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Abstract—With the rapid growth of user traffic, service in-
novation, and the persistent necessity to reduce costs, today’s
mobile operators are faced with several challenges. In net-
working, two concepts have emerged aiming at cost reduction,
increase of network scalability and deployment flexibility, namely
Network Functions Virtualization (NFV) and Software Defined
Networking (SDN). NFV mitigates the dependency on hardware,
where mobile network functions are deployed as software Virtual
Network Functions (VNF) on commodity servers at cloud infras-
tructure, i.e., data centers (DC). SDN provides a programmable
and flexible network control by decoupling the mobile network
functions into control plane and data plane functions. The design
of the next generation mobile network (5G) requires new plan-
ning and dimensioning models to achieve a cost optimal design
that supports a wide range of traffic demands. We propose three
optimization models that aim at minimizing the network load
cost as well as data center resources cost by finding the optimal
placement of the data centers as well the SDN and NFV mobile
network functions. The optimization solutions demonstrate the
trade-offs between the different data center deployments, i.e.,
centralized or distributed, and the different cost factors, i.e.,
optimal network load cost or data center resources cost. We
propose a Pareto optimal multi-objective model that achieves a
balance between network and data center cost. Additionally, we
use prior inference, based on the solutions of the single objectives,
to pre-select data center locations for the multi-objective model
that results in reducing the optimization complexity and achieves
savings in run time while keeping a minimal optimality gap.

Index Terms—Software Defined Networking, Network Func-
tions Virtualization, 5G, Mobile Core Network, Optimization

I. INTRODUCTION

HE next generation 5G requires new concepts and ar-

chitectures for the mobile network in order to improve
the offered performance, to increase its deployment flexibility
and to reduce its cost. An essential part that imposes several
challenges to mobile operators is the mobile core network.
The mobile core network is currently populated with several
integrated hardware-based network functions. This limits the
mobile core network’s scalability to cope with the drastic
increase in users’ traffic. This also results in long deployment
cycles and limits the service innovation and performance
improvement. Another limitation in the current core network
architecture is the distributed control plane design which
contributes to the offered performance to users and induces
inflexibility to the network configuration. Therefore, according
to these challenges, the current deployment induces a high
Total Cost of Ownership (TCO) on operators to build and

operate the mobile core network and hinders the innovation in
the offered services by the mobile network operators [1].

In networking, two main concepts are being considered
for the core network architecture towards the next generation
5G [2], [3], namely Network Functions Virtualization (NFV)
and Software Defined Networking (SDN). NFV [4] leverages
the concepts of IT virtualization to network functions, where
functions can be implemented in software and deployed as
Virtual Network Functions (VNF) on commodity hardware at
cloud, i.e., data center (DC) infrastructure. NFV offers more
flexibility by removing the dependency on the hardware and it
enables more possibilities for shorter deployment cycles and
service upgrade. Hence, NFV is expected to reduce the cost
of mobile networks. SDN [5], decouples the data and control
planes of network functions and introduces an open API, e.g.,
OpenFlow protocol [6] as a current defacto standard, between
the decoupled planes. The control plane is realized by SDN
controllers that configure the SDN data plane for a mobile core
network, what we refer to as SDN+ switches. SDN+ switches
implement special purpose data plane functions, e.g., GPRS
Tunneling Protocol (GTP) tunneling that encapsulates users’
traffic or charging and accounting functions. In this way, SDN
offers a programmable network, which simplifies the network
operation and control. Furthermore, SDN enables a centralized
control view that provides the operators with the possibility to
achieve more efficient network control.

Considering the mobile core network architecture based
on SDN and NFV, novel optimization models need to be
developed for the planning and dimensioning of the SDN
and NFV mobile core network architecture. The optimization
models are required to consider the new realization of the
mobile core functions as well as the new mobile core net-
work infrastructure. Such infrastructure comprises of a mix
of networking forwarding elements, i.e., switches, as well as
cloud infrastructure, i.e., data centers. The models should also
incorporate new traffic models for the data as well as control
planes, e.g., additional SDN control plane traffic.

In this work, we propose three optimization models that
aim at finding the optimal design for a mobile core network
based on SDN and NFV. These models provide optimal cost
solutions with respect to the following aspects: a) the optimal
placement of the data centers, which host the mobile VNFs
and mobile SDN controllers, b) the optimal mapping of VNFs
and controllers to each data center, and c¢) the number and
placement of the mobile special purpose SDN+ switches. The
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proposed optimization models consider latency requirements
for both data and control planes. An extensive evaluation is
carried out, that generates various possible function chains in
order to find the optimal network design that supports the
expected wide range of varying traffic in 5G.

There are different cost factors that can be optimized in
the new core network design based on SDN and NFV. The
first cost factor is the network load cost which represents
the cost of the network resources needed to support the data
and control plane traffic of the mobile core network. In our
previous work [7], we have introduced the optimization model
that incorporates both SDN and NFV core network functions.
However, we have only considered the optimization of the
network load cost. We also focused only on data plane function
chains and data plane latency requirements. Hence, in this
work, we extend the network load cost optimization model
to include control plane functions chains and control latency
requirements to provide a more comprehensive overall model
for a mobile core network.

The other cost factor, which is introduced by the concepts of
SDN and NFV, is the cost of the data centers infrastructure that
hosts the VNFs and SDN controllers. In this work, we propose
a new optimization model for the data center resources cost
to analyze the trade-offs between the network load and data
center resources cost factors. Additionally, a multi-objective
model is proposed in order to find Pareto optimal cost solutions
considering both the network as well as data center resources
cost. We also use prior inference, based on the single objective
solutions, to pre-select candidate data center locations for the
Pareto optimal multi-objective model in order to improve its
run time. All three proposed models take into account the data
and control plane latency as key performance metrics, as well
as the number of data centers that are used for deployment.

The remainder of this paper is structured as follows. Sec-
tion II presents an overview of the background and related state
of the art. In Section III, the architecture of the mobile core
network based on SDN and NFV is introduced with an analysis
for the data and control planes. Section IV introduces the
mathematical formulations and approaches for the proposed
models. An extensive evaluation of the models is presented in
Sections V and VI. Finally, conclusions and steps for future
work are presented in Section VII.

II. BACKGROUND AND RELATED WORK

The state-of-the-art literature can be classified into two
areas. The first area is concerned with the architecture designs
and implementation designs for SDN or NFV mobile core
networks. The second area considers the modeling and opti-
mization of SDN or NFV networks, for mobile networks and
for traditional IP networks. In both areas, we could observe a
clear split of the work into either SDN or NFV related.

