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Abstract—The planning and execution of real-world robotic  resulting solutions should be generated online, if not-tiea,
tasks largely depend on the ability to generate feasible motions as a response to the updated sensory data. That is patticular

online in response to changing environment conditions or goals. jynartant for dynamic manipulation, motion imitation and
A spline deformation method is able to modify a given trajec- 7
autonomous driving.

tory so that it matches the new boundary conditions, e.g. on ) ) )
positions, velocities, accelerations, etc. At the same time, the There exist different conceptual approaches to motion gen-
deformed motion preserves velocity, acceleration, jerk or higher eration, however, none of them is capable of satisfying all
derivatives of motion profile of precalculated trajectory. The the requirements. Learning methods for motion generation

deformed motion possessing such properties can be expressed b%an be fast, but they generally do not include robot model
translation of original trajectory and spline interpolation. This '

spline decomposition considerably reduces the computational and g'uaranteed onllng constraint Satlsfact!on. On.thera:gnt
complexity and allows the real-time execution. Formal feasibility Planning and replanning based on classical optimal control
guarantees are provided for the deformed trajectory and for may address all type of constraints including the nonlinear
the resulting torques. These guarantees are based on the spdciargpot dynamics, i.e. they are dynamically consistent. Hame

properties of Bernstein polynomials used for the deformation it is computationally expensive and in realistic cases tow's
and on the structure of the chosen computed torque control

scheme. The approach is experimentally evaluated in a number for online application. .Inistead of CF’mP'ete replanning we
of planar volleyball experiments using3-DoF robots and human Propose to resort to efficient approximate methods. The key

participants. scientific challenge is to incorporate the different typds o
Index Terms—Manipulation planning, motion adaptation, mo- ~CONStraints for a modified motion under specified time limits
tion control, path planning for manipulators. The subject of this article is online motion deformation

which preserves the derivative profile of an initial (pladne
or learned) motion, incorporates desired boundary canditi

I. INTRODUCTION O X
and checks violation of trajectory and torque constraihte

F OR many years rol_aot|c tagks .USEd preplanned reloetmr‘(eesulting approach provides a reactive motion generatiith s
motions for industrial applications. However, nowaday;

3ble for robotic manipulators with non-negligible dynasiic
there is a deep need for robots with the capability of doing P gl y
a variety of tasks with desired encoded behavior but with-

out offline recomputation of the whole motion. It becomed. Related Work

increasingly important to generate motions in accordané® W  gyisting motion generation methods only partially possess
changing goals and adapt to the changing environments., Thys, qesired features for online motion adaptation.

motion planning for reactive real-world scenarios needs to 1) Optimal Control and Optimization MethodsDptimal

fulfill several requirements. On the one hand, it needs o) allows setting task goals, imposing a large variety
comply with the imposed constraints such as position, ¥810C ¢ constraints and achieving the desired performance. Op-

or acceleration limits, be able to avoid obstacles and at thg,a1 control Problems (OCPs) are oftentimes solved with
same time prevent torque saturation. On the other haphmerical approximate methods such as direct collocation o

Manuscript received December 30, 2016; accepted Septembe2023. multiple shoptlng [1]. Due to the complexny of .OCPS, such
This paper was recommended for publication by Associate Eité-raisse a recalculation cannot be done online, especially for non-
and Editor A. Billard upon evaluation of the reviewers' commserThis |inear dynamic systems and nonlinear constraints. Thezefo

work was supported in part by the European Research Coundiruthe | . f OCP diti . ired .
European Union’s Seventh Framework Programme (FP/2007-20ERC SOMeE relaxation o conditions Is required to Improve

Grant Agreement n. [267877], partly from the European Umidtorizon 2020 the computation time. For instance, the method for creating

Research and Innovation Programme under Grant Agreement 8438k  optimal motions with the satisfaction of continuous indiya
project “Robotic Assistant for MCI Patients at home (RAMCIRNd in traints offli d | ing th for h id robmot
part by the Technical University of Munich - Institute for ¥ahced Study constraints ofiline and replanning them Tor humanold ropots

(www.tum-ias.de), funded by the German Excellence Init@(@orrsponding implemented in [2]. For these safe motions, solutions anado

author: Alexander Pekarovskiy.) _ _ _ using semi-infinite programming which is computationally
A. Pekarovskiy and M. Buss are with the Chair of Automatic Coint

Engineering and the TUM Institute for Advanced Study, TecainUniversity COStly’ whereas replanmng them m'ght be faster but it works

of Munich, Lichtenbergstr. 2a, 85748 Garching, Germany only in the vicinity of the safe motions in its joint space.

{a. pekarovskiy, mb} at tumde N Another option is to relax the original OCP to a trajectory op
T. Nierhoff and S. Hirche are with the Chair of Informatioriemted . . . bl iall . h h il

Control, Technical University of Munich, D-80333 Munichefsnany tmization problem, essentially assuming that the conrt

{tn, hirche} at tumde do the job of perfectly tracking the trajectory. The nondine



2 IEEE TRANSACTIONS ON ROBOTICS

OCP is transformed into a large-scale optimization prografor human-related applications as they preserve affinariant

in [3] with B-splines used for joint positions. Time intefsa features of the trajectories. Laplacian trajectory editja5]

and corresponding polynomials are used for approximatipneserves the local trajectory properties through a lepsires

of inequality constraints and the cost. However, this meth@pproach while keeping a set of positional constraints fixed
does not consider the influence of external disturbance This method is based on a Laplacian mesh optimization [26]
system parameter uncertainties on the tracking controllilom computer graphics to approximate 3D surface meshes,
Thus, motion feasibility can’t be fully guaranteed. For gdea  but it is applied for path deformation.

trajectories, optimization can be performed with gradiget 5) Boundedness of the Robot Motio@nce the desired
scent methods [4], [5] or with sequential convex optimiaati robot motion is obtained, trajectory and torque boundsglon
[6]. Optimization of polynomial trajectories of the endegftor with a trajectory tracking controller play a critical role t
with inequality contact constraints can be done by varyirgkecute it properly. Reactive control and robustification f
the boundary conditions [7]. Sampling based RRT replannat® running robot are done in [27] by combining deadbeat
are used in [8], [9] to compute multiple feasible motions ancbntroller and the sequential composition [28]. This mdtho
to choose the best one based on predefined metrics. Theseks for discrete behavioral policies and chooses gottsta
methods are inherently of a randomized nature and thusreequaken from a discrete set. Modeling errors are transformed i
excessive computation time to generate multiple motiorts aa joint acceleration disturbance [29] to track a trajectoith
check for obstacle avoidance. a prescribed accuracy. Uniform boundedness of inertia, [30]

2) Time-optimal Path Plannerdn time-optimal path track- [31] and Coriolis/centripetal [32] matrices is importarur f
ing [10], trajectories are created through replanning of @esigning controllers and providing global Lyapunov digbi
given trajectory in the temporal domain. This method saissfiA computed torque controller yields tracking error dynasnic
torque constraints but requires recalculation of a boundas a linear system, where an error is dependent on the inverse
curve for maximum velocity for every newly prescribed pathof the mass-inertia matrix, the disturbances and the feskdba
Moreover, it is only applicable to robots with perfect modetontroller parametrization [33].
knowledge. The method has been extended in [11], [12] andThe question is how to provide a computationally efficient
[13] to take also admissible acceleration regions and ®rgsubstitute for the optimal control solver with the specifistc
constraints into account. Online reactive motion planidd] [ function that preserves dynamic properties of the existing
produced trajectories with different time constants ofuals robotic motions. It must also incorporate boundary condai
and force loops using cubic curves. Time optimality alonthwi with their respective time instances and major inequality
time-synchronization is achieved in [15] by calculatingnmi constraints for kinematic and dynamic robot parameters.
imum synchronization times and corresponding polynomials
for open-loop joint trajectories every computation cydst it
doesn't take robot dynamics into account.

