
Detecting and Mitigating Denial of Service Attacks
against the Data Plane in Software Defined Networks

Raphael Durner∗, Claas Lorenz†, Michael Wiedemann∗†, Wolfgang Kellerer∗
∗Technical University of Munich - {r.durner, m.wiedemann, kellerer}@tum.de
†genua GmbH, Kirchheim - {claas lorenz, michael wiedemann}@genua.de

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Software Defined Networking (SDN) introduces a
new network architecture offering means of programmability
through an externalized centralized control plane. As a result
most security research addresses attacks against this central
entity. Contrary to that, attacks against the data plane in SDN
did not perceive a broad attention in the scientific community
so far. In this work we discuss Denial of Service attacks against
the data plane and their impact. We propose a tailored statistical
detection approach as well as a lightweight countermeasure. We
evaluate the detection by simulation and an analytical approach.
Throughout this evaluation, we highlight the trade-off between
detection speed and adaptability and show a way to tune the
solution analytically. Our results show, that we can detect and
mitigate attacks against the data plane in a lightweight and
dependable way.

I. INTRODUCTION

The uprise of Software Defined Networking (SDN) as
a paradigm that separates the data from the control plane
introduces new challenges in network security. Especially, in
modern cloud environments where an attacker can get access
to the network by simply renting a virtual machine, Denial of
Service (DoS) attacks pose a serious threat.

Networking elements, like switches, process traffic accord-
ing to the entries in their forwarding tables which are set
by a logically centralized controller. SDN offers two major
modes of operation – proactive and reactive. In the former
case the controller presets all forwarding rules according to
the configuration of the networking applications which provide
the networking functionality, e.g. switching or routing. Packets
that do not match any entry in the forwarding table are dropped
by the networking element.

In reactive setups, on the other hand, a table miss results
in a query to the controller. In the controller, the networking
applications can make a decision based on a global view of
the network’s state. Then, they are able to enforce a net-
work policy, e.g. routing, by individually forwarding packets,
sending out packets, or setting up forwarding rules. The most
prominent SDN protocol allowing both modes of operation is
OpenFlow (see [1]) which also enables any hybrid approach
with proactive and reactive elements.

Figure 1 shows the typical behavior of a reactive SDN
setup:

1) A host sends a packet for a new connection which
reaches an SDN switch. Then, the switch performs a
lookup in its forwarding table.

2) Since the packet belongs to a new flow which is
unknown to the switch, the packet is encapsulated
into a PacketIn message and sent to the controller.

3) In the controller the PacketIn is processed by an SDN
application which provides networking functionality
like switching or routing. The applications decision
may include sending a FlowMod message which
installs a rule in the forwarding table. Also, the switch
may be instructed to forward the original packet
through any of its ports.

4) If the controller application has set up a rule in the
switch to handle the flow, further packets belonging
to that flow will be processed in the fast forwarding
hardware without the need for additional communi-
cation with the controller.

SDN-SwitchHost

SDN-Controller

App

P
ac

ke
tIn

F
lo

w
M

od

1.

2.

3.

4.

Control Plane

Data Plane

Fig. 1: Normal behaviour of a reactive SDN.

The logically centralized SDN controller represents a po-
tential single-point-of-failure and many researchers have de-
veloped comprehensive approaches to deal with these threats
[2]–[5]. In this work we focus on a much less investigated area
of SDN security – the detection and mitigation of Denial of
Service attacks against the data plane.

Forwarding tables have limited memory capacities. Typi-
cally, switches rely on Content Addressable Memory (CAM)
that performs table lookups at line rate. Especially, Ternary
CAM (TCAM) is expensive and therefore very small, ranging
in the region of 1k to 2k entries. But also, regular and cheaper
Binary CAM (BCAM) is limited to only a couple of 100k
entries. An attacker with the ability to remotely trigger flow
handling modifications that add entries to the flow tables can
cause a DoS by exhausting the switches memory. Some works

extend the available table size by using a combination of
software and hardware flow tables [6], [7]. If the attacked
devices make use of such techniques, the severity of the DoS
is reduced, as software tables allow far more entries. Although,
also software tables suffer from performance penalties for big
table sizes, e.g. Open vSwitch uses a linear search to handle
wildcard rules [8]. To deal with this threat we propose a
tailored statistical approach for the detection of such an attack.
Therefore, our main contributions are:

• A problem specific detection mechanism for attacks
on the data plane, that is more comprehensive than
existing approaches.

