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Summary

This thesis is a conglomerate of our previous articles [89–92] studying three
Dyson-hierarchical Hamiltonians with on-site disorder. The first of these, the
hierarchical Anderson model, perturbs Dyson’s hierarchical Laplacian by a ran-
dom potential. We apply Feshbach-Krein-Schur renormalization techniques to
establish a criterion on the single-site distribution which ensures exponential
dynamical localization as well as positive inverse participation ratios and Pois-
son statistics of eigenvalues. Our criterion applies to all cases of exponentially
decaying hierarchical hopping strengths and holds even for spectral dimension
d > 2, which corresponds to the regime of transience of the underlying hierar-
chical random walk. This challenges recent numerical findings that the spectral
dimension is significant as far as the Anderson transition is concerned.

Next, we study the ultrametric ensemble comprising a hierarchical analogue
of power-law random band matrices. This symmetric ensemble consists of ran-
dom matrices with independent entries whose variances decay exponentially in
the metric induced by the tree topology on N. We map out the entirety of the
localization regime by proving the localization of eigenfunctions and Poisson
statistics of the suitably scaled eigenvalues. Our results complement exist-
ing works on complete delocalization and random matrix universality, thereby
proving the existence of a phase transition in this model. Along the way, we
establish optimal stability results for the resolvent under Dyson Brownian mo-
tion up to times of order N−1 when the complex energy parameter is of order
N−1. These results go beyond norm-based continuity arguments for Dyson
Brownian motion and complement existing proofs of equilibration of the local
statistics for times greater than N−1.

Finally, we consider the Rosenzweig-Porter model H = V +
√
T Φ, where V

is a N ×N diagonal matrix, Φ is drawn from the N ×N Gaussian Orthogonal
Ensemble, and N−1 � T � 1. We prove that the eigenfunctions of H are
typically supported in a set of approximately NT sites, thereby confirming
the existence of a previously conjectured non-ergodic delocalized phase. Our
proof is based on martingale estimates along the characteristic curves of the
stochastic advection equation satisfied by the local resolvent of the Brownian
motion representation of H.
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1 Introduction

1.1 Localization Transitions

In this introductory section, we first provide some general context to local-
ization problems in terms of the famous Anderson model [10]. We then give
a heuristic picture of a possible mechanism behind the localization transition
and briefly discuss two prominent toy models as motivation for the hierarchical
approximations featured in this thesis. The discussion in this section is strongly
influenced by the book [6], which should be kept in mind as a default reference
when no others are given.

The Anderson model was designed to portray the dynamics of a single par-
ticle in a medium with impurities, which are described microscopically by a
random potential energy at each location in space. This leads to a potential
term in the relevant Hamiltonian which acts as multiplication by a function
V (x) constructed from classical random variables on some probability space
(Ω,A,P). The situation may be somewhat simplified by performing the tight-
binding approximation, which amounts to reducing the physical space to a
discrete lattice, insisting on a single state per site, and ignoring the interaction
of the particle with the environment. The resulting Hamiltonian is defined on
`2(Zd) as

H = −ε∆ + V (1.1.1)

where ε > 0 is a parameter governing the relative strengths of the kinetic and
potential terms. The kinetic term is then the local averaging operator

(−∆ψ)(x) =
1

2d

∑
y∼x

ψ(y),

where y ∼ x if y is a neighbor of x on the lattice Zd. Hence, ∆ agrees with
the finite difference Laplacian up to an affine transformation of the spectrum.
Regarding the potential term, it is simplest to assume that its values at each
site x ∈ Zd are independent random variables {Vx}, resulting in a random
multiplication operator defined by

(V ψ)(x) = Vxψ(x).

A fundamental issue is how restricted the motion of a particle is under the
dynamics generated by typical realizations of H. In particular, the question
asked by Anderson is whether it is true with high classical probability that a
particle started at some site x ∈ Zd remains near x for all times with high
quantum probability. Since the answer to this question might depend on the
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energy, one may ask the same question of particles subject to the filtered dy-
namics PI(H)e−itH , where PI(H) denotes the spectral projection onto the
interval I ⊂ R. In mathematical terms, the problem is whether

sup
t∈R
|〈δy, PI(H)e−itHδx〉|2 (1.1.2)

decays in |x − y| for typical realizations of V , where δx denotes the canonical
site-basis element

δx(u) =

{
1 u = x

0 u 6= x
.

The question can be answered by explicit diagonalization in the extreme
cases ε = 0 with H = V or “ε = ∞” with H = ∆. In the first case, V is
diagonalized by the basis {δx} which, up to phases, remains invariant under
the evolution eitV and therefore remains perfectly localized. In the second case,
H exhibits localization in momentum space by the same token, and therefore
exhibits delocalization in physical space. Hence, the question becomes how H
interpolates these two extreme behaviors as ε varies in (0,∞). The emerging
conjecture currently held by physicists is the following:

1. H exhibits localization whenever ε is small or I is near the edge of the
spectrum,

2. H exhibits localization throughout its entire spectrum for all ε > 0 in
dimension d ≤ 2, and

3. H exhibits delocalization when I is in the bulk of the spectrum, ε is
sufficiently large, and d ≥ 3.

Mathematically rigorous derivations of any of these statements have proven
difficult and cannot be achieved by filling the physical arguments with ε-s and
δ-s. A major mathematical effort in the final quarter of the twentieth century
succeeded in proving both the first point and that H is localized when d = 1. As
particularly noteworthy in this regard, let us mention the works of Goldsheid-
Molchanov-Pastur [53], Carmona-Klein-Martinelli [24], Fröhlich-Spencer [47],
Simon-Wolff [84], and Aizenman-Molchanov [1]. The remaining questions are
wide open. The author of this thesis is unaware of even the smallest bit of
progress concerning the other two points for the lattice Anderson model.

The dynamical localization question (1.1.2) is of course intimately linked to
the study of the spectral measures of H. Indeed, if the spectral measures are of
pure-point type and the corresponding eigenfunctions are bounded by a profile

|ψλ(x)|2 ≤ Cλf(|x− xλ|),
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then every state may be arbitrarily well approximated by a bound state for
which the quantum probability of ever moving outside some finite set decays
like f . In infinite volumes the mere fact that the spectral measure µx of δx for
H is of pure-point type implies that

lim
R→∞

sup
t∈R

∑
|x−y|>R

|〈δy, e−itHδx〉|2 = 0

via the RAGE theorem (see, for example, [6]). Even stronger quantitative
localization statements are produced if the spectral measures µxy for δx and δy
decay in total-variation norm since

sup
t∈R
|〈δy, PI(H)e−itHδx〉|2 ≤ sup

t∈R

∣∣∣∣∫
I

e−itE µxy(dE)

∣∣∣∣ ≤ |µxy|(I).

The eigenfunctions of H are in turn linked to the Green functions

G(x, y; z) = 〈δy, (H − z)−1δx〉,

which, in finite volumes, exist also for almost every z = E ∈ R. The function
g(y) = G(x, y;E) satisfies(

H − 1

G(x, x;E)
|δx〉〈δx|

)
g = Eg,

which shows that, when V is random and E is chosen judiciously, g is an
eigenfunction corresponding to a resampled potential. One may thus hope to
deduce the eigenfunction profiles from a profile for G. The Green function
satisfies a formal path-expansion of the form

G(x, y;E) =
∑
γ:x→y

(−1)|γ|
|γ|∏
k=0

1

V (γ(k))− E , (1.1.3)

the sum ranging over all finite paths from x to y. This provides some intuition
as to the dependence of the localization transition on the geometry of the lattice
and, in particular, makes it plausible that the Green function may not decay in
high dimensions where there are many more paths joining any two sites. The
main point of (1.1.3) is that high dimensions allow for a much larger number of
potential combinations {V (x) : x ∈ γ} resonating at a given energy E despite
the interference of the randomness in V .

A less direct way of probing for localization is to consider the microscopic
eigenvalue statistics defined by the random point process

µN =
∑

λ∈σ(HN )

δ|QN |(λ−E),
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where
HN = 1QNH1QN

are the restrictions of H to some appropriately increasing finite volumes QN .
Since the canonical spacing between adjacent eigenvalues of HN is approxi-
mately |QN |−1, the measure µN captures the statistics of individual eigenval-
ues near E ∈ R. If the eigenfunctions corresponding to eigenvalues close to E
are localized, then the change of basis

UHNU
∗ = diag(λ1, ..., λN )

can act only locally in space for energies close to E. This means that the eigen-
values near E inherit some independence from the potential V and makes it
quite natural to expect that µN might converge to the universal limiting struc-
ture of asymptotically independent point processes, the Poisson point process.
Which local statistics should be expected in delocalized regimes is a-priori much
less clear, except that one would expect delocalized states to induce strong cor-
relations in the spectrum. Nevertheless, it is believed that a large class of
sufficiently complex quantum systems share a universal limiting behavior of
the spectrum, which depends only on macrosopic parameters such as the sym-
metry class of the Hamiltonian. It is not completely unreasonable to suppose
that delocalized random Schrödinger operators might also fall into the domain
of these so called Wigner-Dyson-Mehta (WDM) statistics. While it is known
that sufficiently strong localization bounds imply Poisson level statistics [69], a
proof of WDM statistics remains obscure. There has however been spectacular
progress in proving the emergence of WDM statistics in a variety of Hamilto-
nians whose randomness is equally distributed among the off-diagonal entries
(see [40] and references therein).

In recent years, the realization that the rigorous understanding of the An-
derson transition seems to be far beyond the currently available mathematical
machinery has inspired the task of constructing simplified renditions of the tran-
sition in analytically tractable toy models. A prominent example, inspired by
the successful analysis of the one-dimensional Anderson model, is the random
Schödinger operator whose kinetic term consists of nearest-neighbor hopping
on the Bethe lattice (the loopless graph of constant degree). For this model,
the localization transition was established rigorously in [3, 57]. Because of the
infinite branching from any given vertex, this model is sometimes interpreted
as the infinite-dimensional Anderson model. We note however, that this is in
stark contrast to the intuition provided by (1.1.3), since the Anderson model
on the Bethe lattice is tractable precisely because there is only one self-avoiding
walk between any two sites. It may be more appropriate to interpret the entire
graph as a single infinite-dimensional cell and to note that the delocalization in
the cell is due to tunneling enabled by the exponential growth of the volume in
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terms of the diameter. A further warning that this model may not fully capture
the Anderson transition is given by the fact that the level statistics converge
to a Poisson point process [4]. The closely related random regular graph, in
which loops are also scarce, has also been studied [12,13].

An alternative approach has been to effectively increase the number of paths
from x to y on the one-dimensional lattice by studying Hamiltonians H on
`2(Z) for which 〈δy, Hδx〉 6= 0 also when |x − y| > 1. The hope is that this
long-range hopping can induce a localization transition if |〈δy, Hδx〉| decays
sufficiently slowly. The random band matrices [25,49] provide a central model
of this type by letting HN : `2({1, ..., N}) → `2({1, ..., N}) consist of centered
random variables with variance

E |〈δy, HNδx〉|2 =

{
W−1
N if |x− y| ≤WN

0 else
.

The localization transition is then conjectured to be governed by the size of
WN , with HN being localized for WN � N1/2 and delocalized otherwise. While
these models do not suffer from the defect outlined in the previous paragraph,
they lose the analytic simplicity of the Bethe lattice with respect to path ex-
pansions. As a consequence, the rigorous results [19, 32, 40, 41, 80, 85] notwith-
standing, it has been difficult to derive the behavior of HN near the critical
bandwidth WN = N1/2.

The hierarchical models featured in this thesis are attempts at further com-
promises between the complexities allowing for a real localization transition
and the simplicity allowing for mathematical proofs. They are obtained by
a performing a “coarse-graining”, which tries to recursively compensate the
removal of boundary conditions by adding small mean-field hopping compo-
nents as follows. The configuration space of the hierarchical systems will be
the natural numbers N0, on which we define nested partitions {Pr} by

N0 = {0, ..., 2r − 1} ∪ {2r, ..., 2 · 2r − 1} ∪ ...

It is often useful to describe this structure in terms of the hierarchical metric

d(x, y) = min{r ≥ 0 : x, y contained in a common member of Pr},

which encodes Pr as the closed balls of radius r. In one dimension, the idea is
to mimick the nearest-neighbor averaging

(−∆ψ)(x) =
1

2
(ψ(x− 1) + ψ(x+ 1))

in the following fashion. First, we average ψ locally over the smallest non-trivial
partition P1 with

(∆1ψ)(x) = p1E1ψ(x) =
p1

2

∑
d(x,y)≤1

ψ(y)
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thus removing the boundary conditions along P1. Next, we attempt to correct
the error by adding the average of ψ on a coarser scale

(∆2ψ)(x) = ((p1E1 + p2E2)ψ)(x) = (E1ψ)(x) +
p2

4

∑
d(x,y)≤2

ψ(y)

thereby (very roughly) compensating for the missing interactions between the
sites on the boundary of member of P1 but on the interior of members of P2.
Continuing in this way, we obtain the hierarchical Laplacian

∆H =

∞∑
r=1

prEr (1.1.4)

where
(Erψ)(x) = 2−r

∑
d(x,y)≤r

ψ(y)

is the local averaging operator on scale 2r and the coefficients {pr} ∈ `1 ensure
the convergence of the sum. Hence, ∆H is a sum of “layers” indexed by r ≥ 1,
each of which acts only locally on the length scale 2r and is not subject to
any constraints along the boundaries of the members of Pr. Of course, it
is also possible to repeat this procedure in higher dimensions, which results
in partitions of Zd into nested hypercubes of cardinality 2dr. However, the
hierarchical approximation can then only account for the dimension in terms
of the faster growth of the partitions Pr, all other geometric information being
lost. Thus, we do not really obtain a new family of hierarchical Laplacians in
higher dimensions as they can be obtained from (1.1.4) by setting pr = 0 when
r is not a multiple of d.

The Hierarchical Laplacian
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Since they were introduced to the Ising model by Dyson [38,39], hierarchical
approximations have enjoyed a long history during which they have consistently
reproduced qualitative features when inserted into the central models of statis-
tical physics. This has led to rigorous analysis of, among others, the hierarchical
versions of Φ4 perturbations [51, 52], self-avoiding random walks [23], and di-
rected polymers [31]. The primary reason for the successful analysis is that
real-space renormalization transformations, which usually somehow collapse
the partition P1 into single effective spins, tend to transform the parameters
into extreme phases while still yielding exact formulas recovering the behavior
of the original model. Another important feature of the hierarchical Laplacian
is that it allows for a tunable effective dimension defined by

ds = lim
λ↓0

ln 〈δx, 1[λ∞−λ,λ∞](∆H)δx〉
ln
√
λ

with λ∞ = supσ(∆H). This quantity is equal to the true spatial dimension
if ∆H is replaced by the Laplacian on the d-dimensional lattice Zd and often
behaves quite analogously. For example, the random walk generated by the
hierarchical Laplacian is reccurent if ds ≤ 2 and transitive otherwise [61]. With
this history in mind, it is natural to attempt a hierarchical approximation of
the localization transition. In this thesis, we consider three specific models of
this type, the hierarchical Anderson model, the ultrametric ensemble, and the
Rosenzweig-Porter model. The next three sections introduce these models and
summarize the main results of our work.

1.2 The Hierarchical Anderson Model

The hierarchical Anderson model

H = ∆ + V,

which consists of adding a random potential to the hierarchical Laplacian as
in (1.1.1), was introduced by Bovier in [22]. Here, we have dropped the sub-
script from the hierarchical Laplacian ∆H and will continue to do so as we will
have no further use for the Euclidean Laplacian. We will assume that the val-
ues {Vx : x ∈ N0} of the potential are drawn independently from some bounded
density % ∈ L∞ which also satisfies

%(v) ≤ C

1 + v2
(1.2.1)

for some C < ∞. Moreover, rather than letting the sequence {pr} in the
definition of ∆ be a general summable sequence, we will make the (largely
artificial) restriction to sequences of the form

pr = ε2−cr
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with ε, c ∈ (0,∞). Notice that ε now governs the relative strength of the kinetic
and potential terms as in (1.1.1). Furthermore, with this particular choice of
{pr} it turns out [68] that the spectral dimension is

ds =
2

c
.

The nature of the localization transition in the hierarchical Anderson model
has hitherto been disputed. The original conjecture of Bovier was that the
model is localized for ds < 4 but may permit a delocalized phase in higher
spectral dimensions. It was hence a surprise when Molchanov [71, 72] proved
that H has pure-point spectrum almost surely for all spectral dimensions ds in
the special case that % is the Cauchy distribution. Nevertheless, the conjecture
remained consistent with the subsequent works of Kritchevski [60, 61], which
proved that H has only pure-point spectrum for arbitrary % when ds < 4. The
following theorem, which is an extension of Kritchevski’s method, shows that
the Cauchy distribution is not a pathological case and provides a clear answer
regarding this debate in the infinite volume. In fact, it even shows that the
associated eigenfunctions decay exponentially in the hierarchical metric.

Theorem 1.2.1. The spectrum of H is almost surely of pure-point type with
normalized eigenfunctions satisfying∑

x∈N0

2
c
4
d(0,x)|ψλ(x)|2 <∞ (1.2.2)

for any λ ∈ σ(H).

The work of Molchanov and Kritchevski notwithstanding, numerical analysis
led Metz et. al. [67, 68] to conjecture delocalization at a special energy in the
regime ds > 2. These authors considered the finite volume cutoff

Hn = 1BnH1Bn ,

where Bn = Bn(0) is the ball (with respect to the hierarchical metric d) of
radius n around 0 and 1Bn is the canonical projection onto `2(Bn). In finite
volumes, it is not completely absurd to look for some remnant of delocaliza-
tion in spite of Theorem 1.2.1 because of the lack of control over the implied
amplitudes of the wave functions in (1.2.2). In particular, the claim was that
for weak Gaussian potentials

lim
η→0

lim
n→∞

1

|Bn|
E

 ∑
λ∈σ(Hn)

‖ψλ‖4δηE−λ

 = 0
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where E =
∑
pr and δη denotes some suitable regularization of the Dirac

delta whose width is O(η). Since there are then typically O(η|Bn|) eigenvalues
contributing to the sum, the conclusion was that typically

‖ψλ‖4 � 1,

which would indeed prohibit a localized regime where ‖ψλ‖4 ≈ 1. The numer-
ical analysis was based on comparing the model in a finite volume Bn to the
model in Bn−1 with the renormalized parameters

R({pr}r≥1, %) = ((pr+1)r≥1, Tp1%) , (1.2.3)

where Tp% is the probability density of(
1

2V
+

1

2V ′

)−1

+ p,

and V and V ′ are drawn independently from %.
Despite this conjecture, our own numerical results seem to indicate that for

any interval I ⊂ R there exists δ > 0 such that

sup
E∈I
‖Tpr ...Tp1%(·+ E)‖∞ = O(2(c−δ)r) (1.2.4)

quite generally when I lies in the spectrum of H and we were able to prove
this in the special cases

• ds < 2,

• V is Gaussian and ds < 4, or

• V has a Cauchy component and ds <∞.

The point of (1.2.4) is that it implies that the effective disorder strength decays
slower than the effective strength of the hierarchical hopping

(Rp)r = pr+1 = 2−cpr,

which means that R drives the Hamiltonian into a high-disorder regime where
one can prove localization. This idea can indeed be used to prove the decay of
the spectral measures in total variation, that is, the decay of the eigenfunction
correlator

Qn(x, y; I) = sup |〈δy, f(Hn)δx〉|, (1.2.5)

where the supremum ranges over those f ∈ C0 with supp f ⊂ I and ‖f‖∞ ≤ 1.
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Theorem 1.2.2. If (1.2.4) is satisfied in a bounded interval I ⊂ R, then there
exist C, µ ∈ (0,∞) such that

sup
n∈N0

sup
x∈N0

∑
y∈N0

2µd(x,y)E [Qn(x, y; I)] ≤ C|I|.

