (2.75)

This gives the following relations:

kDS = 1 , kD3S = 1 , c2 = 1 , (2.76)

cF + kE − k2
D + 2kD3 + kB1 = −1

4
, (2.77)

2cF + kES − kD − kBS4 + kBS5 = −1

2
. (2.78)

Note that already two of the Wilson coefficients, c2 and cF , are fixed or constrained in
terms of the parameters from the boost generator, and two of the coefficients from boost
generator kDS and kD3S are fixed to unity.

2.4.3 Invariance of the Lagrangian

Now that we have constructed a non-linear boost transformation for the heavy (anti)quark
fields that satisfies the Poincaré algebra, we can proceed to check which conditions need
to be satisfied in order for the NRQCD Lagrangian to be invariant under this transforma-
tion. We start with bilinear terms in the heavy quark sector. The Lagrangian at O(M−2)
was already given in Eq. (2.32), but in order to study the transformed Lagrangian at
this order, we also need to include O(M−3) terms that contain a derivative10:

L(3)
∣∣∣
D

= ψ†
{

c4

8M3
(D2)2 +

cW1

8M3

{
D2, gB · σ

}
− cW2

4M3
Di(gB · σ)Di

10The term −iMr from the boost transformation adds a power of M to the O(M−3) Lagrangian, but
the commutator with this term vanishes unless there appears a derivative.
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+
cp′p

16M3

{
(D · σ),

{
D·, gB

}}
+
icM
8M3

{
D·,

{
D×, gB

}}}
ψ . (2.79)

Strictly speaking, it is not the Lagrangian that needs to be invariant under a trans-
formation but the action. Thus, as for the invariance of the Lagrangian, we mean that
the difference between transformed and original Lagrangian is at most an overall deriva-
tive, which we denote by ∂µ∆µL. Such terms are often implicitly omitted, as all they
contribute to the action is a vanishing surface term. We will include them here for the
completeness in argument, and because they play a role in the calculation of conserved
Noether currents and charges.

With the Lagrangian defined in Eq. (2.32) and (2.79), we obtain the following trans-
formation behavior at O(M−2):

∂µ∆µL = L
(
D′,E′,B′, ψ′, χ′, x)− L

(
D,E,B, ψ, χ, x)

= η · (r∂0 + t∇)L+ η · ψ†
{
i(1− c2)D +

1

2M
(c2 − kD)

{
D0,D

}
+

1

4M
(kDS − 2cF + cS)gE × σ +

i

4M2
(c2kD − c4)

{
D,D2

}
+

1

8M2
(cD + kE)

[
D0,E

]
+

i

8M2
(cS + kES)

{
D0, gE

}
× σ +

1

8M2
(2cM − cD + cFkDS)

{
D×, gB

}
+

i

8M2
(cS − cFkDS − cp′p)

{
D·, gB

}
σ +

i

8M2
(cFkDS − c2kDS − cp′p)

{
(D · σ), gB

}
+

i

8M2
(c2kDS + 2cFkD − cS − 2cW1 + 2cW2)

{
D, (gB · σ)

}}
ψ

+ ∇ · η ψ†
{
kD
2M

D0 −
ic2kD
4M2

D2 − icFkD
4M2

gB · σ
}
ψ

+ ∇ · η × ψ†
{
ikDS
4M

D0σ +
c2kDS
8M2

(D2)σ +
cFkDS
8M2

gB +
icFkDS

8M2
gB × σ

}
ψ .

(2.80)

The spatial derivative terms in the last two lines arise from covariant derivatives in the
boost transformation of ψ† through (Dψ)† = ∇ψ† − ψ†D.

All terms which are not overall derivatives have to vanish, otherwise the Lagrangian
(or rather the action) would not be invariant. From this, the following constraints on
the coefficients are obtained:

c2 = 1 , kD = 1 , c4 = 1 , kE = −cD , kES = −cS , kDS = 1 , (2.81)

cS = 2cF − 1 , 2cM = cD − cF , cp′p = cF − 1 , cW2 = cW1 − 1 . (2.82)

These coincide with the constraints derived in HQET via reparametrization invari-
ance [25]. We also see that they are consistent with the constraints obtained from
the Poincaré algebra relation between two boost generators. By combining both results,
Eqs. (2.76), (2.77), (2.78), (2.81), and (2.82), we can simplify the remaining constraints
to:

kB1 = cD − cF +
3

4
− 2kD3 , kBS5 = kBS4 −

1

2
. (2.83)
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Note that the relations kDS = 1 and c2 = 1 are obtained at different orders in 1/M
respectively, depending on whether we use the commutator of two boosts or the invari-
ance of the Lagrangian. Ultimately, if one were able to do an all orders calculation, each
calculation by itself should give all constraints, because the Wilson coefficients of the
Lagrangian enter the calculation of the commutator of two boosts through the equa-
tions of motion. At any finite order, however, both calculations provide complementary
information to each other.

The boost parameter kD3 has not been fixed yet. Its value can be easily derived from
a term in ∂µ∆µL at O

(
M−3

)
,

ψ†
1

8M3
(c4 − kD3)

{{
D0,η ·D

}
,D2

}
ψ , (2.84)

where c4 = 1 from Eq. (2.81). This term cannot be canceled by any other term in the
transformed Lagrangian because those contain at least one gluon field E orB. Thus, the
constraint kD3 = 1 is obtained at O(M−3) and can be used to further simplify Eq. (2.83)
to

kB1 = cD − cF −
5

4
. (2.85)

If we compare this result for the boost to the transformation used in [24]11, we
observe that they are the same. It turns out that the generic boost coefficients kD, kDS ,
kD3, and kD3S , which were implicitly assumed to be equal to 1 in the method inspired
by the induced representation [24], are in fact constrained to exactly this value by either
the invariance of the Lagrangian itself or the relation in the Poincaré algebra for the
commutator of two boosts. While this may not be a general proof that the assumptions
of [24] remain valid also at higher orders in 1/M , at least we have shown that at this
order there is no contradiction between the two approaches.

2.4.4 Noether Charge

Now that the boost transformations of the heavy quark and antiquark fields are deter-
mined, we can obtain the corresponding Noether charge K:

K =

∫
d3r

[
∂L

∂(∂0φi)
(−ikφφi)−∆0L

]
=

∫
d3r

[
∂L

∂(∂0φi)
(t∇ + r∂0)φi + ψ†k̂ψψ + χ†k̂χχ−ΠaAa0 − rL

]
=− tP +

∫
d3r

[
rh+ ψ†k̂ψψ + χ†k̂χχ

]
=− tP +

1

2

∫
d3r

{
r, h+Mψ†ψ −Mχ†χ

}
−
∫
d3r ψ†

[
i

4M
D × σ +

cD
8M2

gE

]
ψ

11Ref. [24] is in the context of NRQED instead of NRQCD, but the two calculations are analogous at
low orders in 1/M .
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+

∫
d3r χ†

[
i

4M
D × σ − cD

8M2
gE

]
χ+O(M−3) , (2.86)

where φi stands for all three types of field ψ, χ, and A, while Π is the canonical
momentum field associated to A:

Πa
i =

∂L
∂(∂0Aai )

= −Eai +O(M−2) . (2.87)

In addition, P is the Noether charge associated with spatial translations

P =

∫
d3r

{
∂L

∂(∂0φi)
(−∇)φi

}
=

∫
d3r

(
ψ†(−iD)ψ + χ†(−iD)χ− Tr

[
Π×,B

])
, (2.88)

where the equations of motion,
[
D·,Π

]
= −

(
ψ†gT aψ + χ†gT aχ

)
T a, have been used in

order to make the expression explicitly gauge invariant12. The Hamiltonian density h is
given through the Hamiltonian

H =

∫
d3r

(
∂L

∂(∂0φi)
∂0φi − L

)
=

∫
d3r

(
ψ†hψψ + χ†hχχ+ Tr

[
Π2 +B2

])
≡
∫
d3r h , (2.89)

where hψ and hχ are defined through the Lagrangian,

L = ψ†(iD0 − hψ)ψ + χ†(iD0 − hχ)χ+ Tr
[
E2 −B2

]
, (2.90)

and we have made use of the Gauss’s law again. The initial expression (∂L/∂(∂0φi) · ∂0φi)−
L and the Hamiltonian density, as defined in the final expression, differ by a derivative
term, −∇ ·(ΠaAa0), which vanishes in H, but gives a contribution to K that exactly can-
cels the ΠaAa0 term in Eq. (2.86). In the last expression for K, we have replaced rh by
1
2{r, h}−

1
2 [h, r] in order to obtain an explicitly hermitian expression; the antihermitian

terms from ψ†k̂ψψ and χ†k̂χχ cancel against 1
2 [h, r].

The Noether charge K corresponds exactly to the boost operator of the quantized
theory obtained in [22] and extends it up to O(M−2). Note that the field redefinitions
which remove the O(M) terms from the Lagrangian have not been performed in [22], so
their definition of h differs from ours by Mψ†ψ−Mχ†χ, which thus appears explicitly in
our expression for K. Accordingly, the generators for time translations are given by i∂0±
M after the redefinition of ψ and χ, so the proper Noether charge of time translations is
given by the above Hamiltonian H plus M

∫
d3r(ψ†ψ − χ†χ), which coincides with the

expression in [22].

12In fact, the equations of motion are the Gauss’s law.
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2.4.5 The four-fermion Lagrangian

We now turn to the four-fermion part of the NRQCD Lagrangian, or more specifically
the part consisting of two heavy quark and two heavy antiquark fields. The lowest order
terms of the Lagrangian are given by

L(2)
∣∣∣
4f

=
1

M2

{
f1(1S0)ψ†χχ†ψ + f1(3S1)ψ†σχ · χ†σψ

+ f8(1S0)ψ†T aχχ†T aψ + f1(3S1)ψ†σT aχ · χ†σT aψ
}
. (2.91)

These Wilson coefficients f are related by Poincaré invariance to the coefficients of the
next order four-fermion Lagrangian, which in this case is O(M−4) [78]. It is straight-
forward to see that the O(M) terms of kψ and kχ cancel each other in the boost trans-
formation of the leading order part of this Lagrangian, so the first constraints will be
obtained at O(M−3).

The O(M−4) Lagrangian will contribute only with the O(M) terms of kψ and kχ,
which are given by ±Mr. Since the boost of operators with two left-right derivatives, like

ψ†
←→
Dχ ·χ†

←→
Dψ (see Eq. (2.93) for the definition of left-right derivatives), or with a chro-

momagnetic field B, cancels at O(M), only operators with at least one “center-of-mass”
derivative (i.e., a derivative acting on two heavy fields like ∇χ†ψ) give non-vanishing
contributions. Including only such terms, the four-fermion part of the Lagrangian at
O(M−4) is given by

L(4)
∣∣∣
4f, cm

= − if1 cm

2M4

(
ψ†(
←→
D × σ)χ ·∇χ†ψ + (∇ψ†χ) · χ†(

←→
D × σ)ψ

)
− if8 cm

2M4

(
ψ†(
←→
D × σ)T aχ ·Dabχ†T bψ + (Dabψ†T bχ) · χ†(

←→
D × σ)T aψ

)
+
if ′1 cm
2M4

(
ψ†
←→
Dχ · (∇× χ†σψ) + (∇× ψ†σχ) · χ†

←→
Dψ

)
+
if ′8 cm
2M4

(
ψ†
←→
DT aχ · (Dab × χ†σT bψ) + (Dab × ψ†σT bχ) · χ†

←→
DT aψ

)
+
g1a cm

M4

(
∇iψ†σjχ

)(
∇iχ†σjψ

)
+
g8a cm

M4

(
Dab
i ψ
†σjT

bχ
)(

Dac
i χ
†σjT

cψ
)

+
g1b cm

M4

(
∇ · ψ†σχ

)(
∇ · χ†σψ

)
+
g8b cm

M4

(
Dab · ψ†σT bχ

)(
Dac · χ†σT cψ

)
+
g1c cm

M4

(
∇ψ†χ

)
·
(
∇χ†ψ

)
+
g8c cm

M4

(
Dabψ†T bχ

)
·
(
Dacχ†T cψ

)
,

(2.92)

where covariant derivatives with color indices are understood in the adjoint representa-
tion. The left-right derivatives are defined as follows:

ψ†(
←→
D )nTχ =

n∑
k=0

(−1)k
(
n

k

)(
Dkψ

)†
T
(
Dn−kχ

)
, (2.93)

where the order of the covariant derivatives on the right-hand side is the same in each
term, and T stands for either the unit or a color matrix. In particular, it follows from
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this expression that
←→
D does not act on any field outside of ψ† and χ. Thus, we obtain

the following expression at O(M−3) after taking the boost transformation:

∂µ∆µL(4f) =− 1

2M3

(
f1(1S0) + 4g1c cm

) [
(η · i∇ψ†χ)χ†ψ + h.c.

]
− 1

2M3

(
f8(1S0) + 4g8c cm

) [
(η · iDabψ†T bχ)χ†T bψ + h.c.

]
+

1

4M3

(
f1(1S0)− f1 cm

) [
ψ†η · (

←→
D × σ)χχ†ψ + h.c.

]
+

1

4M3

(
f8(1S0)− f8 cm

) [
ψ†η · (

←→
D × σ)T aχχ†T aψ + h.c.

]
− 1

2M3

(
f1(3S1) + 4g1a cm

) [
(η · i∇ψ†σiχ)χ†σiψ + h.c.

]
− 1

2M3

(
f8(3S1) + 4g8a cm

) [
(η · iDabψ†σiT

bχ)χ†σiT
bψ + h.c.

]
+

1

4M3

(
f1(3S1)− f ′1 cm

) [
ψ†(η ×

←→
D )χ · χ†σψ + h.c.

]
+

1

4M3

(
f8(3S1)− f ′8 cm

) [
ψ†(η ×

←→
D )T aχ · χ†σT aψ + h.c.

]
+

2

M3
g1b cm

[
ψ†(η · σ)χ(i∇ · χ†σψ) + h.c.

]
+

2

M3
g8b cm

[
ψ†(η · σ)T aχ(iDab · χ†σT bψ) + h.c.

]
, (2.94)

where we have neglected the terms from the coordinate transformations. As none of
these terms has the form of an overall derivative, all coefficients have to be equal to
zero, which implies:

g1a cm = −1

4
f1(3S1), g1c cm = −1

4
f1(1S0), g8a cm = −1

4
f8(3S1), g8c cm = −1

4
f8(1S0),

(2.95)

f1 cm =
1

4
f1(1S0), f ′1 cm =

1

4
f1(3S1), f8 cm =

1

4
f8(1S0), f ′8 cm =

1

4
f8(3S1),

(2.96)

g1b cm = g8b cm = 0 . (2.97)

These relations were first derived in [78] and later confirmed in [79] for the singlet sector,
which at this order is equivalent to NRQED.

At O(M−4), the boost generators contain terms involving the heavy (anti)quark
fields themselves. This is a novel feature if one follows the line of argument in [79],
where the appearance of gauge field operators has been explained with the ambiguities
related to the ordering of derivatives when one promotes them to covariant derivatives.
Of course, an argument could be made based on the fact that gauge fields and heavy
(anti)quark fields are related through the equations of motions, but in the EFT approach
used in this paper the appearance of heavy (anti)quark fields in the boost generators
is only natural and requires no further justification. It turns out, however, that none
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of these terms leads to new constraints on the Wilson coefficient, at least not at the
next order in the 1/M expansion, because any term in the boosted Lagrangian or the
commutator of two boosts that is supposed to vanish can be made to do so just by
adjusting the boost parameters. This is why we reserve the details of this calculation to
Appendix A.1.

2.5 Summary and discussion

In this chapter, we have discussed basics of QCD at high-energy (degrees of freedom and
asymptotic freedom) and introduced low-energy EFTs of QCD involving heavy quarks,
HQET and NRQCD, in particular. As the HQET is parametrized by a reference frame
of the heavy particle and its residual momentum (which is due to the recoil from a
light quark), it is natural that the theory is invariant under reparametrization of the
rest frame and the residual momentum. Such invariance leads to constraints between
its Wilson coefficients. In fact, one can view this invariance from another perspective:
reparametrization invariance implies that the theory is invariant under the choice of the
reference frame of the particle, which, in fact, is the Poincaré invariance of the theory.

Then, we have investigated the Poincaré invariance of another low-energy EFT of
QCD, namely NRQCD. While the non-relativistic fields transform under spacetime
translations and rotations in a usual way, their transformation under boost is non-trivial.
We investigated boost transformations by starting from the most general form allowed
by charge conjugation, parity, and time reversal, while exploiting the freedom to remove
redundant terms through field redefinitions. Relations between the Wilson coefficients
were derived when we applied those expressions to the corresponding Lagrangian up to
a certain order in the expansion, and required that they leave the corresponding action
invariant as well as satisfy the Poincaré algebra. The results confirm known relations
from the literature [22, 24, 78], in both NRQCD, and can be found in Eqs. (2.81), (2.82),
(2.95), (2.96), and (2.97).

While at present we have not obtained new relations between the Wilson coefficients
for NRQCD, we still would like to point out the following benefits of our approach and
advantages over previous treatments. The derivation of the boost transformation via
the induced representation13 in [24] provides a somewhat intuitive understanding for the
form of several (but not all) terms appearing in the boost generator; however, it fails to
provide a convincing argument why one should not assign a matching coefficient to these
terms in order to account for possible high energy effects beyond the factorization scale,
just as one does for any other EFT operator. In addition, it does not specify how the
necessary extension of the boost beyond the form given by the induced representation
should be performed in cases where more than one suitable operator is available.

We have addressed both of these issues: using a general ansatz with only minimal as-
sumptions (i.e., including every possible operator with a matching coefficient), we have
shown unambiguously (and with only little additional computational effort) that the

13We have briefly discussed it in Sec. 1.4.2.
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symmetries and the Poincaré algebra are sufficient to determine all constraints between
Wilson coefficients and to fix the form of the boost generator in NRQCD.

In the next chapter, we apply this EFT method to another low-energy EFT of QCD,
namely potential NRQCD (pNRQCD), which is an EFT for a heavy quarkonium (heavy
quark-antiquark bound state).
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Chapter 3

Spacetime symmetries in
potential NRQCD

In this chapter, we introduce another low-energy effective theory of QCD involving
heavy quarkonium (bound states of a heavy quark and a heavy antiquark), namely
potential NRQCD (pNRQCD). We discuss its hierarchy of scales, both in the weakly-
coupled and strongly-coupled cases, and the corresponding actions. In pNRQCD the
Wilson coefficients appear in the form of potentials. We then investigate the Poincaré
transformations in the most general way, as it was shown in the NRQCD section of
the last chapter. From this approach, we obtain suitable expressions of the generators
of Poincaré group, boost generator in particular. We apply the transformations to
bilinear parts of the singlet, octet, and singlet-octet sector of the pNRQCD action, and
its symmetry under the Poincaré group yields some non-trivial relations between the
Wilson coefficients.

3.1 An effective field theory for heavy quarkonia

While NRQCD provides a useful tool for analyzing production or annihilation process
involving a heavy quarkonium (such as a charmonium or bottomonium), it is less suited
to explain the mass splittings or spectrum of the bound states. In this case, potential
non-relativistic QCD (pNRQCD) gives a valid description of transitions or mass split-
tings of the heavy quarkonium states [8, 80]. PNRQCD is a low-energy EFT obtained
from NRQCD after integrating out the scale of the relative momentum between a heavy
quark and an antiquark. In this section, we discuss the hierarchy of scales and the
Lagrangian of pNRQCD.

3.1.1 Hierarchy of scales

As we have seen in the previous chapters, the Lagrangian of an EFT which involves a
heavy scale is organized as an expansion in the scale that has been integrated out, which
is the quark mass M . The schematic form of its Lagrangian is given in Eq. (1.79).
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In the case of pNRQCD one proceeds by integrating out the next relevant scale,
which is the scale of the momentum transfer between the heavy quark and the heavy
antiquark, and the originating matching coefficients play the role of potentials. Then,
one should consider the relation between the three different scales (apart from the heavy
scale M) arising in heavy quarkonium systems: p ∼ Mv,E ∼ Mv2, and ΛQCD, where
v is the relative velocity, p is the relative momentum, and E is the binding energy
between the quark and the antiquark. For quarkonium systems, in which the hierarchy
Mv � ΛQCD is satisfied (which are the lowest quarkonium systems in bottomonium and
charmonium with a typical radius smaller than the inverse of the confinement scale),
the integration of the relative momentum can be done in perturbation theory. On the
other hand, if the binding energy is less than the typical hadronic scale ΛQCD � Mv2

(which is the strong-coupling regime), then ΛQCD may be integrated out as well. The
resulting effective Lagrangian is somewhat simpler than in weakly coupled pNRQCD
(for which ΛQCD . Mv2) due to the absence of colored degrees of freedom, although
the matching is more complicated and in general non-perturbative1. The weak-coupling
case in particular shows a proliferation of Wilson coefficients as the number of effective
operators increases.

3.1.2 Lagrangian

The pNRQCD Lagrangian is obtained from NRQCD after integrating out the scale of
the relative momentum Mv between a heavy quark and a heavy antiquark. In weakly-
coupled pNRQCD, we also assume that this scale is much larger than ΛQCD, which
implies that the matching can be carried out in a perturbative way. Since the relative
momentum scale is of the same order as the inverse of the quark-antiquark distance,
Mv ∼ 1/r, integrating out this scale corresponds to a multipole expansion. The effective
degrees of freedom are now heavy quarkonium fields instead of separate heavy quark and
antiquark fields, since after integrating out the scale 1/r, the other degrees of freedom
(ultrasoft gluons and light quarks) can no longer resolve the individual fields. The heavy
quark and the antiquark can form either a color singlet or an octet state in SU(3), so
the quarkonium fields of pNRQCD appear as singlet S and octet Oa. These fields are
the only ones that can depend2 on the relative distance r = x1 − x2 as well as the
center-of-mass coordinate R = (x1 + x2)/2, while all other fields depend only on R.
Then the Lagrangian of weakly-coupled pNRQCD can schematically be written as

Lweak
pNRQCD =

∫
d3rTr

[
S†(i∂0 − hS)S +Oa †(iDab

0 − habO )Ob − (S†haSOO
a + h.c.)

]
+ LYM + Llight ,

(3.1)

where h.c. stands for the hermitian conjugate of the last term, and the trace refers to
the spin indices of the quarkonium fields. The explicit expressions of hS , hO, and hSO
are not immediately required for the following discussions, so we postpone them until

1We discuss the strong coupling regime in the next chapters.
2x1 and x2 are the spatial coordinates of the heavy quark and the heavy antiquark, respectively.
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they become relevant; hS and hO are found in Eqs. (3.52), (3.56), respectively, and hSO
is given by Eqs. (3.59) and (3.60). As usual, they contain all derivative or interaction
terms allowed by the symmetries. In addtion, LYM is the ultrasoft gluon sector, and
Llight is the light quark sector.

Sometimes it is more convenient to write the quarkonium fields as matrices in color
space:

S =
1√
3

S1 , O =
√

2OaT a , (3.2)

so that the Lagrangian is rewritten as

Lweak
pNRQCD =

∫
d3rTr

[
S†(i∂0 − hS)S +O†iD0O −

(
O†hOO + c.c.

)
−
(
S†hSOO + h.c.

)]
− 1

4
FµνF

µν + Llight

(3.3)

where the trace here is understood both in spin and in color spaces, and c.c. stands for
the charge conjugate of the preceding term within the parenthesis. The coefficients for
the matrices are given such that the trace over two fields is properly normalized, and
the covariant derivatives are understood as commutators with all terms to their right.

On the other hand, when the hierarchy of scales is given by Mv & ΛQCD or ΛQCD �
Mv2, the theory enters the strong coupling regime. In this case, the pNRQCD La-
grangian is obtained after integrating out the hadronic scale ΛQCD, which means that
all colored degrees of freedom are absent [80]:

Lstrong
pNRQCD =

∫
d3R

∫
d3rS† (i∂0 − hs)S , (3.4)

where

hs ≡
p2

1

2M1
+

p2
2

2M2
+ VS . (3.5)

M1,2 is the mass of the heavy quark (or antiquark, respectively), p1,2 is the momentum of
the quark (or the antiquark), and VS is the singlet potential in the long-distance regime.
In this chapter, we are focusing on deriving constraints between the Wilson coefficients
of the weakly-coupled pNRQCD Lagrangian, so any superscript on the Lagrangian will
be omitted in the following discussions.

The matching between NRQCD and weakly-coupled pNRQCD is performed through
interpolating fields

χ†(R− r/2)φ(R− r/2,R+ r/2)ψ(R+ r/2)

→ Z
(0)
S (r)S(r,R) + Z

(2)
O (r)rr · gEa(R)Oa(r,R) +O(r3) , (3.6)

χ†(R− r/2)φ(R− r/2,R)T aφ(R,R+ r/2)ψ(R+ r/2)

→ Z
(0)
O (r)Oa(r,R) + Z

(2)
S (r)rr · gEa(R)S(r,R) +O(r3) . (3.7)

where the Wilson line φ acts as a gauge link from the heavy quark position to that of the
heavy antiquark. Correlators of those interpolating fields in both theories are supposed
to give the same result, which determines the matching coefficients Z.
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3.2 Symmetry transformations in pNRQCD

3.2.1 Discrete symmetries

The interpolating fields determine how the coordinate dependence of the quarkonium
fields behaves under the spacetime symmetries as well. In fact, in the limit g → 0 one
can neglect the Wilson lines and just determine the transformation of singlet and octet
from different color projections of Q = ψχ†. The coordinate transformations do not
depend on the color representation, so we use Q for both singlet and octet.

First, we give here the transformations under the discrete symmetries:

Q(t, r,R)
P−→ −Q(t,−r,−R) , (3.8)

Q(t, r,R)
C−→ σ2Q

T (t,−r,R)σ2 , (3.9)

Q(t, r,R)
T−→ σ2Q(−t, r,R)σ2 , (3.10)

where the transpose on the charge conjugated field refers both to color and spin space.
Also note that charge conjugation exchanges the positions of the quark and the antiquark
fields, so that r goes to −r.

Then, we list here how the boost generators, kQ, are required to behave under the
discrete symmetries, parity, charge conjugation, and time reversal:

PkQ = −kQ , CkQ = σ2k
T
Qσ2 , TkQ = σ2kQσ2 . (3.11)

Note that P changes the sign of both r and R, C changes the sign of only r, T changes
the sign of t and takes the complex conjugate. For the singlet field, the transposition
inherent to the C transformation is trivial in color space, while for the octet field in
matrix notation, we have to write the boost generator in two separate parts:

O
K−→ O′ = O − iη ·

(
k

(A)
O O +Ok

(B)
O

)
. (3.12)

These two parts are exchanged under C as k
(A),(B)
O

C−→ σ2

(
k

(B),(A)
O

)T
σ2.

3.2.2 Spacetime symmetries

Spacetime translations

We continue to work with the analogy between a quarkonium fieldQ and the unconnected
heavy quark pair ψχ†. Time translation is straightforward in pNRQCD; ψ and χ† are
evaluated at the same time, so the time argument of the quarkonium fields is shifted in
the same way. The additional mass terms introduced through the field redefinitions of
ψ and χ add up, which gives the following transformation

Q(t, r,R)
P0−→ Q′(t, r,R) = (1− 2iMa0)Q(t, r,R) +

[
a0∂0, Q(t, r,R)

]
. (3.13)
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We have implicitly assumed that the quark and the antiquark fields have the same mass
M , so that the generator of time translation is P0 = i∂0 + 2M .

Spatial translations act only on the center-of-mass coordinate R; both the heavy
quark and antiquark are shifted by the same amount, so the relative coordinate remains
unaffected. This means

Q(t, r,R)
Pi−→ Q′(t, r,R) = Q(t, r,R) +

[
a ·∇R, Q(t, r,R)

]
, (3.14)

with the generator for space translations P = −i∇R.
Under rotations, both the center-of-mass and the relative coordinates transform in

the same way. The component transformations of ψ and χ lead to a commutator with
the quarkonium fields and the sigma matrices:

Q(t, r,R)
J−→ Q′(t, r,R) = Q(t, r,R) +

[
α ·
(
R×∇R + r ×∇r +

i

2
σ

)
, Q(t, r,R)

]
.

(3.15)
With the convention for the sigma matrices from Eq. (3.23), this gives the generator
of rotations as J = R × (−i∇R) + r × (−i∇r) +

(
σ(1) + σ(2)

)
/2. From this, it is

straightforward to see that

Q1 =
1√
2

Tr[Q] and Q3 =
1√
2

Tr[σQ] (3.16)

transform as a singlet (scalar) and triplet (vector) respectively under rotations (the trace
is understood only in spin space). We can decompose the matrix valued quarkonium
field as

Q =
1√
2
Q11 +

1√
2
Q3 · σ . (3.17)

The bilinears in the Lagrangian then give

Tr
[
Q†Q

]
= Q†1Q1 +Q†3 ·Q3 , (3.18)

Tr

[
Q†
i
(
σ(1) + σ(2)

)
2

Q

]
= Q†3 ×Q3 , and Tr

[
Q†
σ(1) − σ(2)

2
Q

]
= Q†3Q1 +Q†1Q3 .

(3.19)

Boosts

Under boosts, the coordinate transformations are composed of the individual boosts of
the heavy (anti)quark fields at x1 = R+ r/2 and x2 = R− r/2:

ψ(t,x1)χ†(t,x2)
K−→ ψ(t,x1)χ†(t,x2)− iMη · (x1 + x2)ψ(t,x1)χ†(t,x2)

+
[
η · (t∇1 + x1∂0), ψ(t,x1)

]
χ†(t,x2) + ψ(t,x1)

[
η · (t∇2 + x2∂0), χ†(t,x2)

]
+ . . .

= (1− 2iMη ·R)ψ(t,x1)χ†(t,x2) +
[
η · (t∇R +R∂0), ψ(t,x1)χ†(t,x2)

]
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+
1

2
(η · r)

([
∂0, ψ(t,x1)

]
χ†(t,x2)− ψ(t,x1)

[
∂0, χ

†(t,x2)
])

+ . . . , (3.20)

where the ellipsis in the last line stands for all terms of the boost transformation that
are not related to the coordinate transformation (this is shown in Eq. (3.22)). The first
two terms on the right-hand side of the equality sign correspond to the usual coordinate
transformations under boosts for a scalar field with mass 2M , where only the center-of-
mass coordinate participates in the boost and the relative distance remains unaffected.
The third term on the right-hand side, the time derivatives acting on the quark and
antiquark fields, cannot be written as one derivative acting on the whole quarkonium
field because they have opposite sign. However, these time derivatives can be replaced
by spatial derivatives through the equations of motion:

1

2
(η · r)

([
∂0, ψ(t,x1)

]
χ†(t,x2)− ψ(t,x1)

[
∂0, χ

†(t,x2)
])

= (η · r)

[
i

4M
(∇2

1 −∇2
2), ψ(t,x1)χ†(t,x2)

]
+O(M−3)

= (η · r)

[
i

2M
∇R ·∇r, ψ(t,x1)χ†(t,x2)

]
+O(M−3) . (3.21)

Thus these terms give corrections of order 1/M and higher.
The other terms in the boost transformation of the quark and antiquark fields in the

g → 0 limit can also be rewritten in terms of the center of mass and relative coordinates,
R and r:

ψ(t,x1)χ†(t,x2)
K−→ . . . +

i

2M

[
η · (∇1 + ∇2), ψ(t,x1)χ†(t,x2)

]
− 1

4M

[
(η ×∇1)·,σψ(t,x1)χ†(t,x2)

]
+

1

4M

[
(η ×∇2)·, ψ(t,x1)χ†(t,x2)σ

]
+O(M−2)

= . . . +
i

2M

[
η ·∇R, ψ(t,x1)χ†(t,x2)

]
− 1

8M

(
σ(1) + σ(2)

)
·
[
(η ×∇R), ψ(t,x1)χ†(t,x2)

]
− 1

4M

(
σ(1) − σ(2)

)
·
[
(η ×∇r), ψ(t,x1)χ†(t,x2)

]
+O(M−3) . (3.22)

The ellipsis here denotes the terms concerning the coordinate transformation, Eq. (3.20).
We have also introduced the convenient notation

σ(1)Q = σQ and σ(2)Q = −Qσ . (3.23)

This implies that σ(1) acts on the spin of the heavy quark and σ(2) acts on the spin of
the heavy antiquark (they correspond to the respective generators of rotations). Since

σ2σσ2 = −σT , and σTQT = (Qσ)T (3.24)

charge conjugation effectively exchanges σ(1) ↔ σ(2).
From these expressions, we expect the boost generator in the g → 0 limit to behave

like [77]

kQ
g→0
= it∇R + iR∂0 + 2MR− 1

4M
∇R −

1

4M

{
r, (∇R ·∇r)

}
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− i

8M
∇R ×

(
σ(1) + σ(2)

)
− i

4M
∇r ×

(
σ(1) − σ(2)

)
+O(M−3) . (3.25)

This limit is interesting for the ansatz we are going to make for the singlet and octet
boost generators, since it determines which coefficients we expect to be of order 1+O(αs).
In the last two terms of the first line, we have used

r(∇R ·∇r) =
1

2

{
r, (∇R ·∇r)

}
− 1

2
∇R , (3.26)

in order to obtain terms that are explicitly hermitian or antihermitian.

3.2.3 Redundancies from Poincaré transformations

In order to find the boost generators in pNRQCD, we will use the EFT approach again
and write down the most general form allowed by the symmetries of the theory. However,
it turns out that several terms in this ansatz are redundant. In other words, one can
make a field redefinition that removes these terms from the boost generator without
changing the form of the Lagrangian. Thus, there is no loss in generality if one chooses
to work with a boost generator where these redundant terms are absent. We will work
out appropriate field redefinitions in this section. Since we calculate the transformation
of the Lagrangian up to orders M0r1 and M−1r0 in the next section, it is necessary to
include all terms of order M0r2, M−1r0. We will use the notation c(m,n) for the Wilson
coefficients of terms of order M−mrn.

3.2.4 Field redefinitions by unitary transformation

Singlet field

Even though we work with a general ansatz, some terms may be omitted from the
beginning, which is similar to the construction of the pNRQCD Lagrangian. A term
like r ·∇r, for example, is neutral with respect to any symmetry and also the power
counting. In principle one could add an infinite number of these terms to any operator in
the Lagrangian, which implies that at each order in the power counting, one would have
to match an infinite number of terms, making the construction of the EFT impossible.
In comparison to NRQCD, however, one sees that each derivative appears with at least
one power of 1/M , so also in pNRQCD one can neglect any term where there are more
derivatives than powers of 1/M . The same argument applies to spin-dependent terms,
where each sigma matrix has to be suppressed by a power of 1/M . The only exception
to this are the kinetic terms, where there is one derivative more than powers of 1/M .

