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Abstract

This thesis deals with optimal control problems (“OCP”) concerning differential
equations with hysteresis, in particular, with application of the dynamic program-
ming method (“DPM”) in the case of partial differential equations with hysteresis.
The first main part of the thesis focusses on the semilinear case of a heat equation
with pointwise applied Play operator. As the solution operator of that equation
is hard to handle, we consider different simplifications. First, we replace the Play
operator with some regularization, which yields an OCP that can be treated with
known methods. Subsequently, we reduce the number of components of the hystere-
sis variable to finitely many, by consideration of suitable averiges over subsets of the
domain. This leads to an abstract problem with hysteresis that can be treated with
adapted methods of known results from DPM theory. Further, we show that the
considered averiges form a good approximation of the original problem by proving
some convergence result. After that, we go into the dicrete DPM by means of some
time discretization. The last two sections deal with problems including the time
derivative of a Play type hysteresis. We first focus on the treatment of the hysteresis
variable and discuss this with the help of some ode model problem. After that, we
use this insight to treat a problem belonging to some quasilinear pde with hysteresis.
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1. OPTIMAL CONTROL THEORY

1 Optimal control theory

The goal of optimal control theory is to control some process with minimal effort.
Further, it is realistic that there are restrictions on the set of controls, for example
due to technical realizability. As we will restrict to mathematical analysis rather
than modelling of real systems later, we also restrict ourselfes to some mathematical
aspects of the theory in this introduction.

1.1 Some examples of control problems

Let us, as an introduction, consider a dynamical system of the form

ẏ = f(y, α), y(0) = y0,

where the control variable α is, for each t > 0, allowed to take values in a set A ⊂ R,
and y(t) ∈ R, f : R2 → R. Thus, for fixed initial value, the solution would depend
only on the control, which will be indicated by yα. A typical functional would be

J(y, α) :=

∫ T

0

(yα(t))2 + (α(t))2 dt,

meaning that by looking for some minimal value of J , we would aim for some efficient
control ᾱ for which yᾱ is kept small, in some sense. As we only consider trajectories
on some interval [0, T ] of bounded length, a control problem corresponding to such
type of functional is called a finite horizon problem. There are also problems with
other types of functionals, such as

J∗(y, α) :=

∫ ∞
0

e−λt
(
(yα(t))2 + (α(t))2) dt.

Here, λ ≥ 0 is a so called discount factor. Problems with such types of functionals
are called infinite horizon problems, as the whole trajectory has to be considered
in the minimization process. Corresponding to the optimal control ᾱ (if it exists),
there is the optimal value of the functional J(yᾱ, ᾱ) (resp. J∗(yᾱ, ᾱ)). It may vary
with the initial value, so that we can define the so called (optimal) value function
via

V (y0) := J(yy0,ᾱ, ᾱ).

The dynamic programming method, introduced in the next section, has its focus
on how to characterize the optimal value function, which then, in a way, solves
simultaneously multiple optimal control problems. Of course, much more complex
dynamical systems can be considered in optimal control theory, such as optimal
heating processes, optimal chemical synthesis, population dynamics etc., see [2], [3]
and many others.
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1. OPTIMAL CONTROL THEORY

1.2 The dynamic programming method

For this introduction, we will consider our simple system from section 1.1. Assume
that for every initial value y0, there exists an optimal control ᾱ. Then, by definition,

V (y0) =

∫ ∞
0

e−λt
(
(yy0,ᾱ(t))2 + (ᾱ(t))2) dt.

Since y meets a semigroup property of the form

yyy0,ᾱ(t),ᾱ(t+·)(s) = yy0,ᾱ(t+ s), t, s > 0,

we can derive

V (y0) =

∫ T

0

e−λt
(
(yy0,ᾱ(t))2 + (ᾱ(t))2) dt+ e−λTV (yy0,ᾱ(T ))

= inf
α

{∫ T

0

e−λt
(
(yy0,α(t))2 + (α(t))2) dt+ e−λTV (yy0,α(T ))

}
,

the so called dynamic programming principle (DPP) (sometimes also refered
to as “Bellman’s principle of optimality”). If V is differentiable at y0, this implies
that

λV (y0) + sup
a∈A

{
−f(y0, a) ·DV (y0)− y2

0 − a2
}

= 0,

which is a so called Hamilton Jacobi Bellman equation (HJB equation).
Thus, if V is everywhere differentiable, this uniquely determines the optimal value
function of the control problem. Unfortunately, even in the most simple case of
smooth data, we can not expect that V has such regularity; in fact, there are many
examples where this is not the case, see e.g. [2, chapter 6, example 1.5] for a finite
horizon problem where the value function is not everywhere differentiable. Hence,
one has to look for different types of solution concepts. It turned out that viscosity
solutions do a great job here (cf. e.g. [4]). However, when dealing with control
systems including partial differential equations, further problems occur when one
wants to apply the dynamic programming method. This is due to the appearence of
some unbounded operator (e.g., some differential operator A of elliptic type). There
are also different approaches how to deal with those problems. In their pioneering
works, Crandall and Lions [5] used the notion of B-continuity, i.e., they introduced a
compact operator B, such that A∗B is bounded and linear, which can then be used
to define viscosity solutions for HJB equations in infinite dimensions. This method
is picked up by [2], which gave a quite general theorem for the characterization
of optimal value functions for control problems in infinite dimensions. But there
are also different approaches in the infinite dimensional setting; e.g., [6] introduced
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1. OPTIMAL CONTROL THEORY

a definition for viscosity solutions based on the regularity properties of the value
function. We will follow this approach (but adapt it to an infinite horizon problem
including hysteresis) in sections 6 and 7. Further, in section 11, we will adapt the
method of [7] to handle a control problem associated with some quasilinear p.d.e.
with hysteresis.

4



2. HYSTERESIS EFFECTS AND OPERATORS

2 Hysteresis effects and operators

In this section we briefly discuss some aspects of hysteresis, and give examples where
such phenomena may appear. Then we turn to the mathematical viewpoint and show
how some of the basic hysteresis operators may be described. In more detail, we
will discuss the Play and Stop operators, which are important examples, and whose
properties will frequently be used in later sections.

2.1 Hysteresis phenomena

A typical example where hysteresis appears is ferromagnetism (cf. [8]). Some mate-
rials, such as iron, can be magnetized if an external field is applied. As the power of
the external field is raised, more and more of the atoms will abrupt adjust to this,
until saturation effects appear. If the external field is then removed, the magnetiza-
tion of the material will be weakened; but, not all of the atoms will turn back into
their original state, so that the material remains magnetized unless an external field
of opposite polarisation is applied. This effect of “lacking behind”, described by the
following figure, is the nature of hysteresis.

A

B

Figure 1: Hysteresis loop

As described, in this example the hysteresis loop originates by the sum of small
elements, so called hysterons, which jump immediately from one level to another
when certain internal values raise, resp., fall beyond some characteristic point. In
this way, superpositions of simple hysteresis operators can create more complex
ones. This effect also explains the existence of hysteresis loops in systems describing
processes in biology (cf. [9]) or economic sciences (cf. [10]).

2.2 Some examples of hysteresis operators

One example of “simple” hysteresis operators are the above mentioned hysterons,
also called Relays. Assume that at time t0, the output value is zero, and that this
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2. HYSTERESIS EFFECTS AND OPERATORS

is kept until the input variable x(t) becomes larger than some value a1. Then, the
output jumps from zero to one. However, if the input is decreased again, the output
will not change until x < a2 for some a2 < a1. If it becomes smaller than a2, it
jumps back to zero. This definition (which is somewhat problematic, because there
is not really a “best choice” how to define when the output should jump) produces
an input output diagram of the following form:

y(t)0 a1a1a1a2a2a2

1

Figure 2: Input-output relation of Relay operator

The next example is the so called Play Operator, which has its name from the
idea that one considers the play between two mechanical elements.

x

y(t)

w(t)

Figure 3: Play between mechanical elements

As long as element one (input “y(t)”) moves in the interior of element two (output
“w(t)”), this will not change the output. This will only happen, if it touches the
boundary. So, if element two has diameter 2r, then an input-output diagram of the
form

6



2. HYSTERESIS EFFECTS AND OPERATORS

y(t)

w(t)

r
-r

Figure 4: Input-output relation of Play operator

is produced. Closely related to the Play is the so called Stop operator. If the
second element is fixed, then element one can only move inside this interval of length
2r, even if some force is applied. So, the output “e(t)” is stopped at the boundary,
producing a diagram of the form

y(t)

e(t)
r

-r

Figure 5: Input-output relation of Stop operator

Intuitively, we extract from the stop just the movement of the input while it
is in the interior of element two, whereas the play only reacts if the boundary is
moved; so we should have that the outputs sum up to the input function. This
property is shown in the next section. Further, each of those elementary hysteresis
operators can be used as building blocks for more complex ones; e.g., one might
think of superpositions of play operators with different values of r. At this point
we note that there are also various different types of hysteresis operators such as
generalised Plays, see e.g. [11].
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2. HYSTERESIS EFFECTS AND OPERATORS

2.3 Properties of the play operator

We collect some properties of the play and stop operators; those (elementary) results
are taken from [12, chapter 2.3]. From the interpretation as mechanical play, it is
clear that the extreme points of input functions play an important role for the
output. We therefore start with defining the operator on strings, and then extend
this to continuous functions.

Definition 2.1 The function fr : R× R→ R,

fr(v, w) := max {v − r,min {v + r, w}} ,

where r ≥ 0, is called update function (of the play operator).

The following simple lemma (cf. [12, lemma 2.3.1]) is useful.

Lemma 2.2 The update functions satisfy, for any rj ≥ 0, vj, wj ∈ R, j = 1, 2, the
inequality

|fr1(v1, w1)− fr2(v2, w2)| ≤ max {|v1 − v2|+ |r1 − r2| , |w1 − w2|} .

Proof: For a, b, c, d ∈ R, it is easy to see that

|max {a, b} −max {c, d}| ≤ max {|a− c| , |b− d|} ,

and the inequality holds analogously, if max is replaced by min on the left hand side.
Hence,

|fr1(v1, w1)− fr2(v2, w2)|
≤ max {|(v1 − r1)− (v2 − r2)| , |(v1 + r1)− (v2 + r2)| , |w1 − w2|} ,

which implies the assertion.

To sufficiently describe the output on the set S of all strings, we introduce the notion
of final value mappings.

Definition 2.3 Let w−1 ∈ R be the internal configuration before the operator
is applied. Define w0 := fr(s0, w−1), and iteratively, wk+1 := f(sk+1, wk). The
string w is the output of the play operator applied to s ∈ S. The final value
mapping corresponding to the play operator on the set of strings is then defined
through
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2. HYSTERESIS EFFECTS AND OPERATORS

Fr,f (s) := wn, s = (s0, . . . , sn).

Next assume that v ∈ Cpm[0, T ], the set of all continuous functions on the interval
[0, T ] for which there exists a decomposition t0 < . . . < tn of [0, T ] such that v is
monotonic on each subinterval (ti−1, ti). Then we can define, for every t ∈ [0, T ],
the output Fr[v;w−1](t) of the play through application of its discrete version to the
string consisting of all extreme values of v on [0, t]. Hence, for such functions, the
inequality in lemma 2.2 takes the form

|Fr1 [v1;w−1,1](t)−Fr2 [v2;w−1,2](t)|

≤ max

{
|r1 − r2|+ sup

0≤τ≤t
|v1(τ)− v2(τ)| , |w−1,1 − w−1,2|

}
.

Using a density argument, we can thus define the play operator for continuous inputs.
It has the following properties.

Theorem 2.4 For any r ≥ 0, the operator Fr can be extended uniquely to a Lips-
chitz continuous operator Fr : C[0, T ]×R→ C[0, T ], and it holds, for all v, v1, v2 ∈
C[0, T ], w−1, w−1,1, w−1,2, y−1 ∈ R, for all s ≥ 0 and 0 ≤ t′ < t ≤ T ,

‖Fr[v1;w−1,1]−Fr[v2;w−1,2]‖C[0,T ] ≤ max
{
‖v1 − v2‖C[0,T ] , |w−1,1 − w−1,2|

}
,

|Fr[v, w−1](t)−Fr[v, w−1](t′)| ≤ sup
t′≤τ≤t

|v(τ)− v(t′)| ,

Fr[v;w−1] = Fr[v − w−1; 0] + w−1,

Fr[v1;w−1,1] ≤ Fr[v2;w−1,2], if v1 ≤ v2 and w−1,1 ≤ w−1,2,

Fr[Fs[v; y−1];w−1] = Fr+s[v;w−1], if |y−1 − w−1| ≤ r.

Further, it meets the semigroup property

Fr[v(t+ ·);Fr[v;w−1](t)](τ) = Fr[v;w−1](t+ τ), ∀t, τ > 0.

Proof: The semigroup property for continuous and piecewise monotone functions
follows immediately from the definition, so that the general case may be shown
using a density argument. For the other statements, we refer to [12, theorem 2.3.2].
abc

We will need the connection between play and stop operators established in the
following result.
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2. HYSTERESIS EFFECTS AND OPERATORS

Theorem 2.5 Let er : R→ R, be the update function of the stop operator, which is
defined through

er(v) := min {r,max {−r, v}} .

Then, for any w−1 ∈ R, the mapping Er,f : S → R,

Er,f (v0) = er(v0 − w−1),

Er,f (v0, . . . , vn) = er(vN − vN−1 + Er,f (v0, . . . , vN−1)),

defines a hysteresis operator Er[ · ;w−1]. It extends to a Lipschitz continuous operator
Er : C[0, T ] × R → C[0, T ] and satisfies, for all functions v, v1, v2 ∈ C[0, T ], initial
internal values w−1, w−1,1, w−1,2 ∈ R, and 0 ≤ t′ < t ≤ T , (where Er[v] := Er[v; 0] ),

‖Er[v1]− Er[v2]‖C[0,T ] ≤ 2 ‖v1 − v2‖C[0,T ] ,

|Er[v](t)− Er[v](t′)| ≤ 2 sup
t′≤τ≤t

|v(τ)− v(t′)| ,

Er[v;w−1] + Fr[v;w−1] = v,

Er[v;w−1] = Er[v − w−1],

Er[v1;w−1,1] ≤ Er[v2;w−1,2], if v1 ≤ v2 and w−1,1 ≤ w−1,2.

Further, it meets the semigroup property

Er[v(t+ ·); Er[v;w−1](t)](t) = Er[v;w−1](t+ τ) ∀t, τ > 0.

Proof: The semigroup property follows again by some density argument; for the
other statements, we refer to [12, proposition 2.3.4].

We finish this section with a result corresponding to differentiability properties of
the stop and play operators.

Proposition 2.6 Let r ≥ 0, v ∈ W 1,1(0, T ) be given, and define the sets

A± := {t ∈ [0, T ] : Er[v](t) = ±r} , A0 := {t ∈ [0, T ] : |Er[v](t)| < r} .

Then,

Er[v]′ = 0, Fr[v]′ = v′ ≥ (≤) 0, a.e. on A+ (A−),

Er[v]′ = v′, Fr[v]′ = 0 a.e. on A0.

In particular, a.e. on (0, T ),

|Fr[v]′| ≤ |v′| , |Er[v]′| ≤ |v′| .

Further, the property of piecewise monotonicity (i.e., the final value mapping Wf

fulfills vN ≥ vN−1 ⇒Wf (v0, . . . , vN−1) ≤ Wf (v0, . . . , vN)) attains the form

v′Fr[v]′ ≥ 0, v′Er[v]′ ≥ 0, a.e. on (0, T ).

10



2. HYSTERESIS EFFECTS AND OPERATORS

Proof: See [12, Lemma 2.3.8].

The latter proposition also gives rise to the representation of the Play operator via
differential inclusions, cf. [11] for more details.

2.4 Approximation of the play operator

In this and the following section, we derive regularisation results for the Play oper-
ator. We note that a similar result for the Stop operator is given in [13] via slightly
different methods. For ε > 0, we investigate the solution of the ordinary differential
equation (which is proposed in [14])

εż = G(z − u),

z(0) = z0,
(2.1)

where the function G : R→ R is defined by

G(x) := −(−x+ r)− + (−x− r)+. (2.2)

Here, r > 0, and (y)− := −min(0, y) denotes the negative part, (y)+ := max(0, y)
the positive part of y ∈ R.

Figure 6: graph of G for r=0.5

Though the solution depends on the value of the parameter ε, we will most of
the time drop the index ε to simplify notations. We make the following general
assumptions.

11



2. HYSTERESIS EFFECTS AND OPERATORS

Assumption 2.7 abc

(V1) uε → u∞ (strongly) in C[0, T ] as ε ↓ 0,

(V2) uε is bounded in H1(0, T ) as ε ↓ 0,

(V3) z0, u0 do not depend on ε > 0, and |u0 − z0| ≤ r.

Our goal is to show that in the limit ε ↓ 0, the sequence of solutions zε converges to
the output Fr[u∞; z0] of the play operator. To this end, we first need to show that
there exists a unique solution to (2.1).

Lemma 2.8 Let assumption 2.7 hold. Then there exists a unique solution to (2.1)
which is an element of H2(0, T ) and bounded w.r.t. ‖·‖C[0,T ] as ε ↓ 0.

Proof: The function s 7→ G(s) is piecewise linear with derivative not larger than
one. Hence, ∣∣∣∣1εG(x1 − y)− 1

ε
G(x2 − y)

∣∣∣∣ ≤ 1

ε
|x1 − x2| , ∀x1, x2, y ∈ R.

Since u ∈ C[0, T ], there is some constant c > 0, such that (locally in x ∈ Bδ(z0)),∣∣∣∣1εG(x− u)

∣∣∣∣ ≤ c,

and c depends only on ε, r, δ and T . By continuity, all functions appearing are also
measurable, and we can use theorem 1.4.3 and Corollary 1.4.4 of [12] to conclude
that there exists a unique local solution on (0, T ) in the sense of Carathéodory. Since
z and u are continuous as well as the function G, the solution is actually classical,
with derivative ż ∈ H1(0, T ) (as u ∈ H1(0, T )), and may be continued to the whole
interval (0, T ). Next, note that G(x)x ≤ 0 for all x ∈ R. Thus, if we multiply (2.1)
by (z − u) and then integrate, we get∫ τ

0

εż(z − u)ds =

∫ τ

0

G(z − u)(z − u)ds ≤ 0 =⇒
∫ τ

0

żzds ≤
∫ τ

0

żuds.

Using żz = 1
2
d
dt

(z2), partial integration yields

1

2
(z(τ)2 − z2

0) ≤ z(τ)u(τ)− z0u0 −
∫ τ

0

z(s)u̇(s)ds.

12



2. HYSTERESIS EFFECTS AND OPERATORS

We can estimate further by application of absolute value to the right hand side, and
Young’s inequality (lemma D.1, with p = q = 2, δ =

√
2), to get

1

2
(z(τ)2 − z2

0) ≤ 1

4
z(τ)2 + u(τ)2 + z0u0 +

1

4

∫ τ

0

z(s)2ds+

∫ τ

0

u̇(s)2ds.

Introducing

C := 2z2
0 + 4 ‖u‖2

C[0,T ] + 4 |z0u0|+ 4 ‖u‖H1(0,T ) ,

we may thus write

z(τ)2 ≤ C +

∫ τ

0

z(s)2ds.

Thanks to Gronwall’s inequality (theorem D.3), this implies

z(τ)2 ≤ Ceτ ≤ CeT , ∀τ ∈ [0, T ]. (2.3)

Noting that assumption 2.7 implies that C is bounded for ε ↓ 0, we infer from (2.3)
that ‖zε‖C[0,T ] is bounded as ε ↓ 0, which concludes the proof.

Lemma 2.9 Under assumption 2.7, there exists C > 0 independent of ε > 0, such
that

0 ≤ 1

ε2

∫ T

0

G(zε(s)− uε(s))2ds ≤ C.

Proof: Define the auxiliary function

V (t) :=
1

2
ż(t)2.

By lemma 2.8, we may apply the chain rule, in order to calculate its weak derivative.
Hence,

V̇ =żz̈ =
1

ε
G(z − u)

1

ε
G′(z − u)(ż − u̇).

According to its definition, G(x) 6= 0⇒ G′(x) = −1, so that we may infer from the
last equality,

V̇ =− 1

ε2
G(z − u)

(
1

ε
G(z − u)− u̇

)
13



2. HYSTERESIS EFFECTS AND OPERATORS

=− 1

ε3
G(z − u)2 +

1

ε2
G(z − u)u̇, a.e. (2.4)

Due to the regularity of solutions proven in lemma 2.8 and assumption 2.7, it holds
V (0) = 1

2
(G(z0 − u0))2 = 0. Integration of (2.4) now yields

0 ≤ V (t) =

∫ t

0

V̇ (s)ds = − 1

ε3

∫ t

0

G(z(s)− u(s))2ds

+
1

ε2

∫ t

0

G(z(s)− u(s))u̇(s)ds

⇒
∫ t

0

G(z(s)− u(s))2ds ≤ ε

∫ t

0

G(z(s)− u(s))u̇(s)ds.

Since the right hand side is smaller than ε ‖G(z − u)‖L2(0,t) ‖u̇‖L2(0,t), we conclude
that

0 ≤ ‖G(z − u)‖L2(0,t) ≤ ε ‖u̇‖L2(0,t) ,

for each 0 < t ≤ T , which implies the assertion.

We turn now to some problem that uniquely determines the output of the play
operator (see also [15, 16, 17]).

Problem (P0): For given r, T > 0, u ∈ C[0, T ], a0 ∈ [−r, r], find ξ ∈ CBV [0, T ],
such that:

1. u(t)− ξ(t) ∈ [−r, r], for every t ∈ [0, T ],

2. u(0)− ξ(0) = a0,

3.
∫ T

0
(u(s)− ξ(s)− y(s))dξ(s) ≥ 0, for all y ∈ C[0, T ], with ‖y‖C[0,T ] ≤ r.

The integral has to be understood in the sense of Riemann-Stieltjes.

Theorem 2.10 The unique solution to (P0) is ξ = Fr[u; ξ(0)].

Proof: Let us show that ξ = Fr[u; ξ(0)] is a solution to (P0). To this end, we only
need to check whether the third property is fulfilled, as the others are obviously
valid. We first show that 3. is equivalent to

∀[a, b] ⊂ [0, T ], ∀y ∈ C[0, T ], ‖y‖C[0,T ] ≤ r :∫ b

a

(u(s)− ξ(s)− y(s))dξ(s) ≥ 0.
(2.5)

14
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Proof of the assertion: Assume 3. holds. Choose an admissible sequence (yn)n which
fulfills

yn(t) =

{
y(t), t ∈ [a, b]

u(t)− ξ(t), t ∈ [0, T ] \ [a− 1
n
, b+ 1

n
]
.

Then

0 ≤
∫ T

0

(u(s)− ξ(s)− yn(s))dξ(s) =

∫ b

a

(u(s)− ξ(s)− y(s))dξ(s) + δ(n),

where δ(n)→ 0 as n→∞; so by taking the limit, this yields∫ b

a

(u(s)− ξ(s)− y(s))dξ(s) ≥ 0,

as claimed. The converse implication follows by simply choosing a = 0 and b = T .
Now we use (2.5) to prove the theorem. If |u−Fr[u; ξ(0)]| < r on some interval
[a, b] ⊂ [0, T ], then Fr[u; ξ(0)] is constant on that interval, and (2.5) equals zero. Else,
if |u−Fr[u; ξ(0)]| = r on some interval [c, d], then Fr[u; ξ(0)] must be monotonic
on [c, d], as well as u. But then, (2.5) holds, because both (u(s)− ξ(s)− y(s)) and
dFr[u; ξ(0)] must have the same sign. By continuity, (2.5) must be valid.

Now, assume that ξ solves (P0). If |u(s)− ξ(s)| < r, by continuity of u, ξ, there
must be some interval [a, b] ⊂ [0, T ] such that |u− ξ| < r on [a, b]. Choosing y = ±r
on [a, b], it follows that ξ must be constant on this interval. On the other hand, if
|u(s)− ξ(s)| = r on some interval [c, d], choosing y = 0, it follows that dξ must have
the same sign as u− ξ on that interval, because we would get a contradiction if this
was not the case for some subset of [c, d]. By continuity of ξ and Fr[u; ξ(0)], this
implies that both functions coincide.

Now we can use the characterization of the play operator in terms of problem (P0)
to prove convergence of zε.

Theorem 2.11 Let assumption 2.7 hold. Then zε → z∞ = Fr[u∞; ξ(0)] (strongly)
in C[0, T ] and weakly in H1(0, T ).

Proof: According to lemmata 2.8 and 2.9, for each sequence (εn)n such that εn ↓ 0
as n→∞, (zεn)n is bounded in H1(0, T ), so that we can extract a subsequence (for
simplicity also denoted by zεn) which converges both weakly in H1(0, T ) and strongly
in C[0, T ] to some z∞ (as H1(0, T ) ↪→ C[0, T ] compact, which is often referred to as
Morrey’s theorem, cf., e.g., [18, theorem 6.3, pt. II]). We show that z∞ solves (P0).
Assumption (V 3) implies 2. in (P0), and according to lemma 2.9,∫ T

0

G(zεn(s)− uεn(s))2ds ↓ 0, as n→∞,

15



2. HYSTERESIS EFFECTS AND OPERATORS

hence, z∞ − u∞ ∈ [−r, r], by definition of G. Let now y ∈ C[0, T ] be any function
such that ‖y‖C[0,T ] ≤ r. Then, since zn := zεn ∈ H1(0, T ) (denoting un := uεn):

In :=

∫ T

0

(un(s)− zn(s)− y(s))dzn(s) =

∫ T

0

(un(s)− zn(s)− y(s))żn(s)ds.

Since zn → z∞, un → u∞ strongly, and żn → ż weakly in L2(0, T ),

In
n→∞−−−→ I∞ :=

∫ T

0

(z∞(s)− u∞(s)− y(s))ż∞(s)ds.

Inserting żn = 1
εn
G(z − u) yields

In =
1

εn

∫ T

0

(un(s)− zn(s)− y(s))G(zn(s)− un(s)))ds.

The integrand is, for all n ∈ N, a nonnegative function, because

G(zn(t)− un(t))


> 0, if zn(t)− un(t) < −r
< 0, if zn(t)− un(t) > r
= 0, else.

This implies I∞ ≥ 0, and by theorem 2.10, z∞ = Fr[u∞, z0]. In particular, this
means that every subsequence has a subsequence that converges to Fr[u∞, z0], hence,
limε↓0 z

ε = Fr[u∞, z0], as claimed.

2.5 A general approximation result

In fact, one can use the procedure demonstrated in section 2.4 to prove convergence
in the case when G is replaced by some more general function F . However, the
proof and the result itself will be slightly different. Let, in the following, z denote
the solution of

εż = F (z − u),

z(0) = z0,
(2.6)

and let again assumption 2.7 hold. We will assume later that F should be Lipschitz
continuous; then, just as in the proof of lemma 2.8, one can see that there exists a
unique solution to (2.6). Next, we refine some of the results stated in section 2.3;
in fact, this will be nothing new, but just some other way of writing down how the
play operator behaves on shifted initial values.

16



2. HYSTERESIS EFFECTS AND OPERATORS

Definition 2.12 We call the function

fr,s(v, w) := max {v − r,min {v + s, w}} ,

where, r, s > 0, the update function of the nonsymmetric play operator,
which will be denoted by Fr,s.

If r = s, then we get the usual update function considered in section 2.3.

Lemma 2.13 If rj, sj ≥ 0, vj, wj ∈ R, j = 1, 2, then

|fr1,s1(v1, w1)− fr2,s2(v2, w2)|
≤ max {|v1 − v2|+ |r1 − r2|+ |s1 − s2| , |w1 − w2|} .

Proof: As noted in the proof of lemma 2.2, for all a, b, c, d ∈ R,

|min {a, b} −min {c, d}| ≤ max {|a− c| , |b− d|} ,

as well as

|max {a, b} −max {c, d}| ≤ max {|a− c| , |b− d|} .

We apply this to |fr1,s1(v1, w1)− fr2,s2(v2, w2)|, to get

|fr1,s1(v1, w1)− fr2,s2(v2, w2)| ≤
max {|v1 − r1 − v2 + r2| , |w1 − w2| , |v1 − s1 − v2 + s2|} ,

which implies the assertion.

For continuous inputs, one therefore gets

|Fr1,s1 [v1;w−1,1](t)−Fr2,s2 [v2;w−1,2](t)|

≤ max

{
|r1 − r2|+ |s1 − s2|+ sup

0≤τ≤t
|v1(τ)− v2(τ)| , |w−1,1 − w−1,2|

}
.

(2.7)

From inequality (2.7), we learn in particular, that Fr,s[v;w−1] converges uniformly
to Fl,l[v;w−1], whenever r → l and s → l. Next, we want to approximate the
nonsymmetric play operator in the manner described in section 2.4. To this end, we
introduce the functions

G(r,s),(m1,m2)(x) := m1(−x− r)+ −m2(−x+ s)−,

17



2. HYSTERESIS EFFECTS AND OPERATORS

where m1, m2, r, s > 0, and the corresponding differential equations

ż =
1

ε
G(r,s),(m1,m2)(z − u). (2.8)

Figure 7: graph of G(r,s),(m1,m2) for r=0.5, m1 = 1, s=0.7, m2 = 0.5

Similar to 2.7, we make the following assumptions.

Assumption 2.14 abc

(V1’) uε → u∞ strongly in C[0, T ] as ε ↓ 0,

(V2’) uε is bounded in H1(0, T ) as ε ↓ 0,

(V3’) z0, u0 do not depend on ε > 0, and z0 − u0 ∈ [−r, s].

For simplicity, we will again most of the time neglect the index ε. The function
G(r,s),(m1,m2) has the same continuity properties as the function G considered in
section 2.4, so that existence, uniqueness and regularity properties of solutions to
(2.8) may be proven by the same arguments as in lemma 2.8. As a next step, we
show a result similar to lemma 2.9.

Lemma 2.15 Let assumption 2.14 hold. Then there is a constant C > 0, such that

0 ≤ 1

ε2

∫ T

0

G(r,s),(m1,m2)(z − u)2ds ≤ C.

18
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Proof: Again, we define the auxiliary function

V (t) :=
1

2
ż(t)2.

We may apply the chain rule for Sobolev functions to calculate its weak derivative,
which yields

V̇ = żz̈ =
1

ε
G(r,s),(m1,m2)(z − u)

1

ε
G′(r,s),(m1,m2)(z − u)(ż − u̇)

=
1

ε3
G(r,s),(m1,m2)(z − u)2G′(r,s),(m1,m2)(z − u)

− 1

ε2
G(r,s),(m1,m2)(z − u)G′(r,s),(m1,m2)(z − u)u̇.

According to assumption (V 3′), V (0) = 0, so that

0 ≤ V (t) =

∫ t

0

V̇ (s)ds.

Further, since G′(r,s),(m1,m2) ≤ 0, we get G′ = − |G|, so that the latter implies

0 ≤
∫ t

0

G(r,s),(m1,m2)(z − u)2
∣∣G′(r,s),(m1,m2)(z − u)

∣∣ ds
≤ε
∫ t

0

G(r,s),(m1,m2)(z − u)
∣∣G′(r,s),(m1,m2)(z − u)

∣∣ u̇ds. (2.9)

Note that, by definition of G(r,s),(m1,m2),∣∣G′(r,s),(m1,m2)(z − u)
∣∣ = m1χ1(z − u) +m2χ2(z − u), a.e.,

where χ1, χ2 are suitable characteristic functions. Thus, (2.9) may be written as

m1

∫ t

0

G2
(r,s),(m1,m2)χ1ds+m2

∫ t

0

G2
(r,s),(m1,m2)χ2ds

≤ ε

∫ t

0

G(r,s),(m1,m2)u̇ (m1χ1 +m2χ2) ds.

Now assume w.l.o.g. that m1 ≥ m2, and multiply the latter inequation by 1
m2

. This
yields ∫ t

0

G2
(r,s),(m1,m2)χ1ds+

∫ t

0

G2
(r,s),(m1,m2)χ2ds

≤ m1

m2

∫ t

0

G2
(r,s),(m1,m2)χ1ds+

∫ t

0

G2
(r,s),(m1,m2)χ2ds

19



2. HYSTERESIS EFFECTS AND OPERATORS

≤ ε

∫ t

0

G(r,s),(m1,m2)u̇

(
m1

m2

χ1 + χ2

)
.

The property G(r,s),(m1,m2)(z − u) 6= 0 ⇒ χ1 + χ2 = 1, together with the Cauchy
Schwartz inequality, then yield∫ t

0

G(r,s),(m1,m2)(z − u)2ds

≤ ε

∥∥∥∥G(r,s),(m1,m2)(z − u)

(
m1

m2

χ1 + χ2

)∥∥∥∥
L2(0,t)

‖u̇‖L2(0,t)

≤ εµ
∥∥G(r,s),(m1,m2)(z − u)

∥∥
L2(0,t)

‖u̇‖L2(0,t) ,

because µ := m1

m2
≥ 1. Thus,∥∥G(r,s),(m1,m2)(z − u)

∥∥
L2(0,t)

≤ εµ ‖u̇‖L2(0,t) ,

which implies the assertion.

Theorem 2.16 Under assumption 2.14, it holds zε → Fr,s[u∞; z0] (strongly) in
C[0, T ] and weakly in H1(0, T ).

Proof: Similar to theorem 2.11. Since Fr,s is equal to some shift of Fl, with l = r+s
2

,
an analogous characterization result like theorem 2.10 is valid. Again, by assumption
2.14 and lemma 2.15,

In :=

∫ T

0

(un(s)− zn(s)− y(s)) żn(s)ds

=

∫ T

0

(un(s)− zn(s)− y(s))
1

ε
G(r,s),(m1,m2)(z

n(s)− un(s))ds

≥0,

by distinction of cases, which implies I∞ ≥ 0. Another application of lemma 2.15
shows that z∞ − u∞ ∈ [−r, s], and the result follows.

To build a bridge to equation 2.6, we need a simple well known theorem about
solutions of ordinary differential equations (compare [19, theorem 1.3]). Let{

ẋ(t) = f(t, x(t)),
x(0) = x0,

and

{
ẏ(t) = g(t, y(t)),

y(0) = y0.
(2.10)

20



2. HYSTERESIS EFFECTS AND OPERATORS

Theorem 2.17 Let x, y : [0, τ) → R be piecewise continuously differentiable solu-
tions to (2.10), with f, g such that there exists L > 0:

f(t, ξ)− g(t, η) ≥ −L |ξ − η| for all t ∈ [0, τ) and ξ, η ∈ R.

If x0 > y0, then

x(t) > y(t) for t ∈ [0, τ).

Else, if x0 ≥ y0, then

x(t) ≥ y(t) for t ∈ [0, τ).

Proof: We start with the case x0 > y0. Assume that the assertion was false. Then, by
continuity of the functions x and y, there must be some t0 > 0 such that (x−y)(t0) =
0 and (x − y)(t) > 0 for all 0 ≤ t < t0. By assumption, it holds for almost every
t ∈ [0, t0],

ẋ(t)− ẏ(t) = f(t, x(t))− g(t, y(t)) ≥ −L(x(t)− y(t)),

so that

d

dt

(
eLt (x(t)− y(t))

)
= eLt ((ẋ(t)− ẏ(t)) + L (x(t)− y(t))) ≥ 0.

But then

eLt0 (x(t0)− y(t0))− (x0 − y0) =

∫ t0

0

d

dt

(
eLt (x(t)− y(t))

)
dt ≥ 0,

which implies

x(t0)− y(t0) ≥ e−Lt0(x0 − y0) > 0,

a contradiction to (x−y)(t0) = 0, and the first part of the theorem is proven. In order
to prove the second part, we only have to check the case x0 = y0 (because otherwise,
the assertion follows by the first part of the theorem). Assume for contradiction that
there exists t1 ∈ [0, τ), such that x(t1) < y(t1). The continuity of x and y implies
that there exists some interval [t0, t1] ⊂ [0, τ) with x(t0) = y(t0) and x(t) < y(t) for
all t ∈ (t0, t1]. Since in that case, by assumption,

ẋ(t)− ẏ(t) = f(t, x(t))− g(t, y(t)) ≥ −L (y(t)− x(t)) , a.e.,

it holds for almost every t ∈ [t0, t1],

d

dt

(
e−Lt (x(t)− y(t))

)
= e−Lt ((ẋ(t)− ẏ(t))− L (x(t)− y(t))) ≥ 0.
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But this implies

e−Lt1 (x(t1)− y(t1)) =e−Lt1 (x(t1)− y(t1))− e−Lt0 (x(t0)− y(t0))

=

∫ t1

t0

d

dt

(
e−Lt (x(t)− y(t))

)
dt ≥ 0,

a contradiction to the definition of the interval [t0, t1].

Now, for given T > 0, y ∈ H1(0, T ) and λ > 0, we study the behaviour of the initial
value problems 

ż(t) = λF (z(t)− y(t)), z(0) ∈ R,

ż1(t) = λG(r1,s1),(m1,m2)(z1(t)− y(t)), z1(0) ∈ R,

ż2(t) = λG(r2,s2),(n1,n2)(z2(t)− y(t)), z2(0) ∈ R,

(2.11)

under the condition

G(r1,s1),(m1,m2)(x) ≤ F (x) ≤ G(r2,s2),(n1,n2)(x), ∀x ∈ R. (2.12)

From theorem 2.17, we infer the following result.

Corollary 2.18 Let (2.12) hold, and F be some Lipschitz continuous function. If
z1(0) ≤ z(0) ≤ z2(0), then the solutions of (2.11) fulfill

z1(t) ≤ z(t) ≤ z2(t), ∀t ∈ [0, T ].

Proof: We use the abbreviations G1 := G(r1,s1),(m1,m2), G2 := G(r2,s2),(n1,n2). Note
that G1 is Lipschitz continuous with constant L1 := max {m1,m2} and G2 is Lips-
chitz with constant L2 := max {n1, n2}; let LF denote the Lipschitz constant of F .
Existence and uniqueness of solutions to (2.11) can be shown as in lemma 2.8. Now,
(2.12) implies that

λF (ξ − y(t))− λG1(η − y(t)) ≥λ (G1(ξ − y(t))−G1(η − y(t)))

≥− λL1 |ξ − y(t)− (η − y(t))|
=− λL1 |ξ − η| ,

and thus z ≥ z1 by theorem 2.17. On the other hand, we also have

λG2(η − y(t))− λF (ξ − y(t)) ≥λ (F (η − y(t))− F (ξ − y(t))

≥− λLF |η − y(t)− (ξ − y(t))|
=− λLF |ξ − η| ,

so that z2 ≥ z by theorem 2.17, and the proof is complete.
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Now we come to the main theorem of this section.

Theorem 2.19 Let assumption 2.14 hold, and F be some Lipschitz continuous func-
tion, such that for every δ > 0, there exist Gδ

1, G
δ
2 : R→ R satisfying

Gδ
1(x) :=G(r+δ,r),(m1(δ),m2)(x) ≤ F (x),

Gδ
2(x) :=G(r,r+δ),(n1,n2(δ))(x) ≥ F (x),

for all x ∈ R, where m1(δ),m2, n1, n2(δ) > 0. Then the solutions zε of (2.6) converge
to Fr[u∞; z0], strongly in C[0, T ] as ε ↓ 0.

Proof: Let µ > 0 be arbitrary. We choose admissible initial values, i.e.,

zε1(0) = zε2(0) = zε(0) = z0 ∈ [u0 − r, u0 + r], ∀ε > 0.

Now, if ε, δ > 0 are fixed, we may apply corollary 2.18, to get zε1(t) ≤ zε(t) ≤ zε2(t),
for all t ∈ [0, T ], which implies

0 ≤ zε(t)− zε1(t) ≤ zε2(t)− zε1(t), ∀t ∈ [0, T ],

and hence,

‖zε − zε1‖C[0,T ] ≤ ‖z
ε
1 − zε2‖C[0,T ] .

We choose δ = µ
9
. By theorem 2.16, zε1 → Fr+µ/9,r[u∞; z0] and zε2 → Fr,r+µ/9[u∞; z0]

in C[0, T ] as ε ↓ 0. Further, (2.7) implies∥∥Fr+µ/9,r[u∞; z0]−Fr,r+µ/9[u∞; z0]
∥∥
C[0,T ]

≤ 2

9
µ.

Altogether, this implies that

‖zε1 − zε2‖C[0,T ] ≤
∥∥zε1 −Fr+µ/9,r[u∞; z0]

∥∥
C[0,T ]

+
∥∥zε2 −Fr,r+µ/9[u∞; z0]

∥∥
C[0,T ]

+
∥∥Fr+µ/9,r[u∞; z0]−Fr,r+µ/9[u∞; z0]

∥∥
C[0,T ]

≤µ
3
,

if ε > 0 is chosen such that the first two summands both are smaller than µ
18

. But
for those ε then holds

‖zε −Fr[u∞; z0]‖C[0,T ] ≤‖z
ε − zε1‖C[0,T ] + ‖zε1 − zε2‖C[0,T ]

+
∥∥zε2 −Fr,r+µ/9[u∞; z0]

∥∥
C[0,T ]

+
∥∥Fr,r+µ/9[u∞; z0]−Fr[u∞; z0]

∥∥
C[0,T ]

≤2 ‖zε1 − zε2‖C[0,T ] +
µ

18
+
µ

9
<µ.

As µ > 0 was arbitrary, the result follows.
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Remark 2.20 We can not conclude as in theorem 2.11, that zε converges weakly in
H1(0, T ), because from

z1 − uε ≤ zε − uε ≤ z2 − uε,

it only follows (if F is monotone)

F (z1 − uε) ≥ F (zε − uε) ≥ F (z2 − uε),

and thus, by definition,

G2(z1 − uε) ≥ F (zε − uε) ≥ G1(z2 − uε).

From this inequality, we can derive

1

ε
|F (zε − uε)| ≤ 1

ε
(|G2(z1 − uε)|+ |G1(z2 − uε)|) ,

but we do not know whether the right hand side is bounded as ε ↓ 0 or not.

2.6 Pointwise applied play operators and weak differentia-
bility

As seen in section 2.3, the play operator on strings is completely described by the
update function

fr(y, w) := max {y − r,min {y + r, w}} ,

and this can be used to completely describe the operator on the vector space Cpl[0, T ]
of continuous piecewise linear functions. Then, with some continuity arguments, one
can define the output for every input function in C[0, T ]. In later sections, when the
play operator appears in the partial differential equation, we will have pointwise, for
almost every x ∈ Ω (some open, bounded domain), a trajectory y(·, x) ∈ C[0, T ], and
the play operator applied to it, i.e., Fr[y(·, x);w0(x)]. To this end, we now change
perspectives. We start by writing the update function in another way.

Lemma 2.21 It holds

fr(y, w) =
(
y − r + (w − y − r)+ − w

)
+
− (w − y − r)+ + w.
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Proof: By distinction of cases, one easily sees that

min {y + r, w} =

{
y + r, if y + r ≤ w ⇔ w − y − r ≥ 0

w, if w ≤ y + r ⇔ w − y − r ≤ 0

=− [w − y − r]+ + w,

and

max {a, b} =

{
a, if a ≥ b⇔ a− b ≥ 0
b, if b ≥ a⇔ a− b ≤ 0

=[a− b]+ + b.

Choosing a = y − r and b = min {y + r, w} proves the claim.

Let now Ω ⊂ Rn be some open, bounded domain with smooth boundary (at least
Lipschitzian). For y ∈ L2(Ω;C[0, T ]) and (a.e.) x ∈ Ω, we consider the maps
t 7→ y(x)(t) = y(t, x) ∈ C[0, T ]. As seen in the construction of the play operator,
it is not really important how the decomposition of the interval [0, T ] looks like, to
get convergence of the output functions. So, we choose, for all x and corresponding
functions y(·, x), the same decomposition. This leads us to the space of continuous
piecewise linear functions with values in some space X (here, e.g., X = L2(Ω)).

Definition 2.22 We define the space of piecewise linear functions with values in
some Banach space X, by

Cpl(0, T ;X) := {y ∈ C([0, T ];X) : ∃n ∈ N, 0 = t0 < t1 < · · · < tn = T,

and xi ∈ X, i = 0, . . . , n, such that,

y(t) =
t− tj
tj+1 − tj

xj+1 +
tj+1 − t
tj+1 − tj

xj, ∀ t ∈ [tj, tj+1]} .

Cpl(0, T ;X) is a subspace of C(0, T ;X), which is not closed, but dense.

Lemma 2.23 Let X be a seperable Banach space. Cpl([0, T ];X) is dense in C(0, T ;X)
and in the Bochner spaces Lp(0, T ;X) for p ∈ [1,∞).

Proof: Let y ∈ C(0, T ;X), ε > 0, and t0 = 0. Since the mapping f0 : t 7→
‖y(0)− y(t)‖X is a continuous real function,

t1 := inf {τ ∈ [0, T ] | f0(τ) > ε}
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is well defined whenever the set is nonempty (if it is, we choose t1 = T ). By
continuity, t1 > 0, f0(t1) = ε and f0(t) ≤ ε ∀t ∈ [t0, t1]. We iterate this procedure,
i.e., for given ti−1, we define fi−1 : t 7→ ‖y(ti−1)− y(t)‖X , t ∈ [ti−1, T ], and choose

ti := inf {τ ∈ [ti−1, T ] | fi−1(τ) > ε} ;

if the set is empty, we choose ti := T . Assume that this procedure would not stop
after finitely many steps. Then, the (ti)i would form a strictly monotonic increasing
sequence, which is bounded by T , and thus convergent. Let t∗ denote this limit.
Then, since the algorithm did not converge after finitely many steps, it must hold
that

‖y(ti+1)− y(ti)‖ = ε > 0, ∀i ∈ N.

But this is a contradiction to the continuity of y, as both y(ti+1), y(ti) converge to
y(t∗) as i → ∞. Hence, the procedure stops after finitely many steps. Then, by
choosing y(tj) := xj in definition 2.22, we get an element in Cpl(0, T ;X), which has
distance at most ε from y w.r.t. ‖·‖C(0,T ;X), and the first part of the lemma is proven.

For the second part, let y ∈ Lp(0, T ;X) and ε > 0. By definition of Bochner’s
integral, there is a sequence of simple functions yn =

∑n
i=1 χAixi such that Ai ⊂

[0, T ], xi ∈ X, which converges to y in Lp(0, T ;X). We choose n ∈ N, such that
‖yn − y‖Lp(0,T ;X) <

ε
2
. Note that, by definition, yn|Ai = xi is constant in t, with

xi ∈ X. But the function yn can be approximated by functions in C(0, T ;X) (e.g.,
by mollification w.r.t. time), and by the first part, also by functions in Cpl(0, T ;X).
Hence, there exists y∗ ∈ Cpl(0, T ;X), such that ‖yn − y∗‖Lp(0,T ;X) <

ε
2
. But then,

‖y − y∗‖Lp(0,T ;X) ≤‖y − yn‖Lp(0,T ;X) + ‖yn − y∗‖Lp(0,T ;X)

<
ε

2
+
ε

2
= ε,

which concludes the proof.

As positive and negative part are weakly differentiable functions, the update function
fr also has this property. In what follows, we allow the parameter r to depend on
x ∈ Ω.

Proposition 2.24 Let k ∈ N, D denote some (weak) partial derivative, i.e., D =

∂xi for some i. If r, w0 ∈ W 1,p(Ω), y = (y1, . . . , yk+1)T ∈ (W 1,p(Ω))
k+1

, p ∈ [1,∞],
there exist functions λk+1

j (x), 0 ≤ j ≤ k, with 0 ≤ λk+1
j ≤ 1 and

∑k
j=1 λ

k+1
j ≤ 1,

such that (a.e. in Ω),

|DFr,f (y;w0)| ≤

(
k+1∑
j=1

λk+1
j |Dyj|

)
+ |Dr|+ |Dw0| .
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Proof: Let H denote the Heavyside function. Thanks to lemma 2.21 and the chain
rule for Sobolev functions,

Dfr(y1, w0)

= H(y1 − r + [w0 − y1 − r]+ − w0)(Dy1 −Dr −Dw0)

+H(y1 − r + [w0 − y1 − r]+ − w0)H(w0 − y1 − r)(Dw0 −Dy1 −Dr)
−H(w0 − y1 − r)(Dw0 −Dy1 −Dr) +Dw0

= χ1 (Dy1 −Dr −Dw0) + χ1χ2 (Dw0 −Dy1 −Dr)
− χ2 (Dw0 −Dy1 −Dr) +Dw0,

where χi are defined through

χ1 := H(y1 − r + [w0 − y1 − r]+ − w0), χ2 := H(w0 − y1 − r).

In the case χ2 6= 0⇔ w0 − y1 − r > 0, we infer that

χ1 = H (y1 − r + w0 − y1 − r − w0) = H(−2r) = 0,

hence, χ1χ2 = 0, and the formula for the derivative simplifies to

Dfr(y1, w0) =(χ1 + χ2)Dy1 + (1− χ1 − χ2)Dw0 + (χ2 − χ1)Dr.

This may be rewritten by introducing λ0 := χ1 + χ2 and µ0 := χ2 − χ1, and then
has the form

Dfr(y1, w0) = λ0Dy1 + (1− λ0)Dw0 + µ0Dr,

which is actually even stronger than the claimed inequality, for k = 0. We continue
by induction. Assume that the claim holds for k. An analogous computation shows
that there exist characteristic functions χk1, χk2 with χk1χ

k
2 = 0, and such that

Dfr(yk+1, wk) = (χk1 + χk2)Dyk+1 + (1− χk1 − χk2)Dwk + (χk2 − χk1)Dr.