A. SDN and NFV Mobile Network Architectures

In our review, we focus on related work that considers
deployment architectures or implementation oriented solutions
for SDN or NFV mobile core network. Considering SDN,
Softcell [8], MobileFlow [9], SAMA [10] and SoftMoW [11]

apply the concept of SDN on the mobile core network by
replacing the network functions with SDN controllers and
switches that are used to interconnect between the RAN and
external packet networks. [12] presents a qualitative discussion
to the advantages and drawbacks of using SDN for mobile
networks. The authors in [13] present an SDN core net-
work architecture with extensions to the OpenFlow protocol
to implement GTP to encapsulate users’ traffic in the core
network. SDMA [14] and TrafficJam [15] are proposals for
a core network architecture based on SDN with a focus on
user mobility management using OpenFlow. Both argue that
an SDN mobility management can improve the core network
support for mobile users. Another direction is presented in [16]
where the authors focus on the state, e.g., user data tunnels
and charging profiles, that needs to be collected and exchanged
between SDN controllers that implement control functions of
the mobile core network.

A second group of proposals has investigated an NFV
architecture for the mobile core network. The authors of [17]
and [18] discuss a core network architecture that is fully
comprised of virtual network functions and deployed on a
cloud infrastructure. The work in [19] present the concept
of Software as a Service for a virtualized core network.
The authors of [20] exploit the concepts of NFV and cloud
computing to present a virtualized core network that follows
mobile users as they move. Furthermore, the work in [21]
and [22] present an NFV core architecture that runs alongside
a standard legacy core network. The NFV core network in
these proposals is used for offloading purposes in case the
legacy core network is overloaded.

All proposed mobile core network architectures in the state-
of-the-art literature consider either a deployment solely based
on SDN or NFV. However, as we have presented in our
previous work in [23], an SDN architecture can induce a higher
cost due to the additional SDN control plane, while an NFV
architecture can violate the network latency requirements due
to the consolidation of VNFs in data centers. An architecture
that includes both SDN and NFV, where part of the network is
selectively operated with SDN and the other part is comprised
of VNFs, can exploit the advantages from both concepts and
address their limitations.

B. Dimensioning and Resource Allocation Problems

There are two main areas of modeling and optimization
related to the use of SDN and NFV in the mobile core
network: (a) placement of SDN controllers and switches and
(b) resource allocation and placement of VNFs.

The dimensioning and placement of SDN controllers and
switches is known as the controller placement problem. This
problem has been introduced in [24] which uses a brute force
approach to find the placement of K number of controllers
and the assignment of switches to each controller targeting a
minimum control plane latency. A controller placement based
on a simulated annealing heuristic has been proposed in [25]
with a focus on control plane latency and resilience aspects.
The authors in [26] provide a mathematical formulation for
an optimal controller placement that considers both control
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Fig. 1. Architecture comparison between (a) legacy LTE architecture, (b) SDN mobile core network and (c) NFV mobile core network. The figures additionally
illustrate the logical user data plane, LTE control plane as well as SDN control plane function chains of each architecture.

latency and controllers load. A controller placement that min-
imizes the control overhead of sharing network information
among distributed controllers is proposed in [27].
Considering the resource allocation and placement of VNFs,
the authors in [28] demonstrate an optimal placement for
virtual core gateways that handle sudden traffic increase in
case of large crowd events. [29] presents a mathematical for-
mulation for an optimal placement of virtual function chains.
They consider constraints on the network capacity as well
as requested latency for a function chain. [30] proposes two
algorithms to embed network service chains with a target of
minimizing the overall embedding cost. The authors in [31]
use machine learning techniques to find an optimal placement
for VNFs given data center resources. An optimal location-
aware VNF mapping is proposed in [32], that minimizes the
function processing and traffic transmission cost. For mobile
networks, an optimization for the network resources, i.e.,
link and node capacity, has been proposed in [33] for the
embedding of virtual mobile core network functions.
Reviewing the existing related literature on modeling and
optimization, we can observe that models that jointly consider
SDN and NFV are missing. Additionally, only a few proposals
incorporate the detailed functions, operations and requirements
of the mobile core network as we aim at in our work.
Furthermore, there are only a few proposals that investigate the
impact of the data plane as well as the control plane latency
requirements. There is no existing work, to our knowledge,
that is tailored for mobile core functions and considers the
joint optimization of VNF function chains as well as SDN
controllers and switches, which is the focus of our work.

III. SDN AND NFV CORE NETWORK
ARCHITECTURE AND ANALYSIS

In this section, we discuss more in detail the next generation
mobile core network design based on SDN and NFV. Addi-
tionally, we analyze the impact of SDN and NFV on both
the data as well the control plane of the mobile core network,
which is all incorporated in the proposed optimization models.

A. Mobile Core Network Architecture

1) Legacy LTE Mobile Core Network Architecture: The
mobile core network, in the latest LTE standard [34], shown in
Fig. 1a, comprises of several network functions that implement
special operations that are needed for a mobile network. The
core network functions can be classified into two categories
based on their purpose: (a) functions that handle the control
plane only, such as the Mobility Management Entity (MME)
or the Home Subsriber Server (HSS) (b) functions that handle
both data as well as control planes, such as the Serving
Gateway (SGW) and the Packet Data Network Gateway
(PGW). The data plane functions implement special purpose
processing for mobile networks, i.e., GTP tunneling for the
user data in order to differentiate between the users and to be
able to provide service quality classes for each user. Other data
plane functions include charging and accounting for the user
data usage. The control plane functions handle the setup of
the user tunnels and mobility management, i.e., tracking area
updates and redirection of user tunnels. Additionally, control
functions handle user authentication, subscription management
and as access control. For more details, we refer to our
previous work [23], where we performed a detailed analysis
of the LTE mobile core network functions.

In the current LTE mobile core network, what we refer to
as legacy, the data and control plane functions are realized by
dedicated hardware that implements each specialized function.
Moving towards the next generation 5G mobile core network,
functions that only handle the control plane, e.g., MME, could
be deployed as virtual network functions, i.e., software, on a
cloud infrastructure, i.e, data centers. However, regarding the
functions that handle both the data as well as control planes,
i.e., SGW and PGW, we consider the two realization options,
either SDN based or NFV based.

2) SDN Mobile Core Network Architecture: Considering
an SDN based deployment, shown in Fig. 1b, the control
plane mobile core functions run as VNFs while the gateway
functions, i.e., SGW and PGW, are decoupled into SDN
controllers (S/PGW CTR) and special purpose SDN+ switches,
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as shown in Fig. 1b. The SDN controllers, deployed at the
data center infrastructure, configure the SDN+ switches which
handle the data plane traffic. The controllers implement the
control plane of the core network gateway functions. Thus,
the SDN controllers are required to handle the LTE control
plane signaling procedures which are defined by the 3GPP
standard, i.e., exchange of signaling messages with the radio
access network in order to support the user’s attachment to the
mobile network or user’s mobility. According to the signaling
procedures, the controllers are responsible to configure the data
plane, i.e., SDN+ switches, via the SDN API used by the
operator. Additionally, the controllers need to collect the data
usage of each user from the data plane switches for the purpose
of charging and accounting. On the other hand, the SDN+
switches implement the gateway data plane functions. One
important data plane function needed at the SDN+ switches
is GTP tunneling which is used to identify data plane traffic
of users. The SDN+ switches monitor the data plane statistics
for charging and accounting. Additionally, the SDN+ switches
need to support the configuration of quality of service classes
that can be assigned to users.

