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Abstract: Human-robot team interaction is challenging in terms of system complexity and
control synthesis. Classifying different interaction paradigms between a human and a robot
team eases the formal analysis. The challenge is to classify the paradigms appropriately, w.r.t.
the setting and the task to be performed. In this paper three interaction paradigms are formally
defined and analyzed using controllability. It is shown that a straightforward classification of
interaction paradigms, based on the mapping properties of the input space to the tangent of the
state space is possible. Specific examples in the human-robot team interaction for cooperative
manipulation tasks validate the proposed classification methods.

1. INTRODUCTION

Human-robot interaction is a wide area of research that
benefits from a number of scientific fields: psychology,
control theory, haptics, etc.. As humans are able to per-
form tasks which require cognitive capabilities such as
planning and adapting to uncertainties, robots are able to
conduct tasks which require high precision. Therefore, it
is reasonable to exploit their complementary abilities in a
way that human operator(s) conduct high-level sub-tasks
and robot(s) conduct low-level sub-tasks, working together
in this way to achieve a final goal.
In order to perform multiple sub-tasks (constituting a
complex task) simultaneously, interaction between mul-
tiple humans and/or multiple robots is necessary. As a
result the interactive system is (highly) redundant. The
specific set of sub-tasks can be dynamically assigned ei-
ther to human(s), robot(s) or both. Depending on the
distribution of sub-tasks among human(s) and robot(s)
in specific stages of a general task, it is reasonable to
define a number of interaction paradigms. In order to make
a distinction between interaction paradigms, the suitable
tools for classification are the system properties such as
controllability and observability.
Different types of human-robot interaction are summer-
ized in Yanco and Drury (2004). However, the literature
on human-robot team interaction mainly analyzes phys-
ical human-robot interaction scenarios (Lawitzky et al.
(2010)). Non-physical interaction, or more specifically,
teleoperation of robot teams is considered in a classic
setting of coupling the human to the master robot (Lee
and Spong, 2005), (Lin et al., 2015). Different modes of
interaction together with the concept of adaptable semi-
autonomy are introduced in Laschi et al. (2001). Laschi
et al. claim that the involvement of human(s) in decision
process and autonomous behavior of robots for repetitive
tasks is a desirable combination. The levels of autonomy
ranging from teleoperation to full autonomy are proposed
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Fig. 1. Bilateral teleoperation with wearable haptic devices

in Baker and Yanco (2004). However, the formal analysis of
the levels of autonomy is not provided. Novel forms of in-
teraction between humans and robots are possible thanks
to the availability of wearable haptic devices (e.g. Chinello
et al. (2015)). For example, it is possible to establish the
direct teleoperation without using the master robot. The
human moves freely, which allows for a transition from
uncoupled (teleoperative) to coupled (physical) human-
robot interaction. An example of a teleoperation experi-
mental scenario with the human, equipped with wearable
thimble devices (Chinello et al., 2015) is depicted in fig. 1.
Additionally, brain-computer interface (BCI) also enables
definition of novel ways in which humans and robots in-
teract (Tonin et al., 2010).
In this paper we define and formally classify interaction

paradigms between a single human and multiple robots
that form a team and use the controllability property
to distinguish between the paradigms. The defined in-
teraction paradigms differ depending on the distribution
of sub-tasks and on the level of autonomy. Therefore,
the provided analysis enables the theoretical consideration
of extreme human-robot interaction modes; teleoperation
and physical interaction. The classification of interaction
paradigms is motivated by the cooperative manipulation
task in which a team of multiple robots manipulates a
single object over extended workspace (Erhart and Hirche,
2016). The contribution of this paper is the proposition
and the analysis of three interaction paradigms: direct,
complementary and overlapping. In Section 2 the prob-



lem is formulated and necessary theoretical concepts are
introduced. In Section 3 three interaction paradigms are
defined and their properties are derived. The verification
of the properties is conducted on the analytical examples
of cooperative manipulation systems.

