(© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including1
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Unicast QoS Routing Algorithms for SDN: A
Comprehensive Survey and Performance Evaluation

Jochen W. Guck, Amaury Van Bemten, Martin Reisslein, and Wolfgang Kellerer

Abstract—A variety of communication networks, such as
industrial communication systems, have to provide strict delay
guarantees to the carried flows. Fast and close to optimal quality
of service (QoS) routing algorithms, e.g., delay-constrained least-
cost (DCLC) routing algorithms, are required for routing flows
in such networks with strict delay requirements. The emerging
software-defined networking (SDN) paradigm centralizes the
network control in SDN controllers that can centrally execute
QoS routing algorithms. A wide range of QoS routing algorithms
have been proposed in the literature and examined in individual
studies. However, a comprehensive evaluation framework and
quantitative comparison of QoS routing algorithms that can
serve as a basis for selecting and further advancing QoS routing
in SDN networks is missing in the literature. This makes it
difficult to select the most appropriate QoS routing algorithm
for a particular use case, e.g., for SDN controlled industrial
communications. We close this gap in the literature by con-
ducting a comprehensive up-to-date survey of centralized QoS
routing algorithms. We introduce a novel four-dimensional (4D)
evaluation framework for QoS routing algorithms, whereby the
four dimensions correspond to the type of topology, two forms of
scalability of a topology, and the tightness of the delay constraint.
We implemented 26 selected DCLC algorithms and compared
their runtime and cost inefficiency within the 4D evaluation
framework. While the main conclusion of this evaluation is that
the best algorithm depends on the specific sub-space of the
4D space that is targeted, we identify two algorithms, namely
Lagrange relaxation based aggregated cost (LARAC) and search
space reduction delay-cost-constrained routing (SSR+DCCR), that
perform very well in most of the 4D evaluation space.

Index Terms—Delay-constrained least-cost (DCLC) routing,
performance evaluation framework, quality of service (QoS),
scalability, software-defined networking (SDN).

I. INTRODUCTION
A. Topic Area: Routing Algorithms for QoS Networking

Routing, i.e., determining a route (path) from a source
node to a destination node through a sequence of intermediate
switching nodes, is an elementary function of the network
layer in communication networks. Given the importance of
routing for communication networks, a diverse array of routing
algorithms have been designed. Many routing algorithms have
been specifically designed for specific network settings or
applications, see Section I-C.

Providing quality of service (QoS) is an important require-
ment for a wide range of communication network settings and
applications. For instance, multimedia network applications

J. Guck, A. Van Bemten, and W. Kellerer are with the Lehrstuhl fiir Kom-
munikationsnetze, Technical University of Munich, Munich, 80290, Germany
(email: {guck, amaury.van-bemten, wolfgang.kellerer} @tum.de).

M. Reisslein is with the School of Elect., Comp., and Energy Eng., Arizona
State Univ., Tempe, AZ 85287-5706, USA (email: reisslein@asu.edu).

require QoS from the network service, as do many network
applications in industrial networks [1] and the smart grid [2]
as well as networked control systems [3]. The required QoS
is often in the form of delay bounds (constraints) for the
data packets traversing the network. Accordingly, extensive
research has developed routing algorithms that satisfy given
delay constraints while minimizing some cost metric, i.e., So-
called delay-constrained least-cost (DCLC) routing algorithms.
DCLC routing algorithms and similar routing algorithms that
support QoS networking are often referred to as QoS routing
algorithms.

Generally, the route determination (computation) is either
carried out in distributed nodes, e.g., the control modules in
individual distributed Internet Protocol (IP) routers, or by a
centralized controller, e.g., a Software-Defined Networking
(SDN) controller [4]-[8]. Distributed routing algorithms had
been intensely researched for traditional IP routing, e.g., [9]-
[11], and more recently for ad hoc networks, see e.g., [12]—
[16]. In the mid 1990s, the development of QoS paradigms
for the Internet, see e.g, [17]-[22], led to a renewed interest in
examining routing and spurred the development of a plethora
of QoS routing algorithms, which mainly targeted distributed
computation. In sharp contrast, the emergence of the Software-
Defined Networking (SDN) paradigm [23], [24] has shifted
the research focus to centralized network control, including
centralized routing computations [25]-[30]. The purpose of the
present survey is to provide a baseline for the use of existing
QoS routing algorithms in centralized SDN based network
control as well as for the further development of QoS routing
algorithms that focus on centralized computation.

B. Contributions of this Survey

This article presents a comprehensive up-to-date survey of
unicast QoS routing algorithms accompanied by a large-scale
evaluation based on a consistent re-implementation of all the
studied algorithms. We classify the unicast QoS routing algo-
rithms according to the underlying routing strategy into several
main categories, including priority queue based algorithms,
Bellman-Ford based algorithms, Lagrange relaxation based
algorithms, as well as algorithms that follow the least-cost
and least-delay paths. In order to facilitate a comprehensive
evaluation of QoS routing algorithms, we introduce a four di-
mensional (4D) evaluation framework, as illustrated in Fig. 1.
The first dimension corresponds to the type of topology. The
second and third dimensions correspond to the scaling of a
given type of topology into two dimensions that characterize
the “size” of the network. The fourth dimension corresponds




topology size (n)
— [Hll
r‘:/ =
S A |
W |4
‘ =
B |
| 7L I’i e W W
=5 ||
N |yl
== F== ==
[o‘aolo
&'Q?/S
e,,e’[
@ topology size (m)
Jetay const

Fig. 1: Illustration of four dimensions of performance evaluation framework
for delay-constrained least-cost (DCLC) routing algorithms: type of topology,
scaling of the network (topology) in two dimensions, and delay constraint.

to the tightness of the delay constraint. The comprehensive
evaluation of the existing QoS routing algorithms with this
novel 4D evaluation framework provides valuable insights into
the behaviors of the algorithms. Our evaluation has yielded a
very large data set; we only present the most significant and
insightful evaluation data in this article. We have made the
entire evaluation data publicly available at [31], an interactive
web interface that allows for convenient navigation through
the 4D evaluation space.

We have observed from our evaluations that it is not possible
to elect an algorithm as “the best QoS routing algorithm”.
Indeed, we show that the performance of the algorithms
strongly depends on the considered specific sub-space of the
4D evaluation space. Nevertheless, we identify two algorithms
(out of a total of 26 compared algorithms) that achieve the best
cost-runtime trade-off for most cases. Furthermore, we observe
the general trend that algorithms based on a shortest path
(SP) algorithm have shorter runtimes than algorithms based
on a shortest path tree (SP tree) algorithm, which in turn have
shorter runtimes than algorithms relying on a k shortest path
(kSP) algorithm to reach a given optimality level.

C. Relationships to Prior Surveys

Given the key importance of routing for communication
networks, routing algorithms have been extensively studied
for a wide range of network settings and applications. Several
prior survey articles have covered routing algorithms for
several different special network settings and applications.
Our focus in this survey is on routing algorithms that are
suitable for supporting quality of service (QoS) networking in
SDN networks. We proceed to contrast our present survey on
QoS routing algorithms from prior related surveys on routing
algorithms. Multicast routing algorithms for finding routes
from a source node to multiple destination nodes have been
surveyed in [32]-[34]; the closely related geocast routing to
a prescribed geographic area has been considered in [35]. In
contrast, we focus on unicast routing from a single source
node to a single destination node. Multipath routing has been

surveyed in [36]; we focus on routing algorithms for finding
a single path in this survey. Routing in wireless networks has
been covered by several prior surveys, e.g., [37]-[39]. Several
prior surveys have focused on specialized forms of wireless
networks. Specifically, routing in wireless mesh networks has
been surveyed in [40]-[42], while routing for wireless sensor
networks has been surveyed in [43]-[59]. Ad hoc network
routing has been surveyed in [60]-[63], while routing for mo-
bile ad hoc networks (MANETS) has been surveyed in [64]—
[74] and vehicular ad hoc network (VANET) routing has been
surveyed in [75]-[78]. Routing metrics for cognitive radio
networks have been covered in [79], while routing in delay
and disruption tolerant networks has been surveyed in [80]-
[82]. Routing and route optimization for mobile nodes has
been surveyed in [83], [84]. Routing algorithms that consider
the specific physical layer characteristics of optical (photonic)
networks have been surveyed in [85]-[90]. Our survey focuses
on routing for wired static networks without disruptions and
does not specifically consider physical layer photonics. A
few surveys have considered routing strategies for specific
networking contexts, such as locator/identifier split Internet
routing [91], traffic engineering and load balancing in the In-
ternet [92], [93], content-based publish/subscribe systems [94],
and green routing protocols with sleep scheduling [95]. In
contrast, we consider general QoS routing algorithms.
General QoS routing algorithms have been covered in a
few prior surveys that are less comprehensive than this survey.
General overviews of the area of QoS routing and its research
challenges has been provided in [96], [97]. A handful of sur-
veys have covered the QoS routing algorithms that have been
developed up to around the years 2002-2003 [98]-[103]. Our
survey is more up-to-date by covering QoS routing algorithms
that have been developed up to the present time. A recent sur-
vey focused on multi-constrained QoS routing algorithms has
been provided in [104]. Our survey is complementary to the
survey [104] in that we broadly cover QoS routing algorithms
satisfying a single or multiple constraints. Moreover, existing
surveys have been limited to qualitative comparisons of the
different QoS routing algorithms. In contrast, we introduce a
novel 4D evaluation framework for comparing the quantitative
performance levels of QoS routing algorithms and provide
extensive quantitative performance comparison results. For
completeness, we note that topology aggregation mechanisms
for QoS routing have been surveyed in [105], while routing
topology inference mechanisms have been surveyed in [106].

D. Survey Structure

Section II provides tutorial background on QoS routing
algorithms, including brief reviews of elementary shortest-
path algorithms that are utilized as underlying mechanisms in
QoS routing algorithms. Section III provides a comprehensive
up-to-date survey of the existing QoS routing algorithms.
This survey section is organized into subsections dedicated
to elementary algorithms, as well as algorithms that are based
on a priority queue, on Bellman-Ford, on Lagrange relaxation,
or on least-cost and/or least-delay paths in the network.
Section IV introduces the four dimensional (4D) evaluation



framework. Section V presents the results of the evaluation,
while Section VI gives interesting anecdotal insights gained
from our evaluations. Finally, Sec. VII summarizes the main
conclusions.

II. BACKGROUND

This section provides tutorial background on QoS routing
algorithms. First, Subsection II-A explains how QoS routing
algorithms operate as a component within the broader context
of a QoS networking framework. Then, Subsection II-B gives
a brief tutorial on the basic definitions and the terminologies
related to QoS routing algorithms and Subsection II-C outlines
the goals that good QoS routing algorithms should strive for.
Finally, Subsections II-D and II-E give brief overviews of
algorithms for computing one shortest path (SP) and multiple
(k) shortest paths (kSP), which are elementary mechanisms
for designing QoS routing algorithms.

A. QoS Routing as a Component of QoS Networking Frame-
work

1) QoS Networking Framework Overview: Generally,
a comprehensive network QoS management framework,
e.g. [107]-[117], is required for providing QoS to network
applications. A network QoS management framework con-
sists of and coordinates among several components, including
admission control [118]-[121], real-time scheduling [122],
and QoS routing. That is, the QoS routing algorithm is
one of several components required for achieving QoS in
a communication network. A comprehensive survey of QoS
networking frameworks is beyond the scope of this article. We
only briefly note that, broadly speaking, there are two types
of approaches for network QoS management, namely global
offline QoS networking and greedy online QoS networking.

Global offline QoS networking jointly considers the com-
plete set of network traffic flows and the various QoS network-
ing components, such as routing and scheduling, to holistically
determine the routes and schedules for all admissible flows.
Global offline QoS networking typically involves complex
optimization problems, such as integer or mixed integer linear
programs [123]-[127], or assumes that routing paths are given,
e.g., from a standard spanning tree protocol or unconstrained
shortest path routing, to then optimize the scheduling, see
e.g., [128], [129].

On the other hand, greedy online QoS networking considers
a network with a given set of already ongoing network traffic
flows and attempts to add (embed) a new flow to the network
while maintaining the QoS requirements of the already ongo-
ing flows as well as the new flow. We consider QoS routing
algorithms for greedy online QoS networking in this survey.
The surveyed routing algorithms require that the cost and QoS
metric values (e.g., delay) are known for each edge (link) in the
network graph prior to the execution of the routing algorithm.
The usage of the surveyed routing algorithms in a practical
network requires that the data plane forwarding behavior is
abstracted to the granularity of costs and QoS metric values per
edge of the network graph. Such abstraction can be achieved
through measurement based systems, e.g., [107], [108], [111],

that probe the link behavior to estimate the edge costs and QoS
metric values. The abstraction can also be achieved through
model based systems, e.g., [130]-[133], that calculate the edge
costs and QoS metric values based on a mathematical model
of the underlying link scheduling and traffic shaping. While
such mathematical models exist for some link scheduling and
traffic shaping approaches, such as priority scheduling [134],
[135], other emerging approaches, such as IEEE 802.1 Time
Sensitive Networking [136]-[141] and IETF Deterministic
Networking [142], require the development of new mathe-
matical abstraction models. We consider one example greedy
online QoS networking framework in the next section to
explain the concrete functioning of QoS routing in the context
of QoS networking in more detail.

2) Example Framework: Industrial QoS: In this section
we briefly explain the QoS networking framework [133] as
an example instance of a QoS networking framework. The
framework [133] is designed to provide strict delay QoS,
which is typically required for industrial communication sys-
tems [143]-[147], automotive networks [148], as well as some
types of smart grid communication [149], [150] and Internet
of Things communication [151]-[154]. Industrial communi-
cation systems carry critical messages, e.g., control signals
for large automated production facilities, which have to be
delivered with tight deterministic real-time quality of service
(QoS) [109], [155]-[157]. A wide gamut of proprietary indus-
trial communication technologies have emerged to provide this
strict QoS [143]. Nevertheless, these proprietary technologies
are typically costly and lack a uniformly accepted standardized
communication framework. To overcome these challenges,
the framework [133] has been based on Software-Defined
Networking (SDN) [158]-[165]. SDN enables packet switches
with a centralized control interface, e.g., OpenFlow [166],
to provide deterministic real-time QoS guarantees. In order
to satisfy the end-to-end deadline of each connection, the
framework [133] encompasses four modules running on a
centralized controller (see Fig. 2):

e The cost function transforms the network state, charac-
terized for instance by data rates, buffer consumption,
and already embedded flows, into a cost metric for each
edge. The cost metric should maximize the number of
flows that the network can serve.

o The resource allocation module adapts the allocation of
resources (e.g., data rates) to the different queues in
order to maximize the total number of flows that can
be accepted in the network.

o The network resource model implements access control
and worst-case delay computation based on the resources
allocated to the different queues in the network. The net-
work resource model tracks the consumption of resources
by the embedded (already accepted) flows. To achieve
a deterministic system behavior, the resource model is
based on a mathematical traffic model, thus avoiding
measurements of the actual network utilization. Since
the scheduling delay experienced by a flow at a node
depends on the queue at which it is buffered, worst-
case delays are computed per queue. More specifically,
the maximum (worst-case) delay per queue is bounded



flow request

L

edge
access

QoS
Routing

register
path

edge
cost

flow termination
deregister path

Network
Resource
Model parameters
update

network state

Resource
Allocation

Fig. 2: Overview of the different function blocks of QoS networking frame-
work [133]. The network resource model provides, through detailed queue
modeling, deterministic delay bounds and implements access control that
guarantees isolation of flows. The cost function indicates which edges should
preferentially be used to maximize the probability of future flows to be
accepted. The resource allocation adapts the allocation of resources to the
different queues in order to maximize the probability of future flows to be
accepted. QoS routing is then responsible for routing incoming requests on a
path satisfying the end-to-end delay requirement of the request.

TABLE I: Conceptual comparison of QoS routing problem types.

Number of | Number of
Problem Type (Acronym) Optimized | Constrained
Metrics Metrics
Shortest Path (SP) 1 0
Constrained Shortest Path (CSP) 1 1
Multi-Constr. Shortest Path (MCSP) 1 M
Multi-Constrained Path (MCP) 0 M

through deterministic network calculus modeling [134],
[135]. The resource allocation pre-allocates worst-case
delay budgets to the priority queues, which are scheduled
according to the non-preemptive static priority policy.
This ensures that the models of the different priority
queues at a given link (hop) are independent [133]. Thus,
admission decisions of low-priority queues do not have
to be recalculated every time a flow is added to a high-
priority queue.

o The QoS routing, e.g., delay-constrained least-cost
(DCLC) routing, finds the least-cost path satisfying the
end-to-end delay requirement of a connection request.
The network resource model in [133] provides delays per
queue, thus, routing has to be performed on a so-called
queue-link topology illustrated in Fig. 3, where a given
edge (link) of the physical topology is modeled by as
many queue links as it has distinct QoS queues. In such
a way, routing chooses both the links followed by a flow
and the queues at which the flow will be buffered.

B. Basic Definitions for QoS Routing Algorithms

Unicast QoS routing refers to the problem of routing a flow
from a single source to a single destination so as to fulfill
the QoS requirements of the flow. Depending on the QoS

Physical topology

B 1] (2} (3] 16]
Fig. 3: Illustration of the queue-link topology concept [133]: A queue link
models the outgoing queue (buffer) for an actual physical link. For instance,
the bi-directional physical link between nodes 1 and 4 has two distinct QoS
queues (e.g., with different delay bounds) in each direction; correspondingly
there are two queue links from node 1 to node 4 and two queue links from
node 4 to node 1.

requirements, different problems can be defined. The most
commonly encountered problems are defined as follows and
contrasted in Table L.

o Shortest Path (SP): The route has to minimize a unique
end-to-end QoS metric.

o Constrained Shortest Path (CSP): The route has to min-
imize an end-to-end QoS metric while keeping another
metric below a prescribed bound.

o Multi-Constrained Shortest Path (MCSP): CSP problem
with multiple end-to-end metrics that are constrained by
individual bounds.

o Multi-Constrained Path (MCP): MCSP problem without
optimization metric, i.e., the route only has to keep end-
to-end QoS metrics below prescribed bounds.

These problems can be extended to k path versions that find
k distinct paths. We refer to these extended problems as kSP,
kCSP, kMCSP, and kMCP, respectively. It is also possible to
define multi-objective problems that optimize more than one
metric [104], [167]-[170]. These multi-objective problems are
beyond the scope of this article.

We refer to the metrics that have to be optimized (or
minimized) by the routing algorithm as the costs. On the
other hand, we refer to the metrics that have to be kept below
prescribed bounds as the constraints. The maximum end-to-
end values below which these constraints have to be kept are
then referred to as the constraint bounds. Note that the term
metric can refer to either a cost or a constraint. Any metric is
always associated to all the individual edges of the network.
Depending on how an end-to-end QoS metric is computed
from the metric values for individual links, three different
categories of end-to-end QoS metrics can be defined: additive,
multiplicative, and concave metrics. The end-to-end values of
these three metric categories are, respectively, the sum, the
product, and the minimum (or the maximum) of the metric
values for the individual links. Delay, packet loss probability,
and bandwidth are examples of additive, multiplicative and
concave metrics, respectively.