By extension, these rules also apply to the construction of the boost generators in
the following way. Operators leading to terms in the transformation of the Lagrangian
which would have to be canceled by derivative or spin terms with an insufficient 1/M
suppression are immediately ruled out. Keeping this in mind and writing everything
in terms of explicitly hermitian or antihermitian operators (where we stay close to the
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nomenclature in [22]), the most general ansatz for the boost generator of the singlet is
given by [77]:

kS = it∇R + iR∂0 + 2MR−
k

(1,0)
SD

4M
∇R −

1

4M

{
k

(1,0)
Sa′ r, (∇R ·∇r)

}
− 1

4M

{
k

(1,0)
Sa′′ (r ·∇R),∇r

}
− 1

4M

{
k

(1,0)
Sa′′′r·,∇r

}
∇R

− 1

4M

{
k

(1,0)
Sb

r2
r(r ·∇R)ri, (∇r)i

}
−
ik

(1,0)
Sc

8M
∇R ×

(
σ(1) + σ(2)

)
−
ik

(1,0)
Sd′′

8Mr2
(r ·∇R)

(
r ×

(
σ(1) + σ(2)

))
−
ik

(1,0)
Sd′′′

8Mr2

(
(r ×∇R) ·

(
σ(1) + σ(2)

))
r

− i

8M

{
k

(1,−1)
Sa ,∇r ×

(
σ(1) − σ(2)

)}
+

i

8M

[
k

(1,−1)
Sb′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

− i

8M

{
k

(1,−1)
Sb′′

r2

(
r ×

(
σ(1) − σ(2)

))
ri, (∇r)i

}
+O

(
M−2r0,M−1r1,M0r3

)
.

(3.27)

Since the Wilson coefficients here depend on r, they have to be included inside the
anticommutators with the derivative ∇r. We have used the identity

δijεklm = δikεjlm + δilεkjm + δimεklj , (3.28)

in order to eliminate several terms. A term like

ik
(1,0)
Sd′ (r ×∇R)(r · (σ(1) + σ(2)))/(8Mr2) , (3.29)

for instance, is not linearly independent from other terms in this ansatz, because it is

related to the operators of k
(1,0)
Sc , k

(1,0)
Sd′′ , and k

(1,0)
Sd′′′ through this identity; this can be

shown by multiplying Eq. (3.28) with

rirj(∇R)k(σ
(1) + σ(2))l . (3.30)

A similar situation is found for the operators of the coefficients, k
(1,−1)
Sa , k

(1,−1)
Sb′ , and

k
(1,−1)
Sb′′ .

Not all these terms in the boost generator, Eq. (3.27), are necessary if one exploits
the freedom to perform field redefinitions. In other words, one can always redefine the
fields as long as the symmetry properties of the fields are not altered. In order to keep the
form of the Lagrangian intact after the field redefinitions, we will only consider unitary
transformations

US = exp[uS ] , (3.31)
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where uS is antihermitian, for which the new singlet field S̃ is related to the old S via
S = USS̃ [22]. The reason for choosing unitary transformations3 in particular is that
the time derivative from the leading term of the Lagrangian, Eq. (3.3), appears only in
commutators,

U†Si∂0US = i∂0 + [i∂0, uS ] +
1

2
[[i∂0, uS ], uS ] +

1

6
[[[i∂0, uS ], uS ], uS ] + . . . . (3.32)

In this and the analogous expression for the redefinition of the octet field, the com-
mutators with the time derivative either vanish, give a chromoelectric field, or time
derivatives of gluon fields, which can be removed through the equations of motion (i.e.,
redefinitions of the gluon fields). Thus, a unitary transformation does not introduce new
time derivatives in the Lagrangian. It will introduce other terms, but those will be of a
form already present in the Lagrangian, so that their contributions can be absorbed in
a redefinition of the Wilson coefficients.

In order to find a suitable unitary transformation, we need to look for terms which are
antihermitian and P , C, and T invariant. Such terms can easily be found by multiplying
the hermitian terms in kS with ∇R/M , which explains the nomenclature we use for US :

US = exp

[
− 1

4M2

{
q

(1,0)
Sa′′ r ·∇R,∇r ·∇R

}
− 1

4M2

{
q

(1,0)
Sa′′′r·,∇r

}
∇2
R

− 1

4M2

{
q

(1,0)
Sb

r2
(r ·∇R)2r·,∇r

}
−

iq
(1,0)
Sd′′′

8M2r2
(r ·∇R)

(
(r ×∇R) ·

(
σ(1) + σ(2)

))
+

i

8M2

{
q

(1,−1)
Sa , (∇r ×∇R) ·

(
σ(1) − σ(2)

)}
− i

8M2

{
q

(1,−1)
Sb′

r2

(
r ·
(
σ(1) − σ(2)

))
(r ×∇R) ·,∇r

}

+
i

8M2

{
q

(1,−1)
Sb′′

r2

(
(r ×∇R) ·

(
σ(1) − σ(2)

))
r·,∇r

}
+ . . .

]
, (3.33)

where the ellipsis stands for higher order terms in 1/M , which do not affect the calcu-
lations of this paper. The coefficients q are free parameters.

We can work out the transformation of the new singlet field S̃ under boosts in the
following way:

S̃′ = U ′†SS
′ = U ′†S(1− iη · kS)USS̃ =

[
1− U†S(iη · kS)US +

(
δU†S

)
US
]
S̃

≡
(

1− iη · k̃S
)
S̃ , (3.34)

where

δU†S(∇R,E,B) =
[
η · (t∇R +R∂0),U†S(∇R,E,B)

]
3Another reason is that unitary transformations keep Hermitian operators Hermitian and do not

modify the Poincaré algebra.
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+ U†S(∇R + η∂0,E + η ×B,B − η ×E)− U†S(∇R,E,B) , (3.35)

with the second line expanded to linear order in η.
The transformed boost generator k̃S has to be expanded to the same order as the

original kS , for which one extra term remains:

k̃S = kS +
[
k̂S , uS

]
− uS(∇R + η∂0,E + η ×B,B − η ×E) + uS(∇R,E,B)

+
1

2

[[
k̂S , uS

]
− uS(∇R + η∂0,E + η ×B,B − η ×E) + uS(∇R,E,B), uS

]
+ . . .

= kS + [2MR, uS ] +O(M−2) . (3.36)

Inserting the explicit field redefinition from Eq. (3.33), we obtain

k̃S = kS +
1

2M

{
q

(1,0)
Sa′′ r, (∇R ·∇r)

}
+

1

2M

{
q

(1,0)
Sa′′ (r ·∇R),∇r

}
+

1

M

{
q

(1,0)
Sa′′′r·,∇r

}
∇R +

1

M

{
q

(1,0)
Sb

r2
r(r ·∇R)ri, (∇r)i

}

−
iq

(1,0)
Sd′′′

4Mr2
(r ·∇R)

(
r ×

(
σ(1) + σ(2)

))
+
iq

(1,0)
Sd′′′

4Mr2

(
r ·
(
∇R ×

(
σ(1) + σ(2)

)))
r

+
i

4M

{
q

(1,−1)
Sa ,∇r ×

(
σ(1) − σ(2)

)}
− i

4M

[
q

(1,−1)
Sb′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

+
i

4M

{
q

(1,−1)
Sb′′

r2

(
r ×

(
σ(1) − σ(2)

))
ri, (∇r)i

}
+O

(
M−2

)
. (3.37)

These extra terms can be absorbed in the operators already present in Eq. (3.27), which
changes the coefficients in the following way:

k̃
(1,0)
Sa′ = k

(1,0)
Sa′ − 2q

(1,0)
Sa′′ , k̃

(1,0)
Sa′′ = k

(1,0)
Sa′′ − 2q

(1,0)
Sa′′ , k̃

(1,0)
Sa′′′ = k

(1,0)
Sa′′′ − 4q

(1,0)
Sa′′′ ,

k̃
(1,0)
Sb = k

(1,0)
Sb − 4q

(1,0)
Sb , k̃

(1,0)
Sd′′ = k

(1,0)
Sd′′ + 2q

(1,0)
Sd′′′ , k̃

(1,0)
Sd′′′ = k

(1,0)
Sd′′′ − 2q

(1,0)
Sd′′′ ,

k̃
(1,−1)
Sa = k

(1,−1)
Sa − 2q

(1,−1)
Sa , k̃

(1,−1)
Sb′ = k

(1,−1)
Sb′ − 2q

(1,−1)
Sb′ , k̃

(1,−1)
Sb′′ = k

(1,−1)
Sb′′ − 2q

(1,−1)
Sb′′ .

(3.38)

Seven of the free parameters q’s in the unitary operator can be chosen in any con-
venient way. Comparing this to the expected result in the g → 0 limit from Eq. (3.25),

we choose to eliminate k̃
(1,0)
Sa′′ , k̃

(1,0)
Sa′′′ , k̃

(1,0)
Sb , k̃

(1,0)
Sd′′′ , k̃

(1,−1)
Sb′ , and k̃

(1,−1)
Sb′′ , as well as to fix

k̃
(1,−1)
Sa = 1. Then after dropping the tilde notation for the new field, the general boost

transformation is simplified as follows [77]

kS = it∇R + iR∂0 + 2MR−
k

(1,0)
SD

4M
∇R −

1

4M

{
k

(1,0)
Sa′ r, (∇r ·∇R)

}
−
ik

(1,0)
Sc

8M
∇R ×

(
σ(1) + σ(2)

)
−
ik

(1,0)
Sd′′

8Mr2
(r ·∇R)

(
r ×

(
σ(1) + σ(2)

))
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− i

4M
∇r ×

(
σ(1) − σ(2)

)
+O

(
M−2r0,M−1r1,M0r3

)
, (3.39)

in which only four coefficients, k
(1,0)
SD , k

(1,0)
Sa′ , k

(1,0)
Sc , and k

(1,0)
Sd′′ , remain undetermined.

Octet field

In a similar fashion, one can proceed to determine the most general form of the boost
transformation for the octet field. The main difference from the singlet is that all center-
of-mass derivatives (except for the coordinate transformations) have to be replaced by
covariant derivatives in the adjoint representation Dab = δab∇R − fabcgAc due to the
color charge of the octet field. There are no relevant operators at order M0r2 for the
singlet field, but for the case of the octet, there arise two operators involving the chro-
moelectric field. There are no new terms at order M−1r0.

We choose now to write the color components of the octet field explicitly instead of
the matrix notation, for which the boost transformation is written as

Oa
K−→ Oa ′ =

(
δab − iη · kabO

)
Ob . (3.40)

The parity transformation of the boost generator in component notation is the same as
in matrix notation. For the charge conjugation and time reversal transformation, we
introduce a sign factor through (T a)T = (T a)∗ = (−)aT a (the double appearance of the
color index a in the last equality does not imply its summation). With this the fields in
the adjoint representation transform as

Oa
C−→ σ2(−)aOaσ2 , Ea

C−→ −(−)aEa , Ba C−→ −(−)aBa , (3.41)

Oa
T−→ σ2(−)aOaσ2 , Ea

T−→ (−)aEa , Ba T−→ −(−)aBa . (3.42)

So the boost generator in component notation has to transform like

kabO
C−→ (−)a(−)bσ2

(
kabO

)T
σ2 , kabO

T−→ (−)a(−)bσ2k
ab
O σ2 . (3.43)

For the sign factors one can use the following identities:

(−)a(−)bδab = δab , (−)a(−)b(−)cfabc = −fabc , (−)a(−)b(−)cdabc = dabc ,
(3.44)

which follow from the commutation relations of the color matrices.
Then, the most general ansatz for the boost generator for octets is [77]:

kabO = δab(it∇R + iR∂0 + 2MR)−
k

(1,0)
OD

4M
Dab
R +

i

8
fabck

(0,2)
Oa (r · gEc)r +

i

8
fabck

(0,2)
Ob r2gEc

− 1

4M

{
k

(1,0)
Oa′ r, (∇r ·Dab

r )
}
− 1

4M

{
k

(1,0)
Oa′′ (r ·D

ab
R ),∇r

}
− 1

4M

{
k

(1,0)
Oa′′′r·,∇r

}
Dab
R

− 1

4M

{
k

(1,0)
Ob

r2
r(r ·Dab

R )ri, (∇r)i

}
−
ik

(1,0)
Oc

8M
Dab
R ×

(
σ(1) + σ(2)

)
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−
ik

(1,0)
Od′′

8Mr2

(
r ·Dab

R

)(
r ×

(
σ(1) + σ(2)

))
−
ik

(1,0)
Od′′′

8Mr2

(
(r ×Dab

R ) ·
(
σ(1) + σ(2)

))
r

− iδab

8M

{
k

(1,−1)
Oa ,∇r ×

(
σ(1) − σ(2)

)}
+
iδab

8M

[
k

(1,−1)
Ob′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

− iδab

8M

{
k

(1,−1)
Ob′′

r2
r ×

(
σ(1) − σ(2)

)
ri, (∇r)i

}
+O

(
M−2r0,M−1r1,M0r3

)
.

(3.45)

We can again perform a redefinition of the octet field through a unitary transformation

Õa = UabO Ob , with UO = exp[uO] , (3.46)

in order to reduce the number of undetermined coefficients in kO. For this transfor-
mation matrix, the same arguments apply as in the singlet case, so that we write the
antihermitian operator uO as:

uabO = −
q

(0,2)
Oa

32M

{
(r ·DR), (r · gE)

}ab
+
q

(0,2)
Ob

32M
r2
{
DR·, gE

}ab
− 1

4M2

{
q

(1,0)
Oa′′ (r ·DR), (∇r ·DR)

}ab
− 1

4M2

{
q

(1,0)
Oa′′′r·,∇r

}
(D2

R)ab

− 1

4M2

{
q

(1,0)
Ob

r2

(
(r ·DR)2

)ab
r·,∇r

}

−
iq

(1,0)
Od′′′

16M2r2

{
(r ·DR),

(
(r ×DR) ·

(
σ(1) + σ(2)

))}ab
+

i

8M2

{
q

(1,−1)
Oa , (∇r ×Dab

R ) ·
(
σ(1) − σ(2)

)}
− i

8M2

{
q

(1,−1)
Ob′

r2

(
r ·
(
σ(1) − σ(2)

))
(r ×Dab

R )·,∇r

}

+
i

8M2

{
q

(1,−1)
Ob′′

r2

(
(r ×Dab

R ) ·
(
σ(1) − σ(2)

))
r·,∇r

}
+ . . . , (3.47)

where {A,B}ab = Aab
′
Bb′b +Bab′Ab

′b, and it is understood that Eab = −ifabcEc.
Just like in the singlet case, the new boost generator (which corresponds to the new

octet field) after this transformation is given by:

k̃abO = kabO +
[
2MR, uabO

]
+O

(
M−2

)
= kabO −

i

8
fabcq

(0,2)
Oa (r · gEc)r − i

8
fabcq

(0,2)
Ob r2gEc

+
1

2M

{
q

(1,0)
Oa′′ r, (∇r ·Dab

R )
}

+
1

2M

{
q

(1,0)
Oa′′ (r ·D

ab
R ),∇r

}
+

1

M

{
q

(1,0)
Oa′′′r·,∇r

}
Dab
R +

1

M

{
q

(1,0)
Ob

r2
r(r ·Dab

R )ri, (∇r)i

}
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−
iq

(1,0)
Od′′′

4Mr2

(
r ×

(
σ(1) + σ(2)

))
(r ·Dab

R ) +
iq

(1,0)
Od′′′

4Mr2

(
(r ×Dab

R ) ·
(
σ(1) + σ(2)

))
r

+
iδab

4M

{
q

(1,−1)
Oa ,∇r ×

(
σ(1) − σ(2)

)}
− iδab

4M

[
q

(1,−1)
Ob′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

+
iδab

4M

{
q

(1,−1)
Ob′′

r2

(
r ×

(
σ(1) − σ(2)

))
ri, (∇r)j

}
+O(M−2) . (3.48)

This formally gives the same relations for the transformed boost coefficients as for the
singlet, with the addition of the two coefficients for the chromoelectric field terms:

k̃
(0,2)
Oa = k

(0,2)
Oa − q

(0,2)
Oa , k̃

(0,2)
Ob = k

(0,2)
Ob − q

(0,2)
Ob ,

k̃
(1,0)
Oa′ = k

(1,0)
Oa′ − 2q

(1,0)
Oa′′ , k̃

(1,0)
Oa′′ = k

(1,0)
Oa′′ − 2q

(1,0)
Oa′′ , k̃

(1,0)
Oa′′′ = k

(1,0)
Oa′′′ − 4q

(1,0)
Oa′′′ ,

k̃
(1,0)
Ob = k

(1,0)
Ob − 4q

(1,0)
Ob , k̃

(1,0)
Od′′ = k

(1,0)
Od′′ + 2q

(1,0)
Od′′′ , k̃

(1,0)
Od′′′ = k

(1,0)
Od′′′ − 2q

(1,0)
Od′′′ ,

k̃
(1,−1)
Oa = k

(1,−1)
Oa − 2q

(1,−1)
Oa , k̃

(1,−1)
Ob′ = k

(1,−1)
Ob′ − 2q

(1,−1)
Ob′ , k̃

(1,−1)
Ob′′ = k

(1,−1)
Ob′′ − 2q

(1,−1)
Ob′′ .

(3.49)

We choose the parameters q to eliminate k̃
(1,0)
Oa′′ , k̃

(1,0)
Oa′′′ , k̃

(1,0)
Ob , k̃

(1,0)
Od′′′ , k̃

(1,−1)
Ob′ , k̃

(1,−1)
Ob′′ , and

the new terms k̃
(0,2)
Oa and k̃

(0,2)
Ob , as well as to fix k̃

(1,−1)
Oa = 1. Then after dropping the

tilde notation, the general boost transformation is simplified as follows [77]

kabO = δab(it∇R + iR∂0 + 2MR)−
k

(1,0)
OD

4M
Dab
R −

1

4M

{
k

(1,0)
Oa′ r, (∇r ·Dab

R )
}

−
ik

(1,0)
Oc

8M
Dab
R ×

(
σ(1) + σ(2)

)
−
ik

(1,0)
Od′′

8Mr2

(
r ·Dab

R

)(
r ×

(
σ(1) + σ(2)

))
− iδab

4M
∇r ×

(
σ(1) − σ(2)

)
+O

(
M−2r0,M−1r1,M0r3

)
, (3.50)

in which only four undetermined coefficients, k
(1,0)
OD , k

(1,0)
Oa′ , k

(1,0)
Oc , and k

(1,0)
Od′′ , remain just

like in the case of the singlet, Eq. (3.39). These coefficients as well as the ones from the
singlet will be constrained in the next section.

3.3 Poincaré invariance in pNRQCD

In this sectoin, we apply the boost transformations generated by Eqs. (3.39) and (3.50) to
singlet, octet, and singlet-octet sector of the pNRQCD Lagrangian. Due to the invariance
of the actions, we obtain non-trivial relations between the Wilson coefficients.

3.3.1 Singlet sector

The general boost generators have to satisfy the commutation relation we discussed in
the previous chapter, Eq. (2.69), which at leading order in 1/M corresponds to

(ξ × η) · (R×∇R)−
[
ξ · k̂S , 2Mη ·R

]
+
[
η · k̂S , 2Mξ ·R

]
+O(M−1)
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= (ξ × η) · (R×∇R) + (ξ × η) · (k(1,0)
Sa′ r ×∇r) +

ik
(1,0)
Sc

2
(ξ × η) · (σ(1) + σ(2))

−
ik

(1,0)
Sd′′

2r2
(ξ × η) ·

(
r ×

(
r ×

(
σ(1) + σ(2)

)))
+O(M−1)

!
= (ξ × η) ·

(
R×∇R + r ×∇r +

i

2

(
σ(1) + σ(2)

))
. (3.51)

This already fixes three further coefficients: k
(1,0)
Sa′ = k

(1,0)
Sc = 1, and k

(1,0)
Sd′′ = 0.

The last remaining coefficient k
(1,0)
SD is fixed when we apply the boost transformation

to the singlet sector of the Lagrangian up to O(M−2) (we follow the notation from
Ref. [22])

L(S)
pNRQCD =

∫
d3rTr

[
S†
(
i∂0 +

1

2M

{
c

(1,−2)
S ,∇2

r

}
+
c

(1,0)
S

4M
∇2
R − V

(0)
S −

V
(1)
S

M
+
VrS
M2

+
VP 2Sa

8M2
∇2
R +

1

2M2

{
Vp2Sb,∇2

r

}
+

VL2Sa

4M2r2
(r ×∇R)2 +

VL2Sb

4M2r2
(r ×∇r)

2

− VS12S

M2r2

(
3(r · σ(1))(r · σ(2))− r2(σ(1) · σ(2))

)
− VS2S

4M2
σ(1) · σ(2)

+
iVLSSa
4M2

(r ×∇R) · (σ(1) − σ(2)) +
iVLSSb
4M2

(r ×∇r) · (σ(1) + σ(2))

)
S

]
,

(3.52)

where the subscripts a and b (later also c, d, and e) on the potentials are simply labels
used to distinguish different operators in the same sector (such as different spin-orbit
couplings here or several singlet-octet interactions below). The difference between the

transformed Lagrangian and the original L(S)
pNRQCD needs to be a total derivative term.

We obtain [77]:

∂µ∆̂µL(S) =

∫
d3rTr

[
η · S†

(
i
(

1− c(1,0)
S

)
∇R −

1

2M

(
k

(1,0)
SD − c(1,0)

S

)
∇R∂0

− i

M

(
VP 2Sa + VL2Sa +

1

2
V

(0)
S

)
∇R +

i

Mr2

(
VL2Sa +

r

2
V

(0) ′
S

)
r(r ·∇R)

+
1

2M

(
VLSSa +

1

2r
V

(0) ′
S

)(
σ(1) − σ(2)

)
× r
)
S

]
, (3.53)

where the prime on V denotes derivative with respect to the relative distance r. None
of these terms have the form of an overall derivative, so all coefficients have to vanish.
This gives the following constraints:

k
(1,0)
SD = c

(1,0)
S = 1 , VP 2Sa =

r

2
V

(0)′
S − 1

2
V

(0)
S ,

VL2Sa = −r
2
V

(0)′
S , VLSSa = − 1

2r
V

(0)′
S . (3.54)
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These coincide with the results in the literature [22]. Note that with the last remaining

boost coefficient k
(1,0)
SD now fixed to unity, the boost generator for the singlet field up

to this order is exactly the same as in the g → 0 limit, Eq. (3.25). In other words,
there are no loop corrections to any of the coefficients. It is important to remember,
however, that this form of the boost generator has been a particular choice obtained
through certain field redefinitions. Other choices are equally valid and may change the
constraints derived above. Our choice corresponds to the one taken in [22].

3.3.2 Octet sector

The calculation of the commutator of two boosts is analogous to that of the singlet,
Eq. (3.51), so we have

k
(1,0)
Oa′ = k

(1,0)
Oc = 1 , and k

(1,0)
Od′′ = 0 , (3.55)

for the octet. The only remaining coefficient from the boost generator kO is then k
(1,0)
D .

In [22], the octet bilinear sector of the pNRQCD Lagrangian is given as (now in the
matrix notation)

L(O)
pNRQCD =

∫
d3rTr

{
O†

(
iD0 +

1

2M

{
c

(1,−2)
O ,∇2

r

}
+
c

(1,0)
O

4M
D2
R − V

(0)
O −

V
(1)
O

M
− VrO
M2

+
VP 2Oa

4M2
D2
R +

1

2M2

{
Vp2Ob,∇2

r

}
+
VL2Oa

4M2r2
(r ×DR)2 +

VL2Ob

M2r2
(r ×∇r)

2

− VS12O

M2r2

(
3
(
r · σ(1)

)(
r · σ(2)

)
− r2

(
σ(1) · σ(2)

))
− VS2O

4M2
σ(1) · σ(2)

+
iVLSOa
4M2

(r ×DR) ·
(
σ(1) − σ(2)

)
+
iVLSOb
2M2

(r ×∇r) ·
(
σ(1) + σ(2)

))
O

+

[
O†

(
V

(0,1)
OO

2
r · gE +

iV
(0,2)
OOa

8

[
(r ·DR), (r · gE)

]
+
iV

(0,2)
OOb

8
r2
[
DR·, gE

]
+
iV

(1,0)
OOa

8M

{
∇r·, r × gB

}
+
cFV

(1,0)
OOb

2M
gB · σ(1) −

V
(1,0)
O⊗Ob
2M

gB · σ(2)

+
V

(1,0)
OOc

2Mr2
(r · gB)

(
r · σ(1)

)
−
V

(1,0)
O⊗Oc

2Mr2
(r · gB)

(
r · σ(2)

)
+
V

(1,0)
OOd

2Mr
r · gE

−
iV

(1,1)
OO

8M
{(r ×DR)·, gB}

+
icSV

(2,0)
OOa

16M2

[
DR×, gE

]
· σ(1) −

iV
(2,0)
O⊗Oa

16M2

[
DR×, gE

]
· σ(2)

+
iV

(2,0)
OOb′

16M2r2

{
(r ×DR)·, gE

}
(r · σ(1))−

iV
(2,0)
OOb′′

16M2r2

{(
(r ×DR) · σ(1)

)
, (r · gE)

}
−
iV

(2,0)
O⊗Ob′

16M2r2

{
(r ×DR)·, gE

}
(r · σ(2)) +

iV
(2,0)
O⊗Ob′′

16M2r2

{(
(r ×DR) · σ(2)

)
, (r · gE)

}
65



+
1

16M2

{
V

(2,0)
OOc′(r · gE), (∇r ·DR)

}
+

1

16M2

{
V

(2,0)
OOc′′rigEj , (∇r)j(DR)i

}
+

1

16M2

{
V

(2,0)
OOc′′′rigEj , (∇r)i(DR)j

}
+

1

16M2

{
V

(2,0)
OOd

r2
rirj(r · gE), (∇r)i(DR)j

}

−
iV

(2,0)
OOe

8M2r

{
(r ×DR)·, gB

})
O + c.c.

]}
, (3.56)

where c.c. refers to the charge conjugate of every term inside the square brackets. In
the terms of order M−1r1 and M−2r0, we include only those that contain a covariant
derivative acting on the octet field, because otherwise they do not contribute in the
boost transformation at the order we are interested in4.

Applying the boost operation to this Lagrangian, one obtains the following difference
with respect to the original Lagrangian, which has to vanish [77]:

∂µ∆̂µL(O) =

∫
d3rTr

{
O†
(
i
(

1− c(1,0)
O

)
(η ·DR)− 1

4M

(
k

(1,0)
OD − c

(1,0)
O

)
η ·
{
D0,DR

}
− i

M

(
VP 2Oa + VL2Oa +

1

2
k

(1,0)
OD V

(0)
O

)
(η ·DR)

+
i

Mr2

(
VL2Oa +

r

2
V

(0)′
O

)
(η · r)(r ·DR)

− 1

2M

(
VLSOa +

1

2r
V

(0)′
O

)
(η × r) ·

(
σ(1) − σ(2)

))
O

+

[
O†
(

1

2

(
V

(1,1)
OO − V (0,1)

OO

)
(η × r) · gB

+
1

4M

(
cSV

(2,0)
OOa − 2cFV

(1,0)
OOb +

1

2
V

(0,1)
OO +

1

2

)
(η × gE) · σ(1)

− 1

4M

(
V

(2,0)
O⊗Oa − 2V

(1,0)
O⊗Ob +

1

2
V

(0,1)
OO − 1

2

)
(η × gE) · σ(2)

− 1

4Mr2

(
V

(2,0)
OOb′ − 2V

(1,0)
OOc

)
((η × r) · gE)

(
r · σ(1)

)
+

1

4Mr2

(
V

(2,0)
O⊗Ob′ − 2V

(1,0)
O⊗Oc

)
((η × r) · gE)

(
r · σ(2)

)
+

1

4Mr2

(
V

(2,0)
OOb′′ +

r

2
V

(0,1)′
OO

)(
(η × r) · σ(1)

)
(r · gE)

− 1

4Mr2

(
V

(2,0)
O⊗Ob′′ +

r

2
V

(0,1)′
OO

)(
(η × r) · σ(2)

)
(r · gE)

− i

8M

{(
V

(2,0)
OOc′ + V

(1,0)
OOa

)
(r · gE), (η ·∇r)

}
4Note that in Ref. [22] the identity, Eq. (3.28), was not used, so there a set of operators is included

which are not linearly independent. In particular, there are two other potentials V
(2,0)

OOb′′′ and V
(2,0)

O⊗Ob′′′ ,
which we have neglected in order to work only with linearly independent operators. In the end, these
potentials are found to be zero in [22] and the other constraints do not depend on them, so the results
remain unchanged.
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− i

8M

{(
V

(2,0)
OOc′′ − V

(1,0)
OOa + 2

)
(η · r), (∇r · gE)

}
− i

8M

{
V

(2,0)
OOc′′′(η · gE)r·,∇r

}
− i

8M

{
V

(2,0)
OOd

r2
(η · r)(r · gE)r·,∇r

}

+
1

2Mr

(
V

(2,0)
OOe − V

(1,0)
OOd

)
(η × r) · gB

)
O + c.c.

]}
. (3.57)

Again, all coefficients need to vanish, from which the following constraints are derived:

k
(1,0)
OD = c

(1,0)
O = 1 , VP 2Oa =

r

2
V

(0)′
O − 1

2
V

(0)
O ,

VL2Oa = −r
2
V

(0)′
O , VLSOa = − 1

2r
V

(0)′
O ,

cSV
(2,0)
OOa = 2cFV

(1,0)
OOb −

1

2
V

(0,1)
OO − 1

2
, V

(2,0)
O⊗Oa = 2V

(1,0)
O⊗Ob −

1

2
V

(0,1)
OO +

1

2
,

V
(2,0)
OOb′ = 2V

(1,0)
OOc , V

(2,0)
O⊗Ob′ = 2V

(1,0)
O⊗Oc

V
(2,0)
OOb′′ = −r

2
V

(0,1)′
OO , V

(2,0)
O⊗Ob′′ = −r

2
V

(0,1)′
OO ,

V
(2,0)
OOc′ = −V (1,0)

OOa , V
(2,0)
OOc′′ = V

(1,0)
OOa − 2 ,

V
(2,0)
OOc′′′ = 0 , V

(2,0)
OOd = 0 ,

V
(2,0)
OOe = V

(1,0)
OOd , V

(1,1)
OO = V

(0,1)
OO . (3.58)

They are in agreement with [22] once the linearly dependent operators are removed.
Note that in [22], the same field redefinitions have been performed as in this paper.

The boost coefficient k
(1,0)
OD is fixed to unity, so the boost generator for the octet field

coincides with the one expected from the g → 0 limit with covariant derivatives in the
center-of-mass coordinate.

3.3.3 Singlet-octet sector

Finally, moving on to the singlet-octet sector of the Lagrangian, several terms that
appear in the octet-octet sector are absent due to cancellation by charge conjugate
counterparts. In accordance with [22], its Lagrangian is then given by

L(SO, h)
pNRQCD =

∫
d3rTr

[
S†

(
V

(0,1)
SO r · gE +

cFV
(1,0)
SOb

2M
gB ·

(
σ(1) − σ(2)

)
+
V

(1,0)
SOc

2Mr2
(r · gB)

(
r ·
(
σ(1) − σ(2)

))
+
V

(1,0)
SOd

Mr
r · gE

− i

4M
V

(1,1)
SO

{
(r ×DR)·, gB

}
+

icS
16M2

V
(2,0)
SOa

[
DR×, gE

]
·
(
σ(1) − σ(2)

)
+

iV
(2,0)
SOb′

16M2r2

{
(r ×DR)·, gE

}(
r ·
(
σ(1) − σ(2)

))
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−
iV

(2,0)
SOb′′

16M2r2

{(
(r ×DR) ·

(
σ(1) − σ(2)

))
, (r · gE)

}
−

iV
(2,0)
SOe

4M2r

{
(r ×DR)·, gB

})
O + h.c.

]
, (3.59)

where again we only include terms with covariant derivatives acting on the quarkonium
fields of order M−1r1 and M−2r0, and we have neglected the linearly dependent operator

with potential V
(2,0)
SOb′′′ . As all operators between the round brackets are hermitian, an

index h to the Lagrangian is used. These are the only operators that are allowed in
the pure singlet or octet sectors. In the singlet-octet sector, on the other hand, one
may in principle also add antihermitian operators. Instead of canceling, they give terms
of the form S†aO − O†aS, where a indicates the antihermitian operator. We are not
aware of any argument that would exclude such terms a priori, so we give here also the
singlet-octet Lagrangian for the antihermitian operators:

L(SO, a)
pNRQCD =

∫
d3rTr

S†
 1

2M

{
rV

(1,0)
SOe ,∇r · gE

}
+
iV

(1,0)
SOf

2Mr
(r × gE) ·

(
σ(1) + σ(2)

)

− i

4M2

{
rV

(2,0)
SOf gB·, (∇r ×DR)

}
+

V
(2,0)
SOg′

16M2r

{
(r · gB),

(
DR ·

(
σ(1) + σ(2)

))}
+

V
(2,0)
SOg′′

16M2r

{
(r ·DR),

(
gB ·

(
σ(1) + σ(2)

))}
+

V
(2,0)
SOg′′′

16M2r

(
r ·
(
σ(1) + σ(2)

))
{DR·, gB}

O + h.c.

 , (3.60)

Such terms were not considered in [22].
The new terms of the singlet-octet Lagrangian after the boost transformation are

the following [77]:

∂µ∆̂µL(SO, h) =

∫
d3rTr

[
S†
((
V

(1,1)
SO − V (0,1)

SO

)
(η × r) · gB

+
1

4M

(
cSV

(2,0)
SOa − 2cFV

(1,0)
SOb + V

(0,1)
SO

)
(η × gE)

(
σ(1) − σ(2)

)
− 1

4Mr2

(
V

(2,0)
SOb′ − 2V

(1,0)
SOc

)
((η × r) · gE)

(
r ·
(
σ(1) − σ(2)

))
+

1

4Mr2

(
V

(2,0)
SOb′′ + rV

(0,1)′
SO

)(
(η × r) ·

(
σ(1) − σ(2)

))
(r · gE)

+
1

Mr

(
V

(2,0)
SOe − V

(1,0)
SOd

)
(η × r) · gB

)
O + h.c.

