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A B S T R A C T

Zero-sum games model the most extreme form of competition among
players. When there are only two players, von Neumann’s minimax
theorem shows that every zero-sum game admits a pair of maximin
strategies that achieve unique optimal payoffs. After providing a new
proof of the minimax theorem, we derive a set of epistemic conditions
that necessitates maximin play. For the special case of symmetric zero-
sum games, we determine the distribution over supports of maximin
strategies in randomly chosen games.

In decision theory, zero-sum games appear as representations of
preferences over probabilistic outcomes through skew-symmetric bi-
linear utility functions. A subdomain of these preferences are pref-
erences based on pairwise comparisons, for which one outcome is pre-
ferred to another outcome if and only if the former is more likely to
yield a more preferred alternative. We show that three impossibility
results of collective preference aggregation that obtain on the unre-
stricted domain cease to hold for preferences based on pairwise com-
parisons: Arrow’s dictatorship theorem, Moulin’s incompatibility of
Condorcet consistency and resistance to the no-show paradox, and
the conflict between consistency with respect to variable electorates
and consistency with respect to components of similar alternatives.
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1
I N T R O D U C T I O N

Game theory and social choice theory are two closely related fields
located at the intersection of mathematics and economics. Both ad-
dress aspects of decision making—individual decision making in the
context of game theory and collective decision making in the context
of social choice theory. Game theory could be described as the study
of strategic interaction of multiple rational and self-interested players.
Typically, the actions taken by one player influence not only his own
outcome but also the outcome for the other players. Rational play-
ers are capable of reasoning about the actions taken by other players
while taking into account that other players are capable of this, as well.
Self-interest refers to the fact that players seek to get an outcome that
is in their own best interest. This does not mean that players are per se
selfish; whichever benevolent considerations players may undertake
can be taken as primitives for their valuations of outcomes.

Conversely, social choice theory studies decision making by a so-
ciety of agents that strives to make a collectively desirable decision.
Alternatively, one can think of this problem from the perspective of an
outside social planner who knows the preferences of all agents over
all possible outcomes and, based on those, wants to reach a decision
that is most desirable for the society. The social planner himself has
no preferences over the possible outcomes and is thus impartial. Indi-
vidual agents are not bound to report their true preferences, however,
and may choose not to do so if it enables them to potentially influ-
ence the collective decision in their favor. This is where game theory
enters social choice theory.

1.1 preferences over uncertain outcomes

The prevailing model in game theory is that players may choose their
actions probabilistically. While social choices are typically assumed
to be deterministic, it can also make sense to allow them to randomize
over the possible deterministic alternatives in the appropriate context,
for example when decisions are low stakes or repeated frequently.
In both instances, agents are faced with deciding among uncertain
outcomes. Understanding choices by single agents in the absence
of strategic interaction is vital for any analysis of strategic or social
choice.

The predominant model for preferences over uncertain outcomes
are preferences that can be represented by a linear utility function.

1



2 introduction

Von Neumann and Morgenstern (1944) have shown that these prefer-
ences, henceforth called vNM preferences, are characterized by three
axioms called continuity, transitivity, and independence. Continuity
prescribes that the preference between two outcomes should not be re-
versed by slight perturbations of the outcomes. Transitivity requires
the preference relation to be transitive. Independence prescribes that
one outcome should be preferred to another if and only if a coin toss
between the former and a third outcome is preferred to a coin toss
between the latter and the third outcome when the same coin is used
in both cases. Geometrically, independence means that the prefer-
ence between two outcomes does not change if they are shifted in the
same direction by the same magnitude within the simplex of probabil-
ity distributions. It is important to keep in mind that without further
justification, any utility function is merely a representation of ordinal
preferences rather than a direct numerical measure for satisfaction. A
utility function “[. . . ] is not in itself a basis for numerical comparison
of utilities for one person nor of any comparison between different
persons” (von Neumann and Morgenstern, 1944).

Experiments have shown systematic violations of both indepen-
dence and transitivity. The Allais Paradox (Allais, 1953) is perhaps
the most famous example for violations of independence. Kahne-
mann and Tversky (1979) described various further examples, many
of which are based on the certainty effect, which also contributes to
the Allais paradox. It prescribes that human decision makers expe-
rience a greater loss when moving from certainty to almost-certainty
than when moving from a moderate chance of winning to a slightly
lower chance of winning. Detailed accounts of violations of the in-
dependence axiom are provided by Machina (1983), Machina (1989),
and McClennen (1988). Even the transitivity axiom, once deemed in-
dispensable for rational decision making, has been subject to criticism
(see, e.g., May, 1954; Fishburn, 1970; Bar-Hillel and Margalit, 1988;
Fishburn, 1991; Anand, 1993; Anand, 2009). One instance demonstrat-
ing violations of transitivity is the preference reversal phenomenon,
which describes that a decision maker prefers one uncertain outcome
to another uncertain outcome, but exhibits reversed preferences over
the certainty equivalents of both outcomes (Grether and Plott, 1979).
Still, transitivity has been very persistent in the economics literature.
The prime reason for insisting on transitivity is presumably that it
guarantees the existence of maximal elements, i.e., undominated out-
comes, which are the basis for being able to make sensible choices.
When every finite set of outcomes is considered feasible, acyclicity
(a weakening of transitivity) of a preference relation is equivalent to
the existence of maximal elements. Acyclicity prescribes that all out-
comes can be ordered on a line such that, for any two outcomes, the
more preferred outcome (if any) is to the left of the less preferred
outcome. Hence, acyclicity retains the one-dimensional spirit of tran-
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sitivity. When the set of outcomes itself is convex, it can be argued
that feasible sets should also be convex. Sonnenschein (1971) showed
that if a preference relation is continuous and has convex upper con-
tour sets, then every non-empty, compact, and convex set of outcomes
admits a maximal element.

Another frequently cited argument in favor of transitivity is the
money pump, which demonstrates a situation where an unlimited
amount of money is elicited from an agent with intransitive prefer-
ences by repeatedly offering him a more preferred outcome in ex-
change for his current outcome plus a small amount of money. The
money pump relies on the possibility to confront an agent with a se-
quence of choices from a small set of outcomes, however. If the agent
was offered to choose from the convex hull of the set of all outcomes
that he is offered in the process, he would choose a maximal element
and not exchange it for any other outcome from this set later on.
This is similar to an argument by Blavatskyy (2006), who argues that
repeated choices from small sets should be perceived as one choice
from the union of these sets in which case the agent will choose a
maximal element from the large set and cannot be exploited by the
money pump. Fishburn (1991) objects that the money pump “applies
transitive thinking to an intransitive world”, since preferences over
money are (assumed to be) transitive.

Skew-symmetric bilinear (SSB) utility theory (Fishburn, 1982) can ac-
commodate both, the Allais paradox and the preference reversal phe-
nomenon. An SSB function is a skew-symmetric and bilinear function
that maps an ordered pair of outcomes to a real number. A preference
relation is represented by an SSB function if this number is positive
exactly when the first outcome is preferred to the second outcome.
Fishburn (1982) characterized preference relations that can be repre-
sented by an SSB function via continuity, convexity, and symmetry.
The latter two properties are weakenings of the conjunction of transi-
tivity and independence. A preference relation is convex if, for every
outcome, the set of outcomes it is indifferent to is a hyperplane that
separates its upper and lower contour set. The symmetry axiom re-
quires that the indifference curves for every triple of outcomes are
either parallel or intersect in one point, which may be outside of their
convex hull. Due to bilinearity, the SSB value for two outcomes can
be derived from the SSB values for pairs of pure outcomes (cf. Fish-
burn, 1984c). Hence, every SSB function can be represented by a
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a

b

c

Figure 1.1: Illustration of the preference relation � represented by the SSB
matrix in Example 1. The arrows represent the normal vectors
to the indifference curve of the outcome at the base of the ar-
row (pointing towards the lower contour set). Each indifference
curve separates the corresponding upper and lower contour set.

skew-symmetric matrix.1 Example 1 shows an SSB function φ on the
set of probability distributions over {a,b, c}.

φ =

a b c 0 1 2 a

−1 0 2 b

−2 −2 0 c

(Example 1)

We write x to denote the pure outcome that assigns probability one
to x ∈ {a,b, c}. According to the preference relation � represented
by φ, a is preferred to b and to c and b is preferred to c. When
writing outcomes as convex combinations of pure outcomes, the SSB
value between any two outcomes can be conveniently determined by
multiplying them to the matrix φ from left and right, respectively, e.g.,
for p = 1/2a+ 1/2b and q = 2/3a+ 1/3 c, we have φ(p,q) = ptφq =
2/3. The minimax theorem guarantees the existence of an outcome
p with ptφ > 0 and hence, the existence of maximal elements of
preference relations satisfying the SSB axioms.

1.2 game theory

Game theory models strategic interaction among multiple players
with possibly conflicting preferences. When players are allowed to
randomize over the actions they could take, it is standard to assume
that their preferences over outcomes (randomizations over action pro-
files) satisfy the vNM axioms and can hence be represented by a linear
utility function. Equivalently, one could assume that every action pro-
file assigns a payoff to every agent and agents prefer higher expected

1 A matrix M ∈ Rm×m is skew-symmetric (or anti-symmetric) if M = −Mt.
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payoffs. The most severe form of conflict arises when there are only
two players with completely opposed preferences. In this case, the
preferences of both players can be represented by a single matrix that
specifies the payoffs of the first player and, when negated, gives the
payoffs of the second player. Hence, the expected payoffs sum up
to zero for all randomizations over actions, which coined the term
zero-sum game. Despite the apparent limitations of this class of games,
much of the early work on game theory, including von Neumann
and Morgenstern (1944), focuses on zero-sum games (see also Wald,
1945b; Kaplansky, 1945; Bohnenblust et al., 1950; Kuhn and Tucker,
1950). In a zero-sum game every action of the first player corresponds
to a row and every action of the second player corresponds to a col-
umn of the matrix representing the game. Therefore, the players are
subsequently referred to as the row player and the column player. In
the game below, the row player has three actions—top (t), middle
(m), and bottom (b)—and the column player has two actions—left (l)
and right (r).

l r t 0 1

m 2 0

b 1 −1

(Example 2)

When the game is played, both players simultaneously choose an
action, possibly in a probabilistic way. The strategy of a player is
his randomization over actions. The objective of game theory is to
provide a basis for players to choose their strategies. For the game in
Example 2, it is clear at first glance that the row player should never
play b, since playing m yields a higher payoff for every strategy of
the column player. Apart from that it is not at all obvious what the
players should play, since every action is a best response against some
strategy of the other player. Any further recommendations for one
player will thus depend on assumptions about the other player.

1.2.1 The Minimax Theorem

If the row player plays t with probability two thirds and m with prob-
ability one third, then his expected payoff is two thirds independently
of the action chosen by the column player. This strategy is denoted by
p = 2/3 t+ 1/3m. No other strategy can guarantee a higher expected
payoff. Similarly, the column player can guarantee an expected pay-
off of minus two thirds by playing q = 1/3 l+ 2/3 r. Observe that the
guaranteed expected payoffs of both players add up to 0. This is not a
coincidence. Von Neumann (1928) showed that every zero-sum game
admits a value, a real number, such that the row player can play a
strategy that guarantees himself an expected payoff that is at least as
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high as the value independently of the strategy of the column player
and, additionally, the column player can play a strategy that guaran-
tees himself an expected payoff that is at least as high as the negative
of the value independently of the strategy of the row player.2 This
statement is known as the minimax theorem; the corresponding strate-
gies are called maximin strategies. It has been influential in mathemat-
ics far beyond game theory (e.g., in linear programming duality). Its
importance for game theory is highlighted by a quote of von Neu-
mann: “As far as I can see, there could be no theory of games [. . . ]
without that theorem [. . . ] I thought there was nothing worth pub-
lishing until the minimax theorem was proved” (Casti, 1996). The
proof by von Neumann (1928) was of analytic nature and could be fit-
tingly described as a “tour de force” (Heims, 1980). Subsequent work
on the minimax theorem provided simpler proofs (von Neumann and
Morgenstern, 1944; Loomis, 1947), generalized it (Wald, 1945a; Fan,
1953), and highlighted its connections to fixed-point theorems (von
Neumann, 1937; Fan, 1952). Kjeldsen (2001) gives a thorough discus-
sion of the history of the minimax theorem. It is of practical and con-
ceptual importance that maximin strategies can be found efficiently,
i.e., in polynomial time in the size of the game matrix. Otherwise it
would seem like a demanding and perhaps unwarranted assumption
that players are actually able to play maximin strategies. In the first
part of this thesis, we give yet another proof of the minimax theorem.
It is purely algebraic for generic games and employs analytical meth-
ods only for degenerate games. Readers familiar with basic linear
algebra and analysis will be able to follow it easily.

1.2.2 Justification of Maximin Play

We argued that in Example 2 a player who is interested in maximizing
his expected payoff should never play b, since m dominates b, i.e., m
yields a higher payoff no matter which action is played by the column
player. A player who never plays dominated actions is called rational.
Example 2 shows that rationality is not sufficient to force a player to
play a maximin strategy, since all strategies that randomize only over
t and m are in accordance with rationality. This begs the question
under which assumptions about the opponent a player should play a
maximin strategy. Von Neumann and Morgenstern (1944) argue that
a player should play a maximin strategy if there is no valid basis for
making any assumptions about the other player, since it expresses
cautious behavior in the absence of justified alternatives. This how-
ever is an informal argument that lacks theoretical defense. It is not

2 Every zero-sum game induces a bilinear function that maps a pair of probability
distributions to a real number (the expected payoff of the row player). The original
proof by von Neumann (1928) even holds for functions that are quasi-convex in the
first argument and quasi-concave in the second argument.
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clear why players should expect to face a worst case opponent. Typ-
ically it will be reasonable for a player to make some assumptions
about his opponent, however, e.g., that he is rational. The discipline
that studies game theory in the presence of such beliefs about the op-
ponent is called epistemic game theory (see Perea (2012) for a survey
of the corresponding literature).

A model to study epistemic game theory are interactive belief sys-
tems due to Harsanyi (1967). They allow to conveniently specify be-
lief hierarchies such as “the row player thinks that the column player
thinks that the row player is rational.” Central to epistemic justifica-
tions for playing maximin strategies is some notion of rationality, e.g.,
rationality (Aumann and Brandenburger, 1995), mutual knowledge of
rationality (Barelli, 2009), or common knowledge of rationality (Au-
mann and Drèze, 2008).3 Mutual knowledge of rationality prescribes
that players are rational and know that their opponent is rational.
They do not need to know that their opponent knows that they are
rational, etc. Common knowledge of rationality requires that ratio-
nality is known for arbitrarily long belief hierarchies.

The framework for justifying maximin strategies used here is dif-
ferent in that the players’ beliefs about other players are reflected
by their choices of strategy, e.g., mutual knowledge of rationality im-
plies that a player never plays an action that is dominated assuming
the other player never plays a dominated action. Other conditions,
which in combination with mutual knowledge of rationality will im-
ply maximin play, are formulated in a framework with variable sets
of actions. It is assumed that there is a universal set of actions that
both players can choose from. A proto game specifies the payoffs for
all combinations of actions. In any given situation, only a finite set
of actions is feasible for both players. A player has to choose a strat-
egy given a proto game and sets of feasible actions. Only strategies
whose support is contained in the set of feasible actions are feasible.4

Restricting a proto game to sets of feasible actions yields a game in
the usual sense.

Independence of infeasible actions prescribes that the strategy chosen
by a player must not depend on the payoffs for actions that are not
feasible. Independence of infeasible actions is the game theoretic ana-
log of Arrow’s independence of infeasible alternatives in social choice
theory (Arrow, 1951). In some games there are actions that are indis-
tinguishable from each other in terms of their consequences, i.e., they
yield the same payoff against every action of the opponent. Such
actions are called clones. If a player was to treat clones differently,
this would be solely based on their names. Consequentialism requires
that the probabilities for non-clones should not depend on how many

3 These authors use a stronger notion of rationality, which prescribes that players
choose an action that maximizes their expected payoff given their beliefs about other
players.

4 The support of a strategy is the set of actions to which it assigns positive probability.
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clones of an action are feasible. Moreover, the overall probability as-
signed to clones can be distributed arbitrarily among them. The last
condition prescribes how players deal with games that they consider
equivalent in terms of chosen strategies, i.e., they would choose the
same pair of strategies, one as the row player and another one as
the column player, in both games. Now assume that a coin is tossed
to decide which one of two games that are considered equivalent in
this sense is played and a player has to decide on his strategy before
knowing the outcome of the coin toss. Consistency prescribes that
any strategy that he would choose in both games is also chosen prior
to the coin toss. This assumes that the game resulting from choos-
ing a strategy before the execution of the coin toss is treated in the
same way as the game whose payoffs are the expected payoffs of this
randomization. We show that every player whose strategic choices
respect mutual knowledge of rationality and consequentialism and
are independent of infeasible actions and consistent has to choose
maximin strategies.

1.2.3 Random Symmetric Zero-Sum Games

The model of games discussed above assumes that the players know
about the payoffs associated with each action profile. This assump-
tion is dropped when studying random games, i.e., only a probability
distribution over games is known, but the realization of the game is
unknown. For example, one could consider a probability distribution
over zero-sum games, where all payoffs are drawn from independent
normal distributions. Questions about random games typically ad-
dress determining the distribution of some characteristic of the even-
tually realized game such as the number of Nash equilibria or the
value in the case of zero-sum games. Finding the exact distribution
of “good” strategies is typically a very hard task. Hence, a number
of authors have studied the distribution of the support of Nash equi-
librium strategies or maximin strategies (McLennan, 2005; McLennan
and Berg, 2005; Faris and Maier, 1987; Jonasson, 2004). We continue
this line of work by determining the distribution of maximin strate-
gies of random symmetric zero-sum games. A zero-sum game is sym-
metric if both players have the same set of actions and if they swap
actions then their payoffs are swapped, as well. This is reflected by
the fact that the payoff matrix is skew-symmetric.

A very well-known example of a symmetric zero-sum game is
“rock, paper, scissors”. It is played between two players who simulta-
neously choose either rock (r), paper (p), or scissors (s) by displaying
the chosen object with their hand. The payoffs are determined as fol-
lows: rock beats (smashes) scissors, scissors beats (cuts) paper, and
paper beats (covers) rock. The winner gets payoff 1 and the loser gets
payoff −1. If both players choose the same object, the game is tied
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and both players get payoff 0. The corresponding payoff matrix is
depicted in Example 3.

r p s r 0 1 −1

p −1 0 1

s 1 −1 0

(Example 3)

The unique maximin strategy for both players is to play 1/3 r+ 1/3p+
1/3 s. We show that the probability that a maximin strategy of a ran-
domly drawn symmetric zero-sum game has a given support is 0 if
the support has even cardinality and 2−(m−1) if the support has odd
cardinality, where m is the dimension of the payoff matrix.

Symmetric zero-sum games appear in many areas of natural sci-
ence such as biology, physics, and chemistry. We only give two exam-
ples here. In evolutionary biology, they can be used to model popu-
lation dynamics among multiple species with actions corresponding
to species and payoffs corresponding to the probabilities that an indi-
vidual from one species “beats” an individual from another species;
the probabilities of a maximin strategy specify the fractions of indi-
viduals from each species in a stable state. Hence, the support of a
maximin strategy corresponds to the set of species that survive in a
stable state (see, e.g., Allesina and Levine, 2011; Levine et al., 2017;
Grilli et al., 2017). In quantum physics, symmetric zero-sum games
can be used to model bosonic systems where different quantum states
take the role of actions and the transition probabilities from one state
to another form the payoff matrix. Knebel et al. (2015) consider the
support of maximin strategies in these games to determine which
states become condensates at a macroscopic level.

1.2.4 Normal-Form Games

Games that involve more than two players or that are not zero-sum
are not considered in this thesis. The normal-form representation of
such games specifies a payoff function for every player, which gives
his payoff for every combination of actions taken by the group of
all players. The most wide-spread solution concept for normal-form
games is Nash equilibrium, which prescribes a state in which no player
has an incentive to unilaterally change his strategy given the strate-
gies of the other players. Nash (1950a) has famously shown that every
normal-form game admits at least one Nash equilibrium. For zero-
sum games, Nash equilibria correspond to pairs of maximin strate-
gies. Hence, the existence of Nash equilibria guarantees the existence
of maximin strategies. In contrast to maximin strategies, Nash equi-
librium strategies are not interchangeable, i.e., replacing the strategy
of one player in a Nash equilibrium by a strategy he plays in some
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other Nash equilibrium does not necessarily yield another Nash equi-
librium (see also Nash, 1951). Hence, it is highly unclear which strat-
egy a player should choose in case there are multiple Nash equilibria
and obtaining a Nash equilibrium requires coordination among the
players. This makes the concept of Nash equilibrium questionable
from a normative viewpoint.

1.3 social choice theory

Social choice theory examines the aggregation of the preferences of
multiple agents over possible alternatives. Its origins date back at
least to the time of the French revolution. The French mathemati-
cian Jean Charles de Borda (1784) proposed a voting system that is
nowadays known as Borda’s rule. Every agent assigns a score to ev-
ery alternative that equals the number of alternatives that he likes
less. The alternatives with the highest accumulated score are imple-
mented as the social choice. Borda’s rule was used by the French
Academy of Sciences at that time. It is a representative of the class of
scoring rules, i.e., rules for which every agent assigns a score to every
alternative that is based on the alternative’s position in his ranking.
Another French mathematician, the Marquis de Condorcet (1785) re-
alized that Borda’s rule may fail to choose a Condorcet winner—an
alternative that is preferred to every other alternative by a majority
of agents. In fact, every scoring rule may fail to choose a Condorcet
winner (Fishburn, 1973; Young and Levenglick, 1978). The important
observation that Condorcet winners may fail to exist is also due to
Condorcet. Consider a setting with three alternatives called a, b, and
c and three agents called 1, 2, and 3 whose preference relations are
shown in Example 4.

1 2 3

a b c

b c a

c a b

(Example 4)

The ith column depicts the preferences of the ith agent, e.g., agent
1 prefers a to b, b to c, and a to c. The collection of all agents’
preference relations is called a preference profile. A majority of two
agents prefers a to b. Similarly, a majority prefers b to c and c to
a. Hence, the majority relation is cyclic and there is no Condorcet
winner. The property of choosing a Condorcet winner whenever it
exists is called Condorcet consistency. The majority margin of a over
b is the number of agents who prefer a to b minus the number of
agents who prefer b to a. In Example 4, the majority margin of a
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over b, b over c, and c over a is 1 in each case. Example 5 depicts the
corresponding matrix of majority margins.

a b c a 0 1 −1

b −1 0 1

c 1 −1 0

(Example 5)

The matrix of majority margins is necessarily skew-symmetric. Hence,
it can be interpreted as a symmetric zero-sum game, where the set of
actions is the set of alternatives. This connection between game the-
ory and social choice theory will play a crucial role for the upcoming
analysis.

Much of the modern literature on social choice theory is inspired by
Arrow (1951), who reformulated the social choice problem by intro-
ducing social welfare functions (SWFs). An SWF maps a preference pro-
file to a collective preference relation. Arrow’s conception of SWFs is
different from Bergson-Samuelson SWFs (Bergson, 1938), which con-
sider a single preference profile in isolation and derive social utilities
for alternatives by adding up individual utilities. His justification for
his departure from this model was that “as with any type of behavior
described by maximization, the measurability of social welfare need
not be assumed; all that matters is the existence of a social ordering
satisfying [completeness and transitivity]” (Arrow, 1951).

Arrow showed that every SWF violates at least one of three desir-
able and seemingly mild properties called Pareto optimality, indepen-
dence of irrelevant alternatives, and non-dictatorship, when there are
at least three alternatives and preferences have to be transitive. Pareto
optimality prescribes that if all agents prefer one alternative to another,
then the first alternative should also be preferred to the second alter-
native according to the collective preference relation. Independence of
irrelevant alternatives requires that the collective preference between
two alternatives should only depend on the agents’ preferences over
these two alternatives and not on their preferences over other alter-
natives. A dictator is an agent whose strict preferences over alter-
natives feature as strict preferences in collective preference relation,
independently of the preferences of the other agents. Non-dictatorship
prescribes the absence of a dictator. The potential intransitivity of the
majority relation can be thought of as the source of Arrow’s negative
result.

An implicit assumption of Arrow’s theorem is that there are no
restrictions on the agents’ preference relations apart from transitiv-
ity. This is referred to as the full domain assumption. It is hard to
argue against it without any further knowledge about the set of alter-
natives. The situation is different if the set of alternatives admits a
non-trivial intrinsic structure, however. Just as in the theory of games
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when moving from actions to strategies, one can consider enlarging
the set of possible choices to probability distributions over alterna-
tives, called outcomes, rather than just deterministic alternatives, i.e.,
pure outcomes. Hence, the set of outcomes has the structure of a
unit simplex. Probability distributions over alternatives can be inter-
preted as fractional allocations of arbitrary divisible goods such as
time, money, or probability. In this framework, an SWF is a function
mapping the preferences of the agents over all outcomes to a collec-
tive preference relation over all outcomes. Arguably, the structure
on the set of outcomes should be reflected in the preference relations,
which makes Arrow’s full domain assumption seem overly restrictive.
Most of the social choice literature on aggregation of preferences over
probabilistic outcomes has assumed that agents possess vNM prefer-
ences (see, e.g., Harsanyi, 1955; Kalai and Schmeidler, 1977a; Hylland,
1980b; Dhillon and Mertens, 1999). As discussed in Section 1.1, exper-
imental evidence suggests that, depending on the context, the vNM
preference model may be insufficient to capture the preferences of
human decision makers. It is therefore an interesting task to study
preference aggregation for other decision theoretic preference models.
In this thesis, we revisit different aspects of the social choice problem
for SSB preferences.

1.3.1 Arrovian Preference Aggregation

First, we consider SWFs that satisfy Arrow’s axioms of Pareto opti-
mality and independence of irrelevant alternatives, henceforth called
Arrovian SWFs, when individual as well as collective preferences over
outcomes satisfy the SSB axioms. Additionally, we consider anonymity,
a fairness property that is stronger than non-dictatorship and requires
that an SWF is invariant under renaming the agents. Arrovian SWFs
have been studied by a number of authors when the agents as well as
the society possess vNM preferences. Kalai and Schmeidler (1977b)
showed that Arrow’s impossibility remains valid when there are at
least four alternatives and the SWF is continuous. Hylland (1980a)
found that this theorem also holds without assuming continuity of
the SWF. Various authors have shown variants of this result that dif-
fer in whether the input is a preference relation or a utility function
and in the exact extension of Arrow’s axioms to vNM preferences
(Sen, 1970b; Schwartz, 1970; Le Breton, 1986; Mongin, 1994; Dhillon
and Mertens, 1997). In contrast, we show that when enlarging the
set of feasible preferences from vNM preferences to SSB preferences,
there is a unique largest domain of individual preferences for which
an anonymous Arrovian SWF exists. In particular, Arrow’s impos-
sibility theorem does not hold on this domain. It contains exactly
those preference relations that are based on pairwise comparisons. One
outcome is preferred to another outcome according to pairwise com-
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parisons if the likelihood that the former returns a more preferred
alternative is larger than the likelihood that the latter returns a more
preferred alternative. This corresponds to the case when all entries in
the representing SSB matrix are 1, 0, or −1. Hence, the collective pref-
erences returned by anonymous Arrovian SWFs are completely deter-
mined by the agents’ preferences over pure outcomes. In particular,
this prohibits agents to express different intensities of preference be-
tween pairs of pure outcomes. Experiments support that preferences
based on pairwise comparisons are indeed exhibited by human deci-
sion makers (see, e.g., Butler et al., 2016). Blavatskyy (2006) character-
izes preferences based on pairwise comparisons using the fanning-in
axiom in addition to Fishburn’s SSB axioms.

We go on to show that every Arrovian SWF on the domain of pref-
erences based on pairwise comparisons is affine utilitarian, meaning
that the SSB function representing the collective preferences is de-
rived as a weighted sum of the SSB functions representing the agents’
preferences. When again requiring anonymity, this characterizes rela-
tive utilitarianism, i.e., the affine utilitarian SWF with the same positive
weight assigned to all agents. Affine utilitarianism is well-studied for
the case of vNM preferences over outcomes. Harsanyi (1955) has
famously shown that every SWF that maps a profile of vNM prefer-
ences to vNM preferences and satisfies Pareto indifference is affine
utilitarian. Pareto indifference prescribes that two outcomes that are
considered equally good by all agents have to be considered equally
good according to the collective preference relation. Harsanyi’s state-
ment is single-profile in that the weights of the agents may vary
across different preference profiles. Fishburn and Gehrlein (1987) and
Turunen-Red and Weymark (1999) have shown that Harsanyi’s theo-
rem does not hold when the class of feasible preference relations is
enlarged to SSB preferences, even under stronger Pareto-type assump-
tions. This shows that aggregating SSB preferences is fundamentally
different from aggregating vNM preferences. It is therefore remark-
able that when additionally assuming anonymity and independence
of irrelevant alternatives, one can retrieve affine utilitarianism.

1.3.2 Relative Utilitarian Social Choice

To a certain extent SWFs are more of theoretical than of practical rele-
vance. For most applications of social choice theory, the objective is to
choose a collectively most preferred outcome rather than obtaining a
collective preference relation. The framework for choosing outcomes
should be flexible enough to accommodate for situations where not
all outcomes that the agents have preferences over are feasible, e.g.,
when a group of people decides where to go for lunch, some restau-
rants may be closed because it is their rest day. Mathematically this is
formulated via social choice functions (SCFs), which map a preference
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profile and a feasible set of outcomes to a set of chosen outcomes. We
will assume that the feasibility of outcomes is based on the availability
of alternatives and therefore only consider feasible sets which contain
all probability distributions over some finite set of alternatives. Note
that every SWF induces an SCF which, for every feasible set, chooses
the set of maximal elements of the collective preference relation re-
stricted to that set. Since the collective preferences are assumed to
satisfy continuity and convexity, the thereby defined SCF always re-
turns at least one outcome and satisfies standard choice consistency
conditions due to Sen (1969) and Sen (1971) known as Sen’s α and
Sen’s γ. The SCF that returns the maximal elements of relative util-
itarianism on the domain of preferences based on pairwise compar-
isons is known as maximal lotteries (Kreweras, 1965; Fishburn, 1984b).
It chooses the outcomes that are preferred to all other outcomes by an
expected majority of agents. Hence, maximal lotteries can be seen as
an extension of Condorcet’s method of choosing Condorcet winners
whenever they exist. The classical model of social choice, which re-
quires SCFs to choose from a set of deterministic alternatives, can be
embedded in ours by considering SCFs that return all outcomes that
randomize over some subset of the alternatives. This subset of alter-
natives is interpreted as the set of chosen alternatives. These SCFs
will be called pure.

An important property of SCFs, especially in the context of vot-
ing, is that the agents have an incentive to submit their preferences
and thus do not abstain from the aggregation process. However, for
some SCFs an agent can obtain a more preferred outcome by abstain-
ing, which is called the no-show paradox (Fishburn and Brams, 1983).
Moulin (1988) showed that every Condorcet consistent pure SCF suf-
fers from the no-show paradox. Following his terminology, an SCF
that does not suffer from the no-show paradox entices participation.
We show that when the agents have SSB preferences, the SCF induced
by relative utilitarianism entices participation. This SCF even satisfies
a very strong notion of participation, called utilitarian participation,
which prescribes that no group of agents can abstain from the ag-
gregation process and thereby obtain an outcome that yields higher
accumulated utility for the abstaining group of agents. According to
this notion, some agents may even be worse off by abstaining if their
loss in utility is compensated by other abstaining agents’ gains. An
SCF is homogeneous if adding the same number of clones (agents
with the same preferences) of every agent to the electorate does not
change the social choice and weakly utilitarian if it chooses pure maxi-
mal outcomes according to relative utilitarianism whenever they exist.
We go on to show that every SCF that is homogeneous and weakly
utilitarian has to choose maximal elements according to relative utili-
tarianism. This result requires that the domain of preferences is suffi-
ciently rich, i.e., it has to be closed under reversal of preferences and
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it has to be possible for agents to have an arbitrary pure outcome as
their most preferred outcome.5

These results also apply to the domain of preferences based on pair-
wise comparisons. In this case, relative utilitarianism induces maxi-
mal lotteries and hence, maximal lotteries entices utilitarian participa-
tion. Since maximal lotteries is Condorcet consistent, it can be seen as
a possible resolution of Moulin’s no-show paradox. Additionally, our
second result implies that every homogeneous and Condorcet consis-
tent SCF that entices utilitarian participation has to choose maximal
lotteries.

1.3.3 Consistent Social Choice

When considering choice consistency for single agents, it is typically
defined as consistency with respect to variable feasible sets. In the
social choice context, one can also consider choice consistency with
respect to variable electorates, i.e., variable sets of agents. For exam-
ple, if there are two disjoint electorates, each of which chooses the
same outcome, then the union of both electorates should also choose
this outcome. This condition is called population consistency. Alike
conditions were considered by Smith (1973), Young (1974b), and Fine
and Fine (1974). Reinforcement, a strengthening of population con-
sistency, is known to be the characterizing feature of scoring rules
(Young, 1975).

The second type of consistency considered here was introduced by
Tideman (1987), who gives the following illustrative example. “When
I was 12 years old I was nominated to be treasurer of my class at
school. A girl named Michelle was also nominated. I relished the
prospect of being treasurer, so I made a quick calculation and nom-
inated Michelle’s best friend, Charlotte. In the ensuing election I re-
ceived 13 votes, Michelle received 12, and Charlotte received 11, so
I became treasurer.” If one assumes for simplicity that every stu-
dent either preferred both girls to become treasurer over Tideman or
preferred Tideman to become treasurer over both girls, then by in-
troducing Charlotte as a third option, Tideman altered the result in
this favor, since Michelle would have received 23 votes in a head-to-
head comparison. In this example, the two girls can be thought of
as variants of one alternative. It is likely that they have the same
relation to all other alternatives according to the agents’ preference
relations. An SCF should arguably take the structure of a preference
profile introduced by variants of one alternative into account. A set
of alternatives is a component in a preference profile if it is an inter-
val in every agent’s preference relation over alternatives. Alternatives
within a component can be thought of as of variants, called clones, of
an arbitrary representative from the component. Taking components

5 The latter condition is called minimal richness by Puppe (2016).
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into account, the choice from the entire feasible set can be decom-
posed into two choices. First, all clones of the representative are dis-
regarded and a choice is made from the remaining set of alternatives.
Cloning consistency prescribes that the probabilities assigned to alter-
natives outside of the component should then be the same as when
the choice is made from the entire feasible set. In particular, their
probability is not influenced by the presence of clones or the agents’
preferences over the clones. Cloning consistency however neglects
the information contained in the preferences over clones. Thus, a
second choice is made from the component disregarding all other al-
ternatives. In addition to cloning consistency, composition consistency
prescribes that the probability assigned to alternatives inside the com-
ponent should be directly proportional to their probabilities when the
choice is made from the entire feasible set. Composition consistency
was introduced by Laffond et al. (1996) for pure SCFs. Our definition
of composition consistency boils down to theirs for pure SCFs.

We consider consistent SCFs on the domain of preferences based
on pairwise comparisons. Our first result shows that population con-
sistency is incompatible even with cloning consistency for pure SCFs.
When allowing for non-pure SCFs, population consistency and com-
position consistency uniquely characterize maximal lotteries. Both
results operate under the assumption that SCFs additionally satisfy
standard normative properties, which might well be part of the defi-
nition of SCFs, and mild regularity conditions.

The results detailed above illustrate that the domain of preferences
based on pairwise comparisons allows to combine properties that
are incompatible on the unrestricted domain. In combination with
anonymity, it turns Arrow’s impossibility theorem into a characteri-
zation of relative utilitarianism. Moreover, maximal lotteries, the SCF
that chooses the maximal elements of relative utilitarianism on the
domain of preferences based on pairwise comparisons, satisfies Con-
dorcet consistency, participation, population consistency, and compo-
sition consistency. This is in contrast to a number of results that have
shown the incompatibility of these properties on the unrestricted do-
main.

organization of this thesis

We start by defining notation and decision theoretic concepts that are
used throughout this thesis in Chapter 2. The remainder is divided
into two parts. The first part studies maximin strategies in zero-sum
games. After formally introducing zero-sum games in Chapter 3, we
derive a proof of the minimax theorem in Chapter 4. We proceed
in Chapter 5 with a set of behavioral assumptions about players that
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lead to maximin play. This part concludes by studying randomly
chosen symmetric zero-sum games in Chapter 6.

The second part examines social choice problems on domains of
SSB preferences over outcomes. The necessary social choice specific
concepts are introduced in Chapter 7. In Chapter 8, we establish that
anonymous Arrovian aggregation necessitates preferences based on
pairwise comparisons and relative utilitarianism. In the remaining
two chapters, we study the social choice function that chooses max-
imal elements according to relative utilitarianism. Its resistance to
strategic abstention is examined in Chapter 9. Chapter 10 concludes
with a characterization of maximal lotteries using population consis-
tency and composition consistency.

The two parts are independent in that each of them can be under-
stood separately.

underlying articles
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2
P R E L I M I N A R I E S

We start by introducing some notation that will be used in various
different contexts throughout this thesis. For n ∈ N, we define [n] =

{1, . . . ,n} as the set of all natural numbers from 1 to n. Given some
set U, RU denotes the set of all real-valued sequences indexed by U
that are eventually 0. By F(U) we denote the set of all finite and non-
empty subsets of U. For a vector x ∈ RU, x+ = {i ∈ U : xi > 0} and
x− = {i ∈ U : xi < 0} denote the sets of elements of U for which x is
positive and negative, respectively. The support supp(x) = x+ ∪ x−
is the set of all elements of U corresponding to non-zero entries of x.
For A ⊆ U, xA = (xi)i∈A is the restriction of x to A. Similarly, for
M ∈ RU×U and A,B ⊆ U, MAB = (Mij)i∈A,j∈B is the restriction of
M to the submatrix induced by A and B. We write MA = MAA for
short.

For X ⊆ RU, the convex hull conv(X) is the set of all convex combi-
nations of elements of X, i.e.,

conv(X) =

{
λ1x

1 + · · ·+ λkxk : xi ∈ X, λ ∈ Rk>0,
k∑
i=1

λi = 1

}
.

If X = conv(X), X is convex. The affine hull aff(X) is the set of all affine
combinations of elements of X, i.e.,

aff(X) =

{
λ1x

1 + · · ·+ λkxk : xi ∈ X, λ ∈ Rk,
k∑
i=1

λi = 1

}
.

X is an affine subspace if X = aff(X). We say that x1, . . . , xk ∈ RU are
affinely independent if, for all λ ∈ Rk with

∑k
i=1 λi = 0,

∑k
i=1 λix

i =

0 implies λ = 0. The dimension dim(X) of an affine subspace X is
k− 1, where k is the maximal number of affinely independent vectors
in X. If this number is unbounded, X has infinite dimension. The
dimension of a set X ⊆ RU is defined as the dimension of aff(X). The
linear hull lin(X) is the set of all linear combinations of elements of X,
i.e.,

lin(X) =
{
λ1x

1 + · · ·+ λkxk : xi ∈ X, λ ∈ Rk
}

.

The 1-norm of x ∈ RU is denoted by ‖x‖, i.e., ‖x‖ =
∑
i∈U |xi|. By

Bε(x) = {y ∈ RU : ‖x − y‖ < ε} we denote the open ε-ball around
x ∈ RU. For X, Y ⊆ RU, the interior of X in Y is intY(X) = {x ∈
X : Bε(x) ∩ Y ⊆ X for some ε > 0}. We say that X is open in Y if
X = intY(X). Similarly, X is closed in Y if the complement of X is
open in Y. The closure of X in Y, clY(X), is the intersection of all sets

19
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that are closed in Y and contain X. X is dense in Y if clY(X) = Y.
Alternatively, X is dense at y ∈ RU if, for every ε > 0, there is x ∈ X
such that ‖x− y‖ < ε. X is dense in Y if X is dense at y for every
y ∈ Y.

For A,B ⊆ U, ΠU(A,B) denotes the set of all permutations on U
that map A to B. If A = B, we write ΠU(A) for short. Whenever U
is clear from the context, the subscript will be omitted. For x ∈ RU

and π ∈ Π(U), xπ is the permutation of entries of x with respect to
π, i.e., xπ = x ◦ π−1. With this definition, (xπ)π(i) = xi for all i ∈ U.
Similarly, for M ∈ RU×U and π,σ ∈ Π(U), Mπσ = M ◦ (π−1 × σ−1)
and Mπ is short for Mππ.