3) Learning Methodsi earning methods can be applied for A novel method based on splines for online recomputation
trajectory generation using attractor dynamics. For imsga of fast reactive robotic motions and formal guarantees for
Dynamic Movement Primitives (DMPs) [16], [17], [18] andfeasibility of the resulting robot motions is derived. Bej
Gaussian mixture models (GMM) [19] are commonly usetbries obtained with the spline deformation method preserv
for trajectory generation with motion imitation. A mixtud the desired properties of the original trajectories thaiechel
kinesthetically learned motion primitives is implementied on one or several derivatives of the motion profile. This oot
[20]. Motion generalization is provided only in the vicipit adaptation provides minimization of velocity deviationr fo
of the learned DMPs. Thus, a large database of demdimear splines, minimization of acceleration deviation ¢abic
strations that scales with the number of new situations agglines, jerk deviation minimization for quintic splinesc.
controlled parameters is required. Learning approaches &epending on the application, different motion derivadive
easy to program, but they become computationally inefficieare of interest: for example, the velocity for mobile robot
when constraints’ satisfaction for the produced motionstmunavigation, the acceleration in dynamic tasks such asnigatti
be checked. or locomotion, and the jerk for natural human motion imita-

4) Deformation Methods:Retargeting or deformation of tion. After the deformation, a feasibility verification rhed
previously calculated motions can be implemented to prprovides upper bounds for task space positions, velocities
serve desired features of the task. Gleicher [21] introducaccelerations, as well as joint torques. Tight bounds fajues
retargeting motions for characters in computer animatien ware derived using interval-based analytical expressiams f
ing B-splines and large space-time constraint optimizatioindividual torque components and a mixture of analytical an
A multilevel B-spline fitting technique [22] is proposed tooco-norm. By implementing such a mixture, we provide a trade-
incorporate a big set of position and orientation constsaiA  off between tightness of the bounds for inequality constsai
non-rigid registration [23] method is applied to the taskthw and computational time. The bounds for the feedback error
variable scene geometry and initial conditions. This appho and the control signal are derived for a controller depemdin
minimizes the geometrical distance between original argkta on the parametric uncertainties and the external distadan
sets of points and additionally provides smoothness of theExperimental validation showing online capability, adapt
mapping function using thin plate spline regularizer. Defoability and robustness of the method is provided for sev-
mations based on affine transformations [24] are suggestFdl robot-robot and robot-human planar volleyball sciexsar

B. Contributions
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where discontinuous short contacts with a ball require high Problem Formulation for Trajectory Deformation

accuracy and precise timing of the motion. Choice of the bestthe gverall deformation procedure with preservation of the
hitting action and the best-precalculated motion are ddrivdesired derivative can be formulated as an optimizatiof-pro
!oased_on the chosen game strat_egy. An overall torque asalysin Find a trajectory and its derivatives;(t), &q(t), #q(t)
is carried out for the given robotic system. which minimize the difference between theth derivative of

In [34] we presented a preliminary approach for retargefs trajectory and the-th derivative of the original trajectory
ing of specially designed optimal trajectories in constedi . for all task space coordinates, given the original motits, i

environments using cubic splines. Still, it wasn't capable time duration and the new boundary conditions uprte-1)-th
keeping desired derivative profiles and providing boundaggrivative forn > 1:

conditions higher than velocities. In [35] we derived infyi

norm boundaries for robot joint torques in the case of théccub " drzy  d'zx, ||

spline interpolation. These bounds have a closed-forntisalu Tlnw'znjbzde J = / H T P dt (1a)

but are quite conservative in presence of external dishwda S 0

Based on these preliminary results, in this article, weoihice  subject to x4(t,) = T4, (1b)

a method Whlch_ls capab_le of motlon_ adapta'qo_r_] with a broad m((ik) (t) = mgz)’ ke{l,....n—1}, (1c)

range of dynamic behaviors and online feasibility guaresite

for the resulting robotic motions. ty =t7, (1d)
The remainder of the article is as follows: Sec. Il intro- g(q(t),q(t),q(t), 7(t)) <0, te[0;ts], (le)

duces a framework for motion control using spline deform%\-/here z. € R™ is the overall deformed traiectoryn is
tion. Sec. lll describes the trajectory deformation prscés - d = : jectoryn |
Sec. IV, the feasibility of trajectory tracking for kinen@aand the dlm_ens_lonahty of the robot _task space coordinatess
dynamic constraints is analyzed. The experiments for aamlar%he derivative order of the motion profile that needs to be

volleyball scenario are described in Sec. V. Finally, Sekt. \preserved, is the fixed final time, and; is the time duration

discusses the presented approach and suggests ideagter fu?_]c the or|.g|nal traj(%c_t%ry. Boundary and switching condi-
expansion. tions@ay, &ap, ..., xy, ~ nNeedtomatcha, = [0 ¢, tf],

where switching timest, = [ts1 ... ts,] are assigned
when the deformed motion consists of several phases.

In contrast to OCPs, the overall optimization (1) does not
explicitly consider the dynamics of the robot. Therefotdsi

We consider online motion generation for reactive robotignportant to have feasibility check to cope with inequation-
tasks with prescribed behavior. For such types of motians,straintsg for produced joint positions, velocities, accelerations
is important to satisfy specific boundary conditions forefreq’qﬁ and torquesr : |7| < Tuom, Which implicitly encode
motion or contacts and to pl‘eserve the chosen derivativetﬁé Constraints imposed by the under'ying robot dynamics
the motion profile. Additionally, generated motions need t@cluding actuator constraints. Thus, inequality coristsa(1e)
comply with position, velocity, acceleration and jointdoe guarantee dynamic consistency of the deformed trajectory,
constraints. All the following requirements are incorgethin \yhich has to be followed by the real-world manipulator. The
the spline deformation approach, which is proposed here. cost function (1a) provides motion derivative presenvatio

The motion generator is based on precomputed motion Pguality constraints (1b)-(1d) impose boundary condtitor

set of motions that are calculated offline and the spline dgitial, final and intermediate time instances of the mation
formation method that incorporates new boundary condition
obtained from updated sensory data. Figure 1 illustrates_a

scenario for a robot that moves from its new initial state t%' Conceptual Approach

Il. SPLINE DEFORMATION FRAMEWORK FORMOTION
CONTROL

the new end state in a task space. The block diagram of the spline deformation framework for
the robot control is presented in Fig. 2. It consists of arinefl
Deformed trajectory generator in task space and a model based d&lgorit
zap(ts), xhy (t1)4 e that sets new fixed boundary qonQitions. It is beneficial &pke
o (13), 25 (7) several precomputed trajectories in the database to hegease
z4(0), 2k, (0) distinctive motions with various motion derivative profiland
a,(0), ¥ (0) execution times. The new trajectaty;, &4, &4 is generated by

spline deformation and then followed by a feedback corgroll
The solution of the spline deformation problem is decom-
posed into several parts that will be discussed further & th
article. First, we precompute trajectories that possesgeatk
I\ properties. Second, the deformation algorithm is applieed t
i ) ) o preserve derivatives of the motion profile and fit new bound-
Figure 1: Robotic manipulator operating within its task spathe task space diti Third. f ibili did
trajectoryz, (green) of the end effector is deformed with the new bounda@ry conditions. Ird, feasibility guarantees are prodider

conditionsa qp, =¥, . The resulting deformed trajectoty, is depicted with ~trajectories obtained through deformation.
the blue curve.
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Figure 2: Overall motion planning and control scheme. New bawnand switching statesg(¢s), acg“)(tb) and its timingt; are based on the task goal. A
motion selection algorithm chooses one original motey) &,, &, of time durationt; from the database that fits the desired task best. Splinerdafion
of the original trajectory produces a new trajectary, ¢4, &, that passes through new fixed states and preserves a desthederivative of the selected
original motion. If deformation is performed in task space dawmates, the trajectory is transformed into joint space dioates before passing it to the
controller. The controller follows this trajectory, givéine external disturbanceg;t .