]
, (3.61)

∂µ∆̂µL(SO, a) =

∫
d3rTr

[
S†
(

1

2M

{
r
(
V

(2,0)
SOf − V

(1,0)
SOe

)
, (η ×∇r) · gB

}
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− i

4Mr

(
V

(2,0)
SOg′ − 2V

(1,0)
SOf

)(
η ·
(
σ(1) + σ(2)

))
(r · gB)

− i

4Mr

(
V

(2,0)
SOg′′ + 2V

(1,0)
SOf

)
(η · r)

(
gB ·

(
σ(1) + σ(2)

))
−

iV
(2,0)
SOg′′′

4Mr
(η · gB)

(
r ·
(
σ(1) + σ(2)

))O + h.c.

 , (3.62)

which leads to the constraints

V
(0,1)
SO = V

(1,1)
SO , cSV

(2,0)
SOa = 2cFV

(1,0)
SOb − V

(0,1)
SO , V

(2,0)
SOb′ = 2V

(1,0)
SOc ,

V
(2,0)
SOb′′ = −rV (0,1)′

SO , V
(2,0)
SOe = V

(1,0)
SOd , V

(2,0)
SOf = V

(1,0)
SOe ,

V
(2,0)
SOg′ = 2V

(1,0)
SOf , V

(2,0)
SOg′′ = −2V

(1,0)
SOf , V

(2,0)
SOg′′′ = 0 . (3.63)

Again, these are in agreement with [22] after performing the field redefinitions, except

for the new potentials V
(1,0)
SOe , V

(1,0)
SOf , V

(2,0)
SOf , V

(2,0)
SOg′ , V

(2,0)
SOg′′ , and V

(2,0)
SOg′′′ , which are the

Wilson coefficients from L(SO, a)
pNRQCD.

3.4 Summary and discussion

In this chapter, we have investigated Poincaré symmetry (especially the boost trans-
formation) of a low-energy EFTs of QCD involving a heavy quarkonium [77]. Apart
from the generators of spacetime translations and rotations, we have constructed the
boost generator for singlet and octet fields by starting from the most general expres-
sion which is allowed by C, P , T , while exploiting the freedom to remove redundant
terms through field redefinitions. Relations between the Wilson coefficients were de-
rived when we applied those expressions to the corresponding pNRQCD Lagrangian up
to O(1/M2). Furthermore, the requirement that the Poincaré algebra has to satisfy for
the boost generators simplifies the expression of boosts. The results of the constraining
equations between the Wilson coefficients confirm the known relations from the litera-
ture in pNRQCD [22]. These are found in Eqs. (3.54), (3.58), and (3.63). We have seen
that several equivalent boost generators are available, and we have resolved this ambi-
guity by removing redundant terms via a field redefinition (a unitary transformation, in
particular).

We would like to point out the merits of our approach and some advantages over the
previous treatment in [22]. In [22], a direct implementation of Poincaré invariance was
achieved and applied to pNRQCD (as well as NRQCD). As one constructs all genera-
tors of the symmetry group in these EFTs, the generators corresponding to spacetime
translations and rotations are obtained in the usual way from the associated conserved
Noether currents. The generators of boosts, on the other hand, are derived from a
general ansatz that includes all operators allowed by other symmetries (such as parity,
charge conjugation, and time reversal) up to a certain order in the expansion; in other
words, the general principles of EFTs for the construction of the Lagrangian are also
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applied to the boost generators. By demanding that all generators satisfy the commu-
tation relations of the Poincaré algebra, one can obtain relations between the Wilson
coefficients of the EFTs.

While the calculation in [22] is also fully general, it requires a considerable amount of
computational effort, making extensions to higher orders appears a formidable task. In
contrast, the method presented in this thesis is rather straightforward, as it only involves
replacements of fields by their boosted expressions instead of calculating commutators
between field operators. As such, it seems also particularly suited for automatization in
programs capable of symbolic manipulation.

Towards long-distance heavy quark potentials

The constraints between the Wilson coefficients derived by exploiting the spacetime sym-
metries of pNRQCD can be utilized for another EFT in involving a QCD flux tube model.
This EFT, namely the effective string theory (EST), is valid in the non-perturbative
regime [32, 44, 57, 81–83]. The EST provides an analytic description of the gluodynam-
ics of a static quark-antiquark bound system at long-distance scales rΛQCD � 1, with
transversal vibrations of a string between a heavy quark and antiquark as the degrees of
freedom. It has been hypothesized that the expectation value of a rectangular Wilson
loop in the large time limit can be expressed in terms of the string partition function

lim
T→∞

〈W�〉 = Z

∫
Dξ1Dξ2 eiS[ξ1,ξ2] , where W� = P exp

{
−ig

∮
r×T

dzµAµ

}
,

(3.64)

in which P is a path-ordering operator acting in color space, Z is a normalization con-
stant of the string partition function, and ξi (i = 1, 2) are the transversal string vibra-
tions; the angular brackets around the rectangular Wilson loop denote the expectation
value over the Yang-Mills action. The action S[ξ1, ξ2] involves the string tension σ
(∼ Λ2

QCD) and derivatives of the string fields ∂ξ. The effective action is derived by

expanding the Nambu-Goto action5.
On the other hand, potentials from pNRQCD are expressed in terms of gauge field

insertions to the Wilson loop expectation value in the large time limit [50, 51], so that
one can find a set of one-to-one mappings from the heavy quark potentials to correlators
of the string fields [57]. This mapping is restricted due to the symmetries of the physical
system as well as the mass dimension of the gauge fields inserted to the expectation
value. The potentials are then calculated by utilizing the mapping, from which some
(dimensionful) parameters arise. Constraints on the potential terms due to the Poincaré
invariance in pNRQCD lead to a reduction in the number of these parameters. Eventu-
ally, the heavy quark-antiquark potential at long distances is expressed by only two free
parameters, which are the string tension and the heavy (anti)quark mass [57]; they are
determined by lattice simulations. As a comparison between the potentials calculated
by the EST and the corresponding lattice data [47, 48] shows some discrepancies [58],

5The static gauge is used for the expansion [84]
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especially at shorter distance ranges, it is necessary to employ proper EFT systematics
(power counting, symmetries, etc) in order to include all possible correction terms in the
action as well as in the mapping, so that the comparison can be improved. This analysis
will be presented in the next two chapters.
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Chapter 4

Heavy quark-antiquark potentials

So far, we have discussed Poincaré invariance in low-energy EFTs of QCD, NRQCD
and pNRQCD in particular, in the weak-coupling regime1. When a different hierarchy
is given such as Mv & ΛQCD or ΛQCD � Mv2, the theory enters into the strong
coupling regime, and the Lagrangian has to be constructed differently: the singlet field
is the only relevant heavy degree of freedom in this case. In this chapter, we will
briefly discuss the matching between NRQCD and pNRQCD, for both weakly-coupled
and strongly-coupled cases. Through this matching, one can establish explicit relations
between the heavy quark potentials which appear in the form of Wilson coefficients in the
pNRQCD Lagrangian and the gauge field insertions to the Wilson loop expectation value
of NRQCD. Eventually, these relations provide a useful tool for deriving the analytic
expressions of the potentials.

4.1 Matching between NRQCD and pNRQCD

As it was shown in the previous chapter, the weakly-coupled pNRQCD Lagrangian up
to the bilinear order in both color singlet and octet fields is heuristically expressed2

by [8, 80]

Lweak
pNRQCD =

∫
d3rTr

[
S† (i∂0 − VS(r) + . . . )S +O†(iD0 − V0(r) + . . . )O

]
+ gVA(r) Tr

[
O†r ·ES + S†r ·EO

]
+ g

VB(r)

2
Tr
[
O†r ·EO +O†Or ·E

]
− 1

4
F aµνF

µν,a + Llight ,

(4.1)

where the ellipses indicate higher order terms in the 1/M or r expansion.
On the other hand, the strongly-coupled pNRQCD Lagrangian is expressed only in

1The hierarchy of scales is given by M � p ∼Mv � E ∼Mv2 & ΛQCD.
2Here we are using the matrix notation.
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terms of the singlet field (as long as light quarks are ignored) [80]

Lstrong
pNRQCD =

∫
d3rTr

[
S† (i∂0 − hs)S

]
, (4.2)

where

hs ≡
p2

1

2M1
+

p2
2

2M2
+ VS(r) . (4.3)

M1,2 is the mass of the heavy quark (or antiquark, respectively), and p1,2 is the momen-
tum of the quark (or the antiquark).

The singlet potential VS is organized according to the 1/M expansion up to quadratic
order3 [8]

V (r) =V (0)(r) +
2

M
V (1,0)(r) +

1

M2

{[
2
V

(2,0)
L2 (r)

r2
+
V

(1,1)
L2 (r)

r2

]
L2

+
[
V

(2,0)
LS (r) + V

(1,1)
L2S1

(r)
]

L · S + V
(1,1)
S2 (r)

(
S2

2
− 3

4

)
+ V

(1,1)
S12

S12(r̂)

+
[
2V

(2,0)
p2 (r) + V

(1,1)
p2 (r)

]
p2 + 2V (2,0)

r (r) + V (1,1)
r (r)

}
+O(1/M3) .

(4.4)

Here, the masses are assumed to be equal: M1 = M2 = M . The parenthesis from the
superscripts of the V ’s indicate the order of the expansion in the inverse mass of the
heavy quark M1 and the heavy antiquark M2.4 As it is assumed that the masses of the
heavy quark and the antiquark are equal, the potential is invariant under the exchange
of masses as well as CP . In other words, the potentials are invariant under the exchange
of indices of the parenthesis, e.g.,

V
(2,0)
L2 (r) = V

(0,2)
L2 . (4.5)

The tensorial spin-spin interaction term is defined by

S12(r̂) ≡ 3r̂ · σ1r̂ · σ2 − σ1 · σ2 , (4.6)

where S1,2 = σ1,2/2 is the spin operator of the heavy quark and the heavy antiquark,
respectively. The matching, order by order in the 1/M expansion (up to quadratic order,
in particular), gives explicit relations between the heavy quark potentials and gauge field
insertions to the rectangular Wilson loop expectation value.

3From now on, we omit the singlet subscript S of the potential since the context is clear.
4The first slot denotes the order of the 1/M1 expansion and the second slot denotes the 1/M2 expan-

sion, respectively.
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4.1.1 The leading order potential

A relation between the leading order potential V (0) and the Wilson loop5 is derived by
matching the Green’s functions from NRQCD and pNRQCD, at leading order in the
1/M expansion [50].

Let us consider a state made of a heavy quark-antiquark pair, represented by ψ(x1)
(which annihilates a heavy quark at the position x1) and χ (which creates a heavy
antiquark at the position of x2) in NRQCD, connected by a Wilson line φ

ψ†(x1)φ(x1,x2)χ(x2)|0〉 =
∑
n

an(x1,x2)|n; x1,x2〉(0) , (4.7)

where the Wilson line is defined by6

φ(x1,x2; t) = P exp

{
ig

∫ 1

0
ds (x1 − x2) ·A(x2 − s(x2 − x1), t)

}
, (4.8)

and |n; x1,x2〉(0) is the quark-antiquark sector of the Fock space, which is spanned by

|n; x1,x2〉(0) ≡ ψ†(x1)χ(x2)|n; x1,x2〉(0) . (4.9)

Also, |n; x1,x2〉(0) is an eigenstate of H(0) with energy E
(0)
n (x1,x2), which encodes the

gluonic content of the state7. Note that the normalization of these states are given by

(0)〈m; x1,x2|n; x1,x2〉(0) = δmn ,

(0)〈m; x1,x2|n; y1,y2〉(0) = δmnδ
(3)(x1 − y1)δ(3)(x2 − y2) .

(4.10)

From the matching condition, this heavy quark-antiquark pair is related to the singlet
field by

χ†(x2, t)φ(x2,x1; t)ψ(x1, t) = Z1/2(x1,x2,p1,p2)S(x1,x2; t) , (4.11)

where Z1/2(x1,x2,p1,p2) is the normalization factor which depends on the relative
coordinate between x1 and x2 as well as on the momenta of the individual quark and
the antiquark, p1 and p2, respectively. Then the Green’s function from the heavy quark-
antiquark pair in NRQCD is given by

GNRQCD =〈0|χ†(x2, T/2)φ(x2,x1;T/2)ψ(x1, T/2)

× ψ†(y1,−T/2)φ(y1,y2;−T/2)χ(y2,−T/2)|0〉 ,
(4.12)

and its 1/M expansion is written as

GNRQCD = G
(0)
NRQCD +

2

M
G

(1,0)
NRQCD + . . . , (4.13)

5The Wilson loop is a SU(3) gauge invariant object whose explicit formulation will be presented in
the paragraph below.

6P stands for a path-ordering operator in SU(3) color space.
7This state is annihilated by χ† and ψ.
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in which M1 = M2 = M is assumed so that there is a factor of two in front of the first
order in 1/M . We are eventually going to the static limit of the system, so we need to
integrate out the heavy quark and antiquark fields. After integrating out ψ and χ, the
leading order Green’s function turns out to be the expectation value of a rectangular
Wilson loop (over the Yang-Mills action)

G
(0)
NRQCD = 〈W�〉 δ(3)(x1 − y1)δ(3)(x2 − y2) . (4.14)

The rectangular Wilson loop is defined by

W� ≡ P exp

{
−ig

∮
r×T

dzµAµ(z)

}
. (4.15)

Note that r is the relative distance between the quark and the antiquark. The dia-
gram of the rectangular Wilson loop can be found in FIG. 4.1, where a = (−T/2,−y2),

Aµ

Aµ

Aµ

Aµ

a b

cd

Figure 4.1: The diagram of the rectangular Wilson loop W�, defined in Eq. 4.15.

b = (−T/2,y1), c = (T/2,x1), and d = (T/2,x2). In other words, the time axis is along
the vertical direction.

On the other hand, the Green’s function for the singlet sector of pNRQCD is ex-
pressed by

GpNRQCD = Z1/2 exp{−iTV }Z†1/2δ(3)(x1 − y1)δ(3)(x2 − y2) , (4.16)

where the expression of the singlet potential is given in Eq. (4.4). Thus, as we expand
the singlet Green’s function8 in 1/M

GpNRQCD = G
(0)
pNRQCD +

2

M
G

(1,0)
pNRQCD + . . . , (4.17)

the leading order is given in terms of the static potential from Eq. (4.4)

G
(0)
pNRQCD = Z0 exp

{
−igV (0)(r)T

}
δ(3)(x1 − y1)δ(3)(x2 − y2) . (4.18)

8The factor of two in front of the 1/M term is again due to the invariance under the exchange of
masses between the quark and the antiquark, as well as the CP.
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As we compare Eq. (4.14) with Eq. (4.18) at zeroth order in 1/M , we conclude that the
following relation holds in the large-time limit

V (0)(r) = lim
T→∞

i

T
ln〈W�〉 . (4.19)

4.1.2 The potentials at O(1/M) and O(1/M2)

In a similar fashion, the first order relativistic correction to the static potential is matched
to the NRQCD counterpart, thereby yielding a relation between the Wilson coefficient
and the gauge field insertions to the Wilson loop expectation value [50]

V (1,0)(r) = −1

2
lim
T→∞

∫ T

0
dt t〈〈gE1(t) · gE1(0)〉〉c , (4.20)

in which the double angular bracket is defined by 〈〈. . .〉〉 ≡ 〈. . .W�〉/〈W�〉. The terms
inside the double angular brackets of Eq. (4.20) are chromoelectric fields at the positions
of the heavy quark (or the heavy antiquark) E1,2(t) = E(t,±r/2). The subscript c
represents the connected part of the Wilson loop expectation value, which is defined by

〈〈O1(t1)O2(t2)〉〉c = 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉, for t1 ≥ t2 , (4.21)

where Oi(ti) is a generic gauge field defined at time ti.
Proceeding with the matching calculation for the potentials at O(1/M2), the follow-

ing relations hold for the second order correction in the 1/M expansion [50, 51]:

V
(2,0)
L2 (r) =

i

4
(δij − 3r̂ir̂j)

∫ ∞
0

dt t2〈〈gEi
1(t)gEj

1(0)〉〉c, (4.22)

V
(1,1)
L2 (r) =

i

2
(δij − 3r̂ir̂j)

∫ ∞
0

dt t2〈〈gEi
1(t)gEj

2(0)〉〉c, (4.23)

V
(2,0)
p2 (r) =

i

2
r̂ir̂j

∫ ∞
0

dt t2〈〈gEi
1(t)gEj

1(0)〉〉c, (4.24)

V
(1,1)
p2 (r) = ir̂ir̂j

∫ ∞
0

dt t2〈〈gEi
1(t)gEj

2(0)〉〉c, (4.25)

V
(2,0)
LS (r) =−

c
(1)
F

r2
ir ·
∫ ∞

0
dt t〈〈gB1(t)× gE1(0)〉〉+

c
(1)
S

2r2
r · (∇rV

(0)), (4.26)

V
(1,1)
L2S1

(r) =−
c

(1)
F

r2
ir ·
∫ ∞

0
dt t〈〈gB1(t)× gE2(0)〉〉, (4.27)

V
(1,1)
S2 (r) =

2c
(1)
F c

(2)
F

3
i

∫ ∞
0

dt 〈〈gB1(t) · gB2(0)〉〉 − 4(dsv + dvvCF )δ(3)(r), (4.28)

V
(1,1)
S12

(r) =
c

(1)
F c

(2)
F

4
irirj

∫ ∞
0

dt

[
〈〈gBi

1(t)gBj
2(0)〉〉 − δij

3
〈〈gB1(t) · gB2(0)〉〉

]
, (4.29)

V (2,0)
r (r) =

πCFαsc
(1)′

D

2
δ(3)(r)−

ic
(1)2
F

4

∫ ∞
0

dt 〈〈gB1(t) · gB1(0)〉〉c +
1

2
(∇2

rV
(2,0)
p2 )
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− i

2

∫ ∞
0

dt1

∫ t1

0
dt2

∫ t2

0
dt3(t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(
∇i
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c
)

− d(1)′

3 fabc

∫
d2x lim

T→∞
g〈〈F aµν(x)F bµα(x)F cνα(x)〉〉, (4.30)

V (1,1)
r (r) = − 1

2

(
∇2
rV

(1,1)
p2

)
+ (dss + dvsCF )δ(3)(r)

− i
∫ ∞

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3(t2 − t3)2〈〈gE1(t1) · gE1(t2)gE2(t3) · gE2(0)〉〉c

+
1

2

(
∇i
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

1(t1)gE2(t2) · gE2(0)〉〉c
)

+
1

2

(
∇i
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

2(t1)gE1(t2) · gE1(0)〉〉c
)
, (4.31)

where CF is the Casimir of the fundamental representation of SU(3); i.e., CF = 4/3

and c
(1)
F , c

(2)
F , c

(1)
S , c

(1)′

D , dsv, dvv, dvs are the Wilson coefficients of NRQCD. Between the
Wilson coefficients, the following relations hold [7, 25]

c
(i)
F = 1 +O(αS) , (4.32)

c
(i)
S = 2c

(i)
F − 1 , (4.33)

c
(i)′

D = 1 +O(αS) , (4.34)

d
(1)′

3 =
αS

720π
+O(α2

S) , (4.35)

dsv + dvvCF = O(α2
S) , (4.36)

Furthermore, the connected part of the three- and four-gauge field insertions to the
Wilson loop expectation value are defined by

〈〈O1(t1)O2(t2)O3(t3)〉〉c =〈〈O1(t1)O2(t2)O3(t3)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)〉〉c
− 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)〉〉
− 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)〉〉 ,

(4.37)

〈〈O1(t1)O2(t2)O3(t3)O4(t4)〉〉c =〈〈O1(t1)O2(t2)O3(t3)O4(t4)〉〉
− 〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)O4(t4)〉〉c
− 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)O4(t4)〉〉c
− 〈〈O1(t1)O2(t2)O3(t3)〉〉c〈〈O4(t4)〉〉
− 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)O4(t4)〉〉c
− 〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)〉〉c〈〈O4(t4)〉〉
− 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)〉〉〈〈O4(t4)〉〉
− 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)〉〉〈〈O4(t4)〉〉 ,

(4.38)
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where the inserted operators Oi (i ∈ {1, 2, 3, 4}) are defined at times t1 ≥ t2 ≥ t3 ≥ t4.

4.2 Heavy quark potentials

The derived relations from the matching between NRQCD and pNRQCD, Eqs. (4.19),
(4.20), and (4.22) - (4.31), give a useful tool for the determination of the potentials,
both in the perturbative and in the non-perturbative regimes. We will briefly discuss
the potentials in the peturbative regime and pose the challenge in deriving the analytic
expressions of the potentials in the non-perturbative regime.

4.2.1 Weak-coupling regime

In the weak-coupling regime, the potentials are derived either by calculating the heavy
quark-antiquark scattering amplitude [26–30] or by calculating the gauge field insertions
to the Wilson loop expectation value [58]. As for the second method, from the relation
from the leading order, Eq. (4.19), one can Taylor expand the Wilson loop (as g � 1),
such that the first non-trivial term of the expectation value over the Yang-Mills action is
proportional to the coupling αS as well as inversely proportional to the distance between
the pair. Hence,

V (0)(r) =− CFαS
r

, (4.39)

where the Casimir of the fundamental representation of SU(3), CF = 4/3, is due to the
path ordering operator P of the Wilson loop.

In a similar fashion, one can proceed with calculating the potentials at 1/M and
1/M2. The following is the result of the leading order calculations performed in [26–
30, 58]

V (1,0)(r) = −
CFCAα

2
S

2r2
, (4.40)

V
(2,0)
L2 (r) + V

(1,1)
L2 (r) =

CFαS
2r3

, (4.41)

V
(2,0)
p2 (r) + V

(1,1)
p2 (r) = −CFαS

r
, (4.42)

V
(2,0)
LS (r) + V

(1,1)
L2S1

(r) =
3CFαS

2r3
, (4.43)

V
(1,1)
S2 (r) =

4πCFαS
3

δ(3)(r) , (4.44)

V
(1,1)
S12

(r) =
CFαS

4r3
, (4.45)

2V (2,0)
r + V (1,1)

r (r) = πCFαSδ
(3)(r) , (4.46)

where CA is the Casimir of the adjoint representation of SU(3), CA = 3.
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4.2.2 Strong coupling regime

Color confinement

In the strong coupling regime, similar calculations of the potentials are not possible.
Around and below the hadronic scale ΛQCD ∼ 200 MeV, the conventional perturbative
approach is no longer a feasible theoretical framework, because the expansion parameter,
αs = g2/(4π), exceeds the weak coupling limit. A manifestation of the QCD in the strong
coupling regime is called color confinement [31]. Color confinement manifests itself in
experiments: only composite particles (mesons and baryons) are detected instead of
quarks or gluons.

Lattice QCD

One can analyze the heavy quark potentials in the strong coupling regime by utilizing
non-perturbative methods like lattice QCD (LQCD), which gives the numerical values
for the gauge field insertions to the Wilson loop expectation value [45–49]. However, the
analyses for the three- and four-gauge field insertions (which are found in the expressions
of central potentials Vr, Eq. (4.30) and (4.31), are not easily obtained from this method.
Our approach to resolve this difficulty is by employing the QCD flux tube model [32],
which is a suitable theoretical framework for the static heavy quark-antiquark bound
state at long distance.

4.2.3 QCD flux tube model

Historical development

Since the realization of color confinement in QCD [31], it was proposed that the dynam-
ics of quark-antiquark bound states at long distance can be described by a flux tube
model [32], in which the quark and antiquark is connected by an open string. The at-
tractive force between the pair increases as the separation distance increases9, thereby
forming a flux in the shape of a tube due to the increase of the energy density between
them. This suggestion has been verified by lattice QCD simulations [33–43]. FIG. 4.2
illustrates this feature by a lattice QCD simulation [41]. There are two sharp peaks
in this figure, which are due to the presence of point sources (a static quark and an
antiquark)10. The region between the sources is in the shape of a upper half of a tube.
As the distance between two peaks becomes greater11, the volume of the tube increases.

As for the analytic description of the flux tube model within the effective string
framework, the heavy quark and antiquark are treated as static objects, while the glu-
onic interactions between the pair is described by the dynamics of the string. Since the
two ends of the string are fixed at the position of the pair, only the transversal modes of

9In particular, the length scale is greater than the confining distance.
10Note that the height of the diagram represents energy density.
11Distance scale here is much greater than Λ−1

QCD
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Figure 4.2: Lattice simulation of the QCD flux tube model taken from [41].

the string act as the dynamical degrees of freedom. Several years after Nambu’s sugges-
tion of a flux tube model [32], Kogut and Parisi developed this idea further, such that
the shape of the spin-spin interaction part of the potential was explicitly derived [44],
and later confirmed by lattice simulations [45–49].

Recent development

In this line of investigation, a significant progress concerning the analysis of the non-
perturbative heavy quark potential has been made during the last few decades. Based
on the relations between the potential terms of the heavy quark-antiquark bound state
in the static limit and the Wilson loop expectation value (and the gauge field insertions
therein) [50, 51], as well as on the Wilson loop-string partition function equivalence
conjecture [52–55], a few other heavy quark potentials were directly computed through
the effective string picture [56]. Recently, Brambilla et. al. have calculated all of the
heavy quark potentials up to leading order (LO) of the effective string theory (EST)
power counting [57]. Full summation of the heavy quark potentials was compared to
lattice simulations in order to constrain some of the parameters, which arise from the
effective string picture itself. As it was pointed out there [57], however, this leading order
calculation is not fully inclusive because some of the terms from next-to-leading order
(NLO) calculation might be of the same order as the leading order terms of the EST.
In other words, some terms arising in the EST calculation at NLO can alter the leading
order coefficients of the potentials. It is, therefore, necessary for us to employ the proper
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EFT systematics of the string picture, so that not only the higher order suppression terms
are understood, but all of the missing terms of LO can also be acquired. Furthermore, a
recent comparison between the analytic result of the potentials at long-distance via EST
and LQCD data was presented in [58], but the discrepancy is not negligible. We estimate
that the subleading contributions to the potential will ameliorate this discrepancy, and
this is the major goal of the second part of this thesis.

Towards the effective string theory

Therefore, in the next chapter, we will discuss about the EST in great detail. First, we
will derive the relativistic string theory in four-dimensional spacetime (i.e., Nambu-Goto
string theory), and from this we will naturally obtain the action for the EST by imposing
some constraints (such as physical boundary conditions and hierarchy of scales). Based
on the the symmetry of the system, a correspondence between the gauge field insertions
to the Wilson loop expectation and the string counter part will be established, and
from this we derive the analytic expressions of the heavy quark potentials in the non-
perturbative regime. This calculation will firstly be presented at LO in the EST power
counting, and this confirms the result presented in [57]. We then proceed further to
include the NLO terms of the EST by exploiting the correspondence between the gague
field insertions and the suitable string counter part. This will give the desired results,
i.e., the NLO terms of the potentials. Finally, we will compare these results to the
corresponding LQCD simulation data [47, 48].
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Chapter 5

Effective string theory

In this chapter, we will derive the analytic expressions of the aforementioned heavy
quark potentials using an effective framework of the QCD flux tube model, which is the
effective string theory (EST). First, we discuss the generic description of the relativistic
strings in four-dimensional spacetime, and from this the EST is derived by exploiting
the hierarchy of scales, physical boundary conditions, and symmetries of the system.
Based upon the equivalence conjecture between QCD and the EST, we utilize the EST
to calculate the potentials at LO and NLO in the EST power counting scheme. At the
end, a comparison between the analytic results of the potentials from the EST and the
corresponding lattice QCD data is given.

5.1 Relativistic theory of strings

The relativistic theory of strings is constructed based on the minimal area law of the
string action [85]. While a point particle (a zero-dimensional object) depends only on
one parameter,1 a vibrating string, a one-dimensional object, in d−dimensional space
carries two parameters, which we denote with τ and λ. From this, it is easy to see that
if the evolution of a point particle is parametrized by a world-line, a string traces out a
two-dimensional surface, which is called a world-sheet. As this world-sheet is embedded
in a higher dimensional space, the space in which the two-dimensional world-sheet lives
is called the target space. Let us specify the dimension of the target space as four. Then
the world-sheet is spanned by the coordinates of the string

ξ = (ξ0(τ, λ), ξ1(τ, λ), ξ2(τ, λ), ξ3(τ, λ) (5.1)

One can calculate the area of the world-sheet in terms of the string coordinates using a
parallelogram. The infinitesimal area of a generic parallelogram is expressed in terms of
two infinitesimal vectors dv1 and dv2 which are not parallel to each other (their relative
angle is given by θ)

dA = |dv1||dv2|| sin θ| =
√
|dv1|2|dv2|2 − |dv1|2|dv2|2 cos2 θ

1It is normally written as a time variable.
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=
√

(dv1)2(dv2)2 − (dv1 · dv2)2 , (5.2)

where the second line is due to the definition of the spatial dot product. In this fashion,
one can rewrite the infinitesimal area spanned by the string coordinates. Let us assign
the two infinitesimal vectors dv1,2 in terms of the string coordinates

dv1 =
∂ξ

∂τ
dτ , and dv2 =

∂ξ

∂λ
dλ , (5.3)

then the infinitesimal area of the target space is given by

dA = dτdλ

√(
∂ξ

∂τ
· ∂ξ
∂τ

)(
∂ξ

∂λ
· ∂ξ
∂λ

)
−
(
∂ξ

∂τ
· ∂ξ
∂λ

)2

. (5.4)

However, as we specify the parameter τ as the (proper) time coordinate of the rel-
ativistic frame, this has to be written in a slightly different way, due to the metric
signature of the four-dimensional Minkowski spacetime2. Instead of the dot product, let
us use the Einstein convention of the summation over the four-dimensional spacetime,
so that corresponding the infinitesimal surface is rewritten as

dA = dτdλ

√(
∂ξµ

∂τ

∂ξµ
∂λ

)2

−
(
∂ξµ

∂τ

∂ξµ
∂τ

)(
∂ξµ

∂λ

∂ξµ
∂λ

)
. (5.5)

Then, the total area of the parallelogram is computed by taking the integral over the
domain of the parameters

A =

∫
dτdλ

√(
∂ξµ

∂τ

∂ξµ
∂λ

)2

−
(
∂ξµ

∂τ

∂ξµ
∂τ

)(
∂ξµ

∂λ

∂ξµ
∂λ

)
. (5.6)

Note that this quantity is Lorentz invariant since all of the Lorentz indices µ are con-
tracted. The Nambu-Goto action for relativistic strings originates from this area ar-
gument. As the action is supposed to have zero mass dimension and the area has a
negative two mass dimension, an extra parameter has to be incorporated to the action.
This parameter is the so-called the string tension σ which is of the mass dimension two
(which is in the unit of force), and the Nambu-Goto action is given by3

S = −σ
∫
dτdλ

√(
∂ξµ

∂τ

∂ξµ
∂λ

)2

−
(
∂ξµ

∂τ

∂ξµ
∂τ

)(
∂ξµ

∂λ

∂ξµ
∂λ

)
. (5.7)

In fact, this expression can be written in a more concise way due to the reparametriza-
tion invariance. In other words, one can parametrize the area of the world-sheet surface

2We use mostly minus (+,−,−,−) signature. From now on, it is implied that the target spacetime
is the four-dimensional Minkowski spacetime.

3The minus sign in front of the string tension is a convention. If there is no minus sign in front, then
the string tension will become a negative value.

84



in a different way choosing a different coordinate system, but the total surface area A
does not change. This property is reminiscent of the general coordinate invariance of
the general theory of relativity. In fact, the argument for the generalized expression
of Eq. (5.7) refers to some notions of the general coordinate invariance. As the string
world-sheet is living in the four-dimensional Minkowski spacetime, one can define an
induced metric g from the string coordinates ξ and the target spacetime η

gab = −ηαβ
∂ξα

∂xa
∂ξβ

∂xb
, (5.8)

where x stands for the parameters on which the string coordinates depend. By the
parametrization4 of Eq. (5.7), x0 = τ and x3 = λ, so the induced metric is written by a
two-by-two matrix form

gab =

[
∂ξα

∂τ
∂ξα
∂τ

∂ξα

∂τ
∂ξα
∂λ

∂ξα

∂λ
∂ξα
∂τ

∂ξα

∂λ
∂ξα
∂λ

]
. (5.9)

This metric measures the distance on the surface of the world-sheet spanned by the
strings. Finally, we can rewrite the Naumbu-Goto action using the induced metric. The
expression inside the square root in Eq. (5.7) is the determinant of the induced metric
(with a minus sign attached to it)

S = −σ
∫
dτdλ

√
−det g , (5.10)

which is manifestly a reparametrization invariant notation. This is reminiscent of the
general coordinate invariance of the general theory of relativity. The difference is that,
whereas there is only one metric involved in the general relativity, which is a generic
curved background spacetime, there are two metrics incorporated in the string theory:
the Minkowski spacetime as the target spacetime and an induced metric, which measures
distance and describes the curvature of the world-sheet spanned by the strings. One
can generalize this notion of the string action for the case of higher dimensions in the
parameter space as well as higher target spacetime dimensions, which can be useful in
superstring theory5.

In the next section, we are going to disucss the Nambu-Goto string theory with some
physical boundary conditions imposed and exploiting the hierarchy of scales. This is a
suitable tool for analytically describing the QCD flux tube model [32].

5.2 Effective theory of long strings

The effective theory of long strings (or the effective string theory; EST) originates from
the Nambu-Goto string theory, Eqs. (5.7) and (5.10). We want to apply the EST to a

4The choice of x3 instead of x1 as one of the the coordinates of the parameter space becomes clear
in the next section.

5We are using the string action with only two-dimensional parameter space (τ, λ) in the thesis.
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heavy meson in the non-perturbative regime. If the heavy quark-antiquark pair is in the
static limit6, the energy flux between them can analytically be described by the EST
in such a way that the gluodynamics between the quark-antiquark pair is replaced by
the dynamics of a long-distance vibrating string. We utilize the EFT systematics to
derive the EST action from the Nambu-Goto action. The EFT systematics comes from
the hierarchy of scales, power counting schemes, and symmetries of the physical system.
In this section, only the first non-trivial term of the EST action according to the EFT
systematics is considered. This leading order term of the action gives non-trivial results
to the calculations of the heavy quark potentials.

