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Abstract— Highly assisted and Autonomous Driving is de-
pendent on the accurate localization of both the vehicle and
other targets within the environment. With increasing traffic
on roads and wider proliferation of low cost sensors, a vehicle-
infrastructure cooperative localization scenario can provide
improved performance over traditional mono-platform local-
ization. The paper highlights the various challenges in the
process and proposes a solution based on Factor Graphs which
utilizes the concept of topology of vehicles. A Factor Graph
represents probabilistic graphical model as a bipartite graph.
It is used to add the inter-vehicle distance as constraints while
localizing the vehicle. The proposed solution is easily scalable
for many vehicles without increasing the execution complexity.
Finally simulation indicates that incorporating the topology
information as a state estimate can improve performance over
the traditional Kalman Filter approach.

I. INTRODUCTION

For the success of an autonomous vehicle, precise local-
ization is an important criterion. So far the vehicles relied on
fused data, between proprioceptive sensors like Odometery
and GPS (representing motion), and exteroceptive sensors
like Camera (representing environment), for self localization.
However, different types of sensors have different strengths
and weaknesses. For example, GPS requires line of sight
visibility with the satellites and is susceptible to interference.
Thus the GPS should be fused with other sensors such
as inertial measurement units [21] in order to maintain a
navigation solution in areas of poor sky visibility (such as
parking garages, urban canyons etc.). Similar challenges face
other sensors, e.g. additional processing is required for vision
perception in dim light situations [19] and the operation of
laser scanner sensors can be affected by target material.

One solution to the above problems is to use high sen-
sitivity (and hence high cost) sensors that can work in
extreme situations. However, vehicle manufacturers may be
unwilling to consider this approach as it will likely raise the
cost of the vehicle. Other solution in such situations is to
fuse data acquired from sensors present outside the vehicle.
This can be either from other vehicles or infrastructure
sensors, that can provide us with additional information to
help the vehicle with self localization. This methodology
is called Cooperative Localization (CL). With improvement
in Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
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(V2I) [1] communication techniques, sharing such sensor
data, including observations and state estimates in real time
has become possible. Thus CL is increasingly becoming a
viable and beneficial [1] solution in such scenarios.

Many solutions already exist which take advantage of
such CL such as Extended Kalman Filter (EKF) [5], [7],
Maximum Likelihood Estimation (MLE) [3], Maximum
A Posteriori Estimation (MAP) [4], Markov Localization
[6], split covariance intersection filter [8], random finite
set framework [10] and Symmetric Measurement Equation
(SME) Filter [11]. All these solutions provide novel ways
of solving the problem, but still lack one or more of the
following points:

• Bandwidth Limitations: Most of the solutions require
not only states but also corresponding covariances to
be sent on the network. This requirement becomes pro-
found soon as the number of vehicles increase as all of
them contend for the bandwidth. Hence minimum data
exchange is the key to solve this issue. Howard, Andrew
et al. [3] used MLE which uses minimum bandwidth but
relies on identification of other participants for CL.

• Data Association Uncertainties: Correct identification of
vehicles is required for multiple vehicle localization. Al-
though V2V and V2I technologies support this feature,
if there is no measurement to track association, it is
difficult to associate the state estimates. Also the real
environment is far from perfect and often contains clut-
ter, making the correct data association task challenging.
Therefore a solution should address this uncertainty.
Montemerlo, M. et al. [20] used FastSLAM to perform
localization in case of unknown data association.

• Coordinate Transformations: All sensors provide the
measurements with their own frame of reference. For
example GPS measurements are in global coordinates
system, Odometery gives relative measurements and
Camera has its own frame of reference. Fusing all the
data together requires the coordinate transformations to
one common frame of reference. This becomes diffi-
cult with highly dynamic infrastructure environment, in
particular when the location and orientation of external
sensors is unknown. Zhang et al. [11] used SME filter
to avoid such coordinate transformation by converting
to symmetric equations independent of coordinates.

• Scalability: As the number of participants for CL in-
crease the solution becomes difficult to manage. Al-
though the SME filter addresses quite a number of is-
sues, it does not scale linearly as the degree of equations
increase with the number of participants. Distributed
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Fig. 1. (a) Topology for multiple vehicle cooperative localization system.
(b) Factor graph with variables x,y,z and functions f(x,y) and g(y,z)

Conjugate Gradient (DCG) algorithm in MAP is at most
quadratic to the number of robots [4]. But it requires
synchronous communication with all the participants,
which is difficult in highly dynamic environment.