Repeated applications of Fatou’s lemma show that this theorem implies the
strong dynamical localization statement∑

y:d(x,y)≥R

E |〈δy, 1I(H)eitHδx〉|2 ≤ C 2−µR

in the spirit of Section 1.1. Moreover, it is easy to see that for non-degenerate
spectra

Qn(x, y; I) =
∑

λ∈σ(Hn)∩I

|ψλ(x)||ψλ(y)|,

which can be used to derive lower bounds on ‖ψλ‖4 with high probability,
disproving the conjecture of Metz et. al. Indeed, our bounds are strong enough
to draw conclusions about the inverse participation ratios (IPRs)

Pq(ψ) :=

∑
x |ψ(x)|2q[∑
x |ψ(x)|2

]q =
‖ψ‖2q2q
‖ψ‖2q2

.

The IPRs are comparable for different values of q ≥ 1
2
:

• for any q ≥ 1
2
:

1 ≤ Pq(ψ) [P q
2q−1

(ψ)]2q−1 , (1.2.6)

• for any q ≥ 1 we have r(ψ)2q ≤ Pq(ψ) ≤ r(ψ)2(q−1) where r(ψ) =
‖ψ‖∞/‖ψ‖2 .

It therefore remains only to state a result concerning the most prominent case
q = 2.

Corollary 1.2.3 (IPRs). If the assumption (1.2.4) is satisfied in a bounded
open interval I ⊂ R, then there exists some C < ∞ such that for any E ∈ I
and W, ε > 0

P
(

There is ψ ∈ `2(Bn) with Hnψ = λψ and
|λ− E| ≤ 2−n−1W such that P2(ψ) ≤ ε4

)
≤ CWε (1.2.7)

for all n ∈ N0.
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In order to appreciate this result, we stress that the smallness of the proba-
bility in (1.2.7) is not due to the fact that the interval In = E+2−n−1[−W,W ]
is typically void of eigenvalues. In fact, as is proven in Theorem 1.2.4 below,

lim
n→∞

P (No eigenvalue of Hn in In) = exp (−ν(E)W )

at all Lebesgue points E ∈ I of the (infinite-volume) density of states ν. The
authors of [68] studied the averaged IPR

Πn(I) =
E
∑
λ∈σ(Hn)∩I ‖ψλ‖

4
4

E
∑
λ∈σ(Hn)∩I 1

in the limit of vanishingly small intervals I ⊂ R. From (2.5.4) in Section 2.5
one concludes

Πn(I) ≥ C−4

(
νn(I)

|I|

)4

with νn(I) = E 〈δ0, 1I(Hn)δ0〉 (1.2.8)

for any bounded I ⊂ R in which (1.2.4) is valid. Since the finite-volume density
of states is bounded away from zero for all large enough n provided the interval
I is strictly contained in the infinite-volume spectrum σ(H), the right side can
be shown to be strictly positive in the limit n→∞ (cf. [54]). In particular, if
% is a Gaussian distribution, σ(H) = R, and this applies to all energies, which
contradicts the conclusions in [68].

The condition (1.2.4) also guarantees that the level statistics converge to a
Poisson point process, which was previously proven by Kritchevski [62] only
for ds < 1. In the following theorem,

µn =
∑

λ∈σ(Hn)

δ2n(λ−E) (1.2.9)

is the blown-up eigenvalue point process and ν is the density of states

ν(f) = E 〈δ0, f(H)δ0〉, (1.2.10)

which has a bounded density by the Wegner estimate (cf. Proposition 1.6.2).

Theorem 1.2.4. Suppose (1.2.4) is satisfied in an open set I ⊂ R and E ∈ I
is a Lebesgue point of ν. Then, µn converges in distribution to a Poisson point
process with intensity ν(E) as n→∞.

The principal conclusion of our work is that the main appeal of the hierar-
chical Anderson model, the local separation of scales, is also its flaw since it
completely prohibits the occurence of a bona-fide delocalized phase. A possi-
ble reason for this may be that the hierarchical structure forces transport to
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be aided by tunneling, but that the relevant tunneling amplitudes pr2
−r are

prohibitively small if one requires the existence of an infinite-volume limit. A
proof of (1.2.4) for more general densities % remains elusive, but given the proof
for a dense subset of L1, we find it hard to imagine that the hierarchical ap-
proximation in finite spectral dimension is fine enough to capture the Anderson
transition on the lattice.

1.3 The Ultrametric Ensemble

The failure of the hierarchical Anderson model in capturing the localization
transition begs the question whether the transition is intrinsically forbidden
by hierarchical structures. Hence, in addition to the hierarchical Anderson
model, we will also consider the ultrametric ensemble of Fyodorov, Ossipov,
and Rodriguez [50], in which the off-diagonal entries in the Hamiltonian are
also random variables with variance decaying in the hierarchical metric. The
realizations of this ensemble may therefore be interpreted as fully generic hierar-
chical disordered systems. The corresponding Hamiltonian, which we consider
only in finite volume to begin with, is defined on `2(Bn) as

Hn =
1

Zn,c

n∑
r=0

2−
1+c
2
rΦn,r. (1.3.1)

The entries of the layers Φn,r are independent centered Gaussian random vari-
ables with variance profile

E |〈δy,Φn,rδx〉|2 = 2−r


2 if d(x, y) = 0

1 if 1 ≤ d(x, y) ≤ r
0 otherwise

. (1.3.2)

Thus Φn,r is a direct sum of 2n−r random matrices drawn independently from
the Gaussian Orthogonal Ensemble (GOE) of size 2r. We choose the normal-
izing constant Zn,c such that∑

y∈Bn

E |〈δy, Hnδx〉|2 = 1, (1.3.3)

which means that Zn,c grows exponentially in n in case c < −1 and Zn,c is
asymptotically constant in case c > −1. The original definition in [50] contains
an additional parameter governing the relative strengths of the diagonal and off-
diagonal disorder, but this parameter does not significantly alter our analysis
and so we omit it altogether. Moreover, the authors of [50] constructed the
block matrices Φn,r from the Gaussian Unitary Ensemble (GUE), and our
results apply to both GOE and GUE blocks with only slight changes.
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Notice that the variance matrix of Hn has the structure of a hierarchical
Laplacian and that the layer r = 0 in (1.3.1) plays the role of a random potential
with Gaussian distribution, although our analysis does not change significantly
upon inserting some other regular distribution into the layer r = 0. The typical
size of the entries in Hn is

E |〈δy, Hnδx〉|2 ≈ 2−(2+c)d(x,y),

so this model can also be thought of as a hierarchical analogue of the power-
law random band matrices [70,78] for which the variances of the entries decay
like |x − y|−(2+c). The exponential decay in the ultrametric ensemble is the
correct analogue of the algebraic decay in the power-law random band matrices
because our definition of the hierarchical metric grows only logarithmically in
the volume, while the one-dimensional Euclidean metric grows linearly in the
volume. In particular, as c varies in R, Hn interpolates between a perfectly
localized random potential at “c = ∞” and a perfectly delocalized Wigner
random matrix at “c = −∞”.

The article [50] conjectured a localization transition at c = 0 based on ar-
guments with a physics level of rigor and numerical simulation. Here, we wish
to adopt a point of view based on a dynamical representation, which is more
susceptible to a mathematically acceptable proof. The self-similar structure of
Hn shows that

Hn =

n−1∑
r=0

2−
(1+c)

2
rΦn,r + 2−

(1+c)
2

nΦn,n = Hn−1 ⊕H ′n−1 + 2−
(1+c)

2
nΦn,n

so that it is possible to construct Hn recursively from Gaussian perturbations.
The idea of Dyson [37] was to study N ×N Gaussian perturbations by repre-
senting them as matrix-valued stochastic processes whose entries

〈δu,Φtδv〉 =

√
1 + δuv
N

Buv(t)

are rescaled Brownian motions independent up to the symmetry constraint.
Using this idea with N = 2n and T = 2−(1+c)n we obtain that

Hn = Hn−1 ⊕H ′n−1 + ΦT

in distribution. Dyson showed that the evolution of the eigenvalues of Φt is
given by

dλj(t) =

√
2

N
dBj(t) +

1

N

∑
i 6=j

dt

λj(t)− λi(t)
, (1.3.4)

which is now called Dyson Brownian motion (DBM). To construct the spectrum
of Hn one may therefore initialize σ(H0) to a Gaussian random variable and
iterate the following two steps.
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1. Sample an independent copy σ(H ′k−1) of σ(Hk−1)

2. Let σ(Hk) be the evolution of σ(Hk−1) ∪ σ(H ′k−1) under DBM with du-

ration T = 2−(1+c)k.

These two operations are in inherent competition with each other, the new
sample in the first step increasing the amount of independence in the spectrum,
and the the long-range Coulomb interaction of the DBM in the second step
increasing the correlations. If one assumes that the typical distance between
adjacent eigenvalues is of order N−1, then the heuristic effect of the DBM on
the spectrum becomes negligible with respect to the spacing precisely when
T � N−1.

Trajectories until T = 1 of 10-
particle DBM

10 Trajectories until T = 100−1

of 100-particle DBM

Hence, when T � N−1, one might hope that the DBM in the second step
above is not running for a long enough time to compensate the fluctuations
introduced in the first step. It is indeed possible to make this intuition rigorous,
yielding a proof of Poisson statistics for Hn in the regime c > 0. For the
following theorem, the level statistics µn and the density of states ν are defined
as in (1.2.9) and (1.2.10).

Theorem 1.3.1. Suppose c > 0 and E ∈ R is a Lebesgue point of ν. Then,
µn converges in distribution to a Poisson point process with intensity ν(E) as
n→∞.

It is possible to adapt this argument to the stability of the associated eigen-
functions, which implies the following localization bounds for the eigenfunction
correlator (defined as in (1.2.5)).

Theorem 1.3.2. Suppose c > 0 and let E ∈ R. Then, there exist w, µ, κ > 0,
C <∞, and a sequence mn with n−mn →∞ such that for every x ∈ Bn the
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`2-normalized eigenfunctions satisfy

P

 ∑
y∈Bn\Bmn (x)

Qn(x, y;W ) > 2−µn

 ≤ C 2−κn

with
W =

[
E0 − 2−(1−w)n, E0 + 2−(1−w)n

]
.

This theorem is much weaker than Theorem 1.2.2 because the width of the
spectral window W can only be mesoscopic. Nevertheless, this theorem is
an indication of localization. For if the eigenfunctions in W were completely
extended, we would obtain∑
y∈B

Qn(x, y;W ) =
∑
y∈B

∑
λ∈σ(Hn)∩W

|ψλ(x)||ψλ(y)| ≈ |B|2n|W |2−n = |B||W |

since there are typically 2n|W | eigenvalues in W . Since |B| ≈ 2n and |W | =
2−(1−w)n in the previous theorem this quantity would then be large rather than
small with high probability.

The regime c < 0 corresponds to perturbations ΦT with T � N−1 in the
iterative construction of Hn. For such times, the DBM does have a significant
effect on the local statistics of the spectrum. Landon, Sosoe, and Yau [64, 65]
showed that if V has a sufficiently regular spectrum, then the local statistics
of V + ΦT agree asymptotically with the WDM statistics of the GOE Φ1 as
N →∞. While this behavior is a good indicator of a phase transition at c = 0,
it has proven difficult on a technical level to verify the required regularity for
the unperturbed matrices Hn−1 ⊕ H ′n−1. However, when c < −1, the ultra-
metric ensemble has an essential mean field character and techniques originally
developed for Wigner matrices show that the energy levels agree asymptotically
with those of the GOE and that the eigenfunctions are completely delocalized.
We will now roughly sketch how to apply these results in the present situa-
tion and state the corresponding theorems. The key observation is that the
normalizing factor Zn,c, which scales the spectrum to O(1), is given by

Z2
n,c =

∑
y∈Bn

E

∣∣∣∣∣〈δy,
(

n∑
r=0

2−
(1+c)

2
rΦn,r

)
δx〉

∣∣∣∣∣
2

=
(

1− 2−(1+c)(n+1)
) 1 +O(1)

1− 2−(1+c)
,

so that the spread

Mn :=

(
max
x,y∈Bn

E |〈δy, Hnδx〉|2
)−1

=

{
Z2
n,c 2−o(n) if c ≥ −2,

2(1+o(1))n if c < −2,
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grows like a positive power of the system size 2n when c < −1. The results
of [42] then show that the semicircle law (i.e. ν(E) =

√
(4− E2)+/(2π)) is

valid on scales of order M−1
n even for the matrices

H̃n =
1

Zn,c

n−1∑
r=0

2−
(1+c)

2
rΦn,r +

1−
√
Tn

Zn,c
2−

(1+c)
2

nΦn,n

with a small part of the final O(1) Gaussian component removed. We set
Tn = M−1+δ

n with δ ∈ (0, 1). The validity of the local semicircle law already
implies the complete delocalization of the eigenfunctions in mesoscopic windows
in the bulk of the spectrum (see [40, Thm. 2.21]).

Theorem 1.3.3 (cf. [40, 42]). Let c < −1. For any compact interval I ⊂
(−2, 2) there exist κ, ε > 0 such that for all E ∈ I the `2-normalized eigenfunc-
tions of Hn in [E −M−1

n , E +M−1
n ] satisfy

‖ψλ‖∞ = O(M−1/2+ε
n )

with probability 1−O(N−κ).

Random matrix universality of the local statistics may be expressed by saying
that the k-point correlation functions

%
(k)
Hn

(λ1, ..λk) =

∫
R2n−k

%Hn(λ1, ..., λ2n) dλk+1... dλ2n ,

the k-th marginals of the symmetrized eigenvalue density %Hn , locally agree
with the corresponding objects for the GOE asymptotically. For this, we em-
ploy the previously mentioned work [64, Thm. 2.2] concerning the universality
of Gaussian perturbations for

Hn = H̃n +

√
Tn

Zn,c
2−

(1+c)
2

nΦn,n.

For the statement of the theorem, let

Ψ
(k)
n,E(α1, ..., αk) = %

(k)
Hn

(
E + 2−n

α1

%sc(E)
, ..., E + 2−n

αk
%sc(E)

)
− %(k)

GOE

(
E + 2−n

α1

%sc(E)
, ..., E + 2−n

αk
%sc(E)

)
,

where %
(k)
GOE is the k-point correlation function of the 2n × 2n GOE and %sc is

the density of the semicircle law.
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Theorem 1.3.4 (cf. [42,64]). Suppose c < −1, E ∈ (−2, 2) and k ≥ 1. Then,

lim
n→∞

∫
Rk
O(α)Ψ

(k)
n,E(α) dα = 0

for every O ∈ C∞c (Rk).

Summing up, these results rigorously prove the existence of a metal-insulator
transition in the ensemble of ultrametric random matrices. In particular, our
results allow an approach all the way to the critical point from the localized side
c > 0, which improves upon the best known corresponding result for random
band matrices [80]. However, the above arguments do not cover the regime
c ∈ [−1, 0), in which the local eigenvalue statistics are still expected to be
of Wigner-Dyson-Mehta type as in the case c < −1 [50]. The regime c ∈
(−1, 0) would be particularly interesting because it would contain a delocalized
Hamiltonian which does not have a mean-field character and whose infinite-
volume limit exists almost surely.

1.4 The Rosenzweig-Porter Model

The last section detailed how the study of the ultrametric ensemble amounts to
the detailed study of Gaussian perturbations, making it natural to also consider
the ultimate hierarchical simplification, the Gaussian perturbation of a random
potential. The Rosenzweig-Porter model is thus defined as the N ×N matrix

HT = V + ΦT , (1.4.1)

where Φt is the stochastic process of the previous section and V is a diag-
onal matrix whose entries are drawn independently from % ∈ L∞. Hence,
the Rosenzweig-Porter model is the simplest possible random matrix with a
non-trivial spatial structure and provides a standard interpolation between lo-
calization and delocalization. Moreover, the Rosenzweig-Porter model and its
relatives, the Anderson models on the Bethe lattice and on the random reg-
ular graph, have recently received a renewed surge of interest related to the
many-body localization transition [8, 46,59]. In that context, they provide ba-
sic examples of phases in which eigenfunctions delocalize over a large number
of sites, but not uniformly over the entire volume.

Clearly, one expects the spectral behavior of HT to interpolate between V
and ΦT as T increases, with T = N−1 being a critical point at least as far as
the local statistics are concerned. Since any difficulties arising from the need
to propagate regularity estimates of the spectrum through the middle layers
of a true hierarchical model disappear for the Rosenzweig-Porter model, it is
possible to verify the regularity conditions required by [64] as input to the proof
of equilibration of the DBM.
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Theorem 1.4.1 (cf. [64]). Suppose E ∈ R lies in the interior of supp % and
T = N−1+ε for some ε > 0. Then,

Ψ
(k)
N,E(α1, ..., αk) = %

(k)
HT

(
E +N−1 α1

%sc(E)
, ..., E +N−1 αk

%sc(E)

)
− %(k)

GOE

(
E +N−1 α1

%sc(E)
, ..., E +N−1 αk

%sc(E)

)
,

satisfies

lim
n→∞

∫
Rk
O(α)Ψ

(k)
n,E(α) dα = 0

for every k ≥ 1 and O ∈ C∞c (Rk).

On the other hand, if T � N−1 and the analysis leading to Theorems 1.3.1
and 1.3.2 may also be used to prove the following theorem.

Theorem 1.4.2. If T ≤ N−(1+ε) with ε > 0 and E0 ∈ R, then:

1. As N →∞, the random measure defined by

µN (f) =
∑

λ∈σ(HT )

f(N(λ− E0))

converges in distribution to a Poisson point process with intensity %(E0)
provided E0 is a Lebesgue point of %.

2. There exist w, µ, κ > 0 and C <∞ such that for every x ∈ {1, ..., N} the
`2-normalized eigenfunctions satisfy

P

 ∑
λ∈σ(HT )∩W

∑
y 6=x

|ψλ(x)ψλ(y)| > N−µ

 ≤ CN−κ
with

W =
[
E0 −N−(1−w), E0 +N−(1−w)

]
.

The proof of this theorem is contained in Section 3.5. Theorem 1.4.1 and the
first point of Theorem 1.4.2 combine to prove a sharp transition in the local
statistics at T = N−1. The second point of Theorem 1.4.2 asserts that if a state
near E0 carries some mass at x ∈ {1, ..., N}, then it doesn’t carry any mass in
{1, .., N} \ {x} with high probability. This result should be compared with the
scenario in which the eigenfunctions ψλ are completely extended, where one
would expect that typically∑

λ∈σ(Ht)∩W

∑
y 6=x

|ψλ(x)ψλ(y)| ≈
∑

λ∈σ(Ht)∩W

1 ≈ N |W | = Nw (1.4.2)
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becomes very large for mesoscopic spectral windows. The theorem thus proves
localization in the sense that this quantity actually vanishes asymptotically for
small enough mesoscopic intervals W . The proof of Theorem 1.4.2 yields an
explicit relation between w, µ, κ and ε, which shows that w, µ, κ may increase
if ε increases as well.

If T ≥ 1, the complete delocalization of the eigenfunctions was proved by
Lee and Schnelli [66] as a corollary to a local law, but there were hitherto
no previous rigorous results concerning the behavior of the eigenfunctions in
the intermediate regime N−1 � T � 1. Moreover, the nature of the transi-
tion in the eigenfunctions in the related Anderson models on the Bethe lattice
and random regular graph has been widely disputed even in the physics lit-
erature [7, 16, 28, 86]. Here, we confirm the picture conjectured by Kravtsov
et. al. in [59], by proving that in the intermediate regime a normalized eigen-
function ψλ corresponding to λ ∈ σ(HT ) delocalizes across approximately those
NT � 1 sites for which Vx is closest to λ. This means that the mass of each
eigenfunction spreads to a large number of sites. These sites nevertheless form
a vanishing fraction of the entire volume {1, ..., N}, indicating the existence of
a non-ergodic delocalized phase.

