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Abstract—The planning and execution of real-world robotic
tasks largely depend on the ability to generate feasible motions
online in response to changing environment conditions or goals.
A spline deformation method is able to modify a given trajec-
tory so that it matches the new boundary conditions, e.g. on
positions, velocities, accelerations, etc. At the same time, the
deformed motion preserves velocity, acceleration, jerk or higher
derivatives of motion profile of precalculated trajectory. The
deformed motion possessing such properties can be expressed by
translation of original trajectory and spline interpolation. This
spline decomposition considerably reduces the computational
complexity and allows the real-time execution. Formal feasibility
guarantees are provided for the deformed trajectory and for
the resulting torques. These guarantees are based on the special
properties of Bernstein polynomials used for the deformation
and on the structure of the chosen computed torque control
scheme. The approach is experimentally evaluated in a number
of planar volleyball experiments using3-DoF robots and human
participants.

Index Terms—Manipulation planning, motion adaptation, mo-
tion control, path planning for manipulators.

I. I NTRODUCTION

FOR many years robotic tasks used preplanned repetitive
motions for industrial applications. However, nowadays

there is a deep need for robots with the capability of doing
a variety of tasks with desired encoded behavior but with-
out offline recomputation of the whole motion. It becomes
increasingly important to generate motions in accordance with
changing goals and adapt to the changing environments. Thus,
motion planning for reactive real-world scenarios needs to
fulfill several requirements. On the one hand, it needs to
comply with the imposed constraints such as position, velocity
or acceleration limits, be able to avoid obstacles and at the
same time prevent torque saturation. On the other hand,
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resulting solutions should be generated online, if not real-time,
as a response to the updated sensory data. That is particularly
important for dynamic manipulation, motion imitation and
autonomous driving.

There exist different conceptual approaches to motion gen-
eration, however, none of them is capable of satisfying all
the requirements. Learning methods for motion generation
can be fast, but they generally do not include robot model
and guaranteed online constraint satisfaction. On the contrary,
planning and replanning based on classical optimal control
may address all type of constraints including the nonlinear
robot dynamics, i.e. they are dynamically consistent. However,
it is computationally expensive and in realistic cases too slow
for online application. Instead of complete replanning we
propose to resort to efficient approximate methods. The key
scientific challenge is to incorporate the different types of
constraints for a modified motion under specified time limits.

The subject of this article is online motion deformation
which preserves the derivative profile of an initial (planned
or learned) motion, incorporates desired boundary conditions
and checks violation of trajectory and torque constraints.The
resulting approach provides a reactive motion generation suit-
able for robotic manipulators with non-negligible dynamics.

A. Related Work

Existing motion generation methods only partially possess
the desired features for online motion adaptation.

1) Optimal Control and Optimization Methods:Optimal
control allows setting task goals, imposing a large variety
of constraints and achieving the desired performance. Op-
timal Control Problems (OCPs) are oftentimes solved with
numerical approximate methods such as direct collocation or
multiple shooting [1]. Due to the complexity of OCPs, such
a recalculation cannot be done online, especially for non-
linear dynamic systems and nonlinear constraints. Therefore,
some relaxation of OCP conditions is required to improve
the computation time. For instance, the method for creating
optimal motions with the satisfaction of continuous inequality
constraints offline and replanning them for humanoid robotsis
implemented in [2]. For these safe motions, solutions are found
using semi-infinite programming which is computationally
costly, whereas replanning them might be faster but it works
only in the vicinity of the safe motions in its joint space.
Another option is to relax the original OCP to a trajectory op-
timization problem, essentially assuming that the controlwill
do the job of perfectly tracking the trajectory. The nonlinear



2 IEEE TRANSACTIONS ON ROBOTICS

OCP is transformed into a large-scale optimization program
in [3] with B-splines used for joint positions. Time intervals
and corresponding polynomials are used for approximation
of inequality constraints and the cost. However, this method
does not consider the influence of external disturbance or
system parameter uncertainties on the tracking controller.
Thus, motion feasibility can’t be fully guaranteed. For sampled
trajectories, optimization can be performed with gradientde-
scent methods [4], [5] or with sequential convex optimization
[6]. Optimization of polynomial trajectories of the end-effector
with inequality contact constraints can be done by varying
the boundary conditions [7]. Sampling based RRT replanners
are used in [8], [9] to compute multiple feasible motions and
to choose the best one based on predefined metrics. These
methods are inherently of a randomized nature and thus require
excessive computation time to generate multiple motions and
check for obstacle avoidance.

2) Time-optimal Path Planners:In time-optimal path track-
ing [10], trajectories are created through replanning of a
given trajectory in the temporal domain. This method satisfies
torque constraints but requires recalculation of a boundary
curve for maximum velocity for every newly prescribed path.
Moreover, it is only applicable to robots with perfect model
knowledge. The method has been extended in [11], [12] and
[13] to take also admissible acceleration regions and torque
constraints into account. Online reactive motion planner [14]
produced trajectories with different time constants of visual
and force loops using cubic curves. Time optimality along with
time-synchronization is achieved in [15] by calculating min-
imum synchronization times and corresponding polynomials
for open-loop joint trajectories every computation cycle,but it
doesn’t take robot dynamics into account.

3) Learning Methods:Learning methods can be applied for
trajectory generation using attractor dynamics. For instance,
Dynamic Movement Primitives (DMPs) [16], [17], [18] and
Gaussian mixture models (GMM) [19] are commonly used
for trajectory generation with motion imitation. A mixtureof
kinesthetically learned motion primitives is implementedin
[20]. Motion generalization is provided only in the vicinity
of the learned DMPs. Thus, a large database of demon-
strations that scales with the number of new situations and
controlled parameters is required. Learning approaches are
easy to program, but they become computationally inefficient
when constraints’ satisfaction for the produced motions must
be checked.

4) Deformation Methods:Retargeting or deformation of
previously calculated motions can be implemented to pre-
serve desired features of the task. Gleicher [21] introduced
retargeting motions for characters in computer animation us-
ing B-splines and large space-time constraint optimization.
A multilevel B-spline fitting technique [22] is proposed to
incorporate a big set of position and orientation constraints. A
non-rigid registration [23] method is applied to the tasks with
variable scene geometry and initial conditions. This approach
minimizes the geometrical distance between original and target
sets of points and additionally provides smoothness of the
mapping function using thin plate spline regularizer. Defor-
mations based on affine transformations [24] are suggested

for human-related applications as they preserve affine-invariant
features of the trajectories. Laplacian trajectory editing [25]
preserves the local trajectory properties through a least squares
approach while keeping a set of positional constraints fixed.
This method is based on a Laplacian mesh optimization [26]
from computer graphics to approximate 3D surface meshes,
but it is applied for path deformation.

5) Boundedness of the Robot Motion:Once the desired
robot motion is obtained, trajectory and torque bounds along
with a trajectory tracking controller play a critical role to
execute it properly. Reactive control and robustification for
the running robot are done in [27] by combining deadbeat
controller and the sequential composition [28]. This method
works for discrete behavioral policies and chooses goal states
taken from a discrete set. Modeling errors are transformed in
a joint acceleration disturbance [29] to track a trajectorywith
a prescribed accuracy. Uniform boundedness of inertia [30],
[31] and Coriolis/centripetal [32] matrices is important for
designing controllers and providing global Lyapunov stability.
A computed torque controller yields tracking error dynamics
as a linear system, where an error is dependent on the inverse
of the mass-inertia matrix, the disturbances and the feedback
controller parametrization [33].

The question is how to provide a computationally efficient
substitute for the optimal control solver with the specific cost
function that preserves dynamic properties of the existing
robotic motions. It must also incorporate boundary conditions
with their respective time instances and major inequality
constraints for kinematic and dynamic robot parameters.