A method to address all the above challenges using
Factor Graph is proposed in this paper. The topology, i.e
the inter-vehicle distance is used as a constraint between
factor graphs. The outline of the proposed methodology is
as follows: Measurements from internal sensors, like GPS,
for the observed vehicles are plotted as factor graphs. Then
the topology constraints (created from infrastructure sensor,
like RADAR) are added between the factor graphs for
various vehicles. A smoothing algorithm like the Levenberg
Marquardt Optimizer is applied on the resulting graph to
obtain the fused states.

The advantages of using factor graph are as follows: (a)
Bandwidth requirement remains optimal as constraints are
built on simple global coordinate system with minimal data
for covariances; (b) Using topology information helps to
avoid the required data association; (c) Topology or inter-
vehicle distance is independent of coordinate transforma-
tions; (d) It is scalable for any number of vehicles as the
maximum degree of equations is quadratic.

Additionally using an infrastructure sensor as part of CL
reduces the costs for vehicle manufacturers, as then vehicles
can be equipped with minimum number of off the shelf
sensors.

II. PROBLEM DESCRIPTION

Fig. 1(a) depicts a simple localization scenario which
we would like to solve with Vehicle-Infrastructure CL. The
assumptions for the problem are:

• Each vehicle is equipped with some internal sensors to
localize itself in absolute reference. Here the 2D global
coordinate system is chosen as frame of reference.
These values can be obtained by sensors like GPS.

• The external or the infrastructure sensor can measure
the relative positions of the vehicles in its own local
2D coordinate system. These values can be obtained
by infrastructure sensors like RADAR. Also there is no

prior information about the configuration of this sensor,
i.e. its location and orientation is unknown.

• The Vehicle-to-Infrastructure bi-directional communica-
tion mechanism to exchange data is present. Further the
communication is error free and there is no delay.

• The communication mechanism and/or the protocol are
not used to identify the individual vehicles.

• There is no clutter in the environment and no false
detection originates from the vehicles.

The goal of vehicle-infrastructure CL is to improve the
precision of position estimates. As mentioned in introduc-
tion, various solutions have advantages and disadvantages.
Broadly these solution have been classified as centralized
solutions or decentralized solutions.

In centralized solutions, the whole system is considered
as a single system with one Fusion Center (FC). All the
participating vehicles or robots send their measurements to
this FC. EKF [5], [7], Particle Filter, MLE [3] are some of
the techniques used by these FC to fuse data.

On the other hand, within the de-centralised framework,
each node in the network generates its own fusion result
based on its own measurements and state estimates generated
by other nodes within the network. Distributed MAP estima-
tion [4], split covariance intersection filter [8] are some of
the techniques used in decentralized solution. Martinelli [13]
proposed a solution based on a hierarchy of EKFs.

All of the above solutions assume that both the FCs
and individual nodes know in advance the transformation
between global measurement and the relative measurement.
CL thus becomes a function of rigid architecture, while
the goal is to work in a dynamic environment. In dynamic
environment, the configuration of exteroceptive sensor is
often unknown, and scalability, with the increasing number
of vehicles, becomes a challenge.

To the best of our knowledge, solving all the problems
simultaneously remains an active theme of research in the
academic community. The next section describes the con-
cepts of Factor Graphs and how it can be used to address the
identified problems to achieve a feasible solution for vehicle
infrastructure CL.

III. FACTOR GRAPHS
A. Overview of Factor Graphs

A factor graph is a bipartite graph that explains the con-
nection between the complex functions with many variables
and its factors of simpler functions. Fig. 1(b) represents an
example of a simple factor graph with variables x, y and
z and functions f and g with factorization: h(x, y, z) =
f(x, y) ∗ g(y, z).

A Factor Graph also represents Probabilistic Graphical
Model (PGM). Therefore, the complex function can be seen
as the full joint distribution over all the variables and simpler
functions can be seen as conditional distributions over the
subsets of the variables. The above example can also be seen
as: P (x, y, z) = P (x, y) ∗ P (y, z)

Now to obtain a precise position of a target using the
infrastructure sensor, respective target must be tracked. In



the case of multiple targets, additional data association
is required to map multiple tracks to respective targets.
Various solutions exist to solve this problem like Joint
Probabilistic Data Association [22], Probability Hypothesis
Density (PHD) filter [23] and Multi Hypothesis Tracking
[24]. Within the frameworks presented by these techniques,
the computational complexity increases exponentially as the
number of targets. Furthermore, these solutions don’t take
into account the topology of the vehicle group.