The major steps for the application of the spline defornmatio [1l. SPLINE DEFORMATION METHOD
method are detailed in the Algorithm 1. The more detailed

. . . i In order to deform trajectories, we design the method that
explanation for separate steps will be given further in tr1§eeps chosen local derivatives of motion profile, incorpesa
paper. :

new boundary conditions and modifies the entire trajectory
— not just a single time step. In this section, a solution
for the problem (1) is derived, for now excluding feasililit
guarantees for inequality constraints (1e).

Algorithm 1 Spline deformation and feasibility check

Generation of original motions and corresponding grids
Assignment ofK,,, K,, controller gains

Setting the desired derivatives to be conserved
Encoding derivatives of the original trajectories &

A. Finite Difference Parametrization of Trajectory Dertixees

Calculation of bounds fox,, ,, &,
Sorting precalculated motions w.r.t. the task objective
isMotionFeasible— false
141
repeat
Initialization of boundary conditiong(t;), wélk) (tp), tp
Choice of thei-th motion from the database
Spline deformation of the motion
if bounds forr, ¢ or ¢ are exceededr ¢t > Atcomp then
i++
else
isMotionFeasible— true
end if
until isMotionFeasibleor i > 7.«
if isMotionFeasiblehen
Execute motion
else
Stop motion
end if

The spline deformation algorithm works for original mo-
tions that should be at lea6 smooth. These motions can be
obtained by applying motion generation methods or through “®% —
demonstration. Regardless of what motion generation ndetho

Local trajectory properties for trajectory deformatiomca
be represented as a linear system of equations. Together wit
boundary constraints, we obtain an overdetermined sysfem o
equations that can be solved using least squares. The arigin
trajectory is split intony equitemporally spaced sampling
points

P = [p(tl)J)(tQ), .. ,p(tnd)]T € Rraxm

ti+1—ti:At:w7 Vie{l,...,nd—l}, (2)

ng

where m is the number of task space coordinates, trajectory
duration (1d) is fixed as,, = t;.

Using this representation, we discretize the originaletra;
tory asP, = [p},p3,. .-, p;’Ld]T. Local derivative properties of
original trajectory are encoded with the differential Laq#-
Beltrami operatord [26]. We use local derivatives of motion
profile that are calculated for each sampling pairthrough
the finite difference. The velocity and the acceleratiomglo
trajectoryx, are derived as

DPiy1 — Pi_q .
61}1:77 27"'7 -1 )
X AL red na — 1}
Pl —2p7 AP
) ! Atg == ie{2,...,ng—1}, (3)
T
A = [(52 63 6de_2 5nd—1] )

is chosen, the deformation procedure will preserve thearos
derivatives of motion profile of the original trajectory whi wheren, is a number of sampling points. At these points we
possess essential behavior information for the task. want to keep local properties of the trajectory. For higheleo
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derivatives, we need to apply special finite differencestiier The higher derivatives for the discrete Laplace-Beltrapgre
border elements, e.g. the expression for jerk is as follows ator are derived analogously.

5. — Piio — 2P0 + 2P0 1 —Pi_o
Jyi =

INE ,i€{3,...,nd—2},
0 _3p0 4 3p° _ po
67,1 — pz+2 p7,+;t3 pZ 1)7,717 Z — 2’ (4)
0 _3p0 4 3p0 . — O
5, = Pt P Atgplq Pics g1,

where right-sided finite difference scheme is applied &ps
and left-sided finite difference scheme @y, 1.
Positional constraints of the form

je{l,2,...,n4} 5)

pin a specific sampling poing; to a desired positior; with

p; = ¢y,

The discretized deformed trajectord?, is obtained by
solving the following system of equations

J ARSIV
S NE
Solving (12) requires pseudo-inversion of the matrix
(L P]T. Thus, for a large number of sampling points and
positional constraints this method becomes infeasibledal-

time computation and hence an alternative is derived in the
next section.

12)

B. Spline Decomposition for a Single Derivative

a weighting factorw; € Ry to prioritize the constraints. The We introduce an equivalent form for a single motion phase
matrix C' contains all boundary positions at the sampling (12) by splitting the term for positional constrair@sinto two

points. B -
The matricesP and C of dimensionp x ng assignp
positional constraints as described in (5) with

D _ 1, ifpj:Ci, iE{l,...,p}
Pij _{ 0, otherwise )
For instance,p = 2 for a single phase and matri®
becomes
— 1 0 0 0 0
P= {0 0 0 0 1] ' 0
pXng

We minimize the discrete version of the cost function (1

parts and converting them into the continuous-time fumstio
With this decomposition we do not need to compute matrix
pseudoinverse. The resulting continuous trajectory vélite
sought deformed trajectory,; from (1a)-(1d)

w1 (8] [F] ]

.»47 ~ 76
st.Ci+Cy = C,

=x,(t) + 0x; +x5(1) .
A B

0x; = x;, — x,(0) (13)

First, positional constraints if; are chosen so that the term

aﬁ\ results in a translation of the original trajectary, to the

and set the boundary positions (1b) by rewriting (3), (4) artfW initial state, seeD example in Fig. 3.

(5) in the following matrix form

L A
2e-[3]
with the following finite differences for velocity profile
1
-5 0 3
1 9 1
1 2 2
1 At . . )
_1 0 1
2 2
1 9 1
2 2d ng—2xng
9)
for acceleration profile
(1 -2 1 i
) 1 -2 1
L, = .
2T AR . )
1 -2 1
1 -2 1
L dng—2xn
d X d(lo)
and for jerk profile
-1 3 -3 1 ]
-1 2 0 -2 1
I — 1
3= A3 . I
-1 2 0o -2 1
-1 3 -3 )
- dng—2Xng

11)

x 1S
/.
Tq !
_ - 1

/i zo(t%)

5%‘{
z0(0)
At At t ot

Figure 3: A 1-dimensional example of translation of the original trajegto
with spline interpolation.

Second,C; is obtained as the differenc€ — C,. Con-
sequently, the ternf3 minimizes n-th derivative of motion
profile that is encoded im\ while fitting C,. The proof for
n-th derivative minimization is provided in Appendix A. The
equivalent solution foi3 is a spline interpolation of the form

2n—1

xs(t) = Z ath.
k=0

Coefficientsa,, are defined by positional constraints and
additional specified boundary conditions (1c) - velocities
accelerations, etc. This way, the system of equations to be
solved for all coordinates has on®yum unknowns.