B. Contributions

A novel method based on splines for online recomputation
of fast reactive robotic motions and formal guarantees for
feasibility of the resulting robot motions is derived. Trajec-
tories obtained with the spline deformation method preserve
the desired properties of the original trajectories that depend
on one or several derivatives of the motion profile. This motion
adaptation provides minimization of velocity deviation for
linear splines, minimization of acceleration deviation for cubic
splines, jerk deviation minimization for quintic splines,etc.
Depending on the application, different motion derivatives
are of interest: for example, the velocity for mobile robot
navigation, the acceleration in dynamic tasks such as batting
or locomotion, and the jerk for natural human motion imita-
tion. After the deformation, a feasibility verification method
provides upper bounds for task space positions, velocitiesand
accelerations, as well as joint torques. Tight bounds for torques
are derived using interval-based analytical expressions for
individual torque components and a mixture of analytical and
∞-norm. By implementing such a mixture, we provide a trade-
off between tightness of the bounds for inequality constraints
and computational time. The bounds for the feedback error
and the control signal are derived for a controller depending
on the parametric uncertainties and the external disturbance.

Experimental validation showing online capability, adapt-
ability and robustness of the method is provided for sev-
eral robot-robot and robot-human planar volleyball scenarios,
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where discontinuous short contacts with a ball require high
accuracy and precise timing of the motion. Choice of the best
hitting action and the best-precalculated motion are derived
based on the chosen game strategy. An overall torque analysis
is carried out for the given robotic system.

In [34] we presented a preliminary approach for retarget-
ing of specially designed optimal trajectories in constrained
environments using cubic splines. Still, it wasn’t capableof
keeping desired derivative profiles and providing boundary
conditions higher than velocities. In [35] we derived infinity-
norm boundaries for robot joint torques in the case of the cubic
spline interpolation. These bounds have a closed-form solution
but are quite conservative in presence of external disturbance.
Based on these preliminary results, in this article, we introduce
a method which is capable of motion adaptation with a broad
range of dynamic behaviors and online feasibility guarantees
for the resulting robotic motions.

The remainder of the article is as follows: Sec. II intro-
duces a framework for motion control using spline deforma-
tion. Sec. III describes the trajectory deformation process. In
Sec. IV, the feasibility of trajectory tracking for kinematic and
dynamic constraints is analyzed. The experiments for a planar
volleyball scenario are described in Sec. V. Finally, Sec. VI
discusses the presented approach and suggests ideas for further
expansion.

II. SPLINE DEFORMATION FRAMEWORK FORMOTION

CONTROL

We consider online motion generation for reactive robotic
tasks with prescribed behavior. For such types of motions, it
is important to satisfy specific boundary conditions for free
motion or contacts and to preserve the chosen derivative of
the motion profile. Additionally, generated motions need to
comply with position, velocity, acceleration and joint torque
constraints. All the following requirements are incorporated in
the spline deformation approach, which is proposed here.

The motion generator is based on precomputed motion or
set of motions that are calculated offline and the spline de-
formation method that incorporates new boundary conditions
obtained from updated sensory data. Figure 1 illustrates a
scenario for a robot that moves from its new initial state to
the new end state in a task space.
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k
db(0)

xdb(tf ),x
k
db(tf )
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Original
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o
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k
o(t
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f )

xo(0),x
k
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Figure 1: Robotic manipulator operating within its task space. The task space
trajectoryxo (green) of the end effector is deformed with the new boundary
conditionsxdb,x

k
db

. The resulting deformed trajectoryxd is depicted with
the blue curve.

A. Problem Formulation for Trajectory Deformation

The overall deformation procedure with preservation of the
desired derivative can be formulated as an optimization prob-
lem. Find a trajectory and its derivativesxd(t), ẋd(t), ẍd(t)
which minimize the difference between then-th derivative of
this trajectory and then-th derivative of the original trajectory
xo for all task space coordinates, given the original motion, its
time duration and the new boundary conditions up to(n−1)-th
derivative forn ≥ 1:

minimize
xd,ẋd,ẍd

J =

tf∫

0

∥
∥
∥
∥

dnxd

dtn
− dnxo

dtn

∥
∥
∥
∥

2

dt (1a)

subject to xd(tb) = xdb, (1b)

x
(k)
d (tb) = x

(k)
db , k ∈ {1, . . . ,n − 1} , (1c)

tf = tof , (1d)

g(q(t), q̇(t), q̈(t), τ (t)) ≤ 0, t ∈ [0; tf ] , (1e)

where xd ∈ R
m is the overall deformed trajectory,m is

the dimensionality of the robot task space coordinates,n is
the derivative order of the motion profile that needs to be
preserved,tf is the fixed final time, andtof is the time duration
of the original trajectory. Boundary and switching condi-
tionsxdb, ẋdb, . . . ,x

(n−1)
db need to match attb =

[
0 ts tf

]
,

where switching timests =
[
ts1 . . . tsn

]
are assigned

when the deformed motion consists of several phases.
In contrast to OCPs, the overall optimization (1) does not

explicitly consider the dynamics of the robot. Therefore, it is
important to have feasibility check to cope with inequalitycon-
straintsg for produced joint positions, velocities, accelerations
q, q̇, q̈ and torquesτ : |τ | ≤ τnom, which implicitly encode
the constraints imposed by the underlying robot dynamics
including actuator constraints. Thus, inequality constraints (1e)
guarantee dynamic consistency of the deformed trajectory,
which has to be followed by the real-world manipulator. The
cost function (1a) provides motion derivative preservation.
Equality constraints (1b)-(1d) impose boundary conditions for
initial, final and intermediate time instances of the motion.

B. Conceptual Approach

The block diagram of the spline deformation framework for
the robot control is presented in Fig. 2. It consists of an offline
trajectory generator in task space and a model based algorithm
that sets new fixed boundary conditions. It is beneficial to keep
several precomputed trajectories in the database to have several
distinctive motions with various motion derivative profiles and
execution times. The new trajectoryxd, ẋd, ẍd is generated by
spline deformation and then followed by a feedback controller.

The solution of the spline deformation problem is decom-
posed into several parts that will be discussed further in the
article. First, we precompute trajectories that possess desired
properties. Second, the deformation algorithm is applied to
preserve derivatives of the motion profile and fit new bound-
ary conditions. Third, feasibility guarantees are provided for
trajectories obtained through deformation.
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Figure 2: Overall motion planning and control scheme. New boundary and switching statesxd(tb), x
(k)
d

(tb) and its timingtb are based on the task goal. A
motion selection algorithm chooses one original motionxo, ẋo, ẍo of time durationto

f
from the database that fits the desired task best. Spline deformation

of the original trajectory produces a new trajectoryxd, ẋd, ẍd that passes through new fixed states and preserves a desiredn-th derivative of the selected
original motion. If deformation is performed in task space coordinates, the trajectory is transformed into joint space coordinates before passing it to the
controller. The controller follows this trajectory, giventhe external disturbanceτdist.

The major steps for the application of the spline deformation
method are detailed in the Algorithm 1. The more detailed
explanation for separate steps will be given further in the
paper.

Algorithm 1 Spline deformation and feasibility check

Generation of original motions and corresponding grids
Assignment ofKp,Kv controller gains
Setting the desired derivatives to be conserved
Encoding derivatives of the original trajectories in∆
Calculation of bounds forxo, ẋo, ẍo

Sorting precalculated motions w.r.t. the task objective
isMotionFeasible← false
i← 1
repeat

Initialization of boundary conditionsxd(tb), x
(k)
d (tb), tb

Choice of thei-th motion from the database
Spline deformation of the motion
if bounds forτ , q̇ or q̈ are exceededor t ≥ ∆tcomp then

i++
else

isMotionFeasible← true
end if

until isMotionFeasibleor i > imax

if isMotionFeasiblethen
Execute motion

else
Stop motion

end if

The spline deformation algorithm works for original mo-
tions that should be at leastC2 smooth. These motions can be
obtained by applying motion generation methods or through
demonstration. Regardless of what motion generation method
is chosen, the deformation procedure will preserve the chosen
derivatives of motion profile of the original trajectory which
possess essential behavior information for the task.