Again, we rewrite the equation, using λk := χk1 + χk2 and µk := χk2 − χk1, and get

Dfr(yk+1, wk) = λkDyk+1 + (1− λk)Dwk + µkDr.

Now, by definition, wk = fr(yk, wk−1), so that we can estimate

|Dfr(yk+1, wk)| ≤λk |Dyk+1|+ (1− λk)

(
k−1∑
j=0

λkj |Dyj+1|

)
+ (1− λk) (|Dr|+ |Dw0|) + |µk| |Dr| ,
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where, we used the induction hypothesis. Next, note that µk(1− λk) = 0, because

χk2 = 1⇒ χk1 = 0⇒(1− λk) = 0 ∧ µk = 1

χk2 = 0 ∧ χk1 = 0⇒(1− λk) = 1 ∧ µk = 0

χk2 = 0 ∧ χk1 = 1⇒(1− λk) = 0 ∧ µk = −1.

But then (1 − λk) |Dr| + |µk| |Dr| ≤ |Dr|. Further, λk + (1 − λk)(
∑k−1

j=0 λ
k
j ) ≤

λk + (1− λk) = 1, so that

|Dfr(yk+1, wk)| ≤ λk |Dyk+1|+

(
k−1∑
j=0

(1− λk)λkj |Dyj+1|

)
+ |Dw0|+ |Dr| .

Hence, the claim holds with iterative defined

λk+1
k := λk, λk+1

j := (1− λk)λkj , j ∈ {0, . . . , k − 1} ,

where λk is given through the characteristic functions χk1, χ
k
2.

What does proposition 2.24 mean for functions y ∈ Cpl([0, T ], H1(Ω))? On the one
hand, one can easily complement the values of Fr[y;w0] between the gridpoints ti,
which yields the solution w = Fr[y;w0] ∈ L2(Ω;C[0, T ]). On the other hand, by
linearity of differentiation operators and the property, that interim values can be
represented as convex combinations of grid points, an inequality as in proposition
2.24 must hold (almost) everywhere for w. We thus have the following result.

Corollary 2.25 Let p ∈ [1,∞], y ∈ Cpl([0, T ];W 1,p(Ω)) and k the number of grid
points for y in [0, T ]. Let r as in proposition 2.24, and w = Fr[y;w0], where
w0 := w(0, x) ∈ W 1,p(Ω). Then there exist functions λj(t, x), j = 1, . . . , k, with

the property 0 ≤ λj ≤ 1 and
∑k

j=1 λj ≤ 1, such that (a.e.),

|Dw| ≤

(
k∑
j=1

λj |Dyj|

)
+ |Dr|+ |Dw0| .

Proof: Inserting a linear combination of yi+1 and yi in the inequality shows the
property for interim values, corresponding to time points between ti and ti+1. The
λj with j > i+ 1 equal zero at those time points.

The following theorem will later be used to prove some additional regularity result
for solutions of a special partial differential equation.
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Theorem 2.26 Let p ∈ [1,∞] and (ym)m ⊂ Cpl([0, T ];W 1,p(Ω)) be a sequence which
converges in Lp(Ω;C[0, T ]) to y. Let w0, r be as in corollary 2.25, w := Fr[y;w0]
and wm := Fr[ym;w0]. If there exists a constant C > 0, such that, for any weak
partial derivative D ∈ {∂x1 , . . . , ∂xn}, it holds

max
i∈{1,...,k(m)}

|Dym,i| ≤ C,

for all m ∈ N and almost every x ∈ Ω, then w ∈ L∞(0, T ;W 1,p(Ω)). Here, k(m)
denotes the number of grid points of ym.

Proof: By corollary 2.25, for every t ∈ [0, T ] and almost every x ∈ Ω,

|Dw|p ≤

((
k∑
j=1

λj |Dyj|

)
+ |Dr|+ |Dw0|

)p

≤

(
C

(
k∑
j=1

λj

)
+ |Dr|+ |Dw0|

)p

,

which is bounded in L1(Ω) by assumption. The sequence (wm)m is then bounded
in L∞(0, T ;W 1,p(Ω)), so that there exists a weak star convergent subsequence. By
uniqueness of limits, every convergent subsequence must converge to w, and thus
w ∈ L∞(0, T ;W 1,p(Ω)).

2.7 A representation result for the one dimensional stop op-
erator via projections in a Hilbert space

In this section, we consider the one dimensional stop operator on the Hilbert space
H1(0, T ). It may be defined as solution operator to the following problem (cf., e.g.
[17], where a more general problem is discussed).

Problem (S): Given z0 ∈ [−r, r] =: Z and y ∈ H1(0, T ), find x ∈ H1(0, T ), such
that

(S1) x(t) ∈ Za ∀t ∈ [0, T ],
(S2) (x(t)− z) (ẏ(t)− ẋ(t)) ≥ 0a ∀z ∈ Z, a.e. t ∈ [0, T ],
(S3) x(0) = z0. abc

We note that condition (S2) is remindful of a property that projections onto convex
sets in Hilbert spaces have.

29



2. HYSTERESIS EFFECTS AND OPERATORS

Theorem 2.27 Let A be some convex closed subset of some Hilbert space H, and
let P denote the corresponding projection mapping, i.e.,

P(x) =

{
y ∈ A | ‖y − x‖H = inf

a∈A
{‖x− a‖H}

}
.

Then P(x) is a singleton for every x ∈ H, so that we may define the projection
operator P via P(x) =: {P (x)}. Further, we have the inequality

〈x− P (x), a− P (x)〉 ≤ 0, ∀a ∈ A.

Scetch of the proof (for more details, see, e.g., [20, theorem 3.14]): Existence follows
by weak compactness of balls in a Hilbert space, and the weak lower semicontinuity
of the norm. For uniqueness, one needs the convexity of A and the Hilbert space H.
The inequality for the operator P may be shown by some separation argument: By
convexity, there exists a separating hyperplane through P (x). But, by convexity of
A, the vector a − P (x) must point into the other halfspace compared to x − P (x).
Thus, the scalar product must be nonpositive.

Consider the bilinear form defined by

〈x, y〉 :=

∫ T

0

ẋ(t)ẏ(t)dt,

and the space

H1
0(0, T ) :=

{
y ∈ H1(0, T ) | y(0) = 0

}
.

This is a Hilbert space if considered w.r.t. 〈·, ·〉, because (x, y)∗H1(0,T ) := x(0)y(0) +∫ T
0
ẋ(t)ẏ(t)dt is a scalar product on H1(0, T ) that reduces to 〈·, ·〉 on H1

0. We are
looking for Er[y; 0] in the case y ∈ H1

0(0, T ), which will, in that case, again be an
element of this space. Let us introduce some notations.

Definition 2.28 The set of all functions a ∈ H1
0(0, T ) such that a(t) ∈ Z for all

t ∈ [0, T ] will be denoted by A. Further, for the rest of this section, x, y will denote
elements in H1

0, such that x = P (y) is the projection of y in H1
0(0, T ) to the closed

convex subset A.

By definition, x(t) ∈ Z for all t ∈ [0, T ], and x(0) = 0 = Er[y; 0](0). One might ask,
whether condition (S2) is fulfilled by x. The answer is no.
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Example 2.29 Let r = 1, T = 2, f(t) := t. Then

Er[f ; 0](t) = min {1, t} .

But the minimizer for minv∈A

{∫ 2

0
(v̇(t)− ḟ(t))2dt

}
is g(t) := 1

2
t. Actually,

∫ 2

0

(ġ(t)− ḟ(t))2dt =

∫ 2

0

(
1

2

)2

dt =
1

2
,

whereas ∫ 2

0

(Ėr[f ; 0](t)− ḟ(t))2dt =

∫ 2

1

1dt = 1.

It is noticable, however, that g(2) = Er[f ; 0](2) in example 2.29. We will next analyze
the properties of the projection x.

Theorem 2.30 Let x, y as in definition 2.28. If T is a Lebesgue point (see [21,
def. 8.4.8, thm. 8.4.7] for details) of ẋ and ẏ, then

ẋ(T ) (ẏ(T )− ẋ(T )) ≥ 0.

Further, let by xT , yT denote the dependence on T , and assume that xT (T ) ∈ int(Z).
Then there is ε > 0, such that

xT+τ (T ) = xT (T ), ∀ 0 ≤ τ < ε.

Proof: By theorem 2.27, the minimizer x fulfills∫ T

0

(ẏ(t)− ẋ(t))ẋ(t)dt ≥
∫ T

0

(ẏ(t)− ẋ(t))ȧ(t)dt, ∀a ∈ A. (2.13)

Consider, for h > 0, the test function

ah(t) :=

{
x(t), t ∈ [0, T − h],

x(T − h), t ∈ [T − h, T ].

Then, we infer from the latter inequality,∫ T

T−h
(ẏ(t)− ẋ(t))ẋ(t)dt ≥ 0.
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Since T is, by assumption, a Lebesgue point of the integrand, we may divide by
h and then let h ↓ 0, to get the assertion. To prove the second part, note that if
xT (T ) ∈ int(Z), then there is ε > 0, such that

a∗(t) :=

{
xT (t), t ∈ [0, T ],

xT (T ) +
∫ t
T
ẏT+ε(s)ds, t ∈ [T, T + ε],

is an element of AT+ε. We claim that xT+ε = a∗. Since a.e.,

ȧ∗(t) =

{
ẋT (t), t ∈ (0, T ),

ẏT+ε(t), t ∈ (T, T + ε),

it holds that

‖a∗ − yT+ε‖H1
0(0,T+ε) = ‖xT − yT‖H1

0(0,T ) .

But the function

T 7→ ‖xT − yT‖H1
0(0,T )

must be monotonic increasing, as the ristriction of each function in AT+h to the
interval [0, T ] is an element of AT . Thus, a∗ must be a minimizer, and by uniqueness,
xT+ε = a∗ as claimed. By definition, a∗(T ) = xT (T ), and the proof is complete.

As mentioned before the last theorem, there seems to be a connection between xT (T )
and Er[y; 0](T ). For h > 0 and arbitrary z ∈ Z, consider the test function

ah(t) :=

{
xT (t), t ∈ [0, T − h],

T−t
h
xT (T − h) + t−(T−h)

h
z, t ∈ [T − h, T ].

It holds ah ∈ A, by convexity of Z, and

ȧh(t) =

{
ẋT (t), t ∈ (0, T − h)

− 1
h
xT (T − h) + 1

h
z, t ∈ (T − h, T ),

almost everywhere. But then, inequality (2.13) yields

1

h

∫ T

T−h
(ẏ(t)− ẋT (t))(xT (T − h)− z)dt ≥ −

∫ T

T−h
(ẏ(t)− ẋT (t))ẋT (t)dt.

The right hand side converges to zero as h ↓ 0, hence, if T is a Lebesgue point of
ẏ(·)− ẋT (·), we arrive at

(ẏ(T )− ẋT (T ))(xT (T )− z) ≥ 0, (2.14)

which is close to (S2). This proves the first part of the following result.
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Proposition 2.31 If T is a Lebesgue point of the function ẏ(·)− ẋT (·), then for all
z ∈ Z, inequality (2.14) holds. Further, if T is a Lebesgue point of the derivative of
t 7→ xt(t) and ẏ, then (2.14) also holds in the sense ẋT (T ) := d

dt
xt(t)|t=T .

Proof: Only the second part is left; to this end, we consider the function t 7→ xt(t)
on the interval [0, T + h], and do the same construction as before (assuming for the
moment that the function is an element of H1

0(0, T +h), which is proved in the next
proposition). Then, letting again h ↓ 0 yields the result.

We still need some further properties of the function t 7→ xt(t), concerning measur-
ability, differentiability, etc.

Proposition 2.32 If y ∈ Ck[0, T ], k > 0, then the function t 7→ xt(t) is piecewise
Ck. If y ∈ H1

0(0, T ), then t 7→ xt(t) is also an element of H1
0(0, T ).

Proof: We first show that xt(t) is continuous. As the initial value is always 0 ∈
int(Z), we infer from theorem 2.30 that xt(t) is continuous at t = 0. Let now T > 0
and ε > 0. From the transformation theorem, we get that if xT+ε is the projection
of yT+ε in H1

0(0, T + ε), then xε := xT+ε(
T
T+ε
·) is the projection of yε := yT+ε(

T
T+ε
·)

in H1
0(0, T ). Since yε → yT as ε ↓ 0 in H1

0(0, T ), the lipschitz continuity of the
projection mapping implies that xε → xT . Thus, in particular, xT+ε(T +ε)→ xT (T )
as ε ↓ 0, i.e., xt(t) is right continuous. Using similar arguments, one can show that
this function is also left continuous, and hence, continuity follows.

As seen in the proof of theorem 2.30, if xt(t) ∈ int(Z), then we can (locally)
explicitly write down the minimizer xT+τ = xT (T ) +

∫ τ
0
ẏ(s)ds; hence, in that case,

xt(t) has the same regularity as y on that interval. In particular, x is Ck on that set
of time points if y is. Whenever x·(·) is on the boundary of Z for some dense set of
time points, then, by continuity, it is constant on some closed interval, and thus in
particular C∞ at the interior of that interval.

Theorem 2.33 If y ∈ H1
0(0, T ), then t 7→ xt(t) equals t 7→ Er[y; 0](t).

Proof: For h > 0, consider

xT+h(T + h)− xT (T ) =

∫ T+h

0

ẋT+h(t)dt−
∫ T

0

ẋT (t)dt

=

∫ T

0

ẋT+h(t)− ẋT (t)dt+

∫ T+h

T

ẋT+h(t)dt.
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Then, for every z ∈ Z and T > 0,(
ẏ(T )− 1

h

[∫ T

0

ẋT+h(t)− ẋT (t)dt+

∫ T+h

T

ẋT+h(t)dt

])
(xT (T )− z)

=

(
ẏ(T )− 1

h

∫ T+h

T

ẋT+h(t)dt

)
(xT (T )− z)

− 1

h
(xT+h(T )− xT (T )) (xT (T )− z) .

If T is a Lebesgue point of xt(t), the first expression converges, for h ↓ 0, to
(ẏ(T )− ẋT (T )) (xT (T )− z), which is nonnegative (a.e.) by proposition 2.31. The
second term is also nonnegative: if xT (T ) ∈ int(Z), then xT (T ) = xT+h(T ) for all h
small enough; else, if xT (T ) ∈ ∂Z, then xT (T ) = r or xT (T ) = −r. In the first case,
xT+h(T ) − xT (T ) ≤ 0, and xT (T ) − z ≥ 0, so that the product is nonpositive. In
the second case, xT+h(T )− xT (T ) ≥ 0 and xT (T )− z ≤ 0, and the product is again
nonpositive.

Altogether, this implies that, if T is a Lebesgue point of t 7→ ẋt(t) and ẏ, then

(ẏ(T )− ẋT (T )) (xT (T )− z) ≥ 0.

By proposition 2.32 and the Lebesgue differentiation theorem (cf. [21, theorem 8.4.7]),
almost every point is a Lebesgue point, hence, (S2) is valid.

Remark 2.34 Most of the argumentation holds for the case of multidimensional
stop operator. It is, however, not clear, what happens with the factor 1

h
(xT+h(T ) −

xT (T )) in the case xT (T ) ∈ ∂Z. The simulation of a two dimensional example
seemed not to show convergence:
We used the unit circle as characteristic set Z. As reference curve served an ap-
proximation via the standard discretization scheme. This is, in the one dimensional
case, given by the update function, and in higher dimensions, by the projection to
the set Z (in fact, the update function is the projection to an interval). In order
to calculate the projection, we used polar coordinates. The curves corresponding
to those approximations are called StringStop 1-4, each one for different time dis-
cretization. The curve denoted by Projectioninspace is the approximation through
the scheme presented in this section applied in two dimensions. We used a regular
time discretization, which leads then to the problem of minimizing

n∑
k=1

∆t

∥∥∥∥vk − vk−1

∆t
− yk − yk−1

∆t

∥∥∥∥2

=
1

∆t

n∑
k=1

‖(vk − vk−1)− (yk − yk−1)‖2 ,
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over all collections of two dimensional vectors v0, . . . , vn. The norm is the euclidian
one. Together with the conditions (S1) and (S3), this problem may be written in the
form

min

v0

|
vn

T

AM

v0

|
vn

− bTM
v0

|
vn

+ cM ,

w.r.t.


vT1 v1 ≤ 1,

a
...

vTn vn ≤ 1,
v0 = 0,

where AM is a matrix, bM a vector, and cM is scalar. Then, we used the Matlab
solver fmincon to solve this problem. Note also that by the procedure presented in
this section, we have to solve such a minimization problem for every time point.

The following figure 8 shows the resulting curves. It seems that they divide when-
ever the boundary is reached. Hence, the multidimensional problem seems to be more
complex.

Figure 8: Numerical approximation of Stop operator
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3. THE HEAT EQUATION WITH HYSTERESIS

3 The heat equation with hysteresis

In this section we present the existence and uniqueness results from [11, chapter X.1]
for the heat equation with hysteresis. After that, we give some additional regularity
results for solutions in the case of regular initial values. Then, we use our approxi-
mation result for the play operator from section 2.4, to find an approximation for the
solutions of the heat equation, in the case, when we restrict ourselves to pointwise
applied play operators. We show that this regularized partial differential equation
has in fact better properties than the one containing hysteresis nonlinearity; actu-
ally, one can, quite easily, show existence and uniqueness of mild solutions of that
equation. This is then used to build a control problem w.r.t. the regularized equa-
tion, and known results concerning the dynamic programming method are applied.
As mild and weak solutions agree for regular initial values, we then turn to showing
convergence of weak solutions of the regularized equation to solutions of the original
one, and use this to prove pointwise convergence of the optimal value function of
the control problem.

3.1 Weak solutions and regularity results

In this section, we present the existence and uniqueness proof of Visintin based on
time discretization (cf. [11, ch. X.1, thm. 1.1]; in parts of the proof, we also follow
[12, thm. 3.3.2]) for the heat equation with hysteresis,

∂y

∂t
+ w −∆y = f, in Ω,

w(x, ·) =W [y(x, ·), x](·), x ∈ Ω,

y(x, t) = 0, on ∂Ω× (0, T ),

y(x, 0) = y0(x), x ∈ Ω.

(3.1)

The hysteresis operator may depend on x ∈ Ω; usually, this is due to different initial
values, but one might also think of other influences. Throughout this section, we
will always make the following assumptions.

Assumption 3.1 a

• Ω ⊂ Rn is some open, bounded domain with smooth boundary (i.e., at least
C2). Let T denote the endtime. For t ∈ (0, T ], we set Ωt := Ω× (0, T ).

• For all x ∈ Ω, W [·;x] is continuous on C[0, T ] and piecewise monotonic, and
the parametrised final value mapping

(s, x) 7→ Wf (s, x), s = (v0, . . . , vM) ∈ S,
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is measurable for all M ∈ N, and fulfills

|Wf (s, x)| ≤ c0(x) + c1 ‖s‖∞ ,

for some c0 ∈ L2(Ω), c1 > 0, independent of s and M ; additionally, c1 is
assumed to be independent of x ∈ Ω.

Remark 3.2 a

• By assumption 3.1, there exists L > 0 and g ∈ L2(Ω), such that, for all
v ∈M(Ω;C[0, T ]),

‖W [v(x, ·), x]‖C[0,T ] ≤ L ‖v(x, ·)‖C[0,T ] + g(x), a.e. in Ω.

• We will show that there exists a solution y of (3.1) in the space

Y := L∞(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)).

• For s ∈ (0, 1
2
), there is the chain of continuous imbeddings (cf. [11])

Y ↪→ H1(ΩT ) ↪→ Hs(Ω;H1−s(0, T )) ↪→ L2(Ω;C[0, T ]).

Moreover, the last imbedding is compact, so that Y is compactly imbedded in
L2(Ω;C[0, T ]) (this can be proved, e.g., with arguments from interpolation the-
ory; we refer to the works [22, 23]).

• The conditions on the hysteresis operator are, e.g., fulfilled by Preisach op-
erators (cf. [12, remark 3.3.1]); it is clear that the play operator has these
properties.

Theorem 3.3 (Existence of solutions) Let y0 ∈ H1
0 (Ω), w0 ∈ L2(Ω) and f ∈

L2(ΩT ). If assumption 3.1 holds, then there exists a weak solution (y, w) to (3.1),
in the sense that∫ T

0

∫
Ω

(yt(x, t) + w(x, t))ϕ(x, t)dxdt+

∫ T

0

∫
Ω

∇y(x, t) · ∇ϕ(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)ϕ(x, t)dxdt, ∀ϕ ∈ L2(0, T ;H1
0 (Ω)),

and the other equalities of (3.1) hold pointwise almost everywhere. Moreover,

y ∈ Y, w ∈ L2(Ω;C[0, T ]).
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Proof: Via time discretization (we follow [12, thm. 3.3.2] for the solution of the time
discretized problem). For M ∈ N, we divide the interval [0, T ] into M parts of length
h := T

M
. For the rest of the proof, let Ci denote positive constants that may depend

on Ω, T, f and the initial value, but not on m ∈ {1, . . . ,M}.
Now, for such m, consider the semidiscrete problem at timestep t = mh, for the

unknowns ym, wm : Ω→ R,

1

h

∫
Ω

(
ym − ym−1

)
ϕdx+

∫
Ω

wmϕdx+

∫
Ω

∇ym · ∇ϕdx

=

∫
Ω

fmϕdx, ∀ϕ ∈ H1
0 (Ω),

wm(x) =Wf

((
y0(x), . . . , ym(x)

)
;x
)
, a.e. x ∈ Ω,

(3.2)

and

fm(x) :=
1

h

∫ mh

(m−1)h

f(x, t)dt, y0(x) := y0(x),

w0(x) :=Wf

((
y0(x), x

))
.

One can rewrite the semilinear variational equality in the form

a(ym, ϕ) +

∫
Ω

bm(x, ym(x))ϕ(x)dx = 0, ∀ϕ ∈ H1
0 (Ω),

where a(·, ·) denotes the scalar product in H1
0 (Ω), and the function bm : Ω×R→ R

is defined as

bm(x, y) :=
1

h
y +Wf

((
y0(x), . . . , ym−1(x), y

)
, x
)
− 1

h
ym−1(x)− fm(x).

This function is, by assumption 3.1, measurable w.r.t. x, continuous w.r.t. y, and
bm(x, ·) is strictly monotonic increasing for all x ∈ Ω by the piecewise monotonicity
assumption on W . Further, an inequality of the form

|bm(x, y)| ≤ cm1 (x) + c2

(
m−1∑
k=0

∣∣yk(x)
∣∣)+ c3 |y|

holds, where c2, c3 are positive constants and cm1 ∈ L2(Ω). Application of [12, theo-
rem 1.3.2] yields then the existence of unique ym ∈ H1

0 (Ω), wm ∈ L2(Ω). By iteration,
we thus get a solution for the discretized problem.

Our next goal is to derive suitable a priori estimates for the solutions of the dis-
cretized problem (here, we follow [11, ch. X.1, thm. 1.1]). As all ym are elements of
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H1
0 (Ω), we may test the variational equality with ϕ = ym − ym−1. Summation over

m ∈ {1, . . . , k} , k ∈ {1, . . . ,M} then leads to

∑
m

h

∫
Ω

(
ym − ym−1

h

)2

dx+
∑
m

∫
Ω

∇ym · ∇(ym − ym−1)dx

≤
∑
m

∫
Ω

∣∣fm(ym − ym−1)
∣∣ dx+

∑
m

∫
Ω

∣∣wm(ym − ym−1)
∣∣ dx.

With Young’s inequality, the right hand side may be estimated by

1

2α

∑
m

h

∫
Ω

(fm)2dx+
1 + α

2

∑
m

∫
Ω

(ym − ym−1)2

h
dx+

1

2

∑
m

h

∫
Ω

(wm)2dx;

we choose 0 < α < 1. Further,∑
m

h

∫
Ω

(fm)2dx ≤
∫ T

0

∫
Ω

|f(x, t)|2 dxdt.

We still need to estimate the term
∑∫

(wm)2dx. To this end, define

zm :=
∣∣y0
∣∣+

m∑
j=1

∣∣yj − yj−1
∣∣ , m > 1, z0 :=

∣∣y0
∣∣ .

Assumption 3.1 allows us then to estimate

|wm| ≤ L max
1≤j≤m

∣∣yj∣∣+ g ≤ Lzm + g, a.e. in Ω.

Noting that

zm − zm−1 =
∣∣ym − ym−1

∣∣ ,
as well as∑

m

∫
Ω

∇ym · ∇(ym − ym−1)dx

=
1

2

∑
m

∥∥∇ym −∇ym−1
∥∥2

+
1

2

∥∥∇yk∥∥2 − 1

2

∥∥∇y0
∥∥2
,

we thus derive∑
m

∫
Ω

h

(
zm − zm−1

h

)2

dx+
∑
m

∥∥∇ym −∇ym−1
∥∥2

+
∥∥∇yk∥∥2
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≤ c3

∑
m

h

∫
Ω

(zm)2dx+ c4.

Thanks to

∥∥zk∥∥− ∥∥y0
∥∥ ≤ √T (∑

m

h

∥∥∥∥zm − zm−1

h

∥∥∥∥2
) 1

2

,

we can get to

∥∥zk∥∥− ∥∥y0
∥∥ ≤ c5

(
h

k∑
m=1

‖zm‖2

) 1
2

+ c6.

Now, one can use Gronwall’s inequality, which implies∥∥zk∥∥ ≤ c7, ∀k ∈ {1, . . . ,M} , ∀M ∈ N.

and therefore

M∑
m=1

h

∥∥∥∥ym − ym−1

h

∥∥∥∥2

+ max
1≤k≤M

∥∥∇yk∥∥2
+

M∑
m=1

∥∥∇ym −∇ym−1
∥∥2 ≤ c8,

M∑
m=1

h

∫
Ω

|wm(x)|2 dx ≤ c9.

(3.3)

The rest of the proof deals with the passage to the limit, M →∞ (we follow again
[12, thm. 3.3.2]). To this end, we introduce, for M ∈ N and m ∈ {1, . . . ,M}, the
notation ymM , w

m
M , f

m
M , and piecewise linear interpolates

yM(x, (m+ τ)h) := τym+1
M (x) + (1− τ)ymM(x), τ ∈ [0, 1],

wM(x, (m+ τ)h) := τwm+1
M (x) + (1− τ)wmM(x), τ ∈ [0, 1],

as well as the piecewise constant interpolates

ỹM(x, (m+ τ)h) := ym+1
M (x), τ ∈ (0, 1],

w̃M(x, (m+ τ)h) := wm+1
M (x), τ ∈ (0, 1],

f̃M(x, (m+ τ)h) := fm+1
M (x), τ ∈ (0, 1].

Due to those definitions, the variational equality reads∫ T

0

∫
Ω

(yM,t + w̃M)ϕdxdt+

∫ T

0

∫
Ω

∇ỹM · ∇ϕdxdt
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=

∫ T

0

∫
Ω

f̃Mϕdxdt, ∀ϕ ∈ L2(0, T ;H1
0 (Ω)),

and the a priori estimate (3.3) implies∫ T

0

∫
Ω

y2
M,tdxdt+ sup

0≤t≤T

(
‖∇ỹM(t)‖2 + ‖∇yM(t)‖2) ≤ c10.

Another application of (3.3) shows

‖yM − ỹM‖2
L2(0,T ;H1

0 (Ω)) =
T

3M

∑
m

∥∥∇ym+1
M −∇ymM

∥∥2 M→∞−−−−→ 0, (3.4)

and

‖wM‖2
L2(ΩT ) ≤ 2 ‖w̃M‖2

L2(ΩT ) ≤ 2c9.

Hence, we may, at least for some suitable subsequences (which in that case will again
be denoted in the same way), conclude that

yM → y, weak ? in Y,

ỹM → ỹ, weak ? in L∞(0, T ;H1
0 (Ω)),

wM → w, weak in L2(ΩT ),

w̃M → w̃, weak in L2(ΩT ),

as M →∞. From (3.4), we infer y = ỹ. Further, f̃M → f in L2(Ω), hence, we may
take the limit of the variational equality, and arrive at∫ T

0

∫
Ω

(yt + w̃)ϕdxdt+

∫ T

0

∫
Ω

∇y · ∇ϕdxdt =

∫ T

0

∫
Ω

fϕdxdt,

for all ϕ ∈ L2(0, T ;H1
0 (Ω)). We still have to show that w = w̃ =W holds (a.e.). Let

us define the functions

λM(x, t) :=W [yM(x, ·), x](t), M ∈ N,
λ(x, t) :=W [y(x, ·), x](t).

From the compactness of the imbedding Y ↪→ L2(Ω;C[0, T ]) (cf. remark 3.2 and the
reference given there), we infer that yM(x, ·) → y(x, ·) in C[0, T ] for almost every
x ∈ Ω. By the continuity assumption onW , also λM(x, ·)→ λ in C[0, T ], a.e. x ∈ Ω.
Assumption 3.1 makes it possible to estimate

sup
0≤t≤T

|λM(x, t)| ≤ c0(x) + c1 sup
0≤t≤T

|yM(x, t)| , a.e. x ∈ Ω,
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and, since the right hand side converges in L2(Ω), we infer that λM → λ strongly in
L2(Ω;C[0, T ]), from dominated convergence. Note that wM is the piecewise linear
interpolate of λM , so that one can show analogously wM−λM → 0 in L2(Ω;C[0, T ]),
hence, wM → w = λ in L2(Ω;C[0, T ]). In the same way one can show that w = w̃
almost everywhere, which completes the proof.

For the uniqueness result, we add a Lipschitz type condition for the hysteresis oper-
ator.

Assumption 3.4 There exists L > 0 such that, for every t ∈ (0, T ] and all v1, v2 ∈
L2(Ω;C[0, T ]):

‖W [v1; ·]−W [v2; ·]‖L2(Ω;C[0,t]) ≤ L ‖v1 − v2‖L2(Ω;C[0,t]) .

Remark 3.5 The condition in assumption 3.4 is quite natural for a large group
of hysteresis operators. We have seen in section 2.3 that the play operator is one
example. Hence, also superpositions of the latter belong to the class of operators for
which 3.4 is fulfilled.

The following uniqueness result is due to Visintin (cf., [11, ch. X.1, thm. 1.2]).

Theorem 3.6 Under assumptions of theorem 3.3 and 3.4, there is exactly one so-
lution to (3.1).

Proof: By theorem 3.3, there exists at least one solution. Assume now that (y1, w1),
(y2, w2) are, respectively, two solutions of (3.1), i.e.,

yit + wi −∆yi = f, i = 1, 2,

holds in the sense of theorem 3.3. Consider the differences y := y1−y2, w := w1−w2;
those then solve the equation

yt + w −∆y = 0,

in the sense of theorem 3.3 with initial value y(0) = 0. Next note that, since
yt, w ∈ L2(ΩT ), the same must hold for ∆y, so that the equality holds, in particular,
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almost everywhere in ΩT . Hence, we may test with yt: for arbitrary τ ∈ (0, T ), we
then get ∫

Ωτ

|yt|2 dL −
∫

Ωτ

∆yytdL ≤ ‖w‖L2(Ωτ ) ‖yt‖L2(Ωτ ) .

Using partial integration (see the next lemma for a proof) and y(0) = 0, the latter
implies ∫

Ωτ

|yt|2 dL+
1

2

∫
Ω

|∇y(x, τ)|2 dx ≤ ‖w‖L2(Ωτ ) ‖yt‖L2(Ωτ ) . (3.5)

From assumption 3.4, we infer that

‖w‖L2(Ωτ ) ≤

√∫
Ωτ

‖w(x, ·)‖2
C[0,τ ] dL ≤ L

√
τ ‖y‖L2(Ω;C[0,τ ]) ,

and, thanks to Jensen’s inequality and y(x, 0) = 0 almost everywhere,

‖y(x, ·)‖2
C[0,τ ] ≤ τ

∫ τ

0

|yt(x, s)|2 ds, a.e. x ∈ Ω.

Altogether, we thus get

‖w‖L2(Ωτ ) ≤ Lτ ‖yt‖L2(Ωτ ) .

Plugging this into (3.5) yields

‖yt‖2
L2(Ωτ ) +

1

2
‖∇y(·, τ)‖2

L2(Ω) ≤ Lτ ‖yt‖2
L2(Ωτ ) .

For τ ∈ (0, 1
L

), we infer from this that y = 0 almost everywhere in Ωτ , i.e., y1 = y2

in Ωτ , and thereby w1 = w2. By iteration, we may further conclude y1 = y2, as well
as w1 = w2 on the whole ΩT , which completes the proof.

In the proof, the following lemma was used with f replaced by f − w.

Lemma 3.7 Let u be an L2-solution of

ut −∆u = f,

i.e., the equation is valid a.e. in ΩT , and all functions are square integrable. Further,
let u ∈ Y , and 〈·, ·〉 denote the scalar product on L2(Ω).

45



3. THE HEAT EQUATION WITH HYSTERESIS

1. If ∂Ω is of class C1, then u ∈ C(0, T ;L2(Ω)), and for almost every t ∈ (0, T ),

d

dt
‖u(t)‖2

L2(Ω) = 2 〈u(t), ∂tu(t)〉 .

2. If ∂Ω is of class C2, then ∇u ∈ C(0, T ;L2(Ω)), and

−
∫ T

0

∫
Ω

∆u(x, s)ut(x, s)dxds =
1

2

(
‖∇u(t)‖2

L2(Ω) − ‖∇u(0)‖2
L2(Ω)

)
.

Proof: 1. For Ω ⊂⊂ V , there exists a continuation operator E, such that Eu has
compact support in V , see [24, 5.4 theorem 1]. Since u ∈ Y , because of the Gelfand
triple H1

0 (V ) ↪→ L2(V ) ↪→ H−1(V ), we get the regularities Eu ∈ L2(0, T ;H1
0 (V )),

∂tEu ∈ L2(0, T ;L2(V )) ⊂ L2(0, T ;H−1(V )). The well known interpolation the-
orem (cf. [24, 5.9 theorem 3]) yields then Eu ∈ C(0, T ;L2(V )), which implies
u ∈ C(0, T ;L2(Ω)). In order to prove the claimed identity, it suffices to note that
u, ut ∈ L2(0, T ;L2(Ω)), because then

d

dt
〈u(t), u(t)〉 =

d

dt

〈
u0 +

∫ t

0

u̇(r)dr, u0 +

∫ t

0

u̇(s)ds

〉
= 2 〈u(t), ∂tu(t)〉 , a.e.

2. As ∂Ω is C2, results from regularity theory of elliptic partial differential equations
imply that u(·, t) ∈ H2(Ω), for almost every t [24], and thus, by measurability
and integrability also u ∈ L2(0, T ;H2(Ω)). Since ut ∈ L2(0, T ;L2(Ω)), similar to
part 1., one can show that u ∈ C(0, T ;H1(Ω)), such that ∇u ∈ C(0, T ;L2(Ω)).
Next, consider the trivial continuation (i.e. by zero) of u w.r.t. t on R, and define
uε := ηε ∗ u, the convolution of u with the standard mollifier. Then, for all t,

d

dt
‖∇uε(t)‖2

L2(Ω) =2 〈∇uε(t),∇uε,t(t)〉 = 2

∫
Ω

∇uε(t) · ∇uε,t(t)dx

=− 2

∫
Ω

∆uε(t)uε,t(t)dx+ 2

∫
∂Ω

∇uε(t)uε,t(t)dS(x). (3.6)

uε ∈ H2(Ω) implies that the restriction of ∇uε to ∂Ω is an L2(∂Ω) function, and
uε,t = ηε,t ∗ u = ηε,t ∗ 0 = 0 on ∂Ω, because u(t) ∈ H1

0 (Ω) for almost every t. Hence,∫
∂Ω

∇uε(t)uε,t(t)dS(x) = 0, for a.e. t ∈ (0, T ).

Further, ∆u, ut ∈ L2(ΩT ) implies∫
Ω

∆uε(t)uε,t(t)dx
ε↓0−−→

∫
Ω

∆u(t)ut(t)dx,

for a.e. t. Thus, integrating (3.6) w.r.t. t, and then letting ε ↓ 0 yields the desired
equality.
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At the end of this chapter, we collect some regularity results.

Proposition 3.8 Under assumption 3.1, each solution y of (3.1) corresponding to
initial values (y0, w0) ∈ H1

0 (Ω)× L2(Ω) has the regularity

y ∈ Y ∩ C(0, T ;H1(Ω)), w ∈ H1(0, T ;L2(Ω)).

Further, consider the special case W [·, x] = Fr(x)[ · ;w0(x)] with r ∈ H1(Ω), and let
1 < p ≤ ∞, f ∈ W 1,1(0, T ;Lp(Ω)), w0,∆y0 ∈ Lp(Ω). If p <∞, then

y ∈ W 1,1(0, T ;Lp(Ω)) ∩ L∞(0, T ;W 2,p(Ω)), w ∈ Lp(Ω;C[0, T ]).

If, in addition, p > n holds, then we also have w ∈ L∞(0, T ;W 1,∞(Ω)).

Proof: The first part of the proposition is shown in the proofs of theorem 3.3 and
lemma 3.7. For the second part, we refer to [11, Prop. 1.3, page 301], where the
result is given by refinements of the a priori estimates of the time discrete problem.
Especially, it is shown there, that for the solution of the discretized problem it holds
‖∆yj‖Lp(Ω) ≤ C for some positive constant C, uniformly in j and the length of the

time steps. Hence, if p > n, we infer from Sobolev’s inequality [18, theorem 4.12]
that ∇yj is uniformly bounded in L∞(Ω), so that theorem 2.26 applies, which yields
∇w ∈ L∞(ΩT ).

3.2 Heat equation with regularized play operator

Our next goal is to find an approximation of solutions of (3.1) in the special case
when the hysteresis operator is a pointwise applied play operator, i.e., W [·, x] =
Fr(x)[ · ;w0(x)]. To this end, we use our approximation result from section 2.3, and
show that the weak solution of the regularized problem

∂y

∂t
+ z −∆y = f, in Ω,

ż(x, t) =
1

ε
G (z(x, t)− y(x, t)) , x ∈ Ω,

y(x, t) = 0, on ∂Ω× (0, T ),

y(x, 0) = y0(x), x ∈ Ω,

z(x, 0) = z0(x) ∈ [y0(x)− r(x), y0(x) + r(x)] , x ∈ Ω,

(3.7)

converges, for ε ↓ 0, to the weak solution of (3.1). Note that the parameter r =
r(x) may depend on the space variable, so that the same actually holds for G,
too. So, with G we always mean a function of the form (2.2), where we allow of
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r ∈ L2(Ω) whenever G is applied to functions in L2(Ω;C[0, T ]). Further, we will
discuss existence and uniqueness of mild solutions to (3.7). The proofs will not follow
the discretization method used in theorem 3.3, but the (simpler) method suggested
in a remark of [11, page 300], which is based on the Lipschitz type property of the
hysteresis operator, cf. assumption 3.4. We start with collecting some additional
properties of the approximation operator.

Lemma 3.9 Let P denote the solution operator

P : H1(0, T )→ H1(0, T ), P (y) = z = z0 +
1

ε

∫ ·
0

G(z − y)dL.

For every pair of functions v1, v2 ∈ H1(0, T ) and t ∈ (0, T ], it holds

‖P (v1)− P (v2)‖C[0,t] ≤
T

ε
e
T
ε ‖v1 − v2‖C[0,t] .

Hence, if v1, v2 ∈ L2(Ω;H1(0, T )), we get the inequality

‖P (v1)− P (v2)‖L2(Ω;C[0,t]) ≤
T

ε
e
T
ε ‖v1 − v2‖L2(Ω;C[0,t]) ;

moreover, if v1(0) = v2(0), then it holds

‖P (v1)− P (v2)‖L2(Ωt)
≤ 2t2

ε
‖v̇1 − v̇2‖L2(Ωt)

,

for all t ∈ [0,min
{
ε
2
, T
}

].

Proof: Recall that G is Lipschitz continuous with constant L = 1. Then, for t ∈
(0, T ],

|P (v1)(t)− P (v2)(t)| ≤1

ε

∫ t

0

|G(P (v1)(s)− v1(s))−G(P (v2)(s)− v2(s))| ds

≤1

ε

∫ t

0

|P (v1)(s)− v1(s)− P (v2)(s) + v2(s)| ds

≤T
ε
‖v1 − v2‖C[0,t] +

1

ε

∫ t

0

|P (v1)(s)− P (v2)(s)| ds.

From Gronwall’s inequality, we infer, for any τ ∈ (0, t)

|P (v1)(τ)− P (v2)(τ)| ≤ T

ε
e
T
ε ‖v1 − v2‖C[0,t] ,
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so the claimed inequality follows by application of supτ∈(0,t). The second part follows
directly from the first one. In order to prove the last inequality, note that for almost
every x ∈ Ω,

ε (ż1 − ż2) ≤ |G(z1 − v1)−G(z2 − v2)| ≤ |z1 − z2|+ |v1 − v2| .

Denoting, for short, Z := z1− z2, V := v1− v2, integration of the latter implies, due
to Z(0) = 0,

εZ(x, t) ≤
∫ t

0

|Z(x, s)|+ |V (x, s)| ds,

for all t ∈ [0, T ], almost everywhere in Ω. The same holds if we interchange the roles
of v1 and v2, so that

ε |Z(x, t)| ≤
∫ t

0

|Z(x, s)|+ |V (x, s)| ds, a.e. x ∈ Ω.

As Z, V ∈ L2(Ω;C[0, T ]), this implies

ε ‖Z(x, ·)‖C[0,t] ≤ t ‖Z(x, ·)‖C[0,t] +

∫ t

0

|V (x, s)| ds, a.e. x ∈ Ω.

So, restricting ourselves to the interval t ∈ [0,min
{
ε
2
, T
}

] =: I, we get

‖Z(x, ·)‖C[0,t] ≤
2

ε

∫ t

0

|V (x, s)| ds, a.e. x ∈ Ω

⇒ ‖Z‖2
L2(Ω;C[0,t]) ≤

4

ε2
t ‖V ‖2

L2(Ωt)
.

Hence, for all t ∈ I, it holds (thanks to V (0) = 0),

‖Z‖2
L2(Ωt)

≤t ‖Z‖2
L2(Ω;C[0,t])

≤4t2

ε2
‖V ‖2

L2(Ωt)

≤4t4

ε2

∥∥∥V̇ ∥∥∥2

L2(Ωt)
,

and we can conclude by taking the square root.
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Theorem 3.10 (Existence & uniqueness of weak solutions for (3.7)) aLet
Ω ⊂ Rn be an open, bounded domain with smooth boundary, y0 ∈ H1

0 (Ω), z0 ∈ L2(Ω)
and f ∈ L2(ΩT ). Then there exists a unique weak solution to (3.7) in the sense that∫ T

0

∫
Ω

(yt(x, t) + z(x, t))ϕ(x, t)dxdt+

∫ T

0

∫
Ω

∇y(x, t) · ∇ϕ(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)ϕ(x, t)dxdt, ∀ϕ ∈ L2(Ω;H1
0 (Ω)),

and the other equations from (3.7) hold almost everywhere. Further, the solution has
the regularity

y ∈ Y, z ∈ L2(Ω;H1(0, T )).

Proof: We reformulate the problem as fixed point problem and show that the solution
operator is (locally) a contraction map. To this end, let v1, v2 ∈ L2(Ω;H1(0, T )) be
arbitrary, and define, for i ∈ {1, 2}, zi as the unique solution of

zi(x, t) := z0(x) +
1

ε

∫ t

0

G (zi(x, s)− vi(x, s)) ds.

From lemma 2.8, we infer that the solution exists pointwise for almost every x ∈ Ω,
and by the assumption on vi, we also get zi ∈ L2(Ω;H1(0, T )), so that the operator

P : L2(Ω;H1(0, T ))→ L2(Ω;H1(0, T )),

P (v)(x, t) = z0(x) +

∫ t

0

G (P (v)(x, s)− v(x, s)) ds,

is well defined. We may then write zi = P (vi), and lemma 3.9 applies to this
operator. Further, for all v ∈ L2(Ω;H1(0, T )), there exists a unique weak solution
to ∫ T

0

∫
Ω

(yt(x, t) + P (v)(x, t))ϕ(x, t)dxdt+

∫ T

0

∫
Ω

∇y(x, t) · ∇ϕ(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)ϕ(x, t)dxdt, ∀ϕ ∈ L2(Ω;H1
0 (Ω)),

with initial and boundary values as in (3.7) (as this is just a simple heat equation).
Since the solution thereof has particularly the regularity y ∈ L2(Ω;H1(0, T )), we may
define the solution operator S : L2(Ω;H1(0, T ))→ L2(Ω;H1(0, T )), which maps v to
the solution of that pde. Let us show that, at least for small T > 0, the operator S
is a contraction mapping on L2(Ω;H1(0, T )). By the standard improved regularity
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result for the heat equation, yi := S(vi) ∈ Y must be an L2(ΩT ) solution. Then, the
difference y := y1 − y2 fulfills

yt + P (v1)− P (v2) + ∆y = 0,

almost everywhere. Testing with yt · χ(0,τ), and applying lemma 3.7 yields (note
y0 = 0)

‖yt(τ)‖2
L2(Ωτ ) +

1

2
‖∇y(τ)‖2

L2(Ω) ≤

1

2
‖yt(τ)‖2

L2(Ωτ ) +
1

2

∫ τ

0

∫
Ω

|P (v1)(x, t)− P (v2)(x, t)|2 dxdt

Then, together with lemma 3.9 (note that we have to restrict ourselves to the interval
τ ∈ I := (0,min

{
ε
2
, T
}

]), if v1(0) = v2(0), the latter inequality yields

‖yt(τ)‖2
L2(Ωτ ) + ‖∇y(τ)‖2

L2(Ω) ≤
4τ 4

ε2
‖v̇1 − v̇2‖2

L2(Ωτ ) .

With Poincaré’s inequality [18, theorem 6.30], we may thus find, for each τ ∈ I,
some constant c = c(τ) such that c(τ) ↓ 0 as τ ↓ 0, and

‖S(v1)− S(v2)‖L2(Ω;H1(0,τ)) ≤ c(τ) ‖v1 − v2‖L2(Ω;H1(0,τ)) .

So, if τ > 0 is small enough, then c(τ) < 1
2
, and S forms a contraction on the set

of functions in L2(Ω;H1(0, τ)) with initial values v(0) = y0. We therefore get, by
classical arguments, a unique solution to the fixed point problem, which is then also
the unique solution to the system (3.7) for small τ ∈ I. By iteration, the solution
may be continued to the whole interval; the higher regularity y ∈ Y carries over
from the regularity of the approximations to which Banach’s fixed point theorem is
applied, by continuous dependence on the data.

Next we show that (3.7) has the nice property, that one can quite easily establish
mild solutions. At this point, recall that the Laplacian with domain H1

0 (Ω)∩H2(Ω)
generates an analytic semigroup on L2(Ω), if Ω ⊂ Rn is open and bounded with
smooth boundary (cf. [25, chapter 3.1.1]). The corresponding one parameter semi-
group will be denoted by et∆. Note also, that the conditions of the Caratheodory
existence and uniqueness results for z are still fulfilled, if y is merely in L1(0, T ).

Theorem 3.11 (Existence & uniqueness of mild solutions for (3.7)) Let
Ω ⊂ Rn be some open, bounded domain with smooth boundary, y0, z0 ∈ L2(Ω),
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f ∈ L2(ΩT ). There exists a unique mild solution to (3.7), i.e., y ∈ C(0, T ;L2(Ω))
and z ∈ H1(0, T ;L2(Ω)) which satisfy the L2 integral equation

y(t) = et∆y0 +

∫ t

0

e(t−s)∆ (f(s)− z(s)) ds,

z(t) = z0 +
1

ε

∫ t

0

G(z(s)− y(s))ds.

Proof: Again we rewrite the problem in the form of some fixed point problem. For
any v ∈ L2(0, T ;L2(Ω)) = L2(Ω;L2(0, T )), denote by zv the solution of

zv(t) = z0 +
1

ε

∫ t

0

G(zv(s)− v(s))ds ∈ H1(0, T ;L2(Ω)).

Then, in particular, the map

S : C(0, T ;L2(Ω))→ C(0, T ;L2(Ω)),

S(v)(t) = et∆y0 +

∫ t

0

e(t−s)∆ (f(s)− zv(s)) ds

is well defined and satisfies (recall that et∆ is a semigroup of contractions)

‖S(v1)(t)− S(v2)(t)‖ ≤
∫ t

0

‖zv1(s)− zv2(s)‖ ds. (3.8)

where ‖·‖ := ‖·‖L2(Ω). Further, a simple calculation shows

‖zv1(t)− zv2(t)‖2 ≤
∫

Ω

(
1

ε

∫ t

0

|G(zv1(s)− v1(s))−G(zv2(s)− v2(s))| ds
)2

dx

≤ t

ε2

∫
Ω

∫ t

0

2 |zv1(s)− zv2(s)|2 + 2 |v1(s)− v2(s)|2 ds

=
2t

ε2
‖v1 − v2‖2

L2(Ωt)
+

2t

ε2

∫ t

0

‖zv1(s)− zv2(s)‖2 ds.