• A lightweight counter measure to stop attacking flows
with one or very few flow rules.

• A novel evaluation by analytic means and simulation.

The remainder of this work is structured as follows. In
Section II we give an overview of the related work in the field
of DoS attacks in SDN followed by a detailed description of
the attack model and our detection algorithm in Section III.
Finally, in Section IV we provide our evaluation.

II. RELATED WORK

There are several approaches in literature covering DoS in
SDN with different perspectives. These approaches are shown
in the following:

In [4] an approach for the detection of distributed DoS
attacks against the controller is presented that relies on de-
tecting deviations from a normal distribution of PacketIns in
terms of destination addresses. An attack is indicated by a
significant growth of new flows to a single host compared
to the normal situation where new flows reach hosts evenly
distributed. Therefore, an attack is indicated by a lower entropy
calculated over a window of PacketIns. The emulation results
look promising offering a detection rate between 95 to 100%,
although most parameters like arrival distribution and network
settings remain unclear. Nevertheless, they evaluated their
approach using the destination address as fixed and the source
address as varied parameter. The more parameters an attacker
can shuffle the higher the entropy of the attack packets will be.
As is, an attacker who can address the whole subnet under su-
pervision is likely able to circumvent the detection completely.
Therefore, it remains unclear whether this approach can be
scaled to scenarios with manifold variable header fields, e.g. if
the attacker controls a virtual machine in a cloud data center.
Further, the approach does not yield information to quickly
apply countermeasures against the attack.

A very notable approach called FlowRanger is provided
by [9]. The basic idea is to classify PacketIns using a trust-
level metric and enqueueing them with different priorities.
This leads to a faster processing of PacketIns triggered by
trusted hosts and a higher probability of untrusted PacketIns
being dropped in high load situations. A host’s trust level
may be adapted over time due to its behavior. Although,
invented for mitigating DoS attacks against the controller, this
approach also helps to reduce the impact of attacks against
the data plane. Since fewer malicious PacketIns are processed
by the controller, this also reduces the rate of FlowMods.
Nevertheless, FlowRanger reduces the attack’s impact without

removing its root cause – the initial triggering of PacketIns
by an attacker. Also, with sufficient resources granted to the
controller the approach becomes less effective since also the
low priority queues are processed fast. However FlowRanger
might be a suitable supplement to our work since it helps
to reduce an attack’s impact before its detection due to its
different focus.

In [10] a technique is proposed to minimize the impact
of a DoS against the controller and the switch tables by
optimizing rule expiration and rule aggregation in the switches.
These measures lower the impact of attacks flooding the
flow tables by reducing the overall resource usage without
tackling the attacks’ root cause. Additionally, the reduction of
the expiration time could increase the load of the controller
and may add delays to flows which timeout prematurely.
Nevertheless, this approach is complementary to our efforts
and could help in building a robust and efficient system.

Further, [5], [11] propose FloodGuard, an approach that
tries to anticipate the behavior of the controller as well as the
applications and set up rules in the switches proactively. These
rules try to reduce the amount of PacketIn events and therefore
restrict the abilities of an attacker to be successful. Occurring
PacketIns are cached and served using rate limiting to further
reduce the impact of an attack. As a side effect this approach
causes unfavorable delays due to the caching of packets.

Finally, in [12] a mechanism is proposed to safely remove
entries from full flow tables. The ratio of PacketIns and
FlowMods is supervised and if the table is going to be full,
rules are removed using a least-frequently-used scheme. As
a disadvantage the approach causes potentially high load on
the switches due to aggressive usage of OpenFlow’s statistical
features.

Our approach is more comprehensive than exiting works,
as it covers all header fields. Additionally we show a novel
analytic approach for the dimensioning of the system and the
expected detection rates.

III. DENIAL OF SERVICE ATTACKS AGAINST THE DATA
PLANE

In this section we begin with the introduction of the class of
DoS attacks against the data plane. This attack class was first
described in 2013 by [13] and [14]. Afterwards, we present a
novel statistical detection approach specifically tailored to the
problem. Finally, we introduce a novel lightweight method to
mitigate a detected attack with only small restrictions to the
networks’ functionality.

