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Abstract— This paper presents a new algorithm for forward
kinematics, called Asynchronous Forward Kinematics (AFK).
The algorithm has the complexity of O(logn) for updating one
joint angle, and O(logn) for obtaining a homogeneous trans-
formation matrix between links. AFK enables computation for
efficient forward kinematics under asynchronous sensory data.
Moreover, AFK peovides localise computational resources at
sensitive joints to the position of the endpoint (e.g. a fingertip),
like a root joint. We provide comparative results including com-
putation time, evaluating AFK against the conventional forward
kinematics (CFK). The results showed that the computation
time is well adequate for real-time computation. Computation
time for 100 links takes less than 20 us for 1 query. Moreover,
computation time with over 50000 links takes less than 35 us
for 1 query.

I. INTRODUCTION

Numerous domains in robotics require robots with high

number of degrees of freedom, most of these robots are

of practical use. Here we highlight two examples, the first

example is a hyper-redundant robot such as the Buckingham

and Graham’s snake-arm with 20 degrees of freedom, which

is being used to conduct inspection and repair operations

within nuclear power plants [3]. Second example is robots

covered with highly dense tactile sensors (e.g. [8], [10]).

When computing kinematics and dynamics of robots with

tactile sensor, degrees of freedom can be enormous due to

the kinematics and dynamics algorithms require coordinate

frames on every tactile sensor to estimate forces and torques

of each tactile sensor [9].

Furthermore, synchronising sensory data of robots with

high degrees of freedom at once induces a large overhead.

Even when one joint angle or one tactile sensor is updated,

conventional algorithms must recalculate all kinematics and

dynamics. Moreover, robots with high degrees of freedom

tend to have a large amount of data communication between

sensors and robot’s interface. Conventional algorithms re-

quire to wait for all sensory data to be updated prior to

subsequent computation, which causes idleness of processors

and loss of real-time computation.

Algorithms associated with robots with high number of

degrees of freedom are usually demanding, thus, in order to

solve these computational problems asynchronous kinemat-

ics and dynamics estimation are preferable. In other words,

kinematics and dynamics which do not need synchronisation
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Fig. 1. Appliations with high degree of freedom. (a) High-density tactile
sensing glove with 1000 sensors [13]. (b) Ringhals, Snake-arm robots with
20 DoF [3].

of sensory data are desirable for more efficient computation.

Here, we propose a new algorithm for forward kinematics,

Asynchronous Forward Kinematics (AFK) – with the aims

to support asynchronous dynamics computation and AFK for

branched chains.

A. Related work

Research in the efficient parallel computation of kine-

matics and dynamics for synchronous sensory data is well

matured. These algorithms include O(n) for serial computa-

tion [1] and O(logn) for parallel computation [14]. Yamane

and Nakamura have developed an efficient parallel kine-

matics and dynamics computation of human figures, which

achieves 2.5ms for 48 DOF human figures [14]. However,

these algorithms all require parallel computation and cannot

support asynchronous input, thus inducing a more complex

computational architecture with larger computation overhead.

A hyper-redundant robot is with a finite degree-of-

freedom, and a continuum robot is with infinite degrees

of freedom. A forward kinematics algorithm especially for

hyper-redundant robots and continuum robots has been de-

veloped. Rucker et al. developed a forward kinematics algo-

rithm for continuum robots using a rod theory [12], which

can compute the position of fingertip when a distributed force

is applied on a continuum rod. Chirikjian developed a for-

ward and inverse kinematics algorithm for hyper-redundant

robots by using a continuum approach [4]. However, these

algorithms cannot provide an exact solution, as continuum

approaches can only provide approximated solutions.

B. Contribution

The contributions of this work are as follows.
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Fig. 2. Coordinates of serial links.

• The proposed algorithm is more efficient than CFK

under asynchronous sensory input. CFK requires O(n)
time complexity to update even only one joint angle.

Whereas, AFK can update the query only with O(logn)
cost. This is preferable for hardware systems, less

processors idleness and real-time computation of hyper-

redundant robots.

• AFK allow the scheduling of computational resources.

AFK enables us to localise computational resources to

the sensitive joints for a task. For example, the position

and orientation of an end effector is usually important

for the task. The joint angle of the root joint is more

sensitive than the others because its moment arm is

large. This algorithm can easily schedule computational

resources by increasing update frequency of the root

angle.

• This algorithm can efficiently compute more continuous

forward kinematics than CFK. CFK is less continuous

because it needs to wait for synchronisation of sensory

data by timer interruption. Whereas, AFK can compute

an exact forward kinematics at any time by exploiting

the previously computed result.