We apply a version of Gronwall’s lemma (cf. D.3), which implies

‖zv1(t)− zv2(t)‖2 ≤2t

ε2
‖v1 − v2‖2

L2(Ωt)

(
1 +

2t

ε2

∫ t

0

exp

{∫ t

s

2τdτ

}
ds

)
≤2ct ‖v1 − v2‖2

L2(Ωt)
,

with c = 1
ε2

(
1 + 2T 2

ε2
exp(2T 2)

)
. Due to that inequality, we infer from (3.8),

‖S(v1)(t)− S(v2)(t)‖ ≤
√

2ct3 ‖v1 − v2‖L2(Ωt)
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≤
√

2ct4 ‖v1 − v2‖C(0,T ;L2(Ω)) ,

and we have a contraction mapping on C(0, T ;L2(Ω)), if T > 0 is small enough.
Thus there exists locally a unique solution, which can be continued to the whole
interval [0, T ], because zv is bounded whenever v is.

In order to show that weak and mild solutions coincide whenever y0 ∈ H1
0 (Ω), we

use the following results.

Theorem 3.12 (cf. [26, proposition 3.8, p. 145, corollary 3.1, p. 145]) Let H
be a Hilbert space and (A,D(A)) be the generator of an analytic semigroup on H.
Assume that f ∈ L2(0, T ;H) and y0 ∈ H. Then there exists a unique classical
solution in L2(0, T ;H) to the problem

ẏ(t) =Ay(t) + f, t ∈ [0, T ],

y(0) =y0,

which is given by the mild solutions formula. Moreover, this solution is an element of
W 1,2(0, T ;H) ∩ L2(0, T ;D(A)) (i.e., a strict solution), if and only if y0 ∈ DA(1

2
, 2).

Theorem 3.13 (cf. [26, p. 169, 170]) DA(1
2
, 2) ∼= D((−A)

1
2 ).

Proof: Combine equation (6.4) on page 169 with theorem 6.1(i) on page 170 of [26].

In our case, since we have a solution y, we may apply theorem 3.12 with f replaced by
f−zy ∈ L2(0, T ;L2(Ω)), so that the mild solution y is in fact strict, if y0 ∈ DA(1

2
, 2).

As this space is isometrically isomorphic to D((−A)
1
2 ) by theorem 3.13, it suffices

to characterize this space. But in the case A = ∆, D(A) = H1
0 (Ω)∩H2(Ω), it holds∥∥∥(−∆)

1
2x
∥∥∥2

= 〈−∆x, x〉 =

∫
Ω

|∇x|2 dL,

for all x ∈ D(A). Hence, D((−∆)
1
2 ) = H1

0 (Ω) here. But, by the standard higher
regularity result for the heat equation, also the weak solution from theorem 3.10 is
strict. Hence, it suffices to show:

Proposition 3.14 There is at most one strict solution to (3.7) in L2(ΩT ).

Proof: Let y1, y2 be two strict solutions. Testing the difference of the (almost every-
where valid) equations with ẏ1 − ẏ2, we may infer from lemma 3.9 that y1 = y2 on
Ωτ , for τ ∈ I = (0,min

{√
ε
2
, T
}

). The claim follows then by iteration.
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3.3 A control problem corresponding to the dynamics of the
regularized partial differential equation

Our next goal is to apply theorems from [2, chapter 6] about dynamic programming
method in infinite dimensions. Their results are close to the ones of [5], who did
pioneer work in that area. In this section, we state a control problem that fits the
assumptions of [2, chapter 6,§ 6]. We reformulate (3.7) as integral problem(

yx(t)
zx(t)

)
=

(
et∆ 0
0 1

)(
x1

x2

)
+

∫ t

0

(
e(t−s)∆ 0

0 1

)(
α(s)− zx(s)

1
ε
G(zx(s)− yx(s))

)
ds (3.9)

on the space L2(Ω) × L2(Ω) =: X. We denote with α ∈ A ⊂ L∞(0,∞;L2(Ω)) the
function that was formerly denoted by f ; those functions will serve as controls for
the dynamical system. Here, x = (x1, x2) ∈ X is the initial value, and the operators

t 7→ etA :=

(
et∆ 0
0 1

)
, t ≥ 0,

form a family of strongly continuous semigroups of contractions on X, because for
all x ∈ X, ∥∥etAx∥∥

X
:=
√
‖et∆x1‖2

L2(Ω) + ‖x2‖2
L2(Ω)

≤
√
‖x1‖2

L2(Ω) + ‖x2‖2
L2(Ω)

= ‖x‖X .

Next, we introduce a cost functional for an infinite horizon problem via

Jx(α) :=

∫ ∞
0

f 0(yx(t), zx(t), α(t))e−λtdt, (3.10)

where λ > 0 is a so called discount factor, and f 0 : X × U → R. From theorem
3.11, we infer that for every α ∈ A, there exists a unique solution to (3.9). Then,
for quite general functions f 0, Jx is well defined. Let

V (x) := inf
α∈A

Jx(α)

denote the value function, which yields, for every initial point x ∈ X, the optimal
value (at least, if it is attained) of the minimization problem. For our model problem,
we make the following assumptions.

Assumption 3.15 For U ⊂ L2(Ω) bounded, let A be the set of measurable functions
α : [0,∞) → U . Further, we assume that there exist constants C,m > 0 with
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0 ≤ m < λε
ε+1

and a local modulus of continuity ω(·, ·) (i.e., a continuous function

ω : (R+)
2 → R+ such that for every fixed a ≥ 0, ω(·, a) is a modulus of continuity),

such that for all x, x̄ ∈ X and u ∈ U , |f 0(x, u)| ≤ C (1 + ‖x‖X)m ,

|f 0(x, u)− f 0(x̄, u)| ≤ ω (‖x− x̄‖X ,max {‖x‖X , ‖x̄‖X}) .

Lemma 3.16 Let denote

f : X × U → X, f(x, u) :=

(
u− x2

1
ε
G(x2 − x1)

)
.

Then,

|f(x, u)− f(x̄, u)| ≤
√
ε2 + 2

ε2
‖x− x̄‖X ,

and there is L > 0 such that |f(0, u)| ≤ L ∀u ∈ U . Further, the generator of etA is

(A,D(A)) :=

((
∆ 0
0 0

)
,
(
H1

0 (Ω) ∩H2(Ω)
)
× L2(Ω)

)
,

and there exists B ∈ L(X) positive, self adjoint, such that R(B) ⊂ D(A∗) (thus,
A∗B ∈ L(X)), and for some c0 > 0,

〈A∗Bx, x〉X ≤ c0 〈Bx, x〉X − ‖x‖
2
X , ∀x ∈ X.

Proof: From the Lipschitz continuity of G, we infer that

‖f(x, u)− f(x̄, u)‖X =

√
‖x2 − x̄2‖2

L2(Ω) +
1

ε2
‖x2 − x1 − x̄2 + x̄1‖2

L2(Ω)

≤

√(
1 +

2

ε2

)
‖x2 − x̄2‖2

L2(Ω) +
2

ε2
‖x1 − x̄1‖2

L2(Ω)

≤
√

2 + ε2

ε2
‖x− x̄‖X .

The generator of et∆ is ∆, and the identity is a bounded linear operator, constant
in t; hence, the form of the generator of etA follows. Now, with B1 := (1 − ∆)−1 :
L2(Ω)→ H1

0 (Ω) ∩H2(Ω), since ∆ = ∆∗,

〈∆B1x1, x1〉L2(Ω) = 〈B1x1, x1〉L2(Ω) − ‖x1‖2
L2(Ω) .

55



3. THE HEAT EQUATION WITH HYSTERESIS

Then, since A = A∗, with

B :=

(
B1 0
0 1

)
:
(
L2(Ω)

)2 →
(
H1

0 (Ω) ∩H2(Ω)
)
× L2(Ω),

we get, for x ∈ X,

〈A∗Bx, x〉X = 〈∆B1x1, x1〉L2(Ω) = 〈B1x1, x1〉L2(Ω) − ‖x1‖2
L2(Ω)

= 〈Bx, x〉X − ‖x‖
2
X .

As 1 as well as −∆ are positive operators, we may choose B together with c0 = 1.

3.4 Dynamic programming method - Application of known
results

We are now ready to apply the results from [2, chapter 6].

Proposition 3.17 (cf. [2, chapter 6, proposition 6.1]) If assumption 3.15
holds, Then the value function V is locally uniformly continuous and for some con-
stant K > 0,

|V (x)| ≤ K(1 + ‖x‖X)m, ∀x ∈ X.

Proof: See [2], proposition 6.1 (iii), chapter 6.

As usual, one needs the dynamic programming principle, which takes here the fol-
lowing form.

Proposition 3.18 (cf. [2, chapter 6, proposition 6.2]) If assumption 3.15
holds, then for any x ∈ X and t > 0,

V (x) = inf
α∈A

{∫ t

0

f 0(yx(s), zx(s), α(s))e−λsds+ V (yx(t), zx(t))e
−λt
}
.

Proof: See [2, chapter 6,proposition 6.1].
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Consider the (formal) HJB equation

λV (x)− 〈∇V (x), Ax〉X −H(x,∇V (x)) = 0,

H(x, p) := inf
u∈U

{
〈p, f(x, u)〉+ f 0(x, u)

}
, x, p ∈ X, (3.11)

and the sets of test functions

Φ0 :=
{
ϕ ∈ C1(X)|ϕ is weakly sequentially

lower semicontinuous, A∗∇ϕ ∈ C(X)} ,
G0 :=

{
g ∈ C1(X)|∃ρ ∈ C1(R), ρ′ ≥ 0,

ρ′(0) = 0, g(x) = ρ(‖x‖X), ∀x ∈ X } .

Definition 3.19 (cf. [2, chapter 6, proposition 6.3]) A function v ∈ C(X) is
called viscosity subsolution (resp. supersolution) of (3.11), if for all ϕ ∈ Φ0

and g ∈ G0, whenever the function v−ϕ−g attains a local maximum (resp., v+ϕ+g
attains a local minimum) at x ∈ X, it holds

λv(x)− 〈A∗∇ϕ(x), x〉X −H(x,∇ϕ(x) +∇g(x)) ≤ 0,

(respectively,

λv(x) + 〈A∗∇ϕ(x), x〉X −H(x,−∇ϕ(x)−∇g(x)) ≥ 0. )

Theorem 3.20 (cf. [2, chapter 6, proposition 6.4]) Assume that 3.15 holds. Then
the value function V is a viscosity solution of (3.11).

Proof: See [2, chapter 6, proposition 6.4].

To show uniqueness in this setting, one needs the notion of B-continuity.

Definition 3.21 (cf. [2, chapter 6,definition 2.3]) Let B ∈ L(X) be self- ad-
joint and positive, and define the seminorm induced by B as

‖x‖B = 〈Bx, x〉
1
2
X , ∀x ∈ X.

A function v : X → R is said to be B-continuous at x0 ∈ X, if for all xn ∈ X
with xn → x0 weakly and ‖Bxn −Bx0‖ → 0, it holds v(xn)→ v(x0).
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Proposition 3.22 (cf. [2, chapter 6, proposition 6.5]) If assumption 3.15
holds, then there exists a local modulus of continuity ω(·, ·), such that

|V (x)− V (x̄)| ≤ ω(‖x− x̄‖B ,max {‖x‖X , ‖x̄‖X}), ∀x, x̄ ∈ X.

Proof: See [2] chapter 6, proposition 6.5, part two; the remaining assumptions were
shown in lemma 3.16.

With this proposition, one can then characterize the value function in the following
way.

Theorem 3.23 (cf. [2, chapter 6, theorem 6.6]) Let assumption 3.15 hold,
and denote by B the operator from lemma 3.16. Then the value function V is the
unique B-continuous viscosity solution of (3.11) satisfying

|V (x)| ≤ K (1 + ‖x‖X)m , ∀x ∈ X.

Proof: See [2], chapter 6, theorem 6.6.

3.5 Convergence of optimal value functions

We conclude the investigation with showing convergence of trajectories of (3.7),
which will then be used to show pointwise convergence of the value function for
“regular” initial values. We call a pair of initial values (y0, z0) admissible, if
|z0(x)− y0(x)| ≤ r(x) holds for almost every x ∈ Ω. We will need the following
statement.

Lemma 3.24 Let y0, z0 be a pair of admissible initial values, z being the solution of

εż = G(z − y), z(0) = z0,

and y ∈ H1(0, T ;L2(Ω)). Then, almost everywhere,

|z(x, t)| ≤ r(x) + |y(x, t)|+
∫ t

0

|ẏ(x, s)| ds.

Proof: Note that, since H1(0, T ;L2(Ω)) = L2(Ω;H1(0, T )), for almost every x ∈ Ω,
it holds y(x, ·), z(x, ·) ∈ H1(0, T ). For such x, define w := z − y. If |w| ≤ r, then
the “reversed triangle inequality” yields

|z(x, t)| ≤ r(x) + |y(x, t)| ≤ r(x) + |y(x, t)|+
∫ t

0

|ẏ(x, s)| ds.
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If not, then G(w(x, t)) = −w(x, t) − r(x), or G(w(x, t)) = −w(x, t) + r(x). In the
first case, there is, by continuity, some t0 ≥ 0 such that w(x, s) < −r(x) for all
t0 < s ≤ t, and w(x, t0) = −r(x); further, it holds

ẇ(x, s) = ż(x, s)− ẏ(x, s) = −1

ε
w(x, s)− 1

ε
r(x)− ẏ(x, s),

for alomst every s ∈ (t0, t). The variation of constants formula yields

w(x, t) =− r(x) exp

(
−1

ε
(t− t0)

)
−
∫ t

t0

exp

(
−1

ε
(t− s)

)(
1

ε
r(x) + ẏ(x, s)

)
ds.

Noting that

r(x)

∫ t

t0

exp

(
−1

ε
(t− s)

)
1

ε
ds = r(x)− r(x) exp

(
−1

ε
(t− t0)

)
,

it follows

w(x, t) = −r(x)−
∫ t

t0

exp

(
−1

ε
(t− s)

)
ẏ(x, s)ds,

and thus

|w(x, t)| ≤ r(x) +

∫ t

t0

|ẏ(x, s)| ds,

for all such t > t0. The same inequality can be derived in the second case, using the
same arguments. Hence, in particular,

|z(x, t)| ≤ r(x) + |y(x, t)|+
∫ t

0

|ẏ(x, s)| ds

for all t and almost every x ∈ Ω as claimed.

Proposition 3.25 Let y0, z0 be admissible initial values, T > 0, ∂Ω be of class C2,
r ∈ L2(Ω), and yε ∈ Y , for every ε > 0, denote the weak solution to (3.7) (see
theorem 3.10). Then yε is bounded in Y for ε ↓ 0.

Proof: As yε ∈ Y is also a strict solution, it holds, in particular,

ẏε + zε −∆yε = f a.e. in ΩT .
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From lemma 3.7, we infer that, testing the equation with ẏεχ(0,t) for t ∈ (0, T ] leads
to ∫

Ωt

(ẏε)2 dL+
1

2

∫
Ω

|∇yε(x, t)|2 dx =

∫
Ωt

(f − zε) ẏεdL+
1

2

∫
Ω

|∇yε(x, 0)|2 dx.

Let us denote K := 1
2

∫
Ω
|∇yε(x, t)|2 dx. Lemma 3.24 and the triangle inequality

followed by Jensen’s inequality yield

‖zε‖L2(Ωt)
≤
√
t ‖r‖L2(Ω) + ‖yε‖L2(Ωt)

+

√∫ t

0

∫
Ω

(∫ s

0

|ẏε(x, r)| dr
)2

dxds

≤
√
t ‖r‖L2(Ω) + ‖yε‖L2(Ωt)

+ t ‖ẏε‖L2(Ωt)
.

Further, using similar arguments, we infer from

yε(x, t) = yε0(x) +

∫ t

0

ẏε(x, s)ds a.e.,

that

‖yε‖L2(Ωt)
≤
√
t ‖yε0‖L2(Ω) + t ‖ẏε‖L2(Ωt)

.

Hence, the last two inequalities imply

−
∫

Ωt

zεẏεdL ≤‖zε‖L2(Ωt)
‖ẏε‖L2(Ωt)

≤
(√

t ‖r‖L2(Ω) + ‖yε‖L2(Ωt)
+ t ‖ẏε‖L2(Ωt)

)
‖ẏε‖L2(Ωt)

≤
√
t ‖r‖L2(Ω) ‖ẏ

ε‖L2(Ωt)
+
√
t ‖yε0‖L2(Ω) ‖ẏ

ε‖L2(Ωt)
+ 2t ‖ẏε‖2

L2(Ωt)
.

With Young’s inequality and x ≤ 1 + x2 ∀x ∈ R, the right hand side may be further
estimated by

√
t ‖r‖L2(Ω)

(
1 + ‖ẏε‖2

L2(Ωt)

)
+

√
t

2

(
‖yε0‖

2
L2(Ω) + ‖ẏε‖2

L2(Ωt)

)
+ 2t ‖ẏε‖2

L2(Ωt)

≤ C1 + C2

√
t ‖ẏε‖2

L2(Ωt)
,

where

C1 :=
√
T ‖r‖L2(Ω) +

1

2

√
T ‖yε0‖

2
L2(Ω) ,

C2 := ‖r‖L2(Ω) + 2
√
T +

1

2
.
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We may thus infer from the tested equality, that(
1

2
− C2

√
t

)
‖ẏε‖2

L2(Ωt)
+

1

2

∫
Ω

|∇yε(x, t)|2 dx ≤ 1

2
‖f‖2

L2(ΩT ) +K + C1,

and hence, boundedness of yε on (0, τ), whenever τ < (4C2
2)−1. As C2 only depends

on r and T , we may iterate this procedure and conclude boundedness on the whole
interval.

Corollary 3.26 Let the assumptions of proposition 3.25 and theorem 3.10 hold.
Then yε → y weak ? in Y and zε → w weak in L2(ΩT ) as ε ↓ 0, where (y, w) is the
weak solution to (3.1) (see theorem 3.10).

Proof: First note that by proposition 3.25, yε is bounded in Y as ε ↓ 0, so that
there exists a weak ? convergent (sub-) sequence yεn =: yn → y ∈ Y . Next, we
make again use of the compactness of the imbedding Y ↪→ L2(Ω;C[0, T ]). This
enables us to find a subsequence (for simplicity again denoted by yn) that converges
strong in L2(Ω;C[0, T ]) to y. But then, it is necessary that yn(x, ·) converges in
C[0, T ] to y(x, ·), for almost every x ∈ Ω. Due to theorem 2.11, for almost all
x ∈ Ω, zε(x, ·) → w(x, ·) in C[0, T ], where w = Fr[y; z0]. From lemma 3.24, we get
additionally, that (at least a subsequence, which will then be denoted in the same
way) zn converges weakly in L2(ΩT ), and, by uniqueness of limits, zn ⇀ w. We may
then take the limit of the variational equality, which shows that (y, w) solves (3.1)
in the sense of theorem 3.3. As we can argue in the same way for every subsequence,
the proof is complete.

We end this section by showing that, under certain conditions, convergence of the
trajectories implies pointwise convergence of the value functions. We add the fol-
lowing, more restrictive, assumptions.

Assumption 3.27 The function f 0 is bounded and Lipschitz continuous, and only
depends on the x1-coordinate, i.e., f 0(x, u) = h(x1, u) for some function h : L2(Ω)×
U → R, and there are constants c, cL > 0 such that∣∣f 0(x, u)

∣∣ ≤ c,
∣∣f 0(x, u)− f 0(x̄, u)

∣∣ ≤ cL ‖x1 − x̄1‖X , ∀x, x̄ ∈ X, u ∈ U.
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Remark 3.28 Due to the boundedness assumption, the value function is automati-
cally well defined because of the appearence of the discount factor. Thus, we may use
the same target functional and set of controls to create a control problem for (3.1).
The corresponding value function will, in the following, be denoted by V 0; the one
corresponding to the approximate problem by V ε. We also remark that the dynamic
programming principle (cf. proposition 3.18) holds for V 0, even we have not defined
trajectories for all x ∈ X; this is because trajectories are unique and thus the solution
operator has a semigroup property.

Theorem 3.29 Let assumptions 3.15 and 3.27 hold, together with the ones of corol-
lary 3.26. Then, for every admissible x ∈ H1

0 (Ω)× L2(Ω),

V ε(x)
ε↓0−−→ V 0(x).

Proof: Let δ > 0 be arbitrary. By definition, there exists a control α ∈ A, such that

V 0(x) ≥
∫ ∞

0

e−λth(y(t), α(t))dt− δ

2
.

Then, the Lipschitz and boundedness conditions imply

V ε(x)− V 0(x) ≤
∫ ∞

0

e−λt (h(yε(t), α(t))− h(y(t), α(t))) dt+
δ

2

≤
∫ T

0

e−λt ‖yε(t)− y(t)‖L2(Ω) dt+ 2c

∫ ∞
T

e−λtdt+
δ

2
.

We may now choose T > 0 so that the second term is smaller than δ
2
. But then,

with corollary 3.26, we get that

lim sup
ε↓0

(
V ε(x)− V 0(x)

)
≤ δ,

and, since δ > 0 was arbitrary,

lim sup
ε↓0

(
V ε(x)− V 0(x)

)
≤ 0.

Now, as second step, let again δ > 0 be arbitrary, and note that for all ε > 0, there
exists a control α ∈ A such that

V ε(x) ≥
∫ ∞

0

e−λth(yε(t), αε(t))dt− δ

2
.
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We may then, similar to the first part, infer that

lim inf
ε↓0

(
V ε(x)− V 0(x)

)
≥ 0.

Altogether, this implies

lim
ε↓0

(
V ε(x)− V 0(x)

)
= 0.
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4 An Abstract model and general assumptions

4.1 Special Semigroup

Let X be a Hilbert space with norm ‖·‖ induced by the inner product 〈·, ·〉, let A be
a (possibly unbounded) operator with domain D(A) ⊂ X, which is closed, densely
defined and selfadjoint in X, such that 〈Ax, x〉 ≤ −ω ‖x‖2 for all x ∈ D(A), where
ω > 0. Then the following holds (see e.g. [27, appendix], or [6]):

• (A,D(A)) is the infinitesimal generator of a strongly continuous analytic semi-
group of contractions on X, which will be denoted by etA, for t ≥ 0;

• for all θ ∈ R, (−A)θ exists and it holds

(−A)α(−A)βx =(−A)α+βx =(−A)β(−A)αx, x ∈D((−A)max(α,β,α+β)); (4.1)

• for all δ ≥ 0 there exists a constant Mδ > 0 such that, for every t > 0:∥∥(−A)δetA
∥∥
L(X)
≤Mδt

−δe−ωt; (4.2)

• if 0 ≤ δ ≤ 1 and x ∈ D((−A)δ), then there exists Nδ > 0 such that, for all
t ≥ 0: ∥∥(etA − I)x∥∥ ≤ Nδt

δ
∥∥(−A)δx

∥∥ ; (4.3)

• for all 0 ≤ δ < γ ≤ 1 and all x ∈ D((−A)γ), there exists Mδ,γ > 0 such
that the following interpolation inequality between the corresponding abstract
Sobolev spaces holds:∥∥(−A)δx

∥∥ ≤Mδ,γ ‖(−A)γx‖
δ
γ ‖x‖1− δ

γ . (4.4)

Further, if f ∈ L1(0, T ;X), then there exists a unique mild solution for

ẏ − Ay = f in (0, T ), y(0) = x ∈ X, (4.5)

which has to be understood in the integral form

y(t) = etAx+

∫ t

0

e(t−s)Af(s)ds ∈ C(0, T ;X),

see e.g. [25, chapter 4].
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4.2 Dynamic and further assumptions

In this section we will study existence and uniqueness of solutions to the differential
equation

ẏ − Ay + F (y) = α,

F (y) =
n∑
k=1

Bk(fk(y))gk,
(4.6)

under assumption (A1):
A is an operator of the type described in section 4.1 and for any T > 0, each of
the operators Bk : C[0, T ] → C[0, T ] is Lipschitz continuous with Lipschitz con-
stant not larger than L > 0, and gk, α ∈ L∞(0, T ;X), k ∈ {1, . . . , n}, fk ∈ X
(fk(y) := 〈fk, y〉).

Theorem 4.1 If (A1) holds, then for every x = y(0) ∈ X there exists a unique
mild solution y ∈ C(0, T ;X) to (4.6), in the sense that

y(t) = etAx+

∫ t

0

e(t−s)A (α(s)− F (y(s))) ds.

If, in addition, x ∈ D((−A)θ) for some θ ∈ (0, 1), then y ∈ C(0, T ;D((−A)θ)), and
for any ϕ ∈ C1(X) such that (−A)1−θ∇ϕ(·) ∈ C(X), the formula

ϕ(y(t))− ϕ(x) =

∫ t

0

−
〈
(−A)1−θ∇ϕ(y(s)), (−A)θy(s)

〉
ds

+

∫ t

0

〈ϕ(y(s)), α(s)− F (y(s))〉 ds

holds.

Proof: Let 0 < τ ≤ T , and v ∈ C(0, τ ;X) be arbitrary. By assumption, the function
defined by

fv(s) := α(s)− F (v(s)) ∈ L∞(0, τ ;X),

hence there exists a unique mild solution z of ż − Az = fv, i.e.,

z(t) = etAx+

∫ t

0

e(t−s)Afv(s)ds, t ∈ [0, τ ].

Thus, the assignment v 7→ z defines an operator J : C(0, τ ;X) → C(0, τ ;X) such
that y solves (4.6) for T replaced by τ if and only if y is a fixed point of J . Our
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goal is now to apply Banach’s fixed point theorem, at least for small τ , and then
to show that the solution can be continued. To this end, let v1, v2 ∈ C(0, τ ;X) and
zi = J(vi), i = 1, 2. Then,

‖z1(t)− z2(t)‖ =

∥∥∥∥∫ t

0

e(t−s)A (F (v2(s))− F (v1(s))) ds

∥∥∥∥
≤L

n∑
k=1

∫ t

0

‖〈fk, v2(·)− v1(·)〉‖C[0,t] · ‖gk(s)‖

≤τL

(
n∑
k=1

‖fk‖ ‖gk‖L∞(0,τ ;X)

)
‖v1 − v2‖C(0,τ ;X) .

Choosing τ̄ = min(T, 1
2
(L
∑n

k=1 ‖fk‖ ‖gk‖C(0,T ;X))
−1), we find that J is a contraction

mapping on C(0, τ̄ ;X), and we can apply Banach’s fixed point theorem, which yields
a unique local solution of (4.6) on [0, τ̄ ]. Since

‖y(t)‖ ≤‖x‖+ T ‖α‖C(0,T ;X) + L
n∑
k=1

|Bk(0)| ‖gk‖L∞(0,T ;X)

+ L
n∑
k=1

‖fk‖ ‖gk‖C(0,T ;X)

∫ t

0

‖y(·)‖C(0,s;X) ds,

Gronwall’s lemma implies that solutions are bounded on bounded intervals. Hence,
the local solution can be continued to the whole interval [0, T ].

Now, if x ∈ D((−A)θ), the higher regularity follows with (4.2), (4.3) and the
semigroup property by standard arguments. Further, let ε > 0, x ∈ D((−A)θ+ε),
and ϕ with the above properties be given; denote f(s) := α(s)−F (y(s)). For τ > 0,
we introduce (let T (t) := etA)

ȳ(t) := T (τ)y(t) = T (t)T (τ)x+

∫ t

0

T (t− s)T (τ)f(s)ds,

the solution of

ȳ(0) =T (τ)x,

˙̄y(t) =Aȳ(t) + T (τ)f(t).

It holds ȳ ∈ C(0, T ;D(A)), and thus it fulfills the differential equation for almost
every t and its derivative is integrable. Hence, we may compute

ϕ(T (τ)y(t))− ϕ(T (τ)x) =

∫ t

0

〈∇ϕ(T (τ)y(s)), AT (2τ)y(s) + T (2τ)f(s)〉 ds
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=−
∫ t

0

〈
(−A)1−θ∇ϕ(T (τ)y(s)), (−A)θT (2τ)y(s)

〉
ds

+

∫ t

0

〈∇ϕ(T (τ)y(s)), T (2τ)f(s)〉 ds.

Letting τ ↓ 0 yields the result for x ∈ D((−A)θ+ε), because (4.3) implies that
(−A)θT (τ)y(s) = T (τ)(−A)θy(s) → (−A)θy(s) uniformly in s ∈ [0, t]. Then, by
continuity, we can let ε ↓ 0 to get the desired formula.

We are mainly interested in operators Bk which are of hysteresis type. Let Fρ denote
the play operator corresponding to the interval [−ρ, ρ], and define a Prandtl-Ishlinskii
operator of play type via

Pk : C[0, T ]× (fk(x)− Zk)→ C[0, T ],

Pk[y; ζk] :=

∫
Rk

Fρ[y; ζk]dµk(ρ),

where, for each k ∈ {1, . . . , n}, Rk is a subset of R+, µk is a probability measure on
Rk, and ζk = fk(x)− ξk,

ξk ∈ Zk := {ξ | ξ : Rk → R measurable ∧ |ξ(ρ)| ≤ ρ ∀ρ ∈ Rk} .

We assume further that ∫
Rk

ρ2dµk(ρ) <∞,

which implies that each Zk is a subset of L2(Rk, µk) (this is obviously fulfilled when
Rk is a bounded set, which is typically the case). Note that since µk is a probability
measure, by Jensen’s inequality(∫

Rk

ξ(ρ)dµk(ρ)

)2

≤
∫
Rk

ξ(ρ)2dµk(ρ) ≤
∫
Rk

ρ2dµk(ρ) <∞,

and therefore (by interpolation) Zk ⊂ Lp(Rk, µk), p ∈ [1, 2]. For such p, we may
thus define, for ξ ∈ Z :=

∏n
k=1 Zk, the norms

‖ξ‖Z,p :=

(
n∑
k=1

∫
Rk

ξk(ρ)pdµk(ρ)

) 1
p

, ‖ξ‖Z := ‖ξ‖Z,2 . (4.7)
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Now, for fixed ξ = (ξ1, . . . , ξn)T ∈ Z, each of the operators Pk[·, ζk] is Lipschitz
continuous in C[0, T ], because for all t ∈ [0, T ],

|Pk[y1; ζk](t)− Pk[y2; ζk](t)| ≤
∫
Rk

|Fρ[y1; ζk(ρ)](t)−Fρ[y2; ζk(ρ)](t)| dµk(ρ)

≤
∫
Rk

sup
t∈[0,T ]

|y1(t)− y2(t)| dµk(ρ)

= sup
t∈[0,T ]

|y1(t)− y2(t)| .

Hence, theorem 4.1 is applicable for Bk(·) := Pk[·, ζk]. We will refer to this special
case as problem (P):

ẏ − Ay + F (y) = α,

F (y) =
n∑
k=1

Bk(fk(y))gk,

with assumption (A1), and assumption (A2) :

Bk = Pk ∀ k ∈ {1, . . . , n} , ξ ∈ Z ⊂
n∏
k=1

L2(Rk, µk), µk probability measures.

Moreover, we define the vector valued function

w(t) = (w1(t), . . . , wn(t)) := (P1[f1(y); ξ1](t), . . . , Pn[fn(y); ξn](t)),

whose coordinates might be interpreted as some kind of “localized mean hysteresis”
(when fk, gk are chosen such that Pk only operates on some disjoint subsets Ωk of
Ω). Next we present a continuity result for the solution operator corresponding to
problem (P).

Proposition 4.2 Let y1, y2 denote, respectively, the solutions to problem (P) cor-
responding to initial values (x, ξ), (z, ζ) ∈ X × (

∏n
k=1(fk(x)− Zk)), and assume

that for some 0 ≤ θ < 1 it holds that fk ∈ D((−A)θ), for every k ∈ {1, . . . , n}.
Then there exist a constant C1 = C1(θ, f1, . . . , fn) and a locally integrable function
C2 = C2(T, θ, g1, . . . , gn, f1, . . . , fn) such that, for any t ∈ [0, T ],

|w1(t)− w2(t)|1 ≤ C1

(∥∥(−A)−θ(x− z)
∥∥+ ‖ξ − ζ‖Z,1

)
· exp(t

n∑
k=1

Γk),

‖y1(t)− y2(t)‖ ≤ C2

(∥∥(−A)−θ(x− z)
∥∥+ ‖ξ − ζ‖Z,1

)
· exp(t

n∑
k=1

Γk).

C1, C2, Γ1, . . . ,Γn are given by (4.10), (4.11) and (4.9).
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Proof: Let T > 0. For fixed k ∈ {1, . . . , n} and ρ ∈ Rk, the Lipschitz continuity of
Fρ in C(0, T ) allows us to estimate

∆Fkρ (T ) := |Fρ[fk(y1); ξk(ρ)](T )−Fρ[fk(y2); ζk(ρ)](T )|
≤ sup

t∈[0,T ]

|fk(y1)(t)− fk(y2)(t)|+ |ξk(ρ)− ζk(ρ)|

= sup
t∈[0,T ]

∣∣〈fk, etA(x− z)
〉

+

∫ t

0

〈
fk, e

(t−s)A (F [y2; ζ](s)− F [y1; ξ](s))
〉
ds

∣∣∣∣+ |ξk(ρ)− ζk(ρ)|

≤ sup
t∈[0,T ]

∣∣〈(−A)θfk, e
tA(−A)−θ (x− z)

〉∣∣
+

∫ t

0

n∑
j=1

∣∣〈fk, e(t−s)Agj(s)
〉∣∣ · ∫

Rj

∆F jρ(s)dµj(ρ)ds

+ |ξk(ρ)− ζk(ρ)|
≤
∥∥(−A)θfk

∥∥∥∥(−A)−θ(x− z)
∥∥

+ Γk

∫ T

0

n∑
j=1

∫
Rj

∆F jρ(s)dµj(ρ)ds+ |ξk(ρ)− ζk(ρ)| , (4.8)

Γk := sup
t>0

{
sup

0≤s≤t

{
max
1≤j≤n

{∣∣〈fk, e(t−s)Agj(s)
〉∣∣}}} . (4.9)

Note that (4.2) implies that Γk <∞. Denoting
∥∥(−A)θfk

∥∥ =: ak, integration w.r.t.
µk followed by summation over k yields

n∑
k=1

∫
Rk

∆Fkρ (T )dµk(ρ) ≤

(
n∑
k=1

ak

)∥∥(−A)−θ(x− z)
∥∥

+

(
n∑
k=1

Γk

)∫ T

0

n∑
j=1

∫
Rj

∆F jρ(s)dµj(ρ)ds

+
n∑
k=1

∫
Rk

|ξk(ρ)− ζk(ρ)| dµk.

Hence, applying the standard version of Gronwall’s lemma (cf. theorem D.3) to the
function u(t) :=

∑n
k=1

∫
Rk

∆Fkρ (t)dµk(ρ) yields

n∑
k=1

∫
Rk

∆Fkρ (t)dµk(ρ) ≤

(
n∑
k=1

ak

)∥∥(−A)−θ(x− z)
∥∥ exp

(
t

n∑
k=1

Γk

)
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+ ‖ξ − ζ‖Z,1 exp

(
t

n∑
k=1

Γk

)
.

Therefore, one can choose

C1 = C1(θ, f1, . . . , fn) := 1 +
n∑
k=1

ak. (4.10)

Now, using the definition of mild solutions, estimate (4.2) and (4.9), we get for all
t > 0

‖y1(t)− y2(t)‖ ≤Mθ

tθ
∥∥(−A)−θ (x− z)

∥∥
+

∫ t

0

(
max

1≤k≤n
‖gk(s)‖

) n∑
k=1

∫
Rk

∆Fkρ (s)dµk(ρ)ds

≤Mθ

tθ
∥∥(−A)−θ (x− z)

∥∥
+

(
n∑
k=1

ak

)∥∥(−A)−θ(x− z)
∥∥∫ t

0

Gn(s) exp

(
s

n∑
k=1

Γk

)

+ ‖ξ − ζ‖Z,1
∫ t

0

Gn(s) exp

(
s

n∑
k=1

Γk

)
,

where Gn(s) := max1≤k≤n ‖gk(s)‖ ≤ max1≤k≤n ‖gk‖L∞(0,T ;X) =: G, t ∈ [0, T ]. Hence,
for

C2 := C2(t, θ, G, f1, . . . , fn) =
(
1 + t−θ

)(
Mθ + tG

(
1 +

n∑
k=1

ak

))
(4.11)

it holds that

‖y1(t)− y2(t)‖ ≤ C2

(∥∥(−A)−θ (x− z)
∥∥+ ‖ξ − ζ‖Z,1

)
exp

(
t

n∑
k=1

Γk

)
.

Since θ ∈ [0, 1), C2 is integrable over (0, T ), and the proof is complete.

Remark 4.3 Proposition 4.2 holds for general operators fulfilling a Lipschitz condi-
tion, i.e., one might for example replace the family of play operators Fρ by some Lips-
chitz continuous operator B : C[0, T ]→ C[0, T ], and choose µ = L|[0,1], the Lebesgue
measure on [0, 1]. Then a similar estimate holds with ξ = ζ (i.e., ‖ξ − ζ‖Z,1 = 0);
however, the Lipschitz constant (which equals one for the play operator) will appear
in the exponential function.
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Remark 4.4 Using (4.2), one can estimate

Γk ≤ max
1≤j≤n

{
‖fk‖ ‖gj‖L∞(0,T ;X)

}
.

With the well known identity Fr = I−Er, where I denotes the identical mapping and
Er denotes the stop operator corresponding to the characteristic set [−r, r], problem
(P) may alternatively be written as problem (Q):

ẏ − Ay + F (y; ξ) = α,

F (y; ξ) =
n∑
k=1

fk(y) · gk −
∫
Rk

Eρ[fk(y); ξk]dµk(ρ) · gk,

together with assumptions (A1), (A2),

with initial values in X × Z. Since in later sections, we will only work with this
formulation of the problem, we translate proposition 4.2. It is just a matter of how
initial values are defined - one gets ξk,P = fk(x) − ξk,Q, and therefore, since µk are
probability measures,

‖ξP − ζP‖Z,1 ≤ ‖ξQ − ζQ‖Z,1 +
n∑
k=1

|〈fk, x− z〉| .

By the same arguments as in the proof of proposition 4.2, we get analogous estimates
with slightly bigger constants

C̄1 := C1 ·

(
1 +

n∑
k=1

ak

)
, C̄2 := C2 ·

(
1 +

n∑
k=1

ak

)
.

Corollary 4.5 Let the assumptions of proposition 4.2 hold. There are analogous
estimates for problem (Q), with C1, C2 replaced by C̄1, C̄2.
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5 The control problem

We are going to introduce an infinite horizon control problem related to problem
(Q). To this end, note that T > 0 was arbitrary in section 4, so that the existence
and uniqueness of solutions is guaranteed for arbitrary large time. Further, corollary
4.5 holds.

Let us now make some further assumptions, which should hold generally in sec-
tions 5 to 7. Let A ⊂ X be nonempty, bounded and closed, and define

A := {β|β : [0,∞)→ A measurable} ,

the set of controls for problem (Q), i.e., we will assume α ∈ A. In addition, let
gk ∈ X (i.e., constant in time), for each k ∈ {1, . . . , n}. In order to define the cost
functional, we consider

L : X × Rn × A −→ R+, such that

|L(x1, w1, a)− L(x2, w2, a)| ≤CL (‖x1 − x2‖+ |w1 − w2|2) ,

∀x1, x2 ∈ X,w1, w2 ∈ Rn, a ∈A.
(5.1)

Then, we define a cost functional

J(x, ξ, α) :=

∫ ∞
0

e−λtL(yx,ξ,α(t), wx,ξ,α(t), α(t))dt,

with discount factor

λ > Γ :=
n∑
k=1

Γk. (5.2)

The functions yx,ξ,α, wx,ξ,α denote the solution to problem (Q) and its hysteresis
part corresponding to inital values (x, ξ) ∈ X × Z and w.r.t. the control α ∈ A.
More precisely,

wx,ξ,α,k(t) := fk(yx,ξ,α(t))−
∫
Rk

Eρ[fk(yx,ξ,α); ξk](t)dµk(ρ).

To shorten notations, we will also write

ξx,ξ,α(t) := (E·[f1(yx,ξ,α); ξ1(·)](t), . . . , E·[fn(yx,ξ,α); ξn(·)](t)) ∈ Z,

so that ξx,ξ,α(0) = ξ. By (4.7), we may view Z as subset of
∏n

k=1 L
2(Rk, µk) w.r.t.

the norm ‖ξ‖Z , which is induced by the scalar product

〈ξ, ζ〉Z :=
n∑
k=1

∫
Rk

ξ(ρ)ζ(ρ)dµk(ρ).
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We also introduce the vector

1 := (1R1 , . . . ,1Rn) ,

wherefore we may write

n∑
k=1

∫
Rk

ξk(ρ)dµk(ρ) = 〈ξ,1〉Z .

Note that according to these notations, we have

w0 =

(
f1(x)−

∫
R1

ξ1(ρ)dµ1(ρ), . . . , fn(x)−
∫
Rn

ξn(ρ)dµn(ρ)

)
. (5.3)

As usual, the value function is defined by

V (x, ξ) := inf
α∈A

J(x, ξ, α). (5.4)

It has the following Lipschitz type property.

Theorem 5.1 Let the assumptions of problem (Q) and (5.2) hold. Then, for every
0 ≤ θ < 1, for which fk ∈ D((−A)θ) holds for all k ∈ {1, . . . , n}, there is C > 0,
such that, for all (x, ξ), (z, ζ) ∈ X × Z,

|V (x, ξ)− V (z, ζ)| ≤ C
(∥∥(−A)−θ(x− z)

∥∥+ ‖ξ − ζ‖Z
)
. (5.5)

Proof: By the definition of V (5.4) and the Lipschitz condition (5.1) on L, we have

|V (x, ξ)− V (z, ζ)|

≤ sup
α∈A

{∫ ∞
0

e−λt |L(yx,ξ,α(t), wx,ξ,α(t), α(t))− L(yz,ζ,α(t), wz,ζ,α(t), α(t))| dt
}

(5.6)

≤ sup
α∈A

{
CL

∫ ∞
0

e−λt
(
‖yx,ξ,α(t)− yz,ζ,α(t)‖+ |wx,ξ,α(t)− wz,ζ,α(t)|2

)
dt

}
. (5.7)

Since the norms |·|1, |·|2 are equivalent on Rn, we may, after having enlarged the
constant, apply corollary 4.5, so that for some C > 0

|V (x, ξ)− V (z, ζ)|

≤ C
(∥∥(−A)−θ(x− z)

∥∥+ ‖ξ − ζ‖Z,1
)∫ ∞

0

e(Γ−λ)t(1 + t+ t−θ)dt.

The integral on the right hand side converges for λ > Γ, and the norm ‖ξ − ζ‖Z,1
can be estimated by some constant times ‖ξ − ζ‖Z (use equivalence of norms in Rn
and Jensen’s inequality). Thus, (5.5) follows.
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Remark 5.2 If λ ≤ Γ, one can still show that the value function is locally Hölder
continuous: It is not hard to see that solutions to problem (Q) can not leave a ball
in X whose radius depends only on the initial value x ∈ X (not even on ξ ∈ Z).
Therefore, L(y, w, α) can be estimated by some function depending only on the initial
value. Splitting the term in absolute value of (5.6) into ·1−β and ·β (and β small
enough), one can conclude, using the Lipschitz continuity of L.
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6 Dynamic programming and the value function

as viscosity solution

6.1 The dynamic programming principle

Recall that each of the operators Eρ has the semigroup property

Eρ[y; ξ(ρ)](t+ τ) = Eρ [v; Eρ[y; ξ(ρ)](t)] (τ),

with v(s) := y(t + s), s ∈ [0, τ ]. The following theorem, sometimes also called the
Bellman principle of optimality, holds in quite general situations. It formalizes the
intuition that an optimal control can be found by splitting the interval [0,∞) and
then find optimal solutions to the subproblems. More precisely, it holds:

Theorem 6.1 (dynamic programming principle) For all (x, ξ) ∈ X × Z and t > 0,
it holds that

V (x, ξ) = inf
α∈A

{∫ t

0

e−λsL(yx,ξ,α(s), wx,ξ,α(s), α(s))ds+ e−λtV (yx,ξ,α(t), ξx,ξ,α(t))

}
.

(6.1)

Proof: Since gk is assumed to be constant in time, y and w have a semigroup property.
Let W (x, ξ) denote the right hand side of (6.1), and I the integral term thereof. We
begin with showing that V (x, ξ) ≥ W (x, ξ). For all α ∈ A,

J(x, ξ, α) = I +

∫ ∞
t

e−λsL(yx,ξ,α(s), wx,ξ,α(s), α(s))ds.

After the change of variables r = s− t, the equation reads

J(x, ξ, α) = I + e−λt
∫ ∞

0

e−λrL(yx,ξ,α(t+ r), wx,ξ,α(t+ r), α(t+ r))dr. (6.2)

Using the semigroup property, (6.2) is equivalent to

J(x, ξ, α) = I + e−λtJ(yx,ξ,α(t), ξx,ξ,α(t), ᾱ),

with ᾱ(r) := α(t + r). Since J(yx,ξ,α(t), ξx,ξ,α(t), ᾱ) ≥ V (yx,ξ,α(t), ξx,ξ,α(t)), we can
take the infimum to conclude V (x, ξ) ≥ W (x, ξ).

To prove the other inequality, fix t > 0, α ∈ A, ε > 0, and choose α′ ∈ A such
that

V (yx,ξ,α(t))wx,ξ,α(t)) ≥ J(yx,ξ,α(t), wx,ξ,α(t), α′)− ε.
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Define the control

ᾱ(s) :=

{
α(s) if s ≤ t,
α′(s− t) else.

Setting x̄ := yx,ξ,α(t) and ξ̄ := ξx,ξ,α(t), we find

V (x, ξ) ≤ J(x, ξ, ᾱ) = I + e−λtJ(x̄, ξ̄, α′) ≤ I + e−λtV (x̄, ξ̄) + ε.

Since ε and α are arbitrary, this shows V (x, ξ) ≤ W (x, ξ).

Remark 6.2 The proof is completely standard and can, e.g., also be found in [1, 4]
with only some notational differences.

6.2 The HJB inclusion and existence of solutions

For p ∈ X, q ∈ L2(R, µ) :=
∏n

k=1 L
2(Rk, µk), x ∈ X, ξ ∈ Z, we define the Hamilto-

nian

H(x, ξ, p, q) := sup
a∈A

{
−〈p, a〉 − L(x,w0, a)−

n∑
k=1

〈qk,1〉Rk · 〈fk, a〉

}
,

with w0 = w0(x, ξ) as defined in (5.3). We are interested in solutions to the following
formal HJB inclusion:

λΦ(x, ξ)− 〈∇xΦ(x, ξ), Ax〉+
n∑
k=1

〈∇xΦ(x, ξ), gk〉
(
fk(x)− 〈ξk,1〉Rk

)
+

n∑
j,k=1

〈∇ξkΦ(x, ξ),1〉Rk 〈fk, gj〉 (fj(x)− 〈ξj,1〉)

−
n∑
k=1

〈∇ξkΦ(x, ξ),1〉Rk 〈fk, Ax〉

+
n∑
k=1

〈∇ξkΦ(x, ξ), NZk(ξk)〉Rk +H(x, ξ,∇xΦ(x, ξ),∇ξΦ(x, ξ)) 3 0,

(6.3)

where NZk(ξk) stands for the normal cone to Zk at ξk. The following definitions are
inspired by [6] for the x variable, [1, 28] for the hysteresis part.
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Definition 6.3 Let C1
Φ(X) be the set of all test functions ϕ satisfying

(Φ1)(Φ1)(Φ1) ϕ ∈ C1(X).

(Φ2)(Φ2)(Φ2) For all θ ∈ [0, 1
2
], ∇ϕ(x) ∈ D((−A)θ) if and only if x ∈ D((−A)θ).

(Φ3)(Φ3)(Φ3) The mapping x 7→ ∇ϕ(x) is continuous from D((−A)θ) into itself.

Definition 6.4 A function v : X × Z → R satisfying the Lipschitz estimate (5.5)
with θ ≥ 1

2
is called viscosity subsolution of (6.3), if for every ϕ ∈ C1

Φ(X), ψ ∈
C1(Z) and (x, ξ) ∈

(
D((−A)

1
2 )× Z

)
∩arg max(v−ϕ−ψ), there exist pk ∈ NZk(ξk),

k ∈ {1, . . . , n}, such that

λv(x, ξ) +
〈

(−A)
1
2∇ϕ(x), (−A)

1
2x
〉

+
n∑
k=1

〈∇ϕ(x), gk〉
(
fk(x)− 〈ξk,1〉Rk

)
+

n∑
j,k=1

〈∇kψ(ξ),1〉Rk 〈fk, gj〉
(
fj(x)− 〈ξj,1〉Rj

)
+

n∑
k=1

〈∇kψ(ξ),1〉Rk
〈

(−A)
1
2fk, (−A)

1
2x
〉

+
n∑
k=1

〈∇kψ(ξ), pk〉Rk +H(x, ξ,∇ϕ(x),∇ψ(ξ)) ≤ 0.