Consider routing to be performed on a network graph G =
{V, E}, whereby V is the set of vertices (network nodes) and
E is the set of directed edges (with |F| denoting the number
of edges in the network). The vector of costs of the edges



is denoted by ¢, ¢ € ]RLE‘. Letd, d € Rf‘f, denote a vector
with M elements that represent the bounds for the constrained
metrics. Let D, D € R%X lEI, denote a matrix of the constraint
values for the individual edges. Let Py, P.g C {0,1}7,
denote the set of paths from source node s to destination node
d (whereby a value of 1 for an edge means that the edge
belongs to the path). For additive metrics, the SP, CSP, and
MCSP problems can be mathematically formulated as:

T

Zopt :Xénlig c'x (D)
s.t. Dx <d. ()

The SP, CSP, and MCSP problems correspond to the cases
M =0, M =1, and M > 1, respectively.

An optimal algorithm is an algorithm that always finds the
optimal path with cost z,p¢. A heuristic is an algorithm that
finds a possibly sub-optimal path, i.e., a path with cost 2’ >
Zopt- The cost inefficiency (CI) of an algorithm, measured in
%, is defined as

!/
z — ZOpt

Cl= x 100. 3

Zopt
An optimal algorithm therefore always has a CI of 0 %. An
algorithm is said to be complete if it always finds a feasible
solution if one exists. Completeness does not imply optimality.

QoS networking contexts (including the QoS networking
framework [133], see Section II-A2) typically require the QoS
routing algorithm to find a least-cost path satisfying an end-
to-end delay constraint. This corresponds to a CSP problem
with two additive metrics. This subset of CSP problems is also
commonly referred to as delay-constrained least-cost (DCLC)
routing problem. For this reason, we will often refer to the
optimized QoS metric as cost and to the constrained metric
as delay. The routing algorithm for QoS networking has to
be complete. Indeed, if a connection request can actually be
accommodated in the network, then the request should not be
rejected.

In this article, we survey existing unicast CSP routing algo-
rithms for additive metrics. Moreover, since MCSP algorithms
can be used for solving CSP problems, we also present MCSP
algorithms. While MCP algorithms can find feasible solutions
for CSP, MCP algorithms do not optimize the cost metric and
we therefore do not consider MCP algorithms in this survey.

C. Goals of QoS Routing

We proceed to summarize the key goals of a good QoS
routing algorithm for centralized execution within the SDN
paradigm:

o The algorithm should be complete. Indeed, we do not
want to reject a connection request if it can actually be
accepted.

o Generally, the DCLC problem is NP-complete [171].
Therefore, there is a fundamental trade-off between cost
inefficiency and low runtime. Thus, a QoS routing algo-
rithm should achieve a short runtime as well as a low
cost inefficiency. Indeed, since routing is triggered upon
receipt of a connection request and cost minimization

leads to a network that can accept more flows, both short
runtime and low cost inefficiency are important for good
and fast request handling.

o The algorithm should be able to accommodate real values
for the metrics and should not be based on value space
reductions. Algorithms that only accommodate integer
values for the cost metric may incur quantization errors
and the evaluation of the impact of this quantization on
the cost inefficiency is outside the scope of this study.

o The algorithm should not be restricted to the hop count
as the only possible cost function. Furthermore, the
hop count should not be considered in addition to the
cost function for optimization. Indeed, we are primarily
interested in low resource usage, which is completely rep-
resented by the cost function. Further, in dense networks
there are typically many paths with the same hop count;
hence the hop count is typically not a useful additional
optimization criterion.

« The algorithm has exact up-to-date knowledge of the state
of the network, which can be readily acquired with the
SDN paradigm.

o The algorithm does not exploit any relationship between
the cost and delay metrics. This assumption ensures that
the algorithm can run with any arbitrary cost function.

o Cost and delay values may change during the runtime of
the real system. Thus, results of computations for prior
QoS routing runs, e.g., SP trees, cannot be stored and
re-used for future QoS routing runs.

« The constraint must be guaranteed by the algorithm. We
strive for strict requirements. Soft constraints that may
be violated with a small probability are an interesting
direction for future work.

e The connections are unicast connections. Multicast is
outside the scope of this survey.

D. Overview of Shortest Path (SP) Algorithms

DCLC algorithms often make use of underlying SP and kSP
algorithm mechanisms; therefore, we briefly review SP and
kSP algorithms in this section and in Section II-E. Shortest
path algorithms have been studied for a long time and the best
algorithms are now well-known [172]. The Dijkstra algorithm
[173] is a centralized algorithm that computes the SP from a
single source node to all other nodes (i.e., an SP tree) in a
graph with non-negative edge costs.

The Dijkstra algorithm is a priority queue based algorithm.
That is, it maintains a queue containing a set of partial
paths, i.e., paths starting from the source node and reaching
an intermediate destination node which is not the ultimate
destination. At each iteration, it takes the least-cost path among
the paths in the queue and generates n new paths by extending
this partial path with the n outgoing edges of the node at which
the given path terminates. Among those paths, only paths with
lower cost than the current least-cost path in the queue towards
the same destination are added back to the queue. That is, the
Dijkstra algorithm relaxes based on the cost values. In other
words, the Dijkstra algorithm performs a breadth-first search
and maintains the current best path found to each destination



node. Nodes with least-cost distance from the source node are
expanded first, thereby ensuring that any node has to be visited
only once.

The Bellman-Ford algorithm (BF) [174]-[178] is a dis-
tributed algorithm that computes an SP tree in a graph,
including graphs with negative edge costs. The algorithm
maintains the current best path found to each node and runs
|[V| — 1 (where |V| is the number of nodes in the network)
iterations updating, for each node, the current best path to all
neighbor nodes based on the current best path to the presently
considered node. Since the path to any node is at most |V|—1
hops long, all SPs will eventually be found. Note that, in the
case of a centralized implementation, if an iteration yields
no update, the algorithm can be immediately terminated, as
subsequent iterations will not lead to any change. Also, as
proposed by Yen [179] for centralized implementations, if the
cost of the current best path to a node has not changed since
the last iteration, then the outgoing edges of this node can be
skipped since they will not lead to any new changes.

Both the Dijkstra and the Bellman-Ford algorithms can be
used for finding the SP to a single destination. In such a
case, the Dijkstra algorithm can be stopped as soon as the
destination node is reached. In contrast, the Bellman-Ford
algorithm cannot be stopped earlier than in the SP tree case
(when SPs to all network nodes are found). Both algorithms
can be adapted to compute the SP from any node to a single
destination. These versions are called the Reverse Dijkstra and
Reverse Bellman-Ford algorithms, respectively, and are simply
obtained by considering incoming edges rather than outgoing
edges when going from one node to the next node(s).

Hart et al. [180] proposed an improvement to the Dijkstra
algorithm, the A* algorithm, for finding a single-destination
SP by introducing a so-called guess function. At each node,
this guess function provides a guess for the cost of the SP
from this node to the destination node. Paths out of the priority
queue with least projected cost (i.e., sum of the current cost to
the last node of the path and of the guess value at this node)
are expanded first. To ensure the correctness and optimality
of the A* algorithm, the guess values have to be lower than
the real values. The closer the guess values are to the real
values, the faster the A* algorithm will reach the destination.
At one extreme, the A* algorithm with an exact guess function
will directly traverse the SP to the destination. At the other
extreme, the A* algorithm with a guess function of zero
corresponds to the original Dijkstra algorithm. The overhead
introduced by computing the guess function and the benefit of
this guess function constitute the trade-off introduced by the
A* algorithm. A straightforward guess function corresponds to
the least-hop count multiplied by the cost of the least-cost edge
in the graph. Such a guess function has to be recomputed upon
any topology change. In our evaluations, we do not consider
topology changes. Thus, the guess function can be computed
offline, ensuring that the A* algorithm is, in any case, at least
as fast as the Dijkstra algorithm.

We note that some more complex improvements for cen-
tralized implementations of the Bellman-Ford algorithm exist,
e.g., [179], [181]. However, the centralized Dijkstra algorithm
performs generally better for finding an SP tree than dis-

tributed algorithms [182]. Similarly, the A* algorithm per-
forms generally better than distributed algorithms for finding
an SP. Therefore, we only consider the Dijkstra algorithm for
finding an SP tree and the A* algorithm for finding an SP
as underlying algorithms for the QoS routing algorithms in
Table II. A detailed quantitative comparison that includes the
Bellman-Ford algorithm, its other improvements, SP heuris-
tics [183], and other A* guess functions [184] are left for
future research.

E. Overview of k Shortest Paths (kSP) Algorithms

A very well known kSP algorithm, which is also one of
the initial proposals for the kSP problem, is Yen’s algorithin
[185]. Yen’s algorithm consists of two main parts. First, the
SP is found using a traditional SP algorithm. Then, subsequent
SPs are found based on the knowledge of this initial path.
The (k+ 1)th SP is found by starting at intermediate nodes of
previously found paths, blocking the next edge in the path to
force the algorithm to find another path, and running an SP
algorithm from there. The LC path out of all these new paths
is the (k + 1)th SP.

Yen’s algorithm does not need to know the value of k£ when
starting. We refer to this type of kSP algorithms as iferative
kSP (ikSP) algorithms. In contrast, Chong’s algorithm [186]
requires k£ to be known in advance. The algorithm is then
identical to the Dijkstra (or A* in our case) algorithm, but
keeps, at each node, the current k best paths found. Once the
destination(s) has (have) been visited k times, the algorithm
can stop. We refer to kSP algorithms which have to know the
value of k in advance as static kSP (skSP) algorithms. Note
that any ikSP algorithm can also be used as a skSP algorithm.

We will see that for dense topologies with many edges (e.g.,
queue-link topologies with an edge for each outgoing QoS
queue, see Section II-A2), algorithms using an underlying ikSP
algorithm have poor performance. Indeed, while they could
possibly perform well for sparse topologies, the high number
of edges in dense topologies increases the number of paths that
have to be traversed to reach the desired optimality. Conse-
quently, we only consider Yen’s algorithm as ikSP algorithm.
The study of the possible performance increase introduced by
the usage of other ikSP algorithms, e.g., [187]-[190], is left for
future work. We are not aware of skSP algorithms other than
Chong’s, and will therefore only consider Chong’s algorithm
as an skSP algorithm.

III. SURVEY OF UNICAST (MULTI-)CONSTRAINED
SHORTEST PATH (CSP AND MCSP) ALGORITHMS

This section provides a comprehensive up-to-date survey of
unicast constrained shortest path (CSP) and multi-constrained
shortest path (MCSP) algorithms which can be employed
for QoS routing. We categorize these unicast QoS routing
algorithms according to the underlying algorithm strategy into
five main categories: /) elementary algorithms, 2) algorithms
based on a priority queue, 3) algorithms based on Bellman—
Ford, 4) algorithms making use of the Lagrange relaxation
optimization technique, as well as 5) algorithms making use
of the knowledge of the least-cost (LC) and least-delay (LD)



paths in the network. These five main categories of QoS
routing algorithms are summarized in Table II.

A. Elementary Algorithms

Joksch [191] provided the initial integer linear programming
(ILP) formulation of the CSP problem along with a proposal
to solve it optimally using dynamic programming based on
the delay constraint value. Unfortunately, this algorithm can
therefore only be used with integer delay metric values and is
hence not suitable for real-valued delays. On the other hand,
note that dynamic programming approaches based on the hop
count, e.g., the Bellman-Ford algorithm, which is by definition
integer valued, can be readily used with real-valued metrics.

Aneja et al. [192] presented an optimal solution for the
MCSP problem. Their algorithm performs pre-processing and
is based on an implicit enumeration of all possible paths and
is therefore computationally complex.

An elementary algorithm to find a feasible solution to the
DCLC problem is to return the least delay (LD) path, which
can be found with a single SP algorithm run. We will refer to
this algorithm as the least-delay path (LDP) algorithm. The
LDP algorithm does not consider the cost parameter; thus, the
cost inefficiency may be high.

A way to take the cost into account while still keeping the
algorithm simple has been proposed by Lee et al. [193] as the
Fallback (FB) algorithm. The FB algorithm first computes
the least-cost (LC) path using an SP algorithm and checks
if it is feasible. If yes, then it can be returned. If not, then
the LD path is computed and returned. The algorithm can be
extended for solving the MCSP problem by running the SP
algorithm successively with the different metrics (first with
the cost and then with the different constraints) as cost until
a feasible path is found. While the algorithm is complete for
the CSP problem, it is not anymore for the MCSP problem.
Indeed, for the CSP problem, running an SP algorithm with
the constraint as cost will ensure finding a path satisfying the
bound of this constraint (if one exists). On the other hand, for
the MCSP problem, minimizing one of the constraints does
not ensure that the other constraint bounds will be met.

Another simple idea utilizes LC paths as follows. Rather
than switching to the LD path if the LC path is not feasible,
search for the subsequent LC paths (using an ikSP algorithm)
until a feasible path is found. Such an algorithm can also be
applied for the MCSP problem and, since it discovers paths in
order of increasing cost, is optimal in both cases. We will refer
to this algorithm as the kSP Multiple Constraints (KSPMC)
algorithm. Obviously, by continuing its search after finding
the first feasible path, this algorithm is also able to solve the
kCSP and kMCSP problems.

B. Algorithms Based on a Priority Queue

A widely considered algorithm for optimally solving the
CSP problem is due to Widyono [194], who proposed the Con-
strained Bellman-Ford (CBF) algorithm. Despite its name,
the algorithm is not similar to the original Bellman-Ford
algorithm. CBF performs a breadth-first search. While keeping
track of the LC path to each visited node, CBF discovers

paths in increasing order of delay, stopping once the constraint
is violated. As the algorithm is actually an extension of the
Dijkstra algorithm, it is also sometimes referred to as the
Constrained Dijkstra (CD) algorithm. Indeed, similar to the
Dijkstra algorithm, the CD algorithm is based on a priority
queue and relaxes based on the cost values. However, paths
are retrieved from the priority queue in increasing value of
delay, instead of cost. The discovery process can stop when
the delay of the paths to further discover is higher than the
deadline, since then no additional feasible paths can be found.
Since the relaxation is done based on the cost, the LC path with
delay lower than the deadline was found, i.e., the algorithm is
optimal.

Liu and Ramakrishnan [195] proposed the A*Prune algo-
rithm for solving the MCSP problem. As its name suggests, the
A*Prune algorithm is in principle similar to the A* algorithm
(see Section II-D). The A*Prune algorithm assumes that a
guess function is available for each metric (i.e., for the cost
and all the constraints), discovers paths (i.e., takes paths out
of its priority queue) by increasing value of projected cost
(see Section II-D), and prunes (i.e., removes from the set of
paths to further extend) those paths for which a projected
constraint value exceeds the corresponding end-to-end bound.
Once the destination node is reached, the MCSP has been
found. Note that, unlike the Dijkstra, A*, and CBF algorithms,
the A*Prune algorithm does not keep a single path per node. In
other words, its way of reducing the number of paths to further
extend is not based on the destination node of these paths but
on their projected constraint values. The A*Prune algorithm
has the additional feature of being able to solve the kKMCSP
problem. Indeed, the extension of paths can be continued after
the destination has been reached. Once the destination node
is reached for the kth time, the optimal kth MCSP has been
found. The A*Prune algorithm also solves the CSP and MCSP
problems optimally.

C. Algorithms Based on Bellman-Ford

Jia and Varaiya [196] combined the search strategy of the
Bellman-Ford algorithm with the delay-constrained unicast
routing (DCUR) algorithm (which is based on LC and LD
paths and will be reviewed in Section III-E) to define the
delay-constrained Bellman-Ford (DCBF) algorithm. DCBF
first computes a reverse LD tree. Then, it runs the Bellman-
Ford algorithm, but updates the best path at a node only if it
has a lower cost and if the sum of (i) the delay of the path
built so far, (ii) the delay of the next edge, and (iii) the delay
of the LD path from the terminal node of the next edge (i.e.,
the node reached via the next edge) to the destination is lower
than the delay bound. We will refer to this test as the projected
delay test. Jia and Varaiya also propose an extension to this
algorithm, kDCBF, keeping track of the kg best paths for the
reverse LD tree run and keeping the best k. paths at each node
for the forward Bellman-Ford run.

DCBF and kDCBF are complete, but not optimal. The
reason for the sub-optimality of DCBF and kDCBEF is as
follows. DCBF may be sub-optimal if it “relaxes too much”.
DCBF relaxes a node when (i) the cost of the new path is



lower, and (4i) the new path satisfies the projected delay test.
Two cases are possible: Case 1: The cost of the new path
is lower and its delay is also lower than the current path at
the node. The relax operation is hence justified. Case 2: The
cost of the new path is lower and its delay is higher, but still
satisfies the projected delay test. Since the new path has a
higher delay than the older path, it can happen that DCBF then
has to take a higher cost path to satisfy the delay constraint
until the destination. Therefore, although at the current node,
the path was cheaper, because of its higher delay, DCBF then
has to follow a higher cost path to reach the destination in
time. This is the DCBF sub-optimality scenario, where DCBF
is not optimal anymore because the final path would have
been cheaper by keeping the original path (which was more
expensive at one node).

Cheng and Ansari [197] proposed the dual extended
Bellman-Ford (DEB) algorithm, an algorithm for the CSP
problem similar to FB (see Section III-A). Instead of running
an SP algorithm for the LC and LD searches, DEB runs a so-
called extended Bellman-Ford (EB) algorithm which is able
to find, for every possible hop count %, the optimal h-hop
constrained path. For both runs, the path considered is then
the best path among all those found. As FB, DEB is complete,
but not optimal.

D. Algorithms Based on the Lagrange Relaxation

1) Background on Lagrange Relaxation: In mathematical
optimization, the Lagrange relaxation technique allows to
remove some constraints of the original problem and to
introduce them in the optimization objective [171], [198],
[199]. For example, the Lagrange relaxation of problem (1)—
) is

L(u)= min c'x+u'(Dx—d), 4

x€Psq

where u € Rﬂf is called the Langrangian multiplier. The
minimized function is called the Lagrange function of path
x and is also denoted as L(u,x). It can be shown that, if the
original problem is feasible, then there is an optimal solution

to
zr, = max L(u), ®)

ueR}

which is a feasible solution of the original problem. Problem
(5) is referred to as the Lagrangian dual of the original problem
(1)—(2), which is then referred to as the primal problem. Be-
cause solving the dual problem does not necessarily optimally
solve the primal problem, we say that there is a duality gap.
2) Lagrange Relaxation based Aggregate Cost (LARAC)
without and with Gap Closing (GC): Solving the dual problem
requires to solve the relaxed problem (4) several times. The
interesting aspect of this procedure is that, for the CSP
problem, the relaxed problem corresponds to an SP problem
with a modified cost function ¢, = ¢ + ud. This concept is
illustrated in Fig. 4. Each line in Fig. 4 corresponds to the
Lagrange function of a path in the network. Lines with null or
negative slopes correspond to feasible paths while lines with
positive slopes correspond to infeasible paths. The intercept
of a line corresponds to the cost of the path. In our example,

L(u,x)

2LD

0 ULU3 U2 u

Fig. 4: Illustration of Lagrange functions L(u,x) of paths in a network as a
function of Lagrange multiplier u. The LARAC algorithm [200]-[203] finds
the maximum of the lower boundary of this set of curves through a binary
search, always keeping track of a best feasible (negative slope) and a best
infeasible (positive slope) path. The search starts with the LD and LC paths,
found by simple SP searches, and continues with further SP searches with a
modified cost function ¢, = c+ud, where u is obtained as the intersection of
the current best feasible and infeasible paths. From mathematical optimization
theory, this is an approximation of the optimal solution of the original DCLC
problem.

the optimal path (with cost z,pt) is highlighted in red. Since
L(u) is a piecewise-linear concave function [204], the u value
maximizing L(u) can be found using a binary search and
always keeping track of a best feasible and a best infeasible
paths, starting with the LC and LD paths (shown in blue in
Fig. 4). As these two paths have slopes of different signs',
they intersect at a point u;. This point is then used as the
Lagrange multiplier for the next SP run. This run will find a
new path. If the path is primal feasible (resp. infeasible), it
replaces the current best feasible (resp. infeasible) path. The
new pair of best feasible and infeasible paths defines a new
point uy. The procedure then continues until the Lagrange
multiplier does not change. The stored best feasible path at
this point is then returned. In the example of Fig. 4, we can
see that the found path (which corresponds to 2z’ and u3) is
sub-optimal (2" > zopt).

