
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Kommunikationsnetze

Towards Virtualization of So�ware-Defined
Networks: Analysis, Modeling, and Optimization

Dipl.-Inf. Univ. Andreas A. Blenk

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Tech-
nischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Walter Stechele

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Wolfgang Kellerer

2. Prof. Dr. Rolf Stadler

Die Dissertation wurde am 21.11.2017 bei der Technischen Universität München eingereicht und
durch die Fakultät für Elektrotechnik und Informationstechnik am 11.02.2018 angenommen.

Abstract

Today’s networks lack the support to satisfy the highly diverse and fast changing demands of emerg-

ing applications and services. They have not been designed to di�erentiate among services or to

adapt to fast changing demands in a timely manner. The paradigms Network Virtualization (NV)

and Software-De�ned Networking (SDN) can potentially overcome this impasse. In particular, the

virtualization of software-de�ned networks is expected to bring dynamic resource sharing with guar-

anteed performance through NV and programmability through SDN; for the �rst time, tenants can

program their requested networking resources according to their service demands in a timely man-

ner. However, the virtualization of SDN-based networks introduces new challenges for operators,

e.g., a virtualization layer that provides low and guaranteed control plane latencies for tenants. More-

over, tenants’ expectations range from a fast, nearly-instantaneous provisioning of virtual networks

to predictable operations of virtual networks.

This thesis presents a measurement procedure and a �exible virtualization layer design for the

virtualization of software-de�ned networks. Focusing on the control plane, it introduces mathemat-

ical models for analyzing various design choices of virtualization layer architectures. For a fast and

e�cient virtual network provisioning on the data plane, this thesis proposes optimization systems

using machine learning.

NV aims at providing the illusion of performance isolation; however, this is non-trivial and re-

quires a well-designed virtualization layer. The challenging problem of such design is that the virtu-

alization layer, and its realization through network hypervisors, can cause network and processing

resource interference; such interference can lead to unpredictable network control for tenants. This

thesis presents a tool for evaluating state-of-the-art network hypervisors with a focus on the control

plane. The tool reports on the performance of network hypervisors in terms of provided control

plane latency and CPU utilization. The measurement results are used to uncover sources of unpre-

dictability due to tenants sharing networking and hypervisor resources. In order to mitigate the

sources of unpredictability, this thesis presents and implements concepts for control plane isolation

and adaptation support for the virtualization layer. Evaluation results show that the concepts can

mitigate interference and provide adaptations; at the same time they reveal the impact of adapting

virtualization layers at runtime, which can harm the stability of network operations.

Using network hypervisors introduces another key challenge: where to place hypervisor in-

stances to achieve the best possible control plane performance? Similar to SDN controllers, network

hypervisors are implemented in software. Therefore, they bene�t from the �exibility of software-

based implementations: they can be placed and executed on any commodity server. Placing network

iii

hypervisors, however, is an algorithmically hard problem. In contrast to the placement of SDN con-

trollers, it even adds a new dimension: hypervisor must serve multiple virtual SDN networks. This

thesis proposes mathematical models for optimizing network hypervisor placement problems. Solv-

ing the problems answers questions such as how many hypervisors are needed and where to deploy

them among network locations. The models are designed for static and dynamic network tra�c

scenarios. Particularly for dynamic tra�c scenarios, NV and SDN are expected to fully unfold their

advantages with respect to network resource control.

The virtualization of software-de�ned networks also introduces new challenges with respect to

resource allocation on the data plane: virtual networks can be requested and instantiated by ser-

vice providers at any time. Consequently, infrastructure providers are in need for algorithms that

fast and e�ciently allocate physical network resources, i.e., embed virtual networks. Tenants would

bene�t from short virtual network provisioning times and less service interruptions - a competitive

advantage for any operator of a virtualized infrastructure. This thesis investigates the potential of

machine learning to provide more e�cient and faster virtual network embedding solutions. It intro-

duces a system that uses the power of neural computation; the system shrinks the overall problem

space towards e�cient and scalable solutions. Moreover, when operators are faced with recurring

problem instances, machine learning can leverage the available data of previously solved problem

instances to improve the e�ciency of future executions of network algorithms.

Kurzfassung

Heutige Kommunikationsnetze können die stark variierenden und sich schnell ändernden Anfor-

derungen durch immer unterschiedlichere Applikationen und Dienste nicht mehr e�zient bewälti-

gen. Netzprotokolle und Algorithmen wurden ursprünglich nicht dafür entwickelt, unterschiedliche

Applikationen und Dienste di�erenziell zu behandeln und sich schnell an wechselnde Dienstanfor-

derungen anzupassen. Neue Netzkonzepte wie Network Virtualization (NV) und Software-De�ned

Networking (SDN) bieten das Potential, die bestehenden Probleme, wie das Fehlen an Flexibilität und

schneller Anpassbarkeit, zu lösen. Die Einführung beider Konzepte führt jedoch zu neuen Herausfor-

derungen, die bewältigt werden müssen. Unter anderem müssen Virtualisierungsschichten für Netze

gescha�en werden, welche eine geringe Latenz bzgl. der Steuerung der Netzressourcen erreichen.

Außerdem haben Nutzer virtueller Netze durch die Einführung beider Konzepte hohe Anforderun-

gen an die Betreiber der Kommunikationsnetze. Sie erwarten eine schnelle, nahezu augenblickliche

Bereitstellung ihrer angeforderten virtuellen Netzressourcen.

Diese Dissertation präsentiert Messmethoden sowie den Entwurf einer �exibel anpassbaren Vir-

tualisierungsschicht für die Virtualisierung Software-basierter Netze. Weiter führt diese Arbeit ma-

thematische Modelle ein, welche es erlauben, die Planung der zentralen Steuerung der Virtualisie-

rungsschicht zu optimieren und zu analysieren. Mit Hinblick auf die schnelle Bereitstellung von

Netzressourcen beschäftigt sich diese Arbeit mit Optimierungsansätzen, welche Methoden aus dem

Bereich des Maschinellen Lernens einsetzen.

NV zielt darauf ab, virtuelle Netze mit hoher und garantierter Dienstgüte bereitzustellen. Dies

benötigt allerdings eine gut konzipierte Virtualisierungsschicht. Die Herausforderung liegt darin,

dass sogenannte Netzhypervisoren, welche die Virtualisierungsschicht realisieren, selbst zu Über-

lagerungen der Netz- und Rechenressourcen und damit zu Garantieverletzungen virtueller Netze

führen können. Diese Dissertation trägt mit der Entwicklung eines Messwerkzeuges dazu bei, die

Steuerung von Virtualisierungsschichten zu untersuchen. Messungen zeigen dabei die Quellen für

Ressourcenüberlagerungen innerhalb von Netzhypervisoren auf. Basierend auf diesen Beobachtun-

gen wird ein Konzept einer Virtualisierungsschicht mit hoher Garantiegüte sowie Anpassungsfä-

higkeit vorgestellt. Messanalysen des Konzepts zeigen, dass durch gezielte Isolation virtueller Netze

deren Garantien eingehalten werden können. Gleichzeitig geben die Messungen Aufschluss darüber,

welchen Ein�uss Anpassungen der Virtualisierungsschicht zur Laufzeit auf die zentrale Steuerung

haben können.

Die Verwendung von Netzhypervisoren birgt weitere Herausforderungen. Unter anderem muss

die Frage beantwortet werden, wie viele Netzhypervisoren notwendig sind und an welchen Orten

v

diese für eine optimale Latenz der Steuerungsschicht platziert werden müssen. Ähnlich wie die Steue-

rungseinheiten von SDN Netzen werden Netzhypervisoren vorwiegend in Software implementiert.

Dadurch können sie die Flexibilität nutzen, welche durch Softwareimplementierung ermöglicht wird:

Netzhypervisoren können überall im Netz auf Servern ausgeführt werden. Das zugrundeliegende

Platzierungsproblem von Netzhypervisoren ist jedoch wie das Platzierungsproblem von Steuerungs-

einheiten in SDN Netzen algorithmisch schwer. Diese Arbeit stellt Optimierungsmodelle für die Plat-

zierung von Netzhypervisoren vor. Die Lösungen der Optimierungsmodelle geben Antworten dar-

auf, wie viele Hypervisoren wo genutzt werden müssen. Weiter werden die Modelle für statischen

und dynamischen Netzverkehr untersucht. Besonders für Netze mit einem hohen Bedarf an dyna-

mischer Anpassung wird erwartet, dass NV und SDN neue Möglichkeiten für eine bessere Nutzung

der Netzressourcen bieten.

Die Verwendung von NV und SDN erhöht auch die Anforderungen an die Bereitstellung vir-

tueller Netze: virtuelle Netze können jederzeit angefordert werden. Dazu benötigen Netzbetreiber

jedoch e�ziente und insbesondere schnelle Algorithmen, welche die angeforderten virtuellen Res-

sourcen im physikalischen Netz reservieren. Die Betreiber virtueller Netze pro�tieren generell von

einer schnellen Bereitstellung – dementsprechend bieten schnelle Algorithmen Geschäftsvorteile

für die Betreiber der physikalischen Infrastruktur. Diese Dissertation untersucht das Potential von

Maschinellem Lernen, um schnellere und e�zientere Reservierungen physikalischer Ressourcen für

virtuelle Netze zu ermöglichen. Es werden Methoden vorgestellt, die mithilfe neuronaler Berech-

nung Optimierungsprobleme schneller lösen: durch die neuen Methoden kann der Suchraum von

Optimierungsproblemen e�zient eingeschränkt werden. Außerdem wird ein System vorgestellt, das

die Lösungsdaten von Optimierungsproblemen nutzt, um die E�zienz von Algorithmen im Hinblick

auf zukünftige Probleminstanzen zu steigern.

Contents

1 Introduction 1
1.1 Research Challenges . 3

1.2 Contributions . 5

1.3 Outline . 7

2 Combining Network Virtualization and Software-De�ned Networking 9
2.1 Paradigms and De�nitions . 9

2.1.1 Network Virtualization (NV) . 9

2.1.2 Software-De�ned Networking (SDN) . 11

2.2 From Software-De�ned Networks to Virtual Software-De�ned Networks 12

2.3 SDN Network Hypervisors - An Introduction . 13

2.3.1 SDN Controllers versus SDN Network Hypervisors 13

2.3.2 SDN Network Hypervisors: Virtualization Tasks and Functions 14

3 Measurements and Design for Virtual Software-De�ned Networks 19
3.1 Background and Related Work . 20

3.1.1 OpenFlow Protocol . 20

3.1.2 SDN Network Hypervisors . 21

3.1.3 SDN Analysis and Benchmarking . 24

3.1.4 Related Work . 27

3.2 Measurement Procedure for Network Hypervisors . 29

3.3 Measurement Tool for Benchmarking Network Hypervisors: perfbench 31

3.3.1 Architecture and Implementation . 32

3.3.2 Procedure for Latency Estimation . 33

3.3.3 Conceptual Comparison to SDN Benchmarking Tools 34

3.4 Measurement Evaluation of Network Hypervisors . 35

3.4.1 Existing Hypervisor Measurements . 35

3.4.2 Benchmark Settings for FlowVisor (FV) and OpenVirteX (OVX) 36

3.4.3 Systematic and Exploratory Evaluation . 38

3.5 NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex . 46

3.5.1 Architecture Overview . 47

3.5.2 Virtualization Layer Control Plane Isolation 49

3.5.3 Virtualization Layer Adaptation . 58

i

ii Contents

3.6 Summary . 62

4 Modeling and Optimization of NV Layer Placement Problems 65
4.1 Background and Related Work . 66

4.1.1 Background on SDN Network Hypervisor Architectures 66

4.1.2 Related Work . 70

4.2 Placement Problems in Virtual Software-De�ned Networks 72

4.2.1 Problem Setting for the Network Hypervisor Placement Problem (HPP) and

the Multi-controller Switch Deployment Problem (McSDP) 72

4.2.2 Problem Setting for the Dynamic Hypervisor Placement Problem (DHPP) . . 75

4.3 Modeling Network Hypervisor and Multi-Controller Switch Placements 78

4.3.1 Modeling HPP and McSDP for Static Use . 79

4.3.2 Modeling Network Hypervisor Placement for Dynamic Use 82

4.4 Simulative Analysis of Hypervisor Placement Problems 86

4.4.1 Simulator for CPP, HPP, DHPP and VNE: virtshouse 86

4.4.2 Placement Results for Static Use and the Cost of Virtualization 87

4.4.3 Placement Results for Dynamic Use and the Cost of Adaptation 102

4.5 Summary . 107

5 Machine Learning-basedAlgorithmPreprocessing for Virtual Network Provision-
ing 109
5.1 Background . 110

5.1.1 Graph Theory . 110

5.1.2 Machine Learning . 114

5.1.3 Neural Computation with Hop�eld Networks 118

5.1.4 Virtual Network Embedding (VNE) . 119

5.2 Algorithm Preprocessing System Using Neural Computation: NeuroViNE 123

5.2.1 Related Work . 123

5.2.2 Neural Preprocessor for Virtual Network Embedding 123

5.2.3 Evaluation . 128

5.3 System for Data-Driven Network Algorithm Optimization and Design: o’zapft is . . . 136

5.3.1 Related Work . 136

5.3.2 o’zapft is: Challenges, Approach, and Exemplary Implementations 137

5.3.3 Case Study I: Predicting Facility Locations . 142

5.3.4 Case Study II: Predicting the Costs of Virtual Network Requests 145

5.3.5 Case Study III: Predicting the Acceptance Probabilities of Virtual Network

Requests . 149

5.4 Summary . 154

6 Conclusion and Outlook 157
6.1 Summary . 158

6.2 Future Work . 159

Contents iii

Bibliography 161

List of Figures 181

List of Tables 185

Acronyms 187

Chapter 1

Introduction

Communication networks such as the Internet, data center networks or enterprise networks have

become a critical infrastructure of our society. Although these communications networks and their

protocols have been a great success, they have been designed for providing connectivity in a best-

e�ort manner. However, given the current shift away from human-to-human communication toward

machine-to-machine communication, e.g., in the context of (distributed) cloud computing or Cyber-

Physical Systems (CPSs), designing networks for best-e�ort transmission is no longer su�cient. The

reasons are manifold: future applications like Internet-of-Things or robotics require communication

networks providing Quality-of-Service (QoS) guarantees and predictable performance while they are

sharing the same underlying network infrastructure. Whereas traditional communication networks

have been planned and operated by humans, resulting in a rather slow operation and update, modern

applications require fast and automatic changes to new requirements as those of future networking

concepts such as 5G [AIS+14].

Indeed, traditionally it has been assumed that communication networks serve applications with

homogeneous network resource requirements not changing over time. However, today’s application

requirements �uctuate on time scales from minutes to milliseconds and are possibly highly diverse

with respect to their required network resources [BAM10; ER13; GDFM+12; GFM+12]. For example

for CPSs, communication networks must serve latency-critical control loops where resource adapta-

tions must be put into e�ect within millisecond timescales. Despite of their di�erent requirements,

applications typically share the same physical infrastructures. As a consequence, they rely on the

same protocol stack. However, communication network infrastructures with their current protocol

stacks lack adequate mechanisms to handle changing application requirements in a timely manner.

Hence, today’s communication networks lack the �exibility in providing e�cient resource sharing

with a high level of adaptability, needed to support demands with diverse network resource require-

ments changing over time. Overall, this results in a performance that is far from perfect for both the

network operator and the network users.

Two paradigms, namely Network Virtualization (NV) [APS+05] and Software-De�ned Network-

ing (SDN) [MAB+08], are expected to cope with those requirements for �exible network resource

sharing and adaptability. Whereas NV is seen as a key enabler to overcome the ossi�cation of the

Internet by introducing �exible resource sharing [APS+05], SDN introduces a new way of �exibly

programming the shared resources at runtime [MAB+08].

1

2 Chapter 1. Introduction

NV abstracts physical resources of Infrastructure Providers (InP) and enables tenants, i.e., Service

Providers (SP), to use virtual resources according to their users’ demands. Due to NV, InPs and SPs

can control physical and virtual resources respectively in a dynamic and independent manner. To

gain the highest e�ciency out of virtualized networks, InPs need mechanisms that quickly provide

(virtual) network resources in a predictable and isolated manner. On the other side, SPs should be

able to �exibly request and control their resources with high degree of freedom. Hence, NV opens a

new path towards communication systems hosting multiple virtual networks of SPs.

SDN decouples control planes of network devices, such as routers and switches, from their data

planes. Using open interfaces such as OpenFlow [MAB+08], SDN provides new means of net-

work programmability [MAB+08]. With networks being completely programmable, SDN can realize

Network Operating Systems (NOSs) integrating new emerging concepts; NOSs can be tailored to

application-, service-, and user-speci�c demands. As an example, NOSs can integrate raising mech-

anisms from the research �eld of Arti�cial Intelligence (AI). This might lead to future NOSs, and

communication networks that self-adapt to unforeseen events, e.g., based on knowledge that is in-

ferred at runtime from the behavior of network users, network topologies, or the behavior of network

elements.

Combining NV and SDN o�ers the advantages of both worlds: a �exible and dynamic resource

acquisition by tenants through NV and a standardized way to program those resources through SDN.

This is called the virtualization of software-de�ned networks, leading to the existence of multiple Vir-

tual Software-De�ned Networks (vSDNs) sharing one infrastructure [SGY+09; SNS+10; ADG+14;

ALS14]. With both paradigms, it is expected that multiple vSDNs coexist while each one is indi-

vidually managed by its own NOS. The combination makes it possible to implement, test, and even

introduce new NOSs at runtime into existing networking infrastructures.

Like in computer virtualization where a hypervisor manages Virtual Machines (VMs) and their

physical resource access [BDF+03], a so-called virtualization layer realizes the virtualization of

SDNs [SGY+09]. The virtualization layer assigns, manages, and controls the physical network re-

sources, while coordinating the access of virtual network tenants. The virtualization layer in SDN-

based networks is realized by one or many network hypervisors [KAB+14]. They implement the

control logic needed for virtualizing software-de�ned networks. They act as proxies between the

NOSs of tenants and the shared physical infrastructure, where the vSDN networks reside. Due to

their key position, a deep understanding of design choices and performance implications of network

hypervisor implementations is of signi�cant importance. Without this understanding, network op-

erators cannot provide SPs with guaranteed and predictable network performance - a critical obstacle

for the success of combining NV and SDN.

Beside implementation aspects of vSDNs, resource planning and management is another chal-

lenging task when combining NV and SDN. With SDN, the control logic can be �exibly distributed

and placed among the network [HSM12]. Similar, network hypervisors implementing the logic for

virtualization can also be distributed among the network. In order to provide low and predictable

control plane latencies for tenants, the placement of network hypervisors is crucial for an e�cient

virtualization of SDN-based networks.

1.1. Research Challenges 3

Moreover, it is expected that virtual network requests arrive over time with various characteristics,

such as di�erent topologies, diverse requirements for network resources like data rate or CPU, etc.

The allocation of arriving requests, i.e., the embedding of virtual networks, needs to be solved fast and

e�ciently for an overall optimal network performance: e.g., fast and low-cost acquisition is a com-

petitive advantage when virtualizing an infrastructure like in cloud environments [AFG+10; ZJX11].

Further, fast and e�cient provisioning of virtual networks enhances the ability to react, which is

essential, e.g., in case of Flash Crowds [EH08]. Hence, managing virtualization layers requires new

mechanisms to improve the embedding quality of virtual networks and to speed up existing embed-

ding algorithms.

Research on combining NV and SDN yields many open questions. Hence, the objectives of this doc-

toral thesis can be summarized as follows: as detailed performance models of network hypervisors

are missing, the �rst objective is to deepen the understanding of existing network hypervisors. This

includes the measurements of SDN-based virtualization architectures. Gaining deeper insights into

the performance models of di�erent architectures is a prerequisite for realizing predictable network

performance. As the locations of control logics have an impact on network operations in SDN-based

networks, the second goal is the optimization of network hypervisor placements. Static and dynamic

virtual demand setups are comprehensively analyzed for a varying set of metrics tailored towards

vSDNs such as latency reduction or recon�guration minimization. For an e�cient and fast embed-

ding of virtual networks, the last objective targets improving optimization systems, e.g., to speed up

embeddings, by applying methods from Machine Learning (ML).

1.1 Research Challenges

Modeling, analyzing, and optimizing virtualized software-de�ned networks comprises various chal-

lenges. This section summarizes the main research challenges targeted in the subsequent Chapters 3

to 5 in more detail.

Virtualization Layer Measurement Procedures

Many hypervisor architectures already exist in di�erent �avors: from pure software-based to hard-

ware-enhanced implementations, centralized and distributed ones, and designs tailored towards use

cases such as mobile or data center networks. A general understanding of how to virtualize SDN

networks is needed in order to design and conduct measurement studies. For this purpose, exist-

ing hypervisors must be analyzed and classi�ed. The analysis should further investigate potential

sources of processing overhead and network resource interference. While various hypervisor con-

cepts already exist, a measurement schematic that can target all di�erent hypervisor implementations

has been missing so far in literature.

A general measurement schematic needs to consider many aspects. First, baseline measurements

of non-virtualized SDN network performance must exist, i.e., the performance in a non-virtualized

environment needs to be known. This holds for SDN controllers as well as SDN switches. Base-

line measurements then allow to identify the overhead added by network hypervisors. Second, a

measurement setup has to consider the aspects of virtualization, e.g., it needs to identify potential

4 Chapter 1. Introduction

interference in case of multiple control connections between tenants and a network hypervisor - a

main issue of vSDNs. This means in order to precisely identify and isolate root causes for overhead

and interference, a full benchmark procedure must be able to emulate both parts, i.e., SDN switches

and SDN controllers. Actually, a measurement tool for vSDNs has to orchestrate and manage multi-

ple emulations of SDN controllers and switches simultaneously.

Virtualization Layer Design Towards Predictable Network Performance

Network hypervisor concepts exist that are designed to run on di�erent execution platforms, in a

centralized or distributed manner, or are designed for speci�c network types. All concepts have in

common that they act on the network control tra�c between tenants and the physical SDN hard-

ware. While tenants mostly demand a strict resource isolation from their neighbors, resource shar-

ing might lead to resource interference. Allocating resources without considering potential resource

interference can lead to unpredictable resource delivery, i.e., virtual networks without e�ective re-

source guarantees for tenants. In particular in overload situations, hypervisors might signi�cantly

add latency on control plane operations due to their need to process the control plane tra�c of the

tenants. Hence, control plane isolation mechanisms that mitigate the overload and resource inter-

ference need to be designed and analyzed. These mechanisms should then be quanti�ed by decent

measurements.

Beside providing isolation and resource predictability, hypervisor architectures should be �exi-

ble and scalable. Flexibility in this context means to cope with network dynamics, such as virtual

network demands changing over time, changing resource management objectives, or adaptations

needed due to failures of the infrastructure. These network dynamics a�ect both the data plane and

the control plane in vSDNs. For instance, locations of tenant controllers might also be adapted based

on the time of the day. As a result, the virtualization layer needs to adapt. Network hypervisors

might change their locations or switches might be reassigned to other hypervisor instances for the

sake of resource e�ciency. Accordingly, sophisticated reallocation mechanisms on the control plane

of network hypervisors are needed. These reallocation mechanisms should then again be quanti�ed

in terms of overhead they add.

Modeling and Analyzing Placement Opportunities of Virtualization Layers

For distributed hypervisor architectures, the locations of the hypervisor instances should be opti-

mally placed to reduce the virtualization overhead, e.g., additional control plane latencies. The opti-

mization analysis is investigated in the context of the Network Hypervisor Placement Problem (HPP).

Similar to the Controller Placement Problem (CPP), the HPP focuses on answering questions about

how many hypervisor instances are needed and where they should be placed inside the network.

Generally, both the CPP and the HPP are covering problems in the uncapacitated case. Accordingly,

both are related, for instance, to uncapacitated facility location problems; facility location problems

are shown to be NP-hard due to their reduction to set covering problems [KV07].

Similar to the initial controller placement studies, where control plane latencies were optimized,

the initial hypervisor placement focuses on optimizing control plane latencies. In case of varying

tra�c demands, e.g., changing number of virtual networks over time, hypervisor locations might

1.2. Contributions 5

need to be adapted. A dynamic adaptation of the virtualization layer may introduce new sources

of failures and service interruptions. Accordingly, recon�gurations should be avoided, if possible,

as those might lead to high latencies or even network outages [GJN11; PZH+11]. Hence, there is a

need for minimizing the amount of recon�guration events when adapting the network hypervisor

placement.

Fast and E�icient Virtual Network Provisioning

Allocation of virtual networks requires the placement (embedding) of virtual nodes and their in-

terconnection via virtual links (paths). The mapping of physical to virtual resources has been ex-

tensively studied in the context of the Virtual Network Embedding (VNE) problem [FBB+13]. The

challenge of the VNE problem is its NP-hard nature [ACK+16]. Accordingly, many heuristic VNE

algorithms as well as optimal VNE algorithms targeting small networking setups have been pro-

posed. As the network hypervisor might autonomously accept and reject virtual network demands,

infrastructure providers would bene�t from fast and e�cient executions of existing VNE algorithms.