Our method is quite different from the ideas contained in [59] and is inspired
by the clarifying analysis of Facoetti, Vivo, and Biroli [46]. This article also
explains how the abrupt transition in the local statistics does not contradict
the gradual transition in the degree of eigenfunction localization, by arguing
that the statistics retain a Poissonian character at mesoscopic scales greater
than T . For rigorous results of a similar character we refer to [36,55].

Another method for studying the eigenfunctions of Ht was devised by Bour-
gade and Yau [21] and developed further by Bourgade, Huang, and Yau [20],
whose Theorem 2.1 may also be used to derive the second point of Theo-
rem 1.4.3 below. The method was adapted to the present problem by Be-
nigni [14]. Here, it yields the local eigenvector statistics even for mesoscopic
Wigner perturbations, covering Theorem 1.4.3, albeit with lower probability.

Theorem 1.4.3. Suppose T = N−1+δ with δ > 0 and let W be contained in
the interior of supp %. Let κ > δ > θ and set

Xλ = {x ∈ {1, ..., N} : |λ− Vx| > N−1+κ}.

Then, there exists γ > 0 such that for any p > 0 and all sufficiently large N

1. The normalized eigenfunctions in W carry only negligible mass inside Xλ:

P

 sup
λ∈σ(HT )∩W

∑
x∈Xλ

|ψλ(x)|2 > N−γ

 ≤ N−p.
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2. The normalized eigenfunctions in W are maximally extended outside Xλ:

P

(
sup

λ∈σ(HT )∩W
‖ψλ‖∞ > N−θ/2

)
≤ N−p.

Theorem 1.4.3 becomes meaningful when κ and θ are chosen close to δ.
Indeed, the number of sites outside Xλ is then approximately

|{Vx : |λ− Vx| ≤ N−1+κ}| ≈ NN−1+κ = Nκ ≈ NT.

Moreover, the fact that

|ψλ(x)|2 ≤ N−θ ≈ (NT )−1

shows that the eigenfunctions are maximally extended inside the subvolume
{1, ...., N} \Xλ.

1.5 Ideas from the Proofs

Having outlined the main contributions of this thesis, we now sketch some
of the principal ideas behind the proofs. We have already mentioned that
our localization results for the ultrametric ensemble may be understood as a
consequence of the stability of repeated Gaussian perturbations. The high
degree of rotational symmetry in Gaussian ensembles facilitates the analysis
by enabling the very explicit DBM (1.3.4) for the evolution of the eigenvalues.
Nevertheless, the Coulomb interaction in (1.3.4) is quite singular and forces the
direct study of this process to be technically involved. Therefore, we prefer to
study the empirical measure

νt =
1

N

∑
λ∈σ(Ht)

δλ

in terms of its Stieltjes transform

St(z) =

∫
1

λ− z νt(dλ) =
1

N
Tr (Ht − z)−1.

Since ImSt(z) is then the Poisson integral of νt evaluated at z, the function
St encodes detailed local information on the locations of the eigenvalues when
Im z → 0. For typical realizations of Ht, the distance between adjacent eigen-
values is approximately N−1 so tracking the profile of ImSt with Im z � N−1

is the same as tracking the trajectories of individual eigenvalues.
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The Poisson kernel at submicroscopic scale η � N−1

The following theorem shows that St(z) remains stable at such submicro-
scopic scales provided that also t � N−1. The theorem is valid for operators
of the form

Ht = H̃ + V + Φt, (1.5.1)

where Φt is defined as before. We will assume that

V =
∑
x

V (x)|δx〉〈δx|

is an independent random potential such that the conditional distributions are
uniformly Lipschitz continuous, i.e.,

P (V (x) ∈ I | {V (y)}y 6=x) ≤ CV |I|, (1.5.2)

for all Borel sets I ⊂ R and x ∈ {1, ..., N} with a constant CV <∞ independent
of N . Finally, H̃ is some real symmetric N × N matrix, which may also be
random provided H̃, V , and Φt remain independent.

Theorem 1.5.1. For every ε > 0, there exists C < ∞, depending only on ε
and CV , such that

E |ST (E + iη)− S0 (E + iη)| ≤ CN−ε/2
(

1 +
1

Nη
+

1

(Nη)3

)
for all T ≤ N−(1+ε) and E ∈ R.

In essence, Theorem 1.5.1 asserts that, on scales much larger than T , the
empirical eigenvalue measure is unaffected by the flow (1.5.1). This result goes
beyond norm-based continuity arguments for the DBM. The example H0 =
0 shows that at least some regularity of the initial condition is needed for
Theorem 1.5.1 to remain true. However, Theorem 1.5.1 can be proved for
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slightly more general H0 under the weaker assumption that Ht satisfies the
Wegner and Minami estimates (cf. Propositions 1.6.2 and 1.6.3)

E νt(I) ≤ C|I|, E νt(I)(νt(I)−N−1) ≤ C|I|2

with a constant C < ∞ uniform in N and t. This is easily seen from the
proof below. It is also possible to present Theorem 1.5.1 (and the following
Theorem 1.5.2) as explicit bounds for arbitrary T > 0, but we artificially
restrict to T ≤ N−(1+ε) in order to keep the right hand side simple.

The properties of the eigenfunctions of Ht are encoded in the spectral mea-
sures

µxy =
∑

λ∈σ(Ht)

ψλ(x)ψλ(y)δλ

where {ψλ} is an orthonormal basis of eigenfunctions of Ht and we have eased
the notational burden by keeping the dependence of ψλ and µxy on t implicit.
Hence, the Green functions

Gt(x, y; z) = 〈δy, Rt(z)δx〉 =

∫
1

λ− z µxy(dλ)

at scales Im z ≈ N−1 describe the eigenfunctions of Ht locally near Re z. The
stability result analogous to Theorem 1.5.1 for Gt(x, y; z) is contained in the
following theorem.

Theorem 1.5.2. For every ε > 0, there exists C < ∞, depending only on ε
and CV , such that

1

N

∑
y

E |GT (x, y;E + iη)−G0 (x, y;E + iη)| ≤ CN−ε/2
(

1 +
1

Nη
+

1

(Nη)3

)

for all T ≤ N−(1+ε), E ∈ R, and x ∈ {1, ..., N}.

The proofs of Theorems 1.5.1 and 1.5.2 are based on the small algebraic
miracle that the Green functions obey the stochastic advection equation

dGt(x, y; z) =

(
St(z)

∂

∂z
Gt(x, y; z) +

1

2N

∂2

∂z2
Gt(x, y; z)

)
dt

+ dMt(x, y; z), (1.5.3)

where Mt(x, y; z) is a martingale that can be given explicitly in terms of
(Ht − z)−1. This equation perfectly encodes the cancellations of the Coulomb
repulsion and lets one proceed by smoothing Gt(x, y; z) and its quadratic vari-
ation using the randomness of V .
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The proof of Theorem 1.4.3 also uses (1.5.3) to control the local resolvent

Gt(x, z) := Gt(x, x; z).

If we retain only the leading term on the right hand side of (1.5.3), we obtain
an equation transporting G0(x, z) along the characteristic curve defined by

żt = −St(zt). (1.5.4)

We will prove that the remaining terms are negligible in the regime Im z �
N−1, which, combined with the previous observation, yields

Gt(x, zt) ≈ G0(x, z). (1.5.5)

Our bounds are strong enough to conclude that for every z ∈ C+ with Im z �
N−1 there exists w ∈ C+ with |w − z| = O(t) such that

Gt(x, z) ≈ G0(x,w). (1.5.6)

This means that the effect on the eigenfunctions of perturbing V by Φt locally
consists of a shift in the energy followed by a smearing of the scales below t.
In essence, the change in the local resolvent on the given time scale is through
an energy renormalization.

The relations (1.5.4)–(1.5.6) amount to strong finite volume versions of the
famous semi-circular flow of Pastur [74] localized to a single site and energy.
They also bear some similarity to a preliminary Schur complement relation in
Erdős, Schlein, and Yau’s proof of the local semi-circle law [43], although our
results are clearly only valid for Gaussian ensembles. The fact that (1.5.6)
merely changes the spectral parameter at which the local resolvent is evaluated
can also be seen as a particular instance of the subordination relations in free
probability [15,87].

Finally, let us note that the analogue of (1.5.1) for perturbations drawn from
the GUE,

〈δy, Φ̃tδx〉 =

√
1

N

{
1√
2
(Bxy(t) + iB̃xy(t)) if x < y

Bxx(t) if x = y

with B̃xy independent of Bxy, has also been widely studied. The analysis of
this model is usually simpler because the additional symmetry enables explicit
integration formulas (see [40] and references therein for a summary) and all the
results and methods mentioned here require only minor modifications to treat
also the GUE flow.

The procedure reducing the ultrametric ensemble to repeated Gaussian per-
turbations may be visualized by thinking of the layers in Hn as being indexed
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by a binary tree whose (N − r)-th generation is the partition Pr with the root
removed. For the hierarchical Anderson model, the analogous procedure is
much less powerful because it results in a decomposition of Hn into a succes-
sion of rank-one perturbations that are a-priori no more useful than any other
such decomposition. The point is to realize that the ranges of the rank-one
perturbations are nested so that ∆H retains a simple hierarchical structure in
the eigenbasis of the bottom-most layer E1. Hence, the analysis proceeds by
collapsing the pairs of sites in P1 into effective single sites, much in the spirit
of real-space renormalization arguments in classical statistical mechanics.

Removing the root

b b b b

b

b b b b

b

b

b b b b

b

b b b b

b

b

b

Collapsing the leaves

To be more specific, we consider the basis {e0, e1, ..., f0, f1, ...} of `2(N0)
whose members are

ek =
1√
2

(δ2k + δ2k+1) , fk =
1√
2

(δ2k − δ2k+1)

and let U be the unitary change to the canonical basis. Then

U∆HU
∗ = 2−c

(
∆H 0
0 0

)
so that the strength of the kinetic term has decreased in the new basis. At
the same time, (1.2.4) shows that the strength of the disorder decays at a
much slower rate, so that we reach a well-understood high-disorder regime after
finitely many steps. Performing this change of basis on the full Hamiltonian H,
a computation using the Feshbach-Krein-Schur map yields a formal relation of
the form

G(0, 2y; 0) = 2
V1

V0 + V1

V2y+1

V2y + V2y+1
RG(0, y; 0)

where RG is the Green function of the Hamiltonian with renormalized param-
eters as in (1.2.3). If we ignore the somewhat singular prefactor, this formula
tells us that the localization length of any profile for the Green function in-
creases by at most a factor of two after a single renormalization step. Hence,
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the localization length of the original Green function is a finite multiple of the
localization length of an exponentially decaying renormalized Green function
in the high disorder regime. This result then implies the dynamical localization
bound of Theorem 1.2.2 in a standard way.

1.6 Spectral Averaging

In this brief section we mention a simple but powerful mechanism for smoothing
the spectral measures ofH in the presence of a random potential, which features
prominently in our localization proofs for the hierarchical Anderson model and
the ultrametric ensemble. We will consider a general Anderson-type random
matrix of the form

H = H̃ + V

acting on `2({1, ..., N}), where H̃ is some Hermitian N × N matrix and V is
a random potential with entries drawn independently from a bounded density
% ∈ L∞.

From the heuristic principle that the eigenvalues depend most on the diagonal
entries of a matrix, we expect that the addition of O(1)-randomness on the
diagonal should have a generic smoothing effect on the typical realization of
the spectral measures µx := µδx . This intuition is confirmed by the spectral
averaging principle of Kotani [58]. In the following formulation, which is taken
from [6], E [· | ·] denotes the conditional expectation and |·| denotes the Lebesgue
measure on R.

Proposition 1.6.1. Let B ⊂ R be a Borel set. Then,

E [µx(B) | {Vy}y 6=x] ≤ ‖%‖∞|B|.

The proof consists of showing that the left hand side defines a bounded linear
functional on L1(R) by testing with the dense set of Poisson kernels. Indeed,
let H0 denote the operator obtained from H by setting Vx to zero, so that

H = H0 + Vx|δx〉〈δx|.

Then, writing µ(B) = E [µx(B) | {Vy}y 6=x] and Γ = −
(
〈δx, (H0 − z)−1δx〉

)−1
,

standard rank-one perturbation formulas show that∫
Im z

(t− Re z)2 + (Im z)2
µ(dt) =

∫
Im 〈δx, (H − z)−1δx〉%(Vx) dVx

=

∫
Im

1

Vx − Γ
%(Vx) dVx

≤ ‖%‖∞π = ‖%‖∞
∫

Im z

(t− Re z)2 + (Im z)2
dt.
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Since the empirical eigenvalue measure ν is just the average of µx over x ∈
{1, ..., N}, we immediately obtain the following corollary due to Wegner [93].

Corollary 1.6.2. For every f ∈ L1 we have

E

∣∣∣∣∣∣ 1

N

∑
λ∈σ(H)

f(λ)

∣∣∣∣∣∣ = E
∣∣∣∣ 1

N
Tr f(H)

∣∣∣∣ ≤ ‖%‖∞‖f‖1.
Applying Markov’s inequality to the Wegner estimate bounds the probability

of a Borel set B ⊂ R containing one or more eigenvalues by

P(|σ(H) ∩B| ≥ 1) ≤ ‖%‖∞N |B|.

This bound was extended to the case of two or more eigenvalues, and k
or more eigenvalues by Minami [69] and Combes, Germinet and Klein [26],
respectively.

Proposition 1.6.3. Let B ⊂ R be a Borel set. Then,

P(|σ(H) ∩B| ≥ k) ≤ C%
k!

(N |B|)k.

The proof of this proposition is based on the Chebyshev bound

P(|σ(H) ∩B| ≥ k) ≤ 1

k!
E

k∏
j=0

(Tr 1B(H)− j),

the right hand side of which can be controlled by peeling off factors via condi-
tional expectations. We illustrate the gist of this method later in the proof of
Lemma 3.1.1.
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2 Renormalization Group Analysis of the Hierarchical
Anderson Model

In this chapter we prove the results stated in Section 1.2 using the renormal-
ization group ideas sketched in Section 1.5. We recall that the hierarchical
Anderson model depends on essentially two parameters: the sequence p = (pr)
of coefficients in the hierarchical Laplacian and the density % of the diagonal
disorder.

2.1 The Renormalization Group

The content of this section is the investigation of a relationship between the
resolvents of H and the resolvents of an operator RH whose parameters (p, %)
have effectively been renormalized to R(p, %) (cf. (1.2.3)). This is achieved by
considering the new Hamiltonian RH = R∆ +RV with components

R∆ =

∞∑
r=1

pr+1Er (2.1.1)

and

(RV )y =

(
1

2V2y
+

1

2V2y+1

)−1

+ p1. (2.1.2)

The definition (2.1.2) guarantees that the renormalized potential RV consists
of independent random variables whose common density is Tp1%.

It will be useful in our proof of Theorem 1.2.2 to also consider a slightly
more general situation, in which the disorder remains independent, but is al-
lowed to have different distributions at different sites. We will thus suppose
that Vy ∼ %y, where {%y | y ∈ N0} is a collection of probability densities with
supy ‖%y‖∞ <∞. The renormalization transformations (2.1.1) and (2.1.2) ex-
tend to this setting directly, the only difference being that the renormalized
potential values (RV )y are now drawn from the densities Tp1(%2y, %2y+1) of the
random variables defined in (2.1.2).

To obtain a relation between H and RH, we set L = 2n−1 − 1 and consider
the orthonormal basis {e0, ..., eL, f0, ..., fL} of `2(Bn) whose members are

ey =
1√
2

(δ2y + δ2y+1) , fy =
1√
2

(δ2y − δ2y+1) .

Thus `2(Bn) = E ⊕ F , where E and F are the linear spans of {e0, ..., eL} and
{f0, ..., fL}, respectively. Let Ue : `2(Bn−1) → E and Uf : `2(Bn−1) → F be
the isomorphisms defined by

Ueδy = ey, Ufδy = fy
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and let U = Ue⊕Uf . A direct computation shows that a matrix representation
of the form

U∗HnU =

(
(R∆)n−1 + p1 + Vee Vfe

Vef Vff

)
(2.1.3)

is valid in the site basis of `2(Bn−1)⊕ `2(Bn−1). The entries occurring on the
right of (2.1.3) are the operators defined by

Veeδy = Vffδy =
1

2
(V2y + V2y+1)δy (2.1.4)

and

Vfeδy = Vefδy =
1

2
(V2y − V2y+1)δy (2.1.5)

acting between the appropriate factors of `2(Bn−1)⊕ `2(Bn−1). Let us empha-
size that (2.1.4) cannot be taken completely literally because Vee maps only
the first factor of `2(Bn−1) ⊕ `2(Bn−1) into itself, whereas Vff maps only the
second factor into itself. Similar considerations apply to (2.1.5).

The Schur complement of (R∆)n−1 + p1 + Vee in (2.1.3) is the operator

(R∆)n−1 + p1 + Vee − VfeV −1
ff Vef = (RH)n−1

and thus the Schur complement formula for the inverse yields the following
proposition.

Proposition 2.1.1. The formula

U∗H−1
n U =

(
1 0

−V −1
ff Vef 1

)(
(RH)−1

n−1 0
0 V −1

ff

)(
1 −VfeV −1

ff

0 1

)
is valid whenever Hn, (RH)n−1 and Vff are invertible.

We will show in Section 2.4 that Tp(%, %̃) ∈ L∞ whenever %, %̃ ∈ L∞ so the
Wegner estimate applies to both H and RH. Therefore, Hn and (RH)n−1

are almost surely invertible and Vff is almost surely invertible because it is a
multiplication operator whose entries are independent continuously distributed
random variables. In terms of the operator

S = U∗e − VfeV −1
ff U

∗
f ,

where we have identified Ue and Uf with Ue ⊕ 0 and 0⊕ Uf , respectively, this
proves the following important formula.

Corollary 2.1.2. Let ϕ,ψ ∈ `2(Bn). Then

〈ϕ,H−1
n ψ〉 = 〈Sϕ, (RH)−1

n−1Sψ〉+ 〈U∗fϕ, V −1
ff U

∗
fψ〉

almost surely.
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We will now use Corollary 2.1.2 to bound the fractional moments of the
Green function

Gn(0, y;E) = 〈δy, (Hn − E)−1δ0〉
by the fractional moments of its renormalized counterpart

RGn(0, y;E) = 〈δy, ((RH)n − E)−1δ0〉 .

To simplify the analysis, we will restrict ourselves to the case that some of the
potential values Vy have a Cauchy distribution

%y(v) = Pµ+iσ(v) :=
1

π

σ

(v − µ)2 + σ2
. (2.1.6)

In this case, a decoupling inequality becomes available (see [6, Thm. 8.7]),
which states that for every s ∈ (0, 1) and z ∈ C+ there exists a constant
Ds(z) ∈ (0,∞) with the property that

1

Ds(z)

∫
1

|v − γ|s Pz(v) dv ≤
∫

|v|s

|v − γ|s Pz(v) dv (2.1.7)

≤ Ds(z)
∫

1

|v − γ|s Pz(v) dv (2.1.8)

uniformly in γ ∈ C. The proofs of these inequalities are based on the simple
observation that the integrals occuring there define continuous functions of γ
with the same limiting behavior as |γ| → ∞. The restriction to the Cauchy
case is possible thanks to a partial comparison trick which we will devise in the
proof of Theorem 1.2.2.

Theorem 2.1.3. Let s ∈ (0, 1) and y ∈ Bn−1 \ {0}. If

%0 = %1 = %2y = %2y+1 = Pz,

then both
E |Gn(0, 2y; 0)|s ≤ Ds(z)4 E |RGn−1(0, y; 0)|s

and
E |Gn(0, 2y + 1; 0)|s ≤ Ds(z)4 E |RGn−1(0, y; 0)|s.