Aneja and Nair [200] initially proposed this algorithm as
an optimal algorithm. They did not notice the duality gap.
Later, Handler and Zang [201] proposed to close the gap as
follows. At the end of the execution of the algorithm [200], the
Lagrange value z;, of the found path is a lower bound on the
optimal cost zpt. Similarly, the cost 2’ of this path is an upper
bound of the optimal cost z,,¢. The gap can then be closed by
running an ikSP algorithm with the last Lagrange multiplier,
i.e., ug in our example. Figuratively speaking, the intersections
are not relevant for the gap closing; rather, the gap closing
traverses the vertical line at ug from bottom to top. For
each path found by the ikSP algorithm, the upper and lower
bounds on the optimal cost are updated with, respectively, the
Lagrange value of the new path found and the cost of the best
path found so far. When the lower bound gets greater than the

UIf this is not the case, either the problem is infeasible (both paths have
positive slopes) or the LC path is optimal and can be returned (both paths
have negative slopes).



upper bound, i.e., when the Lagrange value of the new path is
greater than the cost of the best path found so far, it is ensured
that no better path can be found. The best feasible path found
so far is then the optimal solution. In the example of Fig. 4,
the ikSP algorithm finds the optimal path as the third SP for
ug and has to find the fifth SP (which is actually the LD path)
to notice that no better path exists.

Handler and Zang [201] also introduced a parameter J to
stop the gap closing when the relative distance between the
lower and upper bounds is less than §. As this relative distance
is an upper bound on the cost inefficiency (CI), the § parameter
allows to ensure that the cost inefficiency of the algorithm is
always lower than §. Blokh and Gutin [202] also proposed
the algorithm without gap closing. Finally, Jiittner et al. [203]
proposed again the same algorithm (without gap closing) and
gave it a name: Lagrange Relaxation based Aggregate Cost
(LARAC). They also introduced a maximal difference (MD)
parameter. The binary search is then stopped when the relative
distance between the cost of the current best feasible path and
the cost of the current best infeasible path is less than MD.
We will refer to the LARAC algorithm with gap closing as
LARACGC. As elaborated, LARACGC with § = 0 is optimal
and LARAC is not. Since they find at least the LD path, both
are complete.

3) LARAC Variations and Extensions: Santos et al. [205]
proposed an algorithm similar to LARACGC. The difference
is that, after having computed the LC and LD paths, Santos et
al. directly close the gap without performing the binary search.
In particular, Santos et al. use a specific Lagrange multiplier
computed based on the knowledge of the delay bound as well
as the costs and delays of the LC and LD paths. From the
name of its authors, we will refer to this algorithm as SCRC.
The algorithm has the same stopping condition as LARACGC
and is therefore also optimal.

Jia and Varaiya [196] then proposed kLARAC, an extension
of LARAC that uses a kSP algorithm at each iteration, instead
of an SP algorithm. The set of k paths found for a given
either contains only feasible paths, only infeasible paths, or
a mix of both. As long as only feasible and infeasible sets
are found, the new Lagrange multiplier is computed as for
LARAC using the LC paths of the two sets. Once a mixed set
is found, the LC feasible path of the set is returned. Jia and
Varaiya show that the algorithm is always at least as good as
LARAC in terms of cost inefficiency. Since k is a parameter
of the algorithm, an skSP algorithm can be used. KLARAC is
not optimal.

The LARAC algorithm can also be visualized in the delay-
cost space, see Fig. 5, where a point corresponds to a given
path in the network. At each iteration, the Lagrange multiplier
defines the search direction of the SP run to be perpendicular
to the line connecting the current best feasible and infeasible
paths. This is shown by the small arrows perpendicular to the
solid lines in Fig. 5. An SP run in a given direction finds the
first point that the corresponding solid line would hit if pushed
in this direction starting from point (0, 0).

In the example of Fig. 5, LARAC will find the LD and
LC paths, then a, then b, and the algorithm will then stop
and return a. We see that the optimal path, shown in red,

Dx

0

Fig. 5: Illustration of operation of LARAC algorithm in the delay (Dx)-cost
(%) space: At each iteration, LARAC runs an SP search in the direction
defined by the Lagrange multiplier. Here, the algorithm will first find LC and
LD. Then, based on the Lagrange multiplier computed with these two paths
(which corresponds to the normal to the line connecting these two paths),
a will be found. Similarly, b will then be found. Then, a or b will again
be found, meaning that the Lagrange multiplier will not change. Hence, the
algorithm will stop and the best feasible path, i.e., a, will be returned.

is missed. Korkmaz and Krunz [206] argued that this is due
to the fact that the search direction is linear in the delay-
cost space (Fig. 6a). They hence proposed an algorithm called
Heuristic for Multi-Constrained Optimal Path (H_MCOP)
which tries to search simultaneously in the delay and cost
directions (Fig. 6¢). To do so, the algorithm first finds the
LD paths from any node to the destination using a reverse
SP tree algorithm. Then, it runs an LC forward SP search but
updates the best path at a node only when the new path is
feasible or has a lower delay than the previously stored best
path. The feasibility of the new path is checked using the
LD paths stored from the reverse SP tree run. A new path is
then considered feasible if it passes the projected delay test.
The best path is hence sometimes updated based on the delay
and sometimes based on the cost, which is how the algorithm
tries to simultaneously follow the search directions shown in
Fig. 6¢c. The algorithm is nevertheless not optimal because
this depends on how fast the delay and cost directions are
respectively explored.

As its name suggests, the H_MCOP algorithm is also valid
for the MCSP problem. While the explanation of the algorithm
for the MCSP problem is more complicated (and is not
included because we focus on the CSP problem in this article),
the algorithm still tries to scan the multi-dimensional cost-
constraints space simultaneously in all directions. However,
to do so, an additional parameter A\ has to be introduced and
is defined as the power value used to combine the original
constraints into an aggregated cost. A = 1 corresponds to
a linear search direction (Fig. 6a) and increasing A towards
infinity leads to the search direction shown in Fig. 6¢. Besides,
in the MCSP case, the algorithm is not complete anymore
[206], [207]. Korkmaz and Krunz [206] then also proposed to
use Chong’s skSP algorithm for the forward run in order to
continue searching in both directions until £ paths have been
found, thereby possible finding better paths. We will refer to



Dx Dx

Dx

Y
Y

Y

CTX

(a) Linear search direction (A = 1).

(b) Quadratic search direction (A = 2).

CTX CTX

(c) Non-linear search direction (A — o).

Fig. 6: When running an SP (or kSP) algorithm with an aggregated cost, the type of aggregation of the initial metrics influences the search direction of the
SP algorithm. In the case of two metrics, linearly combining the metrics leads to the linear search direction shown in Fig. 6a. In some cases, including DCLC
routing, one may want to explore the delay-cost space simultaneously in both directions. To do so, the initial can be combined in a non-linear fashion. For
example, if the aggregated cost is computed by combining each metric to the power of two, a search direction similar to Fig. 6b is obtained. By increasing the
power used to combine the metrics, one can reach the desired search direction shown in Fig. 6¢. Unfortunately, once the metrics are not linearly aggregated,
the optimal sub-structure property does not hold anymore; thus, classical SP and kSP algorithms (e.g., Dijkstra, A* [180], and Yen [179]) are not optimal

anymore.

this algorithm as kH_MCOP. Clearly, this does not solve the
incompleteness problem of the algorithm in the MCSP case
[206] and the algorithm is still not optimal.

H_MCOP can be used to solve the MCP problem by
observing the directions of all the constraints simultaneously
and returning the first path found [206], [207]. It is then
referred to as H_MCP and is incomplete [206]. Feng et al.
[208] proposed NR_DCLC, a CSP algorithm using H_MCP as
underlying MCP algorithm, although NR_DCLC works with
any other MCP algorithm. The LC and LD paths are first
computed to check for infeasibility or for LC as elementary
solution. Then, the cost of the LD path is set as first cost bound
and the delay bound is the one of the original DCLC problem.
Then, H_MCP finds an MCP path within these constraints.
The cost of the path found is then used as new cost bound.
This process is repeated until H_MCP does not find any path.
To avoid H_MCP to return the path found at the previous
iteration, the cost bound for the next iteration is always set
to a value a little bit smaller than the actual cost of the
found path. Because NR_DCLC finds at least the LD path,
it is complete. Since the underlying H_MCP algorithm is
incomplete, NR_DCLC is not optimal.

Feng et al. [207] then proposed a variation of NR_DCLC.
Instead of running H_MCP with the cost of the LD path
as bound, H_MCP is run with the cost of the path found
by H_MCOP as bound. As this algorithm improves on the
solution found by H_MCOP, the authors refer to it as Mod-
ified_ H_MCOP (MH_MCOP). The authors also introduce
a parameter to limit the amount of MCP iterations. We
will refer to this parameter as H. For the same reasons as
for NR_DCLC, MH_MCOP is complete, but not optimal.
MH_MCOP can additionally solve the MCSP problem but, as
it is based on H_MCOP, is not complete for it. On the other
hand, NR_DCLC cannot solve the MCSP problem. Indeed, its
initial LD search can only deal with one constraint.

Feng et al. [207] additionally proposed an optimal al-
gorithm, E_MCOP, similar to SCRC. E_MCOP first runs
E_MCP, a complete MCP algorithm. E_MCP first runs an

SP search for each constraint. If one of them cannot be met,
it terminates. Otherwise, it runs an ikSP algorithm with the
sum of the individual constraints, individually divided by the
difference between their bound and their least value, as an
aggregated cost. E_MCP returns the first feasible path found or
stops once a path with an aggregated cost higher than the cost
obtained by considering that each constraint reaches its bound
is found. If E_MCP found no path, E_MCOP concludes that
there is no solution. Otherwise, E_ MCOP considers the found
path as the current solution, uses its cost to define a cost border
and runs an SP search for the cost to find its least value. From
these two values, E_ MCOP restarts an E_ MCP search with the
cost added to the aggregated cost (also divided by difference
between its bound and its least value). The algorithm returns
the current solution once the ikSP algorithm finds no path
or when it finds a path with an aggregated cost higher than
the cost obtained by considering that each metric reaches its
bound. When a path is found by the ikSP algorithm, it replaces
the current solution if it is feasible and has a lower cost. This
algorithm is optimal for both the CSP and MCSP cases [207].

Guo and Matta [209] elaborated on the idea of using an
underlying MCP algorithm in their delay-cost-constrained
routing (DCCR) algorithm. DCCR behaves similarly to
NR_DCLC, but runs the MCP algorithm only once. For this
to be effective, they use an MCP algorithm that takes the costs
of paths into account. This MCP algorithm can hence also be
viewed as a DCLC algorithm which needs a cost bound. The
algorithm runs an SP search where the cost of a path is defined
as

delay of the path

11— original cost of the path ’ (6)
cost bound

which also tries to emulate the simultaneous scan of the
delay-cost space in both directions. Nevertheless, with such a
function, the cost of a path is not anymore the sum of the cost
of its constituting edges and classical SP algorithms cannot
solve the problem optimally. Therefore, Chong’s algorithm
is used to increase the probability of keeping track of good



solutions. DCCR is complete, but not optimal. Instead of
using the cost of the LD path as cost bound, Guo and Matta
propose to use the cost of the path found by LARAC. This
algorithm is then referred to as search space reduction DCCR
(SSR+DCCR). Since the algorithm improves the solution
returned by LARAGC, it is closing the duality gap, similarly
to LARACGC, but only partially. In order to provide a cost
bound, LARAC does not have to run until the end. Therefore,
Guo and Matta define a parameter, which we will refer to as
L, that limits the number of iterations (i.e., the number of SP
runs excluding the LC and LD searches) of the LARAC run.
SSR+DCCR is also complete, but not optimal.

Agrawal et al. [210] proposed E-LARAC, an extension
of LARAC that additionally considers a constraint on the
maximum number of hops by using a modified Bellman-Ford
subroutine. Because the number of hops is not a constraint
in many QoS networking scenarios, we do not consider E-
LARAC in our evaluation.

The Lagrange relaxation has also been used by Ribeiro
and Minoux [211] for solving the double-sided constrained
SP problem, i.e., the problem of finding an SP whose delay
(or any other metric) is lower than a upper bound but also
greater than a lower bound. We do not consider this double-
sided problem in our evaluation.

E. Algorithms Following the LC and LD Paths

Instead of computing a delay-constrained path from SP
searches with modified costs, Salama et al. [212], [213]
proposed to solve the DCLC problem from the knowledge of
the LC and LD trees towards the destination. The algorithm
builds the path node by node. At each node, the algorithm
chooses between the edge belonging to the LC path towards
the destination and the edge belonging to the LD path towards
the destination. The LC edge is chosen if it satisfies the
projected delay test; otherwise, the LD edge is chosen. It
can happen that a loop is created. In such a situation, the
algorithm backtracks to a node that chose the LC edge and
then chooses the LD edge instead. Salama et al. show that this
backtracking ensures the removal of the loop. This algorithm
is called delay-constrained unicast routing (DCUR). Since
DCUR can always find the LD path (by backtracking), it is
complete. However, DCUR is not optimal.

Fig. 7 shows an example graph with the corresponding LC
(red) and LD (yellow) trees towards the destination node d.
Starting from the source node s, DCUR chooses, at each
node, between the red and yellow outgoing edges of the node
depending on the result of the projected delay test. In this
example, with the delay constraint set to 10, DCUR would
choose LC-LD-LC-LC (no loop occurs), thereby finding the
path s-2-3-6-d with cost 9 and delay 10. Indeed, when at node
2, DCUR cannot follow the LC edge. If it did, it would reach
node 5 with a delay of 7. Since the LD path from node 5
to the destination has a delay of 5, it would not be possible
anymore to reach the destination with a delay lower or equal
to 10. Note that this is sub-optimal as the optimal path (that,
e.g., CBF would find) in this example is s-3-6-d with cost 8
and delay 8.

cost/delay

Fig. 7: Least-cost (LC) and least-delay (LD) paths from any node to a given
destination in an example graph with links denoted by cost/delay. DCUR,
DCR, and TAK are algorithms combining these paths in order to find a delay-
constrained least-cost path (DCLC). In this example, with a deadline of 10,
DCUR, which alternates between using the LC and LD edges, finds the path s-
2-3-6-d with cost 9 and delay 10. DCR, which follows LD edges and switches
once to the LC edges, finds the path s-3-6-d with cost 8 and delay 8. Finally,
TAK, which follows LC edges and switches once to the LD edges, finds the
path s-2-3-4-d with cost 11 and delay 8.

Sun and Langendorfer [214] then proposed a solution, called
distributed delay constrained routing (DCR), to avoid the
creation of loops and hence to prevent the algorithm from
having to backtrack, thereby reducing runtime. DCR follows
the LD path until the sum of (i) the delay of the path so far
and (ii) the delay of the LC path from the current node to the
destination is lower or equal to the delay bound. Starting from
this point, the algorithm then follows the LC path until the end,
since it is ensured that it will satisfy the delay constraint. Since
the LD path is only followed from the source node, it can be
computed by a simple SP run. DCR is also complete, but not
optimal.

In the example of Fig. 7, still with the delay constraint
of 10, DCR follows the LD edge until node 3 as the sum
of the delay of the path so far (no path and hence delay of
0) and the delay of the LC path from the current node (s)
to the destination (path s-2-5-6-d with delay 15) is greater
than the delay bound (0 + 15 > 10). Indeed, following the
LC edges already from node s would lead to an infeasible
path. Then, starting from node 3, DCR switches to the LC
path as the sum of the delay of the path so far (path s-3
with delay 3) and the delay of the LC path from the current
node (3) to the destination (path 3-6-d with delay 5) is lower
than the delay bound (3 + 5 < 10). Indeed, DCR is now
sure that following the LC edges until the destination will
lead to a feasible solution. Hence, DCR finds the path s-3-
6-d, which is actually the optimal path. This example shows
that, while DCR is simpler than DCUR, it can still provide,
in some circumstances, a path closer to optimality.

Ishida et al. [215] then proposed the opposite strategy, i.e.,
to first follow the LC path and to switch to the LD path as
soon as following the LC path would lead to a node from
which the delay constraint cannot be satisfied anymore. For
the same reason as for DCR, the LC path can be computed
by a simple SP run. Based on the author names of [215], we



refer to this algorithm as JAK. TAK is also complete, but not
optimal.

In the example of Fig. 7, still with the delay constraint of
10, TAK follows the LC edge until node 2 as this edge has a
delay of 4 and the LD path from node 2 to the destination has
a delay of 4, thereby ensuring that the delay constraint can
still be met. From node 2, for the same reason as for DCUR,
IAK cannot follow the LC edge anymore. Indeed, it would
not be possible anymore to reach the destination with a delay
lower or equal to 10. Hence, IAK switches to the LD edges
and finds the path s-2-3-4-d with cost 11 and delay 8.

DCUR, DCR, and IAK have been proposed with a dis-
tributed implementation in mind and allow only a limited
range of choices at each node. Two algorithms have been
proposed with the objective of enlarging the set of paths that
can be found. First, Sriram et al. [216] proposed that each
node maintains a list of ordered preferred output links. When
path construction reaches a node, it selects its preferred output
link for which the delay of the new path satisfies the delay
constraint and that does not introduce a loop. A node may not
have a preferred output link that satisfies these constraints.
Then, path construction is backtracked to the previous node,
which then selects its next preferred output link. If all preferred
output links have been exhausted, then path construction is
also backtracked to the previous node. Once the destination
is reached, the algorithm terminates. Based on the author
names of [216] we will refer to this algorithm as SMS. The
list of preferred link is computed according to a heuristic
function. In order to reduce runtime, the algorithm allows to
limit the size of the list of preferred links at each node to a
given parameter p. Nevertheless, depending on the heuristic
function, this makes the algorithm incomplete. The algorithm
is complete only if p is, at each node, greater or equal to
the degree® of the node, thereby ensuring that all links are
considered. If A(G) denotes the maximum degree of the nodes
in graph G, the algorithm is complete if

p = AG). (N
Sriram et al. [216] define three heuristic functions: (1) residual
delay maximizing (RDM), ordering links by their cost divided
by the delay constraint minus the projected delay of the
link (and ensuring that the edges belonging to the LC and
LD paths towards the destination are included in the list),
(2) cost delay product (CDP), ordering links by their cost times
their projected delay, and (3) partition-based ordering (PBO),
ordering links by cost value. RDM requires one SP tree run
(LD), CDP two, and PBO none.

If the heuristic function is not efficient, the algorithm could
explore an excessive number of paths before reaching the
destination. This is especially true for dense topologies with
many possible paths. To avoid this, Liu et al. [217] proposed
SF-DCLC, an algorithm similar to SMS. At each node, instead
of computing a list of links and trying them one after the other,
the algorithm chooses one output link based on a selection

’In a graph, the degree of a node corresponds to the number of edges
connected to this node. In our scenario, we define the degree of a node as the
number of outgoing edges the node has.

function (SF) which is proven to avoid loops and to lead to a
solution if one exists. The links are assigned a weight equal
to their cost plus (i) the cost of the LC path to the destination
if the latter passes the projected delay test, or, if not, (ii) the
cost of the LD path. Links for which the LD path is infeasible
are not considered. The least-weight link is then chosen. SF-
DCLC is complete, but not optimal.