3) NFV Mobile Core Network Architecture: In case of an
NFV based deployment, as illustrated in Fig. lc, the control
plane mobile core functions as well as the gateway functions,
i.e, SGW and PGW, run as VNFs (vS/PGW) on commodity
hardware at data centers. This means that the gateway’s control
plane as well as the data plane processing is running on
commodity servers in the cloud. The data plane processing
on commodity servers can be accelerated by solutions such
as Intel DPDK [35]. Hence, the legacy core network hard-
ware would be replaced by simple forwarding switches, i.e.,
transport switches, that forward both the data plane and control
plane traffic between the radio access network, the data centers
and the external network, as illustrated in Fig. lc. Note that
in this architecture, all mobile core network functions are
migrated to software running on commodity servers and are
fully independent from hardware, i.e., functions which handle
control plane only, e.g, MME, and functions that handle both
data as well control plane, e.g., SGW and PGW. This implies
that there is no processing, i.e., function, implemented on the
forwarding switches of the mobile core network.

B. Data Plane Function Chains Analysis

The data plane path within the mobile core depends on the
operator’s decision for the realization of both the SGW and
PGW functions. In case of using SDN, as shown in Fig. 1b, the
legacy hardware functions would be replaced with the SDN+
switches which are controlled by the controllers residing in
the cloud. This means that the data plane itself would follow
the same function chains as the legacy network, i.e, between
the SDN+ switches. It also means that the data plane latency
depends only on the locations of the SDN+ switches and is
decoupled from the location of the data center infrastructure.
The data plane traffic in mobile networks can be modeled as
uni directional function chains, i.e., uplink or downlink.

On the other hand, following the concept of NFV, the SGW
and PGW functions are moved to the cloud. The legacy func-
tions are replaced by simple forwarding transport switches, as

shown in Fig. 1c, which transport the data plane traffic towards
the data center infrastructure where the data plane processing
is carried out by the software gateway functions. This means
that the NFV architecture has an impact on the data plane
latency as it changes the data plane function chains. The data
plane function chains are extended by the links carrying the
traffic back and forth between the transport switches and the
data centers. Hence, the data plane latency becomes dependent
on the data center locations.

C. Control Plane Function Chains Analysis

The LTE control plane procedures in the mobile core
network consist of multiple sequential iterations between the
network functions. For instance, the ATTACH procedure, refer
to the 3GPP standard [34], involves mainly the MME, SGW
and PGW for the setup of a user GTP tunnel. The ATTACH
procedure defines the control messages exchanged in order
to attach a user to the mobile network and setup its data
plane GTP tunnel. It includes 3 control iterations between the
RAN and the MME, 2 control iterations between the MME
and the SGW and 2 control iterations between the SGW and
PGW, respectively. Hence, the control plane is required to be
modeled differently from how the control plane is modeled
in traditional IP networks. Existing work, as discussed in
Section II-B, e.g., [29], models the control plane function
chains as uni directional demands. This does not match the
control at the mobile core network, where sequential control
iterations are required.

Considering an SDN deployment for the mobile core gate-
way functions, the control plane function chains would be
mapped on the path between the RAN, i.e., eNBs, and the data
centers which run the virtual control functions, i.e., VMME and
the SDN controllers. This makes the control plane latency
dependent on the location of the data centers. The control
function chains are also extended by the control path between
the SDN controllers and their respective SDN+ switches.
Whereas, an NFV deployment means that the mobile core
VNFs are all consolidated in data centers. Hence, the control
plane function chains are mapped on the path between the
RAN and the data centers infrastructure. Therefore, the latency
of the control plane function chains becomes dependent only
on the locations of the data centers.

D. Problem Statement

From the analysis in Sections III-B and III-C, we could
observe that SDN and NFV deployments for mobile core
networks show trade-offs in terms of data plane or control
plane latency, network traffic and data center resources. Hence,
novel optimization models are required to find an optimal
planning and dimensioning for a mobile core network, that
jointly includes both SDN and NFV deployments, in terms of
the network load cost and the data center resources cost. The
optimal core network design entails the optimal locations for
data centers and the optimal network split between SDN and
NFV that supports the expected wide range of traffic demands
in 5G. Additionally, the optimal network design has to ensure
the mobile core network performance requirements, in terms
of data plane and control plane latency.



IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON ADVANCES IN MANAGEMENT OF SOFTWARIZED NETWORKS 5

IV. SDN AND NFV BASED MOBILE CORE
DIMENSIONING AND RESOURCE ALLOCATION MODELS

In this section, three optimization models are proposed for
the optimal cost dimensioning of the mobile core network
based on both SDN and NFV concepts. We introduce the math-
ematical formulation for the models and the used notations
for each of the proposed models. The optimization models
are formulated as Mixed Integer Linear Programs (MILP). In
general, the aim of the proposed models is to find the optimal
dimensioning and resource allocation of the core network that
satisfies data plane and control plane latency requirements
given a core network topology and number of data centers. The
models are used to solve a) the optimal placement of the data
centers, which host the mobile VNFs and SDN controllers,
b) the optimal mapping of VNFs and controllers to each data
center and c¢) the number and placement of the special purpose
SDN+ switches that implement the data plane functions of the
core network. The first model targets the optimal network load
cost, the second model optimizes the data center resources
cost, while the third model is a Pareto optimal multi-objective
model that results in Pareto optimal cost for the network load
and data center resources.

A. Graph Model and Notation

A core network graph G(V, E) is considered with a set of
nodes V and edges E. The core nodes are classified as SGW
nodes v¥ € V¥ c V and PGW nodes v/ € VP c V. We
assume a brownfield scenario where an operator would select
a location to deploy a data center (DC) where it already has a
deployed node, thus, data center nodes, i.e., locations, C C V.
The set D contains flow demands in the core network, where
a flow demand d = (v*,v?) € D represents the requested
bidirectional and non-splittable data plane traffic flow, i.e.,
uplink and downlink, between an SGW node v* and PGW
node v”. The data and control planes of each demand can
be realized as SDN or NFV function chains, respectively. For
each demand, the set F d(c, d) contains the SDN and NFV
data plane function chains of a demand d € D using a data
center ¢ € C. Similarly, the set F¢(c,d) contains the SDN
and NFV control function chains of a demand d using a data
center ¢ € C.