Proof. We will prove only the estimate for E |Gn(0, 2y; 0)|s since the analysis of
E |Gn(0, 2y+ 1; 0)|s then reduces to swapping some indices and changing some
signs. The formulas

Sδ2` =
1√
2

(
1− V2` − V2`+1

V2` + V2`+1

)
δ`

and
U∗f δ2` = δ`
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are valid for both ` = 0 and ` = y. Since y 6= 0, we necessarily have that
〈δ0, V −1

ff δy〉 = 0 and hence Corollary 2.1.2 asserts that

Gn(0, 2y; 0) = 2
V1

V0 + V1

V2y+1

V2y + V2y+1
RGn−1(0, y; 0). (2.1.9)

Consider a term of the form

X(`) = E `

∣∣∣∣( V2`+1

V2` + V2`+1

)
RGn−1(0, y; 0)

∣∣∣∣s ,
where ` ∈ {0, y} and E ` denotes the conditional expectation with respect to
{Vi | i 6= 2`, 2`+ 1}. The Green function is of the form

|RGn−1(0, y; 0)|s =

∣∣∣∣ α

(RV )` − β

∣∣∣∣s
for some α, β ∈ C which are independent of (RV )` (cf. [6, Sec. 5.5.]). Writing

u =

(
1

2v
+

1

2w

)−1

,

it follows that

X(`) =

∫∫ ∣∣∣∣ v

v + w

α

u− β

∣∣∣∣s Pz(v)Pz(w) dv dw

=

∫∫ ∣∣∣∣ αv

2vw − β(v + w)

∣∣∣∣s Pz(v)Pz(w) dv dw

=

∫ ∣∣∣∣ αv

2v − β

∣∣∣∣s ∫ ∣∣∣∣ 1

w − βv(2v − β)−1

∣∣∣∣s Pz(w) dw Pz(v) dv,

where we have absorbed the shift of the renormalized potential by p1 into the
constant β. Applying the decoupling inequality (2.1.7) to the inner integral
and reversing the previous calculations shows that

X(`) ≤ Ds(z)
∫ ∣∣∣∣ αv

2v − β

∣∣∣∣s ∫ ∣∣∣∣ w

w − βv(2v − β)−1

∣∣∣∣s Pz(w) dw Pz(v) dv

= Ds(z)

∫∫ ∣∣∣∣ vw

v + w

α

u− β

∣∣∣∣s Pz(v)Pz(w) dv dw

= 2−sDs(z)

∫∫ ∣∣∣∣ αu

u− β

∣∣∣∣s Pz(v)Pz(w) dv dw

= 2−sDs(z)

∫ ∣∣∣∣ αu

u− β

∣∣∣∣s (T0Pz)(u) du.
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It is easy to see that T0Pz = Pz (see also Section 2.4), so applying the decou-
pling inequality (2.1.8) yields

X(`) ≤ 2−sDs(z)
2

∫ ∣∣∣∣ α

u− β

∣∣∣∣s (T0Pz)(u) du

= 2−sDs(z)
2

∫∫ ∣∣∣∣ α

u− β

∣∣∣∣s Pz(v)Pz(w) dv dw

= 2−sDs(z)
2 E `|RGn−1(0, y; 0)|s.

Since V0 and V1 are independent of V2y and V2y+1, combining the bound for
X(`) with (2.1.9) implies

E |Gn(0, 2y, 0)|s = 2s E
(∣∣∣∣ V1

V0 + V1

∣∣∣∣sX(y)

)
≤ Ds(z)2 E

(∣∣∣∣ V1

V0 + V1

∣∣∣∣s E y |RGn−1(0, y; 0)|s
)

= Ds(z)
2 EX(0)

≤ Ds(z)4 E |RGn−1(0, y; 0)|s .

Along with the restricted operators Hn, there is another sequence of trunca-
tions

Hn,m = 1Bn

(
m∑
r=1

prEr + V

)
1Bn , (2.1.10)

which will be useful in our proof of Theorem 1.2.4. Notice that

Hn = Hn,n + α|ϕn〉〈ϕn|

with
ϕn = |Bn|−1/21Bn , α =

∑
r>n

2n−rpr,

so reasoning analogous to Corollary 2.1.2 shows that also

〈ϕ,H−1
n,nψ〉 = 〈Sϕ, (RH)−1

n−1,n−1Sψ〉+ 〈U∗fϕ, V −1
ff U

∗
fψ〉 (2.1.11)

almost surely. The formula (2.1.11) lets us determine the distribution of the
quantity

1

Φn(E)
= 〈ϕn, (Hn,n − E)−1ϕn〉

explicitly in terms of the operators Tp when the the disorder has the same
distribution at each site, that is, %y = % for every y ∈ N0.
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Corollary 2.1.4. The density of Φn(E) is given by Tpn ...Tp1%E.

Proof. Notice that Sϕn = ϕn−1 and U∗fϕn = 0 so (2.1.11) shows that

1

Φn(0)
= 〈ϕn−1, (RH)−1

n−1,n−1ϕn−1〉 =
1

RΦn−1(0)
.

We can continue renormalizing in this fashion until we reach a Hamiltonian
consisting of a 1×1 random matrix whose element is distributed as Tpn ...Tp1%.
This proves the result for E = 0. The general case follows by shifting the
density of the original potential by −E.

2.2 Proof of Localization

We begin our proof of Theorem 1.2.2 by considering Hamiltonians with single-
site densities {%y | y ∈ N0} which may vary from site to site, and proving a
uniform high-disorder bound for the Green function in terms of the relative
strengths of the hopping |pr| ≤ ε2−cr and the disorder supy∈N0

‖%y‖∞.

Proposition 2.2.1. If s ∈ (0, 1) and µ > 0 satisfy

1 + µ < s(1 + c),

then there exist ε0 > 0 and C ∈ (0,∞) such that

sup
y∈N0

2(1+µ)d(0,y)

(
sup
n≥1

E |Gn(0, y; 0)|s
)
≤ C

for any collection of single-site densities satisfying ε
(
supi∈N0

‖%i‖∞
)
< ε0.

Proof. Since our method of proof is completely standard, and every detail of
the argument can be found in a general setting in [6, Ch. 10], we provide only
a sketch of the proof. Let GΛ denote the Green function of the restriction
of H to a finite volume Λ ⊂ N0. If y 6= 0, deleting the matrix elements
{∆(y, x),∆(x, y) |x 6= y} from ∆ and applying the resolvent identity yields the
formula

GΛ(0, y;E) = −
∑
x 6=y

GΛ(y, y;E)∆(y, x)GΛ\{y}(0, x;E).

Let M = supi∈N0
‖%i‖∞. Factoring the expectation through the conditional

expectation E y with respect to Vy, we obtain

E |GΛ(0, y;E)|s ≤ 2Ms

1− s
∑
x 6=y

|∆(y, x)|sE |GΛ\{y}(0, x;E)|s, (2.2.1)
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because GΛ\{y}(0, x, E) does not depend on Vy and

E y|GΛ(y, y;E)|s ≤ 2‖%y‖s∞
1− s .

Setting
f(y) = sup

|Λ|<∞
E |GΛ(0, y; 0)|s <∞

and taking the supremum over all finite Λ ⊂ N0 in (2.2.1) yields

f(y) ≤ AMs

δ0,y +
∑
x 6=y

|∆(y, x)|sf(x)

 (2.2.2)

with A = 2/(1 − s). The definition of ∆ and the inequality 1 + µ < s(1 + c)
show that

AMs sup
y∈N0

∑
x∈N0

2µd(0,x)

2µd(0,y)
|∆(y, x)|s ≤ AMs

∑
x∈N0

2µd(0,x)|∆(0, x)|s

≤ A′εsMs
∑
x∈N0

2µd(0,x)2−s(1+c)d(0,x)

= A′εsMs
∑
x∈N0

2(µ−s(1+c))d(0,x)

≤ A′εsMs
∑
r≥0

2(1+µ−s(1+c))r < 1

provided εM < ε0 is small enough. Hence, by iterating (2.2.2),

C =
∑
y∈N0

2µd(0,y)f(y) <∞

which implies

sup
n

∑
y∈N0

2µd(0,y)E |Gn(0, y; 0)|s ≤ C.

The theorem now follows by observing that |Br \ Br−1| = 2r−1 for all r ≥ 1
and that E |Gn(0, y; 0)|s depends on y only in terms of d(0, y) .

We will now return to the setting of Theorem 1.2.2 in which the potential was
identically distributed with a common density %. Our strategy is to extend the
conclusion of Theorem 2.2.1 to the entire parameter range by renormalizing
into the high-disorder regime. This is based on the observation that, when
|pr| ≤ ε2−cr, the renormalized hopping Rp satisfies

|(Rp)r| ≤ 2−cε2−cr ≈ 2−c|pr| (2.2.3)

so that the renormalization has effectively decreased ε by a factor 2−c.
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Theorem 2.2.2. Suppose the assumption (1.2.4) is true in a bounded interval
I ⊂ R. If s ∈ (0, 1) and µ > 0 satisfy

1 + µ < s(1 + c),

then there exists C <∞ such that

sup
n≥1

E |Gn(0, y;E)|s ≤ C 2−(1+µ)d(0,y)

for all y ∈ N0 and E ∈ I.

Proof. Since I is bounded, the requirement (1.2.1) means that there exist z ∈
C+ and CI <∞ such that

%E(v) ≤ CIPz(v) (2.2.4)

for all E ∈ I and v ∈ R, where Pz is the Poisson kernel defined in (2.1.6).
The following bound for Gn(0, y; 0) will depend only on z, CI , ‖%‖∞, and the
constants occuring in the assumption (1.2.4), which implies that we can restrict
ourselves to the situation where E = 0 ∈ I without any loss of generality.

Suppose n ≥ N ≥ 1 and let y ∈ Bn. We will first consider the Hamiltonian
H ′ = ∆ + V ′ which is obtained from H by replacing the potential values in
BN (0)∪BN (y) by random variables with the Cauchy distribution Pz. Thus V ′i
has the density

%i =

{
Pz if i ∈ BN (0) ∪BN (y)

% else
.

Since TpPz = Pz+p, the renormalized potential RNV ′ has densities

%i =

{
Pz+p1+...+pN if i ∈

{
0, b2−Nyc

}
TpN ...Tp1% else

,

and by iterating the observation (2.2.3), RN∆ has a hopping strength∣∣∣(RNp)r

∣∣∣ = |pr+N | ≤ εN2−cr, εN = 2−cNε.

Because % satisfies the assumption (1.2.4) in I and ‖Pz+p‖∞ ≤ (Im z)−1 for all
p ∈ R, this implies that the hypothesis

ε

(
sup
i∈N0

‖%i‖∞
)
< ε0
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of Proposition 2.2.1 is eventually satisfied by RNH ′ for some sufficiently large
N which depends on z and the constants in the assumption (1.2.4). Hence,
when 1 + µ < s(1 + c), there is some C0 <∞ such that

sup
n≥1

E
∣∣∣RNG′n (0, b2−Nyc; 0

)∣∣∣s ≤ C0 2−(1+µ)d(0,b2−Nyc),

where G′n denotes the Green function of H ′n. If y ∈ Bn \BN , then N successive
applications of Theorem 2.1.3 show that

E |G′n(0, y; 0)|s ≤ DC0 2−(1+µ)d(0,b2−Nyc) ≤ DC0 2−(1+µ)(d(0,y)−N), (2.2.5)

with
D = [Ds(z)Ds(z + p1)...Dz(z + p1 + ...+ pN )]4 .

Since H ′ is obtained from H by replacing {Vi | i ∈ BN (0)∪BN (y)} with random
variables distributed according to Pz, (2.2.4) and (2.2.5) show that

E |Gn(0, y; 0)|s ≤ C2|BN |
I E |G′n(0, y; 0)|s ≤ C1 2−(1+µ)d(0,y) (2.2.6)

for some C1 <∞ which depends on z, CI , and the constants occurring in the
assumption (1.2.4). If y ∈ BN , then the a priori bound

E |Gn(0, y; 0)|s ≤ 4‖%‖s∞
1− s

is valid so (2.2.6) implies that

E |Gn(0, y; 0)|s ≤ C2−(1+µ)d(0,y)

with a constant C < ∞ depending only on z, CI , ‖%‖∞, and the constants
occurring in the assumption (1.2.4).

Theorem 1.2.2 is a consequence of the relationship between eigenfunction cor-
relators and Green functions. Indeed, Theorem 1.2.2 follows from the standard
result (see Chapter 7 in [6])

EQn(x, y; I) ≤ Cs E
∫
I

|Gn(x, y;E)|s dE

and the fact that E |Gn(x, y;E)|s depends on x and y only in terms of d(x, y).
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2.3 Proof of Poisson Statistics

This section is devoted to the proof of Theorem 1.2.4 concerning the conver-
gence of the random point measure

µn(f) =
∑

λ∈σ(Hn)

f(2n(λ− E))

to a Poisson point process with intensity ν(E) when E is a Lebesgue point of
the density of states. In this setting, H was a Hamiltonian with fixed hopping
|pr| ≤ ε2−cr and a single-site density % ∈ L∞ such that the assumption (1.2.4)
is valid in a neighborhood of E for some δ > 0. Our argument is based on
the following fundamental fact [6, Prop. 17.5], which essentially characterizes
Poisson point processes as simple point processes consisting of infinitely many
independent components.

Proposition 2.3.1. Consider a sequence of point processes of the form µn =∑
j µn,j, where {µn,j | j = 1, ..., Nn} is a triangular array of point processes

with the following properties:

i. The point processes {µn,1, ..., µn,Nn} are independent for all n ≥ 1.

ii. If B ⊂ R is a bounded Borel set, then

lim
n→∞

sup
j≤Nn

P(µn,j(B) ≥ 1) = 0.

iii. There exists some c ≥ 0 such that if B ⊂ R is a bounded Borel set with
|∂B| = 0, then

lim
n→∞

Nn∑
j=1

P(µn,j(B) ≥ 1) = c|B|

and

lim
n→∞

Nn∑
j=1

P(µn,j(B) ≥ 2) = 0.

Then µn converges in distribution to a Poisson point process with intensity c.

Among the several equivalent options available [27, 56], we choose the def-
inition that a sequence of point processes µn converges in distribution to µ
provided

lim
n→∞

E e−µn(Pz) = E e−µ(Pz)

for all z ∈ C+, where Pz is the Poisson kernel (2.1.6). Hence, Theorem 1.2.4
can be established by finding a sequence µ̃n such that Proposition 2.3.1 applies
to µ̃n and

lim
n→∞

E e−µ̃n(Pz) = lim
n→∞

E e−µn(Pz)
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for all z ∈ C+. The truncated operators Hn,m (cf. (2.1.10)) provide a valuable
tool in this endeavor because, for any m ≤ k ≤ n,

Hn,m =

2n−k⊕
j=1

H
(j)
k,m, (2.3.1)

and each H
(j)
k,m is an independent copy of Hk,m. The relationship between

Hn, Hn,n, and Hn,n−1 is essentially controlled by the quantity featured in the
next lemma.

Lemma 2.3.2. Let

Fn(z) := 〈ϕn, (Hn,n−1 − z)−1ϕn〉

with ϕn = 2−n/21Bn and z ∈ C+. Then:

i. ϕn is almost surely cyclic for Hn,n−1.

ii. If the assumption (1.2.4) holds for I ⊂ R then there exists C < ∞ such
that

P(|Fn(t)| ≥ |α|−1) ≤ C 2(c−δ)n |α|
for all t ∈ I and α 6= 0.

Proof. The vector ϕn is cyclic for Hn,n−1 if and only if

span{f(Hn,n−1)ϕ | f ∈ C0} = `2(Bn),

which is clearly true almost surely when n = 1. Now suppose the result is true
for Hn,n−1. Since

Hn,n = Hn,n−1 + pn|ϕn〉〈ϕn|,
ϕn is cyclic for Hn,n whenever it is cyclic for Hn,n−1 [82]. It follows that

ϕn+1 = 1√
2
(ϕn⊕ϕn) is cyclic for Hn+1,n = H

(1)
n,n⊕H(2)

n,n when the spectrum is

simple, as is almost surely the case by the Minami estimate [69] (see also [6]).
For the second part, recall Lemma 2.1.4, which asserts that

Φn−1(t) =
(
〈ϕn−1, (Hn−1,n−1 − t)−1ϕn−1〉

)−1

is a random variable with density Tpn−1 ...Tp1%t. Since Fn(t) is an average of

two independent copies of (Φn−1(t))−1, we have:

P(|Fn(t)| ≥ |α|−1) ≤ 2P(|Φn−1(t)| ≤ |α|)
≤ 4|α| ‖Tpn−1 ...Tp1%t‖∞

= |α| · O
(

2(c−δ)n
)

where the last estimate holds uniformly in t ∈ I thanks to the assumption (1.2.4).
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Our next goal is to understand how the finite-volume density of states

νn(f) = 2−nTr f(Hn)

is approximated by its analogue

νn,m(f) = 2−nTr f(Hn,m),

which is the content of Theorem 2.3.3 below. For its statement, we introduce
the notation

z` := E + 2−`z

for all z ∈ C+ and ` ≥ 0. The connection between Theorem 1.2.4 and νn is
through the formula

µn(Pz) = νn(Pzn). (2.3.2)

Theorem 2.3.3. Suppose the assumption (1.2.4) is satisfied in an open set
I ⊂ R and E ∈ I. Let z ∈ C+ and set o`(z) :=

∫
Ic
Pz`(t)dt. Then:

i. There is some ε > 0 such that o`(z) ≤ 2Im z
ε π

2−`. In particular, o`(z) is a
null sequence for any z ∈ C+ as `→∞.

ii. There is some C < ∞, which does not depend on n,m, ` or z, such that
for all m ≤ n:

E |νn,n(Pz`)− νn,m(Pz`)| ≤ C (Im z)−1 2`−m
(

2−δm + o`(z)
)
, (2.3.3)

E |νn(Pz`)− νn,n(Pz`)| ≤ C (Im z)−1 2`−n
(

2−δn + o`(z)
)
. (2.3.4)

Proof. The first assertion follows from the fact that there is a ε-neighborhood of
E ∈ I which is fully contained in I together with a simple explicit computation.

For a proof of the second assertion we set α = pn so that

Hn,n = Hn,n−1 + α|ϕn〉〈ϕn|.

Since ϕn is almost surely cyclic for Hn,n−1, the theory of rank-one perturba-
tions [82] shows that the following statements are valid:

• The eigenvalues of Hn,n−1 coincide with the set of poles of Fn.

• The eigenvalues of Hn,n coincide with the set {E ∈ R |Fn(E) = −α−1}.

• The function Fn is monotone increasing between its poles.
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For the sake of clarity, let us spell out the proof only in case α > 0 (the case
α < 0 being similar). Setting W = {t ∈ R |Fn(t) ≤ −α−1}, the fundamental
theorem of calculus implies that

νn,n(Pz`)− νn,n−1(Pz`) = 2−n
∫

1W (t)P ′z`(t) dt.

Since |P ′z(t)| ≤ (Im z)−1Pz(t), taking the expected value yields

E |νn,n(Pz`)− νn,n−1(Pz`)| ≤ 2`−n(Im z)−1 E
∫

1W (t)Pz`(t) dt

= 2`−n(Im z)−1

∫
Pz`(t)P(Fn(t) ≤ −α−1) dt.

Because α = O(2−cn), Lemma 2.3.2 asserts that P(Fn(t) ≤ −α−1) ≤ C 2−δn

for all t ∈ I so that∫
Pz`(t)P(Fn(t) ≤ −α−1) dt ≤ C 2−δn + ol(z). (2.3.5)

This proves (2.3.3) when m = n − 1. Moreover, setting α =
∑
r>n 2n−rpr =

O(2−cn) and repeating the argument above with νn in place of νn,n and νn,n
in place of νn,n−1 proves (2.3.4).