Thus, a sophisticated hypervisor scheme should also involve new mechanisms such as from ML that

optimize the overall embedding process, i.e., the e�ciencies of VNE algorithms. An improved al-

gorithm e�ciency yields many advantages: it saves computational resources, it potentially leads to

better embeddings of virtual networks, and it might speed-up the overall provisioning task.

1.2 Contributions

This section summarizes the contribution of this thesis to the research area of virtualizing software-

de�ned networks. It overviews the content of the conducted studies and speci�es their relations.

Fig. 1.1 illustrates the structure of this thesis in the context of research areas and methodologies.

Research has been conducted in three main areas: (1) measurements of SDN network hypervisor

architectures and a system design mitigating identi�ed shortcomings, (2) mathematical models and

numerical analysis for the static and dynamic placement of SDN network hypervisors, (3) proposals

of systems improving the e�ciency of networking algorithms for provisioning virtual networks.

While the virtualization of software-de�ned networks provides advantages in terms of resource

sharing and programmability, SDN network hypervisors introduce overhead. For example, they can

cause higher control plane latencies due to additional processing, or even show unpredictable per-

formance because of tenants interfering on the shared resources (Central Processing Unit (CPU),

memory, network I/O) of the virtualization layer. A benchmark concept is thus proposed and used to

measure the performance of SDN network hypervisors and their introduced overhead [BBK+17] in

multi-tenant environments. In order to address identi�ed resource interference problems of hyper-

visors, a system design for SDN-based networks towards adaptability [BBB+15] and predictability is

presented and realized in a proof-of-concept implementation [BBR+16]. The newly designed system

is analyzed with respect to interference mitigation and impact of recon�gurations due to adaptation.

Measurements conducted in real SDN testbeds show that recon�gurations of the virtualization layer

introduce additional control plane latency, which thus should be avoided by proper optimizations.

6 Chapter 1. Introduction

Hypervisor Measurement

and Design (Ch. 3)

Control Plane Resource

Management (Ch. 4)

Data Plane Resource

Management (Ch. 5)

[BBL+15], [BBB+15],

[BBK15], [BBR+16],

[BBK+17]

[BBZ+15], [BBZ+16],

[ZBK16]

[BKS+16], [BKS+17],

[BKJ+18]

Investigated Fields and Contributions

From Software-De�ned Networks to Virtual Software-De�ned Networks (Ch. 2)

Towards Virtualization of Software-De�ned Networks: Analysis, Modeling, and Optimization

Methodologies

Modeling Static & Dy-

namic Placement (Sec 4.2)

Mixed Integer Linear

Programming (Sec 4.3)

Multi-objective Op-

timization (Sec 4.3.2)

Simulation (Sec 4.4)

Network Measure-

ment Tool (Sec 3.2,3.3)

SDN Testbed Imple-

mentation & Mea-

surements (Sec 3.4)

Architecture (Sec 3.5)

Proof-of-concept

(Sec 3.5.3.2)

Machine Learn-

ing (Secs. 5.2,5.3)

Hop�eld Neural Net-

works (Sec. 5.2)

Supervised Learn-

ing (Sec. 5.3)

Graph Features Rep-

resentation (Sec. 5.3.2)

Simulation

(Secs. 5.2.3,5.3.3-5.3.5)

Conclusion & Future Work (Ch. 6)

Figure 1.1: Thesis structure - the main investigated and contributed �elds belong to three areas: hypervisor

measurement and system design, control plane resource management, and data plane resource management.

Di�erent methodologies are applied in each area. Whereas the �rst content chapter focuses on practical meth-

ods, both resource management chapters focus on simulation-based studies of optimization problems related

to combining SDN and NV.

1.3. Outline 7

The second major contributions target optimization models for analyzing the virtualization layer

realized by SDN network hypervisors. Not only designing and dimensioning hypervisors, but also

their placement inside the network has to be planned carefully; due to hypervisors’ ability to be

placed �exibly among a network, a thoroughly planned hypervisor placement might provide tremen-

dous bene�ts, e.g, in terms of low control plane latencies. Correspondingly, we propose the Network

Hypervisor Placement Problem (HPP) [BBZ+15] answering the questions of how many network hy-

pervisor instances are needed and where they must be deployed in the network. The HPP is de�ned

mathematically using Mixed Integer Linear Programming (MILP) according to the various architec-

tural design possibilities of hypervisors. A simulation-based study compares the impact of hypervi-

sor architectures. The study investigates how the number of hypervisors a�ects four control plane

objectives [BBZ+16], where the metrics particularly account for virtualization. Furthermore, we an-

alyze the overhead induced due to network virtualization. We propose new metrics to measure the

control plane latency overhead when virtualizing SDN networks. In order to cope with the dynamic

aspect of virtual networks, we model the Dynamic Hypervisor Placement Problem (DHPP), provid-

ing us a way to optimally solve this multi-objective problem via MILP [ZBK16]. An analysis of exact

solutions is important for a careful planning of adaptive virtualization layers, which are inevitable

to adapt to dynamically changing demands.

The third major contributions focus on the allocation of physical network resources towards vir-

tual network demands. The problem of allocating virtual to physical network resources is well

known in literature as the VNE problem. While many solutions exist that either solve the online

or o�ine VNE problem, research has rarely focused on mechanisms that generally improve the

optimization system performance. This includes methodologies from ML as well as their imple-

mentations and simulative analysis. We present system approaches applying ML in order to save

computational resources, speed up the execution and even improving the outcome of networking

algorithms. One system is NeuroViNE [BKJ+18], integrating Hop�eld neural networks to improve

solution qualities. NeuroViNE reduces the embedding cost by pruning the search space of embedding

algorithms; as simulation results show, this can even improve solution qualities. Another suggestion

is o zapft’is [BKS+17], a system that uses supervised learning to tap into the big data of network-

ing algorithms: the problem-solution pairs of many solved instances. Knowledge extracted from the

data of algorithms can be used in many �avors: to speed up the execution of networking algorithms,

e.g., by predicting upper and lower bounds on solution values (either costs or bene�ts) or by pre-

dicting the feasibility of problem instances. Predicting feasibility of problems can avoid triggering

algorithms solving hard or infeasible-to-solve problem instances [BKS+16], which can save system

resources. Generally, we demonstrate that ML improves networking algorithm e�ciencies.

1.3 Outline

The remainder of the thesis is structured as follows.

Chapter 2 gives background information on Network Virtualization (NV) and Software-De�ned

Networking (SDN), and puts them in relation with each other. It describes the relation between

virtual networks, software-de�ned networks and virtual software-de�ned networks. Moreover, it

provides a brief summary of SDN network hypervisors.

8 Chapter 1. Introduction

Chapter 3 addresses measurement methodologies for and the various designs of the network virtu-

alization layer, i.e., SDN network hypervisors. Identi�ed as a research gap, it introduces a benchmark

system for virtual SDN environments and provides measurement results of existing virtualization

layer implementations. It also outlines HyperFlex, a �exible SDN virtualization layer design towards

improved predictability and adaptability.

Chapter 4 initiates the study of optimization problems which address the control plane of SDN

virtualization layers, i.e., it introduces, models, and analyzes the hypervisor placement problem. In

order to analyze the hypervisor placement problem, it introduces MILP-based mathematical models

for virtualization layers targeting static and dynamic tra�c scenarios. It then analyses the vari-

ous models for di�erent objectives, network topologies and varying input sets of virtual network

requests.

Chapter 5 is mainly concerned with the optimization of the allocation of data plane resources to

physical networks. As a new angle to improve costly executions of optimization algorithms, methods

based on neural computation and ML are proposed. The methods reduce the search space or predict

the feasibility and objective values before actually executing optimization algorithms.

Chapter 6 concludes this thesis and provides thoughts on future work.

Chapter 2

Combining Network Virtualization and
So�ware-Defined Networking

In this chapter, we �rst elaborate on the general background that is related to this thesis, i.e., the

concepts of Network Virtualization (NV) and Software-De�ned Networking (SDN) (Sec. 2.1). Af-

terwards, Sec. 2.2 outlines the di�erences between software-de�ned networks and virtual software-

de�ned networks. Sec. 2.3 introduces the SDN network hypervisor and its many tasks; the network

hypervisor is the main entity capable of virtualizing SDN networks. The content of this chapter relies

partly on the survey [BBR+16].

2.1 Paradigms and Definitions

This section introduces the relevant paradigms and de�nitions of NV and SDN.

2.1.1 Network Virtualization (NV)

Virtualization of computers has been the main driver for the deployment of data centers and

clouds [Gol74; LLJ10; SML10; DK13; SN05; ZLW+14]. Inspired by this successful development, Net-

work Virtualization (NV) has initially been investigated for testbed deployments [APS+05; TT05;

FGR07]. The idea of sharing physical networking resources among multiple tenants or customers

has then been transferred to communication networks serving production network tra�c: NV is

seen as the key enabler for overcoming the ossi�cation of the Internet [APS+05; FGR07; TT05]. As

the idea of virtual networks is not new in general (e.g., Virtual Local Area Network (VLAN) de�nes

layer 2 virtual networks), di�erent network virtualization de�nitions and models have been pro-

posed [CB08; BBE+13; CKR+10; KCI+15; KAB+14], e.g., based on the domain (data centers, wide

area networks) they target.

NV has led to new business models, which are seen as main drivers for innovation for communi-

cation network technologies. In this thesis, we apply the business model for network virtualization

roles as introduced in [CB09]. Fig. 2.1 compares the traditional roles with the NV roles. Tradition-

ally, an Internet Service Provider (ISP) provides Internet access, i.e., connectivity, for its customers

towards a Service Provider (SP), such as Google, Net�ix, Amazon, etc., which host their services in

data centers (Fig. 2.1a). In the business models of network virtualization, as illustrated in Fig. 2.1b,

9

10 Chapter 2. Combining Network Virtualization and Software-De�ned Networking

Internet Service Provider (ISP)

Service
Provider 1

Service
Provider 2

Customer
SP1

Customer
SP2

(a) Traditional role: Internet Service Provider (ISP) provid-

ing access to service providers and customers. SPs cannot

impact network decision and resource allocation.

Infrastructure Provider (InP)

Service
Provider 1

Service
Provider 2

Customer
SP2

Customer
SP1

(b) NV business model: SPs request virtual networks. Cus-

tomers connect to services via virtual networks.

Figure 2.1: Traditional business model with ISP versus NV business model with InP.

the traditional role of an ISP of managing and operating networks is split into an SP role and an InP

role [FGR07]. The SP’s role can be enriched with network control. They become the operators of

virtual networks. Thus, SPs can use their knowledge about their services and applications to imple-

ment advanced network control algorithms, which are designed to meet the service and application

requirements. It is then the task of the InP to provide virtual networks to the SPs. While SPs (ten-

ants) might create virtual networks by requesting resources from multiple InPs, use cases in this

thesis assume the existence of only one single InP.

Generally, virtualization is construed di�erently among networking domains [CB09]. Hence,

di�erent networking domains use varying technologies to realize virtual networks. For instance,

VXLAN [MDD+14], GRE [FLH+00], or GRE’s NV variant NVGRE [GW15] are used in data cen-

ters to interconnect virtual machines of tenants. Techniques such as Multiprotocol Label Switching

(MPLS) [XHB+00; RVC01] create logically-isolated virtual networks on the Internet Protocol (IP)

layer based on tunneling technologies, while potentially relying on specialized networking hard-

ware.

Full network virtualization comprises all physical resources that are needed to provide virtual net-

works with guaranteed and predictable performance (in this thesis: CPUs of network nodes, data rate

and latency of network links.). The ability to program virtual networks, e.g., by using SDN, is a fur-

ther important key aspect of (full) network virtualization [KAB+14]. Taking a look at VLAN-based

virtualization without the ability of programming, tenants have no opportunity to instruct switches

to make tra�c steering decisions. However, to fully bene�t from NV opportunities, tenants should

obtain virtual network resources, including full views of network topologies and allocated network-

ing resources, involving link data rates and network node resources, such as CPU or memory.

Providing isolated and programmable virtual networks has manifold advantages: �rst, network

operators can design, develop, and test novel networking paradigms, without any constraints im-

posed by the currently deployed protocols or (Internet) architecture [APS+05]. Second, network

systems that are designed to the demands of the served applications or users do not su�er from the

overhead of unused network stacks or protocols. Furthermore, NV is seen as a key to provide pre-

dictable (guaranteed) network performance [BCK+11]. As a consequence, SPs should be enabled to

o�er new services over existing infrastructures much faster with higher �exibility, i.e., ease to adapt

their networks to changing user and service demands [KAG+12].

Overall, this thesis targets NV architectures that aim at the following three functions: (1) the

2.1. Paradigms and De�nitions 11

Legacy Network

CPCP
DP

DP DP DP

DP
CP CP CP

(a) Legacy network where the control plane (CP) and the

data plane (DP) are integrated into a device.

Soware-defined Network

DP

DP DP DP

DP

Control PlaneControl Plane

(b) Software-de�ned network where the control plane (CP)

is decoupled from the data plane (DP) of the devices.

Figure 2.2: Comparison of legacy and software-de�ned network.

function to abstract the underlying infrastructure, thus to create virtual networks; (2) the function

to program the virtual networks independently; (3) algorithms and functions guaranteeing isolated

virtual networks.

2.1.2 So�ware-Defined Networking (SDN)

In legacy networks, the control plane is tightly coupled into the same device as the data plane.

Fig. 2.2a shows an example network where the control plane is distributed among the devices. The

control plane is responsible for control decisions, e.g., to populate the routing tables of IP routers for

e�ective packet forwarding. Accordingly, in case of distributed control planes, an overall network

control is established through the operation of distributed network operating systems. As distributed

operating systems may belong to di�erent stakeholders, a common agreement on the available func-

tions and protocols is always needed in case of adaptations. This, however, may hinder the innovation

of communication networks.

SDN decouples the control plane from the data plane, which allows a centralized logical control of

distributed devices [MAB+08]. Fig 2.2b illustrates an example where the control is decoupled from

the devices. The control plane logic is centralized in the SDN controller, which operates the SDN

switches. The centralized control maintains the global network state, which is distributed across the

data plane devices. While the data plane devices still carry out the forwarding of data packets, the

centralized control now instructs the data plane devices how and where to forward data packets.

SDN controllers are written in software, which can be implemented through a variety of pro-

gramming languages, e.g., C++ or Python. This hardware independence is expected to bring faster

development and deployment of networking solutions. One of the �rst SDN controllers has been

NOX [GKP+08]. Many SDN controllers have followed: e.g., Ryu [Ryu], ONOS [BGH+14], Bea-

con [Eri13], OpenDayLight [Ope13]. Being implemented in software, SDN further allows to freely

design control plane architectures among the whole spectrum from one central entity to a com-

pletely distributed control plane, such as in traditional networks [TG10; KCG+10]. Accordingly,

Tootoonchian et al. [TG10] distribute the SDN control plane for scalability and reliability reasons.

SDN de�nes the Data-Controller Plane Interface (D-CPI)
1

to program distributed networking de-

vices. The D-CPI is used between the physical data plane and the (logically centralized) control plane.

1

This interface has also been known as the Southbound interface earlier.

12 Chapter 2. Combining Network Virtualization and Software-De�ned Networking

The connection between SDN devices and SDN controllers is referred as control channel in this the-

sis. To establish connections through control channels, SDN switches still host agents that receive

and execute commands from the external control plane. To provide a common operation and control

among heterogeneous SDN devices, instruction sets that abstract the physical data plane hardware

are needed. The most most popular development is the OpenFlow (OF) protocol [MAB+08].

SDN applies a match and action paradigm to realize packet forwarding decisions. The SDN con-

troller pushes instruction sets to the data plane, which include a match and action speci�cation. In

SDN, match speci�cations de�ne a �ow of packets, i.e., network tra�c �ow. A match is determined

by the header values of packets of a network �ow. For example, OF de�nes a set of header �elds

including, e.g., the Transmission Control Protocol (TCP) header and the IP header. An SDN con-

troller instructs SDN switches to match on the speci�ed �elds and apply actions. The main actions

are forward, drop, or modify network packets. Each version of the OF speci�cation extended the set

of header �elds that can be matched on as well as the available actions.

An SDN switch stores the commands, i.e., instructions, how to operate networks in one or multi-

ple �ow tables. The size for storing �ow table entries is a de�ning characteristic of an SDN switch.

Flow tables can be implemented either in hardware or software. Current OF switches use Ternary

Content Addressable Memories (TCAMs) for hardware tables, which are fast but costly and limited.

In contrast, software tables provide more space but are slower than hardware tables in storing and

complex matching of network �ows [KPK15]. Accordingly, for a predictable isolation, such resources

also need to be allocated properly.

In order to ease the development of new networking applications as well as the control of software-

de�ned networks, controllers provide Application-Controller Plane Interfaces (A-CPIs) [Ope14b;

Ope14c]. Using A-CPIs, networking applications, like �rewalls or load balancers, reside in the appli-

cation control plane. Networking applications can be developed upon the provided functionality of

the controllers’ speci�c A-CPIs. Accordingly, while networking application designers and operators

can again freely develop in any programming language, they are dependent on the A-CPI protocol

of the respective controller, e.g., the REST API of ONOS [BGH+14] in OF-based networks. However,

no common instruction set for the A-CPI has been de�ned yet.

2.2 From So�ware-Defined Networks to Virtual So�ware-Defined
Networks

Combining NV and SDN provides tenants the advantages of both concepts, i.e., �exible resource shar-

ing by acquiring virtual networks, and programmability of the network resources by using SDN.

With the introduced programmability of SDN, NV o�ering virtual resource programmability to-

wards tenants can now be put into e�ect [JP13]. Accordingly, NV is seen as one killer application

of SDN [DKR13; FRZ14], that is, it provides the programmability of virtual network resources. The

result of combining NV and SDN are vSDNs sharing the same infrastructure.

Figure 2.3 illustrates the di�erences between virtual networks, software-de�ned networks, and

virtual software-de�ned networks. Figure 2.3a shows the traditional view of virtual networks. Two

2.3. SDN Network Hypervisors - An Introduction 13

Physical Network

VN 1

VN 2

(a) Virtual Networks

Physical SDN Network

SDN Controller

(b) SDN Network

Physical SDN Network

Virtualization Layer

SDN C1 SDN C2

(c) Virtualized SDN Network

Figure 2.3: Comparison of virtual networks, SDN network, and virtual SDN networks. Dotted lines on Fig. 2.3a

indicate the embedding of the virtual nodes. Dashed lines in Fig. 2.3b illustrate the control connections be-

tween the SDN controller and the physical SDN network. Black dashed lines in Fig 2.3c show the connection

between tenant controllers and the virtualization layer, while dashed colored lines show the connections be-

tween the virtualization layer and the physical SDN network. Dotted lines between virtual nodes on the

physical network indicate the virtual paths between them.

virtual networks are hosted on a substrate network. The dashed lines illustrate the location of the

virtual resources. The interconnection of the virtual nodes is determined by the path embedding

or routing concept of the InP. A clear way how a tenant can control and con�gure its virtual net-

work is not given. SDN provides one option for providing virtual network resource control and even

con�guration to tenants. Figure 2.3b illustrates how an SDN controller operates on to top of a phys-

ical SDN network. The SDN controller is located outside of the network elements. It controls the

network based on a logically centralized view. Figure 2.3c shows the combination of NV and SDN.

A virtualization layer is responsible for managing the physical network. Besides, the virtualization

layer orchestrates the control access among SDN controllers (here SDN C1 and C2) of tenants. As

an example, tenant 1 (VN 1) has access to three network elements while tenant 2 (VN 2) has access

to two network elements. Note the virtualization layer in the middle that is shared by both tenants.

2.3 SDN Network Hypervisors - An Introduction

SDN network hypervisors implement the virtualization layer for virtualizing SDN networks. They

provide the main network functions for virtualization of SDN networks. In this section, we explain

how to virtualize SDN networks through a network hypervisor and its virtualization functions. We

highlight the main functions that need to be implemented towards being compliant with the intro-

duced abstraction demands of NV.

2.3.1 SDN Controllers versus SDN Network Hypervisors

By adding a virtualization layer, i.e., a network hypervisor, on top of the networking hardware, mul-

tiple vSDN operating systems are alleviated to control resources of the same substrate network. This

concept has been proposed by [SGY+09; SNS+10]. The network hypervisor interacts with the net-

working hardware via the D-CPI through an SDN protocol, e.g., OF. In case of NV, the hypervisor

provides on top the same D-CPI interface towards virtual network operators, i.e., SDN network ten-

ants. This feature of the hypervisor, i.e., to interface through multiple D-CPI with multiple virtual

14 Chapter 2. Combining Network Virtualization and Software-De�ned Networking

Physical SDN Network

SDN Controller

App1 App2

A-CPI

D-CPI

(a) Applications interact via A-CPI with SDN Controller.

SDN controller interacts via D-CPI with physical SDN net-

work.

Physical SDN Network

SDN Network Hypervisor

D-CPI

D-CPI

vSDN Ctrl-1 vSDN Ctrl-2

App1 App2 App1 App2

A-CPI

(b) Comparison of SDN and vSDNs, and respective inter-

faces. The tenant controllers communicate through the SDN

network hypervisor with their virtual switches.

Figure 2.4: Comparison of SDN and Virtual Software-De�ned Network (vSDN), and respective interfaces.

SDN controllers, is seen as one of the de�ning features when virtualizing SDN networks.

Fig. 2.4 illustrates the di�erence between SDN networks and vSDNs in terms of their interfaces

to tenants. In SDN networks (Fig. 2.4a) network applications are running on top of an SDN con-

troller. The applications use the A-CPI of the controller to connect and communicate with the SDN

controller.

For vSDNs, as depicted in Fig. 2.4b, the network hypervisor adds an additional layer of abstrac-

tion, the virtualization layer. The tenants now communicate again via a D-CPI with the network

hypervisor. Still, on top of the tenant controllers, applications communicate via the controllers’ A-

CPI interfaces during runtime. The hypervisor acts as a proxy: it intercepts the control messages

between tenants and the physical SDN network. The hypervisor acts as the SDN controller towards

the physical SDN network. It translates the control plane messages between the tenant SDN con-

trollers and the physical SDN network. Message translation is the main functional task a hypervisor

has to accomplish.

Remark. In contrast to vSDN, some controllers such as ONOS [BGH+14] or OpenDayLight

(ODL) [Ope13], might also provide NV in the sense that applications on top are operating isolated

virtual network resources. However, the virtual network operators are bounded to the capabilities

of the controllers’ A-CPIs, e.g., the REST-API of ONOS [BGH+14]. Accordingly, tenants cannot bring

their own SDN controllers, i.e., their fully �edged and individually adapted NOS. Thus, we do omit

controllers such as ODL or ONOS for our analysis.

2.3.2 SDN Network Hypervisors: Virtualization Tasks and Functions

Next to translating messages, SDN network hypervisors face many tasks when virtualizing SDN

networks: they need to grant access to tenants, isolate the virtual networks on the data plane, avoid

interference on the control plane, guarantee predictable network operation, grant adaptation capa-

bilities etc. In this thesis, we outline the tasks of a network hypervisor to abstract (virtualize) SDN

networking resources and to create isolated virtual SDN networks.

2.3. SDN Network Hypervisors - An Introduction 15

Network Hypervisor

Physical Switch

Virtual
Switch

Virtual
Switch

(a) Switch Partitioning

Physical Switch

Virtual
Switch

Virtual
Switch

Physical Switch

Network Hypervisor

(b) Switch Partitioning & Aggregation

Figure 2.5: Comparison between switch partitioning and switch partitioning & aggregation. Fig. 2.5a shows a

physical switch partitioned into two virtual switches. Fig. 2.5b illustrates partitioning and aggregation. Here,

the right virtual switch represents an aggregation among two physical switches.

2.3.2.1 Abstraction

Overall, many tasks are a�ected by the realization of the main feature that hypervisors need to o�er:

abstraction. Abstraction means ”the act of considering something as a general quality or charac-

teristic, apart from concrete realities, speci�c objects, or actual instances” [Cor02]. As abstraction

is seen as a fundamental advantage of NV and SDN [CFG14; CKR+10; DK13], an SDN network hy-

pervisor should be able to abstract details of the physical SDN network. The degree of abstraction

of the network representation determines also the level of virtualization [CB08], which is provided

by a network hypervisor. The available features and capabilities are directly communicated by a

hypervisor towards the tenants.

Three SDN network abstraction features are seen as the basic building blocks of a virtualization

layer for SDN: topology abstraction, physical node resource abstraction, and physical link resource

abstraction.