Regarding the NFV realization of a demand d = (v%,vP),
the data plane chain is defined as the path traversing SGW
node v*, the VNFs deployed at the data center nodes ¢ and
the PGW node v , while the control plane is defined as three
times the path between the SGW node v* and VNF deployed
at the data center ¢ € C, as explained for the ATTACH
procedure in Section III-C. As for the SDN realization, the data
plane function chain represents the path between the SDN+
switches, instead of the SGW node v* and PGW node v”.
The control plane function chain is defined as three times the
path between the the SGW node v* and the SDN controller
deployed at data center node ¢ in addition to maximum of the
two paths between the controller and switches at v* and v”,
respectively. All combinations of data and control functions
chains with data center locations in the sets F9(c,d) and
F€¢(c,d) are calculated for each demand, i.e., calculated and

TABLE I
SETS
[ Notation [ Description
G(V,E) core network graph
C set of nodes (locations) for data centers C C V
Vs set of SGW nodes (locations) VS c V
vp set of PGW nodes (locations) VP cV
E Set of physical network edges
D Set of traffic demands d = (vS,vP) € D
F9(c,d) | set of data function chains for demand d € D, DC ¢ € C
FC(c,d) set of control function chains for demand d € D, DC ¢ € C
TABLE II
PARAMETERS
[ Notation | Description
K number of data centers
L4 data plane latency requirement
L€ control plane latency requirement
r(d) requested data bandwidth by a demand d € D
a(d) control percentage of r(d) for demand d € D
14, f4, d) data plane latency of demand d € D as a data function
chain f¢ € F¥ using DC ¢ € C, 0 otherwise
1€(c, f¢,d) control plane latency of demand d € D as a control
function chain f¢ € F€ using DC ¢ € C, 0 otherwise
nd(c, fd, d) data plane load of demand d € D as a data
function chain f¢ € F9 using DC ¢ € C, 0 otherwise
nc(c, f€,d) control plane load of demand d € D as a control
function chain f¢ € F¢ using DC ¢ € C, 0 otherwise
rd (c,f‘l, d) DC CPU resources for demand d € D as a data
function chain f¢ € F< using DC ¢ € C, 0 otherwise
r¢(c, f¢,d) DC CPU resources for demand d € D as a control
function chain f¢ € F€ using DC ¢ € C, 0 otherwise
Scores number of cores in a data center server
Pons number of cores used by a VNF for data plane
p‘fn'f number of cores needed by a VNF for control plane
Py number of cores needed by an SDN controller

provided as input to the optimization problem in order to
simplify the problem and improve the solving time. The end-
to-end latency of each function chain is additionally calculated.
Assuming an underlying optical transport layer in the mobile
core network, the latency £(e) of an edge e is calculated
as the geographic distance in kilometers between any two
connected nodes divided by the speed of light 2 x 103 m/s
in optical fiber. The latency of a function chain is the sum
of latencies ), €(e) on the edges e that belong to a data
function chain f%(c,d) € F%(c,d) or a control function chain
f€(c,d) € F(c,d). According to our previous measurements
and observations in [7], the processing latency of NFV gate-
ways and carrier-grade SDN+ switches are assumed to be
insignificant, in the order of mircoseconds, compared to the
network propagation latency of a wide spread core network
topology, which is in the order of milliseconds.

B. Network Load Cost Optimization Model

This model aims at optimizing the network cost, i.e., it
finds the dimensioning and resource allocation that provides
an optimal network cost. The model’s cost function, what
we call the network traffic load or shortly network load, is
defined as the bandwidth-latency product. In this way, we
could optimize the network resource allocation, i.e., band-
width, in addition to the performance, i.e., latency, which
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would provide performance gains to the users’ experience. For
each function chain f using a data center ¢ for each demand,
the network load is computed as the requested bandwidth by
the demand r(d) multiplied by the latency on the function
chain. Hence, the load for the data function chain is defined
as né(c, f4,d) = r(d).1%c, f¢,d), while the load of a control
function chain n¢(c, f¢,d) = a(d).r(d).l°(c, f¢,d) where
a(d) denotes the control bandwidth percentage of requested
data plane bandwidth for this demand. For SDN function
chains, we consider that the percentage of the mobile control
traffic, i.e., signaling, can be assumed to be comparably similar
to the traffic resulting from SDN control. The constraints used
in this model are defined as follows:

1) Function Chain and DC Selection: These constraints
ensure that for every demand d € D there is one function
chain selected, i.e., either NFV or SDN, denoted by the binary
variables 6%(c, f¢,d) and 6¢(c, f¢,d) for data and control
plane, respectively. This function chain must use at most one
data center c, i.e., place the VNF at this data center location
for an NFV function chain or use this data center to host the
controller for the SDN chain of this demand.

Z Z s, f,dy=1 VYdeD (1)
ceC feFd
> e fld=1 VdeD )
ceC feFc¢

2) Function Chain Match: This constraint makes sure that
the control function chain f¢ € F¢(c, d) matches the selected
data plane function chain f¢ € F9(c,d) for each demand
d € D using a data center location ¢ € C, e.g., if an SDN data
plane function chain is selected for a demand, then the control
function chain of this demand must be SDN. A function
7( fd, f€) returns the function chain type, i.e., SDN or NFV.

6% c, . d) < 6°(c, f,d) VdeD,ceC, feF f°eF*

3)

3) DC Selected Flag: A binary variable ¢(c) is utilized in

this constraint to flag that this data center location has been

selected in case at least one function chain of one demand has
selected the data center ¢ to place the VNF or controller.

Z §%c, f%,d) < 5(c) VdeD,ceC 4)
deFd

Z 5@, f¢,d) < 6(c) VdeD,ceC (5)
f('eF(,‘

4) Number of DCs: This constraint defines the number of
data center locations to be used. It ensures that the sum of the
binary variable ¢(c), which indicates the overall locations, is
equal to a given input parameter K.

Z 5(c) =K (6)

ceC

TABLE III
VARIABLES

[ Notation [
o(c)
64 (c, 4, d)

Description |

binary variable =1 if DC is located at ¢ € C, 0 otherwise
binary variable = 1 if data plane of demand d € D

is selected as a function chain f° d ¢ pd , either SDN
or NFV, using DC ¢ € C, 0 otherwise

binary variable = 1 if control plane of demand d € D
is selected as a function chain f€ € F€, either SDN
or NFV, using DC ¢ € C, 0 otherwise

integer variable denoting number of servers required
for data plane function chains at DC ¢ € C

integer variable denoting number of servers required
for control plane function chains at DC ¢ € C

integer variable denoting the total number of servers
required for both data and control planes at DC ¢ € C

6%(c, €, d)

O'd(C)
o (c)

p(c)

5) Data and Control Latency: For mobile networks, it is
very important to meet the latency performance requirements
for both data and control planes, the next two constraints
ensure that a selected function chain using a data center ¢ € C
for a demand d € D satisfies the upper bound for allowed data
and control latency.