For a proof of (2.3.3), we expand in a telescopic sum, i.e., for any f ∈ C0

νn(f)− νn,m(f) = νn(f)− νn,n−1(f) +

n−1∑
k=m+1

(νn,k(f)− νn,k−1(f))

and

νn,k(f)− νn,k−1(f) = 2−n (Tr f(Hn,k)− Tr f(Hn,k−1))

= 2−(n−k)
2n−k∑
j=1

2−k
(

Tr f(H
(j)
k,k)− Tr f(H

(j)
k,k−1)

)

= 2−(n−k)
2n−k∑
j=1

(
ν

(j)
k,k(f)− ν(j)

k,k−1(f)
)

(2.3.6)

because of the decomposition (2.3.1). Taking moments and noticing that each
term in (2.3.6) has the same distribution yields

E |νn(Pz`)− νn,m(Pz`)| ≤ C (Im z)−1 2`−n
(

2−δn + o`(z)
)

+

n−1∑
k=m+1

C (Im z)−1 2`−(k−1)
(

2−δ(k−1) + o`(z)
)

≤ C (Im z)−1 2`−m
(

2−δm + o`(z)
)
.
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By the Wegner estimate, the measures E νn and E νn,m are absolutely con-
tinuous with densities that are uniformly bounded independently of n and
m, and (2.3.2) shows that the same is true of Eµn. Moreover, by ergodicity
[6, 62,63],

lim
n→∞

E νn(f) = ν(f) (2.3.7)

for all f ∈ C0. We will now show that this limit also exists with νn replaced
by µn.

Corollary 2.3.4. If E is a Lebesgue point of ν, then

lim
n→∞

Eµn(B) = ν(E)|B|

for all bounded Borel sets B ⊂ R.

Proof. That E is a Lebesgue point of ν means that

lim
n→∞

2nν(2−nB + E) = ν(E)|B|

so it suffices to prove the relation

lim
n→∞

(
Eµn(B)− 2nν(2−nB + E)

)
= 0. (2.3.8)

Since B is bounded, 1B can be approximated arbitrarily well in L1 by finite
linear combinations from the set {Pz | z ∈ C+}. Moreover, since the measures
occurring in (2.3.8) are absolutely continuous with densities bounded uniformly
in n, we conclude that it is enough to show (2.3.8) with B replaced by Pz.
By (2.3.2), this is equivalent to

lim
n→∞

(E νn(Pzn)− ν(Pzn)) = 0.

Applying (2.3.7) and the fact that E νp,n = E νn,n for any p ≥ n (cf. (2.3.1))
we conclude from Theorem 2.3.3 that

lim
n→∞

|E νn(Pzn)− ν(Pzn)| = lim
n→∞

lim
p→∞

|E [νn(Pzn)− νp(Pzn)]|

= lim
n→∞

lim
p→∞

|E [νp,n(Pzn)− νp(Pzn)]| = 0.

The next corollary defines the approximating processes µ̃n alluded to earlier.

40



Corollary 2.3.5. There exists a sequence mn with mn →∞ and 0 < n−mn →
∞ such that the measure defined by

µ̃n(Pz) = νn,mn(Pzn)

satisfies
lim
n→∞

E |µn(Pz)− µ̃n(Pz)| = 0

for all z ∈ C+.

Proof. Using (2.3.2) and Theorem 2.3.3 we see that

E |µn(Pz)− µ̃n(Pz)| = E |νn(Pzn)− νn,mn(Pzn)|

≤ C(Im z)−1

[
2−δn + 2n−(1+δ)mn +

2Im z

ε π

(
2−n + 2−mn

)]
.

Since δ > 0, we can choose mn such that mn → ∞, n − mn → ∞ and
n− (1 + δ)mn → −∞ which proves the result.

Combining the fact that |e−t1 − e−t2 | ≤ |t1 − t2| when t1, t2 ≥ 0 with Corol-
lary 2.3.5 implies that µ̃n satisfies

lim
n→∞

E e−µ̃n(Pz) = lim
n→∞

E e−µn(Pz).

It thus remains to show that µ̃n satisfies the hypothesis of Proposition 2.3.1.
In the interest of readability, we will suppress the dependence on n and write
simply m in place of mn for the remainder of this section. By (2.3.1), µ̃n is a
sum of independent point processes

µ̃n =
2n−m∑
j=1

µ̃n,j

with
µ̃n,j(B) = Tr 12−nB+E(H(j)

m,m)

for all Borel sets B ⊂ R. By a theorem of Combes-Germinet-Klein [26] (cf. [6,
69]),

P(Tr 1B(Hm,m) ≥ `) ≤ (C 2m|B|)`

`!

which implies

P(µ̃n,j(B) ≥ `) ≤ (C|B| 2m−n)`

`!
. (2.3.9)
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Since n−m→∞, this shows immediately that the first requirement of Propo-
sition 2.3.1 is satisfied. For the other requirements, let us abbreviate

X(n, `) =

2n−m∑
j=1

P(µ̃n,j(B) ≥ `)

so that (2.3.9) implies

X(n, `) ≤ 2n−m
(C|B| 2m−n)`

`!
→ 0

when ` ≥ 2. In particular, X(n, 2) → 0 and the last assumption of Proposi-
tion 2.3.1 is satisfied. Since µ̃n,j(B) takes values in the non-negative integers

lim
n→∞

X(n, 1) = lim
n→∞

2n−m∑
j=1

E µ̃n,j(B)− lim
n→∞

∑
`≥2

X(n, `).

By (2.3.9) and the dominated convergence theorem

lim
n→∞

X(n, 1) = lim
n→∞

2n−m∑
j=1

E µ̃n,j(B) = lim
n→∞

E µ̃n(B),

so to finish the proof it suffices to derive the identity

lim
n→∞

E µ̃n(B) = ν(E)|B| (2.3.10)

for any bounded Borel set B. Since µ̃n(B) and µn are easily seen to have
uniformly bounded densities, we can approximate 1B by linear combinations
from {Pz | z ∈ C+} and use Corollary 2.3.5 to see that

lim
n→∞

E |µ̃n(B)− µn(B)| = 0

for all bounded Borel sets B. Thus we can replace E µ̃n(B) with Eµn(B)
in (2.3.10) and Corollary 2.3.4 concludes the proof of Theorem 1.2.4.

2.4 The Renormalized Density

This section consists of the proofs of several previous claims regarding the renor-
malized densities Tpr ...Tp1%E . Let us start by proving the claim in Section 2.1,
that Tp(%, %̃) is bounded if % and %̃ are.

Lemma 2.4.1. Suppose %, %̃ ∈ L∞ are probability densities. Then

‖Tp(%, %̃)‖∞ ≤ ‖%‖∞ + ‖%̃‖∞

for any p ∈ R.
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Proof. Notice that

E T0%f :=

∫
f(v)T0(%, %̃)(v) dv =

∫
f

(
2vw

v + w

)
%(v)%̃(w) dv dw

for any sufficiently regular f ∈ L1 and(
∂

∂v
+

∂

∂w

)(
2vw

v + w

)
= 2

v2 + w2

(v + w)2
≥ 1.

Thus E T0%f is bounded by∫
f

(
2vw

v + w

)
%(v)%̃(w)

∂

∂v

(
2vw

v + w

)
dv dw

+

∫
f

(
2vw

v + w

)
%(v)%̃(w)

∂

∂w

(
2vw

v + w

)
dv dw

=

∫
f(x)%(v(x))%̃(w)dx dw +

∫
f(x)%(v)%̃(w(x))dx dv

≤ (‖%‖∞ + ‖%̃‖∞) ‖f‖1.

Hence ‖T0(%, %̃)‖∞ ≤ ‖%‖∞+‖%̃‖∞ and the lemma follows from the translation
invariance of the norm.

We will now consider the validity of the assumption (1.2.4) for the special
cases

• c > 1,

• V has a Gaussian distribution and c > 1/2,

• V has a Cauchy component and c > 0,

as mentioned in the introduction. The case c > 1 is an easy consequence of
Lemma 2.4.1 since

‖Tpr ...Tp1%E‖∞ ≤ 2r‖%E‖∞ = 2r‖%‖∞

so the assumption (1.2.4) is true with I = R and δ = c− 1 > 0.
Our analysis of the Gaussian distribution N (µ, σ) is based on the following

observations:

• If V ∈ RL is a random vector with independent N (0, σ) entries and O :
RL → RL is an orthogonal matrix, then OV also consists of independent
N (0, σ) entries.
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• If F : C+ → C+ is a singular Herglotz function and A ⊂ R is a Borel set,
then ∫

1A(F (t+ i0))Pz(t) dt =

∫
1A(t)PF (z)(t) dt

where Pz is the Poisson kernel corresponding to z ∈ C+ (cf. [5]).

Let ϕr = 2−r/2(1, ..., 1) ∈ R|Br| be the unit vector with constant entries. By
rotation invariance, there exists a random vector Z ∈ ϕ⊥r and an independent
scalar Gaussian g ∼ N (0, σ) such that

V = gϕr + µrϕr + Z

where µr = 2r/2µ. Since there exist some z ∈ C+ and C < ∞ such that
the N (0, σ) density is dominated pointwise by C Pz, this implies that for any
bounded Borel set A ⊂ R

E 1A(RrV ) ≤ C
∫

1A(Rr(tϕr + µrϕr + Z))Pz(t) dt ξ(dZ),

where ξ is some probability distribution on ϕ⊥r . Notice that Rr(V ) is a singular
Herglotz function of each of the variables V0, ..., V2r−1 with the property

ImRr(V ) ≥ min{ImVk | 0 ≤ k ≤ 2r − 1}

which follows from the definition of R(V ) and the fact that

Im

(
1

2z
+

1

2w

)−1

≥ min{Im z, Imw}.

Thus F (t) = Rr(tϕr + µrϕr + Z) is a singular Herglotz function of t when µ
and Z are fixed. Hence

E 1A(RrV ) ≤ C
∫∫

1A(t)PF (z)(t) dt ξ(dZ)

≤ C

ImF (z)
|A|

≤ C2r/2|A|,

which proves that ‖Tpr ...Tp0%E‖∞ ≤ C 2r/2 uniformly in E ∈ R because the
previous estimates did not depend on µ. Thus the assumption (1.2.4) is true
with I = R and δ = c− 1/2.

Finally, we consider the case where % is a mixture of Poisson kernels, i.e.,

% =

∫
C+

Pz µ(dz) (2.4.1)
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for some probability measure µ ∈ M(C+). A simple calculation, which is
described in some detail in [60], shows that

Tp

(∫
C+

Pz µ(dz)

)
=

∫
C+

Pz Tpµ(dz)

and that suppTpµ ⊂ {z ∈ C+ | Im z > ε} if suppµ ⊂ {z ∈ C+ | Im z > ε}. In
particular, if % is of the form (2.4.1) with suppµ ⊂ {z ∈ C+ | Im z > ε}, then

‖Tpr ...Tp1%E‖∞ ≤ ε
−1,

which proves the assumption (1.2.4) with I = R and δ = c. By definition, V
has a Cauchy component if % = µ ∗ Pz for some z ∈ C+ and some probability
measure µ ∈M(R), which is a special case of (2.4.1).

2.5 Eigenfunction Correlators and IPRs

The purpose of this section is to prove two statements made in the introduction
regarding the behavior of the IPR in a regime of eigenfunction correlator lo-
calization. The arguments here do not rely on the specifics of the hierarchical
model. First, let us present the proof of Corollary 1.2.3, which bounds the
probability of the event

A =

{
There is ψ ∈ `2(Bn) with Hnψ = λψ and
|λ− E| ≤ 2−n−1W such that P2(ψ) ≤ ε4

}
.

Proof of Corollary 1.2.3. Let Jn = {|λ−E| ≤ 2−n−1W} and let ψλ denote the
eigenfunction associated to an eigenvalue λ ∈ σ(Hn). Then it follows from

1 = ‖ψλ‖22 ≤ ‖ψλ‖4‖ψλ‖1 (2.5.1)

that

P(A) ≤ P

 ∑
λ∈σ(Hn)∩Jn

1

P2(ψλ)1/4
>

1

ε

 (2.5.2)

≤ εE
∑

λ∈σ(Hn)∩Jn

1

‖ψλ‖4
≤ εE

∑
λ∈σ(Hn)∩Jn

‖ψλ‖1.
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Since
∑
y∈Bn |ψλ(y)|2 = 1, we have

E 2−n
∑

λ∈σ(Hn)∩Jn

‖ψλ‖1 = 2−n
∑
y∈Bn

E
∑
x∈Bn

∑
λ∈σ(Hn)∩Jn

|ψλ(y)|2|ψλ(x)|

(2.5.3)

≤ 2−n
∑
y∈Bn

∑
x∈Bn

Qn(y, x; Jn)

≤ 2−n
∑
y∈Bn

C|Jn| = C|Jn|

in regimes of eigenfunction correlator localization. Plugging (2.5.3) into (2.5.2),
we obtain

P(A) ≤ εE
∑

λ∈σ(Hn)∩Jn

‖ψλ‖1 ≤ ε 2nC|Jn| = CWε.

Our other goal is to prove that eigenfunction correlator localization implies
the lower bound (1.2.8) for the averaged IPR

Πn(I) =
E
∑
λ∈σ(Hn)∩I ‖ψλ‖

4
4

E
∑
λ∈σ(Hn)∩I 1

.

Using (2.5.1) term by term yields

Πn(I) ≥
E
∑
λ∈σ(Hn)∩I ‖ψλ‖

−4
1

E
∑
λ∈σ(Hn)∩I 1

.

We now apply Jensen’s inequality with the probability measure defined by

µ(f) =
E
∑
λ∈σ(Hn)∩I f(λ)

E
∑
λ∈σ(Hn)∩I 1

and the convex function Φ(x) = x−4 to see that

Πn(I) ≥

(
E
∑
λ∈σ(Hn)∩I ‖ψλ‖1

E
∑
λ∈σ(Hn)∩I 1

)−4

=

(
2−nE

∑
λ∈σ(Hn)∩I 1

2−nE
∑
λ∈σ(Hn)∩I ‖ψλ‖1

)4

.
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The numerator of this expression is equal to

2−nETr 1I(Hn) = 2−n
∑
y∈Bn

E 〈δy, 1I(Hn)δy〉

= E 〈δ0, 1I(Hn)δ0〉 = νn(I)

so repeating the calculation (2.5.3) with I in place of Jn shows that

Πn(I) ≥ C−4

(
νn(I)

|I|

)4

(2.5.4)

as desired.

2.6 Spectral Localization

This section contains the completion of an argument by E. Kritchevski [60],
which proves that the spectrum of H is almost surely of pure-point type with
eigenfunctions satisfying ∑

y∈N0

2
c
4
d(0,y)|ψ(y)|2 <∞

for any parameters (p, %) without relying on the assumption (1.2.4). The fol-
lowing should be regarded as an accompanying note to [60] and thus we will
not present the entire argument in detail, but simply cite the theorems of [60]
as necessary. The argument makes use of the truncations Hn,m in the n→∞
limit:

H∞,n =

n∑
r=1

prEr + V.

Notice that, for fixed realizations of V ,

‖H −H∞,n‖ ≤
∞∑

r=n+1

|pr|

and hence
lim
n→∞

(H∞,n − z)−1δx = (H − z)−1δx

for any x ∈ N0 and z ∈ C+. We will be particularly interested in the quantities

Gn(x, y; z) = 〈δy, (H∞,n − z)−1δx〉

gn(x; z) = 2−n
∑

y∈Bn(x)

〈δy, (H∞,n − z)−1δx〉

Qn(x, z) = 〈ϕn(x), (H∞,n − z)−1ϕn(x)〉
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with y ∈ Bn(x) and ϕn(x) = 2−n/21Bn(x). Proposition 2.2 of [60] contains the
formula

Gn(x, y; z) = G0(x, y; z)−
n∑

r=d(x,y)

2r−1prgr−1(x; z)gr(y; z).

Letting w(y) = 2µd(x,y) and using the triangle inequality for the w-weighted
`2-norm, this implies that

S(x, n, µ) :=

∑
y∈N0

w(y)|Gn(x, y;E)|2
1/2

is bounded by

|G0(x, x;E)|+
n∑
r=1

2r−1|pr||gr−1(x;E)|

 ∑
d(x,y)≤r

w(y)|gr(y;E)|2
1/2

≤ |G0(x, x;E)|+
n∑
r=1

|pr|2µr2r−1|gr−1(x;E)|

 ∑
d(x,y)≤r

|gr(y;E)|2
1/2

.

Provided that
∞∑
r=1

|prQr(x,E)| <∞ (2.6.1)

for P ⊗ m-almost every (ω,E) ∈ Ω × R, Proposition 2.3 and the proof of
Proposition 2.4 in [60] show that for almost every (ω,E) there exist constants
C(ω,E), C′(ω,E) <∞ such that ∑

d(x,y)≤r

|gr(y;E)|2
1/2

≤ C(ω,E) 2
c
4
r

and
2r−1|gr−1(x;E)| ≤ C′(ω,E)

for all r ≥ 1. It follows that

S(x, n, µ) ≤ |G0(x, x;E)|+ C(ω,E)C′(ω,E)
n∑
r=1

2−cr2µr2
c
4
r. (2.6.2)
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and since G0(x, x;E) exists and is finite for almost every (ω,E), choosing µ = 0
we obtain

sup
n≥1
‖(H∞,n − E)−1δx‖ = sup

n≥1
S(x, n, 0) <∞

for almost every (ω,E). Applying the monotone convergence theorem to the
spectral measures of δx for H and H∞,n shows that

lim
ε→0
‖(H − E − iε)−1δx‖ = sup

ε>0
‖(H − E − iε)−1δx‖

≤ sup
ε>0

sup
n≥1
‖H∞,n − E − iε)−1δx‖

= sup
n≥1

sup
ε>0
‖(H∞,n − E − iε)−1δx‖

= sup
n≥1
‖(H∞,n − E)−1δx <∞,

and thus the Simon-Wolff Criterion [84] asserts that the spectrum of H is
almost surely of pure-point type. If G denotes the Green function of the full
operator H, then

|G(x, y; z)−Gn(x, y; z)| =
∣∣〈δx, (H∞,n − z)−1(H −H∞,n)(H − z)−1δy〉

∣∣
≤ ‖H −H∞,n‖‖(H∞,n − z)−1δx‖‖(H − z)−1δy‖

and the preceding argument proves that for almost all (ω,E) we can take first
Im z → 0 and then n → ∞ so that Gn(x, y;E) → G(x, y;E) for almost all
(ω,E). Applying Fatou’s lemma to (2.6.2) with µ = c

4
we see that∑

y 6=0

2
c
4
d(x,y)|G(x, y;E)|2

1/2

≤ C(ω,E)C′(ω,E) sup
n≥0

n∑
r=1

2−
c
2
r

<∞,

and a trivial modification of Theorem 9 from [84] now shows that the eigen-
functions of H satisfy ∑

y∈N0

2
c
4
d(0,y)|ψ(y)|2 <∞

as well.
Thus it remains to prove (2.6.1). Since Qr(x; z) is the Borel transform of a

singular probability measure, Boole’s inequality [6, Prop. 8.2] shows that

(P⊗m)({|Qn(x;E)| > 2
c
2
r}) = 2 · 2−

c
2
r.

It follows from the Borel-Cantelli lemma that

|Qn(x;E)| ≤ C′′(ω,E)2
c
2
r

with C′′(ω,E) <∞ on a set of full P⊗m measure, and this implies (2.6.1).
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3 The Ultrametric Ensemble and Local Stability of Dyson
Brownian Motion

In this chapter we prove results on Gaussian perturbations stated in Section 1.5
and then use them to derive the localization theorems for the ultrametric en-
semble and Rosenzweig-Porter model.

3.1 Smoothing Effects of Random Potentials

Throughout this section we will let H be a general N × N random matrix of
the form

H = H̃ + V,

where V is a potential satisfying the assumption (1.5.2) and H̃ is some symmet-
ric random matrix independent of V , which should be thought of as H̃ + ΦT
from (1.5.1). Our goal is to use the smoothing effects of V on the spectral
measures µxy of δx and δy for H and the empirical eigenvalue measure

ν(f) =
1

N

∑
λ∈σ(H)

f(λ)

to control the resolvent flow (1.5.3). The following lemma is a simple extension
of the proof of Proposition 1.6.3 by Combes, Germinet, and Klein. We write
|µ| for the total variation measure of µ.