(14)
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C. Spline Decomposition for a Weighted Sum of Derivativesverall motion is split into smaller time intervals. Theved,

When the task requires simultaneous preservation of sevéfdf Section is dedicated to the derivation of the closedhfo
derivatives of the original motion, the same methodology golutions for constraintg from (1e). This feasibility check

applied. The optimization problem will have the following?/lows detecting constraint violation which leads to ferth
deformation with new conditions. We show how the time

form
. grid is obtained for feasibility check. On every segment of
f i i |2 h i d ti id we deri f closed-f
S diz, diz, the superimposed time grid we deri8etypes of closed-form
minimize J = /Zﬁl @ a || ¥ expressions for major motion components: analytic, infinit
' o =1 norm and mixed. These expressions are varying in complexity
subjectto  x4(ty) = xap, (15) and tightness of the bounds.
e Pty =2l ke{l,...,n—1},

ty =19, A. Notations for Evaluation of Bounds

where 5; is a weighting coefficient foi-th derivative andn Here we explain the notations we will use for interval-based
N gnting [36] bounds. We denote scalar interval [a$ = [z, T], with

Is & maximum derivative to_ be_ preseryed. .the lower and upper bounds T € R. The bounds of scalar
For every preserved derivative we introduce the Laplacian

e . . . rations are foun follow:
L, and finite difference matrix;, where the index denote Operations are found as follows

the corresponding derivative order. [a] + [b] = [a+ b, a+1],
B1Ly B1A la] —[b] = [Q_ b, a— b] J
el p=| 16 [a] [b] = [min(s), max(s)],s = {ab,ab,ab,ab},
e e - M:[a}lz[aa]{ll} 0¢ b
[0] [ P '

Therefore, the resulting solution for the deformed trajecis i ) _
An interval vectoris denoted agb] = {b | b < b < b} for

found as Ve i - =
n n component-wise inequality with the boundsb € R™. An
p1L1 [GiPAN p1Ly 0 alternative representation ¢b] is obtained with the center
1 = . }
g = | " S IR I 7 (17) vectorgc = 5(b+b) and the non-negative radius vecter=
Bn_Ln Bn_An ﬁn_Ln 9 %(b — b) as fO”OWS[b] = {b | bc — be < b < bc + be}
P & P & An interval matrixis set as
- ? [A]=[AA]={A|A<A<4A}

S.t. él -‘réz =C

where element4 is a translation of the original trajector with bounds A, A € R™™. It can be rewritten using
Y J ythe center matrixA, = %(A + A) and the radius matrix

The cquivalont for n he contnucus domain i a spline’k = b4~ A) aL4) = (4 A~ A< A< 4.+ A
Spectral radius of a matrix is(A) = max(] A; |), where\;

interpolation of the form i=1...m
1 are the eigenvalues 0.
S antk For a matrix-vector product betweed < R™*™ and
k=0 b € R™ the following holds
z®)=[f .. Bu] | .. (18) J
! 2.5 1AL, )] [b(5)]
i th J ’
&, ][] = S
2n—1 n Zj [A(WL,_])] [b(])]
= Z Z Biair | t*. An interval functionis set ad f] ([z]) = {f(z) | = € [z]}.
k=0 \i=1+| %] The infinity norm ¢o-norm) || f(x)|| ., is derived as
This spline interpolation consists of a sum of weighted poly | f(x)| = max | f(x) | .
nomials of degrees < [0,...,2n — 1]. That is by definition c _
also a(2n — 1)-st degree polynomial. With the help of these expressions we derive closed form

bounds for components of the robot motion.

IV. FEASIBILITY OF MOTION EXECUTION

Once the deformed motion is derived, a safety procedfe Time Grid for Feasibility Check
is required to check constraint satisfaction for the positi  Boundaries for all main kinematic and dynamic variables
velocity, acceleration and joint torques for every singtenp need to be provided for every time segment of the motion. The
of the deformed trajectory. This is done by performing size of segments influences not only the kinematic but akso th
feasibility check not along the entire trajectory but only adynamic properties of the task. Primarily, it affects bosifiar
segmentation points of the deformed trajectory. For thed, tthe torque required to follow the deformed trajectory.
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As the original trajectories ar€? smooth, there exist control characteristics. For CT + PD controller, the follogy

boundaries foec,, &, and &, relationship holds for closed-loop error dynamics:
[-’fo] (It]) = {:fo(t) |t elt]}, é+ Koé+ Kye = M g,
[&o] ([t]) = {@o(2) [ £ € [t]}, 19) u=—-Kye—K,é

(o] ([t]) = {&,(t) | t € [t]},
_ - _ wherew is a control input function, thé<, = diag(k,;) and
on the predefined original temporary grid K, = diag(2./k,;) are critically-damped PD control gains of
_ o 40 0 o the outer loop.

f=ftltelnbl. taelia i} (@20 If the lower and upper bounds of the main system and
In general case, the time grid of original motion (20) may na@ontrol variables satisfy the inequality constraigttom (1e),
match with the deformation grid from (2). After deformatiorthe motion is ready to be executed.
with (nq — 1) segments, the superimposed time grid in Fig. 4 1) Trajectory Feasibility: The superimposed time grid al-
allows putting together the closed-form bounds of the a&yi lows calculating upper bounds on the position, velocity and

and the deformation part from (13) and its derivatives. ~ acceleration of the deformed trajectory in a closed form for
each time interval independently. The spline-based dedfoerm
. R tion presented in Sec. Ill makes it possible to provide a
Lstart B bna—2 151 tng-1 oy closed form solution for the task-space boundsagf &,
F----- * —+—t I &, considering only the segmentation points. The deformed
T TT trajectory is split up into two independent padsand B as in
comp

(13) or (17). Since the element is solely a translation of the
Figure 4: The superimposed grid consists of the fixed origtime grid  Original trajectoryzx,. The additive deformation term is a

from (20) and the deformation time grid from (2). The time grid fpline  spline interpolation (14) or (18) that can be representéagus
deformation is aligned with the original trajectory at thendi of fixed Bézier splines for every interval as

boundary state,, = t‘; = ty. Interval Atcomp iS @ time remaining for

computationgssart IS @ time instance when a request for motion is received.

l
_ l
Checking the required velocities, accelerations, coletrol Ts = kz_;)c’“Bk(t)’ (22)
errors and torques only at the segmentation points reduces -

the overall computations, allows finding particular insv \yhere the weighting factors, denote control points of &ier

for controller parametrization. I =920 — 1 with

The remaining timeAt..m, is defined by the task and

calculated as the difference between overall time availé&nl Bl — l 1 )ik gk
the motion (¢,,, — tstart) @nd time duration of the original w(t) = k (1-1) ’
motion (t;’c—t?). I.e. for faster original motions we have higher tel0,1], k=0,...,1 (23)

bounds but more time for deformation and feasibility checks
Thus, it is useful to have several precalculated trajeesoaif

- ) ) . Further, we use partition of unity and non-negativity prop-
various time duranort; in the database. P y 9 Y prop

erties of a Bernstein polynomial together with the special
expression of its derivative. Therefore, every pqit) stays
C. Analytic Expressions for Feasibility Check within the convex hull of its control points. The same holds

for the derivatives of gp(t), since they are also Bernstein

Analytic expressions allow finding tight representation fg,q1ynomials. These properties, as well as bounds for the
trajectory, its derivatives and corresponding torques \@rye trajectory and its corresponding derivatives, are pravide
segment of the superimposed grid. We consider a task emc%‘fz)pendix B.

by an open-chain manipulator with the following dynamic Tight trajectory bounds are found using the interval analys

mode| Without loss of generality, we provide derivations for uppe
T =M(q)i+ N(q,q), bounds, wheregs IO\_/ver bound§ cap be found analogously. We
. . . provide the estimations oy, &4, &4 that are bounded by

where the termM (q)§ denotes the configuration-dependent

mass-inertia matrix,C'(q,q)q comprises the Coriolis and [@a] = [2o] + [as],
centrifugal forcesG(q) accounts for all gravitational terms [Xq] = [Zo] + [E], (24)
and F(q,q) includes the Coulomb and viscous frictional [Ea] = [0] + [Es],

forces.