Within the framework of PGM, the topology can be
considered to be a factor within the graph, thus representing
an additional state within the joint state estimate. One of the
earliest usages of factor graphs involved the calculation of
sum-product algorithm [14]. Indelman et al. [15] used factor
graphs for multi-sensor information fusion for navigation.
Cunningham, A. et al. introduced the concept of application
of constraints as factors between nodes [16].

A specific contribution of this paper is to apply the concept
of constraints originating from the topology of the vehicles
on factor graphs. The task of smoothing through optimising
the resultant graph provides an estimate of the topology state.

B. Factor Graph formulations

Mathematically, a factor graph is a bipartite graph Gk =
(Fk, Vk, Ek) with two types of nodes: factor nodes fi ∈ Fk

and variable nodes vj ∈ Vk. Edges eij ∈ Ek can exist only
between factor nodes and variable nodes, and are present if
and only if the factor fi involves a variable vj [14]. A factor
graph for graph G can also be expressed as:

f(X) =
∏
i

fi(Xi), (1)

where Xi is the set of all variables xj connected by an edge
to factor fi.

Each factor fi also has an error function that represents
the error between the predicted measurement and the actual
measurement. This error function is minimized by adjusting
the estimates of the variables X using the non-linear least
square optimizer like Levenberg Marquardt Optimizer. The
optimal estimate X̂ is then obtained by optimizing the
complete graph G as:

X̂ = arg min
X

(∏
fi(Xi)

)
(2)

In comparison, the EKF uses a measurement model h(.)
which predicts a sensor measurement from a given state
estimate. The factor, in factor graphs, then represents this
measurement model. For a Gaussian noise model, a mea-
surement factor can be written as:

fi(Xi) = d[hi(Xi)− zi], (3)

where hi(Xi) is the measurement model as a function of
the state variables Xi; zi is the actual measurement and the
operator d(.) represents a cost function. The process model
can be similarly represented as factor graph (more detail is
provided in [17]).
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Fig. 2. (a) Factor graph with three state nodes and two odometery factors.
(b) Factor graph with three state nodes, two odometery factors and three
GPS factors. (c) Factor graph for n vehicles with three state nodes, two
odometery factors, three GPS factors and three topology factors each.

C. Factor formulations for factor graph

In this section we show how factors are generated for
different sensor measurements. For our experiment we have
factors from Odometery, GPS and RADAR Sensors.

1) Odometery Measurements: We use a constant velocity
model while formulating the odometery factor. The odome-
tery measurement equation is given by

xot = xot−1 + voδt+ no, (4)

where no is the measurement noise, vo is the constant
velocity and δt is the time interval for which we want to
calculate the distance.

The current odometery measurement depends on past
measurement, therefore for xt, we can write:

xot+1 = ho(xot ), (5)

where ho is the function which calculates the odometery
measurement at time tk+1. Therefore the odometery connects
states (represented by nodes in the graph) at two consecutive
time intervals, so it is formed as a binary factor.

An odometery factor fODOM , of a given measurement
xot , is defined by the error function as follows:

fODOM (xot+1, x
o
t ) , d(xot+1 − ho(tok)) (6)

Fig. 2(a) illustrates a factor graph with three state nodes
and two odometery factors.

2) GPS Measurements: The GPS measurement equation
is given by:

zgt = hg(xt) + ng, (7)

where ng is the measurement noise and hg is the measure-
ment function, providing the relation between the measure-
ment zgt to the position of robot. Equation (7) results in an
unary factor fGPS written as:

fGPS(xgt ) , d(zgt − hg(xgt )). (8)



This factor is only connected to the node xt that represents
the state at time t. Fig. 2(b) illustrates a factor graph with
three state nodes, two odometery factors and three GPS
factors.