C. Organization

This paper is organised as follows. First, a review of

conventional forward kinematics and the algorithm of AFK

is presented. This is followed by examples of the functioning

of AFK. Then, the experiment to compare computation time

between CFK and AFK discussed. And finally, a summary

of the comparison of CFK and AFK is presented.

II. METHODOLOGY

In this section, we present outlines of CFK and AFK.

Then, we compare their time complexity. Note, in this paper

we assume a serial link with no branched structure exists1.

A. Conventional Forward Kinematics (CFK)

CFK has been widely used to solve forward kinematics

problems [5]. Here, let us recap the basic concept of CFK.

Let {X} denote coordinate frame X , X
Y R denote a 3× 3

rotation matrix from {X} to {Y}, and X PY denote a transla-

tion vector, which indicates the origin position of {Y} from

{X}. A 4× 4 homogeneous transformation matrix X
Y H can

be defined by

X
Y H =

(

X
Y R X PY

0T 1

)

(1)

1AFK for branched chains will be addressed in a follow up paper.

Algorithm 1 CFK

isPending = false

function UPDATE(i) ⊲ Change joint angle of {i}
θi← newθi

isPending = true

end function

function ASK(i, j) ⊲ Get trans. matrix from {i} to {j}
if isPending = true then

for i in [0,n) do
−1
i H←−1

i−1 H i−1
i H

end for

isPending = false

end if

return (−1
i H−1)−1

j H

end function

where 0T is a row vector of 3 zeros. Then, the kinematic

chain law can be viewed as the matrix multiplication

X
Y HY

Z H =X
Z H (2)

A homogeneous transformation matrix is always invertible.

The inverse matrix is efficiently computed using the fact that

an inverse matrix of a rotation matrix is equal to a transposed

matrix

X
Y H−1 =Y

X H =

(

X
Y RT −X

Y RT X PY

0T 1

)

(3)

Let us consider that a serial link with n links. A link i

of the robot has coordinate frame {i} and joint i. θi denotes

an angle of joint i. The coordinate frame of the base link is

{−1}.

The homogeneous transformation matrix i−1
i H is depen-

dent on θi. Hence i−1
i H can be written as

i−1
i H =i−1

i H(θi) (4)

where i−1
i H(θi) is easily determined by a structure of a robot

using Denavit and Hartenberg (D-H) [6].

The purpose of CFK is to calculate i
jH for each i and j. To

solve this problem, CFK compute them in two steps. First,

CFK constructs −1
i H using equation (2) for each j.

−1
i H =−1

i−1 H i−1
i H (5)

Second, using equation (3), i
jH is computed by

i
jH = (−1

i H−1)−1
j H (6)

The time complexity of CFK is O(n) for construction of
−1
i H given by Equation (5), and O(1) for calculating i

jH with

Equation (6). The space complexity of CFK is O(n) to store
−1
i H for each link i.

In a normal operation, CFK constructs −1
i H for every

control cycles. Consider the CFK Algorithm 1, UPDATE and

ASK must be combined at each cycle, which would make the

reconstruction inefficient.



Algorithm 2 AFK for update query

function UPDATE(i)

v← node of i−1
i H

while v is not root do

v← parent of v

v← left child of v multiplied by right child of v

end while

end function

B. Asynchronous Forward Kinematics (AFK)

The core idea of AFK is based on separating UPDATE

(Algorithm 2) and ASK (Algorithm 3) queries, and storing

previously calculated kinematics. AFK have 2n− 1 homo-

geneous transformation matrices, which can always derive

an exact solution of the forward kinematics. Soon after an

update query is given, AFK updates matrices only dependant

on the update query. A similar idea was also used for a binary

robot [7], although the kinematics of binary manipulators is

completely predefined.

In order to realise AFK, segment trees are used. A segment

tree is a data structure which is originally used in computa-

tional geometry to solve Klee’s rectangle problems [2]. This

algorithm has wide applications because segment trees can

make UPDATE and ASK operations in logarithmical time for

any associative operations [11].

C. Segment trees

The root node of a segment tree will hold the information

for the interval [i, j] with n leaf nodes. If i 6= j, the left

and right sons will hold the information for the intervals

[i,(i+ j)/2] and [(i+ j)/2+ 1, j]. The maximum depth of

the segment tree is O(logn). To update one leaf node, the

algorithm updates all nodes dependent on the updated nodes.