III. SPLINE DEFORMATION METHOD

In order to deform trajectories, we design the method that
keeps chosen local derivatives of motion profile, incorporates
new boundary conditions and modifies the entire trajectory
– not just a single time step. In this section, a solution
for the problem (1) is derived, for now excluding feasibility
guarantees for inequality constraints (1e).

A. Finite Difference Parametrization of Trajectory Derivatives

Local trajectory properties for trajectory deformation can
be represented as a linear system of equations. Together with
boundary constraints, we obtain an overdetermined system of
equations that can be solved using least squares. The original
trajectory is split intond equitemporally spaced sampling
points

P = [p(t1),p(t2), . . . ,p(tnd
)]T ∈ R

nd×m ,

ti+1 − ti = ∆t =
tnd
− t1
nd

, ∀i ∈ {1, . . . , nd − 1} , (2)

wherem is the number of task space coordinates, trajectory
duration (1d) is fixed astnd

= tf .
Using this representation, we discretize the original trajec-

tory asPo = [po
1,p

o
2, . . . ,p

o
nd
]T . Local derivative properties of

original trajectory are encoded with the differential Laplace-
Beltrami operatorδ [26]. We use local derivatives of motion
profile that are calculated for each sampling pointi through
the finite difference. The velocity and the acceleration along
trajectoryxo are derived as

δv,i =
po
i+1 − po

i−1

2∆t
, i ∈ {2, . . . , nd − 1} ,

δa,i =
po
i+1 − 2po

i + po
i−1

∆t2
, i ∈ {2, . . . , nd − 1} , (3)

∆ =
[
δ2 δ3 . . . δnd−2 δnd−1

]T
,

wherend is a number of sampling points. At these points we
want to keep local properties of the trajectory. For higher order
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derivatives, we need to apply special finite differences forthe
border elements, e.g. the expression for jerk is as follows

δj,i =
po
i+2 − 2po

i+1 + 2po
i−1 − po

i−2

∆t3
, i ∈ {3, . . . , nd − 2} ,

δj,i =
po
i+2 − 3po

i+1 + 3po
i − po

i−1

∆t3
, i = 2, (4)

δj,i =
po
i+1 − 3po

i + 3po
i−1 − po

i−2

∆t3
, i = nd − 1,

where right-sided finite difference scheme is applied forδj,2
and left-sided finite difference scheme forδj,nd−1.

Positional constraints of the form

pj = cj , j ∈ {1, 2, . . . , nd} (5)

pin a specific sampling pointpj to a desired positioncj with
a weighting factorwj ∈ R

+
0 to prioritize the constraints. The

matrix C̄ contains all boundary positionscj at the sampling
points.

The matricesP̄ and C̄ of dimension p × nd assign p
positional constraints as described in (5) with

P̄i,j =

{
1, if pj = ci, i ∈ {1, . . . , p}
0, otherwise

(6)

For instance,p = 2 for a single phase and matrix̄P
becomes

P̄ =

[
1 0 0 · · · 0 0
0 0 0 · · · 0 1

]

p×nd

. (7)

We minimize the discrete version of the cost function (1a)
and set the boundary positions (1b) by rewriting (3), (4) and
(5) in the following matrix form

[
L

P̄

]

P =

[
∆

C̄

]

, (8)

with the following finite differences for velocity profile

L1 =
1

∆t










− 1
2 0 1

2
− 1

2 0 1
2

.. .
. . .

. ..
− 1

2 0 1
2

− 1
2 0 1

2










nd−2×nd

,

(9)
for acceleration profile

L2 =
1

∆t2










1 −2 1
1 −2 1

. . .
. ..

.. .
1 −2 1

1 −2 1










nd−2×nd

,

(10)
and for jerk profile

L3 =
1

∆t3










−1 3 −3 1
−1 2 0 −2 1

. . .
. . .

. . .
−1 2 0 −2 1

−1 3 −3 1










nd−2×nd

.

(11)

The higher derivatives for the discrete Laplace-Beltrami oper-
ator are derived analogously.

The discretized deformed trajectoryPs is obtained by
solving the following system of equations

Ps =

[
L

P̄

]+ [
∆

C̄

]

. (12)

Solving (12) requires pseudo-inversion of the matrix
[
L P̄

]T
. Thus, for a large number of sampling points and

positional constraints this method becomes infeasible forreal-
time computation and hence an alternative is derived in the
next section.

B. Spline Decomposition for a Single Derivative

We introduce an equivalent form for a single motion phase
(12) by splitting the term for positional constraints̄C into two
parts and converting them into the continuous-time functions.
With this decomposition we do not need to compute matrix
pseudoinverse. The resulting continuous trajectory will be the
sought deformed trajectoryxd from (1a)-(1d)

xd =

[
L

P̄

]+ [
∆

C̄1

]

︸ ︷︷ ︸

A

+

[
L

P̄

]+ [
0

C̄2

]

︸ ︷︷ ︸

B

= xo(t) + δxi
︸ ︷︷ ︸

A

+xs(t)
︸ ︷︷ ︸

B

.

s.t. C̄1 + C̄2 = C̄, δxi = xi − xo(0) (13)

First, positional constraints in̄C1 are chosen so that the term
A results in a translation of the original trajectoryxo to the
new initial state, see1D example in Fig. 3.

xo(t)

xd

xo(t) + δxi

xf

δxi

tof

xo(0)

xi

xo(t
o
f )

t

x

∆t ∆t
Figure 3: A 1-dimensional example of translation of the original trajectory
with spline interpolation.

Second,C̄2 is obtained as the differencēC − C̄1. Con-
sequently, the termB minimizes n-th derivative of motion
profile that is encoded in∆ while fitting C̄2. The proof for
n-th derivative minimization is provided in Appendix A. The
equivalent solution forB is a spline interpolation of the form

xs(t) =

2n−1∑

k=0

akt
k. (14)

Coefficientsak are defined by positional constraints̄C2 and
additional specified boundary conditions (1c) - velocities,
accelerations, etc. This way, the system of equations to be
solved for all coordinates has only2nm unknowns.
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C. Spline Decomposition for a Weighted Sum of Derivatives

When the task requires simultaneous preservation of several
derivatives of the original motion, the same methodology is
applied. The optimization problem will have the following
form

minimize
xd,ẋd,ẍd

J =

tf∫

0

n∑

i=1

βi

∥
∥
∥
∥

dixd

dti
− dixo

dti

∥
∥
∥
∥

2

dt

subject to xd(tb) = xdb, (15)

x
(k)
d (tb) = x

(k)
db , k ∈ {1, . . . ,n − 1} ,

tf = tof ,

whereβi is a weighting coefficient fori-th derivative andn
is a maximum derivative to be preserved.

For every preserved derivative we introduce the Laplacian
Li and finite difference matrix∆i, where the indexi denote
the corresponding derivative order.







β1L1

. . .
βnLn

P̄






P =







β1∆1

. . .
βn∆n

C̄






. (16)

Therefore, the resulting solution for the deformed trajectory is
found as

xd =







β1L1

. . .
βnLn

P̄







+ 





β1∆1

. . .
βn∆n

C̄1







︸ ︷︷ ︸

A

+







β1L1

. . .
βnLn

P̄







+ 





0

. . .
0

C̄2







︸ ︷︷ ︸

B

, (17)

s.t. C̄1 + C̄2 = C̄

where elementA is a translation of the original trajectory
and B is a spline that minimizes corresponding derivatives.
The equivalent forB in the continuous domain is a spline
interpolation of the form

xs(t) =
[
β1 . . . βn

]









1∑

k=0

a1kt
k

. . .
2n−1∑

k=0

ankt
k









(18)

=

2n−1∑

k=0






n∑

i=1+⌊ k
2 ⌋

βiaik




 tk.

This spline interpolation consists of a sum of weighted poly-
nomials of degreesk ∈ [0, . . . , 2n − 1]. That is by definition
also a(2n − 1)-st degree polynomial.