5.2.1 Hierarchy of scales and power counting

The long-distance regime is elucidated by the following hierarchy of scales

rΛQCD � 1 , (5.11)

in which r is the distance between the heavy quark and the antiquark. Eq. (5.11)
implies that the theory is valid only at energy scales much below the hadronic scale
ΛQCD ∼ 200 MeV. In the static limit, the gluodynamics between the heavy quark and
the heavy antiquark is replaced by vibrational modes of the long string. As we indicate
the string coordinates with ξ (see Eq. (5.7)), it is of the same order as the inverse of
the hadronic scale ξ ∼ Λ−1

QCD. On the other hand, a partial derivatve which acts on the
string coordinates counts as the inverse interquark distance ∂ ∼ 1/r. Thus, it is clear
that we are taking the derivative expansion

∂ξ ∼ 1

rΛQCD
� 1 , (5.12)

and that the magnitude of the metric from the small fluctuations of the string becomes
much smaller than one

|hab(x)| =
∣∣∣∣−ηαβ ∂ξα∂xa

∂ξβ

∂xb

∣∣∣∣� 1 . (5.13)

Note that as compared with Eq. (5.8), h has been used for the notation of the metric
by the string fluctuations, instead of g. This is due to the fact that we are exploiting
the hierarchy of scales, Eq. (5.11), to the generic structure of the string action, and
we need to differentiate between the generic induced metric g and the specified one h.
In the asymptotic limit where the string fluctuations are negligible (i.e., r → ∞), the
induced metric g simply becomes a flat two-dimensional Minkowski metric because the
small fluctuations of the string vanish h→ 0. Based on this power counting scheme, we
can construct the effective action of the long strings.

6In other words, the pair is stationary.
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5.2.2 Lagrangian construction

The EST action is obtained in the similar fashion as the linearization of the Einstein-
Hilbert action in the general theory of relativity. As the magnitude of the metric from the
string fluctuations at a generic spacetime point x is much less than the unity, Eq. (5.13),
while the magnitude of the Minkowski metric equals to one, we can expand the (generic)
induced metric g around the flat spacetime

gab(x) = ηab(x) + hab(x)

= ηab(x)− ηαβ
∂ξα

∂xa
∂ξβ

∂xb
, (5.14)

which is a local expansion at a generic spacetime point x. While the metric signature
of ηab is (1,−1), another Minkowski metric which contracts the indices of the string
coordinates is the one from the four-dimensional target spacetime with the signature
(1,−1,−1,−1). As in the case of the general theory of relativity, in which the expansion
is with respect to a small fluctuation around a given background spacetime7, one can
understand h in Eq. (5.14) as an infinitesimal string fluctuation around the string world-
sheet8. Then, the asymptotic limit of this induced metric is clear: if the string fluctuation
vanish, the induced metric simply becomes a two-dimensional Minkowskian metric. In
other words, if the string fluctuation is negligible, the corresponding world-sheet is simply
a two-dimensional plane of the parameters τ and λ.

Using Eq. (5.14), the Nambu-Goto action is given by

S =− σ
∫
dτdλ

√
−det

(
ηab − ηαβ

∂ξα

∂xa
∂ξβ

∂xb

)
. (5.15)

where a, b ∈ {0, 3}, and the action is rewritten and expanded as

S = −σ
∫
dτdλ

(
1 +

1

2

∂ξα

∂xa
∂ξα
∂xa

+ . . .

)
. (5.16)

The ellipsis inside the parenthesis includes terms with higher orders in the derivative
expansion (i.e., (∂ξ)n for n > 2). In this thesis, we include only up to the Gaussian term
of the action (the quadratic term with derivative acting on the string coordinates) to
derive the EST Green’s function. As for the derivation of the Green’s function from the
action, it is necessary to clarify some given boundary conditions as well as to observe
symmetries of the physical system to which we are applying the EST. This will be
discussed in the next section.

7Quantization of this fluctuation field around the background spacetime corresponds to the massless
spin-2 field.

8The two-dimensional world-sheet is embedded in the four-dimensional target spacetime, which is
accomodated by the Minkowski metric.
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5.3 Long strings and heavy quark potentials

The EST action, Eq. (5.16), is still too generic to be applied to the physical system
of a heavy quark-antiquark pair. One needs to impose some boundary conditions in
light of the physical system for which we are utilizing the EST, to obtain an explicit
description of a heavy meson in the non-perturbative regime. We discuss an equivalence
relation between QCD at low-energy and the EST. Then, the long-distance heavy quark
potentials are analytically calculated within the framework of the EST, yet only the first
non-trivial terms (i.e., leading order terms) from the EST power counting are considered.
Due to the equivalence relation between QCD and the EST, Poincaré invariance of QCD
provides some constraints on the parameters arising in the EST. Thus, the analytic
expressions of the long-distance heavy quark potentials are greatly simplified at the end.

5.3.1 Boundary conditions

Before applying the framework of EST to a heavy quark-antiquark pair, it is necessary
to impose some boundary conditions to the string theory. Let us locate the heavy quark
at the spatial coordinate (0, 0, r/2) and the antiquark at (0, 0,−r/2).9 As we rename the
proper time τ by the real time t, the open string which connects the quark-antiquark
pair depends on the two-dimensional parameter space (t, z). Then, the open string is
subject to the Dirichlet boundary conditions,

ξµ(t, z = ±r/2) = 0 . (5.17)

In other words, the string field ξµ has only two dynamical degrees of freedom: ξ1(t, z)
and ξ2(t, z). They correspond to x and y coordinates of the string field in the target
spacetime, respectively10. Then we can rewrite the effective action of the long string by
(including only up to the Gaussian term)

S = −σ
∫
dtdz

(
1− 1

2
∂aξ

l∂aξl
)
, (5.18)

where ∂a = ∂/∂xa (for a ∈ {0, 3}), and l ∈ {1, 2} is the spatial index of the string
coordinates. Also note that the domain of the integration measure is given by t ∈ [0,∞)
and z ∈ [−r/2, r/2]. By solving the equations of motion, we can derive the Green’s
function of the EST from this expression.

5.3.2 Green’s function

The equation of motion from Eq. (5.18) is the two-dimensional Klein-Gordon equation11

�ξl(t, z) = 0 . (5.19)

9These positions are given in the Cartesian coordinate system (x, y, z).
10In other words, they are the transversal modes of the string field. This is the reason why we have

chosen the indices of the induced metric, a, b ∈ {0, 3}.
11The argument presented in this paragraph is based on the unpublished notes of [56].
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Then the Green’s function of this equation is the Feynman propagator GlmF (t, t′; z, z′)
that satisfies the equations

�GlmF = − i
σ
δlmδ(t− t′)δ(z − z′) , (5.20)

where δlm is a two-dimensional Kronecker delta, for l,m ∈ {1, 2}. Due to Eq. (5.17), it
is clear that the Green’s function satisfies the same boundary conditions as well

GlmF (t, t′; z, z′)|z=±r/2 = 0 . (5.21)

Taking the Wick rotation, t→ −it, we have to solve the Poisson equations instead

∆Glm(t, t′; z, z′) = − 1

σ
δlmδ(t− t′)δ(z − z′) , (5.22)

in which ∆ is the two-dimensional Laplacian operator and Glm is the Green’s function
in Euclidean spacetime; it clear that this Green’s function satisfies the aforementioned
boundary conditions12: Glm|z=±r/2 = 0. Let us solve Eq. (5.22) by utilizing the eigen-
function equations for the Laplacian operator

∆Ψρ(t, z) = ρΨρ(t, z) , for ρ ∈ R , (5.23)

in which the eigenfunctions form the complete orthonormal basis:∑
ρ

Ψ∗ρ(t, z)Ψρ(t
′, z′) = δ(t− t′)δ(z − z′) . (5.24)

Then, the Euclidean Green’s function is re-written in terms of these eigenfunctions

Glm(t, t′; z, z′) = − 1

σ
δlm

∑
ρ

Ψ∗ρ(t, z)Ψρ(t
′, z′) . (5.25)

We solve the eigenvalue equation, Eq. (5.23), by separation of variables as well as impos-
ing the given boundary conditions, so that the normalized eigenfunctions are obtained

Ψρ(t, z) =
1√
πr
e−ikt sin

[nπ
r

(
z − r

2

)]
, (5.26)

with its eigenvalue ρ = −k2 − (nπ/r)2, where k ∈ R and n ∈ N. Then, we finally derive
the Green’s functions in the Euclidean spacetime

Glm(t, t′; z, z′) =
δlm

πσr

∞∑
n=1

sin
(nπ
r
z − nπ

2

)
sin
(nπ
r
z′ − nπ

2

)∫ ∞
−∞

dk
e−ik(t−t′)

k2 +
(
nπ
r

)2 .
(5.27)

12It is also understood that the Green’s function is well-defined for t→ ±∞.
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This expression is simplified by explicitly calculating the Fourier transform that appears
in the equation ∫ ∞

−∞
dk

e−ik(t−t′)

k2 +
(
nπ
r

)2 =
r

n
e−

nπ
r
|t−t′| , (5.28)

as well as by making use of the trigonometric relation for the infinite sum

sin
(nπ
r
z
)

sin
(nπ
r
z′
)

=
1

2

{
cos
[nπ
r

(z − z′)
]
− cos

[nπ
r

(z + z′)
]}

, (5.29)

so that the Green’s function is re-written as

Glm(t, t′; z, z′) =
δlm

πσr

∞∑
n=1

1

2n
Re
(
Zn− − Zn+

)
, (5.30)

where

Z+ ≡ −ei
π
r

(z+z′)e−
π
r
|t−t′| , and Z− ≡ ei

π
r

(z−z′)e−
π
r
|t−t′| . (5.31)

As the infinite sum is realized as the Taylor expansion of a logarithm

Glm(t, t′; z, z′) =
δlm

2πσ
Re

[
ln

(
1− Z+

1− Z−

)]
=
δlm

2πσ
ln

∣∣∣∣1− Z+

1− Z−

∣∣∣∣ , (5.32)

the final expression Green’s function is derived by substituting Z± into Eq. (5.32) and
reorganizing terms within the logarithm13 [56]

Glm(t, t′; z, z′) =
δlm

4πσ
ln

(
cosh[(t− t′)π/r] + cos[(z + z′)π/r]

cosh[(t− t′)π/r]− cos[(z − z′)π/r]

)
. (5.33)

Eqs. (5.27) and (5.33) will be extensively used for the calculations of the heavy quark
potentials in the non-perturbative regime.

5.3.3 QCD-string theory equivalence conjecture

A connection between QCD and the effective string theory is established by the Wilson
loop-string partition function equivalence conjecture [52, 53]: in the large time limit, the
gluodynamics between the heavy quark and the antiquark pair is replaced by vibrational
modes of a long string, which is explicitly expressed by

lim
T→∞

〈W�〉 = Z

∫
Dξ1Dξ2ei S[ξ1,ξ2] , (5.34)

13This derivation of the Green’s function is based on the unpublished notes of [56].
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where Z on the right-hand side of Eq. (5.34) is the normalization constant of the string
partition function, and ξ1,2 are two transverse modes of the string fields (or coordi-
nates), whose distance scale are of order 1/ΛQCD

14. W� is the rectangular Wilson loop
in QCD, and the angular bracket around denotes the expectation value with respect to
the Yang-Mills action. Moreover, S[ξ1, ξ2] is the effective action of the long string in
four dimensional spacetime, which is given by Eq. (5.18). This conjecture is reminiscent
of the well-known AdS/CFT correspondence [86, 87]. While AdS/CFT works with the
superstring theory in AdS5×S5 spacetime, the EST in this thesis deals only with a long
(open) string in four-dimensional Minkowski spacetime. Furthermore, since QCD is not
conformal nor supersymmetric, the direct connection between the AdS/CFT correspon-
dence and the QCD-string theory equivalence conjecture is still to be pursued [88].

5.3.4 QCD-to-EST mapping

Based upon the equivalence conjecture, Eq. (5.34), we can calculate the long distance
potentials up to quadratic order in the 1/M expansion by utilizing the string variables ξ.
In order to do so, a set of mappings between the gauge field insertions to the Wilson loop
expectation value and the string correlator is needed for this calculation. The guiding
principles of deriving the mappings are the global symmetry transformations and the
dimensional counting of the system. We notice that the static heavy quark-antiquark
pair is symmetric under the diatomic molecular group Dh∞ with CP instead of the
parity P [56]. Let us investigate how the gauge fields of QCD would transform under
the relevant global transformations and compare it to the transformations of the string
fields under the same group.

As the positions of the quark and the antiquark are aligned on the z-axis, the chro-
moelectric and chromomagnetic fields transform under the rotation around the z-axis
Rz as

Ei(t, z)
Rz−→ RijEj(t, z) ,

Bi(t, z)
Rz−→ RijBj(t, z) ,

(5.35)

where Rij is the rotation matrix for i, j ∈ {1, 2, 3}. Under the reflection with respect to
the xz-plane,

Ei(t, z)
xz−→ ρijEj(t, z) ,

Bi(t, z)
xz−→ −ρijBj(t, z) ,

(5.36)

where ρij = diag(1,−1, 1). Since the system is composed of the particle and the antipar-
ticle, parity is replaced by CP , under which the gauge fields transform as

Ei(t, z)
CP−→ (Ei)T (t,−z) ,

Bi(t, z)
CP−→ −(Bi)T (t,−z) ,

(5.37)

14In other words, the thickness of the QCD flux tube described by the strings is of order Λ−1
QCD, which

is much smaller than the interquark distance r according to the hierarchy of scales, Eq. (5.11).
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in which the transpose T is for the SU(3) color space matrices. Lastly, these fields
transform under the time reversal T as

Ei(t, z)
T−→ (Ei)T (−t, z) ,

Bi(t, z)
T−→ −(Bi)T (−t, z) .

(5.38)

On the other hand, we observe that the string variables transform under the same
group as the following:

ξi(t, z)
Rz−→ Rijξj(t, z) ,

ξi(t, z)
xz−→ ρijξj(t, z) ,

ξi(t, z)
CP−→ −ξj(t,−z) ,

ξi(t, z)
T−→ ξj(−t, z) .

(5.39)

From the comparison between these two, the mappings between the gauge fields inser-
tions to the string variables are constructed as [56, 57]

〈〈. . .El
1,2(t) . . .〉〉 = 〈. . .Λ2∂zξ

l(t,±r/2) . . . 〉 ,
〈〈. . .Bl

1,2(t) . . .〉〉 = 〈· · · ± Λ′εlm∂t∂zξ
m(t,±r/2) . . . 〉 ,

〈〈. . .E3
1,2(t) . . .〉〉 = 〈. . .Λ′′2 . . . 〉 ,

〈〈. . .B3
1,2(t) . . .〉〉 = 〈· · · ± Λ′′′εlm∂t∂zξ

l(t,±r/2)∂zξ
m(t,±r/2) . . . 〉 ,

(5.40)

in which l,m ∈ {1, 2}, and Λ, Λ′, Λ′′, and Λ′′′ are dimensionful parameters (which are
of order ΛQCD). The ellipses on the left- and right-hand sides of Eq. (5.40) represent
additional gauge field insertions and string fields with derivatives, respectively. Notice
that the third component of the chromoelectric field is mapped into a (dimensionful)
constant Λ′′2 due to the parametrization of the physical system: as the heavy quark-
antiquark pair is aligned on the z-axis, the third component of the chromoelectric field
at the position of quark (or antiquark) is non-dynamical. Since the choromoelectric
field has a mass dimension two, this has to be matched from the string side by insert-
ing a dimensionful parameter Λ′′2. In a similar fashion, one can derive the mapping
between the chromomagnetic field and the string field variables. In fact, the mapping
for the chromomagnetic field can also be derived by using the electromagnetic duality
transformation of the chromoelectric field [89].

5.3.5 Heavy quark potentials at LO in EST

Now we can derive the analytic expressions of the heavy quark potentials in terms of
the string variables using the EST Green’s function, Eq. (5.33), as well as the set of
QCD-to-EST mappings, Eq. (5.40). Calculations are presented order by order in the
1/M expansion of the heavy quark potentials.
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Static potential

Let us first look at the leading order potential. The static potential is related to the
Wilson loop expectation value in the large time limit (from Eq. (4.19))

V (0)(r) = lim
T→∞

i

T
ln〈W�〉 , (5.41)

and the Wilson loop is related to the string partition function due to the conjecture,
Eq (5.34). Then, the static potential is easily calculated using the first term of the EST
action, Eq. (5.18),

lim
T→∞

exp
(
−iV (0)T

)
= lim

T→∞
exp

(
−iσ

∫ T

0
dt

∫ r/2

−r/2
dz

)
, (5.42)

from which it is clear that the static potential is linear in the interquark distance r

V (0)(r) = σr . (5.43)

Note that this is the linear part of the well-known Cornell potential [90]. The value of
the string tension itself is not determined within the EST because this is a fundamental
parameter of the theory. The string tension is determined by comparing to the available
lattice QCD data [91], and this will be discussed in the next section.

Potential at O(1/M)

The first order correction in 1/M to the static potential is expressed in terms of a
two-chromoelectric field insertion to the Wilson loop expectation value [50]

V (1,0)(r) = −1

2
lim
T→∞

∫ T

0
dt t〈〈gE1(t) · gE1(0)〉〉c . (5.44)

Using the QCD-to-EST mapping, Eq. (5.40), we can calculate this gauge field insertion
in terms of the string variables. Let us decompose it into a transversal and longitudinal
parts15

〈〈E1(t) ·E1(0)〉〉c = 〈〈El
1(t)El

1(0)〉〉c + 〈〈E3
1(t)E3

1(0)〉〉c . (5.45)

First of all, the longitudinal part is mapped into a dimensionful parameter, and due to
the definition of the connected part of the gauge field insertion, this quantity vanishes

〈〈E3
1(t)E3

1(0)〉〉c = 〈〈E3
1(t)E3

1(0)〉〉 − 〈〈E3
1(t)〉〉〈〈E3

1(0)〉〉
= 〈Λ′′4〉 − 〈Λ′′2〉〈Λ′′2〉 = 0 .

(5.46)

15From now on the sum over the transversal mode is assumed, so we omit the summation symbol∑2
l=1.
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On the other hand, the transversal part is non-trivial as it is mapped onto a dynamical
quantity

〈〈El
1(t)El

1(0)〉〉c = 〈〈El
1(t)El

1(0)〉〉 − 〈〈El
1(t)〉〉〈〈El

1(0)〉〉
= Λ4〈∂zξl(t, r/2)∂zξ

l(0, r/2)〉 − Λ4〈∂zξl(t, r/2)〉〈∂zξl(0, r/2)〉

= Λ4∂z∂z′〈ξ(t, z)ξ(t′, z′)〉|t
′=0
z=z′=r/2 ,

(5.47)

where the third line is given by 〈ξl〉 = 0. This is due to the Gaussianity of the EST
action, Eq, (5.18). The correlator in the third line is in fact the Feynman propagator
of the EST action, and by taking the Wick rotation, t → −it, we can make use of the
Green’s function in the Euclidean spacetime, Eq. (5.33)

〈〈El
1(−it)El

1(0)〉〉c = Λ4∂z∂z′G(t, t′; z, z′)|t′=0
z=z′=r/2

=
πΛ4

4σr2
sinh−2

(
πt

2r

)
.

(5.48)

Then, by inserting this expression into Eq. (5.45), we obtain the following expression of
the potential [56, 57]

V (1,0)(r) =
g2Λ4

2πσ
ln(σr2) + µ1 , (5.49)

in which µ1 is a renormalization parameter that comes from the lower limit of the
integration over time (t → 0). This logarithmic behavior with r has already been
confirmed with lattice data [47, 56].

Momentum-dependent (but spin-independent) potentials

Moving on with O(1/M2) corrections, we can use the result of the gauge field insertions,
Eq. (5.48), for momentum-dependent (but spin-independent) potentials

V
(2,0)
L2 (r) =

i

4
(δij − 3r̂ir̂j) lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
1(0)〉〉c ,

V
(2,0)
p2 (r) =

i

2
r̂ir̂j lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
1(0)〉〉c .

(5.50)

Due to the parametrization of the system, the normal vector along the axis on which the
heavy quark-antiquark pair is aligned is given by r̂ = (0, 0, 1), so that these potentials
are rewritten as

V
(2,0)
L2 (r) =

i

4
lim
T→∞

∫ T

0
dt t2

(
〈〈gEl

1(t)gEl
1(0)〉〉c − 2〈〈gE3

1(t)gE3
1(0)〉〉c

)
,

V
(2,0)
p2 (r) =

i

2
lim
T→∞

∫ T

0
dt t2〈〈gE3

1(t)gE3
1(0)〉〉c .

(5.51)
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As it was shown in Eq. (5.46), the longitudinal part of the gauge field insertion vanishes
in the EST, so just using Eq. (5.48) for the Wick rotated expression on the right-hand
side, we derive the potentials

V
(2,0)
L2 (r) =− g2Λ4

6σ
r , (5.52)

V
(2,0)
p2 (r) =0 . (5.53)

For V
(1,1)
L2 (r) and V

(1,1)
p2 (r), we need to calculate another part of the gauge field insertions,

which is mapped onto the string variables and simplified by

〈〈E1(t) ·E2(0)〉〉c = 〈〈El
1(t)El

2(0)〉〉c
= Λ4∂z∂z′〈ξ(t, z)ξ(t′, z′)〉|t

′=0
z=−z′=r/2 ,

(5.54)

and after the Wick rotation, we obtain the following expression

〈〈El
1(t)El

2(0)〉〉c = Λ4∂z∂z′G(t, t′; z, z′)|t′=0
z=−z′=r/2

= − πΛ4

4σr2
cosh−2

(
πt

2r

)
.

(5.55)

Then, the calculations of the momentum-dependent potentials are straightforward as we
insert Eq. (5.55) into Eqs. (4.23) and (4.25)

V
(1,1)
L2 (r) =

g2Λ4

6σ
r , (5.56)

V
(1,1)
p2 (r) =0 . (5.57)

Spin-orbit potentials

Two of the spin-orbit potentials are given in terms of the insertions of the cross product
between a chromomagnetic field and a chromoelectric field

V
(2,0)
LS (r) =−

c
(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t〈〈gB1(t)× gE1(0)〉〉c , (5.58)

V
(1,1)
L2S1

(r) =−
c

(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t〈〈gB1(t)× gE2(0)〉〉c . (5.59)

Due to the parametrization r = (0, 0, 1), these expressions are rewritten

V
(2,0)
LS (r) =−

ic
(1)
F

r
lim
T→∞

∫ T

0
dt t ε3lm〈〈gBl

1(t)gEm
1 (0)〉〉c , (5.60)

V
(1,1)
L2S1

(r) =−
ic

(1)
F

r
lim
T→∞

∫ T

0
dt t ε3lm〈〈gBl

1(t)gEm
2 (0)〉〉c , (5.61)
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in which εlmn is a totally antisymmetry rank-3 tensor. Thus, we have to compute the
gauge field insertions on the right-hand sides in terms of the string variables. Definition
of the connected part of the gauge field insertion is given and simplified by

〈〈Bl
1(t)Em

1,2(0)〉〉c = 〈〈Bl
1(t)Em

1,2(0)〉〉 − 〈〈Bl
1(t)〉〉〈〈Em

1,2(0)〉〉
= 〈〈Bl

1(t)Em
1,2(0)〉〉 ,

(5.62)

in which the second line is due to the mapping and the Gaussianity of the EST action,
and using the mapping, Eq. (5.40), the expression is mapped onto

〈〈Bl
1(t)Em

1,2(0)〉〉 = Λ′Λ2εln〈∂t∂zξn(t, r/2)∂zξ
m(0,±r/2)〉

= Λ′Λ2εln∂t∂z∂z′〈ξn(t, z)ξm(t′, z′)〉|t′=0
z=±z′=r/2 .

(5.63)

By taking the Wick rotation and using Eq. (5.33) for the string correlator, we obtain
the analytic expressions of the insertions

ε3lm〈〈Bl
1(t)Em

1 (0)〉〉c =
iπ2Λ2Λ′

2σr3
cosh

(
πt

2r

)
sinh−3

(
πt

2r

)
, (5.64)

ε3lm〈〈Bl
1(t)Em

2 (0)〉〉c = − iπ
2Λ2Λ′

2σr3
sinh

(
πt

2r

)
cosh−3

(
πt

2r

)
. (5.65)

Then, the corresponding potentials are derived

V
(2,0)
LS (r) =− µ2

r
−
c

(1)
F g2Λ2Λ′

σr2
, (5.66)

V
(1,1)
L2S1

(r) =−
c

(1)
F g2Λ2Λ′

σr2
, (5.67)

where µ2 is a renormalization parameter, which comes from the lower limit of the inte-
gration domain (t→ 0) just like µ1. As we will see in the next section, this parameter can
be constrained in terms of the fundamental parameter of the EST due to the symmetry
of QCD.

Spin-spin interaction potentials

Spin-spin interaction part of the potentials are given by (using the parametrization
r = (0, 0, r))

V
(1,1)
S2 (r) =

2ic
(1)
F c

(2)
F

3
lim
T→∞

∫ T

0
dt
(
〈〈gBl

1(t)gBl
2(0)〉〉c + 〈〈gB3

1(t)gB3
2(0)〉〉c

)
− 4(dsv + dvvCf )δ(3)(r) , (5.68)

V
(1,1)
S12

(r) =
ic

(1)
F c

(2)
F

4
lim
T→∞

∫ T

0
dt

(
−1

3
〈〈gBl

1(t)gBl
2(0)〉〉c +

2

3
〈〈gB3

1(t)gB3
2(0)〉〉c

)
. (5.69)
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Due to the Gaussianty of the action as well as the QCD-to-EST mapping, the transverse
component is given by

〈〈Bl
1(t)Bl

2(0)〉〉c =− Λ′2εlmεln〈∂t∂zξm(t, r/2)∂t∂zξ
n(0,−r/2)〉

=− Λ′2δmn∂t∂z∂t′∂z′〈ξm(t, z)ξn(t′, z′)〉|t′=0
z=−z′=r/2 ,

(5.70)

and the Wick rotated expression is derived

〈〈Bl
1(−it)Bl

2(0)〉〉c =− π3Λ′2

4σr4
cosh−4

(
πt

2r

)[
2− cosh

(
πt

r

)]
. (5.71)

On the other hand, the longitudinal component is decomposed and mapped onto the
four-string field correlator

〈〈B3
1(t)B3

2(0)〉〉c
=〈〈B3

1(t)B3
2(0)〉〉 − 〈〈B3

1(t)〉〉〈〈B3
2(0)〉〉

=− Λ′′′2εlmεnp〈∂t∂zξl(t, r/2)∂zξ
m(t, r/2)∂t∂zξ

n(0,−r/2)∂zξ
p(0,−r/2)〉

+ Λ′′′2εlmεnp〈∂t∂zξl(t, r/2)∂zξ
m(t, r/2)〉〈∂t∂zξn(0,−r/2)∂zξ

p(0,−r/2)〉

=− Λ′′′2εlmεnp
[
〈∂t∂zξl(t, r/2)∂t∂zξ

n(0,−r/2)〉〈∂zξm(t, r/2)∂zξ
p(0,−r/2)〉

+〈∂t∂zξl(t, r/2)∂zξ
p(0,−r/2)〉〈∂zξm(t, r/2)∂t∂zξ

n(0,−r/2)〉
]
, (5.72)

in which the third equality is given by the Wick contraction. After taking the Wick
rotation and using Eq. (5.33), we obtain the analytic expression

〈〈B3
1(−it)B3

2(0)〉〉c =
π4Λ′′′2

16σ2r6
cosh−6

(
πt

2r

)
. (5.73)

Taking the integral of Eqs. (5.71) and (5.73) over time, analytic expressions of the spin-
spin potentials are derived [44]

V
(1,1)
S2 (r) =

2π2c
(1)
F c

(2)
F g2Λ′′′2

45σ2r5
− 4(dsv + dvvCf )δ(3)(r) , (5.74)

V
(1,1)
S12

(r) =
π2c

(1)
F c

(2)
F g2Λ′′′2

90σ2r5
. (5.75)

Note that the integral of Eq. (5.71) vanishes, thus, only the longitudinal component
contributes to the potentials.

Central potentials

Lastly, we derive the central potentials Vr’s. The expression of V
(2,0)
r in terms of the

gauge field insertion is given in Eq. (4.30)

V (2,0)
r (r) =

πCfαsc
(1)′

D

2
δ(3)(r)−

ic
(1)2
F

4
lim
T→∞

∫ T

0
dt〈〈gB1(t) · gB1(0)〉〉c +

1

2
(∇2

rV
(2,0)
p2 )
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− i

2

∫ ∞
0

dt1

∫ t1

0
dt2

∫ t2

0
dt3(t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(
∇i
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c
)

− d(1)′

3 fabc

∫
d2x lim

T→∞
g〈〈F aµν(x)F bµα(x)F cνα(x)〉〉 . (5.76)

We calculate the relevant gauge field insertions. The first one is of a dot product between
two chromomagnetic fields. This is decomposed into a transversal and a longitudinal
parts,

〈〈B1(t) ·B1(0)〉〉c =〈〈Bl
1(t)Bl

1(0)〉〉c + 〈〈B3
1(t)B3

1(0)〉〉c , (5.77)

and their corresponding mappings onto the string variables are given by

〈〈Bl
1(t)Bl

1(0)〉〉c =Λ′2εlmεln〈∂t∂zξm(t, r/2)∂t∂zξ
n(0, r/2)〉 , (5.78)

〈〈B3
1(t)B3

1(0)〉〉c =Λ′′2εlmεnp〈∂t∂zξl(t, r/2)∂zξ
m(t, r/2)∂t∂zξ

n(0, r/2)∂zξ
p(0, r/2)〉

− Λ′2εlmεnp〈∂t∂zξl(t, r/2)∂zξ
m(t, r/2)〉〈∂t∂zξn(0, r/2)∂zξ

p(0, r/2)〉

=Λ′2εlmεnp
[
〈∂t∂zξl(t, r/2)∂t∂zξ

n(0, r/2)〉〈∂zξm(t, r/2)∂zξ
p(0r, 2)〉

+〈∂t∂zξl(t, r/2)∂zξ
p(0, r/2)〉〈∂zξm(t, r/2)∂t∂zξ

n(0, r/2)〉
]
. (5.79)

Taking the Wick rotation, we derive the following expressions for the two-magnetic field
insertions

〈〈Bl
1(−it)Bl

1(0)〉〉c =
π2Λ′2

4σr4
sinh−4

(
πt

2r

)[
2 + cosh

(
πt

r

)]
, (5.80)

〈〈B3
1(−it)B3

1(0)〉〉c =
π4Λ′′′2

16σ2r6
sinh−6

(
πt

2r

)
. (5.81)

Integrating these expressions over time, we obtain the following contribution to the
potential

−
ic

(1)2
F

4
lim
T→∞

∫ T

0
dt〈〈gB1(−it) · gB1(0)〉〉c = µ3 +

µ4

r2
+
µ5

r4
+
π3c

(1)2
F g2Λ′′′2

60σ2r5
, (5.82)

where µ3, µ4, and µ5 are renormalization parameters, which come from the lower limit
of the time integral.

A four-chromoelectric field insertion is mapped onto the string variables and simpli-
fied due to the definition of the connected part of the expectation value

〈〈E1(t1) ·E1(t2)E1(t3) ·E1(0)〉〉c
=Λ8

[
〈∂zξl(t1, r/2)∂zξ

m(t3, r/2)〉〈∂zξl(t2, r/2)∂zξ
m(0, r/2)〉

+〈∂zξl(t1, r/2)∂zξ
m(0, r/2)〉〈∂zξl(t2, r/2)∂zξ

m(t3, r/2)〉
]
, (5.83)

98



and taking the Wick rotation, we obtain the analytic expression for it

〈〈E1(−it1) ·E1(−it2)E1(−it3) ·E1(0)〉〉c

=
π2Λ8

8σ2r4

{
sinh−2

(
πt2
2r

)
sinh−2

[
π (t1 − t3)

2r

]
+ sinh−2

(
πt1
2r

)
sinh−2

[
π (t2 − t3)

2r

]}
.

(5.84)

The time integral of this expression turns out to be a Riemann zeta function of argument
three ζ3 due to the following identity∫ ∞

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2 [sinh−2(t2) sinh−2(t1 − t3) + sinh−2(t1) sinh−2(t2 − t3)

]
= ζ3 , (5.85)

so that we derive the analytic expression

− i

2

∫ ∞
0

dt1

∫ t1

0
dt2

∫ t2

0
dt3(t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

=− 2ζ3g
4Λ8

π3σ2
r . (5.86)

Note that a three-chromoelectric field insertion for V
(2,0)
r vanishes due to the definition of

the connected part of the expectation value as well as the QCD-to-EST mappings. Also,
there is no corresponding mapping for the field strength insertion. Thus, the potential
is given by summing all these terms

V (2,0)
r (r) =− 2ζ3g

4Λ8

π3σ2
r + µ3 +

µ4

r2
+
µ5

r4
+
π3c

(1)2
F g2Λ′′′2

60σ2r5
+
πCfαsc

(1)′

D

2
δ(3)(r)

− d(1)′

3 fabc

∫
d2x lim

T→∞
g〈〈F aµν(x)F bµα(x)F cνα(x)〉〉 . (5.87)

As for V
(1,1)
r (r), Eq. (4.31), we only have to calculate the four-chromoelectric field

insertion because the ones involving three-chromoelectric field insertions vanish due to
the mapping as well as the definition of the connected part of the Wilson loop expectation
value. The four-field insertion is mapped and simplified by

〈〈E1(t1) ·E1(t2)E2(t3) ·E2(0)〉〉c
=Λ8

[
〈∂zξl(t1, r/2)∂zξ

m(t3,−r/2)〉〈∂zξl(t2, r/2)∂zξ
m(0,−r/2)〉

+〈∂zξl(t1, r/2)∂zξ
m(0,−r/2)〉〈∂zξl(t2, r/2)∂zξ

m(t3,−r/2)〉
]
, (5.88)

and the Wick rotated expression is given by

〈〈E1(−it1) ·E1(−it2)E2(−it3) ·E2(0)〉〉c
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=
π2Λ8

8σ2r4

{
cosh−2

(
πt2
2r

)
cosh−2

[
π (t1 − t3)

2r

]
+ cosh−2

(
πt1
2r

)
cosh−2

[
π (t2 − t3)

2r

]}
.