Topology Abstraction

Topology abstraction involves the abstraction of topology information, i.e., the information about

the physical nodes and links that tenants receive as their view of the topology. The actual view

of tenants is de�ned by the mapping of the requested nodes/links to the physical network and the

abstraction level provided by the virtualization layer. Generally, we de�ne the mapping of a virtual

node/link to many physical nodes/links as a ”1-to-N” mapping. A virtual node, for instance, can span

across many physical nodes. In case a tenant receives a ”1-to-N” mapping without abstraction, he

has to do additional work; the tenant has to implement the forwarding of network packets on inter-

mediate nodes by himself. When regarding links, while a tenant requests only a virtual link between

two nodes, he receives a view also containing intermediate nodes to be managed by the tenant. In

case nodes and links are mapped to only one physical instance, we call this a ”1-to-1” mapping.

The provided information about nodes involves their locations and their interconnections through

links. A virtual node can be realized on one (”1-to-1”) or across many physical nodes (”1-to-N”).

Fig. 2.5 illustrates the two cases. Fig. 2.5a shows an example where a switch is partitioned into mul-

tiple virtual instances. Each virtual switch is running on one physical switch only. As an example

for node aggregation, i.e., where two physical instances are abstracted as one, a tenant operating

a secure SDN network wants to operate incoming and outgoing nodes of a topology only. Thus, a

physical topology consisting of many nodes might be represented via ”one big switch” [MRF+13;

16 Chapter 2. Combining Network Virtualization and Software-De�ned Networking

Embedding:

vSDN View:

vSDN Request:

(a) View abstraction with a 1-to-N

link mapping and 1-to-1 node mapping,

which involves the intermediate node.

No path abstraction and no path split-

ting.

Embedding:

vSDN View:

vSDN Request:

(b) View abstraction with 1-to-N link

mapping and 1-to-1 node mapping,

which does not involve the intermedi-

ate node. Path abstraction and no path

splitting.

Embedding:

vSDN View:

vSDN Request:

(c) Link abstraction with 1-to-N link

mapping and 1-to-1 node mapping,

which does not involve the intermedi-

ate nodes. Path abstraction and path

splitting.

Figure 2.6: Comparison between link abstraction procedures. On top the requested virtual network. In the

middle the provided view based on the embedding on the bottom.

CB08; CKR+10; JGR+15]. As illustrated in Fig. 2.5b, the right green switch is spanning two physical

instances. The network hypervisor aggregates the information of both physical switches into one

virtual switch.

Similar, di�erent mapping and abstraction options for virtual links or paths exist. Physical links

and paths are abstracted as virtual links. Realizations of virtual links can consist of multiple hops,

i.e., physical nodes. A tenant’s view might contain the intermediate nodes or not. An example where

intermediate nodes are not hidden from the view is shown by Fig. 2.6a. The request involves two

nodes and a virtual path connecting them. As the physical path realization of the virtual link spans

an intermediate node, the view depicts this node. Fig. 2.6b shows a view that hides the intermediate

node. Besides, a virtual path can also be realized via multiple physical paths, which is illustrated by

Fig. 2.6c. For this, the infrastructure needs to provide path splitting techniques [YRF+10].

Physical Node Resource Abstraction

In virtual networks, CPU and memory are usually considered as the main network node resources.

For SDN networks, memory is additionally di�erentiated from the space to store matching entries

for network �ows, i.e., �ow table space. While �ow table space is only used for realizing the match-

and-action paradigm, memory might be needed to realize a network stack (e.g., a tenant NOS on a

device in case of a distributed virtualization architecture) or for realizing network management func-

tionality (e.g., a byte counter for charging). CPU resource information can be abstracted in di�erent

ways. It can be represented by the number of available CPU cores or the amount of percentage

of CPU. Similar, tenants can receive a concrete number or partitions of memories. Flow table re-

sources involve, e.g., the number of �ow tables or the number of TCAMs [PS06; PS02]. For instance,

if switches provide multiple table types such as physical and software tables, network hypervisors

need to reserve parts of these tables according to the demanded performance. Again, based on the

level of abstraction, the di�erent table types, i.e., software or hardware, are abstracted from tenants’

views in order to lower operational complexity for them.

2.3. SDN Network Hypervisors - An Introduction 17

Isolation of Vir-

tual SDN Networks

Control Plane Hypervisor:

Instances (CPU, Memory,

etc.), Network (Data

rate, Bu�er Space, etc.)

Data Plane Physical

Network: Nodes, Links

Virtual SDN Netw. Addr.:

Address Domain (IP,

MAC, TCP Port, etc.)

Type of Isolated Network Attribute

Figure 2.7: Network hypervisors isolate three network virtualization attributes: control plane, data plane,

and vSDN addressing. In particular the �rst and second attribute are addressed in this thesis.

Physical Link Resource Abstraction

Physical link resources involve the data rate, the available queues, the queue attributes such as dif-

ferent priorities in case of a priority queuing discipline, as well as the link bu�ers. Tenants might

request virtual networks with delay or loss guarantees. To guarantee delay and upper loss bounds,

substrate operators need to operate queues and bu�ers for the tenants. That is, the operation of

queues and bu�ers is abstracted from the tenant. However, tenants might even request to operate

queues and bu�ers themselves. For instance, the operation of meters, which rely on bu�ers, is a fun-

damental feature of recent OF versions. To provide tenants with their requested modes of operations,

like metering, substrate operators need to carefully manage the physical resources.

2.3.2.2 Isolation

Network hypervisors should provide isolated virtual networks for tenants while trying to perceive

the best possible resource e�ciency out of the physical infrastructure. While tenants do not only de-

mand physical resources for their operations, physical resources are also needed to put virtualization

into e�ect, e.g., to realize isolation. Physical resources can be classi�ed into three main categories as

depicted in Fig 2.7: the provided addressing space, the control plane and the data plane resources.

vSDN Addressing Isolation

With virtualized SDN networks, tenants should receive the whole programmability of an SDN net-

work. This means, tenants should be free to address �ows according to their con�gurations and

demands. Accordingly, techniques need to provide unique identi�cation of the �ows of di�erent

tenants. In a non-virtualized SDN network, the amount of addressable �ow space is limited by the

physical infrastructure attributes, i.e., the type of network (e.g., layer 2 only) and the used protocols

(e.g., MPLS as the only tunneling protocol). The available headers and their con�guration possibil-

ities determine the amount of available �ows. In virtualized SDN networks, more possibilities are

available: e.g., if the vSDN topologies of two tenants do not overlap physically, the same address

space in both vSDNs would be available. Or if tenants request lower OF versions than the deployed

ones, extra header �elds added by higher OF versions could also be used for di�erentiation. For

instance, OF 1.1 introduced MPLS that can be used to distinguish tenants who request only OF 1.0.

18 Chapter 2. Combining Network Virtualization and Software-De�ned Networking

Control Plane Isolation

In SDN networks, the control plane performance a�ects the data plane performance [TG10]. On the

one hand, execution platforms (i.e., their CPU, memory, etc.), which host SDN controllers, directly

in�uence the control plane performance [KPK14; RSU+12; TG10; TGG+12]. For instance, when an

SDN controller is under heavy load, i.e., available CPUs run at high utilization, OF control packet

processing might take longer. As a result, forwarding setups on switches might be delayed. On the

other hand, also the resources of the control channels and switches can impact the data plane perfor-

mance. In traditional routers, the routing processor running the control plane logic communicates

with the data plane elements (e.g., Forwarding Information Base (FIB)) over a separate bus (e.g., a PCI

bus). In SDN, controllers are running as external entities with their control channels at the mercy of

the network. If a control channel is currently utilized by many OF packets, delay and even loss might

occur, which can lead to delayed forwarding decisions. On switches, so called agents manage the

connection towards the external control plane. Thus, switch resources consumed by agents (node

CPU & memory, and link bu�er & data rate) can also impact the performance of the control plane.

The overall performance perceived by tenant controllers is determined by many factors: the phys-

ical network, i.e., node and link capabilities; the processing speed of a hypervisor being determined

by the CPU of its host; the control plane latency between tenant controllers and hypervisors is deter-

mined by the available data rate of the connecting network. What comes in addition is the potential

drawback of sharing resources: performance degradation due to resource interference. Resource

interference happens, for instance, when miscon�gured controllers overwhelm virtualization infras-

tructures with too many control messages. Without isolation, the overload generated by a tenant

can then degrade the perceived performance of other tenants, which degrades the data plane perfor-

mance. To provide predictable and guaranteed performance, a resource isolation scheme for tenants

needs to carefully allocate all involved resources at the data and the control plane.

Data Plane Isolation

The main resources of the data plane are node CPUs, node hardware accelerators, node �ow table

space, link bu�ers, link queues, and link data rates. Node resources need to be reserved and iso-

lated between tenants for e�cient forwarding and processing of the tenants’ data plane tra�c. On

switches, for instance, di�erent sources can utilize their CPU resources: (1) generation of SDN mes-

sages, (2) processing data plane packets on the switches’ CPUs, i.e., their ”slow paths”, and (3) switch

state monitoring and storing [SGY+09]. As there is an overhead of control plane processing due

to involved networking operations, i.e., exchanging control messages with the network hypervisor,

virtualizing SDN networks requires an even more thorough allocation of all involved resources. Be-

sides, the utilization of the resources might change under varying workloads. Such variations need

also be taken into account when allocating resources.

In order to successfully accomplish all these tasks, many challenges need to be solved in di�erent

research areas: e.g., architecture design of hypervisors providing predictable and guaranteed perfor-

mance as well as solving algorithmically hard resource allocation problems for provisioning isolated

virtual network resources.

Chapter 3

Measurements and Design for Virtual
So�ware-Defined Networks

Whereas SDN itself introduces already noticeable changes on the data plane as well as the control

plane, a deep understanding of the impact of all facets of NV in combination with SDN is missing.

Many research work has been conducted to understand how to exploit the �exible resource alloca-

tion and to isolate tra�c of virtual networks on the data plane. However, less attention has been

given to the entity virtualizing the control plane, namely the network hypervisor, which is de-facto

the most critical component in a virtual and programmable network environment. Accordingly, we

in this chapter analyze and measure in detail existing virtualization layer (hypervisor) architectures.

Infrastructure providers need technologies for virtualization that provide a highly predictable net-

work operation. Otherwise, it would be infeasible for infrastructure providers to negotiate Service

Level Agreements (SLAs) with virtual network tenants. Precise and guaranteed SLAs are indispens-

able for tenants: they may need to operate time-critical applications on their virtual networks or they

want to guarantee application execution times for jobs of big data tasks. Based on our measurement

observations, we further propose a virtualization layer architecture targeting a more predictable op-

eration even in dynamic environments.

Content and outline of this chapter. Section 3.1 �rst provides background on OF and exist-

ing SDN benchmarking tools. Second, it introduces related work with respect to the challenges of

providing predictable and guaranteed performance in virtualized environments, i.e., shared servers

and cloud infrastructures. The measurement procedure for virtual SDN environments, as introduced

in Section 3.2, is mainly taken from [BBR+16]. The implementation of a benchmark tool based on

the proposed measurement methodology is outlined in Section 3.3. Using the new tool, the con-

ducted measurement studies, shown in Section 3.4, are mainly taken from [BBK+17]; in contrast to

[BBK+17], the measurement data are reinterpreted from the predictability point of view. Section 3.5

introduces HyperFlex, a virtualization layer concept towards better network operation predictabil-

ity. HyperFlex was originally proposed in [BBK15], while the control plane recon�guration proce-

dure measurement was contributed in [BBB+15]. The original measurement studies are signi�cantly

extended in this thesis to generally proof the concept and to gain much deeper insights into the

operations of hypervisors.

19

20 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

3.1 Background and Related Work

This thesis targets network hypervisors for OpenFlow (OF)-based SDN networks. Hence, this sec-

tion introduces background information on the OF protocol, its implementation aspects and message

types, which is de�ned by the Open Networking Foundation (ONF) in di�erent versions [Ope09;

Ope11a; Ope11b; Ope12; Ope13; Ope14a]. Afterwards, it highlights details on the state-of-the-art

of measuring SDN networks. Moreover, it overviews SDN network hypervisors. The related work

focuses on measurements in SDN-based networks and on resource interference in shared environ-

ments, e.g., computers, networks, and clouds.

3.1.1 OpenFlow Protocol

As OF is so far the most prominent and accepted realization for SDN-based networks, many OF con-

trollers, switches, benchmark tools and network hypervisors exist. Accordingly, when discussing the

performance of OF-based vSDNs, background information on the OF protocol and existing bench-

mark tools should be provided for a basic understanding of OF-based network hypervisors.

OpenFlow components. In an SDN network, one controller manages multiple OF switches: con-

trollers and switches build the end-points of the OF protocol. The switches are connected via multiple

OpenFlow (OF) control channels with the controller.

An OF switch typically has one control channel for one controller; auxiliary (parallel) control

channels are possible, e.g., to improve redundancy. The OF speci�cation does not specify the control

channel to be an out-band network, i.e., dedicated switches for the control tra�c, or an in-band one,

where control tra�c is transmitted through the managed OF switches.

Literature sometimes calls the entity that implements the OF speci�cation on the switch side the

OpenFlow (OF) agent [KRV+15]. Given the IP address of the controller, OF agents initiate TCP con-

nections to the controller via the OF control channel interface. The controller’s IP address is normally

pre-con�gured on switches before starting network control and operation. OF messages, i.e., com-

mands, statistics, and noti�cations are sent through the control channels.

OpenFlow messages. OF de�nes three message types: Controller-to-Switch, Asynchronous, and

Symmetric. The controller initiates Controller-to-Switch messages: e.g., to request features or to send

a packet out on the data path of the switch. Only switches send asynchronous messages. Switches

use these messages to report network events to controllers or changes of the their states. Both con-

trollers or switches can send Symmetric messages. They are sent without solicitation. The following

message types are used for measurements. Accordingly, they are brie�y discussed in the following.

Asynchronous messages:

• OFPT_PACKET_IN: Switches send OFPT_PACKET_IN messages to controllers to trans-

fer the control of the packet. They are either triggered by a �ow entry (a rule that speci�es to

send OFPT_PACKET_IN messages) or by a table-miss (when no rule can be found and the

switch is then sending OFPT_PACKET_IN messages as its default behavior).

3.1. Background and Related Work 21

Controller-to-Switch messages:

• OFPT_FEATURES_REQUEST and OFPT_FEATURES_REPLY: This message request/re-

ply pattern exchanges the main information on switch identities and on switch capabilities. A

controller normally requests features once when a new control channel connection is estab-

lished.

• OFPT_FLOW_MOD: This message modi�es �ow table entries; it adds, modi�es, or removes

�ows from tables.

• OFMP_PORT_STATS: This is another message type that demands a switch to send a reply.

The controller sends this message to request statistics about one or many ports of the switch.

Statistics can be about received, transmitted packets and bytes etc.

• OFPT_PACKET_OUT: A controller uses this message type to send a packet out through the

datapath of a switch. The controller sends this message, for instance, to discover topologies

by using the Link Layer Discovery Protocol (LLDP).

3.1.2 SDN Network Hypervisors

In this section, we will brie�y outline existing SDN network hypervisors. A comprehensive survey

of existing SDN network hypervisors is given in [BBR+16].

3.1.2.1 FlowVisor (FV)

FlowVisor (FV) [SGY+09] has been the �rst hypervisor for virtualizing OF-based software-de�ned

networks, enabling sharing of SDN networking resources between multiple SDN controllers.

• Architecture. FV is a software network hypervisor and can run stand-alone on any commodity

server or inside a virtual machine. Sitting between the tenant SDN controllers and the SDN

networking hardware, FV processes the control tra�c between tenants from and to the SDN

switches. FV further controls the view of the network towards the tenants, i.e., it can abstract

switch resources. FV supports OF 1.0 [Ope09].

• Flowspace. FV de�nes the term �owspace. A �owspace for a tenant describes a possibly non-

contiguous sub-space of the header �eld space of an OF-based network. Flowspaces between

tenants should not overlap; therefore, FV guarantees isolated �owspaces for tenants. If tenants

try to address �ows outside their �owspaces, FV rewrites the packet headers. If packet headers

cannot be rewritten, FV sends an OF error message. FV distinguishes shared from non-shared

switches between tenants for �owspace isolation. For shared switches, FV ensures that ten-

ants cannot share �owspaces, i.e., packet headers. For non-shared switches, �owspaces can be

reused among tenants as those are physically isolated.

• Bandwidth Isolation. While OF in its original version has not provided any QoS techniques

for data plane isolation, FV realized data plane isolation by using VLAN priority bits in data

22 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

packets. Switches are con�gured out-of-band by a network administrator to make use, if avail-

able, of priority queues. FV, then, rewrites tenant rules to further set the VLAN priorities of

the tenants’ data packets [Sof09]. The so called VLAN Priority Code Point (PCP) speci�es the

3-bit VLAN PCP �eld for mapping to eight distinct priorities. As a result, data packets can be

mapped to the con�gured queues; hence, they receive di�erent priorities.

• Topology Isolation. FV isolates the topology in a way that tenants only see the ports and

switches that are part of their slices. For this, FV edits and forwards OF messages related

to a speci�c slice per tenant only.

• Switch CPU Isolation. In contrast to legacy switches, where control does not need an outside

connection, OF switches can be overloaded by the amount of OF messages they need to pro-

cess. The reason is that the processing needed for external connections adds overhead on

switch CPUs. In detail, OF agents need to encapsulate and decapsulate control messages from

and to TCP packets. Thus, in case a switch has to process too many OF messages, its CPU

might become overloaded. In order to ensure that switch CPUs are shared e�ciently among

all slices, FV limits the rate of messages sent between SDN switches and tenant controllers.

For this, FV implements a software-based message policing (brie�y software isolation). This

message policing needs to be speci�ed and installed with the respective slice con�guration.

We will report in more detail on FV’s software isolation in the measurement Section 3.4.

• Flow Entries Isolation. To e�ciently realize the match-plus-action paradigm, SDN switches

store match-plus-action instructions in �ow tables. In case tenants demand Gigabit transmis-

sions, this lookup needs to perform in nanoseconds. A special memory that operates in such

timescales is TCAM [FKL04]. However, due to its cost, TCAM space is limited. FV reserves

each tenant parts of the table space for operation. For this, FV keeps track of the used table

space per tenant. Tenants cannot use table space of other tenants in case they demand more

table space. FV sends tenants, which exceed their capacities, an indicator message telling that

the �owspace is full.

• Control Channel Isolation. To distinguish between vSDNs, each vSDN is assigned its distinct

transaction identi�er. If tenants use the same identi�er, FV rewrites the OF transaction iden-

ti�ers to make them distinct again. It further modi�es controller bu�er accesses and status

messages to put isolation into e�ect.

3.1.2.2 OpenVirteX (OVX)

OpenVirteX (OVX) [ADG+14; BGH+14; ALS14] builds up conceptually on FV. While FV only runs

in software, OVX also makes use of networking elements to realize network virtualization function-

alities. It extends address isolation and topology abstraction.

• Architecture. For virtualization of SDN networks, OVX makes use of general-purpose network

elements, e.g., switches that are compliant with the OF speci�cation 1.0 [Ope09]. While the

main network virtualization logic still runs in software on a computing platform, such as an

3.1. Background and Related Work 23

x86-based server, OVX makes use of rewriting and labeling features of switches for virtualiza-

tion. It supports OF 1.0. As another feature, it supports node and link resilience.

• Address Isolation. Instead of using �ow headers to di�erentiate tenants, OVX relies on a

rewriting-based mechanism. To mimic a fully available �owspace, OVX rewrites IP and Media

Access Control (MAC) addresses to virtually assigned IP and MAC addresses. This, however,

introduces additional overhead on the data plane.

• Topology Abstraction. OVX is not working transparently. It intercepts the topology discovery

process of switches. In case tenants use LLDP [802] for topology discovery, OVX answers as a

stakeholder of the switches. Thus, it prevents intermediate switches of a physical path, which

realize a virtual path, to show up in the tenant’s topological view. Moreover, OVX provides

resilience as a special feature. It can map a virtual path to multiple physical paths that connect

the virtual endpoints.

3.1.2.3 Network Hypervisor Classification

Network hypervisors can be classi�ed into centralized and distributed hypervisors.

Centralized hypervisors. Centralized hypervisors consist of one entity that is executed on a

general-purpose computing platform, e.g., running in a virtual machine on a server in a data center.

FV [SGY+09] has been the initial proposal of such hypervisor architecture for SDN-based networks.

Many General Hypervisors Building on FlowVisor have followed. Other hypervisors are designed for

special network types or use-cases like Policy-based Hypervisors.

• General Hypervisors Building on FlowVisor. Many network hypervisors have built up on the

FV concept: AdVisor [SCB+11], VeRTIGO [CGR+12], Enhanced FlowVisor [MKL+12], and Slices
Isolator [EABL+11]. Focusing on isolation, Enhanced FlowVisor extends FV’s isolation capabil-

ities. Slices Isolator focuses on improving switch resource isolation.

• Policy-based Hypervisors. Research on policy-based hypervisors is motivated by the fact that

current SDN controllers do not provide (1) any topology abstractions for networking appli-

cations and (2) that control of network applications is not jointly optimized. For this reason,

policy-based hypervisors, such asCoVisor [JGR+15], have been proposed to provide abstraction

and joint optimization of networking application actions. Note that policy-based hypervisors

are not particular designed to support multi-tenancy, but rather (1) to provide OF as a com-

munication protocol on top of an SDN controller and (2) to optimize the joint operation of

network applications.

Distributed hypervisors. We classify a hypervisor, like OVX, to be distributed if its functional-

ity is distributed across the network elements. Network elements can either be computing platforms

(like x86-based machines), general-purpose network elements, or special-purpose network elements.

General-purpose network elements are, for instance, switches that are compliant with standard OF

speci�cations, while special-purpose network elements implement special data/control plane func-

tionalities for the purpose of network virtualization. So we further classify hypervisors by their

24 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

execution platform they run on: general computing platform, computing platform + general-purpose
network elements, and computing platform + special-purpose network elements.

• General Computing Platform: The hypervisors FlowN [DKR13], Network Hypervisor [HG13],

AutoSlice [BP12; BP14] andNVP [KAB+14] run on general computing platforms, e.g., x86-based

server platforms or inside virtual machines.

• Computing Platform + General-Purpose Network Elements: Two hypervisors that make use of

general-purpose network elements are OpenFlow-based Virtualization Framework for the Cloud
(OF NV Cloud) [MJS+11] and AutoVFlow [YKI+14a; YKI+14b].

• Computing Platform + Special-Purpose Network Elements: Hypervisors that rely on net-

working elements with special modi�cations are Carrier-grade [DJS12; SJ13], Datapath Cen-
tric [DSG+14], Distributed FlowVisor (DFVisor) [LLN14; LSL15], OpenSlice [LMC+13; LTM+11],

and the Advanced Capabilities OF virtualization framework [SGN+12].

3.1.3 SDN Analysis and Benchmarking

In this section, the state-of-the-art on SDN switch and SDN controller benchmarking tools is high-

lighted �rst. The section also summarizes existing performance metrics. It also identi�es compo-

nents that a�ect SDN network operations, e.g., by adding latency overhead due to control plane

tra�c processing. Generally, benchmarking SDN networks can be split as follows: analyzing and

benchmarking of SDN switches and analyzing and benchmarking of SDN controllers.

3.1.3.1 SDN Switch Analysis and Benchmarking

OF de�nes a common interface among switches, but it does not specify how switches need to per-

form under varying workloads. Switches from di�erent vendors even behave di�erently given the

same tra�c events [LTH+14; DBK15], which leads to another source of unpredictable network per-

formance. Accordingly, measuring and modeling SDN switches is needed to provide predictable

network performance to accomplish complex networking tasks.

Concept. Fig. 3.1a shows the non-virtualized case of benchmarking an OF switch. The switch is

connected with the benchmarking tool on the control plane through the D-CPI as well as on the

data plane trough its physical ports. The measurement tool takes two roles: (1) the SDN controller

role and (2) the role of injecting network tra�c. This setup allows tools to benchmark the entire

processing chain of network tra�c �ows. For instance, the tool can (1) send a network packet, (2)

receive a noti�cation from the switch for this packet, e.g., if no �ow entry exists, (3) send an action,

and (4) receive the e�ect of the action, e.g., the forwarded network packet. Whereas operation veri-

�cation tools proof the correct implementation of OF speci�cations by a device [Oft], benchmarking

tools try to reveal the performance of the device under varying network tra�c conditions [RSU+12].

Many variations of tra�c measurement scenarios should be considered to create knowledge about

the behavior of switches.

3.1. Background and Related Work 25

SDN Sw. Benchmark Tools

SDN Switch

Control Plane
Channel (D-CPI)

Data
Plane

Channel

(a) SDN switch benchmarking.

SDN Controller

SDN Ctrl. Benchmark Tools

Control Plane
Channel (D-CPI)

(b) SDN controller benchmarking.

Figure 3.1: Switch benchmarking and controller benchmarking setups in non-virtualized networks. The

benchmarking tools directly connect to the SDN switches/SDN controllers.