For A ⊆ U, ∆(A) denotes the set of all probability distributions
on U whose support is finite and contained in A. Sometimes the
set of rational-valued probability distributions ∆Q(A) = ∆(A) ∩QU

is used. For i ∈ U, i denotes the one-point measure on i, i.e., i
assigns probability 1 to i. For A ∈ F(U), uni(A) ∈ ∆(U) denotes the
probability distribution that distributes probability uniformly over A.
Let A,B ⊆ U such that A ∩ B = {j}. For p ∈ ∆(A), q ∈ ∆(B), and
i ∈ U, let

(p×j q)i =

{
pi if i ∈ U \B,

pjqi if i ∈ B.

The operations defined here for a given type of object extend to
sets of objects of the same type by applying them to every element in
the set.

2.1 decision theoretic fundamentals

A preference relation � for a decision maker (or agent) on a set of
outcomes ∆(U) is an asymmetric relation on ∆(U).6 For p,q ∈ ∆(U),
we will write p ∼ q if neither p � q nor q � p and p % q if either
p � q or p ∼ q. We say that p is preferred to, indifferent to, and
weakly preferred to q if p � q, p ∼ q, and p % q, respectively. Hence,
the weak preference relation % is complete. For p ∈ ∆(U), the lower
contour set L(p) = {q ∈ ∆(U) : p � q} and the upper contour set
U(p) = {q ∈ ∆(U) : q � p} of p collect all outcomes that are less
preferred and more preferred than p. The indifference set I(p) =

{q ∈ ∆(U) : p ∼ q} contains all outcomes that p is indifferent to. For
π ∈ ΠU, we define the permutation of � with respect to π, �π, such
that pπ �π qπ if and only if p � q for all p,q ∈ ∆(U). The restriction
of � to a set of outcomes X ⊆ ∆(U) is �|X = �∩ (X×X).

Typically, preference relations are assumed to satisfy some notion
of rationality. This is captured by restricting the set of feasible pref-

6 A relation � is asymmetric if, for all p,q ∈ ∆(U), p � q implies not q � p.
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erence relations. For an abstract set of outcomes, any two preference
relations that only differ by renaming the outcomes are equally rea-
sonable. When considering preference relations on ∆(U), it seems
desirable to take into account the structure of ∆(U). A well-known
example of restricted preferences over ∆(U) is linear expected util-
ity theory due to von Neumann and Morgenstern (1953), which is
based on three axioms called transitivity, independence, and continu-
ity. Transitivity requires that � is a weak order on ∆(U), i.e.,

� and ∼ are transitive. (transitivity)

Independence prescribes that the preference between two outcomes
does not change if they are both shifted in the same direction and by
the same magnitude within ∆(U). Formally, � satisfies independence
if, for all p,q, r ∈ ∆(U) and λ ∈ (0, 1),

p � q if and only if λp+ (1− λ)r � λq+ (1− λ)r. (independence)

Lastly, a preference relation is continuous if it prohibits preference
reversals under small perturbations of outcomes. A preference rela-
tion � is continuous if, for all p,q, r ∈ ∆(U),

p � q � r implies λp+(1−λ)r ∼ q for some λ ∈ (0, 1). (continuity)

Transitivity, independence, and continuity are called vNM axioms in
the sequel; a vNM preference relation is a preference relation satisfy-
ing the vNM axioms. It can be shown that a preference relation �
satisfies the vNM axioms if and only if there exists a linear function
u : ∆(U) → R such that, for all p,q ∈ ∆(U), p � q exactly when
u(p) > u(q) (see, e.g., Fishburn, 1988). For an extensive discussion of
vNM utility theory, we refer to Karni (2014).

Another standard assumption is that preferences are convex. We
will use convexity as defined by Fishburn (1982).7 A preference rela-
tion � is convex if, for all p,q, r ∈ ∆(U) and λ ∈ (0, 1),

p � q and p % r imply p � λq+ (1− λ)r,

q � p and r % p imply λq+ (1− λ)r � p, and

p ∼ q and p ∼ r imply p ∼ λq+ (1− λ)r.

(convexity)

Equivalently, one could require that the indifference set of an out-
come p is the intersection of ∆(U) with a hyperplane through p; the
upper and lower contour sets are the intersection of ∆(U) with the
corresponding half spaces. Note that convexity implies that upper
contour sets, lower contour sets, and indifference sets are convex.
Moreover, upper contour sets and lower contour sets are open and
indifference sets are closed. Proofs of these statements appear in

7 This notion of convexity is called dominance by Fishburn (1982).
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Lemmas 8.4, 8.6, and 8.7. This notion of convexity is rather strong.
Weaker notions of convexity only require that upper contour sets are
convex or that lower contour sets are convex or both.

Transitivity of preference relations is frequently used to guarantee
the existence of maximal elements. The following theorem by Son-
nenschein (1971) shows that this assumption is to some extent made
out of technical convenience rather than necessity, since continuity
and convexity already suffice to assure that maximal elements exist
within compact and convex sets.8

Proposition 2.1 (Sonnenschein, 1971)
Let � is a continuous and convex preference relation. Then,
max� X 6= ∅ for every non-empty, compact, and convex set X ⊆
∆(U).

Arguably the prime reason for requiring the existence of maximal
elements is that a decision maker should be able to choose an out-
come from some feasible set of outcomes. If a feasible set does not
admit a maximal element, than the decision maker will not be able
to make a satisfactory choice, since whichever outcome he chooses,
there will always be a preferred outcome. For a finite abstract set of
outcomes, there is no basis for assuming that some sets should not
be feasible. Sen (1969) and Sen (1971) has shown that in this setting,
two intuitive choice consistency conditions are equivalent to choosing
maximal elements according to an acyclic relation. These conditions
are known as Sen’s α (or contraction) and Sen’s γ (or expansion).9 Con-
traction requires that if an outcome is chosen from some set, then it
should also be chosen from any subset thereof that it is contained in.
This condition is satisfied when choosing maximal elements without
imposing any restrictions on �. Expansion prescribes that an out-
come that is chosen from two sets X and Y should also be chosen
from their union X∪ Y. Since we are only interested in choosing from
convex sets, we strengthen this condition by taking the convex hull
conv(X ∪ Y) in the consequence. If � is convex, then max� satisfies
this notion of expansion. To see this, consider X, Y ⊆ ∆(U) and as-
sume that p ∈ max� X ∩max� Y. Then, p % q for all q ∈ X ∪ Y and,
since � satisfies convexity, we have p % q for all q ∈ conv(X ∪ Y).
Thus, p ∈ max� conv(X ∪ Y). Sen’s proof can even be adapted to
show that every choice function satisfying contraction and expansion
is of the form max� for some � with convex weak lower contour sets.
The preference relation � on ∆({a,b}) that has p � q if pa > qa for

8 Sonnenschein only required that upper contour sets are convex and that lower con-
tour sets are open. The latter assumption is weaker than continuity when the set
of alternatives is finite. See Bergstrom (1992) and Llinares (1998) for a discussion of
Sonnenschein’s and related results.

9 Sen’s α can be traced back to Chernoff (1954) and Nash (1950b), where it is called
independence of irrelevant alternatives (not to be confused with Arrow’s IIA). We refer
to Monjardet (2008) for more details.
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all p,q ∈ ∆({a,b}) except that a ∼ b has convex weak lower (and
weak upper) contour sets. The choice function that chooses maxi-
mal elements of compact and convex subsets of ∆({a,b}) according
� satisfies contraction and expansion. However, � does not satisfy
convexity, since I(a) = I(b) = {a,b} is not convex. Hence, not ev-
ery choice behavior that satisfies contraction and expansion can be
expressed by choosing maximal elements according to a convex pref-
erence relation.

2.2 ssb utility theory

When requiring preference relations to satisfy a certain set of axioms,
it is desirable to have a mathematically compact way of represent-
ing preference relations that satisfy these axioms. Fishburn (1988,
p. 85) showed that a preference relation � on ∆(U) is continuous
and convex if and only if it can be represented by a non-transitive
convex utility function, i.e., a function φ : ∆(U)× ∆(U) → R that is
sign skew-symmetric and linear in the first argument.10 A function
φ : ∆(U) × ∆(U) → R represents a preference relation � whenever
p � q if and only if φ(p,q) > 0 for all p,q ∈ ∆(U). Observe that
this does not rule out the possibility that |φ(p,q)| > |φ(q,p)| for two
outcomes p and q. Informally this means that the magnitude of pref-
erence between p and q depends on the order in which they are com-
pared. To prevent this, Fishburn (1982) additionally requires prefer-
ence relations to satisfy the following symmetry axiom. A preference
relation � satisfies symmetry if, for all p,q, r ∈ ∆(U) and λ ∈ (0, 1),

if p � q � r, p � r, and q ∼ 1/2p+ 1/2 r, then

[λp+ (1− λ)r ∼ 1/2p+ 1/2q if and only if λr+ (1− λ)p ∼ 1/2 r+ 1/2q].
(Symmetry)

The implications of the symmetry axiom can be expressed as follows.
Continuity and convexity imply that, for every triple of outcomes, the
indifference curves within their convex hull are straight lines. Sym-
metry prescribes that, either all these indifference curves are parallel
or intersect in one point (which may be outside of their convex hull).
In the first case, the preferences over their convex hull can be repre-
sented by a linear utility function.

Fishburn (1984c) himself states “I am a bit uncertain as to whether
this should be regarded more as a convention than a testable hypoth-
esis – much like the asymmetry axiom [. . . ], which can almost be
thought of as a definitional characteristic of strict preference.” We
will frequently consider preference relations that satisfy continuity,

10 A function φ : ∆(U) × ∆(U) → R is sign skew-symmetric if, for all p,q ∈ ∆(U),
φ(p,q) > 0 if and only if φ(q,p) < 0.
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convexity, and symmetry. The set of all such preference relations on
∆(U) is henceforth denoted by R.

The addition of symmetry implies that every preference relation in
R can be represented by a skew-symmetric and bilinear (SSB) func-
tion φ : ∆(U)×∆(U) → R (Fishburn, 1982).11 Moreover, φ is unique
up to multiplication by a positive scalar. Hence, any two SSB func-
tions that only differ by multiplication with a positive scalar represent
the same preference relation. Every preference relation � ∈ R other
than complete indifference can thus be associated with a unique nor-
malized SSB function on ∆(U)×∆(U) whose largest positive value is
equal to 1. By Φ we denote the set of all SSB functions that are nor-
malized in this way. For � ∈ R, φ� ∈ Φ denotes the normalized SSB
function representing �. Note that the value of an SSB function φ is
maximized for a pair of vertices of ∆(U), since it is linear in both argu-
ments. For two SSB functions φ and φ̂ we write φ ≡ φ̂ if φ = αφ̂ for
some α > 0. Since the set of outcomes ∆(U) only contains outcomes
with finite support, φ(p,q) can be written as a convex combination
of the values of φ for pure outcomes (Fishburn, 1984c). Thus, for all
p,q ∈ ∆(U),

φ(p,q) =
∑
a,b∈U

paqbφ(a,b).

Consequently, every SSB function φ can be represented by a skew-
symmetric matrix M ∈M and vice versa, where φ(a,b) =Mab for all
a,b ∈ U. Then, we have that φ(p,q) = ptMq.

The conjunction of transitivity and the independence axiom implies
both convexity and symmetry. Remarkably, the independence axiom
in addition to continuity and convexity is enough to guarantee that
a preference relation can be represented by a vNM utility function
(Fishburn, 1982, Proposition 1). Hence, in the presence of continu-
ity and convexity, the independence axiom implies transitivity. In
this case φ is additively separable, i.e., φ(p,q) = u(p) − u(q) for all
p,q ∈ ∆(U) for some linear utility function u representing �. On the
other hand, transitive relations in R are exactly those which can be
represented by a weighted linear (WL) utility function as introduced
by Chew (1983).12 For independently distributed outcomes (as con-
sidered in this thesis), SSB utility theory coincides with regret theory
as introduced by Loomes and Sugden (1982) (see also Loomes and
Sugden, 1987; Blavatskyy, 2006).

Through the representation of � ∈ R by a skew-symmetric ma-
trix, it becomes apparent that the minimax theorem implies the exis-

11 A function φ : ∆(U)× ∆(U) → R is skew-symmetric if φ(p,q) = −φ(q,p) for all
p,q ∈ ∆(U). φ is bilinear if it is linear in both arguments.

12 A WL function is characterized by a linear utility function and a non-negative weight
function. The utility of an outcome is the utility derived from the linear utility
function weighted according to the weight function. Thus, WL functions are more
general than linear utility functions, as every linear utility function is equivalent to
a WL function with constant weight function. See also Fishburn (1983).
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φ =

a b c( )0 1 1 a

−1 0 1 b

−1 −1 0 c

a

b

c

Figure 2.1: Illustration of PC preferences when preferences on pure out-
comes are given by the transitive relation a � b � c. The arrows
represent the normal vectors to the indifference curves of the
outcome at the base of the arrow (pointing towards the lower
contour set). Each indifference curve separates the correspond-
ing upper and lower contour set.

tence of maximal elements of � on ∆(A) for every A ∈ F(U). This
was noted by Fishburn (1984c, Theorem 4) and already follows from
Proposition 2.1. Fishburn (1984c) goes on to show that choosing max-
imal elements of � from feasible sets satisfies contraction and ex-
pansion. As discussed before, this even holds for arbitrary convex
relations.13

We will be frequently interested in a particular subclass of SSB func-
tions. An SSB function φ ∈ Φ is based on pairwise comparisons if
φ(a,b) ∈ {−1, 0, 1} for all a,b ∈ U. The set of all SSB functions based
on pairwise comparisons is denoted by ΦPC. A preference relation
� ∈ R is based on pairwise comparisons if its SSB representation is
based on pairwise comparisons. Preference relations based on pair-
wise comparisons with be called PC preferences for short. The set
DPC collects all such preference relations. From the SSB representa-
tion it can be seen that, for all � ∈ DPC and p,q ∈ ∆(U),

p � q if and only if
∑
a�b

paqb >
∑
b�a

pbqa.

The sum on the left hand side of the inequality is the probability that
p yields a better alternative than q. Analogously, the sum on the right
hand side is the probability that q yields a better alternative than p.
Hence, p is preferred to q by pairwise comparison if the probability
that p yields a better alternative is larger than for q. Note that � is
completely determined by the preferences over pure outcomes, which
establishes a one-to-one correspondence between φPC and the set of
asymmetric relations on U.

PC preferences appear in earlier as well as more recent literature
on decision theory (Blyth, 1972; Packard, 1982; Blavatskyy, 2006).14 In

13 Fishburn (1984c) defines expansion without taking the convex closure of the union
of two feasible sets, which results in a weaker notion of expansion.

14 PC preferences are referred to the rule of expected dominance by Packard (1982) and
preference for the most probable winner by Blavatskyy (2006).
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φ =

a b c d


0 1 1 1 a

−1 0 1 1 b

−1 −1 0 1 c

−1 −1 −1 0 d

p = c

q = 2/5a+ 3/5d

r = 3/5b+ 2/5d

Figure 2.2: Illustration of PC preferences when preferences over pure out-
comes are given by the transitive relation a � b � c � d. The
left-hand side shows the corresponding SSB function. The pref-
erences between the three outcomes p, q, and r defined in the
table on the right-hand side are cyclic: φ(p,q) = 3/5 − 2/5 =
1/5 > 0, φ(q, r) = 4/25 > 0, and φ(r,p) = 1/5 > 0. Hence,
p � q � r � p.

the social choice literature, Pareto efficiency, strategyproofness, and
participation of social choice functions with respect to these prefer-
ences were studied (Aziz et al., 2015; Aziz et al., 2018; Brandl et al.,
2018).

Figure 2.1 illustrates PC preferences for three transitively ordered
alternatives.15 Blavatskyy (2006) gives an axiomatic characterization
using Fishburn’s SSB axioms and an additional axiom called fanning-
in, which essentially prescribes that indifference curves fan in at a
certain rate (see Figure 2.1). As a corollary of Theorem 8.1, fanning-in
is implied by Fishburn’s SSB axioms and Arrow’s axioms. Blavatskyy
cites extensive experimental evidence for the fanning-in of indiffer-
ence curves. Recent evidence for preferences based on pairwise com-
parison has been provided by Butler et al. (2016).

For at least four alternatives, PC preferences can be cyclic even
when the preferences over pure outcomes are transitive. This phe-
nomenon, known as the Steinhaus-Trybula paradox, is illustrated in Fig-
ure 2.2 (see, e.g., Steinhaus and Trybula, 1959; Blyth, 1972; Packard,
1982; Rubinstein and Segal, 2012; Butler et al., 2016). Butler et al.
(2016) have conducted an extensive experimental study of the Stein-
haus-Trybula paradox and found significant evidence for PC prefer-
ences.

15 For three alternatives PC preferences as depicted in Figure 2.1 can be represented
by a WL function with utility function u(a) = u(b) = 1 and u(c) = 0 and weight
function w(a) = 0 and w(b) = w(c) = 1.
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G A M E T H E O R E T I C F U N DA M E N TA L S

3.1 zero-sum games

Studying strategic interaction requires a model that allows to specify
the rules of the underlying situation. The representation of such a sit-
uation, called a game, needs to be rich enough to allow us to express
a sufficient variety of rules and to capture the behavior of the play-
ers. On the other hand, a concise representation typically simplifies
the analysis. For the purpose of this thesis, it is sufficient to consider
two-player zero-sum games represented by a single matrix. However,
our model enriches the usual formulation in that it allows to relate
games on different sets of actions to each other. To this end, let U be
the set of all actions that a player could conceivably take. The strat-
egy of a player consists of choosing a randomization over actions, i.e.,
an element of ∆(U). For i ∈ U, i is called a pure strategy. A proto
game M ∈ RU×U specifies the payoff of the row player for every com-
bination of pure strategies, i.e., for i, j ∈ U, Mij is the payoff of the
row player if the row player plays i and the column player plays j.
The payoff of the column player is the negative of the payoff of the
row player. However, not all actions are feasible in every situation. A
two-player zero-sum game MAB is obtained by restricting M to sets
of feasible actions A,B ∈ F(U). Two-player zero-sum games will be
simply referred to as games. For two strategies p,q ∈ ∆(U), one for
the row player and one for the column player, the expected payoff for
the row player is ptMq. The expected payoff of the column player is
the negative thereof.

The objective of game theory is to provide a formal basis for de-
cision making in the presence of strategic interaction. This is typi-
cally formalized via solution concepts, which in our framework map
a proto game and a pair of feasible sets of actions to a non-empty
set of strategies for the row player. Formally, a solution concept is a
function f : RU×U×F(U)2 → 2∆(U) \ {∅} such that f(M,A,B) ⊆ ∆(A)
for all M ∈ RU×U and A,B ∈ F(U). The last part of the definition
ensures that infeasible actions are assigned probability zero. Note
that f(−Mt,B,A) is the set of strategies recommended for the col-
umn player. This definition of solution concept enables us to relate
strategic choices for different sets of feasible actions to each other. A

29
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widely accepted solution concept are maximin strategies (MS), which
maximize the minimum expected payoff. Formally,

MS(M,A,B) = arg max
p∈∆(A)

min
q∈∆(B)

ptMq. (maximin strategies)

A strategy p is a maximin strategy for the row player in the game
MAB if p ∈ MS(M,A,B). Note that the set of maximin strategies
is convex, since it is the set of solutions to a linear program. The
minimax theorem (von Neumann, 1928) shows that the minimum
expected payoff of a maximin strategy for the row player is equal to
the negative of the minimum expected payoff of a maximin strategy
for the column player. This payoff is called the value of the game. In
Chapter 4 we give a new and simple proof of the minimax theorem.

The following two lemmas state useful facts about games, which
will be applied in the proofs of our results. Raghavan (1994) showed
that every feasible action of the row player that yields the same payoff
as a maximin strategy against all maximin strategies of the column
player is played with positive probability in some maximin strategy
of the row player. This is known as the equalizer theorem.

Proposition 3.1 (Raghavan, 1994)
Let M ∈ RU×U, A,B ∈ F(U), p ∈ MS(M,A,B), and i ∈ A. If
(Mq)i = ptMq for all q ∈ MS(−Mt,B,A), then there is p̂ ∈
MS(M,A,B) with p̂i > 0.

Following Harsanyi (1973a), a Nash equilibrium (p,q) is quasi-
strict if every action of the row player that is outside the support
of p yields strictly less expected payoff against q than every action in
the support of p (and similarly for the column player).16 It is a well-
known fact that if all equilibria of a game are quasi-strict, then there
is a unique equilibrium. For the case of zero-sum games, Lemma 3.2
generalizes this observation by showing that an equilibrium is quasi-
strict if and only if it is in the relative interior of the set of equilibria.
The proof of Lemma 3.2 makes use of the equalizer theorem.

Lemma 3.2
Let M ∈ RU×U and A,B ∈ F(U). Then, (p,q) is a quasi-
strict equilibrium if and only if (p,q) ∈ relint(MS(M,A,B)×
MS(−Mt,B,A)).

Proof. Let v = ptMq ∈ R be the value ofMAB and S = MS(M,A,B)×
MS(−Mt,B,A). Now let (p,q) ∈ relint(S) and assume for contradic-
tion that (p,q) is not quasi-strict. Then, without loss of generality,
there is i ∈ A \ supp(p) such that (Mq)i = v. Proposition 3.1 implies
that there is at least one quasi-strict equilibrium (p̂, q̂) ∈ S. Since

16 Harsanyi originally used the term quasi-strong equilibrium, which was referred to
as quasi-strict equilibrium in subsequent work to avoid confusion with Aumann’s
notion of strong equilibrium (Aumann, 1959).
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(p,q) ∈ relint(S), there is ε > 0 such that (pε,qε) = ((1 + ε)p −

εp̂, (1+ ε)q− εq̂) ∈ S. Then,

(Mqε)i = (1+ ε) (Mq)i︸ ︷︷ ︸
=v

−ε (Mq̂)i︸ ︷︷ ︸
<v

> v,

which contradicts (pε,qε) ∈ S.
Now let (p,q) ∈ S \ relint(S) and assume for contradiction that

(p,q) is quasi-strict. Let (p̂, q̂) ∈ relint(S). If supp(p̂) 6⊆ supp(p),
there is i ∈ supp(p̂) \ supp(p) such that (Mq)i < v, since (p,q) is
quasi-strict. Hence, p̂tMq < v, which contradicts (p̂,q) ∈ S. Thus,
we get supp(p̂) ⊆ supp(p) and, similarly, supp(q̂) ⊆ supp(q). This
implies that there is ε > 0 such that (pε,qε) ∈ ∆(A)×∆(B) and, for
all i ∈ A \ supp(p) and j ∈ B \ supp(q),

(Mqε)i = (1+ ε) (Mq)i︸ ︷︷ ︸
<v

−ε(Mq̂)i 6 v, and

((pε)tM)j = (1+ ε) (ptM)j︸ ︷︷ ︸
>v

−ε(p̂tM)i > v.

Hence, (pε,qε) ∈ S, which contradicts (p,q) ∈ S \ relint(S).

Lemma 3.2 implies that if both player have a unique maximin strategy,
then this pair is a quasi-strict equilibrium.

3.2 symmetric zero-sum games

A game is symmetric if both players have the same set of feasible ac-
tions and swapping actions results in a swap of the payoffs. Formally,
a proto game M ∈ RU×U is symmetric if M is skew-symmetric, i.e.,
M = −Mt. The set of all symmetric proto games is denoted by M. If
M ∈ M and A ∈ F(U), MA is a symmetric game. Symmetry implies
that the sets of recommended strategies coincide for both players. In
particular, the sets of maximin strategies are the same for both players.
For symmetric games, we will hence simply use the term maximin
strategy without referring to a specific player. Observe that no player
can guarantee an expected payoff of more than 0, since both players
get expected payoff 0 if they play the same strategy. The minimax the-
orem implies that symmetric games have value 0. Symmetric games
can be represented as weighted digraphs with actions corresponding
to vertices and payoffs corresponding to weights of edges.

It will be useful to keep in mind that skew-symmetric matrices of
odd size cannot have full rank. For M ∈M and A ∈ F(U),

det(MA) = det(Mt
A) = det(−MA) = (−1)|A| det(MA).

Hence, det(MA) = 0 if A has odd cardinality. This implies that the
rank of a skew-symmetric matrix is even. The functions ρA, A ⊆ U,
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defined below are partial reflections on M. In the graphical repre-
sentation, ρA inverts all edges between A and U \A. Formally, for
A ⊆ U, let ρA : M→M such that, for all i, j ∈ U,

(ρA(M))ij =

{
Mij if i, j ∈ A or i, j ∈ U \A, and

−Mij otherwise.

Similarly, for x ∈ RU, let

(ρA(x))i =

{
−xi if i ∈ A, and

xi otherwise.

Partial reflections have been considered in the context of tournament
games by Fisher and Ryan (1995), who used the term “flip opera-
tors”. Some of their properties listed here have already been stated
in Fisher and Ryan (1995, Lemma 1). Observe that, for all A,B ⊆ U,
we have ρA ◦ ρB = ρA∆B, where ∆ denotes the symmetric difference
of A and B. Furthermore, ρA = ρU\A for all A ⊆ U. As a conse-
quence, ({ρA : A ⊆ U}, ◦) is a group with neutral element ρ∅ where
every element is self-inverse. The fact that A∆B = B∆A implies that
this group is Abelian. The following lemma shows that ρA commutes
with matrix-vector multiplication, which will be useful to prove the
minimax theorem for symmetric games and to determine the distri-
bution of maximin strategies in symmetric games.

Lemma 3.3
Let M ∈M, x ∈ RU, and A ⊆ U. Then,

ρA(M)ρA(x) = ρA(Mx).

Proof. This is readily checked by verifying the following sequence of
equalities:

ρA(M)ρA(x) =

(
MA −MA,U\A

−MU\A,A MU\A

)
·
(

−xA
xU\A

)
=

(
−(Mx)A
(Mx)U\A

)
= ρA(Mx).
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As far as I can see, there could be no theory of
games [. . . ] without that theorem [. . . ] I thought
there was nothing worth publishing until the
minimax theorem was proved.

J. von Neumann

The minimax theorem states that in every zero-sum game the mini-
mum expected payoff of a maximin strategy for the row player is the
same as the negative of the minimum expected payoff of a maximin
strategy for the column player. Equivalently, it shows that the value
of a game is well-defined. The original proof of the minimax theo-
rem by von Neumann (1928) used methods from functional analysis
and was quite elaborate. We give a much simpler proof that only
uses basic linear algebra and analysis. The theorem is first proven
for symmetric games and then generalized to arbitrary games using
a symmetrization procedure due to Gale et al. (1950). This shows
that proving the minimax theorem for symmetric games is not essen-
tially easier than proving it for arbitrary games. The idea to invoke
symmetrization to prove the minimax theorem is not new and has
been exploited previously by Gale et al. (1950). Their proof is purely
algebraic and relies on a little known theorem of the alternative by
Stiemke (1915).

Since games are assumed to be zero-sum, the column player max-
imizes his minimal expected payoff if he minimizes the maximal ex-
pected payoff of the row player. Hence, the minimax theorem can be
stated as follows.
Theorem 4.1

Let M ∈ RU×U and A,B ∈ F(U). Then,

max
p∈∆(A)

min
q∈∆(B)

ptMq = min
q∈∆(B)

max
p∈∆(A)

ptMq.

Proof. The proof goes along the following lines. We first prove the
theorem for an arbitrary symmetric game MA. To this end, we con-
sider the set of core vectors of submatrices of M that are induced by
odd-sized subsets of A. (Here we use the fact that skew-symmetric
matrices of odd size cannot have a trivial core.) The partial reflection
of every such vector that maps it to a non-negative vector (normalized
to unit sum) is a maximin strategy of the corresponding partial reflec-
tion of M. For generic games, these vectors are pairwise distinct and
are maximin strategies for different partial reflections of M. Since the

33
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number of odd-sized subsets of A is the same as the number of differ-
ent partial reflections ofM, we can conclude that the partial reflection
of one of these vectors is a maximin strategy of MA. This proves the
existence of maximin strategies for generic symmetric games. A sim-
ple analytic argument extends this conclusion to all symmetric games.
The symmetrization procedure by Gale et al. (1950) allows us to con-
nect maximin strategies in symmetric games to maximin strategies in
arbitrary games.

Let M ∈M and A ∈ F(U). Without loss of generality, it is assumed
thatMij = 0 for all (i, j) 6∈ A×A. Note that, by skew-symmetry ofM,
maxp∈∆(A) minq∈∆(A) p

tMq 6 0, since ptMp = 0 for all p ∈ ∆(A),
and

min
q∈∆(A)

max
p∈∆(A)

ptMq = − max
q∈∆(A)

min
p∈∆(A)

qtMp.

Hence, it suffices to show that there is p ∈ ∆(A) such that ptM > 0.
Denote by Feven(A) the set of subsets of A of even cardinality and

by Fodd(A) the set of subsets of A of odd cardinality. First consider
the case when MS has full rank for every S ∈ Feven(A). For every
S ∈ Fodd(A), let pS ∈ RU \ {0} such that (pSS)

tMS = 0, supp(pS) ⊆ S,
and ‖pS‖ = 1. The vectors pS exist, since skew-symmetric matrices
of odd size cannot have full rank. Note that the support of pS is S
for every S ∈ Fodd(A), as otherwise there would be a submatrix of
MA of even size that does not have full rank. For the same reason,
((pS)tM)i 6= 0 for all i ∈ A \ S. Consider the function f : Fodd(A) →
2A/·c, where 2A/·c denotes the quotient space of 2A with respect to
the complement operation, defined as follows:

f(S) = [((pS)tM)− ∪ pS−].

By definition of f, we have that

ρpS−(p
S)tρf(S)(M) =


pS
pS+

−pS
pS−

0

0


t pS+ pS− ((pS)tM)+ ((pS)tM)−


− −

− −

− −

− −

> 0.

The above matrix depicts ρf(S)(M). Blank cells mark submatrices that
remain unchanged by ρf(S) and minus signs correspond to submatri-
ces whose entries are negated by ρf(S). The column labels denote the
corresponding partition of the columns; the partition of the rows is
the same as for the columns. It can then be observed that ρpS−(p

S)

guarantees a payoff of at least 0 for the row player in ρf(S)(M) when
only actions in A are feasible.
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We show that f is injective. Let S, T ∈ Fodd such that S 6= T and
assume for contradiction that f(S) = f(T) = X. Then, we have that

ρpS−(p
S)tρX(M) > 0 and ρpT−(p

T )tρX(M) > 0.

Since M is skew-symmetric and supp(ρpS−(p
S)) = supp(pS) = S and

supp(ρpT−(p
T )) = supp(pT ) = T , it follows that

(ρpS−(p
S)tρX(M))S∪T = 0 and (ρpT−(p

T )tρX(M))S∪T = 0.

The fact that ρX is self-inverse and Lemma 3.3 imply that

(ρX∆pS−(p
S)tM)S∪T = 0 and (ρX∆pT−(p

T )tM)S∪T = 0.

Hence, MS∪T contains an even-sized square submatrix that does not
have full rank, which contradictions our initial assumption. Since
|Fodd| = |2A/·c| = 2|A|−1, it follows that f is bijective and, in particular,
surjective. Thus, for every X ∈ 2A, there is S ∈ Fodd(A) such that
ρpS−(p

S)tρX(M) > 0. In particular, there is S ∈ Fodd(A) such that
ρpS−(p

S)tM > 0. Since ρpS−(p
S) > 0 and ‖pS‖ = 1 by assumption,

ρpS−(p
S) is a maximin strategy of M.

Next, we show that arbitrary symmetric games have value 0. To this
end, let M ∈ M and A ∈ F(U). Again, we may assume without loss
of generality thatMij = 0 for all (i, j) 6∈ A×A. For every S ∈ Feven(A),
the set of matrices in M such that the submatrix induced by S does
not have full rank is nowhere dense in M. Since the union of finitely
many nowhere dense sets is nowhere dense, the set of matrices such
that every square submatrix with rows and columns in A of even
size has full rank is the complement of a nowhere dense set and thus
dense in M. Hence, we can find a sequence (Mi)i∈N ⊆ M such that
Mi converges to M and Mi

S has full rank for every S ∈ Feven(A) and
i ∈ N. We know from before, that Mi

A has value 0, i.e., there is
pi ∈ ∆(A) such that (pi)tMi > 0, for all i ∈N. The sequence (pi)i∈N

admits a convergent subsequence (pij)j∈N. Denote by p ∈ ∆(A) its
limit point. Then,

ptM = lim
j→∞(pij)tMij > 0.

Hence, M has value 0.
Lastly, we use the previously obtained conclusion for symmetric

games to prove the minimax theorem for arbitrary games. Let M ∈
RU×U and A,B ∈ F(U). Without loss of generality, we may assume
that all entries ofMAB are positive, since adding the same constant to
all entires of MAB does not change the set of maximin strategies. We
invoke a symmetrization procedure by Gale et al. (1950) that relates
maximin strategies of an arbitrary game to maximin strategies of a
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symmetric game. Assume without loss of generality that A and B are
disjoint and let h ∈ U \ (A∪B). Let M̂ ∈ RU×U such that

M̂A∪B∪{h} =

A B h 0 MAB −1 A

−Mt
BA 0 1 B

1t −1t 0 h

The symbol 1 denotes a column vector of appropriate size with all
entries equal to 1. The matrix M̂A∪B∪{h} corresponds to a symmetric
game where both players’ choice of strategy can be decomposed into
a two stage decision process: first, they can choose to play the original
game as either the row player or the column player or they can play a
additional action called “hedging”; second, if they choose to play the
original game, they have to choose an action from either A or B. Since
all payoffs in MAB are assumed to be positive (so that the payoff of
the row player is guaranteed to be positive when playing MAB), the
first choice corresponds to a variant of “rock, paper, scissors”. From
before, we know that M̂ has value 0, i.e., there is p̂ ∈ ∆(A ∪ B ∪ {h})
such that (p̂tM̂)A∪B∪{h} > 0. Let p̂ = (αp,βq,γ) for some p ∈ ∆(A),
q ∈ ∆(B), and (α,β,γ) ∈ ∆({A,B,h}). By case analysis, it can be seen
that p̂a > 0 and p̂b > 0 for some a ∈ A and b ∈ B and p̂h > 0. This
implies that all of α,β,γ are strictly positive. Thus,

−β(qtMt)A + γ > 0 and α(ptM)B − γ > 0,

or, equivalently,

(Mq)A 6 γ/β and (ptM)B > γ/α.

Multiplication of p̂ with the column of M̂ corresponding to h yields
that α = β. Thus, MAB has value γ/α and maximin strategies p and
q.



5
J U S T I F I C AT I O N O F M A X I M I N P L AY

To achieve a meaningful extension of von
Neumann’s value, we must take into account the
interactive nature of games: that the players are
rational, and reason about each other.

R. J. Aumann and J. H. Drèze

Much of game theory is concerned with the analysis of equilibrium
concepts. Typically questions such as the existence and uniqueness
of equilibria or the computational complexity of finding an equilib-
rium are addressed. A wide range of different equilibrium notions
has been proposed, perhaps most notably the notions of Nash equilib-
rium (Nash, 1950a) (and various refinements thereof) and correlated
equilibrium (Aumann, 1974) (a coarsening of Nash equilibrium). For
general normal-form games, both of these notions require some form
of coordination among the players, i.e., optimality of a strategy is
subject to the strategies chosen by other players. In the absence of a
central coordination device, it is however unclear why a player should
expect other players to play certain strategies. Even if it is agreed that
the players’ strategies should form, say, a Nash equilibrium, ambi-
guity remains as to which Nash equilibrium should be obtained in
case there are multiple. In any case, even finding a Nash equilib-
rium has been shown to be complete for the complexity class PPAD
(Daskalakis et al., 2009) even when there are only two players (Chen
et al., 2009). Hence, for reasonably large games it may be intractable
to even find a Nash equilibrium.

For two-player zero-sum games the situation is different in at least
two respects. The set of Nash equilibria is precisely the set of pairs
of maximin strategies. This set of pairs of strategies is Cartesian, i.e.,
the cross product of two sets of strategies. Hence, in two-player zero-
sum games, optimality of a player’s strategy does not depend on the
strategy played by the other player.17 Secondly, maximin strategies
can be computed in polynomial time in the size of the game.

Still, it remains to be answered why players should play maximin
strategies. On the surface this seems like a problem of decision mak-
ing under uncertainty, where the uncertainty comes from the fact that
a player does not know the strategy of his opponent. This however

17 Note that the definition of a solution concept for two-player zero-sum games in
Chapter 3 already rules out dependence of the choice of strategy by a player on the
choice of strategy by the other player.

37
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is different from nature probabilistically choosing some event, since
a player’s choice of strategy is influenced by reasoning about his op-
ponent and reasoning about the reasoning about his opponent and
so on. Aumann and Drèze (2008) argue that games given by a set of
actions for each player and the corresponding payoffs are underspec-
ified in the sense that it is not possible to give a definite recommen-
dation on this basis. Epistemic game theory aims to put games into
context by assuming that the players have knowledge apart from the
specification of the game. For example, a player may know that his
opponent is rational and possibly even that his opponent knows that
he himself is rational and possibly he may even have higher order
beliefs. Such belief hierarchies are typically formulated via interactive
belief systems as introduced by Harsanyi (1967) (see also Aumann and
Brandenburger, 1995; Perea, 2007; Aumann and Drèze, 2008; Perea,
2012). A belief system consists of a game and a set of types for each
player with each type including the action played by this type and
a probability distribution over types of the other players, called the
belief of this type. This model does not assume that players actively
randomize, only the beliefs about the types of the other players are
randomized.

Aumann and Brandenburger (1995) show that for two-player (not
necessarily zero-sum) games the beliefs of every pair of types whose
beliefs are mutually known and whose rationality is mutually known
constitute a Nash equilibrium.18 Here rationality prescribes that the
action chosen by a type has to maximize his expected payoff given his
belief. This result extends to arbitrary games if the beliefs are com-
monly known and admit a common prior. Perea (2012) gives a set of
assumptions about the players’ beliefs that imply that the beliefs of
a player constitute a Nash equilibrium but argues that some of these
assumptions are unrealistic, e.g., they require that players believe that
their opponents hold correct beliefs about other players. Hence, Nash
equilibrium is at least questionable from an epistemic perspective for
general normal-form games. A different viewpoint was taken by Au-
mann and Drèze (2008) who argue which payoff a rational player
should expect. If there is reason for players to play maximin strate-
gies in two-player zero-sum games, then they should expect the value
of the game. Rationality or even common knowledge of rationality
are not sufficient to derive this conclusion. However, Aumann and
Drèze (2008) showed that if rationality is common knowledge and
the beliefs admit a common prior, then the players should expect the
value of the game.

Common knowledge assumptions in game theory have been criti-
cized for not adequately modeling reality. The Wilson doctrine (Wil-

18 In the model of Aumann and Brandenburger (1995) the payoff functions are un-
known and the players have beliefs about the payoff functions that may depend on
their type. For this model their result additionally requires the payoff functions to
be mutually known.
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son, 1987) states that effort should be made to derive results that do
not require common knowledge assumptions. Steps in that direction
were taken by Barelli (2009), Hellman (2013), and Bach and Tsakas
(2014) who showed that the results of Aumann and Brandenburger
(1995) and Aumann and Drèze (2008) still hold with weakened com-
mon knowledge assumptions.

As there is serious doubt about the significance of any strategic ad-
vice for general normal-form games, our considerations are restricted
to two-player zero-sum games. Furthermore, the model studied here
is different in that it is not based on interactive belief systems but so-
lution concepts, which map a proto game and sets of feasible actions
to a set of “good” strategies. In particular, it is assumed that players
may implement randomized strategies. This framework allows to re-
late the choice of strategy for different feasible sets of actions to each
other. Assumptions about other players are captured by requiring
that certain strategies must or must not be chosen.

The equivalent of Arrow’s independence of irrelevant alternatives
in social choice theory in our model, called independence of infeasible
actions, prescribes that the strategy of a player should not depend on
the payoffs for infeasible actions. This condition seems basic enough
that one might consider making it implicit in the definition of a solu-
tion concept, since any information about infeasible actions does not
make the situation strategically different.

A notable difference to the afore-mentioned work is that we do
not require players to maximize their expected payoff subject to some
probabilistic belief about the other player’s strategy. Our rationality
assumptions are phrased purely in deterministic terms. A player is
called rational if he never plays actions that are strictly dominated,
i.e., the strategies he chooses assign probability zero to such actions.
If a rational player knows that his opponent is rational, he will never
play actions that are dominated given that his opponent never plays
dominated actions. This condition is called mutual knowledge of ra-
tionality. It is weaker than common knowledge of rationality, which
is obtained if belief in rationality is assumed for arbitrary long se-
quences. Common knowledge of rationality is equivalent to the con-
dition that players only assign positive probability to rationalizable
actions, i.e., actions that survive the process of iterated elimination of
dominated actions (Bernheim, 1984; Pearce, 1984; Tan and da Costa
Werlang, 1988). Gintis (2009) argues that common knowledge of ra-
tionality is too strong, since it is not implied by any set of plausible
epistemic conditions.