(5.89)

Its time integral also turns out to be of the Riemann zeta function of order three. Thus,
the potential is given by

V (1,1)
r (r) =

ζ3g
4Λ8

2π3σ2
r + (dss + dvsCf )δ(3)(r) . (5.90)

All in all, these analytic results on the potentials agree with [57].

5.3.6 Poincaré invariance

In summary, we obtain the following list of the long-distance heavy quark potentials,
which are calculated by utilizing the QCD-to-EST mapping, Eq. (5.40), as well as the
EST Green’s funciton, Eq. (5.33),

V (0)(r) =σr , (5.91)

V (1,0)(r) =
gΛ4

2πσ
ln
(
σr2
)

+ µ1 , (5.92)

V
(2,0)
L2 (r) =− g2Λ4

6σ
r , (5.93)

V
(1,1)
L2 (r) =

g2Λ4

6σ
r , (5.94)

V
(2,0)
p2 (r) =0 , (5.95)

V
(1,1)
p2 (r) =0 , (5.96)

V
(2,0)
LS (r) =− µ2

r
−
c

(1)
F g2Λ2Λ′

σr2
, (5.97)

V
(1,1)
L2S1

(r) =−
c

(1)
F g2Λ2Λ′

σr2
, (5.98)

V
(1,1)
S2 (r) =

2π2c
(1)
F c

(2)
F g2Λ′′′2

45σ2r5
− 4(dsv + dvvCf )δ(3)(r) , (5.99)

V
(1,1)
S12

(r) =
π2c

(1)
F c

(2)
F g2Λ′′′2

90σ2r5
, (5.100)

V (2,0)
r (r) =− 2ζ3g

4Λ8

π3σ2
r + µ3 +

µ4

r2
+
µ5

r4
+
π3c

(1)2
F g2Λ′′′2

60σ2r5
+
πCfαsc

(1)′

D

2
δ(3)(r)

− d(1)′

3 fabc

∫
d2x lim

T→∞
g〈〈F aµν(x)F bµα(x)F cνα(x)〉〉 , (5.101)

V (1,1)
r (r) =

ζ3g
4Λ8r

2π3σ2
+ (dss + dvsCf )δ(3)(r) , (5.102)
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where c
(1)
F , c

(2)
F , c

(1)′

D , d
(1)′

3 , dsv, dvv are the Wilson coefficients from NRQCD, and µi (for
i ∈ {1, 2, . . . , 5}) are renormalization parameters arising from time integrals. Further-
more, Λ’s are the dimensionful parameters from the mapping. Besides the string tension
σ, which is fundamental parameter of the EST, there are a number of free parameters
appearing in these expressions, so it would be useful to reduce some of them before
comparing to available lattice data. Symmetries play a crucial role for that. If the
Poincaré invariance in QCD is manifest in the low-energy regime, especially in the EFTs
like NRQCD and pNRQD, there arise some constraining equations between the heavy
quark potentials. We are going to exploit these symmetries, thereby simplifying the
expressions of the potentials.

The first constraining equation from the Poincaré invariance is the Gromes rela-
tion [92]:

1

2r

dV (0)

dr
+ V

(2,0)
LS − V (1,1)

L2S1
= 0 , (5.103)

from which a constraint is given on the renormalization parameter

µ2 =
σ

2
. (5.104)

The second equation is concerning the momentum-dependent potentials [93]

r

2

dV (0)

dr
+ 2V

(2,0)
L2 − V (1,1)

L2 = 0 , (5.105)

and a constraint is given on one of the dimensionful parameter from the QCD-to-EST
mapping

gΛ2 = σ . (5.106)

In [50], an equation is given in the large time limit −∇1V
(0) = 〈〈gE1〉〉, and as well

mapped this equation onto the string variable, we obtain another constraint on a dimen-
sionful parameter

−σ = gΛ′′2 . (5.107)

Note that the spatial derivative ∇1 denotes a derivative in the direction towards the
position of the heavy quark; i.e., ∇r. On the other hand, the gauge field insertion on the
right-hand side boils down to the longitudianl component as the transversal components
vanish due to the Gaussianity of the EST action, so that 〈〈gE1〉〉 = gΛ′′2. Inserting
Eqs. (5.104), (5.106), and (5.107) into the expressions of the potentials, Eqs. (5.91),
(5.92), (5.93), (5.94), (5.97), (5.98), (5.99), (5.100), (5.101), and (5.102), we obtain the
simplified expressions:

V (0)(r) =σr , (5.108)

V (1,0)(r) =
σ

2π
ln
(
σr2
)

+ µ1 , (5.109)
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V
(2,0)
L2 (r) =− σr

6
, (5.110)

V
(1,1)
L2 (r) =

σr

6
, (5.111)

V
(2,0)
p2 (r) = 0 , (5.112)

V
(1,1)
p2 (r) = 0 , (5.113)

V
(2,0)
LS (r) =− σ

2r
−
c

(1)
F gΛ′

r2
, (5.114)

V
(1,1)
L2S1

(r) =−
c

(1)
F gΛ′

r2
, (5.115)

V
(1,1)
S2 (r) =

2π2c
(1)
F c

(2)
F g2Λ′′′2

45σ2r5
− 4(dsv + dvvCf )δ(3)(r) , (5.116)

V
(1,1)
S12

(r) =
π2c

(1)
F c

(2)
F g2Λ′′′2

90σ2r5
, (5.117)

V (2,0)
r (r) = − 2ζ3σ

2r

π3
+ µ3 +

µ4

r2
+
µ5

r4
+
π3c

(1)2
F g2Λ′′′2

60σ2r5
+
πCfαsc

(1)′

D

2
δ(3)(r)

− d(1)′

3 fabc

∫
d2x lim

T→∞
g〈〈F aµν(x)F bµα(x)F cνα(x)〉〉 , (5.118)

V (1,1)
r (r) =

ζ3σ
2r

2π3
+ (dss + dvsCf )δ(3)(r) . (5.119)

Note that the momentum-dependent (but spin-independent) potentials are greatly sim-
plified after using the symmetries, especially the angular momentum-dependent contri-
bution.

This analytic result of the heavy quark potentials gives a useful tool for calculating
the heavy quarkonium spectrum. In order to do so, it is better to sum the potentials,
order by order in the 1/M expansion. In the center-of-mass frame, in which the Hamil-
tonian of the system is H = p2/M +V (r), and V (r) is given by summing the potentials
above [57]

V (r) =V (0)(r) +
2

M
V (1,0)(r) +

1

M2

{[
2
V

(2,0)
L2 (r)

r2
+
V

(1,1)
L2 (r)

r2

]
L2

+
[
V

(2,0)
LS (r) + V

(1,1)
L2S1

(r)
]

L · S + V
(1,1)
S2 (r)

(
S2

2
− 3

4

)
+ V

(1,1)
S12

S12(r̂)

+
[
2V

(2,0)
p2

(r) + V
(1,1)
p2

(r)
]

p2 + 2V (2,0)
r (r) + V (1,1)

r (r)
}

≈σr + µ1 +
1

M

σ

π
ln
(
σr2
)

+
1

M2

(
− σ

6r
L2 − σ

2r
L · S− 9ζ3σ

2r

2π3

)
, (5.120)

where we have truncated the terms at O(r−2). Note that analytic expression of the long-
distance heavy quark potential is given only in terms of the string tension σ and the
heavy quark mass M . Although this final result carries few parameters, several terms are
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subject to be modified at leading order in the 1/r expansion if NLO terms in the mapping
are included (NLO in the power counting of the EST). For instance, Vr, which is written
in terms of two-, three-, and four-gauge field insertions to the Wilson loop expectation
value16, can acquire corrections at linear order in r if the NLO terms are included. In
other words, this leading order calculation is not fully inclusive at its respective order.
Furthermore, as it was discussed in [58], a comparison between the analytic result of the
momentum-dependent (but spin-independent) potentials and the LQCD data [47, 48]
shows significant discrepancies, especially at the intermediate distance range. One can
estimate that the discrepancies can be reduced by including subleading terms of the
potentials within the EST calculation. Therefore, we will investigate this possibility
and show how one can incorporate the subleading contributions of the effective string
description. In the next section, a NLO calculation of the EST is presented as a first
step towards this goal.

5.4 Heavy quark potentials at NLO

In this section, we are performing a similar calculation to the previous section, but at
NLO in the EST power counting [94]. As we will see shortly, NLO contributions to
the potentials come from the QCD-to-EST mapping at NLO. The calculations of the
potentials from this mapping show divergences. We will discuss about the regualrization
schemes for those, and after that full analytic expressions of the potentials are presented.
In addition, just like in the case of LO calculation, we exploit the symmetry of QCD,
Poincaré invariance, in order to reduce the number of free parameters arising from the
mapping as well as renormalization ones from the evaluation of the potentials.

5.4.1 Green’s function at NLO

There are two possible NLO contributions to the heavy quark potentials from the effec-
tive string description. The first possible contribution is from the inclusion of the NLO
terms of the EST action, which are denoted by the ellipsis in Eq. (5.16), while keeping
the leading order mapping, Eq. (5.40). In [55, 84, 95], it was shown that the only possible
NLO terms of the EST action are proportional to (∂aξ

l∂aξl)2 and (∂aξ
l∂bξ

l)(∂aξm∂bξm),
due to the open-closed string duality, the EST power counting, and symmetry of the
EST action17. After the inclusion of these terms, the Green’s function is derived by
solving the equations of motion using a perturbative expansion. A back of the envelope
calculation shows, however, that this NLO part of the correlator is (σr2)−2 suppressed
instead of the (σr2)−1 because the perturbative expansion is given in terms of the six-
string field correlator instead of the one from the four-string field. For instance, if we
include (∂aξ

l∂aξl)2 to the action, then the Green’s function at spacetime point x and y

16Eqs. (4.30) and (4.31).
17In fact, these terms are found in the determinant of Eq. (5.15).
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is given by

G(x, y) ∼〈0|T
{
ξ(x)ξ(y) exp

[
−i
∫ ∞
−∞

dt (∂ξ∂ξ)2

]}
|0〉

=〈0|T {ξ(x)ξ(y)} |0〉 − i〈0|T
{
ξ(x)ξ(y)

∫ ∞
−∞

dt (∂ξ∂ξ)2

}
|0〉+ 〈0|O(ξ8)|0〉 ,

(5.121)

where T stands for the time ordering operator. We omitted the indices for the string
coordinates as well as the partial derivatives for simplicity18. Note that the second term
on the second line of Eq. 5.121 is the six-field correlator, which is the first sublead-
ing contribution to the Green’s function. A similar argument applies when we include
(∂aξ

l∂bξ
l)(∂aξm∂bξm) to the action. This estimation implies that the contribution from

this part of the correlator has to be counted as next-to-next-to-leading order (NNLO)
instead of NLO. Hence, this possibility is not considered in this section.

5.4.2 QCD to EST mapping at NLO

The second possible NLO contributions to the potentials come from the NLO part of
the mapping. While keeping the same order terms of the action (i.e., only up to the
Gaussian part), we exploit the QCD-to-EST mapping at NLO (denoted by NLO on the
superscript), which is given by

〈〈. . .El
1,2(t) . . .〉〉NLO = 〈. . .Λ2

∂zξ
l
1,2(t)(∂ξ1,2)2(t) . . . 〉 ,

〈〈. . .Bl
1,2(t) . . .〉〉NLO = 〈· · · ± Λ′εlm∂t∂zξ

m
1,2(t)(∂ξ1,2)2(t) . . . 〉 ,

〈〈. . .E3
1,2(t) . . .〉〉NLO = 〈. . .Λ′′2(∂ξ1,2)2(t) . . . 〉 ,

〈〈. . .B3
1,2(t) . . .〉〉NLO = 〈· · · ± Λ′′′εlm∂t∂zξ

l
1,2(t)∂zξ

m
1,2(t)(∂ξ1,2)2(t) . . . 〉 ,

(5.122)

in which E1,2(t) ≡ E(t,±r/2) and ξ1,2(t) ≡ ξ(t,±r/2). The dimensionful parameters
arising from this mapping (Λ’s with a bar above) are compared to the ones from the LO
mapping, Eq. (5.40), as

Λ ≥ Λ, Λ′ ≥ Λ′, Λ′′ ≥ Λ′′, and Λ′′′ ≥ Λ′′′ . (5.123)

Although these conditions on the parameters are not obvious in the first glance, they
are, in fact, analogous to the Taylor expansion: the coefficients for the subleading part
of the expansion are smaller than the coefficients of the leading terms19. This mapping
differs from Eq. (5.40) by a factor of (∂ξ)2, which gives (rΛQCD)−2 suppression in the
EST power counting scheme.

18Note that Eq. 5.121 is only a heuristic estimation.
19Later, we will see that some of these conditions are met.
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5.4.3 Gauge field insertions at NLO

With this mapping in mind, let us calculate the transversal component of two-chromoelectric
field insertion as a simple example,

〈〈El
1(t)El

1(0)〉〉NLO
c =〈〈El

1(t)El
1(0)〉〉NLO

= Λ
2
Λ2〈∂zξl1(t)∂aξ

m
1 (t)∂aξm1 (t)∂zξ

l
1(0)〉

+ Λ2Λ
2〈∂zξl1(t)∂zξ

l
1(0)∂bξ

m
1 (0)∂bξn1 (0)〉 .

(5.124)

The subscript c is absent on the right-hand side of the first equality, and this is due
to the Gaussianity of the EST action. The second equality is given by the mapping,
Eq. (5.122). After taking the Wick contraction as well as the Wick rotation, t → −it,
we obtain the following simplification of this gauge field insertion

〈〈El
1(−it)El

1(0)〉〉NLO
c = 16Λ2Λ

2
∂z∂z′G(t, t′; z, z′)|t=t′z=z′=r/2 × ∂z∂z′G(t, t′; z, z′)|t′=0

z=z′=r/2 ,

(5.125)

where G(t, t′; z, z′) is the Green’s function from Eq. (5.33) without the tensor indices,

G(t, t′; z, z′) =
1

4πσ
ln

(
cosh [(t− t′)π/r] + cos [(z + z′)π/r]

cosh [(t− t′)π/r]− cos [(z − z′)π/r]

)
. (5.126)

Likewise, the other correlators are calculated and simplified by20

〈〈E3
1(−it)E3

1(0)〉〉NLO
c =4Λ′′

4
[
∂z∂z′G|t

′=0
z=z′=r/2

]2
, (5.127)

〈〈El
1(−it)El

2(0)〉〉NLO
c =16Λ2Λ

2
[
∂z∂z′G|t=t

′

z=z′=−r/2 × ∂z∂z′G|
t′=0
z=−z′=r/2

]
,

(5.128)

〈〈E3
1(−it)E3

2(0)〉〉NLO
c =4Λ′′

4
[
∂z∂z′G|t

′=0
z=−z′=r/2

]2
, (5.129)

r · 〈〈B1(−it)×E1(0)〉〉NLO
c =r

(
〈〈B1

1(−it)E2
1(0)〉〉NLO

c − 〈〈B2
1(−it)E1

1(0)〉〉NLO
c

)
=− 4irΛ2Λ′

2
[
∂t∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂z′G|
t′=0
z=z′=r/2

+∂t∂z∂z′G|t
′=0
z=z′=r/2 × ∂z∂z′G|

t=t′

z=z′=r/2

]
− 8irΛ2Λ′

2
∂t∂z∂z′G|t

′=0
z=z′=r/2 × ∂z∂z′G|

t=t′

z=z′=r/2 ,

(5.130)

r · 〈〈B1(−it)×E2(0)〉〉NLO
c =r

(
〈〈B1

1(−it)E2
2(0)〉〉NLO

c − 〈〈B2
1(−it)E1

2(0)〉〉NLO
c

)
=− 4irΛ2Λ′

2
[
∂t∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂z′G|
t′=0
z=−z′=r/2

+∂t∂z∂z′G|t
′=0
z=−z′=r/2 × ∂z∂z′G|

t=t′

z=z′=r/2

]
20G = G(t, t′; z, z′) is implied from now on.
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− 8irΛ′Λ
2
∂t∂z∂z′G|t

′=0
z=−z′=r/2 × ∂z∂z′G|

t=t′

z=z′=−r/2 ,

(5.131)

〈〈Bl
1(−it)Bl

1(0)〉〉NLO
c =− 4Λ′Λ′

[
∂t∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂t′∂z′G|
t′=0
z=z′=r/2

+∂t∂z∂t′∂z′G|t
′=0
z=z′=r/2 × ∂z∂z′G|

t=t′

z=z′=r/2

]
− 4Λ′Λ′

[
∂t∂z∂t′∂z′G|t

′=0
z=z′=r/2 × ∂z∂z′G|

t=t′

z=z′=r/2

+∂t∂z∂z′G|t
′=0
z=z′=r/2 × ∂t∂z∂z′G|

t=t′

z=z′=r/2

]
, (5.132)

〈〈Bl
1(−it)Bl

2(0)〉〉NLO
c =− 4Λ′Λ′

[
∂t∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂t′∂z′G|
t′=0
z=−z′=r/2

+∂z∂z′G|t=t
′

z=z′=r/2 × ∂t∂z∂t′∂z′G|
t′=0
z=−z′=r/2

]
− 4Λ′Λ′

[
∂t∂z∂t′∂z′G|t

′=0
z=−z′=r/2 × ∂z∂z′G|

t=t′=0
z=z′=−r/2

+∂t∂z∂z′G|t
′=0
z=−z′=r/2 × ∂t∂z∂z′G|

t=t′=0
z=z′=−r/2

]
,

(5.133)

〈〈E3
1(−it1)E1(−it2) ·E1(0)〉〉NLO

c =− 4Λ′′
2
Λ4
[
∂z1∂z2G|z1=z2=r/2 × ∂z1∂z3G|

t3=0
z1=z3=r/2

]
+ 4Λ′′2Λ

4
[
∂z1∂z3G|

t3=0
z1=z3=r/2

]2
, (5.134)

〈〈E3
1(−it1)E2(−it2) ·E2(0)〉〉NLO

c =− 4Λ′′
2
Λ4
[
∂z1∂z2G|

z1=r/2
z2=−r/2 × ∂z1∂z3G|

t3=0
z1=−z3=r/2

]
+ 4Λ′′2Λ

4
[
∂z1∂z3G|

t3=0
z1=−z3=r/2

]2
, (5.135)

〈〈E3
2(−it1)E1(−it2) ·E1(0)〉〉NLO

c =− 4Λ′′
2
Λ2
[
∂z1∂z2G|

z1=−r/2
z2=r/2 × ∂z1∂z3G|

t3=0
−z1=z3=r/2

]
+ 4Λ′′2Λ

4
[
∂z1∂z3G|

t3=0
−z1=z3=r/2

]2
. (5.136)

And lastly, two of the four-chromoelectric field insertions to the Wilson loop expectation
values are simplified and given by

〈〈E1(−it1) ·E1(−it2)E1(−it3) ·E1(0)〉〉NLO
c

=− 4Λ′′
2
Λ′′2Λ4∂z1∂z3G|z1=z3=r/2 × ∂z1∂z4G|

t4=0
z1=z4=r/2 + 4Λ′′4Λ

4
[
∂z1∂z4G|

t4=0
z1=z4=r/2

]2

− 4Λ4Λ′′2Λ′′
2
[
∂z1∂z4G|

t4=0
z1=z4=r/2 × ∂z2∂z4G|

t4=0
z2=z4=r/2

]
, (5.137)

〈〈E1(−it1) ·E1(−it2)E2(−it3) ·E2(0)〉〉NLO
c

=− 4Λ′′
2
Λ′′2Λ4

[
∂z1∂z3G|

z1=r/2
z3=−r/2 × ∂z1∂z4G|

t4=0
z1=−z4=r/2

]
+ 4Λ′′4Λ

4
[
∂z1∂z4G|

t4=0
z1=−z4=r/2

]2

− 4Λ4Λ′′2Λ′′
2
[
∂z1∂z4G|

t4=0
z1=−z4=r/2 × ∂z2∂z4G|

t4=0
z2=−z4=r/2

]
. (5.138)
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More detailed derivations of these expressions can be found in Appendix A.2.
As one tries to evaluate these expressions on the given space time points, some

divergences appear. These divergences are due to the partial derivatives acting on the
Green’s function, and it being evaluated at the same spacetime points. It is natural to
see these divergences because the EST is an effective description of a vibrating string,
which connects the static heavy quark and the heavy antiquark in the long-distance
regime. In other words, the EST is not able to provide any feasible description of the
dynamics at scales above the hadronic scale ΛQCD. We will analyze these divergence
behaviors in great detail and show suitable regularization schemes for them.

5.4.4 Regularizations

There are three types of divergence that appear in the evaluation of a string correlator
defined at equal spacetime points21.

The first type is given by

lim
t′→t

lim
z′→z

∂z∂z′G(t, t′; z, z′)|z=±r/2 =∞ . (5.139)

As we go back to the original derivation of the string field correlator in Euclidean space-
time, Eq. (5.27), the Green’s function without the tensor indices is written as

G(t, t′; z, z′) =
1

πσr

∞∑
n=1

sin
(nπ
r
z − nπ

2

)
sin
(nπ
r
z′ − nπ

2

)∫ ∞
−∞

dk
e−ik(t−t′)

k2 +
(
nπ
r

)2 , (5.140)

which is identical to Eq. (5.33) except the rank-2 Kronecker delta δlm. Eq. (5.33) is
simply derived by taking the infinite sum over n as well as integrating over the entire
Fourier space k ∈ (−∞,∞). By taking the partial derivatives with respect to the spatial
coordinates z and z′ on Eq. (5.140), its evaluation at the same spacetime points is
rewritten

∂z∂z′G(t, t′; z, z′)|t=t′z=z′=±r/2 =
1

σr2

∞∑
n=1

n

∫ ∞
−∞

dy
1

y2 + 1
. (5.141)

The infinite sum over natural numbers on the right-hand side of Eq. (5.141) clearly
diverges. This is due to the fact that we are taking into account the sum over infinitely
many modes of the string vibration, which is a manifestation that the EST is a UV-
divergent effective theory. Thus, it is necessary to employ a proper regularization scheme
for that. The zeta function regularization, which is a common method in Bosonic string
theory, gives a finite value of the sum [96, 97],

∞∑
n=1

n = − 1

12
. (5.142)

21See Sec. 5.4.3 for the relevant expressions.
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As the y integral on the right-hand side of Eq. (5.141) is evaluated∫ ∞
−∞

dy
1

y2 + 1
= π , (5.143)

we obtain the regularized expression for Eq. (5.139)

∂z∂z′G(t, t′; z, z′)|t=t′z=z′=±r/2 = − π

12σr2
. (5.144)

The second type of divergence comes from

lim
t′→t

lim
z′→z

∂t∂z∂z′G(t, t′; z, z′)|z=±r/2 =∞ , (5.145)

whose divergent behavior is manifested by the infinite sum over the square of natural
numbers

∂t∂z∂z′G(t, t′; z, z′)|t=t′z=z′=±r/2 =
π

σr3

∞∑
n=1

n2

∫ ∞
−∞

dy

(
−iy
y2 + 1

)
. (5.146)

Again by the zeta function regularization, the infinite sum over the square of natural
numbers vanishes

∞∑
n=1

ns = −Bs+1

s+ 1
, (5.147)

where B is the Bernoulli number, which vanishes for s = 2. Thus, this expression simply
vanishes:

∂t∂z∂z′G(t, t′; z, z′)|t=t′z=z′=±r/2 = 0 . (5.148)

Also, note that y/(y2 + 1) is an odd function so that the integral over the entire domain
y ∈ (−∞,∞) vanishes as well. In a similar fashion22,

∂z∂t′∂z′G|t=t
′

z=z′=±r/2 = 0 . (5.149)

The last type of divergence comes from the following expression:

∂t∂t′G(t, t′; z, z′)|t=t′z=z′=±r/2 =
1

πσr
lim
ε→0

∞∑
n=1

(nπ
r

)
sin[ε]2

∫ ∞
−∞

dy

(
y2

y2 + 1

)
. (5.150)

While the infinite sum on the right-hand side of Eq. (5.150) vanishes as the infinitesi-
mal parameter ε approaches to zero, the integral over y diverges. We use dimensional
regularization for this divergent integral, which gives the finite result −2π. Thus, we see
that this quantity vanishes as well,

∂t∂t′G(t, t′; z, z′)|t=t′z=z′=±r/2 = 0 . (5.151)

22In fact, this is due to the Schwarz’s theorem: as the Green’s function is continuous under second
order partial derivatives, two distinct partial derivatives acting on the Green’s function commute.
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It appears that there are two different regularization schemes incorporated in this anal-
ysis. However, it turns out that both are identical to each other [98, 99]: the zeta
function regularization is merely a discrete version of dimensional regularization, so
our regularization scheme is consistent. Also, one can use a hard cut-off regularization
scheme instead of the zeta function, by exploiting the hierarchy of scales of the EST.
This method is presented in Appendix A.3.

In the next section, we will use Eqs. (5.144), (5.146), and (5.151) for the explicit
NLO calculation of the gauge field insertions to the Wilson loop expectation value, Eqs.
(5.125), (5.127), (5.128), (5.129), (5.130), (5.131), (5.132), (5.133), (5.134), (5.135),
(5.136), (5.137), and (5.138). Full analytic expressions of the heavy potentials are pre-
sented at the end of the section.

5.4.5 NLO calculation of the potentials

Static potential

As we go back to the Wilson loop-string partition equivalence conjecture, Eq. (5.34), the
NLO term of the static potential is derived by solving the string partition function [55]

Z0 =Z

∫
Dξ1Dξ2 exp

{
−σ
∫ T

0
dt

∫ r/2

−r/2
dz

(
1− 1

2
∂aξ

l∂aξ
l

)}
= exp {−σrT − µT} η(q)−2 ,

(5.152)

where η(q) is defined by [100–102]

η(q) ≡ q
1
24

∞∏
n=1

(1− qn) , and q ≡ e−πT/r . (5.153)

As we expand in powers of q, this partition function is given in terms of the energy
eigenvalues of the system

Z0 =
∞∑
n=0

wn e
−E0

n T (5.154)

where wn are the positive weights, and the energy E0
n is given by23

E0
n = σr + µ+

π

r

(
− 1

12
+ n

)
. (5.155)

From this, we see that the ground state energy made of a linear term in r plus a constant
and a term suppressed by 1/r. As we compare this to the Wilson loop expectation value,
the analytic expression of the static potential is finally derived

V (0) = σr + µ− π

12r
, (5.156)

where theO(σ−1r−2) suppressed term is the so called Lüscher term in a four-dimensional
spacetime.

23The superscript “0” denotes the exact solution from the Gaussian action.
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Potential at O(1/M)

The NLO part of Eq. (4.20) is given in terms of the two-chromoelectric field insertion to
the Wilson loop expectation value, calculated at NLO within the EST power counting,

V (1,0)(r) |NLO=
g2

2

∫ ∞
0

dt t
[
〈〈El

1(−it)El
1(0)〉〉NLO

c + 〈〈E3
1(−it)E3

1(0)〉〉NLO
c

]
, (5.157)

in which the time variable has been Wick rotated, t→ it.
In the previous section, the gauge field insertions in the integrand on the right hand

side of Eq. (5.157) are mapped and expressed in terms of the string fields, Eqs. (5.125)
and (5.127). By using the zeta function regularization scheme, Eq. (5.144), we obtain
the following analytic expressions for the gauge field insertions:

〈〈El
1(−it)El

1(0)〉〉NLO
c =− Λ2Λ

2
π2

3σ2r4
sinh−2

(
πt

2r

)
, (5.158)

〈〈E3
1(−it)E3

1(0)〉〉NLOc =
π2Λ′′

4

σ2r4

[
cosh

(
πt

r

)
− 1

]−2

. (5.159)

As we insert these expressions back into Eq. (5.157), the NLO contribution to the
potential is analytically derived

V (1,0)(r)|NLO = µ
(1,0)
0 +

µ
(1,0)
2

r2
− g2(24Λ2Λ

2
+ 13Λ′′

4
)

36σ2r4
. (5.160)

Here µ
(1,0)
0 and µ

(1,0)
2 are renormalization parameters that come from the time integral24.

They are of mass dimension zero and two, respectively25.

Momentum-dependent (but spin-independent) potentials

Moving onto the 1/M2 corrections to the static potential, momentum-dependent but

spin-independent potentials such as V
(2,0)
L2 |NLO are easily obtained by taking time integral

of Eqs. (5.158) and (5.159),

V
(2,0)
L2 (r)|NLO =

g2

4

∫ ∞
0

dt t2〈〈El
1(−it)El

1(0)〉〉NLO
c − g2

2

∫ ∞
0

dt t2〈〈E3
1(−it)E3

1(0)〉〉NLO
c

= µ
(2,0)
L2,0
− πg2Λ2Λ

2

9σ2r
+

(
1

3π
+
π

9

)
g2Λ′′

4

σ2r
, (5.161)

in which µ
(2,0)
L2,0

is a renormalization parameter of mass dimension one. The other NLO
contribution to the potential VL2 is given by

V
(1,1)
L2 (r)|NLO =

g2

2

∫ ∞
0

dt t2〈〈El
1(−it)El

2(0)〉〉NLO
c − g2

∫ ∞
0

dt t2〈〈E3
1(−it)E3

2(0)〉〉NLO
c ,

(5.162)

24The time integral diverges at the lower boundary of its domain, t→ 0, which corresponds to the UV
regime of the theory. This divergence is another manifestation of the fact that the EST is a UV-divergent
EFT.

25The subscript of the parameter µ
(1,0)
i for i ∈ {0, 2} denotes 1/ri dependence of the term.
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where the gauge field insertions are given in terms of the string fields by Eqs. (5.128)
and (5.129). As these expressions diverge at NLO within the EST framework, we make
use of Eq. (5.151) for the regularization, so that these correlators can analytically be
written as

〈〈El
1(−it)El

2(0)〉〉NLO
c =

π2Λ2Λ
2

3σ2r4
cosh−2

(
πt

2r

)
, (5.163)

〈〈E3
1(−it)E3

2(0)〉〉NLO
c =

π2Λ′′
4

2σ2r4
cosh−4

(
πt

2r

)
. (5.164)

Thus, the analytic expression of this potential becomes

V
(1,1)
L2 (r)|NLO =

πg2Λ2Λ
2

9σ2r
+
g2Λ′′

4

3πσ2r
− πg2Λ′′

4

18σ2r
. (5.165)

As for the other set of momentum-dependent but spin-independent potentials like
Vp2 ’s, the relevant gauge field insertion was already computed in Eq. (5.159)

〈〈E3
1(−it)E3

1(0)〉〉NLO
c =

π2Λ′′
4

σ2r4

[
cosh

(
πt

r

)
− 1

]−2

, (5.166)

and plugging this into the expression for the time integral, Eq. (4.24), we obtain the
analytic expression of the NLO contribution

V
(2,0)
p2 (r)|NLO = −g

2

2

∫ ∞
0

dt t2〈〈E3
1(−it)E3

1(0)〉〉NLO
c

= −µ(2,0)
p2 +

[
1

3π
+
π

9

]
g2Λ′′

4

σ2r
, (5.167)

in which µ
(2,0)
p2 is a renormalization parameter with mass dimension zero. Likewise, we

compute the other relevant gauge field insertion as

〈〈E3
1(−it)E3

2(0)〉〉NLO =
π2Λ′′

4

σ2r4

[
cosh

(
πt

r

)
+ 1

]−2

, (5.168)

thereby deriving the other part of the momentum-dependent potential at NLO

V
(1,1)
p2 (r)|NLO = −g2

∫ ∞
0

dt t2〈〈E3
1(−it)E3

2(0)〉〉NLO
c

=

[
2

3π
− π

9

]
g2Λ′′

4

σ2r
. (5.169)
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Spin-orbit potentials

The first part of the spin-orbit contribution to the potential, evaluated at NLO is given
by

V
(2,0)
LS (r)|NLO =

ic
(1)
F g2

r

∫ ∞
0

dt t
[
〈〈B1

1(−it)E2
1(0)〉〉NLO

c − 〈〈B2
1(−it)E1

1(0)〉〉NLO
c

]
,

(5.170)

and the corresponding integrand on the right-hand side is mapped onto the string vari-
ables by Eq. (5.130). Its divergence is regularized by Eqs. (5.144) and (5.148), so that
we obtain the following expression

〈〈B1
1(−it)E2

1(0)〉〉NLO
c =− 〈〈B2

1(−it)E1
1(0)〉〉NLO

c

=− iπ3(Λ2Λ′ + 2Λ′Λ
2
)

6σ2r5
sinh

(
πt

r

)[
cosh

(
πt

r

)
− 1

]−2

. (5.171)

Then, the analytic expression of the Eq. (5.170) is derived,

V
(2,0)
LS (r)|NLO =

µ
(2,0)
LS,3

r3
−
c

(1)
F πg2(Λ2Λ′ + 2Λ′Λ

2
)

6σ2r4
, (5.172)

where µ
(2,0)
LS,3 is a renormalization parameter with mass dimension zero. The second part

of the spin-orbit potential at NLO is given by

V
(1,1)
L2S1

(r)|NLO =
ic

(1)
F g2

r

∫ ∞
0

dt t
[
〈〈B1

1(−it)E2
2(0)〉〉NLO

c − 〈〈B2
1(−it)E1

2(0)〉〉NLO
c

]
.

(5.173)

The divergences, as the gauge field insertions are mapped onto the string variables, are
regularized by Eqs. (5.144) and (5.148) so that the following expression is obtained:

〈〈B1
1(−it)E2

2(0)〉〉NLO
c − 〈〈B2

1(−it)E1
2(0)〉〉NLO

c

=
iπ3(Λ2Λ′ + 2Λ′Λ

2
)

6σ2r5
sinh

(
πt

r

)[
cosh

(
πt

r

)
+ 1

]−2

. (5.174)

Thus, the NLO contribution of the second part of the spin-orbit potential is analytically
derived to be

V
(1,1)
L2S1

(r)|NLO = −
c

(1)
F πg2(Λ2Λ′ + 2Λ′Λ

2
)

6σ2r4
. (5.175)

Spin-spin interaction potentials

One of the spin-spin interaction parts of the potential at NLO is given by

V
(1,1)
S2 (r)|NLO =

2c
(1)
F c

(2)
F g2

3

∫ ∞
0

dt
[
〈〈Bl

1(−it)Bl
2(0)〉〉NLO

c + 〈〈B3
1(−it)B3

2(0)〉〉NLO
c

]
.