Tools have been proposed to verify and benchmark OF-based SDN switches, where prominent rep-

resentatives are OFTest [Oft], OFLOPS [RSU+12], and FLOPS-Turbo [RAB+14]. OFTest veri�es the

implementation of OF switches. OFLOPS benchmarks switches under varying workloads to reveal

potential bottlenecks, i.e., unpredictable switch behaviors. Furthermore, OFLOPS can shed light on

monitoring capabilities of OF switches and potential cross-e�ects that result from the simultaneous

execution of OF operations (e.g., high data plane load while pulling switch statistics). FLOPS-Turbo

is a hardware implementation of OFLOPS.

Performance indicators. Among all existing OF measurement studies, di�erent performance in-

dicators have been identi�ed, which can be used to quantify the performance of OF switches. Gen-

erally, two performance aspects of switches can be measured: the control plane performance and the

forwarding- or data plane performance.

• OF Packet Processing. OF de�nes several messages to be sent between controllers and switches.

The throughput of these messages and their latency values are indicators for the overall OF

packet processing performance. The processing of these messages might vary among switches.

Hence, SDN measurements should study the performance among di�erent OF messages.

• OF Flow Table Updates. SDN controllers trigger the update of �ow tables. With OF, table op-

erations are adding, deleting, or updating existing entries. As such operations might happen

at runtime, they should be completed within small timeframes and in reliable manner. How-

ever, di�erent measurement studies show unexpected behaviors for these operations for SDN

switches [KPK14], e.g., the con�rmation of table updates by the control plane even before the

action is put into e�ect on the data plane.

• OF Monitoring. Precise and accurate monitoring of OF statistics is important, e.g., for charging

or network state veri�cation. Accordingly, knowledge about the temporal behavior of network

statistic acquisition is important for predictable network operation.

• OF Operations Cross-E�ects. Network operations have in common that they can happen simul-

taneously. While an SDN controller might trigger �ow table updates, an SDN switch might

26 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

send OFPT_PACKET_IN messages towards the controller. As these network operations

might cross-e�ect each others’ performance, comprehensive measurement studies should par-

ticular focus on such scenarios.

• Forwarding Throughput and Packet Latency. All recently mentioned operations are put into

relation to control plane operations. For quantifying the performance of forwarding oper-

ations, benchmarks should consider legacy performance indicators such as throughput and

forwarding delay. The OF speci�cations de�ne many data plane operations (re-writing, drop-

ping, labeling) that might impact the data plane performance. Accordingly, benchmarks should

measure the performance indicators for all possible data plane operations. This encompasses

simple tasks (e.g., forwarding) to more complex tasks (e.g., labeling).

3.1.3.2 SDN Controller Analysis and Benchmarking

Operators will only choose SDN controllers as a credible alternative to control logic running on hard-

ware if they deliver predictable performance. As operators should not su�er from unpredictability,

they need detailed benchmarks on the performance of SDN controllers.

Concept. Fig. 3.1b shows the benchmarking for SDN controllers. The benchmark tool mimics the

behavior of SDN networks, i.e., it should be capable to emulate one to many switches. It connects to

the SDN controller through one to many D-CPI connections accordingly. By receiving, processing,

and transmitting control messages through the control channel, operation of SDN controllers can

add overhead.

The OF protocol speci�es the way how SDN controllers need to behave to operate SDN net-

works. In order to quantify their behaviors, controller benchmark tools have been proposed, e.g.,

Cbench [TGG+12], OFCBenchmark [JLM+12], OFCProbe [JMZ+14].

Performance indicators. Mostly, these benchmark tools de�ne the controller response time and

the OF message throughput as performance indicators:

• Controller Response Time. The controller response time de�nes the time an SDN controller

needs to respond to a network event, e.g., OFPT_PACKET_IN as a result of a table miss of

a switch. The faster the response, the better the controller response time. Reliable network

operations might also constrain the controller response time. For instance, in wide area net-

work scenarios, the number of controllers might be determined by the targeted controller re-

sponse time, which might be highly a�ected by the distance between controllers and switches.

Accordingly, it can also serve as a scalability indicator for a controller architecture. Again,

controller response times should be measured under varying control plane message loads and

mixes. Only such measurements might reveal potential resource interference problems among

controller operations.

• Controller OF Message Throughput. SDN controllers can be exhausted by the amount of mes-

sages they have to process. Accordingly, it is important to know such values in advance when

3.1. Background and Related Work 27

assigning network tasks to controllers or when deciding for a controller architecture to accom-

plish a particular network operation scenario. The controller OF message rate determines the

amount of messages a controller can either maximally accept before dropping a message due

to bu�er over�ows; or it can be used to determine the rate at which a controller can operate

while still running in a stable manner (i.e., without a continuous increase in response time).

As SDN controllers have to serve a large amount of switches in large-scale networks or data

centers, the message throughput should again be measured under varying workloads and a

changing number of switches. When controllers need to react to simultaneous events, e.g.,

OFPT_PACKET_IN events from many switches, such workloads might show again poten-

tial controller resource interference issues. Accordingly, a high, fast, and reliable OF message

processing is important for predictable performance of network operations.

3.1.4 Related Work

The related work consists of two parts. The �rst part reports on measurement studies in SDN-based

networks. The second part brie�y outlines work that addresses interferences in computer and net-

work systems, such as clouds.

SDN Measurements

Performance and measurement aspects of OF have been studied before in the literature. Bianco et

al. [BBG+10] initially benchmark OF switches; they introduce forwarding throughput and latency as

performance indicators. Another comparison between OF switches and software implementations

is conducted by [THS10]: a software switch outperforms existing hardware switches by achieving

25 % higher packet throughput. With respect to control plane performance, �rst studies revealed

that OF can lead to performance problems due to high CPU loads on OF switches [CMT+11]. Other

studies show that OF architectures may not handle burst arrivals of new �ows [JOS+11]: e.g., eight

switches can already overload controllers in data centers [PJG12].

Hendriks et al. [HSS+16] consider the suitability of OF as a tra�c measurement tool (see [YRS15]

for a survey on the topic), and show that the quality of actual measured data can be questionable.

The authors demonstrate that inconsistencies and measurement artifacts can be found due to partic-

ularities of di�erent OF implementations, making it impractical to deploy an OF measurement-based

approach in a network consisting of devices from multiple vendors. In addition, they show that

the accuracy of measured packet and byte counts and duration for �ows vary among the tested de-

vices. Also other authors observed inconsistencies between bandwidth measurement results and a

packet-based ground truth [ADK14]. OF monitoring systems are implemented similarly to NetFlow,

and accordingly, problems regarding insu�cient timestamp resolution [Kog11; TTS+11], and device

artifacts [CSO+09] also apply. Finally, Kuźniar et al. [KPK14; KPK15] report on the performance

characteristics of �ow table updates in di�erent hardware OF switches, and highlight di�erences

between the OF speci�cation and its implementations, which may threaten operational correctness

or even network security.

To the best knowledge, literature does not provide yet measurements that particularly target in-

terference in multi-tenant scenarios for SDN-based networks.

28 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

Cloud Resource Interference

Clouds are realized by one or many data centers, which consist of tens of servers whose performance

is shared among many tenants [AFG+10; JS15]. Performance unpredictability has been identi�ed as

one of the ten most critical obstacles to the success of cloud computing [AFG+10]. While resource

sharing of virtual machines has been a well known issue, another source of unpredictability has been

discovered in cloud environments over last years: the network [BCK+11; NVN+13]. In data centers,

accordingly both resource interference problems are now coming together: virtual machines com-

pete for resources on the servers and for resources on the network.

If we look into the cloud, physical resources are now shared among tenants: clusters consisting

of many virtual machines are communicating via a shared network. This sharing, however, leads to

severe performance unpredictabilities: the performance of the applications varies heavily dependent

on, e.g., the daytime or the underlying server hypervisor [RNM+14] - tenants, however, always ex-

pect the same performance [SDQR10]. In such situations, tenants may even have to pay more for

the same result. The main reasons for the unpredictability are the over-subscription of the cloud

resources, but also the lack of ine�cient resource management schemes, and the lack of explicit

information exchange between tenants and providers about expected and achievable performance.

Accordingly, research focused on the understanding of the interactions between cloud applications

and the hosting infrastructure: such information is actually important for both cloud infrastructure

designers and software developers [TMV+11]. Models for better information exchange were also

developed to improve application predictability [BCK+11].

With the occurrence of Network Function Virtualization (NFV), packet processing in software on

commodity hardware perceives another signi�cance. In particular to be an alternative to special-

purpose hardware, general-purpose-based packet processing needs to provide predictable perfor-

mance: operators simply cannot accept unintended behavior from their infrastructures [DAR12].

Various methods have been proposed to improve performance predictability. For instance, No-

vaković et al. [NVN+13] try to identify virtual machines su�ering from performance variability, and

then to adapt the placement to improve a VM’s situation. Other concepts try to alleviate unpre-

dictability by observing, learning, and predicting favorable and unfavorable placements [RNM+14].

This information is then included in resource placement decisions. To guarantee performance, con-

cepts still rely on building isolated groups of links for each tenant [ZSR+16]. The concept relies on

the separation between most demanding and less demanding tenants: the most demanding tenants

then get isolated capacities to not interfere with less demanding tenants. HCloud makes its resource

assignment based on the unpredictability factor of a service request, which is again based on mea-

surements of how the underlying infrastructure interacts with the applications [DK16].

Interestingly, although a network hypervisor lies at the heart of any multi-tenant and network-

virtualized system, the network hypervisor and especially its performance implications have received

little attention so far.

3.2. Measurement Procedure for Network Hypervisors 29

3.2 Measurement Procedure for Network Hypervisors

Performance benchmarking of SDN network components is a basic prerequisite before deploying

SDN networks. Since SDN introduces new levels of �exibility with respect to the implementation

and geographical deployment of network functionality, also the potential sources of network op-

eration interference change: for instance, control tra�c between controllers and switches can be

a�ected by the network; additional entities running on switches such as the OF agents are respon-

sible for managing control plane tra�c, while their execution might be a�ected by the processing

power of switches. Such entities are potential sources of overhead and interference, which need to

be identi�ed �rst in order to take those into account for later operation.

When looking at hypervisor architectures from top to bottom, a �rst source of interference is

coming from the network connecting tenants with hypervisors. The tenant tra�c might share the

network resources, thus, their control plane tra�c might interfere. Further, when hypervisors pro-

cess tenants control tra�c, the tra�c might again share one hypervisor function and, accordingly,

the available resources for this function (CPU, memory, network tra�c). Besides, the hypervisor

functions themselves share the available resources of a network hypervisor. Furthermore, like for

the tra�c between tenant controllers and hypervisor instances, network tra�c from di�erent tenants

might interfere on their way towards the infrastructure. Finally, switches process again all hypervi-

sor tra�c, which might lead to interference due to the simultaneous processing of tenants’ control

and data plane tra�c.

Two-step hypervisor benchmarking framework. A two-step procedure is proposed for bench-

marking network hypervisors. The �rst step is to benchmark hypervisor functions, if possible, in an

isolated manner. The second step is to quantify hypervisor performance as a whole, i.e., to bench-

mark the overall system performance of a virtualized SDN network. For varying workload setups, the

system measurement provides insights into processing overhead, potential bottlenecks, and potential

resource interferences. Generally, all OF-related measures can also be used to quantify hypervisor

performance.

The operational performance quanti�cation of hypervisors can be split into two parts: perfor-

mance with respect to their operations towards switches and their performance with respect to how

they behave towards SDN controllers. Furthermore, all performance measurements should be con-

ducted for single and multi-tenant setups. Single-tenant setups, i.e., setups with only one tenant, can

quantify the overhead per tenant. In such setup, overhead is expected to come from tra�c processing

only. Multi-tenant setups particularly try to reveal potential resource interferences due to sharing

hypervisor functions (abstraction, isolation, etc.) and resources (CPU, network I/O, Memory, etc.)

among tenants.

vSDN switch benchmarking. vSDN switch benchmarking di�erentiates between single-switch

setups and multi-switch setups.

• Single-Switch Setup. To isolate overhead due to interference, hypervisor overhead should �rst

be measured for a single-switch setup, as shown in Fig. 3.2a. Such setup should reveal the

30 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

Hypervisor

SDN Sw. Benchmark Tools

Control Plane
Channel (D-CPI)

SDN Switch

Control Plane
Channel (D-CPI)

Data
Plane

Channel

(a) Virtualized SDN switch benchmarking: single vSDN

switch.

Hypervisor

Tool
1

Control Plane
Channels (D-CPI)

Tool
n

SDN
Sw. 1

…

Control Plane
Channels (D-CPI)

SDN
Sw. n

Data
Plane

Channel

…

Data
Plane

Channel

(b) Virtualized SDN switch benchmarking: multiple vSDN

switches.

Figure 3.2: Two virtual switch benchmarking setups: left setup with a single switch; right setup with mul-

tiple switches and controller emulations. Tools emulate control plane or data plane tra�c that needs to pass

through the virtualization layer, i.e., the network hypervisor.

Hypervisor

vSDN Controller

Control Plane
Channel (D-CPI)

SDN Ctrl. Benchmark Tools

Control Plane
Channel (D-CPI)

(a) Virtualized SDN controller benchmarking: single vSDN

controller.

Hypervisor

vSDN
Ctrl. 1

Control Plane
Channels (D-CPI)

vSDN
Ctrl. 1

Ctrl. Ben.
Tool 1

…

Control Plane
Channels (D-CPI)

Ctrl. Ben.
Tool 1

…

(b) Virtualized SDN controller benchmarking: multiple

vSDN controllers.

Figure 3.3: Two virtual controller benchmarking setups: left setup with a single vSDN controller; right setup

with multiple switch emulations and vSDN controller emulations. Tools emulate control plane or data plane

tra�c that needs to pass through the virtualization layer, i.e., the network hypervisor.

performance capabilities of hypervisors to abstract a single vSDN switch. It should answer

questions like how hypervisors manage switch resources, how they monitor them, and how

they manage them in case of failures. To quantify the overhead, the performance results should

be compared to a setup without a hypervisor. Single-switch measurement results serve as a

baseline for the multi-switch setup.

• Multi-Switch Setup. Fig. 3.2b shows an exemplary multi-switch setup. The multi switch setup

should again identify overhead, operational problems, or resource ine�ciency. Handling mul-

tiple switches at the same time might add additional overhead due to message arbitration or

resource interference. Furthermore, a hypervisor needs to make routing decisions or it has to

decide on how many switches it should abstract to form a big switch representation.

vSDN controller benchmarking. Similar to benchmarking vSDN switches, hypervisor perfor-

mance measurements should be conducted for single vSDN controller setups and multi vSDN con-

3.3. Measurement Tool for Benchmarking Network Hypervisors: perfbench 31

troller setups.

• Single-Controller Setup. Like for SDN switches, SDN controller benchmark tools can measure

the hypervisor performance in a single-controller setup. Fig. 3.3a shows a setup where one

vSDN controller is connected to the hypervisor, which is connected to one controller bench-

mark tool. Again, measures as de�ned for SDN networks can be used to quantify the perfor-

mance and induced overhead of network hypervisors.

• Multi-Controller Setup. Also similar to the multi-vSDN-switch setup, hypervisor performance

models have to be quanti�ed for scenarios with multiple controllers. Fig. 3.3b shows the setup

where one or many controller benchmark tools are connected to the hypervisor, which con-

nects to multiple tenant controllers. This setup should again provide insights into how the

hypervisor can process potentially simultaneous requests from di�erent tenants. Here, the

tenants may send OF messages of the same or di�erent types, at di�erent rates, but at the

same time. In such setup, resource interference might even lead to higher processing times

and variations than compared with a setup with a single controller.

Benchmarking of individual hypervisor functions. For hypervisors, the individual function

benchmarking concerns the isolation and the abstraction functionality. All OF-related metrics from

non-virtualized SDN environments can be applied to evaluate the functions in a virtualized scenario.

Performance implication due to abstraction. Abstraction benchmarking should involve the bench-

marking of topology abstraction, node resource abstraction, and link resource abstraction. Abstrac-

tion benchmarking involves the evaluation of the resources that are needed to realize abstraction

but also the potential overhead that is introduced due to abstraction. For instance, abstraction might

demand additional processing, e.g., for rewriting control plane packets, from hypervisors or SDN

switches, e.g., CPU resources. Furthermore, abstracting might increase control plane latency as its

realization requires synchronization among distributed physical resources.

Performance implication due to isolation. Isolation benchmarking involves benchmarking three

parts: control plane isolation, data plane isolation, and vSDN addressing isolation. Isolating re-

sources (queuing, schedulers, etc.) might also introduce additional resource overhead, which has

to be measured and quanti�ed. Furthermore, isolation could be implemented in a work conserving

manner, i.e., resources that are currently not used by tenants are freed to tenants demanding more

resources. All mechanisms for abstraction and isolation need to be evaluated for di�erent scenarios:

underutilization, multi-tenancy, overutilization etc.

3.3 Measurement Tool for Benchmarking Network Hypervisors:
perfbench

A hypervisor benchmark needs to cover a wide spectrum of possible workloads. For example, data

centers may face tra�c loads [BAM10; GHJ+09] that vary signi�cantly in the number of network

�ows; from a few thousand to tens of thousands of �ows; reports count 2× 10
3

to 10× 10
3

of �ows

for Amazon’s EC2 and Microsoft’s Azure clouds [HFW+13]. For a 1500-server cluster, measurements

32 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

show that the median of �ows arriving in the network is around 1× 10
6
/s [KSG+09], whereas net-

works with 100 switches can have peak �ow arrivals of 1× 10
9
/s [BAM10]. It can be expected that

the number of �ows scales with the number of tenants running on top of the clouds, i.e., on top of

the network hypervisors. Hence, the measurement studies in this thesis focus on message rates in

the range of tens of thousands of messages per second.

For the purpose of this study, a novel benchmarking tool called perfbench is presented. perfbench
is designed to measure the performance of network hypervisors for OF-based vSDNs. This section

overviews perfbench and puts it into perspective with existing SDN tools, and with focus on the use

case of this thesis: multi-tenant virtualized SDN networks.

3.3.1 Architecture and Implementation

perfbench is tailored toward precise and high throughput performance benchmarks for OF-based

SDN networks to meet the requirements, e.g., of data center workload emulations [BAM10; GHJ+09].

It can emulate high OF control plane message rates, while it can be used for both non-virtualized

SDN networks and for vSDNs. To meet the high demanding performance aspects, it builds on top

of lib�uid [VRV14], a C++ library providing basic implementations and interfaces for OF message

processing and generation. As lib�uid supports OF versions 1.0 and 1.3, perfbench can benchmark

OF networks with the respective versions. perfbench can generate the following OF messages:

• OFPT_PACKET_IN

• OFPT_PACKET_OUT

• OFPT_ECHO_REQUEST & OFPT_ECHO_REPLY

• OFPT_FEATURES_REQUEST & OFPT_FEATURES_REPLY

• OFPT_FLOW_MOD and OFMP_PORT_STATS

Fig. 3.4 gives a conceptual view of perfbench’s design and how it operates in multi-tenant SDN net-

works. As the �gure shows, perfbench consists of two parts: a control plane part called perfbenchCP
and a data plane part called perfbenchDP. The measurement study in Section 3.4 deploys perfbench
in both modes:

• perfbenchCP runs processes that can emulate multiple SDN controllers simultaneously. To

avoid resource interference among those processes, leading to unpredictable measurements,

each emulated controller is assigned its own thread. Further, to emulate a realistic multi-tenant

setup, each controller process connects through a unique TCP connection to the network hy-

pervisor under test. Every emulated controller can generate its own workload, following a

tra�c distribution with a given distribution of message bursts parameter and a given distribu-

tion for the inter-arrival times of bursts. The distributions can be modeled either determinis-

tically, exponentially, or normally distributed. Note that for the bursts the equivalent discrete

distributions are achieved by simple rounding. Currently, perfbench can distribute the inter-

arrival times mean values ranging from 1 ms to 1 s. The send intervals trigger the sending

3.3. Measurement Tool for Benchmarking Network Hypervisors: perfbench 33

Network
Hypervisor

Hypervisor
Functions

SDN

Switch
Logic

TCP TCP

TCPTCP

TCP

TCP

perfbenchC
P

perfbenchD
P

Tenant 1
TCP

Tenant n

Control Plane

Control Plane

Control Plane

Data Plane

TCP
Switch 1

TCP
Switch n

Figure 3.4: Conceptual view and architecture of perfbench. perfbench is split into two parts: perfbenchCP
(top) and perfbenchDP (bottom). perfbenchCP controls the tenant processes. perfbenchDP either connects to

the Network Hypervisor under test or to n SDN switches.

of bursts. Accordingly, the average burst size is then determined by the overall demanded

average message rate per second.

• perfbenchDP emulates either data plane tra�c or data plane switches. Hence, it has two modes

of operation. In the �rst operation mode, it connects to data plane switches that are connected

to the network hypervisor (or SDN switches). In this mode, perfbench generates User Data-

gram Protocol (UDP) packets to emulate data plane tra�c. In the second operation mode, it

emulates data plane switches, i.e., it directly connects to network hypervisors (or SDN con-

trollers). To reduce interference, each emulated switch is assigned its own thread. Further,

in this mode, perfbench generates the needed OF tra�c to emulate a functional OF control

channel interface.

A scheduler is responsible to manage the sending of the messages of the controller process(es)

and switch process(es). The message rates are determined by the average demanded messages per

second, whose inter-arrival times can again be generated following one of three distributions: uni-

formly distributed, exponentially distributed (or Poisson distributed per send interval), or based on

a discrete Weibull distribution. The generation process can be stationary or non-stationary, i.e., the

mean values might not need to be constant over time. This provides capabilities to generate more

realistic network tra�c behaviors.

3.3.2 Procedure for Latency Estimation

For latency estimation, two message types need to be di�erentiated: messages that require a

reply and messages that do not explicitly need a reply. Messages like OFMP_PORT_STATS,

OFPT_FEATURES_REQUEST, or OFPT_ECHO_REQUEST work in a request and reply man-

ner. The estimated control latency is the time from sending the request until receiving the reply.

34 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

The latency estimation for messages such asOFPT_FLOW_MOD,OFPT_PACKET_IN orOFPT-
_PACKET_OUT works di�erent: for instance, there are two modes for OFPT_PACKET_IN. In the

�rst mode, perfbenchDP sends UDP packets for each tenant on the data plane. The switches have no

pre-installed rules for the UDP packets. As a result, the switches generateOFPT_PACKET_INmes-

sages to ask the hypervisor (and subsequently the tenant controllers) how to handle the packets. The

latency is then the time it takes from sending UDP packets until receiving theirOFPT_PACKET_IN
messages at perfbenchCP. In the second mode, perfbenchDP emulates switches. It directly sends

OFPT_PACKET_IN messages per tenant to the hypervisor, which forwards them to perfbenchCP.

In this case, the latency is the di�erence between perfbenchCP receiving the OFPT_PACKET_IN
messages and perfbenchDP sending them.

Similarly, two cases exist for OFPT_PACKET_OUT messages. In both cases, perfbenchCP sends

OFPT_PACKET_OUT messages. The hypervisor forwards these messages either to a real soft-

or hardware switch (�rst case), or it forwards it directly to perfbenchDP (second case). In the �rst

case, perfbenchDP would be connected to the switch to receive the data plane packets that were

encapsulated in the OFPT_PACKET_OUT messages. When emulating the switch, perfbenchDP di-

rectly receives the data plane packets. In both cases, the latency is calculated as the time di�erence

between perfbenchCP sending the OFPT_PACKET_OUT messages and perfbenchDP receiving the

de-capsulated data plane messages.

3.3.3 Conceptual Comparison to SDN Benchmarking Tools

Tab. 3.1 compares perfbench to existing tools with focus on the four supported features: multi-tenant,

control plane benchmark (CB), data plane (switch) benchmark (DB), and supported distributions for

OF tra�c generation. As described in Sec.3.1.3, SDN benchmark tools can be classi�ed into two

categories: switch and controller benchmark tools.

While OFtest [Oft] has originally been designed to verify switch implementations of OF 1.0, it can

also be used for basic switch and controller performance measurements [BBK15; BBL+15]. Due to

its Python-based implementation, it supports, however, only rates with up to 1 000 messages per

second.

OFLOPS [RSU+12] is another tool to benchmark and verify switch implementations. It introduced

further data plane metrics such as �ow table update rates and �ow insertion latencies. However,

OFLOPS is designed for a single-switch setup, i.e., it cannot emulate multiple controllers simultane-

ously. Furthermore, it generates tra�c in a best-e�ort manner.

CBench [TGG+12] andOFCProbe [JMZ+14] are designed to benchmark SDN controllers. Both tools

can emulate multiple OF switches to measure controllers in terms of control plane throughput and

message response latency. While CBench and OFCProbe can emulate multiple switches, they demand

the operation of additional SDN controllers. Besides, CBench emulates switch-to-controller tra�c

only in a best-e�ort manner, which does not provide means to quantify varying tra�c distributions.