Z s, f4d) ¢, f4,d) < LY YdeD,ceC ()
deFd

Z 5€(e, S, d)I(c, f,d) < L VdeD,ceC (8)
FéeFe

Network Load Cost Objective: The model’s objective is to
minimize the network load cost which is defined by the the
product of carried traffic and the function chain latency. The
network load is the sum of the load of both data and control
function chains for all demands d € D.

Cper =min »° 3" 3" 8¢, f4, dn(c, f4, )

ceC fdeFd deD

NS s rdn e fd) ©)

ceC feeFc° deD

solving this objective results in finding the optimal locations
of K data centers. It also finds the optimal functions chains
for each demand, i.e., either SDN or NFV, based on the
selected data center locations in addition to optimally assign
the function chains to the data centers such that the resulting
total network load, i.e., data and control traffic, is minimized.

C. Data Center Resources Cost Optimization Model

This model aims at optimizing the data center infrastruc-
ture cost needed to operate a core network given a set of
demands and latency requirements. This model reflects the
dimensioning of the data centers independently from the
network cost, e.g., in case an operator does not control or
does not have access to the inter-data center network. As an
initial assumption, we only consider the infrastructure cost
as the servers cost. The number of servers is proportional
to the number of computational resources, i.e., CPU cores,
that are needed for the NFV functions chains, i.e., virtual
gateways, or SDN function chains, i.e., controllers. For NFV
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function chains, the CPU resources needed are computed
as the requested bandwidth by a demand multiplied by the
number of cores required by a virtual gateway per unit demand
rd (e, fd, d) = r(d).p“fn while the control plane resources
r‘(c, f¢,d) = a/(d).r(d).pgnf. As for the SDN function
chains, the number of cores needed for the SDN controllers
are r°(c, f,d) = a(d).r(d).p,,, while there are no resources
needed for the data plane, i.e., rd(c, f d d) = 0. This model
additionally aims at balancing the resources among the data
centers, in case the number of data centers K > 1, by
minimizing the largest data center, i.e., the maximum number
of servers allocated at a single data center location. This
model uses all previous defined constraints, i.e., eqs (1)-(8). It
requires additional constraints for the data centers as follows:

1) DC Number of Servers: The number of servers, for data
and control planes, at each data center ¢ € C is calculated
by adding the resources r%(c, f4,d) or r(c, f¢,d) used by
function chains of all demands that use this data center. This
gives the total number of CPU cores required at this data
center, which is divided by the number of cores per server,
what we call the server consolidation factor —

Scores

dEDfdeFd

(6%, f4 (e, f4,d)) < 0l(c) VeecC

SCUT{,’S

(10)

(6°Ce. f&.dyre (e, f<.d)) < 0(c) Ve eC

(11)

2) Largest DC: The integer variable u(c) represents the

largest data center, in terms of number of servers, which is

lower bounded according to this constraint by the data center
¢ € C that has the maximum number of allocated servers.

deD fc¢eF¢ Scores

o) +05(c) < pu(c) YeeC (12)

DC Resources Cost Objective: This model’s objective is
to minimize the data center resources cost in terms of the
total number of servers required at the deployed data centers.
Additionally, it aims at minimizing the maximum number of
servers allocated at a single data center location in order to
achieve a balanced resource distribution.

C4e = min Z (ad(c) + a'c(c)) + u(c)

ceC

13)

solving this objective results in finding the optimal locations
of K data centers. It also finds the optimal functions chains
for each demand, i.e., either SDN or NFV, based on the
selected data center locations in addition to optimally assign
the function chains to the data centers such that the resulting
total data center resources, i.e., number of required servers
infrastructure, is minimized.

D. Multi-objective Pareto Optimal Model

This model results in Pareto optimal solutions between the
network load cost and data center resource cost objectives to
enable operators to choose the right balance between the two

objectives. The multi-objective optimization model includes
all constraints from the previous two models, i.e., (1)-(8) and
(10)-(12). The multi-objective function incorporates both cost
functions of the previous two models, where w;.; denotes the
weight factor for the network load cost objective, while wg,
defines the weight for the data center cost objective. The multi-
objective cost function is formally defined as follows:

Chutri = min (14)

In order to get Pareto solutions for the multi-objective
problem, i.e., trade-offs between the optimality of the two
objectives, the weights w can be defined as A divided by
a normalization factor. The parameter A is a variable that
goes from O to 1, in order to iterate from the optimality of
one objective to the other. Since the two objectives, namely
network load cost and data center cost, represent different
network metrics and have different units, the normalization
factor is used to normalize the two objectives such that they
both have the same units and thus contribute similarly to
the multi-objective function. In optimization literature, this
method is called the weighted sum method for Pareto optimal
multi-objective optimization [36]. The details of the proposed
model are represented as follows:

WnetCner + WacCac

Multi-objective Pareto Optimal Optimization with Pre-
selection Feature for Data Center Locations
Input: no. of DCs K, DC locations C C V,
data and control latency requirements L9, L¢

1: min Cye, out Cge, locyer < min. network cost G,y

2: out Cpet, min Cge, locg. < min. data center cost Cy.

3: (locations pre-selection feature Section IV-E)

{C « (ocper, locac)|IC| = K}

4: for 1; =0:0.1:1do

5: Whet,i < Ai/(out Cper — min Cper)
6:  Wdc,i < (1—=24;)/(out Cgc —minCqc)
7.
8

minimize Cmulti,i = wnet,icnet + wd(;,iCd(;
;' Cher,i < post calculation from Cpyiri i
9:  Cqc,i < post calculation from Cpyyii
10: end for
Output: Pareto optimal solutions (Cper.i» Caci) YAi = [0,1]

In order to get the normalization factors, the single objec-
tives are solved first given a number of data centers K and data
as well as control plane latency requirements. Each objective
results in an optimal solution for its target and results in an
out-turn value for the other target. For instance solving for
the network load objective, it results in the optimal network
load cost min Cy; and we could calculate the resulting out-
turn data center cost out Cy.. Similarly, we solve the data
center cost objective and obtain the optimal data centers cost
min Cg4. as well the resulting out-turn network cost out Cpe;.
The normalization factor for each objective is defined as the
difference between the maximum value for the objective and
its optimal solution. The multi-objective function is solved
while iterating over A that ranges from O to 1, with a
step parameter of 0.1. Each solution from each iteration is
unnormalized in order to get the set of Pareto solutions for
the network load and data center resources cost, respectively.
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Fig. 2. Mobile core topologies considered in the evaluation for both USA and Germany based on the LTE coverage and user population. The figure shows
the locations of the SGWs (green) and PGWs (blue). The coverage correlated with the population is depicted by the intensity (grey) on the map background.