This will be done by updating all nodes in which the path

between the root node and the updated node. The number

of nodes to be updated cannot exceed O(logn) because the

depth of the tree is bounded. To report the result of ask

query, the tree finds the intervals that can cover [i, j] with

the minimum number of nodes. The minimum number of

nodes cannot exceed O(logn) because a number of nodes

covering the given query is at most 2 for all node in a specific

depth. Hence, the overall interval costs is only O(logn) time

complexity.

If you choose any k that 2k ≥ n, a segment tree with 2k

nodes will be a complete binary tree. That enables us to

efficiently find a parent and two sons of a node using only

bitwise operations.

The space complexity of a segment tree is O(n). The

number of deepest nodes is n, the second deepest nodes is

n/2 and so on. So the total number of nodes is n+ n/2+
n/4+ ...+ 1= 2n− 1.

Thus, we can determine the worst-case time complexity

of AFK to be O(logn). This means that computation time of

AFK is guarantee to be stable. Hence, an essential quality

for any real-time systems, like a robot, is achieved.

Algorithm 3 AFK for ask query

function ASK(i, j)

return REC(root, i, j)

end function

function REC(v, i, j)

if [i, j] includes v then ⊲ Include

return v

else if [i, j] does not cross v then ⊲ Unrelated

return Identity Matrix

else ⊲ Cross

leftMat = REC(left child of v, i, j)

rightMat = REC(right child of v, i, j)

return leftMat multiplied by rightMat

end if

end function

D. Detail of AFK

We stored i−1
i H on leaf nodes of a segment tree. The stored

information on nodes is a matrix chain multiplication of

homogeneous transformation matrices, which is
j

kH of Equa-

tion (2). How to update leaf nodes is completely determined

by a robot structure. For each update loop, nodes dependent

on the updated leaf node, which can be updated by O(logn)
times simple 4×4 matrix multiplication. Combining intervals

of ask queries is also done with O(logn) time complexity.

Let us consider an example of AFK for a robot with 4

links (Fig. 3). Consider the angle of joint 1 is updated. Then
0
1H, −1

1 H and −1
3 H have to be updated. The other nodes do

not have to be updated because they are not dependent on

θ1. Therefore, the number of updated nodes is only 3, which

is equal to the depth of the segment tree. Also, consider

if you wish to ask −1
2 H. AFK algorithm searches the set

of intervals with the minimum number of nodes from the

root node. AFK achieves this by multiplying nodes when

the query includes them and splitting search intervals when

the query and the search interval crosses. To calculate −1
2 H

requires only 1 multiplication of −1
1 H and 1

2H.

This algorithm can be used when n is not a power of 2.

There are two methods. The first method is to construct the

segment tree as an unbalanced binary tree. If a node has only

one child node, the node has to return the same value as the

child node. The second method is to construct a segment tree

of a larger complete binary tree. In this case, n−1
n H,nn+1 H and

so on, which should be an identity matrix due to the fact that

there are no corresponding joints. For example, when n= 11,

we can construct a segmented tree with 24 = 16 leaf nodes. In

the 16 homogeneous matrices, 11
12H,12

13 H, ...,15
16 H are always

identity matrices.

E. Comparison of Computational Complexity

The time complexity of CFK and AFK is summarised in

Table I. CFK has time complexity of O(n) for an update

query and O(1) for an ask query. AFK has time complexity

with O(logn) for an update query and O(logn) for an ask

query.
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Fig. 3. An example of how AFK algorithm works. (a) UPDATE query. Blue nodes indicate nodes which is already updated. (b) ASK query. Yellow nodes
indicate crossing nodes. Red nodes indicate the final nodes to be multiplied.

TABLE I

COMPARISON OF TIME COMPLEXITY FOR UPDATE AND ASK QUERIES.

update ask

CFK O(n) O(1)
AFK O(logn) O(logn)

The time complexity for query series of CFK and AFK

is summarised in Table II. Synchronous query series include

n update queries and some ask queries alternatively. Asyn-

chronous query series are defined as query series which is

not synchronous query series. Let Q be the number of queries

and q be Q/n. For asynchronous query series, AFK is more

efficient as O(qn logn) than CFK’s O(qn2). Whereas, for

synchronous query series, AFK is less efficient as O(qn logn)
than CFK’s O(qn).

The space complexity of CFK and AFK is O(n). CFK

stores n homogeneous transformation matrices −1
i H. And

AFK stores 2n− 1 homogeneous transformation matrices.

III. EXPERIMENTAL SETUP

In this experiment, we computed forward kinematics for

each update queries and ask queries using CFK and AFK.

We compared these computation time for n serial link robot

TABLE II

COMPARISON OF TOTAL TIME COMPLEXITY OF CFK AND AFK.