A. Attack Description

In this work we focus on a DoS attack class against the
data plane that is based on a reactive SDN which is the
widely accepted standard behavior of OpenFlow switches. As
previously seen in Figure 1, upon the incoming of an unknown
flow the switch typically consults the controller for further
decisions by encapsulating the first packet of the flow into a
PacketIn message. Then, the controller can inspect the packet,
make a forwarding decision, and set new flow rules in the
switch using FlowMod messages if necessary.

SDN-SwitchAttacker

SDN-Controller

App

P
ac

ke
tIn

F
lo

w
M

odControl Plane

Data Plane
P

ac
ke

tIn

P
ac

ke
tIn

F
lo

w
M

od

F
lo

w
M

od
Fig. 2: DoS attack against a reactive SDN.

There are different ways for a controller to handle this
decision making, especially regarding the granularity of flow
definitions. For instance, flows could be setup using the quin-
tuple Source IP, Destination IP, Source Port, Destination Port,
Protocol or just Layer-2 addresses. An attacker knowing about
the controller’s decision making and flow rule setting behavior
is able to craft packets that trigger those FlowMods. For the
switch these packets appear as new flows and therefore, are
handled by the controller resulting in an increasing number of
flow rules in the switching tables as depicted in Figure 2. The
concrete impact of a switch with full switching tables is not
generally defined and highly depends on the model. Typical
behavior includes the dropping of older switching entries or
ignoring new rule setting requests.

Note that in general the attacker is not able to arbitrarily
craft the packets since all attack packets need to be routed via
the target switch. Cloud environments like for example Open-
Stack could also prohibit source IP spoofing with packet filters.
A rule matching the exact characteristics of the attacking flow
and applying a standard behavior like dropping the attacker’s
packets would be able to completely shut down the attack.

B. Detection

The general idea for the detection of DoS attacks against
the data plane aims at localizing the fixed header fields of the
attacking flow. These impose a regularity that is not observed
in normal traffic since PacketIn events are just seen once upon
flow establishment. The approach uses a table of counters
with the different header fields as columns. The table is
regularly, i.e. in fixed time intervals, inspected statistically and
the maximum entry is abnormally large in case of an attack.
To normalize the table size the header fields are hashed by
a uniformly dispersing function with fixed output size. The
digest of an input determines the row where to increment the
counter. During an attack the entries which correspond to fixed
fields of the attacking flow grow very fast and are used for the
detection.

Table I shows a simplified example with three header fields
a, b and c where the latter is varied. The columns represent
the different header fields, while the rows are accessed using
the hashed values of the particular header field. After a couple

a b c
0 0 0
0 0 1
0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 0

a b c
0 0 0
0 0 1
0 0 0
0 0 1
2 0 0
0 0 0
0 2 0
0 0 0
0 0 0

. . .

a b c
0 0 1
0 0 1
0 0 1
0 0 1
10 0 1
0 0 1
0 10 1
0 0 1
0 0 1

TABLE I: Simple example showing the growth of a counter
table over time for ten consecutive packets with three header
fields a, b, c where c is varied while a and b remain fix.

of PacketIns the fixed fields of the attacking flow are clearly
distinguishable from the varied fields.

For further explanations we formalize the necessary terms
as follows. H is the set of all header fields considered
by the detection algorithm, e.g., H ={src mac, dst mac,
src ip, dst ip, proto, src port, dst port, ...}. A packet p
is characterized by a set of tuples (h, v) of header fields
h ∈ H where h acts as a key and v as value, e.g., p =
{(src mac, 11:22:33:44:55:66), (dst mac, 66:55:44:33:22:11),
(src ip, 1.2.3.4), ...}. The concrete value of a field h in the
packet p is denoted by vh,p. Using these terms, a hash function
is defined as

hash : vh,p → N<|hash|0

where |hash| is the size of the hash function’s image set. The
table T is a matrix of the dimension N|hash|,|H|.

We used the 32Bit FNV-1a hashing function (see [15])
folded to an output size of 16Bit by applying an XOR
operation of the upper half to the lower half of the hash sum.
The chosen hash function is designed to be fast while having a
low collision rate which is evenly distributed itself. This results
in 216 rows in the counter table.

Algorithm 1 Book keeping of seen PacketIn messages.