The third condition prescribes how players deal with games that
they consider equivalent in terms of chosen strategies, i.e., they would
choose the same pair of strategies, one for each player, in both games.
Now assume that a coin is tossed to decide which of two equivalent
games is played and a player has to decide on his strategy before
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knowing the outcome of the coin toss. Consistency prescribes that any
strategy that he would choose in both games is also chosen prior to
the coin toss. This assumes that the game resulting from choosing a
strategy before the execution of the coin toss is treated in the same
way as the game whose payoffs are the expected payoffs of the ran-
domization. This is in fact the only place where expected payoffs
enter the picture. One could define a stronger notion of consistency,
called strong consistency, by assuming that a player considers two
games equivalent if he plays the same strategy as the row player in
both games. This however neglects the interactive nature of game
theory. The same strategy may be chosen in different games based on
different strategic reasonings. When a new game is obtained by ran-
domization over others, a different reasoning may apply. Equivalence
as in the definition of consistency requires that the same strategy is
chosen in different games based on the same reasoning, assuming
that the reasoning of a player is based on his own strategic choices.

Lastly, players are assumed to be consequentialists in the sense that
only the payoffs of an action are relevant to them, not the name of the
action. If there are actions that yield the same payoff against every
action of the opponent, so-called clones, the probability assigned to
other actions should be independent of which of the clones are feasi-
ble, as long as at least one of them is feasible; the remaining probabil-
ity can be assigned arbitrarily to the clones. Additionally, a player’s
strategy must not depend on the feasibility of clones for his opponent.
This condition is called consequentialism. The idea to relate a game to
one that contains clones of an action has also been used by Aumann
and Drèze (2008). Their main result shows that any rational expec-
tation for a player is identical to his expected payoff in a correlated
equilibrium of the game that contains two clones of each action. This
exploits the fact that the expectation of a player does not depend on
the feasibility of clones of actions that he does not play.

We show that choosing all maximin strategies satisfies indepen-
dence of infeasible actions, mutual knowledge of rationality, consis-
tency, and consequentialism (Theorem 5.2). Our main result states
that a player who adheres to all of these axioms has to choose maxi-
min strategies (Theorem 5.3). The conditions are formally presented
in Section 5.1. Section 5.2 gives the proofs of the main results. Sec-
tion 5.3 concludes with a number of remarks about the result.

5.1 independence, rationality, consistency,
and consequentialism

The strategies chosen by a player for different games can be sum-
marized by a solution concept. Assumptions about the player are
phrased in terms of properties of this solution concept. For games



5.1 independence, rationality, consistency, and consequentialism 41

that contain irrational payoffs, it is not clear that the payoff matrix can
be specified in a finite amount of space. Additionally, strategies that
involve irrational probabilities may not be implementable in practice.
Because of these concerns, we only consider games from QU×U and
solution concepts that map to strategies from ∆Q(U) for the purpose
of this chapter. Observe that games with rational-valued payoffs ad-
mit rational-valued maximin strategies and consequentially also have
a rational-valued value. Since we consider axioms that relate choices
for different feasible sets of actions to each other, we assume that the
set of all conceivable actions U is infinite. The proof of Theorem 5.3,
the main result of this chapter, crucially relies on the assumptions
that strategies are rational-valued and that U is infinite.

The first property prescribes that only the payoffs for feasible ac-
tions should be taken into account; the payoffs for infeasible actions
are irrelevant. A solution concept f satisfies independence of infeasi-
ble actions if, for all M, M̂ ∈ QU×U and A,B ∈ F(U),

f(M,A,B) = f(M̂,A,B) whenever MAB = M̂AB. (IIA)

An action dominates another action if it yields more payoff against
every action of the opponent. For M ∈ QU×U, A,B ∈ F(U), and
i, i ′ ∈ U, i is dominated by i ′ with respect to B if Mij < Mi ′j for all
j ∈ B. In the sequel, D(M,A,B) denotes the set of actions in A that
are dominated by some other action in A with respect to B. Note that
domination is preserved when B is replaced by one of its subsets. It
is never advisable for a player to play a dominated action, since there
is an action that is preferable independently of which action is played
by the other player. Hence, every reasonable solution concept should
assign probability zero to all dominated actions. A solution concept
f is rational if, for all M ∈ QU×U and A,B ∈ F(U), pi = 0 for all
i ∈ D(M,A,B) and p ∈ f(M,A,B). Rationality is probably one of the
most uncritical assumptions one can make about self-interested play-
ers, since it does not rely on expected payoffs or any assumptions
about the other player. In fact, it seems basic enough that a player
can safely assume that his opponent is rational. If a player knows
that his opponent is rational, then he knows that the latter will not
play dominated actions. But then, if the player is himself rational, he
should not play actions that are dominated with respect to the set of
undominated actions of his opponent. This assumption is called mu-
tual knowledge of rationality. Formally, a solution concept f satisfies
mutual knowledge of rationality if, for all M ∈ QU×U, A,B ∈ F(U),

pi = 0 for all i ∈ D(M,A,B \D(−Mt,B,A)) and p ∈ f(M,A,B).

(mutual knowledge of rationality)

The rationale underlying mutual knowledge of rationality could be
applied further to obtain arbitrarily long chains of the form “a player
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knows that his opponent knows . . . that he is rational”, where “he”
may be either player. If these beliefs obtain for arbitrary long chains,
rationality is common knowledge. As argued before, common knowl-
edge of rationality is a rather demanding assumption.

Two games are considered equivalent with respect to some solution
concept if it returns the same strategy from the perspective of both
players. For a solution concept f, M̂, M̄ ∈ QU×U, and A,B ∈ F(U),
M̂AB and M̄AB are called f-equivalent if f(M̂,A,B) ∩ f(M̄,A,B) 6= ∅
and f(−M̂t,B,A) ∩ f(−M̄t,B,A) 6= ∅. Consistency prescribes that
any strategy that is chosen in two f-equivalent games is also chosen
in any game that is derived by randomizing over these two games.
Formally, a solution concept f satisfies consistency if, for all M̂, M̄ ∈
QU×U, A,B ∈ F(U), and λ ∈ [0, 1] ∩Q such that M̂AB and M̄AB are
f-equivalent,

f(M̂,A,B)∩ f(M̄,A,B) ⊆ f(M,A,B), (consistency)

where M = λM̂+ (1− λ)M̄.

In some games, a player can only distinguish two actions by their
names but not by their payoffs, i.e., both actions yield the same pay-
off independently of the action of the other player. Such actions are
called clones. Formally, two actions i, i ′ ∈ U are clones in M ∈ QU×U

if Mij = Mi ′j for all j ∈ U. Let Â, B̂,C,D ∈ F(U) such that Â ∩C =

{a}, A = Â ∪ C and B̂ ∩D = {b}, B = B̂ ∪D. A solution concept f
satisfies consequentialism if, for all M ∈ QU×U such that all actions
in C are clones in M and all actions in D are clones in −Mt,

f(M, Â, B̂)×a ∆Q(C) = f(M,A,B). (consequentialism)

Hence, if consequentialism obtains, probability among clones can be
distributed arbitrarily. The probability assigned to other actions is
not affected by the feasibility of clones of a feasible action. Moreover,
a player’s strategy is not influenced by the feasibility of clones for his
opponent.

A related condition called neutrality prescribes that renaming the
actions for the row player results in the same renaming in the set of
chosen strategies. Renaming the actions for the column player has no
effect on the choices of the row player. Renaming actions corresponds
to permuting rows and columns in the payoff matrix. A solution
concept f satisfies neutrality if, for all M ∈ QU×U, A,B ∈ F(U), and
π,σ ∈ Π(U),

f(Mπσ,π(A),σ(B)) = f(M,A,B)π. (neutrality)

The following lemma shows that consequentialism in conjunction
with independence of infeasible alternatives implies neutrality. This
implication is driven by the part of consequentialism that prescribes
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that the probability assigned to non-clones does not depend on the
number of feasible clones.

Lemma 5.1
Every solution concept that satisfies IIA and consequentialism
satisfies neutrality.

Proof. We only prove the case when σ is the identity. The full state-
ment can be shown by applying the construction below to the column
player instead of the row player. Let M ∈ QU×U, A,B ∈ F(U), and
π ∈ Π(U). Let pA ∈ f(M,A,B) and A = {a1, . . . ,am}. Since U is infi-
nite, there is Â = {â1, . . . , âm} ∈ F(U) such that Â ∩ (A ∪ π(A)) = ∅.
Now let M̂ ∈ QU×U such that MAB = M̂AB and {ai, âi} is a set of
clones for all i ∈ [m]. By IIA, we have that pA ∈ f(M̂,A,B). We now
apply consequentialism to ai and {ai, âi} for all i ∈ [m]. This implies
that

f(M̂,A,B)×a1 ∆
Q({a1, â1}) · · ·×am ∆Q({am, âm}) = f(M̂,A∪ Â,B).

Hence, pÂ ∈ f(M̂,A ∪ Â,B), where pÂâi = pAai for all i ∈ [m]. Fi-
nally, let M̄ ∈ QU×U such that M̄ÂB = M̂ÂB and {π(ai), âi} is a set
of clones for all i ∈ [m]. By IIA, we have that pÂ ∈ f(M̄, Â,B). As
before, it follows from consequentialism that pπ(A) ∈ f(M̄,π(A),B),
where pπ(A)

π(ai)
= pÂâi for all i ∈ [m]. Notice that pπ(A) = pAπ . Since

M̄π(A),B = (Mπσ)π(A),B by construction of M̄, IIA implies that pAπ ∈
f(Mπσ,π(A),B). Thus, f(M,A,B)π ⊆ f(Mπσ,π(A),B). Equality fol-
lows from application of the above to Mπσ and π−1.

5.2 characterization of maximin strategies

Theorem 5.2 shows that choosing maximin strategies satisfies all of
the above defined properties. The proof for mutual knowledge of ra-
tionality can be extended to show that MS is even compatible with
common knowledge of rationality. On the other hand, it can be
shown that MS violates strong consistency (cf. Remark 5.2).

Theorem 5.2
MS satisfies IIA, mutual knowledge of rationality, consistency,
and consequentialism.

Proof. The fact that MS satisfies IIA is clear by definition.
To show that MS satisfies mutual knowledge of rationality, let M ∈

QU×U, A,B ∈ F(U), and v ∈ Q be the value of MAB. Let p ∈
MS(M,A,B) and q ∈ MS(−Mt,B,A). If qb > 0 for some b ∈
D(−Mt,B,A), then let b̂ ∈ B be an action that dominates b with
respect to A in −Mt and q̂ ∈ ∆Q(B) be the strategy that is identical
to q except that q̂b = 0 and q̂b̂ = qb̂ + qb. Then, ptMq̂ < ptMq = v,
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which contradicts the assumption that p is a maximin strategy for the
row player. Hence, qb = 0 for all b ∈ D(−Mt,B,A). If pa > 0 for
some a ∈ D(M,A,B \D(−Mt,B,A)), the same construction can be
used to obtain p̂ ∈ ∆Q(A) such that p̂tMq > ptMq = v, which con-
tradicts the assumption that q is a maximin strategy for the column
player.

To show that MS satisfies consistency, let M̂, M̄ ∈ QU×U and A,B ∈
F(U) such that

MS(M̂,A,B)∩MS(M̄,A,B) 6= ∅, and

MS(−M̂t,B,A)∩MS(−M̄t,B,A) 6= ∅.

Let p ∈ MS(M̂,A,B) ∩MS(M̄,A,B), λ ∈ [0, 1] ∩Q, and M = λM̂+

(1− λ)M̄. For the values v̂, v̄ ∈ Q of M̂AB and M̄AB, it follows that
ptM̂ > v̂ and ptM̄ > v̄. Hence, ptM > λv̂ + (1 − λ)v̄. For q ∈
MS(−M̂t,B,A) ∩MS(−M̄t,B,A) we have that M̂q 6 v̂, and M̄q 6 v̄.
Hence,Mq 6 λv̂+(1−λ)v̄. This implies that λv̂+(1−λ)v̄ is the value
of MAB. Thus, p ∈MS(M,A,B).

Lastly we show that MS satisfies consequentialism. It is not hard to
see that the number of clones of an action for the column player does
not influence the set of maximin strategies for the row player. Hence,
we only consider the case when the set of clones for the column player
is trivial, i.e., D = {b}. Let M ∈ QU×U, Â,B,C ∈ F(U) such that
Â∩C = {a}, A = Â∪C, and all actions in C are clones in M. We have
to show that

MS(M, Â,B)×a ∆Q(C) = MS(M,A,B).

Let p ∈ MS(M, Â,B) ×a ∆Q(C). Then, there are p̂ ∈ MS(M, Â,B)
and p̄ ∈ ∆Q(C) such that p̂ ×a p̄ = p. Since all actions in C are
clones in M, it follows that p̂tM = ptM. Hence p ∈ MS(M,A,B),
which implies that MS(M, Â,B)×a ∆Q(C) ⊆ MS(M,A,B). To prove
the other inclusion, let p ∈ MS(M,A,B) and p̂ ∈ ∆Q(Â) such that
p̂a =

∑
c∈C pc and p̂c = pc for all c ∈ A \ C. Again, p̂tM = ptM,

since all actions in C are clones in M. Hence, p̂ ∈MS(M, Â,B) which
implies that MS(M,A,B) ⊆MS(M, Â,B)×a ∆Q(C).

Our main theorem shows that every solution concept that satisfies
IIA, mutual knowledge of rationality, consistency, and consequential-
ism has to choose maximin strategies. Together with Theorem 5.2,
this implies that MS is the largest solution concept satisfying these
properties.

Theorem 5.3
If a solution concept f satisfies IIA, mutual knowledge of ratio-
nality, consistency, and consequentialism, then f ⊆MS.

Proof. Assume for contradiction that f 6⊆ MS, i.e., there are M ∈
QU×U and A,B ∈ F(U) such that f(M,A,B) 6⊆ MS(M,A,B). Let
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v ∈ Q be the value of MAB. Let p ∈ f(M,A,B) \MS(M,A,B) and q ∈
f(−Mt,B,A). If ptMq < v, there is a ∈ A such that atMq > ptMq.
If ptMq > v, there is b ∈ B such that ptMb < ptMq. In any case,
(p,q) is not a Nash equilibrium of MAB. By symmetry of the roles of
the row player and the column player, we may assume without loss
of generality that there is b̂ ∈ B such that ptMb̂ < ptMq.

Let δ be the greatest common divisor of {pa : a ∈ A}, which ex-
ists, since f is assumed to map to ∆Q(U). For all a ∈ A, let ma =

max{1, pa/δ} and Aa ∈ F(U) such that |Aa| = ma, Aa ∩A = {a}, and
all Aa are pairwise disjoint. Let Â =

⋃
a∈AAa and M̂ ∈ QU×U such

that M̂AB =MAB and, for all a ∈ A, Aa is a set of clones in M̂. By ap-
plication of consequentialism to a and Aa for all a ∈ A, it follows that
uni(Ā) ∈ f(M̂, Â,B) and q ∈ f(−M̂t,B, Â), where Ā =

⋃
a∈supp(p)Aa.

Let Π̂ ⊆ Π(Ā) be the set of permutations π ∈ Π(Ā) such that π(a) = a
for all a ∈ U \ Ā. Since, by Lemma 5.1, f satisfies neutrality, it follows
that uni(Ā) ∈ f(M̂π,id, Â,B) and q ∈ f(−M̂t

id,π,B, Â) for all π ∈ Π̂. Let
M̄ = 1/|Ā|!

∑
π∈Π̂ M̂π,id. Consistency implies that uni(Ā) ∈ f(M̄, Â,B)

and q ∈ f(−M̄t,B, Â). Observe that Ā is a set of clones in M̄. By
construction of M̄,

uni(Ā)tM̄b̂ = ptMb̂ < ptMq = uni(Ā)tM̄q.

Now let MĀ ∈ QU×U such that, for all a ∈ Ā and b ∈ B,

MĀ
ab =

{
1 if a ∈ Ā, and

0 otherwise.

Observe that Ā is a set of clones in MĀ and all actions in Â \ Ā are
dominated by all actions in Ā with respect to B. Hence, (mutual
knowledge of) rationality and consequentialism imply that uni(Ā) ∈
∆Q(Ā) = f(MĀ, Â,B). Moreover, B is a set of clones in −(MĀ)t. Thus,
consequentialism implies that q ∈ ∆Q(B) = f(−(MĀ)t,B, Â).

Let λ ∈ (0, 1/2(maxa∈Â,b∈B |M̄ab|+1)) and M̊ = λM̄+ (1− λ)MĀ. Con-
sistency implies that uni(Ā) ∈ f(M̊, Â,B) and q ∈ f(−M̊t,B, Â). By
the choice of λ, all actions in Ā dominate all actions in Â \ Ā with re-
spect to B in M̊, i.e., Â \ Ā ⊆ D(M̊,A,B). Also, Ā is a set of clones in
M̊, which implies that M̊ab = M̊a ′b for all a,a ′ ∈ Ā and b ∈ B. More-
over, uni(Ā)tM̊b̂ < uni(Ā)tM̊q. Thus, there is b ∈ supp(q) such that
M̊ab̂ < M̊ab for all a ∈ Â. Hence, b ∈ D(−M̊t,B, Â \D(M̊, Â,B)).
This contradicts mutual knowledge of rationality.

The following example illustrates (slightly simplified) the proof of
Theorem 5.3. Recall the game of “rock, paper, scissors”, where paper
beats rock, rock beats scissors, and scissors beats paper and all other
combinations are ties (cf. Section 1.2). The set of actions is {r,p, s}
for both players. We consider an extended variant of this game with
three additional actions r̄, p̄, and s̄ that represent the “negatives” of
r, p, and s (A = B = {r,p, s, r̄, p̄, s̄}). The comparisons among the
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r p s r̄ p̄ s̄


0 −1 1 −1 1 1

1 0 −1 1 −1 1

−1 1 0 1 1 −1
1 −1 −1 0 1 −1
−1 1 −1 −1 0 1

−1 −1 1 1 −1 0

(a) The original game M.

r p s r̄ p̄ s̄


1 −1 −1 0 1 −1

0 −1 1 −1 1 1

(b) The game M(r,r̄),id with r and r̄ rela-
beled for the row player.

r p s r̄ p̄ s̄


1/2 −1 0 −1/2 1 0

1/2 −1 0 −1/2 1 0

(c) The uniform randomization M̄ over
M and M(r,r̄),id.

r p s r̄ p̄ s̄


1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

(d) The game M{r,r̄}.

1/8

r p s r̄ p̄ s̄


7 4 6 5 8 6

2 0 −2 2 −2 2

−2 2 0 2 2 −2
7 4 6 5 8 6

−2 2 −2 −2 0 2

−2 −2 2 2 −2 0

(e) The (1/4, 3/4)-randomization M̊ over
M̄ and M{r,r̄}.

Figure 5.1: Payoff matrices for the variant of “rock, paper, scissors” with
action sets A = B = {r,p, s, r̄, p̄, s̄} and the corresponding games
constructed in the proof of Theorem 5.3. Blank spaces in a ma-
trix denote entries that are identical to the corresponding entries
in the preceding matrix.

negatives are exactly reversed. Every non-negative action is beaten
by its negative, but beats the other two negative actions. Since the
set of feasible actions is A for both players throughout this example,
we omit restriction to the set of feasible actions and call this game M.
The corresponding payoff matrix is depicted in Figure 5.1(a).

For this larger set of actions, the unique maximin strategy is still
to randomize uniformly over r, p, and s. However, rationality or
even common knowledge of rationality are not enough to rule out
any other strategies, since no action is dominated (not even weakly).
In contrast, Theorem 5.3 shows that even mutual knowledge of ratio-
nality suffices to single out the maximin strategy if a player’s choices
additionally satisfy IIA, consistency, and consequentialism. Assume
that such a player instead of playing the maximin strategy random-
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izes uniformly over r and r̄ in M. Since the game is symmetric,
i.e., M = −Mt, he would also randomize uniformly over r and r̄

when playing −Mt. IIA and consequentialism imply neutrality by
Lemma 5.1. Hence, the player would also randomize uniformly over
r and r̄ if their labels were swapped. The resulting game M(r,r̄),id is
depicted in Figure 5.1(b). Again, neutrality implies that he would also
do so in −Mt

id,(r,r̄). Now imagine that a fair coin is tossed. If it shows
“heads”, M is played, if it shows “tails”, M(r,r̄),id is played. The re-
sulting game M̄ is depicted in Figure 5.1(c). A player whose choices
are consistent will still randomize uniformly over r and r̄ even when
he has to decide on a strategy before knowing the outcome of the
coin toss, i.e., if he is playing the game M̄. Now consider a game in
which r and r̄ beat each of p, p̄, s, and s̄ and all other combinations tie
the game. This game called M{r,r̄} is depicted in Figure 5.1(d). Ratio-
nality and consequentialism imply that the player would randomize
uniformly over r and r̄ in M{r,r̄} (among other strategies). All actions
are clones in −(M{r,r̄})t. Hence, consequentialism implies that the
player would also randomize uniformly over r and r̄ in −(M{r,r̄})t

(among other strategies). Now another coin is tossed. If it shows
“heads”, M̄ is played and if it shows “tails”, M{r,r̄} is played. Assume
that the coin is biased towards “tails”, which is the outcome with a
probability of 3/4. The game M̊ resulting from having to choose a
strategy before the coin toss is depicted in Figure 5.1(e). Notice that
r and r̄ dominate all other actions in M̊. If a player knows that his
opponent is rational, i.e., only randomizes over r and r̄ when playing
M̊, then r and r̄ are dominated by p in −M̊t. Consistency however
implies that the player will randomize uniformly over r and r̄ in −M̊t,
which contradicts mutual knowledge of rationality.

5.3 concluding remarks

We conclude this chapter with a number of remarks.

Remark 5.1 (Independence of axioms)
Mutual knowledge of rationality, consistency, and consequen-
tialism are required to derive the conclusion of Theorem 5.3.
The trivial solution concept that always chooses all strategies
over feasible actions violates (mutual knowledge of) rationality
but satisfies IIA, consistency, and consequentialism. The solu-
tion concept that chooses all maximin strategies of the game
that results from taking the third power of all entries in the pay-
off matrix violates consistency but satisfies the remaining prop-
erties. The solution concept that chooses all strategies that re-
sult from squaring the probabilities in maximin strategies (and
then normalizing to unit sum) violates consequentialism but
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satisfies the remaining properties. It is open whether IIA is also
required.

Remark 5.2 (Strong consistency)
Choosing maximin strategies violates the stronger notion of
consistency that is obtained if two games M̂AB and M̄AB are f-
equivalent whenever f(M̂,A,B) ∩ f(M̄,A,B) 6= ∅. Consider the
games M̂AB and M̄AB where the row player can play either top
or bottom (A = {t,b}) and the column player can play either left
or right (B = {l, r}).

M̂AB =

(
0 4

2 0

)
M̄AB =

(
4 0

0 2

)
MAB =

(
2 2

1 1

)
The unique maximin strategy in M̂AB and M̄AB is 1/3 t+ 2/3b.
But in the game MAB, which results from randomizing uni-
formly over M̂AB and M̄AB, the unique maximin strategy is to
play t with probability one. In particular, 1/3 t+ 2/3b is not a
maximin strategy in MAB. Notice that the maximin strategies
in −M̂t

AB and −M̄t
AB are different.

Remark 5.3 (Symmetric games)
For symmetric games the strong notion of consistency discussed
in Remark 5.2 is equivalent to consistency and is hence satisfied
by MS. Theorem 5.3 remains valid within the domain of sym-
metric games. This requires modifying the proof such that all
constructed games are symmetric. More precisely, M̂ has to be
defined such that Aa is a set of clones for the row player and
for the column player for all a ∈ A. The game M̄ can be de-
fined by summing over all M̂π, where π ranges over the same
set of permutations as in the original proof. Lastly, MÂ has to
be defined as a symmetric game in which all actions in Â ∪ {b̂}
dominate all actions in A \ (Â ∪ {b̂}) with respect to A for both
players.

Remark 5.4 (Normal-form games)
Theorem 5.3 can be extended to normal-form games when con-
sidering solution concepts that choose a set of strategies for ev-
ery player. In this framework, one can conclude that every tuple
of chosen strategies has to be a Nash equilibrium. Two normal-
form games are considered f-equivalent if the sets of strategies
chosen by f in both games intersect for all players.
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R A N D O M S Y M M E T R I C Z E R O -S U M G A M E S

Possessed of natural interest because of their
special character, symmetric games are given
additional importance by the computational
procedures which are discussed by G. W. Brown
and J. von Neumann in their contribution to this
Study.

D. Gale, H. W. Kuhn, and A. W. Tucker

This chapter studies the properties of randomly drawn symmetric
zero-sum games. More precisely, we determine the distribution over
supports of maximin strategies in randomly drawn symmetric games
when the set of feasible actions A is fixed. It is shown that, for every
set of actions S ⊆ A, the probability that a randomly drawn symmet-
ric game admits a maximin strategy with support S is 2−(|A|−1) if
S has odd cardinality and 0 otherwise. In particular, this probabil-
ity only depends on the parity of S. This stems from the fact that
a generic skew-symmetric matrix of even size has full rank, while a
skew-symmetric matrix of odd size cannot have full rank (cf. Sec-
tion 3.2). For the proof of this result we assume that the distribution
over games is symmetric and regular. A distribution is symmetric if
it is invariant under partial reflections (cf. Section 3.2). Symmetry is
for example satisfied by all distributions that arise from drawing pay-
offs from independent distributions that are symmetric about 0, i.e.,
distributions with even density function. A distribution is regular if a
randomly chosen game almost surely admits a unique maximin strat-
egy. We assume throughout that games are drawn from a symmetric
and regular distribution.

Related questions have been studied for various classes of games.
Wilson (1971) showed that the number of Nash equilibria is finite and
odd for almost all n-player normal-form games. A different proof
of the same statement was given by Harsanyi (1973b). McLennan
(2005) derived a formula for the expected number of Nash equilibria
in which the players’ strategies have given supports in normal-form
games. His model assumes that the payoffs of all players are inde-
pendent and distributed uniformly over the unit sphere. If games
are distributed such that Nash equilibria are almost surely unique,
the expected number of Nash equilibria with given supports is equal
to the probability that a game admits a Nash equilibrium with these
supports. Thus, our result can also be phrased as determining the
expected number of Nash equilibria with given supports. Follow-up

49
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work by McLennan and Berg (2005) has derived a formula for the
expected number of Nash equilibria of a random two-player normal-
form game. Similar to McLennan (2005), they assume that the payoffs
of both players are drawn independently from a uniform distribution
on the unit sphere.

For two-player zero-sum games every convex combination of Nash
equilibria is again a Nash equilibrium. Hence there is either a unique
Nash equilibrium or infinitely many. However, Wilson’s theorem
does not imply that Nash equilibria are almost surely unique in low
dimensional subclasses of normal-form games, e.g., zero-sum games,
symmetric zero-sum games, or tournament games.19 Fisher and Ryan
(1992) showed that every tournament game admits a unique maximin
strategy, and hence a unique Nash equilibrium. This result was gen-
eralized by Laffond et al. (1997) to symmetric games where all off-
diagonal payoffs are odd integers and by Le Breton (2005) to symmet-
ric games where all off-diagonal payoffs satisfy a more general con-
gruency condition. Closest to our result is the unpublished work of
Roberts (2004), who proved the same formula that is derived here for
a somewhat less general class of distributions over symmetric games.
His Theorem 1 assumes that the payoffs are drawn from independent
and identical distributions that are symmetric about 0. However, for
the proof of this statement he only requires that the distribution over
games is absolutely continuous and symmetric in our sense. The
result presented here is more general in that it weakens absolute con-
tinuity to regularity.

For not necessarily symmetric games the situation is less clear. Ex-
periments by Faris and Maier (1987) suggest that the support size of
a maximin strategy of a game chosen uniformly at random approx-
imately follows a binomial distribution that chooses half of the ac-
tions in expectation. Jonasson (2004) showed that maximin strategies
are almost surely unique if the payoffs follow continuous, indepen-
dent, and identically distributed random variables that are symmet-
ric about 0. Moreover, he proved that the expected fraction of actions
in the support of a maximin strategy is close to 1/2 when the number
of actions goes to infinity. Roberts (2006) considered games where
payoffs follow independent and identical Cauchy distributions. Re-
markably, he derives a closed form formula for the probability that a
pair of maximin strategies of a random game has given supports.

The proof of our main result (Theorem 6.5) is divided into three
statements. In Lemma 6.2 we determine the probability that a maxi-
min strategy puts positive probability on all feasible actions, i.e., the
probability that a game admits a totally mixed maximin strategy.
Lemma 6.3 establishes that if a distribution over games is symmetric
and regular on a given set of feasible actions, then it is also symmet-

19 Tournament games are symmetric games in which all off-diagonal payoffs are either
1 or −1.
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ric and regular on any subset of these actions. As a consequence of
these two statements we get the probability that a game on a subset
of feasible actions admits a totally mixed maximin strategy. Lastly, in
Lemma 6.4 we determine the probability that a maximin strategy for
a subset of feasible actions is a maximin strategy for the entire set of
feasible actions. The probability that a game admits a maximin strat-
egy with a given support may then be derived easily. In this sense the
structure of the proof is very similar to McLennan’s (2005) argument.

Finally, we argue that symmetric and regular distributions occur
naturally. For example, if the payoffs of the game follow indepen-
dent normal distributions, the distribution of games is symmetric and
regular. More generally, every absolutely continuous distribution is
regular (cf. Remark 6.3). As noted before, every tournament game
admits a unique maximin strategy. Thus, the uniform distribution
over all tournament games of a given size is symmetric and regular.
As a consequence, Theorem 6.5 implies a result of Fisher and Reeves
(1995), who determine the probability that the maximin strategy of a
tournament game drawn uniformly at random has support size k.

6.1 the distribution of maximin strategies

Let A ∈ F(U) be some fixed set of feasible actions and S ⊆ A be arbi-
trary. To simplify the presentation, we introduce notation for particu-
lar classes of games. A strategy is totally mixed if all feasible actions
are played with positive probability. The set of all symmetric proto
games for which the game induced by S has a totally mixed maximin
strategy is denoted by MS, i.e.,

MS = {M ∈M : there is p ∈MS(M,S) with supp(p) = S}.

Let M̄S be the set of all symmetric proto games for which the game
induced by A admits a maximin strategy with support S, i.e.,

M̄S = {M ∈M : there is p ∈MS(M,A) with supp(p) = S}.

Since every maximin strategy of a game on A is also a maximin strat-
egy of the game induced by its support, M̄S is a subset of MS. Lastly,
the set of symmetric proto games for which the game induced by S
has multiple maximin strategies is denoted by M̂S, i.e.,

M̂S = {M ∈M : |MS(M,S)| > 1}.

We assume that proto games are drawn from a probability distri-
bution X. By X we denote a random variable with distribution X, i.e.,
X ∼ X. For a set of proto games M ′ ⊆ M, let PX(M ′) be the prob-
ability that a realization of X is in M ′. To establish our results, we
require that X satisfies two regularity conditions. A distribution X is
symmetric on S if it is invariant under ρT for every T ⊆ S, i.e.,

PX(M
′) = PX(ρT (M

′)) for every T ⊆ S and M ′ ⊆M. (symmetry)
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Secondly, we require X to be regular on A in the sense that XA almost
surely admits a unique maximin strategy. Formally,

PX(M̂
A) = 0. (regularity)

The main result Theorem 6.5 states the following: if a proto game
M is drawn from a distribution that is symmetric on A and regular on
A, then, for every S ⊆ A, the probability that MA admits a maximin
strategy with support S is 2−(|A|−1) if S has odd cardinality and 0

if S has even cardinality. So if, for example, A = {a,b, c} and M is
drawn from a distribution that is symmetric on A and regular on
A, the distribution over supports of maximin strategies of MA is as
depicted below.

{a} : 1/4 {a,b} : 0 {a,b, c} : 1/4

{b} : 1/4 {a, c} : 0

{c} : 1/4 {b, c} : 0

We start by proving an auxiliary lemma, which shows that every
strategy that is the unique maximin strategy of some symmetric game
assigns positive probability to an odd number of actions. This does
not hold for non-symmetric games. Consider the game known as
matching pennies, where both players can choose either “heads” or
“tails”. If both players choose the same action, the first player wins;
otherwise the second player wins. The unique maximin strategy of
this game is to randomize uniformly over both actions and has thus
support 2.

Lemma 6.1
Let M ∈ M. If MS(M,A) = {p}, then supp(p) has odd cardinal-
ity.

Proof. Assume for contradiction that supp(p) has even cardinality.
Let supp(p) = S. Since p is the unique maximin strategy of MA,
it follows from Lemma 3.2 that (ptM)i < 0 for all i ∈ A \ S. Now, let
i ∈ S be fixed. By definition of S, |S \ {i}| is odd. Hence, MS\{i} does
not have full rank, i.e., there is x ∈ RU \ {0} with supp(x) ⊆ S \ {i} and
(xtM)S\{i} = 0. Assume without loss of generality that (xtM)i > 0

(otherwise take −x). Then, for ε > 0 small enough, we have that
pε = (1− ε)p+ εx > 0 and ((pε)tM)A > 0, i.e., pε/|pε| ∈ MS(M,A).
This contradicts uniqueness of p.

For distributions that are regular on A, it follows quickly from
Lemma 6.1 that the probability that a game has a maximin strategy
with even support size is 0. If the distribution is also symmetric on A,
it turns out that the probability that a game has a maximin strategy
with a given support of odd size is independent of the chosen sup-
port. This is again specific to symmetric games and does not hold in
general.
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Lemma 6.2
Let X be symmetric on A and regular on A. Then,

PX(M
A) =

{
0 if |A| is even, and

2−(|A|−1) if n is odd.

Proof. First consider the case when |A| is even. Let M ∈ MA. It
follows from Lemma 6.1 thatMA admits multiple maximin strategies.
Thus, MA ⊆ M̂A, which implies that PX(MA) = 0.

Now assume that |A| is odd. For all S ⊆ A, let MS,= be the set of
symmetric proto games such that there is x ∈ RU with supp(x) ⊆ A,
x+ = A \ S, and (xtM)A = 0. Note that M∅,= = MA. The union of all
MS,=, S ⊆ A, is M, since a skew-symmetric matrix of odd size cannot
have full rank. For all S ⊆ A, let MS,0 ⊆MS,= be the set of symmetric
proto games such that there is x ∈ RU with supp(x) ⊆ A, x+ = A \ S,
(xtM)A = 0, and xi = 0 for some i ∈ A. Let S ⊆ A, M ∈ MS,0, and
x ∈ RU be the corresponding vector with xi = 0 for some fixed i ∈ A.
It follows from Lemma 3.3 that (ρS(x)tρS(M))A = 0. Since ρS(x) >
0 and ρS(x)i = 0, it follows from Lemma 3.2 that ρS(M) ∈ M̂A.
Thus, ρS(MS,0) ⊆ M̂A. By symmetry and regularity of X, we then
have PX(MS,0) = PX(ρS(M

S,0)) 6 PX(M̂
A) = 0. This implies that

PX(M
S,=) = PX(ρS∆T (M

S,=)) = PX(M
T ,=) for all S, T ⊆ A. Moreover,

MS,= and MA\S,= only differ by a null set, since x+ = A \ (−x)+ if x
has no zero entries in A. Hence, PX(MS,=) = PX(M

S,= ∩MA\S,=) for
all S ⊆ A. Now we show that XA almost surely has rank |A|− 1. Since
|A| is odd, XA has rank at most |A|− 1. If XA has rank less than |A|− 1,
there are distinct x,y ∈ RU such that supp(x) ⊆ A, supp(y) ⊆ A, and
(xtX)A = (ytX)A = 0. But then ((λx+ (1− λ)y)tX)A = 0 and has an
entry equal to 0 for some λ ∈ R. This is a probability zero event as
shown above. Hence, X almost surely has rank |A|− 1. This implies
that PX(MS,= ∩MT ,=) = 0 for all S, T ⊆ A with S 6= T and S 6= A \ T .
In summary, we get PX(MS,=) = 2−(|A|−1) for all S ⊆ A.

It was already observed by Kaplansky (1945) that a game of even
size cannot have a unique, totally mixed maximin strategy, which
follows from the fact that the rank of a skew-symmetric matrix is even.
Moreover, Kaplansky (1995) showed that a game admits a unique,
totally mixed maximin strategy if and only if the principal Pfaffians of
the corresponding payoff matrix alternate in sign.20 This result allows
for a more algebraic but arguably less instructive proof of Lemma 6.2.

Now we show that if a distribution is symmetric and regular on
some set of feasible actions, then it is also symmetric and regular on
every subset thereof.

Lemma 6.3
If X is symmetric on A and regular on A, then X is also sym-
metric on S and regular S for every S ⊆ A.

20 The ith principal Pfaffian is the Pfaffian of the matrix obtained by deleting the ith
row and ith column.



54 random symmetric zero-sum games

Proof. Let S ⊆ A. It follows from the definition of symmetry that
X is symmetric on S. Now we show by induction over |S| that X is
regular on S. If S = A this is clear by the hypothesis of the lemma.
For the induction step, assume that X is regular on T for all T ⊆ A
with |T | > |S|. Assume for contradiction that X is not regular on S, i.e.,
PX(M̂

S) > 0. Let i ∈ A \ S and Si = S∪ {i}. We define

MSi,+ = {M ∈ M̂S : there is p ∈MS(M,S) with (ptM)i > 0},

with MSi,− defined by replacing > with 6. Since X is symmetric on A,
it follows that PX(MSi,+) = PX(ρ{i}(M

Si,+)) = PX(M
Si,−). Moreover,

MSi,+ ∪MSi,− = M̂S and hence, PX(MSi,+) > 0. Now let M ∈MSi,+.
If there is p ∈ MS(M,S) with (ptM)i = 0, then it follows from
Lemma 3.2 that MSi has multiple maximin strategies. If (ptM)i > 0,
let q ∈ MS(M,S) with q 6= p, which exists since M ∈ M̂S by assump-
tion. But then (1− λ)p+ λq ∈MS(M,Si) for small λ > 0. In any case,
MSi has two distinct maximin strategies. Thus, we have

PX(M̂
Si) > PX(M

Si,+) > 1/2PX(M̂
S) > 0,

which contradicts the induction hypothesis that X is regular on Si.

By combining the last two statements we get the probability that XS
admits a totally mixed maximin strategy. In the next lemma we de-
termine the probability that XA has a maximin strategy with support
S given that XS has a totally mixed maximin strategy.

Lemma 6.4
Let X be symmetric on A and regular on A and S ⊆ A. Then
PX(M̄

S |MS) = 2−(|A|−|S|).

Proof. Let MS,T be the set of all symmetric proto games where MS

has a totally mixed maximin strategy p such that the set of actions in
A yielding negative payoff for the row player against p corresponds
exactly to the columns in T , i.e.,

MS,T = {M ∈M : there is p ∈MS(M,S) with supp(p) = S

and (ptM)− ∩A = T }.

Note that MS,∅ = M̄S and MS,T is non-empty only if T ⊆ A \ S. It
follows from Lemma 3.3 that ρT (MS,T ) ⊆ M̄S for all T ⊆ A \ S. For
M ∈ M̄S \ ρT (M

S,T ) we have that (ptM)i = 0 for some p ∈MS(M,S)
and i ∈ T . Then it follows from Lemma 3.2 that MA has multiple
maximin strategies. Since X is symmetric on A and regular on A, we
have PX(MS,T ) = PX(ρT (M

S,T )) = PX(M̄
S) for all T ⊆ A \ S. For the

same reason, we also have that PX(MS,T ∩MS,T ′) = 0 for all distinct
T , T ′ ⊆ A \ S. Since A \ S has 2|A|−|S| distinct subsets, it follows that
PX(M̄

S |MS) = 2−(|A|−|S|).
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The main result easily follows from Lemmas 6.2, 6.3, and 6.4.

Theorem 6.5
Let X be symmetric on A and regular on A. Then, for every
S ⊆ A, the probability that XA has a maximin strategy with
support S is{

0 if |S| is even, and

2−(|A|−1) if |S| is odd.

Observe that A has 2|A|−1 subsets of odd size. Hence, the probabili-
ties above sum up to 1.

6.2 concluding remarks

We conclude this chapter with a number of remarks.

Remark 6.1 (Independence of axioms)
Both symmetry and regularity are required to derive the con-
clusion of Theorem 6.5. For A = {r,p, s}, the distribution that
returns the game of “rock, paper, scissors” (cf. Example 3) with
probability one is not symmetric on A but regular on A. For
this distribution, the uniform distribution over A is the unique
maximin strategy with probability one. For |A| > 1, the distri-
bution that returns the game with all payoffs equal to 0 with
probability one is not regular on A but symmetric on A. For
this distribution, all strategies in ∆(A) are maximin strategies
with probability one.