2. PROBLEM FORMULATION

Let us consider a multi-input multi-output (MIMO) non-
linear, affine control system of the form:

ẋ = f(x) + G(x)u (1)

where x ∈ M is the state vector defined on an n-
dimensional, smooth manifoldM, u ∈ K is the input vec-
tor defined on an m-dimensional, smooth manifold K and
G = [g1, ..., gm]. The real-valued mappings f , g1, ..., gm
are smooth vector fields defined on the manifold M.
Let us define the input vector u as a stacked vector of
the input commands provided by two control inputs; the
human and the autonomous controller:

u = [uh
1 , ..., u

h
k︸ ︷︷ ︸

uh

, ua
k+1, ..., u

a
m︸ ︷︷ ︸

ua

]T (2)

where superscripts h and a indicate the human and the au-
tonomous control inputs, respectively. The input manifold
K can be divided into two submanifolds: K = Kh∪Ka. Let
us write G as: G = [Gh Ga] where Gh = [g1, ..., gk] and
Ga = [gk+1, ..., gm]. The general feedback control input is
assumed to be state dependent and is represented as:

uh,a = αh,a(x) + βh,a(x)vh,a (3)

where αh,a(x) and βh,a(x) are defined on U0 around point
x and βh,a(x) is nonsingular for all x while vh,a is the new
reference input. The feedback control law (3) modifies the
system dynamics given by (1) into the form:

ẋ = f̃(x) + G̃(x)vi (4)

where: f̃(x) = f(x) + G(x)α(x) and G̃(x) = G(x)β(x).
We propose three interaction paradigms between a hu-
man operator and a robot team: direct, complementary
and overlapping (further categorized into cooperative and
competitive). An overview of the interaction paradigms
is given in fig. 2. A general architecture of the analyzed
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Fig. 2. Overview of the interaction paradigms.

system is depicted in fig. 3. The selection mechanism
block is in charge of selecting the appropriate interaction
paradigm. The system exemplarily analyzed in the paper
is a cooperative manipulation system, with the dynamics
of a single manipulator in the task space:

Mi(pi)p̈i + ci(pi, ṗi) + hg
i (pi) = hi i = 1, 2 (5)

with pi ∈ SE(3) being the pose of the i-th end-effector
in the task space, Mi(pi) ∈ R6×6 its inertial matrix,
ci(pi, ṗi) ∈ R6 its Coriolis terms, hg

i (pi) ∈ R6 its gravita-
tional forces and hi ∈ R6 its wrench input. Transformation
of (5) into the form (1) for two manipualtors, gives:[
ṗ
p̈

]
︸︷︷︸
ẋ

=

[
ṗ

M(p)−1(−c(p, ṗ)− hg(p))

]
︸ ︷︷ ︸

f(x)

+

[
0

M(p)−1

]
︸ ︷︷ ︸

g(x)

u (6)

where the states are x = [pT1 pT2 ṗT1 ṗT2 ]T , M(x) =
bldiag(M1(p1) M2(p2)), c(x, ẋ) = [cT1 (p1, ṗ1) cT2 (p2, ṗ2)]T ,

hg(x) = [hgT
1 (p1) hgT

2 (p2)]T and u = [hT
1 h

T
2 ]T .

3. CLASSIFICATION OF INTERACTION
PARADIGMS

3.1 Direct interaction paradigm

Definition 1. The interaction paradigm is called direct
if the complete vector space of the system (1), TM is
accessible by the control inputs uh.

According to the definition 1, the input vector (2) has the
following structure: u = [uh

1 , ..., u
h
k ,0m−k]T . Due to the

structure of the input vector u it is sufficient to focus only
on the properties of the vector fields denoted as Gh. The
input vector uh is mapped by the mapping matrix Gh(x)
onto the tangent space TxM.The distribution spanned by
the vector fields Gh is:

∆h = span{gh1 , ..., ghk}, ∀x ∈M (7)

The distribution (7) is non-singular, i.e. the following
equality is fulfilled:

dim{∆h} = const. = m (8)

As a consequence of non-singularity, complete input vector
uh is mapped onto the tangent space TM for all x.
The distribution (7) is involutive. This means that the Lie
bracket of any ghi and ghj belongs to the distribution ∆h:

ghi ∈ ∆h, ghj ∈ ∆h ⇒ [ghi , g
h
j ] ∈ ∆h (9)

where: [ghi , g
h
j ] =

∂ghj
∂x g

h
i −

∂ghi
∂x g

h
j is the Lie bracket.

Controllability of non-linear systems can be analyzed
locally using the controllability distribution.

R(x) = [Gh(x), adfG
h(x), ..., adn−1

f Gh(x)] (10)

where ad0
fG

h = Gh and adkfG
h = [f , adk−1

f Gh].

Proposition 1. If the distribution ∆h is non-singular and
involutive and if:

dim{R} = n (11)
where n is the number of the states, then the system 1 is
controllable from the human input. For the proof of the
proposition (1) we refer to the (Isidori (1995)).