We use an internal computed-torque scheme together Wiiere the original trajectory boundge,], [&,], [%,] are
an outer loop PD controller (CT + PD) to provide the desirederived in (19), and the deformation parts are found online
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for the j-th trajectory interval as where constant scalar is the base of the natural logarithm,
Mo and the analytic expression for the inverse matrix
[s] ([tj,ti+1]) =] min(c;r), lmaX(Cj,k)}
L k=0,...,1 k=0,...,1

[@s] ([tj; tj4+1]) = |l min(cj k1 — ¢jk), {max(cjet1 — ¢j)
L k=0,...,1—1 k=0,...,I—1

| e ()] e

L wheremin andmax operations are applied element-wise. This
(8] ([t £551]) = |10 — 1) min(c;se — 2061 +¢,0),  (25) Nterval calculation requires the decompositiormdf(M) and

k=0,...,1-2 det(M) into single scalar operations, which might become
-1 (c; o Fein) computationally demanding for multi-DoF robots.
k:ﬁﬁfﬁ’k” kLT CR) | 3) Torque Feasibility: Correct execution of the motion

based on the control points of the Bernstein polynomials. highly depends on torque constraints. The goal is to fipd out
Limiting values for deformed joint positiongy,] are ob- whether the produced torques to follow the deformed trajgct

tained through inverse kinematics mapping[ef,). Further- Stay within the constant intervah-Tiom, Tom| Of minimum

more, [d4] and[§,] are obtained as follows: and maximum actuator torques at every time step. This is
done by deriving lower and upper bounds for each factor
[da] = [J+] (] involved in the torque calculation. A segment-wise torque
lGa) = [JF] (4] + |:J:| (4] (26) feasibility check gives us the opportunity to judge whether
produced deformed trajectory leads to torque saturatiorotr
where[J "] and (ﬂ are dependent ofyg). depending on the parameters of the feedback controller. The
2) Bounds on Tracking Error and Imposed Disturbance: Method produces upper bounds for the joint torques in aglose

Bounds on tracking error are crucial when we want to ass€8§m that are easily verified. These bounds are based orrlinea
the motion feasibility under model parametric uncertaioty €rror system properties of computed torque with PD control
under influence of external forces. In general, externaider Scheme and special properties of the Bernstein polynomials
are mapped to the joint torques as; = J7 F.,;. Bounds on that allow taking into account only the segmentation poafts

Text CoUld be found using analytic interval analysis. the trajectory and its corresponding control points.
o T Tight bounds for the torquer,ound] to follow the deformed
[Text] = {Text | Text < Text < Text ) = [J7 ] [Fext] trajectory can be obtained as follows
Text] = 1 Tex Tex — Tex CSTX STX + Text,e ) ..
e g T S o S T T (Mool = (M) = [u] + [N] + Tosees (32)
ext T Text

Text,c = 2 ’ @) by substituting the minimum and maximum interval values of

_ Text — Text the components from (26), (27) and (30) found on the closed
Text,e = 2 intervals. The boundary values fa¥Z] ([q]) and[N] ([q] , [¢])

where [J7] depends orig,] and[F..,] represents a range ofhave simple analytic expressions ‘obtained by substitution
expected external forces for the contact interval, . is the where the boundary values fqrand ¢ are found as
average (center) e_xternal torq_ue that act.s asa modelad]ab(te [q] = [qd] + |e], (33)
torque, andre . is the maximum deviation (radius) from G re .
the average torque that is applied as the disturbance torque (4] = [ga] + €]
[Text,dist] = {Text,dist | —Text,e < Text,dist < Text,e }- The bounds found with analytic expressions based on in-
Similarly, if the robot system matrices or their elements aterval analysis are tight but computationally not so effitie
uncertain but bounded, they can be mapped to the disturbant@nly because this method requires findingn and max
torque. For example, lets assume modeled parametric unc@&tues for every operation between single elements of (32).
tainty AM in mass matrix resulting in This effect is particularly noticeable for the estimatioham
.. analytic expression for the inverse mass matrix requirdihtb
(7] + [Tpar,aist) = ([M] + [AM]) [q] + [N], (28) traclging erlraor and its derivative. !
where [Tpar dist] = [AM] [g].

Disturbance parts of external torques from external forces |nfinity Norm Expressions for Feasibility Check

and parametric uncertainty are combined as Torgque bounds provided by the-norm for the tracking of

[Taist) = [Tpar,dist] + [Text,dist] - (29) a deformed trajectory are easy to compute but offer rather
conservative estimates. In [35] we derived bounds dor
norm for cubic spline deformation. These estimates could be
generalized for the preservation of theth desired derivative
and for the case of disturbance due to contacts and parametri

Calculations for the control input functiom require the
calculation of boundaries for the inverse mass mavix !
and for the errors

[e] = [diag(4k )] [M‘l] [Taist] » uncertainty. Hence, the number of control points changés wi
pi the maximum derivative to be preserved.
. . _ For the 2-norm of external torque, the following relation
_ 1 ,
el = ldlag( k,,ie)] (M [, (30) will hold in case of the contact

[M] [u] = — [M][K,] [e] - [M][K,][¢], IText,aistlly < lTexdistlloo < [T ] [ Fextllo . (34)
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and disturbance torque due to parametric uncertaintyMbr than for the pure analytic method. Replacing other elements
. . . of analytic expression wittbo norms may lead to further
17l oo + ITpar,aistll o = [[MG + N(q. 4 + IAMGl  requction of computation time.
HTpar,distHQ < \/E”Tpar,dist”oc < \/EHAM‘I”(”' (35)

wherem is the length of the vectog. Therefore, bounds for V. EXPERIMENTAL VERIFICATION: PLANAR VOLLEYBALL
oo-norm of tracking error functiong; and ¢; are obtained  The spline deformation can be applied to motion planning
using the transfer functions of disturbance to error anchéo tfor a large variety of robotic tasks, especially where tieeti
derivative of error in Laplace domain as follows of computation, feasibility and ability to set new goalsinal
_ are the key issues. In this section, we present the scerario t
()] . < |G M7y . : ) ’ : :
lei®lloe < G (), | Td15t||2 illustrate the spline deformation method and its main fiestu

< {3 ||]\/_rl||2 | Taist |l (36) The objective is to play planar volleyball, that requireting
i the ball that must travel along the prescribed parabola. For
les () < [15Ga(s)]l, HM_ITdistHQ such a scenario, h!ttlng position, orientation, as welhqedr
1 and angular velocities, must be set for every hit. Thus_, mmse
< —— |M7Y|, I7aistll that 2-nd order boundary conditions must be set, he>
2k,;* 2 and at least cubic spline deformation is required to keep

with 2-norm of inverse mass matrikAZ-11 bounded b desired boundaries and to preserve desired motion prAfile
1 . . H ||2 y Moreover, the robotic volleyball is a very fast robotic tabkt
———, whereXy min IS @ minimum eigenvalue of the mas

by Silustrates very well the importance of online deformatipn

matrix and|7aist/|, < [[Text,dist | + | Tpar,dist |- feasibility checks and precise timing.
Thus, the following torque bound is derived

Thound,co =M [|§all s + M(K, |1€]l o + Ky llell o)+ (37)  A. Task Description

em([ldalloo + 1€l s0)* + 7 + llText.aist | o - We consider a problem of playing volleyball on the air-
B’;\ble as shown in Fig. 5, with a plan&rDoF robot arm gR)

wherem, ¢, g areco-norm bounds of system matrices that are”
gamst a human or another robot.

derived using the expressions from Appendix C. Torque norrft
become tighter when calculated independently for each join

as Ti,bound -

E. Mixed Expressions for Feasibility Check

Mixed expressions help to find an appropriate trade-off
between computational time and tightness of the bounds.
This becomes particularly important for robotic tasks with
limited reaction times and for the control methods where
the analytic expressions for some interval elements, e.g.
M~ = {M | M~'<M-'<M- T} is difficult to
obtain. Thus, one can substitute these expressions wititi@na
equivalent of theoo norms as