Require: Counter table T
while true do

receive PacketIn and unwrap packet p
for all h ∈ {h|h ∈ H ∧ (h, v) ∈ p} do
S ← hash(vh,p)
(c, vh,p−1)← T(S,h)
T(S,h) ← (c+ 1, vh,p))

end for
end while

Every incoming PacketIn is unwrapped and the included
packet is handled by the method shown in Algorithm 1. For
each field its value is hashed. The hash sum is now used as
an index in the table where the counter is incremented. Ad-
ditionally, the corresponding fields of the most recent packets
are stored with the counter for later usage by the mitigation
routine upon a detected attack. The employed FNV-1a hash
function is designed to have a low collision rate. Thus we can
assume that storing of one field is enough in practice.

Since the application of the hash function can be bounded
to the largest field size and the field updates run in O(1), the
overall update time is in O(|H|). The table may require quite
a large amount of memory. Depending on the implementation

the memory consumption can be bound to

O(|hash| · (|counter|+ |field|) · |H|)

where |counter| is the size of the counter (in Bytes) and
|headerfield| is the size of the structure holding the most
recent header field value. If the table is statically allocated
it would require exactly this amount of memory. Some im-
plementations allow a dynamic allocation at runtime which
optimizes memory consumption at the cost of slower data
access and allocation overhead. We consider a statically sized
table to be the preferable approach since the usage of hash
functions distributes the counter updates evenly. Therefore,
there should not be too many untouched fields with counters
equaling zero.

Algorithm 2 Attack detection and mitigation.

Require: Counter table T , time interval tW
P ← {}
for every tW seconds do

for h ∈ H do
for S ∈ N<|hash|0 do

(c, vh,p)← TS,h
if c > θm then
P ← P ∪ {(h, vh,p)}

end if
end for

end for
if P 6= ∅ then

Block all packets that match headers in P
end if
reset T

end for

As seen in Algorithm 2, the detection routine runs indepen-
dently of the book keeping on a regular basis and statistically
evaluates the counter values. The table is evaluated every fixed
time interval tW . The counter is evaluated for every header h
and every hash value S, i.e. for every field in the table. If
the value of a counter is higher than a predefined threshold
θm, an attack is indicated and the corresponding field vh,p is
appended to list P .

The detection algorithm has a complexity of O(|hash| ·
|H|). In conjunction with the data collection seen above,
the overall detection is lightweight. Especially, since it can
be executed concurrently and thus, no stalling of the packet
pipeline is necessary.

C. Counter Measures

After detecting an attack the set P contains the fixed
headers of the attacker. From this set it is easy to craft a flow
rule that matches the fields from P while treating the others
as wildcards. If one header or more headers is in the set with
different values, multiple rules have to be installed. For this the
existing rule with the singular headers from P has to be copied
and for each value of one header a rule has to be created. This
could for example be the case if the attacker leverages a bot
net and as a result more than one IP-Source address has to be
blocked. When installed as a low prioritized dropping rule in
the switch it is now able to handle further attacking packets at
line rate and without additional interaction with the controller.

The impact on the network is negligible since only regular
hosts falling in the detected flow characteristics are affected
by the mitigation which is considered unlikely concerning our
attack model.

IV. EVALUATION

This section describes the abstracted simulation method
which was used to validate the detection algorithm. Besides the
simulation results, an analytic evaluation of the false positive
and false negative probabilities is provided which can be used
to determine the correct parameters of the detection algorithm.

A. Abstracted Simulation

Host

DoS-Detector

Pa
ck

et
In

Control Plane

Data Plane

HostHostHost

λ
l

Attacker

P
acketIn

λ
a

Fig. 3: Abstracted simulation of the detection system.

In order to evaluate the detection method we built a
simulation based on the widely used OMNeT++ framework
[16]. One feature of our simulation is that we did not simulate
on a data plane level, but only on a control plane level. The
abstracted view is shown in Figure 3: In the simulated system
a host causes a new PacketIn when a new connection is started,
i.e. with the first packet. Afterwards, all packets which belong
to the same flow would be handled in hardware (i.e. the data
plane) in the real system and are not simulated. This greatly
reduces the number of simulated packets, while retaining all
important effects of the attack. In our simulation we used for
the legitimate users negative exponentially distributed arrivals
with an expected mean inter arrival time Tl, which correspond
to an arrival rate λl = 1

Tl
. The attacker arrival rate is called

λa. Other important parameters are the window size tW ,
i.e. the time between two consecutive runs of the detection
algorithm and the detection threshold θm. The parameters are
also summarized in Table II.