Lemma 3.1.1. There exists C <∞, depending only on CV , such that

1. E |µxy|(I) ≤ C|I| and

2. E [ν(I)|µxy|(J)] ≤ C
(
|I|+ 2

N

)
|J |

for all Borel sets I, J ⊂ R and x, y ∈ {1, ..., N}.

Proof. Notice that

|µxy|(I) =
∑

λ∈σ(H)∩I

|ψλ(x)ψλ(y)| ,

so the Cauchy-Schwarz inequality implies

|µxy|(I) ≤
√
µx(I)µy(I).

Applying the Cauchy-Schwarz inequality to the expectation Exy conditioned
on {V (k) : k 6= x, y} and using Proposition 1.6.1 then yield

Exy |µxy|(I) ≤ Exy
√
µx(I)µy(I) ≤

√
Exy µx(I)Exy µy(I) ≤ C|I|, (3.1.1)
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which implies the first assertion of the Lemma.
For the second claim, notice that for fixed values {V (k) : k 6= x, y} of the

potential away from x and y, the number of eigenvalues in I can change by at
most two as V (x) and V (y) vary in R. Hence

E [ν(I)|µxy|(J)] ≤ E
[(
ν(I) +

2

N

)
Exy |µxy|(J)

]
≤ C|J |E

[
ν(I) +

2

N

]
≤ C

(
|I|+ 2

N

)
|J |,

by Proposition 1.6.2 and (3.1.1).

Intuitively, Lemma 3.1.1 asserts that the joint measure E [ν × |µxy|] is con-
tinuous down to scales of order N−1, which clearly has consequences for the
integrals of test functions in terms of their variations on scales of order N−1.
The next results are a quantitative manifestation of this idea for the Stieltjes
transforms

G(x, y; z) =

∫
1

λ− z µxy(dλ)

and

S(z) =

∫
1

λ− z ν(dλ),

which occur naturally in our study of the resolvent flow. In particular, the
following theorem gives bounds for the drift.

Theorem 3.1.2. There exists C <∞, depending only on CV , such that

E
∣∣∣∣ 1

2N

∂2

∂z2
G(x, y; z)

∣∣∣∣ ≤ C

N(Im z)2

and

E
∣∣∣∣S(z)

∂

∂z
G(x, y; z)

∣∣∣∣ ≤ CN (logN +
1

N Im z

)(
1 +

1

(N Im z)2

)
+

C

Im z

for all x, y ∈ {1, ..., N} and z ∈ C+.

Proof. The first point of Lemma 3.1.1 implies that

E
∣∣∣∣ 1

2N

∂2

∂z2
G(x, y; z)

∣∣∣∣ ≤ 1

N Im z
E
∫

1

|λ− z|2 |µx,y|(dλ)

≤ C

N Im z

∫
1

|λ− z|2 dλ

≤ C

N(Im z)2
, (3.1.2)
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which is the first assertion of the theorem.
Next, let us introduce

f(λ) =
1|λ−Re z|≤1

|λ− z| , f̃(λ) =
1|λ−Re z|>1

|λ− z| , g(λ) =
1

|λ− z|2

so that

E
∣∣∣∣S(z)

∂

∂z
G(x, y; z)

∣∣∣∣ ≤ E
∫∫ (

f(λ1) + f̃(λ1)
)
g(λ2) ν(dλ1)|µxy|(dλ2).

Setting Iα = Re z + [α/N, (α+ 1)/N),

E
∫∫

f(λ1)g(λ2) ν(dλ1)|µxy|(dλ2)

≤
∑
α,β∈Z

(
sup
λ∈Iα

f(λ)

)(
sup
λ∈Iβ

g(λ)

)
E [ν(Iα)|µxy|(Iβ)]

≤ C

N2

∑
α,β∈Z

(
sup
λ∈Iα

f(λ)

)(
sup
λ∈Iβ

g(λ)

)
,

where we used the second part of Lemma 3.1.1 to bound the expectations.
Since f and g are symmetric about Re z and monotone decreasing in |λ−Re z|,
the previous chain of inequalities continues

≤ 4C

N2

∑
α,β∈N0

f
(

Re z +
α

N

)
g

(
Re z +

β

N

)

= CN
N∑
α=0

1√
α2 + (N Im z)2

∑
β∈N0

1

β2 + (N Im z)2

≤ CN
(

logN +
1

N Im z

)(
1 +

1

(N Im z)2

)
.

Finally, because |f̃ | ≤ 1, the remaining summands satisfy

E
∫∫

f̃(λ1)g(λ2) ν(dλ1)|µxy|(dλ2) ≤ E
∫

1

|λ− z|2 |µxy|(dλ) ≤ C

Im z
,

arguing as in (3.1.2).

Evaluating the trace defining S(z) in the site basis,

S(z) =
1

N

∑
y

G(y, y; z),
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we may average the bounds furnished by Theorem 3.1.2 to obtain the following
corollary, which gives the corresponding bounds for the drift of the trace of the
resolvent.

Corollary 3.1.3. There exists C <∞, depending only on CV , such that

E
∣∣∣∣ 1

2N

∂2

∂z2
S(z)

∣∣∣∣ ≤ C

N(Im z)2

and

E
∣∣∣∣S(z)

∂

∂z
S(z)

∣∣∣∣ ≤ CN (logN +
1

N Im z

)(
1 +

1

(N Im z)2

)
+

C

Im z

for all z ∈ C+.

We conclude this section with a bound in the same spirit as the previous
results for a term which does not explicitly occur in the resolvent flow, but
which will nevertheless prove useful in controlling the diffusion of (1.5.3).

Theorem 3.1.4. There exists C <∞, depending only on CV , such that

E [ImG(x, x; z) ImS(z)] ≤ C
(
N Im z +

1

N Im z

)2

for all x ∈ {1, ..., N} and z ∈ C+.

Proof. The proof follows along the same lines as that of Theorem 3.1.2. Setting
Iα = Re z + [α/N, (α+ 1)/N), letting

Pz(λ) = Im
1

λ− z =
Im z

(λ− Re z)2 + (Im z)2
(3.1.3)

denote the rescaled Poisson kernel, and using Lemma 3.1.1, we see that

E [ImG(x, x; z) ImS(z)] = E
∫∫

Pz(λ1)Pz(λ2) ν(dλ1)µx(dλ2)

≤
∑
α,β∈Z

(
sup
λ∈Iα

Pz(λ)

)(
sup
λ∈Iβ

Pz(λ)

)
E [ν(Iα)µx(Iβ)]

≤ C

N2

∑
α,β∈Z

(
sup
λ∈Iα

Pz(λ)

)(
sup
λ∈Iβ

Pz(λ)

)
.
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Since Pz is symmetric about Re z and monotone decreasing in |λ − Re z|, the
last term is in turn bounded by

≤ 4C

N2

∑
α,β∈N0

Pz
(

Re z +
α

N

)
Pz

(
Re z +

β

N

)
= C

∑
α∈N0

N Im z

α2 + (N Im z)2

∑
β∈N0

N Im z

β2 + (N Im z)2

≤ C
(
N Im z +

1

N Im z

)2

.

3.2 Local Stability of Dyson Brownian Motion

In this section, we turn to the proofs of our main results for Gaussian perturba-
tions, Theorems 1.5.1 and 1.5.2. We start by deriving the stochastic differential
equations (1.5.3) for the resolvent Rt(z) in terms of the Green functions and
the normalized trace. For this, we define the martingales

dMt(x, y; z) = − 1√
N

∑
u≤v

〈δy, Rt(z)PuvRt(z)δx〉 dBuv(t),

where

Puv =
1√

1 + δuv
(|δu〉〈δv|+ |δv〉〈δu|) =

√
N

∂

∂Buv
Ht

denotes the symmetric matrix element corresponding to {δu, δv}.

Theorem 3.2.1. The Green function satisfies

dGt(x, y; z) =

(
St(z)

∂

∂z
Gt(x, y; z) +

1

2N

∂2

∂z2
Gt(x, y; z)

)
dt+ dMt(x, y; z)

for all x, y ∈ {1, ..., N} and z ∈ C+.

Proof. By the resolvent equation,

∂

∂Buv
Rt(z) = − 1√

N
Rt(z)PuvRt(z),
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so using Itô’s Lemma shows that

dGt(x, y; z) =
1

N

∑
u≤v

〈δy, Rt(z)PuvRt(z)PuvRt(z)δx〉 dt

− 1√
N

∑
u≤v

〈δy, Rt(z)PuvRt(z)δx〉 dBuv(t)

=
1

N

∑
u≤v

〈δy, Rt(z)PuvRt(z)PuvRt(z)δx〉 dt+ dMt(x, y; z).

We expand the drift term as

1

N

∑
u<v

〈δy, Rt(z)δv〉〈δu, Rt(z)δu〉〈δv, Rt(z)δx〉+ 〈δy, Rt(z)δu〉〈δv, Rt(z)δv〉〈δu, Rt(z)δx〉

+
1

N

∑
u<v

〈δy, Rt(z)δv〉〈δu, Rt(z)δv〉〈δu, Rt(z)δx〉+ 〈δy, Rt(z)δu〉〈δv, Rt(z)δu〉〈δv, Rt(z)δx〉

+
2

N

∑
u

〈δy, Rt(z)δu〉〈δu, Rt(z)δu〉〈δu, Rt(z)δx〉

and exploit that the second term in each sum is the same as the first term with
u and v interchanged to rewrite these sums as

=
1

N

∑
u,v

〈δy, Rt(z)δv〉〈δu, Rt(z)δu〉〈δv, Rt(z)δx〉

+
1

N

∑
u,v

〈δy, Rt(z)δv〉〈δu, Rt(z)δv〉〈δu, Rt(z)δx〉.

In the second sum, we use that the spectral measures µvu are real to replace
〈δu, Rt(z)δv〉 with 〈δv, Rt(z)δu〉, which yields

= 〈δy, Rt(z)2δx〉
1

N
TrRt(z) +

1

N
〈δy, Rt(z)3δx〉

= St(z)
∂

∂z
Gt(x, y; z) +

1

2N

∂2

∂z2
Gt(x, y; z).

We remark that the applicability of these arguments to GUE perturbations
in place of GOE perturbations is not affected by the last part of the proof,
which made use of the fact that the spectral measures are real in the GOE
case. This is because the additional unitary symmetry ensures that the third
order term involving 〈δy, Rt(z)3δx〉 vanishes completely for the GUE flow.
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By averaging the evolution of Gt(x, x; z) over x ∈ {1, ..., N}, we obtain an
equation with a diffusion given by

Mt(z) =
1

N

∑
x

Mt(x, x; z),

which is the familiar complex Burgers equation for St(z) [9].

Corollary 3.2.2. The normalized trace satisfies

dSt(z) =

(
St(z)

∂

∂z
St(z) +

1

2N

∂2

∂z2
St(z)

)
dt+ dMt(z)

for all z ∈ C+.

We will now employ the results of Section 3.1 to smooth the resolvent flow
of Theorem 3.2.1. Theorem 3.1.2 and Corollary 3.1.3 already accomplish this
for the drift, but some further analysis based on spatial averaging is required
to control the diffusion and this is the content of the next two theorems.

Theorem 3.2.3. There exists a constant C <∞, depending only on CV , such
that

1

N

∑
y

E |MT (x, y; z)| ≤ C

√
T

N(Im z)2

(
N Im z +

1

N Im z

)
for all x ∈ {1, ..., N}, z ∈ C+ and T ≥ 0.

Proof. The quadratic variation of Mt(x, y; z) satisfies

[MT (x, y; z)] =
1

N

∫ T

0

∑
u≤v

|〈δy, Rs(z)PuvRs(z)δx〉|2 ds

≤ 2

N

∫ T

0

∑
u,v

|〈δy, Rs(z)δu〉〈δv, Rs(z)δx〉|2 ds

=
2

N

∫ T

0

(∑
u

|〈δy, Rs(z)δu〉|2
)(∑

v

|〈δv, Rs(z)δx〉|2
)
ds

=
2

N(Im z)2

∫ T

0

ImGs(x, x; z) ImGs(y, y; z) ds,

where we combined the symmetrization argument of Theorem 3.2.1 with the
inequality (a+ b)2 ≤ 2(a2 + b2). Hence

1

N

∑
y

E | [Mt(x, y; z)] | ≤ 2

N(Im z)2

∫ T

0

E [ImGs(x, x; z) ImSs(z)] ds

≤ CT

N(Im z)2

(
N Im z +

1

N Im z

)2
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by Theorem 3.1.4. Combining the Burkholder-Davis-Gundy inequality with
Jensen’s inequality for 1

N

∑
y E shows that

1

N

∑
y

E |MT (x, y; z)| ≤C

(
1

N

∑
y

E [MT (x, y; z)]

)1/2

≤ C

√
T

N(Im z)2

(
N Im z +

1

N Im z

)
.

Next, we state the corresponding result for the averaged martingale

Mt(z) =
1

N

∑
x

Mt(x, x; z)

occuring in Corollary 3.2.2.

Theorem 3.2.4. There exists a constant C <∞, depending only on CV , such
that

E |MT (z)| ≤

√
CT

N2(Im z)3

for all z ∈ C+ and T ≥ 0.

Proof. By symmetrization,

MT (z) =
1

N

∑
x

MT (x, x; z)

= − 1

N3/2

∑
u,v

1√
1 + δuv

∫ T

0

∑
x

〈δv, Rs(z)δx〉〈δx, Rs(z)δu〉 dBuv(s)

= − 1

N3/2

∑
u,v

1√
1 + δuv

∫ T

0

∂

∂z
〈δv, Rs(z)δu〉 dBuv(s),

so the quadratic variation may be expressed as

[MT (z)] =
1

N3

∫ T

0

∑
u,v

1

1 + δuv

∣∣∣∣ ∂∂z 〈δv, Rs(z)δu〉
∣∣∣∣2 ds

≤ 1

N3(Im z)2

∫ T

0

∑
u,v

|〈δv, Rs(z)δu〉|2 ds

=
1

N2(Im z)3

∫ T

0

ImSs(z) ds.
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Using, in order, the Burkholder-Davis-Gundy inequality, Jensen’s inequality,
and Proposition 1.6.2 yields

E |MT (z)| ≤ C (E [MT (z)])1/2

≤ C
(

1

N2(Im z)3

∫ T

0

E ImSs(z) ds

)1/2

≤

√
CT

N2(Im z)3
.

The proofs of Theorems 1.5.1 and 1.5.2 now reduce to plugging the vari-
ous previous estimates into the integrated forms of Theorem 3.2.1 and Corol-
lary 3.2.2. For the sake of completeness, we illustrate this with the proof of
Theorem 1.5.2, but omit the very similar proof of Theorem 1.5.1.

Proof of Theorem 1.5.2. By Theorem 3.2.1,

1

N

∑
y

E |GT (x, y;E + iη)−G0 (x, y;E + iη)|

≤ 1

N

∑
y

∫ T

0

E
∣∣∣∣Ss(z) ∂∂zGs(x, y; z) +

1

2N

∂2

∂z2
Gs(x, y; z)

∣∣∣∣ ds
+

1

N

∑
y

E |MT (x, y; z)|,

which by Theorems 3.1.2 and 3.2.3 is bounded by

≤ CTN
(

logN +
1

Nη

)(
1 +

1

(Nη)2

)
+
CT

η
+

CT

Nη2

+ C

√
T

Nη2

(
Nη +

1

Nη

)
.

After taking a factor N−ε/2 from T ≤ N−(1+ε) to control the logN term,
each term is dominated by either 1 + (Nη)−1 or 1 + (Nη)−3, which proves the
theorem.

3.3 Proof of Poisson Statistics in the Ultrametric Ensemble

In the remainder of this chapter, we will show how to apply Theorems 1.5.1
and 1.5.2 to the ultrametric ensemble Hn defined in (1.3.1), thereby obtaining
Theorems 1.3.1 and 1.3.2. When c > 0, the limit limn→∞ Zn,c ∈ (0,∞) exists,
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and thus we may drop the normalizing constant Zn,c from the definition of Hn
without any loss of generality. We will prove Theorem 1.3.1 by approximating

Hn ≡
∑n
r=0 2−

1+c
2
rΦn,r with the truncated Hamiltonian

Hn,m =

m∑
r=0

2−
1+c
2
rΦn,r, (3.3.1)

which has the property that, for any m ≤ k ≤ n,

Hn,m =

2n−k⊕
j=1

H
(j)
k,m, (3.3.2)

where each H
(j)
k,m is an independent copy of Hk. Therefore

µn,m(f) =
∑

λ∈σ(Hn,m)

f(2n(λ− E))

consists of 2n−m independent components, a fact whose relevance to Theo-
rem 1.3.1 is contained in the characterization of Poisson point processes given
by Proposition 2.3.1.

Hence, as with the hierarchical Anderson model, Theorem 1.3.1 follows by
furnishing a sequence mn such that Proposition 2.3.1 applies to µn,mn and

lim
n→∞

E e−µn,mn (Pz) = lim
n→∞

E e−µn(Pz) (3.3.3)

for all z ∈ C+. The difference Hn−Hn,n−1 =
√
T Φn,n is a Gaussian perturba-

tion with time parameter T = 2−(1+c)n. Therefore, Theorem 1.5.1 shows that
there exists Cz <∞ such that for all ` ≥ n we have

1

2n
E
∣∣Tr (Hn − z`)−1 − Tr (Hn,n−1 − z`)−1

∣∣ ≤ Cz 2−
c
2
n−1

(
1 + 23(`−n)

)
≤ Cz 2−

c
2
n 23(`−n) (3.3.4)

with z` = E+ 2−`z. Our strategy in achieving (3.3.3) thus consists of applying
(3.3.4) to the finite-volume density of states measures

νn(f) = 2−nTr f (Hn) , νn,m(f) = 2−nTr f (Hn,m)

in an iterative fashion.

Theorem 3.3.1. There exist Cz <∞ and δ > 0 such that

E |νn (Pz`)− νn,m (Pz`)| ≤ Cz 23(`−(1+δ)m)

for all ` ≥ n.
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Proof. The estimate (3.3.4) proves that

E |νk (Pz`)− νk,k−1 (Pz`)| ≤ Cz 23(`−(1+δ)k) (3.3.5)

with δ = c/6 when ` ≥ k. Since νn − νn,m is given by a telescopic sum,

νn(Pz`)− νn,m(Pz`) =

n∑
k=m+1

(νn,k(Pz`)− νn,k−1(Pz`)) ,

the decomposition (3.3.2) implies that

νn,k(Pz`)− νn,k−1(Pz`) = 2−(n−k)
2n−k∑
j=1

(νk(Pz`)− νk,k−1(Pz`)) . (3.3.6)

Applying (3.3.5) to each term in (3.3.6) yields

E |νn (Pz`)− νn,m (Pz`)| ≤
n∑

k=m+1

Cz 23(`−(1+δ)k) ≤ Cz 23(`−(1+δ)m).

Theorem 3.3.1 enables us to find a suitable sequence µn,mn satisfying (3.3.3).

Corollary 3.3.2. There exists a sequence mn with mn →∞ and n−mn →∞
such that

lim
n→∞

E |µn(Pz)− µn,mn(Pz)| = 0

for all z ∈ C+.

Proof. Since δ > 0, there exists a sequence mn with mn → ∞, n −mn → ∞
and n− (1 + δ)mn → −∞. By applying Theorem 3.3.1 with ` = n, we obtain

E |µn(Pz)− µn,mn(Pz)| ≤ Cz23(n−(1+δ)mn) → 0.