B B /Mar Figure 5: Air-table tilted by an angle: with attached robot manipulators
||M ! HOO <Vmu ||M ! ||2 < ) as a testbed. The gravitational acceleration on the sudatiee air-table is
AM,min gm = gsina.
MT<|MY < XM, (38) . . . .
- o0 TIM = N i M In this experiment, we apply spline deformation method
) ) N, with cubic polynomial interpolation that keeps minimum ac-
M= > — M| Ty, > Y. T celeration deviation to original trajectory and fixes boayd
I, min

) ) ) ) ) ~conditions for coordinatesc;, and its derivativeszy. By
wherem,, is a dimensionality of the matridf and J,,.,, 1S minimizing the deviation of the acceleration we can preserv

a square matrix of ones. Interval bounds for eigenvalues g curvature of the precomputed trajectory and also intljre
derived using center matrices and spectral radius [37], 188 minimize torque.

derive interval bounds for eigenvalues of symmetricalp@si  For our volleyball task, a tracking system provides us with
definite mass-inertia matrid/ as follows position, orientation and velocities of the ball. Using exa/
Aar] = [Aasmins Az max) (39) sgbsgquent frames, a.parabolic Frajectory of the_ objeeltltmy
Dot (M) — p(M.), A (M) + p(M.)] . Wlth its angular vt_alocny is predlc_ted throygh fllterlng _Ofet.
mmAsTe ¢y maxiite € visual data and using puck dynamic equations. The hlttm7g ti
With this substitution, we speed up calculations and get rig and stater, = [zn yn q&h}T JEh = [z Uyn wh]
of the necessity of calculating the large symbolic expressiis found using an optimization procedure based on the chosen
for inverse matrix. However, torque estimates become farggrategy, see Sec. V-B.
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For the robot, the task consists of hitting an incomingepeatability. It requires minimization of the linear andyalar
volleyball such that the ball flies over the net (in orange)elocities & ., during the hit of the partner robot and
and lands in the opponent’s field (in green). When modelingaximization of manipulabilityw,.x = max;, VJJT for
the impact of the ball, one has to find the full state vectahe hitting point of opposite robot. With such a strategy
of the end effector for the desired ball motion. The state representation, it is possible to manipulate more than one
described by the hit positiofi;, y,) on the table, the fixed object at a time by assigning different non-intersectiniiter
end effector anglep,, and its translationalv,,v,,) and with a proper phase shift for the return ball trajectories. O
angular(wy,) velocities. the contrary, the competitive strategy tries to increase th

The overall scenario is illustrated in Fig. 6. We presentdihear and angular velocities and decrease manipulaloiitiie
the ball - end effector collision model based on momentuspponent so that higher torques and accelerations arereequi
conservation in [34]. The chosen point for the rebound iBhe choice of the hitting state is set as the optimization

problem:
minimize &l REpopp — Wl Kwm, (40)
lgm Uyo U;;U;aw’«,tnd h,opp ,OPP max max»
w lé"vm where positive weighting matrice®2 and K are set for
cooperative scenario. Similarly, negative weighting casR

and K are applied for competitive scenarios. Mat#g = 0

is used when the robot plays against a human opponent. In
competitive mode, return parabolas with higher variatamge

are used against human participants.

Second, it is advantageous to use multiple precomputed tra-
jectories and select the one that needs to be deformed teast f
hitting the ball. The direct collocation optimal control thed
DirCol [1] is used to obtain a set of original trajectories.
Figure 6: Scenario overview of the planar volleyball taske Tobot rebounds qu _Our e_xperlm_ent Wl_th Stra_tegles_’ we precompuﬁgd: 5
the ball over the net (orange separation line) based on dcficedof a ball  Ofiginal piece-wise spline trajectories depicted in Fig. 7

flight trajectory and desired return motion. Green dashedectepresents the
original trajectory, while the dark red solid curve is a defed trajectory. Q

Human or robot player

1
ING o
x

Yellow circle depicts the resting position of the end eftecthe red circle is
a hitting state of the original trajectory, and the blue leirs a hitting state
of the deformed trajectory.

parametrized solely by the time of reboutyd This point is
used further for optimization based on the chosen strategy t

find the collision full statex;, anddy,. FSL7
In the absence of air friction and disturbances, the ball v p %
travels along the parabola after the rebound. Velocitigsv; ) SR I
; o ; . A
andw’ after the collision are assigned based on the desired oLy
return trajectory. This return trajectory can be uniquedfirted
by setting two waypoints along the parabola. Alternatively - ‘

single waypoint with the corresponding velocity provides t
same result.

The hitting orientation of the end effectaf; varies to
minimize J = ming, (W' — wq)?, wherew, is a desired Figure 7: Original precomputed trajectories (dashed cirwéth designed
angular velocity of the ball. For facilitation of the returnderivative profile, variable hitting states and time dumatiRed circles
stroke, minimization of the angular velocity is applied iféPresent hitting position for precomputed trajectories.
the cooperative scenario; = 0. For maximization of the
angular velocity in competitive scenanig, = wy,.x. Once the
suitable orientation is found the corresponding end effec
linear velocitiesv,y,, vy, are calculated accordingly.

After the hitting state is chosen based on (40), one can
select the best reference trajectotyand deform it as shown

in Fig. 8. This selection allows choosing motions with degir
derivative profile and proper time duration.

Lk f . .02 2
B. Volleyball Game Strategies it = argmin ke [[Ppr — B II5 + ke2 lppr — P75+ (41)

1€[1l..ny
The return motion of the ball depends on the state of the el ks (b, — 2 v)g
object before the collision and the contact with the robdte T ed\tna T Rfi)
state of the object in free flight solely depends on the ttime where n, is a number of precomputed trajectories ang
First, suitable hitting time and return velocities shouldre the weighting factors for each condition. It can be done
be chosen based on a selected strategy. For instance, usiag (41) by choosing a trajectory which has similar boupda
cooperative strategy implies enhancement of the operaticonditions and motion time.
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Figure 10: Frames of the planar volleyball experiment with enan playing
against the robot. The puck (black circle) is hit by the humad #en
rebounded by the robot.

Figure 8: Deformed trajectory (solid line) is derived in artie fit new hitting

positions (blue circle), orientation and velocities. Tlme to reach the hit
point and the time back to the resting position are fixed bottofinal and

deformed trajectories.

C. Experimental Evaluation

The experimental verification of the proposed spline de-
formation method has been conducted using an experiment:
setup consisting of tw@-DoF planar robot arms connected
to the edges of the tilted air-table, see Fig. 5. The airetabl

le of partiall moensating th ravitational nEo Figure 11: Frames of the experiment with two robots simultaskguggling
capab e of partially compensating the gravitational co two pucks (black circles). First, the right robot rebounde @f the pucks

of the object that is perpendicular to the surface and thiffiie the second puck approaches the left robot. Second efherobot
increasing flight time of the objects. The balls (pucks) anebounds the second puck while the first puck moves away franritt

flat end effectors ar8D printed rigid objects. Several markerg©bot towards the left robot. After that, the cycle repeajaim.

placed on the puck are tracked during the experiment using a

Qualisys motion capture system with a framerate&i Hz,

whereas the robot control system operates$ kHz rate. The f

workspace is bounded on each side of the table by a boarﬂg
Figure 9 shows the trace of the real experimental trajexsori

of the puck and the end effector.

The spline deformation method provides important features
r bounds and allows online computations. The advantage of
e method in computational time with respect to the DMP

and LTE techniques is shown in Fig. 12.