Example 1. A classical example of the direct interaction
paradigm in robotics is bilateral teleoperation. Let us
consider a robotic system of 2 manipulators, given by (6).
Furthermore, let us consider this robotic team is teleoper-
ated by the human operator. The motion of the two human
fingers is the desired motion of the manipulators in the
task space, as depicted in the fig. 4. Let us consider the
translational motions. The control inputs are position and
translational velocity of the human fingers, ph1 p

h
2 ∈ R3

and ṗh1 , ṗ
h
2 ∈ R3, respectively. Jointly, the inputs are

represented as a stacked vector:

vh = [ph1 , p
h
2︸ ︷︷ ︸

ph

, ṗh1 , ṗ
h
2︸ ︷︷ ︸

ṗh

]T ∈ R12

Using the impedance feedback control strategies for each
subsystem, the human and autonomous input commands
are mapped to the input wrenches of the system (6):

uh = [K D]x︸ ︷︷ ︸
α(x)

+ [−K −D]︸ ︷︷ ︸
β

vh (12)
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Fig. 3. General architecture for the human-robot team interaction in a cooperative manipulation task.
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Fig. 4. Cooperative manipulation example of the direct inter-
action paradigm

where D = bldiag(D1 D2) is a block diagonal damping
matrix with D1, D2 ∈ R3×3 being the damping matrices
for each manipulator and K = bldiag(K1 K2) is a
block diagonal stiffness matrix with K1, K2 ∈ R3×3

being the stiffness matrices for each manipulator. It is
possible to show that the dimension of the controllability
distribution (10) is dim{R} = dim{x} = 12 if the matrix
M(x) is positive-definite and for any choice of positive-
definite damping and stiffness matrices.

3.2 Complementary interaction paradigm

Definition 2. The interaction paradigm is called comple-
mentary if it is possible to define a d-dimensional distribu-
tion, TMh ⊂ TM and an (n−d)-dimensional distribution
TMa ⊂ TM such that: TMh ∩TMa = ∅ and TMh ∪
TMa = TM and if the distribution TMh is accessible
to the control inputs uh while the distribution TMa is
accessible to the control inputs ua.

According to the definition (2), a subspace reachable to
the human control input is unreachable to the autonomous
control input and vice versa. This means the influences
from the human control input and the autonomous control
input are mutually complementary. The mappings of the
complementary interaction paradigm are depicted in the
fig. 5. Let us write the mapping matrix G as:

G =
[
Gh Ga

]
=

[
G1h G1a

G2h G2a

]
(13)

where G1h = [g1
1 , ..., g

1
k] and G1a = [g1

k+1, ..., g
1
m] are

sets of d-dimensional mappings and G2h = [g2
1 , ..., g

2
k] and

G2a = [g2
k+1, ..., g

2
m] are sets of (n − d)-dimensional map-

pings. Let us assume, without loss of generality, the states

are ordered so that the first d states are controllable by the
human and the remaining (n−d) states are controllable by
the autonomous controller. In order to ensure the control
inputs, uh and ua are appropriately mapped onto the
distributions TMh and TMa, respectively, it is necessary
to ensure the off-diagonal terms of (13), G1a

i and G2h
i ,

vanish. The distribution spanned by Gh is given by (18)
and the distribution spanned by Ga is:

∆a = span{gak+1, ..., g
a
m}, ∀x ∈M (14)

Proposition 2. Let TMh and TMa be nonsingular, invo-
lutive distributions of dimensions d and n − d, respec-
tively. Furthermore, assume TMh is invariant under the
vector fields f , g1, ..., gk and TMa is invariant under the
vector fields f , gk+1, ..., gm. Moreover, suppose the dis-
tribution span{g1, ..., gk} ⊂ TMh and the distributions
span{gk+1, ..., gm} ⊂ TMa. Than, for each x0 it is possi-
ble to find a neighborhood U0 of x0 and transformations
z1 = φ1(x) and z2 = φ2(x) defined on U0 such that in
the new coordinates, the system is:

ξ̇h = fh(ξh, ξa) + Gh(ξh, ξa)uh
i

ξ̇a = fa(ξh, ξa) + Ga(ξh, ξa)ua
i

(15)

where ξh = {z1, ...,zd} and ξa = {zd+1, ...,zn}.