To finish the proof of Theorem 1.3.1, we need to show that µn,mn satisfies
the hypothesis of Proposition 2.3.1, which works exactly the same way as in
the case of the hierarchical Anderson model above. We omit the details, which
may be copied verbatim from the previous analysis.
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3.4 Proof of Localization in the Ultrametric Ensemble

In this section, we prove Theorem 1.3.2 by comparing the eigenfunctions of Hn
with the obviously localized eigenfunctions of Hn,m. Nevertheless, we again
start by considering a more general N ×N random matrix H = H̃ + V with a
potential satisfying (1.5.2) and proving an implication of local resolvent bounds
for the eigenfunction correlator

Q(x, y;W ) =
∑

λ∈σ(H)∩W

|ψλ(x)ψλ(y)|

in some mesoscopic spectral window

W =
[
E0 −N−(1−w), E0 +N−(1−w)

]
with w > 0.

Theorem 3.4.1. Let η = N−(1+`) with ` > w > 0 and let Y ⊂ {1, ..., N}.
Then, there exists a constant C <∞, depending only on CV , such that

P

(∑
y∈Y

Q(x, y;W ) >
2

π

∑
y∈Y

∫
W

|ImG(x, y;E + iη| dE +
logN

Nw

)
≤ CNw−`

for all x ∈ {1, ..., N}.

The proof of Theorem 3.4.1 is based on the following two lemmas, the first
of which is formulated in terms of the the Poisson kernel Pz defined in (3.1.3).

Lemma 3.4.2. There exists a constant C < ∞, depending only on CV , such
that

E
∑
y

|µxy| (1Wc(1W ∗ Piη)) ≤ CNη
(

1 + log
√

1 + η−2|W |2
)

for all intervals W ⊂ R and η > 0.

Proof. By spectral averaging (Lemma 3.1.1),∑
y

E |µxy|(1Wc(1W ∗ Piη)) ≤ CN
∫
Wc

(1W ∗ Piη)(λ) dλ

= CN

∫
Wc

∫
W

η

(u− v)2 + η2
du dv

= CNη

∫
η−1Wc

∫
η−1W

1

1 + (u− v)2
du dv.
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Without loss of generality, we may assume that η−1W = [−a, a], so∫
η−1Wc

∫
η−1W

1

1 + (u− v)2
du dv =

∫
η−1Wc

arctan(a− v)− arctan(v + a) dv

= 2

∫ ∞
a

arctan(v + a)− arctan(v − a) dv

since arctan v is an odd function of v. After the appropriate translations, this
last integral is

= 2 lim
R→∞

∫ R+a

R−a
arctan v dv − 2

∫ 2a

0

arctan v dv

= 2

(
2πa

2
−
∫ 2a

0

arctan v dv

)
= 2a

(π
2
− arctan(2a)

)
+ log

√
1 + 4a2.

The proof is completed by noting | arctan(x) − π/2| ≤ 1/x and inserting a =
η−1|W |/2.

The second lemma needed for the proof of Theorem 3.4.1 controls the generic
spacing between the eigenvalues of H in the interval W .

Lemma 3.4.3. Let W ⊂ R be an interval and |W | ≥ S > 0. Then, there exists
a constant C <∞, depending only on CV , such that the event

E =

{
min

λ∈σ(H)∩W
d (λ, ∂W ∪ σ(H) \ {λ}) > 2S

}
satisfies

P(Ec) ≤ CSN(1 + |W |N).

Proof. We split W into a disjoint union of adjacent intervals

W = I1 ∪ ... ∪ Ip

with |Ik| = 2S for 1 ≤ k ≤ p− 1 and |Ip| ≤ 2S, and let Ĩk denote the fattened
interval Ik + [−2S, 2S]. Then Ec can only occur if

1. Ĩk contains at least two eigenvalues of H for some 1 ≤ k ≤ p, or

2. ∂W + [−2S, 2S] contains an eigenvalue of H.
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Therefore, the Wegner and Minami estimates show that

P(Ec) ≤ P (|(∂W + [−2S, 2S]) ∩ σ(H)| ≥ 1) +

p∑
k=1

P
(∣∣∣Ĩk ∩ σ(H)

∣∣∣ ≥ 2
)

≤ CSN + Cp (SN)2 ,

and since p ≤ 2|W |/S, this proves the lemma.

Proof of Theorem 3.4.1. Let S = 8
π
η so that the event E defined in Lemma 3.4.3

satisfies
P(Ec) ≤ CNw−`.

Since the spectral measures µxy are real, we can construct the function

f(E) =
∑

λ∈σ(H)∩W

sgn [ψλ(x)ψλ(y)] Iλ(E),

where Iλ denotes the indicator function of the interval [λ− S, λ+ S]. We will
prove that on the event E we have ‖f‖∞ ≤ 1 and∑

y∈Y

|µxy|(W ) ≤ 2

π

∑
y∈Y

µxy(f ∗ Piη) +
∑
y

|µxy| (1Wc(1W ∗ Piη)) , (3.4.1)

so, since

µxy(f ∗ Piη) =

∫∫
f(E)Pλ+iη(E) dE µxy(dλ)

=

∫
f(E)

∫
PE+iη(λ)µxy(dλ) dE

≤ ‖f‖∞
∫
W

|ImG(x, y;E + iη)| dE,

the theorem follows from Lemma 3.4.2 and Markov’s inequality.
On E , the intervals Iλ are disjoint and contained in W , so |f | ≤ 1W and, in

particular, ‖f‖∞ ≤ 1. To verify (3.4.1), we note that

µxy(f ∗ Piη) = µxy (1W (f ∗ Piη)) + µxy (1Wc(f ∗ Piη))

≥
∑

λ∈σ(H)∩W

ψλ(x)ψλ(y)(f ∗ Piη)(λ)− |µxy| (1Wc(1W ∗ Piη))

on E and hence it remains only to prove that

sgn [ψλ(x)ψλ(y)] (f ∗ Piη)(λ) ≥ π

2
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for all λ ∈ σ(H) ∩W . This is based on the fact that∫
(1− Iλ(E))Pλ+iη(E) dE ≤ 2η

S
=
π

4

and hence∫
Iλ(E)Pλ+iη(E) dE ≥ π −

∫
(1− Iλ(E))Pλ+iη(E) dE ≥ 3π

4
.

If λ ∈ σ(H) ∩W with sgn [ψλ(x)ψλ(y)] = 1, it follows that

(f ∗ Piη)(λ) =

∫
f(E)Pλ+iη(E) dE

≥
∫
Iλ(E)Pλ+iη(E) dE −

∫
(1− Iλ(E))Pλ+iη(E) dE

≥ π

2
,

and similarly

(f ∗ Piη)(λ) ≤ −π
2

if sgn [ψλ(x)ψλ(y)] = −1.

The proof of the last theorem made use of the fact that the spectral measures
µxy are always real for the GOE flow. It is possible to extend this result to
models with complex off-diagonal spectral measures, such as the GUE flow, by
using the fact that

〈δy, Im (H − z)−1δx〉+ 〈δx, Im (H − z)−1δy〉 = ImG(x, y; z) + ImG(y, x; z),

but we omit these complications here.
With Theorem 3.4.1 in hand, we now turn to the proof of Theorem 1.3.2.

As in Section 3.3, we drop the normalizing constant Zn,c from the definition of
Hn. The core of this argument again consists of resolvent bounds for Gaussian
perturbations, and thus we consider the Green functions

Gn(x, y; z) = 〈δy, (Hn − z)−1δx〉, Gn,m(x, y; z) = 〈δy, (Hn,m − z)−1δx〉.

If η = 2−(1+`)n for some ` > 0, Theorem 1.5.2 proves that there exists C <∞
such that

2−k
∑

y∈Bk(x)

E |Gk (x, y;E + iη)−Gk,k−1 (x, y;E + iη)|

≤ C 2−
c
2
k
(

1 + 23((1+`)n−k)
)

= C 23(1+`)n−3(1+δ)k
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with δ = c/6 whenever k ≤ n. Iterating this result, we see that

2−n
∑
y∈Bn

E |Gn (x, y;E + iη)−Gn,m (x, y;E + iη)|

≤ 2−n
n∑

k=m+1

∑
y∈Bn

E |Gn,k (x, y;E + iη)−Gn,k−1 (x, y;E + iη)|

= 2−n
n∑

k=m+1

∑
y∈Bk(x)

E |Gk (x, y;E + iη)−Gk,k−1 (x, y;E + iη)|

≤ 2−n
n∑

k=m+1

2kC 23(1+`)n−3(1+δ)k ≤ C 2(3(1+`)−1)n 2−(3(1+δ)−1)m.

Since δ > 0, we can choose ` > 0, ε ∈ (0, 1), and w ∈ (0, `) such that

2µ := (1− ε)(3(1 + δ)− 1)− (3(1 + `)− 1)− w > 0.

Thus, setting mn = (1− ε)n and

W =
[
E − 2−(1−w)n, E + 2−(1−w)n

]
,

and using that Gn,m(x, y; z) = 0 if y /∈ Bm(x) show that∑
y∈Bn\Bmn (x)

E
∫
W

|ImGn (x, y;E + iη)| dE ≤ C 2−2µn.

Applying Markov’s inequality, we arrive at

P

 ∑
y∈Bn\Bmn (x)

∫
W

|ImGn (x, y;E + iη)| dE > 2−µn

 ≤ C 2−µn,

so Theorem 1.3.2 follows from Theorem 3.4.1, which says that∑
y∈Bn\Bmn (x)

Qn(x, y;W ) ≤
∑

y∈Bn\Bmn (x)

∫
W

|ImGn(x, y;E + iη| dE +
log 2n

2wn

with probability 1−O
(

2(w−`)n
)

.
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3.5 Localization Regime of the Rosenzweig-Porter model

Proof of Theorem 1.4.2. As N →∞, the random measure defined by

µN,0(f) =
∑

λ∈σ(H0)

f(N(λ− E0))

converges in distribution to a Poisson point process with intensity %(E0). Set-
ting zN = E0 + z/N , a simple calculation yields

µN (Pz) = ImST (zN ).

Thus, ∣∣∣E e−µN (Pz) − E e−µN,0(Pz)
∣∣∣ ≤ E |ST (zN )− S0(zN )| ≤ CN−ε/2,

which shows that the characteristic functionals of µN and µN,0 asymptotically
agree on the set {Pz : z ∈ C+} whose linear span is dense in C0. This proves
the first point.

For the second assertion, choose ` > w > 0 and µ0 > 0 such that

3`+ w + 2µ0 ≤ ε/2.

Since G0(x, y; z) = 0 for x 6= y, Theorem 1.5.2 shows that with η = N−(1+`)

we have

E
∑
y 6=x

∫
W

|ImGT (x, y;E + iη)| dE ≤ C|W |NN−ε/2(ηN)−3

≤ CNw+3`−ε/2 ≤ N−2µ0 .

By Markov’s inequality,

P

∑
y 6=x

∫
W

|ImGT (x, y;E + iη)| dE ≥ N−µ0

 ≤ CN−µ0

so choosing 0 < µ < min{w, µ0} and κ = min{w− `, µ0}, Theorem 3.4.1 shows
that

P

∑
y 6=x

QN (x, y;W ) > N−µ

 ≤ CN−κ.
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4 Non-Ergodic Delocalization in the Rosenzweig-Porter Model

In this chapter, we will prove Theorem 1.4.3. Throughout, we will fix the time
T = N−1+δ from the statement of Theorem 1.4.3. and a spectral domain of
the form

D = W + i[η, 1]

where W ⊂ R is a bounded interval and η = N−1+α is a spectral scale whose
parameter α > 0 is fixed but may be arbitrarily small. To simplify the exposi-
tion, we will assume that V is a deterministic potential, which possesses some
regularity that will be expressed in terms of the resolvent-like functionals

FI(z) =
1

N

∑
Vx /∈I

1

Vx − z
,

where I ⊂ R is a possibly empty interval. Notice that F∅(z) = N−1∑
x(Vx −

z)−1 coincides with the Stieltjes transform of the empirical eigenvalue measure
of V .

Assumption 4.0.1. There exist ε > 0 and constants Km,K`,Ki ∈ (0,∞)
such that

1. |F∅(z)| ≤ Km logN uniformly in Im z > η,

2. ImF∅(z) ≥ Kl uniformly in z ∈ C+ with dist(z,D) ≤ ε, and,

3. if z ∈ D with Im z > KlT/2 and I ⊂W is an interval with Re z ∈ I and
dist(Re z, ∂I) > N−1+κ for some κ > δ, then

ImFI(z) ≤ Ki
Im z

N−1+κ
+N−δ/4.

If the entries Vx are drawn independently from a compactly supported density
% ∈ L∞, we will show in Section 4.3 that Assumption 4.0.1 is satisfied with
overwhelming probability for any interval W on which % is bounded below. The
restriction of the conclusion of Theorem 1.4.3 to the states in W is then only
a mild condition since % coincides with the asymptotic density of states of HT
(Theorem 1.5.1) and hence one expects that the majority of σ(HT ) typically
lies in supp %.

4.1 Characteristic Curves

In this section, we study the properties of the characteristic curve

żt = −St(zt), z0 = z (4.1.1)
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of the transport equation (1.5.3). However, it is technically more convenient to
consider instead the process

ξt(z) = zt∧τz

which is stopped at
τz = {inf t > 0 : Im zt ≤ η/2}.

Regarding Rt(ξt(z)) as a function of the processes {Buv(t)} and ξt(z), Itô’s
lemma shows that

dGt(x, ξt(z)) =
1

N

∑
u≤v

〈δx, Rt(ξt(z))PuvRt(ξt(z))PuvRt(ξt(z))δx〉 dt

− 1√
N

∑
u≤v

〈δx, Rt(ξt(z))PuvRt(ξt(z))δx〉 dBuv(t) + ξ̇t(z)
∂

∂ξ
Gt(x, ξt(z)) dt

with

Puv =
1√

1 + δuv
(|δu〉〈δv|+ |δv〉〈δu|) .

The piecewise C1 process ξt(z) has vanishing covariation with all the Buv(t).
The calculations in the proof of Theorem 3.2.1 then show that

dGt(x, ξt(z)) =

(
St(ξt(z))

∂

∂ξ
Gt(x, ξt(z)) +

1

2N

∂2

∂ξ2
Gt(x, ξt(z))

)
dt

+ ξ̇t(z)
∂

∂ξ
Gt(x, ξt(z)) dt+ dMt(x, z)

with

dMt(x, z) = − 1√
N

∑
u≤v

〈δx, Rt(ξt(z))PuvRt(ξt(z))δx〉 dBuv(t). (4.1.2)

If τ is any stopping time such that τ ≤ τz almost surely, (4.1.1) yields

Gτ (x, ξτ (z))−G0(x, z) =

∫ τ

0

1

2N

∂2

∂ξ2
Gt(x, ξt(z)) dt

− 1√
N

∑
u≤v

∫ τ

0

〈δx, Rt(ξt(z))PuvRt(ξt(z))δx〉 dBuv(t)

(4.1.3)

for the change in the local resolvent along the characteristic curve.
Our next goal is to show that with high probability the change in St along

the curve ξt(z) is small for a sufficiently dense set of initial points z. Let

D̃ ⊂ {z ∈ C+ : Im z > η}

68



be some finite set. The next theorem bounds the probability of the event

AS =

{
sup
z∈D̃

sup
t≤τz
|St(ξt(z))− S0(z)| > 4√

Nη

}
,

showing that with high probability St(ξt(z)) is approximately constant if |D̃|
grows only polynomially in N . In the statement of the theorem, and through-
out, C, c ∈ (0,∞) denote deterministic constants that are independent of N
but whose value may change from instance to instance.

Theorem 4.1.1. For every z ∈ C+ with Im z > η we have

P
(

sup
t≤τz
|St(ξt(z))− S0(z)| > 4√

Nη

)
≤ 2e−

1
2
Nη (4.1.4)

and therefore P (AS) ≤ C|D̃|e−
1
2
Nη.

Proof. By averaging (4.1.3) over all x, we see that the process

S̃t = St∧τz (ξt(z))

satisfies

S̃t − S̃0 =

∫ t∧τz

0

1

2N

∂2

∂ξ2
Ss(ξs(z)) ds

− 1√
N3

∑
x

∑
u≤v

∫ t∧τz

0

〈δx, Rs(ξs(z))PuvRs(ξs(z))δx〉 dBuv(s).

The drift component of S̃ is bounded by∫ t∧τz

0

1

2N

∣∣∣∣ ∂2

∂ξ2
Ss(ξs(z))

∣∣∣∣ ds ≤ 1

N

∫ t∧τz

0

ImSs(ξs(z))

(Im ξs(z))2
ds

=
1

N

∫ t∧τz

0

−d(Im ξs(z))

(Im ξs(z))2

=
1

N Im ξt(z)
− 1

N Im z
≤ 2

Nη
.

The martingale part of S̃ is given by

Mt = − 1√
N3

∑
x

∑
u≤v

∫ t∧τz

0

〈δx, Rs(ξs(z))PuvRs(ξs(z))δx〉 dBuv(s)

= − 1√
N3

∑
u,v

√
1 + δuv

∫ t∧τz

0

〈δv, Rs(ξs(z))2δu〉 dBuv(s) .
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Its quadratic variation may be expressed as

[M ]t ≤
2

N3

∫ t∧τz

0

∑
u,v

∣∣〈δv, Rs(ξs(z))2δu〉
∣∣2 ds

≤ 2

N2

∫ t∧τz

0

ImSs(ξs(z))

(Im ξs(z))3
ds.

=
1

N2

∫ t∧τz

0

−2

(Im ξs(z))3
d(Im ξs(z))

=
1

(N Im ξt(z))2
− 1

(N Im z)2
≤ 4

(Nη)2
.

It follows that there exists a Brownian motion B̃ such that

sup
t
|S̃t − S̃0| ≤ sup

t

(
2

Nη
+
∣∣∣B̃[M ]t

∣∣∣) ≤ 2√
Nη

+ sup
t≤4/(Nη)2

|B̃t|.

Applying the reflection principle to B̃ we obtain (4.1.4) and the second assertion
follows from the union bound.

Once we know that St(ξt(z)) is approximately constant, this term can be
inserted into integrals involving ξt(z) more or less at will, and the substitution
trick from Theorem 4.1.1 gives bounds improving on the trivial bound by a
factor of η. We illustrate this in the following corollary, which will prove useful
in extending our method to the local resolvents.

Corollary 4.1.2. If AS does not occur, then∫ t∧τz

0

1

(Im ξs(z))2
ds ≤ 4

Klη

for all t > 0 and z ∈ D ∩ D̃.

Proof. If AS does not occur and z ∈ D ∩ D̃, then for sufficiently large N

inf
s≤t∧τz

ImSs(ξs(z)) ≥ ImS0(z)− 4√
Nη
≥ Kl

2

where Kl is the lower bound from Assumption 4.0.1. Hence,∫ t∧τz

0

1

(Im ξs(z))2
ds ≤ 2

Kl

∫ t∧τz

0

ImSs(ξs(z))

(Im ξs(z))2
ds

=
2

Kl

∫ t∧τz

0

d(Im ξs(z))

(Im ξs(z))2
≤ 4

Klη
.
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The Picard-Lindelöf theorem and the Herglotz property of Ss imply that,
almost surely, for every z ∈ D there exists a w ∈ C+ with ξT (w) = z satisfying
the a-priori deterministic bound

|w − z| ≤
∫ T

0

|Ss(ξs(w))| ds ≤ T

η
.

In order for Theorem 4.1.1 to be useful in the study of the function ST , we
need to guarantee that a sufficiently dense subset of D is of the form ξT (w)
with w ∈ D̃. To this end, we define the distance

r = min
{
KTη2, N−2θη3, N−(1+2γ)η3

}
, (4.1.5)

where

K = sup
Im z>η

|S0(z)|+ 4√
Nη
≤ C logN, (4.1.6)

and γ, θ > 0 are the parameters from the statement of Theorem 1.4.3. We now
require D̃ to be such that

dist(z, D̃) ≤ r
for all z ∈ C+ with Im z > η and dist(z,D) ≤ T/η. The grid D̃ can hence be
chosen such that its cardinality is bounded by

|D̃| ≤ C(ηr)−2.