E. Data Center Location Pre-selection Feature for the Multi-
objective Resource Allocation Model

According to previous work and preliminary results, we
could observe that each objective function can influence the
data center and function chain placement, i.e., locations.
Hence, in order to improve the run-time of the multi-objective
optimization, we propose a pre-selection for candidate data
center locations on the given core network graph from solving
the individual objectives, done in steps (1) and (2) of the
multi-objective model. The number of pre-selected data center
locations is equal to the maximum number of available data
centers to be deployed, i.e, size of locations set |C| = K.

V. EVALUATION FOR THE OBJECTIVE TRADE-OFFS
A. Evaluation Setup and Parameters

1) Framework: for evaluation, a Java framework has been
developed that implements the three proposed optimization
models in Section IV. The framework is initialized by reading
the graph topology and creating the data plane traffic demands.
It also creates the different SDN and NFV function chains,
discussed in Sections III-B and II-C, where it computes
their associated parameters, i.e., network load, data center
resources, data as well as control plane latency. The framework
uses Gurobi as the linear optimization solver for the imple-
mented models. Finally, the framework is used to calculate the
different parameters and attributes of the solution and forms
the resulting SDN and NFV mobile core network.

2) Mobile Core Topologies: for evaluation, we use a mo-
bile core network topology for the USA based on the LTE
coverage map in [37], which correlates with the population
distribution and considers the locations of Internet Exchange
Points (IxP) [38], as illustrated in Fig. 2a. The US topology
consists of 18 SGWs and 4 PGWs with a total of 22 nodes,
i.e, potential data center locations. For comparison, we use
another mobile core network topology for Germany that has
15 SGWs and 3 PGWs with a total of 18 nodes, shown in
Fig. 2b. In both topologies, each SGW node is associated to
its geographically nearest PGW node, respectively.

3) Data and Control Plane Traffic Demands: in order to
evaluate the mobile core network dimensioning cost with

TABLE IV
EVALUATION PARAMETERS

[ Parameter [ Description

Topology USA (18 SGWs, 4 PGWs)

Germany (15 SGWs, 3 PGWs)

Data Traffic demands

uniform distribution [10 - 50] Gbps

Control and SDN traffic percentage @ | uniform distribution [10-30]%

Data plane latency requirement data plane uni directional 5 ms

Control plane latency requirement control plane procedure 50 ms

Number of DC locations K 1 - 8 data centers

CPU cores per unit demand (1 Gbps) p“}lnf:18 cores, p‘fnf:Z cores

c -
P&y, = 6 cores

Number of cores per server Scores 48 cores per server

respect to the expected traffic increase and the traffic dynamics
introduced by SDN and NFV, we consider random traffic re-
quests for each data plane demand. The demands between each
SGW and its nearest PGW are uniformly distributed between
10 and 50 Gbps. As for the control as well SDN traffic, we
have considered a random control traffic ratio between 10 and
30% of the data traffic demand, which represents conventional
LTE control loads and futuristic control loads, e.g., with
machine type communication. The traffic assumptions are
projections from the predicted data plane and control plane
traffic increase in the next generation 5G network [1], [39].
For statistical evidence, the optimization models are solved
for multiple runs until a 95% confidence is reached for the
optimization solution or at least for 30 runs.

4) Data and Control Plane Latency Requirements: moving
towards the next generation 5G, data and control latency
requirements are critical performance metrics that need to
be ensured. Hence, we consider the lowest latency that can
be achieved by both considered mobile core networks, US
and Germany. According to our previous observations and
evaluation in [7], we consider a budget of 5 ms for the mobile
core network data plane, as a uni directional latency either
for uplink or downlink. As for the control latency budget, a
50 ms budget is considered, including SDN control for SDN
function chains. The control latency requirement is derived
from 3GPP LTE standards [40], [41]. This control latency
covers the end-to-end latency to complete the control iterations
of the ATTACH procedure as explained in Section III-C.
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Fig. 4. Trade-offs solving for data center resources cost objective for US topology, data latency = 5 ms and control latency = 50 ms.

5) Data Center Resources: it is intuitive to assume that a
VNF that handles both data and control planes would need
more computational and processing power than an SDN con-
troller that handles the control plane only. Therefore, according
to our measurements in [7], we assign 20 cores for the VNF
for the processing of 1 unit data traffic demand, i.e., 1 Gbps,
with a distribution of 18 cores for data plane pfn and 2 cores
for control plane pgn - As for the SDN controller, 6 cores
are allocated for the processing of the control plane p¢,, that
corresponds to a unit data plane traffic demand. As for the
consolidation factor s.,,.s that defines the number of cores
per server, we assumed server sizes of 48 cores that can be
typical in current data center deployments [42]. Additional
parameters used for the models as well as a summary of the
evaluation parameters are presented in Table IV.

B. Trade offs between the Network Load and Data Center
Resources Cost Objectives

First, we present an evaluation for the trade offs between
the two proposed optimization models, i.e., the network load
cost objective compared to the data center resources cost
objective. We also investigate the impact of the data center
deployment by going from a single centralized data center,
ie., K = 1, up to a distributed data center deployment with
K = 8. We start by presenting the results for the US topology
considering a data latency requirement of 5 ms and a control
latency requirement of 50 ms. The results of optimizing for
the network load cost objective are illustrated in Fig 3, while
the results for the data center resources cost objective are
illustrated in Fig. 4. For each objective, the results focus on
four evaluated criteria which are the network load cost, data
center resources cost, data center locations and the number of
required SDN+ switches.

1) Network Load Cost Objective, US Topology: Consider-
ing the network load cost objective, Fig. 3a shows that the
optimal network load cost is impacted by the data center
deployment choice, i.e., the number of data centers. We could
observe that the optimal network load cost could be signifi-
cantly improved by distributing the data center infrastructure,
up to 75% at 8 data centers. The reason for this improvement
is that, with more available data centers, more VNFs could
be deployed under the given latency requirements, refer to
Fig. 3d, in order to decrease the additional SDN control traffic
and thus decreasing the total network load cost. Additionally,
since the network load cost metric considers both the traffic
bandwidth and the length of the function chains, deploying
distributed data centers can decrease the length of the function
chains across the network. Moreover, we can observe that
adding more data centers at K > 4 does not bring significant
improvements to the optimal network load cost.