IV. FEASIBILITY OF MOTION EXECUTION

Once the deformed motion is derived, a safety procedure
is required to check constraint satisfaction for the position,
velocity, acceleration and joint torques for every single point
of the deformed trajectory. This is done by performing a
feasibility check not along the entire trajectory but only at
segmentation points of the deformed trajectory. For that, the

overall motion is split into smaller time intervals. Therefore,
this section is dedicated to the derivation of the closed-form
solutions for constraintsg from (1e). This feasibility check
allows detecting constraint violation which leads to further
deformation with new conditions. We show how the time
grid is obtained for feasibility check. On every segment of
the superimposed time grid we derive3 types of closed-form
expressions for major motion components: analytic, infinity
norm and mixed. These expressions are varying in complexity
and tightness of the bounds.

A. Notations for Evaluation of Bounds

Here we explain the notations we will use for interval-based
[36] bounds. We denote scalar interval as[x] ≡ [x, x], with
the lower and upper boundsx, x ∈ R. The bounds of scalar
operations are found as follows

[a] + [b] =
[
a+ b, a+ b

]
,

[a]− [b] =
[
a− b, a− b

]
,

[a] [b] = [min(s), max(s)] , s =
{
a b, a b, a b, a b

}
,

[a]

[b]
= [a]

1

[b]
= [a, a]

[
1

b
,
1

b

]

, 0 /∈ [b] .

An interval vectoris denoted as[b] =
{
b | b ≤ b ≤ b

}
for

component-wise inequality with the boundsb, b ∈ R
m. An

alternative representation of[b] is obtained with the center
vectorbc = 1

2 (b+b) and the non-negative radius vectorbǫ =
1
2 (b− b) as follows[b] = {b | bc − bǫ ≤ b ≤ bc + bǫ}.

An interval matrix is set as

[A] =
[
A,A

]
=

{
A | A ≤ A ≤ A

}

with bounds A,A ∈ R
m×m. It can be rewritten using

the center matrixAc = 1
2 (A + A) and the radius matrix

Aǫ =
1
2 (A−A) as [A] = {A | Ac −Aǫ ≤ A ≤ Ac +Aǫ}.

Spectral radius of a matrix isρ(A) = max(| λi |)
i=1,...,m

, whereλi

are the eigenvalues ofA.
For a matrix-vector product betweenA ∈ R

m×m and
b ∈ R

m the following holds

[A] [b] =





∑

j [A(1, j)] [b(j)]

· · ·
∑

j [A(m, j)] [b(j)]



 .

An interval functionis set as[f ] ([x]) = {f(x) | x ∈ [x]}.
The infinity norm (∞-norm) ‖f(x)‖

∞
is derived as

‖f(x)‖
∞

= max
x
| f(x) | .

With the help of these expressions we derive closed form
bounds for components of the robot motion.

B. Time Grid for Feasibility Check

Boundaries for all main kinematic and dynamic variables
need to be provided for every time segment of the motion. The
size of segments influences not only the kinematic but also the
dynamic properties of the task. Primarily, it affects bounds for
the torque required to follow the deformed trajectory.
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As the original trajectories areC2 smooth, there exist
boundaries forxo, ẋo and ẍo

[xo] ([t]) = {xo(t) | t ∈ [t]} ,
[ẋo] ([t]) = {ẋo(t) | t ∈ [t]} , (19)

[ẍo] ([t]) = {ẍo(t) | t ∈ [t]} ,

on the predefined original temporary grid

[t] =
{
t | t1 ∈ [to1, t

o
2] , . . . , tf−1 ∈

[
tof−1, t

o
f

]}
. (20)

In general case, the time grid of original motion (20) may not
match with the deformation grid from (2). After deformation
with (nd − 1) segments, the superimposed time grid in Fig. 4
allows putting together the closed-form bounds of the original
and the deformation part from (13) and its derivatives.

…tstart tof−1 tnd

∆tcomp

to1 tnd−2 tnd−1

∆t∆t

Figure 4: The superimposed grid consists of the fixed originaltime grid
from (20) and the deformation time grid from (2). The time grid for spline
deformation is aligned with the original trajectory at the time of fixed
boundary statetnd

= to
f

= tf . Interval ∆tcomp is a time remaining for
computation,tstart is a time instance when a request for motion is received.

Checking the required velocities, accelerations, controller
errors and torques only at the segmentation points reduces
the overall computations, allows finding particular intervals
where the trajectory is infeasible and provides a flexible tool
for controller parametrization.

The remaining time∆tcomp is defined by the task and
calculated as the difference between overall time available for
the motion (tnd

− tstart) and time duration of the original
motion(tof−t01). I.e. for faster original motions we have higher
bounds but more time for deformation and feasibility checks.
Thus, it is useful to have several precalculated trajectories of
various time durationtof in the database.

C. Analytic Expressions for Feasibility Check

Analytic expressions allow finding tight representation for
trajectory, its derivatives and corresponding torques on every
segment of the superimposed grid. We consider a task executed
by an open-chain manipulator with the following dynamic
model

τ = M(q)q̈ +N(q, q̇),

N(q, q̇) = C(q, q̇)q̇ +G(q) + F (q, q̇), (21)

where the termM(q)q̈ denotes the configuration-dependent
mass-inertia matrix,C(q, q̇)q̇ comprises the Coriolis and
centrifugal forces,G(q) accounts for all gravitational terms
and F (q, q̇) includes the Coulomb and viscous frictional
forces.

We use an internal computed-torque scheme together with
an outer loop PD controller (CT + PD) to provide the desired

control characteristics. For CT + PD controller, the following
relationship holds for closed-loop error dynamics:

ë+Kvė+Kpe = M−1τdist,

u = −Kpe−Kvė

whereu is a control input function, theKp = diag(kpi) and
Kv = diag(2

√
kpi) are critically-damped PD control gains of

the outer loop.
If the lower and upper bounds of the main system and

control variables satisfy the inequality constraintsg from (1e),
the motion is ready to be executed.

1) Trajectory Feasibility: The superimposed time grid al-
lows calculating upper bounds on the position, velocity and
acceleration of the deformed trajectory in a closed form for
each time interval independently. The spline-based deforma-
tion presented in Sec. III makes it possible to provide a
closed form solution for the task-space bounds ofxd, ẋd,
ẍd considering only the segmentation points. The deformed
trajectory is split up into two independent partsA andB as in
(13) or (17). Since the elementA is solely a translation of the
original trajectoryxo. The additive deformation termB is a
spline interpolation (14) or (18) that can be represented using
Bézier splines for every interval as

xs =

l∑

k=0

ckB
l
k(t), (22)

where the weighting factorsck denote control points of B́ezier
curves andBl

k(t) represent Bernstein polynomials of degree
l = 2n − 1 with

Bl
k(t) =

(
l
k

)

(1− t)l−k tk,

t ∈ [0, 1], k = 0, . . . , l. (23)

Further, we use partition of unity and non-negativity prop-
erties of a Bernstein polynomial together with the special
expression of its derivative. Therefore, every pointp(t) stays
within the convex hull of its control points. The same holds
for the derivatives of ap(t), since they are also Bernstein
polynomials. These properties, as well as bounds for the
trajectory and its corresponding derivatives, are provided in
Appendix B.