3) Topology Measurements: RADAR is used as the ex-
teroceptive/infrastructure sensor for our topology factor. As
mentioned earlier, the configuration (i.e. orientation and
location) of this sensor is unknown, the topology information
(the distance between the vehicle) at time t can be calculated
as follows:

y2
t =

[N−1∑
i=1

N∑
j=i+1

(pix,t − p
j
x,t)

2 +

N−1∑
i=1

N∑
j=i+1

(piy,t − p
j
y,t)

2

]
(9)

where pix,t, p
i
y,t represents the x and y position of ith vehicle

as observed by RADAR.
Irrespective of the coordinates systems, global or local, the

distance between any two vehicles remains same. Equation
(9) is taken as the measurement for topology factor. Also (9)
can be formulated as:

(ytop)2
t = htop(x0, . . . , xN ) + ntop (10)

where ntop is the measurement noise and htop is the new
measurement function, relating between measured positions
of all the N vehicles and the new topology measurement.
Equation (10) also highlights the fact that the measurement
is directly proportional to number of vehicles in the system.
Therefore the factor is N−ary factor, where N is the number
of vehicles in the system. Equation (10) results in factor
fTOP written as:

fTOP (xtopt ) , d(ytop)2
t − htop(x0, ..., xN )). (11)

This factor is connected to all the states xi at time t.
Fig. 2(c) illustrates a factor graph for n vehicles with three
state nodes and two odometery factors and three GPS factors
each. The corresponding state nodes for the vehicles are also
connected to each other with topology factor.

D. Smoothing

The non-linear problem represented by factor graphs is
solved by using the linearization algorithm using Levenberg
Marquardt Optimizer. Using an initial estimate x0 it itera-
tively finds an update ∆ from the linearized system:

arg min
∆

J(x0)∆− b(x0) (12)

where J(x0) is the sparse Jacobian Matrix at the current
linearization point x0 and b(x0) = f(x0) − z is the resid-
ual for given the measurement z. The Jacobian matrix is
equivalent to a linearized version of the factor graph, and its
block structure reflects the structure of the factor graph. After
solving (12), the linearization point is updated to the new
estimate x0 + ∆. Further detail on this process is presented
within [15].

In our scenario the jacobian for Odometery is calculated
from (5). Each position xot , in 2 −D plane refers x and y,

i.e. ho(xot ) = ho(xt, yt) Therefore Jacobian is obtained with
∂x and ∂y as

∂(ho(xot ))

∂x∂y
=

[
∂(ho(xt,yt))

∂x 0

0 ∂(ho(xt,yt))
∂y

]
=

[
1 0
0 1

]
(13)

The jacobian for GPS from (7) is same as that of odometry.
Similarly the jacobian for topology measurement from (9)
with ∂x and ∂y is:

diag

[
N−1∑
i=1

N∑
j=i+1

2 ∗ (pix,t − pjx,t),

N−1∑
i=1

N∑
j=i+1

2 ∗ (piy,t − pjy,t)

]
(14)

E. Topology Measurement Uncertainties/Covariances

Measurements of Odometery and GPS can be obtained
from the sensors directly. The corresponding uncertain-
ties/covariances are provided by sensor manufactures. But
the topology measurement is derived from the infrastructure
sensor measurement. Assuming σ2

x and σ2
y as the X and Y

covariances respectively for infrastructure sensor, then the
corresponding matrix for the measurements from sensor is a
diagonal matrix which can be written as:

Cov(x, y) = diag
[
σ2
x1
, · · · , σ2

xn
, σ2

y1
, · · · , σ2

yn

]
(15)

Then using (9) and (15), we obtain the covariance for the
topology estimate at any time t as:

σ2
topx,y

= M ∗ Cov(x, y) ∗MT (16)

where M is a 1X2N matrix as follows:

M =
[

d
dx1

(y2
t ), · · · , d

dxn
(y2

t ), d
dy1

(y2
t ), · · · , d

dyn
(y2

t )
]

(17)

IV. SIMULATION RESULTS
A. System Setup

The simulation was implemented with two vehicles on a
ground plane for 250 steps. To implement the factor graphs
and the corresponding factors we utilize the Georgia Tech
smoothing and Mapping (GTSAM) open source library [18].

Simulated vehicles have proprioceptive sensors to mea-
sure their location in global coordinates. The exteroceptive
sensor located outside the vehicle provides location within
its local coordinate system. No configuration information for
exteroceptive is available and hence transformation between
the two coordinate systems is unknown.