F. Other Approaches

For completeness, we briefly review in this section other
QoS routing approaches that we do not include in our evalua-
tion for the various reasons noted for the following algorithms.
In order to the reduce the runtime of optimal algorithms, sev-
eral fully polynomial e-approximation algorithms have been
proposed, e.g., [218]-[224]. The e-approximation algorithms
ensure to find a path whose cost is at most (1 + €) times
higher than the cost of the optimal path. Unfortunately, e-
approximation algorithms consider only integral costs and/or
delays and are therefore not suitable for QoS routing with
real-valued costs and/or delays.

Several algorithms have been proposed to accommodate im-
precise state information, e.g., [12], [225]-[229]. In centralized
network architectures, such as SDN, is it reasonable to assume
that the state is well-known and we hence do not consider
the class of algorithms for imprecise state information. Also,
note that algorithms considering imprecise information cannot
provide strict (hard) QoS guarantees, rather these algorithms
can only provide soft QoS guarantees. Similarly, algorithms
based on probing techniques, e.g., [12], [226], [229]-[231],
or relaxing the constraint, e.g., [232], can also only provide
soft QoS guarantees. Our focus is on QoS routing algorithms
that can provide strict QoS guarantees and we do therefore
not consider the algorithms for imprecise state information,
probing, or relaxed constraints in detail in this survey.

Algorithms based on genetic algorithm (GA) [233], [234]
and on artificial bee colony optimization techniques [235]
have also been proposed. Such randomized algorithms have
typically a fairly high runtime and are therefore not well suited
for online routing decisions. Our focus is on QoS routing
algorithms that are suitable for online routing decisions and we
do therefore not cover these randomized algorithms in detail.

Pornavalai et al. [236], [237] simplify the bandwidth-jitter-
delay constrained problem into an SP problem with maximum
number of hops (i.e., a problem that can be solved in polyno-
mial time) by using relationships between bandwidth, delay,
jitter, and buffer capacity in weighted fair queuing (WFQ) set-
ups. Our focus is on QoS routing algorithms that accommodate
independent optimization and constraint metrics and we do
therefore not consider [236], [237] in detail.

IV. FOUR-DIMENSIONAL (4D) EVALUATION FRAMEWORK

Generally, the performance of an algorithm depends on the
specific scenario in which it is executed. In order to evaluate
the behaviors of the different algorithms across a wide set of
scenarios, we introduce an evaluation framework that evaluates
QoS routing algorithms along four critical dimensions. First,
we define four fopologies which we describe in Sec. IV-A.



One Ring Two Ring Two Ring Grid
Bottleneck (ORB) Bottleneck (TRB) Random (TRR) Random (GR)
remote 1/Os to PLC any to any
= -
(i ,C‘E/’ s nfion
;—-‘5:" i i === ===}
piy NI o o e | i - ?
| = G [ AN »
o e " " = :
n . :
‘ E=1lE-] i "F uli ﬂ? Bl rLC
Iﬂi | ' & -5
\ ) i — ,:j’ — Bi; Remote 1/O
m : e &7 Sswitch
: —
m Link

Fig. 8: The four topologies considered in the evaluation are based on three
different base topologies which can be scaled in two different directions.

A topology describes both the underlying structure of the
network and the nodes that communicate with each other in the
network. Second and third, we scale these topologies in two
directions. Fourth, we distinguish requests based on the level
of strictness of the delay constraint, see Sec. IV-B. Sec. IV-C
presents the evaluation procedure and the metrics used, while
Sec. IV-D identifies the evaluated algorithms.

A. Topology and Scaling

As first dimension of our evaluation framework, we define
four topologies (shown in Fig. 8) based on three different
base topologies. Although our survey is generic and all the
algorithms can be applied to any CSP problem, we focus on
industrial topologies where we expect centralized QoS routing
to be extensively employed [133]. Nevertheless, the topologies
we define are also common in and representative of data
center, metro, grid, and enterprise networks. On the contrary,
wide-area (star topology) networks are not covered, as strict
centralized QoS routing in such environments is unlikely. All
topologies can be scaled according to two scale parameters
m and n that represent the size of the topology layout, as
illustrated in Fig. 8 and defined in detail in the following for
the four different topologies. The second and third dimensions
of our evaluation framework correspond to varying the two
scale parameters m and n from 4 to 13, thereby defining 100
different scalability levels. The four topologies are referred to
as One Ring Bottleneck (ORB), Two Ring Bottleneck (TRB),
Two Ring Random (TRR) and Grid Random (GR).

e ORB: The ORB topology consists of a base ring of
m + 1 switches. A so-called programmable logic con-
troller (PLC) is connected to one switch of this ring. A
branch composed of a series of n remote input/output
nodes (I/Os), e.g., sensors, is connected to each of the
other m switches of the ring. Thus, there are a total of
mn I/Os. Remote I/Os have an internal switch allowing
traffic to flow along the branches. Thus, remote I/Os act
as traffic sources as well as traffic forwarders, which is
common in sensor networks and industrial networks [51],
[144], [145], [147]. Traffic is only considered from the
remote I/Os to the PLC.

o TRB: The TRB topology extends the ORB topology with
an additional ring consisting of m + 1 switches. The

m + 1 switches connect the loose (bottom) ends of the
m branches of remote I/Os (of the ORB topology) to the
PLC. Traffic is still considered only from the remote I/Os
to the PLC.

o TRR: The TRR topology is the same as the TRB topology,
but traffic is now considered between any pair of remote
1/0s. As the remote I/Os, the PLC is able to forward
traffic not destined for it.

e GR: The GR topology is a grid of width m and height
n. In the GR topology, traffic is considered between any
pair of nodes.

We do not consider random topologies generated based on
models, such as the Waxman model [238]. Instead, striving for
a fair and reproducible evaluation, we only use deterministic
topologies.

Each directed link is considered to have four output priority
queues and routing is then performed on the correspond-
ing queue-link topologies. For each physical link, the costs
of the four queue-link edges with priority levels p, p =
1 (high priority), 2, 3,4 (low priority), are set to the values
14 1/p so as to favor the usage of low priority queues.
The delay values are obtained with Schmitt’s formula [135].
Thus, the costs and delays of the four queue-link edges are
respectively set to 2 and 0.48 ms, 1.5 and 1.26 ms, 1.33 and
2.83 ms, as well as 1.25 and 7.55 ms.

Clearly, the number of queues as well as the cost and delay
settings influence the performance of the algorithms and could
be defined as additional comparison dimensions. However, in
order to keep the evaluation tractable, we keep them static.

B. Delay Constraint Tightness

The delay constraint of routing requests can range from
loose values for which the LC path is feasible to tight values
for which no feasible path exist. Within this range, we define
seven subranges of equal size, which we refer to as delay
levels. The fourth dimension of our evaluation framework
corresponds to varying the delay constraint of routing requests
between these different delay levels.

C. Evaluation Procedure and Metrics

Each algorithm is evaluated along the four dimensions of
our evaluation framework. For each particular topology and
combination of the scale parameters m and n, we sequentially
simulate 20,000 routing requests. The first 1000 requests
are used as warm-up for the Java HotSpot optimizer and
their results are not considered. For each request, the source
and destination are generated uniformly randomly from the
possible set of combinations defined by the topology and
scale parameters. The delay constraint is distributed uniformly
randomly among the seven delay levels [and then uniformly
randomly within the selected delay level (delay constraint
subrange)] so as to prevent the Java HotSpot optimizer from
optimizing for a specific delay level. (If all test runs for a
specific delay level are run successively, the Java HotSpot
optimizer could exploit the consideration of a particular delay
level in successive runs.)



For a given algorithm under test (AUT) and request, we
run three algorithms. First, we run CBF in order to obtain
the cost zyp of the optimal solution. Second, we run the
AUT to determine the AUT cost z’. The cost inefficiency
(CD of the AUT is then evaluated in % compared to the cost
of the optimal path according to Eqn. (3). Third, we run an
LD search using A* (which is then equivalent to an LDP
search). We define the runtime of the AUT divided by the
runtime of the LD search as the runtime ratio of the AUT. This
normalization allows to filter out runtime variations due to the
varying runtime behaviors of the testing machines (caused by
operating system tasks or Java garbage collector execution).
Indeed, both algorithms are run one after the other, i.e., within
a short time window during which the runtime behavior of the
testing machine can be assumed to be constant.

D. Algorithms Selection

Table II summarizes the algorithms that we have identified
as suitable for the considered unicast QoS routing in Sec. III.
We implemented all these 26 algorithms in Java 8° and,
for each of them, ran our evaluation procedure. The specific
parameter settings for parameterized algorithms will be given
in Sec. V. We will identify parameterized algorithms by the
name of the original algorithm to which we append the dash-
separated parameter values in the same order as in Table II.
For example, LARACGC with § = 25% will be referred to
as LARACGC-25. We omit the A\ parameter of H_MCOP and
kH_MCOP since it has no influence in the CSP case.

V. EVALUATION RESULTS

Sec. V-A presents the evaluation results for the fourth
dimension, i.e., the behavior of the algorithms for the dif-
ferent delay levels. Sec. V-B then focuses on the three first
dimensions. Due to the high number of algorithms and the
highly detailed results on how they behave and perform,
it is not possible to present and discuss all results for all
algorithms in detail in this article. Therefore, we only present
the most interesting algorithms and discuss the most im-
portant conclusions. We have made the entire set of raw
results and graphs for all the algorithms publicly available at
http://www.lkn.ei.tum.de/lora [31].

We found that kSPMC, A*Prune, LARACGC, SCRC,
E_MCOP, and the three SMS variations were not able to com-
plete the evaluation in a reasonable amount of time compared
to CBF. This leads to our first observation that algorithms
using an ikSP algorithm to reach optimality have a very
long runtime. Indeed, the considered queue-link topologies are
dense with high numbers of possible paths. Thus, the number
of paths to discover until reaching optimality is also high,
yielding intractable runtimes for kSPMC, LARACGC, SCRC,
and E_MCOP. A*Prune and SMS are not based on an ikSP
algorithm but their structure is such that, if their initial search
direction is not the correct one, they have to explore a high
number of paths to reach the destination. The negative impact

3We acknowledge that the results may be subject to our specific imple-
mentations; however, we tried to be fair and optimize all implementations as
much as we could.

of this approach is accentuated by the high density of the
considered queue-link topologies.

A. Fingerprints: Influence of the Delay Constraint Tightness

We analyze the fourth dimension using so-called fingerprint
graphs (Fig. 9). The fingerprint graph for a given combination
of topological and scale parameters m and n, shows the
distribution of the runtime ratio (left, in red) and CI (right,
in yellow) of an algorithm for the seven different delay levels
(loose levels on the left and tight levels on the right). Since
we have four different topologies with 100 different scalability
levels (combinations of m and n values), each algorithm has
400 fingerprint graphs. Nevertheless, we observed that the
shapes of all fingerprint graphs for a given algorithm are
similar; Fig. 9 shows fingerprints for the grid (GR) topology
with scale parameters m = n = 10. Since the shapes of
these graphs characterize the different algorithms we refer to
these graphs as fingerprints: they nearly uniquely identify an
algorithm based on its behavior and are (nearly) always the
same for a given algorithm. Only the absolute values vary
depending on the topology and its scaling. These variations
will be discussed in Sec. V-B.

1) Elementary Algorithms: Since the elementary LDP al-
gorithm (see Section III-A) does not take cost into account,
its CI is the benchmark for the worst acceptable CI (Fig. 9a).
As expected, the CI of LDP gets better for tighter constraints
since the LD path becomes closer to the optimal solution. In
terms of runtime, as LDP is compared with itself, the LDP
fingerprint shows that the accuracy of our runtime metric is
reasonable (the 0.5 and 99.5 percentiles are close to one and
the median is approximately one). In additional evaluations,
which we cannot include due to space constraints, we observed
that FB exhibited, as expected, exactly the same CI behavior
as LDP; except when the LC path is feasible, where FB is
optimal, at the cost of one additional SP run for all other
cases.

2) Priority Queue Based Algorithms: The benchmark for
the highest acceptable runtime ratio is given by CBF, an
optimal algorithm based on a priority queue (Section III-B)
(Fig. 9b). CBF was the fastest optimal algorithm. Since CBF
terminates when the paths it expands have delays higher than
the constraint, it terminates earlier for tighter constraints and
its runtime therefore improves as the delay constraint gets
tighter. The CI of CBF is always zero since CBF is optimal.

3) Algorithms Based on Bellman-Ford: The Bellman-Ford
based DCBF algorithm (Fig. 9¢) has a CI fingerprint with
slightly decreasing runtimes and increasing CI for increasingly
tight delay constraints. For tight delay constraints, the delay
test during the Bellman-Ford run fails more often and hence
allows Bellman-Ford to terminate earlier (as it stops when
no relaxation occurs in an iteration) and DCBF therefore
gets faster as the delay constraint gets tighter. In additional
evaluations we have observed that kDCBF (not included in
Fig. 9) has similar shapes, however which much lower CIs
and longer runtimes. For example, kKDCBF-2, divides the CI
by a factor of approximately two, but increases runtime by a
similar factor.



15

1 1 w0 | 1 o 1
! |60 ” ! . 0 ! P60
o 1fm ! S 2000 | ! = d0f | ! =
z ! ! ¢z ! : gz : ! g
s : g oo A -] R A
E : : £ 2 : : £ 2 : : &
= ‘ ‘ < £ ‘ ‘ s £ ‘ ‘ e
Z 05F ! ! E 5 100} ; ! E B 90| ! | £
= i i i 7z R i i B g R i i i 2
: B - : B e : I
! ! - 500 [ % ! N oLl !
tp, tpy tp, tpy tp, tpy
ty ty Ly
(a) LDP (b) CBF (c) DCBF
1 1 0 n I
5 1 P60 1 P60 T T P60
| | @ | | E‘ | | @
: : = L : : = 10+ : : =
2 4 ! 2 2 P ! ! c £ ! ! ! 5
= | | 4 =} | | i =] o ' ' - =
5ol : : 05 £ : : 10 : : : 10 g
E ! ! £ £ 10 | | € Z ! E E H E ! €
= | | g = | | £ g | | g
g 25 : : Z 2 : : s E 5 : : =
! PP p ol |
& s s o[ I3 il L Irlp
0 1 : 1 | : 1 0 0 | : 1 1 | | | : 1 0 0 1 :”\ | : 1 0
fP, tP“ TPJ tPr d fPr tPl/
ty ty ty
(d) LARAC (e) LARACGC-25 (f) KLARAC-3
o i i i 0f i
: L60 : 1 60 1 L60
15 i ) . | | | . | | .
! ! S 15 ! ! IS 8k ! S
2 ! ! -] ! ; - ! ; N
E : : g 3 : : g : : g
g 100 R - T O A - L L0 g
£ ! ! £ 3 ! ! € Z ! : £
Z o = o = |5}
E : : £ E : : £ 5 4f : : k=
" osp o208 T sl IEREU- . 1 R
: : © : : °© 2 : :% ©
tp, tpy tp, tpy tp, tpy
(g) H_MCOP (h) kKH_MCOP-10 (i) SSR+DCCR-4-10
1 e BT e 1 Y
! ! IS ! ! S 300 ! K
2 10 ! s 2 200 ! o 2 ! ! v
= ‘ ‘ = ‘ ‘ z £ ‘ ‘
= : Lo H40 5 £ ! LoJ40 £ R ! LoH40 &
| | 151 | | Q t | |
E : : £ : : £ 20 : : £
= | | g = | | £ g | | &
g 5 1 g 100 : Z 2 | | =
: L 120 7 : I O 0F | V20 7
% : % © 51 : : ° : : ©
0 Il 3 Il Il 3 Il 0 0 Il EQ\ Il 3 Il 0 Il 3 Il Il 3 Il 0
i truy tp tphy tp Py
ty ty ly
(j) SSR+DCCR-2-5 (k) DCR (1) SE-DCLC

Fig. 9: Fingerprints for selected QoS routing algorithms. These graphs show, for the grid (GR) topology with m = n = 10, i.e., 10 X 10 switching nodes, the
runtime ratio (runtime of algorithm normalized by runtime of LD search, plotted in red on left) and cost inefficiency (in yellow on right) of the algorithms
for the seven different delay levels ¢ (delay constraint subranges, whereby loose delay constraints are on the left and tight delay constraints are on the right).
tp,, and tp, denote the delays of the LD and LC paths, respectively. Since the rightmost delay level corresponds to an infeasible problem (delay constraint
ty lower than the delay tp,, of the LD path), no cost inefficiency value is shown and the runtime then corresponds to the time required to detect that the
problem is infeasible. While the cost inefficiency scale is the same for all the algorithms, the runtime scales have to differ because of the high variability
between the algorithms. The lower and upper whiskers of the boxplots, respectively, correspond to the 0.5% and 99.5% percentiles.



16

TABLE II: Comprehensive list of constrained shortest path (CSP) and multi-constrained shortest path (MCSP) algorithms, which can be employed for delay-
constrained least-cost (DCLC) QoS routing. The algorithms are categorized according to the underlying algorithmic strategy into algorithms based on priority
queues, Bellman-Ford, Lagrange relaxation, as well as least-cost (LC) and least-delay (LD) paths. For each algorithm, we indicate the type(s), i.e., CSP or
MCSP or k path versions thereof, as well as other key characteristics, including optimality property and the accepted parameters. We indicate the number of
underlying algorithm runs, e.g., iterative kSP (ikSP) and static kSP (skSP) algorithms (see Section II-B for definitions). When the exact number of runs depends
on the specific scenario, the possible numbers of runs are indicated through a comma-separated list or a range (with the arrow (—) symbol) within parentheses.
Unbounded numbers of runs are indicated with the greater or equal (>) sign. We note that an algorithm using a skSP algorithm can be implemented with an

ikSP algorithm.

. Number of runs of underlying algorithms . .
Algorithm Type Optimal Complete Distr. Param.
ikSP  skSP tree skSP SP tree SP
Elementary Algorithms (Sec. I11I-A)
LDP CSP 1 v if SP is
FB [193] CSP, MCSP (11— M+1) if CSP
kSPMC (k)CSP, (k)MCSP 1 v v
’ Priority Queue Based Algorithms (Sec. 11I-B)
CBF [194] CSP v v
A*Prune [195] (k)CSP, (k)MCSP v v
’ Algorithms Based on Bellman-Ford (Sec. III-C)
DCBF [196] CSP 1 v v
kDCBF [196] CSP 1 v v kg, ke
DEB [197] CSp v
Algorithms Based on the Lagrange Relaxation (Sec. 11I-D)
LARAC [200]-[203] CSP >1 v MD
LARACGC [201] CSP ©, 1) >1 itd=0 v
SCRC [205] CSp 0, 1) (1, 2) v v
kLARAC [196] CSP >1 v
H_MCOP [206] CSP, MCSP 1 ©, 1) if CSP A
kH_MCOP [206] CSP, MCSP 0, 1) 1 if CSP Ak
NR_DCLC [208] CSP >0 >1 v
MH_MCOP [207] CSP, MCSP 1—-H+1) O—=H+1 if CSP H
E_MCOP [207] CSP, MCSP 0 —2) 1—-M+1 v v
DCCR [209] CSp 0, 1) (1, 2) v
SSR+DCCR [209] CSP O, 1) 1—=L+2 v L, k
Algorithms Based on LC and LD Paths (Sec. III-E)
DCUR [212], [213] CSp (1, 2) v v
DCR [214] CSP O, 1) 1 v v
TAK [215] CSP 1 0, 1) v v
SMS-RDM [216] CSp if p > A(G) v P
SMS-CDP [216] CSP 2 if p > A(G) v p
SMS-PBO [216] CSP if p > A(G) v P
SE-DCLC [217] CSp (1, 2) v v

4) Algorithms Based on Lagrange Relaxation: Similar to
FB, LARAC (Fig. 9d) can find the optimal solution with one
LC search when the LC path is feasible. Fig. 9d (for the left-
most, i.e., loosest delay constraint level ¢;) shows that this
run is roughly two times faster than an LD search. This is
due to the fact that the delay and cost values have ranges of
different absolute sizes and the guess function of A* is better
for the costs because the costs have a smaller range size than
the delay values, i.e., have a range size closer to the one of the
least-hop count used for the guess (which is zero). When the
problem is infeasible, LARAC notices the infeasibility with an
additional LD search. For intermediate delay levels, LARAC
requires a few additional SP runs, hence leading to slightly

higher runtimes. Nevertheless, these additional runs are worth
it as we can observe that the CI of LARAC stays then much
lower than 10 % in most cases.