Only perfbench and hvbench are designed for performance measurements of vSDNs, i.e., support-

ing the simultaneous emulation of multiple SDN controllers and switches. Like perfbench, hvbench
uses lib�uid and provides several OF message types for OF 1.0 and OF 1.3. However, hvbench al-

3.4. Measurement Evaluation of Network Hypervisors 35

Table 3.1: Feature comparison with existing OF benchmarking tools. 3indicates whether a tool supports a

given feature. Multi-tenant: can interact with hypervisors. CB: controller benchmark. SB: switch benchmark.

OF tra�c generation rate: OF message sending behavior (best-e�ort, distribution)

Tool Multi-tenant CB SB OF tra�c generation rate

OFTest [Oft] 3 3 best-e�ort

OFLOPS [RSU+12] 3 best-e�ort: traces

CBench [TGG+12] 3 best-e�ort

OFCProbe [JMZ+14] 3 best-e�ort, distribution: pre-de�ned

(Normal, ChiSquared, Exp., Poisson)

hvbench [SBB+16b] 3 distribution: pre-de�ned (Exp.)

perfbench 3 3 3 pre-de�ned distribution: pre-de�ned

(Uniform, Exp., Weibull) and custom

ways demands the existence of a network hypervisor, i.e., it has not been designed for the purpose of

measuring SDN networks. hvbench can only generate OF tra�c whose message inter-arrival times

follow an exponential distribution.

3.4 Measurement Evaluation of Network Hypervisors

This section focuses on benchmarking two hypervisors under varying network load: FlowVisor (FV)

and OpenVirteX (OVX). It starts by brie�y summarizing the existing hypervisor measurement re-

sults. Then, it proceeds to show the performance benchmark results.

3.4.1 Existing Hypervisor Measurements

As this thesis investigates control plane isolation mechanisms of network hypervisors, measure-

ments falling under this category are brie�y explained in the following paragraphs.

FlowVisor. Initial experiments on FV in real testbeds analyzed how much overhead FV adds and

how e�cient its isolation mechanisms are (bandwidth on data plane, �owspace, and switch CPU).

In [SGY+09], an initial experiment quanti�es how much latency overhead FV adds for a setup consist-

ing of one switch. The switch connects through two physical interfaces to a measurement machine,

one connection for data plane tra�c and one connection for control plane tra�c. The machine sends

51 packets per second. The �ow setup time is measured from sending the packet until receiving the

new �ow message (OFPT_PACKET_IN) on the measurement machine. FV’s performance is com-

pared to a reference setup without virtualization. The reference setup shows an average latency of

12 ms. With FV, the latency is 16 ms on average. Hence, FV adds an overhead of 4 ms on average in

this setup. To quantify the overhead for OF messages waiting for replies, a special-purpose controller

is used. The special-purpose controller sends 200 OFMP_PORT_STATS messages on average; this

was the maximum rate supported by the switch. The measured latency overhead is 0.48 ms on aver-

36 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

age. The authors argue that the better performance forOFMP_PORT_STATS is due to an optimized

handling of this message type.

OpenVirteX. Evaluation results [ADG+14; BGH+14; ALS14] compare control plane latency over-

head between OVX, FV, FlowN and a reference case without virtualization. Cbench [TGG+12] em-

ulates �ve switches with a speci�c number of hosts for benchmarking. Each switch emulates one

virtual network. OVX shows the lowest latency overhead of only 0.2 ms taking the reference use

case as a basis.

VeRTIGO. VeRTIGO increases the �exibility of provisioning vSDNs, however, it comes with in-

creased complexity. The evaluations [CGR+12] show an increase in average latencies for new �ow

requests by roughly 35 % when compared to FV.

FlowN. FlowN is compared to FV in terms of hypervisor latency overhead in [DKR13]. For an in-

creasing number of virtual networks from 1 to 100, FV latency overhead also increases while FlowN’s

induced latency stays constant. Note, however, that the added latency overhead of FV is lower for 1

to 80 virtual networks.

AutoVFlow. For AutoVFlow, a multi-domain use case is benchmarked. Di�erent OF message types

were evaluated: OFPT_PACKET_IN, OFPT_PACKET_OUT, and OFPT_FLOW_MOD. OFPT_-
FLOW_MOD faced the highest latency overhead of 5.85 ms.

Carrier-grade. Carrier-grade [DJS12; SJ13] implements network functions directly on switches. A

basic evaluation measured an additional per hop delay of 11 % for one virtual network. More virtual

networks were not measured, thus, no conclusions about potential interference can be given.

Datapath Centric. The latency overhead induced by Datapath Centric’s VA agents is conducted

in [DSG+14]. Compared to a reference case, the VA agents add a latency overhead of 18 %. When

compared to FV, the average overhead is 0.429 ms. A second evaluation examines Datapath Centric’s

scalability for an increasing number of rules from 0.5× 10
3

to 10× 10
3
. The added overhead stays

constant from 100 to 500 rules, while it increases linearly up to 3 ms after 500 rules.

In summary, all results are not representative for production environments, like data centers where

100 switches can have peak �ow arrivals of 1× 10
9
/s [BAM10]. Hence, the small message rates and

topologies cannot reveal the true performance of hypervisors. As a consequence, resource interfer-

ence in larger networking environments might have not yet been studied in detail for hypervisors.

3.4.2 Benchmark Se�ings for FlowVisor (FV) and OpenVirteX (OVX)

The following measurements systematically analyze potential factors and in�uences of the two net-

work hypervisors FlowVisor (FV) [SGY+09] and OpenVirteX (OVX) [ADG+14] on the performance

of vSDNs. Both hypervisors are publicly available. The measurements are structured into two parts:

workload benchmarks with a single tenant and experiments with multiple tenants and multiple

switches.

3.4. Measurement Evaluation of Network Hypervisors 37

Hypervisor SDN Switchperfbench

Physical
Machine

Physical
Machine

Physical
Machine

Control Plane Connections

Data Plane Connection

Figure 3.5: Network hypervisor benchmarking and measurement setup.

3.4.2.1 Measurement Setup and Test Cases

perfbench generates the workload to explore the performance implications of the network hypervi-

sors. Fig. 3.5 shows the measurement setup. The setup consist of three PCs. Each PC has 16 GiB

of RAM and 4 physical CPU cores (8 with Hyper-Threading): Intel(R) Core(TM) i7-4790 CPU @

3.60GHz. All PCs run Ubuntu 14.04.5 LTS with the kernel 3.19.0-26-generic x86_64. Throughout the

measurements, all CPU policies are setup to ”performance” mode to avoid side e�ects due to CPU

energy saving.

The left PC runs perfbenchCP and perfbenchDP, the middle PC runs the SDN hypervisor under

test, and the right PC runs an Open vSwitch (OvS) instance if perfbenchDP does not emulate the

data plane. perfbenchCP connects to the hypervisor PC, and the hypervisor PC connects to the PC

hosting the OvS switch. perfbenchDP is either connected through a dedicated line to the data plane

part of the OvS PC or directly to the hypervisor PC.

The latest versions of FV
1

and OVX
2

are used. perfbench is always con�gured to be capable to oper-

ate with the respective hypervisor. In case of OVX, perfbenchDP uses arti�cial unique MAC addresses

per tenant: a pre-requisite for the operation of OVX. In order to study OVX for OFPT_FLOW_MOD
messages, the OVX source code has to be modi�ed. A �ow table lookup inside OVX is disabled

3
, as

it is irrelevant for the investigated use cases. The �ow table lookup would dramatically impact OVX;

the results would be useless. FV does not demand special settings beside the con�guration of the

slices.

Table 3.2 provides an overview of all conducted measurements. Measurements are examined for

di�erent rates of di�erent message types, single-tenant as well as multi-tenancy setups, andTCP_ND
on/o� settings. Every setup is repeated at least 10 times for a minimum duration of 30 seconds. The

analyses cut o� the �rst 10 and last 10 seconds as both underly transient e�ects: e.g., when starting

a multi-tenant measurement, not all tenants are started exactly at the same time; hence, they might

also stop at di�erent points in time. The remaining durations are expected to provide meaningful

insights into the performance under stable behavior.

1

See https://github.com/opennetworkinglab/�owvisor/tree/1.4-MAINT last accessed 14. November 2017.

2

See https://github.com/opennetworkinglab/OpenVirteX/tree/0.0-MAINT last accessed 14. November 2017.

3

See https://github.com/opennetworkinglab/OpenVirteX/blob/master/src/test/java/net/onrc/openvirtex/elements/

datapath/FlowTableTest.java last accessed 14. November 2017.

https://github.com/opennetworkinglab/flowvisor/tree/1.4-MAINT
https://github.com/opennetworkinglab/OpenVirteX/tree/0.0-MAINT
https://github.com/opennetworkinglab/OpenVirteX/blob/master/src/test/java/net/onrc/openvirtex/elements/datapath/FlowTableTest.java
https://github.com/opennetworkinglab/OpenVirteX/blob/master/src/test/java/net/onrc/openvirtex/elements/datapath/FlowTableTest.java

38 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

Table 3.2: Measurement con�gurations for single-tenant/switch and multi-tenant/multi-switch setups. The

tenants column speci�es the number of tenants. 5:20 tenants with a step size of 5, and 25:100 tenants with

a step size of 25. The switch column shows whether an OvS switch was used or perfbenchDP (=1). Message

rate is message per second with a message inter-arrival time of 1 ms. The messages are uniformly distributed

among the inter-arrival times: e.g., for 10k, 10 messages are generated every 1 ms.

Hypervisor OF Message Type Tenants Switch Msg. Rate TCP_ND

FV/OVX OFPT_PACKET_IN 1 OvS 10k:10k:40k 0

FV/OVX OFPT_PACKET_OUT 1 OvS 20k:10k:50k 0

FV/OVX OFMP_PORT_STATS 1 OvS 5k:1k:8k 0

FV/OVX OFPT_FLOW_MOD 1 1 1k-30k 0/1

FV OFPT_FLOW_MOD 5:20 1 100 per tenant 1

OVX OFPT_FLOW_MOD 25:100 1 100 per tenant 1

FV OFPT_PACKET_IN 1 5:20 100 per switch 1

OVX OFPT_PACKET_IN 1 25:100 100 per switch 1

3.4.3 Systematic and Exploratory Evaluation

This section targets to systematically answer important questions when virtualizing SDN networks.

The control plane latency and the CPU utilization of the respective hypervisor are the performance

indicators in this section.

The measurement studies are structured into two parts. First, Sec. 3.4.3.1 reports on the mea-

surement results of FV and OVX for single-tenant and single-switch scenarios. Second, Sec. 3.4.3.2

deepens the measurement study towards multi-tenant and multi-switch setups.

3.4.3.1 Evaluation Results of Single-Tenant and Single-Switch Measurements

The original measurement results of FV and OVX show that both network hypervisors yield over-

head due to adding an indirection layer. However, the original studies lack detailed investigations for

di�erent message types, rates, and tenant con�gurations. Hence, this section focuses on answering

the following questions:

• What is the impact of network hypervisor implementations?

• What is the impact of OF message types and rates?

• What is the impact of tenant controller implementations?

How does the control plane throughput depend on the specific network hypervisors? The

�rst experiment studies the control plane throughput (maximum rate per second) of FV and OVX

with OvS as the data plane switch. It provides guidelines for the settings of the next experiments.

As cross e�ects due to multiple tenants interfering on the resources should be excluded, the setup

3.4. Measurement Evaluation of Network Hypervisors 39

Table 3.3: Hypervisor control plane messages throughput (maximum OF message rate per second) with a

single tenant and a single switch. Note these measurement settings are not listed in Table 3.2. All
measurements are conducted with OvS.

OF Message Type FV OVX

OFPT_PACKET_IN 58,170 ± 123 51,941 ± 579

OFPT_PACKET_OUT 57,980 ± 247 51,899 ± 301

OFPT_FLOW_MOD 39,975 ± 138 31,936 ± 402

OFMP_PORT_STATS 7,993 ± 22 199,937 ± 34

consists of a single switch and a single controller. perfbench generates OF messages that are steadily

increasing during a measurement run: when hypervisor CPUs are starting to be overloaded, the con-

trol plane latency �rst steadily increases (the bu�ers bloat) until losses start (the bu�ers over�ow).

The maximum OF message throughput is determined as the rate before reaching the bu�er over�ow.

Table 3.3 shows that FV can provide a higher throughput for asynchronous OFPT_PACKET_IN,

OFPT_PACKET_OUT and OFPT_FLOW_MOD messages, e.g., FV can support ∼7× 10
3

msg/s of

OFPT_PACKET_IN more than OVX. This can be explained by OVX’s data message translation

process: OVX includes data plane packet header re-writing from a given virtual IP address, speci-

�ed for each tenant, to a physical IP address used in the network. This is done in addition to con-

trol message translation. Note that for both hypervisors, the supported rate of OFPT_FLOW_MOD
messages is lower than the received OFPT_PACKET_IN rate, which might set the upper bound

for the �ow setup (new connections) rate if all OFPT_PACKET_IN messages demand reactions

(OFPT_FLOW_MOD).

For synchronous OFMP_PORT_STATS messages, OVX shows much higher throughput (∼
200× 10

3
msg/s) compared to FV (only ∼ 8× 10

3
msg/s). Since FV transparently forwards all mes-

sages to the switch, the switch becomes the bottleneck for OFMP_PORT_STATS throughput. OVX

uses a di�erent implementation for synchronous messages: it does not forward all requests for port

statistics to a switch transparently, but rather pulls statistics from the switch, given a pre-con�gured

number of times per second. The default pulling rate of OVX is 1 OFMP_PORT_STATS message

per second. OVX replies on behalf of a switch to all other requests (using the same port statis-

tics); hence, OVX increases throughput in receiving OFMP_PORT_STATS messages. However,

all tenants are limited by the OFMP_PORT_STATS pulling rate set by OVX. In fact, the “factual"

OFMP_PORT_STATS throughput of OVX is equal to its statistics pulling rate.

How much overhead do network hypervisors add to the performance? The following eval-

uation compares FV and OVX for four message types: OFPT_PACKET_IN,OFPT_PACKET_OUT,

OFPT_FLOW_MOD and OFMP_PORT_STATS. Fig. 3.6 shows the performance overhead induced

by the indirection of the control plane tra�c through a hypervisor. For instance, Fig. 3.6a show-

cases the latency for OFPT_PACKET_IN messages arriving at rates between 10× 10
3

msg/s and

50× 10
3

msg/s (message per second).

40 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

10000 20000 30000 40000 50000

OpenFlow [msg/s]

100

101

102
La

te
nc

y
[m

s]

Switch
FlowVisor
OpenVirteX

(a) Latency: OFPT_PACKET_IN.

20000 30000 40000 50000

OpenFlow [msg/s]

100

101

102

La
te

nc
y

[m
s]

Switch
FlowVisor
OpenVirteX

(b) Latency: OFPT_PACKET_OUT.

10000 15000 20000 25000 30000

OpenFlow [msg/s]

10−1

100

101

La
te

nc
y

[m
s]

Switch
FlowVisor
OpenVirteX

(c) Latency: OFPT_FLOW_MOD (with perfbenchDP).

4000 5000 6000 7000 8000

OpenFlow [msg/s]

100

La
te

nc
y

[m
s]

Switch
FlowVisor
OpenVirteX

(d) Latency: OFMP_PORT_STATS.

Figure 3.6: Boxplots of OF control plane latency in milliseconds [ms] for four message types:

OFPT_PACKET_IN, OFPT_PACKET_OUT, OFMP_PORT_STATS, OFPT_FLOW_MOD. Note the di�er-

ent message rates. Message rate is always given in messages per second. The boxplots show the mean values

via markers and the median values via black lines. The whiskers illustrate the lower 2.5 % and the upper 97.5 %
control plane latency values of all measurement runs. TCP_ND is always enabled. Switch measurements show

the best performance for OFPT_PACKET_IN,OFPT_PACKET_OUT,OFPT_FLOW_MOD (perfbenchDP).

FV shows the second best performance for these message types. OVX achieves the best performance for

OFMP_PORT_STATS. Generally, with increasing message rates, hypervisors linearly increase the achieved

latencies. In contrast, switch latencies remain stable and show only a small increase.

The switch achieves average latencies from 0.3 ms increasing to 0.5 ms for the highest rate. FV

and OVX add signi�cant latency overheads due to their network processing: FV results in aver-

age latencies between 0.4 ms and 1 ms; OVX adds even more overhead with average values from

1 ms up to 30 ms. Moreover, OVX shows signi�cantly higher latency variations, which is due to its

multi-threading-based implementation. Whereas more threads can make use of free CPUs or show

advantages in case of waiting for I/O operations, they potentially introduce overhead due to blocking

and freeing resources. Such observations need to be considered when making di�erent performance

guarantees, like average or maximum latency guarantees.

Although the latency increases by an order of magnitude, the latency still seems small in ab-

solute terms for OFPT_PACKET_IN. However, especially in latency critical environments, such

latency values may be unacceptable, and also introduce unacceptable uncertainties. For instance, la-

tency communication is a primary metric for building data center and rack-scale networks [AKE+12;

SCS+15]. Outside of data centers, according to [VGM+13], even slightly higher web page load times

can signi�cantly reduce visits from users and directly impact revenue.

3.4. Measurement Evaluation of Network Hypervisors 41

How do hypervisor implementations a�ect the control plane latency for di�erent message
types and rates? As Fig. 3.6a-Fig. 3.6d illustrate, no virtualization gains the lowest latency values,

whereas virtualization always adds latency overhead again. Looking at the hypervisor results, FV

features again a lower latency than OVX, especially at high message rates. OVX results in higher-

varying latency values and more outliers with varying rates in general: OVX’s performance is less

predictable. For instance, OFPT_PACKET_IN messages have an average of 1 ms for 10× 10
3

mes-

sages, up to an average of 30 ms for 50× 10
3

messages (Fig. 3.6a).

As already explained in Sec. 3.4.3.1, the translation mechanism of OVX leads to processing over-

head on switches. Also the high variances with OVX for 40× 10
3

and 50× 10
3

messages, as also

indicated by Fig. 3.6b, make predictability even harder. In contrast, FV operates in a transpar-

ent manner as it does not instruct switches to change data plane packet headers. It even oper-

ates on a microsecond precision on average for all evaluated rates. The OFPT_PACKET_IN and

OFPT_PACKET_OUT handling at FV results in lower control latency and exhibits less variability

even under varying control rates when compared to OVX.

Fig. 3.6c reports on the behavior for OFPT_FLOW_MOD messages. Again, the switch shows the

best latency performance. Interestingly, while FV shows a better average latency, 75 % of its latency

values are worse than the ones with OVX. OVX’s multi-threading-based implementation can e�-

ciently improve the latency for the majority of the messages (75 %), however, it introduces higher

variance.

Fig. 3.6d shows the results for OFMP_PORT_STATS for a rate from 5× 10
3

to 8× 10
3

messages

per second. The maximum rate is set to 8× 10
3

messages, as a rate higher 8× 10
3

overloads OvS,

thus latency increases and even becomes instable. As Fig. 3.6d shows, OVX now outperforms FV due

to its implementation as a proxy which does not transparently forward all messages. FV’s design

relies on transparency, i.e., it forwards all messages to the switch, which overloads the switch. In

contrast, OVX replies on behalf of the switch; hence, OVX avoids an overload of the switch: this

signi�cantly improves control plane latency, but of course, might lead to outdated information about

switch statistics.

As a conclusion, the best achievable performance per message type depends on the chosen net-

work hypervisor: for di�erent message types each hypervisor shows better performance in terms of

predictability, e.g., in terms of average and maximum latency. Such observations need to be taken

into account when a network hypervisor needs to be chosen for a speci�c network scenario. This

means that based on the tenants’ demands, e.g., whether a tenant requests more �ow modi�cations

or wants to have a more precise network monitoring, the virtualization layer should be composed of

varying implementations of virtualization functions.

How does the tenant’s controller impact the hypervisor performance? The next investiga-

tion focuses on the impact of the implementation aspects of SDN controllers on network hypervisor

performance, and vSDN performance in general. For this, the controller operating system con�gures

its TCP connection with TCP_ND set to 0 or 1: TCP_ND = 1 disables Nagle’s algorithm. The con-

troller socket is forced to send its bu�ered data, which leads to more network tra�c as more smaller

packets are sent. This con�guration possibly improves TCP performance in terms of latency. The

42 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

1 2 3 4 5 10 15 20 25 30

OpenFlow [1× 103 msg/s]

0

5

10

15

20

25

30

La
te

nc
y

[m
s]

TCP Impact HV Impact

TCP_NO_DELAY = 0
TCP_NO_DELAY = 1

(a) Hypervisor: FV Latency.

1 2 3 4 5 10 15 20 25 30

OpenFlow [1× 103 msg/s]

0

5

10

15

20

25

30

La
te

nc
y

[m
s]

TCP Impact HV Impact

TCP_NO_DELAY = 0
TCP_NO_DELAY = 1

(b) Hypervisor: OVX Latency.

Figure 3.7: Boxplots showing control plane latency impact of the TCP_ND feature on the hypervisor perfor-

mance. The message type is OFPT_FLOW_MOD. Left �gure shows FV, right �gure OVX. Unit scales on x-axis

are 10× 10
3

msg/s. TCP impact can be observed for rates up to 15× 10
3

msg/s. Message rate and hypervisor

(HV) impact latency for rates higher than 15× 10
3

msg/s.

performance of both hypervisors is evaluated for OFPT_FLOW_MOD messages. The measurements

are carried out at message rates between 1× 10
3

and 30× 10
3

messages per second.

Fig. 3.7 illustrates that for small rates (1× 10
3

to 15× 10
3
), with TCP_ND = 0, the TCP aggre-

gation behavior determines the control plane latency: this holds for both FV and OVX. Disabling

Nagle’s algorithm leads to a signi�cant latency improvement for both hypervisors. When sending

more than 20× 10
3

messages per second, there is no clear di�erence for the latency between the TCP

settings. The reason is that the TCP_ND �ag has no impact on the sending behavior of the tenant

anymore as its socket bu�er becomes saturated. The socket process can always completely �ll TCP

packets (up to 1500 bytes) and does not wait arti�cially until a packet is completely �lled.

When the transmission behavior becomes independent of the TCP_ND setting, the way how hy-

pervisors process messages determines control plane latencies. Whereas FV only shows a small la-

tency increase, OVX shows a signi�cant latency variation. Again, the reason for the latency increase

is due to OVX’s packet re-writing procedure and its multi-threaded processing implementation.

3.4.3.2 Evaluation Results of Multi-Tenant and Multi-Switch Measurements

Hypervisors show varying control plane latencies for di�erent OF message types for di�erent rates.

This section focuses on scenarios with multiple tenants and multiple switches. The following general

questions should be answered:

• Do multiple tenants lead to resource interference?

• Do multiple switches lead to resource interference?

• If interference happens, how severe is it?

How does the control latency and CPU utilization depend on the number of tenants? The

next measurements evaluate the impact of the number of tenants on the hypervisor performance:

ideally, the performance provided for a single virtual network should scale (transparently) to multi-

ple tenants. As an example: the performance (e.g., in terms of control latency) of two tenants with

3.4. Measurement Evaluation of Network Hypervisors 43

1 5 1 10 1 15 1 20

Tenants [#]

0

5

10

15

20

25

La
te

nc
y

[m
s]

Single Tenant
Multi-tenancy

500 1000 1500 2000
OpenFlow [msg/s]

(a) Hypervisor: FV Latency.

1 25 1 50 1 75 1 100

Tenants [#]

10−1

100

101

102

103

104

La
te

nc
y

[m
s]

Single Tenant
Multi-tenancy

2500 5000 7500 10000
OpenFlow [msg/s]

(b) Hypervisor: OVX Latency.

Figure 3.8: Comparison between the impact of a single tenant and multi-tenancy on the control plane latency

provided by FV and OVX. The message type is OFPT_FLOW_MOD. Note the di�erent message rates for FV

and OVX. The number of tenants is provided on the lower x-axis, while the message rate is given on the axis

on top of the �gures. The dashed lines indicate the di�erent measurement setups. Multi-tenancy is increasing

the control plane latency in contrast to the single-tenant setup.

1 5 1 10 1 15 1 20

Tenants [#]

0

100

200

300

C
P

U
[%

]

Single Tenant
Multi-tenancy

500 1000 1500 2000
OpenFlow [msg/s]

(a) Hypervisor: FV CPU.

1 25 1 50 1 75 1 100

Tenants [#]

0

100

200

300

400

500

C
P

U
[%

]

Single Tenant
Multi-tenancy

2500 5000 7500 10000
OpenFlow [msg/s]

(b) Hypervisor: OVX CPU.