Considering the resulting data center resources cost, i.e., the
number of servers required, as shown in Fig. 3b, a trade off
between the optimal network load and the resulting data center
resources cost while increasing the number of data centers K
can be observed. The resulting number of servers required with
8 distributed data centers is 275% higher than with a single
centralized data center. This is again due to the deployment
of more VNFs while increasing the number of available data
centers, refer to Fig. 3d, which requires more computational
CPU cores at the data centers and hence more servers. We
can conclude that adding more data centers could optimize
and decrease the network load cost further on the expense
of needing more servers and increasing the cost for the data
centers infrastructure. Throughout the repeated runs of solving
the optimization model given random demands, we could
observe several trends in the placement of the data centers, i.e.,
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their locations, as shown in Fig. 3c. The frequency of selecting
a location for the data centers among the repeated runs is
represented by the density of the plotted point, i.e., location,
on the figure. The green locations represent the locations of
SGWs, while blue locations represent those of PGWs. For
instance, at a single data center K = 1 and optimizing for the
network load cost, we could observe that there is one dominant
location (node 11: Kansas City) that is always selected even
with varying random demands. This is due to the geographic
centrality of this location, which balances the traffic in the
network and optimizes the load cost and could satisfy the data
as well as control latency constraints. The other trend that we
could observe is that by increasing the number of data centers
from K = [2 — 8], the locations of PGWs get more dominant,
i.e., they are more frequently selected while varying the input
traffic demands. This is because the locations of the PGWs
could serve aggregated traffic demands from multiple SGWs,
which decreases the distance of transporting the traffic to a
different location. Hence, with more than one data center, i.e.,
distributed deployment, data centers are favored to be placed at
the location of PGWs for the network load cost optimization.

Finally, the number of needed SDN+ switches with respect
to the number of data centers is illustrated in Fig. 3d. As
mentioned before, the network load cost optimization attempts
at decreasing the additional control traffic induced by SDN
and thus aims at deploying more VNFs. However, according
to the data center locations, the data and control latency
requirements might not be satisfied for all demands with only
VNFs, therefore the need for SDN+ switches. The number of
SDN+ switches decreases while increasing the number of data
centers K, going from a single centralized data center up to
3 distributed data centers. A network that comprises only of
virtual functions is possible starting from 4 data centers.

2) Data Center Resources Cost Objective, US Topology:
Here, the same four evaluation metrics as before are used,
however, while solving for the optimal data center resources
cost, in terms of the total number of servers. The results are
shown in Fig. 4. First, we start by discussing the target of this
optimization model, i.e., data center resources cost, illustrated
in Fig. 4b. We observe that the optimal solutions are less
impacted by the available number of data centers. This can be
explained by observing the number of SDN+ switches shown
in Fig. 4d. Since SDN controllers require less computational
cores at the data centers, the model’s solution results in
almost a full SDN deployment given the data and control
latency requirements. This results in decoupling the optimal
data center resources cost from their deployment design, i.e.,
centralized or distributed.

Additionally in fact, the optimal data center resources cost
increases slightly while increasing the number of data centers
from a centralized K = 1 to distributed K = 8 deployment.
This is due to the possibility of consolidating more cores on
servers with centralized data centers which decreases the total
number of required servers. With a distributed data center
infrastructure, servers are needed at each location without
the full utilization of their computational cores. However, the
optimal data center resources cost in Fig. 4b is much lower
than the resulting data center resources cost while optimizing
for the network load cost objective in Fig. 3b, e.g., at K = 8,
260% savings in terms of number of servers. As for the
resulting network load cost with the data center resources
objective, shown in Fig. 4a, we could observe fluctuations in
the resulting load cost varying with the number of data centers.
This shows the trade off between the network load cost and
data center resources cost, where optimizing the data center
resources only as an objective results in a quite high network
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load cost in return. In fact, this points out to the necessity
of our third model, i.e., multi-objective Pareto optimization,
such that the operator can find Pareto solutions that balance
between the network load cost and data center resources cost.

Regarding the locations of the data centers selected through
out the repeated runs with varying random traffic demands,
Fig. 4c shows that the data center locations are more biased
towards the locations of SGWs, i.e., towards the network
edge, while using the data center resources cost objective. We
could also observe that the selected locations are more sparse
and diverse. These trends are different from what has been
observed with the network load objective, refer to Fig. 3c. The
data center placement in this case is biased with the control
plane latency requirement. Since this model attempts to use
more SDN controllers to save on the data center resources,
the data centers are placed more towards the edge in order
to enable more SDN controllers to satisfy the control plane
latency requirement. Finally, Fig. 4d, shows the number of
SDN+ switches needed for the data center resources cost
objective compared to the number of data centers. We could
observe that more SDN+ switches are used in this objective
compared to the network load objective. Additionally, the
network turns to a full SDN deployment starting at K = 4 data
centers, which is the same K for the network load objective
where the network turns to a full NFV deployment.

C. Trends with Different Topologies

In this section we investigate whether the previously ob-
served trends for the two cost optimization models can also
be observed with different topologies. Therefore, we have
repeated the previous evaluation for the German topology.
Results are illustrated in Fig. 5 and Fig. 6. The results show
similar trends for the German topology as the US topology for
both network load and data center resources cost objectives.
Hence, the repetition of the trends for the evaluated topologies
can support our proposed pre-selection of data center locations
for the multi-objective optimization model based on the result-
ing locations from the single objective models. Note that the
number of data centers K at which a full NFV deployment,
with the network load cost objective, or a full deployment of
SDN+ switches, with the data resources cost objective, differs
between the two topologies. For the German topology, it is
possible starting from K = 3 compared to K = 4 for the
US topology. As previously explained, this is influenced by
the number of PGWs that the topology contains, where the
German topology contains 3 PGWs, compared to 4 PGWs at
the US topology. This can be remarked as a trend observation,
where a full deployment, either SDN or NFV depending on the
cost objective, is possible starting from K data centers equal
to the number of PGWs.

V1. EVALUATION FOR THE MULTI-OBJECTIVE MODEL
A. Gain from Pareto Optimal Multi-objective Model

First, we investigate the results of the Pareto optimal multi-
objective model without data center locations pre-selection
and we compare it to the results of the single cost objective
models. As explained in Section IV-D, the multi objective
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method iterates over different weights A for each objective
ranging between [0,1]. In other words, it explores the solution
space starting by solving one single objective, then moving to
solve both objectives simultaneously, and stops after solving
the other single objective, thus producing the Pareto frontier
between the two objectives. For each weight A, the setup
is again repeated with random varying traffic demands till a
95% confidence is reached or at least with 30 runs. Fig. 7
illustrates the Pareto frontier between the network load cost
and the data center resources cost, for the US topology and
given a data latency requirement of 5 ms and a control latency
requirement of 50 ms. The evaluation is assessed for a number
of data centers K = (1,4, 8). We could observe that for a single
centralized data center K = 1, there is not enough degree of
freedom to explore the solution space and provide a balance
or trade-off between the network load cost and data center
resources cost. This is because with a centralized data center,
the locations that satisfy both the data as well control plane
latency requirements are quite limited.
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Fig. 9. Pareto frontier for the network load cost (C,¢;) and data center resources cost (Cg.) for the US topology, comparing the solutions of the optimal

multi-objective model with data center locations pre-selection and with random data center locations.
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Fig. 10. Pareto frontier for the network load cost (Cpe;) and data center resources cost (C.) for the German topology, comparing the solutions of the
optimal multi-objective model with data center locations pre-selection and with random data center locations.