(5.176)
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The first term inside the bracket on the right hand side of Eq. (5.176) is mapped onto
the string variables by Eq. (5.133), which features two types of divergence, ∂z∂z′G and
∂t∂z∂z′G. We regularize them by using Eqs. (5.144) and (5.148), such that the following
expression is obtained,

〈〈Bl
1(−it)Bl

2(0)〉〉NLO
c =

π4Λ′Λ′

12σ2r6
cosh−4

(
πt

2r

)[
cosh

(
πt

2r

)
− 2

]
. (5.177)

On the other hand, the second term inside the bracket of Eq. (5.176) is of order σ−3r−6

in accordance with the power counting scheme, so this part is to be included in the
NNLO contribution. Then it turns out that the time integral of the Eq. (5.177) is trivial∫ ∞

0
dt cosh−4

(
πt

2r

)[
cosh

(
πt

r

)
− 2

]
= 0 , (5.178)

which implies that the NLO part of this potential vanishes: V
(1,1)
S2 (r)|NLO = 0. Due to

the parametrization of our physical system, two of the spin-spin interaction parts of the
potentials at NLO are related to each other by

V
(1,1)
S12
|NLO = −1

8
V

(1,1)
S2 |NLO , (5.179)

and this implies that −1
8V

(1,1)
S2 |NLO vanishes as well. Therefore, we conclude

V
(1,1)
S2 (r)|NLO = 0, and V

(1,1)
S12

(r)|NLO = 0 . (5.180)

Central potentials

Lastly, Vr’s at NLO are calculated. As for V
(2,0)
r (r)|NLO, one of the contributions is

two-chromomagnetic field insertion

V (2,0)
r (r)|NLO 3 −

c
(1)2
F g2

4

∫ ∞
0

dt
[
〈〈Bl

1(−it)Bl
1(0)〉〉NLO

c + 〈〈B3
1(−it)B3

1(0)〉〉NLO
c

]
.

(5.181)

It was shown in the previous paragraph that 〈〈B3
1(−it)B3

1(0)〉〉NLO
c is of order σ−3r−6,

which implies that this term is counted as a NNLO contribution within the EST power
counting. The other term inside the bracket of Eq. (5.181) is mapped onto the string
variables by Eq. (5.132), and its divergence is regularized by Eqs. (5.144) and (5.148),
resulting in the following expression

2∑
l=1

〈〈Bl
1(−it)Bl

1(0)〉〉NLO
c =

π4Λ′Λ′

12σ2r6

[
cosh

(
πt

r

)
+ 2

]
sinh−4

(
πt

2r

)
. (5.182)
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Thus, this contribution is analytically computed to be

V (2,0)
r (r)|NLO 3 −

c
(1)2
F g2

4

∫ ∞
0

dt
2∑
l=1

〈〈Bl
1(−it)Bl

1(0)〉〉NLO
c = −

µ
(2,0)
r,2

r2
, (5.183)

in which µ
(2,0)
r,2 is a renormalization parameter of mass dimension one.

The second contribution to the potential is straightforward as we use Eq. (5.167),

V (2,0)
r (r)|NLO 3 1

2
(∇2

rV
(2,0)
p2
|NLO) =

(
1

3π
+
π

9

)
g2Λ′′

4

σ2r3
. (5.184)

The third contribution comes from a three-chromoelectric field insertion,

V (2,0)
r (r)|NLO 3 g

3

2
∇3
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈E3

1(−it1)E1(−it2) ·E1(0)〉〉NLO
c ,

(5.185)

and its integrand is given by Eq. (5.134), which reads

〈〈E3
1(−it1)E1(−it2) ·E1(0)〉〉NLO

c

= −π
2Λ′′

2
Λ4

4σ2r4
sinh−2

(
πt1
2r

)
sinh−2

[
π(t1 − t2)

2r

]
+
π2Λ′′2Λ

4

4σ2r4
sinh−4

(
πt1
2r

)
. (5.186)

Then, the analytic expression of this contribution is calculated as

V (2,0)
r (r)|NLO 3 g

3

2
∇3
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈E3

1(−it1)E1(−it2) ·E1(0)〉〉NLO
c

=− 2g3Λ′′
2
Λ4

σ2π2r
+

2g3Λ′′2Λ
4

3σ2π2r
. (5.187)

The last contribution to the potential comes from the four-chromoelectric field insertion,
which is mapped onto the string variables as in Eq. (5.137). We evaluate this expression
on the specified spatial coordinates (z1 = z3 = z4 = r/2, z1 = z4 = r/2, or z1 = z2 =
z4 = r/2)

〈〈E1(−it1) ·E1(−it2)E1(−it3) ·E1(0)〉〉NLO
c

=− π2Λ′′
2
Λ′′2Λ4

4σ2r4
sinh−2

(
πt1
2r

)
sinh−2

[
π(t1 − t2)

2r

]
+
π2Λ′′4Λ

4

4σ2r4
sinh−4

(
πt1
2r

)
− π2Λ4Λ′′2Λ′′

2

4σ2r4
sinh−2

(
πt1
2r

)
sinh−2

(
πt2
2r

)
, (5.188)

with the relevant integral being

− g4

2

∫ ∞
0

dt1

∫ t1

0
dt2

∫ t2

0
dt3(t2 − t3)2〈〈E1(−it1) ·E1(−it2)E1(−it3) ·E1(0)〉〉NLO

c
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=
ag4Λ4Λ′′2Λ′′

2
r

4π3σ2
+
πg4Λ′′4Λ

4
r

135σ2
− g4Λ′′4Λ

4
r

9πσ2
. (5.189)

The constant a ' 7.08603 comes from the time integral over the function,

sinh−2
(
πt1
2r

)
sinh−2

[
π(t1−t2)

2r

]
26. Therefore, this contribution to the potential is written

altogether as

V (2,0)
r |NLO =

ag4Λ4Λ′′2Λ′′
2
r

4π3σ2
+
πg4Λ′′4Λ

4
r

135σ2
− g4Λ′′4Λ

4
r

9πσ2
− 2g3Λ′′

2
Λ4

σ2π2r
+

2g3Λ′′2Λ
4

3σ2π2r

+

(
1

3π
+
π

9

)
g2Λ′′

4

σ2r3
, where a ' 7.08603. (5.190)

Note that the first three terms are of the same order as the leading order terms in
Eq. (5.118), which means they contribute as the correction terms.

In a similar fashion, V
(1,1)
r (r)|NLO is computed. The first contribution, using Eq. (5.169),

is given by

V (1,1)
r (r)|NLO 3 −1

2
(∇2

rV
(1,1)
p2
|NLO) =

(
π

9
− 2

3π

)
g2Λ′′

4

σ2r3
, (5.191)

while the ones with three-gauge field insertions, Eqs. (5.135) and (5.136), vanish when
they are integrated over time,

0 =
g3

2

(
∇3
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈E3

1(−it1)E2(−it2) ·E2(0)〉〉NLO
c

)
=
g3

2

(
∇3
r

∫ ∞
0

dt1

∫ t1

0
dt2(t1 − t2)2〈〈E3

2(−it1)E1(−it2) ·E1(0)〉〉NLO
c

)
. (5.192)

Finally, the contribution with a four-chromoelectric field insertion, Eq. (5.138), is com-
puted as

− g4

∫ ∞
0

dt1

∫ t1

0
dt2

∫ t2

0
dt3(t2 − t3)2〈〈E1(−it1) ·E1(−it2)E2(−it3) ·E2(0)〉〉NLO

c

=
bg4Λ′′

2
Λ′′2Λ4r

2π3σ2
− 7πg4Λ′′4Λ

4
r

540σ2
+
g4Λ′′4Λ

4
r

9πσ2
, (5.193)

where b ' 1.26521 is obtained by numerically solving the time integral over the function
cosh−2

[
πt1
2r

]
cosh−2

[
πt2
2r

]
. The potential altogether is then given by

V (1,1)
r (r)|NLO =

bg4Λ′′
2
Λ′′2Λ4r

2π3σ2
− 7πg4Λ′′4Λ

4
r

540σ2
+
g4Λ′′4Λ

4
r

9πσ2
+

(
π

9
− 2

3π

)
g2Λ′′

4

σ2r3
,

where b ' 1.26521. (5.194)

Again, we observe that the first three terms are corrections to the leading order part
given in Eq. (5.119).

26The integral has been obtained numerically.
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5.4.6 Poincaré invariance

In summary, as the LO terms in the EST are already given27 in Eqs. (5.91), (5.92),
(5.93), (5.94), (5.95), (5.96), (5.97), (5.98), (5.99), (5.100), (5.101), and (5.102), we have
derived the following list of potentials, which are computed up to NLO within the EST
power counting scheme

V (0)(r) = σr + µ− π

12r
, (5.195)

V (1,0)(r) =
g2Λ4

2πσ
ln(σr2) + µ1 + µ

(1,0)
0 − g2(24Λ2Λ

2
+ 13Λ′′

4
)

36σ2r2
+
µ

(1,0)
2

r2
, (5.196)

V
(2,0)
L2 (r) = −g

2Λ4

6σ
r + µ

(2,0)
L2,0
− πg2Λ2Λ

2

9σ2r
+

(
1

3π
+
π

9

)
g2Λ′′

4

σ2r
, (5.197)

V
(1,1)
L2 (r) =

g2Λ4

6σ
r +

πg2Λ2Λ
2

9σ2r
+

(
1

3π
− π

18

)
g2Λ′′

4

σ2r
, (5.198)

V
(2,0)
p2 (r) =

(
1

3π
+
π

9

)
g2Λ′′

4

σ2r
− µ(2,0)

p2
, (5.199)

V
(1,1)
p2 (r) =

(
2

3π
− π

9

)
g2Λ′′

4

σ2r
, (5.200)

V
(2,0)
LS (r) = −µ2

r
−
c

(1)
F g2Λ2Λ′

σr2
+
µ

(2,0)
LS,3

r3
−
c

(1)
F πg2(Λ2Λ′ + 2Λ′Λ

2
)

6σ2r4
, (5.201)

V
(1,1)
L2S1

(r) = −
c

(1)
F g2Λ2Λ′

σr2
−
c

(1)
F πg2(Λ2Λ′ + 2Λ′Λ

2
)

6σ2r4
, (5.202)

V
(1,1)
S2 (r) =

2π3c
(1)
F c

(2)
F g2Λ′′′2

45σ2r5
− 4(dsv + dvvCf )δ3(r) , (5.203)

V
(1,1)
S12

(r) =
π3c

(1)
F c

(2)
F g2Λ′′′2

90σ2r5
, (5.204)

V (2,0)
r (r) = −2ζ3g

4Λ8r

π3σ2
+
ag4Λ4Λ′′2Λ′′

2
r

4π3σ2
+
πg4Λ′′4Λ

4
r

135σ2
− g4Λ′′4Λ

4
r

9πσ2
+ µ3

− 2g3Λ′′
2
Λ4

σ2π2r
+

2g3Λ′′2Λ
4

3σ2π2r
+
µ4

r2
+

(
1

3π
+
π

9

)
g2Λ′′

4

σ2r3
+
µ5

r4
+
π3c

(1)2
F g2Λ′′′2

60σ2r5

+
πCfαsc

(1)′

D

2
δ(3)(r)− d(1)′

3 fabc

∫
d3x lim

T→∞
g〈〈F aµν(x)F bµα(x)F cνα(x)〉〉 , (5.205)

V (1,1)
r (r) = −ζ3g

4Λ8r

2π3σ2
+
bg4Λ′′

2
Λ′′2Λ4r

2π3σ2
− 7πg4Λ′′4Λ

4
r

540σ2
+
g4Λ′′4Λ

4
r

9πσ2

+

(
π

9
− 2

3π

)
g2Λ′′

4

σ2r3
+ (dss + dvsCf )δ(3)(r) , (5.206)

27These are the expressions before imposing the Poincaré invariance
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where a ' 7.08603 and b ' 1.26521. Note that the static potential, Eq. (5.195), now
contains the Lüscher term −π/(12r) in four-dimensional spacetime [52, 53, 55].

As we utilize the mapping from QCD to the EST, Eqs. (5.40) and (5.122), there
arise a number of undetermined (and dimensionful) parameters, Λ’s, and Λ’s, as well as
renormalization parameters µ’s. It was briefly mentioned in the previous sections that
the number of these parameters can be reduced when the Poincaré invariance in QCD
is taken into account in the low-energy regime [22]. It is important to note here that
unlike the pQCD action, its low-energy effective descriptions do not show the explicit
symmetry under the Poincaré transformations, especially under the boosts. However, as
it was argued in [22, 77, 103, 104], the NRQCD and pNRQCD Lagrangians are invariant
under the boost transformations if a certain set of constraints on the Wilson coefficients
of these EFTs are satisfied. In other words, as the underlying theory preserves the
Poincaré symmetry, its low-energy EFTs have to be invariant under the same symmetry
group as well. The equations we will be using in the next paragraphs provide the
constraints as a result of the Poincaré invariance in pNRQCD.

The first equation we apply is the Gromes relation [92], which relates the static
potential to the spin-orbit ones

1

2r

dV (0)

dr
+ V

(2,0)
LS − V (1,1)

L2S1
= 0 . (5.207)

As we insert Eqs. (5.195), (5.201), and (5.202) into this equation, two constraints arise
from it:

µ2 =
σ

2
, and µ

(2,0)
LS,3 = − π

24
. (5.208)

Comparing to the constraining equation for the potentials at LO, Eq. (5.104), one addi-
tional constraint on a renormalization parameter appears, which is due to the inclusion
of NLO terms in the EST. Thus, the relevant spin-orbit potential is simplified

V
(2,0)
LS (r) = − σ

2r
−
c

(1)
F g2Λ2Λ′

σr2
− π

24r3
−
c

(1)
F πg2(Λ2Λ′ + 2Λ′Λ

2
)

6σ2r4
. (5.209)

We observe that the third and fourth terms on the right-hand side are suppressed in the
long range as compared to the LO result, Eq. (5.114).

The second equation from the Poincaré invariance gives a relation between the static
potential and the momentum-dependent (but spin-independent) potentials [93]

r

2

dV (0)

dr
+ 2V

(2,0)
L2 − V (1,1)

L2 = 0 . (5.210)

By plugging in Eqs. (5.195), (5.197), and (5.198), the following constraints are derived

µ
(2,0)
L2,0

= 0 , (5.211)

gΛ2 = σ , (5.212)
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gΛ
2

=
σ

8
+

(
1

π2
+

5

6

)
g2Λ′′

4

σ
. (5.213)

There was only Eq. (5.212) in the LO calculation, while here we have two additional
constraints, Eqs. (5.211) and (5.213). In fact, one can use another relation [50],

−∇1

(
V (0)|NLO

)
= 〈〈gE1〉〉NLO , (5.214)

into which we insert Eqs. (5.122) and (5.195), that gives the following relation between
the string tension and the parameters from the mapping

−
(
σ +

π

12r2

)
= gΛ′′2 +

πgΛ′′
2

6σr2
. (5.215)

As we compare both sides order by order of in the 1/r expansion, this equation gives
constraints on the following dimensionful parameters:

gΛ′′2 = −σ , (5.216)

gΛ′′
2

= −σ
2
. (5.217)

Eq. (5.217) is a new result as compared to Eq. (5.107). Then, by inserting Eq. (5.217)
into Eq. (5.213), we obtain

gΛ
2

=

(
1

3
+

1

4π2

)
σ . (5.218)

Therefore, by inserting Eqs. (5.211), (5.212), (5.213), (5.216), and (5.217) into Eqs. (5.197)
and (5.198), the potentials are simplified in the following way:

V
(2,0)
L2 = −σr

6
+

(
11

36π
+

2π

27

)
1

r
, (5.219)

V
(1,1)
L2 =

σr

6
+

(
1

9π
+

5π

216

)
1

r
, (5.220)

which only depend on the string tension σ. Clearly the second terms on the right-hand
sides are the suppression terms by the EST calculation at NLO.

Lastly, we use another constraining equation from the Poincaré invariance [22, 93]

−4V
(2,0)
p2 + 2V

(1,1)
p2 − V (0) + r

dV (0)

dr
= 0 , (5.221)

into which we insert Eqs. (5.199) and (5.200) as well as make use of the given constraint
on Λ′′, Eq. (5.217). This shows that two of the renormalization parameters are related
to each other:

µ
(2,0)
p2 =

µ

4
, (5.222)
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so that these momentum-dependent potentials are simplified as well:

V
(2,0)
p2 =

(
1

12π
+

π

36

)
1

r
− µ

4
, (5.223)

V
(1,1)
p2 =

(
1

6π
− π

36

)
1

r
. (5.224)

While these two potentials were trivial from the EST calculation at LO, Eqs. (5.95)
and (5.96), here we have not only non-trivial but also precise analytic prediction of the
potentials. We will discuss about the implications and impact of these results in the
next section.

Applying all these constraints arising from the Poincaré invariance in QCD, we have
the final list of potentials, which include terms up to NLO in the EST power counting

V (0)(r) =σr + µ− π

12r
, (5.225)

V (1,0)(r) =
σ

2π
ln(σr2) + µ′1 −

(
5

16
+

1

6π2

)
1

r2
+
µ

(1,0)
2

r2
, (5.226)

V
(2,0)
L2 (r) =− σr

6
+

(
11

36π
+

2π

27

)
1

r
, (5.227)

V
(1,1)
L2 (r) =

σr

6
+

(
1

9π
+

5π

216

)
1

r
, (5.228)

V
(2,0)
p2 (r) =

(
1

12π
+

π

36

)
1

r
− µ

4
, (5.229)

V
(1,1)
p2 (r) =

(
1

6π
− π

36

)
1

r
, (5.230)

V
(2,0)
LS (r) =− σ

2r
−
c

(1)
F gΛ′

r2
− π

24r3
−
c

(1)
F πgΛ′

6σr4
−
(
π

9
+

1

12π

)
c

(1)
F gΛ′

σr4
, (5.231)

V
(1,1)
L2S1

(r) =−
c

(1)
F gΛ′

r2
−
c

(1)
F πgΛ′

6σr4
−
(
π

9
+

1

12π

)
c

(1)
F gΛ′

σr4
, (5.232)

V
(1,1)
S2 (r) =

2π3c
(1)
F c

(2)
F g2Λ′′′2

45σ2r5
− 4(dsv + dvvCf )δ3(r) , (5.233)

V
(1,1)
S12

(r) =
π3c

(1)
F c

(2)
F g2Λ′′′2

90σ2r5
, (5.234)

V (2,0)
r (r) =
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+
πCfαsc

(1)′

D

2
δ(3)(r)− d(1)′

3 fabc

∫
d3x lim

T→∞
g〈〈F aµν(x)F bµα(x)F cνα(x)〉〉 ,

(5.235)

V (1,1)
r (r) =

{
− ζ3

2π3
+

b

4π3
+

(
1

9π
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540

)(
1

3
+

1

4π2

)2
}
σ2r +

(
π

36
− 1

6π

)
1

r3

+ (dss + dvsCf ) δ(3)(r) , (5.236)

where µ′1 ≡ µ1 + µ
(1,0)
1 , a ' 7.08603, and b ' 1.26521. Note that only three of the

dimensionful parameters from the string mapping, Λ′,Λ′, and Λ′′′, remain unconstrained
here, while all the other parameters are given in terms of the string tension σ. The
string tension is the fundamental parameter of the EST, which is to be determined by
comparing to lattice simulations.

All in all, the singlet potential in the center of mass frame can be written as

V (r) =V (0)(r) +
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+
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p2 − 0.11σ2r + µ3 +
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}
(5.237)

in which µ is the parameter with mass dimension one (from V (0)), µ′1 is the renormal-
ization parameter with mass dimension two (from V (1,0)), and µ3 is the renormalization

parameter with mass dimension three (from V
(2,0)
r ). Note also that we have truncated

the terms in Eq. (5.237) after the linear order in 1/r. Comparing this expression to
the previous result of the LO calculation, Eq. (5.120), we observe that some additional
terms appear. The significant result is at order 1/M2: as it was predicted in [57], there
is a modification to the coefficient of the linear term in r.

In the next section, we study the impact of these NLO terms from the EST calcula-
tion by comparing it to lattice (simulation) data.
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5.5 Comparison to lattice data

Static potential

Let us start with a comparison between the analytic prediction of the static potential
and its corresponding lattice data. The static potential in the EST carries a suppression
term at O(1/r), which is the so-called Lüscher term, such that the potential is written
as

V (0)(r) = σr + µ− π

12r
. (5.238)

In general, the suppression term in 1/r is given by −π/[d(d− 1)r], in which d stands for
the spacetime dimensions [52, 53, 55]. As we compare the linear part of the potential to
the lattice data at larger distance [105], a numerical value of the string tension can be
extracted:

σsim. = (1.38± 0.04)r−2
0 , (5.239)

where r0 = 0.5 fm is the Sommer scale [106]. Since this value is consistent with the
widely accepted value by Necco and Sommer [91],

σNS = 1.3882 r2
0 , (5.240)

from now on we adopt this numerical value σNS for the rest of our analysis. A comparison
between the LQCD data and the static potential is given in FIG. 5.1, in which the
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Figure 5.1: The static potential, normalized by the Sommer scale r0, calculated at LO
(dashed line) and NLO (bold line) in the EST power counting versus lattice data at
β = 5.85 (blue points) and β = 6.00 [105] (green points). σNS = 1.3882r2

0 [55] was used
as the string tension for the analytic expressions of the potentials.
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blue points represent LQCD data at β = 5.85, while the green points are the data at
β = 6.00. The dashed line is the string prediction of the linear potential and the bold
line is the static potential including the Lüscher term. We have made the comparison
at the distance range from r/r0 ∼ 1.5 because the validity of the EST28 is supposed to
be below the hadronic scale ΛQCD. These two plots are adjusted in such a way that
they coincide with the rightmost lattice point, which is given at r/r0 ∼ 2.4, because
the EST is more accurate at a longer-distance regime. Also note that the interquark
distance r has been normalized by the Sommer scale r0. The data and plots agree in the
longer-distance regime, but at the shorter distance range like r/r0 ∼ 1.5 it shows some
discrepancies. FIG. 5.2 illustrates the discrepancies more clearly. We have subtracted
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Figure 5.2: A comparison between LQCD data at β = 5.85 and β = 6.00 [105], which
is subtracted by (σNSr0)r at the corresponding distances, and the Lüscher term of the
static potential −π/(12r/r0) (also normalized by the Sommer scale r0).

the linear potential (σNSr0)r from the lattice data points at the corresponding distances,
and compared them to the NLO term of the static potential −πr0/(12r), which is the
Lüscher term normalized by the Sommer scale. Although the data points show a general
tendency of decrease in values at shorter distance, the discrepancy between data and
the Lüscher term is roughly about 0.05 at the distance r/r0 ∼ 1.5. Since the LO plot
(the horizontal line at 0) is closer to the LQCD data than the Lüscher term, it seems
that inclusion of the NLO term worsens the comparison due to its sharp decrease at the
shorter distance range. However, while the LO part does not show the general tendency
of decrease in values at shorter distances, the NLO part resembles the general tendency
of decrease. We estimate that this discrepancy at NLO can be decreased if higher order
terms are included to the potential.

28Note that the inverse of the Sommer scale is comparable to the hadronic scale ΛQCD ∼ 200 MeV.
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Potential at O(1/M)

Moving onto the first order correction to the static potential, its analytic expression is
given by Eq. (5.226):

V (1,0)(r) =
σ

2π
ln(σr2) + µ′1 −

(
5

16
+

1

6π2
− µ(1,0)

2

)
1

r2
, where µ′1 ≡ µ1 + µ

(1,0)
1 .

(5.241)

A comparison between the EST prediction and the LQCD data [47, 48] is illustrated in
FIG. 5.3, in which σNS

29 was used for the string tension σ. We have fitted the parameters
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Figure 5.3: A comparison between the O(1/M) potential calculated by the EST at LO
(dashed line) and NLO (bold line) and the lattice data [47, 48] at β = 5.85 and β = 6.00.

µ1 and µ′1 for both the LO (dashed line) and the NLO (bold line) plots so that they
coincide with the lattice point at the rightmost region, which is at r/r0 ∼ 2.2. Also, the

renormalization parameter µ
(1,0)
2 in V (1,0)(r) is determined by fitting the NLO expression

of Eq. (5.241) to the lattice data points at β = 5.85 (where the most data points are
available), yielding

µ
(1,0)
2 = 0.1715± 0.004 . (5.242)

The analytic result which includes the NLO terms, Eq. (5.241), gives a better comparison
to the lattice data, especially at the shorter-distance range r/r0 ∼ 1.5.

Potentials at O(1/M2)

As for the O(1/M2) corrections to the static potential, the contributions that carry a
minimal number of free parameters are the momentum-dependent but spin-independent

29Eq. (5.240)
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potentials like Vp2 ’s and VL2 ’s. Thus, comparing them to the available lattice data would
be more significant because this can examine the consistency of the effective framework
of the string theory in the first place. The analytic expressions of these momentum-
dependent potentials are given in Eqs. (5.229), (5.230), (5.227), and (5.228):

V
(2,0)
p2 (r) =

(
1

12π
+

π

36

)
1

r
− µ

4
, and V

(1,1)
p2 (r) =

(
1

6π
− π

36

)
1

r
, (5.243)

V
(2,0)
L2 (r) = −σr

6
+

(
11

36π
+

2π

27

)
1

r
, and V

(1,1)
L2 (r) =

σr

6
+

(
1

9π
+

5π

216

)
1

r
, (5.244)

in which the free parameters are only σ and µ. As it was discussed in the previous
section, this is due to the Poincaré invariance in QCD. In order to make the comparison
to the LQCD data [47, 48], it is necessary to express these potentials in terms of the
velocity-dependent potentials30 like Vb, Vc, Vd, and Ve

V
(1,1)
p2 (r) = −Vb(r) +

2

3
Vc(r) , and V

(1,1)
L2 (r) = −Vc(r) , (5.245)

V
(2,0)
p2 (r) = Vd(r)−

2

3
Ve(r) , and V

(2,0)
L2 (r) = Ve(r) , (5.246)

as the available simulation data correspond to these expressions. Using σNS, Eq. (5.240),
and normalizing the distance r with respect to the Sommer scale r0, our comparison to
the LQCD data [47, 48] is illustrated in FIG. 5.4. The dashed line of each plot repre-
sents the string theory prediction of the momentum-dependent (but spin-independent)
potentials including terms only up to leading order: the LO plots of FIG. 5.4a and
5.4b contain the linear parts ∝ (σNSr0)r (plus some constants), whereas the LO plots of
FIG. 5.4c and 5.4d only feature constant functions31. These plots are adjusted so that
they coincide with the rightmost lattice data points.

On the other hand, the bold lines denote the EST predictions of the potentials that
contain terms up to NLO in the EST power counting scheme, and the constant contri-
butions are adjusted in a similar fashion. The NLO plots of FIG. 5.4a and 5.4d show a
sizable improvement with respect to the LO although there are some deviations remain-
ing. FIG. 5.4b does not improve the comparison at shorter distance range r/r0 ∼ 1.5,
and the improvement in FIG 5.4c is only marginal. However, the inclusion of NLO con-
tributions show slight curvy patterns which are in accordance with the available lattice
data points. We estimate that this can further be improved if next-to-next-to-leading
order (NNLO) terms within the EST calculation are included.

Finally, it is important to note that the deviation between the lattice data and
the Lüscher term of the static potential, FIG. 5.2, influences the deviations in these
momentum-dependent potentials due to the constraining equations arising from the
Poincaré invariance of QCD. This is the reason why the magnitude of deviations in
FIG. 5.4a, 5.4b, 5.4c, and 5.4d are within the range of 0.05. One could reduce this
deviation by performing a higher order calculation in the EST framework, and this will
be discussed in the next chapter.

30See Sec. 2 in [47] for the definitions.
31See Eqs. (5.95) and (5.96).
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Figure 5.4: A comparison between the momentum-dependent (but spin-independent)
potentials, which are calculated by the EST, and the lattice data [47, 48] at β = 5.85
and β = 6.00. The dashed lines are the potentials at LO (normalized by the Sommer
scale r0), Eq. (5.111), (5.110), (5.113), and (5.112) respectively, and bold lines are the
results of the NLO calculation (also normalized by the Sommer scale).

5.5.1 Summary and discussions

In this chapter, we have studied the effective framework of a long string as a tool for
calculating the potential terms between a static heavy quark-antiquark pair in the non-
perturbative regime. There has already been substantial achievements in the under-
standing of the heavy quark potentials within the EST [56, 57], but only the leading
order contributions were taken into account for the comparison to the available lattice
data [45–48]. This causes a sizable discrepancy between the simulations and the ana-
lytic prediction [58]. In other words, the precision of the string theory calculation up to
leading order shows some limitation at the intermediate distance range r/r0 ∼ 1.5. In
order to improve the comparison to the corresponding LQCD data, we have computed
NLO terms of the potentials by using the power counting scheme within the EST. There
are two possible NLO contributions in the EST: (i) by including the NLO terms of the
effective string action [55, 84, 95], or (ii) by including NLO terms to the QCD-to-EST
mapping. It turns out that the first possibility results in the NNLO instead of the NLO
contribution to the potentials. Thus, we have investigated the QCD-to-EST mapping
up to NLO, and this yields the desired NLO terms to the potential as well as the terms
of the same order as the ones from the leading order calculation of the EST. This is
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due to the fact that previous derivations of the LO terms within the EST are not fully
inclusive by themselves, which was already pointed out in [57].

There arise some divergences as we derive the NLO terms of the potentials, which are
similar to the self-energy terms of QED or QCD. The appearance of these divergences is
natural because the EST is a UV-divergent effective theory. In other words, the theory
is to be valid only at the energy scale much below the hadronic scale ΛQCD ∼ 200 MeV.
We have addressed these issues by utilizing schemes like zeta-function regularization as
well as dimensional regularization, which are in fact equivalent to each other [98, 99], as
the zeta-function regularization is the discrete version of dimensional regularization.

After deriving the analytic expressions of potential terms up to NLO in the EST,
we have utilized the constraining equations between the heavy quark potential terms
(which arise from the Poincaré invariance in the low-energy EFTs of QCD [22, 92, 93]),
so that the number of parameters arising in the QCD-to-EST mapping as well as some
or all renormalization parameters originating from the time integral are reduced. The
significant result of this calculation are the spin-independent but momentum-dependent
potentials like Vp2 ’s and VL2 ’s. They carry a minimum number of free parameters, which
are the string tension and the renormalization parameters32. The string tension is a fun-
damental parameter of the EST, and it is to be determined by a comparison to LQCD
data; also the renormalization parameters are to be fitted from the analytic expressions
of these potentials to the corresponding lattice data.

In order to examine the consistency of our analytic results, we have compared our
analytic results to LQCD data [45–48, 105] in a systematic way. First of all, the nu-
merical value of the string tension was extracted by fitting the static potential to the
most up-to-date data [105]. It turns out that the extracted value is consistent with the
widely accepted one from the literature [91], so the literature value, σNS = 1.3882 r2

0,
is used throughout the analysis. The O(1/M) correction to the potential is then fitted
to the lattice data, such that the free parameter (a renormalization parameter) can be
determined. Finally, we have compared the O(1/M2) correction to the potential, espe-
cially the momentum-dependent (but spin-independent) potentials, to the data. This
comparison shows some discrepancies. This originates from the discrepancy between
the EST result of the static potential which includes the Lüscher term and the corre-
sponding LQCD data. As the static potential is related to the momentum-dependent
potentials due to Poincaré invariance 33, the discrepancy occurring for the static poten-
tial influences the comparison for the momentum-dependent potentials as well. Indeed
the magnitude of the discrepancies for these potentials are comparable to the one from
the static potential.

In addition, note that the LQCD data itself observes the Poincaré invariance at the
distance range we are investigating34. This implies that the comparison between the
analytic results from the EST and the LQCD data is based on the Poincaré invariance.
Therefore, we conclude that our approach to the inclusion of NLO terms to the heavy

32They are constant terms of the potential.
33See Eq. (5.210) and (5.221).
34See Figure 5 in [47] for the detailed discussion.
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quark potentials within the EST framework is consistent.
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Chapter 6

Conclusion and outlook

6.1 Conclusion

In this thesis, we have studied symmetries of low-energy effective field theories, espe-
cially the ones involving heavy quarks and heavy antiquarks, whose mass scale is much
greater than the hadronic scale of QCD, ΛQCD ∼ 200 MeV. While a relativistic quan-
tum field theory of color interactions (QCD) manifestly preserves Poincaré invariance,
its low-energy counterpart, which is described by an EFT, does not exhibit the same
invariance in a manifest fashion. As the EFT is the low-energy limit of its underlying
theory, however, the EFT has also to observe the manifest Poincaré invariance, and we
have studied this aspect of symmetry in great detail.

In order to elucidate this notion of spacetime symmetry, we have investigated the
Poincaré transformations in non-relativistic EFTs of QCD, especially NRQCD [5, 6] and
pNRQCD [8, 80]. In NRQCD, as the heavy quark mass is much greater than any other
scales (including the relative momentum between the heavy quark and the antiquark),
the EFT is non-relativistically expanded after integrating out the heavy mass scale. In
the case of the bound states of a heavy quark and a heavy antiquark, pNRQCD is a
suitable EFT, which is obtained by integrating out the relative momentum between the
heavy quark and heavy antiquark. In the weakly-coupled case, this EFT is derived by
taking a multipole expansion in the relative distance between the quark and antiquark
since the momentum scales as an inverse of the distance. In both cases, we observe that
the boost transformation of the fields is realized in a non-linear fashion unlike in the
high-energy case.

Recently, there has been a suggestion [24] for deriving boost generator by using the
Wigner’s induced representation [23], but the application to the case of interacting low-
energy EFTs like NRQED and NRQCD shows some ambiguity in including some gauge
field dependent terms in the boost generator; in addition, there is an issue about fixing
several coefficients of the terms on the boost generators.

In order to avoid such ambiguity, instead of referring to the induced representa-
tion, we have taken the full EFT approach in order to derive suitable expressions of
boost generators, especially for NRQCD and pNRQCD. To be consistent with the basic
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principles of EFT (symmetries of the system and power counting) we have included all
possible terms to the generator of boost, as far as parity, charge conjugation, and time
reversal are concerned. Since the generators of the Poincaré group are to satisfy a set of
commutation relations given by the Poincaré algebra, we were able to constrain some of
the generic terms of the boost generator that we initially constructed. Furthermore, in
the case of pNRQCD (weakly-coupled, in particular), we have exploited the freedom to
redefine the fields to eliminate redundancies in our expression of the boost by utilizing
unitary transformation of the fields. Then, as we apply the boost transformation of
the theory, we have obtained some additional terms to the theory as comparing it to
the original one. Since the low-energy EFTs are also supposed to be symmetric under
the Poincaré transformations, these additional terms of the transformed theory have
to vanish up to total derivatives. We have obtained non-trivial relations between the
Wilson coefficients of the EFTs from this invariance, both in NRQCD and pNRQCD.
The results are consistent with the literature [22, 24, 78]. Through these constraints
on the coefficients, the low-energy limit of the underlying theory is manifestly Poincaré
invariant. In other words, the fundamental spacetime symmetry of quantum field theory
is not only manifestly observed at high-energy scales, but also in low-energy regimes as
long as some constraints are met.