Figure 3.9: Comparison between the impact of a single tenant and multi-tenancy on CPU consumption by FV

and OVX. The message type is OFPT_FLOW_MOD. Note the di�erent message rates for FV and OVX. The

number of tenants is provided on the lower x-axis, while the message rate is given on the axis on top of the

�gures. The dashed lines indicate the di�erent measurement setups.

a given tra�c rate (in total 200) should be equal to a setup with one tenant having the same total

tra�c rate (the sum of the rates of the two tenants, e.g., 200) - the control latencies should be in

the same range for both single and multi-tenancy setups. Hence, increasing the number of tenants

also increases the workload on the hypervisor under test. TCP_ND is enabled so that the controllers

do not add waiting times. In case of multi-tenancy, each tenant generates 100 OFPT_FLOW_MOD
messages per second.

Fig. 3.8a shows the impact of multiple tenants on FV’s performance. With an increasing number

of tenants, multiple tenants generally lead to higher latency when compared to the single-tenant

setup. For instance, with 10 tenants producing a total rate of 1× 10
3

messages, the control latency

is 3 ms higher than the control latency of a single tenant with 1 ms. The measured CPU consump-

tion con�rms that FV has to accomplish extra work for multiple tenants, which can particularly be

seen for 15 and more tenants in Fig. 3.9a. This justi�es the obligation of conducting multi-tenant

measurements when quantifying the performance of hypervisors.

Due to load constraints, FV cannot support more than 20 tenants: the implementation of how

44 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

0 5 10 15 20 25 30

Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

5 Tenants
10 Tenants
15 Tenants
20 Tenants

(a) Hypervisor: FV Latency.

0 5 10 15 20 25 30

Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

25 Tenants
50 Tenants
75 Tenants
100 Tenants

(b) Hypervisor: OVX Latency.

Figure 3.10: Cumulative Distribution Functions (CDFs) of latency values of tenants for four tenant settings.

The message type is OFPT_FLOW_MOD. CDFs show the latency distribution per tenant per varying setups

for FV and OVX. Note the di�erent number of tenants for each setup. The higher the number of tenants, the

higher the distribution of latencies among individual tenants — an indicator for unfair latency distribution.

FV processes OFPT_FLOW_MOD messages leads to a switch overload; thus, the performance

becomes even unpredictable. In detail, FV implements a protection method that replicates the

OFPT_FLOW_MOD message of one tenant to all other tenants, using a ”forward to controller” ac-

tion; however, this mechanism puts high loads on the control channel between FV and the switch,

as well as on the switch CPU.

OVX shows similar e�ects when increasing the number of tenants, as seen in Fig. 3.8b. OVX can

support up to 100 tenants given the setup. Because OVX is multi-threaded, it can e�ciently uti-

lize more than 1 CPU core. Fig. 3.8b shows again a signi�cant increase in control plane latency for

multiple tenants; with 100 tenants and 10× 10
3

messages per second, the control latency increases

by more than 10 times up to 10 ms when compared to the single-tenant setup. OVX also consumes

drastically more CPU with an average of 380 % with 100 tenants compared to 70 % in case of a single

tenant; a �ve-fold increase, as shown in Fig. 3.9b. Note also that OVX is already overloaded in these

settings; some measurement runs are not usable as OVX even shows failures — OVX cannot handle

more than 75 tenants reliably. All results represented here are for runs where no failure could be

observed at least for the 30 sec duration of the experiments.

Similar performance and behavior are observed for other OF message types, e.g., OFPT_-
PACKET_IN messages originating from the switches.

Is the control plane latency distributed fairly across the tenants? Even if tenants are sending

messages of the same type at the same rate, side-e�ects due to resource interference might lead to

unfair situations. The control plane latency per tenant is now used as an indicator for fairness. The

fairness among 5 to 20 tenants is compared for FV and among 25 to 100 for OVX.

Fig. 3.10 shows the latency distribution among all tenant setups for FV and OVX. For 5 or 10 ten-

ants, there is no clear di�erence among all tenants: both FV and OVX do not clearly advantage one

tenant. This holds generally for all conducted runs. However, when comparing 5 tenants with 10 or

20 tenants, it can be noted that the variation of latency values increases with the number of tenants

independent of the hypervisor. The tenants can even perceive latency values that di�er on 4 ms on

3.4. Measurement Evaluation of Network Hypervisors 45

1 5 1 10 1 15 1 20

Switches [#]

0.0

0.5

1.0

1.5

La
te

nc
y

[m
s]

Single Switch
Multiple Switches

500 1000 1500 2000
OpenFlow [msg/s]

(a) Hypervisor: FV Latency.

1 25 1 50 1 75 1 100

Switches [#]

0

10

20

30

La
te

nc
y

[m
s]

Single Switch
Multiple Switches

2500 5000 7500 10000
OpenFlow [msg/s]

(b) Hypervisor: OVX Latency.

Figure 3.11: Comparison of the control plane latency provided by FV and OVX between single-switch and

multi-switch setups. Note the di�erent number of switches for FV and OVX. The number of switches is pro-

vided on the lower x-axis, while the message rates are given on the axis on top of the �gures. The dashed lines

indicate the di�erent measurement setups.

1 5 1 10 1 15 1 20

Switches [#]

0

25

50

75

C
P

U
[%

]

Single Switch
Multiple Switches

500 1000 1500 2000
OpenFlow [msg/s]

(a) Hypervisor: FV CPU.

1 25 1 50 1 75 1 100

Switches [#]

0

200

400

600
C

P
U

[%
]

Single Switch
Multiple Switches

2500 5000 7500 10000
OpenFlow [msg/s]

(b) Hypervisor: OVX CPU.

Figure 3.12: Comparison of the CPU consumption by FV and OVX between single-switch and multi-switch

setups. Note the di�erent number of switches for FV and OVX. The number of switches is provided on the

lower x-axis, while the message rates are given on the axis on top of the �gures. The dashed lines indicate the

di�erent measurement setups.

average; a clear unfairness when considering that the absolute values are not higher than 10 ms for

90 % of all values. Note further that an increasing number of tenants even drastically worsens the

absolute latency values. For both hypervisors, 5 % of all latency values are larger than 15 ms already.

In summary, the performance in a multi-tenant setup becomes less predictable with both hypervisors

- it is harder to provide absolute latency guarantees.

The observed latency values can be used to determine upper bounds for the control plane latency

that can be guaranteed in a multi-tenant setup. Beyond any doubt for small tra�c rates, the hyper-

visors share the resources fairly among the tenants based on their portion of network control tra�c.

All tenants are equally a�ected given the number of tenants, the message type, and the control plane

tra�c. However, increasing the number of tenants leads to higher and more variable latency per-

formance: more tenants lead to more resource interference - the hypervisors do not fairly share the

resources anymore.

How does the control latency depend on the number of switches? This section quanti�es

the ability of hypervisors to operate multiple switches. Such information is important to argue

46 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

about a hypervisor’s scalability performance. Intuitively, a hypervisor performance should scale

with the number of switches (switch connections): the performance of tenants should not be af-

fected by the number of switches. For this purpose, perfbenchDP emulates switches and sends

OFPT_PACKET_IN messages as tra�c workload. FV is benchmarked for 5 to 20 switches; OVX

is benchmarked for 25:100 switches. Each switch generates 100 OFPT_PACKET_IN messages per

second; therefore, the workload increases with the number of switches. The performance of the

multi-switch setup is compared to the single-switch setup. The setup consists of one controller with

TCP_ND enabled to eliminate potential cross e�ects due to multiple controllers in combination with

arti�cial waiting times.

Fig. 3.11 and Fig. 3.12 show the e�ect of the number of switches on the hypervisors’ performance.

Controlling many switches does not severely a�ect FV’s CPU consumption and its provided control

plane latency on average (Fig. 3.11a and Fig. 3.12a). However, more switches introduce a higher

performance variability: while the average latency and the average CPU consumption are only

marginally a�ected, the performance metrics generally show a higher variance. For instance, when

comparing 1 with 20 switches (i.e., a total message rate of 2× 10
3

msg/s), 20 switches increase the

average control latency by 200 µs only; however, maximum latency values that are two times higher

can be observed. However, the latency overhead due to multiple switches is negligible when looking

at the absolute values.

In contrast to FV, OVX noticeably a�ects the control plane latency: the average latency and

the maximum latency are doubled for 75 and 100. This is also shown by the CPU consumption

in Fig. 3.12b: OVX consumes more CPU due its multi-threaded implementation to handle multiple

switches; the CPU actually increases from 44 % (single-switch setup) to 395 % (multi-switch setup).

This means that OVX exploits multiple threads to share its resources (CPU) among switches. Note

also that OVX is already overloaded in these settings; some measurement runs are not usable as OVX

even shows failures. All results represented here are for runs where no failure could be observed at

least for the 30 sec duration of the experiments.

In summary, the number of switches and the number of tenants a�ect hypervisor performance;

in particular the number of tenant controllers shows a higher impact than the number of switches.

This suggests that handling the abstraction of virtual networks (and the involved context switching

of the hypervisors) has a signi�cantly higher impact than handling switch abstractions. As an identi-

�ed example, adding tenants increases the workload of FV quadratically with the number of tenants,

whereas when adding a switch the relation between number of switches and workload is linear.

3.5 Network Virtualization Layer Architecture Towards Predictable
Control Plane Performance: HyperFlex

As the previous measurements reveal, hypervisor implementations o�er signi�cantly di�erent per-

formance for the same networking tasks, i.e., abstracting and isolating networking resources. Ac-

cordingly, operators must choose between di�erent implementations and their performance trade-

o�s when planning to virtualize SDN networks. In case operators demand adaptation, they should

not limit themselves by using a one-�ts-all approach.

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 47

Generally speaking, the existing architectures cannot adapt towards the given use cases and re-

quirements. For instance, they cannot change their operations from software (e.g., for low cost)

to hardware (e.g., for low latency), even if the current setup would allow it. Hypervisor proposals

further do no elaborate on their deployment in di�erent network scenarios; rather they invoke the

design of special hypervisors for special setups, which is per se limiting their utility for di�erent sce-

narios. Accordingly, we introduce HyperFlex: an architecture for SDN networks that decomposes

the virtualization layer into functions that are needed for the virtualization of SDN networks.

HyperFlex’s concept relies on the idea to simultaneously operate network functions either in soft-

ware or in hardware, by making use of the whole �exibility as provided by today’s communication

network infrastructures. The number and the operation of the software and hardware functions are

determined by the current requirements of the virtual network tenants. For instance, tenants that

require a precise control plane latency might be hosted on hardware functions, which satisfy strict

processing time constraints. Functions for virtual networks that demand a �exible adaptation can be

hosted on software functions: nevertheless software functions might be prone to higher performance

variability.

However, to realize such �exible virtualization architecture, the operation and execution of vSDN

needs to be highly predictable: network functions should show performance values that fall into

known ranges. Accordingly, mechanisms are needed that (1) provide a predictable performance and

that (2) provide a high �exibility in terms of resource operation. In this section, we present virtual-

ization layer functionalities that increase the predictability and adaptability of virtualization layers.

We particularly focus on the design of the control plane part of the virtualization layer.

3.5.1 Architecture Overview

This section brie�y introduces HyperFlex’s main architecture concept. Later on it discusses the main

advantages of HyperFlex’s architecture. According to the given classi�cation introduced in Sec. 3.1.2,

HyperFlex is the �rst hypervisor network architecture that operates on general computing platforms

and can make use of special-purpose and general-purpose networking hardware.

Concept. HyperFlex [BBK15] realizes the hypervisor layer via the orchestration of multiple het-

erogeneously implemented virtualization functions: the virtualization layer has been decomposed

into functions required to virtualize SDN networks. The functions themselves can be realized

through heterogeneous implementations: a function is either realized in software or in hardware,

or it can be realized in a distributed fashion, i.e., via both software and hardware. Besides, any entity

implementing one functionality or more, e.g., existing hypervisors as FV or OVX, can be integrated

in order to accomplish the virtualization tasks.

HyperFlex operates a mix of all possible realizations of functions, which means also a mix of their

implementations. As control plane tra�c of tenants may need to pass through di�erent functions

(isolation and abstraction), HyperFlex operates and interconnects the functions accordingly, which

as a whole realizes the virtualization layer.

48 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

Hypervisor
Controller

Orchestration

Virtualization
Layer

1

2

Physical
SDN Network

SDN C1 SDN C2

Hypervisor
SW Isolation
(Impl. by FV)

Tenant
SDN Controllers

Hypervisor
Network

HW
Isolation

Hypervisor
Abstraction

(Impl. by FV)

Hypervisor
Soware

Figure 3.13: HyperFlex architecture: the virtualization layer is built of tow main components: the hypervisor
network and the hypervisor software. The hypervisor network nodes host the hypervisor functions realized

in hardware. The hypervisor software consists of the hypervisor controller and the software-based functions

(e.g., abstraction and isolation). The hypervisor controller controls and orchestrates all functions, i.e., hardware

functions (see 1) and software functions (see 2). The example illustrates how the tra�c of the second tenant

passes through the hardware function and then through the abstraction function towards the physical SDN

network.

Components. Fig. 3.13 shows an overview of the architecture. Two main components are shown:

the hypervisor network and the hypervisor software. The hypervisor network connects the tenants’

SDN controllers with the hypervisor software, e.g., FV realizing abstraction and software isolation.

FV’s abstraction function is responsible for controlling the physical SDN network; it establishes the

control connections with the SDN network. The network nodes of the hypervisor network host the

hardware-based virtualization functions. The hypervisor controller manages and controls the hyper-

visor network. It also con�gures the hardware functions. Any computing platform, like data centers,

can host the hypervisor SDN controller (hypervisor controller) and software functions. To summarize,

HyperFlex di�erentiates the following two function types:

• Hypervisor Software Functions. These are the virtualization functions implemented in software

and hosted on computing platforms. In its current version, HyperFlex can deploy here any

existing software-based hypervisor, e.g., FV: in its current realization, hypervisors also estab-

lish the connections with the physical SDN network. Additional functional granularity can be

achieved by using FV or OVX in a hierarchical manner [SGY+09; SNS+10; ADG+14; ALS14].

• Hypervisor Hardware Functions. Hypervisor hardware functions consist of two components:

the logic residing in software and the processing realized via hardware. An SDN controller

manages the hardware parts of these functions. The functions can only be realized by hard-

ware components o�ering the targeted functionality, e.g., isolation through hardware sched-

ulers and queues.

As an example, Fig. 3.13 shows how the control tra�c of the second green tenant passes through

the hypervisor network. Here, the control tra�c is processed by a hardware-based isolation function.

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 49

The software-based abstraction functions then processes the control tra�c: e.g., it sets the correct

identi�er of the tenant. Then, it forwards the control tra�c towards the physical SDN network.

Design goal advantages. HyperFlex’s design goals are higher �exibility, scalability and pre-

dictability. In the following, it is discussed how the di�erent design choices contribute towards these

targets.

• Software versus Hardware Functions. Making use of the realization of functions either in soft-

ware, hardware, or both software and hardware, increases the �exibility to realize the virtu-

alization layer. For instance, the realization in software allows to o�oad the functionality to

cloud infrastructures. This utilizes actually the advantages of using cloud resources: �exible

requesting of resources on demand. Furthermore, software implementations bene�t from their

independence of the underlying hardware. Hardware implementations require special capabil-

ities from the hardware, e.g., tra�c shapers or limiters for isolation. In case hardware provides

the capabilities, it is expected that hardware processing provides higher predictability, i.e., less

variations. However, the use of hardware is usually limited by the available resources when

compared to software, e.g., fast matching needs expensive TCAM space.

• Flexible Function Placement. HyperFlex makes it possible to �exibly deploy software functions,

i.e., they can be placed and run on commodity servers, or to use hardware, i.e., functions can

be realized via the available capabilities of the physical networking hardware. Hence, Hyper-

Flex potentially increases placement possibilities. The advantages are manifold; avoiding a

single point of failure due to operations at multiple locations; lower control plane latency due

to deploying functions closer to tenants.

• Improved Resource Utilization. Decomposing and distributing the virtualization layer into func-

tions provides better demand adaptation capabilities. For instance, in case of high load scenar-

ios, processing may be o�oaded from hardware to software functions or vice versa. A hyper-

visor architecture realized as a single centralized entity may always demand a high resource

over-provisioning, as the architecture is limited by the scalability of the hosting platform.

• Control Plane Isolation. Di�erentiating between tenant control plane tra�c introduces better

control plane isolation capabilities. Isolating control plane tra�c leads to more predictable

network operation: e.g., the tra�c of a malicious controller is hindered to a�ect the operation

of non-malicious controllers of other tenants. Only by isolation, operators can guarantee cor-

rect control plane operation with acceptable latency, which eventually results even in a more

predictable behavior of the data plane.

3.5.2 Virtualization Layer Control Plane Isolation

This section introduces HyperFlex’s control plane isolation concept towards predictable and guar-

anteed control plane operations for tenants.

50 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

Service Request
- Message Type
- Latency
- Loss

Calculate
Resource

Consumption

Reserve
Requested
Resources

Set Soware
Isolation & Protection

Set Hardware
Isolation & Protection

1 2 3 4

Figure 3.14: Resource reservation pipeline: steps from requesting to setting isolation and protection of re-

sources. First: service requests speci�ed with OF message type, latency and loss; second: calculation of re-

source consumption based on request; third: needed resources (CPU and network data rate) are reserved;

fourth: hardware and software isolation functions are con�gured for isolation and protection.

3.5.2.1 Concept

Two resources might a�ect the control plane latency of tenants: the available data rate on the hy-

pervisor network and the processing capabilities of the virtualization functions. In contrast to the

impact of the message rate on the CPU consumption, the needed data rate for transmitting messages

is rather small. For instance, even sending OFPT_FLOW_MOD messages at a rate of 50× 10
3

msg/s

results in a data rate of 4 Mbit/s only; prioritizing and reserving such data rate comes at a low cost. As

the measurements, however, revealed, even with multiple tenants sending at low data rates, the CPUs

of hypervisors can be easily overutilized. As a consequence, HyperFlex mainly focuses on isolation

techniques to prevent CPUs of platforms hosting the virtualization functions from over-utilization.

It targets at the implementation of two isolation techniques: a software-based and a hardware-based

isolation.

Figure 3.14 illustrates the overall con�guration process for control plane isolation. Firstly, service

requests are de�ned in terms of OF message types, rates, latency and loss metrics (maximum, aver-

age, etc.). Secondly, based on the requests, resource consumptions are calculated; resources include

the CPUs of the virtualization functions as well as the resources of the hypervisor network and the

processing resources of the networking elements. Thirdly, the virtualization layer then reserves the

needed resources. Finally, software and/or hardware isolation functions are con�gured and deployed

among the infrastructure.

The CPUs of the network nodes (physical SDN switches) and the computing platforms of the

infrastructure can mainly a�ect the processing time of OF messages. Highly-utilized CPUs might

lead to longer message processing times. As many tenants are sharing these CPUs, even a single

overloaded CPU may degrade the performance of many vSDNs. The source of over-utilization can

already be a single vSDN only. Accordingly, all involved CPUs need to be sliced and allocated for all

tenants for isolation purpose.

In order to slice CPUs for tenants, benchmarks are needed which quantify the relationships be-

tween CPU consumptions and control plane message rates of di�erent control plane message types.

With benchmarks (as demonstrated in Sec.3.4), functions can be modeled that map requested OF

message rates to CPU consumptions of network hypervisors. Based on identi�ed relationships, iso-

lation functions are then con�gured to support requested services in terms of OF message type, loss

and latency.

Figure 3.15 provides an overview about an exemplary physical network underlying the isolation

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 51

Physical
Network

SDN C1

Computing
Platform

(e.g., a data center)

hSDN-Network

(a) Physical view of network.

Physical
Network

SDN C1

Virt. Func.

SW
Isolation

HW
Isolation

B
ypass

(b) Function chain with software

(SW) isolation.

Physical
Network

SDN C1

Virt. Func.

SW
Isolation

HW
Isolation

B
ypass

(c) Function chain with hardware

(HW) isolation.

Figure 3.15: HyperFlex’s deployment of isolation functions: physical network underlying chains, function

chain with hardware versus function chain with software.

function chains (Fig. 3.15a), an exemplary software function chain (Fig. 3.15b) and a hardware func-

tion chain setup (Fig. 3.15c). Fig. 3.15a shows the hypervisor network and the physical SDN net-

work. The hypervisor network consists of a network node; the software functions are operated on

a computing platform, as provided by data centers. The network node hosts the hardware isolation

function (HW Isolation) and the data center hosts the software isolation function (SW Isolation).

So�ware Isolation

Figure 3.15b shows a realization of the software function chain. While the control plane tra�c by-

passes the hardware isolation, it passes the software isolation. The software isolation function oper-

ates on the application layer (Open Systems Interconnection (OSI) Layer 4); it drops OF messages that

exceed a prescribed vSDN message rate per second. Dropping OF messages is intended to lower CPU

consumptions of hypervisor functions and switches: hence, it should either decrease interference or

protect CPUs from over-utilization.

The reasons for savings are expected to be twofold: (1) hypervisor software functions, which suc-

ceed the isolation, process less application layer messages received from the tenants and (2) they for-

ward less messages towards the switches, which involves again both message (application layer) and

packet (network layer) processing. As a drawback, the tenant controllers have to compensate for the

lost OF messages: e.g., controllers should not wait endless for replies of request messages. By sending

OF error messages, hypervisors can also implement active noti�cation mechanisms; however, such

mechanisms might again demand resources, e.g., CPU. The measurement studies in Section 3.5.2.2

reveal that the bene�ts of the software isolation depend on several aspects like the OF message type:

e.g., dropping synchronous messages, i.e., requests, avoids the overhead of processing the replies.

52 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

Con�guration. The con�guration parameter of the software isolation is the number of total OF

messages allowed per second. The software isolation function only counts the perceived OF mes-

sages per second; within a second, a tenant can send messages with any inter-arrival time and at

di�erent burst-sizes as long as the messages do not exceed the limit per second. The con�guration

parameter of the software isolation depends on the relationship between OF message type rates and

the CPU consumption of the computing platform. The CPU consumption involves the operation of

the isolation function and the operation of all other hypervisor functions.

Hardware Isolation

Figure 3.15c illustrates how HyperFlex realizes the hardware isolation; the control plane tra�c passes

through the hardware isolation function while it bypasses the software isolation. The hardware iso-

lation function operates on the OSI layers 2–4, while it polices (limits) the forwarded vSDN control

messages.

More speci�cally, a hardware solution polices (limits) OF control tra�c on the network layer

through shapers (egress) or policers (ingress) of general-purpose or special-purpose networking

hardware. However, hardware isolation does not speci�cally drop OF messages, which are appli-

cation layer messages: current OF switches cannot match and drop application layer messages. Be-

sides, OF can use encrypted data transmissions, which makes it impossible to match on speci�c OF

headers in the content of the TCP packets. Rather, hardware solutions drop whole network packets

(containing TCP segments) based on matches up to layer 4 (transport layer). Dropping TCP segments

causes TCP packet retransmissions. As a result, the backlogs of bu�ers increase; larger bu�ers lead

to higher control plane latencies for tenants.

Con�guration. The con�guration parameter of the hardware isolation is the data rate per second

(e.g., kbit/s) that is needed to forward control plane messages at stated inter-arrival times (e.g., 1 ms).

For con�guring the data rate, an additional mapping between OF message rate and network data

rate is needed, which needs also to consider the inter-arrival times of messages. Hence, the mapping

has to consider the individual sizes of OF packet headers and the headers of the used transmission

protocol (e.g., TCP) when calculating and setting the data rate.

For instance, let us assume that a tenant requests to send 1 OF message, e.g., OFPT_FEATURES-
_REQUEST having a size of 8 Byte, every 500 ms. Taking a TCP header of 66 Bytes into account,

this demands a policer to accept a sending rate of 2 · (66 + 8) = 148 Bytes per second (66 Byte

including TCP, IP and Ethernet header). However, if the tenant now sends only every second, he

can send (148 − 66)/8 = 10.25 ≈ 10 messages per second: the tenant sends more messages at a

higher aggregation rate; however, he has to accept a longer waiting time between sending messages.

Hence, the con�gured data rate determines the OF message throughput in a given time interval.

Note further that the exemplary calculation provides only a lower bound of minimum data rate that

needs to be reserved. Experiments, which are not shown for brevity, revealed that always a data rate

headroom needs to be reserved to achieve the desired message rate with stated inter-arrival times.

More details on con�guring the hardware isolation function are provided in [BBK15; BBL+15].

As we are interested in the general e�ects of isolation, we omit more detailed explanations of the

con�gurations of hardware and software isolation. In particular the con�gurations of the hardware

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 53

Hypervisor SDN Switchperfbench

PM PM
Physical

Machine (PM)

Control Plane Connections

Data Plane Connection

SDN Switch

PM
HW Isolation SW Isolation

(a) Without Switch Emulation.

HypervisorperfbenchCP

PM

PM

Control Plane Connections

SDN Switch

PM
HW Isolation SW Isolation

perfbenchDP

(b) With Switch Emulation.