While LARACGC did not complete the evaluation within
a reasonable amount of time, LARACGC with § = 25 %
(Fig. 9¢) did. As LARAC has a CI higher than 25% only for
the tightest feasible delay level, LARACGC-25 only behaves
differently than LARAC for this tightest feasible delay con-
straint. As expected, LARACGC-25 then brings the CI to less
than 25% but at a high runtime cost even for such a small gap
closing (as the CI of LARAC is at most 30%). This indicates
that the gap closing is expensive in terms of runtime and
probably not worth it. The high runtime is likely due to dense




queue-link topology structures of our evaluation networks and
confirms that algorithms based on an ikSP algorithm are not
efficient for dense network topologies.

We observe from Fig. 9f that kKLARAC with £ = 3 has
the same shape as LARAC, however with longer runtime and
lower CI. This is expected, since KLARAC runs an skSP at
each iteration, allowing to find lower cost paths but with longer
runtime. We nevertheless observe that this cost reduction
comes with a much less pronounced runtime increase than
for LARACGC.

The fingerprint of H_MCOP (Fig. 9g) shows the difference
in runtimes between SP searches and SP tree searches. Indeed,
for detecting an infeasible problem, H_MCOP first computes
a reverse SP tree. As can be seen, this has a much longer
runtime than the single LD search of LDP. More precisely,
the H_MCOP median runtime is only slightly longer, but
the 99.5% percentile of the runtime is much higher than for
LDP. This shows that comparing the runtime of algorithms in
terms of “Dijkstra runs” independently of whether these are
SP or SP tree runs, as done in some papers, is not a valid
metric. For all other cases, H_MCOP requires an additional
forward SP search. The H_MCOP runtime for these delay
levels is hence always similar and slightly higher (by 0.5
since it is an LC search) than for the infeasible delay level. In
terms of CI, H_MCOP interestingly presents a fingerprint of
different shape than LARAC, LARAGC-25, and kLARAC-
3. While the different LARAC versions have a U-shaped
CI fingerprint, H_MCOP reaches higher CI for problems
with tighter constraints but improves again for the tightest
feasible delay level. In terms of absolute values, the CIs of
H_MCOP are usually slightly worse than for the different
LARAC versions, except when the delay constraint is loose,
where H_MCOP and LARAC perform similarly. When using
Chong’s algorithm with k£ = 10 (Fig. 9h), we see that the
runtime is only slightly increased while the CI is substantially
improved. Indeed, kH_MCOP-10 reaches optimality in nearly
50% of the cases.

In additional evaluations we found that NR_DCLC (which
is not shown in Fig. 9) has a similar, but slightly better,
CI fingerprint compared to H_MCOP; which is expected
since NR_DCLC uses H_MCP (i.e., H_MCOP) as underlying
algorithm. On the other hand, the NR_DCLC runtime is much
longer, except in the cases where the LC path is feasible or
where the problem is infeasible, in which cases NR_DCLC
uses SP runs to detect these situations. Within the feasible
delay levels, the runtime of NR_DCLC gets shorter as the
delay constraint gets tighter. Indeed, NR_DCLC starts with
an LD search and then improves on this path. When the delay
constraint gets tighter, the LD path is closer to the optimal
solution and NR_DCLC hence has less work to do. Additional
evaluations have shown that MH_MCOP (which is not shown
in Fig. 9) improves the CI of H_MCOP by a factor of around
two at the expense of a twofold runtime increase. The H
parameter can then be used to tweak the Cl/runtime trade-
off. While the CI fingerprint of MH_MCOP is similar to the
one of H_MCOP, the MH_MCOP runtime fingerprint exhibits
a Gaussian bell curve shape. This is due to the fact that
MH_MCOP improves on the solution of H_MCOP. Hence,

the amount of work it has to perform depends on the CI of
H_MCOP, which is similar to a Gaussian bell curve.

In additional evaluations we also found that DCCR-3 (which
is not shown in Fig. 9) has a high CI (between 20% and
45% in most cases). On the other hand, SSR+DCCR (9i
and Fig. 9j ) is interesting. Since SSR+DCCR improves
the LARAC solution or one of the intermediate LARAC
results, SSR+DCCR has a similar CI fingerprint as LARAC.
Interestingly, SSR+DCCR especially improves the solution of
LARAC when the delay constraint is tight but still feasible. We
observe that SSR+DCCR is, similar to LARACGC, closing the
gap of LARAC. Nevertheless, SSR+DCCR appears more pow-
erful than LARACGC for our dense network scenarios since
SSR+DCCR runtimes stay relatively low compared to those
of LARACGC-25. As expected, SSR+DCCR-2-5 reduces the
runtime compared to SSR+DCCR-4-10; whereas the CI is
not strongly affected. Hence, the tuning of the SSR+DCCR
parameters requires additional evaluations and is left for future
research.

5) Algorithms Based on the LC and LD Paths: The studies
on this type of algorithms usually assume that the LD and
LC trees can be computed once and then reused for each
request, thereby leading to a low request provisioning time.
However, in our scenario, we assume that the delay and cost
of the edges can change inbetween requests and we therefore
have to recompute the tree for each request. DCUR, DCR,
and TAK always follow edges belonging to the LC and LD
paths towards other nodes. For our specific queue-link cost
and delay settings, which are identical for each physical edge,
we have observed that all these algorithms either follow the
LC path and then switch to the LD path until the end, or vice
versa. This results in the same cost and these four algorithms
hence present exactly the same CI behavior. Although this
shows that further study is required with different queue-
link cost and delay settings to specifically research the subtle
differences in the DCUR, DCR, and IAK dynamics, it also
highlights that features of algorithms do not always bring some
benefit. Indeed, while DCR and IAK only switch once between
following the LC and LD paths towards the destination, DCUR
can switch any number of times. Since DCUR executes several
SP tree runs, it is slower than IAK and DCR which only run
one SP search and one SP tree search. However, these extra
computations appear to be useless in our scenario. Because
the SP tree search is the most expensive search and because
DCR runs an LC SP tree search which enjoys a better guess
function than an LD SP tree search, DCR is on average slightly
faster than IAK. We show therefore only DCR in Fig. 9k. The
fingerprint of DCR again shows the difference between SP
and SP tree runs. While DCR detects an infeasible problem
fast with an LD SP search, the following LC SP search for
the other cases is much more time consuming, at least in the
worst-case.

The runtime ratio of SE-DCLC (Fig. 91) corresponds to two
SP tree searches, except for the infeasible problem where one
is enough. As SF-DCLC has more options at each hop, it
achieves a better CI fingerprint than DCUR (which is the same
as DCR, as noted above), but still with a similar shape. More
precisely, on average, the DCUR CI is approximately twice



the SF-DCLC CI. Interestingly, we observe that SF-DCLC
and H_MCOP have very similar CI fingerprints, although they
are very different in terms of implementation. Examining the
output of the algorithms closely, we noticed that, for identical
requests, they always returned paths with identical costs. In
particular, we observed that SF-DCLC and H_MCOP both
prefer one path over the other either based on the cost or on
the delay metric depending on whether these paths are feasible
or not. Even though SF-DCLC proceeds node by node and
H_MCOP within an SP search, both algorithms find typically
the same paths (i.e., they nearly always find identical paths
and in the rare cases where the paths are different, the paths
have identical costs), at least for our specific delay and cost
distributions.

6) Summary: In general, it is interesting to note that most
algorithms exhibit a higher variability of the CIs when the
delay constraint is tight (but still feasible). This can be
explained by the fact that there are relatively few possible
paths. Hence, if the best one is not chosen, the cost can quickly
increase. Interestingly, Chong’s algorithm [186] appears to be
a good tool to resolve this issue, as has been demonstrated by
kH_MCOP, and SSR+DCCR. In additional evaluations (not
included in Fig. 9), we found that DCCR and kDCBF also
show this behavior.

B. Heatmaps: Impact of Network Topology and Scale

In order to observe the behaviors of the algorithms for
the different topologies and scalability levels, we collapse the
fourth dimension (delay constraint tightness) of our evaluation
framework by retaining only the average runtime ratio and
CI over all delay constraint levels*. This yields the heatmaps
shown in Fig. 10. Specifically, each cell of each sub-figure
in Fig. 10 corresponds to a fingerprint plot, whereby the
fingerprint plots for the grid (GR) topology with n = m = 10
have been shown in Fig. 9, the other fingerprints are available
at [31]. While observing the scalability of the different algo-
rithms with these heatmaps, the reader should pay attention
that the scalability of the algorithm is compared to an LD
search. That is, if an algorithm presents the same runtime
ratio for all the scalability levels of a topology, that does not
mean that its runtime is always the same but rather that the
considered algorithm has similar scaling behavior as an LD
search.

Due to the vastly different cost inefficiencies (CIs) and
runtime ratios of the different algorithms, Fig. 10 has differ-
ent scales for the different algorithms. In order to facilitate
comparisons, Figs. 11 and 12 show boxplots of the values of
the heatmaps of the different algorithms from Fig. 10 on a
common scale.

1) Elementary Algorithms: LDP as Runtime Benchmark:
The lower four plots for the LDP runtime, see Fig. 10a,
confirm that our runtime metric has, on average, an inaccuracy
of less than 6%. These inaccuracies are mainly due to mea-
surements errors and side-effects from the operating system
and Java. This indicates that our LDP based runtime metric

4For both the runtime ratio and the CI, only values between the 1% and
99% percentiles were considered for the computation of the average.

provides a valid runtime reference benchmark across the three
evaluation dimensions of topologies and scale parameters m
and n.

2) Priority Queue Based Algorithms: The heatmaps of CBF
(Fig. 10b) illustrate the limitation of CBR: the CBF runtime
grows exponentially with the size of the network, which is
consistent with the observations in [194].

3) Algorithms Based on Bellman-Ford: The DCBF CI
(Fig. 10c) is only slightly affected by the size of the topology.
Interestingly, the DCBF CI is much better, i.e., lower by a
factor of two, in the GR topology compared to the other three
considered topologies. These DCBF results can be intuitively
explained with the DCBF sub-optimality behavior of “relaxing
too much”, see Sec. III-C. The DCBF sub-optimality scenario
occurs more frequently when paths have to share nodes,
because only one path is kept at each node. The grid topology
has a lot of diversity (dense graph), thus DCBF sub-optimality
arises only rarely. In the other topologies, paths frequently
share nodes (because of the branches in the topologies), which
leads to frequent DCBF sub-optimality scenarios and therefore
to a higher CL

In additional evaluations that are not included in Fig. 10,
we observed that DEB has a high CI (between 12 % and
35 % on average). The high DEB CI is due to the fact that
DEB tries to reduce the CI by checking paths of different hop
counts. Nevertheless, in our queue-link topologies, we have
many paths of identical length and the CI can be dramatically
changed simply by choosing different queues at each hop and
hence without changing the path length.

4) Algorithms Based on Lagrange Relaxation: As already
observed for the fingerprints, we observe that the runtime
increase of LARACGC-25 (Fig. 10e) compared to LARAC
(Fig. 10d) is not worth the slight CI reduction achieved with
LARACGC-25. The runtime increase we observe here is not
substantial since it only happens for one of the seven delay
levels (as observed in the fingerprints, see Section V-A).
Interestingly, while LARAC and LARACGC-25 behave better,
in terms of CI, for the GR topology, kKLARAC-3 (Fig. 10f)
behaves better for the TRB topology. Fig. 10d, Fig. 10e,
and Fig. 10f indicate an interesting property of LARAC
algorithms: in terms of runtime, they scale better than an
LD search, but only in the m scale direction; the n scale
dimension affects them as it affects an LD search. In additional
evaluations we observed that different M D parameters for
LARAC do not affect the LARAC scalability behavior, but
only change the absolute values [31].

The H_MCOP runtime (Fig. 10g) scales worse than an LD
search in both directions (m and n) for the ORB and TRB
topologies. On the other hand, the H_MCOP runtime exhibits
much better scaling behavior for the two other topologies
(TRR and GR). While H_MCOP reaches low CI for small
topologies, we observe that the H_ MCOP CI grows quickly
for larger topologies. Fig. 10h shows that using Chong [186]
with H_MCOP does not change its scalability. Indeed, while
kH_MCOP-10 is then able to reach optimality for small
topologies, its CI grows quickly as the topology sizes increase.
Nevertheless, this dramatic CI reduction only leads to a slight
increase in runtime (by roughly 1 unit). In additional eval-



19

GR

TRR

TRB

ORB

GR

TRR

TRB

ORB

0.6

1
0.8
0.4
0.2
0

100
50

6
5
4

(f) KLARAC-3

(e) LARACGC-25

i
o
; 1= W i & « & =
e
! ¢} &}
i
= ERIn] [ ERIn] [in)
{a) N oS o © =
B n e mm e nm e mm S o R A B ma S
i
- i I -
E 33 I =S ~ ~ E I =
| e s = |
| - S a ==u
£ 1o I 1w
R e ) = e = EIT I, <
— = f C — = — = A
T T T T T a T T —_ T T —
. e - E
= wm ! ww m ../m m El
i e
| a gll-c=s
E J I J 1 B
A e O o e e O | B
[ f=) o0 <o <t o™ f=) o0 <o <t ] [=1 o0 o < (o] (=] o0 <o <t
3= 3 = a3 = o=
1 L L B T
£ \w j \m B B
i ot = s
I o e}
0 W 10
I I I I I I i I I
2 2
wu wh uL uL w uL
TNQ_ Aduonigour 1800 OTR.I UIUNT Twc_ ADULIOIJAUT 3500 OTjRI SUITUNL TAL AdUuLmIIAUT 1500 OT)RI SUITJUILI
D lind
) ~ © < 2 ~*
= = - = = < S
.
e —=
@) = O]
R}
!
<t
:
o
2 = :
= ~
= 3]
ERY=) F
a9 n m
w = @}
m @)
\na} — >
- — Q
— IS
= B
Rl
!
=
—
o] E =a]
2=t = =
e} o e}
w =iy
e B B
3= 3= a s a S
uL w uL uL w L

[%] Lousroygour 9500 O19eI JUITYUILT

[%] Loueroyout 9500

orjelI dwWIjuNL

[94] £ousmoTeurt 1500

OTyRI SUITIUNT



cost inefficiency [%)]

runtime ratio

cost inefficiency [%)]

runtime ratio

cost inefficiency (%]

runtime ratio

m

m

m

12
10

TRB

TRR

GR

5 10

(=

(g) H_MCOP

(i) SSR+DCCR-4-10

o |

—
p=y =l

ORB TRB TRR GR
r 12 1 12F 12‘ | 1
B 10 110 10 ]
[ 8 1 8F 8 g
r 6 1 6F 6 L
(L ‘ 4 B 1TH 400 ‘ 4 B

5 10 5 10 5 10 5 10
(l L 12
I L 10
[ - 8 £l
L 5 6 [
FL EIl ] 4 0

5 5 10 5 10

n n

(k) DCR

12
10

2.5

ISA

cost inefficiency [%)]

runtime ratio

cost inefficiency [%)]

runtime ratio

cost inefficiency [%)]

runtime ratio

m

m

m

m

12
10

ORB

(j) SSR+DCCR-2-5

TRB

TRR

ORB TRB TRR GR
FT 12F 1 12 [ 12F
FT] 10} 1 10 [1] 10
8L 1 8f 8f
\ i 1 ST °F
. Ji 4Ll A1 4L I 4Ll |
5 10 5 10 5 10 5 10
° _
Il H FLITIT
5 10 5 10
n n n n
(h) kH_MCOP-10
ORB TRB TRR GR

GR

NRRE

(o=

10

L I B
|
T

(1) SE-DCLC

w2

4.5

3.5

12

= o o

20

Fig. 10: Heatmaps showing the behaviors of selected QoS routing algorithms for different topologies and scalability levels. For a given algorithm, the four
upper heatmaps show the cost inefficiency (CI) for the four different topologies, and the four lower heatmaps show the runtime ratio. A given heatmap shows
the CI or runtime ratio as a function of the scale parameters n = 4,5,...,13, and m = 4,5, ...,13, i.e., for a total of 100 different scalability levels. Each
cell corresponds to the average results of 20,000 requests (with randomly drawn delay constraints from across the seven considered delay constraint levels
and corresponding subranges) simulated for this specific n» and m combination. To prevent outliers from biasing the results, only values between the 1% and
99% percentiles are considered for computing the average. Unfortunately, because of the high variability between the algorithms, the scales are different for
each algorithm.



50 |- N
— 40 N
S
o .

g 30 N
g
Q
< | |
7
S 10| .
0, —
| | | | | | | | | | | |
A I = O
mmm<°.‘g'>o*.*.o'1%q
SO0 IOATEAD
A< O =290x0 A
SO 1800% g
< JdJEFZ0AQR ©m
o= AT
< i
= sl )
n n
n
Fig. 11: Box plots of the average cost inefficiencies (as computed from the

heatmaps of Fig. 10) of the different algorithms shown in Fig. 10 over the
different topologies and scalability levels.

20 \u\

10 .

runtime ratio

[
T
T
iy
H]_"

i
Hi+
HH

——
07 | N S A S SN N S S S S— — ]
AREREOR PN SO W O
QCQCQ<CWQ')O'T“—.‘N'?§Q
SO0 ROIOATERD

A< x=0xg A
HO <1200 g

< JFE =03 153}
[ a7
< ET1
— ~ 0
0 n
[9))

Fig. 12: Box plots of the average runtime ratios (as computed from the
heatmaps of Fig. 10) of the different algorithms shown in Fig. 10 over the
different topologies and scalability levels.

uations, MH_MCOP exhibited an identical scaling behavior,
though still improving the CI by a factor of around two at the
expense of approximately doubling the runtime.

SSR+DCCR (Fig. 10i and 10j), scales similarly to the
underlying LARAC algorithm.