Tight trajectory bounds are found using the interval analysis.
Without loss of generality, we provide derivations for upper
bounds, whereas lower bounds can be found analogously. We
provide the estimations ofxd, ẋd, ẍd that are bounded by
analytic expression

[xd] = [xo] + [xs] ,

[ẋd] = [ẋo] + [ẋs] , (24)

[ẍd] = [ẍo] + [ẍs] ,

where the original trajectory bounds[xo], [ẋo], [ẍo] are
derived in (19), and the deformation parts are found online
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for the j-th trajectory interval as

[xs] ([tj , tj+1]) =

[

lmin(cj,k)
k=0,...,l

, lmax(cj,k)
k=0,...,l

]

,

[ẋs] ([tj , tj+1]) =

[

lmin(cj,k+1 − cj,k)
k=0,...,l−1

, lmax(cj,k+1 − cj,k)
k=0,...,l−1

]

,

[ẍs] ([tj , tj+1]) =

[

l(l − 1)min(cj,k+2 − 2cj,k+1 + cj,k)
k=0,...,l−2

, (25)

l(l − 1)max(cj,k+2 − 2cj,k+1 + cj,k)
k=0,...,l−2

]

,

based on the control points of the Bernstein polynomials.
Limiting values for deformed joint positions[qd] are ob-

tained through inverse kinematics mapping of[xd]. Further-
more, [q̇d] and [q̈d] are obtained as follows:

[q̇d] =
[
J+

]
[ẋd]

[q̈d] =
[
J+

]
[ẍd] +

[

J̇
]

[q̇d] (26)

where[J+] and
[

J̇
]

are dependent on[qd].
2) Bounds on Tracking Error and Imposed Disturbance:

Bounds on tracking error are crucial when we want to assess
the motion feasibility under model parametric uncertaintyor
under influence of external forces. In general, external forces
are mapped to the joint torques asτext = JTFext. Bounds on
τext could be found using analytic interval analysis.

[τext] =
{
τext | τext ≤ τext ≤ τext

}
=

[
JT

]
[Fext] ,

[τext] = {τext | τext,c − τext,ǫ ≤ τext ≤ τext,c + τext,ǫ} ,

τext,c =
τext + τext

2
, (27)

τext,ǫ =
τext − τext

2
,

where
[
JT

]
depends on[qd] and [Fext] represents a range of

expected external forces for the contact interval,τext,c is the
average (center) external torque that acts as a modeled external
torque, andτext,ǫ is the maximum deviation (radius) from
the average torque that is applied as the disturbance torque
[τext,dist] = {τext,dist | −τext,ǫ ≤ τext,dist ≤ τext,ǫ}.

Similarly, if the robot system matrices or their elements are
uncertain but bounded, they can be mapped to the disturbance
torque. For example, lets assume modeled parametric uncer-
tainty ∆M in mass matrix resulting in

[τ ] + [τpar,dist] = ([M ] + [∆M ]) [q̈] + [N ] , (28)

where[τpar,dist] = [∆M ] [q̈].
Disturbance parts of external torques from external forces

and parametric uncertainty are combined as

[τdist] = [τpar,dist] + [τext,dist] . (29)

Calculations for the control input functionu require the
calculation of boundaries for the inverse mass matrixM−1

and for the errors

[e] =

[

diag(
1

4kpi
)

]
[
M−1

]
[τdist] ,

[ė] =

[

diag(
1

√
kpie

)

]

[
M−1

]
[τdist] , (30)

[M ] [u] = − [M ] [Kp] [e]− [M ] [Kv] [ė] ,

where constant scalare is the base of the natural logarithm,
and the analytic expression for the inverse matrix

[
M−1

]
=

[

min

(
adj(M)

det(M)

)

,max

(
adj(M)

det(M)

)]

, (31)

wheremin andmax operations are applied element-wise. This
interval calculation requires the decomposition ofadj(M) and
det(M) into single scalar operations, which might become
computationally demanding for multi-DoF robots.

3) Torque Feasibility: Correct execution of the motion
highly depends on torque constraints. The goal is to find out
whether the produced torques to follow the deformed trajectory
stay within the constant interval[−τnom, τnom] of minimum
and maximum actuator torques at every time step. This is
done by deriving lower and upper bounds for each factor
involved in the torque calculation. A segment-wise torque
feasibility check gives us the opportunity to judge whetherthe
produced deformed trajectory leads to torque saturation ornot,
depending on the parameters of the feedback controller. The
method produces upper bounds for the joint torques in a closed
form that are easily verified. These bounds are based on linear
error system properties of computed torque with PD control
scheme and special properties of the Bernstein polynomials
that allow taking into account only the segmentation pointsof
the trajectory and its corresponding control points.

Tight bounds for the torque[τbound] to follow the deformed
trajectory can be obtained as follows

[τbound] = [M ] [q̈d]− [u] + [N ] + τext,c, (32)

by substituting the minimum and maximum interval values of
the components from (26), (27) and (30) found on the closed
intervals. The boundary values for[M ] ([q]) and[N ] ([q] , [q̇])
have simple analytic expressions obtained by substitution,
where the boundary values forq and q̇ are found as

[q] = [qd] + [e] , (33)

[q̇] = [q̇d] + [ė] .

The bounds found with analytic expressions based on in-
terval analysis are tight but computationally not so efficient,
mainly because this method requires findingmin and max
values for every operation between single elements of (32).
This effect is particularly noticeable for the estimation of an
analytic expression for the inverse mass matrix required tofind
tracking error and its derivative.

D. Infinity Norm Expressions for Feasibility Check

Torque bounds provided by the∞-norm for the tracking of
a deformed trajectory are easy to compute but offer rather
conservative estimates. In [35] we derived bounds for∞
norm for cubic spline deformation. These estimates could be
generalized for the preservation of then-th desired derivative
and for the case of disturbance due to contacts and parametric
uncertainty. Hence, the number of control points changes with
the maximum derivative to be preserved.

For the 2-norm of external torque, the following relation
will hold in case of the contact

‖τext,dist‖2 ≤ ‖τext,dist‖∞ ≤
∥
∥JT

∥
∥
∞
‖Fext‖∞ , (34)
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and disturbance torque due to parametric uncertainty forM

‖τ‖
∞

+ ‖τpar,dist‖∞ = ‖Mq̈ +N(q, q̇)‖
∞

+ ‖∆Mq̈‖
∞

‖τpar,dist‖2 ≤
√
m ‖τpar,dist‖∞ ≤

√
m ‖∆Mq̈‖

∞
. (35)

wherem is the length of the vectorq. Therefore, bounds for
∞-norm of tracking error functionsei and ėi are obtained
using the transfer functions of disturbance to error and to the
derivative of error in Laplace domain as follows

‖ei(t)‖∞ ≤ ‖Gi(s)‖2
∥
∥M−1τdist

∥
∥
2

≤ 1

2k
− 3

4

pi

∥
∥M−1

∥
∥
2
‖τdist‖2 (36)

‖ėi(t)‖∞ ≤ ‖sGi(s)‖2
∥
∥M−1τdist

∥
∥
2

≤ 1

2k
− 1

4

pi

∥
∥M−1

∥
∥
2
‖τdist‖2

with 2-norm of inverse mass matrix
∥
∥M−1

∥
∥
2

bounded by
1

λM,min

, whereλM,min is a minimum eigenvalue of the mass
matrix and‖τdist‖2 ≤ ‖τext,dist‖2 + ‖τpar,dist‖2.

Thus, the following torque bound is derived

τbound,∞ =m̄ ‖q̈d‖∞ + m̄(Kv ‖ė‖∞ +Kp ‖e‖∞)+ (37)

c̄m(‖q̇d‖∞ + ‖ė‖
∞
)2 + ḡ + ‖τext,dist‖∞ ,

wherem̄, c̄, ḡ are∞-norm bounds of system matrices that are
derived using the expressions from Appendix C. Torque norms
become tighter when calculated independently for each joint
asτi,bound.