Figure 3.16: Two isolation measurement setups: without switch emulation (top) and with switch emulation

(bottom). When perfbench emulates the switch, it connects actively to the hypervisor under test.

and software isolation o�er many further optimization opportunities, like using di�erent schedulers

on switches or advanced shaping mechanisms [Lar].

3.5.2.2 Measurement Evaluation of Control Plane Isolation

While the preliminary study of HyperFlex [BBK15] proofs its potential to isolate performance, this

thesis extends the preliminary study: it focuses on more message types and di�erent utilization sce-

narios. The following questions are investigated:

• Can both isolation mechanisms always avoid resource interference?

• Does isolation depend on the message type?

• What is the cost of isolation?

Figure 3.16 gives an overview of the measurement setup. The measurement setup introduced in

Section 3.4.2.1 is extended by an additional switch between the hypervisor under test and the SDN

controllers. The additional PC runs an instance of the OvS software switch for realizing the hardware

isolation function.

Implementation details. The same measurement infrastructure as presented in Sec. 3.4.2.1 is

used: the same PCs and interconnections. HyperFlex’s isolation capabilities are studied for FV, as

only FV implements a software isolation function. Linux tra�c control is used to demonstrate the

hardware isolation [Lar].

Procedure. The benchmarks rely also on the same measurement procedure as introduced in Sec-

tion 3.4.2.1. Either a single or two tenants send OF messages of one type at the same or di�erent

54 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

Table 3.4: Isolation measurement con�gurations. Since TCP_ND is alway set to true, it is omitted from

the table. A hardware isolation of 100 kB/s corresponds to a message rate of ≈ 2.5× 10
3

msg/s. OF message

inter-arrival times are 1 ms. In the �rst two settings, Tenant-1 is increasing its message rate, which is in ac-

cordance with its SLA. Tenant-2 is sending always 5× 10
3

msg/s with 1 ms inter-arrival times, which is not

in accordance with its SLA. In the third setting, the needed headroom of software isolation for one tenant is

studied. The fourth setting demonstrates the infrastructure protection capabilities: Tenant-2 is always sending

4.5× 10
3

msg/s while the software isolation rate is increased from 1× 10
3

msg/s to 7× 10
3

msg/s.

Iso. OF Message Type Tot. Ten. Tenant Msg. per sec. Iso. Conf.

HW

OFPT_-
FEATURES_-
REQUEST

2

1 2.5× 10
3
-12.5× 10

3
-

2 5× 10
3

100 kB/s ≈ 2.5
messages every

1 ms

SW

OFPT_-
FEATURES_-
REQUEST

2

1 3× 10
3
-6× 10

3
-

2 5× 10
3

2.5× 10
3

msg/s

SW OFPT_-
PACKET_OUT

1 1 20× 10
3

- 50× 10
3

20× 10
3

SW
OFMP_PORT_-
STATS

2

1 4× 10
3

-

2 4.5× 10
3

1× 10
3

- 7× 10
3

rates. The inter-arrival times of messages is always 1 ms. The messages are processed either by a

hardware isolation or by software isolation.

Data. All results represent at least 3 runs per message rate and type. The durations of all runs vary

between 30 s and 60 s. The analysis relies on the following performance indicators: the control plane

latency and the CPU consumption of the virtualization layer and an OvS switch. All measurement

setups and con�gurations are summarized in Table 3.4.

3.5.2.3 Measurement Results

In a �rst setup, the general capabilities of the isolation functions to guarantee network performance

for tenants are quanti�ed. The used message type is OFPT_FEATURES_REQUEST; the message

type is a good representative for request/reply messages, as it benchmarks the whole processing cycle

- virtualization layer, switch, virtualization layer. Two tenants are operating in this setup: Tenant-1

and Tenant-2. Tenant-1 is constantly increasing its message rate; this is in conformity with its service

request - the tenant should not be a�ected by interference. While Tenant-1 increases its message rate,

Tenant-2 will always send a constant but exceeding number of messages; this is not in accordance

with its service request - isolation should prevent the tenant from exceeding its rate. Exceeding the

rate, however, will increase the CPU load of the hypervisor, which might lead to interference. The

CPU of the hypervisor process is limited to 15 % to better illustrate the overload impact.

Can hardware isolation protect virtualization layer resources? Figure 3.17 shows the results

of the hardware isolation for both tenants. In this setup, the hardware isolation is con�gured to

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 55

7.5 9.5 11.5 13.5 15.5 17.5

OpenFlow [1× 103 msg/s]

0

10

20

30

40

50
La

te
nc

y
[m

s]
W/O Isolation
Isolation

(a) Latency of Tenant-1 (normal behavior). Tenant-1 is in-

creasing its message rate, which is in agreement with its ser-

vice request. x-axis gives the total message rate.

7.5 9.5 11.5 13.5 15.5 17.5

OpenFlow [1× 103 msg/s]

0

50

100

150

200

La
te

nc
y

[m
s]

W/O Isolation
Isolation

(b) Latency of Tenant-2 (not conform). Tenant-2 is always

sending 5× 10
3

msg/s, which is not in agreement with its

service request. Network isolation rate: 100 kB correspond-

ing to 2.5× 10
3

msg/s with 1 ms inter-arrival times.

Figure 3.17: Latency boxplots with and without hardware isolation for two tenants: Tenant-1 is behaving

normal whereas Tenant-2 is exceeding its agreed message rate. Comparison between the tenants’ control plane

latencies with hardware isolation and without isolation (W/O Isolation). Fig. 3.17a shows the normal behaving

tenant. Fig. 3.17b shows the tenant that exceeds the rate. OF message type: OFPT_FEATURES_REQUEST.

The x-axis shows always the total message rate per experiment. For instance, 7.5× 10
3

msg/s contain

2.5× 10
3

msg/s of Tenant-1 and 5× 10
3

msg/s of Tenant-2. Isolation reduces interference; hence, latency is

reduced for Tenant-1.

allow a message rate of roughly 2.5× 10
3

msg/s. Without isolation, the tenants’ operations inter-

fere. This can be seen for Tenant-1 in Figure 3.17a: without isolation (W/O Isolation), the control

plane latency is a�ected by the control tra�c of Tenant-2. When looking at the total message rates

9.5× 10
3

to 17.5× 10
3
, the control plane latency is signi�cantly increasing in comparison to the iso-

lation setup. For instance, the average control plane latency is ten times higher for a total tra�c rate

of 15.5× 10
3

msg/s. With isolation, the function protects the performance of Tenant-1; it keeps the

working latency low for tra�c rates between 7.5× 10
3

to 11.5× 10
3
.

The hardware isolation increases the maximum message throughput of FV. It forces the exceeding

tenant controller to aggregate its OF messages; aggregating messages leads to less network packets,

which decreases CPU utilization. As a result, FV can process more OF messages, which is also in-

dicated by the low latency for Tenant-1 in Figure 3.17a for 15.5× 10
3

msg/s. Although FV operates

under high utilization, it processes more messages with low latency for Tenant-1; however, this

comes at the cost of higher control plane latency for Tenant-2.

Figure 3.17b shows the control plane latency of the exceeding tenant (Tenant-2): the latency values

with isolation are all signi�cantly higher than without isolation. The reasons are that when Tenant-2

exceeds its message rate, TCP retransmits the dropped packets. Because its data rate budget of con-

trol channel resources is already spent, even less data rate is available for the whole transmission

process, which results in signi�cant higher latencies.

We conclude that hardware isolation can protect hypervisor CPUs; hence, it isolates tenants’ con-

trol plane tra�cs and reduces interference.

Does so�ware isolation depend on the utilization and message type? Figure 3.18 reports

on the results of the software isolation function for OFPT_FEATURES_REQUEST messages. For

56 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

8 9 10 11

OpenFlow [1× 103 msg/s]

10−1

100

101

102

103

104

La
te

nc
y

[m
s]

W/O Isolation
Isolation

(a) Latency of Tenant-1 (normal behavior). Tenant-1 is in-

creasing its message rate, which is in agreement with its ser-

vice request. x-axis gives the total message rate.

8 9 10 11

OpenFlow [1× 103 msg/s]

10−1

100

101

102

103

104

La
te

nc
y

[m
s]

W/O Isolation
Isolation

(b) Latency of Tenant-2 (not conform). Tenant-2 is always

sending 5× 10
3

msg/s, which is not in agreement with its

service request. Software isolation rate: 2.5× 10
3

msg/s.

Figure 3.18: Latency boxplots with and without software isolation for two tenants: Tenant-1 is behaving

normal whereas Tenant-2 is exceeding its agreed message rate. Comparison between a tenant’s control plane

latency with software isolation and without (W/O Isolation). Fig. 3.18a shows the tenant that behaves nor-

mally. Fig. 3.18b shows the tenant that exceeds its rate. OF message type: OFPT_FEATURES_REQUEST.

The x-axis shows always the total message rate per experiment. For instance, a total rate of 8× 10
3

msg/s

contains 3× 10
3

msg/s of Tenant-1 and 5× 10
3

msg/s of Tenant-2.

Tenant-1, as shown in Figure 3.18a, the software isolation increases the control plane latency on

average and also the maximum values. There is one main reason for this behavior: while FV is al-

ready operating under high CPU consumption for the investigated message rates, software isolation

additionally consumes CPU resources. Accordingly, the software isolation cannot protect and iso-

late the control plane latency of Tenant-1. A message rate of 11× 10
3

msg/s clearly manifests this

observation: the control plane latency is signi�cantly worse than without an active isolation.

The same observations hold for the second tenant (Fig. 3.18b): the trends of the latency values

are similar to the ones of Tenant-1. Among all message rates, software isolation again increases the

control plane latency: a counterintuitive observation. When elaborating the implementation of the

software isolation in depth, the e�ect can be explained: before dropping application layer messages,

FV still processes all network packets. This packet processing, however, is already the bottleneck in

the whole process. Thus, as isolation adds processing, even less CPU resources are available for the

network packet processing, which increases the latency.

To summarize, when FV is already highly loaded, software isolation cannot decrease its CPU con-

sumption; therefore, it does not avoid interference among tenants in high load scenarios.

Does the e�iciency of so�ware isolation depend on the current utilization? Although the

software isolation cannot protect CPUs of hypervisors or guarantee latency in an over-utilization

scenario, it can improve, i.e., guarantee, latency when the CPU is not overloaded. Figure 3.19

shows the results: one tenant sends OFPT_PACKET_OUT messages at constant rates ranging from

20× 10
3

msg/s to 50× 10
3

msg/s. Note again that a rate of 50× 10
3

msg/s slightly overloads FV, i.e.,

the available CPU resources. Figure 3.19a depicts that software isolation now decreases the control

plane latency, in contrast to the previous measurements with OFPT_FEATURES_REQUEST. Only

for 50× 10
3

msg/s, the upper bound of the control plane latency increases due to the over-utilization

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 57

20 30 40 50

OpenFlow [1× 103 msg/s]

0

1

2

3

4

5

6

7

8
La

te
nc

y
[m

s]
W/O SW Isolation
SW Isolation

(a) Control plane latency for two tenants when increasing

software rate limit of exceeding tenant (Tenant-2).

20 30 40 50

OpenFlow [1× 103 msg/s]

0

50

100

150

200

250

C
P

U
[%

]

W/O SW Isolation
SW Isolation

(b) CPU consumption with and without activated software

isolation. Software isolation demands a CPU headroom.

Figure 3.19: Software isolation-based infrastructure overload protection - OpenFlow message: OFPT_-
PACKET_OUT. Latency boxplots over message rate (Fig. 3.19a) and CPU boxplots over message rates

(Fig. 3.19b). Software isolation for OFPT_PACKET_OUT protects control plane latency and decreases CPU

consumption. FV is overloaded for 5× 10
4

msg/s.

1 2 3 4 5 6 7 W/O

SW Limit Tenant 1 [1× 103 msg/s]

0

50

100

150

200

250

300

350

400

450

La
te

nc
y

[m
s]

Tenant exceeding
Tenant normal

Figure 3.20: Software isolation protecting a switch. Latency boxplots over software isolation message rate

with and without (W/O) isolation over total message rate. Between rates from 1× 10
3

msg/s-4× 10
3

msg/s,

software isolation protects the switch CPU. The latency is low and stable. At 5× 10
3

msg/s, the software

isolation message rate is too high. The switch becomes overloaded as all messages of the second tenant are

forwarded towards the switch — the latencies of the tenants are up to 400 times higher than with isolation.

of the CPU. Now dropping messages has a positive e�ect on the latency: less messages are queued

and processed e�ciently.

Figure 3.19b reports on the CPU consumption; it illustrates that software isolation demands addi-

tional CPU resources. Further, an increasing message rate does not only increase the average CPU,

it also leads to higher CPU variations. When con�guring the software isolation, the additional CPU

consumption needs to be considered: a headroom needs to be reserved.

Can so�ware isolation protect the network nodes? While hardware isolation can generally

protect FV and isolate control plane latency, and software isolation similar when FV is not over-

loaded, there is yet another bene�t from software isolation: the protection of the infrastructure. Two

tenants are involved in the next setup: one tenant sends OFMP_PORT_STATS at constant rates

of 4× 10
3

while the other tenant sends 4.8× 10
3

msg/s. The software isolation rate for the second

tenant is increasing. When the second tenant rate exceeds the isolation rate, i.e., when the dropping

rate is higher than the sending rate (5× 10
3

msg/s and more), the OvS switch will be overloaded. It

58 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

can only handle up to 8× 10
3

msg/s of OFMP_PORT_STATS messages.

Figure 3.20 reports on the results for the conducted measurements. Dropping rates between

1× 10
3

msg/s and 4× 10
3

msg/s e�ciently isolate the control plane latency; the latency stays low.

When the dropping rates exceed 5× 10
3

msg/s, the switch is overloaded; hence, the switch pro-

cessing cannot handle the message rates anymore and induces signi�cant latency. This even a�ects

both tenants: their latencies are both equally increased due the overload of the switch, although

they send at di�erent message rates. Furthermore, the latency values even become less predictable,

which is shown by the variations of the boxplot values. Note also the di�erent variations of the rates

5× 10
3

msg/s to 7× 10
3

msg/s. The reasons here are di�erent aggregation levels of TCP: again, net-

work packet aggregation is one main impact factor on CPU consumption. Without isolation (W/O),

both tenants obtain the worst latency performance.

3.5.3 Virtualization Layer Adaptation

One main goal of HyperFlex is to better adapt to changing requirements, e.g., changing virtual net-

work demands or occasional over-utilization of computing platforms. Therefore, a virtualization

layer adaptation mechanism was introduced in [BBB+15] to realize a dynamic virtualization layer.

The adaptation mechanism reassigns vSDN controllers to di�erent hypervisors functions at runtime.

For instance, controllers connected to overloaded virtualization functions or hypervisors can be re-

allocated to less-loaded entities, or hypervisor instances can even be turned o� for energy saving.

OF 1.2 [Ope11b] introduced and de�ned the multiple controllers feature. Implementing the multi-

ple controllers feature, switches can simultaneously connect to multiple SDN controllers. OF version

1.2 adds the OFPCR_ROLE_EQUAL mode. In this mode, all controllers connected to a switch can

fully access and control the switch and its resources. Note, however, that OFPCR_ROLE_EQUAL
requires controllers to synchronize. In this thesis, we analyze how the multiple controllers feature

can be used for adaptation support and to reduce the control plane latency of vSDNs (see Chapter 4).

3.5.3.1 Concept

Fig. 3.21 gives an overview of HyperFlex’s adaptation support. The overall goal of the concept is to

avoid side-e�ects as much as possible and to work transparently towards the tenants. The tenant

controllers should not need to interact with the virtualization layer to realize the adaptation sup-

port: the virtualization layer should work transparently in terms of control actions. Consequently,

the virtualization layer operator should try to minimize side-e�ects such as increased latency values

during the migration as much as possible.

Figure 3.21 illustrates that the hypervisor controller takes over three tasks: con�guration of the

hypervisor proxy - where to forward the control plane tra�c (indicated by box 1); con�guring the

hypervisor functions (box 2); and con�guring the data plane switches, i.e., instruct the switches to

which functions they should connect (box 3). During the migration, the hypervisor controller trig-

gers the migration of the control plane forwarding between the hypervisor proxy and the functions

as well as between the functions and the physical network.

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 59

Hypervisor
Controller

Hypervisor
Function 1

Hypervisor Proxy

Orchestration

Virtualization Layer

1

23

Physical Network

SDN C1 SDN C2

Hypervisor
Function 2

Hypervisor
Function 3

SDN Tenant Controllers

Figure 3.21: HyperFlex’s adaptation support. Two controllers (SDN C1 and SDN C2) are connected to the

hypervisor proxy. The hypervisor proxy is connected to three hypervisor functions. The hypervisor functions

connect to the physical SDN network. The hypervisor controller is responsible for the control and orchestra-

tion of the hypervisor proxy (see box 1), the hypervisor functions (box 2), and for con�guring the physical

network (box 3).

Virtualization layer proxy. The virtualization layer is extended by the hypervisor proxy to re-

alize the transparent working behavior. The hypervisor proxy acts as an interface between the hy-

pervisor functions and the tenant controllers. It demultiplexes the incoming OF control messages

towards the tenants. Without the hypervisor proxy, the tenant controllers would connect directly to

the hypervisor functions. In case a hypervisor function would be adapted, e.g., turned o�, the TCP

connection on the controller side would be interrupted. The tenant controller would have to rene-

gotiate a new TCP connection initiated by the virtualization layer. This would lead to an operational

interruption on the controller side. For instance, current bytes (messages) in-�ight would be lost and

the TCP stack of the connection would have to be reestablished. The controller might even react

with countermeasures, which, however, are erroneously triggered by a desired adaptation.

Introducing the proxy avoids such unpredictable network operation; the proxy is intended to

always keep the operation with controllers up and running while the TCP connections between

switches, functions and the proxy are changed at runtime. A special network protocol was devel-

oped to guarantee a seamless handover of the control tra�c between the switches, functions, and

the proxy. The protocol is explained in more detail in [BBB+15].

3.5.3.2 Measurement Evaluation of Adaptation Support

The focus of the measurement evaluation of the adaptation support is to identify control plane la-

tency overheads due to recon�gurations.

Fig. 3.22 shows the evaluation setup of the virtualization system operating on real SDN hardware.

The setup includes �ve virtual machines: one for emulating the SDN controller, one for hosting the

hypervisor proxy, two for hosting the hypervisor functions, and one to run an SDN software switch.

The latency between proxy and hypervisor software is set to 5 ms and the latency between software

60 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

OFTest

Hypervisor
Function 2

Hypervisor
Function 1

Hypervisor Proxy

VM 3

Migration

Migration

VM 4

OvS -SDN Switch
VM 5 - Physical
SDN Network

VM 1 - SDN
Controller

VM 2 - SDN
Controller

5 ms 5 ms

10 ms 10 ms

Figure 3.22: Evaluation setup for the control path migration protocol.

and switch to 10 ms. Hence, the end-to-end latency between the proxy and the switch is above 30 ms.

This setting should re�ect more realistic use-cases.

Implementation details. The SDN switch is an Open vSwitch (OvS) [PPA+09], running OF 1.2.

The SDN controller is an OFtest instance [Oft]. It is adapted for this setup to be able to support send-

ing a constant OF message rate. The virtualization layer is implemented by hypervisor instances in

Python. The implementations use the open source OF library Open�owJ LoxiGen [Lox]; the library

provides message parsing and generation for OF 1.0 and OF 1.3. The proxy is also implemented in

Python. It only contains the forward mappings, i.e., the lookup for forwarding the tenant messages

to the correct hypervisor instance.

Procedure. The measurement procedure is as follows: the SDN controller sends a constant mes-

sage rate, which is forwarded through the left hypervisor function towards the SDN switch. Then,

the handover is triggered to move the control plane connection to the second hypervisor function.

The control plane latency is monitored to quantify the recon�guration overhead. Furthermore, the

hypervisor instances log the messages they process during execution.

Data. The result data contains at least 10 runs per message rate, each with a duration of 40 s. Each

run shows the e�ect of one handover event. The used OF message type is OFPT_FEATURES-
_REQUEST: it is a valuable representative to benchmark the whole processing loop from sending

via the controller until receiving the reply from the virtualization layer.

3.5. NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex 61

18.76 19.06 19.35 19.64 19.93 20.22 20.51 20.80

Timestamp request [sec]

30

40

50

60
La

te
nc

y
[m

s]

(a) OF rate 100 msg/s.

19.73 19.76 19.79 19.82 19.85 19.88 19.91 19.94

Timestamp request [sec]

30

40

50

60

La
te

nc
y

[m
s]

(b) OF 1000 msg/s.

Figure 3.23: Time-series of control plane latencies for two runs with OF message rates 100 msg/s and

1000 msg/s. Red dots mark the start of the handover. The green-highlighted areas show the duration of han-

dover and mark the a�ected messages.

3.5.3.3 Measurement Results

Fig. 3.23 shows the control plane latency over time for two control plane message rates: 100 and

1 000. The start of the handover procedure is identi�ed by the xid4
of the last message that is

processed by the left hypervisor instance. When the right hypervisor instance processes the �rst

message, the handover procedure has �nished: the xid of this message marks the end of the proce-

dure. The time between the start and the �nish of the handover procedure determines its duration.

The OF messages that are transmitted during the handover procedure are called a�ected. Analogous,

messages that are not a�ected by a recon�guration process are called unconcerned.

Do reconfigurations a�ect control plane latency? The control plane latency over time indi-

cates that the recon�guration a�ects the control plane latency. For all message rates, the control

plane latency increases during the handover process. Moreover, a larger message rate can increase

the control plane latency more: for 100 requests, Fig. 3.23a shows a peak of 43 ms, whereas 1 000

requests have the highest peak latency of 57 ms (Fig. 3.23b).

An increasing message rate also a�ects more OF messages: for 100 requests, the number of af-

fected messages is 3 in contrast to 45 a�ected messages for 1 000 requests per second. The reason

is that a higher rate leads to more packets (messages) in-�ight; thus more messages are bu�ered

at the right hypervisor instance due to the protocol’s procedure: the right hypervisor bu�ers all

OFPT_FEATURES_REQUESTmessages till the migration is completed — then it sends all bu�ered

control messages to the switch. It can be noted that no OF messages are lost during the handover.

The higher the rates, the higher the impact? Fig. 3.24a shows boxplots for both message

groups: the average latency of the unconcerned messages via square boxes, and the average latency

of the a�ected ones via circles. The whiskers range from the lower 5 % to the upper 95 % of measured

control plane latency. The average latency of unconcerned messages is constant over small message

rates. In contrast, higher message rates increase the average latency and also the maximum 95 %. For

4

Part of the OF header. xid is a transaction id associated with a message. Message replies should use the same xid as

requests.

62 Chapter 3. Measurements and Design for Virtual Software-De�ned Networks

100 200 300 400 500 600 700 800 900 1000

OpenFlow [msg/s]

30

40

50

La
te

nc
y

[m
s]

Unconcerned
A�ected

(a) Latency: unconcerned vs a�ected.

100 200 300 400 500 600 700 800 900 1000

OpenFlow [msg/s]

20

40

O
pe

nF
lo

w
Pa

ck
et

s
[#

]

(b) Number of a�ected messages.

Figure 3.24: Latency over number of OF messages (Fig. 3.24a) and a�ected messages due to recon�gurations

(Fig. 3.24b). Comparison between the control plane latency during operation without recon�gurations and

with recon�gurations. Recon�gurations and higher message rates increase the operational latency and the

number of a�ected OF messages.

the total number of a�ected messages, Fig. 3.24b illustrates that this number also increases with the

message rate.

We conclude: the higher the rate, the more messages are a�ected; hence, frequently recon�guring

the virtualization layer can signi�cantly increase the overall control plane latency, with already up

to 25 % for 1× 10
3

msg/s. This can become very critical, for instance in virtualized environments,

such as data centers. Here, it has been shown that switches see up to 100 new �ows arriving every

millisecond [BAM10; KSG+09]. In the worst case, every �ow demands an interaction from a tenant

SDN controller. Assuming a linear dependency between OF message rate and a�ected packets, one

recon�guration can worsen the latency of up to 4 to 5 thousand �ows. Accordingly, optimization

solutions are needed that can generally try to avoid recon�gurations; virtualization layers should

rather make use of recon�gurations in a planned manner.

3.6 Summary

In this chapter, we analyze the existing implementations of state-of-the-art SDN network hypervi-

sors, which realize the virtualization layer in vSDNs. Although there exists a wide range of hyper-

visor designs, we observed the following shortcomings: the lack of a comprehensive benchmarking

framework to quantify performance and the lack of a virtualization layer design that provides �exible

and adaptable mechanisms with guaranteed network performance.

Accordingly, this chapter proposes a new benchmarking tool - perfbench. The tool satis�es the

requirements for realistic hypervisor benchmarks: controllable-high, stable, and variable OF mes-

sage rates as well as the emulation of multiple tenants and switches simultaneously. With perfbench,

we �nd that hypervisors di�erently impact on the vSDN performance under varying workloads.