Remark 6.2 (Non-symmetric games)
Theorem 6.5 also fails for symmetric (defined analogously) and
regular distributions over not necessarily symmetric games. If
|A| = |B| = 2 and the entries in the payoff matrix follow in-
dependent standard normal random variables, the probability
that a maximin strategy has full support is one third.

Remark 6.3 (Absolutely continuous distributions)
Every distribution that is absolutely continuous with respect to
the Lebesgue measure is regular. In particular, a distribution is
absolutely continuous if all entries in the payoff matrix follow
independent and absolutely continuous random variables. This
implies that, if the payoffs follow independent and absolutely
continuous random variables that are symmetric about 0, e.g.,
normal random variables or uniform random variables on inter-
vals that are symmetric about 0, then the induced distribution
is symmetric and regular.
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S O C I A L C H O I C E T H E O R E T I C F U N DA M E N TA L S

7.1 social welfare functions and social choice
functions

Building up on the foundations for understanding choices by single
agents, we introduce a framework for studying choices by groups of
agents. The set V denotes the entirety of all agents. For i ∈ V , �i is
the preference relation of agent i. We require that every agent’s pref-
erence relation is from some domain D ⊆ R of continuous, convex,
and symmetric preference relations on ∆(U). Hence, �i can be rep-
resented by an SSB function φi = φ�i ∈ Φ. Finite subsets of agents
N ∈ F(V) are called electorates. For N ∈ F(V), a preference profile on
N is a function P : N → D that assigns a preference relation to every
agent, and hence an element of DN. The set of all preference profiles
is P = ∪N∈F(V)D

N. The restriction of a preference profile P ∈ DN

to a set of outcomes X ⊆ ∆(U) is obtained by restriction the prefer-
ence relation of every agent i ∈ N to X. For � ∈ D, P(�) denotes
the fraction of agents in N with preference relation �. For A ∈ F(U),
N ∈ F(V), P ∈ DN, and a ∈ A, a is a Condorcet winner in P|∆(A) if
for every other pure outcome in ∆(A), there is a majority of agents
that prefers a to this pure outcome. Formally, for all b ∈ A \ {a},

|{i ∈ N : a �i b}| > |{i ∈ N : b �i a}|. (Condorcet winner)

A weak Condorcet winner is a pure outcome for which the above
statement holds with weak inequality instead of strict inequality.

The purpose of social choice theory is to aggregate the preferences
of multiple agents into a collective preference relation. This aggre-
gation process is typically formalized via social welfare functions
(SWFs). An SWF f : P → R maps every preference profile to a collec-
tive preference relation. We require collective preferences to satisfy
the axioms of SSB utility theory, which is captured by the fact that
the range of SWFs is R. We will be particularly interested in SWFs
that do not discriminate among agents, i.e., SWFs that are invariant
under renaming the agents. This property is called anonymity and
prescribes that, for all N, N̂ ∈ F(V) with |N| = |N̂|, P ∈ DN, and
P̂ ∈ DN̂,

f(P) = f(P̂) whenever P(�) = P̂(�) for all � ∈ D. (anonymity)

59



60 social choice theoretic fundamentals

The choices of society from feasible sets can be derived from the
collective preferences, assuming that maximal elements are chosen.
In order to reason about these choice independently from collective
preferences, we consider social choice functions (SCFs), which map
a preference profile and a feasible set of outcomes to a set of col-
lectively chosen outcomes with the self-evident restriction that only
feasible outcomes can be chosen. We restrict the set of feasible sets
of outcomes to sets of the form ∆(A) where A ∈ F(U). This is
based on the rationale that every alternative is either feasible or in-
feasible, and in case it is feasible, the probability assigned to it can
be arbitrary. Hence, feasibility of an outcome boils down to feasi-
bility of the alternatives in its support. An SCF is thus a function
f : P× F(U) → 2∆(U) \ {∅} with the property f(P,A) ⊆ ∆(A) for all
P ∈ P and A ∈ F(U).

Anonymity can be defined for SCFs in the same way as for SWFs.
A stronger invariance property, known as homogeneity, is invariance
under replacing every agent by a fixed number of copies with the
same preferences. Hence, homogeneity requires that the choice only
depends on the fractions of agents that report a particular preference
relation and not the absolute numbers. Formally, an SCF f satisfies
homogeneity if, for all P, P̂ ∈ P and A ∈ F(U),

f(P,A) = f(P̂,A) whenever P(�) = P̂(�) for all � ∈ D.

(homogeneity)

The fact that homogeneity implies anonymity is obvious from the
definition. In the classical model of social choice, the set of outcomes
is assumed to be some abstract, unstructured set of alternatives and
typically, transitivity is the only restriction on individual preferences.
Since the SSB axioms do not restrict the preferences over pure out-
comes, this model can be embedded in ours by considering SCFs that
only depend on the preferences over pure outcomes and choose all
outcomes over some subset of feasible alternatives; pure outcomes in
this subset correspond to chosen alternatives. An SCF f is pure if, for
all A ∈ F(U), N ∈ F(V) and P, P̂ ∈ DN,

f(P,A) = f(P̂,A) whenever P|A = P̂|A, and

f(P,A) = ∆(B) for some B ⊆ A.
(pure SCF)

Pure SCFs are sometimes assumed to be resolute, which requires that
a single, pure outcome is chosen in all instances.

Particular classes of SWFs and SCFs that we are interested in are
those which are affine welfare maximizing. Since the preferences of
the agents can be represented by SSB functions, we can compare the
collective utility of two outcomes to each other given some weighting
of the agents. A preference relation � ∈ R is affine welfare max-
imizing for some profile P ∈ DN, N ∈ F(V), if there are weights
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wi ∈ R, i ∈ N, such that φ� ≡ wi
∑
i∈Nφi. An SWF f is affine wel-

fare maximizing if there are weights wi ∈ R, i ∈ V , such that, for all
N ∈ F(V) and P ∈ DN, φf(P) ≡

∑
i∈Nwiφi. Note that the weights

of the agents are fixed across all preference profiles. For the case
when the agents’ preferences satisfy the vNM axioms of linear utility
theory, affine welfare maximization has been well-studied. In partic-
ular, the SWF that derives the collective preferences from adding up
the vNM functions representing the agents’ preferences normalized
to the unit interval is known as relative utilitarianism (RU) (Dhillon,
1998; Dhillon and Mertens, 1999).21 Since SSB functions in Φ are nor-
malized such that the largest utility difference between two outcomes
is 1, affine utilitarianism with weight 1 for all agents coincides with
relative utilitarianism if the agents have vNM preferences. Hence, we
feel justified in extending relative utilitarianism to SSB preferences in
the following way. For all N ∈ F(V) and P ∈ DN,

φRU(P) ≡
∑
i∈N

φi. (relative utilitarianism)

By MP ∈M we denote the matrix representing φRU(P).

The corresponding definitions for SCFs are obtained by choosing
maximal outcomes. An outcome p ∈ ∆(U) is affine welfare maxi-
mizing for a preference profile P ∈ P and a feasible set A ∈ F(U) if
there is an affine welfare maximizing preference relation � ∈ R for
P such that p ∈ max�∆(A). An SCF f is affine welfare maximizing
if there is an affine welfare maximizing SWF g such that, for every
A ∈ F(U) and P ∈ P, f(P,A) ⊆ maxg(P)∆(A). It is easy to see that ev-
ery outcome that is affine welfare maximizing for positive weights is
Pareto optimal with respect to the individual preferences within the
respective feasible set. Conversely, it follows from Aziz et al. (2015,
Theorem 1) that Pareto optimality is not only necessary but also suf-
ficient for an outcome to be welfare maximizing (see also McLennan,
2002; Manea, 2008; Athanassoglou, 2011; Carroll, 2010; Dogan and
Yildiz, 2016, for similar results for vNM preferences).

Since collective preferences are assumed to be convex, choosing
maximal outcomes according to an arbitrary SWF satisfies Sen’s α
and Sen’s γ (cf. Section 2.1). This is remarkable, since these and
similar choice consistency conditions have been shown to be pro-
hibitive for pure SCFs when combined with assumptions like non-
dictatorship and Pareto optimality (cf. Chapter 8).

21 In fact relative utilitarianism also obtains for every normalization that differs from
normalization to the unit interval only by an additive constant.
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7.2 maximal lotteries

On the domain of PC preferences, the SCF that returns the maximal
outcomes according to relative utilitarianism is known as maximal
lotteries (ML). For all A ∈ F(U), N ∈ F(V), and P ∈ (DPC)N,

ML(P,A) = max
RU(P)

∆(A). (maximal lotteries)

ML was first considered by Kreweras (1965) and studied in more
detail by Fishburn (1984b) and Aziz et al. (2013). ML is Condorcet
consistent as it uniquely returns a Condorcet winner whenever one
exists. In general, an outcome returned by ML is preferred to all
other outcomes by an expected majority of agents. Thus, ML can be
seen as an extension of Condorcet’s principle to all preference pro-
files. The outcomes of ML(P,A) correspond to maximin strategies
in the symmetric zero-sum game MP

A induced by the pairwise ma-
jority margins. This implies that maximal lotteries can be computed
efficiently via linear programming. Laffond et al. (1997) have shown
that every symmetric zero-sum game with odd off-diagonal payoffs
admits a unique maximin strategy. Thus, ML(P,A) is a singleton
whenever there is an odd number of agents with strict preferences
over pure outcomes. Moreover, the set of symmetric zero-sum games
with multiple maximin strategies M̂A

A is nowhere dense in MA and
has measure zero. Hence, ML(P,A) is almost always single-valued in
a well-defined sense.
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Many writers have felt that the assumption of
rationality, in the sense of a one-dimensional
ordering of all possible alternatives, is absolutely
necessary for economic theorizing [. . . ] There
seems to be no logical necessity for this viewpoint;
we could just as well build up our economic
theory on other assumptions as to the structure of
choice functions if the facts seemed to call for it.

K. J. Arrow

Arrow’s impossibility theorem (Arrow, 1951) states that every SWF
that satisfies Pareto optimality and independence of irrelevant alter-
natives is dictatorial. Two important modeling assumptions are that
individual preferences are complete and transitive but otherwise un-
restricted and that collective preferences are also complete and tran-
sitive. Arrow’s result has triggered a large amount of work about
possible ways to circumvent its negative implications for collective
decision making. With few exceptions, these attempts failed in the
sense that they produced new impossibility results. They can be di-
vided into two categories based on the aforementioned modeling as-
sumptions.

The starting point for the first approach is the observation by Sen
(1970a) that Arrow’s assumption of transitivity of the collective pref-
erence relation is not necessary to guarantee the existence of maximal
elements within finite feasible sets. Hence, one possible escape route
from Arrow’s theorem is to weaken the assumption of transitive col-
lective preferences. Sen (1969) has shown that weakening transitivity to
acyclicity, which is necessary and sufficient for the existence of maxi-
mal elements, allows for non-dictatorial SWFs satisfying Arrow’s ax-
ioms. These SWFs do not constitute a proper resolution, however,
since they are dictatorial in a weaker, but still highly undesirable,
way. A number of similar results for acyclic collective preferences
have been obtained for variants of Arrow’s conditions (see, e.g., Mas-
Colell and Sonnenschein, 1972; Brown, 1975; Blau and Deb, 1977;
Blair and Pollak, 1982; Banks, 1995). (For an overview of results on
weakened assumptions about collective preferences we refer to Kelly
(1978), Sen (1977), Sen (1986), Schwartz (1986), and Campbell and
Kelly (2002).)

The second approach weakens Arrow’s assumption of full domain
of individual preferences. Promising results have been obtained for
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domains of single-peaked and dichotomous preferences, which al-
low for attractive SWFs (see, e.g., Black, 1948; Arrow, 1951; Inada,
1969; Sen and Pattanaik, 1969; Ehlers and Storcken, 2008). They rely
on the fact that the majority relation is transitive within these do-
mains. Single-peakedness prescribes that the set of outcomes lies
on a line and the individual preferences have convex upper contour
sets. In a similar way, domain restrictions can be obtained for higher-
dimensional convex sets of outcomes. Preferences over these sets are
typically assumed to respect the structure of the outcome set by as-
suming that they satisfy some notion of convexity and continuity (cf.
Chapter 7). Samuelson (1967) conjectured that Arrow’s impossibility
still holds when individual and collective preferences over lotteries
on alternatives satisfy the vNM axioms, which was later proven to
be the case by Kalai and Schmeidler (1977a) if there are at least four
alternatives and the SWF is continuous. Hylland (1980a) showed that
continuity is not needed to derive this conclusion. Similar results for
restricted preferences have been obtained by Kalai et al. (1979), Bor-
der (1983), Bordes and Le Breton (1989), Bordes and Le Breton (1990a),
Bordes and Le Breton (1990b), Campbell (1989), and Redekop (1995).
Hence, the positive results for single-peaked preferences crucially rely
on the one-dimensional structure of the outcome space.

The approach taken here is based on the observation that all of the
results in the second category assume some notion of transitivity of
preferences. For convex outcome sets, such an assumption is not nec-
essary to guarantee the existence of maximal elements within convex
feasible sets, however (cf. Proposition 2.1). We consider SWFs that
map a profile of SSB preferences to a collective preference relation,
which is also assumed to satisfy the SSB axioms. First, we show that
not only does this setting allow for non-dictatorial SWFs satisfying
Arrow’s axioms of Pareto optimality and independence of irrelevant
alternatives, even anonymous Arrovian aggregation is possible. Curi-
ously, the unique inclusion-maximal Cartesian domain which allows
for anonymous Arrovian aggregation is precisely the domain of pref-
erences based on pairwise comparisons DPC. In contrast to single-
peaked and dichotomous preferences, this domain does not restrict
the preferences over pure outcomes. We go on to show that every
Arrovian SWF on DPC is affine utilitarian. This result even holds
when only assuming Pareto indifference, i.e., Pareto optimality with
respect to the indifference relation (cf. Harsanyi, 1955). When addi-
tionally assuming anonymity, our axioms uniquely characterize rel-
ative utilitarianism. This implies that the collective preferences over
pure outcomes coincide with the majority relation.

Our second result is related to Harsanyi’s social aggregation theo-
rem (Harsanyi, 1955), which shows that, for individual and collective
vNM preferences, every SWF satisfying Pareto indifference has to de-
rive the collective preferences from a linear combination of the agents’
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vNM functions. The weights assigned to the agents may depend
on the individual preferences, however. Hence, Harsanyi’s theorem
does not characterize affine utilitarianism as defined in Chapter 7.1.
Fishburn and Gehrlein (1987) demonstrated that Harsanyi’s theorem
cannot be extended to SSB preferences, even when strengthening
the notion of Pareto optimality (see also Turunen-Red and Weymark,
1999). The characterization of affine utilitarianism given here shows
that Pareto indifference is sufficient to enforce affine utilitarianism for
preferences based on pairwise comparisons when additionally assum-
ing independence of irrelevant alternatives. A multi-profile version
of Harsanyi’s theorem for social welfare functionals, i.e., functions
that map a profile of vNM functions to a vNM preference relation,
was shown by Mongin (1994). He proved that every social welfare
functional that satisfies Pareto optimality and IIA is affine utilitar-
ian. When considering social welfare functionals that are invariant
under positive affine transformations of the agents’ vNM functions,
one again obtains an SWF and the characterization of affine utilitar-
ianism turns into an impossibility result, since affine utilitarianism
does not satisfy independence of irrelevant alternatives for vNM pref-
erences.

Related results have been obtained by Dhillon (1998), Dhillon and
Mertens (1999), and Börgers and Choo (2015), who characterized rela-
tive utilitarianism for vNM preferences. The results of Dhillon (1998)
and Börgers and Choo (2015) are based on a Pareto-type axiom that
allows to apply Harsanyi’s theorem (or similar results), while Dhillon
and Mertens (1999) use a quite technical monotonicity axiom. A
strengthening of their monotonicity axiom prescribes that if an agent
changes his preferences between two outcomes from indifference to a
preference for the collectively preferred outcome, then the collective
preference between these two outcomes should not change. Com-
pared to our result, Dhillon (1998) and Dhillon and Mertens (1999)
require a weaker version of independence of irrelevant alternatives
called independence of redundant alternatives, which demands the
consequence of independence of irrelevant alternatives only for fea-
sible sets that make all other outcomes redundant in that they are
unanimously indifferent to some feasible outcome. Unlike indepen-
dence of irrelevant alternatives, independence of redundant alterna-
tives is satisfied by relative utilitarianism on the domain of vNM pref-
erences. The axioms of Börgers and Choo (2015) that allow them to
extend Harsanyi’s single-profile utilitarianism to affine utilitarianism
are formulated in terms of marginal rates of substitution based on
the agents’ vNM functions. All three results use anonymity to infer
relative utilitarianism from affine utilitarianism.
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8.1 arrovian social welfare functions

For the rest of this chapter, we assume that the set of alternatives
U is finite (cf. Remark 8.7 for the case of infinitely many alterna-
tives). Since none of the properties of SWFs considered here connects
variable sets of agents to each other, we fix an electorate N ∈ F(V)

with n = |N| > 2. Arrow (1951) showed that the only SWFs that sat-
isfy Pareto optimality and independence of irrelevant alternatives are
dictatorial functions when the domain D of preferences contains all
transitive and complete preference relations over outcomes and col-
lective preferences have to be transitive and complete. In contrast, we
assume that individual preferences are from some domain D ⊆ R and
collective preferences are from R. Pareto optimality prescribes that a
unanimous preference of one outcome over another in the individual
preferences should be reflected likewise in the collective preferences.
An SWF f satisfies Pareto optimality if, for all p,q ∈ ∆(U), P ∈ DN,
and f(P) = �,

p %i q for all i ∈ N implies p % q, and

if additionally p �i q for some i ∈ N then p � q.
(Pareto optimality)

The indifference part of Pareto optimality, which merely requires that
p ∼i q for all i ∈ N implies p ∼ q, is usually referred to as Pareto
indifference.

Independence of irrelevant alternatives demands that collective pref-
erences over some feasible set of outcomes should only depend on the
individual preferences over this set (and not on the preferences over
outcomes outside of this set). Since outcomes are probability distri-
butions over alternatives, our notion of feasible sets is based on the
availability of alternatives. To this end, we consider the same notion
of feasible sets as introduced for SCFs in Section 7.1 (see also Kalai
and Schmeidler, 1977a). Hence, feasible sets are assumed to take the
form ∆(A) for some A ∈ F(U). Formally, we say that an SWF f satis-
fies independence of irrelevant alternatives if, for all P, P̂ ∈ DN and
A ∈ F(U),

P|∆(A) = P̂|∆(A) implies f(P)|∆(A) = f(P̂)|∆(A). (IIA)

Stronger notions of IIA for less restrictive assumptions about feasible
sets are discussed in Remark 8.3.

Any SWF that satisfies Pareto optimality and IIA will be called
an Arrovian SWF. Formulated in our framework, Arrow has shown
that every Arrovian SWF is dictatorial on pure outcomes, i.e., there
is i ∈ N such that for all a,b ∈ U, P ∈ DN, and f(P) = �, a �i
b implies a � b, when individual and collective preferences over
pure outcomes have to be transitive and complete. Anonymity as
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R

vNM
WL

PC

dich.

Figure 8.1: Venn diagram showing the inclusion relationships between pref-
erence domains. The intersection of the domain of vNM prefer-
ences and the domain of PC preferences exactly contains the set
of dichotomous vNM preference relations. The intersection of
WL preferences and PC preferences additionally contains the PC
preferences based on trichotomous weak orders (see Figure 2.1
for an example). An example of PC preferences not contained
in the set of WL preferences is given in Figure 2.2. Theorem 8.1
shows that the domain of PC preferences is the unique inclusion-
maximal domain within R for which anonymous Arrovian ag-
gregation is possible. This, for example, implies impossibilities
for WL preferences and vNM preferences.

defined in Section 7.1 is obviously a stronger requirement than non-
dictatorship on pure outcomes.

In order to prove our characterization, we need to assume that the
domain D ⊆ R satisfies certain richness conditions. First, we require
that it is neutral in the sense that it is not biased towards certain al-
ternatives. It is assumed that � ∈ D if and only if �π ∈ D for all
π ∈ Π(U) and � ∈ D. Secondly, it should also be possible for agents
to declare completely opposed preferences, i.e., that D is closed under
reversals. Formally, � ∈ D implies �−1 ∈ D for all � ∈ R. Note that
this condition is not implied by the previous neutrality condition be-
cause it allows the reversal of preferences over all outcomes, not only
pure outcomes. Finally, we demand that for every transitive relation
on pure outcomes, D contains at least one extension of this relation to
all outcomes in ∆(U). The last assumption can be slightly weakened
without affecting the correctness of our proofs (see Remark 8.6). For
the rest of this chapter we assume that D satisfies the three conditions
defined above.

8.2 characterization of the domain

It follows from previously mentioned results that non-dictatorial Ar-
rovian aggregation is impossible for vNM preferences. On the other
hand, appealing SWFs exist in subdomains such as dichotomous
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vNM preferences where each agent can only assign two different util-
ity values. In this domain, every affine utilitarian SWF with positive
weights satisfies IIA and Pareto optimality. Note that vNM prefer-
ences with only two different utility values also constitute PC pref-
erences, where every pure outcome with the higher utility value is
preferred to every pure outcome with the lower utility value. This
possibility banks on the fact that the majority relation on pure out-
comes is transitive for dichotomous preferences. The only anony-
mous Arrovian SWF on this domain corresponds to approval voting
and ranks pure outcomes by the number of approvals they receive
from the agents. This ranking is identical to the majority relation.

Theorem 8.1 encompasses both, the negative result for vNM prefer-
ences and the positive result for dichotomous preferences, by show-
ing that DPC is the unique inclusion-maximal domain which allows
for anonymous Arrovian aggregation.22

Theorem 8.1
Let |U| > 4 and f be an anonymous Arrovian SWF on some
domain D ⊆ R. Then, D ⊆ DPC.

The proof of Theorem 8.1 is given in Section 8.6. Figure 8.1 illus-
trates the implications of Theorem 8.1.

8.3 characterization of the social welfare
function

Theorem 8.1 has established that anonymous Arrovian aggregation is
only possible if individual preferences are based on pairwise compar-
isons. Theorem 8.2 now shows that all Arrovian SWFs on domains of
PC preferences are affine utilitarian with positive weights. Indepen-
dence of irrelevant alternatives together with Pareto indifference al-
ready characterizes affine utilitarianism. Pareto optimality forces the
weights to be positive, which also excludes dictatorships, i.e., affine
utilitarianism with all weights except for one equal to 0.

Theorem 8.2
Let |U| > 5 and f be an Arrovian SWF on some domain D ⊆
DPC. Then, there are w1, . . . ,wn ∈ R>0 such that

φf(P) ≡
∑
i∈N

wiφi for all P ∈ DN.

The proof of Theorem 8.2 is given in Section 8.7. Theorem 8.2 can
be seen as a multi-profile version of Harsanyi’s social aggregation the-
orem for PC preferences, where IIA allows us to connect coefficients

22 Our domain assumptions require that D contains a preference relation with a strict
order of all pure outcomes. Theorem 8.1 also holds for domains of dichotomous
preferences, however (cf. Remark 8.6).
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φ =

a b c( )0 1 −1 a

−1 0 1 b

1 −1 0 c

a

b

c

•

Figure 8.2: Illustration of collective preferences returned by the unique
anonymous Arrovian SWF in the case of Condorcet’s paradox.
The left-hand side shows the collective SSB function and the
right-hand side the Marschak-Machina probability triangle for
the corresponding collective preferences. The arrows represent
the normal vectors to the indifference curves of the outcome
at the base of the arrow (pointing towards the lower contour
set). Each indifference curve separates the corresponding up-
per and lower contour set. The unique maximal outcome is
1/3a+ 1/3b+ 1/3 c.

across different profiles. When furthermore assuming anonymity, the
weights of all agents have to be identical and we obtain the following
characterization of relative utilitarianism.

Corollary 8.3
Let |U| > 5 and f be an anonymous Arrovian SWF on D ⊆ R.
Then, f = RU.

Relative utilitarianism is computationally tractable: two outcomes
can be compared by straightforward matrix-vector multiplications
while maximal outcomes within feasible sets can be found using lin-
ear programming. For illustrative purposes, let U = {a,b, c} and
N = {1, 2, 3} and consider the classic Condorcet example where the
agents have the following transitive preferences over pure outcomes:
a �1 b �1 c, b �2 c �2 a, and c �3 a �3 b. The corresponding PC
preferences �1,�2,�3 are represented by φ1,φ2,φ3 ∈ ΦPC, where

φ1 =

a b c 0 1 1 a

−1 0 1 b

−1 −1 0 c

, φ2 =

a b c 0 −1 −1 a

1 0 1 b

1 −1 0 c

, and

φ3 =

a b c 0 1 −1 a

−1 0 −1 b

1 1 0 c

.
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In the preference profile P = (�1,�2,�3) the pairwise majority rela-
tion over pure outcomes is cyclic, since there are majorities for a over
b, b over c, and c over a. Relative utilitarianism aggregates prefer-
ences by adding the individual SSB representations, i.e.,

φRU(P) ≡
∑
i∈N

φi =

a b c 0 1 −1 a

−1 0 1 b

1 −1 0 c

.

Figure 8.2 shows the collective preference relation represented by this
matrix. The unique maximal outcome is 1/3a+ 1/3b+ 1/3 c.23

8.4 interpretation of results

Theorem 8.1 characterizes the domain of PC preferences as the largest
domain for which anonymous Arrovian aggregation is possible. In
light of many impossibility results in the context of Arrovian aggre-
gation, the existence of such a domain is surprising. To shed some
light on its characteristics, observe that it generalizes the domain of
dichotomous vNM preferences in the sense that it only allows for one
intensity of preference when comparing pure outcomes. In particu-
lar, the preferences over all outcomes are completely determined by
the preferences over pure outcomes. This implies that, whenever the
preferences over some set of pure outcomes coincide for two prefer-
ence profiles, then the preferences over all outcomes in the convex
hull of these pure outcomes also coincide. Moreover, the numerical
SSB value for every pair of outcomes in this convex hull has to be
the same for all agents in both profiles. The latter fact weakens the
force of independence of irrelevant alternatives and allows it to be
satisfied by affine utilitarianism. Thus, a possible interpretation of
Theorem 8.1 is that Arrow’s axioms deny different preference inten-
sities among pure outcomes. They also force individual preferences
to be intransitive even when preferences over pure outcomes are tran-
sitive (cf. Figure 2.2). To support the arguments we put forward in
defense of intransitive preferences in Section 1.3 and Section 2.2, we
refer to the following quote by Peter Fishburn:

Transitivity is obviously a great practical convenience and
a nice thing to have for mathematical purposes, but long
ago this author ceased to understand why it should be a
cornerstone of normative decision theory. [. . . ] The pres-
ence of intransitive preferences complicates matters [. . . ]

23 This outcome represents a somewhat unusual unique maximal outcome because it is
not strictly preferred to any of the other outcomes. This is due to the contrived nature
of the example and only happens if the support of a maximal outcome contains all
alternatives.
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however, it is not cause enough to reject intransitivity. An
analogous rejection of non-Euclidean geometry in physics
would have kept the familiar and simpler Newtonian me-
chanics in place, but that was not to be. Indeed, intransi-
tivity challenges us to consider more flexible models that
retain as much simplicity and elegance as circumstances
allow. It challenges old ways of analyzing decisions and
suggests new possibilities. (Fishburn, 1991, pp. 115–117)

Theorem 8.2 is closer to Harsanyi’s social aggregation theorem. It
shows that Pareto optimality forces the collective preferences to be
based on affine utilitarianism on the domain of PC preferences. In
contrast to Harsanyi’s theorem, this conclusion only holds in the pres-
ence of independence of irrelevant alternatives. It may be questioned
if affine utilitarianism on the domain of PC preferences constitutes
proper utilitarianism. It is in fact no more utilitarian than approval
voting on the domain of dichotomous preferences. On the other hand,
it is no less utilitarian than the form of utilitarianism characterized by
Harsanyi. For one, even though PC preferences over pure outcomes
cannot have different intensities, preferences over other outcomes can
vary in intensity. Secondly, even in Harsanyi’s case of vNM pref-
erences, preferences are of ordinal nature despite the fact that they
admit a numerical representation. The following quote of John von
Neumann and Oskar Morgenstern elaborates on this point:

It is clear that every measurement or rather every claim
of measurability must ultimately be based on some imme-
diate sensation, which possibly cannot and certainly need
not be analyzed any further. In the case of utility the im-
mediate sensation of preference of one object or aggregate
of objects as against another provides this basis. But this
permits us only to say when for one person one utility
is greater than another. It is not in itself a basis for nu-
merical comparison of utilities for one person nor of any
comparison between different persons. Since there is no
intuitively significant way to add two utilities for the same
person, the assumption that utilities are of non-numerical
character even seems plausible. The modern method of in-
difference curve analysis is a mathematical procedure to
describe this situation. (von Neumann and Morgenstern,
1953, p. 16)

Finally, Corollary 8.3 implies that anonymous Arrovian preference ag-
gregation entails that one has to be willing to accept intransitive col-
lective preferences, even over pure outcomes. More precisely, the col-
lective preferences over pure outcomes need to be in accordance with
the majority relation. In this vein, Corollary 8.3 combines Borda’s
score-based and Condorcet’s majoritarian conception of preference
aggregation.
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8.5 concluding remarks

We conclude this chapter with a number of technical remarks.

Remark 8.1 (Transitivity)
When also requiring transitivity of individual preferences, The-
orem 8.1 immediately turns into an impossibility, which follows
from the fact that PC preferences are not transitive for at least
four alternatives (cf. Figure 2.2). This implies the impossibility
of anonymous Arrovian aggregation of vNM preferences (and
thereby of WL preferences), even when collective preferences
need not be transitive.24

Remark 8.2 (Anonymity)
Theorem 8.1 does not hold without assuming anonymity. Let
U = {a,b, c,d}, N = {1, 2, 3}, and ε ∈ (0, 1/4) and consider the
SSB function

φ =


0 1 1 1+ ε

−1 0 1 1

−1 −1 0 1

−(1+ ε) −1 −1 0

 .

Let D = DPC ∪ {� ∈ R : φ� ≡ φπ for some π ∈ Π(U)}. Then D

satisfies all our domain assumptions (cf. Section 8.1). The SWF
f : DN → R, φf(P) ≡ 2φ1 + 3φ2 + 4φ3 satisfies IIA and Pareto
optimality but violates anonymity. Note that f is not dictatorial
(not even on pure outcomes). Hence, Theorem 8.1 does not hold
when weakening anonymity to non-dictatorship.

Remark 8.3 (Strong IIA)
Relative utilitarianism does not satisfy the stronger notion of
IIA that considers all non-empty, compact, and convex sets fea-
sible. To see this, let U = {a,b, c} and N = {1, 2} and consider
the preference relations�1,�2 ∈ R represented by the SSB func-
tions

φ1 =

 0 3 4

−3 0 1

−4 −1 0

 and φ2 =

 0 1 3

−1 0 2

−3 −2 0

 .

Then, for p = 1/2a + 1/2 c and q = b, we have p �1 q and
q �2 p. For the profiles P = (�1,�2) and P̂ = (�−1

2 ,�−1
1 ), we

have P|conv({p,q}) = P̂|conv({p,q}) but p RU(P) q and q RU(P̂) p.

Remark 8.4 (Symmetry)
Theorem 8.1 also holds when collective preferences are not re-
quired to satisfy the symmetry axiom. Whether symmetry is

24 When collective preferences have to be transitive as well, this impossibility directly
follows from Arrow’s theorem as mentioned in Section 8.1, since IIA, Pareto opti-
mality, and anonymity imply IIA, Pareto optimality, and non-dictatorship on pure
outcomes, respectively.
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required for individual preferences in Theorem 8.1 and for col-
lective preferences in Theorem 8.2 is open.

Remark 8.5 (Tightness of bounds)
Theorem 8.1 does not hold if |U| < 4, which is the same bound
as for the result by Kalai and Schmeidler (1977b). This stems
from the fact that forU = {a,b, c}, IIA only has non-trivial impli-
cations for feasible sets of the form ∆({x,y}) for some x,y ∈ U.
For every possible preference over x and y, there is exactly one
continuous and convex preference relation on ∆({x,y}) consis-
tent with it. Hence, IIA only has non-trivial implications for
the collective preferences over pure outcomes. However, even
for three alternatives, the domains of preferences which allow
for anonymous Arrovian aggregation are severely restricted. In
particular, Lemmas 8.8, 8.9, 8.10, and 8.11 still hold. Any such
domain contains exactly one SSB preference relation� for every
strict order over U such that

φ� ≡

 0 1 λ

−1 0 1

−λ −1 0


for some λ ∈ R>0 that is fixed across all strict orders. For
1 < λ < 1+ 1/n, relative utilitarianism constitutes an Arrovian
SWF on the corresponding domain.

Theorem 8.2 does not hold if |U| < 5. Let U = {a,b, c,d},
D = DPC, and P̂ = (�̂1, �̂2, �̂3, �̂4, . . . ) such that every SSB
preference in D \ {∅} appears exactly once in the preferences of
the agents in N \ {1, 2, 3, 4} and

φ̂1 = φ̂2 =


0 1 1 1

−1 0 1 1

−1 −1 0 1

−1 −1 −1 0

 ,

φ̂3 =


0 1 −1 −1

−1 0 −1 −1

1 1 0 1

1 1 −1 0

 , φ̂4 =


0 1 −1 −1

−1 0 −1 −1

1 1 0 −1

1 1 1 0

 .

Then, Pareto optimality has no implications for P̂. Let f : DN →
R, φf(P) ≡

∑
i∈Nφi except that

φf(P̂) ≡


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 .

Then, f satisfies Pareto optimality and IIA but is not affine util-
itarian. The proof of Theorem 8.2 fails at Lemma 8.14.
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Remark 8.6 (Domain assumptions)
In Section 8.1, we specified domain richness conditions that are
required for our proofs. The last-named of those conditions
prescribes that every transitive relation on pure outcomes is in-
duced by at least one relation in D. For Theorems 8.1 and 8.2,
this condition is only required for every transitive relation on
four and five pure outcomes, respectively. Furthermore, to de-
rive the conclusion of Theorem 8.1, a weaker condition suffices:
if � ∈ D with a � b � c and a � c for some a,b, c ∈ U, then
there is some �̂ ∈ D with a �̂ b �̂ c �̂ x and a �̂ c for some
x ∈ U. This condition also covers the domain of dichotomous
preferences.

Remark 8.7 (Infinite Universes)
Fishburn (1984a) shows that under additional technical assump-
tions about the outcome space and the preference relations, the
SSB representation holds for probability measures over arbi-
trary (possibly infinite) sets of alternatives. Our results extend
to this framework without modifications to the proofs.

8.6 characterization of the domain: proofs

We first prove a crucial lemma, which shows that continuous and
convex preference relations are completely determined by their sym-
metric part up to orientation. This generalizes Theorem 2 by Fishburn
and Gehrlein (1987), who showed the same statement for SSB prefer-
ences (i.e., they additionally assume symmetry). The weaker version
by Fishburn and Gehrlein is sufficient for our main result, but we
believe that Lemma 8.8 may be of independent interest, e.g., when
trying to strengthen Theorems 8.1 and 8.2.

Before giving a proof of Lemma 8.8, we show four auxiliary state-
ments about continuous and convex preference relations. Unless oth-
erwise stated, we say that a set is open or closed if it is open or closed
in ∆(U).

Lemma 8.4
Let � be a continuous and convex preference relation. Then,
U(p) and L(p) are open for all p ∈ ∆(U).

Proof. Let p ∈ ∆(U). We start by showing that I(p) is an affine sub-
space of ∆(U), i.e., I(p) = aff(I(p)) ∩ ∆(U). To this end, let q ∈
aff(I(p)) ∩∆(U). Hence, there are k ∈ N, λ ∈ Rk with

∑k
i=1 λi = 1,

and qi ∈ I(p) such that q =
∑k
i=1 λiq

i. Equivalently,

r =
1∑

i∈λ+ λi

q+ ∑
i∈λ−

(−λi)q
i

 =
1∑

i∈λ+ λi

∑
i∈λ+

λiq
i. (1)
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Note that 1+
∑
i∈λ− −λi =

∑
i∈λ+ λi, since

∑k
i=1 λi = 1. Hence, r ∈

conv(I(p)) and thus, by convexity of �, r ∈ I(p). If q ∈ U(p), then, by
convexity of � and (1), r ∈ U(p), which is a contradiction. Similarly,
if q ∈ L(p). Hence, q ∈ I(p). This proves I(p) = aff(I(p)) ∩ ∆(U).
Thus, as the intersection of two closed sets, I(p) is closed.

Now assume for contradiction that U(p) is not open, i.e., there is
q ∈ U(p) such that the ε-ball Bε(q) around q intersects with either
I(p) or L(p) for every ε > 0. For r ∈ Bε(q) ∩ L(p), by continuity
of � we have that, conv({q, r}) ∩ I(p) 6= ∅. Hence, Bε(q) ∩ I(p) 6= ∅
for every ε > 0. This implies that q is in the closure of I(p), which
contradicts the fact that I(p) is closed.

Lemma 8.5
Let � be a continuous and convex preference relation. For all
p ∈ ∆(U), if I(p) contains a non-empty open set, then I(p) =

∆(U).

Proof. Assume for contradiction that I(p) 6= ∆(U) or, equivalently,
U(p) ∪ L(p) 6= ∅. Without loss of generality, assume that U(p) 6= ∅.
Let q ∈ I(p) such that a neighborhood of q is contained in I(p) and
let r ∈ U(p). Then convexity of � implies that λq+ (1− λ)r ∈ U(p)
for all λ ∈ (0, 1). This contradicts the assumption that a neighborhood
of q is contained in I(p).

The interior of a preference relation int(�) = {p ∈ ∆(U) : U(p) 6=
∅ and L(p) 6= ∅} is the set of all outcomes with non-empty upper and
lower contour sets.

Lemma 8.6
Let � be a continuous and convex preference relation. Then,
for every p ∈ int(�), I(p) = ∆(U) ∩H, where H is a (|U|− 1)-
dimensional hyperplane in RU. Moreover, I(p) has dimension
|U|− 2.

Proof. Let p ∈ int(�). Then, by Lemma 8.4, U(p) and L(p) are non-
empty and open. Since � is convex, U(p) and L(p) are convex. By
the separating hyperplane theorem, there are x ∈ RU and λ ∈ R

such that H = {y ∈ RU : xTy = λ} strictly separates U(p) and L(p).
Thus, ∆(U) ∩H ⊆ I(p). Since U(p) and L(p) are non-empty and H
is strictly separating, H contains an interior point of ∆(U). Hence,
∆(U) ∩H has dimension |U|− 2. If I(p) has dimension |U|− 1, then,
since I(p) is convex, it contains an open set. Lemma 8.5 implies that
I(p) = ∆(U). This contradicts p ∈ int(�).

Lemma 8.7
Let � be a continuous and convex preference relation. If � 6= ∅,
int(�) is non-empty and open and cl(int(�)) = ∆(U).
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Proof. First we show that int(�) 6= ∅. If � 6= ∅, there is p ∈ ∆(U)
such that L(p) 6= ∅. Let q ∈ L(p). Then, by convexity of �, p �
1/2p+ 1/2q � q, i.e., 1/2p+ 1/2q ∈ int(�).

To show that int(�) is open, let p ∈ int(�), q ∈ U(p), and r ∈ L(p).
Then p ∈ L(q) ∩U(r). Since, by Lemma 8.4, L(q) and U(r) are open
and contain p, L(q)∩U(r) ⊆ int(�) contains a neighborhood of p.

To show that cl(int(�)) = ∆(U), let p ∈ max�∆(U). Let O ⊆ ∆(U)
be a neighborhood of p. Assume for contradiction that O ∩ int(�) =
∅. If O ∩ (min�∆(U) \ max�∆(U)) 6= ∅, let q ∈ O ∩ (min�∆(U) \
max�∆(U)). Since q 6∈ max�∆(U), it follows that U(q) 6= ∅. From
Lemma 8.4 we know that U(q) is open. Moreover, q ∈ cl(U(q)), since
λq+ (1− λ)r ∈ U(q) for all λ > 0 and r ∈ U(q). Hence, O∩U(q) 6= ∅.
As the intersection of two open sets, O ∩U(q) is open. Since U(q) ∩
min�∆(U) = ∅, the assumption that O ∩ int(�) = ∅ implies that
O ∩U(q) ⊆ max�∆(U). If O ∩ (min�∆(U) \ max�∆(U)) = ∅, then,
by assumption, O ⊆ max�∆(U). In any case, max�∆(U) contains an
open set. Observe that, for all p,q ∈ max�∆(U), q ∈ I(p) and hence,
by Lemma 8.5, I(p) = ∆(U). Now let p ∈ O ⊆ max�∆(U), where O
is an open set and q, r ∈ ∆(U) such that r ∈ U(q). Then, by convexity,
(1− λ)p+ λr ∈ U((1− λ)p+ λq) for all λ ∈ (0, 1). For small λ > 0,
(1 − λ)p + λr, (1 − λ)p + λq ∈ O ⊆ max�∆(U), which contradicts
q ∈ I(p) for all p,q ∈ max�∆(U). Hence, for every p ∈ max�∆(U)
and every neighborhood O of p, O ∩ int(�) 6= ∅, i.e., p ∈ cl(int(�)).
Similarly for q ∈ min�∆(U). Hence, cl(int(�)) = ∆(U).