Both proprioceptive and exteroceptive sensors are assumed
to have zero mean Gaussian noise. The covariances are
assumed as diag[1.0, 1.0], diag[9.0, 9.0] and diag[0.1, 0.1]
for the Odometery, the GPS and the exteroceptive sensor
respectively. We assume the step interval, T as 1. It is also
assumed that there is no false or missed detections during
the whole process.

For Kalman filter, using linear Gaussian Dynamics for
constant velocity , the process model is represented as:

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (18)
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Q = δ2


T 2/4 T 2/2 0 0
T 2/2 T 0 0

0 0 T 2/4 T 2/2
0 0 T 2/2 T

 (19)

where Q is the covariance of the noise wk and δ is the
standard deviation of the process noise.

B. Results

Fig. 3 shows the ground truth, the fused trajectory for
Odometery and GPS measurements using Kalman Filter and
the fused trajectory for Odometery, GPS measurements and
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Topology Measurements using Factor Graphs for Vehicle 1
and Vehicle 2. Fig. 4 shows the details of part of trajectory
for Vehicle 1 during the process. Although the Kalman filter
is the industry standard, its clear from Fig. 4 that estimate
using the Topology Factor is far superior than Kalman Filter.
This is possible because Topology Factors add additional
constraints to further reduce the uncertainty of the position.

Fig. 5 analyzes the performance of both methods by
calculating Root Mean Square Deviation (RMSE) values for
Vehicle 1. The total error is the sum of the RMSE of each
vehicle for n steps:

Error =

√∑n
j=1

∑2
i=1[(xiest − xireal

)2 + (yiest − yireal
)2]j

n
(20)

The initial high total error for Kalman filter is because
GPS coordinates have high uncertainty. Although both the
methods stabilize almost at the same rate, but the method
involving topological factors has lower total error. Hence the
Topology Factors perform better than Kalman filter.

The bandwidth requirement is minimal as only observation
from exteroceptive sensor are sent on the network. The co-
variances are not required to be transmitted. If a measurement
needs 1 byte for x and y each, then for N vehicles the
extroceptive sensor only needs 2 ∗N bytes at any step.

The solution is scalable for any number of vehicles be-
cause the topology factor (11) remains quadratic for any
number of vehicles.

C. Discussion

The results presented here support a solution which meets
the initial requirements stated at the start of the paper. The
factor graph implementation is low bandwidth and scalable.
Further, the introduction of a topology factor reduces the
computational and informational burden of data association
and allows the coordinate transforms of nodes within the
system to be derived as part of the state estimate. It also has
the potential of supporting plug-and play paradigm [12].

Overall, the methodology indicates improved performance
over the traditional Kalman Filter implementation. However,
it is important to note that this improved performance is
due to the introduction of the topology factor. The Kalman
Filter provides the optimal estimate to the Bayes filtering
problem. As all of the nodes estimating the vehicle states
are connected with the topology factor, from a Bayesian
perspective this has the effect of introducing new common
information between nodes and ultimately reduces the overall
the uncertainty estimate. Additionally the topology factor
avoids the data association issue.

The solution is easily scalable as the Fig. 6 and Fig. 7
show the results for 4 vehicles.

Presently, the solution is implemented as a batch process
and all factors influence the joint state estimate. This is not a
viable solution at run-time and some form of local smoothing
estimate should be used.

Finally, the results presented here assume an ideal environ-
ment without clutter, obscuration, false or missed detection
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and without the introduction of new vehicles to the system.
Further work should evaluate the robustness of the solution
in live scenarios including all of the above challenges.

V. CONCLUSIONS
In this paper, a solution based on factor graphs for

vehicle-infrastructure cooperative localization is presented.
The solution addresses various challenges for this problem,
namely, the bandwidth issue, data association uncertainties,
coordinate transformation overheads, and scalability. This
has the potential to solve a number of challenges in the
highly assisted and autonomous driving communities. The
proposed solution is evaluated and discussed using simulated
data for constant velocity model. Our simulations indicate
improved RMSE performance over the traditional Kalman
filter approach. This is achieved through the introduction
of a topology factor, which is absent in Kalman Filter,
interconnecting all of the nodes within the system.

Future work will focus on the implementation of the
presented approach with effects like clutter and obscuration
with incremental smoothing, which can be tested in a live
scenario incorporating other models like constant turn and
constant acceleration. This will also demonstrate the plug
and play feature for the dynamic environment.
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