Proof. It is possible to construct a candidate transforma-
tion z1 = φ1(x) around x0 such that the last n − d ele-
ments of its Jacobian span a distribution (TMh)T (Isidori,
1995). Since vector fields f , g1, ..., gk are in TMh by as-
sumption, by transforming them to the new coordinates:

f̄(z) = [
∂φ1

∂x
f(x)]x=φ−1(z),

Ḡh(z) = [
∂φ1

∂x
Gh(x)]x=φ−1(z)

the last n− d elements of f and gh vanish, yielding:

f̄(z) = col(f̄1(z), ..., f̄d(z),0n−d)

Ka

TxMh

TxMa

Kh

ua

uh ẋh

ẋa

Fig. 5. Geometrical representation of the complementary
interaction paradigm



Ḡh(z) = col(ḡ1
1(z), ..., ḡ1

d(z),0n−d)

Analogously, it is possible to construct a candidate trans-
formation z2 = φ2(x) around x0 such that the first d ele-
ments of its Jacobian span a distribution (TMa)T . Since
vector fields f , gk+1, ..., gm are in TMa by assumption,
than by transformation to the new coordinates the first d
elements of f and Ga vanish, yielding:

f̄(z) = col(0d, f̄d+1(z), ..., f̄n(z))

Ḡa(z) = col(0d, ḡ
2
d+1(z), ..., ḡ2

n(z))

This proves the proposition 2.

Let us define two controllability distributions:

Rh(ξh) = [Ḡh(ξh), adf̄hḠh(ξh), ..., adn−1
f̄h Ḡh(ξh)], (16)

Ra(ξa) = [Ḡa(ξa), adf̄aḠa(ξa), ..., adn−1
f̄a Ḡa(ξa)] (17)

Proposition 3. If the following holds:

dim{Rh} = d (18)

where d is the number of the states ξh of the system 1, the
states ξh are controllable w.r.t. the human input and the
corresponding subsystem is controllable.

Proposition 4. If the following holds:

dim{Ra} = n− d (19)

where n−d is the number of the states ξa of the system 1,
the states ξa are controllable w.r.t. the autonomous input
and the corresponding subsystem is controllable.
If the control inputs, uh and ua, are given as feedback
control inputs of the form (3), the property of controlled
invariance needs to be imposed.

Proposition 5. A distribution TMh is controlled invariant
on U if there exists a feedback pair (αh,βh) defined on
U such that TMh is invariant under the new vector fields
(modified by a control law) f̃h, g̃1

1 , ..., g̃
1
k:

[f̃h, TMh] ⊂ TMh, [g̃hi , TMh] ⊂ TMh i = 1, ...k

Local controlled invariance of the TMh is guaranteed iff:

[f̄h, TMh] ⊂ TMh + Gh

[ḡhi , TMh] ⊂ TMh + Gh i = 1, ...k

Since by assumption Gh ⊂ TMh (analogously Ga ⊂
TMa), the controlled invariance for the complementary
interaction paradigm is always guaranteed.

ph, ṗh

pc, ṗc

pr, ṗr

Fig. 6. Cooperative manipulation example of the complemen-
tary interaction paradigm

Example 2. Let us consider a cooperative manipulation
system (6) in a setting depicted in fig. 6. Let us assume
the two manipulators perform cooperative and relative
behaviors. The cooperative behavior is a team behavior
of the manipulators and the relative behavior is a relative
motion between the manipulators. With the cooperative

behavior of the manipulators it is possible to achieve
object manipulation and with the relative behavior it
is possible to approach to the object and maintain the
grasp of the object. Let us assume the human commands
the cooperative motion, while the autonomous controller
commands the relative motion. The human control inputs
are the position and the translational velocity of the
human hand: vh = [ph, ṗh]T and the autonomous control
inputs are the desired relative position and the relative
translational velocity between the manipulators: va =
[pa, ṗa]T . Let us introduce coordinate transformations
z1 = φ1(x) and z2 = φ2(x):

ξh =

[
pc
ṗc

]
=

1

2

[
p1 + p2

ṗ1 + ṗ2

]
︸ ︷︷ ︸

φ1(x)

, ξa =

[
pr
ṗr

]
=

[
p1 − p2

ṗ1 − ṗ2

]
︸ ︷︷ ︸
φ2(x)

(20)

where pc ∈ R3 and ṗc ∈ R3 are a mean of positions
of the end-effectors (position of the mid-point between
the manipulators) and the mean velocity of the team,
respectively. Relative position and relative velocity of the
robots are pr ∈ R3 and ṗr ∈ R3, respectively. Time
derivative of (20) gives:

[
ξ̇h

ξ̇a

]
=

∂φ1

∂x
∂φ2

∂x


︸ ︷︷ ︸

T (x)

ẋ =


1

2
I3

1

2
I3 03 03

03 03
1

2
I3

1

2
I3

I3 −I3 03 03

03 03 I3 −I3

 ẋ (21)

The transformation of the system, T (x), complies with the
proposition (2) and ensures decoupling of the system (6).
Furthermore, the following relations hold:

T−T (p)M(p)T−1(p) =

[
Mc(p) 0

0 Mr(p)

]
(22)

where Mc(p) ∈ Rd×d is the inertial matrix of the co-
operative subsystem and Mr(p) ∈ R(n−d)×(n−d) is the
inertial matrix of the subsystem for the relative behavior.
Furthermore:

T−TM
d

dt
T−1 + T−T cT−1(p) =

[
cc(p, ṗ) 0

0 cr(p, ṗ)

]
(23)

where cc ∈ Rd is a vector of Coriolis terms for the coop-
erative subsystem. Analogously, cr ∈ R(n−d) is a vector of
Coriolis terms for the subsystem for the relative behavior.
The decoupled dynamics given by (6) is represented by the
subsystem for cooperative and relative behavior:[
ṗc
p̈c

]
︸︷︷︸
ξ̇h

=

[
ṗc

Mc(p)−1(−cc(p, ṗ)− hg
c(p))

]
︸ ︷︷ ︸

fh(ξh,ξa)

+

[
0

Mc(p)−1

]
︸ ︷︷ ︸
g(ξh,ξa)

uh

(24)[
ṗr
p̈r

]
︸ ︷︷ ︸
ξ̇a

=

[
˙prel

Mr(p)−1(−cr(p, ṗ)− hg
r(p))

]
︸ ︷︷ ︸

f2(ξh,ξa)

+

[
0

Mr(p)−1

]
︸ ︷︷ ︸
g(ξh,ξa)

ua

(25)

Using the impedance feedback control strategies for each
subsystem, the human and autonomous input commands
are properly mapped to the input wrenches:

uh,a = [Kc,r Dc,r] ξh,a︸ ︷︷ ︸
αc,r(ξh,a)

+ [−Kc,r −Dc,r]︸ ︷︷ ︸
βc,r

vh,a (26)



It is possible to show that the dimension of the control-
lability distribution (16) is dim{Rh} = dim{ξh} = d if
the matrix Mc(x) is positive-definite and for any choice of
positive-definite matrices, Dc and Kc. It is also possible
to show that the dimension of the controllability distribu-
tion (17) is dim{Ra} = dim{ξa} = n − d if the matrix
Mr(x) is positive-definite and for any choice of positive-
definite Dr and Kr.

3.3 Overlapping interaction paradigm

Definition 3. The interaction paradigm is called overlap-
ping if there exists an intersection of distributions TMh

and TMa: ∆ha = TMh∩TMa 6= ∅ and if the distribution
∆ha is accessible to the control inputs uh and ua.

The overlapping interaction paradigm considers a cou-
pled system in which the human input commands and
the autonomous input commands jointly steer states of
the system, as depicted in fig. (7). Controllability of the
system is unaffected if additional inputs are added. The
interconnections between subsystems are expressed by the
non-zero off-diagonal blocks of the g Jacobian.
It is important to distinguish two overlapping cases: coop-
erative and competitive. The cooperative systems are char-
acterized by the overlapping of submanifolds onto which
human and autonomous inputs act in the same direction.
For a competitive system the influence from the human
and the autonomous controller is opposite.

Ka

TxMh

TxMa

Kh

ua

uh

ẋ

Fig. 7. Geometrical representation of the overlapping inter-
action paradigm

Definition 4. The vector field g is cooperative on a mani-

foldM if the Jacobian matrix
∂g

∂x
(x) has all non-negative

off-diagonal elements for all x ∈ M. The system 1 is
cooperative, if g is cooperative.

Definition 5. The vector field g is competitive on a man-

ifold M if the Jacobian matrix −∂g

∂x
(x) has all non-

negative off-diagonal elements for all x ∈M. The system 1
is competitive, if g is competitive.