We are now ready to prove Lemma 8.8.

Lemma 8.8
Let �, �̂ be continuous and convex preference relations. If ∼ ⊆
∼̂, then �̂ ∈ {�,�−1, ∅}.

Proof. Let p ∈ ∆(U). By assumption, we have I(p) ⊆ Î(p). Moreover,
∆(U) is the disjoint union of I(p), U(p), L(p) and Î(p), Û(p), L̂(p),
respectively. This implies that Û(p) ∪ L̂(p) ⊆ U(p) ∪ L(p). Assume
for contradiction that Û(p) ∩ U(p) 6= ∅ and Û(p) ∩ L(p) 6= ∅. Let
q ∈ Û(p) ∩U(p) and r ∈ Û(p) ∩ L(p). Continuity of � implies that
conv({q, r}) ∩ I(p) 6= ∅. Convexity of �̂ implies that conv({q, r}) ⊆
Û(p). Hence, ∅ 6= conv({q, r})∩ I(p) ⊆ Û(p), which contradicts I(p) ⊆
Î(p). Hence, Û(p) ⊆ U(p) or Û(p) ⊆ L(p). Similarly, L̂(p) ⊆ L(p) or
L̂(p) ⊆ U(p).

Now let p ∈ int(�)∩ int(�̂). From Lemma 8.6, it follows that I(p) =
∆(U)∩H and Î(p) = ∆(U)∩ Ĥ for (|U|− 1)-dimensional hyperplanes
H and Ĥ through p. Moreover, I(p) and Î(p) have dimension |U|− 2.
Since I(p) ⊆ Î(p), it follows that I(p) = Î(p). Then, eitherU(p) = Û(p)
and L(p) = L̂(p) or U(p) = L̂(p) and L(p) = Û(p). Let �p denote the
restriction of� to those comparisons involving p, i.e., �p = �∩ ({p}×
∆(U)∪∆(U)× {p}). Thus, either �p = �̂p or �p = �̂−1

p .
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If �̂ = ∅, there is nothing left to show. Hence assume that �̂ 6= ∅.
By assumption, this implies that � 6= ∅. From Lemma 8.7, it follows
that int(�)∩ int(�̂) 6= ∅. Let p ∈ int(�)∩ int(�̂) and assume without
loss of generality that �p = �̂p. Let q ∈ int(�) ∩ int(�̂). If q ∈
U(p) = Û(p), then p ∈ L(q) ∩ L̂(q). Hence, �q = �̂q. Similarly, if
q ∈ L(p). From Lemma 8.6, it follows that I(p)∪ I(q) 6= ∆(U). Hence,
(U(p)∪ L(p))∩ (U(q)∪ L(q)) is non-empty and, by Lemma 8.4, open.
By Lemma 8.7, (U(p) ∪ L(p)) ∩ (U(q) ∪ L(q)) ∩ int(�)int(�̂) is non-
empty and open. For r ∈ (U(p)∪ L(p))∩ (U(q)∪ L(q))∩ int(�)int(�̂),
it follows from two applications of what we have shown before that
�r = �̂r and �q = �̂q.

Now let p ∈ ∆(U) \ (int(�) ∩ int(�̂)). Assume for contradiction
that L(p) \ L̂(p) 6= ∅ and let q ∈ L(p) \ L̂(p). By Lemma 8.4, L(p) is
open. Hence, there is ε > 0 such that Bε(q) ⊆ L(p). If Bε(q)∩ L̂(p) =
∅, then L(p) \ L̂(p) contains an open set. If Bε(q) ∩ L̂(p) 6= ∅, let
r ∈ Bε(q) ∩ L̂(p). Since Bε(q) ∩ L̂(p) is the intersection of two open
sets, it is open. Hence, there is ε ′ > 0 such that Bε ′(r) ⊆ Bε(q) ∩
L̂(p). Let τ : Bε(q) → Bε(q), τ(s) = q + (q − s) be the reflection
with respect to q. Note that q = 1/2 (s+ τ(s)) ∈ conv({s, τ(s)} for all
s ∈ Bε(q). Hence, since convexity of �̂ implies that L̂(p) is convex
and q 6∈ L̂(p), τ(s) ∈ L(p) \ L̂(p) for all s ∈ Bε ′(r), i.e., τ(Bε ′(r)) ⊆
L(p) \ L̂(p). In any case, there is an open set O ⊆ L(p) \ L̂(p). As
the intersection of two open sets, O ∩ int(�) 6= ∅ is open. Since, by
Lemma 8.7, cl(int(�̂)) = ∆(U), it follows that O∩ int(�)∩ int(�̂) 6= ∅.
Thus, there is q ∈ int(�) ∩ int(�̂) such that q ∈ L(p) but q 6∈ L̂(p).
From before we know that �r = �̂r for all r ∈ int(�)∩ int(�̂), which
is a contradiction. Hence, L̂(p) = L(p). Similarly, we get Û(p) = U(p).
In summary, L̂(p) = L(p), Û(p) = U(p), and Î(p) ⊆ I(p), which
implies that �p = �̂p.

Lemma 8.8 does not hold if convexity is weakened to the assump-
tion that U(p), L(p), and I(p) need to be convex for all p ∈ ∆(U). To
see this, consider the following preference relation on the closed in-
terval [0, 1]. Let � be the greater than relation and �̂ be defined such
that p �̂ q if p ∈ (3/4, 1] and q ∈ [0, 1/4) and p ∼̂ q otherwise. Both,
� and �̂ are continuous and convex according to the weaker notion
of convexity defined above. For � this is clear. To see this for �̂, ob-
serve that, for all p ∈ [0, 1], either Î(p) = [0, 3/4] and Û(p) = (3/4, 1]
(if p ∈ [0, 1/4)) or Î(p) = [0, 1] (if p ∈ [1/4, 3/4]) or L̂(p) = [0, 1/4) and
Î(p) = [1/4, 1] (if p ∈ (3/4, 1]). In all cases, Û(p) and L̂(p) are open and
Û(p), L̂(p), and Î(p) are convex. Continuity has no consequences for
�̂, since int(�̂) = ∅.

The next lemma is reminiscent of what is known as the field ex-
pansion lemma in traditional proofs of Arrow’s theorem (see, e.g. Sen,
1986).25 Let f : DN → R be an SWF, G,H ⊆ N, and a,b ∈ U. We say

25 In contrast to Lemma 8.9, the consequence of the original field expansion lemma
uses a stronger notion of decisiveness.
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that (G,H) is decisive for a against b, denoted by a DG,H b, if, for all
P ∈ DN, a �i b for all i ∈ G, a ∼i b for all i ∈ H, and b �i a for all
i ∈ N \ (G∪H) implies a � b. Hence, DG,H is a relation on U.

Lemma 8.9
Let f be an Arrovian SWF on some domain D, G,H ⊆ N, and
a,b ∈ U. Then, a DG,H b implies that DG,H = U×U.

Proof. First we show that a DG,H x and b DG,H x for all x ∈ U \ {a,b}.
To this end, let x ∈ U \ {a,b} and �̂ ∈ D such that a �̂ b �̂ x and
a �̂ x, which exists by our richness assumptions on D (cf. Section 8.1).
Consider the preference profile

P = (�̂, . . . , �̂︸ ︷︷ ︸
G

, ∅, . . . , ∅︸ ︷︷ ︸
H

, �̂−1, . . . , �̂−1).

Since ∼̂ = ∼̂−1, it follows from Pareto indifference and Lemma 8.8 that
� = f(P) ∈ {�̂, �̂−1, ∅}. Since a DG,H b, � = �̂ remains as the only
possibility. Hence, a � x and b � x. By IIA, it follows that a DG,H x

and b DG,H x.
Repeated application of the second statement implies that DG,H is

a complete relation. To show that DG,H is symmetric, let x,y, z ∈
U such that x DG,H y. The first part of the statement implies that
x DG,H z. Two applications of the second part yield z DG,H y and
y DG,H x. Hence, DG,H = U×U.

Now we show that anonymous Arrovian aggregation is only pos-
sible on domains in which preferences over outcomes are completely
determined by preferences over pure outcomes.

Lemma 8.10

Let f be an anonymous Arrovian SWF on some domain D ⊆ R.
Then, �|A = �̂|A implies �|∆(A) = �̂|∆(A) for all �, �̂ ∈ D and
A ∈ F(U).

Proof. Let �0, �̂0 ∈ D and A ∈ F(U) such that �0|A = �̂0|A. Con-
sider the preference profile

P = (�0, �̂−1
0 , ∅, . . . , ∅).

Note that P ∈ DN since D satisfies our richness assumptions. As-
sume that there are a,b ∈ A such that a �0 b and define P̄ = P(12) to
be identical to P except that the preferences of agents 1 and 2 are ex-
changed. Anonymity of f implies that �̄ = f(P̄) = f(P) = �. Assume
for contradiction that a � b. Then, by IIA, ({1},N \ {1, 2}) is decisive
for a against b. Lemma 8.9 implies that ({1},N \ {1, 2}) is also deci-
sive for b against a. Hence b �̄ a, which contradicts �̄ = �. Thus,
a ∼ b. Hence, we get that a ∼ b for all a,b ∈ A such that a �̂0 b.
For a,b ∈ A such that a ∼0 b and a ∼̂0 b, it follows from Pareto
indifference that a ∼ b. Hence, a ∼ b for all a,b ∈ A.
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Since � satisfies convexity, we get that �|∆(A) = ∅. If �0|∆(A) 6=
�̂0|∆(A), there are p,q ∈ ∆(A) such that p �0 q and not p �̂0 q, i.e.,

p %̂
−1

0 q. The strict part of Pareto optimality of f implies that p � q.
This contradicts �|∆(A) = ∅. Hence, �0|∆(A) = �̂0|∆(A).

Lemma 8.10 is the only part of the proof of Theorem 8.1 that re-
quires anonymity. A much weaker condition would also suffice: there
has to be P ∈ DN, a,b ∈ U, i ∈ N, and f(P) = � such that a �i b and
a ∼ b.

Next, we show that intensities of preferences between pure out-
comes have to be identical.
Lemma 8.11

Let f be an anonymous Arrovian SWF on some domain D ⊆ R

with |U| > 4. Then, for all �0 ∈ D, φ0 = φ�0 , and a,b, c ∈ U
with a �0 b,

(i) b �0 c implies φ0(a,b) = φ0(b, c),

(ii) a �0 c implies φ0(a,b) = φ0(a, c),

(iii) c �0 b implies φ0(a,b) = φ0(c,b), and

(iv) c �0 a implies φ0(a,b) = φ0(c,a).

Proof. Ad (i): Continuity implies that b ∼0 λa + (1 − λ)c for some
λ ∈ (0, 1). Observe that �(ac)

0 |{a,b,c} = �−1
0 |{a,b,c} , where (ac) de-

notes the permutation that swaps a and c and leaves all other alterna-
tives fixed.. Lemma 8.10 implies that �(ac)

0 |∆({a,b,c}) = �−1
0 |∆({a,b,c}).

Hence, we have b ∼0 (1− λ)a+ λc. Convexity of �0 then implies that
b ∼0 1/2a+ 1/2 c. This is equivalent to φ0(a,b) = φ0(b, c).

Ad (ii): We distinguish two cases.
Case 1 (b ∼0 c): Consider the preference profile

P = (�0, (�(bc)
0 )−1, ∅, . . . , ∅).

Let� = f(P). As in the proof of Lemma 8.10, we get that�|∆({a,b,c}) =

∅. Without loss of generality, assume that φ0(a,b) = 1 and φ0(a, c) =
λ for some λ ∈ (0, 1]. Let p = 1/2a+ 1/2 c and q = 1/2a+ 1/2b, and
denote by φ1 and φ2 the SSB functions representing the preference
relations �0 and (�(bc)

0 )−1, respectively. Then φ1(p,q) = φ2(p,q) =
1/4 (1− λ). If λ < 1, the strict part of Pareto optimality of f implies
that p � q. This contradicts �|{a,b,c} = ∅. Hence, λ = 1.

Case 2 (b �0 c): Our richness assumptions on the domain imply
that there is �̂0 ∈ D with a �̂0 b �̂0 c, a �̂0 c, and c �̂0 x for some
x ∈ U. Let φ̂0 = φ�̂0 . Lemma 8.10 implies that φ0{a,b,c} ≡ φ̂0{a,b,c}.
Assume without loss of generality that φ̂0(a,b) = 1. By (i), we get
φ̂0(a,b) = φ̂0(b, c) = 1. By (i), we get that φ̂0(a, c) = φ̂0(c, x) and
φ̂0(b, c) = φ̂0(c, x) = 1. Hence, φ̂0(a, c) = 1.

Ad (iii): The proof is analogous to the proof of (ii).
Ad (iv): The proof is analogous to the proof of (i).
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Theorem 8.1
Let |U| > 4 and f be an anonymous Arrovian SWF on some
domain D ⊆ R. Then, D ⊆ DPC.

Proof. Let �0 ∈ D and a,b, c,d ∈ U such that a �0 b and c �0
d. We have to show that φ0(a,b) = φ0(c,d). First assume there
are x ∈ {a,b} and y ∈ {c,d} such that x �0 y or y �0 x. Then,
Lemma 8.11 implies that φ0(a,b) = φ0(x,y) = φ0(c,d) or φ0(a,b) =
φ0(y, x) = φ0(c,d), respectively. Otherwise, x ∼0 y for all x ∈ {a,b}
and y ∈ {c,d}. This implies that �0|{a,b,c,d} = �0(ac)(bd)|{a,b,c,d}.
From Lemma 8.10 we get �0|∆({a,b,c,d}) = �0(ac)(bd)|∆({a,b,c,d}). It

follows that φ0{a,b,c,d} = φ
(ac)(bd)
0 {a,b,c,d} which in turn implies

φ0(a,b) = φ0(c,d).

8.7 characterization of the social welfare
function: proofs

In light of Theorem 8.1, we will assume throughout this section that
D ⊆ DPC. Except for Theorem 8.2, all results in this section only
require Pareto indifference. Since for PC preferences the SSB utilities
over outcomes are completely determined by the preferences over
pure outcomes, we will write φA instead of the more clumsy φ∆(A)

for any SSB function φ ∈ ΦPC and subset of alternatives A ⊆ U.

The following four lemmas show that for all preference profiles
P and all alternatives a and b, φ(a,b) only depends on the set of
agents who prefer a to b, whenever P is from the domain of PC
preferences and φ represents f(P). We first prove that, if a pure out-
come is strictly Pareto dominated, then the intensities of collective
preferences between each of the dominating pure outcomes and the
dominated pure outcome are identical. (Using a symmetric argument,
the same can be shown for profiles in which the Pareto dominance is
reversed.)

Lemma 8.12

Let f be an Arrovian SWF on some domain D with |U| > 4. Let
a,b, c ∈ U and P ∈ DN, φP ≡ (φi)i∈N, such that φi(a, c) =

φi(b, c) = 1 for all i ∈ N. Then, φ(a, c) = φ(b, c), where φ =

φf(P).

Proof. The idea of the proof is to introduce a fourth alternative, which
serves as a calibration device for the intensity of pairwise compar-
isons, and eventually disregard this alternative using IIA. To this
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end, let x ∈ U and consider a preference profile P̂ ∈ DN such that
P{a,b,c} = P̂|{a,b,c} and

φP̂{a,b,c,x} = (


0 1 1

0 1 1

−1 −1 0 1

−1 −1 −1 0

 , . . .

︸ ︷︷ ︸
N

).

The values of φ̂i(a,b) for all i ∈ N are irrelevant.26 Let φ̂ = φf(P̂).
The Pareto indifference relation with respect to P̂|{a,c,x} is identical
to ∼1|{a,c,x}. The analogous statement holds for the Pareto indiffer-
ence relation with respect to P̂|{b,c,x}. Hence, Pareto indifference,
Lemma 8.8, and IIA imply that there are α,β ∈ R such that

φ̂{a,c,x} = α

 0 1 1

−1 0 1

−1 −1 0

 and φ̂{b,c,x} = β

 0 1 1

−1 0 1

−1 −1 0

 .

As a consequence, α = β and φ̂(a, c) = φ̂(b, c). Since P|{a,b,c} =

P̂|{a,b,c}, Lemma 8.10 and IIA imply that φ{a,b,c} ≡ φ̂{a,b,c}. Hence,
we have that φ(a, c) = φ(b, c).27

Given a preference profile P, let Nab = {i ∈ N : a �i b} be the
set of agents who strictly prefer a over b and nab = |Nab|. Also,
let Iab = N \ (Nab ∪Nba) be the set of agents who are indifferent
between a and b.

Lemma 8.13 shows that for a fixed preference profile, φ(a,b) only
depends on Nab and Iab and not on the names of the alternatives.

Lemma 8.13

Let f be an Arrovian SWF on some domain D with |U| > 5,
a,b, c,d ∈ U, and P ∈ DN such that Nab = Ncd and Nba =

Ndc. Then, φ(a,b) = φ(c,d), where φ = φf(P).

Proof. We first prove the case when all of a,b, c,d are distinct. Let
e ∈ U and consider a preference profile P̂ ∈ DN such that P|{a,b,c,d} =

26 Also the values φ̂i(x, z) for all z ∈ {a,b, c} are irrelevant as long as they are the same
for all agents.

27 Pareto dominance also implies that φ(a, c),φ(b, c) > 0.
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P̂|{a,b,c,d} and φ̂i(x, e) = 1 for all x ∈ {a,b, c,d} and i ∈ N. Now
consider a preference profile P̊ ∈ DN such that

φP̊{a,b,c,d,e} = (


0 1 1 1 1

−1 0 1 1 1

−1 −1 0 1 1

−1 −1 −1 0 1

−1 −1 −1 −1 0

 , . . .

︸ ︷︷ ︸
Nab

,


0 −1 −1 −1 1

1 0 −1 −1 1

1 1 0 −1 1

1 1 1 0 1

−1 −1 −1 −1 0

 , . . .

︸ ︷︷ ︸
Nba

,


0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

−1 −1 −1 −1 0

 , . . . ).

Note that P̂|{a,b,e} = P̊|{a,b,e} and P̂|{c,d,e} = P̊|{c,d,e} because Nab =

Ncd and Nba = Ndc by assumption. Now, let φ̂ = φf(P̂) and
φ̊ = φf(P̊). Since P̂|{a,b,e} = P̊|{a,b,e}, we have φ̂{a,b,e} ≡ φ̊{a,b,e}
by IIA. Moreover, P̂|{c,d,e} = P̊|{c,d,e} and IIA yield φ̂{c,d,e} ≡ φ̊{c,d,e}.
Lemma 8.12 implies that φ̊(x, e) = λ for some λ ∈ R for all x ∈
{a,b, c,d}. Thus, for some µ,σ ∈ R, φ̊ takes the form

φ̊{a,b,c,d,e} =


0 µ λ

−µ 0 λ

0 σ λ

−σ 0 λ

−λ −λ −λ −λ 0

 .

Note that P̊|{a,b,c,d} only consists of one fixed preference relation, its
inverse, and complete indifference. Hence, Pareto indifference and
Lemma 8.8 imply that φ̊{a,b,c,d} = αφ̊1{a,b,c,d} for some α ∈ R, where
φ̊1 is the SSB function that represents the preference relation of the
agents in Nab in P̊. Hence, we get that µ = σ.

The cases when a = c and b = c follow from repeated application
of the above case. All other cases are symmetric to one of the covered
cases.

Lemma 8.14

Let f be an Arrovian SWF, a,b, c,d ∈ U, P, P̂ ∈ DN, φ = φf(P),
and φ̂ = φf(P̂). If P|{a,b} = P̂|{a,b} and P|{c,d} = P̂|{c,d}, there is
α > 0 such that φ(a,b) = α · φ̂(a,b) and φ(c,d) = α · φ̂(c,d).

Proof. Let e ∈ U \ {a,b, c,d} and P ′, P̂ ′ ∈ DN such that P ′|{a,b,c,d} =

P|{a,b,c,d}, P̂ ′|{a,b,c,d} = P̂|{a,b,c,d}, and φ ′i(x, e) = φ̂ ′i(x, e) = 1 for
all x ∈ {a,b, c,d} and i ∈ N. By φ ′ ≡ φf(P

′) and φ̂ ′ ≡ φf(P̂
′) we

denote the corresponding collective SSB functions. Since f satisfies
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IIA, we have that φ{a,b,c,d} ≡ φ ′
{a,b,c,d} and φ̂{a,b,c,d} ≡ φ̂ ′

{a,b,c,d}.
Lemma 8.12 implies that without loss of generality, φ ′ and φ̂ ′ take
the following form for some λ,µ, µ̂,σ, σ̂ ∈ R and A = {a,b, c,d, e}.
Note that we can choose suitable representatives such that φ ′(a, e) =
φ̂ ′(a, e) = λ.

φ ′A =


0 µ λ

−µ 0 λ

0 σ λ

−σ 0 λ

−λ −λ −λ −λ 0

 φ̂ ′A =


0 µ̂ λ

−µ̂ 0 λ

0 σ̂ λ

−σ̂ 0 λ

−λ −λ −λ −λ 0



Observe that P ′|{a,b,e} = P̂ ′|{a,b,e} and P ′|{c,d,e} = P̂ ′|{c,d,e} by con-
struction. Since f satisfies IIA, we get that φ ′

{a,b,e} = φ̂ ′
{a,b,e} and

φ ′
{c,d,e} = φ̂ ′

{c,d,e}. In particular, this means that µ = µ̂ and σ = σ̂.
Since φ{a,b,c,d} ≡ φ ′{a,b,c,d} and φ̂{a,b,c,d} ≡ φ̂ ′{a,b,c,d}, there is α > 0
as required.

Lemma 8.14 shows that φ(a,b) only depends on Nab and Iab and
not on a, b, or P. Hence, there is a function g : 2N × 2N → R such
that g(Nab, Iab) = φf(P)(a,b) for all a,b ∈ U and P ∈ DN. We now
leverage Pareto indifference to show that φf(P) is a linear combina-
tion of the φi. Hence, f is affine utilitarian.

Lemma 8.15

Let f be an Arrovian SWF. Then, there are w1, . . . ,wn ∈ R such
that φf(P) ≡

∑
i∈Nwiφi for all P ∈ DN.

Proof. For all G ⊆ N, let wG = 1/2 (g(N, ∅) + g(G, ∅)). For conve-
nience, we write wi for w{i}. Since φf(P)(x,y) = g(Nxy, Ixy) for all
x,y ∈ U and P ∈ DN, it suffices to show that

g(Nxy, Ixy) =
∑
i∈N

wiφi(x,y) =
∑
i∈Nxy

wi −
∑
i∈Nyx

wi, (2)
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for all x,y ∈ U. To this end, we will first show that wG+wĜ = wG∪Ĝ
for all G, Ĝ ⊆ N with G ∩ Ĝ = ∅. Let G, Ĝ as above, a,b, c, x,y ∈ U,
and consider the following preference profile P ∈ DN such that

φP{a,b,c,x,y} = (


0 −1 1

0 −1 1

0 −1 1

1 1 1 0

−1 −1 −1 0

 , . . .

︸ ︷︷ ︸
G

,


0 −1 −1

0 1 1

0 1 −1

1 −1 −1 0

1 −1 1 0

 , . . .

︸ ︷︷ ︸
Ĝ

,


0 −1 1

0 −1 −1

0 1 1

1 1 −1 0

−1 1 −1 0

 , . . . ).

Let φ = f(P). We have that, for p = 1/2 x + 1/2y and q = 1/3a +
1/3b+ 1/3 c, φi(p,q) = 0 for all i ∈ N. Pareto indifference implies
that φ(p,q) = 0. Let µ = g(G, ∅), µ̂ = g(Ĝ, ∅), and σ = g(G∪ Ĝ, ∅). By
definition of w,

wG +wĜ = wG∪Ĝ

is equivalent to

(g(N, ∅) + g(G, ∅)) + (g(N, ∅) + g(Ĝ, ∅)) = g(N, ∅) + g(G∪ Ĝ, ∅).

Hence, we have to show that µ+ µ̂+ g(N, ∅) = σ. By definition of g,
we get that φ takes the following form.

φ{a,b,c,x,y} ≡


0 −g(N, ∅) −µ̂

0 µ̂ σ

0 −µ −µ̂

g(N, ∅) −µ̂ µ 0

µ̂ −σ µ̂ 0



From φ(p,q) = 0, it follows that 1/6 (µ+ µ̂+ g(N, ∅) − σ) = 0. This
proves the desired relationship.

Now we can rewrite (2) as

g(Nxy, Ixy) = wNxy −wNyx . (3)

By definition of w, this is equivalent to

2g(Nxy, Ixy) = g(Nxy, ∅) − g(Nyx, ∅). (4)
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To prove (4), let a,b, x,y ∈ U and consider a following preference
profile P̂ ∈ DN such that

φP̂{a,b,x,y} = (


0 1 1

0 −1 −1

−1 1 0

−1 1 0

 , . . .

︸ ︷︷ ︸
G

,


0 −1 1

0 −1 0

1 1 0

−1 0 0

 , . . .

︸ ︷︷ ︸
Ĝ

,


0 −1 −1

0 1 1

1 −1 0

1 −1 0

 , . . . ).

Let φ̂ = φf(P̂). Observe that, for p = 1/3 x+ 2/3y and q = 1/2a+ 1/2b,
φ̂i(p,q) = 0 for all i ∈ N. Pareto indifference implies that φ̂(p,q) = 0.
With the same definitions as before and ε = g(G, Ĝ), φ̂ takes the
following form.

φ̂{a,b,x,y} ≡


0 µ σ

0 −σ −ε

−µ σ 0

−σ ε 0


From φ̂(p,q) = 0, we get that 1/6 (−µ + σ − 2σ + 2ε) = 0. Hence,
2ε = µ+ σ. This is equivalent to

2g(G, Ĝ) = g(G, ∅) + g(G∪ Ĝ, ∅) = g(G, ∅) − g(N \ (G∪ Ĝ), ∅),

where the last equality follows from skew-symmetry of φ̂ and the
definition of g. This proves (4).

Finally, the strict part of Pareto optimality implies that all weights
have to be strictly positive.

Theorem 8.2
Let |U| > 5 and f be an Arrovian SWF on some domain D ⊆
DPC. Then, there are w1, . . . ,wn ∈ R>0 such that

φf(P) ≡
∑
i∈N

wiφi for all P ∈ DN.

Proof. From Lemma 8.15 we know that there arew1, . . . ,wn ∈ R such
that, for all P ∈ DN, φf(P) ≡

∑
i∈Nwiφi. Assume for contradiction

that wi 6 0 for some i ∈ N. Let G be the set of agents such that
wi 6 0 and consider a preference profile P ∈ DN with a,b, c ∈ U
such that

φP{a,b,c} ≡ (

 0 1

0 1

−1 −1 0

 , . . .

︸ ︷︷ ︸
G

,

 0 1

0 −1

−1 1 0

 , . . . ).
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Let φ ≡ φf(P). Then, for p = 1/2a+ 1/2b, we have that φi(p, c) > 0
for all i ∈ G and φi(p, c) = 0 for all i ∈ N \G. Pareto optimality of f
implies that φ(p, c) > 0. However, we have

φ(p, c) = α

∑
i∈G

wiφi(p, c) +
∑
i∈N\G

wiφi(p, c)︸ ︷︷ ︸
=0


= α
∑
i∈G

wiφi(p, c)︸ ︷︷ ︸
60

6 0

for some α > 0. This is a contradiction.



9
R E L AT I V E U T I L I TA R I A N S O C I A L C H O I C E

It is common practice, on the eve of Election Day,
to call upon the public to exercise their right and
vote. The argument is that by voting one can
sometimes influence the outcome and secure the
election of a preferred candidate. It turns out,
however, that some popular voting rules may give
rise to situations where one’s vote results in the
election of a less preferred candidate [. . . ]

R. Holzman

It has been established in Chapter 8 that anonymous Arrovian pref-
erence aggregation necessitates relative utilitarianism. In this chapter,
we consider the SCF that chooses maximal elements according to rel-
ative utilitarianism, called relative utilitarian outcomes, in a frame-
work where agents may choose to opt-out from the aggregation pro-
cess by not reporting their preferences. Fishburn and Brams (1983)
observed that some SCFs may incentivize agents to abstain since
this yields a more preferred outcome. Moulin (1988) showed that
this phenomenon, called the no-show paradox, pertains to all resolute
and Condorcet consistent pure SCFs. A number of authors provided
strengthenings of this result (Holzman, 1988; Sanver and Zwicker,
2009; Brandt et al., 2017), extensions to not necessarily strict prefer-
ences (Duddy, 2014), extensions to non-resolute SCFs (Pérez, 2001;
Jimeno et al., 2009; Brandl et al., 2015a), and extensions to not neces-
sarily pure SCFs (Brandl et al., 2015b). An SCF that is not susceptible
to the no-show paradox entices participation. Moulin’s result even
holds when only considering abstention by single agents. We study
SCFs that entice participation for groups of agents in the sense that
no group of agents can obtain a more preferred outcome (in terms
of accumulated utility) by abstaining. In case an SCF returns multi-
ple outcomes, the above condition has to hold for any pair of chosen
outcomes. This property will be called utilitarian participation.

Our first result shows that choosing relative utilitarian outcomes en-
tices utilitarian participation. This is obvious when the agents’ prefer-
ences admit representations through vNM functions and is the reason
why scoring rules (such as Borda’s rule or plurality rule) entice partic-
ipation. Choosing relative utilitarian outcomes is not the only way to
entice utilitarian participation, since, e.g., every constant SCF trivially
entices utilitarian participation. It can however be singled-out under
additional assumptions. In certain cases choosing relative utilitarian
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outcomes is particularly natural, e.g., if there exists a pure relative
utilitarian outcome, i.e., a pure outcome that yields positive accumu-
lated utility compared to every other pure outcome (and therefore,
by convexity, every outcome). An SCF that uniquely chooses such
a pure outcome whenever it exists is called weakly utilitarian. Our
second result shows that every homogeneous and weakly utilitarian
SCF that entices utilitarian participation has to choose relative utili-
tarian outcomes. This result requires the domain of preferences to be
sufficiently rich.

The first result implies that on the domain of preferences based on
pairwise comparisons, choosing maximal lotteries entices utilitarian
participation. As a consequence, maximal lotteries satisfies SD-group-
participation as introduced by Brandl et al. (2015b), which prescribes
that no group of agents can abstain and thereby obtain an outcome
that stochastically dominates the outcome obtained by participating
with respect to the preferences of all its members. Since maximal lot-
teries is Condorcet consistent, this can be seen as a possible resolution
of Moulin’s no-show paradox for non-pure SCFs.

9.1 relative utilitarian outcomes and util-
itarian participation

None of the conditions considered here connects choices from dif-
ferent feasible sets to each other nor do the results require any as-
sumptions about the feasible set. Hence, the feasible set will be some
fixed A ∈ F(U) for the rest of this chapter. Since we wish to con-
sider arbitrarily large electorates, the set of agents V is assumed to
be infinite. Moulin’s notion of participation requires that a single
agent can never be better off by abstaining. In a framework where
the agents’ preferences admit representations through SSB functions,
this notion can be extended to groups of agents by accumulating the
utility comparisons between outcomes. A group of agents prefers one
outcome to another if the former yields positive accumulated utility
when compared to the latter. An SCF entices utilitarian participation
if no group of agents can obtain a preferred outcome by abstaining.
For N,G ∈ F(V) with G ( N and P ∈ DN, let P−G = (�i)i∈N\G

be the preference profile that is obtained from P by removing the
preference relations of agents in G. An SCF f entices utilitarian par-
ticipation if, for all N,G ∈ F(V) with G ( N, P ∈ DN, p ∈ f(P,A),
and q ∈ f(P−G,A),∑

i∈G
φi(p,q) > 0. (utilitarian participation)

In particular, if an SCF entices utilitarian participation, no group of
agents can abstain while all its members prefer the newly obtained
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outcome over the originally obtained outcome. This notion of partic-
ipation for groups of agents was considered by Brandl et al. (2015b)
in a framework where the agents’ preferences can be represented by
vNM functions that are unknown to the SCF except for their ranking
over pure outcomes.

The following two theorems show that choosing relative utilitarian
outcomes is closely connected to utilitarian participation. First, it is
shown that choosing relative utilitarian outcomes entices utilitarian
participation.

Theorem 9.1
Let D ⊆ R. Then, choosing relative utilitarian outcomes entices
utilitarian participation.

Proof. Let N,G ∈ F(V) with G ( N, P ∈ DN, p ∈ maxRU(P)∆(A), and
p ′ ∈ maxRU(P−G)∆(A). Then, we have that∑

i∈N
φi(p,q) > 0 for all q ∈ ∆(A), and∑

i∈N\G

φi(p
′,q) > 0 for all q ∈ ∆(A),

(5)

by definition of RU. It follows that∑
i∈G

φi(p,p ′) =
∑
i∈N

φi(p,p ′)︸ ︷︷ ︸
>0

−
∑
i∈N\G

φi(p,p ′)

︸ ︷︷ ︸
60

> 0.

The subscripted inequalities follow from (5) and the fact that SSB
functions are skew-symmetric. Hence, choosing relative utilitarian
outcomes entices utilitarian participation.

Clearly, Theorem 9.1 does not require that the agents’ preferences
are from a common domain. Despite the fact that Theorem 9.1 is
seemingly trivial and admits a very simple proof, it has important
consequences, whose correctness is far less obvious at first sight (cf.
Section 9.2).

Our second result shows that, on sufficiently rich domains, utilitar-
ian participation in combination with homogeneity and weak utilitar-
ianism necessitates choosing relative utilitarian outcomes. For some
profiles, there is a pure outcome that is preferred to every other out-
come in terms of accumulated utility. Such pure outcomes should
arguably be chosen whenever they exist, since they are preferred to
all other pure outcomes in terms of accumulated utility even ex post,
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i.e., after the randomization is executed. An SCF f is weakly utilitar-
ian if, for all N ∈ F(V) and P ∈ DN,28

f(P,A) = {a} whenever
∑
i∈N

φi(a,b) > 0 for all b ∈ A \ {a}.

(weak utilitarianism)

Note that for vNM preferences pure relative utilitarian outcomes al-
ways exist.

We make two assumptions about the domain D that are required
for the proof of Theorem 9.2. The first assumption is that it should
be possible for two agents to completely disagree with each other
by reporting completely reversed preferences. A domain D ⊆ R is
closed under reversals if, for every � ∈ D, �−1 ∈ D (cf. Chapter 8).
Secondly, a domain should not be heavily biased towards certain al-
ternatives. For every pure outcome, it has to be possible to find a
preference profile for which this pure outcome is preferred to every
other pure outcome in terms of accumulated utility. Formally, a do-
main D is non-imposing if, for every a ∈ A, there are N ∈ F(V) and
P ∈ DN such that

∑
i∈Nφi(a,b) > 0 for all b ∈ A \ {a}.

Theorem 9.2
Let D ⊆ R be non-imposing and closed under reversals. Then,
every homogeneous and weakly utilitarian SCF on D that en-
tices utilitarian participation only chooses relative utilitarian
outcomes.

Proof. Let f be a homogeneous and weakly utilitarian SCF that sat-
isfies utilitarian participation. Assume for contradiction that f does
not only choose relative utilitarian outcomes, i.e., there are N ∈ F(V)

and P ∈ DN such that f(P,A) 6⊆ maxRU(p)∆(A). Hence, there are
p ∈ f(P,A) and q ∈ ∆(A) such that

∑
i∈Nφi(p,q) < 0. By linearity of

the φi, there is an alternative a ∈ A such that
∑
i∈Nφi(p,a) = α < 0.

Since V is assumed to be infinite and D is closed under reversals,
there are N̂ ∈ F(V), N̂ ∩N = ∅, and P̂ ∈ DN̂ such that P̂(�) =

P(�−1) for all � ∈ D. Since D is non-imposing, there are G ∈ F(V),
G ∩ (N ∪ N̂) = ∅, and PG ∈ DG such that

∑
i∈Gφi(a,b) > 0 for all

b ∈ A \ {a}. Now let β =
∑
i∈Gφi(p,a) < 0 and k ∈ N such that

kα − β < 0. Let Nk, N̂k ∈ F(V), |Nk| = |N̂k| = k|N|, G ∩Nk = ∅
and (G ∪Nk) ∩ N̂k = ∅, and Pk ∈ DN

k
, P̂k ∈ DN̂

k
such that, for all

� ∈ D, P(�) = Pk(�) and P̂(�) = P̂k(�). It follows from homo-
geneity of f that p ∈ f(P,A) = f(Pk,A). By definition of P̂ it follows
that

∑
i∈Nk∪N̂k∪Gφi =

∑
i∈Gφi. By the choice of PG and since f is

28 The weakening of weak utilitarianism that only requires that a ∈ f(P,A) also suffices
to derive the conclusion of Theorem 9.2.
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weakly utilitarian, it follows that f(Pk ∪ P̂k ∪ PG,A) = {a}. Moreover,
it holds that∑

i∈N̂k∪G

φi(p,a) =
∑
i∈N̂k

φi(p,a)

︸ ︷︷ ︸
−kα

+
∑
i∈∪G

φi(p,a)︸ ︷︷ ︸
=β

= −(kα−β) > 0.

Hence, the group of agents N̂k ∪G prefers abstaining (which yields
p) to not abstaining (which yields a) in terms of accumulated utility.
This contradicts the assumption that f entices utilitarian participa-
tion.

9.2 preferences based on pairwise compar-
isons

The results in Section 9.1 are particularly relevant when preferences
are based on pairwise comparisons, i.e., D ⊆ DPC. In this case,
choosing relative utilitarian outcomes coincides with maximal lotter-
ies and the agents’ preferences over all outcomes are completely de-
termined by their preferences over pure outcomes. Hence, an SCF
can be seen as a function that maps preferences over pure outcomes
to sets of outcomes. Optional participation for this class of SCFs was
studied by Brandl et al. (2015b). Their notion of participation for
groups of agents with respect to stochastic dominance (SD-group-
participation) prescribes that no group of agents can, by abstaining,
obtain an outcome that stochastically dominates the original outcome
according to the preferences of all agents in the group. Since prefer-
ences based on pairwise comparisons are a refinement of preferences
based on stochastic dominance (cf. Fishburn, 1984a; Aziz et al., 2015),
it follows from Theorem 9.1 that maximal lotteries entices SD-group-
participation.

Corollary 9.3
Let D ⊆ DPC. Then, ML entices SD-group-participation.

Proof. Let N,G ∈ F(V), G ( N, and P ∈ DN. Let p ∈ ML(P,A)
and q ∈ ML(P−G,A). Utilitarian participation of ML implies that∑
i∈Gφi(p,q) > 0. In particular, there is i ∈ G such that φi(p,q) > 0.

This implies that q does not stochastically dominate p according to
�i|A.

SD-group-participation is in fact quite demanding. E.g., Brandl et al.
(2015b) showed that no majoritarian and ex post efficient SCF entices
SD-participation even for single agents.29

29 An SCF is majoritarian if it only depends on the majority relation on pairs of pure
outcomes. An SCF is ex post efficient if it never returns an outcome with positive
probability on a Pareto dominated alternative.
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Recall that an SCF satisfies Condorcet consistency if it uniquely re-
turns pure outcomes that are preferred to all other pure outcomes
by a majority of agents, so-called Condorcet winners, whenever they
exist. For preferences based on pairwise comparisons, Condorcet con-
sistency is equivalent to weak utilitarianism. We thus obtain the fol-
lowing corollary of Theorem 9.2.

Corollary 9.4
Let D ⊆ DPC be non-imposing and closed under reversals. Then,
every homogeneous and Condorcet consistent SCF that entices
utilitarian participation chooses a subset of maximal lotteries.

Corollary 9.4 is in contrast to a result by Moulin (1988), who showed
that no resolute and Condorcet consistent pure SCF entices participa-
tion.

9.3 concluding remarks

Remark 9.1 (One-way monotonicity)
The proof of Theorem 9.1 can be adapted to show that choos-
ing relative utilitarian outcomes satisfies one-way monotonicity
(Sanver and Zwicker, 2009). As a consequence, maximal lotter-
ies satisfies one-way monotonicity on the domain of PC pref-
erences. This is in contrast to Sanver and Zwicker (2009) and
Peters (2017) who showed that no Condorcet consistent pure
SCF satisfies half-way monotonicity, a weakening of both one-
way monotonicity and participation.