5) Algorithms Based on the LC and LD Paths: DCR
(Fig. 10k) and SF-DCLC (Fig. 101) present a similar scaling
behavior, in terms of runtime, as H_ MCOP. Thus, the similar
H_MCOP, DCR, and SF-DCLC runtime scaling behaviors
appear to indicate the scaling behavior of an SP tree search
compared to an SP search. DCR, and hence DCUR, and
IAK, exhibit the interesting behavior that their CI improves

21

ORB TRB TRR GR [ms]
. 12 12 1 121 12 10
z
B 10F 10 1 10[ 10
e
E = 8f 8 1 8[ 1 8 .
= D
Z 6L 6 6L 6F H
4L ‘ 40 ‘ 40 ‘ 41 ANRE!
5 10 5 10 5 10 5 10
n n n n

Fig. 13: Absolute runtime [ms] of an LD search (each cell is an average over
the different delay levels, analogous to Fig. 10) for the different topologies
and scalability levels. The runtime was measured on an Intel Core i7-3770 @
3.40GHz.

as the topology scales up. This is unfortunately not true for
the runtimes of DCR, DCUR, and IAK. These are the only
algorithms showing this behavior. SF-DCLC and H_MCOP
show the exact same cost (CI) behavior, hence confirming our
observation that they actually always return equal cost paths
(see Section V-AS).

6) General Impact of Topology: We conclude the discus-
sion of the heatmaps in Fig. 10 by briefly summarizing the
general impact of the type of topology. We observe from
Fig. 10 that most algorithms have a better CI for the GR
topology than the other three topologies, except DCR (and
DCUR and TAK) whose CI behavior is opposite to all the
others. This observation appears to indicate that switching
between LC and LD paths brings improvements for large
topologies.

Another common observation is that all algorithms have
generally shorter runtime for the TRR topology than the TRB
topology. The only difference between the TRB and TRR
topologies is the set of communicating nodes. Nevertheless,
we observe that this small difference has a major impact on
the runtime of most algorithms (though similar in that they
get faster in TRR).

C. Absolute Runtime in Practice

While the runtime ratio facilitates the relative comparison
of the algorithms in different setups, the absolute runtime
is also a relevant metric for networking practice. Fig. 13
shows heatmaps of the absolute runtimes (averaged over the
delay constraints considered for Fig. 10) of an LD search for
the different topologies and scalability levels. The runtime
measurements were performed on an Intel Core i7-3770 @
3.40 GHz. Fig. 13 indicates that the runtimes for LD search
scale worse in the TRR and GR topologies than in the ORB
and TRB topologies. As the LD search runtimes are mainly
on the order of milliseconds, most algorithms of Figs. 9
and 10 have average absolute runtimes on the order of tens
of milliseconds. On the other hand, CBF can reach average
runtimes of up to 500 ms, which justifies the need for faster
algorithms.

D. Which Algorithm is Best?

After analyzing the behaviors of all the algorithms, we are
in a position to address the question: which algorithm is the



best? From our observations, the answer is: it depends. Indeed,
none of the algorithms is better than all others in terms of both
runtime and CI for all topologies, scalability levels, and delay
levels.

The first “it depends” consideration is in regard to the
relative importance of cost and runtime. While kLARAC,
kH_MCOP, and all optimal algorithms are good solutions if
the cost is the most important criterion, algorithms, such as
LDP, FB, or H_MCOP, should be preferred if a very short
runtime is critical. LARAC and SSR+DCCR are algorithms
that achieve relatively good performance for both the cost and
runtime performance metrics.

Secondly, the selection of the best QoS routing algorithm
depends on the specific region in the 4D evaluation space
where the algorithm is supposed to operate. Indeed, we have
seen that for small topologies and/or tight delay constraints,
CBF remains a very good candidate. As the topology grows,
algorithms with better scalability are needed. In terms of cost,
DCR, DCUR, and IAK are the only algorithms with decreasing
CI for large topologies and these algorithms are therefore good
choices for very large topologies. In terms of runtime, only
the different LARAC and SSR+DCCR variations scale better
than an LD search and are therefore also good candidates for
large topologies. Therefore, the only way of selecting the best
QoS routing algorithm for a given scenario is to consider the
evaluation for the specific planned usage scenario.

Nevertheless, we can identify LARAC and SSR+DCCR as
being among the best QoS routing algorithms at any point
of the 4D evaluation space. That is, for any topology, and
topology scale, and delay level, LARAC and SSR+DCCR are
among the best performing algorithms. Indeed, on average,
for the simulated topologies and network scales, both LARAC
and SSR+DCCR keep their runtime ratio lower than four and
their CI lower than 4 %. While LARAC and SSR+DCCR scale
well in terms of runtime, their CI grows only slightly for large
topologies. Moreover, their behavior on the fourth dimension,
i.e., for the different delay levels, is quite stable. Last but not
least, both LARAC and SSR+DCCR accept several parameters
that allow to tailor them to specific usage scenarios.

VI. LESSONS LEARNED

Besides the results that directly followed from the evalu-
ations, this work allowed us to discover and learn anecdotal
facts that are interesting to mention.

We sometimes observed particularly good runtime behaviors
when not expected. It turned out that the optimizations done by
Java can have a strong impact on the runtime. For example,
when running an algorithm twice in a row, the second run
can be up to two times faster than the first run because of
the Java HotSpot optimizer. We also noticed that introducing
a sequence number for ordering equal elements in priority
queues (instead of having their order undefined) reduced the
runtime of the algorithms by a factor of up to two. We note
that this sequence number does not influence our comparison
since all algorithms benefited from this enhancement. While
we could not find the exact cause of this sequence number
effect, we suspect that the sequence numbering facilitates Java
optimizations.

22

We noticed that the pseudo-code of CBF [194], which
is the optimal algorithm referenced by many studies in the
field, includes an unnecessary iteration. Indeed, the commonly
referenced CBF pseudo-code stores a list of paths at the
destination and terminates when the last expanded path has
a delay higher than the deadline. If this last path (which is,
by definition, infeasible) actually reaches the destination and
has a lower cost than the current best path at the destination
(which happens rarely, typically once in 1000 runs), it will
be stored in the list of paths at the destination. The algorithm
then solves this issue of having an infeasible path in the list by
saying “fo find a constrained path, take the first path in the list
that meets the constraint” [194]. It is actually possible to avoid
to check if the paths in the list are feasible by terminating the
algorithm before expanding the first path with a delay higher
than the deadline. In such a way, one iteration is avoided and
it is unnecessary to do a feasibility check on the final list.
We considered CBF without the unnecessary iteration in our
evaluation study.

Interestingly, one of the best algorithms, LARAC, is actually
the oldest (initially proposed in 1978) of all the compared
algorithms. This shows that, even in modern research, old
approaches should not be ignored during literature research.
Curiously, the LARAC algorithm has been proposed four times
in (nearly) identical forms. The authors of the original LARAC
proposal [200] later proposed another algorithm which is based
on an implicit enumeration of all possible paths [192]. This
later proposed approach [192] is computationally much more
demanding than their original proposal [200], especially for
dense topologies such as queue-link structures. They actually
made this second proposal when they noticed that their initial
proposal was not optimal (because of the duality gap). We have
seen that their initial proposal is quite close to optimality. This
illustrates that hunting for optimality does not always result
in better algorithms and that consistent extensive benchmark
evaluations are required to assess the performance of QoS
routing algorithms.

VII. CONCLUSIONS AND FUTURE WORK

Many communication networks and applications have strin-
gent Quality of Service (QoS) requirements, including indus-
trial communication networks and multimedia applications.
For instance, industrial communication networks carry critical
messages which have strict end-to-end delay requirements.
Similarly, many multimedia applications require timely packet
arrivals in order to continue media playback. QoS routing
algorithms that support the finding of paths that meet delay
constraints while minimizing a cost metric, i.e., so-called
delay-constrained least-cost (DCLC) routing algorithms, can
greatly help networks in meeting QoS requirements. Due to
the distributed control in Internet Protocol (IP) networking,
routing research for communication networks has generally
focused on distributed computation in the past. The centralized
control in Software-Defined Networking (SDN) presents a
fundamental paradigm shift in the control of communication
networks—including the control of routing—towards central-
ized control mechanisms. In order to facilitate the selection



and further development of QoS routing algorithms for SDN
based networks, this article provided a comprehensive up-
to-date survey of QoS routing algorithms, including their
quantitative performance characteristics, from the perspective
of centralized computation.

More specifically, this survey article first presented a com-
prehensive review of the state-of-the-art in unicast QoS DCLC
routing algorithms and identified algorithms suitable for a wide
range of centralized network scenarios, including demanding
dense and large network topologies. We introduced a novel
four-dimensional (4D) evaluation framework for QoS routing
algorithms, which includes the type of topology (including the
sets of communicating nodes), the scale (size) of the network,
and the tightness of the delay constraint. We evaluated all
identified unicast QoS routing algorithms with centralized
computations within this 4D evaluation framework.

We observed that the performance of the different algo-
rithms is highly dependent on the specific scenario and that
there is no one universal best QoS routing algorithm for
all scenarios. Indeed, all algorithms have different behaviors
depending on the considered region of the 4D evaluation space.
Therefore, the selection of the best algorithm depends on the
considered evaluation space region. Hence, in order to select
the most appropriate algorithm for a given scenario, a specific
evaluation is required. Nevertheless, we observed some general
trends. First, algorithms using an iterative k shortest path
(ikSP) algorithm to reach optimality or a given optimality
level, have a very long runtime. Algorithms making use of
shortest path tree (SP tree) computations have much shorter
runtimes, but are outperformed by algorithms that use only the
results of single-source single-destination shortest path (SP)
runs. That is, evaluating the runtime of an algorithm in terms of
number of Dijkstra SP tree runs is not a valid runtime metric,
as the runtime of an SP tree Dijkstra run can be much longer
than the runtime of an SP Dijkstra run. Second, we identify
two algorithms, LARAC and SSR+DCCR, that achieved rela-
tively good performance in most of the 4D evaluation space.
Moreover, these two algorithms accept parameters that allow
to tweak their behavior to a specific usage scenario.

Although we included the most critical dimensions in our
evaluation framework, other dimensions can be considered in
future work. For instance, a varying number of multiple con-
straints could be an additional evaluation dimension. Another
future work direction could be to survey and evaluate multicast
and multipath QoS routing algorithms. Furthermore, future
work could examine the surveyed QoS routing algorithms in
the context of frameworks that seek to reduce the complexity
of SDN routing, e.g., [239]-[242].

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 671648 (VirtuWind) and from the Alexander
von Humboldt Foundation through a Friedrich Wilhelm Bessel
Research Award. Supported in part by the U.S. National
Science Foundation through grant #1716121.

The authors would also like to thank Péter Babarczi, An-
dreas Blenk, Mu He, Qian Liu, Petra Stojsavljevic, Lionel

23

Van Bemten, and Samuele Zoppi for their useful feedback
and comments.

REFERENCES

[1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of
things and industry 4.0,” IEEE Industrial Electr. Mag., vol. 11, no. 1,
pp. 17-27, Mar. 2017.

[2] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati,
and G. P. Hancke, “A survey on smart grid potential applications and
communication requirements,” IEEE Trans. on Industrial Informatics,
vol. 9, no. 1, pp. 28-42, Feb. 2013.

[3] B. W. Carabelli, R. Blind, F. Diirr, and K. Rothermel, “State-dependent

priority scheduling for networked control systems,” in Proc. American

Control Conference (ACC), May 2017, pp. 1-8.

A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control

plane latency with SDN network hypervisors: The cost of virtualiza-

tion,” IEEE Transactions on Network and Service Management, vol. 13,

no. 3, pp. 366-380, Sep. 2016.

[5] M. Karakus and A. Durresi, “A survey: Control plane scalability issues
and approaches in Software-Defined Networking (SDN),” Computer
Networks, vol. 112, pp. 279-293, Jan. 2017.

[6] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet, 7th ed. Pearson, 2017.

[7] D. B. Rawat and S. R. Reddy, “Software defined networking architec-
ture, security and energy efficiency: A survey,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 1, pp. 325-346, First Qu. 2017.

[8] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,

J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for

SDN? implementation challenges for software-defined networks,” IEEE

Communications Magazine, vol. 51, no. 7, pp. 3643, Jul. 2013.

J. Jaffe and F. Moss, “A responsive distributed routing algorithm for

computer networks,” IEEE Transactions on Communications, vol. 30,

no. 7, pp. 1758-1762, Jul. 1982.

[10] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Transactions on Communications, vol. 25, no. 1,
pp. 73-85, Jan. 1977.

[11] J. McQuillan, I. Richer, and E. Rosen, “The new routing algorithm

for the ARPANET,” IEEE Transactions on Communications, vol. 28,

no. 5, pp. 711-719, May 1980.

S. Chen and K. Nahrstedt, “Distributed quality-of-service routing in ad

hoc networks,” IEEE Journal on Selected Areas in Communications,

vol. 17, no. 8, pp. 1488-1505, Aug. 1999.

[13] M. S. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,” Wireless Networks, vol. 1, no. 1, pp. 61-81,
Mar. 1995.

[14] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad
hoc wireless networks,” in Mobile Computing. Kluwer Academic
Publisher, Boston, MA, 1996, pp. 153-181.

[15] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in Proc. IEEE INFOCOM,
vol. 3, 1997, pp. 1405-1413.

[16] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A core-
extraction distributed ad hoc routing algorithm,” IEEE Journal on
Selected Areas in Communications, vol. 17, no. 8, pp. 1454-1465, Aug.
1999.

[17] R. Braden, D. Clark, and S. Shenker, “Integrated services in
the internet architecture: An overview,” Internet Requests for
Comments, RFC Editor, RFC 1633, Jun. 1994. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1633.txt

[18] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applica-
tions in an integrated services packet network: Architecture and mech-
anism,” ACM SIGCOMM Computer Communication Review, vol. 22,
no. 4, pp. 14-26, Oct. 1992.

[19] M. A. El-Gendy, A. Bose, and K. G. Shin, “Evolution of the Internet
QoS and support for soft real-time applications,” Proceedings of the
IEEE, vol. 91, no. 7, pp. 1086-1104, Jul. 2003.

[20] J. Wroclawski, “The use of RSVP with IETF integrated services,’
Internet Requests for Comments, RFC Editor, RFC 2210, Sep. 1997.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2210.txt

[21] X. Xiao and L. M. Ni, “Internet QoS: A big picture,” IEEE Network,
vol. 13, no. 2, pp. 8-18, Mar./Apr. 1999.

[22] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE Journal on Selected Areas in Commu-
nications, vol. 14, no. 7, pp. 1228-1234, Sep. 1996.

[4

=

[9

—

[12]



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intellec-
tual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87-98, Apr. 2014.

M. Jarschel, T. Zinner, T. Hoflifeld, P. Tran-Gia, and W. Kellerer,
“Interfaces, attributes, and use cases: A compass for SDN,” IEEE
Communications Magazine, vol. 52, no. 6, pp. 210-217, Jun. 2014.
S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in Proc. IEEE INFOCOM, 2013, pp. 2211-
2219.

1. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Computer Networks,
vol. 71, pp. 1-30, Oct. 2014.

1. Bueno, J. I. Aznar, E. Escalona, J. Ferrer, and J. A. Garcia-Espin,
“An OpenNaaS based SDN framework for dynamic QoS control,” in
Proc. IEEE SDN for Future Networks and Services (SDN4FNS), 2013,
pp. 1-7.

V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the routing
control logic: Better internet routing based on SDN principles,” in Proc.
ACM Workshop on Hot Topics in Networks, 2012, pp. 55-60.

C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
Corréa, S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control
platforms with the eyes and muscles of software-defined networking,”
in Proc. ACM Workshop on Hot Topics in Software Defined Networks,
2012, pp. 13-18.

H. Zhang and J. Yan, “Performance of SDN routing in comparison with
legacy routing protocols,” in Proc. IEEE Int. Conf. on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), 2015, pp.
491-494.

The league of routing
http://www.lkn.ei.tum.de/lora
M. Ramalho, “Intra- and inter-domain multicast routing protocols: A
survey and taxonomy,” IEEE Communications Surveys & Tutorials,
vol. 3, no. 1, pp. 2-25, First Qu. 2000.

M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A survey of application-layer multicast protocols,” IEEE Communica-
tions Surveys & Tutorials, vol. 9, no. 3, pp. 58-74, Third Qu. 2007.
B. Wang and J. C. Hou, “Multicast routing and its QoS extension:
Problems, algorithms, and protocols,” IEEE Network, vol. 14, no. 1,
pp- 22-36, Jan./Feb. 2000.

C. Maihofer, “A survey of geocast routing protocols,” IEEE Commu-
nications Surveys & Tutorials, vol. 6, no. 2, pp. 32-42, Second Qu.
2004.

S. K. Singh, T. Das, and A. Jukan, “A survey on internet multipath
routing and provisioning,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2157-2175, Fourth Qu. 2015.

N. Chakchouk, “A survey on opportunistic routing in wireless com-
munication networks,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2214-2241, Fourth Qu. 2015.

D. Chen and P. K. Varshney, “A survey of void handling techniques
for geographic routing in wireless networks,” IEEE Communications
Surveys & Tutorials, vol. 9, no. 1, pp. 50-67, First Qu. 2007.

F. Mansourkiaie and M. H. Ahmed, “Cooperative routing in wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 2, pp. 604—626, Second Qu. 2015.

1. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: A
survey,” Computer Networks, vol. 47, no. 4, pp. 445-487, Mar. 2005.
J. Tang, G. Xue, and W. Zhang, “Interference-aware topology control
and QoS routing in multi-channel wireless mesh networks,” in Proc.
ACM Int. Symp. on Mobile Ad Hoc Networking and Computing, 2005,
pp. 68-77.

Y. Tsado, K. A. Gamage, B. Adebisi, D. Lund, K. M. Rabie, and
A. Ikpehai, “Improving the reliability of optimised link state routing
in a smart grid neighbour area network based wireless mesh network
using multiple metrics,” Energies, vol. 10, no. 3, pp. 287.1-287.23,
2017.

J. Agarkhed, P. Y. Dattatraya, and S. R. Patil, “Performance evaluation
of QoS-aware routing protocols in wireless sensor networks,” in Proc.
Int. Conf. on Computational Intelligence and Informatics, 2017, pp.
559-569.

K. Akkaya and M. Younis, “A survey on routing protocols for wireless
sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325-349, May
2005.

M. Z. Hasan, F. Al-Turjman, and H. Al-Rizzo, “Optimized multi-
constrained quality-of-service multipath routing approach for multi-
media sensor networks,” IEEE Sensors Journal, vol. 17, no. 7, pp.
2298-2309, Apr. 2017.

algorithms.  [Online].  Available:

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

24

J. Ben-Othman and B. Yahya, “Energy efficient and QoS based
routing protocol for wireless sensor networks,” Journal of Parallel and
Distributed Computing, vol. 70, no. 8, pp. 849-857, Aug. 2010.

S. Ehsan and B. Hamdaoui, “A survey on energy-efficient routing tech-
niques with QoS assurances for wireless multimedia sensor networks,”
IEEE Communications Surveys & Tutorials, vol. 14, no. 2, pp. 265—
278, 2nd Qu. 2012.

S. M. Ghoreyshi, A. Shahrabi, and T. Boutaleb, “Void-handling tech-
niques for routing protocols in underwater sensor networks: Survey
and challenges,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 2, pp. 800-827, 2nd Qu. 2017.

D. Goyal and M. R. Tripathy, “Routing protocols in wireless sensor
networks: A survey,” in Proc. IEEE Int. Conf. on Advanced Computing
& Communication Technologies, 2012, pp. 474—480.

M. Z. Hasan, H. Al-Rizzo, and F. Al-Turjman, “A survey on multipath
routing protocols for QoS assurances in real-time wireless multimedia
sensor networks,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 3, pp. 1424-1456, Third Qu. 2017.

A. A. Kumar S., K. Ovsthus, and L. M. Kristensen, “An industrial
perspective on wireless sensor networks—a survey of requirements,
protocols, and challenges,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1391-1412, Third Qu. 2014.