Normal Traffic Arrival Rate λl

Attack Arrival Rate λa

Window time tW
Number of Hosts H

Max value threshold θm

TABLE II: Parameters of simulation and Analysis

B. Analytic Evaluation of the Detection Performance

The detection mechanism of our approach labels the state
of the system as ”under attack” if the table maximum mT =
max(TS,h)∀S, h exceeds some threshold θm. The threshold

should be low enough to detect attacks, but it should not raise
an alarm if no attack is attempted. As usual, we call these
false alarms false positives while undetected attacks are false
negatives. The threshold could be set empirically by just trying
different thresholds and measuring the effects.

In this section, we try to give a more systematic approach
for determining the threshold. The expected mT corresponds
with the maximum expected collisions of a header value. For
example, if all headers of the incoming connections of one
host are uniformly distributed, except for the source IP, this
results in a high value in the corresponding table entry s, h
and therefore this entry T (s, h) dominates ms = max(Ts),
the maximum of row s. For this system, we can compute the
probability Pms(n) of the maximum of row Ts with the help
of the Erlang distribution: The Erlang CDF Fn,λ(x) describes
the probability of n events occurring in a certain time interval
x with 0 ≤ X ≤ x, if the events are exponentially distributed
in time with a rate λ.

Fn,λ(x) = 1− e−λ·x
n−1∑
i=0

(λ · x)i

i!

For our case the interval is always 0 ≤ X ≤ tW . For a fixed
event rate, the probability of more than n events is:

Pms
(n) = 1− Fn,λ(tW) = e−λ·tW

n−1∑
i=0

(λ · tW)i

i!

The probability of n events is then:

pms(n) = Pms(n+ 1)− Pms(n)

pmi
(n) corresponds with the probability of a value of n for

row ms if the entry s, t of the counter table is hit by the
repeated header field, which is the source IP in our case.
Now, our algorithm determines maximum of the table mT . The
network consists of H hosts which generate flows statistically
independent, therefore the cumulative probability of mT is:

PmT
(n) = (Pms(n))H = (1− Fn,λ(tW))H

and the corresponding probability density is:

pmT
(n) = PmT

(n+ 1)− PmT)(n)

From this density the expected maximum can be derived with:

E(mT) =

∞∑
n=0

n · pmT
(n)

The results shown in Figure 4 support this theoretic model,
the simulation fits the theoretical results very well, i.e. the
analytical expected value matches the simulated mean.

With the help of this probability we can also get the false
positive (FP) probability for a given threshold θm, as this is
the probability to reach a value of more than θm:

PFP = 1− PmT
(θm) = 1− (1− Fθm,λl

(tW))H

On the other hand, an attacker with the rate λa is not detected
with the probability indicated by the false negative (FN) rate:

PFN = PmT
(θm) = 1− Fθm,λa(tW)

As we assume only one attacker H = 1 for PFN .

0.2 0.4 0.6 0.8 1
0

20

40

60

80

Mean Interarrivel time of one host [s]

Ta
bl

e
m

ax
im

um

Theory
Simulated Mean
Simulated Min
Simulated Max

Fig. 4: Results of the maximum table value for different inter
arrival times.

C. Results

We evaluated our system with a network of legitimate H =
100 hosts. We simulated 10 repetitions for each setting with a
duration of 1000 s per run.

Normal Traffic 10% Rate Attack
Arrival Rate λl = 1 s−1 λa = 10 s−1

θm 20.00 20.00
H 100 100

Simulation
Mean max 11.40 52.58

Maximum max 18.00 84.00
Theory

Expected max 11.41 50.00
FP Propability 0.035% 0.035%
FN Propability - 0.000048 %

TABLE III: Exemplary simulation results for a network with
100 Hosts

Table III shows a comparison of the behavior without and
with attack, in this simulation the maximum did not exceed
a value of 18 so we did not have any false positives for
the given threshold. As can be seen from the results, if an
attack adds only 10% additional load to the system, it can
be detected easily. Even with this relatively small additional
load, the expected maximum value is about five times higher
than the normal traffic. This large difference results in very
small FN and FP probabilities. A 10% increase means that
the switch’s table is filled 10% faster than usual, or if we take
timeouts into account the table has 10% more entries. Usually,
this comparably small increase should not affect the system’s
behavior.

Figure 4 shows the behavior of the max value for dif-
ferent traffic intensities. The simulation results match almost
exactly the theoretic forecast. It can be observed that the table
maximum is highly dependent on the traffic rate of one host.
Therefore, it can be necessary to set the detection threshold
according to the specific network environment.