Remark 9.2 (Domain assumptions)
The assumption that the domain D is non-imposing is indis-
pensable to derive the conclusion of Theorem 9.2. To see this,
let U = A = {a,b, c} and consider the following SSB function.

φ =

a b c 0 1 −1 a

−1 0 1 b

1 −1 0 c

The domain D = {� ∈ R : φ� = ±φ} is closed under rever-
sals but imposing. Weak utilitarianism has no implications on
D. Hence, every constant function on D is homogeneous and
weakly utilitarian and entices utilitarian participation. It is un-
known, whether the assumption that D is closed under rever-
sals is necessary.
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Remark 9.3 (Non-imposition and cancellation)
Using similar arguments as in the proof of Theorem 9.2, it can
be shown that every weakly utilitarian SCF that satisfies non-
imposition and cancellation has to choose relative utilitarian
outcomes. Non-imposition requires that every pure outcome
is chosen for at least one preference profile. Cancellation pre-
scribes that an SCF ignores agents with completely opposed
preferences (cf. Young, 1974b).

Remark 9.4 (SD-participation)
Corollary 9.4 does not hold if utilitarian participation is weak-
ened to SD-group-participation. For example, the SCF that
uniquely chooses the Condorcet winner if one exists and the
uniform distribution over A otherwise is homogeneous and
Condorcet consistent and satisfies SD-group-participation.30

Remark 9.5 (Strong SD-participation)
A stronger notion of SD-participation prescribes that the out-
come obtained by participating stochastically dominates the out-
come obtained by abstaining. On the domain of PC preferences,
this notion of SD-participation is incompatible with Condorcet
consistency (Brandt et al., 2017, Theorem 9). In this sense, the
impossibility result by Moulin (1988) also holds for non-pure
SCFs.

30 However, this SCF violates ex post efficiency, which is satisfied by maximal lotteries.
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C O N S I S T E N T S O C I A L C H O I C E

Consistency can be viewed as a condition of social
stability. For suppose that society has adopted a
concept of equity that is not consistent. Then in
some situation there will exist a subgroup of
individuals who find that the way they divide the
amount of property allotted to them [. . . ] is unfair.
In other words, it does not accord with the
normative concept that everyone in this society
subscribes to.

H. P. Young

Consistency conditions capture the rationality of the choices made
by a choice function. They feature in many results in the literature on
social choice theory. A very early example is Condorcet consistency,
which goes back to Condorcet (1785) and prescribes that a Condorcet
winner should be chosen whenever one exists. Hence it requires an
SCF to be consistent with majority rule in profiles where majority rule
is unambiguously defined. Arrow’s theorem for SWFs can be turned
into a result for SCFs, which states that every SCF satisfying Pareto
optimality and independence of infeasible alternatives is dictatorial,
if one requires its choices to be consistent with the weak axiom of
revealed preference (Samuelson, 1938). The weak axiom of revealed
preference is equivalent to the conjunction of Sen’s α and a strong
expansion condition called β (Arrow, 1948).

Chapters 8 and 9 have established that considering SCFs that need
not be pure allows to circumvent Arrow’s impossibility theorem and
Moulin’s no-show paradox on the domain of preferences based on
pairwise comparisons. We shall see in this chapter that it also yields
a way around impossibility results based on consistency conditions.
Two well-known consistency conditions for SCFs are consistency with
respect to variable electorates and consistency with respect to compo-
nents of similar pure outcomes. Population consistency prescribes
that every outcome that is chosen by two disjoint electorates should
also be chosen by the union of both electorates. The second consis-
tency condition takes into account the structure of preference profiles
that it is given by the preferences of the agents. A component is a
set of pure outcomes that is an interval in every agent’s preference
relation over pure outcomes. Components can be thought of as vari-
ants or clones of one representative. Cloning consistency prescribes
that the probabilities assigned to alternatives outside the component

95
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must not depend on the presence of clones of the representative or
the preferences over the clones. Composition consistency additionally
requires that the probabilities for alternatives inside the component
have to be directly proportional to their probabilities when the SCF is
applied to the component alone. First, we show that no pure SCF sat-
isfies population consistency and cloning consistency (Theorem 10.1).
For non-pure SCFs, population consistency and composition consis-
tency are not only compatible, but even characterize maximal lotter-
ies (Theorem 10.2). Both axioms are required for the characterization.
Alternatively, ML can be characterized as the unique SCF satisfying
population consistency, cloning consistency, and Condorcet consis-
tency (cf. Remark 10.4). All three results assume that SCFs satisfy a
number of weak properties some which have normative appeal, while
others preclude some sort of irregularity.

10.1 preliminaries

For the rest of this chapter, we assume that both, the set of alterna-
tives U and the set of agents V are infinite. We consider SCFs on the
domain D ⊂ DPC that contains all PC preferences based on a com-
plete, transitive, and asymmetric order over pure outcomes.31 In the
following, a number of basic properties of SCFs are stated that will
be used for the characterization of maximal lotteries.

If an SCF is homogeneous, it only depends on the fraction of agents
reporting a particular preference relation (cf. Section 7.1). Hence, a
homogeneous SCF f can be viewed as a function with domain ∆Q(D),
where the restriction to rational-valued distributions follows from the
assumption that electorates have to be finite. Since only homoge-
neous SCFs will be considered, we assume that SCFs operate on the
domain P∆ = ∆Q(D) from now on. Elements of P∆ will be called
fractional preference profiles. The specification “fractional” will be
omitted whenever it is clear from the context. This representation of
preference profiles abstracts away from electorates. Similar models
(sometimes even assuming a continuum of agents) have been consid-
ered by Young (1974a), Young (1975), Young and Levenglick (1978),
Saari (1995), Dasgupta and Maskin (2008), Che and Kojima (2010),
and Budish and Cantillion (2012), for example.

Since preferences are assumed to be based on pairwise compar-
isons, every preference profile is completely determined by its restric-
tion to pure outcomes. The restriction of a preference profile P ∈ P∆

31 All axioms considered in this chapter only reference to the agents’ preferences over
pure outcomes. Hence, any domain that contains one preference relation for ev-
ery strict order of pure outcomes would work to characterize ML as a function of
preferences over pure outcomes. Preferences based on pairwise comparisons are
the natural domain of ML, however, since it is relative utilitarian (and thus Pareto
optimal) on this domain.
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to a set of pure outcomes A, P|A, is an element of ∆Q(D|A). For
�̂ ∈ D|A, P(�̂) denotes the fraction of agents whose preferences over
pure outcomes in A coincide with �̂, i.e.,

P(�̂) =
∑

�∈D : �̂⊆�

P(�).

Hence, P|A can be depicted as a table that gives P(�̂) for every �̂ ∈
D|A with P(�̂) > 0. The table below shows an example with A =

{a,b, c}.32

1/2 1/3 1/6

a a b

b c c

c b a

(6)

For all x,y ∈ A, P(x,y) = P({(x,y)}) is the fraction of agents who
prefer x to y (the set {(x,y)} represents the relation on {x,y} with
x � y). In Example 6, P(a,b) = 5/6.

Independence of infeasible alternatives is the choice theoretic analog
of independence of irrelevant alternatives (cf. Chapter 8). It requires
that an SCF only depends on the preferences over feasible outcomes;
the preferences over infeasible outcomes are irrelevant. An SCF f
satisfies independence of infeasible alternatives if, for all P, P̂ ∈ P∆

and A ∈ F(U),

f(P,A) = f(P̂,A) whenever P|A = P̂|A. (IIA)

Every SCF can be represented by an SWF, which returns a relation
over outcomes whose maximal elements are exactly the outcomes re-
turned by the SCF. If one requires that this SWF returns preference
relations with convex weak upper contour sets, then sets of maxi-
mal elements and hence, the sets of outcomes chosen by the SCF are
convex. In particular, this is the case if the SWF returns SSB pref-
erences. Whenever these SSB preferences can be represented by a
rational-valued SSB matrix, the set of maximal elements for a finite
feasible set is a polytope whose vertices lie in QU. Based on these
considerations, we require that f chooses convex sets with rational-
valued extreme points.33

f(P,A) is convex with rational-valued extreme points for all

P ∈ P∆ and A ∈ F(U). (convexity)

32 For x ∈ A, we write x within preference profiles instead of the more clumsy x to
increase readability.

33 It may well be required that all chosen outcomes have to be rational-valued due to
the conceptual difficulty with choosing non-rational-valued outcomes that cannot be
carried out exactly in practice.
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Fishburn (1973, pp. 248–249) argued that the set of outcomes returned
by an SCF should be convex because it would be unnatural if two
outcomes were socially acceptable while a randomization between
them was not (see also Fishburn, 1972, p. 201).

The next condition targets robustness of SCFs with respect to small
changes in the preference profile. An SCF f is continuous if it is up-
per hemi-continuous in the first argument. This prevents that small
groups of agents have too much influence on the societal choice, i.e.,
the images of two preference profiles that are close to each other
should be close to each other. This definition of continuity relies on
the usage of fractional preference profiles.

f(·,A) is upper hemi-continuous for all A ∈ F(U). (continuity)

It is not clear how to interpret situations in which SCFs return mul-
tiple outcomes. One might assume that eventually a single outcome
is chosen using some tie-breaking scheme or that choosing multiple
outcomes is acceptable as a final result. In order to avoid leaving too
much to this issue, we require that non-unique choices constitute an
exceptional case. This is captured by the requirement that the set of
preference profiles for which a unique outcome is returned is dense
in the set of all preference profiles.

{P ∈ P∆ : |f(P,A)| = 1} is dense in P∆ for all A ∈ F(U).
(decisiveness)

None of the conditions introduced above interprets the preference
relations in that the preferences of the agents should be correlated
with the choices of the SCF. Unanimity states that in the case of one
agent and a feasible set containing only two pure outcomes, the less
preferred pure outcome should not be chosen uniquely. This condi-
tion is weaker than ex post efficiency for agendas of size two, which
in turn is weaker than Young’s faithfulness (Young, 1974b). Formally,
f satisfies faithfulness if, for all P ∈ P∆ and x,y ∈ U,

f(P, {x,y}) 6= {y} whenever P(x,y) = 1. (unanimity)

An SCF that satisfies homogeneity, independence of infeasible alter-
natives, convexity, continuity, decisiveness, and unanimity is called a
proper SCF.

Most SCFs considered in the literature are proper SCFs. The most
well-known example is random dictatorship (RD), which chooses the
outcome that assigns to every alternative the probability of it being
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ranked first by an agent chosen uniformly at random. Formally, for
all P ∈ P∆ and A ∈ F(U),

RD(P,A) =

 ∑
�∈D|A

P(�) ·max
�
A

 , (random dictatorship)

where max�A denotes the unique pure outcome x such that x � p
for all p ∈ ∆(A) \ {x}. For the preference profile P given in Example 6

and A = {a,b, c},

RD(P,A) = {5/6a+ 1/6b}.

It is clear from the definition that RD satisfies homogeneity, indepen-
dence of infeasible alternatives, and unanimity. Since RD is single-
valued, it is trivially decisive and convex-valued. It is also easily
verified that RD satisfies continuity.

10.2 population consistency and composi-
tion consistency

We require collective choices to satisfy two choice consistency con-
ditions called population consistency and composition consistency.
Population consistency relates choices from varying electorates to
each other. Given some fixed agenda, it requires that every outcome
that is chosen by two disjoint electorates is also chosen by the union
of both electorates. When considering fractional preference profiles,
the union of two preference profiles on disjoint electorates amounts
to a convex combination of both profiles. For example, consider the
two preference profiles P̂ and P̄ whose restriction to A = {a,b, c} is
given below.

1/2 1/2

a b

b c

c a

P̂|A

1/2 1/2

a b

c c

b a

P̄|A

1/4 1/4 1/2

a a b

b c c

c b a

(1/2 P̂+ 1/2 P̄)|A

(7)

Population consistency prescribes that every outcome that is chosen
by both P̂ and P̄ given the agenda A (say 1/2a+ 1/2b) is also chosen
when P̂ and P̄ are merged. Formally, an SCF f satisfies population
consistency if for all P̂, P̄ ∈ P∆, A ∈ F(U), and λ ∈ [0, 1]∩Q,

f(P̂,A)∩ f(P̄,A) ⊆ f(P,A), (population consistency)
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where P = λP̂+ (1− λ)P̄. Hence, the set of profiles for which a given
outcome is returned (possibly among other outcomes) has to be con-
vex. Observe that population consistency is agnostic to the type of
output of f. Its definition does not need to be adjusted for other
types of aggregation functions. Population consistency and variants
thereof have been considered plenty in the literature. Reinforcement
requires the above set inclusion to hold with equality whenever the
left-hand side is non-empty. It is thus stronger than population con-
sistency. Reinforcement was introduced by Young and is the driving
force in his characterizations of Borda’s rule (Young, 1974b) and scor-
ing rules (Young, 1975).34 Variants of reinforcement have been used
by Smith (1973) to characterize SWFs based on scoring rules and Fine
and Fine (1974) to characterize positional rules. The frequent occur-
rence of population consistency and its variants in different contexts
in the social choice literature highlights its compelling nature (see
also Young, 1974a; Fishburn, 1978; Young and Levenglick, 1978; Saari,
1990; Saari, 1995; Myerson, 1995; Congar and Merlin, 2012).

Composition consistency relates choices from different agendas for
a fixed preference profile to each other. It only restricts the choices
for preference profiles that are decomposable, however. An agenda
B ∈ F(U) is a component in P ∈ P∆ if B constitutes an interval in
every agent’s preference relation over pure outcomes, i.e., in every
� ∈ D|U with P(�) > 0. The set B is an interval in � if pure outcomes
in B cannot be distinguished by their relationship to pure outcomes
outside of B or, formally, if for all x,y ∈ B and z ∈ U \ B, x � z if
and only if y � z. Alternatives within a component are called clones.
For example, consider the preference profile P with component B =

{b,b ′} and let A = {a,b,b ′} and Â = {a,b}.

1/3 1/6 1/2

a a b

b ′ b b ′

b b ′ a

P|A

1/2 1/2

a b

b a

P|Â

1/3 2/3

b ′ b

b b ′

P|B

(8)

Composition consistency states that the choice from P for A can be
decomposed into two choices, one for Â and one for B. The choice for
A is obtained by first making the choice for Â and then substituting
the choice for B therein. Let Â,B ∈ F(U) such that Â ∩ B = {b} and
A = Â∪B. Then, an SCF f satisfies composition consistency if, for all
P ∈ P∆ such that B is a component in P,

f(P, Â)×b f(P,B) = f(P,A). (composition consistency)

34 Reinforcement is called “consistency” by Young (1974b) and Young (1975).
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In Example 8 above, composition consistency implies that 1/2a +
1/2b ∈ f(P, Â) and 2/3b+ 1/3b ′ ∈ f(P,B) if and only if 1/2a+ 1/3b+
1/6b ′ ∈ f(P,A). Note that by independence of infeasible alternatives,
the implications of composition consistency hold whenever the pure
outcomes in B are indistinguishable by pure outcomes in A \ B even
when B is not a component in P. Composition consistency was in-
troduced by Laffond et al. (1996), who examined various tournament
solutions and other well-known SCFs with regards to composition
consistency. It was further studied by Laslier (1996), Laslier (1997),
Brandt (2011), Brandt et al. (2011), and Horan (2013). Example 8

shows that RD violates composition consistency, since RD(P, Â)×b
RD(P,B) = (1/2a+ 1/2b)×b (2/3b+ 1/3b ′) 6= 1/2a+ 1/2b = RD(P,A).

Composition consistency implies that the probabilities assigned to
non-clones (alternatives in A\ {b}) must not change by cloning b. This
weakening of composition consistency is called cloning consistency.
As before, let Â,B ∈ F(U) such that Â ∩ B = {b} and A = Â ∪ B. An
SCF f satisfies cloning consistency if, for all P ∈ P∆ such that B is a
component in P,

f(P, Â)Â\{b} = f(P,A)Â\{b}. (cloning consistency)

Cloning consistency as defined here was proposed by Tideman (1987)
and further studied by Zavist and Tideman (1989). Similar condi-
tions have already been considered by Chernoff (1954), Arrow and
Hurwicz (1972), and Maskin (1979) in the decision theory literature,
where it is called deletion of repetitious states. Moulin (1986) con-
sidered cloning consistency for choice functions that are based on
binary trees. Since cloning an alternative b has no effect on first rank
nominations of pure outcomes in A \ {b}, we can infer that RD sat-
isfies cloning consistency. In Example 8, RD(P, Â)Â\{b} = {1/2a} =

RD(P,A)Â\{b}.

10.3 pure social choice functions

The social choice literature displays two streams of research, whose
origins can be traced back to Borda (1784) and Condorcet (1785): scor-
ing rules, of which Borda’s rule is one representative, and Condorcet
extensions, i.e., Condorcet consistent SCFs. A number of results have
shown that population consistency is essentially the characterizing
property of scoring rules (see, e.g., Smith, 1973; Young, 1974a; Young,
1975). Condorcet observed that Borda’s rule may fail to select a Con-
dorcet winner, and hence, violates Condorcet consistency. Young and
Levenglick (1978) have shown that this shortcoming is shared with
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all pure SCFs that satisfy population consistency.35 Condorcet con-
sistency seems to be more compatible with composition consistency,
since a number of SCFs that are known to satisfy composition consis-
tency are Condorcet extensions (cf. Laffond et al., 1996). Laslier (1996)
has shown that no Pareto optimal rank-based pure SCF—a general-
ization of scoring rules—can satisfy composition consistency. Hence,
the ideas of Borda and Condorcet are largely incompatible for pure
SCFs. One exception is the Pareto rule, which returns all ex post effi-
cient outcomes. It is not a proper SCF in the sense defined here, how-
ever, since it violates decisiveness. The following theorem shows that
the conflict between the ideas of Borda and Condorcet prevails, even
when weakening composition consistency to cloning consistency.

Theorem 10.1
No proper pure SCF satisfies cloning consistency and popula-
tion consistency.

For non-pure SCFs, population consistency and cloning consistency
are compatible with each other as witnessed by RD, for example. If
cloning consistency is strengthened to composition consistency, these
properties uniquely characterize ML.

10.4 characterization of maximal lotteries

We start our characterization of ML by considering the case of two-
element feasible sets, e.g., A = {a,b}. For pure SCFs, majority rule
is the only reasonable SCF for this case (cf. May, 1952; Dasgupta and
Maskin, 2008). For possibly non-pure SCFs, there are a number of in-
teresting SCFs, even on two-element feasible sets (see, e.g., Saunders,
2010; Fishburn and Gehrlein, 1977). By independence of infeasible al-
ternatives, the choice of a proper SCF f for the feasible set A can only
depend on the fraction of agents who prefer a to b. Hence, f(·,A)
can be seen as a correspondence from the unit interval to the unit
interval. By convexity, continuity, and decisiveness, this correspon-
dence has to be convex-valued with rational-valued extreme points,
upper hemi-continuous, and single-valued on a dense subset. Una-
nimity prohibits that 0 gets mapped to {1} and that 1 gets mapped
to {0}. When additionally requiring population consistency, it follows
that the function has to be monotonically increasing. Composition
consistency has no implications when only considering two-element
feasible sets.

Maximal lotteries can be seen as the natural extension of majority
rule, since it uniquely chooses the pure outcome that is preferred

35 Theorem 2 by Young and Levenglick (1978) actually assumes reinforcement, but its
proof can be made work for population consistency as defined here with minor
adjustments.
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by a majority. Hence, it completely suppresses minorities. Random
dictatorship on the other hand is perfectly proportional. For all P ∈
P∆,

ML(P, {a,b}) =


{a} if P(a,b) > 1/2,

{b} if P(a,b) < 1/2,

∆({a,b}) otherwise,

and

RD(P, {a,b}) = {P(a,b)a+ P(b,a)b}.

0 1/2 1
0

1

P(a,b)

pa

(a) Maximal lotteries

0 1/2 1
0

1

P(a,b)

pa

(b) Random dictatorship

Figure 10.1: Maximal lotteries and random dictatorship on two-element fea-
sible sets. Here, pa denotes the probability assigned to a by
the corresponding outcome in ML(P, {a,b}) and RD(P, {a,b}),
respectively.

Fishburn and Gehrlein (1977) compared these two SCFs on two-
element feasible sets on the basis of expected agent satisfaction and
found that the simple majority rule outperforms the proportional rule.
Curiously, when allowing for three-element feasible sets, population
consistency and composition consistency characterize majority rule
and thus, maximal lotteries on two-element feasible sets. If arbitrary
feasible sets are allowed, the following characterization of maximal
lotteries is obtained.

Theorem 10.2
A proper SCF f satisfies population consistency and composi-
tion consistency if and only if f = ML.

As a lighthouse to the reader, we give a short outline of the proof
of Theorem 10.2. We start by showing that maximal lotteries is a
proper SCF that satisfies population consistency and composition con-
sistency. This follows from properties of maximin strategies in sym-
metric zero-sum games in a relatively straightforward way.

The converse direction is divided into two statements. The key part
is to show that every proper SCF f that satisfies population consis-
tency and composition consistency has to choose a subset of maximal
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lotteries. First, it is shown that f has to be equal to maximal lotteries
on two-element feasible sets, which requires applications of composi-
tion consistency to three-element feasible sets. Then, it is assumed for
contradiction that f returns an outcome that is not maximal for some
preference profile and some feasible set. This yields a preference pro-
file that admits a Condorcet winner on a possibly larger feasible set,
say A, and for which f returns the uniform distribution over a non-
singleton set of alternatives, say A ′. The existence thereof is critical
to construct a set of preference profiles whose affine hull contains
P∆ and for each of which f returns the uniform distribution over A ′.
Population consistency allows to choose this set arbitrarily close to
the uniform distribution on D|A. Along the way we show that f has
to be Condorcet consistent for all preference profiles that are close to
this uniform profile. Hence, there is a profile with a strict Condorcet
winner (close to the uniform profile) such that f returns the uniform
distribution over A ′ as well as the Condorcet winner for every profile
in a neighborhood of this Condorcet profile. This contradicts deci-
siveness. Lastly, we show that f has to return all maximal lotteries.
To this end, we show that for every preference profile and feasible
set, every vertex of the set of maximal lotteries can be approached by
a sequence of maximal lotteries for a sequence of preference profiles
that approaches the original profile. From f ⊆ML and continuity, we
obtain that f has to select all these vertices in the original preference
profile. Convexity implies that f = ML.

10.5 concluding remarks

We conclude this chapter with a number of remarks.

Remark 10.1 (Independence of axioms)
Population consistency and composition consistency are both
required for the characterization of ML in Theorem 10.2. Ran-
dom dictatorship satisfies population consistency, but violates
composition consistency. The same is true for Borda’s rule.
When defining ML3 as choosing the set of outcomes that cor-
respond to maximin strategies in (MP

A)
3 (where the power is

taken for each entry separately) it is a proper SCF that satisfies
composition consistency but violates population consistency.36

Also, continuity, decisiveness, and unanimity, which are part
of the definition of proper SCFs, are required. Continuity is
needed because the relative interior of ML, known as strict max-
imal lotteries (Aziz et al., 2018), satisfies all remaining axioms.
When not requiring decisiveness, the Pareto rule, which returns
all ex post efficient outcomes, is consistent with the remaining
axioms. The SCF that returns all minimal lotteries violates una-

36 Such variants of maximal lotteries have also been considered by Fishburn (1984b).
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nimity but none of the other axioms. Homogeneity is essential
to define continuity and decisiveness. Whether independence
of infeasible alternatives and convexity are needed is open.

Remark 10.2 (Size of the Universe)
The proof of Theorem 10.2 exploits the infinity of the universe
U. The SCF ML3 as defined in Remark 10.1 satisfies popula-
tion consistency when there are at most three alternatives, but
violates population consistency if there are more alternatives.
This implies that the statement of Theorem 10.2 requires the
universe to contain at least four alternatives.

Remark 10.3 (Strong population consistency)
Maximal lotteries does not satisfy reinforcement, a strengthen-
ing of population consistency in which the set inclusion is re-
placed with equality whenever the left-hand side is non-empty
(see Section 10.2). Consider the following two preference pro-
files P̂ and P̄ and A = {a,b, c}.

1/3 1/3 1/3

a b c

b c a

c a b

P̂|A

1/3 1/3 1/3

c a b

b c a

a b c

P̄|A

It can be checked that ML(P̂,A) = ML(P̄,A) = {1/3a+ 1/3b+
1/3 c}. Hence, ML(P̂,A) ∩ML(P̄,A) is non-empty. Reinforce-
ment implies that for P = 1/2 P̂ + 1/2 P̄, ML(P,A) = {1/3a +
1/3b + 1/3 c}. However, ML(P,A) = ∆(A), since MP

A = 0. To
demonstrate the strength of reinforcement, observe that it is
even violated by the Pareto rule (cf. Remark 10.1).

Remark 10.4 (Cloning consistency and Condorcet consistency)
Theorem 10.2 does not hold if composition consistency is weak-
ened to cloning consistency, since then for example random
dictatorship also qualifies. If however Condorcet consistency
is assumed in addition, the axioms single-out maximal lotteries
again.

Theorem 10.3
A proper SCF f satisfies population consistency, cloning
consistency, and Condorcet consistency if and only if f =
ML.

At the end of Section 10.8 we sketch how the proof of Theo-
rem 10.2 can be adjusted to prove Theorem 10.3. As above, all
three axioms are required for the characterization.
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Remark 10.5 (Relationship to the characterization of maximin strategies)
The results in this chapter are related to the characterization of
maximin strategies in Chapter 5. Every solution concept g in-
duces an SCF f by defining f(P,A) = g(MP,A) for all P ∈ P∆

and A ∈ F(U). With this definition consistency of g is equiv-
alent to population consistency of f, since MP

A is a symmetric
zero-sum game (cf. Remark 5.3). Consequentialism is a weak-
ening of composition consistency and very similar to cloning
consistency. Rationality of a solution concept is implied by
Condorcet consistency of the corresponding SCF. Hence, The-
orems 10.2 and 10.3 can be seen as the equivalents of Theo-
rem 5.3 for SCFs. Stronger axioms are required for the char-
acterization of maximal lotteries, since the choices of an SCF
need not be solely based on MP. Readers may find the proof of
Theorem 5.3 helpful to understand the structure of the proof of
Theorem 10.2.

10.6 cloning consistency implies neutral-
ity

Recall that U is an infinite set of alternatives. For convenience we
will assume that N ⊆ U. As a tool for the upcoming proofs, we show
that cloning consistency implies neutrality, a well-known symmetry
condition, for proper SCFs. Neutrality requires that all alternatives
are treated equally in the sense that renaming alternatives is reflected
by the same renaming in the set of outcomes. Formally, an SCF f
satisfies neutrality if

(f(P,A))π = f(Pπ,π(A)) for all π ∈ Π(U), A ∈ F(U), and P ∈ P∆.

(neutrality)

The proof of Lemma 10.4 exploits the fact that the probability as-
signed to an alternative stays fixed when replacing another alterna-
tive by a component of size 2 for cloning consistent SCFs.

Lemma 10.4
Every proper SCF that satisfies cloning consistency satisfies neu-
trality.

Proof. Let f be a proper SCF satisfying cloning consistency. Let π ∈
Π(U), A = {a1, . . . ,am} ∈ F(U), and P ∈ P∆ . We have to show that
(f(P,A))π = f(Pπ,π(A)). To this end, let pA ∈ f(P,A). Since U is
infinite, there is B = {b1, . . . ,bm} ∈ F(U) such that B ∩A = ∅ and
B ∩ π(A) = ∅. Now let P̂ ∈ P∆ such that P̂|A = P|A and {ai, ci} is a
component in P̂ for all i ∈ [m]. By IIA, we have that pA ∈ f(P̂,A). We
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now repeatedly apply cloning consistency to ai and the component
{ai,bi} for all i ∈ [m]. For i = 1, this implies that

f(P̂,A)A\{a1} = f(P̂,A∪ {b1})A\{a1}.

Hence, there is p̂ ∈ f(P,A ∪ {b1}) such that p̂ai = pAai for all i ∈
{2, . . . ,m}. This implies that p̂a1 + p̂b1 = p

A
a1

. Repeated application of
cloning consistency to ai and {ai,bi} for all i ∈ {2, . . . ,m}, implies that
there is pAB ∈ f(P̂,A ∪ B) such that pABai + pABbi = pAai for all i ∈ [m].
Applying cloning consistency analogously to bi and {ai,bi} for all i ∈
[m] yields that there is pB ∈ f(P̂,B) such that pBbi = p

AB
ai

+ pABbi = pAai
for all i ∈ [m]. Finally, let P̄ ∈ P∆ such that P̄|B = P̂|B and {π(ai),bi}
is a component in P̄ for all i ∈ [m]. By IIA, we have that pB ∈ f(P̄,B).
As before, it follows from cloning consistency that there is pπ(A) ∈
f(P̄,π(A)) with pπ(A)

π(ai)
= pBbi = p

A
ai

for all i ∈ [m]. Hence, pπ(A) = pAπ
by construction. Since P̄|π(A) = P

π|π(A) by construction of P̄, we have

pπ(A) ∈ f(Pπ,π(A)) by IIA. Hence, (f(P,A))π ⊆ f(Pπ,π(A)). The fact
that f(Pπ,π(A)) ⊆ (f(P,A))π follows from application of the above to
Pπ and π−1.

10.7 pure social choice functions: proofs

We now prove Theorem 10.1

Theorem 10.1
No proper pure SCF satisfies cloning consistency and popula-
tion consistency.

Proof. Assume for contradiction that f is a proper pure SCF that satis-
fies population consistency and cloning consistency. By cloning con-
sistency and Lemma 10.4, f satisfies neutrality. Observe that if for
a,b ∈ A and P̂, P̄ ∈ P∆ with P̂(a,b) = 1 and P̄(b,a) = 1, we have
f(P̂, {a,b}) = ∆({a,b}), then by neutrality, f(P̄, {a,b}) = ∆({a,b}). Pop-
ulation consistency implies that f(P, {a,b}) = ∆({a,b}) for all P ∈ P∆,
which contradicts decisiveness. Hence, by unanimity, f(P̂, {a,b}) =

{a}.
Now let A = {a,b, c} and consider the profiles P1, . . . ,P6 ∈ P∆ as

depicted below. We will construct a full-dimensional subset of P∆ for
which f chooses ∆({a,b}).

1/3 1/3 1/3

a b c

b c a

c a b

P1|A

1/2 1/2

a b

c c

b a

P2|A

1/2 1/2

a b

b c

c a

P3|A

1/2 1/2

b a

a c

c b

P4|A
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It follows from neutrality that f(P1,A) = ∆(A). Again, by neutrality,
f(P2, {a,b}) = ∆({a,b}). Notice that {b, c} is a component in P2. Hence,
by cloning consistency, a ∈ f(P2,A). Neutrality implies that b ∈
f(P2,A) and thus, by convexity, ∆({a,b}) ⊆ f(P2,A).

By neutrality, f(P3, {a,b}) = ∆({a,b}). Notice that {b, c} is a com-
ponent in P3. Hence, by cloning consistency, a ∈ f(P3,A). As-
sume for contradiction that b 6∈ f(P3,A). From before, we know that
b ∈ f(P3, {a,b}). Then cloning consistency implies that c ∈ f(P3,A).
Using this, neutrality implies that c ∈ f(P4,A). Let P34,Pc ∈ P∆ as
depicted below.

1/4 1/4 1/4 1/4

a b b a

b c a c

c a c b

P34|A

1/2 1/2

c c

a b

b a

Pc|A

Population consistency applied to P3 and P4 yields that c ∈ f(P34,A).
By unanimity, f(Pc, {a, c}) = {c} and {a,b} is a component. Cloning
consistency implies that f(Pc,A) = {c}. If, for every ε > 0, there is
P ∈ Bε(Pc) such that a ∈ f(P,A), then, by continuity, a ∈ f(Pc,A).
Similarly for b. Hence, there is ε > 0 such that f(P,A) = {c} for all
P ∈ Bε(Pc). Now let P ∈ P∆ such that P|A ∈ Bε/3(uni(D|A)). Then,
there are P̂ ∈ Bε(Pc) and λ ∈ [0, 1] such that P = λP34 + (1 − λ)P̂.
Population consistency implies that c ∈ f(P,A). Since the choice of P
was arbitrary, neutrality implies that {a,b, c} ⊆ f(P,A) for all P ∈ P∆

with P|A ∈ Bε/3(uni(D|A)). This contradicts decisiveness and we have
that b ∈ f(P3,A). Convexity implies that ∆({a,b}) ⊆ f(P3,A). By
neutrality, ∆({a,b}) ⊆ f(P4,A).

Now, for λ ∈ [0, 1/2], consider P5,λ and P6,λ depicted below.

1/2− λ 1/2− λ 2λ

a c b

b b a

c a c

P5,λ|A

1/2− λ 1/2− λ 2λ

b c a

a a b

c b c

P6,λ|A

By neutrality and convexity, we have that f(P5,0, {a,b}) = ∆({a,b}).
Notice that {b, c} is a component is P5,0. Hence, by cloning consis-
tency, a ∈ f(P5,0,A). By neutrality, {a, c} ⊆ f(P5,0,A). By unanimity,
we have that f(P5,1/2,A) = {b}. Again by unanimity, f(P5,1/2, {a, c}) =
{a}. Thus, population consistency implies that a ∈ f(P5,λ, {a, c}) for
all λ ∈ [0, 1/2]. If c ∈ f(P5,λ∗ , {a, c}) for some λ∗ ∈ (0, 1/2], then, by
population consistency, {a, c} ⊆ f(P5,λ, {a, c}) for all λ ∈ [0, λ∗], which
contradicts decisiveness. Hence, f(P5,λ, {a, c}) = {a} for all λ ∈ (0, 1/2].
Since {a,b} is a component in P5,λ, cloning consistency implies that
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c 6∈ f(P5,λ,A) for all λ ∈ (0, 1/2]. If a ∈ f(P5,λ,A) for λ arbitrarily
close to 1/2, then continuity implies that a ∈ f(P5,1/2,A). This contra-
dicts f(P5,1/2,A) = {b}. Hence, by convexity, there is λ∗ ∈ [0, 1/2) such
that ∆({a,b}) ⊆ f(P5,λ∗ ,A). By neutrality, ∆({a,b}) ⊆ f(P6,λ∗ ,A). Let
Pi = Pi,λ

∗
for i ∈ {5, 6}.

Every Pi|A is a vector in the five-dimensional unit simplex P∆|A in
Q6. The corresponding vectors are depicted below.

P1|A
P2|A
P3|A
P4|A
P5|A
P6|A


=



1/3 1/3 1/3 0 0 0

0 1/2 0 1/2 0 0
1/2 1/2 0 0 0 0

0 0 0 1/2 0 1/2
1/2− λ 0 0 0 1/2− λ 2λ

2λ 0 1/2− λ 0 0 1/2− λ


It can be checked that P1|A, . . . ,P6|A are affinely independent for all
λ∗ ∈ [0, 1/2), i.e., dim({P1|A, . . . ,P6|A}) = 5. Moreover, ∆({a,b}) ⊆
f(Pi,A) for all i ∈ [6].

Hence, by IIA, {P ∈ P∆ : |f(P,A)| = 1} is not dense in P∆ at 1/6P1 +
· · ·+ 1/6P6, which contradicts decisiveness of f.

10.8 characterization of maximal lotteries:
proofs

In this section we prove Theorem 10.2. The high-level structure of the
proof is described after Theorem 10.2 in Section 10.8.

10.8.1 ML Satisfies Population consistency and Composition con-
sistency

We first show that ML satisfies all axioms required in Theorem 10.2.
This statement is split into two lemmas.

Lemma 10.5
ML is a proper SCF.

Proof. The fact that ML satisfies homogeneity, IIA, and unanimity is
clear by definition.

The fact that f(P,A) is convex for every P ∈ P∆ and A ∈ F(U)

follows from convexity of the set of maximin strategies for all (sym-
metric) zero-sum games.

ML is continuous, since the correspondence that maps a (symmet-
ric) zero-sum game to the set of maximin strategies is (upper hemi-)
continuous.

ML satisfies decisiveness. Let P ∈ P∆ and A ∈ F(U). It is easy to
see that, for every ε > 0, we can find P̂ ∈ Bε(P)∩P∆ and k ∈N such
that kP̂(x,y) is an odd integer for all x,y ∈ A with x 6= y. Laffond et
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al. (1997) have shown that every symmetric zero-sum game whose off-
diagonal entries are odd integers admits a unique maximin strategy.
Hence, |f(P̂,A)| = 1 and f is decisive.

ML obviously satisfies unanimity by definition.

Lemma 10.6
ML satisfies population consistency and composition consistency.

Proof. ML satisfies population consistency. Let P̂, P̄ ∈ P∆, A ∈ F(U),
and p ∈ML(P̂,A)∩ML(P̄,A). Then, by definition of ML, ptMP̂q > 0
and ptMP̄q > 0 for all q ∈ ∆(A). Hence, for all λ ∈ [0, 1] and q ∈
∆(A),

pt
(
λMP̂ + (1− λ)MP̄

)
q = λptMP̂q︸ ︷︷ ︸

>0

+(1− λ)ptMP̄q︸ ︷︷ ︸
>0

> 0.

This implies that p ∈ML(λP̂+ (1− λ)P̄,A).

ML satisfies composition consistency. Let P ∈ P∆, Â,B ∈ F(U)

such that Â∩B = {b}, A = Â∪B such that B is a component in P. To
simplify notation, let C = A \ B and M = MP. Notice first that M
takes the following form for some v ∈ QA\B:

MA =


MC

| |

v . . . v

| |

− (−vt) −

MB
...

− (−vt) −


.

Let p ∈ ML(P, Â)×b ML(P,B). Then, there are pÂ ∈ ML(P, Â) and
pB ∈ML(P,B) such that p = pÂ ×b pB. Then, for all q ∈ ∆(A),

ptMq = ptCMCqC + ‖pB‖(−v)tqC + ptCv‖qB‖+ ptBMBqB

= (pC, ‖pB‖)tMÂ(qC, ‖qB‖)t + ptBMBqB

= (pÂ
Â
)tMÂ(qC, ‖qB‖)t︸ ︷︷ ︸

>0

+‖pB‖ (pBB)tMBqB︸ ︷︷ ︸
>0

> 0,

since pÂ ∈ML(P, Â) and pB ∈ML(P,B). Hence p ∈ML(P,A).

For the other direction, let p ∈ ML(P,A). We have to show that
there are pÂ ∈ ML(P, Â) and pB ∈ ML(P,B) such that p = pÂ ×b pB.
First, if ‖pB‖ = 0 let pÂ = p and pB ∈ ML(P,B) be arbitrary. Then,
p = pÂ ×b pB and pÂ ∈ ML(P, Â). Otherwise, let pÂ ∈ ∆(Â) and
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pB ∈ ∆(B) such that pÂ
Â

= (pC, ‖pB‖) and pBB = pB/‖pB‖. Then,

p = pÂ ×b pB and, for all q ∈ ∆(Â),

(pÂ)tMq = ptCMCqC + ‖pB‖(−v)tqC + ptCvqb

= ptCMCqC + ‖pB‖(−v)tqC + ptCvqb

+
qb
‖pB‖

ptBMBpB︸ ︷︷ ︸
=0

= ptAMA(qC,
qb
‖pB‖

pB)
t > 0,

since p ∈ML(P,A). Hence, pÂ ∈ML(P, Â). For all q ∈ ∆(B),

‖pB‖2(pB)tMq = ‖pB‖ptBMBqB

= ‖pB‖ptBMBqB + ptCMCpC︸ ︷︷ ︸
=0

+ ‖pB‖(−v)tpC + ‖pB‖ptCv︸ ︷︷ ︸
=0

= (pC,pB)tMA(pC, ‖pB‖qB)
= ptAMA(pC, ‖pB‖qB) > 0.

Hence, pB ∈ML(P,B).

10.8.2 Binary Choice

The basis of our characterization of ML is the special case for agendas
of size 2. The following lemma states that, on two-element agendas,
whenever a composition consistent proper SCF returns a non-pure
outcome, it has to return all feasible outcomes. Interestingly, the
proof uses composition consistency on three-element agendas, even
though the statement itself only concerns agendas of size 2. In order
to simplify notation, let A = {a,b} and

pλ = λa+ (1− λ)b.

Lemma 10.7
Let f be a proper SCF that composition consistency. Then, for
all P ∈ P∆ and λ ∈ (0, 1), pλ ∈ f(P,A) implies f(P,A) = ∆(A).

Proof. Let P ∈ P∆ and assume that pλ ∈ f(P,A) for some λ ∈ (0, 1).
Choose c ∈ U \A and P̂ ∈ P∆ as depicted below.