Synchronous Random Alternative

CFK O(qn) O(qn2) O(qn2)
AFK O(qn log n) O(qn logn) O(qn log n)

with 3 types of query series (Synchronous, Random and

Alternative).

A. Queries

We prepared 2 types of queries: update and ask.

1) update query: set θi

2) ask query: get i
jH

For our assessment, we measured computation time of 1

update and ask query. Because computation time of 1 query

is quite small, we computed 100000 queries then took the

average time.

B. Query series

To know how the arrangement of query will affect the

computation time, we prepared 3 types of query series:

Synchronous, Random and Alternative query series. Each

query series have 2nq queries.

1) Synchronous: repeat (n update→ n ask query), q times.
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Fig. 4. Computation time of 1 update and ask query of AFK. (a) Computation time of ask query with small number of degree of freedom. (b) Computation
time of update query with small number of degree of freedom. (c) Computation time of ask query with large number of degree of freedom, with abscissas
denoting DoF of logarithmic scale. (d) Computation time of update query with large number of degree of freedom, with abscissas denoting DoF of
logarithmic scale.

2) Random: repeat (randomly selected query), 2nq times

3) Alternative: repeat (1 update→ 1 ask query), nq times

Random and alternative query series simulate asyn-

chronous sensory data. The performance of AFK is expected

to be high because CFK requires reconstruction with O(n)

time complexity for each update queries. Alternative query

series has the worst query series for CFK. Whereas, High

performance of CFK is expected because CFK assumes

synchronous sensory data.

C. Detail of query series

We compared computation time of CFK and AFK for 3

query series. The computation time of CFK and AFK with

q and n was compared. q was fixed at 1000. We selected n

from 5 to 90 in multiples of 5.

We randomly selected i of update queries, j of ask queries

and an angle to update.

D. Implementation

The algorithms were implemented with the C++ language.

Computation time is measured on an Intel Core i7-4790 CPU

@ 3.60GHz. We used the Eigen library for the implementa-

tion of matrix manipulations.

IV. RESULTS

A. Computation time of 1 query

Computation time of n(n < 100) links is fast enough to

achieve real-time computation(Fig. 4(a), (b)). For all n up

to 100, ask query takes only 10 us and update query only

takes 20 us. Computation time of n(n < 65000) links is also

examined (Fig. 4(c), (d)). Even when n is very large like

n > 50000, ask query takes only 25 us and update query

only takes 35 us. Thus, the computation time scales well for

large range of n.

B. Computation time of query series

AFK is more efficient than CFK for random query series

when n ≤ 50 and for alternative query series when n ≤ 20

(Fig. 5(b, c)). Whereas, AFK is less efficient than CFK for

synchronous query series for all n (Fig. 5(a)). The theoretical

time complexity is confirmed as shown in Table II.

The comparison indicates:

1 AFK is more efficient than CFK for asynchronous sen-

sory data and asking queries, when degrees of freedom

is large.

2 AFK is less efficient for synchronous sensory data, like

data acquired by time interrupt.

3 AFK is less efficient when degrees of freedom is small.
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V. CONCLUSION AND DISCUSSION

In this paper, we presented an algorithm for efficient

computation of forward kinematics under asynchronous sen-

sory data, called Asynchronous Forward Kinematics. Our

algorithm has O(logn) time complexity for each updating

and asking queries, and O(n) space complexity. Computation

time of the algorithm is compared with one of the conven-

tional forward kinematics algorithm.

We conclude this paper by emphasising the following

points:

• An efficient algorithm for forward kinematics under

asynchronous sensory data was developed and imple-

mented. Its worst-case time complexity is O(logn) to

update a joint angle and ask a homogeneous transfor-

mation matrix.

• Simulation results showed that the computation time is

effective enough for real-time computation. Computa-

tion time with 100 links takes less than 20 us for 1 query.

Moreover, computation time with over 50000 links takes

less than 35 us for 1 query.

• The algorithm does not require recalculation of all

kinematics when only one joint is updated.

• The algorithm provides with a mechanism to enables

us to effectively schedule computational resources for

sensitive joints to a task.

• This algorithm does not assume a fixed control cycle,

which can enable a more reflective and continuous

forward kinematics.

In our future work, we will focus on the computation of

AFK of branched chains and asynchronous inverse dynamics.

In particular, AFK of branched chains can be achieved

through: (1) decomposing branched chains as several serial

chains; and (2) then by combining all results of AFK of

serial chains. Furthermore, we will examine various ways of

decomposition of trees to enables us to efficiently compute

AFK.
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