(6.4)

Similarly, a function v : X × Z → R satisfying (5.5) with θ ≥ 1
2

is called vis-
cosity supersolution of (6.3), if for every ϕ ∈ C1

Φ(X), ψ ∈ C1(Z) and (x, ξ) ∈(
D((−A)

1
2 )× Z

)
∩ arg min(v − ϕ − ψ), there exist qk ∈ NZk(ξk), k ∈ {1, . . . , n},
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such that

λv(x, ξ) +
〈

(−A)
1
2∇ϕ(x), (−A)

1
2x
〉

+
n∑
k=1

〈∇ϕ(x), gk〉
(
fk(x)− 〈ξk,1〉Rk

)
+

n∑
j,k=1

〈∇kψ(ξ),1〉Rk 〈fk, gj〉
(
fj(x)− 〈ξj,1〉Rj

)
+

n∑
k=1

〈∇kψ(ξ),1〉Rk
〈

(−A)
1
2fk, (−A)

1
2x
〉

+
n∑
k=1

〈∇kψ(ξ), qk〉Rk +H(x, ξ,∇ϕ(x),∇ψ(ξ)) ≥ 0.

(6.5)

Finally, a function is called viscosity solution of (6.3), if it is a viscosity subso-
lution and a viscosity supersolution of (6.3).

The above definition makes sense because of the following statements (see [6, 29]
and the references therein):

Lemma 6.5 Let (x0, ξ0) ∈ X × Z and v : X × Z → R such that (5.5) holds for
some θ > 0. Then both the subdifferential D−x v(x0, ξ0) and the superdifferential
D+
x v(x0, ξ0) are included in D((−A∗)θ) = D((−A)θ). Moreover, if C denotes the

Lipschitz constant in (5.5), then∥∥(−A)θp
∥∥ ≤ C, ∀p ∈ D+

x v(x0, ξ0) ∪D−x v(x0, ξ0).

Proof: For fixed ξ0 ∈ Z define the function ṽ : X → R, ṽ(x) := v(x, ξ0). Then, from
(5.5),

|ṽ(x)− ṽ(z)| ≤ C
∥∥(−A)θ(x− z)

∥∥ , (6.6)

hence, we can apply [29, corollary 3.4] to ṽ, which yields the result for functions in
one variable. Since A is assumed to be self adjoint, we can write A instead of A∗,
and the proof is complete.

Lemma 6.6 Let ϕ, ψ ∈ C1(X × Z) and w, v ∈ C(X × Z). If (x0, ξ0) is a local
maximum for w−ϕ, then ∇xϕ(x0, ξ0) ∈ D+

x w(x0, ξ0). Similarly, if (z0, ζ0) is a local
minimum for v − ψ, then ∇xψ(z0, ζ0) ∈ D−x v(z0, ζ0).
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Proof: As in the proof of the last lemma, we use (almost the same) arguments as
[6, lemma 3.6] for the statement in one variable. If (x0, ξ0) is a local maximum for
w − ϕ, then there is in particular some open set U ⊂ X such that

w(x0, ξ0)− ϕ(x0, ξ0) ≥w(x, ξ0)− ϕ(x, ξ0)

⇔ w(x, ξ0)− w(x0, ξ0)− [ϕ(x, ξ0)− ϕ(x0, ξ0)] ≤ 0, ∀x ∈ U. (6.7)

Since ϕ is, by assumption, Frechet differentiable, it holds

ϕ(x, ξ0)− ϕ(x0, ξ0)− 〈∇xϕ(x0, ξ0), x− x0〉 = o(‖x− x0‖). (6.8)

Further, we can write

w(x, ξ0)− w(x0, ξ0)− 〈∇xϕ(x0, ξ0), x− x0〉
‖x− x0‖

=
w(x, ξ0)− w(x0, ξ0)− [ϕ(x, ξ0)− ϕ(x0, ξ0)]

‖x− x0‖

+
ϕ(x, ξ0)− ϕ(x0, ξ0)− 〈∇xϕ(x0, ξ0), x− x0〉

‖x− x0‖
.

By (6.7) and (6.8), application of lim supx→x0
shows ∇xϕ(x0, ξ0) ∈ D+

x w(x0, ξ0). The
case when (z0, ζ0) is a local minimum for v − ψ follows by similar arguments.

Since in definition 6.4 we assume that (5.5) holds with θ ≥ 1
2
, lemma 6.5 implies

that the sub- and superdifferential of any viscosity subsolution (and supersolution,

resp.) are included in D((−A)
1
2 ), and thus, by lemma 6.6, ∇ϕ(x) ∈ D((−A)

1
2 ), if x

is a local extremum. Noting assumption (Φ2), this implies x ∈ D((−A)
1
2 ), so that

inequations (6.4) and (6.5) are meaningful.

Theorem 6.7 Let the assumptions of theorem 5.1 hold, and fk ∈ D((−A)θ) for all
1 ≤ k ≤ n and θ ≥ 1

2
. Then the value function V (5.4) is a viscosity solution of

(6.3) in the sense of definition 6.4.

Proof: We first proof that V is a viscosity subsolution. To this end, let ϕ ∈ C1
Φ(X),

ψ ∈ C1(Z) and (x, ξ) ∈ D((−A)
1
2 ) × Z be a local maximum for V − ϕ − ψ. Then,

particularly, for t > 0 small enough,

V (x, ξ)− ϕ(x)− ψ(ξ) ≥ V (yx,ξ,a(t), ξx,ξ,a(t))− ϕ(yx,ξ,a(t))− ψ(ξx,ξ,a(t)).
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The subscript a means that we choose a constant control α ≡ a ∈ A. Then, by the
dynamic programming principle (theorem 6.1),

ϕ(x)− ϕ(yx,ξ,a(t)) + ψ(ξ)− ψ(ξx,ξ,a(t))

≤ V (x, ξ)− V (yx,ξ,a(t), ξx,ξ,a(t))

≤
∫ t

0

e−λsL(yx,ξ,a(s), wx,ξ,a(s), a)ds+
(
e−λt − 1

)
V (yx,ξ,a(t), ξx,ξ,a(t)).

(6.9)

Due to the regularity of ϕ and solutions to problem (Q), using (Φ3),

ϕ(x)− ϕ(yx,ξ,a(t)) (6.10)

=

∫ t

0

〈
(−A)

1
2∇ϕ(yx,ξ,a(s)), (−A)

1
2yx,ξ,a(s)

〉
ds

+
n∑
k=1

∫ t

0

〈∇ϕ(yx,ξ,a(s)), fk(yx,ξ,a(s))gk(s)〉 ds

−
n∑
k=1

∫ t

0

〈
∇ϕ(yx,ξ,a(s)),

∫
Rk

Eρ[fk(yx,ξ,a); ξ](s)dµk · gk(s)
〉
ds

−
∫ t

0

〈∇ϕ(yx,ξ,a(s)), a〉 ds,

(6.11)

see theorem 4.1. For ψ, we get

ψ(ξ)− ψ(ξx,ξ,a(t)) = −
∫ t

0

〈
∇ψ(ξx,ξ,a(s)),

(
d

ds
f(yx,ξ,a(s))

)
− η(s)

〉
Z

ds, (6.12)

where f(y) = (f1(y), . . . , fn(y))T , and η(s) = (η1(s), . . . , ηn(s))T , with ηk(s) ∈
NZk(ξx,ξ,a(s)) ∩ B(0,

∣∣ d
ds
fk(yx,ξ,a(s))

∣∣) for each k (here, B(0, r) stands for the closed
ball around 0 with radius r in L2(Rk, µk)). This is because for almost every ρ, the
derivative is bounded by

∣∣ d
ds
fk(yx,ξ,a(s))

∣∣, and µk is a probability measure. Note that

d

ds
fk(yx,ξ,a(s)) = 〈fk, Ayx,ξ,a(s)− F (yx,ξ,a; ξ)(s) + a〉

= −
〈

(−A)
1
2fk, (−A)

1
2yx,ξ,a(s)

〉
+ 〈fk, a− F (yx,ξ,a; ξ)(s)〉 ,

(6.13)

which continuously depends on s. Hence, it is bounded for s ↓ 0, and (6.12) is
meaningful. Moreover, this shows that there exists M > 0 (depending only on fk and
‖x‖

D((−A)
1
2 )

) such that, for every k and s > 0 not too large, ηk(s) ∈ NZk(ξx,ξ,a(s)) ∩
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B(0,M). We will need this property later. Altogether, we may write (6.12) as

ψ(ξ)− ψ(ξx,ξ,a(t))

=
n∑
k=1

∫ t

0

〈∇kψ(ξx,ξ,a(s)),1〉Rk
〈

(−A)
1
2fk, (−A)

1
2yx,ξ,a(s)

〉
ds

−
n∑
k=1

∫ t

0

〈∇kψ(ξx,ξ,a(s)),1〉Rk 〈fk, a− F (yx,ξ,a; ξ)(s)〉 ds

+
n∑
k=1

∫ t

0

〈∇kψ(ξx,ξ,a(s)), η(s)〉Rk ds.

(6.14)

Plugging (6.11), (6.14) in (6.9) and dividing by t, we get the inequality

1

t

∫ t

0

〈
(−A)

1
2∇ϕ(yx,ξ,a(s)), (−A)

1
2yx,ξ,a(s)

〉
ds

+
n∑
k=1

1

t

∫ t

0

〈∇ϕ(yx,ξ,a(s)), fk(yx,ξ,a(s))gk〉 ds

−
n∑
k=1

1

t

∫ t

0

〈
∇ϕ(yx,ξ,a(s)),

∫
Rk

Eρ[fk(yx,ξ,a); ξ](s)dµk · gk
〉
ds

− 1

t

∫ t

0

〈∇ϕ(yx,ξ,a(s)), a〉 ds

+
n∑
k=1

1

t

∫ t

0

〈∇kψ(ξx,ξ,a(s)),1〉Rk
〈

(−A)
1
2fk, (−A)

1
2yx,ξ,a(s)

〉
ds

−
n∑
k=1

1

t

∫ t

0

〈∇kψ(ξx,ξ,a(s)),1〉Rk 〈fk, a− F (yx,ξ,a; ξ)(s)〉 ds

+
n∑
k=1

1

t

∫ t

0

〈∇kψ(ξx,ξ,a(s)), ηk(s)〉Rk ds

≤1

t

∫ t

0

e−λsL(yx,ξ,a(s), wx,ξ,a(s), a)ds

+

(
e−λt − 1

t

)
V (yx,ξ,a(t), ξx,ξ,a(t)).

(6.15)

We now take a closer look at the term containing η (the one in front of “≤”). To
this end, let {tm}m∈N be any sequence satisfying tm ↓ 0 as m → ∞ and tm small
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enough, so that (6.15) is valid for all m. For every k,∣∣∣∣ 1

tm

∫ tm

0

〈∇kψ(ξx,ξ,a(s)), ηk(s)〉Rk ds−
1

tm

∫ tm

0

〈∇kψ(ξ), ηk(s)〉Rk ds
∣∣∣∣

≤ 1

tm

∫ tm

0

‖∇kψ(ξx,ξ,a(s))−∇kψ(ξ)‖Rk ‖ηk(s)‖Rk ds

≤M sup
s∈[0,tm]

‖∇kψ(ξx,ξ,a(s))−∇kψ(ξ)‖Rk → 0,

(6.16)

as m→∞, by continuity. Thus, it suffices to analyze the behavior of

1

tm

∫ tm

0

〈∇kψ(ξ), ηk(s)〉Rk ds =

〈
∇kψ(ξ),

1

tm

∫ tm

0

ηk(s)ds

〉
Rk

(6.17)

for m → ∞. Now, an application of Jensen’s inequality shows that the sequence
1
tm

∫ tm
0
ηk(s)ds is bounded in L2(Rk, µk):∫

Rk

(
1

tm

∫ tm

0

ηk(s)ds

)2

dµk ≤
∫
Rk

1

tm

∫ tm

0

ηk(s)
2dsdµk ≤M2.

Thus, there exists a weakly convergent subsequence (for simplicity, we use the same
index for the subsequence). Restricting ourselves to this subsequence, we may
take the limit of (6.17); hence, what is left to show is that the weak limit η∗k is
an element of the normal cone NZk(ξk). Assume for contradiction that this was
not the case. Then there exists ε > 0 and a set E ⊂ Rk such that µk(E) = ε
and η∗k(ρ) /∈ N[−ρ,ρ](ξk(ρ)), for all ρ ∈ E (note that in our setting, NZk(ξk) ={
nρ|n· : Rk → R, nρ ∈ N[−ρ,ρ](ξk(ρ))

}
).

For γ > 0 define the sets

Mγ
1 := {ρ ∈ Rk| (ξk(ρ) = ρ ∨ ξk(ρ) = −ρ) ∧ γ < 2ρ} ,

Mγ
2 := {ρ ∈ Rk| |ξk(ρ)− ρ| ≥ γ ∧ |ξk(ρ) + ρ| ≥ γ} ,

Mγ
3 :=Rk \ (M1 ∪Mγ

2) ,

and choose γ such that µk (Mγ
3) < ε

4
. By continuity, it holds that (ξx,ξ,a)k(tm)

converges to ξ w.r.t. the L2(Rk, µk) norm, which implies convergence µk almost ev-
erywhere, at least for some subsequence [21, theorem 3.3.13] (we may here, w.l.o.g.,
assume that (tm)m was chosen properly). Hence, by Egorov’s theorem [21, theo-
rem 2.5.7], we can find a set N ⊂ Rk of measure µk(N) < ε

4
such that (ξx,ξ,a)k(tm)→

ξ uniformly on N c. Thus, there exists m̄ ∈ N such that |(ξx,ξ,a)k(tm)(ρ)− ξk(ρ)| < γ
2
,

for all m > m̄, ρ ∈ N c. Now, for every Mγ
1 ∩ N c and m > m̄, ηk(tm)(ρ) ∈

N[−ρ,ρ](ξk(ρ)), which, by convexity of the normal cone, implies η∗k(ρ) ∈ N[−ρ,ρ](ξk(ρ)).
Hence, η∗k(ρ) ∈ N[−ρ,ρ](ξk(ρ)) for every ρ ∈Mγ

1 ∩N c.
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Since on Mγ
2 ∩ N c, η(tm) is constant (= 0) for m > m̄, we also get η∗k(ρ) ∈

N[−ρ,ρ](ξk(ρ)) for every ρ ∈Mγ
2 ∩N c.

Altogether, we have shown that η∗k(ρ) ∈ N[−ρ,ρ](ξk(ρ)), for all ρ ∈ Rk \(Mγ
3 ∪N).

But µk(Mγ
3) + µk(N) < ε

2
< µk(E), a contradiction.

Concerning the other terms in (6.15), we can give estimates of the type (6.16),
so that we may replace the time dependent elements. Further, if we also replace t
by tm, we get the inequality〈

(−A)
1
2∇ϕ(x), (−A)

1
2x
〉

+
n∑
k=1

〈∇ϕ(x), fk(x)gk〉

−
n∑
k=1

〈
∇ϕ(x),

∫
Rk

ξk(ρ)dµk · gk
〉
ds

− 〈∇ϕ(x), a〉 ds

+
n∑
k=1

〈∇kψ(ξ),1〉Rk
〈

(−A)
1
2fk, (−A)

1
2x
〉

−
n∑
k=1

〈∇kψ(ξ),1〉Rk 〈fk, a− F (yx,ξ,a; ξ)(0)〉

+
n∑
k=1

〈
∇kψ(ξ),

1

tm

∫ tm

0

ηk(s)ds

〉
Rk

≤ L(x,w0, a)− λV (x, ξ) +m · o
(

1

m

)
.

Thus, letting m → ∞, and then applying supa∈A, yields (6.4) and the first part of
the proof is complete. To prove that V is a viscosity supersolution, we need similar
arguments. Let ϕ ∈ C1

Φ(X), ψ ∈ C1(Z) and (x, ξ) ∈ D((−A)
1
2 ) × Z be a local

minimum for V − ϕ− ψ. Then,

V (x, ξ)− ϕ(x)− ψ(ξ) ≤ V (z, ζ)− ϕ(z)− ψ(ζ), (6.18)

for all (z, ζ) in some ball around (x, ξ). By the dynamic programming principle
(theorem 6.1), there exists, for every ε > 0 and t > 0 a control α ∈ A, such that

V (x, ξ)+ εt ≥
∫ t

0

e−λsL(yx,ξ,α(s), wx,ξ,α(s), α(s))ds+ e−λtV (yx,ξ,α(t), ξx,ξ,α(t)).

(6.19)

Thus, combining (6.18) and (6.19), for small t > 0,∫ t

0

e−λsL(yx,ξ,α(s), wx,ξ,α(s), α(s))ds
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+ e−λtV (yx,ξ,α(t), ξx,ξ,α(t))− εt− ϕ(x)− ψ(ξ)

≤ V (yx,ξ,α(t), ξx,ξ,α(t))− ϕ(yx,ξ,α(t))− ψ(ξx,ξ,α(t)).

Rearranging and dividing by t yields

e−λt − 1

t
V (yx,ξ,α(t), ξx,ξ,α(t)) +

1

t

∫ t

0

e−λsL(yx,ξ,α(s), wx,ξ,α(s), α(s))ds

+
1

t
(ϕ(yx,ξ,α(t))− ϕ(x)) +

1

t
(ψ(ξx,ξ,α(t))− ψ(ξ)) ≤ ε.

Just as before, (6.11) and (6.14) hold with a replaced by α. Again, we restrict ourself

to some sequence (tm)m∈N with tm ↓ 0. Noting that yx,ξ,α(tm) → x in D((−A)
1
2 )

as m → ∞ uniformly in α ∈ A as well as ξx,ξ,α(tm) → ξ uniformly in α, the same
estimates and argumentation as in the first part of the proof yield weak convergence
of η(·) to some element of the normal cone. Hence, replacing the converging time
dependent elements (with just some error o( 1

m
)) yields

− λV (x, ξ)−
〈

(−A)
1
2∇ϕ(x), (−A)

1
2x
〉

−
n∑
k=1

〈∇ϕ(x), gk〉
(
fk(x)− 〈ξk,1〉Rk

)
−

n∑
k=1

〈∇kψ(ξ),1〉Rk
〈

(−A)
1
2fk, (−A)

1
2x
〉

−
n∑

j,k=1

〈∇kψ(ξ),1〉Rk 〈fk, gj〉
(
fj(x)− 〈ξj,1〉Rk

)
−

n∑
k=1

〈∇kψ(ξ), qk〉 − ε+mo

(
1

m

)
≤ 1

tm

∫ tm

0

−〈∇ϕ(x), α(s)〉 − L(x,w0, α(s))−
n∑
k=1

〈∇kψ(ξ),1〉 〈fk, α(s)〉 ds

≤ H(x, ξ,∇ϕ(x),∇ψ(ξ)).

Since ε > 0 was arbitrary, we can conclude the proof by similar argumentation as in
the subsolution case.

Remark 6.8 The norms of the elements p, q of the normal cone are bounded; in
fact, by (6.13), for each k and each ρ,

|pk(ρ)| , |qk(ρ)| ≤
∣∣∣〈(−A)

1
2fk, (−A)

1
2x
〉∣∣∣+ |〈fk, a− F (x; ξ)〉| .
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7 Comparison result and uniqueness of viscosity

solutions

Theorem 7.1 Let v, w be, respectively, viscosity subsolution and viscosity superso-
lution of (6.3) in the sense of definition 6.4, and fk ∈ D((−A)

3
2 ) for each 1 ≤ k ≤ n.

If λ ≥ 2
∑n

k=1 ‖gk‖ ‖fk‖, then v ≤ w.

Proof: Assume for contradiction that v � w. Then there exist (x0, ξ0) ∈ X ×Z and
δ > 0, such that v(x0, ξ0)− w(x0, ξ0) = δ. For ε > 0 and µ > 0, define the function
Φ̄ : (X × Z)2 → R by

Φ̄(x, ξ, y, ζ) := v(x, ξ)− w(y, ζ)− 1

2ε

〈
(−A)−1(x− y), x− y

〉
− µ

2

(
‖x‖2 + ‖y‖2)− 1

2ε
‖ξ − ζ‖2

Z .

Since Φ̄(x0, ξ0, x0, ξ0) = v(x0, ξ0)− w(x0, ξ0)− µ ‖x0‖2, we have

sup Φ̄ ≥ Φ̄(x0, ξ0, x0, ξ0) >
δ

2
, for 0 < µ <

δ

2 ‖x0‖2 , (7.1)

with the convention 1
0

=∞. As ususal, we need to find points where the supremum
is attained. By the Lipschitz condition (5.5) (theorem 5.1), we see that Φ̄ is weakly
upper semicontinuous w.r.t. the x and y variable, but we don’t have such a property
for ξ and ζ. To overcome this problem, define the auxiliary function

Φ∗(ξ, ζ) := sup
(x,y)∈X2

Φ̄(x, ξ, y, ζ).

It is well defined, because for µ > 0, by the Lipschitz continuity of v and w, to
find the supremum, one can restrict oneself to some ball around zero and Φ̄ is
locally bounded. Further, Φ∗ is Lipschitz continuous, because for any (ξ1, ζ1) ∈ Z2,
(ξ2, ζ2) ∈ Z2,

|Φ∗(ξ1, ζ1)− Φ∗(ξ2, ζ2)| ≤ sup
(x,y)∈X2

{∣∣Φ̄(x, ξ1, y, ζ1)− Φ̄(x, ξ2, y, ζ2)
∣∣}

≤ sup
(x,y)∈X2

{
1

2
|v(x, ξ1)− v(x, ξ2)|+ |w(y, ζ1)− w(y, ζ2)|

+
1

2ε

∣∣‖ξ1 − ζ1‖2
Z − ‖ξ2 − ζ2‖2

Z

∣∣} . (7.2)

Using the Lipschitz continuity of v and w, and that∣∣‖ξ1 − ζ1‖2
Z − 〈ξ1 − ζ1, ξ2 − ζ2〉Z + 〈ξ1 − ζ1, ξ2 − ζ2〉Z − ‖ξ2 − ζ2‖2

Z

∣∣
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≤ ‖ξ1 − ζ1‖Z (‖ξ1 − ξ2‖Z + ‖ζ1 − ζ2‖Z)

+ ‖ξ2 − ζ2‖Z (‖ξ1 − ξ2‖Z + ‖ζ1 − ζ2‖Z)

≤ c · (‖ξ1 − ξ2‖Z + ‖ζ1 − ζ2‖Z) ,

(recall that Z is a bounded subset of L2(R, µ)), (7.2) thus implies that there is C > 0
such that

|Φ∗(ξ1, ζ1)− Φ∗(ξ2, ζ2)| ≤ C (‖ξ1 − ξ2‖Z + ‖ζ1 − ζ2‖Z) .

Since Z is also convex and closed subset of L2(R, µ), we may apply the theorem
from [30, p. 8], which asserts that for each γ > 0 there are ν1, ν2 ∈ L2(R, µ) with
‖ν1‖Z + ‖ν2‖Z < γ, such that the function

(ξ, ζ) 7→ Φ∗(ξ, ζ) + 〈ν1, ξ〉Z + 〈ν2, ζ〉Z

attains its supremum on Z. In particular, there are ξ̄, ζ̄ ∈ Z for which

Φm :=Φ∗(ξ̄, ζ̄) +
〈
ν1, ξ̄

〉
Z

+
〈
ν2, ζ̄

〉
Z

≥Φ∗(ξ, ζ) + 〈ν1, ξ〉Z + 〈ν2, ζ〉Z
≥Φ̄(x, ξ, y, ζ) + 〈ν1, ξ〉Z + 〈ν2, ζ〉Z , (7.3)

for all (x, ξ, y, ζ) ∈ (X × Z)2. Now we choose a maximizing sequence for Φ̄, i.e.,
((xn, yn))n∈N ∈ X2 and Φ̄(xn, ξ̄, yn, ζ̄) → Φ∗(ξ̄, ζ̄) as n → ∞. As stated above, such
sequence must be bounded and hence, w.l.o.g., converges weakly to some (x̄, ȳ) ∈ X2,
so that by the weak upper semicontinuity of (x, y) 7→ Φ̄(x, ξ̄, y, ζ̄),

Φ̄(x̄, ξ̄, ȳ, ζ̄) +
〈
ν1, ξ̄

〉
Z

+
〈
ν2, ζ̄

〉
Z
≥ lim sup

n→∞
Φ̄(xn, ξ̄, yn, ζ̄) +

〈
ν1, ξ̄

〉
Z

+
〈
ν2, ζ̄

〉
Z

= sup
x,y∈X

Φ̄(x, ξ̄, y, ζ̄) +
〈
ν1, ξ̄

〉
Z

+
〈
ν2, ζ̄

〉
Z

=Φ∗(ξ̄, ζ̄) +
〈
ν1, ξ̄

〉
Z

+
〈
ν2, ζ̄

〉
Z

= Φm.

So, (7.3) implies that (x̄, ξ̄, ȳ, ζ̄) maximizes

Φ(x, ξ, y, ζ) := Φ̄(x, ξ, y, ζ) + 〈ν1, ξ〉Z + 〈ν2, ζ〉Z (7.4)

on (X × Z)2. Hence, we have shown that for every γ > 0 there exist ν1, ν2 ∈
L2(R, µ) ∩ B(0, γ) such that the corresponding function Φ defined in (7.4) attains
its maximum on (X × Z)2. In view of (7.1), since Z is bounded, we may choose γ
so small that

sup Φ ≥ δ

4
, for 0 < µ ≤ δ

‖x0‖2 and max {‖ν1‖Z , ‖ν2‖z} < γ.
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From the inequality

Φ(x̄, ξ̄, x̄, ξ̄) + Φ(ȳ, ζ̄ , ȳ, ζ̄) ≤ 2Φ(x̄, ξ̄, ȳ, ζ̄),

we infer that

v(x̄, ξ̄)− w(x̄, ξ̄)− µ ‖x̄‖2 +
〈
ν1 + ν2, ξ̄

〉
Z

+ v(ȳ, ζ̄)− w(ȳ, ζ̄)− µ ‖ȳ‖2

+
〈
ν1 + ν2, ζ̄

〉
Z
≤ 2v(x̄, ξ̄)− 2w(ȳ, ζ̄)− 1

ε

〈
(−A)−1(x̄− ȳ), x̄− ȳ

〉
− µ

(
‖x̄‖2 + ‖ȳ‖2)− 1

ε

∥∥ξ̄ − ζ̄∥∥2

Z
+ 2

〈
ν1, ξ̄

〉
Z

+ 2
〈
ν2, ζ̄

〉
Z
,

which implies

1

ε

〈
(−A)−1(x̄− ȳ), x̄− ȳ

〉
+

1

ε

∥∥ξ̄ − ζ̄∥∥2

Z

≤ v(x̄, ξ̄)− v(ȳ, ζ̄) + w(x̄, ξ̄)− w(ȳ, ζ̄) +
〈
ν1 − ν2, ξ̄ − ζ̄

〉
Z

≤ C
(∥∥∥(−A)−

1
2 (x̄− ȳ)

∥∥∥+
∥∥ξ̄ − ζ̄∥∥

Z

)
, (7.5)

for some C > 0 independent of µ and ε (we have used the Lipschitz property of v,
w, and the boundedness of ν1, ν2). Noting that〈

(−A)−1(x̄− ȳ), x̄− ȳ
〉

=
∥∥∥(−A)−

1
2 (x̄− ȳ)

∥∥∥2

,

application of Young’s inequality to the right hand side of (7.5) yields

1

ε

∥∥∥(−A)−
1
2 (x̄− ȳ)

∥∥∥2

+
1

ε

∥∥ξ̄ − ζ̄∥∥2

Z
≤ C2ε+

1

2ε

∥∥∥(−A)−
1
2 (x̄− ȳ)

∥∥∥2

+
1

2ε

∥∥ξ̄ − ζ̄∥∥2

Z
,

hence,

1

ε2

∥∥∥(−A)−
1
2 (x̄− ȳ)

∥∥∥2

+
1

ε2
∥∥ξ̄ − ζ̄∥∥2

Z
≤ 2C2. (7.6)

Now, we define the functions

ϕ1(x) := w(ȳ, ζ̄) +
1

2ε

〈
(−A)−1(x− ȳ), x− ȳ

〉
+
µ

2

(
‖x‖2 + ‖ȳ‖2) ,

ψ1(ξ) :=
1

2ε

∥∥ξ − ζ̄∥∥2

Z
− 〈ν1, ξ〉Z −

〈
ν2, ζ̄

〉
Z
,

ϕ2(y) := v(x̄, ξ̄)− 1

2ε

〈
(−A)−1(x̄− y), x̄− y

〉
− µ

2

(
‖x̄‖2 + ‖y‖2) ,
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ψ2(ζ) := − 1

2ε

∥∥ξ̄ − ζ∥∥2

Z
+
〈
ν1, ξ̄

〉
+ 〈ν2, ζ〉 .

By construction, v−ϕ1−ψ1 attains its maximum at (x̄, ξ̄), and w−ϕ2−ψ2 attains
its minimum at (ȳ, ζ̄). The derivatives are

∇ϕ1(x̄) =
1

ε
(−A)−1(x̄− ȳ) + µx̄,

∇ψ1(ξ̄) =
1

ε
(ξ̄ − ζ̄)− ν1,

∇ϕ2(ȳ) =
1

ε
(−A)−1(x̄− ȳ)− µȳ,

∇ψ2(ζ̄) =
1

ε
(ξ̄ − ζ̄) + ν2,

and one immediately sees that ϕ1, ϕ2 ∈ C1
Φ(X) (and, in particular, by lemmata 6.5,

6.6, x̄, ȳ ∈ D((−A)
1
2 )) and ψ1, ψ2 ∈ C1(Z). Hence, since v is a subsolution and w a

supersolution,

λv(x̄, ξ̄) +

〈
(−A)

1
2

[
1

ε
(−A)−1(x̄− ȳ) + µx̄

]
, (−A)

1
2 x̄

〉
+

n∑
k=1

〈
1

ε
(−A)−1(x̄− ȳ) + µx̄, gk

〉(
fk(x̄)−

〈
ξ̄k,1

〉
Rk

)
+

n∑
j,k=1

〈
1

ε
(ξ̄k − ζ̄k)− νk1 ,1

〉
Rk

〈fk, gj〉
(
fj(x̄)−

〈
ξ̄j,1

〉
Rj

)
+

n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k)− νk1 ,1

〉
Rk

〈
(−A)

1
2fk, (−A)

1
2 x̄
〉

+
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k)− νk1 , pk

〉
Rk

+ sup
a∈A

{
−
〈

1

ε
(−A)−1(x̄− ȳ) + µx̄, a

〉
− L(x̄, w̄0, a)

−
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k)− νk1 ,1

〉
Rk

〈fk, a〉

}
≤ 0 ≤ λw(ȳ, ζ̄)

+

〈
(−A)

1
2

[
1

ε
(−A)−1(x̄− ȳ)− µȳ

]
, (−A)

1
2 ȳ

〉
+

n∑
k=1

〈
1

ε
(−A)−1(x̄− ȳ)− µȳ, gk

〉(
fk(ȳ)−

〈
ζ̄k,1

〉
Rk

)
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+
n∑

j,k=1

〈
1

ε
(ξ̄k − ζ̄k) + νk2 ,1

〉
Rk

〈fk, gj〉
(
fj(ȳ)−

〈
ζ̄j,1

〉
Rj

)
+

n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k) + νk2 ,1

〉
Rk

〈
(−A)

1
2fk, (−A)

1
2 ȳ
〉

+
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k) + νk2 , qk

〉
Rk

+ sup
a∈A

{
−
〈

1

ε
(−A)−1(x̄− ȳ)− µȳ, a

〉
− L(ȳ, w̃0, a)

−
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k) + νk2 ,1

〉
Rk

〈fk, a〉

}
.

Consequently,

λ
(
v(x̄, ξ̄)− w(ȳ, ζ̄)

)
≤ −1

ε
‖x̄− ȳ‖2 − µ

(∥∥∥(−A)
1
2 x̄
∥∥∥2

+
∥∥∥(−A)

1
2 ȳ
∥∥∥2
)

(7.7)

+
n∑
k=1

〈
1

ε
(−A)−1(x̄− ȳ), gk

〉(
fk(ȳ − x̄) +

〈
ξ̄k − ζ̄k,1

〉
Rk

)
(7.8)

− µ
n∑
k=1

[
〈x̄, gk〉

(
fk(x̄)−

〈
ξ̄k,1

〉
Rk

)
+ 〈ȳ, gk〉

(
fk(ȳ)−

〈
ζ̄k,1

〉
Rk

)]
(7.9)

+
n∑

j,k=1

〈
1

ε
(ξ̄k − ζ̄k),1

〉
Rk

〈fk, gj〉
(
fj(ȳ − x̄) +

〈
ξ̄j − ζ̄j,1

〉
Rj

)
(7.10)

+
n∑

j,k=1

〈fk, gj〉
[〈
νk2 ,1

〉
Rk

(
fj(ȳ)−

〈
ζ̄j,1

〉
Rj

)
+
〈
νk1 ,1

〉
Rk

(
fj(x̄)−

〈
ξ̄j,1

〉
Rj

)]
(7.11)

+
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k),1

〉
Rk

〈
(−A)

1
2fk, (−A)

1
2 (ȳ − x̄)

〉
(7.12)

+
n∑
k=1

[〈
νk1 ,1

〉
Rk

〈
(−A)

1
2fk, (−A)

1
2 x̄
〉

+
〈
νk2 ,1

〉
Rk

〈
(−A)

1
2fk, (−A)

1
2 ȳ
〉]

(7.13)

+
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k), qk − pk

〉
Rk

(7.14)

+
n∑
k=1

〈
νk1 , pk

〉
Rk

+
〈
νk2 , qk

〉
Rk

(7.15)
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+ sup
a∈A

{
−
〈

1

ε
(−A)−1(x̄− ȳ)− µȳ, a

〉
− L(ȳ, w̃0, a)

−
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k) + νk2 ,1

〉
Rk

〈fk, a〉

} (7.16)

− sup
a∈A

{
−
〈

1

ε
(−A)−1(x̄− ȳ) + µx̄, a

〉
− L(x̄, w̄0, a)

−
n∑
k=1

〈
1

ε
(ξ̄k − ζ̄k)− νk1 ,1

〉
Rk

〈fk, a〉

}
.

(7.17)

We are going to estimate (7.8) to (7.15) and (7.16)+(7.17). To simplify notations,
in what follows, C will always stand for some constant independent of ε, µ and ν1, ν2

(with norms ≤ γ). Since〈
(−A)−1(x̄− ȳ), gk

〉
≤
∥∥∥(−A)−

1
2 (−A)−

1
2 (x̄− ȳ)

∥∥∥ ‖gk‖
≤C

∥∥∥(−A)−
1
2 (x̄− ȳ)

∥∥∥ ,
we get from (7.6) that

(7.8) ≤
n∑
k=1

C
(∥∥∥(−A)

1
2fk

∥∥∥∥∥∥(−A)−
1
2 (ȳ − x̄)

∥∥∥+
∥∥ξ̄k − ζ̄k∥∥Rk)

≤ C
(∥∥∥(−A)−

1
2 (ȳ − x̄)

∥∥∥+
∥∥ξ̄ − ζ̄∥∥

Z

)
.

Now, (7.6) implies that the right hand side converges to zero for ε ↓ 0. Thus,

(7.8) ≤ β(ε), (7.18)

where β : R+ → R+ is some monotonic increasing function which is continuous in 0
and β(0) = 0. Concerning (7.9), we split the term into

−µ
n∑
k=1

[〈x̄, gk〉 fk(x̄) + 〈ȳ, gk〉 fk(ȳ)] , (7.19)

and

µ
n∑
k=1

[
〈x̄, gk〉

〈
ξ̄k,1

〉
Rk

+ 〈ȳ, gk〉
〈
ζ̄k,1

〉
Rk

]
. (7.20)

Now, the Cauchy Schwartz inequality implies

(7.19) ≤ µ

(
n∑
k=1

‖gk‖ ‖fk‖

)(
‖x̄‖2 + ‖ȳ‖2) ,
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and, since Z is a bounded set,

(7.20) ≤ Cµ (‖x̄‖+ ‖ȳ‖) .

Using Young’s inequality, we can further estimate

(7.20) ≤ Cµ
1
2 + µ

3
2

(
‖x̄‖2 + ‖ȳ‖2) . (7.21)

For (7.10), we may use (7.6) to find , similar to the estimation of (7.8), a function
β with the same properties as before and

(7.10) ≤ β(ε).

Further, it is easy to see that

(7.11) ≤ C ‖ν1‖Z (‖x̄‖+ 1) + C ‖ν2‖Z (‖ȳ‖+ 1) .

Hence, if ν1, ν2 are chosen such that ‖ν1‖Z , ‖ν2‖Z ≤ µ, we can estimate as in (7.21)
to get

(7.11) ≤ C(µ+ µ
1
2 ) + µ

3
2

(
‖x̄‖2 + ‖ȳ‖2) . (7.22)

The space D((−A)
1
2 ) is imbedded into X, so that there exists κ > 0, such that

‖x‖ ≤ κ
∥∥∥(−A)

1
2x
∥∥∥ , ∀ x ∈ D((−A)

1
2 ),

(one may also see that such an inequality holds by application of the reverse triangle
inequality to (4.3)) hence, from (7.22),

(7.11) ≤ C(µ+ µ
1
2 ) + κµ

3
2

(∥∥∥(−A)
1
2 x̄
∥∥∥2

+
∥∥∥(−A)

1
2 ȳ
∥∥∥2
)
. (7.23)

To estimate (7.12), note that
〈

1
ε
(ξ̄k − ζ̄k),1

〉
Rk

is bounded as ε ↓ 0 by (7.6), and
that ∣∣∣〈(−A)

1
2fk, (−A)

1
2 (ȳ − x̄)

〉∣∣∣ =
∣∣∣〈(−A)

3
2fk, (−A)−

1
2 (ȳ − x̄)

〉∣∣∣
≤
∥∥∥(−A)

3
2fk

∥∥∥∥∥∥(−A)−
1
2 (x̄− ȳ)

∥∥∥ .
Thus, by assumption on fk and (7.6),

(7.12) ≤ β(ε).
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Next, let z ∈ X be arbitrary. Then, from lemmata 6.5, 6.6, we infer that there is a

constant C > 0 such that
∥∥∥(−A)

1
2∇ϕ1(x̄)

∥∥∥ ≤ C, hence,∣∣∣∣〈(−A)
1
2

[
1

ε
(−A)−1(x̄− ȳ) + µx̄

]
, z

〉∣∣∣∣ ≤ C ‖z‖ .

Thus, the reverse triangle inequality yields∣∣∣〈(−A)
1
2 x̄, z

〉∣∣∣ ≤ 1

µ

[∥∥∥∥1

ε
(−A)−

1
2 (x̄− ȳ)

∥∥∥∥+ C

]
‖z‖

≤C
µ
‖z‖ , (7.24)

where we used (7.6) in the last step. A similar inequality holds with x̄ replaced by
ȳ. Using (7.24), we can now estimate

(7.13) ≤ C

µ
(‖ν1‖Z + ‖ν2‖Z) ≤ Cµ,

if ν1, ν2 are chosen such that ‖νi‖Z ≤ µ2 (w.l.o.g., we assume that µ < 1, because
then, the latter implies ‖νi‖Z ≤ µ, which is what we used to derive (7.22)). Further,

(7.14) ≤ 0,

because for every k and ρ ∈ Rk, pk(ρ) is an element of the normal cone of the
convex set [−ρ, ρ] at ξk(ρ), and analogously for qk(ρ) and ζk(ρ); hence, the convexity
inequality 〈ξk − ζk, qk − pk〉Rk ≤ 0 holds pointwise almost everywhere. The term
(7.15) may be estimated by

(7.15) ≤ Cµ,

since the norms of pk, qk are bounded if
∥∥∥(−A)

1
2 x̄
∥∥∥,
∥∥∥(−A)

1
2 x̄
∥∥∥ are bounded (see

remark 6.8), and (7.24) holds. So, what is left is the difference of the hamiltonians,
(7.16)+(7.17). First note that

|(7.16) + (7.17)| ≤ sup
a∈A
{ µ |〈x̄+ ȳ, a〉|+ |L(x̄, w̄0, a)− L(ȳ, w̃0, a)|

+ (‖ν1‖Z + ‖ν2‖Z) |〈fk, a〉|} .

By the Lipschitz continuity of L, the definition of w0 and the bounds on A and νi,
the latter implies

|(7.16) + (7.17)| ≤ Cµ(‖x̄‖+ ‖ȳ‖) + C (‖x̄− ȳ‖+ ‖ξ − ζ‖Z) + Cµ.
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Using Young’s inequality twice, we infer that

|(7.16) + (7.17)| ≤ C(µ
1
2 + µ) + Cµ

3
2

(
‖x̄‖2 + ‖ȳ‖2)+ C

ε

2
+

1

2ε
‖x̄− ȳ‖2 . (7.25)

and (7.25) implies

|(7.16) + (7.17)| ≤ C(µ
1
2 + µ) + Cµ

3
2

(∥∥∥(−A)
1
2 x̄
∥∥∥2

+
∥∥∥(−A)

1
2 ȳ
∥∥∥2
)

+ β(ε) +
1

2ε
‖x̄− ȳ‖2 .

Now we plug in all the estimates we have just collected and find

v(x̄, ξ̄)− w(ȳ, ζ̄) ≤− µ

λ

(∥∥∥(−A)
1
2 x̄
∥∥∥2

+
∥∥∥(−A)

1
2 ȳ
∥∥∥2
)

+ β(ε)

+
µ

λ

(
n∑
k=1

‖gk‖ ‖fk‖

)(
‖x̄‖2 + ‖ȳ‖2)

+ C(µ+ µ
1
2 ) + C

µ
3
2

λ

(∥∥∥(−A)
1
2 x̄
∥∥∥2

+
∥∥∥(−A)

1
2 ȳ
∥∥∥2
)

+ Cµ
3
2

(∥∥∥(−A)
1
2 x̄
∥∥∥2

+
∥∥∥(−A)

1
2 ȳ
∥∥∥2
)
.

Functions of the form

µ 7→ −µ+ cµ
3
2

with c > 0 are non-positive for small µ > 0, and hence, we can choose 0 < µ̄ <

min
{
γ, δ

16 maxξ∈Z‖ξ‖Z

}
(note that this implies

∣∣〈ν1, ξ̄
〉∣∣ < δ

16
, and similarly for ν2)

such that

v(x̄, ξ̄)− w(ȳ, ζ̄) ≤ δ

16
+ β(ε) + µ̄

(
∑n

k=1 ‖gk‖ ‖fk‖)
λ

(
‖x̄‖2 + ‖ȳ‖2) .

Choosing ε̄ > 0 small enough, we thus find that for the corresponding maximizer
(x̄, ξ̄, ȳ, ζ̄) of Φ, the inequality

v(x̄, ξ̄)− w(ȳ, ζ̄) ≤ δ

8
+ µ̄

(
∑n

k=1 ‖gk‖ ‖fk‖)
λ

(
‖x̄‖2 + ‖ȳ‖2)

holds. But then

δ

4
≤ Φ(x̄, ξ̄, ȳ, ζ̄) ≤v(x̄, ξ̄)− w(ȳ, ζ̄)− µ̄

2

(
‖x̄‖2 + ‖ȳ‖2)+

〈
ν1, ξ̄

〉
Z

+
〈
ν2, ζ̄

〉
Z
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7. COMPARISON RESULT AND UNIQUENESS OF VISCOSITY SOLUTIONS

<
δ

4
+ µ̄

(
(
∑n

k=1 ‖gk‖ ‖fk‖)
λ

− 1

2

)(
‖x̄‖2 + ‖ȳ‖2)

≤δ
4

by assumption on λ, a contradiction.

At this point, we note that (7.19) may also be estimated in a different way; in
fact, to conclude the proof, it is enough to have

−µ
λ

n∑
k=1

[〈x̄, gk〉 fk(x̄) + 〈ȳ, gk〉 fk(ȳ)] ≤ 0. (7.26)

The following special case might be interesting.

Corollary 7.2 One can drop the assumption on λ in theorem 7.1 if gk = ckfk for
some constants ck ≥ 0, for each k.

Proof: If fk = ckgk for some ck ≥ 0, then

(7.26) = −µ
λ

n∑
k=1

ck
(
gk(x̄)2 + gk(ȳ)2

)
≤ 0.

Together, theorems 6.7 and 7.1 yield the following existence and uniqueness re-
sult.

Theorem 7.3 If assumptions (A1), (A2) hold together with

• gk ∈ X ∀k ∈ {1, . . . , n},

• fk ∈ D((−A)
3
2 ), ∀k ∈ {1, . . . , n},

• (5.1) holds,

• λ ≥ max {2
∑n

k=1 ‖gk‖ ‖fk‖ ,Γ},

• A ⊂ X nonempty, bounded and closed,

then the value function corresponding to the dynamic (Q) and defined by (5.4) is
the unique viscosity solution of (6.3) in the sense of definition 6.4.
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Example 7.4 Let Ω ⊂ Rm be an open and bounded domain. The standard exam-
ple for an operator that generates an analytic semigroup is the Laplace operator ∆
defined on H1

0 (Ω) ∩ H2(Ω), which generates such a semigroup on X = L2(Ω). We
may thus, e.g., take the equation

ẏ(t, x)− ∂xxy(t, x) +
n∑
k=1

∫ 1

0

Fρ[fk(y);w0](t)dρ gk(x) = α(t, x),

y(0, x) = y0(x), x ∈ (0, 1),

with y0 ∈ L2(0, 1), Ω := (0, 1), α(t, x) ∈ [−1, 1], ∀t ≥ 0, ∀x ∈ [0, 1], and w0(ρ)
admissible for Fρ. If

f̃k(x) :=

{
1, if

∣∣x− 2k−1
2n

∣∣ < 1
4n

0, else,

then fk := n
(
f̃k ∗ η 1

4n

)
is smooth and has support inside [k−1

n
, k
n
]. Applied to y, i.e.,

fk(y)(t) :=

∫ 1

0

fk(x)y(t, x)dx = n

∫ k
n

k−1
n

(
f̃k ∗ η 1

4n

)
(x)y(t, x)dx,

this might be seen as some approximation of the mean value of y(t, ·) on [k−1
n
, k
n
].

Choosing gk = 1( k−1
n
, k
n

), the operator F may thus be interpreted as a sort of smeared

constitutive law. Rewriting the play operator with the formula Id = Fρ + Eρ, one
gets an example for problem (Q). To build an admissible control problem, one might
define, for example, the functional

L(y, w, a) :=

(∫ 1

0

y(x)2dx

) 1
2

+

(
n∑
k=1

∫ 1

0

wk(ρ)2dρ

) 1
2

,

which is a norm on L2(0, 1)× (L2(0, 1)n), and thus has the Lipschitz property (5.1)
by the triangle inequality. Defining the value function as usual, we may thus apply
theorem 7.3, if λ is chosen to be large enough; in this example, by remark 4.4, Γ ≤ 1,
and

2
n∑
k=1

‖gk‖L2(0,1) ‖fk‖L2(0,1) ≤ 2
n∑
k=1

1√
n

√
n = 2n.

Hence, we might choose λ ≥ 2n.
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8 A convergence theorem

Example 7.4 shows that with the type of viscosity solution introduced in section 6,
we can only handle a finite number of hysteresis elements. However, one may ask
whether the solutions of the dynamic converge. This would be plausible as we have
taken mean values on small sets which usually gives good discrete approximations of
nondiscrete processes. But, as we will see, the question is not easy to answer. The
candidate for the limit problem must be regular enough to define hysteresis point-
wise at almost every x ∈ Ω, i.e., we should at least have regularity L2(Ω;C[0, T ])
for solutions. We can not expect that for general initial values in L2(Ω) and gen-
eral controls in L2(Ω × [0, T ])! We merely have the significantly weaker continuity
C(0, T ;L2(Ω)) guaranteed in this case, i.e., for mild solutions to initial values just in
L2(Ω). We will thus restrict ourselves to more regular initial values. Moreover, we
will have to connect the pointwise viewpoint (limit must define hysteresis for almost
every x ∈ Ω) and the global viewpoint of semigroup theory.

8.1 The function space L2(Ω;Hθ(0, T ))

Let T > 0 and 0 < θ < 1. The space Hθ(0, T ) is defined by

Hθ(0, T ) :=

{
u ∈ L2(0, T ) :

|u(t)− u(s)|
|t− s|θ+

1
2

∈ L2((0, T )× (0, T ))

}
. (8.1)

This is a special case of so called fractional Sobolev Spaces (sometimes also called
Slobodeckij Spaces). Endowed with the natural norm

‖u‖Hθ(0,T ) :=

(∫ T

0

|u(t)|2 dt+

∫ T

0

∫ T

0

|u(t)− u(s)|2

|t− s|1+2θ
dtds

) 1
2

, (8.2)

this is an intermediate Banach space (actually Hilbert space) between L2(0, T ) and
H1(0, T ), see e.g. [31, page 5,ff.]. The term

[u]Hθ(0,T ) :=

(∫ T

0

∫ T

0

|u(t)− u(s)|2

|t− s|1+2θ
dtds

) 1
2

(8.3)

is called Gagliardo seminorm of u. There are various Sobolev type inequalities
for Slobodeckij spaces, which can be seen as refined versions of the classical Sobolev
imbedding theorem. For example, theorem 8.2 of [31] implies the following:

Theorem 8.1 If 1
2
< θ < 1, then there exists C > 0 depending on θ and T , such

that

‖f‖C0,α[0,T ] ≤ C ‖f‖Hθ(0,T ) , (8.4)
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for every f ∈ L2(0, T ), where α := θ − 1
2
.