P(a,b) P(b,a)

a c

b b

c a

P̂|{a,b,c}
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Notice that P̂|A = P|A and thus, by IIA, pλ ∈ f(P̂,A). Neutrality
implies that λa+ (1− λ)c ∈ f(P̂, {a, c}). Since A is a component in P̂,
we have λpλ + (1− λ)c ∈ f(P̂, {a, c})×a f(P̂,A) = f(P̂, {a,b, c}). Since
{b, c} is also a component in P̂, composition consistency implies that
λpλ + (1− λ)c ∈ f(P̂, {a,b, c}) = f(P̂,A)×b f(P̂, {b, c}). Observe that
λpλa = pλ

2

a and hence, pλ
2 ∈ f(P̂,A) = f(P,A).

Applying this argument repeatedly yields pλ
2k ∈ f(P,A) for all

k ∈ N. Since λ2k → 0 for k → ∞ and f is continuous, we get
p0 = b ∈ f(P,A). Similarly, it follows that p1 = a ∈ f(P,A). The fact
that f is convex-valued implies that f(P,A) = ∆(A).

The characterization of ML for agendas of size 2 proceeds along the
following lines. By unanimity, neutrality, and Lemma 10.7, we know
which outcomes have to be returned by every composition consistent
SCF for three particular profiles. Then population consistency implies
that every such SCF has to return all maximal lotteries. Last, we again
use population consistency to show that the function is not decisive
if it additionally returns outcomes that are not chosen by ML.

Lemma 10.8
Let f be a proper SCF that satisfies population consistency and
composition consistency. Then f(P,A) = ML(P,A) for every
P ∈ P∆.

Proof. First, note that for all P ∈ P∆, f(P,A) only depends on P(a,b)
by IIA. Let P ∈ P∆ be a profile such that P(a,b) = 1/2. Since f(P,A) 6=
∅, there is λ ∈ [0, 1] such that pλ ∈ f(P,A). Neutrality implies that
p1−λ ∈ f(P,A) and hence, by convexity of f(P,A), p1/2 = 1/2 (pλ +

p1−λ) ∈ f(P,A). It follows from Lemma 10.7 that f(P,A) = ∆(A).
Now, let P̂ ∈ P∆ be a profile such that P̂(a,b) = 1. Unanimity

implies that f(P̂,A) 6= {b}. Hence, by Lemma 10.7, a ∈ f(P̂,A). By
population consistency and the first part of the proof, we get a ∈ f(P)
for all P ∈ P∆ with P(a,b) ∈ [1/2, 1]. Similarly, b ∈ f(P,A) for all P ∈
P∆ with P(a,b) ∈ [0, 1/2]. This already shows that ML(P,A) ⊆ f(P,A)
for every P ∈ P∆.

Finally, let P̂ ∈ P∆ be a profile such that P̂(a,b) = µ > 1/2. If
f(P̂,A) 6= {a}, there is λ ∈ [0, 1) such that pλ ∈ f(P̂,A). Recall that
f(P,A) = ∆(A) for all P ∈ P∆ such that P(a,b) = 1/2. Hence, it
follows from population consistency that pλ ∈ f(P,A) for all P ∈
P∆ with P(a,b) ∈ [1/2,µ]. But then {P ∈ P∆ : P(a,b) ∈ [1/2,µ]} ⊆
{P ∈ P∆ : |f(P,A)| > 1} and hence, {P ∈ P∆ : |f(P,A)| = 1} is not
dense in P∆. This contradicts decisiveness of f. Thus, f(P,A) = {a}

whenever P(a,b) > 1/2. An analogous argument shows that f(P,A) =
{b} whenever P(a,b) < 1/2.

In summary, we have that f(P,A) = {a} if P(a,b) ∈ (1/2, 1], f(P,A) =
{b} if P(a,b) ∈ [0, 1/2), and f(P,A) = ∆(A) if P(a,b) = 1/2. Thus,
f = ML (as depicted in Figure 10.1(a)).
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10.8.3 f ⊆ML

The first lemma in this section shows that every proper SCF that
satisfies population consistency and composition consistency returns
weak Condorcet winner whenever they exist for profiles whose re-
striction to an agenda A is close to the uniform distribution on D|A,
i.e., profiles which in which every relation in D|A is assigned approxi-
mately the same fraction of agents. We prove this statement by induc-
tion on the size of the agenda. Every such profile that admits a weak
Condorcet winner in A can be written as a convex combination of
profiles that have a component and admit the same weak Condorcet
winner. For the latter profiles we know from the induction hypothesis
that the weak Condorcet winner has to be chosen.

Lemma 10.9
Let f be a proper SCF that satisfies population consistency and
composition consistency. Then, for all A ∈ F(U), there is ε > 0
such that a ∈ f(P,A) for every profile P ∈ P∆ such that P|A ∈
Bε(uni(D|A)) and a is a weak Condorcet winner in P|A.

Proof. Let A ∈ F(U), |A| = m, and P ∈ P∆ be such that a ∈ A

is a weak Condorcet winner in P|A and ‖P|A − uni(D|A)‖ 6 εm =

(4mΠmk=1k!)−1. We show that a ∈ f(P,A) by induction over m. An
example for m = 3 illustrating the idea is given after the proof. For
m = 2, the claim follows directly from Lemma 10.8.

For m > 2, fix b ∈ A \ {a}. First, we introduce some notation. For
� ∈ D|A, we denote by �b→a ∈ D|A the relation that is identical
to � except that b is moved upwards or downwards (depending on
whether a � b or b � a) until no more pure outcome is “in be-
tween” a and b (without switching the order of a and b. Formally,
�b→a|A\{b} = �A\{b}, a �b→a b if and only if a � b, and {a,b} is
a component in �b→a, i.e., there is no x ∈ A such that a � x � b or
b � x � a. Notice that for every �̂ ∈ D|A, there are at most m− 1

distinct relations � ∈ D|A such that �̂ = �b→a.
We first show that, by composition consistency, weak Condorcet

winners have to be chosen whenever they exist for a particular type
of profiles. For � ∈ D|A, let S ∈ P∆ such that A is a component in S
and S(�) + S(�)b→a = S(�−1) = 1/2. We have that S(a, x) = 1/2 for
all x ∈ A \ {a} and hence, a is a weak Condorcet winner in S|A. We
prove that a ∈ f(S,A) by induction over m. For m = 2, this follows
from Lemma 10.8. For m > 2, let x ∈ A \ {b} such that x � y for all
y ∈ A or y � x for all y ∈ A. Such an x exists, since m > 2. Notice
that A \ {x} is a component in S|A and S(x,y) = 1/2 for all y ∈ A \ {x}.
If x = a, it follows from composition consistency and Lemma 10.8
that a ∈ f(S,A). If x 6= a, it follows from the induction hypothesis
that a ∈ f(S,A \ {x}). Lemma 10.8 implies that a ∈ f(S, {a, x}) as
S(a, x) = 1/2. Then, it follows from composition consistency that
a ∈ f(S, {a, x})×a f(S,A \ {x}) = f(S,A).
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Now, for every � ∈ D|A such that {a,b} is not a component in �
and 0 < P(�) 6 P(�−1), let S� ∈ P∆ such that

S�(�) + S�(�b→a) = S�(�−1) = 1/2, and
S�(�)/S�(�−1) = P(�)/P(�−1).

From what we have shown before, it follows that a ∈ f(S�,A) for all
� ∈ D|A.

The rest of the proof proceeds as follows. We show that P can
be written as a convex combination of profiles of the type S� and a
profile P̂ in which {a,b} is a component and a is a weak Condorcet
winner in P|A. Since P|A is close to the uniform distribution on D|A,
P(�) is almost identical for all relations � ∈ D|A. Hence, S�(�)
is close to 0 for all relations � in which {a,b} is a component. As
a consequence, P̂(�) is almost identical for all preference relations
� in which {a,b} is a component and P̂|A\{b} is close to the uniform
distribution on D|A\{b}. By the induction hypothesis, a ∈ f(P̂,A \ {b}).
Since {a,b} is a component in P̂ and P̂(a,b) > 1/2, it follows from
composition consistency that a ∈ f(P̂,A).

We define S ∈ QD
>0 such that

S = 2
∑
�
P(�−1)S�,

where the sum is taken over all � ∈ D|A such that {a,b} is not a
component in � and 0 < P(�) 6 P(�−1) (in case P(�) = P(�−1) we
pick one of � and �−1 arbitrarily). Now, let P̂ ∈ P∆ such that

P = (1− ‖S‖)P̂+ S.

Note that, by definition of S, P̂(�) = 0 for all � ∈ D|A such that {a,b}
is not a component in �. Hence, {a,b} is a component in P̂. By the
choice of P, we have that

‖S‖ =
∑
�∈D|A

S(�) 6 m! − 2(m− 1)!
m!

+ εm = 1−
2

m
+ εm.

Using this fact, a simple calculation shows that

P̂(�) 6 P(�) − S(�)
2
m − εm

6
1
m! + εm
2
m − εm

6
1

2(m− 1)!
+

εm−1

4(m− 1)!
,

for every� ∈ D|A in which {a,b} is a component. Since for every such
relation, there is exactly one other relation in D|A that is identical to
� except that a and b are swapped, we have that

P̂(�) 6 1

(m− 1)!
+

εm−1

2(m− 1)!
,

for every � ∈ D|A\{b}. By the above calculation, we have that∥∥P̂|A\{b} − uni(D|A\{b})
∥∥ 6 εm−1.
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Since S�(a, x) = 1/2 for all x ∈ A \ {a} and � ∈ D|A, we have that
P̂(a, x) > 1/2 for all x ∈ A \ {a}. Thus, a is a weak Condorcet
winner in P̂|A\{b}. From the induction hypothesis it follows that
a ∈ f(P̂,A \ {b}). Using the fact that P̂(a,b) > 1/2, Lemma 10.8 im-
plies that a ∈ f(P̂, {a,b}). Finally, composition consistency entails
a ∈ f(P̂,A \ {b})×a f(P̂, {a,b}) = f(P̂,A).

In summary, a ∈ f(S�,A) for all � ∈ D|A and a ∈ f(P̂,A). Since P
is a convex combination of profiles of the type S� and P̂, it follows
from population consistency that a ∈ f(P,A).

We now give an example for A = {a,b, c} that illustrates the proof
of Lemma 10.9. Let 0 6 ε 6 ε3 and consider a preference profile
P ∈ P∆ of the following form.

(1+2ε)/6 1/6 1/6 (1−ε)/6 (1−ε)/6 1/6

a a b b c c

b c a c a b

c b c a b a

P|A

Then, we have that ‖P|A − uni(D|A)‖ 6 ε3. Now consider � ∈ D|A
with b � c � a, which yields S� ∈ P∆ as depicted below.

1/2 (1−ε)/2 ε/2

a b c

c c b

b a a

S�|A

Here, y � a for all y ∈ A. Hence, it follows from what we have
shown before that a ∈ f(S�,A). No other profiles of this type need to
be considered, as � and �−1 are the only relations in D|A in which
{a,b} is not a component. Thus S = 1/3S�.

Then, we get P̂ as follows.

(1+2ε)/4 1/4 (1−ε)/4 (1−ε)/4

a b c c

b a a b

c c b a

P̂|A

(1+ε)/2 (1−ε)/2

a c

c a

P̂|{a,c}
(2+ε)/4 (2−ε)/4

a b

b a

P̂|{a,b}
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It follows from Lemma 10.8 that a ∈ f(P̂, {a, c}) and a ∈ f(P̂, {a,b}).
Then, composition consistency implies that

a ∈ f(P̂,A) = f(P̂, {a, c})×a f(P̂, {a,b}).

In summary, we have that

P = 2/3 P̂+ 1/3S�,

a ∈ f(P̂,A), and a ∈ f(S�,A). Thus, population consistency implies
that a ∈ f(P,A).

Lemma 10.10

Let f be a proper SCF that satisfies population consistency and
composition consistency. Then, for all A ∈ F(U), there is ε > 0
such that f returns the uniform distribution over all weak Con-
dorcet winners for all profiles P ∈ P∆ such that P|A ∈ Bε(D|A).

Proof. Let A ∈ F(U), |A| = m, and P ∈ P∆ with ‖P|A − uni(D|A)‖ 6
εm. Let Â ⊆ A be the set of weak Condorcet winners in P|A. We
actually prove a stronger statement, namely that ∆(Â) ⊆ f(P,A). Ev-
ery pure outcome x ∈ Â is a weak Condorcet winner in P|A. Thus,
it follows from Lemma 10.9 that Â ⊆ f(P). Since f(P,A) is convex,
∆(Â) ⊆ f(P,A) follows.

For the remainder of the proof, we need to define two classes of
profiles that are based on regularity conditions imposed on the corre-
sponding majority margins. Let A ∈ F(U). A profile P ∈ P∆ is

regular on A if
∑
y∈A

MP
xy = 0 for all x ∈ A, and

strongly regular on A if MP
A = 0.

By PA and SA we denote the set of all profiles in P∆ that are regular
or strongly regular on A, respectively.

For the following five lemmas, fix A ∈ F(U) and |A| = m. We
show that, for every Â ⊆ A, every profile can be affinely decomposed
into profiles of three different types: profiles that are strongly regular
on Â, certain profiles that are regular on A, and profiles that admit
a strict Condorcet winner in Â.37 Lemmas 10.11, 10.12, and 10.13

do not make any reference to population consistency, composition
consistency, or maximal lotteries and may be of independent interest.
First, we determine the dimension of the space of strongly regular
profiles on Â restricted to A.

Lemma 10.11

Let Â ⊆ A ∈ F(U). Then, dim(SÂ|A) = m! −
(
|Â|
2

)
− 1.

37 Similar decompositions of majority margin matrices have been explored by Zwicker
(1991) and Saari (1995).
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Proof. We will characterize SÂ|A using a set of linear constraints. By
definition, SÂ|A = {S|A : S ∈ P∆ such that MS

Â
= 0}. Recall that

MS
xy =

∑
�∈D : x�y S(�) −

∑
�∈D : y�x S(�) for all x,y ∈ A. Since

MP
xx = 0 for all P ∈ P∆ and x ∈ A, SÂ|A can be characterized

by
(
|Â|
2

)
homogeneous linear constraints in the (m! − 1)-dimensional

space D|A, which implies that dim(SÂ|A) > m! −
(
|Â|
2

)
− 1. Equality

holds but is not required for the following arguments. We therefore
omit the proof.

Second, we determine the dimension of the set of skew-symmetric
m×m matrices that correspond to profiles that are regular on A and
vanish outside their upper left m̂× m̂ submatrix, i.e.,

Mm̂ =
{
M ∈M[m] ∩Qm×m :

m∑
j=1

Mij = 0 if i ∈ [m] and

Mij = 0 if {i, j} 6⊆ [m̂]
}

.

In Lemma 10.13, we then proceed to show that every matrix of this
type can be decomposed into matrices induced by a subset of profiles
that are regular on A and for which we know that every SCF has to
return the uniform distribution over the first m̂ alternatives (possibly
among other outcomes) for the agenda A.

Lemma 10.12

dim(Mm̂) =
(
m̂
2

)
− (m̂− 1).

Proof. First note that the space of all m×m matrices has dimension
m2. We show that Mm̂ can be characterized by a set of (m2 − m̂2) +
(
(
m̂
2

)
+ m̂)+ (m̂−1) homogeneous linear constraints. LetM ∈ Qm×m

and observe that (m2 − m̂2) constraints are needed to ensure that
M vanishes outside of [m̂]× [m̂],

(
m̂
2

)
+ m̂ constraints are needed to

ensure skew-symmetry of M[m̂], and (m̂− 1) constraints are needed
to ensure that the first m̂ rows (and hence also the columns) of M
sum up to 0, i.e.,

∑m
j=1Mij = 0 for all i ∈ [m̂− 1]. It follows from

skew-symmetry and the latter m̂− 1 constraints that the m̂th row of
M sums up to 0, since

m∑
j=1

Mm̂j =

m∑
i,j=1

Mij −

m̂−1∑
i=1

m∑
j=1

Mij = 0.

The last m− m̂ rows of M trivially sum up to 0. Hence, dim(Mm̂) >
m̂2 − (

(
m̂
2

)
+ m̂) − (m̂− 1) =

(
m̂
2

)
− (m̂− 1). Equality holds but is not

required for the following arguments. We therefore omit the proof.

Let Π◦[m](B) be the set of all permutations on [m] that are cyclic on
B ⊆ [m] and coincide with the identity permutation outside of B.38

38 A permutation π of [m] is cyclic on B ⊆ [m] if π|B| is the smallest positive power of
π that is the identity function on B.
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We denote by Mm̂,◦ the space of all matrices in Mm̂ induced by a
permutation in Π◦[m](B) for some B ⊆ [m̂], i.e.,

Mm̂,◦ =
{
M ∈Mm̂ : there are π ∈ Π◦[m](B) and B ⊆ [m̂] with

Mij =


1 if j = π(i), i ∈ B,

−1 if i = π(j), j ∈ B,

0 otherwise,

}
,

with the convention that M2,◦ = {0}. We now show that the linear
hull of Mm̂,◦ is Mm̂.

Lemma 10.13

lin(Mm̂,◦) = Mm̂.

Proof. The idea underlying the proof is as follows: every matrix M ∈
Mm̂ corresponds to a weighted directed graph with vertex set [m]

where the weight of the edge from i to j is Mij. If M 6= 0, there exists
a cycle along edges with positive weight of length at least 3 in the
subgraph induced by [m̂]. We obtain a matrix M̂ with smaller norm
than M by subtracting the matrix in Mm̂,◦ from M that corresponds
to the cycle identified before.

Let M ∈ Mm̂ and k ∈ N \ {0} such that kM ∈ Nm×m. We show,
by induction over k‖M‖, that M =

∑`
i=1 λiM

i for some λ ∈ Q` and
Mi ∈ Mm̂,◦ for all i ∈ [`] for some ` ∈ N. If k‖M‖ = 0 then M = 0.
Hence, the induction hypothesis is trivial.

If k‖M‖ 6= 0, i.e., M 6= 0, we can find B ⊆ [m̂] with |B| > 3 and
π ∈ Π◦[m](B) such that Mij > 0 if π(i) = j and i ∈ B. Note that π
defines a cycle of length at least 3 in the graph that corresponds to M.
We define M1 ∈Mm̂,◦ by letting

M1
ij =


1 if π(i) = j and i ∈ B,

−1 if π(j) = i and j ∈ B, and

0 otherwise.

Let λ1 = min{Mij : i, j ∈ [m] and M1
ij > 0} and M̂ = M− λ1M

1. By
construction, we have that M̂ij = Mij − λ1 if π(i) = j and i ∈ B,
M̂ij = Mij + λ1 if π(j) = i and j ∈ B, and M̂ij = Mij other-
wise. Note that Mij > λ1 if π(i) = j and i ∈ B and Mij 6 −λ1 if
π(j) = i and j ∈ B by definition of λ1. Recall that kM ∈ Nm×m

and, in particular, kλ1 ∈ N. Hence, kM̂ ∈ Nm×m. Moreover,
k‖M̂‖ = k‖M‖ − 2kλ1|B| 6 k‖M‖− 1. From the induction hypoth-
esis we know that M̂ =

∑`
i=2 λiM

i with λi ∈ Q and Mi ∈ Mm̂,◦ for
all i ∈ [`] \ {1} for some ` ∈ N. By construction of M̂, we have that
M =

∑`
i=1 λiM

i.

Lemma 10.14 leverages Lemmas 10.10, 10.11, 10.12, and 10.13 to
show two statements. First, it determines the dimension of the space
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of profiles that are regular on Â ⊆ A restricted to A. Second, it proves
that there is a full-dimensional subset of this space for which every
proper SCF that satisfies population consistency and composition con-
sistency returns the uniform distribution over Â.

Lemma 10.14

Let f be a proper SCF that satisfies population consistency and
composition consistency. Then, for all Â ⊆ A, there is X ⊆ P∆

such that X|A has dimension |A|! − |Â| and uni(Â) ∈ f(P,A) for
every P ∈ X.

Proof. To simplify notation, we assume without loss of generality
that A = [m] and Â = [m̂]. By Lemma 10.11 we can find a set
S = {S1, . . . ,Sm!−(m̂2 )} ⊆ S[m̂] of profiles such that S|A has dimen-
sion m! −

(
m̂
2

)
− 1. Since S can be chosen such that every S|A is

close to uni(D|[m]) for every S ∈ S, it follows from Lemma 10.10 that
uni([m̂]) ∈ f(S,A) for all S ∈ S. Therefore, it suffices to find a set of
profiles T = {P1, . . . ,P(

m̂
2 )−(m̂−1)} ⊆ P[m̂] such that uni([m̂]) ∈ f(P,A)

for every P ∈ T and S|A ∪ T|A is a set of affinely independent vectors.
If m̂ = 2, we can choose T = ∅. For m̂ > 3 we construct a suitable set
of profiles as follows.

For every B ⊆ [m̂] with |B| = k > 3 and π ∈ Π◦[m](B), let [m] \ B =

{a1, . . . ,am−k} and PB,π ∈ P∆ be defined as follows: for � ∈ D|A,
PB,π(�) = 1/(2k) if

π0(i) � π1(i) � π2(i) � . . . � πk−1(i) � a1 � . . . � am−k or

am−k � . . . � a1 � πk−1(i) � . . . � π2(i) � π0(i) � π1(i),

for some i ∈ B. Note that PB,π is regular on [m̂], since

PB,π(i, j) =


λ if π(i) = j and i ∈ B,

−λ if π(j) = i and j ∈ B, and

0 otherwise,

where λ = 1/k > 0. Hence, for everyM ∈Mm̂,◦, there are B ⊆ [m̂] and
π ∈ Π◦[m](B) such that λM =MPB,π

A . Notice that B and [m]\B are com-
ponents in PB,π. For j ∈ B, we have by construction that PB,π(j,a1) =
0. Hence, it follows from Lemma 10.8 that {j,a1} ⊆ f(PB,π, {j,a1}).
Moreover, neutrality, convexity, and composition consistency imply
that uni(B) ∈ f(PB,π,A) by the symmetry of PB,π with respect to B.
Now let ai ∈ {a1, . . . ,am−k}. Observe that {a1, . . . ,ai−1} is a compo-
nent in PB,π and PB,π(a1,ai) = 0. Thus, composition consistency and
Lemma 10.8 imply that

ai ∈ f(PB,π, {a1,ai})×a1 f(P
B,π, {a1, . . . ,ai−1}) = f(PB,π, {a1, . . . ,ai}).
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Furthermore, PB,π(ai,am−k) = 0 and {ai+1, . . . ,am−k} is a compo-
nent in PB,π. As before, we get

ai ∈ f(PB,π, {ai,am−k})×am−k
f(PB,π, {ai+1, . . . ,am−k})

= f(PB,π, {ai, . . . ,am−k}).

Also {ai, . . . ,am−k} is a component in PB,π and thus,

ai ∈ f(PB,π, {a1, . . . ,ai})×ai f(P
B,π, {ai, . . . ,am−k})

= f(PB,π, [m] \B).

Since PB,π(j,a1) = 0, we get

ai ∈ f(PB,π, {j,a1, . . . ,am−k})×j f(PB,π,B) = f(PB,π,A).

Then, it follows from convexity of f(PB,π,A) that

uni([m̂]) =
k

m̂
uni(B) +

1

m̂

∑
ai∈[m̂]\B

ai ∈ f(PB,π,A),

since uni(B) ∈ f(PB,π,A) and ai ∈ f(PB,π,A) for every i ∈ [m− k].
We know from Lemma 10.12 that dim(Mm̂,◦) >

(
m̂
2

)
− (m̂− 1) and,

from Lemma 10.13, that lin(Mm̂,◦) = Mm̂. Thus, we can find a basis
{M1, . . . ,M(m̂2 )−(m̂−1)} of Mm̂,◦ and a set of corresponding profiles

T = {P1, . . . ,P(
m̂
2 )−(m̂−1)} ⊆ {PB,π : B ⊆ [m̂] and π ∈ Π◦[m](B)}.

We claim that S|A ∪ T|A is a set of affinely independent vectors in
P∆|A. Let S1, . . . ,Sk ∈ S and P1, . . . ,P` ∈ T be pairwise disjoint.
Assume that

∑
i λiS

i|A +
∑
j µjP

j|A = 0 for some λ ∈ Qk and µ ∈
Q` such that

∑
i λi +

∑
j µj = 0. This implies that

∑
j µjM

j = 0,
which in turn implies µ = 0, since the Mj are linearly independent.
Hence,

∑
i λiS

i|A = 0 and
∑
i λi = 0, which implies that λ = 0, since

S1|A, . . . ,Sm!−(m̂2 )|A are affinely independent. Thus, S|A ∪ T|A is a set
of affinely independent vectors and dim(S|A ∪ T|A) = |S ∪ T| − 1 =

m! − m̂. The above stated fact that uni([m̂]) ∈ f(PB,π,A) for every
B ⊆ [m̂] and π ∈ Π◦[m](B) finishes the proof.

We now consider proper SCFs that returns an outcome that is not
maximal. The following lemma shows that for every such SCF, there
is a set of profiles with a strict Condorcet winner on some agenda for
which it returns the uniform distribution over a fixed subset of the
agenda if we additionally require population consistency and com-
position consistency. Furthermore, this set of profiles has only one
regular profile in its linear hull. Later this statement is leveraged
to show that every population consistent and composition consistent
proper SCF returns a subset of maximal lotteries.
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Lemma 10.15

Let f be a proper SCF that satisfies population consistency and
composition consistency. If f 6⊆ ML, there are Y ⊆ P∆ and
Â ⊆ A ∈ F(U) such that

(i) Y|A has dimension |Â|− 1,

(ii) uni(Â) ∈ f(P,A) for every P ∈ Y, and

(iii) dim(lin(Y|A)∩ lin(PÂ|A)) = 1.

Proof. If f 6⊆ ML, there are P ∈ P∆, A ∈ F(U), and p ∈ f(P,A) such
that p 6∈ ML(P,A). Since ML(P,A) is closed and f(P,A) is convex
with rational-valued extreme points, we can assume without loss of
generality that p ∈ ∆Q(A). Since p is not a maximal lottery, by defi-
nition, there is q ∈ ∆(A) such that qtMPp > 0. Linearity of matrix
multiplication implies that there is x ∈ A such that (MPp)x > 0. We
first use composition consistency to “blow up” alternatives such that
the resulting outcome is the uniform distribution over a subset of
alternatives. Let κ be the greatest common divisor of {py : y ∈ A},
i.e., κ = max{s ∈ Q : py/s ∈ N for all y ∈ A}. For every y ∈ A, let
Ay ∈ F(U) such that |Ay| = max{1, py/κ}, Ay ∩A = {y}, and all Ay

are pairwise disjoint. The Ay exist, since U is assumed to be infi-
nite. Moreover, let Au =

⋃
y∈AA

y. Now, choose Pu ∈ P∆ such
that Pu|A = P|A, Ay is a component in Pu for every y ∈ A, and
Pu|Ay = uni(D|Ay) for every y ∈ Ay. Hence, uni(Ay) ∈ f(Pu,Ay) for
all y ∈ A as f is neutral and f(Pu,Ay) is convex. To simplify notation,
let Ap =

⋃
y∈supp(p)A

y. By composition consistency, it follows that
p̂ = uni(Ap) ∈ f(Pu,Au). Observe that

(MPu p̂)x =
∑

y∈supp(p)\{x}

|Ay|

|Ap|
MPu

xy =
∑

y∈A\{x}

pyM
P
xy > 0.

We now construct a profile P̂ ∈ P∆ such that x is a strict Condorcet
winner in P̂|Au and uni(Ap) ∈ f(P̂,Au). To this end, let P̂ ∈ P∆ be
the uniform mixture of all profiles that arise from Pu by permuting
all alternatives in Ap \ {x}, i.e.,

P̂ =
1

|Ap \ {x}|!

∑
π∈Π(U): π(y)=y

for all y∈U\Ap∪{x}

(Pu)π.

Then, MP̂
xy = MP̂

xz > 0 for all y, z ∈ Ap \ {x}. Neutrality and popula-
tion consistency imply that p̂ ∈ f(P̂,Au).

Let Puni ∈ P∆ such that Puni|Au = uni(D|Au) and, for λ ∈ [0, 1],
define

Pλ = λP̂+ (1− λ)Puni.

It follows from Lemma 10.9 that y ∈ f(Puni,Au) for all y ∈ Au. Con-
vexity of f(Puni,Au) implies that f(Puni,Au) = ∆(Au). Hence, by
population consistency, p̂ ∈ f(Pλ,Au) for all λ ∈ [0, 1].
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Now, let S ∈ P∆ such that MS
Ap∪{x} = 0 and MS

yz = 1 for all
y ∈ Ap ∪ {x}, z ∈ Au \ (Ap ∪ {x}). For λ ∈ [0, 1], let

Sλ = λS+ (1− λ)Puni.

Note that every y ∈ Ap ∪ {x} is a weak Condorcet winner in Sλ. It
follows from population consistency and Lemma 10.9 that, for small
λ > 0, y ∈ f(Sλ,Au) for all y ∈ Ap ∪ {x} and, from convexity of
f(Sλ,Au), that ∆(Ap ∪ {x}) ⊆ f(Sλ,Au). In particular, p̂ ∈ f(Sλ,Au)
for small λ > 0.

Finally, let

Px = 1/3Pλ + 2/3Sλ,

for some small λ > 0. Population consistency implies that p̂ ∈
f(Px,Au). Moreover, MPx

xy > 0 for all y ∈ Au \ {x}, i.e., x is a strict
Condorcet winner in Px|Au Hence, it follows from Lemma 10.9 that
x ∈ f(Px,Au).

If px > 0 then, by construction, p̂ = uni(Ap ∪ {x}) ∈ f(Px,Au). If
px = 0 then p̂ = uni(Ap) ∈ f(Px,Au). In this case it follows from
convexity of f(Px,Au) that

uni(Ap ∪ {x}) = 1/(|Ap|+1) x+ |Ap|/(|Ap|+1) uni(Ap) ∈ f(Px,Au).

Hence, in either case, we get a profile Px such that uni(Ap ∪ {x}) ∈
f(Px,Au) and Mx =MPx

Ap∪{x} takes the form

Mx = λ ·



0 . . . 0 −1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 −1 0 . . . 0

1 . . . 1 0 1 . . . 1

0 . . . 0 −1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 −1 0 . . . 0


for some λ > 0 where all entries except the xth row and column are
zero. Let m̂ = |Ap ∪ {x}|. Let πy ∈ Π(U) such that πy(x) = y and
πy(z) = z for all z ∈ U \ {x,y}) and Py = (Px)π

y
. Then, for every

y ∈ Ap ∪ {x}, MPy

Ap∪{x} = Mx
πy = My and, by neutrality, uni(Ap ∪

{x}) ∈ f(Py,Au).
Let Y = {Py : y ∈ Ap ∪ {x}}. We have that dim(Y|Au) = m̂ − 1

since Y|Au is a set of affinely independent vectors. Now we deter-
mine dim(lin(Y|Au) ∩ lin(PA

p∪{x}|Au)). To this end, let λP ∈ lin(Y) ∩
lin(PA

p∪{x}) with λ ∈ Q and P ∈ P∆. Then, there are λz ∈ Q

such that λMP
Ap∪{x} =

∑
z∈Ap∪{x} λ

zMz and, for all y ∈ Ap ∪ {x},
λ
∑
z∈Ap∪{x}M

P
yz = 0. It follows that (m̂− 1)λy =

∑
z∈Ap∪{x}\{y} λ

z

for all y ∈ Ap ∪ {x}. Hence, λy = λz for all y, z ∈ Ap ∪ {x} and
lin(Y|Au)∩ lin(PA

p∪{x}|Au) = {λ
∑
y∈Ap∪{x} P

y|Au : λ ∈ Q}.
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In Lemma 10.16, we finally show that every proper SCF that satis-
fies population consistency and composition consistency has to yield
maximal lotteries. The structure of the proof is as follows. We as-
sume for contradiction that a proper SCF satisfies population consis-
tency and composition consistency, but returns an outcome that is
not maximal. Then we can find a set of profiles whose restriction to
the corresponding agenda has full dimension and the uniform profile
is in its interior and for which the uniform distribution over a fixed
subset of at least two alternatives from the agenda is returned. Thus,
this set contains a profile with a strict Condorcet winner whose re-
striction to the agenda is close to the uniform distribution. For every
profile in an ε-ball around this strict Condorcet profile, the function
has to return the uniform distribution over a non-singleton subset as
well as the Condorcet winner, which contradicts decisiveness.

Lemma 10.16

Every proper SCF f that satisfies population consistency and
composition consistency has to yield maximal lotteries, i.e., f ⊆
ML.

Proof. Let A ∈ F(U). For |A| = 2 the statement follows directly from
Lemma 10.8. For |A| > 2, assume for contradiction that f 6⊆ ML. By
Lemma 10.15, there is Â ⊆ A and Y ⊆ P∆ such that Y|A has dimension
|Â| − 1, uni(Â) ∈ f(P,A) for every P ∈ Y and lin(Y|A) ∩ lin(PÂ|A)
has dimension 1. By Lemma 10.14, there is X ⊆ PÂ such that X|A
has dimension |A|! − |Â| and uni(Â) ∈ f(P,A) for every P ∈ X. Since
0 6∈ X|A and 0 6∈ Y|A, lin(X|A) has dimension |A|!− |Â|+1 and lin(Y|A)
has dimension |Â|. Thus, lin(X|A ∪ Y|A) has dimension |A|!. This
implies that X∪ Y has dimension |A|! − 1.

Furthermore, it follows from population consistency that uni(Â) ∈
f(P,A) for every P ∈ conv(X ∪ Y). Since uni(D|A) is in the inte-
rior of conv(X|A ∪ Y|A), there are x ∈ Â and Px ∈ P∆ such that
Px|A ∈ intP∆|A(X|A ∪ Y|A) and x is a strict Condorcet winner in
Px|A. Hence, there is ε > 0 such that, for every P̂ ∈ Bε(P

x|A),
P̂|A ∈ conv(X|A∪Y|A) and x is a strict Condorcet winner in P̂|A. Then,
we get that x ∈ f(P̂,A) and uni(Â) ∈ f(P̂,A) for every P̂ ∈ Bε(Px).
Thus, {P̂ ∈ P∆ : |f(P̂,A)| = 1} is not dense in P∆ at Px. This contra-
dicts decisiveness of f.

10.8.4 ML ⊆ f

In this section we show that every proper SCF f that satisfies popu-
lation consistency and composition consistency has to yield all maxi-
mal lotteries. To this end, we first prove an auxiliary lemma. It was
shown by McGarvey (1953) that every complete and anti-symmetric
relation is the majority relation of some profile with a bounded num-
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ber of agents. We show an analogous statement for skew-symmetric
matrices and fractional preference profiles.

Lemma 10.17

Let m ∈ N and M ∈ M. Then, there are P ∈ P∆ and κ ∈ Q>0

such that κM[m] = MP
[m]. Furthermore, if there is π ∈ Π([m])

such that M[m] = (Mπ)[m], then P|[m] = P
π|[m].

Proof. For all i, j ∈ [m] with i 6= j, let Pij ∈ P∆ be a profile such that,
for all � ∈ D|[m], Pij(�) = 1/(m−1)! if i � j and {i, j} is a component in
Pij and Pij(�) = 0 otherwise. By construction, we have that Pij(i, j) =
1 and Pij(x,y) = 0 for all x,y ∈ [m] with {x,y} 6= {i, j}. Let κ =
1/
∑
i,j∈[m] :Mij>0

Mij and P = κ
∑
i,j :Mij>0

MijP
ij. Then, we have that

κM[m] = MP
[m]. The second part of the lemma follows from the

symmetry of the construction.

Fix some agenda A. For a profile P which admits a unique maximal
lottery on A, it follows from Lemma 10.16 that f(P,A) = ML(P,A). In
Lemma 10.18, we show that for every remaining profile P and every
vertex of ML(P,A), there is a sequence of profiles converging to P
such that every sequence of maximal lotteries for this sequence of
profiles converges to this vertex. Since f ⊆ ML by Lemma 10.16 and
f is continuous, it follows that this vertex is in f(P,A). Convexity of
f(P,A) then implies that f(P,A) = ML(P,A).

Lemma 10.18

Let f be a proper SCF that satisfies population consistency and
composition consistency. Then, ML ⊆ f.

Proof. Let P ∈ P∆ and A ∈ F(U). We want to show that f(P,A) =

ML(P,A). It follows from Lemma 10.16 that f ⊆ ML. If ML(P,A) is
a singleton, it follows from f ⊆ ML that f(P,A) = ML(P,A). Hence,
consider the case where ML(P,A) is not a singleton. By neutrality, we
can assume without loss of generality that A = [m] and for simplicity
M =MP. Let p ∈ ∆Q(U) be an extreme point of ML(P,A) and assume
without loss of generality that supp(p) = [k].

We first consider the case where k is odd. By Lemma 10.17, there
are S ∈ P∆ and κ ∈ Q>0 such that

MS
A = κ



0 − 1
p1p2

0 . . . 0 1
pkp1

1 . . . 1
1

p1p2 . . .
0

...
. . .

...0 . . .
...

... . . .
0

0 − 1
pk−1pk

− 1
pkp1

0 . . . 0 1
pk−1pk

0 1 . . . 1

−1 . . . −1 0 . . . 0
...

. . .
...

...
. . .

...
−1 . . . −1 0 . . . 0


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Intuitively, MS
A corresponds to a weighted cycle on [k]. Note that

(ptMS)i = 0 for all i ∈ [k] and (ptMS)i > 0 for all i ∈ A \ supp(p),
i.e., p is a quasi-strict maximin strategy in MS

A (cf. Chapter 3). Since
p is a maximin strategy in MS

A, it follows that p ∈ ML(S,A). For
ε ∈ [0, 1], we define Pε = (1− ε)P + εS and Mε = MPε . Population
consistency implies that p ∈ML(Pε,A) for all ε ∈ [0, 1]. Observe that
p is a quasi-strict maximin strategy in Mε

A for every ε ∈ (0, 1]. Hence,
for every maximin strategy q in Mε

A, it follows that (qtMε)i = 0 for
every i ∈ [k] and supp(q) ⊆ [k]. It follows from basic linear algebra
that

det
(
MS

[k−1]

)
= κk−1

k−2∏
i=1

(
1

pipi+1

)2
6= 0,

and hence, MS
[k] has rank at least k− 1. In fact, MS

[k] has rank k− 1,
since skew-symmetric matrices of odd size cannot have full rank (cf.
Chapter 3). Furthermore, det(Mε

[k−1]) is a polynomial in ε of order
at most k− 1 and hence, has at most k− 1 zeros. Thus, we can find
a sequence (ε`)`∈N which converges to zero such that Mε`

[k] has rank
k− 1 for all ` ∈ N. In particular, if (qtMε)i = 0 for all i ∈ [k], then
q = p. This implies that p is the unique maximin strategy in Mε`

A

for all ` ∈N. By Lemma 10.16, we know that f(Pε
`
,A) ⊆ ML(Pε

`
,A)

for all ` ∈ N. Hence, {p} = ML(Pε
`
,A) ⊆ f(Pε` ,A) for all ` ∈ N. It

follows from continuity of f that p ∈ f(P,A).

Now consider the case where k is even. ML(P,A) is a polytope
because it is the solution space of a linear feasibility program. As-
sume that p is a vertex of ML(P,A). Lemma 3.2 implies that p is
not a quasi-strict maximin strategy of MP

A. Hence, we may assume
without loss of generality that (ptM)k+1 = 0. Let e1 = Mk+1,1/p2 and
ei = (Mk+1,i+pi−1ei−1)/pi+1 for i ∈ {2, . . . ,k− 1}. By Lemma 10.17, there
are S ∈ P∆ and κ ∈ Q>0 such that

MS
A = κ



0 e1 0 . . . 0 0 1 . . . 1

−e1
. . .

...
... ...

. . .
...0

. . . 0
...

. . . ek−1
0 . . . 0 −ek−1 0 0

0 . . . 0 0 1 . . . 1

−1 . . . −1 0 . . . 0
...

. . .
...

...
. . .

...
−1 . . . −1 0 . . . 0


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Note that MS
1,k = MS

k,1 = 0. For ε > 0, let Pε = (1− ε)P + εS and
Mε =MPε . We claim that pε defined as follows is a maximin strategy
in Mε

A. To this end, let sε = εκ
1−ε+εκ and

pεi =


(1− sε)pi if i ∈ [k],

sε if i = k+ 1, and

0 otherwise.

Note that 1/κ (ptMS)1 = −p2e1 = −Mk+1,1 and, for i ∈ {2, . . . ,k− 1},

1

κ
(ptMS)i = pi−1ei−1 − pi+1ei

= pi−1ei−1 − (Mk+1,i + pi−1ei−1) = −Mk+1,i.

To determine (ptMS)k, we first prove inductively that, for all i ∈
[k− 1],

piei =
1

pi+1

i∑
j=1

Mk+1,jpj.