1

10
== Spline deformation (no overhead)

) . = Spline deformation (csape + ppval)
10 | wmmm | aplacian Trajectory Editing (LTE)
GE) mmmm Dynamic Movement Primitive (DMP)
= -1
o 10 +
=
n
B 107
o
o
S
Q407

-4

Figure 9: Trace of the central points of the end effector dredguck. 10 ‘ ‘ ‘ ‘
g P u 10' 107 10° 10* 10°

Figure 10 presents a first scenario where a human throws Number of sampling points;,

the ball and the robot hits it back over the net. Figure 12: Comparison of the computational complexity of ttjey gener-
Another scenario is presented in Fig. 11, where two robcfie" i spn defomation, BWF and LIE methode, A catan s

are juggling two balls over the net. These balls are tragelimr2015a running under Windovs

along two non-intersecting orbits: from the left to the tigh

with a lower orbit and from the right to the left with a higher The first two graphs include spline interpolation and eval-

orbit. This experiment shows the reliability of the impactiation of the piece-wise polynomial with standard Matlab

control and its timing and thus the accuracy of reaching fixédnctions (Spline deformation (csape + ppval)) and witH-sel

states. written optimized code (Spline deformation (no overhead))
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This comparison is done for a single trajectory deformatianotion presented in Fig. 13a and Fig. 13b is computed
step for a varied number of sampling points with discretiwat offline with the cost functionJ = gf > szdt
time 1ms. According to Fig. 12, for medium and large tra-equality constraints for initial and final points of
jectories the spline representation is more than one matmit the motion  z,(0) = x,(t7) = [1.3m,0.3m, 7/4rad],
faster than the LTE and two magnitudes faster than the DME,(0) = @,(t;) = [0m/s,0m/s,Orad/s]. The end state of
In log-log plot, relationship of the form = ax* appears as a the 1-st phase, i.e. hitting state? = [1.1m, 0.5m, 0.64 rad],
straight line with the power and constant term correspandie:) = [—1m/s,0.7m/s,0rad/s] occurs att, = 0.375s. The
to slope and intercept of the line. It can be also seen thaequality constraints consist of a range of motor torques a
for n, > 10* the effect of computational overhead, due t&inematic constraints.
the built-in MATLAB function for calculating splines (csap  Three methods for torque estimation provide different re-
ppval), significantly reduces. sults correspondent to their computational complexitye Th
first method is based on (37) and requirescamorm upper
bound for all components, see Fig. 14a and 14b. It is relgtive
fast as it mostly relies on precomputed values, but it is also
Due to the special properties of the Bernstein polynomiajie most conservative method and can be used for rather slow
and the computed torque scheme, we derive torque boumgstions away from singularities. The magenta graph in Fig.
for three different estimation schemes. These bounds a@ represents theo-norm for the matrix representation, i.e.
calculated for each interval of the superposition of optiara for all joints at once, while the red, green and blue graphs
deformed grids, with PD gainK’, = diag(1369, 1089, 841), present thexo-norm for each joint independently. For our fast
K, = diag(74, 66, 58). Figure 13 shows the original precom-motion, the nominal torque,., = 18.4 Nm is exceeded for
puted trajectory with the corresponding grid. For evergimal some intervals even with no external disturbance.
of this grid, tight bounds are calculated offline. In fact, we
can recalculate this original grid with any desired sulxion

D. Estimation of Torque Bounds

offline. 30
g
Z.
1.5 5 20
P N i x,[m] <
e L P anl E
S Z .l
8 1 et
g
: ¢,[rad] 0
< 0 0.2 0.4 0.6 0.8 1
£05 = — .
= i il Time, [s]
o) ul H y.[m]
(a) Upper bounds with disturbande-ais; ||, = ONm.
0 L L L L
0 0.2 04 06 0.8 1
Time, [s] =
(a) The optimal trajectory of the end effector in task space. Z. 40 1
— 5 o ¢ ‘
E /” 71 -g nom |
qg)' 0 HWV 'M“MWWIIWM | HIH | ui Mmmnmm
S } Ebl | 0.2 0.4 6 0.8 1
= ///’ Time, [s]
-%_'2-5 73 (b) Upper bounds with disturbanderaist ||, < 0.01Nm.
T2
O Figure 14: Upper bounds faso-norm of the torques for all jointsy,ouna
‘ ‘ ‘ ‘ (magenta) and for every joint separately,ouna (red, green and blue) on
0 0.2 04 06 0.8 1 the superimposed time grid.
Time, [s]
(b) Optimal joint torques. The second method is based on (32) and produces tight
Figure 13: Optimal motion and time grid generated by DirCol.cRlsertical bounds and can be used for fast motions with high distur-
dashed lines represent optimal time grid. bances. As a downside, analytic expressions for the bounds

of the inverse mass matrikV '] should be provided. This
Figures 14-16 contain grids from original trajectoryesults in extra calculations depending on the size of this
superimposed with the equitemporal grid used fanatrix, and thus on the number of DoFs. It can be seen from
deformation. We might use iterative subdivision, e.drig. 15a and Fig. 15b that with an analytic solution, it is
for motion re-deformation, thus it is preferable to keepossible to have a disturbance torgtig: more thanl00 times
2 independent grids. An exemplan2-phase optimal larger than for thexo-norm of the inverse mass matrix.
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(a) Torque bounds with disturbanee.01 < Tqis.; < 0.01[Nm). (@) Torque bounds with disturbanegs,; = ONm.
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(b) Torque bounds with disturbancel.3 < ruis.; < 1.3[Nm]. (b) Torque bounds with disturbanced.01 < 7qigt,; < 0.01Nm.
Figure 15: Torque bounds with the analytic expression fqrempoundary of __Tnom
the inverse mass matrix and all other components. Upper and lmngue § 15¢
bounds are calculated for every joint separatgly,unq (red, green and blue) — 10t
on the superimposed time grid. _8
- 57
|
20
The third approach provides an analytic expression for : 5_5,
terms except for the inverse mass matrix which is calculat 2 ‘ ‘ ‘ ‘ ‘
with the co-norm, see Fig. 16a and 16b. One can see that t 0 0.2 04 06 0.8 1
oo-norm of the inverse mass matrix provides torque estimates Time, [s]

inside the required limits, but the ratio between the norm ¢%) Torque bounds with the short-time contact for average external
the inverse mass matrix and the maximum applied torque! %L;‘E\ITI‘;’;]':&; = E[Ijgl]o 6?[‘1(3112]'5“[)6‘“06 torque deviatiamis; =
higher than for pure analytical approach. The contacts wi?h  Zdist = T

the ball are taken into account individually around the poiﬂfigure 16: Torque bounds for the mixed torque estimation witmorm for

. . . er boundary of the inverse mass matrix and an analytic ssiprefor all
of Impact. I_t can be S.een n F'g_' 16¢c th"’.‘t the contact aﬁe(g%per components. Upper and lower torque bounds are cadufat every
only the neighboring intervals with the disturbance torqse joint separately; vouna (red, green and blue) on the superimposed time grid.