E. Mixed Expressions for Feasibility Check

Mixed expressions help to find an appropriate trade-off
between computational time and tightness of the bounds.
This becomes particularly important for robotic tasks with
limited reaction times and for the control methods where
the analytic expressions for some interval elements, e.g.
[
M−1

]
=

{

M−1 |M−1 ≤M−1 ≤M−1
}

is difficult to
obtain. Thus, one can substitute these expressions with analytic
equivalent of the∞ norms as

∥
∥M−1

∥
∥
∞
≤ √mM

∥
∥M−1

∥
∥
2
≤
√
mM

λM,min
,

M−1 ≤
∥
∥M−1

∥
∥
∞

JmM
≤
√
mM

λM,min
JmM

, (38)

M−1 ≥ −
∥
∥M−1

∥
∥
∞

JmM
≥ −

√
mM

λM,min
JmM

,

wheremM is a dimensionality of the matrixM andJmM
is

a square matrix of ones. Interval bounds for eigenvalues are
derived using center matrices and spectral radius [37], [38]. We
derive interval bounds for eigenvalues of symmetrical positive-
definite mass-inertia matrixM as follows

[λM ] = [λM,min, λM,max] (39)

= [λmin(Mc)− ρ(Mǫ), λmax(Mc) + ρ(Mǫ)] .

With this substitution, we speed up calculations and get rid
of the necessity of calculating the large symbolic expression
for inverse matrix. However, torque estimates become larger

than for the pure analytic method. Replacing other elements
of analytic expression with∞ norms may lead to further
reduction of computation time.

V. EXPERIMENTAL VERIFICATION: PLANAR VOLLEYBALL

The spline deformation can be applied to motion planning
for a large variety of robotic tasks, especially where the time
of computation, feasibility and ability to set new goals online
are the key issues. In this section, we present the scenario to
illustrate the spline deformation method and its main features.
The objective is to play planar volleyball, that requires hitting
the ball that must travel along the prescribed parabola. For
such a scenario, hitting position, orientation, as well as linear
and angular velocities, must be set for every hit. Thus, it means
that 2-nd order boundary conditions must be set, i.e.n ≥
2 and at least cubic spline deformation is required to keep
desired boundaries and to preserve desired motion profile∆.
Moreover, the robotic volleyball is a very fast robotic taskthat
illustrates very well the importance of online deformations,
feasibility checks and precise timing.

A. Task Description

We consider a problem of playing volleyball on the air-
table as shown in Fig. 5, with a planar3-DoF robot arm (3R)
against a human or another robot.

α

Figure 5: Air-table tilted by an angleα with attached robot manipulators
as a testbed. The gravitational acceleration on the surfaceof the air-table is
gm = g sinα.

In this experiment, we apply spline deformation method
with cubic polynomial interpolation that keeps minimum ac-
celeration deviation to original trajectory and fixes boundary
conditions for coordinatesxh and its derivativesẋh. By
minimizing the deviation of the acceleration we can preserve
the curvature of the precomputed trajectory and also indirectly
minimize torque.

For our volleyball task, a tracking system provides us with
position, orientation and velocities of the ball. Using several
subsequent frames, a parabolic trajectory of the object together
with its angular velocity is predicted through filtering of the
visual data and using puck dynamic equations. The hitting time
th and statexh =

[
xh yh φh

]T
, ẋh =

[
vxh vyh ωh

]T

is found using an optimization procedure based on the chosen
strategy, see Sec. V-B.
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For the robot, the task consists of hitting an incoming
volleyball such that the ball flies over the net (in orange)
and lands in the opponent’s field (in green). When modeling
the impact of the ball, one has to find the full state vector
of the end effector for the desired ball motion. The state is
described by the hit position(xh, yh) on the table, the fixed
end effector angleφh, and its translational(vxh, vyh) and
angular(ωh) velocities.

The overall scenario is illustrated in Fig. 6. We presented
the ball - end effector collision model based on momentum
conservation in [34]. The chosen point for the rebound is

ω

xo
h, ẋ

o
h

xh, ẋh

xb, ẋb

vx0

vy0

Human or robot player

gm

x

y
φ

Figure 6: Scenario overview of the planar volleyball task. The robot rebounds
the ball over the net (orange separation line) based on a prediction of a ball
flight trajectory and desired return motion. Green dashed curve represents the
original trajectory, while the dark red solid curve is a deformed trajectory.
Yellow circle depicts the resting position of the end effector, the red circle is
a hitting state of the original trajectory, and the blue circle is a hitting state
of the deformed trajectory.

parametrized solely by the time of reboundth. This point is
used further for optimization based on the chosen strategy to
find the collision full statexh and ẋh.

In the absence of air friction and disturbances, the ball
travels along the parabola after the rebound. Velocities(v′x, v

′
y)

and ω′ after the collision are assigned based on the desired
return trajectory. This return trajectory can be uniquely defined
by setting two waypoints along the parabola. Alternatively, a
single waypoint with the corresponding velocity provides the
same result.

The hitting orientation of the end effectorφh varies to
minimize J = minφh

(ω′ − ωd)
2, where ωd is a desired

angular velocity of the ball. For facilitation of the return
stroke, minimization of the angular velocity is applied in
the cooperative scenarioωd = 0. For maximization of the
angular velocity in competitive scenarioωd = ωmax. Once the
suitable orientation is found the corresponding end effector
linear velocitiesvxh, vyh are calculated accordingly.

B. Volleyball Game Strategies

The return motion of the ball depends on the state of the
object before the collision and the contact with the robot. The
state of the object in free flight solely depends on the timeth.

First, suitable hitting time and return velocities should
be chosen based on a selected strategy. For instance, the
cooperative strategy implies enhancement of the operation

repeatability. It requires minimization of the linear and angular
velocities ẋh,opp during the hit of the partner robot and
maximization of manipulabilityωmax = maxth

√
JJT for

the hitting point of opposite robot. With such a strategy
representation, it is possible to manipulate more than one
object at a time by assigning different non-intersecting orbits
with a proper phase shift for the return ball trajectories. On
the contrary, the competitive strategy tries to increase the
linear and angular velocities and decrease manipulabilityof the
opponent so that higher torques and accelerations are required.
The choice of the hitting state is set as the optimization
problem:

minimize
v′

x,v
′

y,ω
′,tnd

ẋT
h,oppRẋh,opp − ωT

maxKωmax, (40)

where positive weighting matricesR and K are set for
cooperative scenario. Similarly, negative weighting matricesR
andK are applied for competitive scenarios. MatrixK = 0
is used when the robot plays against a human opponent. In
competitive mode, return parabolas with higher variation range
are used against human participants.

Second, it is advantageous to use multiple precomputed tra-
jectories and select the one that needs to be deformed least for
hitting the ball. The direct collocation optimal control method
DirCol [1] is used to obtain a set of original trajectories.
For our experiment with strategies, we precomputednp = 5
original piece-wise spline trajectories depicted in Fig. 7.

Figure 7: Original precomputed trajectories (dashed curves) with designed
derivative profile, variable hitting states and time duration. Red circles
represent hitting position for precomputed trajectories.

After the hitting state is chosen based on (40), one can
select the best reference trajectoryi∗ and deform it as shown
in Fig. 8. This selection allows choosing motions with desired
derivative profile and proper time duration.

i∗ = argmin
i∈[1..np]

kc1 ‖ṗpr − ṗo
i ‖22 + kc2 ‖ppr − po

i ‖22 + (41)

kc3(tnd
− tof,i)

2,

where np is a number of precomputed trajectories andkci
are the weighting factors for each condition. It can be done
using (41) by choosing a trajectory which has similar boundary
conditions and motion time.
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Figure 8: Deformed trajectory (solid line) is derived in order to fit new hitting
positions (blue circle), orientation and velocities. The time to reach the hit
point and the time back to the resting position are fixed both for original and
deformed trajectories.

C. Experimental Evaluation

The experimental verification of the proposed spline de-
formation method has been conducted using an experimental
setup consisting of two3-DoF planar robot arms connected
to the edges of the tilted air-table, see Fig. 5. The air-table is
capable of partially compensating the gravitational component
of the object that is perpendicular to the surface and thus
increasing flight time of the objects. The balls (pucks) and
flat end effectors are3D printed rigid objects. Several markers
placed on the puck are tracked during the experiment using a
Qualisys motion capture system with a framerate of250 Hz,
whereas the robot control system operates at1 kHz rate. The
workspace is bounded on each side of the table by a board.