From theorem 8.1, we get that Hθ(0, T ) ↪→ C[0, T ], because ‖f‖C[0,T ] ≤ ‖f‖C0,α[0,T ]

by definition of the Hölder norms. Unfortunately, we couldn’t find a reference where
explicit embedding constants are given. However, there is an easy way to give
estimates for the constants’ dependence on the length of the interval. To this end,
let T0 > 0 and CT0 such that (8.4) is fulfilled with T replaced by T0.

Theorem 8.2 For every T > T0, CT := CT0

(
T
T0

)θ− 1
2

fulfills

‖f‖C[0,T ] ≤ CT ‖f‖Hθ(0,T ) , ∀f ∈ H
θ(0, T ).

Further, for every 0 < T < T0, CT := CT0

(
T0

T

) 1
2 fulfills

‖f‖C[0,T ] ≤ CT ‖f‖Hθ(0,T ) , ∀f ∈ H
θ(0, T ).

Proof: Let CT > 0 denote the smallest constant for which ‖f‖C[0,T ] ≤ CT ‖f‖Hθ(0,T )

holds for all f , i.e.,

CT := sup
f∈Hθ(0,T ),f 6=0

‖f‖C[0,T ]

‖f‖Hθ(0,T )

.

Let τ > 0. There is a one-to-one correspondence between functions defined on (0, T )
and functions defined on (0, T + τ) through the transformation

f(s) 7→ f̄(s) := f

(
T + τ

T
s

)
.

Then it holds ∥∥f̄∥∥
C[0,T ]

=

∥∥∥∥f (T + τ

T
·
)∥∥∥∥

C[0,T ]

= ‖f‖C[0,T+τ ] .

Further, the transformation theorem for integrals yields

∥∥f̄∥∥2

L2(0,T )
=

∫ T

0

(
f

(
T + τ

T
s

))2

ds =
T

T + τ

∫ T+τ

0

(f(r))2dr=
T

T + τ
‖f‖2

L2(0,T+τ) ,

and

[f̄ ]2θ,T =

∫ T

0

∫ T

0

∣∣f̄(s)− f̄(t)
∣∣2

|s− t|1−2θ
dsdt

97



8. A CONVERGENCE THEOREM

=

(
T

T + τ

)2 ∫ T+τ

0

∫ T+τ

0

|f(u)− f(v)|2∣∣ T
T+τ

u− T
T+τ

v
∣∣1+2θ

dudv

=

(
T

T + τ

)1−2θ

[f ]2θ,T+τ .

Hence, if µ := T
T+τ

, then

∥∥f̄∥∥
Hθ(0,T )

=
(
µ ‖f‖2

L2(0,T+τ) + µ1−2θ[f ]2θ,T+τ

) 1
2

≤
(
µ1−2θ ‖f‖2

L2(0,T+τ) + µ1−2θ[f ]2θ,T+τ

) 1
2

=µ
1
2
−θ ‖f‖Hθ(0,T+τ) ,

since 0 < µ < 1 and 1
2
< θ < 1. But then

CT+τ = sup
‖f‖C[0,T+τ ]

‖f‖Hθ(0,T+τ)

≤ sup

∥∥f̄∥∥
C[0,T ]∥∥f̄∥∥
Hθ(0,T )

µ
1
2
−θ = CT

(
T + τ

T

)θ− 1
2

,

as claimed. The second inequality follows with τ < 0, since then µ > 1 so that∥∥f̄∥∥
Hθ(0,T )

≤ µ
1
2 ‖f‖Hθ(0,T+τ) .

Now, in a canonical way, we define the spaces of functions L2(Ω;Hθ(0, T )) and
Hθ(0, T ;L2(Ω)) with corresponding norms

‖u‖Hθ(0,T ;L2(Ω)) :=

(∫ T

0

‖u(t)‖2
L2(Ω) dt+

∫ T

0

∫ T

0

‖u(t)− u(s)‖2
L2(Ω)

|t− s|1+2θ
dtds

) 1
2

,

‖u‖L2(Ω;Hθ(0,T )) :=

(∫
Ω

‖u(x)‖2
Hθ(0,T ) dx

) 1
2

.

In fact, the two spaces are equal.

Proposition 8.3 The Hilbert spaces L2(Ω;Hθ(0, T )) and Hθ(0, T ;L2(Ω)) coincide.

Proof: By Pettis’ theorem (see, e.g.,[32, page 131]), noting that Hθ(0, T ) is separable,
weak and strong measurability coincide. Hence, L2(Ω;Hθ(0, T )) is equal to the space
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of all L2(Ω× (0, T )) functions, for which ‖·‖L2(Ω;Hθ(0,T )) is finite. Now, using Fubini’s
theorem, one easily sees that

‖u‖Hθ(0,T ;L2(Ω)) = ‖u‖L2(Ω;Hθ(0,T )) ,

for every u ∈ L2(Ω × (0, T )) for which at least one of the two norms is finite. This
concludes the proof.

Proposition 8.3 can be useful when one needs to switch between the viewpoints
of space and time variables. We collect some further useful properties of special
function spaces in the following lemma.

Lemma 8.4 hallo

(i) L2(Ω;C[0, T ]) ↪→ C(0, T ;L2(Ω)), and

‖u‖C(0,T ;L2(Ω)) ≤ ‖u‖L2(Ω;C[0,T ]) , ∀ u ∈ L
2(Ω;C[0, T ]).

(ii) Let C be an embedding constant for Hθ(0, T ) ↪→ C[0, T ], 1
2
< θ < 1. Then for

all u ∈ L2(Ω;Hθ(0, T )),

‖u‖L2(Ω;C[0,T ]) ≤ C ‖u‖L2(Ω;Hθ(0,T )) .

Proof: (i) The space Cpl(0, T ;L2(Ω)) of continuous and piecewise linear functions
on [0, T ] with values in L2(Ω) is dense in both C(0, T ;L2(Ω)) (lemma 2.23) and
L2(Ω;C[0, T ]): By definition of Bochner spaces, we can approximate every function
in L2(Ω;C[0, T ]) by simple functions, i.e. functions of the form

us(x, t) =
n∑
k=1

χΩk(x)fk(t),

where each fk ∈ C[0, T ]. But those fk can again be approximated by functions in
Cpl(0, T ). Doing this for each k and putting together those approximations on Ωk,
one gets a function in Cpl(0, T ;L2(Ω)) that is a good approximation of the original
L2(Ω;C[0, T ])-function.

As a second step, notice that for every function u ∈ Cpl(0, T ;L2(Ω)),

‖u‖C(0,T ;L2(Ω)) = sup
t∈[0,T ]

(∫
Ω

|u(t, x)|2 dx
) 1

2

= max
j
‖uj‖
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≤

(∫
Ω

(
max
j
uj(x)

)2

dx

) 1
2

=

∫
Ω

(
sup
t∈[0,T ]

|u(t, x)|

)2

dx

 1
2

= ‖u‖L2(Ω;C[0,T ]) .

But then, if a sequence of Cpl(0, T ;L2(Ω)) functions is a Cauchy sequence w.r.t.
‖·‖L2(Ω;C[0,T ]), it is also Cauchy w.r.t. ‖·‖C(0,T ;L2(Ω)), and the claim follows by density

of Cpl(0, T ;L2(Ω)).
(ii) Again we use approximation by simple functions. For such function us, we get

‖us‖2
L2(Ω;C[0,T ]) =

n∑
k=1

|Ωk| ‖fk‖2
C[0,T ]

≤
n∑
k=1

|Ωk|C2 ‖fk‖2
Hθ(0,T )

=C2 ‖us‖2
L2(Ω;Hθ(0,T )) ,

and the result follows.

As an application of proposition 8.3 and lemma 8.4, suppose that an operator F :
C[0, T ] → C[0, T ] is Lipschitz continuous (with Lipschitz constant L > 0). Then
(denoting X := L2(Ω) to shorten notations),

‖F (y1(t))− F (y2(t))‖X ≤‖F (y1)− F (y2)‖C(0,T ;X)

≤‖F (y1)− F (y2)‖L2(Ω;C[0,T ])

≤L ‖y1 − y2‖L2(Ω;C[0,T ])

≤CL ‖y1 − y2‖L2(Ω;Hθ(0,T ))

=CL ‖y1 − y2‖Hθ(0,T ;X) ,

if 1
2
< θ < 1. As the first expression appears in the definition of ‖·‖Hθ(0,T ;X), this

can be useful when one is looking for contraction mappings in some setting.

8.2 Further properties of solutions and the corresponding
solution operator

We make the following convention:

Definition 8.5 For the rest of section 8, it will be assumed that X = L2(Ω), where
Ω ⊂ Rn, as usual, is some open, bounded domain with smooth boundary. The
corresponding norm will again be denoted by ‖·‖.
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Now we can give some further properties of solutions of the dynamical system.

Proposition 8.6 Let T > 0 and y denote the solution of equation (4.6), which
exists according to theorem 4.1. If y(0) = x ∈ D((−A)ε) for some 0 < ε < 1, then
it holds that y ∈ Hθ(0, T ;D((−A)γ)) for all parameters θ, γ, such that 0 ≤ γ < ε,
0 < θ < 1− γ and θ < ε− γ + 1

2
.

Proof: According to theorem 4.1, y ∈ C(0, T ;X), so that there exists C > 0 (de-
pending on T ) such that

‖F (y)(t)‖ ≤ C, ∀ t ∈ [0, T ]. (8.5)

Recalling that y solves the integral equation

y(t) = etAx+

∫ t

0

e(t−τ)A (α(τ)− F (y(τ)))︸ ︷︷ ︸
=:f(τ)

dτ,

since α is also assumed to be bounded, y ∈ C(0, T ;D((−A)γ)) for every γ <
min {ε, 1}, which implies y ∈ L2(0, T ;D((−A)γ)). Hence, we only need to check
whether ∫ T

0

∫ T

0

‖(−A)γy(t)− (−A)γy(s)‖2

|t− s|1+2θ
dsdt <∞.

By definition, we get that

‖(−A)γy(t)− (−A)γy(s)‖ ≤
∥∥(etA − esA)(−A)γx

∥∥ (8.6)

+

∫ min{t,s}

0

∥∥(−A)γ
(
e(max{t,s}−τ)A − e(min{t,s}−τ)A

)
f(τ)

∥∥ dτ (8.7)

+

∫ max{t,s}

min{t,s}

∥∥(−A)γe(max{t,s}−τ)Af(τ)
∥∥ dτ. (8.8)

Next, we use the properties of the semigroup we collected in section 4.1 to estimate
the right hand side of the latter inequality. We start with the right hand side of
(8.6). Thanks to (4.3) and (4.2), if ε < γ + β,∥∥(etA − esA)(−A)γx

∥∥ =
∥∥(e(max{s,t}−min{s,t})A − I

)
emin{s,t}A(−A)γx

∥∥
≤Nβ |t− s|β

∥∥(−A)βemin{t,s}A(−A)γx
∥∥

≤Mβ−εNα |t− s|β min {t, s}ε−γ−β ‖(−A)εx‖ .
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So if we choose β ∈ (θ, 1
2

+ ε− γ), then the integral∫ T

0

∫ T

0

∥∥(etA − esA) (−A)γx
∥∥2

|t− s|1+2θ
dsdt

≤M2
β−εN

2
β ‖(−A)εx‖2

∫ T

0

∫ T

0

|t− s|2β−2θ−1 min {t, s}2(ε−γ−β) dsdt <∞.
(8.9)

Next we estimate (8.7). Again, we use estimates (4.3) and (4.2), followed by (8.5),
to get

(8.7) ≤NβMβC |t− s|β
∫ min{t,s}

0

(min {t, s} − τ)−β−γ dτ

=NβMβC |t− s|β
min {t, s}1−β−γ

1− β − γ
,

for all β ∈ (0, 1− γ). Thus, if we choose β ∈ (θ, 1− γ), it follows that∫ T

0

∫ T

0

(8.7)2

|t− s|1+2θ
dsdt

≤
(
NβMβC

1− β − γ

)2 ∫ T

0

∫ T

0

|t− s|2β−2θ−1 min {t, s}2−2β−2γ dsdt <∞.
(8.10)

Finally, we need to estimate (8.8). We use (4.2) and (8.5) to derive that

(8.8) ≤ CMγ

1− γ
|t− s|1−γ ,

and thus, since we assumed θ + γ < 1,∫ T

0

∫ T

0

(8.8)2

|t− s|1+2θ
dsdt ≤ C

∫ T

0

∫ T

0

|t− s|1−2(θ+γ) <∞. (8.11)

This completes the proof.

Our goal is now to derive some continuity result for the solution operator corre-
sponding to problem (P), i.e., the operator which maps initial values x ∈ L2(Ω),
ξ ∈ f(x)− Z to the function y defined by

y(t) = etAx+

∫ t

0

e(t−s)A

(
α(s)−

n∑
k=1

Pk[fk(y); ξk](s)gk

)
ds,

where we now assume in addition the following assumptions (A3):
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• for all 1 ≤ k ≤ n, gk = χk are characteristic functions corresponding to
pairwise disjoint subsets Ωk ⊂ Ω.

• for all 1 ≤ k ≤ n, fk = 1
|Ωk|

χk.

• A = ∆, the Laplace operator with D(∆) = H1
0 (Ω) ∩H2(Ω).

To get a result in a useful form concerning convergence to our original problem, we
need some more preparing results.

Lemma 8.7 Let T > 0, Ã be the generator of an analytic semigroup on some Hilbert
space X and z denote the mild solution of

ż(t) = Ãz(t), t ∈ (0, T ),

z(0) = z0.

Then, for all ε > 0 and n ∈ N,

z ∈ C∞(ε, T ;X) ∩ C(ε, T ;D(Ãn)).

Proof: Existence and uniqueness of the mild solution are standard and can be found,
e.g., in [25], as well as the formula

z(t) = etÃz0

for the solution (here, as usual, etÃ denotes the corresponding operator semigroup,
which has all the properties stated in section 4.1). Now, if t > 0, then

dnz

dtn
(t) = ÃnetÃz0,

and ÃnetÃ ∈ L(X). Moreover, let w.l.o.g. t > s > ε > 0; then,∥∥∥(ÃnetÃ − ÃnesÃ) z0

∥∥∥ ≤ ∥∥∥ÃneεÃ∥∥∥∥∥∥(e(t−ε)Ã − e(s−ε)Ã
)
z0

∥∥∥→ 0,

if |t− s| → 0. Thus, the result follows.
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Applying lemma 8.7 to our special case, this yields that for every k and t > 0,

yk(t) := etAχk ∈ D(An) ⊂ H2n(Ω), (8.12)

for all n ∈ N. With [24, page 270, theorem 6], we thus get, in particular (recall that
∂Ω is assumed to be smooth)

yk(t) ∈ C2(Ω̄),

for all t > 0. Green’s formula [24, page 628, theorem 3] thus yields

d

dt

∫
Ω

yk(t, x)dx =

∫
Ω

ẏk(t, x)dx =

∫
Ω

∆yk(t, x)dx =

∫
∂Ω

∇yk(t, x) · ~n(x)dx,

where ~n(x) denotes the outer unit normal vector at x ∈ ∂Ω. Thus, if the latter is
nonpositive, this implies

d

dt

∫
Ω

yk(t, x)dx ≤ 0, (8.13)

and hence, by continuity of t 7→
∫

Ω
yk(t, x)dx, this would yield∫

Ω

yk(t, x)dx ≤
∫

Ω

yk(0, x)dx, (8.14)

for every t ≥ 0. The former computation will finish the proof of the following
proposition.

Proposition 8.8 Inequality (8.14) is valid for all t ≥ 0 and all k.

Proof: We still have to show that (8.13) holds for t > 0. To do so, we introduce an
approximation ynk of yk via the equation

ẏnk (t) = ∆ynk (t), t > 0, ynk (0) = χnk ,

such that the sequence of initial values χnk fulfills

(1) χnk → χk in L2(Ω) as n→∞,

(2) χnk ∈ C∞c (Ω) for all n ∈ N,

(3) χnk ≥ 0 in Ω.
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The corresponding (mild) solution must then particularly be a classical solution,
hence, the strong maximum principle [24, page 54, theorem 4] for the heat equation
holds. As we have chosen Dirichlet boundary conditions, the maximum respectively
minimum values of ynk must be attained only for t = 0, so that (3) implies ynk (t, x) ≥ 0
for all (t, x). Further, (1) implies ynk → yk in C(0, T ;X) as n→∞:∥∥etAχnk − etAχk∥∥ ≤ ∥∥etA∥∥ ‖χnk − χk‖ n→∞−−−→ 0.

But then we must have yk(t, x) ≥ 0 for every t ≥ 0 and almost every x ∈ Ω. Since
lemma 8.7 tells us that yk(t) ∈ C1(Ω̄) for t > 0, the directional derivative at the
boundary must be nonpositive, i.e., ∇yk(t) · ~n ≤ 0. This completes the proof.

Now we are ready to prove an inequality, which will play a role in the main theorem
of this section.

Proposition 8.9 Let y1, y2 be, respectively, the solutions to problem (P) (under
assumption (A3)) corresponding to initial values (y0

1, ξ) and (y0
2, ζ), and such that

y0
1, y

0
2 ∈ D((−A)ε) for some ε > 0. Then,∥∥∥∥∥

n∑
k=1

(Pk[fk(y1); ξk](s)− Pk[fk(y2); ζk](s)) e
tAgk

∥∥∥∥∥
2

≤ ‖y1 − y2‖2
L2(Ω;C[0,s]) +

n∑
k=1

|Ωk|
∫
Rk

|ξk(ρ)− ζk(ρ)|2 dµk(ρ).

Proof: We shorten notations by defining

λk(t, x) :=etAχk,

pk(s) :=Pk[fk(y1); ξk](s)− Pk[fk(y2); ζk](s).

Since 0 ≤
∑n

k=1 λk(0, ·) ≤ 1, by the same arguments as used in the proof of propo-
sition 8.8, it must hold that for every t,

Λ(t, x) :=
n∑
k=1

λk(t, x) ∈ [0, 1], for almost all x ∈ Ω.

Let (t, x) be such that Λ(t, x) ∈ (0, 1]; then we can apply the discrete version of
Jensen’s inequality, to derive

I(t, s, x) :=

(
n∑
k=1

pk(s)λk(t, x)

)2

=Λ(t, x)2

(
n∑
k=1

pk(s)
λk(t, x)

Λ(t, x)

)2
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≤Λ(t, x)2

n∑
k=1

pk(s)
2λk(t, x)

Λ(t, x)

≤
n∑
k=1

pk(s)
2λk(t, x).

Else, if Λ(t, x) = 0, then λk(t, x) = 0 for every k, and the inequality holds, too.
Hence, it is valid for (almost) every x ∈ Ω. But then, using proposition 8.8,∫

Ω

I(t, s, x)dx ≤
n∑
k=1

pk(s)
2

∫
Ω

λk(t, x)dx

≤
n∑
k=1

pk(s)
2

∫
Ω

λk(0, x)dx

=
n∑
k=1

pk(s)
2 |Ωk| . (8.15)

Now we use the Lipschitz type property of the hysteresis part to estimate

|pk(s)| ≤
∫
Rk

max
{
|fk(y1 − y2)|C[0,s] , |ξk(ρ)− ζk(ρ)|

}
dµk(ρ).

Introducing characteristic functions through

11(ρ) =

{
1, if |fk(y1 − y2)|C[0,s] > |ξk(ρ)− ζk(ρ)|
0, else,

12 =1− 11,

this may also be written as

|pk(s)| ≤
∫
Rk

11(ρ) |fk(y1 − y2)|C[0,s] + 12(ρ) |ξk(ρ)− ζk(ρ)| dµk(ρ).

Recalling that µk is, by definition, a probability measure on Rk, the probabilistic
version of Jensen’s inequality yields

|pk(s)|2 ≤
(∫

Rk

11(ρ) |fk(y1 − y2)|C[0,s] + 12(ρ) |ξk(ρ)− ζk(ρ)| dµk(ρ)

)2

≤
∫
Rk

(
11(ρ) |fk(y1 − y2)|C[0,s] + 12(ρ) |ξk(ρ)− ζk(ρ)|

)2

dµk(ρ)

=

∫
Rk

11(ρ) |fk(y1 − y2)|2C[0,s] + 12(ρ) |ξk(ρ)− ζk(ρ)|2 dµk(ρ)
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≤ |fk(y1 − y2)|2C[0,s] +

∫
Rk

|ξk(ρ)− ζk(ρ)|2 dµk(ρ).

Hence, ∫
Ω

I(t, s, x)dx ≤
n∑
k=1

|Ωk| |fk(y1 − y2)|2C[0,s]

+
n∑
k=1

|Ωk|
∫
Rk

|ξk(ρ)− ζk(ρ)|2 dµk(ρ).

By proposition 8.6 and lemma 8.4, y1, y2 ∈ L2(Ω;C[0, s]). Recall now that by as-
sumption (A3), fk = 1

|Ωk|
χk, so that the integral version of Jensen’s inequality implies

n∑
k=1

|Ωk| |fk(y1 − y2)|2C[0,s] =
n∑
k=1

|Ωk|
(

1

|Ωk|
max
τ∈[0,s]

∣∣∣∣∫
Ωk

y1(τ, x)− y2(τ, x)dx

∣∣∣∣)2

≤
n∑
k=1

|Ωk|
(∫

Ωk

max
τ∈[0,s]

|y1(τ, x)− y2(τ, x)| dx
|Ωk|

)2

≤
n∑
k=1

∫
Ωk

(
max
τ∈[0,s]

|y1(τ, x)− y2(τ, x)|
)2

dx

≤‖y1 − y2‖2
L2(Ω;C[0,s]) .

We note that the last inequality becomes an equality if ∪nk=1Ωk = Ω.

Remark 8.10 Assumptions (A3) may be weakened to assumption (A3’):

• for all 1 ≤ k ≤ n, gk = χk are characteristic functions corresponding to
pairwise disjoint subsets Ωk ⊂ Ω.

• for all 1 ≤ k ≤ n, fk = 1
|Ωk|

χk.

• A generates an analytic semigroup of contractions on X = L2(Ω).

In fact, the more classical argumentation of proposition 8.8 can be avoided, if one
recognizes that∥∥∥∥∥

n∑
k=1

(Pk[fk(y1); ξk](s)− Pk[fk(y2); ζk](s)) e
tAgk

∥∥∥∥∥
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≤

∥∥∥∥∥
n∑
k=1

(Pk[fk(y1); ξk](s)− Pk[fk(y2); ζk](s)) gk

∥∥∥∥∥ ,
because etA is a semigroup of contractions. Then, using the special form of the
functions gk = χk, one can directly get inequality (8.15), and can thus avoid the
application of classical results such as Green’s formula or the maximum principle.

Next, we will proof a stability result for regular initial values, which will enable us
later to take the limit n→∞ on bounded intervals [0, T ].

Theorem 8.11 Let ε, T > 0, y1, y2 denote solutions to equation (4.6) under as-
sumptions (A1) and (A3’) corresponding to initial values (x, ξ), (z, ζ), and such that
x ∈ D((−A)ε) as well as z ∈ D((−A)ε). Further, assume that there exist constants
c1, c2 > 0 and δ(ξ, ζ), such that

‖F (y1)(s)− F (y2)(s)‖2 ≤ c1 ‖y1 − y2‖2
L2(Ω;C[0,s]) + c2δ(ξ, ζ)2.

Then, for every 1
2
< θ < ε+ 1

2
there is a constant C = C(T, θ) such that

‖y1 − y2‖2
Hθ(0,T ;X) ≤ C ‖(−A)ε(x− z)‖2 + Cδ(ξ, ζ)2.

Proof: By proposition 8.6, y1, y2 ∈ Hθ(0, T ;X) for θ < ε+ 1
2
. Since in the following,

we want to apply lemma 8.4, we have to restrict ourselves further to θ > 1
2
. So, let

1
2
< θ < ε+ 1

2
and t ∈ (0, T ]. To indicate the dependence on ξ, ζ, we will write here

F (y1, ξ)(s) :=
n∑
k=1

Pk(fk(y1); ξk)(s)gk,

F (y2, ζ)(s) :=
n∑
k=1

Pk(fk(y2); ζk)(s)gk.

Further, we introduce the abbreviations δF (s) := F (y1, ξ)(s)−F (y2, ζ)(s) and δy :=
y1 − y2. Now, note that for s ∈ [0, t],

y1(s)− y2(s) = esA(x− z) +

∫ s

0

e(s−τ)A (F (y2, ζ)(τ)− F (y1, ξ)(τ)) dτ.

Thus, using standard arguments (esp. Young’s inequality), we can derive an estimate
of the form

‖y1 − y2‖2
Hθ(0,t;X)
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≤ 2

∫ t

0

∥∥esA(x− z)
∥∥2
ds (8.16)

+ 2

∫ t

0

(∫ s

0

∥∥e(s−τ)A (F (y2, ζ)(τ)− F (y1, ξ)(τ))
∥∥ dτ)2

ds (8.17)

+ 4

∫ t

0

∫ t

0

∥∥(erA − esA) (x− z)
∥∥2

|r − s|1+2θ
drds (8.18)

+ 4

∫ t

0

∫ t

0

(∫ min{r,s}
0

∥∥(e(max{r,s}−τ)A − e(min{r,s}−τ)A
)
δF (τ)

∥∥ dτ)2

|r − s|1+2θ
drds (8.19)

+ 4

∫ t

0

∫ t

0

(∫ max{r,s}
min{r,s}

∥∥e(max{r,s}−τ)A (F (y1, ξ)(τ)− F (y2, ζ)(τ))
∥∥ dτ)2

|r − s|1+2θ
drds. (8.20)

We are going to estimate each of the terms on the right hand side of the inequality,
with very similar argumentations as in the proof of proposition 8.6. The first term
is easy to handle, we get, e.g., since the semigroup is in particular a contraction
semigroup,

2

∫ t

0

∥∥esA(x− z)
∥∥2
ds ≤ 2t ‖x− z‖2 .

By assumption, we can write down an estimation of the second term, as

ct3
(
‖δy‖2

L2(Ω);C[0,t] + δ(ξ, ζ)2
)
,

where c > 0 only depends on c1, c2. In order to get a good estimation of the third
term, we will use properties (4.2) and (4.3) of our semigroup, in the way we did in
the proof of proposition 8.6. Since it is exactly the same calculation, we will drop it
here; one finds that for some constant c = c(t, ε) (which goes to zero as t ↓ 0):

(8.18) ≤ c ‖(−A)ε(x− z)‖2 .

The fourth term can be estimated as follows: we use properties (4.2), (4.3) and the
semigroup property to derive∥∥(e(max{r,s}−τ)A − e(min{r,s}−τ)A

)
δF (τ))

∥∥
≤ c̃ |r − s|α (min {r, s} − τ)−α e−ω(min{r,s}−τ) ‖δF (τ)‖ ,

with α ∈ (θ, 1). Since∫ a

0

(a− τ)−α e−ω(a−τ)dτ =

∫ a

0

x−αe−ωxdx <

∫ ∞
0

x−αe−ωxdx <∞,
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for every a > 0, there exists some function c̄ which grows slower than linear for large
s (but is still integrable over every interval of the form (0, T )), such that

(8.19) ≤
∫ t

0

c̄(s)
(
‖y1 − y2‖2

L2(Ω;C[0,s]) + δ(ξ, ζ)2
)
ds

≤
∫ t

0

c̄(s)ds
(
‖y1 − y2‖2

L2(Ω;C[0,t]) + δ(ξ, ζ)2
)
.

We note that c̄ is actually some function in s, t and explicitly given via

c̄(s, t) := c̃

∫ t

0

|r − s|2α−2θ−1 dr,

so that

C̄(t) :=

∫ t

0

c̄(s)ds

is superlinear in t. Next, we estimate (8.20). By assumption,

(8.20) ≤ 8

∫ t

0

∫ t

0

‖y1 − y2‖2
L2(Ω;C[0,max{r,s}]) + δ(ξ, ζ)2

|r − s|2θ−1
drds (8.21)

Now, for some continuous nonnegative function f , it holds that∫ t

0

∫ t

0

f(max {r, s})
|r − s|γ

drds =

∫ t

0

∫ s

0

f(s)

(s− r)γ
drds+

∫ t

0

∫ t

r

f(r)

(r − s)γ
drds

≤
∫ t

0

∫ t

0

f(s)

|s− r|γ
drds+

∫ t

0

∫ t

0

f(r)

|r − s|γ
drds

=2

∫ t

0

∫ t

0

f(s)

|s− r|γ
drds.

Applying this to (8.21) with f = ‖y1 − y2‖L2(Ω;C[0,·]) yields

(8.20) ≤16C̄(t) ‖y1 − y2‖2
L2(Ω;C[0,t]) + 8C̄(t)δ(ξ, ζ)2.

So, inserting all five estimates, we get that, for some superlinear continuous function
C̃(t),

‖δy‖2
Hθ(0,t;X) ≤2t ‖x− z‖2 + c(t, ε) ‖(−A)ε(x− z)‖2

+ C̃(t)
(
δ(ξ, ζ)2 + ‖δy‖2

L2(Ω;C[0,s])

)
.

(8.22)
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According to lemma 8.4, proposition 8.3 and theorem 8.2, there exists some constant
CT such that

‖y‖L2(Ω;C[0,s]) ≤ ‖y‖Hθ(0,s;X)

CT

s
1
2

for every s ∈ (0, T ). Hence, from this and (8.22) we can derive

‖δy‖2
Hθ(0,t;X) ≤2t ‖x− z‖2 + ˜̃C(t)

(
‖(−A)ε(x− z)‖2 + δ(ξ, ζ)2

)
+
C̃(t)

t
‖δy‖2

Hθ(0,t;X) .

Since C̃(t) is superlinear, C̃(t)/t tends to zero as t ↓ 0. Thus, there is τ ∈ (0, T ],
such that C̃(t)/t ≤ 1

2
for all t ∈ (0, τ ], which implies that there is some constant

C > 0, such that

‖δy‖2
Hθ(0,t;X) ≤ ‖δy‖

2
Hθ(0,τ ;X) ≤ C

(
‖x− z‖2 + ‖(−A)ε(x− z)‖2 + δ(ξ, ζ)2

)
,

for every t ∈ (0, τ ]. Our goal is now to get another estimate, where we can use the
first part of theorem 8.2. To this end, let t > τ . If we do not use ‖δy‖L2(Ω;C[0,s]) ≤
‖δy‖L2(Ω;C[0,t]) in our estimations, we arrive at

‖δy‖2
Hθ(0,t;X) ≤ Ĉ(t)

(
‖x− z‖2 + ‖(−A)ε(x− z)‖2 + δ(ξ, ζ)2

)
+

∫ t

0

κ(s) ‖δy‖2
L2(Ω;C[0,s]) ds,

(8.23)

with some continuous function Ĉ and an integrable map κ. Further,∫ t

0

κ(s) ‖δy‖2
L2(Ω;C[0,s]) ds =

∫ τ

0

κ(s) ‖δy‖2
L2(Ω;C[0,s]) ds

+

∫ t

τ

κ(s) ‖δy‖2
L2(Ω;C[0,s]) ds,

and, with lemma 8.4, theorem 8.1,∫ τ

0

κ(s) ‖δy‖2
L2(Ω;C[0,s]) ds ≤

∫ t

0

κ(s)ds ‖δy‖2
L2(Ω;C[0,τ ])

≤ CC2
τ

∫ τ

0

κ(s)ds
(
‖x− z‖2 + ‖(−A)ε(x− z)‖2 + δ(ξ, ζ)2

)
,

as well as (cf., theorem 8.2)∫ t

τ

κ(s) ‖δy‖2
L2(Ω;C[0,s]) ds ≤

∫ t

τ

κ(s)C2
τ s

2θ−1 ‖δy‖2
Hθ(0,s;X) ds.
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Altogether, we thus infer from (8.23),

‖δy‖2
Hθ(0,t;X) ≤ K(t)

(
‖x− z‖2 + ‖(−A)ε(x− z)‖2 + δ(ξ, ζ)2

)
+

∫ t

τ

κ(s)C2
τ s

2θ−1 ‖δy‖2
Hθ(0,s;X) ds.

Applying Gronwall’s lemma to the function f : [τ, T ] → R+, t 7→ ‖δy‖2
Hθ(0,t;X) then

yields the result.

8.3 Convergence of solutions of problems (P), (P’)

In this section we show some applications of theorem 8.11. We will restrict the
discussion to the case where each Rk is an interval, though.

To define “starting curves” for our hysteresis operators pointwise for almost every
x ∈ Ω, we introduce the function space

H := L2(Ω;L2(R·, µ·)) (8.24)

consisting of all measurable functions f for which f(x)(·) ∈ L2(Rx, µx) for almost
every x ∈ Ω. More precisely:

Definition 8.12 Let Ω ⊂ Rn be an open, bounded domain, and R1, R2 ∈ L∞(Ω)
such that 0 < R1 < R2 (almost) everywhere. For every x ∈ Ω, let µx be a probability
measure on the interval Rx := (R1(x), R2(x)) which is absolutely continuous w.r.t.
the Lebesgue measure on Rx, i.e., there exists some function hx : Rx → R+ such

that
∫ R2(x)

R1(x)
hx(ρ)dρ = 1 and µx = hxdL for every x ∈ Ω; in addition, we assume that

h·(·) > 0. Then we define

Ω? := {(x, r) | x ∈ Ω and r ∈ Rx} ,
H := {ξ : Ω? → R measurable} ,

and H is equipped with the norm

‖ξ‖H :=

(∫
Ω

∫
Rx

ξ(x, ρ)2dµx(ρ)dx

) 1
2

=

(∫
Ω

∫
Rx

ξ(x, ρ)2hx(ρ)dρdx

) 1
2

.

Since R1, R2 ∈ L∞(Ω), we may w.l.o.g. assume that R1(x) < R2(x) ≤ ‖R2‖L∞(Ω)

holds for all x ∈ Ω. Then H can be identified with some closed subspace of some
Hilbert space, and is thus itself a Hilbert space.
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Proposition 8.13 Let ĥ denote the measurable function

ĥ : Ω× [0,
∥∥R2

∥∥
L∞(Ω)

]→ R+, ĥ(x, ρ) :=

{
hx(ρ), if (x, ρ) ∈ Ω?,

1, else,

and define a measure µ̂ on Ω̂ := Ω × [0, ‖R2‖L∞(Ω)] through dµ̂ = ĥdL. If h· ∈
L∞(Ω?), then H := L2(Ω̂, ĥdL) is a Hilbert space, and the closed subspace

Hs :=
{
ξ ∈ H | ξ = 0 on Ω̂ \ Ω?

}
is isometrically isomorphic to H.

Proof: It is easy to see that H is a Hilbert space with scalar product

〈ξ, ζ〉H :=

∫
Ω̂

ξζĥdL,

as the positivity of the measure implies that the space is a Banach space. It is also
clear that the limit of every sequence in Hs that is convergent in H will belong to the
equivalence class of functions which are zero almost everywhere in Ω̂ \ Ω?; thus, Hs

is a closed subspace of H. Further, by continuation of functions in H by zero, one
gets some element of Hs, and restriction of some function in Hs to the set Ω? yields
an element of H. As this mapping is bijectiv and isometric, the proof is complete.

Now, due to proposition 8.13, we can define what we mean when we talk about
convergence of some sequence ξn in H converging to some element of H:

Definition 8.14 We say that some sequence (ξn)n ⊂ H converges to some element
ξ ∈ H, if ξn converges in H to the continuation

ξ̂ :=

{
ξ on Ω?,

0 on Ω̂ \ Ω?,

of ξ. Further, we consider sequences of densities (hn)n, similarly defining spaces

Hn, resp. Hn = L2(Ω̂, ĥndL). Let us assume that ĥ ∈ L∞(Ω̂)ĥ ∈ L∞(Ω̂)ĥ ∈ L∞(Ω̂). We say that such a
sequence of densities converges to h, if the sequence of continuations (ĥn) is bounded
in L∞(Ω̂) and converges to ĥ in L1(Ω̂).

Remark 8.15 (i) With those definitions, it holds that ĥn → ĥ in Lp(Ω̂) for every
p ∈ [1,∞) (by dominated convergence).
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(ii) ξ̂n → ξ in H :⇔ ξ̂n → ξ̂ in H ⇔ ξ̂n → ξ̂ in L2(Ω̂).
Proof: Assume first that ξ̂n → ξ̂ in L2(Ω̂). Then∥∥∥ξ̂n − ξ̂∥∥∥2

H
=

∫
Ω

(
ξ̂n − ξ̂

)2

ĥdL ≤
∥∥∥ĥ∥∥∥

L∞(Ω̂)

∥∥∥ξ̂n − ξ̂∥∥∥2

L2(Ω̂)
→ 0,

as n→∞. Now, assume that ξ̂n → ξ̂ in H. Then, since ĥ > 0, it is necessary
that there exists a subsequence ξ̂nk which converges pointwise a.e. in Ω̂ to ξ̂.

By dominated convergence and uniform boundedness, we thus get ξ̂nk → ξ̂ in

Lp(Ω̂) for all p ∈ [1,∞). As we can always extract such a subsequence, the
result follows.

Since we can view step functions
∑n

k=1 χkξk as restrictions of some step function in
Hn, we thus can give meaning to convergence of terms such as

n∑
k=1

|Ωk|
∫
Rk

|ξk(ρ)− ζk(ρ)|2 dµk(ρ),

which appeared in theorem 8.9. Having this in mind, we can proof a convergence
theorem for the solutions of problem (P). As we used initial values of the play
operator there, we have to reformulate the result if we want to work with the spaces
we have just introduced. To do so, we add the definitions

F̄ρ[y; ξ] := Fρ[y; y(0)− ξ], P̄k[y; ξk] :=

∫
Rk

F̄ρ[y; y(0)− ξk]dµk,

i.e., we give the initial values implicitly via the formula Fρ = I − Eρ. To highlight
the different notations, we will refer to this as problem (P’).

Corollary 8.16 (Reformulation of proposition 8.9, remark 8.10) Let y1, y2

denote solutions to problem (P’) corresponding to initial values (y0
1, ξ), (y

0
2, ζ) ∈

D((−A)ε) × Hn, where ε > 0 and Hn is determined through the density (step-)
function

∑n
k=1 χkhk(ρ). Then∥∥∥∥∥

n∑
k=1

(
P̄k[fk(y1); ξk](s)− P̄k[fk(y2); ζk](s)

)
gk

∥∥∥∥∥
2

≤ ‖y1 − y2‖2
L2(Ω;C[0,s]) + 2

∥∥y0
1 − y0

2

∥∥2
+ 2

n∑
k=1

|Ωk|
∫
Rk

|ξk(ρ)− ζk(ρ)|2 dµk(ρ)

≤ 3 ‖y1 − y2‖2
L2(Ω;C[0,s]) + 2

n∑
k=1

|Ωk|
∫
Rk

|ξk(ρ)− ζk(ρ)|2 dµk(ρ).
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Proof: Since µk are probability measures, it holds

n∑
k=1

|Ωk|
∫
Rk

|fk(y1(0))− ξk(ρ)− fk(y2(0)) + ζk(ρ)|2 dµk(ρ)

≤ 2
n∑
k=1

|Ωk| 〈fk, y1(0)− y2(0)〉2 + 2
n∑
k=1

|Ωk|
∫
Rk

|ξk(ρ)− ζk(ρ)|2 dµk(ρ).

From Jensen’s inequality, we derive that (denoting δy := y1(0)− y2(0))

〈fk, δy〉2 =

(∫
Ωk

δy
dL
|Ωk|

)2

≤
∫

Ωk

δy2 dL
|Ωk|

,

so that the first inequality follows. The second one is obvious.

Lemma 8.17 Assume θ > 1
2
, γ > 0 and that there exists 0 < s < 1

2
such that

D((−A)γ) ↪→ Hs(Ω). Then

Hθ(0, T ;D((−A)γ)) ↪→ Lq(Ω;C[0, T ]),

for all q ∈ [1, 2n
n−2s

], where Ω ⊂ Rn.

Proof: By definition, for y ∈ Hθ(0, T ;D((−A)γ)), it must hold that y(t) ∈ D((−A)γ)
for a.e. t ∈ [0, T ]. Thus, if C is the imbedding constant for D((−A)γ) ↪→ Hs(Ω), by
definition of the corresponding norms,

‖y‖Hθ(0,T ;Hs(Ω)) ≤ C ‖y‖Hθ(0,T ;D((−A)γ)) ,

hence, Hθ(0, T ;D((−A)γ)) ↪→ Hθ(0, T ;Hs(Ω)). Next, from Fubini’s theorem, we
infer that Hθ(0, T ;Hs(Ω)) = Hs(Ω;Hθ(0, T )). Since Hθ(0, T ) ↪→ C[0, T ], we also
get Hs(Ω;Hθ(0, T )) ↪→ Hs(Ω;C[0, T ]). Then, for any function y ∈ Hs(Ω;C[0, T ]), it
must hold that ‖y(·)‖C[0,T ] is an element of Hs(Ω). Hence, applying [31, theorem 6.7]
to this function yields Hs(Ω;C[0, T ]) ↪→ Lq(Ω;C[0, T ]) for the stated values of q. In
particular, the above chain of continuous imbeddings proves the claim.

Theorem 8.18 Let (xn, ξ̂n)n be a sequence of initial values for problem (P’) un-
der assumption (A3’), which converges in D((−A)ε) × L2(Ω̂) to (x, ξ̂), and define
functions yn, ȳn to be the solutions of

yn(t) := etAxn+

∫ t

0

e(t−s)A

(
α(s)−

n∑
k=1

∫
Rk

F̄ρ[fk(yn); ξkn(ρ)](s)ĥk(s)gkdρ

)
ds,
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ȳn(t) := etAx+

∫ t

0

e(t−s)A

(
α(s)−

∫
R·

F̄ρ[
n∑
k=1

χkfk(ȳn); ξ(·, ρ)](s)ĥ(·, ρ)dρ

)
ds.

Further, assume that for every γ > 0 there exists ν > 0 such that D((−A)γ) ↪→
Hν(Ω), and that

n∑
k=1

χRk(ρ)χkĥk(ρ)→ χR·ĥ(·, ρ),
n∑
k=1

χkξ̂
k
n(ρ)→ ξ̂(·, ρ),

as n→∞, pointwise almost everywhere. Then, with

d :=
n∑
k=1

∫
Rk

F̄ρ[fk(yn); ξkn(ρ)](s)ĥk(s)gkdρ

−
∫
R·

F̄ρ[
n∑
k=1

χkfk(ȳn); ξ(·, ρ)](s)ĥ(·, ρ)dρ,

it holds ∫
Ω

d2dL ≤ c ‖yn − ȳn‖2
L2(Ω;C[0,s]) + ω

(
1

n

)
,

where c > 0 and ω is a continuous nonnegative function with ω(0) = 0.

Proof: First note that ȳn is well defined, because we may view the right hand side as
one Lipschitz continuous function operating on the whole domain Ω; in this sense,

theorem 4.1 is applicable. Let now I :=
[
0, ‖R2‖L∞(Ω)

]
. We may rewrite the first

term in d as

d1 :=

∫
I

n∑
k=1

χRk(ρ)χkF̄ρ

[
n∑
k=1

χkfk(yn);
n∑
k=1

χkξ̂
k
n(ρ)

]
(s)ĥk(ρ)dρ,

and the second term as

d2 :=

∫
I

χR·(ρ)F̄ρ

[
n∑
k=1

χkfk(ȳn); ξ̂(·, ρ)

]
(s)ĥ(·, ρ)dρ.

Then, introducing the notation

f1 := F̄ρ

[
n∑
k=1

χkfk(yn);
n∑
k=1

χkξ̂
k
n(ρ)

]
(s),
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f2 := F̄ρ

[
n∑
k=1

χkfk(ȳn); ξ̂(·, ρ)

]
(s),

we have

d =

∫
I

n∑
k=1

χRk(ρ)χkf1ĥk(ρ)− χR·(ρ)f2ĥ(·, ρ)dρ.

Thus, a.e. in Ω, it holds

d =∫
I

n∑
k=1

χRk(ρ)χkf1ĥk(ρ)−χR·(ρ)f1ĥ(·, ρ)+χR·(ρ)f1ĥ(·, ρ)−χR·(ρ)f2ĥ(·, ρ)dρ

=

∫
I

f1

[
n∑
k=1

χRk(ρ)χkĥk(ρ)− χR·(ρ)ĥ(·, ρ)

]
dρ

+

∫
I

χR·(ρ)ĥ(·, ρ) [f1 − f2] dρ.

We need to estimate the L2(Ω) norm of this expression. With the abbreviations

µ1 :=
n∑
k=1

χRk(ρ)χkĥk(ρ)− χR·(ρ)ĥ(·, ρ), µ2 := χR·(ρ)ĥ(·, ρ),

we have to estimate

I1 :=

∫
Ω̂

f 2
1µ

2
1dL, I2 :=

∫
Ω̂

µ2
2 [f1 − f2]2 dL.

We start with I1. From Hölder’s inequality, we infer that

I1 ≤
(∫

Ω̂

|f1|2p dL
) 1

p
(∫

Ω̂

|µ1|2q dL
) 1

q

,
1

p
+

1

q
= 1, p, q > 1.

Note that pointwise a.e.,

|f1| ≤ 2 sup
t

∣∣∣∣∣
n∑
k=1

χkfk(yn(t))

∣∣∣∣∣+

∣∣∣∣∣
n∑
k=1

χkξ̂kn(ρ)

∣∣∣∣∣
⇒ |f1|2p ≤ 22p

22p sup
t

∣∣∣∣∣
n∑
k=1

χkfk(yn(t))

∣∣∣∣∣
2p

+

∣∣∣∣∣
n∑
k=1

χkξ̂
k
n(ρ)

∣∣∣∣∣
2p
 ,
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and that ∫
Ω̂

sup
t

∣∣∣∣∣
n∑
k=1

χkfk(yn(t))

∣∣∣∣∣
2p

dL ≤
∫

Ω̂

sup
t

n∑
k=1

χk |fk(yn(t))|2p dL

≤
n∑
k=1

∫
Ω̂

χkdL sup
t
|fk(yn(t))|2p

=
n∑
k=1

|I| |Ωk| sup
t

∣∣∣∣∫
Ω

χk
|Ωk|

yn(t)dL
∣∣∣∣2p

≤
n∑
k=1

|I| |Ωk| sup
t

∫
Ωk

|yn(t)|2p dL
|Ωk|

≤ |I| ‖yn‖2p
L2p(Ω;C[0,T ]) ,

which is bounded by lemma 8.17 and proposition 8.6 if p > 1 is small enough. Since
by assumption, µ1 → 0 as n →∞ in L1(Ω̂), the uniform boundedness implies then
that µ1 → 0 in Lq(Ω̂) for every q ∈ [1,∞); thus choosing q large enough, p becomes
small enough. This shows that I1 → 0 as n→∞. Next, we estimate I2. Thanks to
the uniform boundedness assumption, µ2 ∈ L∞(Ω̂). Hence, for some c > 0,

I2 ≤ c

∫
Ω̂

[f1 − f2]2 dL.

Using the Lipschitz continuity of F̄ρ, we see that except for some multiplicative
constant, I2 is estimated by∫

Ω̂

sup
t

∣∣∣∣∣
n∑
k=1

fk(yn(t))χk − fk(ȳn(t))χk

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑
k=1

χkξ̂
k
n(ρ)− ξ̂(·, ρ)

∣∣∣∣∣
2

dL.

Further,

I3 :=

∫
Ω̂

sup
t

∣∣∣∣∣
n∑
k=1

fk(yn(t))χk − fk(ȳn(t))χk

∣∣∣∣∣
2

dL

≤
∫

Ω̂

n∑
k=1

sup
t
χk

(∫
Ω

∣∣∣∣ χk|Ωk|
(yn(t)− ȳn(t))

∣∣∣∣ dL)2

dL

≤ |I|
n∑
k=1

sup
t

∫
Ωk

|yn(t)− ȳn(t)|2 dL

≤ |I| ‖yn − ȳn‖2
L2(Ω;C[0,s]) ,
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and

I4 :=

∫
Ω̂

∣∣∣∣∣
n∑
k=1

χkξ̂
k
n(ρ)− ξ̂(·, ρ)

∣∣∣∣∣
2

dL → 0,

as n → ∞, because of our assumptions and Lebesgue’s theorem of dominated con-
vergence. Hence, summing up I1 and I4 to some ω( 1

n
), this proves the claim.

Remark 8.19 Under assumption (A3), as remarked in [7, page 4], it holds

D((−A)θ) =

{
H2θ(Ω), if 0 ≤ θ < 1

4
,{

x ∈ H2θ(Ω) : x = 0 on ∂Ω
}
, if 1

4
< θ < 1,

so that an embedding of the type assumed in theorem 8.18 always exists in this case.

For the proof of the desired convergence result, we still need a general approximation
result for special types of step functions.

Lemma 8.20 Let y ∈ L2(Ω;C[0, T ]) and let {Ωn
k : k ∈ {1, . . . , n}}n be a sequence

of decompositions of the domain Ω such that

• each Ωn
k is a measurable subset of Ω,

• Ωn
j ∩ Ωn

k = {} for all j 6= k,

• max1≤k≤n |Ωn
k | → 0 as n→∞.

Then

yn :=
n∑
k=1

χk
1

|Ωn
k |

∫
Ωnk

ydL → y,

in L2(Ω;C[0, T ]), as n→∞.