N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: A survey,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 2, pp. 551-591, 2nd
Qu. 2013.

M. Radi, B. Dezfouli, K. A. Bakar, and M. Lee, “Multipath routing
in wireless sensor networks: Survey and research challenges,” Sensors,
vol. 12, no. 1, pp. 650-685, 2012.

M. Saleem, G. A. Di Caro, and M. Farooq, “Swarm intelligence
based routing protocol for wireless sensor networks: Survey and future
directions,” Information Sciences, vol. 181, no. 20, pp. 4597-4624, Oct.
2011.

R. Sumathi and M. Srinivas, “A survey of QoS based routing protocols
for wireless sensor networks,” Journal of Information Processing
Systems, vol. 8, no. 4, pp. 589-602, 2012.

C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy, “Distributed mobile
sink routing for wireless sensor networks: A survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 16, no. 2, pp. 877-897, Second Qu.
2014.

R. A. Uthra and S. Raja, “QoS routing in wireless sensor networksa
survey,” ACM Computing Surveys (CSUR), vol. 45, no. 1, pp. 9:1-9:12,
Dec. 2012.

Q. Wang and J. Jiang, “Comparative examination on architecture
and protocol of industrial wireless sensor network standards,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 3, pp. 2197-2219,
Third Qu. 2016.

T. Watteyne, A. Molinaro, M. G. Richichi, and M. Dohler, “From
MANET to IETF ROLL standardization: A paradigm shift in WSN
routing protocols,” IEEE Communications Surveys Tutorials, vol. 13,
no. 4, pp. 688=707, Fourth Qu. 2011.

A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. B6l6ni, and
D. Turgut, “Routing protocols in ad hoc networks: A survey,” Computer
Networks, vol. 55, no. 13, pp. 3032-3080, Sep. 2011.

F. Cadger, K. Curran, J. Santos, and S. Moffett, “A survey of geo-
graphical routing in wireless ad-hoc networks,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 2, pp. 621-653, Second Qu. 2013.
H. Cheng and J. Cao, “A design framework and taxonomy for hybrid
routing protocols in mobile ad hoc networks,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 3, pp. 62-73, Third Qu. 2008.

J. Zvo, C. Dong, S. X. Ng, L. L. Yang, and L. Hanzo, “Cross-
layer aided energy-efficient routing design for ad hoc networks,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1214-1238,
Third Qu. 2015.

L. Abusalah, A. Khokhar, and M. Guizani, “A survey of secure mobile
ad hoc routing protocols,” IEEE Communications Surveys & Tutorials,
vol. 10, no. 4, pp. 78-93, Fourth Qu. 2008.

P. G. Argyroudis and D. O’Mahony, “Secure routing for mobile ad hoc
networks,” IEEE Communications Surveys & Tutorials, vol. 7, no. 3,
pp. 2-21, Third Qu. 2005.

T. R. Andel and A. Yasinsac, “Surveying security analysis techniques
in MANET routing protocols,” IEEE Communications Surveys &
Tutorials, vol. 9, no. 4, pp. 70-84, Fourth Qu. 2007.

L. Chen and W. B. Heinzelman, “A survey of routing protocols that
support QoS in mobile ad hoc networks,” IEEE Network, vol. 21, no. 6,
pp- 30-38, Nov./Dec. 2007.



[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

L. Hanzo and R. Tafazolli, “A survey of QoS routing solutions for
mobile ad hoc networks,” IEEE Communications Surveys & Tutorials,
vol. 9, no. 2, pp. 50-70, 2nd Qu. 2007.

L. Junhai, Y. Danxia, X. Liu, and F. Mingyu, “A survey of multicast
routing protocols for mobile ad-hoc networks,” IEEE Communications
Surveys & Tutorials, vol. 11, no. 1, pp. 78-91, Ist Qu. 2009.

D. N. Kanellopoulos, “QoS routing for multimedia communication over
wireless mobile ad hoc networks: A survey,” Int. J. Multimedia Data
Engineering and Management (IJMDEM), vol. 8, no. 1, pp. 42-71,
2017.

G. V. Kumar, Y. V. Reddyr, and M. Nagendra, “Current research work
on routing protocols for MANET: A literature survey,” Int. Journal on
Computer Science and Engineering, vol. 2, no. 03, pp. 706-713, 2010.
C. Liu and J. Kaiser, “Survey of mobile ad hoc network routing
protocols,” Universitdt Ulm, Tech. Rep., 2005.

G. A. Walikar and R. C. Biradar, “A survey on hybrid routing
mechanisms in mobile ad hoc networks,” Journal of Network and
Computer Applications, vol. 77, pp. 48—63, Jan. 2017.

Z. Zhang, “Routing in intermittently connected mobile ad hoc net-
works and delay tolerant networks: Overview and challenges,” IEEE
Communications Surveys & Tutorials, vol. 8, no. 1, pp. 24-37, First
Qu. 2006.

S. Bitam, A. Mellouk, and S. Zeadally, “Bio-inspired routing algo-
rithms survey for vehicular ad hoc networks,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 2, pp. 843-867, Second Qu. 2015.
C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan, “A
comparative survey of VANET clustering techniques,” JEEE Commu-
nications Surveys & Tutorials, vol. 19, no. 1, pp. 657-681, First Qu.
2017.

Y.-W. Lin, Y.-S. Chen, and S.-L. Lee, “Routing protocols in vehicular
ad hoc networks: A survey and future perspectives.” J. Inf. Sci. Eng.,
vol. 26, no. 3, pp. 913-932, 2010.

A. Mchergui, T. Moulahi, B. Alaya, and S. Nasri, “A survey and
comparative study of QoS aware broadcasting techniques in VANET,”
Telecommunication Systems, vol. 66, no. 2, pp. 253-281, Oct. 2017.
M. Youssef, M. Ibrahim, M. Abdelatif, L. Chen, and A. V. Vasilakos,
“Routing metrics of cognitive radio networks: A survey,” IEEE Com-
munications Surveys & Tutorials, vol. 16, no. 1, pp. 92-109, First Qu.
2014.

Y. Cao and Z. Sun, “Routing in delay/disruption tolerant networks: A
taxonomy, survey and challenges,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 2, pp. 654-677, Second Qu. 2013.

K. Wei, X. Liang, and K. Xu, “A survey of social-aware routing
protocols in delay tolerant networks: Applications, taxonomy and
design-related issues,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 1, pp. 556578, First Qu. 2014.

Y. Zhu, B. Xu, X. Shi, and Y. Wang, “A survey of social-based routing
in delay tolerant networks: Positive and negative social effects,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 1, pp. 387-401, First
Qu. 2013.

S. Batabyal and P. Bhaumik, “Mobility models, traces and impact
of mobility on opportunistic routing algorithms: A survey,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1679-1707,
Third Qu. 2015.

A. Z. M. Shahriar, M. Atiquzzaman, and W. Ivancic, “Route opti-
mization in network mobility: Solutions, classification, comparison, and
future research directions,” IEEE Communications Surveys & Tutorials,
vol. 12, no. 1, pp. 24-38, First Qu. 2010.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. S. Pareta,
and I. Tomkos, “A survey on physical layer impairments aware routing
and wavelength assignment algorithms in optical networks,” Computer
Networks, vol. 53, no. 7, pp. 926-944, May 2009.

N. Charbonneau and V. M. Vokkarane, “A survey of advance reserva-
tion routing and wavelength assignment in wavelength-routed WDM
networks,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4,
pp- 1037-1064, Fourth Qu. 2012.

B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allo-
cation in elastic optical networks: A tutorial,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 3, pp. 1776-1800, Third Qu. 2015.
P. H. Ho, “State-of-the-art progress in developing survivable routing
schemes in mesh WDM networks,” IEEE Communications Surveys &
Tutorials, vol. 6, no. 4, pp. 2-16, Fourth Qu. 2004.

A. G. Rahbar, “Review of dynamic impairment-aware routing and
wavelength assignment techniques in all-optical wavelength-routed
networks,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4,
pp. 1065-1089, Fourth Qu. 2012.

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

25

C. V. Saradhi and S. Subramaniam, “Physical layer impairment aware
routing (PLIAR) in WDM optical networks: Issues and challenges,”
IEEE Communications Surveys & Tutorials, vol. 11, no. 4, pp. 109—
130, Fourth Qu. 2009.

M. Hoefling, M. Menth, and M. Hartmann, “A survey of mapping sys-
tems for locator/identifier split internet routing,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 4, pp. 1842-1858, Fourth Qu. 2013.
D. Nace and M. Pioro, “Max-min fairness and its applications to
routing and load-balancing in communication networks: A tutorial,”
IEEE Communications Surveys & Tutorials, vol. 10, no. 4, pp. 5-17,
Fourth Qu. 2008.

N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of
routing optimization for internet traffic engineering,” IEEE Communi-
cations Surveys & Tutorials, vol. 10, no. 1, pp. 36-56, First Qu. 2008.
J. L. Martins and S. Duarte, “Routing algorithms for content-based
publish/subscribe systems,” IEEE Communications Surveys & Tutori-
als, vol. 12, no. 1, pp. 39-58, First Qu. 2010.

F. Dabaghi, Z. Movahedi, and R. Langar, “A survey on green rout-
ing protocols using sleep-scheduling in wired networks,” Journal of
Network and Computer Applications, vol. 77, pp. 106-122, Jan. 2017.
X. Masip-Bruin, M. Yannuzzi, J. Domingo-Pascual, A. Fonte, M. Cu-
rado, E. Monteiro, F. Kuipers, P. Van Mieghem, S. Avallone, G. Ventre,
P. Aranda-Gutirrez, M. Hollick, R. Steinmetz, L. Iannone, and K. Sala-
matian, “Research challenges in QoS routing,” Computer Communica-
tions, vol. 29, no. 5, pp. 563-581, Mar. 2006.

S. Upadhyaya and G. Dhingra, “Exploring issues for QoS based
routing algorithms,” International Journal on Computer Science and
Engineering (IJCSE), vol. 2, no. 5, pp. 1792-1795, 2010.

S. Chen and K. Nahrstedt, “An overview of quality of service routing
for next-generation high-speed networks: Problems and solutions,”
IEEE Network, vol. 12, no. 6, pp. 64-79, Nov./Dec. 1998.

M. Curado and E. Monteiro, “A survey of QoS routing algorithms,” in
Proc. Int. Conf. on Information Technology (ICIT), 2004, pp. 1-4.

F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz, “An overview
of constraint-based path selection algorithms for QoS routing,” IEEE
Communications Magazine, vol. 40, no. 12, pp. 50-55, Dec. 2002.

J. L. Marzo, E. Calle, C. Scoglio, and T. Anjah, “QoS online routing
and MPLS multilevel protection: A survey,” IEEE Communications
Magazine, vol. 41, no. 10, pp. 126-132, Oct. 2003.

P. Paul and S. Raghavan, “Survey of QoS routing,” in Proc. Int. Conf.
on Computer Communication (ICCC), Aug. 2002, pp. 50-75.

O. Younis and S. Fahmy, “Constraint-based routing in the Internet:
Basic principles and recent research,” IEEE Communications Surveys
& Tutorials, vol. 5, no. 1, pp. 2-13, Ist Qu. 2003.

R. G. Garroppo, S. Giordano, and L. Tavanti, “A survey on multi-
constrained optimal path computation: Exact and approximate algo-
rithms,” Computer Networks, vol. 54, no. 17, pp. 3081-3107, Dec.
2010.

S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster, “Analysis of
topology aggregation techniques for QoS routing,” ACM Computing
Surveys (CSUR), vol. 39, no. 3, pp. 7/1-7/31, 2007.

X. Zhang and C. Phillips, “A survey on selective routing topology
inference through active probing,” IEEE Communications Surveys &
Tutorials, vol. 14, no. 4, pp. 1129-1141, Fourth Qu. 2012.

D. Adami, L. Donatini, S. Giordano, and M. Pagano, “A network
control application enabling software-defined quality of service,” in
Proc. IEEE Int. Conf. on Communications (ICC), 2015, pp. 6074—-6079.
M. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:
An autonomic QoS policy enforcement framework for software defined
networks,” in Proc. IEEE SDN for Future Netw. & Services, 2013, pp.
1-7.

B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, 1. J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing
internet latency: A survey of techniques and their merits,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 3, pp. 2149-2196,
Third Quarter 2016.

C. Caba, A. Mimidis, and J. Soler, “Model-driven policy framework for
data centers (short paper),” in Proc. IEEE Int. Conf. Cloud Networking
(Cloudnet), 2016, pp. 126-129.

A L. V. Caraguay, J. A. P. Fernindez, and L. J. G. Villalba,
“Framework for optimized multimedia routing over software defined
networks,” Computer Networks, vol. 92, pp. 369-379, Dec. 2015.

A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of
multiple packet schedulers for improving QoS on OpenFlow/SDN
networking,” in Proc. IEEE European Workshop on Software Defined
Networking, 2013, pp. 81-86.



[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

A. Mendiola, V. Fuentes, J. Matias, J. Astorga, N. Toledo, E. Jacob,
and M. Huarte, “An architecture for dynamic QoS management at layer
2 for DOCSIS access networks using OpenFlow,” Computer Networks,
vol. 94, pp. 112-128, Jan. 2016.

K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-aware middle-
ware for ubiquitous and heterogeneous environments,” IEEE Commu-
nications Magazine, vol. 39, no. 11, pp. 140-148, Nov. 2001.

M. Reisslein, K. W. Ross, and S. Rajagopal, “A framework for
guaranteeing statistical QoS,” IEEE/ACM Transactions on Networking,
vol. 10, no. 1, pp. 27-42, Feb. 2002.

P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and
D. Pinheiro, “Enhancing network management frameworks with SDN-
like control,” in Proc. IFIP/IEEE Int. Symp. on Integrated Network
Management (IM), 2013, pp. 688—691.

S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves,
R. Figueiredo, D. Morris, M. Pickavet, and P. Demeester, “Implement-
ing quality of service for the software defined networking enabled fu-
ture internet,” in Proc. IEEE European Workshop on Software Defined
Networking, Sep. 2014, pp. 49-54.

E. W. Knightly and N. B. Shroff, “Admission control for statistical
QoS: Theory and practice,” IEEE Network, vol. 13, no. 2, pp. 20-29,
Mar./Apr. 1999.

J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control
for networks with a bounded delay service,” IEEE/ACM Transactions
on Networking, vol. 4, no. 6, pp. 885-901, Dec. 1996.

M. Reisslein and K. W. Ross, “Call admission for prerecorded sources
with packet loss,” IEEE Journal on Selected Areas in Communications,
vol. 15, no. 6, pp. 1167-1180, Aug. 1997.

Z.-L. Zhang, Z. Liu, J. Kurose, and D. Towsley, “Call admission control
schemes under generalized processor sharing scheduling,” Telecommu-
nication Systems, vol. 7, no. 1-3, pp. 125-152, Jun. 1997.

L. Sha, T. Abdelzaher, K.-E. Arzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time Systems, vol. 28,
no. 2-3, pp. 101-155, Nov. 2004.

J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality
of service with software defined networking,” in Proc. IEEE Int. Conf.
on Cloud Networking (CloudNet), 2014, pp. 70-76.

R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “Dependable end-to-end delay constraints
for real-time systems using SDNs,” arXiv preprint arXiv:1703.01641,
2017.

S. M. Laursen, P. Pop, and W. Steiner, “Routing optimization of AVB
streams in TSN networks,” ACM SIGBED Review, vol. 13, no. 4, pp.
43-48, Sep. 2016.

N. G. Nayak, F. Diirr, and K. Rothermel, “Time-sensitive software-
defined network (TSSDN) for real-time applications,” in Proc. ACM
Int. Conf. on Real-Time Networks and Systems, 2016, pp. 193-202.
P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design
optimisation of cyber-physical distributed systems using IEEE time-
sensitive networks,” IET Cyber-Physical Systems: Theory & Applica-
tions, vol. 1, no. 1, pp. 86-94, Dec. 2016.

S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1 Qbv time sensitive networks,”
in Proc. ACM Int. Conf. on Real-Time Networks and Systems, 2016,
pp. 183-192.

F. Diirr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proc. ACM Int. Conf. on Real-Time
Networks and Systems, 2016, pp. 203-212.

Q. Duan, “Network-as-a-service in software-defined networks for end-
to-end QoS provisioning,” in Proc. IEEE Wireless and Optical Com-
munication Conference (WOCC), 2014, pp. 1-5.

S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control framework
for QoS provisioning,” in Proc. IEEE Telecommunications Forum Telfor
(TELFOR), 2014, pp. 111-114.

A. L. King, S. Chen, and I. Lee, “The middleware assurance substrate:
Enabling strong real-time guarantees in open systems with OpenFlow,”
in Proc. IEEE Int. Symp. on Object/Component/Service-Oriented Real-
Time Distr. Computing (ISORC), 2014, pp. 133-140.

J. W. Guck, M. Reisslein, and W. Kellerer, “Function split between
delay-constrained routing and resource allocation for centrally man-
aged QoS in industrial networks,” IEEE Transactions on Industrial
Informatics, vol. 12, no. 6, pp. 2050-2061, Dec. 2016.

J.-Y. Le Boudec and P. Thiran, Network calculus: A theory of determin-
istic queuing systems for the internet. Springer Science & Business
Media, Berlin, Germany, 2001, vol. 2050.

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

26

J. Schmitt, P. Hurley, M. Hollick, and R. Steinmetz, “Per-flow guar-
antees under class-based priority queueing,” in Proc. IEEE Global
Telecommunications Conference (GLOBECOM), vol. 7, 2003, pp.
4169-4174.

“IEEE Standard for Local and metropolitan area networks — Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.10—
as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015,
and IEEE Std 802.10—/Cor 1-2015), pp. 1-57, March 2016.

“IEEE Standard for Local and metropolitan area networks — Bridges
and Bridged Networks — Amendment 26: Frame Preemption,” IEEE
Std 802.1Qbu-2016 (Amendment to IEEE Std 802.10Q-2014), pp. 1-52,
Aug 2016.

“IEEE Standard for Local and metropolitan area networks— Bridges
and Bridged Networks - Amendment 24: Path Control and Reserva-
tion,” IEEE Std 802.1Qca-2015 (Amendment to IEEE Std 802.1Q—as
amended by IEEE Std 802.1Qcd-2015 and IEEE Std 802.1Q0—/Cor
1-2015), pp. 1-120, March 2016.

C. Gunther, “Communications standards news: Whats new in the world
of IEEE 802.1 TSN,” IEEE Communications Magazine, vol. 54, no. 9,
pp. 12-15, September 2016.

P. Heise, F. Geyer, and R. Obermaisser, “TSimNet: An industrial time
sensitive networking simulation framework based on OMNeT++,” in
Proc. IEEE/IFIP Int. Conf. on New Techn., Mobility and Security
(NTMS), 2016, pp. 1-5.

Z.Zhou, Y. Yan, S. Ruepp, and M. Berger, “Analysis and implementa-
tion of packet preemption for Time Sensitive Networks,” in Proc. IEEE
Int. Conf. on High Performance Switching and Routing (HPSR), 2017,
pp. 1-6.

N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic net-
working architecture, draft-ietf-detnet-architecture-02,” Internet-Draft,
IETF, pp. 143, Jun. 2017.

J.-D. Decotignie, “Ethernet-based real-time and industrial communica-
tions,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1102-1117, Jun.
2005.

B. Galloway and G. P. Hancke, “Introduction to industrial control
networks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2,
pp- 860-880, Second Qu. 2013.

