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In pancreatic ductal adenocarcinoma
(PDAC), the lack of specific symptoms or
diagnostic markers, the highly aggressive
nature of the disease and high intrinsic
and acquired therapy resistance all result
in a virtually unchanged overall 5-year
survival rate of around 5%.1 Thus, early
detection of PDAC is a major task for
improvement of prognosis and manage-
ment of this fatal disease as surgery cur-
rently presents the only option for
long-term survival.2 Conventional
imaging techniques, including CT,
proton-based MRI and endoscopic ultra-
sound, differentiate tumour tissue based

on morphological and physiological (eg,
reduced perfusion) changes, often not
present in precursor lesions and early-
stage tumours. Consequently, emerging
innovative imaging technologies include
molecular and metabolic approaches that
allow the assessment of tumour biology.
Cancer phenotypes result from a host

of mutational events, including signalling
pathways that adapt tumour cell metabol-
ism to support growth. One of these
metabolic phenotypes observed in tumour
cells is the Warburg effect, that is, ATP
generation from glycolysis even under
normal oxygen condition, converting
most incoming glucose to lactate. Key
pathways involved include phosphoinosi-
tide 3-kinase, hypoxia-inducible factor,
p53, MYC and AMP-activated protein
kinase. These alterations in glucose
metabolism have been used in positron
emission tomography (PET) imaging, in
which the glucose analogue 18F-labelled
fluorodeoxyglucose (18F-FDG) has been
extensively applied in many cancer entities
including PDAC. However, reported sensi-
tivities and specificities of 90% and 80%,
respectively,3 and false-positive results due

to inflammation have so far limited clin-
ical implementation of PET for diagnosis
of PDAC.

Promising alternative metabolic imaging
approaches include imaging of hyperpo-
larised compounds and their metabolites
upon conversion using magnetic reson-
ance spectroscopy imaging (MRSI). With
the advent of dissolution dynamic nuclear
polarisation,4 a technique that dramatic-
ally increases the sensitivity of MRSI, in
vivo imaging of hyperpolarised isotope
labelled tissue metabolites for the first
time became feasible. A major advantage
of MRSI is the ability to detect labelled
substrate and metabolites dynamically
upon intravenous injection instead of a
momentary glimpse at the distribution of
a particular tracer such as with 18F-FDG
PET imaging. In addition, hyperpolarised
MRI can provide both anatomical and
physiological information, whereas PET
only allows functional imaging, requiring
a hybrid approach (ie, PET-CT or
PET-MRI). An important limitation of
this new technique is the relatively short
half-life of the polarisation. Therefore,
substrates employed have to fulfil certain
physicochemical premises and must be
subject to fast transport and metabolism.5

Hyperpolarised [1-13C]pyruvate MRSI
has been applied in several preclinical
animal tumour models to visualise sub-
strate circulation and uptake via monocar-
boxylate transporters as well as label flux
(ie, label exchange and net conversion) to
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[1-13C]alanine and [1-13C]lactate metabo-
lites via the alanine aminotransferase
(ALT) and lactate dehydrogenase (LDH)
(figure 1).

In this issue of Gut, Serrao and collea-
gues performed metabolic imaging with
hyperpolarised [1-13C]pyruvate in mouse
models of PDAC to test its feasibility for
early disease detection and progression.6

They used a genetically engineered mouse
model system harbouring preneoplastic
lesions and complex microenvironmental
alterations that faithfully recapitulate the
human disease. The authors report
decreased alanine/lactate concentration
and ALT/LDH activity ratios in tissue
extracts and correspondingly decreased
[1-13C]alanine/[1-13C]lactate signal ratios
with disease progression following the
injection of hyperpolarised [1-13C]pyru-
vate in vivo. Importantly, these imaging
data are reproduced in ex vivo cell-free
extracts, demonstrating that the in vivo
imaging data accurately measure isotope
exchange. With a high prevalence of acti-
vating mutations in the KRAS oncogene in
>90% of PDAC, hyperpolarised [1-13C]
pyruvate MRSI seems a particularly prom-
ising imaging strategy, as previous work
established a pivotal role for oncogenic
RAS in tumour metabolism with an
increase in aerobic glycolysis, fuelling
both anabolic and catabolic downstream
pathways, leading to increased lactate
production.7

What are the hurdles that need to be
overcome for clinical translation? An

important technical issue regarding the
clinical application of hyperpolarised sub-
strate MRSI remains the measurement of
rate constants rather than absolute concen-
trations, which complicates interindividual
comparison. However, as the authors
point out, longitudinal measurements may
suffice to identify therapy response or
disease progression of individuals. Further
limitations present the low sensitivity with
resultant low spatial resolution (ie, 7 mm3)
that has been reported for the first human
trial of hyperpolarised [1-13C]pyruvate
MRSI in human prostate cancer8 related to
the short half-life of the polarisation state.
Partial volume effects may, therefore,
present an issue with regard to motion
artefacts and the large tissue heterogeneity
found in PDAC.
How can one envision the application of

this new imaging technique in clinical
patient care? Individuals with familial
PDAC exhibit an increased rate of precur-
sor lesions. This high-risk patient popula-
tion would benefit from better surveillance
screens to detect disease progression. In
addition, hyperpolarised [1-13C]pyruvate
MRSI may enable the differentiation of
mass forming pancreatitis and pancreatic
cancer, as indicated by the lack of change
in alanine/lactate concentration ratio
observed in an experimental pancreatitis
model compared with normal pancreas in
the study by Serrao et al.6 Furthermore,
hyperpolarised [1-13C]pyruvate MRSI
could enable early detection of metabolic
tumour response to approaches that

interfere with increased glucose metabol-
ism, for example, LDH-A inhibitors.9

In summary, this exciting study presents
MRSI with hyperpolarised [1-13C]pyru-
vate as a novel and promising non-
invasive, radiation-free method for early
detection of disease progression in devel-
oping pancreatic cancer, for example, in
high-risk patients. Furthermore, it may
provide an opportunity for patient
stratification and early therapy response
monitoring in the highly heterogeneous
group of pancreas tumours. While several
technical issues remain to be resolved
regarding the clinical translation, this
study describes an exciting avenue to
metabolic imaging of PDAC: the spotlight
is on for early detection of this frighten-
ing disease.
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