Proof: There is a sequence (zm)m∈N of functions such that zm ∈ C(Ω̄× [0, T ]) for all
m and zm → y in L2(Ω;C[0, T ]), as m → ∞. This can be seen, e.g., by density of
Cpl(0, T ;X) functions in L2(Ω;C[0, T ]) (cf. proof of lemma 8.4). Moreover, if z ∈
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C(Ω̄× [0, T ]) and Ωn
k(n) is a sequence of subsets of Ω such that ∩n∈NΩn

k(n) = x0 ∈ Ω,
then∥∥∥∥∥∥ 1∣∣∣Ωn

k(n)

∣∣∣
∫

Ωn
k(n)

z(·, x)dx− z(·, x0)

∥∥∥∥∥∥
C[0,T ]

≤ sup
t

1∣∣∣Ωn
k(n)

∣∣∣
∫

Ωn
k(n)

|z(t, x)− z(t, x0)| dx

≤ sup
t, ‖x−x0‖≤diam(Ωn

k(n)
)

|z(t, x)− z(t, x0)| n→∞−−−→ 0,

(8.25)

due to the uniform continuity of z on Ω̄ × [0, T ]. Hence, denoting zm,n(t, x) :=∑n
k=1 χk

1

|Ωnk |
∫

Ωnk
zm(t, x)dx,

‖yn − y‖L2(Ω;C[0,T ]) ≤‖y
n − zm,n‖L2(Ω;C[0,T ]) + ‖zm,n − zm‖L2(Ω;C[0,T ])

+ ‖zm − y‖L2(Ω;C[0,T ]) .

We estimate the first two summands. As usual, from Jensen’s inequality, we infer
that

‖yn − zm,n‖2
L2(Ω;C[0,T ]) ≤

n∑
k=1

sup
t

∫
Ωk

|y(t, x)− zm(t, x)|2 dx

≤‖y − zm‖2
L2(Ω;C[0,T ]) .

For the second term, we exploit (8.25) and apply Lebesgue’s theorem of dominated
convergence, which then yields that

‖zm,n − zm‖L2(Ω;C[0,T ])

n→∞−−−→ 0,

for fixed m ∈ N. Thus,

lim sup
n→∞

‖yn − y‖L2(Ω;C[0,T ]) ≤ 2 ‖zm − y‖L2(Ω;C[0,T ]) ,

and we can conclude by letting m→∞.

Theorem 8.21 Let the assumptions of theorem 8.18 and lemma 8.20 hold. Then
yn, ȳn (as defined in theorem 8.18) converge to y in Hθ(0, T ;X) for every θ <
min

{
1
2

+ ε, 1
}

, where y is the solution of

y(t) = etAx+

∫ t

0

e(t−s)A
(
α(s)−

∫
R·

F̄ρ [y; ξ] (s)h(·, ρ)dρ

)
ds. (8.26)
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Moreover, if y1, y2 are two solutions of (8.26) w.r.t. to initial values (x1, ξ1), (x2, ξ2) ∈
D((−A)ε)×H, then there is C > 0 such that∥∥y1 − y2

∥∥2

Hθ(0,T ;X)
≤C

∥∥(−A)ε(x1 − x2)
∥∥2

+ C

∫
Ω

∫
R·

∣∣ξ1(·, ρ)− ξ2(·, ρ)
∣∣2 h(·, ρ)dρdL.

(8.27)

Proof: From theorems 8.18 and 8.11, we infer that it suffices to show that ȳn con-
verges to y. To this end, we want to apply again theorem 8.11. Hence, we have to
estimate

δn :=

∥∥∥∥∥
∫
R·

(
F̄ρ

[
n∑
k=1

χkfk(ȳn); ξ(·, ρ)

]
(s)− F̄ρ [y; ξ(·, ρ)] (s)

)
h(·, ρ)dρ

∥∥∥∥∥ .
We use the usual arguments. From Jensen’s inequality, the Lipschitz continuity of
F̄ρ and h ∈ L∞, we get that there exists c > 0 constant, such that

δ2
n ≤ c

∫
Ω

sup
t

∣∣∣∣∣
n∑
k=1

χkfk(ȳn)− y

∣∣∣∣∣
2

dL

≤ 2c

∫
Ω

sup
t

∣∣∣∣∣
n∑
k=1

χkfk(ȳn)−
n∑
k=1

χkfk(y)

∣∣∣∣∣
2

dL+ 2c

∫
Ω

sup
t

∣∣∣∣∣
n∑
k=1

χkfk(y)− y

∣∣∣∣∣
2

dL.

The first summand is not larger than 2c ‖ȳn − y‖2
L2(Ω;C[0,s]), which can be seen by

the usual arguments. The second one converges to zero as n → ∞, by lemma
8.20. Hence, convergence to y follows by application of theorem 8.11. Now, if we
have two solutions of (8.26) corresponding to different initial values, we can apply
our approximation procedure to find sequences y1

n, y
2
n, which converge to y1, y2 in

Hθ(0, T ;X), and for which proposition 8.9, theorem 8.11 are applicable. Then,
letting n→∞, (8.27) follows.

Remark 8.22 In the proof of the last theorem we have neglected the question whether
the solution of (8.26) actually exists. Under assumption (A3), for initial values

y0 ∈ D((−A)
1
2 ), this is a consequence of theorem 3.3. However, as (8.27) is valid

for ε smaller than 1
2
, we may infer from this existence and uniqueness of solutions

for initial values in D((−A)ε). The case when we just assume assumption (A3’) is
different though; this can be done with the techniques used to prove theorem 8.11.
Since the calculation is quite long, we omit it.
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At the end of this chapter, we show that from (8.26) we can go back to the pde we
started with, i.e., the equation where the Prandtl Ishlinskii operator is replaced by
the usual (pointwise applied) Play Operator. We will do this, roughly spoken, by
replacing the density h by some dirac measure. To simplify the analysis, we will
assume that

∀x ∈ Ω, ρ ∈ [R1
n(x), R2

n(x)], hn(x, ρ) =
1

R2
n(x)−R1

n(x)
, (8.28)

and assume that R1
n, R

2
n converge to some function R in L∞(Ω). If we fix (y0, ξ̂) ∈

(D((−A)ε)×H), this gives us, by restriction, for every n ∈ N, a pair of initial values
for problem (P’) w.r.t. Hn. If ξ̂ ∈ C(cl(Ω̂)), then∫ R2

n(x)

R1
n(x)

ξ̂(ρ, x)
dρ

R2
n(x)−R1

n(x)

n→∞−−−→ ξ̂(R(x), x), x ∈ Ω,

and even∫
Ω

∫ R2
n(x)

R1
n(x)

(
ξ̂(ρ, x)− ξ̂(R(x), x)

)2 dρ

R2
n(x)−R1

n(x)
dx

n→∞−−−→ 0. (8.29)

To avoid technicalities, we will assume in the following theorem that (8.29) holds.
Of course, this is true in more general situations than the one when ξ̂ is a continuous
function.

Theorem 8.23 Let assumption (A3’) hold, and assume that y0 ∈ D((−A)ε), ε > 0,
and let ξn be the restriction to Ω?

n (corresponding to R1
n, R

2
n ∈ L∞(Ω)) of some func-

tion ξ̂ ∈ H. If both R1
n, R

2
n converge to R ∈ L∞(Ω) w.r.t. ‖·‖, R(x) ∈ [R1

n(x), R2
n(x)]

for a.e. x ∈ Ω, every n ∈ N, and (8.28), (8.29) hold, then the corresponding sequence
of solutions yn to (8.26) converges in Hθ(0, T ;L2(Ω)) (θ < min

{
1
2

+ ε, 1
}

) to the
solution of

y(t) =etAy0 +

∫ t

0

e(t−s)A(α(s)− w(s))ds,

w(t) =F̄R(x)[y(·, x); ξ̂(R(x), x)](t).

(8.30)

Moreover, if y1
0, y

2
0 ∈ D((−A)ε) and ζ1, ζ2 ∈ L∞(Ω) can be represented as limits in

the sense of (8.29), then the inequality∥∥y1 − y2
∥∥2

Hθ(0,T ;X)
≤ C

∥∥(−A)ε(y1
0 − y2

0)
∥∥2

+ C
∥∥ζ1 − ζ2

∥∥2
(8.31)

holds, where yi denotes the solution of (8.30) corresponding to (yi0, ζ
i), and C is the

constant appearing in (8.27).
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Proof: We want to apply theorem 8.11. To this end, note that

w(x)(t) =
1

|R2
n(x)−R1

n(x)|

∫ R2
n(x)

R1
n(x)

F̄R(x)[y(·, x); ξ̂(R(x), x)](t)dρ.

Hence, denoting for short In(x) := [R1
n(x), R2

n(x)], from Jensen’s inequality and the
Lipschitz property of the Play operator, we deduce that∫

Ω

(∫
In(x)

F̄ρ
[
yn(x, ·); ξ̂(x, ρ)

]
(t)− F̄R(x)

[
y(x, ·); ξ̂(R(x), x)

]
(t)

dρ

|In(x)|

)2

dx

≤ 3

∫
Ω

sup
s
|yn(x, s)− y(x, s)|2 dx

+

∫
Ω

∫
In(x)

|ρ−R(x)|2 dρ

|In(x)|
dx (8.32)

+ 2

∫
Ω

∫
In(x)

(
ξ̂(x, ρ)− ξ̂(R(x), x)

)2 dρ

|In(x)|
dx. (8.33)

Thus, we only have to show that (8.32), (8.33) converge to zero as n → ∞. For
(8.33), this follows immediately from (8.29). Concerning (8.32), a simple calculation
shows that

(8.32) =
1

3

(∥∥R2
n

∥∥2
+
〈
R2
n, R

1
n

〉
+
∥∥R1

n

∥∥2
)
−
〈
R2
n, R

〉
−
〈
R1
n, R

〉
+ ‖R‖2 ,

which converges to zero by assumption. Now, application of theorem 8.11 proves
the first part of the theorem. Moreover, we can now take the limit in (8.26) to prove
(8.31).

8.4 Convergence of optimal value functions for problem (P’)

We give a general approximation result for optimal value functions of infinite horizon
problems, which may then be applied to problem (P’) in different situations.

Assumption 8.24 Let X = L2(Ω) and assumption (A3’) hold. Let A ⊂ X the set
where the controls may take values in, and L : X × X × A → R a functional that
meets the properties

(L1) ∃C > 0 : |L(x1, x2, a)| ≤ C ∀ (x1, x2, a) ∈ X ×X × A,

(L2) ∃CL > 0 ∀a ∈ A ∀x1, y1, x2, y2 ∈ X:

|L(x1, y1, a)− L(x2, y2, a)| ≤ CL (‖x1 − x2‖+ ‖y1 − y2‖) .
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Further, we introduce, for n ∈ N ∪ {∞}, dynamical systems via

ẏn(t) =Ayn(t) + α(t)− wn(t) ∈ X, a.e. t ∈ [0, T ], (8.34)

wn(t) =Wn[yn;wn0 ](t), t ∈ [0, T ], (8.35)

yn(0) =yn0 , wn(0) = wn0 , (8.36)

where A is the generator of an analytic semigroup in X, yn0 ∈ D((−A)ε) ⊂ X,
wn0 ∈ L∞(Ω̂), and Wn (a sequence of hysteresis-) operators. Moreover, we assume
that if wn0 → w∞0 ∈ L∞(Ω̂) pointwise a.e., and yn → y∞ in L2(Ω;C[0, T ]), then
wn → w∞ in C(0, T ;X) as n→∞.

As usual, we define the corresponding value functions as

Vn(yn0 , w
n
0 ) := inf

α∈A

∫ ∞
0

e−λtL(yn(t), wn(t), α(t))dt,

where we assume that λ > 0. One gets the following result.

Theorem 8.25 Let assumption 8.24 hold, and assume that for some sequences
of initial values yn0 , w

n
0 , it holds that yn0 → y∞0 in X, wn0 → w∞0 pointwise a.e.,

and for the corresponding sequence of trajectories, for every T > 0, yn → y∞ in
L2(Ω;C[0, T ]) as n→∞. Then Vn(yn0 , w

n
0 )→ V∞(y∞0 , w

∞
0 ).

Proof: First note that all Vn are well defined, as we assume that there exist solutions
to systems (8.34)-(8.36) and L is bounded. Let C be the constant from (L1). For
every ε > 0, we can find T > 0 such that

2C

∫ ∞
T

e−λtdt < ε.

Hence, for such T ,

|Vn(yn0 , w
n
0 )− V∞(y∞0 , w

∞
0 )|

≤ sup
α

{∫ ∞
0

e−λt |L(yn(t), wn(t), α(t))− L(y∞(t), w∞(t), α(t))| dt
}

<

∫ T

0

CL (‖yn(t)− y∞(t)‖+ ‖wn(t)− w∞(t)‖) dt+ ε.

Now, by assumption 8.24, if wn0 → w∞0 pointwise a.e. and yn → y∞ in L2(Ω;C[0, T ]),
then wn → w∞ in C(0, T ;X). Thus,

lim sup
n→∞

|Vn(yn0 , w
n
0 )− V∞(y∞0 , w

∞
0 )| ≤ ε,

for every ε > 0, which implies the result.
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Corollary 8.26 Let assumptions (L1), (L2) from 8.24 and the ones from theorem
8.21 hold. Then the corresponding value functions converge pointwise on D((−A)ε)×
H for every ε > 0.

Proof: For sequences of initial values converging in D((−A)ε) × H, we may ap-
ply theorem 8.21, which implies convergence of trajectories in Hθ(0, T ;X) for every
T > 0. Since Hθ(0, T ;X) ↪→ L2(Ω;C[0, T ]), the Lipschitz continuity of the hys-
teresis operator implies convergence of wn → w∞ in L2(Ω;C[0, T ]), and thus, in
particular, convergence in C(0, T ;X). This shows that theorem 8.25 is applicable,
which concludes the proof.

Up to now, we always have assumed in section 8 that fk = χk
|Ωk|

, which does not meet
the smoothness assumption from theorem 7.3. We still want to close this gap at the
end of this chapter. We begin with a short remark concerning theorem 8.11.

Remark 8.27 In theorem 8.11, we actually haven’t used the exact form of the op-
erator F on the right hand side of equation (4.6), but merely that there is some
estimate of a special form. Thus, the theorem is valid for more general operators.

Having this in mind, we can give the following result.

Corollary 8.28 Let the assumptions and notations of theorem 8.21 hold, and denote
by y?n the sequence of functions defined through the integral equations

y?n = etAy?n(0) +

∫ t

0

e(t−s)A

(
α(s)−

n∑
k=1

χk

∫
Rk

Fρ [f ?k (y?n); ξk] (s)dµk(ρ)

)
ds,

where y?n(0) = y(0), and f ?k = νk
|Ωk|

, where the νk are nonnegative (smooth) functions

such that ‖νk‖L∞(Ω) ≤ 1 and having support in Ωk, for all n. If

νννn :=
n∑
k=1

νk → 1, pointwise a.e.,

then y?n → y in Hθ(0, T ;X) for all θ such that yn → y w.r.t. that norm.

Proof: Since theorem 8.21 holds, in view of theorem 8.11 and remark 8.27, we only
have to find a suitable estimate for

d :=
n∑
k=1

χk

∫
Rk

Fρ [fk(yn); ξk] (s)dµk(ρ)−
n∑
k=1

χk

∫
Rk

Fρ [f ?k (y?n); ξk] (s)dµk(ρ).
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The usual arguments lead to

‖d‖2 ≤
n∑
k=1

|Ωk| ‖fk(yn)− f ?k (y?n)‖2
C[0,s] ≤

n∑
k=1

sup
t

∫
Ωk

(yn(t)− νky?n(t))2 dL.

Next, note that pointwise

yn(t)− νky?n(t) = (1− νk)yn(t) + νk(yn(t)− y?n(t)),

with νk ∈ [0, 1]. Thus,

‖d‖2 ≤
n∑
k=1

sup
t

[∫
Ωk

(1− νk) (yn(t))2 + νk (yn(t)− y?n(t))2 dL
]

≤
∥∥∥√(1− νννn)yn

∥∥∥2

L2(Ω;C[0,s])
+ ‖yn − y?n‖

2
L2(Ω;C[0,s]) .

As we know from theorem 8.21 that yn converges in L2(Ω;C[0, T ]), the first summand
goes to zero as n→∞, so that we have found the desired inequality.

We can now give a convergence result for the corresponding value functions similar
to corollary 8.26.

Corollary 8.29 Let the assumptions of corollary 8.28 hold together with (L1), (L2)
from 8.24. Then the value functions corresponding to the dynamics of y?n converge
pointwise on D((−A)ε) × H to the value function corresponding to the dynamic of
y, for every ε > 0.

Proof: Similar to the one of corollary 8.26.

Remark 8.30 Employing theorem 8.23, a similar convergence result can be proved;
thus, we can also go back to the problem discussed in section 3.
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9 Time discrete dynamic programming and ap-

proximative optimal feedback controls

In this section we will present elements of time discrete dynamic programming and
how this might be used to approximate the value function of our original problem
corresponding to the heat equation with hysteresis (3.1), and to find approximations
of optimal controls via the feedback method for the discretized problem. Whenever
possible, we will follow [4, chapter VI], where the method is presented for a finite
dimensional model problem. We start with stating the time discretized equation.
To not run into difficulties concernig existence of solutions (in particular, for the
original equation), we will restrict ourselves from the beginning to weak solutions,
and thus to initial values in H1

0 (Ω). So, let h > 0 be the (constant) stepsize; at time
level t = mh, given (ym, wm) ∈ D := H1

0 (Ω) × L2(Ω) and am ∈ L2(Ω), we are then
looking for a solution ym+1 ∈ H1

0 (Ω) of

1

h

∫
Ω

(ym+1 − ym)ϕdL+

∫
Ω

wmϕdL+

∫
Ω

∇ym+1 · ∇ϕdL

=

∫
Ω

amϕdL, ∀ϕ ∈ H1
0 (Ω).

(9.1)

As ususal, wm := W(y0, . . . , ym, w0) with some (hysteresis) operator W satisfying
the semigroup property wm+1 = W(ym+1, wm). We remark that in the existence
proof in section 3.1, we had the same type of equation but with wm replaced by
wm+1, so that (9.1) is in a way more explicit.

Theorem 9.1 Let Ω ⊂ Rn with smooth boundary (at least C2), m ∈ N, h > 0.
Given (ym, wm) ∈ D and am ∈ L2(Ω), there exists a unique weak solution ym+1 ∈
H1

0 (Ω) ∩H2(Ω) of (9.1).

Proof: This is a direct consequence of the Lax Milgram theorem and the standard
improved regularity result, see e.g. [24, chapter 6].

Thus, ym+1 solves in fact

ym+1 = h∆ym+1 + ym + ham − hwm, a.e. in Ω, ym+1 = 0 on ∂Ω.

We may therefore introduce the solution operator

L : D × L2(Ω)→ H1
0 (Ω) ∩H2(Ω) ⊂ D, L(ym, wm, am) = ym+1.

Then our time discrete dynamical system takes the form

ym+1 = L(ym, wm, am),
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wm+1 =W(L(ym, wm, am), wm),

or shorter, introducing the operator

H(ym, wm, am) :=W(L(ym, wm, am), wm),

we may also write

ym+1 = L(ym, wm, am),

wm+1 = H(ym, wm, am).
(9.2)

Let now (y0, w0) = (x, v) ∈ D. To indicate the dependence on initial values and
the control, we will from now on write ym(x, v, a), wm(x, v, a) for the solutions at
iteration level m ∈ N. Further, for some subset A of L2(Ω), the set A of admissible
controls shall consist of all sequences α = (an)n∈N such that an ∈ A for all n.
Introducing the functional

J(x, v, α) :=
∞∑
n=0

l(yn(x, v, α), wn(x, v, α), an)βn, (9.3)

where l : (L2(Ω))3 → R, β ∈ (0, 1), we can formulate a (time discrete) control
problem via

V (x, v) := inf
α∈A

J(x, v, α).

As usual, we call V : D → R the value function of the control problem.

Lemma 9.2 (time discrete DPP) Let l be bounded. Then V is well defined and
satisfies the dynamic programming equation

V (x, v) = inf
a∈A
{l(x, v, a) + βV (L(x, v, a), H(x, v, a))} .

Proof: It is clear from the definition that V is well defined if l is bounded. Now, for
α ∈ A, i.e. α = (a0, a1, a2, . . .), let ᾱ := (a1, a2, a3, . . .) be the corresponding shifted
control. Then we may write

ym+1(x, v, α)=ym(y1(x, v, a0), w1(x, v, a0), ᾱ)=ym(L(x, v, a0), H(x, v, a0), ᾱ),

and similarly

wm+1(x, v, α) = wm(L(x, v, a0), H(x, v, a0), ᾱ).

Thus, from the definition of J , we get that

J(x, v, α) = l(x, v, a0)
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+ β

∞∑
m=0

l(ym(L(x, v, a0), H(x, v, a0), ᾱ), wm(L(x, v, a0), H(x, v, a0), ᾱ), am+1)

= l(x, v, a0) + βJ(L(x, v, a0), H(x, v, a0), ᾱ).

Hence,

J(x, v, α) ≥ l(x, v, a0) + βV (L(x, v, a0), H(x, v, a0)),

which implies that

V (x, v) ≥ inf
a∈A
{l(x, v, a) + βV (L(x, v, a), H(x, v, a))} .

Next, let a ∈ A be arbitrary, and set

z1 := L(x, v, a), z2 := H(x, v, a), α̂ := (a, α) = (a, a0, a1, a2, . . .).

For every ε > 0 there exists αε = (aε0, a
ε
1, a

ε
2, . . .) ∈ A such that

V (z1, z2) ≥ J(z1, z2, αε)− ε.

Arguing as before, we get the equality

J(x, v, α̂ε) = l(x, v, a) + βJ(L(x, v, a), H(x, v, a), αε),

so that

V (x, v) ≤J(x, v, α̂ε)

=l(x, v, a) + βJ(L(x, v, a), H(x, v, a), αε)

≤l(x, v, a) + βV (L(x, v, a), H(x, v, a)) + βε.

As ε > 0 and a ∈ A where arbitrary, the latter implies

V (x, v) ≤ inf
a∈A
{l(x, v, a) + βV (L(x, v, a), H(x, v, a))} .

Lemma 9.2 means that V solves the dynamic programming equation

V (x, v) = inf
a∈A
{l(x, v, a) + βV (L(x, v, a), H(x, v, a))} , (9.4)

where (x, v) ∈ D.
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Definition 9.3 Let us define

G(u) := inf
a∈A
{l(x, v, a) + βu(L(x, v, a), H(x, v, a))} .

We call u a subsolution of (9.4), if

u(x, v) ≤ G(u)(x, v), ∀(x, v) ∈ D.

Similarly, u is called supersolution of (9.4), if

u(x, v) ≥ G(u)(x, v), ∀(x, v) ∈ D.

Further, u is called a solution of (9.4), if it is both sub- and supersolution.

As for continuous problems, also for the time discrete problem a comparison principle
holds.

Proposition 9.4 Let u1 be a bounded subsolution of (9.4) and u2 be a bounded
supersolution of that equation. Then

u1(x, v) ≤ u2(x, v), ∀(x, v) ∈ D.

In particular, there is at most one solution of (9.4).

Proof: Let (x, v) ∈ D. By definition, there exists, for all ε > 0, some aε = aε(x, v) ∈
A, such that

u2(x, v) ≥ G(u2)(x, v) ≥ l(x, v, aε) + βu2(L(x, v, aε), H(x, v, aε))− ε.

On the other hand, it holds

u1(x, v) ≤ G(u1)(x, v) ≤ l(x, v, aε) + βu1(L(x, v, aε), H(x, v, aε)).

Thus,

u1(x, v)− u2(x, v)

≤ β (u1(L(x, v, aε), H(x, v, aε))− u2(L(x, v, aε), H(x, v, aε))) + ε

≤ β sup
(x̄,v̄)∈D

{u1(x̄, v̄)− u2(x̄, v̄)}+ ε.

As this is true for every (x, v) ∈ D, the latter implies that

sup
(x,v)∈D

{u1(x, v)− u2(x, v)} ≤ β sup
(x,v)∈D

{u1(x, v)− u2(x, v)}+ ε.

As ε > 0 was arbitrary and β ∈ (0, 1), we conclude that

sup
(x,v)∈D

{u1(x, v)− u2(x, v)} ≤ 0,

i.e., u1 ≤ u2.
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From lemma 9.2 and proposition 9.4, we can derive that V is the unique solution of
(9.4). Before we tackle the problem of convergence for h ↓ 0, we want to establish
existence of optimal feedback controls in the time discrete case. To do so, we first
need to analyze the properties of V and the solution operators L,H.

Proposition 9.5 Assume that the hysteresis operator W satisfies, for all (u1, v1),
(u2, v2) ∈ L2(Ω)× L2(Ω), the Lipschitz type inequality

‖W(u1, v1)−W(u2, v2)‖ ≤ cW (‖u1 − u2‖+ ‖v1 − v2‖) ,

where cW > 0. Then, for every (a1, b1, c), (a2, b2, c) ∈ D × A, one has the estimates

‖L(a1, b1, c)− L(a2, b2, c)‖ ≤(1 + h) (‖a1 − a2‖+ ‖b1 − b2‖) ,
‖H(a1, b1, c)−H(a2, b2, c)‖ ≤(2 + h)cW (‖a1 − a2‖+ ‖b1 − b2‖) .

Further, if in addition l satisfies

|l(a1, b1, c)− l(a2, b2, c)| ≤ cl (‖a1 − a2‖+ ‖b1 − b2‖) ,

for some cl > 0, and 0 < β < (2 max {1 + h, (2 + h)cW})−1, then

|V (a1, b1)− V (a2, b2)| ≤ 1

1− η
(‖a1 − a2‖+ ‖b1 − b2‖) ,

where η := 2βmax {1 + h, (2 + h)cW}.

Proof: For (a1, b1, c), (a2, b2, c) ∈ D × A consider y1 := L(a1, b1, c) and y2 :=
L(a2, b2, c). By definition, y1 solves

y1 = h∆y1 + a1 + hc− hb1,

whereas y2 is the solution of

y2 = h∆y2 + a2 + hc− hb2.

Hence, the difference y := y1 − y2 satisfies

y = h∆y + a− hb,

where a := a1 − a2 and b := b1 − b2. Testing this equation with y yields

‖y‖2 + h ‖∇y‖2 =

∫
Ω

(a− hb)ydL,

which implies, due to Young’s inequality,

‖y‖2 ≤ ‖a− hb‖2 .
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Thus,

‖y‖ ≤ ‖a‖+ h ‖b‖ ≤ (1 + h) (‖a‖+ ‖b‖) ,

which proves the first inequality. Next, let us denote w1 := H(a1, b1, c), w2 :=
H(a2, b2, c), and recall that

H(aj, bj, c) :=W(L(aj, bj, c), bj).

Hence, using the Lipschitz assumption on W and the inequality for L, we see that

‖w1 − w2‖ ≤cW (‖L(a1, b1, c)− L(a1, b1, c)‖+ ‖b1 − b2‖)
≤cW ((1 + h) (‖a1 − a2‖+ ‖b1 − b2‖) + ‖b1 − b2‖)
≤(2 + h)cW (‖a1 − a2‖+ ‖b1 − b2‖) ,

as claimed. Now, let ε > 0 and αε ∈ A such that

V (a2, b2) ≥ J(a2, b2, α
ε)− ε

2
.

Then, for every N ∈ N, we derive from the Lipschitz assumption on l that

V (a1, b1)− V (a2, b2) ≤ J(a1, b1, α
ε)− J(a2, b2, α

ε) +
ε

2

≤
N∑
n=0

βncl (‖yn(a1, b1, α
ε)− yn(a2, b2, α

ε)‖+‖wn(a1, b1, α
ε)− wn(a2, b2, α

ε)‖)

+
∞∑

n=N+1

2Mβn +
ε

2
,

where M is the bound on l. Choose N such that 2M
∑∞

n=N+1 β
n ≤ ε

2
. Iteration of

the inequalities for L and H yields (denoting for short, yjn := yn(aj, bj, α
ε), wjn :=

wn(aj, bj, α
ε))∥∥y1

n − y2
n

∥∥ ≤(1 + h)
(∥∥y1

n−1 − y2
n−1

∥∥+
∥∥w1

n−1 − w2
n−1

∥∥)
≤(1 + h)2

(∥∥y1
n−2 − y2

n−2

∥∥+
∥∥w1

n−2 − w2
n−2

∥∥)
+ (1 + h)(2 + h)cW

(∥∥y1
n−2 − y2

n−2

∥∥+
∥∥w1

n−2 − w2
n−2

∥∥)
≤2 (max {1 + h, (2 + h)cW})2 (∥∥y1

n−2 − y2
n−2

∥∥+
∥∥w1

n−2 − w2
n−2

∥∥)
≤ . . .
≤2n−1 (max {1 + h, (2 + h)cW})n (‖a1 − a2‖+ ‖b1 − b2‖) ,

and, analogously,∥∥w1
n − w2

n

∥∥ ≤ 2n−1 (max {1 + h, (2 + h)cW})n (‖a1 − a2‖+ ‖b1 − b2‖) .
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Therefore we get

V (a1, b1)− V (a2, b2) ≤
N∑
n=0

(2βmax {1 + h, (2 + h)cW})n (‖a1 − a2‖+ ‖b1 − b2‖) + ε.
(9.5)

Hence, if η := 2βmax {1 + h, (2 + h)cW} ∈ (0, 1), as ε > 0 was arbitrary,

V (a1, b1)− V (a2, b2) ≤ 1

1− η
(‖a1 − a2‖+ ‖b1 − b2‖) .

Interchanging the roles of (a1, b1), (a2, b2) then proves the claim.

Remark 9.6 The assumption on the hysteresis operator is fulfilled, e.g., in the case
of pointwise applied operators meeting a Lipschitz type inequality. Assume that for
(a.e.) x ∈ Ω,

|w1(x)− w2(x)| ≤ cW (|L(a1, b1, c)(x)− L(a2, b2, c)(x)|+ |b1(x)− b2(x)|) .

Then, an analogous inequality with |·| replaced by ‖·‖ must hold. An application of
the triangle inequality then yields

‖w1 − w2‖ ≤ cW (‖L(a1, b1, c)− L(a2, b2, c)‖+ ‖b1 − b2‖) ,

and one can proceed as shown in the above proof.

Next note that since L assigns, for input values ym, wm, a, the solution ym+1 of the
equation

ym+1 = h∆ym+1 + ym + ha− hwm,

it holds ym+1 ∈ H2(Ω), which is compactly imbedded into L2(Ω). From the definition
of weak solutions, we see that for every sequence (ak)k∈N ⊂ A that converges weakly
to some a∗ ∈ A, the corresponding outputs

ykm+1 := L(ym, wm, a
k)

converge weakly inH2(Ω), and thus ykm+1 → y∗m+1 in L2(Ω) by the compactness of the
imbedding. This means that the mapping a 7→ L(ym, wm, a) is weakly sequentially
continuous for fixed ym, wm when considered as map from L2(Ω) into itself. If W is
continuous, then also a 7→ H(ym, wm, a) is weakly sequentially continuous for fixed
ym, wm. Using this, we are able to prove existence of optimal controls.
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Theorem 9.7 Let the assumptions of proposition 9.5 hold, except for the restriction
on β. Then V is continuous from (L2(Ω))2 → R. If in addition, A ⊂ L2(Ω) is
weakly compact and the mapping a 7→ l(x, v, a) is weakly lower semicontinuous for
every (x, v), there is an optimal control α∗ = (a∗n)n which can be found by iteratively
solving the feedback equations

V (y∗n, w
∗
n) = l(y∗n, w

∗
n, a

∗
n) + βV (L(y∗n, w

∗
n, a

∗
n), H(y∗n, w

∗
n, a

∗
n)). (9.6)

Proof: Let (an, bn)n∈N be a sequence of initial values such that (an, bn) → (a, b) in
L2(Ω) as n→∞. From equation (9.5), we get that for every ε > 0,

lim sup
n→∞

V (an, bn)− V (a, b) ≤ ε,

V (a, b)− lim inf
n→∞

V (an, bn) ≤ ε,

which implies

lim
n→∞

V (an, bn) = V (a, b).

Next we want to show that for every (x, v) ∈ (L2(Ω))2 there is a∗ ∈ A such that

l(x, v, a∗) + βV (L(x, v, a∗), H(x, v, a∗))

= inf
a∈A
{l(x, v, a) + βV (L(x, v, a), H(x, v, a))} . (9.7)

To this end, let (an)n be a minimizing sequence. Due to the weak compactness
of A, we may w.l.o.g. assume that an converges weakly to some a∞ ∈ A. The
weak continuity of L and H together with the continuity of V and the weak lower
semicontinuity of l imply that a∞ is in fact optimal in the sense that it meets (9.7).
Now choose, for y∗0 =: x and w∗0 =: v some a∗0 ∈ A such that (9.7) is valid. Then
one can solve the elliptic equation which yields y∗1 = L(y∗0, w

∗
0, a
∗
0), and calculate

w∗1. Iterating this method yields trajectories (y∗n)n, (w
∗
n)n and a control α∗ = (a∗n)n.

We show that α∗ is optimal for the control problem. From (9.7) and the discrete
dynamic programming principle (lemma 9.2), we find that the equation

V (y∗n, w
∗
n) = l(y∗n, w

∗
n, a

∗
n) + βV (y∗n+1, w

∗
n+1)

holds. Multiplication with βn leads to

βnV (y∗n, w
∗
n)− βn+1V (y∗n+1, w

∗
n+1) = βnl(y∗n, w

∗
n, a

∗
n).

But then, by definition of J ,

J(x, v, α∗) =
∞∑
n=0

l(y∗n, w
∗
n, a

∗
n)βn =

∞∑
n=0

(
βnV (y∗n, w

∗
n)− βn+1V (y∗n+1, w

∗
n+1)

)
= V (x, v),

which means that α∗ is optimal.
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Our next goal is to analyze what happens when h ↓ 0. As the discretization is almost
identical to the one used in theorem 3.3, we will show convergence by comparison
of the two solutions. As mentioned before, we will restrict to initial values in D.
Recall that the weak solution of (9.1) fulfills

1

h

∫
Ω

(ym+1 − ym)ϕdL+

∫
Ω

wmϕdL+

∫
Ω

∇ym+1 · ∇ϕdL

=

∫
Ω

amϕdL, ∀ϕ ∈ H1
0 (Ω),

whereas the weak solution z of (3.2) fulfills

1

h

∫
Ω

(zm+1 − zm)ϕdL+

∫
Ω

vm+1ϕdL+

∫
Ω

∇zm+1 · ∇ϕdL

=

∫
Ω

bmϕdL, ∀ϕ ∈ H1
0 (Ω).

Here, wm :=W(y0, . . . , ym) and vm :=W(z0, . . . , zm), and bm corresponds to a step
function bN :=

∑N
m=0 bmχm that converges to some b ∈ L2(Ω × (0, T )) as N → ∞.

At this point we remark that weak convergence of bN would be sufficient, as this
restriction would neither influence the a priori estimates nor the passage to the limit
of the tested equation. Assume now that the hysteresis operatorW has the property
that for all strings s1 = (s1

1, . . . , s
1
n), s2 = (s2

1, . . . , s
2
n),∣∣W(s1)−W(s2)

∣∣ ≤ cW max
0≤k≤n

{∣∣s1
k − s2

k

∣∣} . (9.8)

Then we may estimate (pointwise)

|wm − vm+1| = |W(y0, . . . , ym, ym)−W(z0, . . . , zm+1)|

≤ cW max

{
max

0≤k≤m
{|yk − zk|} , |ym − zm+1|

}
≤ cW max

0≤k≤m+1
{|yk − zk|}+ cW |zm − zm+1| .

Since we know that each zk is bounded in L2 from the arguments in the proof of
theorem 3.3, this yields similar a priori estimates for the difference qm := ym − zm;
thus, we can argue as for theorem 3.3 to show convergence of

∑
m qmχm to zero.

Hence, we have proved the following:

Theorem 9.8 Let Ω ⊂ Rn be an open bounded domain with smooth boundary (at
least C2), and assume that the (hysteresis-) operator W satisfies (9.8). If the step
function corresponding to the control α = (a0, a1, . . .) converges weakly in L2(ΩT ),
then the step function corresponding to the solutions of (9.1) converge to the unique
solution of (3.1), particularly in L2(Ω;L∞(0, T )).

135



9. TIME DISCRETE DYNAMIC PROGRAMMING AND APPROXIMATIVE
OPTIMAL FEEDBACK CONTROLS

Proof: We have noticed that qm can be treated just as ym; thus, the linear in-
terpolates of zm must converge to the solution of (3.1) – which is unique due to
theorem 3.6, as (9.8) implies that assumption 3.4 is valid for the continuation of the
(hysteresis-) operator to continuous functions – w.r.t. the norm of L2(Ω;C[0, T ]) (cf.,
theorem 3.3). But then the constant interpolates must converge in L2(Ω;L∞(0, T )),
which proves the claim.

If A is weakly compact, we have seen that one can find an optimal control α∗ =
(a∗0, a

∗
1, . . .) for the discretized problem via iteratively solving the feedback equations

(9.6). Further, we can assign step functions α∗h :=
∑N

m=0 a
∗
mχm to α∗, which then

must contain weakly convergent subsequences (in L2(ΩT )). As theorem 9.8 tells us
that trajectories converge, in that case, to solutions of (3.1), it would be plausible
that such weak limit of α∗hn might be an optimal control for the continuous problem.
We will investigate this in the rest of this section. To distinguish between discrete
and continuous problem, we will denote the corresponding costs by Jc and Jd, where

Jc(x, v, α) :=

∫ ∞
0

l̃(yx,v,α(t), wx,v,α(t), α(t))e−λtdt, α ∈ Ac

Jd(x, v, α) :=
∞∑
n=0

hl̃(yn(x, v, α), wn(x, v, α), an)(1− λh)n, α ∈ Ad.

Here, Ac, as usual, consists of all measurable functions α taking values α(t) ∈ A
for all t ≥ 0, and Ad consists of all sequences (a0, a1, . . .) such that aj ∈ A for all
j ∈ N. We note that we arrive at Jd if we set β = 1− λh and l = hl̃ in (9.3). This
choice accords to the one of [4], where convergence is shown with the help of HJB
equations. As we do not have such for the continuous problem, we need to take a
different approach. To be able to compare solutions, we will focus on a special type
of controls. Let T > 0. By ATpc, we will denote the set of controls ᾱ ∈ Ac for which
there is k ∈ N (we will refer to this number as discretization level) such that ᾱ

is a.e. equal to a constant on every interval of the form (mT
2k
, (m+1)T

2k
), m ∈ N. The

nice thing about this type of function is that if it has such property for k ∈ N, then
also for every k̃ ≥ k, and we can interprete it as control for the discretized problem.
For this type of control, we get the following result.

Theorem 9.9 Let the assumptions of theorem 9.8 hold and assume in addition that l̃
is bounded by M > 0 and has the Lipschitz type property that for all (a1, b1), (a2, b2) ∈
D, c ∈ A, ∣∣∣l̃(a1, b1, c)− l̃(a2, b2, c)

∣∣∣ ≤ cl̃ (‖a1 − a2‖+ ‖b1 − b2‖) . (9.9)
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Then, for every T > 0, (x, v) ∈ D and (αk)k ⊂ ATpc with discretization level k ∈ N
such that αk converges weakly in L2(Ωτ ) for all τ > 0,∣∣Jc(x, v, αk)− Jd(x, v, αk)∣∣→ 0 as k →∞,

where the step size is associated to k via hk = T
2k

.

Proof: Let ε > 0 and choose T ∈ N such that

M
∞∑

n=T+1

h(1− λh)n <
ε

2
, M

∫ ∞
T

e−λtdt <
ε

2
.

The first inequality can be achieved uniformly for h > 0 small enough, let’s say,
for h < 1

2λ
, so that we restrict to discretization levels k ≥ k̃ where T

2k̃
< 1

2λ
. Let

αk ∈ ATpc with discretization level k ∈ N, k ≥ k̃. The step size is hk = T/2k, so that
we may write

Jc(x, v, α) =
∞∑
n=0

∫ (n+1)T

2k

nT

2k

l̃(yx,v,α(t), wx,v,α(t), akn)e−λtdt,

where αk(t) = akn (a.e.) on (nT
2k
, (n+1)T

2k
). Then, denoting m := 2k − 1 and using

the abbreviations yk(·) := yx,v,αk(·), wk(·) := wx,v,αk(·), ykn := yn(x, v, αk), wkn :=
wn(x, v, αk),∣∣Jc(x, v, αk)− Jd(x, v, αk)∣∣
≤

m∑
n=0

∣∣∣∣∣
∫ (n+1)T

2k

nT

2k

l̃(yk(t), wk(t), akn)e−λtdt− hl̃(ykn, wkn, akn)(1− λh)n

∣∣∣∣∣+ ε

≤
m∑
n=0

∣∣∣∣∣
∫ (n+1)T

2k

nT

2k

l̃(yk(t), wk(t), akn)e−λt− l̃
(
yk
(
nT

2k

)
, wk

(
nT

2k

)
, akn

)
e−λ

nT

2k dt

∣∣∣∣∣
(9.10)

+
m∑
n=0

∣∣∣∣ T2k l̃
(
yk
(
nT

2k

)
, wk

(
nT

2k

)
, akn

)
e−λ

nT

2k − T

2k
l̃(ykn, w

k
n, a

k
n)e−λ

nT

2k

∣∣∣∣ (9.11)

+
m∑
n=0

∣∣∣∣ T2k l̃(ykn, wkn, akn)e−λ
nT

2k − T

2k
l̃(ykn, w

k
n, a

k
n)(1− λh)n

∣∣∣∣+ ε. (9.12)

We estimate (9.10) to (9.12). From
∣∣∣l̃∣∣∣ ≤M and the Lipschitz property,

(9.10) ≤
m∑
n=0

∣∣∣∣∣
∫ (n+1)T

2k

nT

2k

l̃(yk(t), wk(t), akn)e−λt − l̃(yk(t), wk(t), akn)e−λ
nT

2k dt

∣∣∣∣∣
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+
m∑
n=0

∣∣∣∣∣
∫ (n+1)T

2k

nT

2k

l̃(yk(t), wk(t), akn)e−λ
nT

2k − l̃
(
yk
(
nT

2k

)
, wk

(
nT

2k

)
, akn

)
e−λ

nT

2k dt

∣∣∣∣∣
≤

m∑
n=0

M

∫ (n+1)T

2k

nT

2k

∣∣∣e−λt − e−λnT2k ∣∣∣ dt
+

m∑
n=0

∫ (n+1)T

2k

nT

2k

∣∣∣∣l̃(yk(t), wk(t), akn)− l̃
(
yk
(
nT

2k

)
, wk

(
nT

2k

)
, akn

)∣∣∣∣ dt
≤

m∑
n=0

MT

2k

(
e−λ

nT

2k − e−λ
(n+1)T

2k

)
+

m∑
n=0

cl̃

∫ (n+1)T

2k

nT

2k

(∥∥∥∥yk(t)− yk (nT2k
)∥∥∥∥+

∥∥∥∥wk(t)− wk (nT2k
)∥∥∥∥) dt

≤ MT

2k
+ cl̃T max

0≤n≤m
sup

t∈(nT
2k
,
(n+1)T

2k
)

{∥∥∥∥y(t)− y
(
nT

2k

)∥∥∥∥+

∥∥∥∥w(t)− w
(
nT

2k

)∥∥∥∥} ,
which converges to zero as k → ∞ due to the regularity of solutions for the heat
equation with hysteresis and their strong convergence whenever controls converge
weakly, see theorem 9.8. Further,

(9.11) ≤
m∑
n=0

c̃lT

2k

(∥∥∥∥yk (nT2k
)
− ykn

∥∥∥∥+

∥∥∥∥wk (nT2k
)
− wkn

∥∥∥∥) ,
and the right hand side converges to zero as k →∞ due to theorem 9.8. Next, note
that

(9.12) ≤
m∑
n=0

MT

2k

∣∣∣∣e−λnT2k − (1− λ T
2k

)n∣∣∣∣ .
Using the formula rn − sn = (r − s)(rn−1 + rn−2s+ . . .+ rsn−2 + sn−1) with

r = e−λ
T

2k , s = 1− λ T
2k
,

yields (note that 0 < 1− λ T
2k
< 1)

(9.12) ≤M
T

2k

∣∣∣∣e−λ T

2k − 1 + λ
T

2k

∣∣∣∣
[

m∑
j=1

j∑
n=1

e−λ
(n−1)T

2k

]
. (9.13)

Let us make the definitions

µk :=

∣∣∣∣e−λ T

2k − 1 + λ
T

2k

∣∣∣∣ , βk := e−λ
T

2k ,
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S :=

[
m∑
j=1

j∑
n=1

e−λ
(n−1)T

2k

]
=

[
m∑
j=1

j∑
n=1

βn−1
k

]
.

Then, recalling that m = 2k − 1, a simple calculation shows

S =
m∑
j=1

1− βjk
1− βk

=
1

1− βk

[
2k − 1−

(
m∑
j=1

βjk

)]
=

1

1− βk

[
2k − 1− βm+1

k

1− βk

]
.

Next note that (
1− e−λ

T

2k

) 2k

T
= λ+

o( T
2k

)
T
2k

k→∞−−−→ λ,

which implies

T
2k

1− βk
k→∞−−−→ 1

λ
> 0.

Therefore, with ηk := T
2k

,

Sη2
k =

ηk
1− βk

[
ηk2

k − ηk
1− βk

(
1− βm+1

k

)] k→∞−−−→ 1

λ

[
λT − 1

λ

(
1− e−λT

)
,

]
which in view of (9.13) implies that

(9.12) ≤M
(
Sη2

k

) µk
ηk

k→∞−−−→ 0,

because µk = o(ηk). Combining all estimates, this shows that

lim sup
k→∞

∣∣Jc(x, v, αk)− Jd(x, v, αk)∣∣ ≤ ε.

As ε > 0 was arbitrary, this proves the result.

Now we can show optimality of the weak limit α∗.

Theorem 9.10 Let Ω ⊂ Rn be some open bounded domain with smooth boundary
(at least C2) and A ⊂ L2(Ω) be weakly compact. Assume that W satisfies (9.8),∣∣∣l̃∣∣∣ ≤M , l̃ satisfies (9.9), and that the map

η : A→ R, a 7→ l̃(x, v, a),

is convex for each (x, v) ∈ D. Then every weak limit of step functions (αnc ) ⊂ ATpc
corresponding to (αn) ∈ Ad found by iteratively solving (9.6) is an optimal control
for the continuous optimization problem.
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Proof: Fix T > 0. As solutions to the heat equation with hysteresis depend contin-
uously on the data, there exists a sequence of controls (βk) ⊂ ATpc of discretization
level k ∈ N such that

lim
n→∞

Jc(x, v, β
n) = Vc(x, v), ∀(x, v) ∈ D.

Let, for every k ∈ N, denote (αk) an optimal control of the discretized problem at
discretization level k. Then, for all k,

Jd(x, v, α
k) ≤ Jd(x, v, β

k),

which implies

Jc(x, v, α
k) + Jd(x, v, α

k)− Jc(x, v, αk)
≤ Jd(x, v, β

k)− Jc(x, v, βk) + Jc(x, v, β
k),

and hence,

Jc(x, v, α
k)

≤
∣∣Jd(x, v, αk)− Jc(x, v, αk)∣∣+

∣∣Jd(x, v, βk)− Jc(x, v, βk)∣∣+ Jc(x, v, β
k).

As the first two expressions on the right hand side converge to zero as k → ∞ by
theorem 9.9, it suffices to show that

Jc(x, v, α
∗) ≤ lim inf

k→∞
Jc(x, v, α

k),

where α∗ denotes the weak limit of the step function corresponding to (αk), i.e., that
the map α 7→ J(x, v, α) is weak lower sequentially semicontinuous for all (x, v) ∈ D.
We show this property now. To this end, let ε > 0 and choose T > 0 such that

M

∫ ∞
T

e−λtdt ≤ ε

3
.

Then, using theorem 9.8 and the Lipschitz property of l̃, we find that∣∣∣∣∫ T

0

e−λt(l̃(yx,v,αk(t), wx,v,αk(t), α
k(t))− l̃(yx,v,α∗(t), wx,v,α∗(t), αk(t)))dt

∣∣∣∣→ 0,

as k → ∞. Thus, there exists k̃ ∈ N such that the former is less than ε
3

for every

k ≥ k̃. But the functional

J∗ : A|(0,T ) → R, α 7→
∫ T

0

e−λtl̃(yx,v,α∗(t), wx,v,α∗(t), α(t))dt,
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is convex, since η is convex, and therefore also weak sequentially lower semicontin-
uous. Hence,

J∗(α∗) ≤ lim inf
k→∞

J∗(αk).

In summary, we get

Jc(x, v, α
∗) =J∗(α∗) + Jc(x, v, α

∗)− J∗(α∗)

≤ lim inf
k→∞

{
J∗(αk)

}
+
ε

3

= lim inf
k→∞

{
Jc(x, v, α

k) + J∗(αk)− Jc(x, v, αk)
}

+
ε

3

≤ lim inf
k→∞

{
Jc(x, v, α

k) +
2ε

3

}
+
ε

3

= lim inf
k→∞

{
Jc(x, v, α

k)
}

+ ε.