Figure 9 shows the trace of the real experimental trajectories
of the puck and the end effector.

Figure 9: Trace of the central points of the end effector and the puck.

Figure 10 presents a first scenario where a human throws
the ball and the robot hits it back over the net.

Another scenario is presented in Fig. 11, where two robots
are juggling two balls over the net. These balls are traveling
along two non-intersecting orbits: from the left to the right
with a lower orbit and from the right to the left with a higher
orbit. This experiment shows the reliability of the impact
control and its timing and thus the accuracy of reaching fixed
states.

t = 0 s t = 0.09 s t = 0.18 s

t = 0.27 s t = 0.36 s t = 0.45 s

t = 0.54 s t = 0.63 s t = 0.72 s

Figure 10: Frames of the planar volleyball experiment with a human playing
against the robot. The puck (black circle) is hit by the human and then
rebounded by the robot.

t = 0 s t = 0.13 s t = 0.26 s

t = 0.39 s t = 0.52 s t = 0.65 s

t = 0.78 s t = 0.91 s t = 1.04 s

Figure 11: Frames of the experiment with two robots simultaneously juggling
two pucks (black circles). First, the right robot rebounds one of the pucks
while the second puck approaches the left robot. Second, theleft robot
rebounds the second puck while the first puck moves away from the right
robot towards the left robot. After that, the cycle repeats again.

The spline deformation method provides important features
for bounds and allows online computations. The advantage of
the method in computational time with respect to the DMP
and LTE techniques is shown in Fig. 12.
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Figure 12: Comparison of the computational complexity of trajectory gener-
ation with spline deformation, DMP and LTE methods. All calculations are
done with an Intel Core i3 -3120M CPU with 4GB RAM with MATLAB
R2015a running under Windows7.

The first two graphs include spline interpolation and eval-
uation of the piece-wise polynomial with standard Matlab
functions (Spline deformation (csape + ppval)) and with self-
written optimized code (Spline deformation (no overhead)).



12 IEEE TRANSACTIONS ON ROBOTICS

This comparison is done for a single trajectory deformation
step for a varied number of sampling points with discretization
time 1ms. According to Fig. 12, for medium and large tra-
jectories the spline representation is more than one magnitude
faster than the LTE and two magnitudes faster than the DMP.
In log-log plot, relationship of the formy = axk appears as a
straight line with the power and constant term corresponding
to slope and intercept of the line. It can be also seen that
for ns > 104 the effect of computational overhead, due to
the built-in MATLAB function for calculating splines (csape,
ppval), significantly reduces.

D. Estimation of Torque Bounds

Due to the special properties of the Bernstein polynomials
and the computed torque scheme, we derive torque bounds
for three different estimation schemes. These bounds are
calculated for each interval of the superposition of optimal and
deformed grids, with PD gainsKp = diag(1369, 1089, 841),
Kv = diag(74, 66, 58). Figure 13 shows the original precom-
puted trajectory with the corresponding grid. For every interval
of this grid, tight bounds are calculated offline. In fact, we
can recalculate this original grid with any desired subdivision
offline.
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Figure 13: Optimal motion and time grid generated by DirCol. Black vertical
dashed lines represent optimal time grid.

Figures 14-16 contain grids from original trajectory
superimposed with the equitemporal grid used for
deformation. We might use iterative subdivision, e.g.
for motion re-deformation, thus it is preferable to keep
2 independent grids. An exemplary2-phase optimal

motion presented in Fig. 13a and Fig. 13b is computed
offline with the cost function J =

∫ tf

0

∑

i τ
2
o,idt,

equality constraints for initial and final points of
the motion xo(0) = xo(tf ) = [1.3m, 0.3m, π/4 rad],
ẋo(0) = ẋo(tf ) = [0m/s, 0m/s, 0 rad/s]. The end state of
the1-st phase, i.e. hitting state,xo

h = [1.1m, 0.5m, 0.64 rad],
ẋo
h = [−1m/s, 0.7m/s, 0 rad/s] occurs atth = 0.375 s. The

inequality constraints consist of a range of motor torques and
kinematic constraints.

Three methods for torque estimation provide different re-
sults correspondent to their computational complexity. The
first method is based on (37) and requires an∞-norm upper
bound for all components, see Fig. 14a and 14b. It is relatively
fast as it mostly relies on precomputed values, but it is also
the most conservative method and can be used for rather slow
motions away from singularities. The magenta graph in Fig.
14 represents the∞-norm for the matrix representation, i.e.
for all joints at once, while the red, green and blue graphs
present the∞-norm for each joint independently. For our fast
motion, the nominal torqueτnom = 18.4Nm is exceeded for
some intervals even with no external disturbance.
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(b) Upper bounds with disturbance‖τdist‖2 ≤ 0.01Nm.

Figure 14: Upper bounds for∞-norm of the torques for all jointsτbound
(magenta) and for every joint separatelyτi,bound (red, green and blue) on
the superimposed time grid.

The second method is based on (32) and produces tight
bounds and can be used for fast motions with high distur-
bances. As a downside, analytic expressions for the bounds
of the inverse mass matrix

[
M−1

]
should be provided. This

results in extra calculations depending on the size of this
matrix, and thus on the number of DoFs. It can be seen from
Fig. 15a and Fig. 15b that with an analytic solution, it is
possible to have a disturbance torqueτdist more than100 times
larger than for the∞-norm of the inverse mass matrix.
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(b) Torque bounds with disturbance−1.3 ≤ τdist,i ≤ 1.3[Nm].

Figure 15: Torque bounds with the analytic expression for upper boundary of
the inverse mass matrix and all other components. Upper and lower torque
bounds are calculated for every joint separatelyτi,bound (red, green and blue)
on the superimposed time grid.

The third approach provides an analytic expression for all
terms except for the inverse mass matrix which is calculated
with the∞-norm, see Fig. 16a and 16b. One can see that the
∞-norm of the inverse mass matrix provides torque estimates
inside the required limits, but the ratio between the norm of
the inverse mass matrix and the maximum applied torque is
higher than for pure analytical approach. The contacts with
the ball are taken into account individually around the point
of impact. It can be seen in Fig. 16c that the contact affects
only the neighboring intervals with the disturbance torqueas
shown in (27).

The statistical study in Fig. 17 provides the statistical
analysis of the time required for torque evaluation and torque
deviation for all the three presented methods.

For all presented torque estimation methods, closed-form
symbolic equations for system matrices of the robot need to be
known. For∞-norm and for a mixture of the analytic method
with∞-norm of the inverse mass matrix, inversion of the mass
matrix is not needed. Instead, the minimal eigenvalue of the
mass matrix is required. Of course, the higher the number of
DoFs, e.g. for humanoid robots, the higher number of interval
subdivisions need to be performed to provide tighter bounds.

To sum up, results provided by torque estimation methods
are correspondent to their computational complexity. Infinity
norms provide the capability for real-time computation but
perform better for conservative motions with small or no
disturbance. Tight torque estimates with the analytic expres-
sions are preferable for fast motions with high disturbances or
parametric uncertainties. However, they are slower and require
preliminary analysis of the kinematics of the robot and the
resulting structure of equations for the inverse mass matrix.
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(a) Torque bounds with disturbanceτdist,i = 0Nm.
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(b) Torque bounds with disturbance−0.01 ≤ τdist,i ≤ 0.01Nm.
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(c) Torque bounds with the short-time contact for average external
torque τext,av = 2[Nm] and disturbance torque deviationτdist =
0.065[Nm], τdist = −0.065[Nm]

Figure 16: Torque bounds for the mixed torque estimation with∞-norm for
upper boundary of the inverse mass matrix and an analytic expression for all
other components. Upper and lower torque bounds are calculated for every
joint separatelyτi,bound (red, green and blue) on the superimposed time grid.

The mixture of analytic bounds with infinity norm performs
well for fast motions, avoids complex computations for chosen
elements and provides torque bounds that are suitable for real-
world manipulators.