shown in (27).
The statistical study in Fig. 17 provides the statistical . ] o
analysis of the time required for torque evaluation anduerg The mixture of analytic bounds with infinity norm performs
deviation for all the three presented methods. well for fast motions, avoids complex computations for @os
For all presented torque estimation methods, closed-fofffgments a_nd provides torque bounds that are suitabledbr re
symbolic equations for system matrices of the robot neea to World manipulators.
known. Foroo-norm and for a mixture of the analytic method
with co-norm of the inverse mass matrix, inversion of the mass VI. CONCLUSION
matrix is not needed. Instead, the minimal eigenvalue of theln this article, we develop a novel method that deforms
mass matrix is required. Of course, the higher the number mfecalculated robot trajectories in response to changsg t
DoFs, e.g. for humanoid robots, the higher number of interveonditions. It allows preserving the features of origimajec-
subdivisions need to be performed to provide tighter boundsries dependent on the desired derivatives of a motionh Suc
To sum up, results provided by torque estimation methodssirable task behavior is adopted with the computatignall
are correspondent to their computational complexity. Ityfin efficient algorithm that outperforms similar motion adapta
norms provide the capability for real-time computation buton methods using the spline decomposition technique. The
perform better for conservative motions with small or néeasibility of the produced trajectory and its tracking toh
disturbance. Tight torque estimates with the analytic espr with real-world torque-limited actuators is thoroughlyés-
sions are preferable for fast motions with high disturbarme tigated. Guarantees for trajectory and torque boundediress
parametric uncertainties. However, they are slower andireq provided in presence of external disturbance and paranetri
preliminary analysis of the kinematics of the robot and thencertainties. This makes the generated motions dynasnical
resulting structure of equations for the inverse mass matrconsistent with the robot model, torque-limited actuatamsl
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Infinity norm Analytic Mixed APPENDIXA
R MINIMIZATION OF THE DESIRED DERIVATIVE OF MOTION
c
2 It is stated in Sec. Il that the term
©
S 025 ] N
E L] (o
it — P a (42)
02} ] 2
S . . . .
o can be expressed in the continuous domain by a spline. As
.E 0157 ————- ] the matrixL consists ofe-th order finite differences along the

entire trajectory and the matricd®, C, specify waypoints,
the term in (42) can then be interpreted as minimizing the

(a) Statistical evaluation of the time required for the torque estimatigerth derivative along the trajectory while passing a set of
waypoints. An optimal trajectory, is then calculated as

Torque Estimation Methods

Infinity norm Analytic Mixed
T

BN T 1/ 2
g Topt = min I(x) = min 7/ (:z:(") (t)) dt. (43)
c 40+ T | ! T T 2
Q : } | 0
'% o : | Through the calculus of variation we consider the disturbed
a) ZOD N 1 trajectory x(t) + en with the scalare andn as an arbitrary
"33_10, = T E o 1 function fulfilling the boundary conditions
S o = = _  + T _|
=0 1 2 3 1 9 3 1 2 3 n(0) =0, n(T)=0,

Mixed Torque Estimation for Separate Joints 7(0)=0, #(T)=0 (44)

(b) Statistical evaluation of the torque deviation for the three torque

estimation methods. The torque estimation deviations are shown for (=1 (0) = 0 (n=1)(7y = 0
o e " (0) =0, n"V(T)=0.

every single joint torque separately.

Figure 17: Statistical evaluation of three torque estinmtinethods. The This results in

analysis was performed by running simulation of each meth@@ times

with |7gis¢| < 0.01[Nm]. The central line is the median, the edges of the

box are the 25th and 75th percentiles. The evaluation is sHHomthe whole I(IE + 677) =
motion consisting of2 segments an@8 subintervals. All calculations are

done with an Intel Core3i3120M CPU with 4GB RAM.

N | =

T
/(x(”) + en'™)2dt,
0

dI(z + en)
de

(2™ + en™)n™at. (45)

St~

controller parametrization. An adaptive approach to ag+aff

selection between the size of deformation, trajectory laitity For = to minimize I(z + en), the following condition has to

and available computation time allows deriving physicall%e fulfilled. In all other cases the trajectaryis not optimal
plausible motions online. ' )

Even though the proper choice of a motion from the dI(z + en) A
database can provide the desired robot performance, the di” =0= / zMn™ dy (46)
method can work even with a single or no precalculated € e=0 )

trajectory. In the latter case, original trajectory is imlized

. . N . o hrough partial integration of (46) — 2 times we obtain
with zeros and thus will minimize the desired derivatives o-F gnp 9 (46)

the motion profile. h -
The timing of the overall motion and of fixed points is of /x(")n(”) = x(”)n(”*l)‘ - /x(”“)n(”*l) =
great importance as they remain unchanged after deformatio NI )
Deformation works for the situations when the motions in the =0
database have shorter time duration than the time available ;"
the real motion. i.eAt.om, > 0. Otherwise, one should cut = /ﬂf(%)ﬁ =0 47)
out a part of the original trajectories or apply time scaling 0
them. In this case, the minimum derivative deviation will bgs the resulting condition that must hold for any functipn
provided with respect to the time scaled trajectories. This is the case for every function fulfilling
The experimental validation for the spline deformation is
performed with several planar volleyball scenarios. These 2 =0 vt € [0, 7). (48)

experiments clearly show the online capability, high aacyr Any

repeatability and robustness of the generated motionseis- pr

ence of disturbances. .
Future work will be focused on guaranteed feasible motions = Z a;t! (49)

in a fixed amount of time and on extending the applicability =0

of the method to other robotic tasks. fulfills this condition.

(2n — 1)-th order polynomial of the form

2n—1
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APPENDIXB
FEATURES OFBERNSTEINPOLYNOMIALS

A. Properties of Bernstein Polynomials

Partition of unity property:
-1

> B =1

k=0
Non-negativity property:

B! >0.
The derivative of a Bernstein polynomial:
B =U(B;Z} - B[,
where B. =0 for k < 0 andk > I.
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APPENDIXC
INFINITY NORM BOUNDS

The variables for bounds are derived usisgnorms and
interval analysis of continuous functions on closed irasv
Upper bound for a single matrix element can be found as

a1 . =max(fsup(as;)] finf(as,)]).
7

q € q,q),
g €14,4].

Bounds for vector elements including are calculated as
analytic expressions in a vector form

lall,. = max(la]) = max(faill..)

Matrix elements bounds including: and ¢ are found as

B. Derivation of Bounds for Bernstein Polynomials

Using these properties, we derive velocities and accelera-
tions of deformation part. Since coefficients from (22) are
constant, the expression for the velocity is as follows

l

Ts :chB,lC =coBl+ce1B + ...+ Bl (50)
k=0
Derivatives of the separate Bernstein polynomials
By =1(B5' -By '),
——
=0
Bi=UB, ' - B ), (51)

B =UB - B ). g
——
=0

After substitution of (51) into (50) we get

&5 =I((—coBy "+ eaBy ) + (—ei By + 2B
-1
+...+ (—lelBll:i + ClBll:i)) = ZZ(Ck+1 — Ck)B,l;l.
k=0
Analogously, for acceleration we get

(2]
(3]

(4]
(5]

-1

T =1 (er+1 — ck‘)Bllc_l
k=0 [6]
1-2

= l(l — 1) Z(Ck — 2¢k+1 + Ck+2)Bf€_2.

k=0

Therefore, velocities are bounded through the followingich
of inequalities

(7]

(8]

(crs1 — i) By
[l
(Cl — Co)B(l)_l + ...+ (Cl — 6171)Bll:})

(r)na}iil(ckﬂ — ck)B(lfl + ... [10]

-1
+ k=$%§_1(0k+1 —cr)B 1) [11]
= lkigna%_l(ckﬁ_l —e)By P+ B+ ..+ BT
R = [12]
= k:£%§_1(0k+1 - Ck) = Ts.

Analogously, bounds are derived for acceleration
e 1]
Es <I(l-1) LD

(13]

l72(ck — 2Ck41 + Chi2) = s

,,,,,

follows

n
14l = max(3" i l..)-
j=1

The derivation of thd|J || is dependent on the dimen-
sionality of the robot Jacobiam; and the minimum singular
value o min Of the Jacobian/

_
174 < v [, < Y7
7,min
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