As ε > 0 was arbitrary, the result follows.
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10. A MODEL PROBLEM CORRESPONDING TO AN ORDINARY
DIFFERENTIAL EQUATION INCLUDING THE TIME DERIVATIVE OF A
HYSTERESIS NONLINEARITY

10 A model problem corresponding to an ordi-

nary differential equation including the time

derivative of a hysteresis nonlinearity

In this section, we show that the method of [1], i.e., to reformulate problems con-
taining Play hysteresis nonlinearities as reflected control systems, can, in principle,
also be used when the differential equation contains the time derivative of the Play.
One only has to make little changes.

10.1 Properties of the o.d.e.

We study the ordinary differential equation

ẏ + ẇ = f(y, w, α),

w = Fr[y;w0],

y(0) = y0,

w(0) = w0 ∈ [y0 − r, y0 + r],

(10.1)

where we assume that the continuous function f meets the Lipschitz property

|f(a1, b1, c)− f(a2, b2, c)| ≤ cf (|a1 − a2|+ |b1 − b2|) , ∀a1, a2, b1, b2, c ∈ R, (10.2)

and the boundedness property

|f(a, b, c)| ≤Mf , ∀a, b, c ∈ R. (10.3)

We start with the following existence and uniqueness result for (10.1).

Theorem 10.1 Under the stated assumptions on f , for every α ∈ L2(0, T ) and
admissible pair of initial values, i.e. y0 ∈ R, w0 ∈ [y0 − r, y0 + r], (10.1) has exactly
one solution (y, w) ∈ W 1,∞(0, T )×W 1,∞(0, T ).

Proof: Via implicit time discretization. For m ∈ N, let h = T
m

be the step size of
the discretization of [0, T ], and define, for α ∈ L2(0, T ), the step function

αn(t) :=
1

h

∫ (n+1)h

nh

α(s)ds, t ∈ (nh, (n+ 1)h), 1 ≤ n ≤ m.

Starting at y0, w0, we want to iteratively solve

yn+1 − yn
h

+
wn+1 − wn

h
= f(yn+1, wn+1, αn+1). (10.4)
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From (10.2), we infer the two inequalities

yn+1 − yn + wn+1 − wn ≤ hcf (|yn+1 − yn|+ |wn+1 − wn|) + hMf , (10.5)

yn+1 − yn + wn+1 − wn ≥ −hcf (|yn+1 − yn|+ |wn+1 − wn|)− hMf . (10.6)

If h < 1/cf , then the piecewise monotonicity of the Play operator yields that there
are y∗ < y∗ such that (10.5) is violated if yn+1 > y∗ and (10.6) is violated if yn+1 < y∗.
By continuity, there exists an intermediate value ȳ ∈ [y∗, y

∗] such that (10.4) holds
with yn+1 = ȳ. Note also that this fixed point is unique. If this was not the case,
there would be (x1, x2), (z1, z2) such that

x1 − yn
h

+
x2 − wn

h
= f(x1, x2, αn+1),

z1 − yn
h

+
z2 − wn

h
= f(z1, z2, αn+1),

and by the piecewise monotonicity property of the Play, if x1 ≥ z1, then also x2 ≥ z2.
So assume w.l.o.g. that x1 ≥ z1. Subtracting the two equations leads then to

|x1 − z1|
h

+
|x2 − z2|

h
≤ cf (|x1 − z1|+ |x2 − z2|) ,

which implies cfh ≥ 1, a contradiction. Hence, for every m ∈ N such that h = T
m
<

1
cf

, the discretized problem is uniquely solvable. To find a priori estimates, note that

piecewise monotonicity together with inequalities (10.5), (10.6) imply in fact

|yn+1 − yn|+ |wn+1 − wn| ≤ hcf (|yn+1 − yn|+ |wn+1 − wn|) + hMf ,

so that restricting to just h < 1/2cf , this yields

|yn+1 − yn|
h

+
|wn+1 − wn|

h
≤ 2Mf .

Hence, the linear interpolates are bounded in W 1,∞(0, T ). From the compact imbed-
ding of the latter into C[0, T ], we infer that, at least for some subsequence, the linear
interpolates converge to some functions y, w ∈ W 1,∞ w.r.t. ‖·‖∞. Since the corre-
sponding constant interpolates ŷn, ŵn must then converge to the same limits w.r.t.
the L∞ norm, we get pointwise convergence (a.e.) of f(ŷn, ŵn, αn) to f(y, w, α). The
boundedness assumption on f together with Lebesgue’s theorem of dominated con-
vergence implies then convergence in L2(0, T ) of f(ŷn, ŵn, αn), so that y, w satisfy
the differential equation a.e. in (0, T ). Further, from the convergence in C[0, T ], we
also get that w = Fr[y;w0]. Hence, y, w solve (10.1). In order to show uniqueness,
we assume that there are two solutions (y1, w1), (y2, w2) corresponding to different
initial values (but same “controls” α) and subtract the two differential equations.
Denoting w := w1 − w2, y := y1 − y2, we get

ẏ + ẇ = f(y1, w1, α)− f(y2, w2, α),

145



10. A MODEL PROBLEM CORRESPONDING TO AN ORDINARY
DIFFERENTIAL EQUATION INCLUDING THE TIME DERIVATIVE OF A
HYSTERESIS NONLINEARITY

a.e. in (0, T ). Now we test this equation with H(y) (where H denotes the Heavyside
function) and use Hilpert’s inequality (cf. [12, proposition 3.3.3]), which asserts that

d

dt
w+(t) ≤ w′(t)H(y(t)),

for almost every t, where w+ denotes the positive part of w. Therefore the tested
equation yields

y+(t) + w+(t) ≤ y+(0) + w+(0) +

∫ t

0

|f(y1, w1, α)− f(y2, w2, α)| ds.

Interchanging the roles of y1, y2 and w1, w2, we get an analogous inequality for the
negative part; summing up those inequalities then yields

|y(t)|+ |w(t)| ≤ |w0|+ |y0|+ 2

∫ t

0

|f(y1, w1, α)− f(y2, w2, α)| ds

≤ |w0|+ |y0|+ 2cf

∫ t

0

(|y(s)|+ |w(s)|) ds.

As this is valid for each t ∈ (0, T ), we may apply Gronwall’s lemma to get the
stability result

|y(t)|+ |w(t)| ≤ (|w0|+ |y0|) · e2cf t, (10.7)

which implies uniqueness of solutions.

If α is continuous, the differential equation shows that y+w is in fact C1, although
one can never expect such regularity for Play hysteresis nonlinearities. What hap-
pens here is that ẏ and ẇ jump at the same time. As ẇ equals either zero or ẏ, we
can distinct the cases

1. ẇ = 0⇒ ẏ = f(y, w, α),

2. ẇ = ẏ ⇒ ẇ = ẏ = 1
2
f(y, w, α).

So when ẏ jumps from f(y, w, α) to 1
2
f(y, w, α), then ẇ jumps from zero to 1

2
f(y, w, α),

so that the sum does not jump.
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10.2 The control problem and Dynamic Programming - adap-
tion of the method of [1]

We build a standard infinite horizon control problem to equation (10.1). As usual,
let λ > 0 be the discount factor and l : R3 → R some continuous and bounded
function with the Lipschitz type property

|l(a1, b1, c)− l(a2, b2, c)| ≤ cl (|a1 − a2|+ |b1 − b2|) , ∀a1, a2, b1, b2, c ∈ R.

The function we want to minimize is then defined through

J(x, v, α) :=

∫ ∞
0

l (yx,v,α(t), wx,v,α(t), α(t)) dt,

where y0 = x, w0 = v ∈ [x− r, x+ r] are the initial values. The corresponding value
function is defined via

V (x, v) := inf
α∈A

J(x, v, α),

where A is the set of admissible controls; it contains all measurable functions α :
[0,∞)→ A for some compact set A ⊂ R. Let us introduce the set

Ωr :=
{

(x, v)T ∈ R2 : v ∈ [x− r, x+ r]
}
,

which contains exactly the admissible pairs of initial values. The value function has
the following properties.

Proposition 10.2 V is bounded and if λ > 2cf , then it is also Lipschitz continuous
on Ωr. Moreover, it satisfies the dynamic programming equation

V (x, ξ)

= inf
α∈A

{∫ t

0

e−λsl(yx,ξ,α(s), wx,ξ,α(s), α(s))ds+ e−λtV (yx,ξ,α(t), wx,ξ,α(t))

}
,

for all t > 0.

Proof: The first part is a simple consequence of the boundedness of l and inequality
(10.7). As the proof is standard (and similar to the one of theorem 5.1, e.g.), we
omit the details. Further, the DPP follows as in section 6.1 from the semigroup
properties.
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Now recall the method of [1], that we used to handle the hysteresis part in sections
6 and 7. We rewrote the problem in terms of the stop operator “u” and then used
that u̇ equals ẏ plus some element of the normal cone of some characteristic set Z
at u. Since we could then replace ẏ with the “right hand side” of the differential
equation, we were able to treat the problem by switching to the pair of variables
(y, u). If we try to do the same here, we will run into the problem of reproducing the
term ẇ whenever trying to substitute ẏ. We adapt the method by not replacing w,
but only implicitly referring to u; i.e., we will directly replace ẇ abstractly by some
element of the normal cone of NZ(y − w), where Z = [−r, r]. In this way, we can
avoid the explicit change of variables. Then, the existence result takes the following
form.

Theorem 10.3 V is a solution to the differential inclusion

λV (x, ξ)− (Vξ(x, ξ)− Vx(x, ξ))NZ(x− ξ)
+ sup

a∈A
{−Vx(x, ξ)f(x, ξ, a)− l(x, ξ, a)} 3 0,

in the sense that it is a subsolution, i.e., there exists p ∈ NZ(x− ξ) ∩ [−Mf ,Mf ],
such that for every ϕ ∈ C1(Ωr), if V − ϕ has a local maximum at (x, ξ), it holds

λV (x, ξ)− (ϕξ(x, ξ)− ϕx(x, ξ)) p+ sup
a∈A
{−ϕx(x, ξ)f(x, ξ, a)− l(x, ξ, a)} ≤0,

and it is a supersolution, i.e., there exists q ∈ NZ(x− ξ) ∩ [−Mf ,Mf ], such that
for every ϕ ∈ C1(Ωr), if V − ϕ has a local minimum at (x, ξ) it holds

λV (x, ξ)− (ϕξ(x, ξ)− ϕx(x, ξ)) q + sup
a∈A
{−ϕx(x, ξ)f(x, ξ, a)− l(x, ξ, a)} ≥0.

Proof: Let ϕ ∈ C1(Ωr) and (x, ξ) be a local maximum point for V − ϕ. Then, for
any constant control α ≡ a ∈ A, if t > 0 is small enough, we have

ϕ(x, ξ)− ϕ(yx,ξ,a(t), wx,ξ,a(t)) ≤ V (x, ξ)− V (yx,ξ,a(t), wx,ξ,a(t))

≤
∫ t

0

e−λsl(yx,ξ,a(s), wx,ξ,a(s), a)ds

+ e−λt (V (yx,ξ,a(t), wx,ξ,a(t))− V (yx,ξ,a(t), wx,ξ,a(t))) ,

where we used the DPP (proposition 10.2) for the second estimate. Next, we rewrite
(using the notation y(t) := yx,ξ,a(t), w(t) := wx,ξ,a(t))

ϕ(x, ξ)− ϕ(y(t), w(t)) =−
∫ t

0

ϕx(y(s), w(s)) (f(y(s), w(s), a)− p(s)) ds
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−
∫ t

0

ϕξ(y(s), w(s))p(s)ds

=

∫ t

0

−ϕx(y(s), w(s))f(y(s), w(s), a)ds

+

∫ t

0

− (ϕξ(y(s), w(s))− ϕx(y(s), w(s))) p(s)ds,

with some element p(s) ∈ NZ(y(s)−w(s))∩ [−Mf ,Mf ], for (a.e.) s ∈ (0, t). Hence,
we arrive at

− 1

t

∫ t

0

ϕx(y(s), w(s))f(y(s), w(s), a)ds

− 1

t

∫ t

0

(ϕξ(y(s), w(s))− ϕx(y(s), w(s))) p(s)ds

≤ 1

t

∫ t

0

e−λsl(y(s), w(s), a)ds+
e−λt − 1

t
V (y(t), w(t)).

(10.8)

The only term that we need to take a closer look at is the one containing p(s). We
distinguish two cases:

1. Case: x − ξ /∈ ∂Z: By continuity, y(t) − w(t) /∈ ∂Z for all t > 0 small enough,
so that we may assume p(t) ≡ 0.

2. Case: By continuity, y(t)−w(t) is either near r or −r for all small t, so we may
assume that either 1

t

∫ t
0
p(s)ds ∈ [0,Mf ] or ∈ [−Mf , 0] for all such t. Thus,

there exists a subsequence (tn) with tn ↓ 0 such that 1
tn

∫ tn
0
p(s)ds → p ∈

NZ(x− ξ) ∩ [−Mf ,Mf ].

Hence, if we switch to a suitable subsequence, we get by the usual arguments that

−ϕx(x, ξ)f(x, ξ, a)− (ϕξ(x, ξ)− ϕx(x, ξ)) p ≤ l(x, ξ, a)− λV (x, ξ).

Since a ∈ A was arbitrary, the subsolution property follows. To prove that V is a
supersolution, one assumes that (x, ξ) ∈ Ωr is a local minimum for V − ϕ. By the
usual arguments, there is then, for every ε > 0 and t > 0 small enough, a control
αε ∈ A such that

1

t

∫ t

0

e−λsl(y(s), w(s), αε(s))ds+
e−λt − 1

t
V (y(t), w(t))− ε

≤ −1

t

∫ t

0

ϕx(y(s), w(s))f(y(s), w(s), αε(s))ds

− 1

t

∫ t

0

(ϕξ(y(s), w(s))− ϕx(y(s), w(s))) q(s)ds,
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where q(s) ∈ NZ(y(s) − w(s)) ∩ [−Mf ,Mf ]. Now, note that y, w are uniformly
continuous w.r.t. the control variable (because |f | ≤Mf ). Hence, we may treat the
term containing q(s) as in the subsolution case. Further, we can make use of the
inequality

−ϕx(x, ξ)f(x, ξ, αε(s))− l(x, ξ, αε(s))≤ sup
a∈A
{−ϕx(x, ξ)f(x, ξ, a)− l(x, ξ, a)} ,

for every s > 0. Then, using the uniform continuity of the appearing functions w.r.t.
αε, we derive the supersolution property of V via standard arguments.

As usual, we prove a comparison result for sub- and supersolutions in order to show
uniqueness. Here, it takes the following form.

Theorem 10.4 Let u1 be a subsolution and u2 be a supersolution in the sense of
theorem 10.3. If the ui, i ∈ {1, 2}, are Lipschitz continuous, then u1 ≤ u2.

Proof: Define the auxiliary function Φ : (Ωr)
2 → R via

Φ(x, ξ, y, ζ) := u1(x, ξ)− u2(y, ζ)− (x− y)2

2ε
− (ξ − ζ)2

2ε
− µ(x2 + y2),

where ε, µ are positive parameters. Assume for contradiction that there was (x̃, ξ̃) ∈
Ωr such that

u1(x̃, ξ̃)− u2(x̃, ξ̃) = δ > 0.

Then, there exists µ̃ > 0 such that for all 0 < µ < µ̃,

Φ(x̃, ξ̃, x̃, ξ̃) = u1(x̃, ξ̃)− u2(x̃, ξ̃)− 2µx̃ ≥ δ

2
.

Hence, in particular, sup Φ ≥ δ
2
> 0 for those µ. Further, the Lipschitz continu-

ity implies (note that the “hysteresis variables” are bounded whenever x, y are, as
max {|ξ| , |ζ|} ≤ max {|x| , |y|}+ r) the existence of (x̄, ξ̄, ȳ, ζ̄) ∈ Ωr such that

Φ(x̄, ξ̄, ȳ, ζ̄) = sup Φ ≥ δ

2
> 0.

Now, as usual, we take a look at the inequation

Φ(x̄, ξ̄, x̄, ξ̄) + Φ(ȳ, ζ̄, ȳ, ζ̄) ≤ 2Φ(x̄, ξ̄, ȳ, ζ̄),

which yields

u1(x̄, ξ̄)− u2(x̄, ξ̄)− 2µx̄2 + u1(ȳ, ζ̄)− u2(ȳ, ζ̄)− 2µȳ2
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≤ 2u1(x̄, ξ̄)− 2u2(ȳ, ζ̄)− (x̄− ȳ)2

ε
− (ξ̄ − ζ̄)2

ε
− 2µ(x̄2 + ȳ2).

Exploiting the Lipschitz continuity of u1, u2 and Young’s inequality, this implies

(x̄− ȳ)2

ε
+

(ξ̄ − ζ̄)2

ε
≤ u1(x̄, ξ̄)− u1(ȳ, ζ̄) + u2(x̄, ξ̄)− u2(ȳ, ζ̄)

≤ C
(
|x̄− ȳ|+

∣∣ξ̄ − ζ̄∣∣)
≤ C2ε+

(x̄− ȳ)2

2ε
+

(ξ̄ − ζ̄)2

2ε
,

so that there exists c > 0 independent of ε, µ such that

(x̄− ȳ)2

ε2
+

(ξ̄ − ζ̄)2

ε2
≤ c. (10.9)

Next, define the functions

ϕ1(x, ξ) :=u2(ȳ, ζ̄) +
(x− ȳ)2

2ε
+

(ξ − ζ̄)2

2ε
+ µ(x2 + ȳ2),

ϕ2(y, ζ) :=u1(x̄, ξ̄)− (x̄− y)2

2ε
− (ξ̄ − ζ)2

2ε
− µ(x̄2 + y2).

By definition, u1 − ϕ1 has a (local) maximum at (x̄, ξ̄) and u2 − ϕ2 attains a (local)
minimum at (ȳ, ζ̄). Since u1 is a subsolution and u2 a supersolution in the sense of
theorem 10.3, this implies that there are p ∈ NZ(x̄ − ξ̄) ∩ [−Mf ,Mf ], q ∈ NZ(ȳ −
ζ̄) ∩ [−Mf ,Mf ], such that

λu1(x̄, ξ̄)−
(
ξ̄ − ζ̄
ε
− x̄− ȳ

ε
− 2µx̄

)
p

+ sup
a∈A

{(
− x̄− ȳ

ε
− 2µx̄

)
f(x̄, ξ̄, a)− l(x̄, ξ̄, a)

}
≤ 0

≤ λu2(ȳ, ζ̄)−
(
ξ̄ − ζ̄
ε
− x̄− ξ̄

ε
+ 2µȳ

)
q

+ sup
a∈A

{(
− x̄− ȳ

ε
+ 2µȳ

)
f(ȳ, ζ̄, a)− l(ȳ, ζ̄, a)

}
.

From this inequality, we infer that

λ
(
u1(x̄, ξ̄)− u2(ȳ, ζ̄)

)
≤ 1

ε

(
ξ̄ − ζ̄ − x̄+ ȳ

)
(p− q) (10.10)

− 2µ(x̄p+ ȳq) (10.11)
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+ 2µ(|x̄|+ |ȳ|)Mf (10.12)

+ cl
(
|x̄− ȳ|+

∣∣ξ̄ − ζ̄∣∣)+
|x̄− ȳ|
ε

∣∣f(x̄, ξ̄, a)− f(ȳ, ζ̄, a)
∣∣ . (10.13)

We estimate (10.10) to (10.12). As p ∈ NZ(x̄− ξ̄) and q ∈ NZ(ȳ − ζ̄),

(10.10) =
(
(ȳ − ζ̄)− (x̄− ξ̄)

)
(p− q) ≤ 0.

For (10.11), an application of Young’s inequality implies

(10.11) ≤ 2µ(|x̄|+ |ȳ|)M ≤ cµ
3
2

(
x̄2 + ȳ2

)
+ cM2µ

1
2 ,

for some constant c > 0. Analogously, we get the inequality

(10.12) ≤ cµ
3
2 (x̄2 + ȳ2) + cµ

1
2 .

To estimate (10.13), we make use of (10.9) and the Lipschitz property of f , to get

(10.13) ≤ (cl + ccf )
(
|x̄− ȳ|+

∣∣ξ̄ − ζ̄∣∣) = ω(ε),

where ω is some continuous nonnegative function with the property ω(ε) → 0 as
ε ↓ 0, uniformly w.r.t. µ. Plugging in those estimates, it follows that

u1(x̄, ξ̄)− u2(ȳ, ζ̄) ≤ cµ
3
2 (x̄2 + ȳ2) + cµ

1
2 + ω(ε),

for some c > 0. But then, our assumption implies that

0 <
δ

2
≤ Φ(x̄, ξ̄, ȳ, ζ̄) ≤ u1(x̄, ξ̄)− u2(ȳ, ζ̄)− µ(x̄2 + ȳ2)

≤ (cµ
3
2 − µ)(x̄2 + ȳ2) + cµ

1
2 + ω(ε).

Thus, if we fix µ̄ ∈ (0, µ̃) such that cµ̄
3
2 − µ̄ < 0 and cµ̄

1
2 < δ

4
, the latter implies

0 <
δ

4
≤ ω(ε),

which yields a contradiction when letting ε ↓ 0. This concludes the proof.

Now, we can characterize the value function via the following existence and unique-
ness result.

Theorem 10.5 If λ > 2cf , then the value function V is the unique Lipschitz contin-
uous solution in the sense of theorem 10.3 of the corresponding differential inclusion.

Proof: From theorem 10.3, we infer that V is a solution. By proposition 10.2, V
is Lipschitz continuous on Ωr if λ > 2cf , so that we may apply theorem 10.4 with
ui = V . Hence, every subsolution is smaller than V , and every supersolution is larger
than V ; altogether, this shows that every solution is equal to the value function of
the control problem.
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11 Dynamic Programming for a problem corre-

sponding to a quasilinear p.d.e. with Play type

hysteresis

Here we want to exploit the insight into problems containing time derivatives of
Play type hysteresis. To treat the other variable, we adapt the method of [7] to
our problem. To this end, we will have to slightly change the differential equation
treated in [11, chapter IX], to “produce a bit more compactness”.

11.1 The differential equation and properties of solutions

We start with a special case of an equation considered in [11], [12]:

ẏ + ẇ −∆y = α in Ω× (0, T ),

w(·, x) = Fr[y(·, x);w0(x)], a.e. x ∈ Ω,

y(t, x) = 0, in ∂Ω× (0, T ),

y(0) = y0, w(0) = w0,

w0(x) ∈ [y0(x)− r, y0(x) + r], a.e. x ∈ Ω,

(11.1)

where T, r > 0 and Ω ⊂ Rn is some open, bounded domain with smooth boundary
(at least C2). We will assume further that y0, w0 ∈ L2(Ω) and α ∈ L2(Ω × (0, T )).
Existence of solutions to (11.1) was first shown by Visintin; proofs can be found (in
slightly different presentation) in [11, chapter IX, theorem 1.1], [12, theorem 3.3.2].

Theorem 11.1 For every y0 ∈ H1
0 (Ω) there exists a weak solution to (11.1) in the

sense that there are

y ∈ Y := L∞(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)), w ∈ H1(0, T ;L2(Ω)),

such that∫ T

0

∫
Ω

(ẏ(t, x) + ẇ(t, x))ϕ(t, x)dxdt

+

∫ T

0

∫
Ω

∇y(t, x) · ∇ϕ(t, x)dxdt =

∫ T

0

∫
Ω

α(t, x)ϕ(t, x)dxdt,

for all ϕ ∈ L2(0, T ;H1
0 (Ω)).

Proof: This is a special case of the results in [11], [12]. We remark that the proof is
quite similar to the one of the o.d.e. case, theorem 10.1, but with some additional
difficulties due to the appearence of the unbounded differential operator.
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The uniqueness result is again a direct consequence of Hilpert’s inequality. But one
gets even more, namely a stability result in L1(Ω).

Theorem 11.2 Any pair of weak solutions (y1, w1), (y2, w2) to (11.1) corresponding
to initial values (y0,1, w0,1), (y0,2, w0,2) and right hand sides α1, α2 satisfies∫

Ω

|y1(t, x)− y2(t, x)| dx+

∫
Ω

|w1(t, x)− w2(t, x)| dx

≤
∫

Ω

|y0,1(x)− y0,2(x)| dx+

∫
Ω

|w0,1(x)− w0,2(x)| dx

+

∫ t

0

∫
Ω

|α1(τ, x)− α2(τ, x)| dxdτ.

(11.2)

Proof: See [11, chapter IX, corollary 2.2] or [12, corollary 3.3.6].

Inequality (11.2) can also be seen as a continuity property of the solution operator.
There is then a unique extension to initial values in L1(Ω). For generalised solution
concepts which are applicable in this case, we refer to the book of Visintin, [11].
What can be easier done is to derive some regularity properties of solutions. Let
(y, w) denote the solution. Then, for f := α − ẇ ∈ L2(ΩT ), y is equal to the weak
solution of the standard heat equation

ẏ −∆y = f in Ω× (0, T ),

y = 0, ∈ ∂Ω× (0, T ).
(11.3)

Then, lemma 3.7 implies y ∈ C(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)). We will make use

of this improved regularity result later. Further, we note that the proof of theorem
11.1 (as stated in [12], [11]) shows that ‖y‖Y is bounded by some constant depending
only on |Ω|, ‖α‖L2(Ω), so that, in particular, the improved regularity holds uniformly

w.r.t. α chosen from some bounded subset of L2(ΩT ).

11.2 The control problem and properties of the value func-
tion

As mentioned before, we will need some more compactness properties of the equation
later. We will achieve this not by transforming the equation via y 7→ By with some
compact operator B : L2(Ω)→ L2(Ω) (as done in [7]), as the Play operator only acts
in time and thus can “destroy” the regularizing effect. Instead, we restrict to more
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regular controls by “adding” the operator on the right hand side; i.e., we consider
dynamics of the form

ẏ(t) + ẇ(t)− Ay(t) = Bα(t),

w = Fr[y;w0], w0 ∈ [y0 − r, y0 + r],
(11.4)

where the application of the Play operator has to be understood pointwise in space,
and A is selfadjoint and the generator of an analytic semigroup of contractions on
L2(Ω) (Ω ⊂ Rn some open, bounded domain) such that D(A) is dense in L2(Ω). We
assume that for every T > 0:

V(i): if y0 ∈ D((−A)
1
2 ), there exists a pair of solutions (y, w) with regularity

(H1(0, T ;L2(Ω)) ∩ L2(0, T ;D(A)))×L2(Ω;H1(0, T )) such that (11.4) holds al-
most everywhere and y ∈ C(0, T ;L2(Ω)), uniformly w.r.t. α ∈ BR(0) ⊂ L2(Ω),
for any (fixed) R > 0,

V(ii): inequality (11.2) is valid,

V(iii): an improved regularity result holds, i.e., there is β > 0 such that y ∈
C(0, T ;D((−A)β)) whenever y0 ∈ D(A) and uniformly w.r.t. α ∈ BR(0) ⊂
L2(Ω), for any (fixed) R > 0.

Further, we assume that (−A)1−βB ∈ L(L2(Ω)). Moreover, the controls α are to
take values in some bounded set A ⊂ L2(Ω), so that there exists a constant MA > 0
such that ‖Ba‖ ≤ MA for every a ∈ A (‖·‖ := ‖·‖L2(Ω), 〈·, ·〉 := 〈·, ·〉L2(Ω)). We will
refer to these assumptions as (GA).

Next, we introduce the functional we want to minimize. Again, this will be of
infinite horizon type. Let l : Dl := (L1(Ω))2 × L2(Ω)→ R be such that

l(i):i ∃Ml > 0 ∀(y, w, a)T ∈ Dl:

|l(y, w, a)| ≤Ml,

l(ii): ∃Cl > 0 ∀(y, w, a)T , (x, v, a)T ∈ Dl:

|l(y, w, a)− l(x, v, a)| ≤ Cl

(
‖y − x‖L1(Ω) + ‖w − v‖L1(Ω)

)
.

We will refer to those assumptions as (lA). Then, as usual, for λ > 0, the cost
functional is defined through

J(y0, w0, α) :=

∫ ∞
0

e−λtl(yy0,w0,α(t), wy0,w0,α(t), α(t))dt,
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and the corresponding value function by

V (y0, w0) := inf
α∈A

J(y0, w0, α).

Since Ω is assumed to be bounded, L2(Ω) ⊂ L1(Ω). So, inequality (11.2) implies
that V is well defined when considered as mapping

DV :=
{

(y, w) ∈ (L2(Ω))2 | w ∈ [y − r, y + r]
}
→ R.

We will always consider this case in what follows. One reason for this is the following
regularity result.

Proposition 11.3 The value function is bounded and Lipschitz continuous, uni-
formly w.r.t. α ∈ A; i.e., there exist constants MV > 0 and CV > 0 such that
|V | ≤MV and for every (y, w), (x, v) ∈ DV ,

|V (y, w)− V (x, v)| ≤ CV (‖y − x‖+ ‖w − v‖) .

Proof: The boundedness of l directly implies |V | ≤Ml. Next, note that

|V (y, w)− V (x, v)| ≤ sup
α∈A
|J(y, w, α)− J(x, v, α)|

≤Cl
∫ ∞

0

e−λt
(
‖y(t)− x(t)‖L1(Ω) + ‖w(t)− v(t)‖L1(Ω)

)
dt

≤Cl
(
‖y − x‖L1(Ω) + ‖w − v‖L1(Ω)

)
,

where we used (11.2) in the last step. Hence, if c is an imbedding constant for
L2(Ω) ↪→ L1(Ω), then

|V (y, w)− V (x, v)| ≤ Clc (‖y − x‖+ ‖w − v‖) ,

which completes the proof.

As usual, we need the dynamic programming principle.

Lemma 11.4 (DPP) For every t > 0 and (x, ξ) ∈ DV , it holds

V (x, ξ) = inf
α∈A

{∫ t

0

e−λsl(yx,ξ,α(s), wx,ξ,α(s), α(s))ds+ e−λtV (yx,ξ,α(t), wx,ξ,α(t))

}
.

Proof: This is an immediate consequence of the semigroup properties of y(·) and
w(·).
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11.3 The HJB equation and existence of solutions

The idea is now to use the method of [7] to handle the y variable, and to integrate
the ideas from section 10 to handle the w variable.

Definition 11.5 For δ > 0 and functions V, ϕ, ψ, let M+
δ (V, ϕ, ψ)M+
δ (V, ϕ, ψ)M+
δ (V, ϕ, ψ) denote the set

consisting of all (x, ξ) ∈ D̃V := (D((−A)
1
2 )× L2(Ω)) ∩DV such that

V (x, ξ)− ϕ(x)− ψ(ξ)− δ

2

∥∥∥(−A)
1
2x
∥∥∥2

≥ V (z, ζ)− ϕ(z)− ψ(ζ)− δ

2

∥∥∥(−A)
1
2 z
∥∥∥2

,

for all (z, ζ) ∈ D̃V . Similarly, let M−
δ (V, ϕ, ψ)M−
δ (V, ϕ, ψ)M−
δ (V, ϕ, ψ) denote the set consisting of all (x, ξ) ∈

D̃V such that

V (x, ξ)− ϕ(x)− ψ(ξ) +
δ

2

∥∥∥(−A)
1
2x
∥∥∥2

≤ V (z, ζ)− ϕ(z)− ψ(ζ) +
δ

2

∥∥∥(−A)
1
2 z
∥∥∥2

,

for all (z, ζ) ∈ D̃V .

Next, we introduce a notion of solution for the formal differential inclusion

λV (x, ξ)− 〈DxV (x, ξ), Ax〉+ 〈DxV (x, ξ)−DξV (x, ξ), NZ(x− ξ)〉
+ sup

a∈A
{− 〈DxV (x, ξ), Ba〉 − l(x, ξ, a)} 3 0. (11.5)

Definition 11.6 A bounded continuous function V : DV → R is called viscosity
subsolution of (11.5), if for all ϕ, ψ ∈ C1(L2(Ω)),

• M+
δ (V, ϕ, ψ) ⊂ D̂V := (D(A)× L2(Ω)) ∩DV , for all δ > 0,

• for every (x, ξ) ∈M+
δ (V, ϕ, ψ), there is p ∈ NZ(x− ξ) ∩ L2(Ω) such that

λV (x, ξ)− 〈Dϕ(x), Ax〉+ 〈Dϕ(x)−Dψ(ξ), p〉+
δ

4
‖Ax‖2

− δ

4
MA + sup

a∈A
{− 〈Dϕ(x), Ba〉 − l(x, ξ, a) + δ 〈Ax,Ba〉} ≤ 0.

Further, a bounded continuous function V : DV → R is called viscosity superso-
lution of (11.5), if for all ϕ, ψ ∈ C1(L2(Ω)),
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• M−
δ (V, ϕ, ψ) ⊂ D̂V , for all δ > 0,

• for every (x, ξ) ∈M−
δ (V, ϕ, ψ), there is q ∈ NZ(x− ξ) ∩ L2(Ω) such that

λV (x, ξ)− 〈Dϕ(x), Ax〉+ 〈Dϕ(x)−Dψ(ξ), p〉 − δ

4
‖Ax‖2

+
δ

4
MA + sup

a∈A
{− 〈Dϕ(x), Ba〉 − l(x, ξ, a)− δ 〈Ax,Ba〉} ≥ 0.

Finally, a function is called viscosity solution of (11.5), if it is both viscosity sub-
and supersolution.

We remark that by restriction, the function ϕ + ψ may be seen as an element of
C1(DV ), and that the corresponding derivatives coincide with the ones, when con-
sidered as mapping D̃V → R or D̂V → R, as the corresponding function spaces are
linked by continuous imbeddings.

Theorem 11.7 If (GA) and (lA) hold, then the value function is a viscosity solution
of (11.5).

Proof: Let us start with proving that the value function V is a viscosity subsolution.
To this end, let ϕ, ψ ∈ C1(L2(Ω)), δ > 0 and (x, ξ) ∈ M+

δ (V, ϕ, ψ). Then, for any
constant control α ≡ a ∈ A, denoting for short y(t) := yx,ξ,a(t), w(t) := wx,ξ,a(t),

V (x, ξ)− ϕ(x)− ψ(ξ)− δ

2

∥∥∥(−A)
1
2x
∥∥∥2

≥ V (y(t), w(t))− ϕ(y(t))− ψ(w(t))− δ

2

∥∥∥(−A)
1
2y(t)

∥∥∥2

,

for all t > 0. From the DPP (lemma 11.4), we then infer that

ϕ(x)− ϕ(y(t)) + ψ(ξ)− ψ(w(t)) +
δ

2

(∥∥∥(−A)
1
2x
∥∥∥2

−
∥∥∥(−A)

1
2y(t)

∥∥∥2
)

≤ V (x, ξ)− V (y(t), w(t))

≤
∫ t

0

e−λsl(y(s), w(s), a)ds+ (e−λt − 1)V (y(t), w(t)).

Using the regularity assumption V(i), we may write

ϕ(x)− ϕ(y(t)) = −
∫ t

0

〈Dϕ(y(s)), Ay(s) +Ba− ẇ(s)〉 ds,
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ψ(ξ)− ψ(w(t)) = −
∫ t

0

〈Dψ(w(s)), ẇ(s)〉 ds,

1

2

(∥∥∥(−A)
1
2x
∥∥∥2

−
∥∥∥(−A)

1
2y(t)

∥∥∥2
)

= −
∫ t

0

〈−Ay(s), Ay(s) +Ba− ẇ(s)〉 ds

=

∫ t

0

‖Ay(s)‖2 ds+

∫ t

0

〈Ay(s), Ba− ẇ(s)〉 ds,

where ẇ(s) ∈ NZ(y(s)−w(s)) for all s, by definition of the play operator. Plugging
these formulas into the above inequality and dividing by t yields

− 1

t

∫ t

0

〈Dϕ(y(s)), Ay(s) +Ba− ẇ(s)〉 ds

− 1

t

∫ t

0

〈Dψ(w(s)), ẇ(s)〉 ds

+
δ

t

∫ t

0

‖Ay(s)‖2 ds+
δ

t

∫ t

0

〈Ay(s), Ba− ẇ(s)〉 ds

≤ 1

t

∫ t

0

e−λsl(y(s), w(s), a)ds+
e−λt − 1

t
V (y(t), w(t)).

(11.6)

Next note that ẇ = ẏ at almost every point in Ωt where ẇ 6= 0. Hence, (11.4) implies
that |ẇ| ≤ 1

2
|Ay +Ba| pointwise almost everywhere. We may therefore estimate

‖ẇ(s)‖ ≤ 1
2
‖Ay(s) +Ba‖, for a.e. s ∈ (0, t). Thus, we may further estimate the

terms of (11.6) to arrive at

δ

t

∫ t

0

‖Ay(s)‖2 ds

≤ 1

t

∫ t

0

‖Dϕ(y(s))‖
(
‖Ay(s)‖+ ‖Ba‖+

1

2
‖Ay(s)‖+

1

2
‖Ba‖

)
ds

+
1

t

∫ t

0

‖Dψ(w(s))‖ · 1

2
(‖Ay(s)‖+ ‖Ba‖) ds

+
δ

t

∫ t

0

‖Ay(s)‖
(
‖Ba‖+

1

2
(‖Ay(s)‖+ ‖Ba‖)

)
ds

+
1

t

∫ t

0

e−λsl(y(s), w(s), a)ds+
e−λt − 1

t
V (y(t), w(t)).

(11.7)

By continuity of Dϕ, ψ, y, w, l and V , the elements containing only those functions
are uniformly bounded w.r.t. small t > 0. Hence, for those t, there exists a constant
Cδ (depending only on δ and T > 0; i.e., we restrict (w.l.o.g.) to t ∈ (0, T )), such
that

1

t

∫ t

0

‖Ay(s)‖2 ds ≤ Cδ; (11.8)
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this can be shown by several applications of Young’s inequality to the terms on
the right hand side of (11.7) which contain the factor ‖Ay(s)‖. Now we follow the
arguments of [7] to show that (11.8) implies x ∈ D(A): First of all, (11.8) implies
that there exists a sequence of time points (tn)n∈N with tn ↓ 0 as n→∞, such that
‖Ay(tn)‖ ≤ Cδ for all n. Then, for some suitable subsequence, we have Ay(tn)→ z
weakly and y(tn) → x strongly. As y(tn) = (−A)−1(−A)y(tn) → (−A)−1(−z), this
implies z = Ax, so that x ∈ D(A). In particular, this proves M+

δ (V, ϕ, ψ) ⊂ D̂V .
Our goal is now to take the limit t ↓ 0 in (11.6). To this end, we will first replace,
where possible, the time dependent elements by suitable constant ones, and then
take the limit in the rewritten inequality.

• for 1
t

∫ t
0
〈Dϕ(y(s)), Ay(s)〉 ds:

m(t) :=
1

t

∫ t

0

〈Dϕ(y(s))−Dϕ(x), Ay(s)〉 ds

≤ 1

t

∫ t

0

‖Dϕ(y(s))−Dϕ(x)‖ ‖Ay(s)‖ ds

≤
(

max
s∈[0,t]

‖Dϕ(y(s))−Dϕ(x)‖
)
· 1

t

∫ t

0

‖Ay(s)‖ ds.

Defining µ(t) := maxs∈[0,t] ‖Dϕ(y(s))−Dϕ(x)‖, continuity implies µ(t) ↓ 0 as t ↓ 0,
and from Young’s and Jensen’s inequality, we infer that

|m(t)| ≤ 1

2

µ(t)2

µ(t)
+

1

2
µ(t)

(
1

t

∫ t

0

‖Ay(s)‖ ds
)2

≤ 1

2
µ(t) +

1

2
µ(t)

(
1

t

∫ t

0

‖Ay(s)‖2 ds

)
,

which converges to zero as t ↓ 0 due to (11.8). Hence, introducing an error function
ω(t) = |m(t)|, we may replace the considered element by

1

t

∫ t

0

〈Dϕ(x), Ay(s)〉 ds =

〈
Dϕ(x),

1

t

∫ t

0

Ay(s)ds

〉
,

with only an error ω(t), converging to zero as t ↓ 0.

• we claim that for any sequence (tn)n∈N with tn ↓ 0 as n→∞, it holds

1

tn

∫ tn

0

Ay(s)ds ⇀ Ax. (11.9)
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Proof of the claim: As∥∥∥∥ 1

tn

∫ tn

0

Ay(s)ds

∥∥∥∥2

≤ 1

tn

∫ tn

0

‖Ay(s)‖2 ds ≤ Cδ,

we can extract a weakly convergent subsequence (which will for simplicity again be
indexed with “n”). Now take any Φ ∈ D(A). Then, continuity of y implies〈

Φ,
1

tn

∫ tn

0

Ay(s)ds

〉
=

1

tn

∫ tn

0

〈AΦ, y(s)〉 ds→ 〈AΦ, x〉 = 〈Φ, Ax〉 .

Since D(A) is dense in L2(Ω), this uniquely determines the weak limit. Hence, every
weakly convergent subsequence has the limit Ax, which implies the assertion.

• (11.9) implies

1

tn

∫ tn

0

〈Dϕ(x), Ay(s)〉 ds→ 〈Dϕ(x), Ax〉 ,

for any sequence of time points converging to zero from above.

• by continuity, we have

1

t

∫ t

0

〈Dϕ(y(s)), Ba〉 ds→ 〈Dϕ(x), Ba〉 ,

as t ↓ 0.

• for 1
t

∫ t
0
〈Dϕ(y(s)), ẇ(s)〉 ds: Consider first

m̂(t) :=
1

t

∫ t

0

〈Dϕ(y(s))−Dϕ(x), ẇ(s)〉 ds ≤ µ(t) · 1

t

∫ t

0

‖ẇ(s)‖ ds

≤ 1

2
µ(t) ‖Ba‖+

1

2
µ(t)

1

t

∫ t

0

‖Ay(s)‖ ds.

Hence, (11.8) implies that m̂→ 0 as t ↓ 0. We may therefore replace the term by

1

t

∫ t

0

〈Dϕ(x), ẇ(s)〉 ds =

〈
Dϕ(x),

1

t

∫ t

0

ẇ(s)ds

〉
,

with only making some error ω(t).

• we have pointwise (a.e.), that ẇ(s) ∈ NZ(y(s)− w(s)) and∥∥∥∥ 1

tn

∫ tn

0

ẇ(s)ds

∥∥∥∥2

≤ 1

tn

∫ tn

0

‖ẇ‖2 ds ≤ Cδ,
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for any positive sequence (tn) with tn ↓ 0. Hence, we can extract a weakly convergent
subsequence; w.l.o.g.,

pn :=
1

tn

∫ tn

0

ẇ(s)ds ⇀ p.

We claim that p ∈ NZ(x − ξ). As in the proof of theorem 6.7, we use Egoroff’s
theorem; w.l.o.g. (we may switch to a subsequence if necessary), we can assume
that ∆n := y(tn) − w(tn) converges almost uniformly to ∆ := x − ξ, i.e., for every
ε > 0 there exists a set Sε ⊂ Ω such that |Ω \ Sε| < ε and ∆n → ∆ uniformly on Sε.
Hence, there exists N ∈ N such that for each b ∈ Ω, we have either pn(b) ≥ 0 for all
n ≥ N or pn(b) ≤ 0 for all n ≥ N . As weak convergence is equivalent to convergence
in the mean, this property is preserved when taking the weak limit, so that the
restriction p|Sε must be an element of NZ(x|Sε − ξ|Sε). As ε > 0 was arbitrary, this
property must hold almost everywhere, so that we can conclude p ∈ NZ(x− ξ).

• exploiting the last two points, we find that for some sequence tn ↓ 0, with some
error ω( 1

n
),

1

tn

∫ tn

0

〈Dϕ(y(s)), ẇ(s)〉 ds = 〈Dϕ(x), p〉+ ω(
1

n
),

where p ∈ NZ(x− ξ) and ‖p‖ ≤ 2(Cδ +MA), due to the bound on ẇ(s).

• analogously, we get

1

tn

∫ tn

0

〈Dψ(w(s)), ẇ(s)〉 ds = 〈Dψ(ξ), p〉+ ω(
1

n
),

for some suitable sequence (tn)n.

• since it is sort of convex combination, for every tn there exists sn such that

1

tn

∫ tn

0

‖Ay(s)‖2 ds ≥ ‖Ay(sn)‖2 .

As we may assume that Ay(sn) ⇀ Ax and since the norm is weakly lower semicon-
tinuous,

lim inf
n→∞

‖Ay(sn)‖2 ≥ ‖Ax‖2 .

• From V(iii) and the compactness of B, we get

1

t

∫ t

0

〈Ay(s), Ba〉 ds = −1

t

∫ t

0

〈
(−A)βy(s), (−A)1−βBa

〉
ds
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= −
〈

1

t

∫ t

0

(−A)βy(s)ds, (−A)1−βBa

〉
.

As (−A)βy(s) is continuous by assumption, we may replace the term with

〈Ax,Ba〉 ,

with just making some error ω(t).

• for νn := 1
tn

∫ tn
0
〈Ay(s), ẇ(s)〉, we use our estimate on ‖ẇ(s)‖ to get

|νn| ≤
1

2

1

tn

∫ tn

0

‖Ay(s)‖2 ds+
1

2
MA

1

tn

∫ tn

0

‖Ay(s)‖ ds.

Applying Young’s inequality to the second term on the right hand side, we get, due
to Jensen’s inequality,

|νn| ≤
3

4

1

tn

∫ tn

0

‖Ay(s)‖2 ds+
1

4
M2
A.

We can thus charge the terms in equation (11.6),

δ

tn

∫ tn

0

‖Ay(s)‖2 ds− δνn ≥
δ

4tn

∫ tn

0

‖Ay(s)‖2 ds− δ

4
M2
A.

• by continuity, we get

1

tn

∫ tn

0

e−λsl(y(s), w(s), a)ds = l(x, ξ, a) + ω(
1

n
),

and

e−λt − 1

t
V (y(t), w(t)) = −λV (x, ξ) + ω(t).

Altogether, restricting to some suitable subsequence, we may take the lim inf of
(11.6), which yields

λV (x, ξ)− 〈Dϕ(x), Ax〉+ 〈Dϕ(x)−Dψ(ξ), p〉

+
δ

4
‖Ax‖2 − δ

4
MA − 〈Dϕ(x), Ba〉 − l(x, ξ, a) + δ 〈Ax,Ba〉 ≤ 0.

Taking supa∈A then yields the desired inequality. To prove that V is also a superso-
lution, we use almost the same arguments. First, let (x, ξ) ∈ M−

δ (V, ϕ, ψ), so that,
in particular,

V (x, ξ)− ϕ(x)− ψ(ξ) +
δ

2

∥∥∥(−A)
1
2x
∥∥∥2
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≤ V (yx,ξ,α(t), wx,ξ,α(t))− ϕ(yx,ξ,α(t))− ψ(wx,ξ,α(t)) +
δ

2

∥∥∥(−A)
1
2yx,ξ,α(t)

∥∥∥2

,

for all t > 0 and α ∈ A. From the DPP, we infer that for every ε > 0 and t > 0,
there exists some control αε ∈ A, such that

ϕ(x)− ϕ(y(t)) + ψ(ξ)− ψ(w(t)) +
δ

2

(∥∥∥(−A)
1
2y(t)

∥∥∥2

−
∥∥∥(−A)

1
2x
∥∥∥2
)

≥ V (x, ξ)− V (y(t), w(t))

≥
∫ t

0

e−λsl(y(s), w(s), αε(s))ds+ (e−λt − 1)V (y(t), w(t))− εt.

Again, we use the integral representations for ϕ(x) − ϕ(y(t)), ψ(ξ) − ψ(w(t)) and∥∥∥(−A)
1
2y(t)

∥∥∥2

−
∥∥∥(−A)

1
2x
∥∥∥2

; then, dividing by t > 0, we get

− 1

t

∫ t

0

〈Dϕ(y(s)), Ay(s) +Bαε(s)− ẇ(s)〉 ds

− 1

t

∫ t

0

〈Dψ(w(s)), ẇ(s)〉 ds

− δ

t

∫ t

0

‖Ay(s)‖2 ds− δ

t

∫ t

0

〈Ay(s), Bαε(s)− ẇ(s)〉 ds

≥ 1

t

∫ t

0

e−λsl(y(s), w(s), αε(s))ds+
e−λt − 1

t
V (y(t), w(t))− ε.

(11.10)

Now, the uniform continuity of y(·), w(·) on bounded time intervals w.r.t. α ∈ A
(cf. V(i)) implies that the same estimates as for the subsolution case yield some
constant Cδ > 0 such that

1

t

∫ t

0

‖Ay(s)‖2 ds ≤ Cδ,

and this again implies x ∈ D(A). Further, the uniform continuity w.r.t. α allows us
to establish the same estimates and convergence results as for the subsolution case;
the only thing that is different now, is the treatment of the terms which contain αε.
So, let us take a closer look at those terms. As

− 1

t

∫ t

0

〈Dϕ(y(s)), Bαε(s)〉 −
δ

t

∫ t

0

〈Ay(s), Bαε(s)〉 ds

− 1

t

∫ t

0

e−λsl(y(s), w(s), αε(s))ds

=
1

t

∫ t

0

−〈Dϕ(x), Bαε(s)〉 − δ 〈Ax,Bαε(s)〉 − l(x, ξ, αε(s))ds+ ω(t)
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≤ sup
a∈A
{− 〈Dϕ(x), Ba〉 − δ 〈Ax,Ba〉 − l(x, ξ, a)}+ ω(t),

we may replace the critical terms in the inequality. Altogether, we get the desired
inequality, when taking the lim inf of some suitable sequence in time, and the proof
is complete.