The following theorem provides a Lipschitz constant for the characteristic flow
which grows only polynomially in η. The resulting bound is a significant im-
provement on the exponential bound provided by the direct application of
Grönwall’s inequality and enables us to keep the cardinality of D̃ polynomial
in N .

Theorem 4.1.3. Suppose AS does not occur and N is sufficiently large. Then
for every z ∈ D there exists w ∈ D̃ such that:

1. |ξT (w)− z| ≤ Cη−2r,

2. |w − z| ≤ CKT with K as in (4.1.6), and

3. Imw ≥ 1
2
KlT with Kl defined in Assumption 4.0.1.

Proof. By the construction of D̃, for any z ∈ D there exist w0 ∈ C+ with
ξT (w0) = z and w ∈ D̃ with |w−w0| ≤ r. If t ≤ τw0 ∧ τw, the evolution (4.1.1)
yields

|ξt(w0)− ξt(w)| ≤ |w0 − w|+
∫ t

0

|Ss(ξs(w0))− Ss(ξs(w))| ds

≤ |w0 − w|+
1

N

∫ t

0

∑
i

|ξs(w0)− ξs(w)|
|λi(s)− ξs(w0)||λi(s)− ξs(w)| ds.
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Using the inequality ab ≤ 1
2
(a2 + b2), the integral in the last term is bounded

by

1

2

∫ t

0

|ξs(w0)− ξs(w)| 1

N

∑
i

(
1

|λi(s)− ξs(w0)|2 +
1

|λi(s)− ξs(w)|2

)
ds

≤ 1

2

∫ t

0

|ξs(w0)− ξs(w)|
(

ImSs(ξs(w0))

Im ξs(w0)
+

ImSs(ξs(w))

Im ξs(w)

)
ds

so Grönwall’s inequality shows that

log
|ξt(w0)− ξt(w)|
|w0 − w|

≤ 1

2

∫ t

0

ImSs(ξs(w0))

Im ξs(w0)
+

ImSs(ξs(w))

Im ξs(w)
ds

= −1

2

∫ t

0

d(Im ξs(w0))

Im ξs(w0)
− 1

2

∫ t

0

d(Im ξs(w))

Im ξs(w)

= log

√
Imw0

Im ξt(w0)

Imw

Im ξt(w)
.

Thus, using Imw ≤ Imw0 + r, Imw0 ≤ 1 + Tη−1 ≤ cη−1, and the stopping
rules, we obtain

|ξt(w0)− ξt(w)| ≤ Cη−2|w0 − w| ≤ Cη−2r (4.1.7)

for all t ≤ τw0 ∧ τw. Since Im ξT (w0) = z and Im ξt(w0) is decreasing, τw0 > T ,
so (4.1.7) and the definition of r shows that for sufficiently large N we have
|ξt(w0)− ξt(w)| ≤ η/4 for all t ≤ T ∧ τw. If it were true that τw < T , we would
obtain the contradiction

η

2
= Im ξτw (w) ≥ Im ξτw (w0)− η

4
≥ η − η

4
.

Hence (4.1.7) is valid for t = T , establishing the first claim of the theorem. If
AS does not occur, then

|ξT (w)− w| ≤
∫ T

0

|Ss(ξs(w))| ds ≤
∫ T

0

|S0(w)|+ 4√
Nη

ds ≤ KT

since w ∈ D̃. Hence the definition of r and (4.1.7) yield

|w − z| ≤ |w − ξT (w)|+ |ξT (w)− z| ≤ KT + CKT = CKT.

proving the second claim of the theorem. The second claim also implies that
dist(w,D) ≤ ε for sufficiently large N so that Assumption 4.0.1 guarantees
ImS0(w) ≥ Kl. On the complement of AS this yields

Imw = Im ξT (w) +

∫ T

0

ImSs(ξs(w)) ds ≥ T
(

ImS0(w)− 4√
Nη

)
≥ KlT

2

for sufficiently large N .
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4.2 Local Resolvent Bounds

Since St(z) is entirely featureless regarding a possible localization transition
when Im z � N−1, we now turn our attention to controlling the local resolvents
Gt(x, z) along the characteristic ξt(z). Unlike St, the function Gt(x, ·) may be
heavily concentrated around certain energies in non-ergodic regimes. Therefore,
its derivative may be large in all directions and we cannot expect an exact
analogue of Theorem 4.1.1 to hold true for all energies. However, one may hope
that the change in Gt(x, z) along the characteristic is small in those regions
where Gt(x, z) itself is small. We encode this phenomenon in the event

AG(`) =

{
sup
x

sup
z∈D∩D̃

sup
s≤τz

ImGs(x, ξs(z))

ImG0(x, z)
> N `

}
,

whose probability does in fact decay as N →∞. The proof is somewhat remi-
niscent of a Grönwall-type argument for martingales, which is greatly facilitated
by the built-in control of the running maximum. Still, the basic mechanism be-
hind the following argument is somewhat different from the stochastic Grönwall
lemmas that previously appeared in [81,88].

Theorem 4.2.1. For every ` > 0 and p > 0 we have

P (AG(`)) ≤ N−p

for all sufficiently large N .

Proof. Fix z ∈ D ∩ D̃ and consider the stopping time

τ = τz ∧ inf

{
t ≥ 0 :

∫ t∧τz

0

1

(Im ξs(z))2
ds ≥ 5

Klη

}
,

where Kl is the lower bound from Assumption 4.0.1. As in Theorem 4.1.1, the
stopped process G̃t = Gt∧τ (x, ξt∧τ (z)) satisfies

G̃t − G̃0 =

∫ t∧τ

0

1

2N

∂2

∂ξ2
Gs(x, ξs(z)) ds

− 1√
N

∑
u≤v

∫ t∧τ

0

〈δx, Rs(ξs(z))PuvRs(ξs(z))δx〉 dBuv(s).

The drift component of G̃ is bounded by∫ t∧τ

0

1

2N

∣∣∣∣ ∂2

∂ξ2
Gs(x, ξs(z))

∣∣∣∣ ds ≤ (sup
s≤T

Im G̃s

)∫ T∧τ

0

1

N(Im ξs(z))2
ds

≤ 5

KlNη

(
sup
s≤T

Im G̃s

)
,
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and, letting M denote the martingale part of G̃, its quadratic variation is
bounded as follows,

[M ]T ≤
2

N

∫ T∧τ

0

∑
u,v

|〈δx, Rs(ξs(z))δu〉〈δv, Rs(ξs(z))δx〉|2 ds

=
2

N

∫ T∧τ

0

(∑
u

|〈δx, Rs(ξs(z))δu〉|2
)(∑

v

|〈δv, Rs(ξs(z))δx〉|2
)
ds

=
2

N

∫ T∧τ

0

(
ImGs(x, ξs(z))

Im ξs(z)

)2

ds

≤
(

sup
s≤T∧τ

ImGs(x, ξs(z))

)2 ∫ T∧τ

0

2

N(Im ξs(z))2
ds

≤ 10

KlNη

(
sup
s≤T

Im G̃s

)2

.

Hence,

sup
s≤T

Im G̃s ≤ Im G̃0 +
5

KlNη
sup
s≤T

Im G̃s + sup
s≤T
|Ms|

so the Burkholder-Davis-Gundy inequality (with exponent q > 0 and constant
Cq) yields(

1− 5

KlNη

)(
E
∣∣∣∣sup
s≤T

Im G̃s

∣∣∣∣q)1/q

≤ Im G̃0 +

(
E
∣∣∣∣sup
s≤T
|Ms|

∣∣∣∣q)1/q

≤ Im G̃0 + Cq
(
E [M ]

q/2
T

)1/q

≤ Im G̃0 + Cq

√
10

KlNη

(
E
∣∣∣∣sup
s≤T

Im G̃s

∣∣∣∣q)1/q

.

Since Nη →∞, we can choose N large enough such that (1+Cq)
√

10
KlNη

< 1/2.

Rearranging and applying Markov’s inequality shows

P
(

sup
s≤T∧τ

ImGs(x, ξs(z)) > 4N `ImG0(x, z)

)
≤ N−`q.

By Corollary 4.1.2, τ = τz on the event AS and we conclude that

P
(

sup
s≤T∧τz

ImGs(x, ξs(z)) > 4N `ImG0(x, z)

)
≤ N−`q + P(AS),

so, choosing q large enough, the theorem follows from the union bound.
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To prove Theorem 1.4.3, it remains only to combine the previous results with
the fact that GT (x, ·) is the Stieltjes transform of the spectral measure at x.

Proof of Theorem 1.4.3. We now specify the parameters α, γ, ` > 0 occuring
in the spectral scale η = N−1+α, the definition of r in (4.1.5), and the event
AG(`) of Theorem 4.2.1 by requiring that

α+ `+ δ < κ, α+ ` < δ/4, γ < κ− (α+ `+ δ).

Suppose that neither of the eventsAS ,AG(`) of Theorems 4.1.1 and 4.2.1 occur,
which is the case with probability 1−N−p provided N is sufficiently large. For
every λ ∈ σ(HT ) ∩W ,∑
x∈Xλ

|ψλ(x)|2 ≤
∑
x∈Xλ

∑
E∈σ(HT )

η2

(E − λ)2 + η2
|ψE(x)|2 = η

∑
x∈Xλ

ImGT (x, z)

with z = λ+ iη. By Theorem 4.1.3, there exists w ∈ D̃ is such that |w − z| ≤
CKT , Imw > KlT/2, and |ξT (w) − z| ≤ CηN−(1+2γ). Hence, for sufficiently
large N ,

Rew ∈ I := 1{|Vx − λ| > N−1+κ}
and dist(Rew, ∂I) > 1

2
N−1+κ. Using Assumption 4.0.1 and the η−2-Lipschitz

continuity of GT (x, z), this yields∑
x∈Xλ

|ψλ(x)|2 ≤ η
∑
x∈Xλ

ImGT (x, ξT (w)) + CN−2γ

≤ ηN `
∑
x∈Xλ

ImG0(x,w) + CN−2γ

= Nα+` ImFI(w) + CN−2γ

≤ CNα+`

(
Imw

N−1+κ
+N−δ/4

)
+ CN−2γ .

Since Imw ≤ η + KT ≤ CN−1+δ logN , the last term is bounded by N−γ if
and N is large enough, proving the first claim of the theorem.

If, in addition, we require that α+ ` < δ− θ, the second claim follows by the
same token. Combining the Lipschitz continuity of GT (x, z) with |ξT (w)−z| ≤
CηN−2θ, we obtain

|ψλ(x)|2 ≤ η ImGT (x, λ+ iη)

≤ η ImGT (x, ξT (w)) + CN−2θ

≤ ηN ` ImG0(x,w) + CN−2θ

≤ CNα+`−δ + CN−2θ ≤ N−θ

since Imw > KlT/2.
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4.3 Regularity Estimates for Random Potentials

This section is devoted to the verification of Assumption 4.0.1 in the case that
the {Vx} are drawn independently from a compactly supported density % ∈ L∞.
We will assume that % is bounded below in a neighborhood of W , i.e. there
exists ε > 0 such that

inf
v∈W (ε)

%(v) > 0

with W (ε) = W + [−ε, ε]. We start by proving a concentration inequality in
the spirit of Cramér’s theorem for FI , which is uniform in spectral domains of
the form

D(J, ζ) = {z ∈ C+ : Re z ∈ J, ζ ≤ Im z ≤ 1} .

Theorem 4.3.1. Let I ⊂ R and let J ⊂ R be bounded. Then

P

(
sup

z∈D(J,ζ)

|ImFI(z)− E ImFI(z)| > µ

)
≤ C|J |µ−2ζ−4e−cµ

√
Nζ

for all µ > 0.

Proof. Let z = α+ iβ. Performing the substitution v = (ṽ−α)/β and denoting
the indicator of R \ I by χ, we obtain

E etImFI (z) =

(
β

∫
%(α+ βv) exp

(
t

Nβ
χ(α+ βv)

1

1 + v2

)
dv

)N
≤

(
1 +

tE ImFI(z)

N
+
t2‖%‖∞
N2β

∫ (
1

1 + v2

)2

exp

(
t

Nβ

1

1 + v2

)
dv

)N
by Taylor’s theorem. We choose t =

√
Nβ. Since (1 + v2)−2 ∈ L1 and

t

Nβ

1

1 + v2
≤
√

2,

there exists an absolute constant C <∞ such that

E etImFI (z) ≤

(
1 +

tE ImFI(z)

N
+ C

(
t

Nβ

)2

β

)N

≤ exp

(
N

(
tE ImFI(z)

N
+ C

(
t

Nβ

)2

β

))

= exp(tE ImFI(z)) exp

(
Ct2

Nβ

)
.
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Using an exponential Chebyshev argument, we conclude that

P (ImFI(z) ≥ E ImFI(z) + µ) ≤ e−t(E ImFI (z)+µ)E etImFI (z)

≤ e−tµ exp

(
Ct2

Nβ

)
≤ C e−cµ

√
Nζ .

The proof of the lower bound works the same way. Replacing the previous
Chebyshev bound with

P (ImFI(z) ≤ E ImFI(z)− µ) ≤ e−t(E ImFI (z)−µ)E e−tImFI (z),

yields that for every fixed z ∈ D(J, ζ)

P (|ImFI(z)− E ImFI(z)| > µ) ≤ C e−cµ
√
Nζ .

Since D(J, ζ) is bounded, there exists a set of at most C|J |µ−2ζ−4 points

{zk} ⊂ D(J, ζ) such that for every z ∈ D(J, ζ) there exists k with |z−zk| ≤ µζ2

12
.

By the union bound,

P
(

sup
k
|ImFI(zk)− E ImFI(zk)| > µ

3

)
≤ C|J |µ−2ζ−4e−cµ

√
Nζ .

But ImFI and E ImFI are (2/ζ)2-Lipschitz continuous in D(J, ζ) and thus

|ImFI(z)− E ImFI(z)| ≤ |ImFI(z)− ImFI(zk)|+ |ImFI(zk)− E ImFI(zk)|
+ |E ImFI(zk)− E ImFI(z)| ≤ µ,

extending the bound to all z ∈ D(J, ζ).

Since % was assumed to be bounded below in W (ε), the corresponding lower
bound for ImF∅ in the ε-fattening of the original spectral domain D follows
immediately, proving the second point in Assumption 4.0.1.

Corollary 4.3.2. There exists Kl ∈ (0,∞) such that

P
(

inf
dist(z,D)≤ε

ImF∅(z) < Kl

)
≤ Cη−4e−c

√
Nη.

Next, we combine the previous estimates with a standard argument for the
Hilbert transform to produce a logarithmic bound for |F∅|, proving the first
point in Assumption 4.0.1.

Corollary 4.3.3. There exists Km ∈ (0,∞) such that

P
(

sup
Im z>η

|F∅(z)| > Km +Km log
(
1 + η−2)) ≤ Cη−4e−c

√
Nη.
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Proof. Using that % is compactly supported and the trivial estimate

ImS0(z) ≤ 1

dist(z, supp %)

Theorem 4.3.1 with J = supp % + [−1, 1] and ζ = η/2 shows that there exist
C, c,Km ∈ (0,∞) such that

P

(
sup

Im z> η
2

ImS0(z) > Km

)
≤ Cη−4e−c

√
Nη.

Letting

Qz =
1

π

t− Re z

(t− Re z)2 + (Im z)2

be the conjugate Poisson kernel and writing z = α+ i(β/2), we see that on the
complement of this event

ReS0(α+ iβ) =

∫
ImS0 (t− z)Q

i β
2

(t) dt

=

∫
[−1,1]

ImS0 (t− z)Q
i β
2

(t) dt+

∫
R\[−1,1]

ImS0 (t− z)Q
i β
2

(t) dt

≤ Km
1

π

∫ 1

−1

|t|
t2 + β2

dt+
1

π

∫
ImS0

(
t+ i

β

2

)
dt

≤ Km log
(
1 + β−2)+ 1.

Finally, we use an entropy argument to prove the third point of Assump-
tion 4.0.1. Let {Ik} be a collection of at most CN adjacent intervals covering
W (ε) with |Ik| = 1

4
N−1+κ and set

Jk = Ik−1 ∪ Ik ∪ Ik+1.

We prove the desired inequality on the event

⋃
k

{
sup

z∈D(J,ζ)

ImFJk (z)− E ImFJk (z) ≤ N−δ/4
}

with J = W (ε) and ζ = KlT/2. By Theorem 4.3.1, the probability of this
event is close to one since Nδ/4 � Nδ/2 =

√
NT . Now let I ⊂ W and z ∈ D

be such that Re z ∈ I and dist(Re z, ∂I) > 1
2
N−1+κ. Then there exists k such

that Re z ∈ Ik and Jk ⊂ I, so that

ImFI(z) ≤ ImFJk (z) ≤ E ImFJk (z) +N−δ/4.
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But dist(Re z, ∂Jk) ≥ 1
4
N−1+κ and hence

EFJk (z) =

∫
R\Jk

Im z

(v − Re z)2 + (Im z)2
%(v) dv ≤ Ki

Im z

N−1+κ
.
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2015.

[3] M. Aizenman, R. Sims, and S. Warzel. Stability of the absolutely contin-
uous spectrum of random Schrödinger operators on tree graphs. Probab.
Theory Related Fields, 136(3):363–394, 2006.

[4] M. Aizenman and S. Warzel. The canopy graph and level statistics for
random operators on trees. Math. Phys. Anal. Geom., 9(4):291–333 (2007),
2006.

[5] M. Aizenman and S. Warzel. On the ubiquity of the Cauchy distribution
in spectral problems. Probab. Theory Related Fields, 163(1-2):61–87, 2015.

[6] M. Aizenman and S. Warzel. Random operators: Disorder effects on quan-
tum spectra and dynamics, volume 168 of Graduate Studies in Mathemat-
ics. American Mathematical Society, Providence, RI, 2015.

[7] B. L. Altshuler, E. Cuevas, L. B. Ioffe, and V. E. Kravtsov. Nonergodic
phases in strongly disordered random regular graphs. Phys. Rev. Lett.,
117:156601, Oct 2016.

[8] M. Amini. Spread of wave packets in disordered hierarchical lattices. EPL
(Europhysics Letters), 117(3):30003, 2017.

[9] G. W. Anderson, A. Guionnet, and O. Zeitouni. An introduction to ran-
dom matrices, volume 118 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2010.

[10] P. W. Anderson. Absence of diffusion in certain random lattices. Phys.
Rev., 109:1492–1505, Mar 1958.

[11] Z. D. Bai and Y. Q. Yin. Necessary and sufficient conditions for almost sure
convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab.,
16(4):1729–1741, 1988.

[12] R. Bauerschmidt, J. Huang, A. Knowles, and H.-T. Yau. Bulk eigenvalue
statistics for random regular graphs. Ann. Probab., 45(6A):3626–3663,
2017.

80



[13] R. Bauerschmidt, A. Knowles, and H.-T. Yau. Local semicircle law for
random regular graphs. Comm. Pure Appl. Math., 70(10):1898–1960, 2017.

[14] L. Benigni. Eigenvectors distribution and quantum unique ergodicity for
deformed Wigner matrices. Preprint available at arXiv:1711.07103, 2017.

[15] P. Biane. Processes with free increments. Math. Z., 227(1):143–174, 1998.

[16] G. Biroli, A. C. Ribeiro-Teixera, and M. Tarzia. Difference between
level statistics, ergodicity and localization transitions on the Bethe lat-
tice. Preprint available at arXiv:1211.7334.

[17] P. M. Bleher and J. G. Sinai. Investigation of the critical point in models of
the type of Dyson’s hierarchical models. Comm. Math. Phys., 33(1):23–42,
1973.

[18] P. M. Bleher and Y. G. Sinai. Critical indices for Dyson’s asymptotically-
hierarchical models. Comm. Math. Phys., 45(3):247–278, 1975.
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[51] K. Gawȩdzki and A. Kupiainen. Renormalization group study of a critical
lattice model. I. Convergence to the line of fixed points. Comm. Math.
Phys., 82(3):407–433, 1981/82.
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