Figure 5 shows the sum of the false negative and false
positive probabilities. When the sum is close to 0 (darker) the
algorithm is performing well. The lighter upper right region

5 10 15 20

10

20

30

40

50

TW · λl

Θ
m

PFP + PFN
0 0.2 0.4 0.6 0.8 1

Fig. 5: Working region of detection algorithm, with λa = 10·λl
and H = 100

is caused by a high false positive probability the lower left
by false negatives. For a given arrival rate a small detection
window is beneficial as this improves the detection speed.
Although if the product of window time and rate of legitimate
hosts is big we have a very broad detection range, i.e. we
have a big region where we can choose a good threshold while
sacrificing the detection speed. On the other hand for a small
product and consequently a small threshold the system is very
sensitive for changes in the arrival rate of the users as this can
cause false positives.

V. CONCLUSION

In this work we introduced a novel detection and miti-
gation algorithm for Denial of Service Attacks in Software
Defined Networks. Our work concentrates on attacks which
aim to overflow the hardware tables of SDN switches in
cloud environments. The attacker causes a high number of
PacketIn messages by changing header fields. Our proposed
detection approach is based on the observation that an attacker
cannot change all header fields. This allows us to identify the
attack. For example, in order to keep the connectivity with the
network for OpenStack spoofing the source IP address is not
possible. Our approach uses a table with the header fields as
columns and hashes of the header fields as rows. If an attack
occurs the fields corresponding to the unchanged fields grow
tremendously. After identifying the attack, we propose to use
an OpenFlow rule which drops further attack packets.

Our evaluation shows that the algorithm can detect attacks
reliably and with low false positive probability with the correct
parameters. Using the proposed formulas it is analytically
possible to determine a good choice of these parameters.

One drawback is, that our approach cannot detect attackers,
that can change all header fields simultaneously. This could be
the case for an attacker that controls a big bot-net.

In the future we want to enhance the detection with addi-
tional metrics such as the difference between two subsequent
maxima. Finally, we want to further extend the mitigation of
the attack. The mitigation could also lead to a relatively big set
of table entries and deteriorate performance, though fewer rules
than without our approach are used. Especially, possible side
effects on the legitimate network traffic should be investigated.

ACKNOWLEDGMENT

This work has been performed in the framework of the
KMU-Innovativ project SarDiNe, and it is partly funded by
the BMBF (Project ID 16BP12308). The authors alone are
responsible for the content of the paper.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in Proceedings of the 35th Annual
IEEE Conference on Local Computer Networks, (LCN), 2010.

[3] J. M. Dover, “A denial of service attack against the Open Floodlight
SDN controller,” Dover Networks, Tech. Rep., 2013.

[4] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS attacks
against SDN controllers,” in 2015 International Conference on Com-
puting, Networking and Communications (ICNC), 2015.

[5] H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS Attack Prevention
Extension in Software-Defined Networks,” in 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2015.

[6] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow
in software-defined networks,” in Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking (HotSDN), 2014.

[7] R. Bifulco and A. Matsiuk, “Towards scalable sdn switches: Enabling
faster flow table entries installation,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), 2015.

[8] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch.” in Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2015.

[9] L. Wei and C. J. Fung, “FlowRanger: A request prioritizing algorithm
for controller DoS attacks in Software Defined Networks,” in IEEE
International Conference on Communications (ICC), 2015.

[10] R. Kandoi and M. Antikainen, “Denial-of-service attacks in OpenFlow
SDN networks,” in IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2015.

[11] H. Wang, L. Xu, and G. Gu, “OF-Guard: A DoS Attack Prevention
Extension in Software-Defined Networks,” Texas A&M University,
Tech. Rep., 2014.

[12] Y. Qian, W. You, and K. Qian, “Openflow flow table overflow attacks
and countermeasures,” in 2016 European Conference on Networks and
Communications (EuCNC), 2016.

[13] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and depend-
able software-defined networks,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking
(HotSDN), 2013.

[14] R. Klöti, V. Kotronis, and P. Smith, Proceedings - International Con-
ference on Network Protocols (ICNP), 2013.

[15] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, and T. Hansen, “The
FNV Non-Cryptographic Hash Algorithm,” https://tools.ietf.org/html/
draft-eastlake-fnv-11.

[16] A. Varga et al., “The OMNeT++ discrete event simulation system,” in
Proceedings of the European simulation multiconference (ESM), 2001.