Remark 11.8 As mentioned in the proof of the last theorem, it holds

‖p‖ , ‖q‖ ≤ 2(Cδ +MA),

and Cδ depends only on δ, Dϕ(x), Dψ(ξ).

11.4 Comparison and uniqueness result

Before giving the comparison result, we recall that from [30], for any upper semi-
continuous function f : D → R, if D is a so called RNP subset of some Banach
space X, there exists for every κ > 0 some linear map T of rank one such that
‖T‖L(X;R) ≤ κ and f + T attains its supremum over D. As noted in [30, page 4],
D ⊂ X is an RNP set if it is a convex and weakly compact subset of X. Now,
let X be some Hilbert space. Then X is reflexive, so that bounded sequences in-
clude weakly convergent subsequences. Taking into account Mazur’s theorem, we get
that every convex, bounded and closed subset of a Hilbert space is weakly compact.
Hence, in that case, it suffices to show that D is convex, bounded and closed when
we need to prove that D is an RNP subset of X.

Theorem 11.9 Let u1, u2 be bounded and Lipschitz continuous functions DV → R
such that u1 is a viscosity subsolution and u2 a viscosity supersolution in the sense
of definition 11.6. Then u1 ≤ u2.

Proof: Consider the auxiliary function Φ : D̃2
V → R,

Φ(x, ξ, y, ζ) :=u1(x, ξ)− u2(y, ζ)− ‖x− y‖
2

2ε
− ‖ξ − ζ‖

2

2ε

− δ

2

(∥∥∥(−A)
1
2x
∥∥∥2

+
∥∥∥(−A)

1
2y
∥∥∥2
)
.

Assume for contradiction that there was (x̂, ξ̂) ∈ DV such that

u1(x̂, ξ̂)− u2(x̂, ξ̂) = τ > 0.
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Then, by density of D̃V in DV and continuity of u1, u2, we can find (x̃, ξ̃) ∈ D̃V ,
such that

u1(x̃, ξ̃)− u2(x̃, ξ̃) ≥ 3

4
τ.

Thus, as

Φ(x̃, ξ̃, x̃, ξ̃) = u1(x̃, ξ̃)− u2(x̃, ξ̃)− δ
∥∥∥(−A)

1
2 x̃
∥∥∥2

,

for some δ̃ > 0 it holds

sup
D̃2
V

Φ ≥ Φ(x̃, ξ̃, x̃, ξ̃) ≥ τ

2
> 0,

for every 0 < δ < δ̃. Now, for every (fixed) parameters δ, ε, the supremum might
only be attained on some bounded subset of D̃V : Since by assumption, there exists
a constant C > 0 such that |u1 − u2| ≤ C, Φ(x, ξ, y, ζ) ≤ 0 whenever

max

{∥∥∥(−A)
1
2x
∥∥∥2

,
∥∥∥(−A)

1
2y
∥∥∥2
}
≥ C

δ
.

Hence, for some R = R(δ) > 0, we may restrict the whole problem to the set

D :=
(
D̃V ∩

(
B̄R(0;D((−A)

1
2 ))× L2(Ω)

))2

,

where B̄R(0;D((−A)
1
2 )) stands for the closed ball with radius R in D((−A)

1
2 ). We

show that D is an RNP subset of the Hilbert space (L2(Ω))2. Using the remark
before theorem 11.9, it suffices to show that D is a bounded, closed, convex subset
of (L2(Ω))2.

• Boundedness: From the continuous imbedding D((−A)
1
2 ) ↪→ L2(Ω), we infer that,

for some c > 0,

‖x‖ ≤ c
∥∥∥(−A)

1
2x
∥∥∥ ≤ cR,

and thus, since ξ ∈ [x− r, x+ r],

‖ξ‖ ≤ ‖x‖+ ‖r‖ ≤ cR + ‖r‖ .

As analogous inequalities are valid for (y, ζ), boundedness follows.
• Closedness: Let (xn, ξn, yn, ζn)n ⊂ D such that (xn, ξn, yn, ζn) → (x, ξ, y, ζ) in
(L2(Ω))4. We only consider (xn, ξn), as the argument is exactly the same for (yn, ζn).
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As
∥∥∥(−A)

1
2xn

∥∥∥ ≤ R for all n ∈ N by definition of D, we can extract a weakly

convergent subsequence (xnk)k; i.e., xnk ⇀ x in D((−A)
1
2 ) as k → ∞. Thus, the

weak lower semicontinuity of norms implies

R ≥ lim inf
k→∞

∥∥∥(−A)
1
2xnk

∥∥∥ ≥ ∥∥∥(−A)
1
2x
∥∥∥ .

Further, as we may extract a subsequence (ξnk)k which converges pointwise a.e. to
ξ, the relation ξnk ∈ [xnk − r, xnk + r] for all k implies that ξ ∈ [x− r, x+ r] a.e..
• Convexity: Follows by convexity of balls and sets of the type [x− r, x+ r].

Now, as Φ : D̃2
V → R is continuous, the same holds for the restriction to D. Hence,

the main theorem of [30, page 7] implies that for every ν > 0, there exists some
linear functional T : (L2(Ω))4 → R of rank one, such that ‖T‖L((L2(Ω))4;R) ≤ ν and
Φ + T attains its supremum over D. Moreover, from the boundedness of D (note
that the bound depends on δ!) we infer the existence of ν̃ = ν̃(δ), such that

∀ν ∈ (0, ν̃) ∃Tν ∈ (L2(Ω))4 : sup
D
{Φ(·) + 〈Tν , ·〉} ≥

τ

4
> 0, (11.11)

and there are (x̄, ξ̄, ȳ, ζ̄) ∈ D : supD {Φ(·) + 〈Tν , ·〉} = (Φ + Tν)(x̄, ξ̄, ȳ, ζ̄). So let
Tν = (t1, t2, t3, t4) have such property; denoting Φ̄ := Φ + Tν , the usual inequality

Φ̄(x̄, ξ̄, x̄, ξ̄) + Φ̄(ȳ, ζ̄, ȳ, ζ̄) ≤ 2Φ̄(x̄, ξ̄, ȳ, ζ̄)

implies that

u1(x̄, ξ̄)− u2(x̄, ξ̄)− δ
∥∥∥(−A)

1
2 x̄
∥∥∥2

+ 〈t1 + t3, x̄〉+
〈
t2 + t4, ξ̄

〉
u1(ȳ, ζ̄)− u2(ȳ, ζ̄)− δ

∥∥∥(−A)
1
2 ȳ
∥∥∥2

+ 〈t1 + t3, ȳ〉+
〈
t2 + t4, ζ̄

〉
≤ 2u1(x̄, ξ̄)− 2u2(ȳ, ζ̄)− ‖x̄− ȳ‖

2

ε
−
∥∥ξ̄ − ζ̄∥∥2

ε

− δ
(∥∥∥(−A)

1
2 x̄
∥∥∥2

+
∥∥∥(−A)

1
2 ȳ
∥∥∥2
)

+ 2 〈t1, x̄〉+ 2
〈
t2, ξ̄

〉
+ 2 〈t3, ȳ〉+ 2

〈
t4, ζ̄

〉
.

Rearranging yields

‖x̄− ȳ‖2

ε
+

∥∥ξ̄ − ζ̄∥∥2

ε
≤u1(x̄, ξ̄)− u1(ȳ, ζ̄) + u2(x̄, ξ̄)− u2(ȳ, ζ̄)

+ 〈t1 − t3, x̄− ȳ〉+
〈
t2 − t4, ξ̄ − ζ̄

〉
.
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Note that we may, w.l.o.g., restrict to ν ≤ 1; but then, exploiting also the Lipschitz
continuity of u1, u2, there exists some constant C > 0 such that

‖x̄− ȳ‖2

ε
+

∥∥ξ̄ − ζ̄∥∥2

ε
≤ C

(
‖x̄− ȳ‖+

∥∥ξ̄ − ζ̄∥∥)
≤ C2ε+

‖x̄− ȳ‖2

2ε
+

∥∥ξ̄ − ζ̄∥∥2

2ε
,

where we used Young’s inequality as second step. Hence,

‖x̄− ȳ‖2

ε2
+

∥∥ξ̄ − ζ̄∥∥2

ε2
≤ 2C2, (11.12)

and the constant C is independent of ε, δ, ν. Next, consider the “test functions”

ϕ1(x) :=
1

2ε
‖x− ȳ‖2 +

δ

2

∥∥∥(−A)
1
2 ȳ
∥∥∥2

− 〈t1, x〉 − 〈t3, ȳ〉 ,

ψ1(ξ) :=u2(ȳ, ζ̄) +
1

2ε

∥∥ξ − ζ̄∥∥2 − 〈t2, ξ〉 −
〈
t4, ζ̄

〉
,

ϕ2(y) :=− 1

2ε
‖x̄− y‖2 − δ

2

∥∥∥(−A)
1
2 x̄
∥∥∥2

+ 〈t1, x̄〉+ 〈t3, y〉 ,

ψ2(ζ) :=u1(x̄, ξ̄)− 1

2ε

∥∥ξ̄ − ζ∥∥2
+
〈
t2, ξ̄

〉
+ 〈t4, ζ〉 .

They are all continuously differentiable, and we claim that, if ν > 0 is small enough,
then

1. (x̄, ξ̄) ∈M+
δ (u1, ϕ1, ψ1),

2. (ȳ, ζ̄) ∈M−
δ (u2, ϕ2, ψ2).

Proof of the claim: For all (x, ξ) ∈ D̃V , we may use D((−A)
1
2 ) ↪→ L2(Ω) and the

properties ‖ξ‖ ≤ ‖x‖+ ‖r‖,
∥∥ζ̄∥∥ ≤ ‖ȳ‖+ ‖r‖ to estimate

Φ(x, ξ, ȳ, ζ̄) + 〈t1, x〉+ 〈t2, ξ〉+ 〈t3, ȳ〉+
〈
t4, ζ̄

〉
≤ Φ(x, ξ, ȳ, ζ̄) + c ‖t1‖

∥∥∥(−A)
1
2x
∥∥∥+ ‖t2‖

(
c
∥∥∥(−A)

1
2x
∥∥∥+ ‖r‖

)
+ c ‖t3‖

∥∥∥(−A)
1
2 ȳ
∥∥∥+ ‖t4‖

(
c
∥∥∥(−A)

1
2 ȳ
∥∥∥+ ‖r‖

)
.

Hence, if ν > 0 (depending now on δ) is small enough, we can achieve that Φ̄ ≤ τ
8

whenever (x, ξ, ȳ, ζ̄) /∈ D, being smaller than the maximal value on D; hence,
(x̄, ξ̄) ∈M+

δ (u1, ϕ1, ψ1); the argument for M−
δ (u2, ϕ2, ψ2) is similar.
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We can now use x̄, ȳ ∈ D(A) and that u1, u2 are, resp., sub- and supersolutions.
Noting that

Dϕ1(x̄) =
x̄− ȳ
ε
− t1, Dψ1(ξ̄) =

ξ̄ − ζ̄
ε
− t2,

Dϕ2(ȳ) =
x̄− ȳ
ε

+ t3, Dψ2(ζ̄) =
ξ̄ − ζ̄
ε

+ t4,

we get that there are p ∈ NZ(x̄ − ξ̄), q ∈ NZ(ȳ − ζ̄) with norms bounded by some
constant depending on δ (cf., remark 11.8), such that

λu1(x̄, ξ̄)−
〈
x̄− ȳ
ε
− t1, Ax̄

〉
+

〈
x̄− ȳ
ε
− t1 −

ξ̄ − ζ̄
ε

+ t2, p

〉
+
δ

4
‖Ax̄‖2

− δ

4
MA + sup

a∈A

{
−
〈
x̄− ȳ
ε
− t1, Ba

〉
− l(x̄, ξ̄, a) + δ 〈Ax̄,Ba〉

}
≤ 0

≤ λu2(ȳ, ζ̄)−
〈
x̄− ȳ
ε

+ t3, Aȳ

〉
+

〈
x̄− ȳ
ε

+ t3 −
ξ̄ − ζ̄
ε
− t4, q

〉
− δ

4
‖Aȳ‖2

+
δ

4
MA + sup

a∈A

{
−
〈
x̄− ȳ
ε

+ t3, Ba

〉
− l(ȳ, ζ̄, a)− δ 〈Aȳ,Ba〉

}
.

Rearranging the terms yields

λ
(
u1(x̄, ξ̄)− u2(ȳ, ζ̄)

)
≤ −δ

4
‖Ax̄‖2 − δ

4
‖Aȳ‖2 +

δ

2
MA

+
1

ε

〈
x̄− ȳ − ξ̄ + ζ̄ , q − p

〉
(11.13)

+

〈
x̄− ȳ
ε

, A(x̄− ȳ)

〉
(11.14)

− 〈t1, Ax̄〉 − 〈t3, Aȳ〉+ 〈t1 − t2, p〉+ 〈t3 − t4, q〉 (11.15)

+ sup
a∈A

{
−
〈
x̄− ȳ
ε

+ t3, Ba

〉
− l(ȳ, ζ̄, a)− δ 〈Aȳ,Ba〉

}
(11.16)

− sup
a∈A

{
−
〈
x̄− ȳ
ε
− t1, Ba

〉
− l(x̄, ξ̄, a) + δ 〈Ax̄,Ba〉

}
. (11.17)

We estimate (11.13) to (11.15) and |(11.16) + (11.17)|. As p ∈ NZ(x̄ − ξ̄) and
q ∈ NZ(ȳ − ζ̄), we have

(11.13) =
1

ε

〈
(x̄− ξ̄)− (ȳ − ζ̄), q − p

〉
≤ 0.

Further,

(11.14) = −1

ε

∥∥∥(−A)
1
2 (x̄− ȳ)

∥∥∥2

≤ 0.
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To estimate (11.15), note that ‖Ax̄‖ , ‖Aȳ‖ ≤ R(δ) and ‖p‖ , ‖q‖ ≤ C(δ, ε) by remark
11.8 (note that the derivatives of the test functions also depend on ε); therefore,
|(11.15)| can be made smaller than any positive number by fitting ν = ν(δ, ε), if
necessary. Finally,

|(11.16) + (11.17)|
≤ sup

a∈A

{
|〈t1 + t3, Ba〉|+

∣∣l(x̄, ξ̄, a)− l(ȳ, ζ̄, a)
∣∣+ δMA(‖Ax̄‖+ ‖Aȳ‖)

}
≤ 2νMA + Cl

√
|Ω|
(
‖x̄− ȳ‖+

∥∥ξ̄ − ζ̄∥∥)+ δ
1
2M2

A +
δ

3
2

2

(
‖Ax̄‖2 + ‖Aȳ‖2)

≤ 2νMA + ω(ε) + δ
1
2M2

A +
δ

3
2

2

(
‖Ax̄‖2 + ‖Aȳ‖2) ,

where we used the Lipschitz property of l, the imbedding L2(Ω) ↪→ L1(Ω), Young’s
inequality and (11.12). Plugging in those estimates then yields

λ
(
u1(x̄, ξ̄)− u2(ȳ, ζ̄)

)
≤

(
−δ

4
+
δ

3
2

2

)(
‖Ax̄‖2 + ‖Aȳ‖2)

+ c

(
δ

2
+ δ

1
2 + ν(δ, ε)

)
+ (11.15) + ω(ε).

Now we choose δ̂ ∈ (0, δ̃) and ν = ν(δ̂, ε) > 0 such that for all ε > 0,

1.
(
− δ̂

4
+ δ̂

3
2

2

)
≤ 0,

2. 1
λ

(
δ̂
2

+ δ̂
1
2 + ν(δ̂, ε)

)
+ 1

λ
(11.15) ≤ τ

8
,

which is possible as we are free to choose both parameters positive but arbitrary
small. As (11.11) implies that u1(x̄, ξ̄)− u2(ȳ, ζ̄) ≥ τ

4
, we get

τ

8
≤ 1

λ
ω(ε),

a contradiction for ε ↓ 0, and the proof is complete.

Now we can state the existence and uniqueness result.

Theorem 11.10 Under assumptions (GA) and (lA), the value function is the unique
bounded and Lipschitz continuous viscosity solution of (11.5) in the sense of defini-
tion 11.6.
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Proof: Theorem 11.7 shows that V is a viscosity solution and the comparison result,
theorem 11.9, implies by the usual argumentation, that every viscosity solution is
equal to V .

Example 11.11 Equations (11.1), (11.2) imply that we may choose A = ∆, the
Laplace operator with D(A) = H1

0 (Ω) ∩H2(Ω), where Ω ⊂ Rn is some bounded and

smooth domain. As y ∈ C(0, T ;H1
0 (Ω)) = C(0, T ;D((−A)

1
2 )) due to the improved

regularity result, we see that a possible choice is B = (−A)−
1
2 . Then the assumptions

(Vi), (Vii), (Viii) are fulfilled. For A, we might choose a set of the form

A =
{
a ∈ L2(Ω) | f1(x) ≤ a(x) ≤ f2(x), a.e. x ∈ Ω

}
,

where f1, f2 ∈ L2(Ω). Then (GA) is satisfied. Now, as l must be bounded and
Lipschitz continuous (L1(Ω))2 × A→ R, a possible choice would be

l(y, w, a) =

∫
Ω

min {R, |y(x)|p} dx+

∫
Ω

min {S, |w(x)|q} dx+

∫
Ω

|a(x)| dx,

for parameters R, S > 0 and p, q ≥ 1. Then (lA) holds. Thus, theorem 11.10 applies,
e.g., to the following control problem:

min
α∈A

{∫ ∞
0

e−λt
(∫

Ω

min
{

100, |y(t, x)|2
}
dx+

∫
Ω

|α(t, x)| dx
)
dt

}
,

abc

w.r.t.

ẏ(t) + ẇ(t)−∆y(t) = (−∆)−
1
2α(t),

w = Fr[y;w0], w0 ∈ [y0 − r, y0 + r].
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A. NOTE ON EQUATIONS WITH HYSTERESIS

A Note on Equations with hysteresis

When dealing with equations including hysteresis, existence and uniqueness proofs
sometimes are quite lengthy, and one could ask whether knowledge about the analo-
gous equation without hysteresis might help. So the following note might be useful.
Consider, formally, some equation of the type

F (y, u) = 0,

where y should be the solution function solving the equation, and u another function,
on which the solution y depends, such as, e.g.,

F (y, u) := ẏ + u−∆y − f.

In this case, the solution y = y(u) would solve a heat equation with some special
data u, f (but f is fixed). If this equation is uniquely solvable for every u (in some
suitable set), we can define a solution operator S, which maps u to the corresponding
solution y = S(u), so that

F (S(u), u) = 0.

If we now want to have hysteresis (represented by some operator W) included in
that equation, we look for a choice of u such that u = W(y) = W(S(u)). But that
means, in order to solve the equation with hysteresis, we need to find a solution of
the fixed point problem

u =W(S(u)). (A.1)

The following is an example of an abstract formulation of the contraction method
used in some of the proofs in part two (and as proposed in [11, p. 300]).

Theorem A.1 Let both the hysteresis and solution operatorW , S be mappings from
L2(Ω;H1(0, T )) into itself, and Lipschitz continuous with constants cW , cS > 0, such
that γ := cW ·cS ∈ (0, 1). Then the fixed point equation (A.1) has exactly one solution
in L2(Ω;H1(0, T )).

Proof: With Banach’s fixed point theorem. Let ‖·‖ denote a suitable norm on
L2(Ω;H1(0, T )). Then the simple estimate

‖W(S(u1))−W(S(u2))‖ ≤ cW ‖S(u1)− s(u2)‖ ≤ γ ‖u1 − u2‖

shows that W ◦ S is a contraction mapping.
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The assumption on S is often fulfilled – at least for small T > 0 – when considering
weak solutions of partial differential equations depending continuously on the data,
where the time derivative of the hysteresis term does not appear in the equation.
However, note the following examples.

Example A.2 (1.) Heat equation with Play hysteresis: Semilinear case.
Consider again (3.1), i.e.,

ẏ −∆y + Fr[y;w0] = f,

together with y0 ∈ H1
0 (Ω), w0 ∈ [y0 − r, y0 + r] and Dirichlet boundary conditions.

In order to apply A.1, we then consider the solution operator S : u 7→ y = S(u) of
the standard heat equation

ẏ −∆y + u = f,

where u ∈ L2(Ω;H1(0, T )). Testing the equation as done in section 3, we can derive
an inequality of the form

‖y1 − y2‖L2(Ω;H1(0,T )) ≤ c(T ) ‖u1 − u2‖L2(Ω;H1(0,T )) ,

where c(T ) is continuous and such that c(T ) ↓ 0 as T ↓ 0. Hence, the Lipschitz
continuity of the Play implies that we may apply theorem A.1 to find a unique local
solution of the equation with hysteresis, which may be continued by standard regu-
larity results.

(2.) Heat equation with Play hysteresis: Quasilinear case.
Consider

ẏ +
∂

∂t
Fr[y;w0]−∆y = f,

with similar sideconditions as in the first example. Now, for (c ∈ (−1, 1)), take a
look at

ẏ + cu̇−∆y = f.

Considering only functions yi, ui with the same initial values, a simple calculation
yields

‖y1 − y2‖L2(Ω;H1(0,T )) ≤ |c| ‖u1 − u2‖L2(Ω;H1(0,T )) ,

so theorem A.1 applies, and we get a unique solution for the equation with hysteresis
for every c ∈ (−1, 1). Using the continuous dependence on the data result of [11,
Proposition 1.4, p. 270], we can let c ↑ 1. However, uniqueness does not carry over
here.
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Another (academic) example where the fixed point method (A.1) might be used
is when considering “implicit functions with hysteresis”, i.e., equations (without
derivatives) depending on variables y, u and t, such that, e.g., u = Fr[y]. As an
example, consider the equation

y2 − tu2 = 0. (A.2)

Under which conditions it is assured that (A.2) has a (local) solution y = y(t) and
u = F1[y;u0](t) starting at t0 = 1

4
, y0 = 1

2
, u0 = 1? We will give an answer using the

implicit function theorem and Banach’s fixed point theorem. As there might be fixed
points which do not have the contraction property, this solution might, however, be
improved.

Theorem A.3 Assume that y0 ∈ Rn, u0 ∈ Rn and t0 ∈ R solve the equation

F (y, u, t) = 0, (A.3)

and that F : BRy(y0) × BRu(u0) × BRt(t0) ⊂ Rn × Rn × R → Rn is continuously
differentiable such that the Jacobian JyF (y0, u0, t0) is invertible and

1. the Lipschitz conditions∣∣[(JyF )−1JuF ](y, u1, t)− [(JyF )−1JuF ](y, u2, t)
∣∣ ≤ µ1(y, u1, u2, t) |u1 − u2| ,∣∣[(JyF )−1JtF ](y, u1, t)− [(JyF )−1JtF ](y, u1, t)
∣∣ ≤ µ2(y, u1, u2, t) |u1 − u2| ,

hold, where µ1, µ2 are continuous in some neighborhood of (y0, u0, u0, t0), and

2. |[(JyF )−1JuF ](y0, u0, t0)| < 1.

Further, let P be an operator which is, for some T ∗ > t0, Lipschitz continuous on
W 1,1(t0, t

∗;Rn) with constant smaller than or equal to one, for all t∗ ∈ (t0, T
∗), and

such that

‖P (y)‖W 1,1(t0,t∗;Rn) ≤ ‖y‖W 1,1(t0,t∗;Rn) , ∀y ∈ W 1,1(t0, t
∗;Rn).

Then there exists t̄ ∈ (t0, T
∗) and continuous functions y(t), u(t) = P (y)(t), such

that

F (y(t), P (y)(t), t) = 0, ∀t ∈ [ t0, t̄ ].

In the proof of the theorem, we need the following variant of the implicit function
theorem, which is in that form a consequence of the contraction mapping principle.
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Theorem A.4 ([33], theorem 3.4.10) Let X, Y, Z be Banach spaces. Let U × V
be an open subset of X × Y . Suppose that G : U × V → Z is continuous and has
the property that d2G exists and is continuous at each point of U × V . Assume that
the point (x, y) ∈ X × Y has the property that G(x, y) = 0 and that d2G(x, y) is
invertible. Then there are open balls M = BX(x, r) and N = BY (y, s) such that, for
each ζ ∈M , there is a unique η ∈ N satisfying G(ζ, η) = 0. The function f , thereby
uniquely defined near x by the condition f(ζ) = η, is continuous.

Proof of theorem A.3: Restricting ourselves to a small suitable time interval contain-
ing the initial value t0 we may assume that F is continuously differentiable. Applying
A.4 with Y, Z = Rn, X = R and G(t, y) := F (y, u(t), t), where u is any function in
W 1,1(0, T ∗;Rn), we get a local unique solution y(t) = f(t, u(t)) satisfying

F (f(t, u(t)), u(t), t) = 0, (A.4)

for all t > t0 small enough – in fact, this neighborhood depends on the variation of
y, u, so that by restriction to a ball around the constant functions y0, u0 allows us,
in view of (A.1), to formulate our problem as a fixed point problem in W 1,1 via

u(t) = P (y(t)) = P (f(t, u(t))).

As mentioned above, we want to apply Banach’s fixed point theorem. Since by the
assumptions on P ,

‖P (f(·, u(·)))‖W 1,1 ≤ ‖f(·, u(·))‖W 1,1 ,

it suffices to find a ball B∗ in W 1,1 such that P ◦ f(·, B∗) ⊂ B∗ and

‖f(·, u1(·))− f(·, u2(·))‖W 1,1 ≤ c ‖u1 − u2‖W 1,1

holds for all u1, u2 in B∗ and some c ∈ (0, 1). Differentiating (A.4) yields

0 =
d

dt
F (f(t, u(t)), u(t), t) = JyF ·

[
d

dt
f(t, u(t))

]
+ JuF · u̇(t) + JtF,

which implies [
d

dt
f(t, u(t))

]
= − [JyF ]−1 JuF · u̇(t)− [JyF ]−1 JtF.

Hence, separating also the left hand side of the latter equation into the part that
contains u and the remaining variable, we get

fu(t, u(t)) = − [JyF ]−1 JuF, ft(t, u(t)) = − [JyF ]−1 JtF. (A.5)
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Next, note that for any u1, u2 in W 1,1 with the same starting values u1(0) = u2(0),
we have

‖f(·, u1(·))− f(·, u2(·))‖W 1,1

=

∫ T ∗

t0

|ft(t, u1(t))− ft(t, u2(t)) + fu(t, u1(t))u̇1(t)− fu(t, u2(t))u̇2(t)| dt

≤
∫ T ∗

t0

µ1 |u1(t)− u2(t)|+ µ2 |u1(t)− u2(t)| |u̇1(t)| dt

+

∫ T ∗

t0

|fu(t, u2(t))| |u̇1(t)− u̇2(t)| dt.

(A.6)

By the choice of the ui and the norm on W 1,1, we also have

|u1(t)− u2(t)| ≤
∫ T ∗

t0

|u̇1(t)− u̇2(t)| dt = ‖u1 − u2‖W 1,1 .

This observation implies, together with (A.5) and assumption 2. that if T ∗ > t0 is
small enough, it holds

‖f(·, u1(·))− f(·, u2(·))‖W 1,1 ≤ γ ‖u1 − u2‖W 1,1 ,

for all u1, u2 inside a (small) ball around the constant function ũ(t) ≡ u0 and with the
same initial value u0. Let us denote this set by M . Then, by definition, P (u)(0) = u0

for all u inM , and the boundedness and Lipschitz assumption assure that P ◦f(M) ⊂
M . Thus, the contraction mapping principle applies, and we get a local solution for
small T ∗ > 0.

Before giving an example, we state a simple corollary.

Corollary A.5 Let F : Rn × Rn × R→ Rn be of class C2 such that assumption 2.
of theorem A.3 holds, and P is an operator of the form as in theorem A.3. Then
equation (A.3) has a unique local solution.

Proof: The stronger regularity assumed here implies locally the Lipschitz condition
1. of the previous theorem.

Example A.6 We consider the example from above, i.e., the equation

y2 − tu2 = 0,
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where we now want to have solutions corresponding to u = P (y) for different oper-
ators P . Consider the point t0 = 1

4
, y0 = 1

2
, u0 = 1 which solves the equation, and

the play operator u = F 1
2
[y;u0]. Then u stays constant until y(t) = 3

2
is reached, as

the formula

y(t) =
√
tu

implies that y must be increasing; hence, we get the solution

y(t) =
√
t, t ∈

[
1

4
,
9

4

]
.

As both t and u(t) must then be increasing for larger t, we would have to solve

y = (y − 1

2
)
√
t,

leading to

y(t) =

√
t

2(
√
t− 1)

.

As this function is, however, decreasing for t ≥ 3
2
, the equation is not longer solvable

for such t. We note that for the derivatives, we get

fu(t, u(t)) = ∂uy = ∂u(
√
tu) =

√
t =

2tu

2y
= − [JyF ]−1 JuF,

and that the absolute value of the latter is here smaller than one as long as t < 1,
which means that condition 2. of the above theorem is in fact too restrictive in this
case.

Next, consider the same equation with the operator

P (y;u0)(t) := u0 +

∫ t

t0

max {0, ẏ(s)} ds.

It is easily seen that it fulfills the requirements of the above theorem. Further, to
solve the equation, we now need to find a solution of

y = (y +
1

2
)
√
t,

which leads to

y(t) =

√
t

2(1−
√
t)
, u(t) = y(t) +

1

2
.

Hence, we get a solution, as long as t < 1, which here coincides with the condition
2. of theorem A.3.

179



B. RATE OF CONVERGENCE FOR THE REGULARIZED EQUATION

B Rate of convergence for the regularized equa-

tion

The convergence result in section 3.5 is based on compact imbedding results. How-
ever, by a much more careful analyzation of the approximation (2.1), one can give
a rate of convergence for the regularized equation (3.7). To do so, we first restrict
ourselves to a class of special functions, and then make a distinction of cases, to get
an idea of when the approximation and the true value become different, and to what
extent. After that, we can give an estimation of how much the two functions can at
most differ, in terms of the parameter ε > 0.

Lemma B.1 Let vε := y − zε denote the corresponding approximation of the stop
operator (recall that εżε = G(zε − y) as defined in (2.1); in particular, we fix a
function y = yε for all ε > 0 here). Let denote vε(t0) := v0, e(t) := Er[y;w0](t),
e0 := e(t0) ∈ [−r, r]. If y(t) = c0 + c1(t− t0) is an affine map, then

|vε(t)− e(t)| ≤ max
{
|v0 − e0| , |v0 − e0| eη(t) + |c1| ε(1− eη(t))

}
, (B.1)

for all t ≥ t0, where

η(t) := −1

ε
(t− t0). (B.2)

Proof: We start with a distinction of cases. Until the end of this proof, we will drop
the index ε.

• Case 1: v(t) ∈ (−r, r).
This implies that v̇(t) = ẏ(t) = c1. Further, we might have ė(t) = 0, or
ė(t) = c1. In the first case, we must have e0 = ±r together with sign(c1) = ±1.
But then the distance d(t) := |v(t)− e(t)| becomes smaller, as long as we stay
in case 1, so that

d(t) = |v(t)− e(t)| ≤ |v0 − e0| = d(0).

On the other hand, if v̇ = c1 = ė, the distance d does not change.

• Case 2: v(t) /∈ (−r, r).
Here, we have to consider several subcases.

– Case 2.1: v(t) < −r, c1 > 0.

Then v̇ = c1 − 1
ε
G(−v) > c1, whereas ė = 0 or ė = c1. Thus, d gets

smaller.
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– Case 2.2: v(t) > r, c1 < 0.

Arguing similarly to case 2.1, we find that d gets smaller.

– Case 2.3: v(t) > r, c1 > 0.

Using the variation of constants formula as in lemma 3.24, we get the
representation

v(t) = r + (v0 − r) exp

(
−1

ε
(t− t0)

)
+ c1ε

(
1− exp

(
−1

ε
(t− t0)

))
.

(B.3)

Now, we consider the following subcases.

∗ Case 2.3.a): ė = 0.
Then e(t) = r constant, so that

0 ≤ v(t)− e(t) = v(t)− r = (v0 − r)eη(t) + c1ε(1− eη(t))

= (v0 − e0)eη(t) + c1ε(1− eη(t)).

Hence, we get the estimate

|v(t)− e(t)| ≤ |v0 − e0| eη(t) + |c1| ε(1− eη(t)). (B.4)

∗ Case 2.3b): ė = c1.
Then e(t) = e0 + c1(t− t0). On the other hand, by use of the simple
estimate

1− exp

(
−1

ε
(t− t0)

)
≤ t− t0

ε
, ∀t ≥ t0,

we get from (B.3) that

v(t) ≤ r + v0 − r + c1ε
t− t0
ε

= v0 + c1(t− t0) = v0 − e0 + e(t),

implying, due to v > r, that

d(t) = |v(t)− e(t)| ≤ |v0 − e0| = d(0).

Hence, the difference becomes smaller.

– Case 2.4: v(t) < −r, c1 < 0.

By symmetry, or considering subcases similar to 2.3a), 2.3b), we get anal-
ogously, that d(t) can only grow via formula (B.4).
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Altogether, we are left with analyzing the estimate (B.4). As for

f(t) := d(0)eη(t) + |c1| ε(1− eη(t)),

it holds

f ′(t) =

(
|c1| −

d(0)

ε

)
eη(t),

the function f is either monotonically increasing or decreasing, and (B.1) follows.

With lemma B.1, we can now investigate how one can estimate the difference d for
arbitrary continuous and piecewise linear input functions y. Then we use density
arguments to get more general assertions.

Proposition B.2 Let v0 = e0 ∈ [−r, r] be given.
1. Assume that y ∈ W 1,1(0, T ) has the property that ẏ ∈ L∞(0, T ). Then

‖vε(·)− e(·)‖C[0,T ] ≤ ε ‖ẏ‖L∞(0,T ) . (B.5)

2. Assume that y ∈ H1(0, T ). Then

‖vε(·)− e(·)‖C[0,T ] ≤
√
ε

2

[
1 + ‖ẏ‖2

L2(0,T )

]
. (B.6)

Proof: We start with y ∈ Cpl[0, T ]; therefore, ẏ is simply a step function, correspond-
ing to which there is a partition of the interval [0, T ] via time points 0 = t0 < t1 <
. . . < tn = T , such that ẏ exists and is constant on each of the intervals (tj, tj+1).
According to lemma B.1, over each such interval, the difference of the true value and
the approximation does not grow or grows via

|d(t)| ≤ d(tj) exp

(
−1

ε
(t− tj)

)
+ |cj| ε

(
1− exp

(
−1

ε
(t− tj)

))
, (B.7)

where t ∈ [tj, tj+1] and cj = ẏ in (tj, tj+1). Thus, in the case of growing difference,
the maximum would be reached at t = tj+1, so that we may introduce the variable
kj+1 := d(tj+1) — it then suffices to give a uniform estimate for all the kj. Let us
further denote

ηj := −1

ε
(tj+1 − tj).
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We also introduce the index set I consisting of all 0 ≤ i ≤ n−1, for which d actually
grows on [ti, ti+1], i.e., for which (B.7) has to be applied. Then we can estimate, by
iteration of (B.7),

kl ≤ k0 exp

{ ∑
i∈I,i<l

ηl−i

}
+ ε

∑
i∈I,i<l

|ci| (1− eηl−i) exp

{ ∑
m∈I,m≥i

ηl−m

}
. (B.8)

As k0 = |vε(0)− e(0)| = 0, we get from (B.8) the estimate

kl ≤ ε
∑
i∈I,i<l

|ci| (1− eηl−i) exp

{ ∑
m∈I,m≥i

ηl−m

}
. (B.9)

Next, we make the following simplification. Since the step functions corresponding to
uniform partitions of [0, T ] are still dense in L1(0, T ), we may restrict our exposition
to the case tj+1− tj =: ∆t, for all j. Then ηj = −1

ε
∆t =: η for all j, and (B.9) reads

kl ≤ε
∑
i∈I,i<l

|ci| (1− eη) exp

{ ∑
m∈I,m≥i

η

}
=ε(1− eη)

∑
i∈I,i<l

|ci| (eη)#{m∈I,m≥i} . (B.10)

Now, (B.10) implies

kl ≤ ε ‖ẏ‖L∞(0,T ) (1− eη)
∞∑
i=0

(eη)i = ε ‖ẏ‖L∞(0,T ) ,

which holds for all l. Hence, by density of step functions, we can infer inequality
(B.5). To prove the second part, we apply Young’s inequality D.1 with p = q = 2,
δ2 = ∆t√

ε
, and

a = |ci| , b = (1− eη) (eη)#{m∈I,m≥i} .

Thus,

kl ≤
ε

2

∑
i∈I,i<l

{
∆t√
ε
|ci|2 +

√
ε

∆t
(1− eη)2 (eη)2#{m∈I,m≥i}

}

≤
√
ε

2
‖ẏ‖2

L2(0,T ) +
ε

3
2

2

1− eη

∆t
(1− eη)

∑
i∈I,i<l

(eη)#{m∈I,m≥i} .
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Now, we make use of 1− eη ≤ ∆t
ε

, so that we may further estimate

kl ≤
√
ε

2
‖ẏ‖2

L2(0,T ) +

√
ε

2
(1− eη)

n−1∑
i=0

(eη)i

≤
√
ε

2
‖ẏ‖2

L2(0,T ) +

√
ε

2
(1− eη)

∞∑
i=0

(eη)i

=

√
ε

2

[
1 + ‖ẏ‖2

L2(0,T )

]
,

for all l. Thus, by density of Cpl[0, T ] in H1(0, T ), the result follows.

We note that if ẏ ∈ L∞(0, T ), then y is continuous on [0, T ], and therefore y ∈
L∞(0, T ). Thus, the functions in point one of the last proposition are exactly the
ones of W 1,∞(0, T ), which can be shown to be equal to the set of Lipschitz continuous
functions on [0, T ]. Hence, (B.5) may be reformulated via replacing the L∞-norm
on the right hand side by the Lipschitz constant of y.

Up to now, we have only considered the approximation vε for the stop operator,
but it is easy to get a similar result for zε.

Corollary B.3 Let z0 = w0 ∈ [y0 − r, y0 + r] be given.
1. Assume that y ∈ W 1,1(0, T ) has the property that ẏ ∈ L∞(0, T ). Then

‖zε(·)− w(·)‖C[0,T ] ≤ ε ‖ẏ‖L∞(0,T ) . (B.11)

2. Assume that y ∈ H1(0, T ). Then

‖zε(·)− w(·)‖C[0,T ] ≤
√
ε

2

[
1 + ‖ẏ‖2

L2(0,T )

]
. (B.12)

Proof: By definition, zε + vε = y. Since we also know that w + e = y, it holds that

‖zε − w‖C[0,T ] = ‖(y − vε)− (y − e)‖C[0,T ] = ‖vε − e‖C[0,T ] ,

and the result follows directly from proposition B.2.

Note that those estimates hold for fixed ε > 0 and any y — thus, we may also choose
a family of functions yε which is bounded in H1(0, T ). Then corollary B.3 tells us,
that for any such family, we have

‖zε(·, yε)− w(·, yε)‖C[0,T ] → 0,
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as ε ↓ 0. This might look a bit strange at first glance, but it simply reflects the
compactness of the imbedding H1(0, T ) ↪→ C[0, T ], since any weakly convergent
subsequence of yε satisfies the assumptions of theorem 2.11.

It is clear that if y = yε depends on ε > 0 such that yε → ȳ as ε ↓ 0, the rate of
convergence of zε = zε(·, yε) will depend on how fast yε converges to y. The following
estimate, which makes use of the Lipschitz continuity of the play operator, is a very
simple way to include this; nevertheless, it will enable us to get a rate of convergence
for the p.d.e. (3.7) via Gronwall’s lemma.

Corollary B.4 Assume that yε, ȳ ∈ H1(0, T ) with yε(0) = ȳ(0) =: y0, and zε(0) =
z0 = w0 = w(0, ȳ) = w(0, yε) ∈ [y0 − r, y0 + r], for all ε > 0. Then,

‖zε(·, yε)− w(·, ȳ)‖C[0,T ] ≤ ‖yε − ȳ‖C[0,T ] +

√
ε

2

[
1 + ‖ẏε‖L2(0,T )

]
. (B.13)

Proof: From the triangle inequality, the Lipschitz continuity of the play on C[0, T ],
and corollary B.3, we get

‖zε(·, yε)− w(·, ȳ)‖C[0,T ] ≤‖w(·, yε)− w(·, ȳ)‖C[0,T ] + ‖zε(·, yε)− w(·, yε)‖C[0,T ]

≤‖yε − ȳ‖C[0,T ] +

√
ε

2

[
1 + ‖ẏε‖L2(0,T )

]
.

Now we are ready to proof a rate of convergence result for (3.7).

Theorem B.5 Let y denote the solution of (3.1) w.r.t. w := Fr[y;w0] = W [y],
w0 ∈ [y0 − r, y0 + r], and let the assumptions of theorem 3.3 (existence of weak
solutions) hold, particularly y0 ∈ H1

0 (Ω), f ∈ L2(Ω) (where Ω is bounded with smooth
boundary). Further, for every ε > 0, let yε denote the weak solution of (3.2) (cf.
theorem 3.10) w.r.t. the initial value yε(0) = y0 and let zε denote the corresponding
regularization of the play, where zε(0) := z0 = w0. Then there exists a constant
c > 0 such that

‖yε − y‖L2(Ω;C[0,T ]) ≤ c
√
ε.

Proof: As we have seen in section 3, we may test the difference of the two equations
with ∂tv := ∂t(yε − y), which yields

‖v̇‖2
L2(ΩT ) +

∫ T

0

∫
Ω

(zε − w)v̇dL+
1

2
‖∇v(T, ·)‖2

L2(Ω) ≤ 0.

Noting the simple estimate

1

T
‖v‖2

L2(Ω;C[0,T ]) ≤ ‖v̇‖
2
L2(ΩT ) ,
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we easily get to

‖v‖2
L2(Ω;C[0,T ]) ≤T

2

∫ T

0

∫
Ω

(zε(t, x)− w(t, x))2 dxdt

≤T 2

∫ T

0

∫
Ω

‖zε(·, x)− w(·, x)‖2
C[0,t] dxdt,

via application of Young’s inequality (with p = q = 2, δ2 = T ). Then, for almost
every x ∈ Ω, corollary B.4 applies. Thus,

‖v‖2
L2(Ω;C[0,T ]) ≤ 2T 2

∫ T

0

‖v‖2
L2(Ω;C[0,t]) dt+ εT 3

∫
Ω

[
1 + ‖ẏε(·, x)‖L2(0,T )

]2

dx.

As proposition 3.25 implies that the term in square brackets remains bounded in
L2(Ω) as ε ↓ 0, there exists a constant ĉ > 0 such that

‖v‖2
L2(Ω;C[0,T ]) ≤ 2T 2

∫ T

0

‖v‖2
L2(Ω;C[0,t]) dt+ ĉε.

As this calculation remains true for all T > 0, we may apply Gronwall’s lemma,
which yields

‖v‖2
L2(Ω;C[0,T ]) ≤ εĉ exp

(
2T 3

)
.
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C A regularized Hilpert-type inequality

The Hilpert inequality is, as we have mentioned before, the main tool to proof
uniqueness of solutions in the quasilinear case of a heat equation with hysteresis. It
can be stated as follows.

Theorem C.1 (Hilpert’s inequality, cf. [12, p. 134]) Consider the hysteresis op-
erator W given by

W [y;w−1](t) := q(Fr[y;w−1](t)), 0 ≤ t ≤ T,

with w−1 ∈ R, and where q ∈ W 1,∞
loc (R) is an increasing function. Suppose that

y1, y2 ∈ W 1,1(0, T ) and w−1,1, w−1,2 ∈ R are given, and let y := y2−y1, w := w2−w1,
where wi :=W [yi;w−1,i], i = 1, 2. Then

d

dt
w+(t) ≤ w′(t)H(y(t)), a.e. in (0, T ), (C.1)

where w+ := max {w, 0}, and H denotes the Heavyside function

H(x) =

{
1, x > 0,
0, x ≤ 0.

We imitate the proof to get a result which looks similar for the regularization zε.

Theorem C.2 Let yi ∈ W 1,1(0, T ) and zi := zεi(·, yi), vi := vεi(·, yi), i = 1, 2,
denote the regularizations as in section B. Further, let wi = Fr[yi;w0,i] denote
the Play operator, ei = Er[yi; e0,i] the Stop operator (recall that wi + ei = yi) and
w0,i = wi(0) = zi(0) ∈ [yi(0) − r, yi(0) + r], and y := y2 − y1, w := w2 − w1,
δ1 := e1 − v1, δ2 := e2 − v2, δ := δ2 − δ1. Then,

z′(t)H(y(t)) ≥ d

dt
[w+(t)] + δ′(t)H(y(t)), a.e. t ∈ (0, T ).

Proof: We use the crucial implication for the proof of the Hilpert inequality,

w2(t) < w1(t), y2(t) ≥ y1(t) ⇒ w′2(t) ≥ 0, w′1(t) ≤ 0. (C.2)

As noted before, it holds (by definition)

z2(t)− w2(t) = e2(t)− v2(t), z1(t)− w1(t) = e1(t)− v1(t). (C.3)

We consider the sets of time points

M1 := {t|w1(t) > w2(t)} , M2 := {t|w2(t) > w1(t)} , M := {t|w1(t) = w2(t)} .
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Consider t ∈ M1. Then, if y2(t) ≥ y1(t), (C.2) applies and yields (subtraction of
(C.3))

z′(t) ≥ δ′(t);

thus, in general, we have

z′(t)H(y(t)) ≥ δ′(t)H(y(t)), a.e. t ∈M1. (C.4)

Next, consider t ∈ M2. If y1(t) ≥ y2(t), by reversing the indices in (C.2), we find
that

z′(t) ≤ δ′(t),

so that in general (note (C.3)),

z′(t) ≤ δ′(t) + w′(t)H(y(t)) = δ′(t)(1−H(y(t))) + z′(t)H(y(t)),

which may be rewritten as

z′(t)H(y(t)) ≥ w′(t)− δ′(t)H(y(t)), (C.5)

a.e. t ∈ M2. Now, note that for some (somewhere) dense subset S ⊂ M , by
continuity of w, S must be an interval, and thus, w′(t) = 0 for a.e. t ∈M , implying,
in view of (C.3),

z′(t)H(y(t)) = δ′(t)H(y(t)), (C.6)

a.e. t ∈M . Summarizing (C.4), (C.5), (C.6) yields the result.
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D Some frequently used Theorems

A collection of some of the theorems which are applied many times during the
exposition.

Lemma D.1 (Young’s Inequality) abc
Let p, q ∈ (1,∞) be such that 1

p
+ 1

q
= 1. Then, for any δ > 0,

|ab| ≤ 1

p
δp |a|p +

1

q
δ−q |b|q , ∀a, b ∈ R.

Proof: As shown in [12, lemma 1.2.1], this is a simple consequence of the convexity
of the logarithm and the monotonicity of the exponential function. Since

ln

(
1

p
δp |a|p +

1

q
δ−q |b|q

)
≥ 1

p
ln (δp |a|p) +

1

q
ln
(
δ−q |b|

)
,

applying the exponential on both sides yields the result.

We usually apply lemma D.1 with parameters p = q = 2 and δ = 1.

Theorem D.2 (Jensen’s inequality, probabilistic version) abc
Let (X,A, µ) be a probability space and f : X → J (where J ⊂ R open) some
integrable function. If ϕ is convex on J , then

ϕ

(∫
X

fdµ

)
≤
∫
X

ϕ ◦ fdµ.

Proof: See e.g., [34, theorem 6.4.1].

This probabilistic version implies the discrete (when µ is a counting measure) and
the continuous one (when µ equals Lebesgue measure).

Theorem D.3 (Gronwall’s lemma, different versions) abc

1. Discrete version: Let c > 0, N ∈ N and suppose that nonnegative real numbers
an, bn, 0 ≤ n ≤ N , satisfy

an ≤ c+
n−1∑
j=0

ajbj, 0 ≤ n ≤ N − 1.

Then

an ≤ c exp

(
n−1∑
j=0

bj

)
, 0 ≤ n ≤ N.
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2. Continuous version A: Let c ∈ C[0, T ] and a ∈ L1(0, T ) denote nonnegative
functions. If u ∈ C[0, T ] satisfies

0 ≤ u(t) ≤ c(t) +

∫ t

0

a(s)u(s)ds, t ∈ [0, T ],

then

0 ≤ u(t) ≤ c(t) +

∫ t

0

c(s)a(s) exp

(∫ t

s

a(τ)dτ

)
ds, t ∈ [0, T ].

3. Continuous version B: Let x, k be continuous and a, b Riemann integrable
functions on J := [0, T ] with b, k nonnegative on J . If

x(t) ≤ a(t) + b(t)

∫ t

0

k(s)x(s)ds, t ∈ J,

then

x(t) ≤ a(t) + b(t)

∫ t

0

a(s)k(s) exp

(∫ t

s

b(r)k(r)dr

)
ds, t ∈ J.

Proof: See, e.g., [35, corollary 2.1.5., page 150] for version 1, [36, III, page 14] for
the second and [37, theorem 1, page 356] for the third version.
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