VI. CONCLUSION

In this article, we develop a novel method that deforms
precalculated robot trajectories in response to changing task
conditions. It allows preserving the features of original trajec-
tories dependent on the desired derivatives of a motion. Such
desirable task behavior is adopted with the computationally
efficient algorithm that outperforms similar motion adapta-
tion methods using the spline decomposition technique. The
feasibility of the produced trajectory and its tracking control
with real-world torque-limited actuators is thoroughly inves-
tigated. Guarantees for trajectory and torque boundednessare
provided in presence of external disturbance and parametric
uncertainties. This makes the generated motions dynamically
consistent with the robot model, torque-limited actuatorsand
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(b) Statistical evaluation of the torque deviation for the three torque
estimation methods. The torque estimation deviations are shown for
every single joint torque separately.

Figure 17: Statistical evaluation of three torque estimation methods. The
analysis was performed by running simulation of each method100 times
with |τdist| ≤ 0.01[Nm]. The central line is the median, the edges of the
box are the 25th and 75th percentiles. The evaluation is shown for the whole
motion consisting of2 segments and68 subintervals. All calculations are
done with an Intel Core i3-3120M CPU with 4GB RAM.

controller parametrization. An adaptive approach to a trade-off
selection between the size of deformation, trajectory similarity
and available computation time allows deriving physically
plausible motions online.

Even though the proper choice of a motion from the
database can provide the desired robot performance, the
method can work even with a single or no precalculated
trajectory. In the latter case, original trajectory is initialized
with zeros and thus will minimize the desired derivatives of
the motion profile.

The timing of the overall motion and of fixed points is of
great importance as they remain unchanged after deformation.
Deformation works for the situations when the motions in the
database have shorter time duration than the time availablefor
the real motion. i.e.∆tcomp ≥ 0. Otherwise, one should cut
out a part of the original trajectories or apply time scalingto
them. In this case, the minimum derivative deviation will be
provided with respect to the time scaled trajectories.

The experimental validation for the spline deformation is
performed with several planar volleyball scenarios. These
experiments clearly show the online capability, high accuracy,
repeatability and robustness of the generated motions in pres-
ence of disturbances.

Future work will be focused on guaranteed feasible motions
in a fixed amount of time and on extending the applicability
of the method to other robotic tasks.

APPENDIX A
M INIMIZATION OF THE DESIREDDERIVATIVE OF MOTION

It is stated in Sec. III that the term
[
L

P̄

]+ [
0

C̄2

]

, (42)

can be expressed in the continuous domain by a spline. As
the matrixL consists ofn-th order finite differences along the
entire trajectory and the matrices̄P, C̄2 specify waypoints,
the term in (42) can then be interpreted as minimizing the
n-th derivative along the trajectory while passing a set of
waypoints. An optimal trajectoryxopt is then calculated as

xopt = min
x

I(x) = min
x

1

2

T∫

0

(

x(n)(t)
)2

dt. (43)

Through the calculus of variation we consider the disturbed
trajectoryx(t) + ǫη with the scalarǫ and η as an arbitrary
function fulfilling the boundary conditions

η(0) = 0, η(T ) = 0,

η̇(0) = 0, η̇(T ) = 0, (44)

· · · · · ·
η(n−1)(0) = 0, η(n−1)(T ) = 0.

This results in

I(x+ ǫη) =
1

2

T∫

0

(x(n) + ǫη(n))2dt,

dI(x+ ǫη)

dǫ
=

T∫

0

(x(n) + ǫη(n))η(n)dt. (45)

For x to minimize I(x + ǫη), the following condition has to
be fulfilled. In all other cases the trajectoryx is not optimal.

dI(x+ ǫη)

dǫ

∣
∣
∣
∣
ǫ=0

= 0 =

T∫

0

x(n)η(n)dt (46)

Through partial integration of (46)n− 2 times we obtain

T∫

0

x(n)η(n) = x(n)η(n−1)
∣
∣
∣

T

0
︸ ︷︷ ︸

=0

−
T∫

0

x(n+1)η(n−1) = · · ·

=

T∫

0

x(2n)η ≡ 0 (47)

as the resulting condition that must hold for any functionη.
This is the case for every function fulfilling

x(2n) = 0 ∀t ∈ [0, T ]. (48)

Any (2n− 1)-th order polynomial of the form

x =

2n−1∑

j=0

ajt
j (49)

fulfills this condition.
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APPENDIX B
FEATURES OFBERNSTEINPOLYNOMIALS

A. Properties of Bernstein Polynomials

Partition of unity property:
l−1∑

k=0

Bl−1
k = 1.

Non-negativity property:

Bl
i ≥ 0.

The derivative of a Bernstein polynomial:

Ḃl
i = l(Bl−1

i−1 −Bl−1
i ),

whereBl
k = 0 for k < 0 andk > l.

B. Derivation of Bounds for Bernstein Polynomials
Using these properties, we derive velocities and accelera-

tions of deformation part. Since coefficientsck from (22) are
constant, the expression for the velocity is as follows

ẋs =
l∑

k=0

ckḂ
l
k = c0Ḃ

l
0 + c1Ḃ

l
1 + . . .+ clḂ

l
l . (50)

Derivatives of the separate Bernstein polynomials

Ḃ
l
0 = l(Bl−1

−1
︸ ︷︷ ︸

= 0

−B
l−1
0 ),

Ḃ
l
1 = l(Bl−1

0 −B
l−1
1 ), (51)

. . .

Ḃ
l
l = l(Bl−1

l−1 −B
l−1
l

︸ ︷︷ ︸

= 0

).

After substitution of (51) into (50) we get

ẋs = l((−c0B
l−1
0 + c1B

l−1
0 ) + (−c1B

l−1
1 + c2B

l−1
1 )

+ . . .+ (−cl−1B
l−1
l−1 + clB

l−1
l−1)) = l

l−1∑

k=0

(ck+1 − ck)B
l−1
k .

Analogously, for acceleration we get

ẍs = l

l−1∑

k=0

(ck+1 − ck)Ḃ
l−1
k

= l(l − 1)

l−2∑

k=0

(ck − 2ck+1 + ck+2)B
l−2
k .

Therefore, velocities are bounded through the following chain
of inequalities

ẋs = l

l−1∑

k=0

(ck+1 − ck)B
l−1
k

= l((c1 − c0)B
l−1
0 + . . .+ (cl − cl−1)B

l−1
l−1)

≤ l( max
k=0,...,l−1

(ck+1 − ck)B
l−1
0 + . . .

+ max
k=0,...,l−1

(ck+1 − ck)B
l−1
l−1)

= l max
k=0,...,l−1

(ck+1 − ck)(B
l−1
0 +B

l−1
1 + . . .+B

l−1
l−1)

= l max
k=0,...,l−1

(ck+1 − ck) = ẋs.

Analogously, bounds are derived for acceleration

ẍs ≤ l(l − 1) max
k=0,...,l−2

(ck − 2ck+1 + ck+2) = ẍs.

APPENDIX C
INFINITY NORM BOUNDS

The variables for bounds are derived using∞-norms and
interval analysis of continuous functions on closed intervals.

Upper bound for a single matrix element can be found as

‖ai,j‖∞ =max
q,q̇

(|sup(ai,j)| , |inf(ai,j)|),

q ∈ [q, q],

q̇ ∈ [q̇, q̇].

Bounds for vector elements includinḡg are calculated as
analytic expressions in a vector form

‖a‖
∞

= max
i

(|ai|) = max
i

(‖ai‖∞).

Matrix elements bounds includinḡm and c̄ are found as
follows

‖A‖
∞

= max
i

(

n∑

j=1

‖ai,j‖∞).

The derivation of the‖J+‖
∞

is dependent on the dimen-
sionality of the robot Jacobianmj and the minimum singular
valueσj,min of the JacobianJ

∥
∥J+

∥
∥
∞
≤ √mj

∥
∥J+

∥
∥
2
≤
√
mj

σj,min
.
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