Considering a distributed data center infrastructure with K =
4, more Pareto solutions offering trade-offs between the two
objectives can be observed. For instance the Pareto solution
at 4 = 0.7, the network load cost has only an overhead of
3% compared to its optimal solution at A = 1, while the data
center resources cost results in an overhead of 4% compared
to its optimal solution at A = 0. Considering more distributed
data centers at K = 8, we could observe that there could
be more degree of freedom to cover a larger solution space.
For instance, considering the Pareto solution at 4 = 0.8, the
network load cost has an overhead of 5% compared to its
optimal solution, while the data center resources witness an
increase of 21% compared to its optimal solution. It is worth
mentioning that an operator could go for a different Pareto
solution depending on the cost values for each of the network
traffic load and the data center resources. In general, the Pareto
frontier shows the advantage of finding solutions that could not
be easily found through arbitrary weights to each objective in
the multi-objective function. This provides operators with the
possibility to find the optimal network that balances between
the network load cost and data center resources cost.

The evaluation for the Pareto optimal multi-objective model
for the German topology is shown in Fig. 8. We demonstrate
the Pareto frontier evaluation for the number of data centers
K = (1,4,8). Similar trends for the Pareto frontiers could be
observed as in the US topology. However, more Pareto optimal

solutions could be obtained with a centralized single data
center at K = 1. Since the German topology is geographically
smaller than the US, this provides more locations to the single
data center that could satisfy the data and control latency
requirements, thus, find more Pareto solutions for the network
load cost and data center resources cost. With a distributed data
center at K = 4, the Pareto solution with 4 = 0.7 provides an
overhead of 6% to the optimal network load cost at 4 = 1
and an overhead of 11% compared to the optimal solution for
the data center resources cost at 4 = 0. Considering more
distributed data centers with K = &, the Pareto solution at
A = 0.8 offers a trade off of 11% increase in the optimal
network load cost while a 14% increase in terms of the data
center resources cost.

B. Gain from Data Center Locations Pre-selection for the
Multi-objective Optimization Model

We discuss the evaluation of our proposal of data center
locations pre-selection for the multi-objective model as ex-
plained in Section IV-E. The pre-selected data center locations
are a combination of the resulting locations from the solutions
of the single objective models, i.e., network load cost model
and data center resources cost model. Let us consider an
example with a number of data centers K = 4. The solution
of the network load cost model, with 4 data centers, gives
4 optimal data center locations that minimize the network
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load cost. Similarly, 4 optimal data center locations are given
by solving the data center resources cost model with 4 data
centers. Two data center locations are selected arbitrarily from
the given solutions of each single objective, respectively. The
pre-selected data center locations form the input set to the
multi-objective optimization model. Note that in case of a
centralized data center K = 1, an arbitrary location among the
two resulting data center locations from the solution of the
two single objectives is pre-selected. The evaluation focuses
on the solution optimality and how much is it impacted by the
pre-selection, since the size of the input data center locations
set would be |C| = K instead of |C| = |V]|, i.e., all graph
nodes. The evaluation also focuses on how much does the pre-
selection improve the run time of the multi-objective model.

1) Optimality Gap with Pre-selection: Fig. 9 and Fig. 10
illustrate the Pareto frontier evaluation for the optimal multi-
objective model compared to the multi-objective model with
pre-selection, for the US and German topology, respectively.
We also evaluate our proposed pre-selection, based on the
solutions of the single objectives, to a random pre-selection.
The random pre-selection represents the case where an op-
erator already has fixed locations for the data centers and is
solving the multi-objective model for the given locations. The
optimality gap is the difference between the three evaluation
cases at each Pareto solution. We evaluate the optimality
gap at number of data centers K = (1,4,8) in order to
investigate the impact of centralizing or distributing the data
center infrastructure.

For both topologies, we could observe that the proposed pre-
selection results in Pareto optimal solutions with a minimal
gap compared to the optimal solutions for the evaluated
number of data centers K = (1,4, 8). For instance, at a number
of data centers K = 4 for the US topology, shown in Fig. 9b,
the maximum gap for a Pareto solution with pre-selection is
2% in terms of the network load cost and 6% in terms of data
center resources cost. This means that the pre-selection, based
on the knowledge from the selected locations of the single
objectives, can be used to reduce the problem’s complexity
while achieving a minimal optimality gap. We could also
observe that the optimality gap with pre-selection decreases
while adding more data centers, i.e., moving from a centralized
to a distributed data center infrastructure. On the other hand,
there is a significant optimality gap with the random pre-
selection, i.e., given by the operator, compared to the optimal
solutions. This observation holds for both topologies as well
as for all used number of data centers K = (1,4,8). This
shows the impact of the data center locations on the resulting
optimal cost. Additionally, it supports the importance of the
joint placement of the data center infrastructure while solving
the placement of the network functions chains.

2) Run Time Improvement with Pre-selection: Fig. 11 and
Fig. 12 illustrate the average run time for the optimal multi-
objective model compared to the multi-objective model with
pre-selection, for the US and German topology, respectively.
The run time is also evaluated for the multi-objective model
with random pre-selection. For the US topology, we could
observe that the pre-selection could significantly improve the
average run time of the multi-objective model, e.g., at K = 3,
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Fig. 11. Run time for the multi-objective model for the US topology.
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Fig. 12. Run time for the multi-objective model for the German topology.

from the order of several seconds to the order of tens of
milliseconds. For the German topology, it could improve the
run time from the order of hundreds of milliseconds to tens of
milliseconds as well. The proposed pre-selection for the data
center locations enables operators to use the multi-objective
model for online cost optimization, while keeping a minimum
gap to the optimal cost. The pre-selection also allows the
multi-objective model to scale further for bigger core topology
instances or more traffic demand sets.

VII. CONCLUSION

In this work, we propose three optimization models that
aim at finding the optimal dimensioning and planning for a
mobile core network based on SDN and NFV, in terms of
network load cost and data center resources cost. The proposed
models result in the optimal placement of data centers and the
optimal mobile core network split between SDN and NFV.
An extensive evaluation has been presented comparing the
proposed models in terms of the network load cost and the data
center resources cost. Trade-offs between the single objective
models could be observed, in terms of the cost factors as well
as data center locations. The multi-objective model results in
Pareto optimal solutions where a balance between the two
cost factors can be achieved. Additionally, solving the multi-
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objective model with the proposed data center locations pre-
selection has shown a significant improvement to the run
time while keeping a minimal gap compared to the optimal
Pareto solutions. For future work, additional cost factors can
be considered for the optimization models such as the cost of
the SDN+ switches or the inter-data center links. The set of
data centers locations could be extended to arbitrary locations
on the core network topology, i.e., not the same locations
as the graph nodes. Furthermore, the challenges of the joint
co-existence of SDN and NFV mobile core functions need
to be investigated, e.g., orchestration and state distribution.
Additionally, a heterogeneous access network can be modeled
to represent more realistic use-cases for operators.
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