Poincaré invariance results in some non-trivial relations between the heavy quark-
antiquark potentials in the case of pNRQCD. We have analyzed analytic expressions of
these potentials in the long-distance regime, in which any kind of perturbative method
breaks down due to color confinement [31]. We have investigated this non-perturbative
nature by utilizing another EFT of a QCD flux tube model [32], namely the effec-
tive string theory (EST) [32, 44, 57, 81–83]. In accordance with the EST, the non-
perturbative1 gluodynamics between a heavy quark-antiquark pair in the static limit
can be described by vibrational modes of a long string which connects the pair.

On the other hand, by the matching procedure between NRQCD and pNRQCD, one
can find the relations between a Wilson loop expectation value as well as some gauge
field insertions therein and the heavy quark potentials2, order by order in 1/M . The
leading order heavy potential is given in terms of the expectation value of a rectangular
Wilson loop in the large time limit [50], and the first and the second order corrections
to the static potentials are shown to be equivalent to the gauge field insertions to the
Wilson loop [50, 51]. One can derive the analytic expressions of the potentials either by
calculating heavy quark-antiquark scattering amplitudes in the perturbative regime [26–
30], or by explicitly computing the gauge field insertions to the Wilson loop expectation
value [58]. In the strongly-coupled case, however, such calculations are not valid because
the perturbative expansion parameter αS exceeds the weak coupling limit.

For such case, based on the Wilson loop-string partition function equivalence con-
jecture [52, 53], we have employed the EST to derive the long-distance potentials. The

1Here, the non-perturbative regime is expressed by the hierachy of scales: rΛQCD � 1, where r is the
distance between the heavy quark-antiquark pair.

2We focus on the singlet potential in this thesis.
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EST action is derived by imposing boundary conditions as well as utilizing the hierarchy
of scales rΛQCD � 1 in the Nambu-Goto action. We have included the first non-trivial
term of the action, which is a Gaussian term, and derived the Green’s function by im-
posing Dirichlet boundary conditions.

One can find a link between gauge field insertions to the Wilson loop and the EST
by constructing a set of one-to-one mappings. The expressions of the mappings are re-
stricted by the symmetry group of the system, which is the diatomic molecular group
Dh∞, and CP symmetry, as well as counting mass dimensions on both sides [56, 57].
We have extended the work of [57] to next-to-leading order (NLO) in order to calculate
the potentials at NLO in the EST power counting scheme [94, 107].

Then, by using the QCD-to-EST mapping both at leading order (LO) and NLO as
well as the Green’s function from the EST action, we have analytically calculated the
heavy quark potentials both up to LO and NLO in the EST power counting. In case
of the NLO calculation, there arise some divergences due to the string correlators de-
fined at the same spacetime points. Such divergences in higher orders of the EST power
counting are natural because the EST is only an effective description of a long string; in
other words, the theory is valid only at a scale much below ΛQCD. We have regularized
these divergences by using zeta function regularization and dimensional regularization
schemes. It might seem that we are using two different regularization schemes, but it
turns out that both are equivalent [98, 99].

The derived potentials contain a number of parameters, the ones from the QCD-to-
EST mapping or from time integrals for the potentials. We have utilized the non-trivial
relations between the potentials derived from the Poincaré invariance of QCD [22, 50,
92, 93], in order to constrain some of these parameters. Then, we observe that some of
the simplified expressions of the potentials have minimal dependence on the parameters
(string tension and heavy quark mass), especially the momentum-dependent (but spin-
independent) potentials [94].

We have compared our analytic results to available lattice data [45–48, 105] in a sys-
tematic way. The numerical value of the string tension was extracted by fitting the static
potential to the most up-to-date data [105], but since the extracted value is consistent
with the widely accepted one from the literature [91], we have used the value in [91]
for the analysis. Then the potential at O(1/M) is fitted to the lattice data, such that
some parameters are determined. Lastly, we have compared the momentum-dependent
potentials (both at LO and NLO) to the LQCD data, but some discrepancies remain
(FIG. 5.4a - 5.4d). In fact, such discrepancies originate from the discrepancy between
the analytic expression of the static potential up to NLO in the EST power counting
and the corresponding LQCD data (FIG. 5.2). Since the static potential is non-trivially
related to the momentum-dependent potentials due to the Poincaré invariance in QCD,
the discrepancy for the static potential is directly related to the discrepancies in the
momentum-dependent potentials. We estimate that this comparison can be improved
by proceeding with higher order calculations in the EST, and/or by improving on the
lattice data.
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6.1.1 Applications of Poincaré invariance

In view of the prospects of our general method of implementing Poincaré invariance
in low-energy EFTs, we envisage numerous possible applications in EFTs. First, we
expect that our method can be applied to theories of weakly-interacting massive par-
ticles (or WIMPs). There have been various suggestions about the properties of dark
matter using WIMPs during the last few decades, such as supersymmetric dark matter
(SUSY-DM), axions, sterile neutrinos, etc [108–110]. As the mass of the DM candidates
is assumed to be greater than currently accessible energy scales, the study of DM pro-
duction and annihilation at current LHC experiments is largely based on the method
of nonrelativistic EFTs. The direct detection via nucleon-DM scattering processes was
investigated in [111], where the operators were constructed based on Galilean invari-
ance and the EFT formalism. Instead of Galilean invariance, one can construct the
Lagrangian from Poincaré invariance, such as has been done in [112]. We are currently
investigating if Poincaré invariance can be imposed on an EFT which was constructed
according to Galilean invariance; after all, the Galilean invariant operators ultimately
are to be embedded into a Poincaré invariant effective theory.

Also, one can apply the formalism developed and investigated in this thesis to the
low-energy EFTs for SUSY-DM candidates. A large number of operators can be reduced
by deriving suitable constraints on the Wilson coefficients, thereby simplifying the cal-
culations of (possible) physical observables at the LHC experiments. More detailed
arguments concerning WIMPs will be discussed in our future works.

6.1.2 Applications of EST

The EFT method we have presented in this paper opens up the way to a precision cal-
culation of the long-distance heavy quark potentials, especially around the intermediate
distance range r/r0 ∼ 1.5. Although the terms are included only up to NLO within the
EST in this work, the scheme to calculate higher order terms is clear: NNLO terms can
be derived by (i) including the NLO terms of the effective string action [55, 84, 95] so
that the Green’s function is derived via a perturbative expansion, or by (ii) exploiting
the QCD-to-EST mapping up to NNLO. Some divergences will appear in both cases
and they can be regularized by the schemes we discussed in Sec. (5.4.4). In the case of
(i), one iterates the calculation of the potentials by utilizing the QCD-to-EST mapping
at LO because the Green’s function in this case is already O(σ−2r−4) suppressed with
respect to the one from the Gaussian action. Thus, only the mapping up to leading
order is needed for the NNLO calculation. After exploiting constraints due to Poincaré
invariance, it is important to check that the NNLO terms of the potentials, especially of
the momentum-dependent potentials like Vp2 ’s and VL2 ’s, reduce the deviations from the
corresponding LQCD data. Subsequently, the N3LO terms can be calculated by taking
combinations of the perturbative expansion for the Green’s function and the subleading
orders of the QCD-to-EST mapping.

One can apply the result of our calculation of the static heavy quark potential to
the analysis of the heavy quarkonium spectrum, as it was already discussed in [57, 113].
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For the quarkonium spectrum, the analytic expression of the perturbative part of the
potential is needed as well [26–30], which is valid at the short-distance range (r �
Λ−1

QCD). While this amalgamation for the full-range potential works well in short and
long distances separately, the intermediate distance range might be problematic as the
strong coupling parameter αS(1/r) encounters a singularity around the hadronic scale
1/r ∼ ΛQCD. In [113], the strong coupling was replaced by a free parameter a in order
to circumvent this issue, and its value was extracted along with the string tension and
the heavy quark masses (for both charm and bottom) by comparing the theoretical pre-
diction of the quarkonium mass spectrum, which is calculated in quantum mechanical
perturbation theory

M(n2S+1LJ) =2Mc,b + E
(0)
nl + 〈nl|V NLO(r)|nl〉+

∞∑
m 6=n

|〈nl|V NLO(r)|ml〉|2

E
(0)
nl − E

(0)
ml

+ 〈nljs|V NNLO(r)|nljs〉 , (6.1)

where n,L, J, S are quantum numbers (principal, angular momentum, total angular mo-
mentum, spin, respectively) of the states, to the experimental data [71] as well as lattice
simulation [114] values of the four different quantum states3. From this comparison,
numerical values of the parameter a, the string tension σ, and the heavy quark masses
Mc,b are extracted. One can insert these values back into Eq. (6.1) in order to evaluate
the heavy quarknoium spectrum while including the expressions of the long-distance po-
tentials given by the string calculation. This can yield more precise values of the spectra
since V NLO and V NNLO of Eq. (6.1) would contain suppression terms in 1/r which are
more significant at the intermediate distance range r/r0 ∼ 1.5. This is under current
investigation, and the results will be discussed in the upcoming paper.

Lastly, one can also utilize the framework of effective string theory to an analytic
calculation of the potentials for baryons consisting of three heavy quarks such as ccc,
ccb, or bbb [115]. Although the observation of such states is yet to come, this possibil-
ity has already been explored from the QCD point of view by using the Wilson area
law [116, 117]. The Wilson loop formalism was then extended to the framework of
pNRQCD for heavy baryons [118]. As it was presented in Sec. 4.1, potential terms are
shown to be related to the gauge field insertions to the Wilson loop expectation value by
the matching calculation between NRQCD and pNRQCD, in the long-distance regime.
A Wilson loop for the three static heavy quarks, however, is more complicated than for
the two-body case due to the permutation of three static sources. Also, the heavy quark
potentials show a different position dependence because there are two independent rel-
ative distances between the three heavy quarks.

On the other hand, the effective framework of a long string for heavy baryons has also
been explored [119], which was then compared to lattice data [43, 105, 120]. Here, the
calculation of the leading fluctuation of the potential, which is analogous to the Lüscher
term in the two-body case, is shown by using the minimal total length of the strings.

3Potentials, V NLO and V NNLO, are organized according to three different power counting schemes,
which are presented in chapter 5 of [113]. We use the third method for the counting of the potential.
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In the long-distance limit, the connected strings feature a Y-shaped configuration: three
strings, originating from the positions of the heavy quarks, are connected to a junction at
the center. As the junction itself is also subject to some fluctuations, the effective action
in this case consists not only of the string fields, but also of another field configuration
for the position of the junction. Then the string fluctuation at leading order is given by
solving the partition function [119].

From this point, one can start calculating relativistic corrections to the static po-
tential by constructing a set of mappings from the gauge field insertions to the Wilson
loop expectation value to the string correlators, which are in accordance with symmetry
properties of the physical system as well as matching the mass dimensions of both sides.
This will introduce some dimensionful parameters just like in Eqs. (5.40) and (5.122),
eventually constrained by Poincaré invariance.
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Appendix A

A.1 NLO calculation in the four-fermion sector

At O
(
M−4

)
, one has to include also heavy (anti)quark fields in kψ and kχ [77]. The

terms affecting the four-fermion Lagrangian given in Sec. 2.4.5 can be parametrized as
follows:

k̂
(2f)
ψ =

a11

M4

←→
Dχχ† +

a12

M4
χ∇χ† +

a13

M4
χχ†
←→
D

+
a81

M4

←→
DT aχχ†T a +

a82

M4
T aχDabχ†T b +

a83

M4
T aχχ†

←→
DT a

+
ib11

M4

←→
D × σχχ† − ib12

M4
σχ×∇χ† − ib13

M4
σχ× χ†

←→
D

+
ib14

M4

←→
Dχ× χ†σ +

ib15

M4
χ∇× χ†σ +

ib16

M4
χχ†
←→
D × σ

+
ib81

M4

←→
D × σT aχχ†T a − ib82

M4
σT aχ×Dabχ†T b − ib83

M4
σT aχ× χ†

←→
DT a

+
ib84

M4

←→
DT aχ× χ†σT a +

ib85

M4
T aχDab × χ†σT b +

ib86

M4
T aχχ†

←→
D × σT a

+
c11

M4
(
←→
D · σ)χχ†σ +

c12

M4
σiχ∇iχ†σ +

c13

M4
σiχχ

†←→Diσ

+
c14

M4

←→
Diσχχ

†σi +
c15

M4
σχ∇iχ†σi +

c16

M4
σχχ†(

←→
D · σ)

+
c17

M4

←→
Dσiχχ

†σi +
c18

M4
σiχ∇χ†σi +

c19

M4
σiχχ

†←→Dσi

+
c81

M4
(
←→
D · σ)T aχχ†σT a +

c82

M4
σiT

aχDab
i χ
†σT b +

c83

M4
σiT

aχχ†
←→
DiσT

a

+
c84

M4

←→
DiσT

aχχ†σiT
a +

c85

M4
σT aχDab

i χ
†σiT

b +
c86

M4
σT aχχ†(

←→
D · σ)T a

+
c87

M4

←→
DσiT

aχχ†σiT
a +

c88

M4
σiT

aχDabχ†σiT
b +

c89

M4
σiT

aχχ†
←→
DσiT

a , (A.1)

k̂(2f)
χ = k̂

(2f)
ψ (ψ ↔ χ) . (A.2)

Here the definition of the left-right derivatives on the left hand side of χχ† is a bit
trickier. We will understand them as

←→
DTχχ†Tψ = T (Dχ)χ†Tψ +D(Tχχ†Tψ) , (A.3)
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and implicitly perform integration by parts on the second term. The overall spatial
derivatives introduced by this integration are irrelevant for everything that will be dis-
cussed in this paper, so we will ignore them. But this definition then also implies that the

left-derivative part of
←→
D acts also on the terms outside the bilinear in which it appears.

The left-right derivatives on the right hand side of χχ† are defined as above and act only
within their bilinear. As an example we give the boost transformation proportional to
a11 and a13 due to the χ field in ψ†χχ†ψ:

ψ†(k̂χχ)χ†ψ =
a11

M4
(ψ†
←→
Dψ)ψ†χχ†ψ− a11

M4
ψ†ψψ†χ(∇χ†ψ) +

a13

M4
ψ†ψ(ψ†

←→
Dχ)χ†ψ+ . . . .

(A.4)
When we now calculate the commutator of two boosts at O(M−3) and consider only

the two-fermion part, we get some constraints on these boost coefficients a, b and c. As
above, we see that at this order only the terms with a center-of-mass derivative do not
cancel automatically, and none of the a coefficients can appear because they do not give
terms antisymmetric in ξ and η.

There are three contributions to this commutator, the first of which is

−
[
ξ · k̂(2f)

ψ ,Mη · r
]

+
[
η · k̂(2f)

ψ ,Mξ · r
]

= − 2i

M3
(b11 + b12 + b13)(ξ × η) · σχχ† − 2i

M3
(b14 + b15 + b16)χχ†(ξ × η) · σ

− 2i

M3
(b81 + b82 + b83)(ξ × η) · σT aχχ†T a − 2i

M3
(b84 + b85 + b86)T aχχ†(ξ × η) · σT a

+
1

M3
(c11 + c12 + c13 − c14 − c15 − c16)(ξ × η) · (σχ× χ†σ)

+
1

M3
(c81 + c82 + c83 − c84 − c85 − c86)(ξ × η) · (σT aχ× χ†σT a) . (A.5)

The second contribution comes from the transformation of the χ fields inside k̂
(2f)
ψ

−iξ · k̂(2f)
ψ (D,E,B, (1 + iMη · r)χ, ψ) + iη · k̂(2f)

ψ (D,E,B, (1 + iMξ · r)χ, ψ)
∣∣∣
O(ξ1,η1)

=
2i

M3
(b11 − b12 + b13)(ξ × η) · σχχ† +

2i

M3
(b14 − b15 + b16)χχ†(ξ × η) · σ

+
2i

M3
(b81 − b82 + b83)(ξ × η) · σT aχχ†T a +

2i

M3
(b84 − b85 + b86)T aχχ†(ξ × η) · σT a

− 1

M3
(c11 − c12 + c13 − c14 + c15 − c16)(ξ × η) · (σχ× χ†σ)

− 1

M3
(c81 − c82 + c83 − c84 + c85 − c86)(ξ × η) · (σT aχ× χ†σT a) . (A.6)

The last contribution comes from the term − 1
2M (ξ × η) · σD0, which has already been

derived previously. When we use the equation of motion for iD0ψ, this becomes in the
two-fermion sector

− i(ξ × η) · σ
2M3

{
f1(1S0)χχ† + f1(3S1)σχ · χ†σ + f8(1S0)T aχχ†T a
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+ f1(3S1)σT aχ · χ†σT a
}

= − if1(1S0)

2M3
(ξ × η) · σχχ† − if8(1S0)

2M3
(ξ × η) · σT aχχ†T a

− if1(3S1)

2M3
χχ†(ξ × η) · σ − if8(3S1)

2M3
T aχχ†(ξ × η) · σT a

− f1(3S1)

2M3
(ξ × η) · (σχ× χ†σ)− f8(3S1)

2M3
(ξ × η) · (σT aχ× χ†σT a) . (A.7)

The sum of these three contributions has to vanish, thus we have

0 =− i

2M3

(
8b12 + f1(1S0)

)
(ξ × η) · σχχ† − i

2M3

(
8b82 + f8(1S0)

)
(ξ × η) · σT aχχ†T a

− i

2M3

(
8b15 + f1(3S1)

)
χχ†(ξ × η) · σ − i

2M3

(
8b85 + f8(3S1)

)
T aχχ†(ξ × η) · σT a

+
1

2M3

(
4c12 − 4c15 − f1(3S1)

)
(ξ × η) · (σχ× χ†σ)

+
1

2M3

(
4c82 − 4c85 − f8(3S1)

)
(ξ × η) · (σT aχ× χ†σT a) , (A.8)

which fixes the two-fermion boost parameters to be

b12 = −1

8
f1(1S0) , b15 = −1

8
f1(3S1) , b82 = −1

8
f8(1S0) , b85 = −1

8
f8(3S1) , (A.9)

c12 − c15 =
1

4
f1(3S1) , c82 − c85 =

1

4
f8(3S1) . (A.10)

At O(M−4) there is no new information from the boost commutator. The O(M−5)

terms of k̂
(2f)
ψ can either contain two derivatives or one gluon field for dimensional

reasons, but only the chromoelectric field has the right parity transformation behavior.
So there can be no O(M−5) terms with derivatives, and therefore the commutator of

the O(M−5) k̂
(2f)
ψ with Mr vanishes. The boost transformation of the fields inside

k̂
(2f)
ψ at O(M−4) gives only temporal derivatives, which have to be replaced through

the equations of motion for ψ and χ and thus contribute only at O(M−5). And there
are no four-fermion O(M−3) terms that could give a contribution at O(M−4) from
− 1

2M (ξ × η) · σD0.
In order to get the constraints from the boost transformation of L at O(M−4), we

need all four-fermion terms at O(M−4), most of which can be found in [78], and all
center-of-mass derivative terms at O(M−5), which were not included in [78].

L(4f)
M−4 = − g1(1S0)

8M4

(
ψ†
←→
D 2χχ†ψ + ψ†χχ†

←→
D 2ψ

)
− g1(3S1)

8M4

(
ψ†(
←→
D 2)σχ · χ†σψ + ψ†σχχ†(

←→
D 2)σψ

)
− g1(3S1,

1S0)

8M4

(
1

2
ψ†
{

(
←→
D · σ),

←→
D
}
χ · χ†σψ − 1

3
ψ†
←→
D 2χχ†ψ + h.c.

)
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− g8(1S0)

8M4

(
ψ†
←→
D 2T aχχ†T aψ + ψ†χχ†

←→
D 2T aψ

)
− g8(3S1)

8M4

(
ψ†(
←→
D 2)σT aχ · χ†σT aψ + ψ†σT aχχ†(

←→
D 2)T aσψ

)
− g8(3S1,

1S0)

8M4

(
1

2
ψ†
{

(
←→
D · σ),

←→
D
}
T aχ · χ†σT aψ

−1

3
ψ†
←→
D 2T aχχ†T aψ + h.c.

)
− f1(1P1)

4M4
ψ†
←→
Dχ · χ†

←→
Dψ

− f1(3P0)

12M4
ψ†(
←→
D · σ)χχ†(

←→
D · σ)ψ

− f1(3P1)

8M4

(
ψ†
←→
Diσjχχ

†←→Diσjψ − ψ†
←→
Diσjχχ

†←→Djσiψ
)

− f1(3P2)

4M4

(
1

2
ψ†
←→
Diσjχχ

†←→Diσjψ +
1

2
ψ†
←→
Diσjχχ

†←→Djσiψ

−1

3
ψ†(
←→
D · σ)χχ†(

←→
D · σ)ψ

)
− f8(1P1)

4M4
ψ†
←→
DT aχ · χ†

←→
DT aψ

− f8(3P0)

12M4
ψ†(
←→
D · σ)T aχχ†(

←→
D · σ)T aψ

− f8(3P1)

8M4

(
ψ†
←→
DiσjT

aχχ†
←→
DiσjT

aψ − ψ†
←→
DiσjT

aχχ†
←→
DjσiT

aψ
)

− f8(3P2)

4M4

(
1

2
ψ†
←→
DiσjT

aχχ†
←→
DiσjT

aψ +
1

2
ψ†
←→
DiσjT

aχχ†
←→
DjσiT

aψ

−1

3
ψ†(
←→
D · σ)T aχχ†(

←→
D · σ)T aψ

)
− if1 cm

2M4

(
ψ†(
←→
D × σ)χ ·∇χ†ψ + (∇ψ†χ) · χ†(

←→
D × σ)ψ

)
+
if ′1 cm
2M4

(
ψ†
←→
Dχ · (∇× χ†σψ) + (∇× ψ†σχ) · χ†

←→
Dψ

)
− if8 cm

2M4

(
ψ†(
←→
D × σ)T aχ ·Dabχ†T bψ + (Dabψ†T bχ) · χ†(

←→
D × σ)T aψ

)
+
if ′8 cm
2M4

(
ψ†
←→
DT aχ · (Dab × χ†σT bψ) + (Dab × ψ†σT bχ) · χ†

←→
DT aψ

)
+
g1a cm

M4

(
∇iψ†σjχ

)(
∇iχ†σjψ

)
+
g8a cm

M4

(
Dab
i ψ
†σjT

bχ
)(

Dac
i χ
†σjT

cψ
)

+
g1b cm

M4

(
∇ · ψ†σχ

)(
∇ · χ†σψ

)
+
g8b cm

M4

(
Dab · ψ†σT bχ

)(
Dac · χ†σT cψ

)
+
g1c cm

M4

(
∇ψ†χ

)
·
(
∇χ†ψ

)
+
g8c cm

M4

(
Dabψ†T bχ

)
·
(
Dacχ†T cψ

)

140



+
s1−8(1S0,

3S1)

2M4

(
ψ†gB · σχχ†ψ + ψ†χχ†gB · σψ

)
+
s1−8(3S1,

1S0)

2M4

(
ψ†gBχ · χ†σψ + ψ†σχ · χ†gBψ

)
+
s8−8(1S0,

3S1)

2M4
dabcgBa ·

(
ψ†σT bχχ†T cψ + ψ†T bχχ†σT cψ

)
+
s8−8(3S1,

3S1)

2M4
fabcgBa ·

(
ψ†σT bχ× χ†σT cψ

)
. (A.11)

For dimensional reasons the O(M−5) four-fermion Lagrangian can either contain
three derivatives or one derivative and one gluon field. Parity allows only the combi-
nation of a chromoelectric field and a derivative. As stated above, only center-of-mass
derivatives are relevant for this order of the boost transformation.

L(4f)
M−5 cm

=
is1−8 cm

2M5

(
ψ†gE × σχ ·∇χ†ψ − (∇ψ†χ) · χ†gE × σψ

)
−
is′1−8 cm

2M5

(
ψ†gEχ · (∇× χ†σψ)− (∇× ψ†σχ) · χ†gEψ

)
+
is8−8 cm

2M5
dabcgEa ·

(
ψ†σT bχ×Dcdχ†T dψ + (Dbdψ†T dχ)× χ†σT cψ

)
+
is′8−8 cm

2M5
fabcgEai

(
ψ†σiT

bχ(Dcd · χ†σT dψ) + (Dbd · ψ†σT dχ)χ†σiT
cψ
)
.

(A.12)

In principle, one can write more terms with a center-of-mass derivative, but those can be
integrated by parts, neglecting overall derivatives, and they give a derivative that acts
only on the chromoelectric field, such that

ifabcgEa ·
(
ψ†T bχDcdχ†T dψ + (Dbdψ†T dχ)χ†T cψ

)
= −(Dad · gEd) ifabcψ†T bχχ†T cψ .

(A.13)
These terms obviously do not contribute to the boost transformation of the Lagrangian
at O(M−4). We therefore chose a minimal basis of operators where only the terms given
above have explicit center-of-mass derivatives.

After a lengthy calculation of the boost transformation of the Lagrangian atO(M−4),
we obtain the following constraints:

a11 =
1

4
g1(1S0) , a12 = g1c cm , a13 =

1

4
f1(1P1) ,

a81 =
1

4
g8(1S0) , a82 = g8c cm , a83 =

1

4
f8(1P1) ,

b12 = −1

2
f1 cm , b15 = −1

2
f ′1 cm , b82 = −1

2
f8 cm , b85 = −1

2
f ′8 cm ,

b13 = −1

2
f ′1 cm+b14 , b16 = −1

2
f1 cm+b11 , b83 = −1

2
f ′8 cm+b84 , b86 = −1

2
f8 cm+b81 ,

141



c11 =
1

8
g1(3S1,

3D1) , c13 =
1

8

(
f1(3P2)− f1(3P1)

)
,

c14 =
1

8
g1(3S1,

3D1) , c16 =
1

12

(
f1(3P0)− f1(3P2)

)
,

c17 =
1

12

(
4g1(3S1)− g1(3S1,

3D1)
)
, c19 =

1

8

(
f1(3P1) + f1(3P2)

)
,

c81 =
1

8
g8(3S1,

3D1) , c83 =
1

8

(
f8(3P2)− f8(3P1)

)
,

c84 =
1

8
g8(3S1,

3D1) , c86 =
1

12

(
f8(3P0)− f8(3P2)

)
,

c87 =
1

12

(
4g8(3S1)− g8(3S1,

3D1)
)
, c89 =

1

8

(
f8(3P1) + f8(3P2)

)
,

c15 = −c12 , c18 = g1a cm , c85 = −c82 , c88 = g8a cm ,

s1−8 cm −
1

2
s1−8(1S0,

3S1)− cS
4
f1(1S0)− cS

4
f8(1S0)− 2b11 − 2b84 = 0 ,

s′1−8 cm −
1

2
s1−8(3S1,

1S0)− cS
4
f1(1S0)− cS

4
f8(1S0)− 2b14 − 2b81 = 0 ,

s8−8 cm −
1

2
s8−8(1S0,

3S1)− cS
4
f8(1S0)− b81 − b84 = 0 ,

s′8−8 cm +
1

2
s8−8(3S1,

3S1)− cS
4
f8(3S1)− 1

16
g8(3S1,

3D1) + c82 = 0 . (A.14)

So far none of these constraints involves only Wilson coefficients of the Lagrangian,

they rather define the boost parameters of k̂
(2f)
ψ and k̂

(2f)
χ . There remain two free

parameters, c12 and one of either b11, b14, b81 or b84. But if we combine them with the
relations obtained from the commutator of two boosts, we get

c12 =
1

8
f1(3S1) , c15 = −1

8
f1(3S1) , c82 =

1

8
f8(3S1) , c85 = −1

8
f8(3S1) ,

s′8−8 cm +
1

2
s8−8(3S1,

3S1)− 2cS − 1

8
f8(3S1)− 1

16
g8(3S1,

3D1) = 0 . (A.15)

The last equation now gives a constraint on the Wilson coefficients without any param-
eters from the boost. The other relations we derived for b12, b52, b82 and b85 from the
commutator of two boosts are consistent with the ones obtained from the transformation
of the Lagrangian at O(M−4) and O(M−2).

A.2 Gauge field insertions to the Wilson loop

In this section, we present detailed calculation of the gauge field insertions to the Wilson
loop expectation value via the QCD-to-EST mapping at NLO. This presentation is
divided into three parts: (i) two-chromoelectric field insertion, (ii) two-chromomagnetic
field insertion, and (iii) an insertion of a cross product between a chromoelectric and
a chromomagnetic field. Results from these calculations are summarized and used in
Sec. 5.4.5
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A.2.1 Chromoelectric field insertions

Within the framework of effective string theory, a mapping from a two-chromomagnetic
field insertion onto the Wilson loop expectation value, 〈〈E1(t) ·E1(0)〉〉NLO

c , to the string
variables is needed for the 1/M correction to the static potential, V (1,0)(r). As we
decompose this expression into transversal (or dynamical) and longitudinal (or non-
dynamical) parts, the transversal one is simplified unto:

〈〈El
1(t)El

1(0)〉〉NLO
c = 〈〈El

1(t)El
1(0)〉〉NLO

− 〈〈El
1(t)〉〉NLO〈〈El

1(0)〉〉LO − 〈〈El
1(t)〉〉LO〈〈El

1(0)〉〉NLO

= 〈〈El
1(t)El

1(0)〉〉NLO , (A.16)

in which the second equality here is due to the Gaussianity of the EST action; i.e., a
string correlator with odd number of the fields vanishes. Then this expression is mapped
onto the following expression:

〈〈El
1(t)El

1(0)〉〉NLO = Λ
2
Λ2〈∂zξl1(t)∂aξ

m
1 (t)∂aξm1 (t)∂zξ

l
1(0)〉

+ Λ2Λ
2〈∂zξl1(t)∂zξ

l
1(0)∂bξ

n
1 (0)∂bξn1 (0)〉 , (A.17)

and each term on the right-hand side of the equation is simplified by the Wick contraction

Λ
2
Λ2〈∂zξl1(t)∂aξ

m
1 (t)∂aξm1 (t)∂zξ

l
1(0)〉 = 2Λ

2
Λ2〈∂zξl1(t)∂aξ

m
1 (t)〉〈∂aξm1 (t)∂zξ

l
1(0)〉

+ Λ
2
Λ2〈∂zξl1(t)∂zξ

l
1(0)〉〈∂aξm1 (t)∂aξm1 (t)〉

= 2Λ
2
Λ2〈∂zξl1(t)∂zξ

m
1 (t)〉〈∂zξm1 (t)∂zξ

l
1(0)〉

+ Λ
2
Λ2〈∂zξm1 (t)∂zξ

m
1 (t)〉〈∂zξl1(t)∂zξ

l
1(0)〉, (A.18)

Λ2Λ
2〈∂zξl1(t)∂zξ

l
1(0)∂bξ

n
1 (0)∂bξn1 (0)〉 = Λ2Λ

2〈∂zξl1(t)∂zξ
l
1(0)〉〈∂bξn1 (0)∂bξn1 (0)〉

+ 2Λ2Λ
2〈∂zξl1(t)∂bξ

n
1 (0)〉〈∂zξl1(0)∂bξn1 (0)〉

= Λ2Λ
2〈∂zξl1(t)∂zξ

l
1(0)〉〈∂zξn1 (0)∂zξ

n
1 (0)〉

+ 2Λ2Λ
2〈∂zξl1(t)∂zξ

n
1 (0)〉〈∂zξl1(0)∂zξ

n
1 (0)〉 .