P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within
industrial distributed environment—a survey,” IEEE Trans. Industrial
Informatics, vol. 9, no. 1, pp. 182-189, Feb. 2013.

J. Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan, “Industrial
Internet: A survey on the enabling technologies, applications, and
challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1504-1526, Third Qu. 2017.

L. Seno, F. Tramarin, and S. Vitturi, “Performance of industrial
communication systems: Real application contexts,” IEEE Industrial
Electronics Magazine, vol. 6, no. 2, pp. 27-37, Jun. 2012.

D. Thiele and R. Ernst, “Formal analysis based evaluation of software
defined networking for time-sensitive ethernet,” in Proc. IEEE Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016,
pp- 31-36.

A. A. Khan, M. H. Rehmani, and M. Reisslein, “Cognitive radio for
smart grids: Survey of architectures, spectrum sensing mechanisms,
and networking protocols,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 860-898, 1st Qu. 2016.

Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid com-
munication infrastructures: Motivations, requirements and challenges,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 5-20,
First Qu. 2013.

P. G. Benardos and G. C. Vosniakos, “Internet of things and industrial
applications for precision machining,” in Solid State Phenomena, vol.
261. Trans Tech Publ, Aug. 2017, pp. 440-447.

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, in print,
2017.

I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani,
M. Imran, and M. Guizani, “Internet of things architecture: Recent ad-
vances, taxonomy, requirements, and open challenges,” IEEE Wireless
Communications, vol. 24, no. 3, pp. 10-16, Jun. 2017.

M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco,
G. Boggia, and M. Dohler, “Standardized protocol stack for the internet
of (important) things,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 3, pp. 1389-1406, Third Qu. 2013.



[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]
[173]
[174]

[175]

[176]
[177]
[178]

[179]

C. Bachhuber, E. Steinbach, M. Freundl, and M. Reisslein, “On the
minimization of glass-to-glass and glass-to-algorithm delay in video
communication,” IEEE Transactions on Multimedia, in print, 2017.

J. Luo, J. Jin, and F. Shan, “Standardization of low-latency TCP with
explicit congestion notification: A survey,” IEEE Internet Computing,
vol. 21, no. 1, pp. 48-55, Jan.-Feb. 2017.

T. Skeie, S. Johannessen, and O. Holmeide, “Timeliness of real-time IP
communication in switched industrial Ethernet networks,” IEEE Trans.
on Industrial Informatics, vol. 2, no. 1, pp. 25-39, Feb. 2006.

R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello,
and C. Cavazzoni, “Comprehensive survey on T-SDN: Software-
defined networking for transport networks,” IEEE Communications
Surveys & Tutorials, in print, 2017.

A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on
network virtualization hypervisors for software defined networking,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 655—
685, First Qu. 2016.

F. Hu, Q. Hao, and K. Bao, “A survey on Software-Defined Network
and OpenFlow: From concept to implementation,” /[EEE Communica-
tions Surveys & Tutorials, vol. 16, no. 4, pp. 2181-2206, Fourth Qu.
2014.

T. Kohler, F. Diirr, and K. Rothermel, “ZeroSDN: A highly flexible
and modular architecture for full-range network control distribution,”
in Proc. ACM/IEEE Symp. on Architectures for Netw. and Commun.
Systems (ANCS), May 2017, pp. 25-37.

D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.
B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 3, pp. 1617-1634, Third Qu. 2014.

A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and
W. Kellerer, “Software defined optical networks (SDONs): A compre-
hensive survey,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 4, pp. 2738-2786, Fourth Qu. 2016.

W. Xia, Y. Wen, C. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Communications Surveys & Tu-
torials, vol. 17, no. 1, pp. 27-51, First Qu. 2014.

A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
OpenFlow: A survey,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 1, pp. 493-512, First Qu. 2014.

K. Deb, Multi-objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK, 2001, vol. 16.

A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, vol. 91, no. 9, pp. 992-1007, Sep. 2006.

R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and Multidisciplinary Optimiza-
tion, vol. 26, no. 6, pp. 369-395, Apr. 2004.

H.-S. Yang, M. Maier, M. Reisslein, and W. M. Carlyle, “A genetic
algorithm-based methodology for optimizing multiservice convergence
in a metro WDM network,” IEEE/OSA Journal of Lightwave Technol-
ogy, vol. 21, no. 5, p. 1114, May 2003.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Upper Saddle River, NJ,
USA, 1993.

A. Schrijver, “On the history of the shortest path problem,” Documenta
Mathematica, pp. 155-167, 2012.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269-271, Dec. 1959.

R. Bellman, “On a routing problem,” Quarterly of Applied Mathemat-
ics, vol. 16, no. 1, pp. 87-90, Apr. 1958.

D. Cavendish and M. Gerla, “Internet QoS routing using the Bellman-
Ford algorithm,” in High Performance Networking. Springer, New
York, 1998, pp. 627-646.

L. R. Ford Jr, “Network flow theory,” DTIC Document, Tech. Rep.,
1956.

E. F. Moore, The Shortest Path Through a Maze.
System, 1959.

A. Shimbel, “Structure in communication nets,” in Proceedings of the
Symposium on Information Networks, 1954, pp. 199-203.

J. Y. Yen, “An algorithm for finding shortest routes from all source
nodes to a given destination in general networks,” Quarterly of Applied
Mathematics, vol. 27, no. 4, pp. 526-530, Jan. 1970.

Bell Telephone

[180]

[181]

[182]

[183]

[184]
[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]
[199]
[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

27

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, Jul. 1968.
M. J. Bannister and D. Eppstein, “Randomized speedup of the Bellman-
Ford algorithm,” in Proc. of the SIAM Meeting on Analytic Algorithmics
and Combinatorics, 2012, pp. 41-47.

B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths
algorithms: Theory and experimental evaluation,” Mathematical Pro-
gramming, vol. 73, no. 2, pp. 129-174, May 1996.

L. Fu, D. Sun, and L. R. Rilett, “Heuristic shortest path algorithms for
transportation applications: State of the art,” Computers & Operations
Research, vol. 33, no. 11, pp. 3324-3343, Nov. 2006.

E. Chow, “A graph search heuristic for shortest distance paths,”
Lawrence Livermore National Laboratory, Tech. Rep., 2005.

J. Y. Yen, “Finding the k shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712-716, Jul. 1971.

E. I. Chong, S. Maddila, and S. Morley, “On finding single-source
single-destination k shortest paths,” J. Computing and Information,
Special Issue ICCI, vol. 95, pp. 4047, 1995.

C. C. Skiscim and B. L. Golden, “Solving k-shortest and constrained
shortest path problems efficiently,” Annals of Operations Research,
vol. 20, no. 1, pp. 249-282, Dec. 1989.

D. Eppstein, “Finding the k shortest paths,” SIAM Journal on Com-
puting, vol. 28, no. 2, pp. 652673, 1998.

V. M. Jiménez and A. Marzal, “A lazy version of Eppstein’s k shortest
paths algorithm,” in Proc. Int. Workshop on Experimental and Efficient
Algorithms. Springer, Berlin, Germany, 2003, pp. 179-191.

H. Aljazzar and S. Leue, “K*: A directed on-the-fly algorithm for
finding the k shortest paths,” University of Konstanz, Germany, Tech.
Rep., 2008.

H. C. Joksch, “The shortest route problem with constraints,” Journal of
Mathematical Analysis and Applications, vol. 14, no. 2, pp. 191-197,
May 1966.

Y. P. Aneja, V. Aggarwal, and K. P. Nair, “Shortest chain subject to
side constraints,” Networks, vol. 13, no. 2, pp. 295-302, Summer 1983.
W. C. Lee, M. G. Hluchyi, and P. A. Humblet, “Routing subject to
quality of service constraints in integrated communication networks,”
IEEE Network, vol. 9, no. 4, pp. 4655, Jul./Aug. 1995.

R. Widyono, “The design and evaluation of routing algorithms for
real-time channels,” International Computer Science Institute Berkeley,
Tech. Rep. TR-94-024, 1994.

G. Liu and K. Ramakrishnan, “A*Prune: An algorithm for finding &k
shortest paths subject to multiple constraints,” in Proc. IEEE INFO-
COM, vol. 2, 2001, pp. 743-749.

Z. Jia and P. Varaiya, “Heuristic methods for delay-constrained least-
cost routing problem using k-shortest-path algorithms,” in Proc. IEEE
INFOCOM, 2001, pp. 1-9.

G. Cheng and N. Ansari, “A new heuristics for finding the delay
constrained least cost path,” in Proc. IEEE Global Telecommunications
Conference (GLOBECOM), vol. 7, 2003, pp. 3711-3715.

D. P. Bertsekas, Nonlinear Programming. Athena Scientific Belmont,
Belmont, MA, USA, 1999.

S. Boyd and L. Vandenberghe, Convex optimization.
University Press, Cambridge, UK, 2004.

Y. P. Aneja and K. Nair, “The constrained shortest path problem,” Naval
Research Logistics Quarterly, vol. 25, no. 3, pp. 549-555, Sep. 1978.
G. Y. Handler and 1. Zang, “A dual algorithm for the constrained
shortest path problem,” Networks, vol. 10, no. 4, pp. 293-309, Winter
1980.

D. Blokh and G. Gutin, “An approximate algorithm for combinatorial
optimization problems with two parameters,” Australasian Journal of
Combinatorics, vol. 14, pp. 157-164, 1996.

A. Jiittner, B. Szviatovski, I. Mécs, and Z. Rajkd, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. IEEE INFOCOM,
vol. 2, 2001, pp. 859-868.

L. Wolsey and G. Nembhauser, Integer and Combinatorial Optimization,
ser. Wiley Series in Discrete Mathematics and Optimization. Wiley,
Hoboken, NJ, USA, 1999.

L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved
solution algorithm for the constrained shortest path problem,” Trans-
portation Research Part B: Methodological, vol. 41, no. 7, pp. 756-771,
Aug. 2007.

T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,”
in Proc. IEEE INFOCOM, vol. 2, 2001, pp. 834-843.

G. Feng, K. Makki, N. Pissinou, and C. Douligeris, “Heuristic and
exact algorithms for QoS routing with multiple constraints,” /IEICE
Trans. on Commun., vol. 85, no. 12, pp. 2838-2850, 2002.

Cambridge



[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

G. Feng, C. Douligeris, K. Makki, and N. Pissinou, “Performance
evaluation of delay-constrained least-cost QoS routing algorithms based
on linear and nonlinear lagrange relaxation,” in Proc. IEEE Int. Conf.
on Communications (ICC), vol. 4, 2002, pp. 2273-2278.

L. Guo and I. Matta, “Search space reduction in QoS routing,”
Computer Networks, vol. 41, no. 1, pp. 73-88, Jan. 2003.

H. Agrawal, M. Grah, and M. Gregory, “Optimization of QoS routing,”
in Proc. IEEE/ACIS Int. Conf. on Computer and Information Science
(ICIS), 2007, pp. 598-603.

C. C. Ribeiro and M. Minoux, “A heuristic approach to hard
constrained shortest path problems,” Discrete Applied Mathematics,
vol. 10, no. 2, pp. 125-137, Feb. 1985.

H. F. Salama, D. S. Reeves, and Y. Viniotis, “A distributed algorithm for
delay-constrained unicast routing,” in Proc. IEEE INFOCOM, vol. 1,
1997, pp. 84-91.

D. S. Reeves and H. F. Salama, “A distributed algorithm for delay-
constrained unicast routing,” IEEE/ACM Transactions on Networking,
vol. 8, no. 2, pp. 239-250, Apr. 2000.

Q. Sun and H. Langendorfer, “A new distributed routing algorithm for
supporting delay-sensitive applications,” Computer Communications,
vol. 21, no. 6, pp. 572-578, May 1998.

K. Ishida, K. Amano, and N. Kannari, “A delay-constrained least-cost
path routing protocol and the synthesis method,” in Proc. IEEE Int.
Conf. on Real-Time Computing Systems and Applications, 1998, pp.
58-65.

R. Sriram, G. Manimaran, and C. S. R. Murthy, “Preferred link based
delay-constrained least-cost routing in wide area networks,” Computer
Communications, vol. 21, no. 18, pp. 1655-1669, Dec. 1998.

W. Liu, W. Lou, and Y. Fang, “An efficient quality of service routing al-
gorithm for delay-sensitive applications,” Computer Networks, vol. 47,
no. 1, pp. 87-104, Jan. 2005.

A. Warburton, “Approximation of Pareto optima in multiple-objective,
shortest-path problems,” Operations Research, vol. 35, no. 1, pp. 70—
79, Jan./Feb. 1987.

R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research, vol. 17, no. 1, pp.
36-42, Feb. 1992.

D. Raz and Y. Shavitt, “Optimal partition of QoS requirements with
discrete cost functions,” in Proc. IEEE INFOCOM, vol. 2, 2000, pp.
613-622.

D. H. Lorenz and D. Raz, “A simple efficient approximation scheme
for the restricted shortest path problem,” Operations Research Letters,
vol. 28, no. 5, pp. 213-219, Jun. 2001.

F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted
shortest path,” Information Processing Letters, vol. 83, no. 5, pp. 287—
291, Sep. 2002.

D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “Efficient QoS partition
and routing of unicast and multicast,” IEEE/ACM Transactions on
Networking, vol. 14, no. 6, pp. 1336-1347, Dec. 2006.

G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial time ap-
proximation algorithms for multi-constrained QoS routing,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 656-669, Jun. 2008.
G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, “Improving
QoS routing performance under inaccurate link state information,” in
Proc. International Teletraffic Congress, 1999, pp. 7-11.

S. Chen and K. Nahrstedt, “Distributed QoS routing with imprecise
state information,” in Proc. IEEE Int. Conf. on Computer Communica-
tions and Networks, 1998, pp. 614-621.

R. A. Guérin and A. Orda, “QoS routing in networks with inaccurate
information: Theory and algorithms,” IEEE/ACM Transactions on
Networking, vol. 7, no. 3, pp. 350-364, Jun. 1999.

D. H. Lorenz and A. Orda, “QoS routing in networks with uncertain
parameters,” IEEE/ACM Transactions on Networking, vol. 6, no. 6, pp.
768-778, Dec. 1998.

L. Xiao, J. Wang, and M. Nahrstedt, “The enhanced ticket-based
routing algorithm,” in Proc. IEEE Int. Conf. on Communications (ICC),
vol. 4, 2002, pp. 2222-2226.

K. G. Shin and C.-C. Chou, “A distributed route-selection scheme
for establishing real-time channels,” in High Performance Networking.
Springer, Dordecht, Netherlands, 1995, pp. 319-330.

S. Chen and K. Nahrstedt, “Distributed quality-of-service routing
in high-speed networks based on selective probing,” in Proc. IEEE
Conference on Local Computer Networks (LCN), 1998, pp. 80-89.
A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Ef-
ficient computation of delay-sensitive routes from one source to all
destinations,” in Proc. IEEE INFOCOM, vol. 2, 2001, pp. 854-858.

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

28

F. Xiang, L. Junzhou, W. Jieyi, and G. Guanqun, “QoS routing based
on genetic algorithm,” Computer Communications, vol. 22, no. 15-16,
pp. 1392-1399, Sep. 1999.

W. Zhengying, S. Bingxin, and Z. Erdun, “Bandwidth-delay-
constrained least-cost multicast routing based on heuristic genetic
algorithm,” Computer Communications, vol. 24, no. 7-8, pp. 685-692,
Apr. 2001.

D. Karaboga and B. Basturk, “Artificial bee colony (ABC) optimization
algorithm for solving constrained optimization problems,” in Proc. Int.
Fuzzy Systems Assoc. World Congress.  Springer, Berlin, Germany,
2007, pp. 789-798.

C. Pornavalai, G. Chakraborty, and N. Shiratori, “QoS based routing
algorithm in integrated services packet networks,” Journal of High
Speed Networks, vol. 7, no. 2, pp. 99-112, 1998.

——, “Routing with multiple QoS requirements for supporting multi-
media applications,” Telecommunication Systems, vol. 9, no. 3-4, pp.
357-373, Sep. 1998.

B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617-1622, Dec.
1988.

M. Caria, A. Jukan, and M. Hoffmann, “SDN partitioning: A central-
ized control plane for distributed routing protocols,” IEEE Trans. on
Network and Service Management, vol. 13, no. 3, pp. 381-393, Sep.
2016.

S. Krile, M. Rakis, and F. Schindler, “Centralized routing algorithm
based on flow permutations,” in Proc. IEEE Int. Conf. on Telecommun.
and Signal Proc. (TSP), 2016, pp. 68-73.

S. H. Park, B. Lee, J. You, J. Shin, T. Kim, and S. Yang, “RAON:
Recursive abstraction of OpenFlow networks,” in Proc. IEEE European
Workshop on Software Defined Networks (EWSDN), 2014, pp. 115-116.
S. Vrijders, V. Maffione, D. Staessens, F. Salvestrini, M. Biancani,
E. Grasa, D. Colle, M. Pickavet, J. Barron, J. Day, and L. Chitku-
shev, “Reducing the complexity of virtual machine networking,” IEEE
Communications Magazine, vol. 54, no. 4, pp. 152-158, Apr. 2016.

Jochen W. Guck received the Dipl.-Ing. degree in
Ingenieurinformatik from the University of Applied
Sciences Wuerzburg-Schweinfurt, Schweinfurt, Ger-
many, in 2009, and the M.Sc. degree in electrical en-
gineering from the Technical University of Munich,
Munich, Germany, in 2011. In September 2012, he
joined the Chair of Communication Networks at the
Technical University of Munich as a member of the
research and teaching staff. His research interests
include real-time communication, industrial commu-
nication, software-defined networking, and routing

algorithms.

Amaury Van Bemten was born in Liege, Belgium,
in 1993. He received the B.Sc. degree in Engineering
in June 2013 and the M.Sc. in Computer Science and
Engineering in June 2015, both from the University
of Liege (Belgium). In September 2015 he joined the
Chair of Communication Networks at the Technical
University of Munich (TUM), where he is currently
pursuing the Ph.D. degree as a member of the
research and teaching staff. His current research
focuses on routing algorithms and the application of
software-defined networking for resilient real-time

communications in industrial environments.



Martin Reisslein (S’96-A’97-M’98-SM’03-F’14) is
a Professor in the School of Electrical, Computer,
and Energy Engineering at Arizona State University
(ASU), Tempe. He received the Ph.D. in systems
engineering from the University of Pennsylvania in
1998. He currently serves as Associate Editor for
the IEEE Transactions on Mobile Computing, the
IEEE Transactions on Education, and IEEE Access
as well as Computer Networks and Optical Switching
and Networking. He is Associate Editor-in-Chief for
the IEEE Communications Surveys & Tutorials and
chairs the steering committee of the IEEE Transactions on Multimedia.

Wolfgang Kellerer (M’96-SM’11) is a Full Pro-
fessor with the Technical University of Munich,
heading the Chair of Communication Networks with
the Department of Electrical and Computer Engi-
neering. Before, he was for over ten years with NTT
DOCOMO’s European Research Laboratories. He
received his Dr.-Ing. degree (Ph.D.) and his Dipl.-
Ing. degree from Munich University of Technology,
Munich, Germany, in 1995 and 2002, respectively.
His research resulted in over 200 publications and
29 granted patents in the areas of mobile networking
and service platforms. He currently serves as an associate editor for /EEE
Transactions on Network and Service Management and on the Editorial Board
of the IEEE Communications Surveys and Tutorials. He is a member of ACM
and the VDE ITG.

29