Example 3. A classical example of the cooperative over-
lapping interaction paradigm is load sharing in physical
human-robot team interaction, depicted in the fig. 8. The
human operator and the robot team cooperatively grasp
the object. Let us consider only the translational motion.
Furthermore, let us assume the object dynamics is known
and is given with the following equation:

Mo(po)p̈o + co(po, ṗo) + hg(po) = Gu (27)

where po, ṗo, p̈o ∈ R3 are position, translational veloc-
ity and translational acceleration of the common object.

Fig. 8. Cooperative manipulation example of the overlapping
interaction paradigm

Object inertial matrix, centrifugal and Coriolis forces and
gravitational forces are given by Mo(po), c(po, ṗo), g(po),
respectively. Grasp matrix is G = [I3 I3] For more in-
formation on the physical human-robot interaction in a
cooperative manipulation task see e.g. (Lawitzky et al.,
2010). It is possible to define control inputs as linear
homotopy between the forces applied on the object by the
human, fh, and the robot, fa:

u =

[
uh

ua

]
=

[
α1 1−α1

1−α2 α2

] [
fh

fa

]
(28)

where the α1,2 ∈ [0,1] represent constant or time de-
pendent mappings. The controller thus defined is termed
as homotopy-based (Evrard and Kheddar, 2009). In this
way a cooperative model of the system is obtained. Its
transformation into the state space gives:[

ṗo
p̈o

]
=

[
ṗo

−M−1
o (co + hg

o)

]
+

[
0

M−1
o

]
Gu (29)

where the dependencies on the object position and ve-
locities are omitted for brevity. The inertial matrix is
positive-definite for robotic systems. The cooperative be-
havior is described by the control law with all non-negative
terms (28) that are not dependent on the system states.
Therefore, the system is cooperative.

3.4 Control design guidelines

If for a specific model the conditions are not satisfied they
can, nevertheless, be met by introducing an appropriate
feedback control strategy. For example, the controllability
condition imposed by the proposition (1) can be met by
state-space exact linearization which gives linearized and
controllable system if the outputs of the system are chosen
appropriately and the assumption of non-singularity is
met. It is possible that the system (1) cannot be fully
decoupled into subsystems (15). In this case the decoupling
of the linearized system is achievable by designing the
noninteracting control. Furthermore, it is necessary to en-
sure the reference inputs provided by the human, vh, and
the autonomous controller, va, stabilize the system (6).
It is important to consider common cases in which the
dimensionality of the input signal from the human, uh, is
less than the number of states that need to be controlled.
This can be due to the kinematic constraints of the human
motion or because of the available undersensing measure-
ment devices. In order to achieve the controllability of the
system or a subsystem, the appropriate forward mapping
of the human input commands is required, e.g. in the form
of hand pose reconstruction, synergy based approach, etc.

3.5 Simulation results

Simulation results, depicted in fig. (9) and fig. (10), show
the behavior of the cooperative system. Cooperative be-
havior is achieved in z direction, and the relative behavior



6 8 10 12 14
0

0.05

0.1

t[s]

[m
/
s]
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in x direction. The results can represent all three inter-
action paradigms. We assume Coriolis, centrifugal and
gravity terms to be compensated.
In the case of direct interaction paradigm, a desired object
manipulation is achieved if the motion of the human fingers
is in coordination. However, relative motion between the
fingers can occur due to inherent uncertainty of the human
behavior. This can cause an internal loading on the object
and, hence, its undesirable motion. Therefore, the direct
interaction paradigm is suitable when the robots are not in
contact with the object (e.g. the grasping stage). When the
robots are in contact it is reasonable to to achieve a precise,
desired, relative behavior with the autonomous controller.
Hence, the complementary interaction paradigm is suit-
able. It can be observed that the robots share equal load
of the object as the forces applied in x direction are acting
opposite and of the same intensity. Relative forces do not
affect the cooperative sub-task of the system. When the
agents are heterogeneous (e.g. humans and robots), the
load sharing depends on the capabilities of the agents. For
example, one may wish to minimize the effort exerted by
the human and assign the effort completely to the robot. In
this case the overlapping interaction paradigm is suitable.

4. CONCLUSION

In this paper three interaction paradigms between a single
human and multiple robot systems are proposed: direct,
complementary and overlapping interaction paradigms.It
is shown that it is possible to distinguish the interac-
tion paradigms using the controllability property and the
structure of the Jacobian matrix of the mapping g. The
identified properties ease the selection of the controller
objectives and strategies.In future work the required prop-
erties of the observability will be considered. Additionally,
the identified properties will be used to perform synthesis
of controllers.
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