(A.19)

Note that the following identities were used for the Wick contraction,

〈∂zξl,m1 (t)∂tξ
l,m
1 (t)〉 = 0 , (A.20)

〈∂tξl,m1 (t)∂tξ
l,m
1 (0)〉 = 0 , (A.21)

〈∂tξl,m1 (t)∂tξ
l,m
1 (t)〉 = 0 , (A.22)

〈∂tξl,m1 (0)∂tξ
l,m
1 (0)〉 = 0 , (A.23)

where the third and fourth identities are due to dimensional function regularization,
Eq. (5.151). By taking the Wick rotation (t→ −it), we obtain

〈〈El
1(−it)El

1(0)〉〉NLO = 8Λ
2
Λ2∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂z′G|
t′=0
z=z′=r/2
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+ 8Λ2Λ
2
∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂z′G|
t′=0
z=z′=r/2

= 16Λ2Λ
2
∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂z′G|
t′=0
z=z′=r/2

=− π2Λ2Λ
2

3σ2r4
sinh−2

(
πt

2r

)
, (A.24)

where G is the Green’s function, Eq. (5.33), without the tensor indices.
On the other hand, the longitudinal part of the two-chromoelectric field insertion

is mapped onto the four-string field correlator, which is due to fact that the correlator
associated with two string fields vanish by the definition of the connected part of the
Wilson loop expectation value, Eq. (4.21). So its expression in terms of the string fields
is given by

〈〈E3
1(t)E3

1(0)〉〉NLO
c = 〈〈E3

1(t)E3
1(0)〉〉NLO

− 〈〈E3
1(t)〉〉NLO〈〈E3

1(0)〉〉LO − 〈〈E3
1(t)〉〉LO〈〈E3

1(0)〉〉NLO

= Λ′′
4
[
〈∂aξl1(t)∂aξl1(t)∂bξ

m
1 (0)∂bξm1 (0)〉

− 〈∂aξl1(t)∂aξl1(t)〉〈∂bξm1 (0)∂bξm1 (0)〉
]

= 2Λ′′
4〈∂aξl1(t)∂bξ

m
1 (0)〉〈∂aξl1(t)∂bξm1 (0)〉

= 2Λ′′
4〈∂zξl1(t)∂zξ

m
1 (0)〉〈∂zξl1(t)∂zξ

m
1 (0)〉 , (A.25)

and after taking the Wick rotation, we obtain the expression of the longitudinal part

〈〈E3
1(−it)E3

1(0)〉〉NLO
c =

π2Λ′′
4

σ2r4

[
cosh

(
πt

r

)
− 1

]−2

. (A.26)

Likewise, the analytic expressions of 〈〈El
1(−it)El

2(0)〉〉NLO
c and 〈〈E3

1(−it)E3
2(0)〉〉NLO

c are
derived

〈〈El
1(−it)El

2(0)〉〉NLO
c =

π2Λ2Λ
2

6σ2r4
cosh−2

(
πt

2r

)
, (A.27)

〈〈E3
1(−it)E3

2(0)〉〉NLO
c =

π2Λ′′
4

σ2r4

[
cosh

(
πt

r

)
+ 1

]−2

. (A.28)

As for Vr’s, three- and four-chromoelectric field insertions are computed at the NLO
of the EST power counting. Due to the definition of the connected part of the expectation
value and Gaussianity of the string action, a three-chromoelectric field insertion is then
decomposed

〈〈E3
1(t1)E1(t2) ·E1(0)〉〉NLO

c = 〈〈E3
1(t1)E1(t2) ·E1(0)〉〉NLO

− 〈〈E3
1(t1)〉〉NLO〈〈E1(t2) ·E1(0)〉〉LO

− 〈〈E3
1(t1)〉〉LO〈〈E1(t2) ·E1(0)〉〉NLO , (A.29)
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and this decomposition is then again divided into the transversal and longitudinal parts.
The transversal part is decomposed and mapped to the string fields

〈〈E3
1(t1)El

1(t2)El
1(0)〉〉NLO

c = 〈〈E3
1(t1)El

1(t2)El
1(0)〉〉NLO − 〈〈E3

1(t1)〉〉NLO〈〈El
1(t2)El

1(0)〉〉LO

− 〈〈E3
1(t1)〉〉LO〈〈El

1(t2)El
1(0)〉〉NLO

= Λ′′
2
Λ4〈(∂ξ1)2(t1)∂zξ

l
1(t2)∂zξ

l
1(0)〉

+ Λ′′2Λ
2
Λ2〈∂zξl1(t2)(∂ξ1)2(t2)∂zξ

l
1(0)〉

+ Λ′′2Λ2Λ
2〈∂zξl1(t2)∂zξ

l
1(0)(∂ξ1)2(0)〉

− Λ′′
2
Λ4〈(∂ξ1)2(t1)〉〈∂zξl1(t2)∂zξ

l
1(0)〉

− Λ′′2Λ
2
Λ2〈∂zξl1(t2)(∂ξ1)2(t2)∂zξ

l
1(0)〉

− Λ′′2Λ2Λ
2〈∂zξl1(t2)∂zξ

l
1(0)(∂ξ1)2(0)〉

=− 2Λ′′
2
Λ4〈∂zξm1 (t1)∂zξ

l
1(t2)〉〈∂zξm1 (t1)∂zξ

l
1(0)〉 , (A.30)

and the longitudinal part is mapped onto the string fields

〈〈E3
1(t1)E3

1(t2)E3
1(0)〉〉NLO

c = 〈〈E3
1(t1)E3

1(t2)E3
1(0)〉〉NLO

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)E3
1(0)〉〉NLO

c

− 〈〈E3
1(t1)E3

1(t2)〉〉NLO〈〈E3
1(0)〉〉LO

c

− 〈〈E3
1(t1)〉〉NLO〈〈E3

1(t2)〉〉NLO〈〈E3
1(0)〉〉LO

− 〈〈E3
1(t1)〉〉NLO〈〈E3

1(t2)〉〉LO〈〈E3
1(0)〉〉NLO

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)〉〉NLO〈〈E3
1(0)〉〉NLO

= 〈〈E3
1(t1)E3

1(0)〉〉NLO
c 〈〈E3

1(t2)〉〉LO

= 2Λ′′2Λ
4〈∂zξl1(t1)∂zξ

m
1 (0)〉〈∂zξl1(t1)∂zξ

m
1 (0)〉 . (A.31)

Thus, the analytic expression of the three-chromoelectric field insertion, after taking the
Wick rotation, is:

〈〈E3
1(−it1)E1(−it2) ·E1(0)〉〉NLO

c =− 4Λ′′
2
Λ4∂z1∂z2G(t1, t2; z1, z2)|z1=z2=r/2

× ∂z1∂z3G(t1, t3; z1, z3)|t3=0
z1=z3=r/2

+ 4Λ′′2Λ
4
[
∂z1∂z3G(t1, t3; z1, z3)|t3=0

z1=z3=r/2

]2

=− π2Λ′′
2
Λ4

4σ2r4
sinh−2

(
πt1
2r

)
sinh−2

(
π(t1 − t2)

2r

)
+
π2Λ′′2Λ

4

4σ2r4
sinh−4

(
πt1
2r

)
. (A.32)

Another three-chromoelectric field insertion which contributes to Vr, is decomposed as

〈〈E3
1(t1)E2(t2) ·E2(0)〉〉NLO

c = 〈〈E3
1(t1)El

2(t2)El
2(0)〉〉NLO

c + 〈〈E3
1(t1)E3

2(t2)E3
2(0)〉〉NLO

c ,
(A.33)
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where the first term on the right-hand side of Eq. (A.33) is further decomposed and
mapped onto the string variables by

〈〈E3
1(t1)El

2(t2)El
2(0)〉〉NLO

c = 〈〈E3
1(t1)El

2(t2)El
2(0)〉〉NLO

− 〈〈E3
1(t1)〉〉NLO〈〈El

2(t2)El
2(0)〉〉LO

− 〈〈E3
1(t1)〉〉LO〈〈El

2(t2)El
2(0)〉〉NLO

= Λ′′
2
Λ4
[
〈(∂ξ1)2(t1)∂zξ

l
2(t2)∂zξ

l
2(0)〉

−〈(∂ξ1)2(t1)〉〈∂zξl2(t2)∂zξ
l
2(0)〉

]
=− 2Λ′′

2
Λ4〈∂zξm1 (t1)∂zξ

l
2(t2)〉〈∂zξm1 (t1)∂zξ

l
2(0)〉 . (A.34)

After the Wick rotation, its analytic expression is

〈〈E3
1(−it1)El

2(−it2)El
2(0)〉〉NLO

c = −π
2Λ′′

2
Λ4

4σ2r4
cosh−2

[
πt1
2r

]
cosh−2

[
π(t1 − t2)

2r

]
.

(A.35)

The second term on the right-hand side of Eq. (A.33) is similarly re-arranged and mapped
to the string fields as

〈〈E3
1(t1)E3

2(t2)E3
2(0)〉〉NLO

c = 〈〈E3
1(t1)E3

2(0)〉〉NLO
c 〈〈E3

2(t2)〉〉LO

= 2Λ′′2Λ
4〈∂zξl1(t1)∂zξ

m
2 (0)〉〈∂zξl1(t1)∂zξ

m
2 (0)〉 , (A.36)

and its Wick rotation gives the following expression:

〈〈E3
1(−it1)E3

2(−it2)E3
2(0)〉〉NLO

c = 4Λ′′2Λ
4
[
∂z1∂z3G(t1, t3; z1, z3)|t3=0

z1=−z3=r/2

]2

=
π2Λ′′2Λ

4

4σ2r4
cosh−4

[
πt1
2r

]
. (A.37)

From Eqs. (A.35) and (A.37) the desired expression of the three-chromoelectric field
insertion to the Wilson loop expectation value at NLO in the EST is obtained

〈〈E3
1(−it1)E2(−it2) ·E2(0)〉〉NLO

c =− π2Λ′′
2
Λ4

4σ2r4
cosh−2
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]
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]
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π2Λ′′2Λ
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4σ2r4
cosh−4

[
πt1
2r

]
. (A.38)

The last part of the three-chromoelectric field insertion at NLO in the EST is 〈〈E3
2(t1)E1(t2)·

E1(0)〉〉NLO
c , whose transversal component is simplified and mapped to the string fields

as

〈〈E3
2(t1)El

1(t2)El
1(0)〉〉NLO

c = 〈〈E3
2(t1)El

1(t2)El
1(0)〉〉NLO
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− 〈〈E3
2(t1)〉〉NLO〈〈El

1(t2)El
1(0)〉〉LO

− 〈〈E3
2(t1)〉〉LO〈〈El
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1(0)〉〉NLO

= Λ′′
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〈(∂ξ2)2(t1)∂zξ

l
1(t2)∂zξ

l
1(0)〉
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]
=− 2Λ′′
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Λ4〈∂zξm2 (t1)∂zξ

l
1(t2)〉〈∂zξm2 (t1)∂zξ

l
1(0)〉 , (A.39)

and the Wick rotation gives

〈〈E3
2(−it1)El

1(−it2)El
1(0)〉〉NLO

c =− 4Λ′′
2
Λ4∂z1∂z2G(t1, t2; z1, z2)|z1=−r/2

z2=r/2

× ∂z1∂z3G(t1, t3; z1, z3)|t3=0
−z1=z3=r/2 . (A.40)

On the other hand, the longitudinal part is decomposed and mapped to the string
variables

〈〈E3
2(t1)E3

1(t2)E3
1(0)〉〉NLO

c = 〈〈E3
2(t1)E3
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1(t2)〉〉LO

= 2Λ′′2Λ
4〈∂zξl2(t1)∂zξ

m
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m
1 (0)〉 , (A.41)

and its Wick rotation is given by

〈〈E3
2(−it1)E3

1(−it2)E3
1(0)〉〉NLO

c = 4Λ′′2Λ
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]2
. (A.42)

In fact, it turns out that this contribution is identical to the previous part:

〈〈E3
2(t1)E1(t2) ·E1(0)〉〉NLO

c = 〈〈E3
1(t1)E2(t2) ·E2(0)〉〉NLO

c . (A.43)

Finally, the four-chromoelectric field insertion is decomposed into the four compo-
nents

〈〈E1(t1) ·E1(t2)E1(t3) ·E1(0)〉〉NLO
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c . (A.44)

Let us compute each term on the right-hand side of Eq. (A.44), one by one. The first
term is further decomposed:
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c
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− 〈〈E3
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(A.45)

in which the fifth line of Eq. (A.45) vanishes due to the definition of the connected part
of the Wilson loop expectation value, and its corresponding EST mapping turns out to
be trivial:

〈〈E3
1(t1)E3

1(t2)〉〉LO
c = 0 . (A.46)

After decomposing the second and third lines of Eq. (A.45), the decomposition of the
left hand side of Eq. (A.45) is then simplified and mapped to the string variables by
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l
1(t3)∂zξ

l
1(0)〉

+ Λ′′2Λ′′
2
Λ4〈(∂ξ1)2 (t2)∂zξ

l
1(t3)∂zξ

l
1(0)〉

+ Λ′′4Λ
2
Λ2〈∂zξl1(t3) (∂ξ1)2 (t3)∂zξ

l
1(0)〉

+ Λ′′4Λ2Λ
2〈∂zξl1(t3)∂zξ

l
1(0)(∂ξ1)2(0)〉

− Λ′′
2
Λ′′Λ4〈(∂ξ1)2(t1)〉〈∂zξl1(t3)∂zξ

l
1(0)〉

− Λ′′2Λ′′
2
Λ4〈(∂ξ1)2(t2)∂zξ

l
1(t3)∂zξ

l
1(0)〉

− Λ′′4Λ
2
Λ2〈∂zξl1(t3) (∂ξ1)2 (t3)∂zξ

l
1(0)〉

− Λ′′4Λ
2
Λ2〈∂zξl1(t3)∂zξ

l
1(0)(∂ξ1)2(0)〉

− 〈〈E3
1(t1)E3

1(t2)〉〉NLO
c 〈〈E3

1(t3)E3
1(0)〉〉LO

c . (A.47)

The last line of the second equality of Eq. (A.47) is of order σ−3r−6 in accordance
with the EST power counting, so it may be neglected at NLO. After several steps of
calculation, the above expression becomes

〈〈E3
1(t1)E3

1(t2)El
1(t3)El

1(0)〉〉NLO
c =− 2Λ′′

2
Λ′′2Λ4〈∂zξm1 (t1)∂zξ

l
1(t3)〉〈∂zξm1 (t1)∂zξ

l
1(0)〉 ,
(A.48)

and then its Wick rotation gives the following analytic expression:

〈〈E3
1(−it1)E3

1(−it2)El
1(−it3)El

1(0)〉〉NLO
c
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= − 4Λ′′
2
Λ′′2Λ4∂z1∂z3G(t1, t3; z1, z3)|z1=r/2

z3=r/2 × ∂z1∂z4G(t1, t4, z1, z4)|t4=0
z1=z4=r/2

=− π2Λ′′
2
Λ′′2Λ4

4σ2r4
sinh−2

[
πt1
2r

]
sinh−2

[
π(t1 − t3)

2r

]
. (A.49)

The second term on the right-hand side of Eq. (A.44) is decomposed as

〈〈E3
1(t1)E3

1(t2)E3
1(t3)E3

1(0)〉〉NLO
c = 〈〈E3

1(t1)E3
1(t2)E3

1(t3)E3
1(0)〉〉NLO

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)E3
1(t3)E3

1(0)〉〉NLO
c

− 〈〈E3
1(t1)E3

1(t2)E3
1(t3)〉〉NLO

c 〈〈E3
1(0)〉〉LO

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)〉〉LO〈〈E3
1(t3)E3

1(0)〉〉NLO
c

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)E3
1(t3)〉〉NLO

c 〈〈E3
1(0)〉〉LO

− 〈〈E3
1(t1)E3

1(t2)〉〉NLO
c 〈〈E3

1(t3)〉〉LO〈〈E3
1(0)〉〉LO

−
[
〈〈E3

1(t1)〉〉〈〈E3
1(t2)〉〉〈〈E3

1(t3)〉〉〈〈E3
1(0)〉〉

]NLO
,

(A.50)

where the second line is further decomposed as

〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)E3
1(t3)E3

1(0)〉〉NLO
c = 〈〈E3

1(t1)〉〉LO〈〈E3
1(t3)〉〉LO〈〈E3

1(t2)E3
1(0)〉〉NLO

c .
(A.51)

Likewise, the third line of Eq. (A.50) is decomposed as

〈〈E3
1(t1)E3

1(t2)E3
1(t3)〉〉NLO

c 〈〈E3
1(0)〉〉LO = 〈〈E3

1(t1)E3
1(t3)〉〉NLO

c 〈〈E3
1(t2)〉〉LO〈〈E3

1(0)〉〉LO ,
(A.52)

so that Eq. (A.50) is simplified and mapped onto the string variables by

〈〈E3
1(t1)E3

1(t2)E3
1(t3)E3

1(0)〉〉NLO
c = .〈〈E3

1(t1)E3
1(0)〉〉NLO

c 〈〈E3
1(t2)〉〉LO〈〈E3

1(t3)〉〉LO

= 2Λ′′4Λ
4〈∂zξl1(t1)∂zξ

m
1 (0)〉〈∂zξl1(t1)ξm1 (0)〉 , (A.53)

and we obtain the final expression after taking the Wick rotation:

〈〈E3
1(−it1)E3

1(−it2)E3
1(−it3)E3

1(0)〉〉NLO
c =

π2Λ′′4Λ
4

4σ2r4
sinh−4

(
πt1
2r

)
. (A.54)

As we move onto the third term on the right-hand side of the Eq. (A.44), its mapping
to the EST corresponds to a six-string field correlator instead of four-string field, which
implies that this term belongs to the NNLO contribution instead of NLO. Thus, only
the fourth term on the right-hand side of Eq. (A.44) remains to be computed. It is
decomposed in a similar fashion

〈〈El
1(t1)El

1(t2)E3
1(t3)E3

1(0)〉〉NLO
c = 〈〈El

1(t1)El
1(t2)E3

1(t3)E3
1(0)〉〉NLO

− 〈〈El
1(t1)El

1(t2)E3
1(t3)〉〉LO〈〈E3

1(0)〉〉NLO
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− 〈〈El
1(t1)El

1(t2)E3
1(t3)〉〉NLO〈〈E3

1(0)〉〉LO

− 〈〈El
1(t1)El

1(t2)〉〉LO〈〈E3
1(t3)E3

1(0)〉〉NLO , (A.55)

in which the last term on the right-hand side belongs to a NNLO contribution according
to the EST power counting. Then the string mapping for the rest of the terms is

〈〈El
1(t1)El

1(t2)E3
1(t3)E3

1(0)〉〉NLO
c = Λ4Λ′′2Λ′′

2
[
〈∂zξl1(t1)∂zξ

l
1(t2) (∂ξ1) (0)〉

−〈∂zξl1(t1)∂zξ
l
1(t2)〉〈(∂ξ1)2(0)〉

]
,

=− 2Λ4Λ′′2Λ′′
2〈∂zξl1(t1)∂zξ

m
1 (0)〉〈∂zξl1(t2)∂zξ

m
1 (0)〉 ,

(A.56)

and its Wick rotation gives the analytic expression:

〈〈El
1(−it1)El

1(−it2)E3
1(−it3)E3

1(0)〉〉NLO
c

=− 4Λ4Λ′′2Λ′′
2
∂z1∂z4G(t1, t4; z1, z4)|t4=0

z1=z4=r/2 × ∂z2∂z4G(t2, t4; z2, z4)|t4=0
z2=z4=r/2

=− π2Λ4Λ′′2Λ′′
2

4σ2r4
sinh−2

[
πt1
2r

]
sinh−2

[
πt2
2r

]
. (A.57)

Finally, putting all these pieces together, Eqs. (A.49), (A.54), and (A.57), the full ex-
pression of the four-chromoelectric field insertion to the Wilson loop expectation value
at NLO in the EST is given by

〈〈E1(−it1) ·E1(−it2)E1(−it3) ·E1(0)〉〉NLO
c

=− π2Λ′′
2
Λ′′2Λ4

4σ2r4
sinh−2

[
πt1
2r

]
sinh−2

[
π(t1 − t3)

2r

]
− π2Λ4Λ′′2Λ′′

2

4σ2r4
sinh−2

[
πt1
2r

]
sinh−2

[
πt2
2r

]
+
π2Λ′′4Λ

4

4σ2r4
sinh−4

[
πt1
2r

]
. (A.58)

The other part that contributes to the four-chromoelectric field insertion can be decom-
posed as

〈〈E1(t1) ·E1(t2)E2(t3) ·E2(0)〉〉NLO
c = 〈〈E3

1(t1)E3
1(t2)El

2(t3)El
2(0)〉〉NLO

c

+ 〈〈E3
1(t1)E3

1(t2)E3
2(t3)E3

2(0)〉〉NLO
c

+ 〈〈El
1(t1)El

1(t2)Em
2 (t3)Em

2 (0)〉〉NLO
c

+ 〈〈El
1(t1)El

1(t2)E3
2(t3)E3

2(0)〉〉NLO
c , (A.59)

in which the first term on the right-hand side is further decomposed and mapped to the
string fields as follows

〈〈E3
1(t1)E3

1(t2)El
2(t3)El

2(0)〉〉NLO
c = 〈〈E3

1(t1)E3
1(t2)El

2(t3)El
2(0)〉〉NLO
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− 〈〈E3
1(t1)〉〉NLO〈〈E3

1(t2)El
2(t3)El

2(0)〉〉LO

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)El
2(t3)El

2(0)〉〉NLO

− 〈〈E3
1(t1)E3

1(t2)〉〉NLO〈〈El
2(t3)El

2(0)〉〉LO

= Λ′′
2
Λ′′2Λ4

[
〈(∂ξ1)2(t1)∂zξ

l
2(t3)∂zξ

l
2(0)〉

− 〈(∂ξ1)2(t1)〉〈∂zξl2(t3)∂zξ
l
2(0)〉

]
+O(σ−3r−6)

=− 2Λ′′
2
Λ′′2Λ4〈∂zξm1 (t1)∂zξ

l
2(t3)〉〈∂zξm1 (t1)∂zξ

l
2(0)〉 .
(A.60)

Taking the Wick rotation, we obtain its analytic expression:

〈〈E3
1(−it1)E3

1(−it2)El
2(−it3)El

2(0)〉〉NLO
c

=− 4Λ′′
2
Λ′′2Λ4∂z1∂z3G(t1, t3; z1, z3)|z1=r/2

z3=−r/2 × ∂z1∂z4G(t1, t4; z1, z4)|t4=0
z1=−z4=r/2

=− π2Λ′′
2
Λ′′2Λ4

4σ2r4
cosh−2

[
πt1
2r

]
cosh−2

[
π(t1 − t3)

2r

]
. (A.61)

The second term on the right-hand side of Eq. (A.59) is decomposed and simplified as

〈〈E3
1(t1)E3

1(t2)E3
2(t3)E3

2(0)〉〉NLO
c = 〈〈E3

1(t1)E3
1(t2)E3

2(t3)E3
2(0)〉〉NLO

− 〈〈E1(t1)〉〉LO〈〈E3
1(t2)E3

2(t3)E3
2(0)〉〉NLO

c

− 〈〈E3
1(t1)E3

1(t2)E3
2(t3)〉〉NLO

c 〈〈E3
2(0)〉〉LO

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)〉〉LO〈〈E3
2(t3)E3

2(0)〉〉NLO
c

− 〈〈E3
1(t1)〉〉LO〈〈E3

1(t2)E3
2(t3)〉〉NLO

c 〈〈E3
2(0)〉〉LO

− 〈〈E3
1(t1)E3

1(t2)〉〉NLO
c 〈〈E3

2(t3)〉〉LO〈〈E3
2(0)〉〉LO

−
[
〈〈E3

1(t1)〉〉〈〈E3
1(t2)〉〉〈〈E3

2(t3)〉〉〈〈E3
2(0)〉〉

]NLO
,

= 〈〈E3
1(t1)E3

2(0)〉〉NLO
c 〈〈E3

1(t2)〉〉LO〈〈E3
2(t3)〉〉LO , (A.62)

so that its QCD-to-EST mapping is given by

〈〈E3
1(t1)E3

1(t2)E3
2(t3)E3

2(0)〉〉NLO
c = 2Λ′′4Λ

4〈∂zξl1(t1)∂zξ
m
2 (0)〉〈∂zξl1(t1)∂zξ

m
2 (0)〉 .

(A.63)

Taking the Wick rotation, we obtain the final expression:

〈〈E3
1(−it1)E3

1(−it2)E3
2(−it3)E3

2(0)〉〉NLO
c = 4Λ′′4Λ

4
[
∂z1∂z4G(t1, t4; z1, z4)|t4=0

z1=−z4=r/2

]2

=
π2Λ′′4Λ

4

4σ2r4
cosh−4

(
πt1
2r

)
. (A.64)

The third term on the right-hand side of Eq. (A.59), which is purely of longitudinal
components, is counted as a NNLO term in the EST, so it remains for us to compute

151



the last term of Eq. (A.59). It is decomposed and mapped as

〈〈El
1(t1)El

1(t2)E3
2(t3)E3

2(0)〉〉NLO
c = 〈〈El

1(t1)El
1(t2)E3

2(t3)E3
2(0)〉〉NLO

− 〈〈El
1(t1)El

1(t2)E3
2(t3)〉〉LO〈〈E3

2(0)〉〉NLO

− 〈〈El
1(t1)El

1(t2)E3
2(t3)〉〉NLO〈〈E3

2(0)〉〉LO

− 〈〈El
1(t1)El

1(t2)〉〉LO〈〈E3
2(t3)E3

2(0)〉〉NLO

= Λ4Λ′′2Λ′′
2
[
〈∂zξl1(t1)∂zξ

l
1(t2)(∂ξ2)2(0)〉

− 〈∂zξl1(t1)∂zξ
l
1(t2)〉〈(∂ξ2)2(0)〉

]
+O(σ−3r−6)

=− 2Λ4Λ′′2Λ′′
2〈∂zξl1(t1)∂zξ

m
2 (0)〉〈∂zξl1(t2)∂zξ

m
2 (0)〉

+O(σ−3r−6) , (A.65)

and after taking the Wick rotation, its analytic expression is:

〈〈El
1(−it1)El

1(−it2)E3
2(−it3)E3

2(0)〉〉NLO
c = −π

2Λ4Λ′′2Λ′′
2

4σ2r4
cosh−2

[
πt1
2r

]
cosh−2

[
πt2
2r

]
.

(A.66)

Therefore, this four-gauge field insertions at NLO in the EST is given by the summation
of Eqs. (A.61), (A.64), and (A.66)

〈〈E1(−it1) ·E1(−it2)E2(−it3) ·E2(0)〉〉NLO
c

=− π2Λ′′
2
Λ′′2Λ4

4σ2r4
cosh−2

[
πt1
2r

]
cosh−2

[
π(t1 − t3)

2r

]
− π2Λ4Λ′′2Λ′′

2

4σ2r4
cosh−2

[
πt1
2r

]
cosh−2

[
πt2
2r

]
+
π2Λ′′4Λ

4

4σ2r4
cosh−4

[
πt1
2r

]
. (A.67)

A.2.2 Chromomagnetic field insertions

Two-chromomagnetic field insertions to the Wilson loop expectation value at NLO in
the EST is decomposed into two parts: transversal and longitudinal components. The
transversal component is given by

〈〈Bl
1(t)Bl

2(0)〉〉NLO
c = 〈〈Bl

1(t)Bl
2(0)〉〉NLO − 〈〈Bl

1(t)〉〉LO〈〈Bl
2(0)〉〉NLO

−〈〈Bl
1(t)〉〉NLO〈〈Bl

2(0)〉〉LO ,

= 〈〈Bl
1(t)Bl

2(0)〉〉NLO , (A.68)

where the second equality is due to the Gaussianity of the string action. This expression
is then mapped to the string variables as

〈〈Bl
1(t)Bl

2(0)〉〉NLO =− Λ′Λ′ [〈∂t∂zξm1 (t)∂aξ
p
1(t)∂aξp1(t)∂t∂zξ

m
2 (0)〉
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+〈∂t∂zξm1 (t)∂t∂zξ
m
2 (0)∂aξ

p
2(0)∂aξp2(0)〉]

= Λ′Λ′ [2〈∂t∂zξm1 (t)∂zξ
p
1(t)〉〈∂zξp1(t)∂t∂zξ

m
2 (0)〉

+〈∂t∂zξm1 (t)∂t∂zξ
m
2 (0)〉〈∂zξp1(t)∂zξ

p
1(t)〉

+〈∂t∂zξm1 (t)∂t∂zξ
m
2 (0)〉〈∂zξp2(0)∂zξ

p
2(0)〉

+2〈∂t∂zξm1 (t)∂tξ
p
2(0)〉〈∂t∂zξm2 (0)∂zξ

p
2(0)〉] , (A.69)

and after taking the Wick rotation, we obtain the final expression:

〈〈Bl
1(−it)Bl

2(0)〉〉NLO
c =

π4Λ′Λ′

12σ2r6
cosh−4

(
πt

2r

)[
cosh

(
πt

r

)
− 2

]
. (A.70)

On the other hand, the longitudinal component of the two-chromomagnetic field inser-
tions is counted as NNLO according to the EST power counting

〈〈B3
1(−it)B3

1(0)〉〉NLO
c ∼ O(σ2r−6) . (A.71)

Thus, we only include Eq. (A.70) for the calculation of Vr at NLO.

A.2.3 Chromoelectric and chromomagnetic field insertions

As for the calculation of the spin-orbit potentials, Eqs. (4.26) and (4.27) at NLO, we
need to compute a cross product between a chromoelectric and a chromomagnetic field
inserted into the Wilson loop expectation value:

r · 〈〈B1(t)×E1(0)〉〉NLO
c = εijkri〈〈Bj

1(t)Ek
1 (0)〉〉NLO

c ,

= r
[
〈〈B1

1(t)E2
1(0)〉〉NLO

c − 〈〈B2
1(t)E1

1(0)〉〉NLO
c

]
, (A.72)

from which it is clear that we need to compute 〈〈Bi
1(t)Ej

1(0)〉〉NLO
c , for i 6= j. It is

re-expressed and mapped onto the string variables as

〈〈Bi
1(t)Ej

1(0)〉〉NLO
c =〈〈Bi

1(t)Ej
1(0)〉〉NLO

=Λ′Λ2〈εik∂t∂zξk1 (t)∂aξ
l
1(t)∂aξl1(t)∂zξ

j
1(0)〉

+ Λ′Λ
2〈εik∂t∂zξk1 (t)∂zξ

j
1(0)∂aξ

l
1(0)∂aξl1(0)〉

=− Λ′Λ2εik
[
2〈∂t∂zξk1 (t)∂zξ

l
1(t)〉〈∂zξl1(t)∂zξ

j
1(0)〉

+〈∂t∂zξk1 (t)∂zξ
j
1(0)〉〈∂zξl1(t)∂zξ

l
1(t)〉

]
− Λ′Λ

2
εik
[
〈∂t∂zξk1 (t)∂zξ

j
1(0)〉〈∂z〉〈∂zξl1(0)∂zξ

l
1(0)〉

+2〈∂t∂zξk1 (t)∂zξ
l
1(0)〉〈∂zξj1(0)∂zξ

l
1(0)〉

]
, (A.73)

where the first equality is due to the Gaussianity of the EST action. After performing
the Wick rotation, we obtain the following expression

〈〈Bi
1(−it)Ej

1(0)〉〉NLO
c =− 2iΛ′Λ2εij

[
∂t∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂z′G|
t′=0
z=z′=r/2
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+∂t∂z∂z′G|t
′=0
z=z′=r/2 × ∂z∂z′G|

t=t′

z=z′=r/2

]
− 2iΛ′Λ

2
εij
[
∂t∂z∂z′G|t

′=0
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t=t′=0
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+∂t∂z∂z′G|t
′=0
z=z′=r/2 × ∂z∂z′G|

t=t′=0
z=z′=r/2

]
, (A.74)

from which, it is clear that

〈〈B1
1(−it)E2

1(0)〉〉NLO
c = −〈〈B2

1(−it)E1
1(0)〉〉NLO

c . (A.75)

Thus, the Wilson loop expectation value for the spin-orbit potential is computed as

〈〈B1
1(t)E2

1(0)〉〉NLO
c − 〈〈B2

1(t)E1
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Likewise, another cross product between a chromomagnetic and a chromoelectric field
which contributes to the potential is mapped to the string variables as
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and after performing the Wick rotation, its analytic expression is given by
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Therefore, the final expression of the cross product inserted into the Wilson loop expec-
tation value is given by
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A.3 Hard cut-off regularization

In this section we use a hard cut-off regularization scheme for the divergent expression
of the gauge field insertions presented in Sec. 5.4.3. Eventually, the expressions after
applying this regularization will coincide with the result after using the zeta function
and dimensional regularization. Since the EST is a UV-divergent effective description,
we need to explicitly implement the cut-off when we calculate the relevant gaug field
insertions. The hierarchy of the scales is already given in Eq. (5.11).

First of all, as was presented in Sec. 5.4.3 as well as in Appendix A.2, a transversal
component of the two chromoelectric field insertion is given in terms of the EST Green’s
function

〈〈El
1(−it)El

1(0)〉〉NLO
c = 16Λ2Λ

2
∂z∂z′G|t=t

′

z=z′=r/2 × ∂z∂z′G|
t′=0
z=z′=r/2 , (A.80)

where G is given by Eq. (5.33) without the tensor δlm. This expression diverges due to
∂z∂z′G|t=t

′

z=z′=r/2. In other words, the theory does not have an arbitrarily high enough
resolution to probe the physics evaluated at the same spacetime points. As the Fourier
transform of the time variable corresponds to the energy, we can express this into a
mathematical way. Let us introduce an infinitesimal parameter ε > 0, which is of mass
dimension minus one, and redefine the time evaluation of the Green’s function by

t′ = t+ ε , (A.81)

so that we can define

∂z∂z′G|t=t
′

z=z′=r/2 = lim
ε→0

∂z∂z′G|t
′=t+ε
z=z′=r/2 . (A.82)

As we substitute t′ by t + ε when evaluating the two partial derivatives on the Green’s
function, we obtain

lim
ε→0

∂z∂z′G|t
′=t+ε
z=z′=r/2 = lim

ε→0

{
− π

12σr2
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1

πσε2
+
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+O(ε3)

}
. (A.83)

It is clear, by comparing this expression to the one obtained from the zeta-function
regularization, that the finite part coincides with Eq. (5.139). Here the divergent part is
given by the inverse square of the regulator ε. Note that this regulator is not arbitrarily
small as the theory is UV-divergent, and due to the given hierarchy of scales in the EST,
the size of this regulator is restricted by

ε > Λ−1
QCD . (A.84)
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One might consider regulating the spatial coordinate z instead of time, since the EST
power counting dictates that ∂t and ∂r are of the same order (∼ 1/r). However this
“alternative” regularization would contradict the Dirichlet boundary conditions of the
theory, in which the two ends of the string are supposed to coincide with the position
of the heavy quark-antiquark pair. This was assumed from the onset of the theory
construction. Thus, one can only implement the regulator ε into the time variable.

As for the calculation of the transversal component of the two-chromomagnetic field
insertion, 〈〈Bl

1(−it)Bl
2(0)〉〉NLO

c , divergences arise from

lim
t′→t

∂z∂z′G(t, t′; z, z′)|z=z′=r/2 =∞ ,

lim
t′→t

∂t∂z∂z′G(t, t′; z, z′)|z=z′=r/2 =∞ .
(A.85)

As the first one was already regulated, let us analyze the second expression. Implemen-
tation of the ε regulator gives the following expression

lim
ε→0

∂t∂z∂z′G(t, t′; z, z′)|t′=t+εz=z′=r/2 =
2

πσ2ε3
− π3ε

120σr4
+

π5ε3

1512σr6
+O(ε4) , (A.86)

in which the finite part is zero. This coincides with the result from the zeta function
regularization, Eq. (5.148).

Lastly, the divergence coming from two time derivatives on the Green’s function

lim
t′→t

∂t∂t′G|z=z′=r/2 →∞ , (A.87)

cannot be regularized by the ε regulator. Let us look at the Fourier integral from
Eq. (5.27)

lim
ε→0

∂t∂t′G|t
′=t+ε
z=z′=r/2 ∝

∫ ∞
−∞

dk
k2

k2 + a
e−ikε , (A.88)

where a = (nπ/r)2. If we take the Taylor expansion of the exponential factor of the
integrand (since ε is small), the expression is rewritten by∫ ∞

−∞
dk

(
k2

k2 + a
− ik3ε

k2 + a
+ . . .

)
, (A.89)

and the integral of each term will diverge regardless of the size of the ε regulator. Thus,
it is necessary to use dimensional regularization for this type of divergent expression,
which is given in Eq. (5.151).
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