For i = 1, this follows from the definition of e1. Now, let i ∈
{2, . . . ,k− 1}. Then,

piei =
pi
pi+1

(Mk+1,i + pi−1ei−1)

=
pi
pi+1

(Mk+1,i +
1

pi

i−1∑
j=1

Mk+1,jpj)

=
1

pi+1

i∑
j=1

Mk+1,jpj,

where the second equality follows from the induction hypothesis.
Now,

1

κ
(ptMS)k = pk−1ek−1 =

1

pk

k−1∑
j=1

Mk+1,jpj

= −
1

pk
Mk+1,kpk = −Mk+1,k,

where the third equality follows from the fact that (ptM)k+1 = 0. For
i ∈ [k], it follows from (ptM)i = 0 that ((pε)tM)i = sεMk+1,i. Then,
for i ∈ [k],

((pε)tMε)i = (1− ε)sεMk+1,i + εκ(1− sε)(−Mk+1,i) = 0.

Furthermore, it follows from (ptM)k+1 = 0 that ((pε)tMε)k+1 = 0

as Mk+1,k+1 = 0, and, for i ∈ A \ [k+ 1],

((pε)tMε)i > (1− ε)sεMk+1,i + εκ > −(1− ε)sε + εκ > 0.
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This shows that pε is a maximin strategy in Mε
A and hence, pε ∈

ML(Pε,A). Since |supp(pε)| is odd, it follows from the first case that
pε ∈ f(Pε,A). Note that sε goes to 0 as ε goes to 0. Hence, pε goes to
p as ε goes to 0. It now follows from continuity of f that p ∈ f(P,A).

Together, we have that p ∈ f(P,A) for every vertex p of ML(P,A).
Since every outcome in ML(P,A) can be written as a convex combina-
tion of vertices, convexity of f(P,A) implies that f(P,A) = ML(P,A).

Theorem 10.2 then follows directly from Lemmas 10.16 and 10.18.

Theorem 10.2
A proper SCF f satisfies population consistency and composi-
tion consistency if and only if f = ML.

10.8.5 Proof of Theorem 10.3

The proof of Theorem 10.2 can be adjusted to prove Theorem 10.3 as
follows. Lemma 10.8 is not required in the remainder of the proof
when assuming Condorcet consistency. It can however be shown
easily by observing that Condorcet consistency, continuity, and con-
vexity imply that ML ⊆ f for agendas of size two. The rest of its
proof does not make use of composition consistency. Condorcet con-
sistency and continuity imply that weak Condorcet winners have to
be chosen whenever they exist. To see this, observe that whenever
a pure outcome is a weak Condorcet winner in some profile, there
is another profile arbitrarily close to it where this pure outcome is a
strict Condorcet winner. Hence, Lemma 10.9 and Lemma 10.10 follow
directly from Condorcet consistency and continuity, even when not
restricting to profiles that are close to the uniform profile. All impli-
cations of composition consistency in the proof of Lemma 10.14 can
be derived either from cloning consistency or from the observation
that weak Condorcet winners have to be chosen whenever they exist.
For the only time composition consistency is applied in the proof of
Lemma 10.15, cloning consistency suffices as well. The proofs of all
other lemmas do not make use of composition consistency apart from
references to earlier lemmas.





B I B L I O G R A P H Y

Allais, M. (1953). “Le Comportement de l’Homme Rationnel devant le
Risque: Critique des Postulats et Axiomes de l’Ecole Americaine”.
In: Econometrica 21.4, pp. 503–546 [p. 2].

Allesina, S. and J. M. Levine (2011). “A competitive network theory of
species diversity”. In: Proceedings of the National Academy of Sciences
(PNAS) 108.14, pp. 5638–5642 [p. 9].

Anand, P. (1993). “The Philosophy of Intransitive Preference”. In: The
Economic Journal 103.417, pp. 337–346 [p. 2].

Anand, P. (2009). “Rationality and intransitive preference: Founda-
tions for the modern view”. In: The Handbook of Rational and Social
Choice. Ed. by P. Anand, P. K. Pattanaik, and C. Puppe. Oxford Uni-
versity Press. Chap. 6 [p. 2].

Arrow, K. J. (1948). The Possibility of a Universal Social Welfare Function.
Technical Report RAD(L)-289. Project RAND [p. 95].

Arrow, K. J. (1951). Social Choice and Individual Values. 1st. 2nd edition
1963. New Haven: Cowles Foundation [pp. 7, 11, 63, 64, 66].

Arrow, K. J. and L. Hurwicz (1972). “An optimality criterion of
decision-making under ignorance”. In: Uncertainty and Expectations
in Economics. Ed. by C. F. Carter and J. L. Ford. Basil Blackwell
[p. 101].

Athanassoglou, S. (2011). “Efficiency under a combination of ordinal
and cardinal information on preferences”. In: Journal of Mathemati-
cal Economics 47.2, pp. 180–185 [p. 61].

Aumann, R. J. (1959). “Acceptable Points in General Cooperative n-
Person Games”. In: Contributions to the Theory of Games IV. Ed. by
A. W. Tucker and R. D. Luce. Vol. 40. Annals of Mathematics Stud-
ies. Princeton University Press, pp. 287–324 [p. 30].

Aumann, R. J. (1974). “Subjectivity and Correlation in Randomized
Strategies”. In: Journal of Mathematical Economics 1, pp. 67–96 [p. 37].

Aumann, R. J. and A. Brandenburger (1995). “Epistemic Conditions
for Nash Equilibrium”. In: Econometrica 63.5, pp. 1161–1180 [pp. 7,
38, 39].

Aumann, R. J. and J. H. Drèze (2008). “Rational Expections in Games”.
In: American Economic Review 98.1, pp. 72–86 [pp. 7, 38–40].

Aziz, H., F. Brandl, and F. Brandt (2015). “Universal Pareto Domi-
nance and Welfare for Plausible Utility Functions”. In: Journal of
Mathematical Economics 60, pp. 123–133 [pp. 26, 61, 91].

Aziz, H., F. Brandl, F. Brandt, and M. Brill (2018). “On the Tradeoff
between Efficiency and Strategyproofness”. In: Games and Economic
Behavior 110, pp. 1–18 [pp. 26, 104].

129



130 bibliography

Aziz, H., F. Brandt, and M. Brill (2013). “On the Tradeoff between
Economic Efficiency and Strategyproofness in Randomized Social
Choice”. In: Proceedings of the 12th International Conference on Autono-
mous Agents and Multiagent Systems (AAMAS). IFAAMAS, pp. 455–
462 [p. 62].

Bach, C. W. and E. Tsakas (2014). “Pairwise epistemic conditions for
Nash equilibrium”. In: Games and Economic Behavior 85, pp. 48–59

[p. 39].
Banks, J. S. (1995). “Acyclic Social Choice From Finite Sets”. In: Social

Choice and Welfare 12, pp. 293–310 [p. 63].
Bar-Hillel, M. and A. Margalit (1988). “How vicious are cycles of in-

transitive choice?” In: Theory and Decision 24.2, pp. 119–145 [p. 2].
Barelli, P. (2009). “Consistency of beliefs and epistemic conditions for

Nash and correlated equilibria”. In: Games and Economic Behavior
67.2, pp. 363–375 [pp. 7, 39].

Bergson, A. (1938). “A Reformulation of Certain Aspects of Welfare
Economics”. In: The Quarterly Journal of Economics 52.2, pp. 310–334

[p. 11].
Bergstrom, T. C. (1992). “When Non-transitive Relations Take Max-

ima and Competitive Equilibrium Can’t be Beat”. In: Economic The-
ory and International Trade (Essays in Memoriam of J. Trout Rader). Ed.
by W. Neuefeind and R. G. Riezmann. Springer-Verlag, pp. 29–52

[p. 22].
Bernheim, B. D. (1984). “Rationalizable Strategic Behavior”. In: Econo-

metrica 52.4, pp. 1007–1028 [p. 39].
Black, D. (1948). “On the Rationale of Group Decision-making”. In:

Journal of Political Economy 56.1, pp. 23–34 [p. 64].
Blair, D. H. and R. A. Pollak (1982). “Acyclic Collective Choice Rules”.

In: Econometrica 50.4, pp. 931–943 [p. 63].
Blau, J. H. and R. Deb (1977). “Social Decision Functions and the

Veto”. In: Econometrica 45.4, pp. 871–879 [p. 63].
Blavatskyy, P. R. (2006). “Axiomatization of a preference for most

probable winner”. In: Theory and Decision 60.1, pp. 17–33 [pp. 3,
13, 24–26].

Blyth, C. R. (1972). “Some Probability Paradoxes in Choice from
Among Random Alternatives”. In: Journal of the American Statisti-
cal Association 67.338, pp. 366–373 [pp. 25, 26].

Bohnenblust, H. F., S. Karlin, and L. S. Shapley (1950). “Solutions of
discrete, two-person games”. In: Contributions to the Theory of Games.
Ed. by H. W. Kuhn and A. W. Tucker. Vol. 1. Princeton University
Press, pp. 51–72 [p. 5].

Borda, Chevalier de (1784). Memoire sur les Elections au Scrutin. His-
toire de l’Academie Royale des Sciences [pp. 10, 101].

Border, K. C. (1983). “Social welfare functions for economic environ-
ments with and without the Pareto principle”. In: Journal of Eco-
nomic Theory 29.2, pp. 205–216 [p. 64].



bibliography 131

Bordes, G. and M. Le Breton (1989). “Arrovian theorems with pri-
vate alternatives domains and selfish individuals”. In: Journal of
Economic Theory 47.2, pp. 257–281 [p. 64].

Bordes, G. and M. Le Breton (1990a). “Arrovian theorems for eco-
nomic domains: Assignments, matchings and pairings”. In: Social
Choice and Welfare 7.3, pp. 193–208 [p. 64].

Bordes, G. and M. Le Breton (1990b). “Arrovian theorems for eco-
nomic domains. The case where there are simultaneously private
and public goods”. In: Social Choice and Welfare 7.1, pp. 1–17 [p. 64].

Börgers, T. and Y.-M. Choo (2015). “Revealed Relative Utilitarianism”.
Working paper [p. 65].

Brandl, F., F. Brandt, C. Geist, and J. Hofbauer (2015a). “Strategic
Abstention based on Preference Extensions: Positive Results and
Computer-Generated Impossibilities”. In: Proceedings of the 24th In-
ternational Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press, pp. 18–24 [p. 87].

Brandl, F., F. Brandt, and J. Hofbauer (2015b). “Incentives for Partic-
ipation and Abstention in Probabilistic Social Choice”. In: Proceed-
ings of the 14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). IFAAMAS, pp. 1411–1419 [pp. 87–89,
91].

Brandl, F., F. Brandt, and J. Hofbauer (2018). “Welfare Maximization
Entices Participation”. In: Games and Economic Behavior. Forthcom-
ing [p. 26].

Brandt, F. (2011). “Minimal Stable Sets in Tournaments”. In: Journal of
Economic Theory 146.4, pp. 1481–1499 [p. 101].

Brandt, F., M. Brill, and H. G. Seedig (2011). “On the Fixed-Parameter
Tractability of Composition-Consistent Tournament Solutions”. In:
Proceedings of the 22nd International Joint Conference on Artificial Intel-
ligence (IJCAI). AAAI Press, pp. 85–90 [p. 101].

Brandt, F., C. Geist, and D. Peters (2017). “Optimal Bounds for the No-
Show Paradox via SAT Solving”. In: Mathematical Social Sciences 90.
Special Issue in Honor of Hervé Moulin, pp. 18–27 [pp. 87, 93].

Brown, D. J. (1975). “Aggregation of Preferences”. In: Quarterly Journal
of Economics 89.3, pp. 456–469 [p. 63].

Budish, E. and E. Cantillion (2012). “The Multi-Unit Assignment Prob-
lem: Theory and Evidence from Course Allocation at Harvard”. In:
American Economic Review 102.5, pp. 2237–2271 [p. 96].

Butler, D., G. Pogrebna, and P. R. Blavatskyy (2016). “Predictably In-
transitive Preferences”. In: Working paper [pp. 13, 26].

Campbell, D. E. (1989). “Arrow’s Theorem for Economic Environ-
ments and Effective Social Preferences”. In: Social Choice and Welfare
6.4, pp. 325–329 [p. 64].

Campbell, D. E. and J. S. Kelly (2002). “Impossibility Theorems in
the Arrovian Framework”. In: Handbook of Social Choice and Welfare.



132 bibliography

Ed. by K. J. Arrow, A. K. Sen, and K. Suzumura. Vol. 1. Elsevier.
Chap. 1 [p. 63].

Carroll, G. (2010). “An efficiency theorem for incompletely known
preferences”. In: Journal of Economic Theory 145.6, pp. 2463–2470

[p. 61].
Casti, J. L. (1996). Five golden rules : great theories of 20th-century mathe-

matics, and why they matter. John Wiley & Sons [p. 6].
Che, Y.-K. and F. Kojima (2010). “Asymptotic Equivalence of Proba-

bilistic Serial and Random Priority Mechanisms”. In: Econometrica
78.5, pp. 1625–1672 [p. 96].

Chen, X., X. Deng, and S.-H. Teng (2009). “Settling the Complexity
of Computing Two-Player Nash Equilibria”. In: Journal of the ACM
56.3 [p. 37].

Chernoff, H. (1954). “Rational Selection of Decision Functions”. In:
Econometrica 22.4, pp. 422–443 [pp. 22, 101].

Chew, S. H. (1983). “A Generalization of the Quasilinear Mean with
Applications to the Measurement of Income and Decision Theory
Resolving the Allais Paradox”. In: Econometrica 51.4, pp. 1065–1092

[p. 24].
Condorcet, Marquis de (1785). Essai sur l’application de l’analyse à la

probabilité des décisions rendues à la pluralité des voix. Facsimile pub-
lished in 1972 by Chelsea Publishing Company, New York. Im-
primerie Royale [pp. 10, 95, 101].

Congar, R. and V. Merlin (2012). “A characterization of the maximin
rule in the context of voting”. In: Theory and Decision 72.1, pp. 131–
147 [p. 100].

Dasgupta, P. and E. Maskin (2008). “On the robustness of majority
rule”. In: Journal of the European Economic Association 6.5, pp. 949–
973 [pp. 96, 102].

Daskalakis, C., P. Goldberg, and C. Papadimitriou (2009). “The com-
plexity of computing a Nash equilibrium”. In: SIAM Journal on Com-
puting 39.1, pp. 195–259 [p. 37].

Dhillon, A. (1998). “Extended Pareto rules and relative utilitarianism”.
In: Social Choice and Welfare 15.4, pp. 521–542 [pp. 61, 65].

Dhillon, A. and J.-F. Mertens (1997). “An impossibility theorem with
von Neumann-Morgenstern preferences”. In: Economic Letters 56.3,
pp. 305–309 [p. 12].

Dhillon, A. and J.-F. Mertens (1999). “Relative Utilitarianism”. In:
Econometrica 67.3, pp. 471–498 [pp. 12, 61, 65].

Dogan, B. and K. Yildiz (2016). “Efficiency and stability of probabilis-
tic assignments in marriage problems”. In: Games and Economic Be-
havior 95, pp. 47–58 [p. 61].

Duddy, C. (2014). “Electing a representative committee by approval
ballot: An impossibility result”. In: Economic Letters 124.1, pp. 14–16

[p. 87].



bibliography 133

Ehlers, L. and T. Storcken (2008). “Arrow’s Possibility Theorem for
One-Dimensional Single-Peaked Preferences”. In: Games and Eco-
nomic Behavior 64.2, pp. 533–547 [p. 64].

Fan, K. (1952). “Fixed-Point and Minimax Theorems in Locally Con-
vex Topological Linear Spaces”. In: Proceedings of the National
Academy of Sciences of the United States of America 38.2, pp. 121–126

[p. 6].
Fan, K. (1953). “Minimax Theorems”. In: Proceedings of the National

Academy of Sciences (PNAS) 39.1, pp. 42–47 [p. 6].
Faris, W. G. and R. S. Maier (1987). “The Value of a Random Game:

The Advantage of Rationality”. In: Complex Systems 1, pp. 235–244

[pp. 8, 50].
Fine, B. and K. Fine (1974). “Social Choice and Individual Ranking I”.

In: Review of Economic Studies 41.127, pp. 303–323 [pp. 15, 100].
Fishburn, P. C. (1970). “The Irrationality of Transitity in Social

Choice”. In: Behavioral Science 15, pp. 119–123 [p. 2].
Fishburn, P. C. (1972). “Lotteries and Social Choices”. In: Journal of

Economic Theory 5.2, pp. 189–207 [p. 98].
Fishburn, P. C. (1973). The Theory of Social Choice. Princeton University

Press [pp. 10, 98].
Fishburn, P. C. (1978). “Axioms for approval voting: Direct proof”. In:

Journal of Economic Theory 19.1, pp. 180–185 [p. 100].
Fishburn, P. C. (1982). “Nontransitive measurable utility”. In: Journal

of Mathematical Psychology 26.1, pp. 31–67 [pp. 3, 21, 23, 24].
Fishburn, P. C. (1983). “Transitive measurable utility”. In: Journal of

Economic Theory 31.2, pp. 293–317 [p. 24].
Fishburn, P. C. (1984a). “Dominance in SSB utility theory”. In: Journal

of Economic Theory 34.1, pp. 130–148 [pp. 74, 91].
Fishburn, P. C. (1984b). “Probabilistic Social Choice Based on Simple

Voting Comparisons”. In: Review of Economic Studies 51.4, pp. 683–
692 [pp. 14, 62, 104].

Fishburn, P. C. (1984c). “SSB utility theory: An economic perspective”.
In: Mathematical Social Sciences 8.1, pp. 63–94 [pp. 3, 23–25].

Fishburn, P. C. (1988). Nonlinear preference and utility theory. The Johns
Hopkins University Press [pp. 21, 23].

Fishburn, P. C. (1991). “Nontransitive preferences in decision theory”.
In: Journal of Risk and Uncertainty 4.2, pp. 113–134 [pp. 2, 3, 71].

Fishburn, P. C. and S. J. Brams (1983). “Paradoxes of Preferential Vot-
ing”. In: Mathematics Magazine 56.4, pp. 207–214 [pp. 14, 87].

Fishburn, P. C. and W. V. Gehrlein (1977). “Towards a Theory
of Elections with Probabilistic Preferences”. In: Econometrica 45.8,
pp. 1907–1924 [pp. 102, 103].

Fishburn, P. C. and W. V. Gehrlein (1987). “Aggregation theory for
SSB utility functionals”. In: Journal of Economic Theory 42.2, pp. 352–
369 [pp. 13, 65, 74].



134 bibliography

Fisher, D. C. and R. B. Reeves (1995). “Optimal Strategies for Ran-
dom Tournament Games”. In: Linear Algebra and its Applications 217,
pp. 83–85 [p. 51].

Fisher, D. C. and J. Ryan (1992). “Optimal Strategies for a General-
ized “Scissors, Paper, and Stone” Game”. In: American Mathematical
Monthly 99.10, pp. 935–942 [p. 50].

Fisher, D. C. and J. Ryan (1995). “Tournament Games and Positive
Tournaments”. In: Journal of Graph Theory 19.2, pp. 217–236 [p. 32].

Gale, D., H. W. Kuhn, and A. W. Tucker (1950). “On Symmetric
Games”. In: Contributions to the Theory of Games. Ed. by H. W. Kuhn
and A. W. Tucker. Vol. 1. Princeton University Press, pp. 81–87

[pp. 33–35].
Gintis, H. (2009). The Bounds of Reason: Game Theory and the Unification

of the Behavioral Sciences. Princeton University Press [p. 39].
Grether, D. M. and C. R. Plott (1979). “Economic theory of choice

and the preference reversal phenomenon”. In: American Economic
Review 69.4, pp. 623–638 [p. 2].

Grilli, J., G. Barabás, M. J. Michalska-Smith, and S. Allesina (2017).
“Higher-order interactions stabilize dynamics in competitive net-
work models”. In: Nature 548, pp. 210–213 [p. 9].

Harsanyi, J. C. (1955). “Cardinal Welfare, Individualistic Ethics, and
Interpersonal Comparisons of Utility”. In: Journal of Political Econ-
omy 63.4, pp. 309–321 [pp. 12, 13, 64].

Harsanyi, J. C. (1967). “Games with Incomplete Information Played by
“Bayesian” Players, Part I”. In: Management Science 50.12, pp. 1804–
1817 [pp. 7, 38].

Harsanyi, J. C. (1973a). “Games with Randomly Disturbed Payoffs: A
New Rationale for Mixed-strategy Equilibrium Points”. In: Interna-
tional Journal of Game Theory 2.1, pp. 1–23 [p. 30].

Harsanyi, J. C. (1973b). “Oddness of the Number of Equilibrium
Points: A New Proof”. In: International Journal of Game Theory 2.1,
pp. 235–250 [p. 49].

Heims, S. J. (1980). John Von Neumann and Norbert Wiener: from mathe-
matics to the technologies of life and death. MIT Press [p. 6].

Hellman, Z. (2013). “Weakly rational expectations”. In: Journal of Math-
ematical Economics 49.6, pp. 496–500 [p. 39].

Holzman, R. (1988). “To vote or not to vote: What is the quota?” In:
Discrete Applied Mathematics 22.2, pp. 133–141 [p. 87].

Horan, S. (2013). “Implementation of Majority Voting Rules”. In:
Working paper [p. 101].

Hylland, A. (1980a). “Aggregation procedure for cardinal preferences:
A comment”. In: Econometrica 48.2, pp. 539–542 [pp. 12, 64].

Hylland, A. (1980b). “Strategyproofness of Voting Procedures with
Lotteries as Outcomes and Infinite Sets of Strategies”. Mimeo
[p. 12].



bibliography 135

Inada, K. (1969). “The simple majority decision rule”. In: Econometrica
37, pp. 490–506 [p. 64].

Jimeno, J. L., J. Pérez, and E. García (2009). “An extension of the
Moulin No Show Paradox for voting correspondences”. In: Social
Choice and Welfare 33.3, pp. 343–459 [p. 87].

Jonasson, J. (2004). “On the Optimal Strategy in a Random Game”. In:
Electronic Communications in Probability 9, pp. 132–139 [pp. 8, 50].

Kahnemann, D. and A. Tversky (1979). “Prospect Theory: An Analy-
sis of Decision under Risk”. In: Econometrica 47.2, pp. 263–292 [p. 2].

Kalai, E., E. Muller, and M. A. Satterthwaite (1979). “Social Welfare
Functions When Preferences Are Convex, Strictly Monotonic, and
Continuous”. In: Public Choice 34.1, pp. 87–97 [p. 64].

Kalai, E. and D. Schmeidler (1977a). “Aggregation Procedure for Car-
dinal Preferences: A Formulation and Proof of Samuelson’s Impos-
sibility Conjecture”. In: Econometrica 45.6, pp. 1431–1438 [pp. 12, 64,
66].

Kalai, E. and D. Schmeidler (1977b). “An admissible set occurring
in various bargaining situations”. In: Journal of Economic Theory 14,
pp. 402–411 [pp. 12, 73].

Kaplansky, I. (1945). “A Contribution to von Neumann’s Theory of
Games”. In: Annals of Mathematics 46.3, pp. 474–479 [pp. 5, 53].

Kaplansky, I. (1995). “A contribution to von Neumann’s theory of
games. II”. In: Linear Algebra and its Applications 226-228, pp. 371–
373 [p. 53].

Karni, E. (2014). “Axiomatic Foundations of Expected Utility and Sub-
jective Probability”. In: Handbook of the Economics of Risk and Uncer-
tainty. Ed. by M. Machina and K. Viscusi. Vol. 1. Elsevier. Chap. 1

[p. 21].
Kelly, J. S. (1978). Arrow Impossibility Theorems. Economic Theory and

Mathematical Economics. Academic Press [p. 63].
Kjeldsen, T. H. (2001). “John von Neumann’s Conception of the Mini-

max Theorem: A journey through different mathematical contexts”.
In: Archive for History of Exact Solutions 56.1, pp. 39–68 [p. 6].

Knebel, J., M. F. Weber, T. Krüger, and E. Frey (2015). “Evolutionary
games of condensates in coupled birth–death processes”. In: Nature
Communications 6.6977 [p. 9].

Kreweras, G. (1965). “Aggregation of Preference Orderings”. In: Math-
ematics and Social Sciences I: Proceedings of the seminars of Menthon-
Saint-Bernard, France (1–27 July 1960) and of Gösing, Austria (3–27
July 1962), pp. 73–79 [pp. 14, 62].

Kuhn, H. W. and A. W. Tucker, eds. (1950). Contributions to the Theory
of Games I. Annals of Mathematics Studies 24. Princeton University
Press [p. 5].

Laffond, G., J. Lainé, and J.-F. Laslier (1996). “Composition-Consistent
Tournament Solutions and Social Choice Functions”. In: Social
Choice and Welfare 13.1, pp. 75–93 [pp. 16, 101, 102].



136 bibliography

Laffond, G., J.-F. Laslier, and M. Le Breton (1997). “A Theorem on
Symmetric Two-Player Zero-Sum Games”. In: Journal of Economic
Theory 72.2, pp. 426–431 [pp. 50, 62, 109].

Laslier, J.-F. (1996). “Rank-Based Choice Correspondences”. In: Eco-
nomics Letters 52.3, pp. 279–286 [pp. 101, 102].

Laslier, J.-F. (1997). Tournament Solutions and Majority Voting. Springer-
Verlag [p. 101].

Le Breton, M. (1986). “Essais sur les fondements de l’analyse
économique de l’inégalité”. Thèse pour le Doctorat d’État en Sci-
ences Économiques. Université de Rennes 1 [p. 12].

Le Breton, M. (2005). “On the Uniqueness of Equilibrium in Symmet-
ric Two-Player Zero-Sum Games with Integer Payoffs”. In: Économie
publique 17.2, pp. 187–195 [p. 50].

Levine, J. M., J. Bascompte, P. B. Adler, and S. Allesina (2017). “Be-
yond pairwise mechanisms of species coexistence in complex com-
munities”. In: Nature 546, pp. 56–64 [p. 9].

Llinares, J.-V. (1998). “Unified treatment of the problem of existence
of maximal elements in binary relations: A characterization”. In:
Journal of Mathematical Economics 29.3, pp. 285–302 [p. 22].

Loomes, G. and R. Sugden (1982). “Regret Theory: An Alternative
Theory of Rational Choice Under Uncertainty”. In: The Economic
Journal 92.368, pp. 805–824 [p. 24].

Loomes, G. and R. Sugden (1987). “Some implications of a more
general form of regret theory”. In: Journal of Economic Theory 41.2,
pp. 270–287 [p. 24].

Loomis, L. H. (1947). “On A Theorem of von Neumann”. In: Proceed-
ings of the National Academy of Sciences (PNAS) 33.11, pp. 329–331

[p. 6].
Machina, M. J. (1983). “Generalized Expected Utility Analysis and

the Nature of Observed Violations of the Independence Axiom”.
In: Foundations of Utility and Risk Theory with Applications. Ed. by B.
Stigum and F. Wenstop. Springer. Chap. 5 [p. 2].

Machina, M. J. (1989). “Dynamic Consistency and Non-Expected Util-
ity Models of Choice Under Uncertainty”. In: Journal of Economic
Literature 27.4, pp. 1622–1668 [p. 2].

Manea, M. (2008). “A constructive proof of the ordinal efficiency wel-
fare theorem”. In: Journal of Economic Theory 141.1, pp. 276–281

[p. 61].
Mas-Colell, A. and H. Sonnenschein (1972). “General Possibility The-

orems for Group Decisions”. In: Review of Economic Studies 39.2,
pp. 185–192 [p. 63].

Maskin, E. (1979). “Decision-making under ignorance with implica-
tions for social choice”. In: Theory and Decision 11.3, pp. 319–337

[p. 101].



bibliography 137

May, K. (1952). “A Set of Independent, Necessary and Sufficient
Conditions for Simple Majority Decisions”. In: Econometrica 20.4,
pp. 680–684 [p. 102].

May, K. (1954). “Intransitivity, Utility, and the Aggregation of Prefer-
ence Patters”. In: Econometrica 22.1, pp. 1–13 [p. 2].

McClennen, E. F. (1988). “Sure-Thing Doubts”. In: Decision, Probabil-
ity and Utility. Ed. by P. Gärdenfors and N.-E. Sahlin. Cambridge
University Press. Chap. 10 [p. 2].

McGarvey, D. C. (1953). “A Theorem on the Construction of Voting
Paradoxes”. In: Econometrica 21.4, pp. 608–610 [p. 123].

McLennan, A. (2002). “Ordinal Efficiency and the Polyhedral Sepa-
rating Hyperplane Theorem”. In: Journal of Economic Theory 105.2,
pp. 435–449 [p. 61].

McLennan, A. (2005). “The Expected Number of Nash Equilibria of
a Normal Form Game”. In: Econometrica 73.1, pp. 141–174 [pp. 8,
49–51].

McLennan, A. and J. Berg (2005). “Asymptotic expected number of
Nash equilibria of two-player normal form games”. In: Games and
Economic Behavior 51.2, pp. 264–295 [pp. 8, 50].

Mongin, P. (1994). “Harsanyi’s Aggregation Theorem: multi-profile
version and unsettled questions”. In: Social Choice and Welfare 11.4,
pp. 331–354 [pp. 12, 65].

Monjardet, B. (2008). “Statement of precedence and a comment on
IIA terminology”. In: Games and Economic Behavior 62, pp. 736–738

[p. 22].
Moulin, H. (1986). “Choosing from a Tournament”. In: Social Choice

and Welfare 3.4, pp. 271–291 [p. 101].
Moulin, H. (1988). “Condorcet’s Principle implies the No Show Para-

dox”. In: Journal of Economic Theory 45.1, pp. 53–64 [pp. 14, 87, 88,
92, 93].

Myerson, R. B. (1995). “Axiomatic derivation of scoring rules without
the ordering assumption”. In: Social Choice and Welfare 12.1, pp. 59–
74 [p. 100].

Nash, J. F. (1950a). “Equilibrium Points in n-Person Games”. In: Pro-
ceedings of the National Academy of Sciences (PNAS) 36, pp. 48–49

[pp. 9, 37].
Nash, J. F. (1950b). “The Bargaining Problem”. In: Econometrica 18.2,

pp. 155–162 [p. 22].
Nash, J. F. (1951). “Non-cooperative games”. In: Annals of Mathematics

54.2, pp. 286–295 [p. 10].
Packard, D. J. (1982). “Cyclical Preference Logic”. In: Theory and Deci-

sion 14.4, pp. 415–426 [pp. 25, 26].
Pearce, D.G. (1984). “Rationalizable Strategic Behavior and the Prob-

lem of Perfection”. In: Econometrica 52.4, pp. 1029–1050 [p. 39].
Perea, A. (2007). “A One-Person Doxastic Characterization of Nash

strategies”. In: Synthese 158, pp. 251–271 [p. 38].



138 bibliography

Perea, A. (2012). Epistemic Game Theory: Reasoning and Choice. Cam-
bridge University Press [pp. 7, 38].

Pérez, J. (2001). “The Strong No Show Paradoxes are a common flaw
in Condorcet voting correspondences”. In: Social Choice and Welfare
18.3, pp. 601–616 [p. 87].

Peters, D. (2017). “Condorcet’s Principle and the Preference Reversal
Paradox”. In: Proceedings of the 16th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK), pp. 455–469 [p. 92].

Puppe, C. (2016). “The Single-Peaked Domain Revisited: A Simple
Global Characterization”. In: Working paper [p. 15].

Raghavan, T. E. S. (1994). “Zero-Sum Two Person Games”. In: Hand-
book of Game Theory with Economic Applications. Ed. by R. J. Aumann
and S. Hart. North-Holland. Chap. 20 [p. 30].

Redekop, J. (1995). “Arrow theorems in econonmic environments”. In:
Social choice, welfare, and ethics. Ed. by W. A. Barnett, H. Moulin, M.
Salles, and N. J. Schofield. Cambridge University Press, pp. 163–
185 [p. 64].

Roberts, D. P. (2004). “Kernel Sizes for Random Matrix Games”. Un-
published manuscript [p. 50].

Roberts, D. P. (2006). “Nash equilibria of Cauchy-random zero-sum
and coordination matrix games”. In: International Journal of Game
Theory 34.2, pp. 167–184 [p. 50].

Rubinstein, A. and U. Segal (2012). “On the likelihood of cyclic com-
parisons”. In: Journal of Economic Theory 147.6, pp. 2483–2491 [p. 26].

Saari, D. G. (1990). “Consistency of decision processes”. In: Annals of
Operations Research 23.1, pp. 103–137 [p. 100].

Saari, D. G. (1995). Basic Geometry of Voting. Springer [pp. 96, 100, 116].
Samuelson, P. A. (1938). “A Note on the Pure Theory of Consumers’

Behaviour”. In: Econometrica 5, pp. 61–71 [p. 95].
Samuelson, P. A. (1967). “Arrow’s Mathematical Politics”. In: Human

Values and Economic Policy. Ed. by S. Hook. New York University
Press, pp. 41–51 [p. 64].

Sanver, M. R. and W. S. Zwicker (2009). “One-way monotonicity as a
form of strategy-proofness”. In: International Journal of Game Theory
38.4, pp. 553–574 [pp. 87, 92].

Saunders, B. (2010). “Democracy, Political Equality, and Majority
Rule”. In: Ethics 121.1, pp. 148–177 [p. 102].

Schwartz, T. (1970). “On the Possibility of Rational Policy Evaluation”.
In: Theory and Decision 1.1, pp. 89–106 [p. 12].

Schwartz, T. (1986). The Logic of Collective Choice. Columbia University
Press [p. 63].

Sen, A. K. (1969). “Quasi-Transitivity, Rational Choice and Collective
Decision”. In: Review of Economic Studies 36.3, pp. 381–393 [pp. 14,
22, 63].

Sen, A. K. (1970a). Collective Choice and Social Welfare. North-Holland
[p. 63].



bibliography 139

Sen, A. K. (1970b). “Interpersonal Aggregation and Partial Compara-
bility”. In: Econometrica 38.3, pp. 393–409 [p. 12].

Sen, A. K. (1971). “Choice Functions and Revealed Preference”. In:
Review of Economic Studies 38.3, pp. 307–317 [pp. 14, 22].

Sen, A. K. (1977). “Social Choice Theory: A Re-Examination”. In:
Econometrica 45.1, pp. 53–89 [p. 63].

Sen, A. K. (1986). “Social Choice Theory”. In: Handbook of Mathematical
Economics. Ed. by K. J. Arrow and M. D. Intriligator. Vol. 3. Elsevier.
Chap. 22, pp. 1073–1181 [pp. 63, 77].

Sen, A. K. and P. K. Pattanaik (1969). “Necessary and Sufficient Con-
ditions for Rational Choice under Majority Decision”. In: Journal of
Economic Theory 1, pp. 178–202 [p. 64].

Smith, J. H. (1973). “Aggregation of Preferences with Variable Elec-
torate”. In: Econometrica 41.6, pp. 1027–1041 [pp. 15, 100, 101].

Sonnenschein, H. (1971). “Demand Theory Without Transitive Pref-
erence with Applications to the Theory of Competitive Equilib-
rium”. In: Preferences, Utility and Demand. Ed. by J. Chipman, L. Hur-
wicz, M. Richter, and H. Sonnenschein. Houghton Mifflin Harcourt
[pp. 3, 22].

Steinhaus, H. and S. Trybula (1959). “On a paradox in applied prob-
abilities”. In: Bulletin of the Polish Academy of Sciences 7, pp. 67–69

[p. 26].
Stiemke, E. (1915). “Über positive Lösungen homogener linearer Gle-

ichungen”. In: Mathematische Annalen 76, pp. 340–342 [p. 33].
Tan, T. C.-C. and S. R. da Costa Werlang (1988). “The Bayesian founda-

tions of solution concepts of games”. In: Journal of Economic Theory
45.2, pp. 370–391 [p. 39].

Tideman, T. N. (1987). “Independence of Clones as a Criterion for
Voting Rules”. In: Social Choice and Welfare 4.3, pp. 185–206 [pp. 15,
101].

Turunen-Red, A. H. and J. A. Weymark (1999). “Linear Aggregation
of SSB Utility Functionals”. In: Theory and Decision 46.3, pp. 281–294

[pp. 13, 65].
Von Neumann, J. (1928). “Zur Theorie der Gesellschaftspiele”. In:

Mathematische Annalen 100.1, pp. 295–320 [pp. 5, 6, 30, 33].
Von Neumann, J. (1937). “Über ein ökonomisches Gleichgewichtssys-

tem und eine Verallgemeinerung des Brouwerschen Fixpunkt-
satzes”. In: Ereignisse des Mathematischen Kolloquiums, pp. 73–83

[p. 6].
Von Neumann, J. and O. Morgenstern (1944). Theory of Games and

Economic Behavior. Princeton University Press [pp. 2, 5, 6].
Von Neumann, J. and O. Morgenstern (1953). Theory of Games and

Economic Behavior. 3rd. Princeton University Press [pp. 21, 71].
Wald, A. (1945a). “Generalization of a Theorem By v. Neumann Con-

cerning Zero Sum Two Person Games”. In: Annals of Mathematics
46.2, pp. 281–286 [p. 6].



140 bibliography

Wald, A. (1945b). “Statistical Decision Functions Which Minimize the
Maximum Risk”. In: Annals of Mathematics 46.2, pp. 265–280 [p. 5].

Wilson, R. (1971). “Computing Equilibria of N-Person Games”. In:
SIAM Journal on Applied Mathematics 21.1, pp. 80–87 [pp. 49, 50].

Wilson, R. (1987). “Game Theoretic Analysis of Trading Processes”.
In: Advances in Economic Theory. Ed. by T. Bewley. Cambridge Uni-
versity Press [p. 38].

Young, H. P. (1974a). “A Note on Preference Aggregation”. In: Econo-
metrica 42.6, pp. 1129–1131 [pp. 96, 100, 101].

Young, H. P. (1974b). “An axiomatization of Borda’s rule”. In: Journal
of Economic Theory 9.1, pp. 43–52 [pp. 15, 93, 98, 100].

Young, H. P. (1975). “Social Choice Scoring Functions”. In: SIAM Jour-
nal on Applied Mathematics 28.4, pp. 824–838 [pp. 15, 96, 100, 101].

Young, H. P. and A. Levenglick (1978). “A Consistent Extension of
Condorcet’s Election Principle”. In: SIAM Journal on Applied Mathe-
matics 35.2, pp. 285–300 [pp. 10, 96, 100–102].

Zavist, T. M. and T. N. Tideman (1989). “Complete independence of
clones in the ranked pairs rule”. In: Social Choice and Welfare 6.2,
pp. 167–173 [p. 101].

Zwicker, W. S. (1991). “The voter’s paradox, spin, and the Borda
count”. In: Mathematical Social Sciences 22.3, pp. 187–227 [p. 116].


	Abstract
	Contents
	1 Introduction
	1.1 Preferences Over Uncertain Outcomes
	1.2 Game Theory
	1.3 Social Choice Theory

	2 Preliminaries
	2.1 Decision Theoretic Fundamentals
	2.2 SSB Utility Theory

	Zero-Sum Games
	3 Game Theoretic Fundamentals
	3.1 Zero-Sum Games
	3.2 Symmetric Zero-Sum Games

	4 A Proof of the Minimax Theorem
	5 Justification of Maximin Play
	5.1 Independence, Rationality, Consistency, and Consequentialism
	5.2 Characterization of Maximin Strategies
	5.3 Concluding Remarks

	6 Random Symmetric Zero-Sum Games
	6.1 The Distribution of Maximin Strategies
	6.2 Concluding Remarks


	Preference Aggregation and Social Choice
	7 Social Choice Theoretic Fundamentals
	7.1 Social Welfare Functions and Social Choice Functions
	7.2 Maximal Lotteries

	8 Arrovian Preference Aggregation
	8.1 Arrovian Social Welfare Functions
	8.2 Characterization of the Domain
	8.3 Characterization of the Social Welfare Function
	8.4 Interpretation of Results
	8.5 Concluding Remarks
	8.6 Characterization of the Domain: Proofs
	8.7 Characterization of the Social Welfare Function: Proofs

	9 Relative Utilitarian Social Choice
	9.1 Relative Utilitarian Outcomes and Utilitarian Participation
	9.2 Preferences based on Pairwise Comparisons
	9.3 Concluding Remarks

	10 Consistent Social Choice
	10.1 Preliminaries
	10.2 Population consistency and Composition consistency
	10.3 Pure Social Choice Functions
	10.4 Characterization of Maximal Lotteries
	10.5 Concluding Remarks
	10.6 Cloning Consistency Implies Neutrality
	10.7 Pure Social Choice Functions: Proofs
	10.8 Characterization of Maximal Lotteries: Proofs


	Bibliography