Whereas FV adds less latency overhead, OVX can scale to larger networking scenarios with more ten-

ants and larger topologies. The results and the identi�ed performance criteria can help researchers

to develop re�ned performance models for multi-tenant software-de�ned networks.

Based on the measurements, we identify the lack of a virtualization layer design that provides

more predictable network operation. Hence, this chapter proposes HyperFlex - an adaptable virtual-

3.6. Summary 63

ization layer architecture with improved predictable network control plane performance guarantees

for tenants. HyperFlex decomposes the virtualization layer into software and hardware-based func-

tions; the functions can be �exibly placed among servers or networking hardware. In order to provide

predictable network operation even for the new �exible virtualization layer design, two mechanisms

are implemented: an adaptation mechanism and a control plane isolation concept.

The measurement studies on the control plane isolation reveal trade-o�s between software and

hardware implementations: their usage depends on the OF message type and current infrastructure

utilization, as already illustrated for the hypervisor measurements. Measurements of the adapta-

tion mechanism show that the control plane assignments of switches to hypervisor functions can

be changed at runtime. This comes, however, at the cost of increased control plane latency during

the migration process; accordingly, the next chapter will also focus on analyzing and optimizing

recon�gurations in dynamic tra�c scenarios.

Chapter 4

Modeling and Optimization of
Network Virtualization Layer
Placement Problems

The previous chapter has demonstrated that hypervisor architectures and implementations can show

signi�cantly varying performance in terms of control plane latency. Beside adding latency due to

implementation choices, there is another factor impacting the achievable control plane latency: the

physical locations of the hypervisor (virtualization) functions. Only by knowing the impact of hyper-

visor locations on the control plane latency, network operators can o�er and guarantee their tenants

predictable control plane latencies - an indispensable feature for predictable network operation of

SDN networks. This chapter focuses on modeling and optimization of the placement of network

hypervisor instances.

SDN controllers connect directly to switches; in contrast, the virtualization layer adds another

layer of indirection: the control tra�c of tenants has to pass trough the virtualization layer. Hence,

tenant controllers may experience higher control plane latencies than in non-virtualized SDN net-

works, which we call the cost of virtualization. As a consequence, the virtualization layer demands

an even more sophisticated planning to make vSDNs a credible alternative to non-virtualized SDNs.

This chapter models and analyzes the k-Network Hypervisor Placement Problem (HPP): the k-HPP

answers the fundamental questions of how many hypervisors (the number k) are needed and where

to place them in the network.

Whereas some hypervisor architectures rely only on basic SDN features, some hypervisors can

make use of special switch functionalities, e.g., the multiple controllers feature [BBB+15]. Using the

multiple controllers feature, switches can simultaneously connect to multiple SDN controllers, i.e.,

hypervisor instances. Multi-controller switches may improve control plane performance, e.g., reduce

control plane latency as they can balance the load among the available connections. However, multi-

controller switches demand additional synchronization between distributed hypervisor instances;

hypervisor instances may need to synchronize �ow table access or to carefully plan the allocation

of available �ow table space. Thus, the placement of multi-controller switches needs to be carefully

planned. We refer to this planning problem as the Multi-controller Switch Deployment Problem

(McSDP) in this chapter.

65

66 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

SDN network hypervisors provide a more �exible way of adaptation: locations of hypervisor func-

tions or whole hypervisor instances can be changed at runtime as they do not rely on special hard-

ware at �xed locations anymore. However, adapting the virtualization layer introduces recon�gu-

rations - which we call the cost of adaptation. Taking recon�gurations not into account can result

in severe networking problems: network outages, service interruptions, long unacceptable down-

times of services, or additional data plane latency [PZH+11; ICM+02; GJN11; GMK+16]. Planning

the virtualization layer requires new optimization models and methods to analyze and optimize for

recon�gurations, which do not yet exist in literature.

Our main contribution in this chapter is the in-depth study of the k-HPP for four SDN network

hypervisor architectures with respect to control plane latency in cases of static and dynamic use. We

provide MILP-based models solving the placement problems; our models jointly solve the McSDP

and the k-HPP. We determine and investigate the best locations of hypervisor instances and multi-

controller switches with our models for real network topologies and a wide range of vSDN settings.

Considering also the dynamic use, we analyze the trade-o�s between four hypervisor latency ob-

jective metrics and the number of hypervisor recon�gurations. We also closely examine how vir-

tualization a�ects the individual vSDN requests. Furthermore, we analyze the bene�ts of a priori

optimization of the locations of the vSDN controllers. Speci�cally, we investigate the impacts of

three di�erent controller placement strategies on the k-HPP and McSDP for static and dynamic traf-

�c use-cases.

Content and outline of this chapter. Sec. 4.1 introduces background, where four hypervisor

architectures are classi�ed, and related work, which summarizes research on the facility location

problem, the SDN controller placement problem, and the network function placement problem. The

hypervisor problem settings and placement models for static and dynamic use are introduced in

Sec. 4.2 and Sec. 4.3, which rely in parts on content from [BBZ+15; BBZ+16; ZBK16]. Sec. 4.4 presents

the results of the conducted simulations. Finally, Sec. 4.5 concludes this chapter.

4.1 Background and Related Work

This section �rst introduces background on hypervisor architectures and second reports on place-

ment and optimization work related to this chapter.

4.1.1 Background on SDN Network Hypervisor Architectures

In this section, we introduce four hypervisor architecture categories. We categorize the architectures

into centralized architectures and distributed architectures. We further sub-classify the distributed ar-

chitectures into architectures operating with single-controller SDN switches or with multi-controller
SDN switches. In addition, we consider distributed hybrid architectures that combine single- and

multi-controller SDN switches. A single centralized hypervisor instance (at a single location) pro-

vides the virtualization functionality in a centralized architecture. In contrast, in a distributed hyper-

visor architecture, multiple hypervisor instances that are distributed over multiple locations realize

the virtualization functionality. We denote the number of hypervisor instances by k and the number

of multi-controller switches by M .

4.1. Background and Related Work 67

SDN C1 SDN C2

H

Physical Network and vSDNs

(a) Centralized architecture, k = 1.

SDN C1 SDN C2

CD 1

H H

CD 2

Physical Network and vSDNs

(b) Distributed architecture + single-controller SDN

switches, k > 1,M = 0.

SDN C1 SDN C2

H H

Shared CD

Physical Network and vSDNs

(c) Distributed architecture + multi-controller SDN

switches, k > 1,M = |V|.

Physical Network and vSDNs

SDN C1 SDN C2

CD 1

H H

CD 2SCD

(d) Distr. hybrid arch. with single- and multi-controller

SDN switches, k > 1, 0 < M < |V|.

Figure 4.1: Illustration of four hypervisor architecture categories (characterized by number of hypervisor in-

stances k and number of multi-controller switchesM in relation to the number of physical switches |V|) for an

example SDN network with two vSDNs. The purple and green color di�erentiate the two vSDNs. A hypervisor

instance (location) is represented by a squared box labeled with H. The square boxes represent the non-shared

control domains (CDs) and the shared control domains (SCDs or Shared CD) in case of multiple hypervisor

instances. A colored and �lled circle is a vSDN switch (node) hosted on a non-�lled circle, which represents a

physical SDN switch (node). The solid lines between these boxes represent the data plane connections, i.e., the

edges of the physical SDN network. A solid line represents a connection between an SDN controller (SDN-C)

and a hypervisor instance “H”. A dashed line represents a physical connection between a hypervisor and a

physical SDN switch. Dotted lines either represent the connection between the vSDN switches (�lled-colored

circles) or between the hypervisor and the physical nodes (non-�lled circles).

Centralized network hypervisor architecture. The centralized SDN network hypervisor ar-

chitecture (k = 1) deploys only a single hypervisor instance (at a single location) for SDN network

virtualization. vSDNs can be provided by running this single hypervisor instance at one physical net-

work location. FV [SNS+10] is an example of a centralized hypervisor architecture. The centralized

hypervisor architecture works with SDN switches compliant with the OF speci�cation [Ope14a]. OF

speci�cation compliant switches do not provide any specialized functionalities supporting virtual-

ization [Ope14a].

Fig. 4.1a shows an exemplary centralized hypervisor architecture setup. The hypervisor connects

down to �ve physical SDN switches (nodes, network elements) and up to two vSDN controllers.

Two vSDNs (purple and green) are sharing the infrastructure: the purple controller controls three

virtual switch instances and the green controller two. All control tra�c of the vSDNs has to pass

through this single hypervisor instance. The hypervisor forwards the control tra�c towards the

corresponding vSDN controller.

68 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

Distributed network hypervisor architecture for single-controller SDN switches. A hy-

pervisor can be distributed into multiple (k > 1) hypervisor instances that are distributed over

multiple (k) locations in the network. Suppose that the SDN switches can only connect to one hy-

pervisor instance at a time (M = 0). Accordingly, the physical SDN network is split into multiple

control domains, whereby one hypervisor instance is responsible for a given domain. An exam-

ple for a distributed SDN hypervisor architecture operating with single-controller SDN switches is

FlowN [DKR13].

Fig. 4.1b shows an example with two hypervisor instances; the switches are now controlled by

k = 2 hypervisors. Each SDN switch connects to either one of the k = 2 hypervisor instances. Note

that one hypervisor connects to multiple controllers (as illustrated for the left hypervisor instance).

For instance, as the left hypervisor controls switches hosting virtual instances for both tenant con-

trollers, the hypervisor connects to both tenant controllers. Vice versa, the right SDN controller

connects with two hypervisor instances.

Distributed network hypervisor architecture for multi-controller SDN switches. The dis-

tributed network hypervisor architecture for multi-controller switches realizes the SDN virtualiza-

tion layer via multiple separated hypervisor instances (k > 1). However, all |V| physical SDN

switches can now simultaneously connect to multiple hypervisor instances as it is assumed that

all switches support the multiple controllers feature, i.e., M = |V| (See Section 3.5.3 for the intro-

duction and use of the multiple controllers feature). As a result, there is no separation of the control

domain of the SDN switches as each switch can be simultaneously controlled by multiple hypervi-

sor instances. The adaptation support as introduced in Chapter 3 makes use of the multi-controller

feature.

While each physical SDN switch is only connected to a single hypervisor instance in Fig. 4.1b,

Fig. 4.1c shows two hypervisor control connections for one physical SDN switch. The multi-

controller feature makes it possible that an SDN switch connects to multiple hypervisor instances

during operation. The hypervisor instances need to coordinate their resource management on the

switches, as switch resources, e.g., switch CPU and �ow tables, are shared and not strictly isolated.

Distributed hybrid network hypervisor architecture. In general, only some SDN switches

need to support the multi-controller features to achieve an optimization goal. This yields the op-

tion to reduce the number of multi-controller switches, which reduces coordination overhead and

controllers interfering on shared switches. This leads to the distributed hybrid architecture operat-

ing on hybrid SDN networks. In this chapter, a hybrid SDN network is de�ned as an SDN network

consisting of switches supporting single-controller and multi-controller switches.

Fig. 4.1d illustrates an example: while the two left switches connect only to the left hypervisor

and the two right switches connect to the right hypervisor, the middle switch (M = 1) connects

to both hypervisors. Both hypervisor instances share the control domain of the middle switch. The

network is now divided into shared (SCD) and non-shared control domains (CD). The switches of the

non-shared control domains operate in single-controller mode. The proposed models of this chapter

can prescribe a maximum number M of multi-controller SDN switches when optimizing for a given

4.1. Background and Related Work 69

Physical Network

C1

C2

H

(a) Initial Hypervisor Placement. Hypervisor place-

ment serves two virtual networks.

Physical Network

C2
H

(b) Hypervisor placement after adapting to changed

number of virtual network requests. Hypervisor loca-

tion changed compared to initial placement.

Figure 4.2: Motivation: From HPP to DHPP.

Physical Network

H1

C1

(a) Initial Placement.

Physical Network

H2

C1

(b) Hypervisor instance

changes.

Physical Network

H1C1

(c) Hypervisor location

changes.

Physical Network

H2C1

(d) Hypervisor location and

instance change.

Figure 4.3: Di�erent types of recon�gurations: hypervisor instance change, hypervisor location change, and

hypervisor instance & location change.

substrate network. The outcomes of optimization solutions provide the locations and the numbers

of needed multi-controller switches to achieve an optimization objective.

4.1.1.1 Background on Reconfigurations in SDN Network Virtualization Layers

Solving the HPP provides not only the locations of the hypervisor instances, it also generates the

routing of the connections between tenant controllers and their virtual switches. We call a single

controller-hypervisor-switch connection a Virtual Control Path (VCP); a VCP can also be seen as a

chain where the control packets need to traverse one hypervisor or virtualization function. Fig. 4.2a

shows an initial hypervisor placement: one hypervisor is located at a single node in the center of the

network. Network dynamics, such as link failures or changes of the network requests, may require

an adaptation of the virtualization layer, i.e., the hypervisor location. Whereas a speci�c placement

provides the optimal latency for one tra�c state, a virtualization layer may need to adapt the place-

ment to react to a change in the network tra�c demands, such as a leaving vSDN. In Fig. 4.2b, one

virtual network leaves the substrate network; the new optimal hypervisor placement is now close to

the controller of the remaining virtual network - the hypervisor location changed.

Adapting a placement of hypervisor instances of a virtualization layer introduces recon�gura-

tions: hypervisor locations may change, the number of hypervisors changes, or the routing of the

VCPs. Taking the view of a tenant, three recon�guration types a�ect its VCP, which are modeled and

analyzed in this thesis: a change of the hypervisor instance, a change of the hypervisor location, or

a change of both the hypervisor instance and location. Fig. 4.3 provides an overview of the di�erent

placements after a preceding recon�guration. Fig. 4.3a illustrates the initial placement: controller

C1 (purple square) connects through the hypervisor instance one (orange hexagon) to its virtual

network, i.e., virtual switch (purple circle).

70 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

• Hypervisor instance change. In Fig. 4.3b, the instance responsible for managing the control

tra�c of the VCP changed. In such scenario, the underlying TCP establishing the control con-

nection between both hypervisor and controller as well as hypervisor and switch may need

to re-initiate; this may add latency as shown in Chapter 3. Moreover, network state informa-

tion concerning the VCP may need to be exchanged between the old and the new hypervisor

instance.

• Hypervisor location change. In this scenario, as illustrated in Fig. 4.3c, the location of the

hypervisor instance changes. Consequently, the routing of the VCP needs to be updated to the

new hypervisor location. Such operation involves the transmission of the hypervisor memory,

which stores, e.g., the current state of its connected virtual networks.

• Hypervisor instance & location change. This operation might introduce the most over-

head: a change of both the hypervisor instance and the location (Fig. 4.3d). The operation

induces all the overhead of the previous changes.

The last two changes are seen as the ones that mostly a�ect the operation of the tenants and are

most costly for the network operator (state copies, path updates, control plane interruptions etc.).

Because of this reason, this thesis covers the minimization of hypervisor location changes including

also potential instance changes.

4.1.2 Related Work

We review main research on optimization and placement related to the virtualization of SDN net-

works in this section. The related work is classi�ed into three problem categories: facility location

problems, controller placement problems, and network function placement problems.

Facility Location Problem

As indicated by Heller et al. [HSM12], the general Facility Location Problem (FLP) underlies the SDN

Controller Placement Problem (CPP). Originally, the Weber problem is one of the �rst simple facility

location problems: the solution to the Weber problem is a point (node) in a network (graph) that

minimizes the sum of the transportation costs from this node to n destination nodes. The k-HPP

can be related to the hierarchical facility location problem [FHF+14]. The task of the hierarchical

facility location problem is to �nd the best facility locations in a multi-level network. The facilities

at higher levels have to serve the facilities at lower levels, while customers need to be served at the

lowest level. A similar layering can be applied to the k-HPP: tenant controllers need to connect to

hypervisor instances, while hypervisor instances need to connect to SDN switches at the lowest level.

Di�erent variations, adaptations to real problems, and overviews of the FLP are provided in [ALL+96;

KD05; PJ98; GMM00; FHF+14]. The grouping of demands has initially been investigated in [DW00;

BDW01]. One unique feature of the k-HPP is the di�erentiation of groups of customers, i.e., individ-

ual vSDNs, which need to be speci�cally operated by their corresponding tenant controllers, which

can also be seen as a combination of demand grouping and hierarchy of facilities. Another unique

feature comes from the multiple controllers feature; one switch can connect to multiple hypervisors.

4.1. Background and Related Work 71

SDN Controller Placement Problem

The SDN CPP for non-virtualized SDN networks has been initiated in [HSM12]. The CPP targets

the question of how many controllers are needed and where to place them. Using a brute-force

method, Heller et al. [HSM12] evaluate the impact of controller placement on average and maximum

latency metrics for real network topologies. The authors conclude that �ve controllers are su�cient

to achieve an acceptable control plane latency for most topologies. As di�erent optimization ob-

jectives, e.g., load and delay, are critical for the operation of SDN networks, Lange et al. [LGZ+15]

apply multi-objective optimization approaches. Their framework uses simulated annealing to ana-

lyze the CPP for di�erent network topologies with respect to multiple objectives, e.g., latency and

resilience. As real SDN networks have node and link capacity constraints, mathematical models

for solving the CPP with node and link capacity have been studied in [YBL+14; SSH15]. Consid-

ering capacity constraints during planning protects SDN controllers from overload situations. Dis-

tributed SDN controllers can be organized in a hierarchy to achieve resilience [JCPG14]. Jimenez et

al. [JCPG14] provide an algorithm and performance comparisons for k-center and k-median-based

algorithms. Additional CPP research either considers di�erent metrics, e.g., resilience or load balanc-

ing [LGS+15; HWG+14; MOL+14], or incorporates di�erent methodologies, e.g., clustering, solving

the CPP. A dynamic version of the CPP, where the rate of �ow setups varies over time, has been

studied in [BRC+13].

In virtual SDN environments, each vSDN uses its own controller, which needs to be placed for

each vSDN individually. The present study solves the CPP a priori for maximum or average latency

objectives. It then uses the tenant controller locations as an input when optimizing the placement of

the hypervisor instances. This two step optimization makes it possible to analyze the impact of the

vSDN controller placement on the placement of hypervisors.

Network Function Placement Problem

Luizelli et al. [LBB+15] propose a formulation for the embedding of Virtual Network Function (VNF)

chains on a network infrastructure. The proposed model targets a minimum number of virtual

network functions to be mapped on the substrate. Their evaluation metrics mainly considered in-

frastructure resource utilization, e.g., CPU, as well as end-to-end latency of the embedded function

chains. However, the proposed model does not incorporate the characteristics of SDN networks,

moreover virtual SDN networks.

Network functions like virtualization functions face dynamic network tra�c. Accordingly, op-

erators might adapt the placement of VNFs to always achieve the highest resource e�ciency: for

instance, paths between functions should always be short to save network resources or functions

should always be accommodated for energy e�ciency. Clayman et al. [CMG+14] introduce an ar-

chitecture managing and orchestrating network functions for dynamic use. Their approach includes

di�erent policies, for instance, placing new VNFs on the least loaded server. They neglect, how-

ever, the dynamics induced by adaptations potentially leading to service interruptions: they do not

minimize the number of recon�gurations resulting in potential service interruptions.

Ghaznavi et al. [GKS+15] also aim at a dynamic use when placing VNFs; they consider QoS re-

72 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

quirements and operational costs while paying attention to recon�gurations. They consider di�erent

recon�guration types: reassignment of load between VNFs and the migration of VNFs. As they claim

that such optimization problem is NP-hard, Ghaznavi et al. [GKS+15] design heuristics for the whole

management process including installation, migration, and general task handling. Their conducted

simulations show that their non-greedy heuristic improves the overall performance when compared

to a greedy algorithm; however, they do not provide a detailed study of the mathematical model;

hence, a general quanti�cation of the heuristic is missing.

Kawashima et al. [KOO+16] take a di�erent approach: their goal is to avoid peak recon�gurations

induced by the simultaneous migration of multiple VNF instances. In order to mitigate the migration

of many VNFs, they try to predict future demands within a given time window. A MILP-based model

integrates the predictions of demands while it minimizes the number of active physical nodes and

recon�gurations. Since the demand prediction may be imprecise, the mathematical model might not

always provide the optimal solution for the network tra�c of the predicted time.

In contrast to the VNF placement, the hypervisor placement considers groups of virtual switches

that need to be connected to tenant controllers. To our best knowledge, neither latency as a measure

nor optimizing the sum of distances of individual groups has been investigated in the context of VNF

placement yet.

4.2 Placement Problems in Virtual So�ware-Defined Networks

Network operators need to solve a variety of placement problems when virtualizing SDN environ-

ments: the placement of the virtual SDN controller, the embedding of the virtual networks, the

placement of the hypervisor functions, the determination of the switches supporting special virtu-

alization features, like the multi-controller feature, etc. The overall goal of an operator might be to

know the impact of di�erent placements in order to o�er his tenants acceptable levels of control

plane latencies. Consequently, an operator needs to jointly solve the preceding optimization prob-

lems to �nd the best trade-o� among the various design choices. Accordingly, this thesis models

and optimizes parts of the problems jointly (e.g., the hypervisor placement and the multi-controller

switch deployment).

4.2.1 Problem Se�ing for Network Hypervisor Placement Problem (HPP) and the
Multi-controller Switch Deployment Problem (McSDP)

This section introduces the problem settings for the Network Hypervisor Placement Problem (HPP)

and the Multi-controller Switch Deployment Problem (McSDP). It �rst de�nes the notation for the

physical SDN network and the vSDN requests. Then, it introduces the mathematical de�nition of

the k-HPP and the McSDP.

4.2.1.1 Network Models

The input of the k-HPP is given by the set of vSDN requestsR, which are to be hosted on a physical

SDN network graph G(V, E).

4.2. Placement Problems in Virtual Software-De�ned Networks 73

Table 4.1: Notation of sets for physical SDN network G for static use.

Notation Description

G(V, E) Physical SDN network graph

V Set of physical SDN switches (network nodes), i.e., node locations

i Physical SDN switch (network node) i ∈ V

E Set of physical network edges

e Physical edge e ∈ E

H Set of potential hypervisor nodes (locations) withH ⊆ V

P Set of pre-calculated shortest paths between all network node pairs

Table 4.2: Notation of helper functions for physical SDN network G.

Notation Description

λ : E → R>0 Latency of edge e, with λ(e) ∈ R+

d : V2 → R≥0 Latency (distance) of shortest path (s, t) ∈ P , with d(s, t) ∈ R≥0

dh : V3 → R≥0 Latency (distance) of path connecting nodes s and twhile traversing (passing)

node h, with dh(s, h, t) ∈ R≥0

Physical SDN network specification. Tables 4.1 and 4.2 summarize the notation of sets for the

physical SDN network and the helper functions. The network is modeled as a graph G(V, E) with

physical SDN switches (network nodes) i ∈ V connected by undirected edges e ∈ E . The potential

hypervisor nodes (locations) are given by the set H. They are a subset of V , i.e., H ⊆ V . The set

P contains the shortest paths of the network between any network node pair. A shortest path is

denoted as (s, t) ∈ P .

The function λ : E → R>0 computes for an edge e the latency from the geographical distance

between two network nodes that are connected via edge e. Note that the function does not consider

the transmission bit rate (edge capacity). The latency λ(e) of an edge e ∈ E is used for evaluating

the latency of network paths. The distances, i.e., latencies of shortest paths are given by the function

d : V2 → R≥0. Accordingly, the distance of a shortest path (s, t) ∈ P can be calculated by d(s, t).

Furthermore, the function dh : V3 → R≥0 gives the latency of the shortest path connecting two

nodes traversing an intermediate node; dh(s, h, t) gives the latency of the shortest path connection

between nodes s and t via node h. This value is calculated as the sum of d(s, h) and d(h, t).

Virtual SDN Network (vSDN) request. Tables 4.3 and 4.4 summarize the notation for the vSDN

requests R and the helper functions regarding the vSDN requests. A vSDN request r ∈ R is de-

�ned by the set of virtual SDN network nodes Vr and the vSDN controller cr . All vSDN network

nodes vr ∈ Vr of a request r need to be connected to their controller instance cr . Note that we

assume a vSDN to operate only one SDN controller; multi-controller vSDNs are not considered in

74 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

Table 4.3: Notation of sets and constants for virtual SDN network (vSDN) requestsR.

Notation Description

R Set of vSDN requests

r Virtual network request r ∈ R

Vr Set of virtual nodes of vSDN request r ∈ R

vr Virtual network node vr ∈ Vr , with π(vr) ∈ V

cr Virtual controller node of vSDN request r, with

π(cr) ∈ V

Table 4.4: Notation of helper functions for virtual SDN network (vSDN) requestsR.

Notation Description

∀r ∈ R, ∀vr ∈ Vr ∪ {cr} : π : Vr ∪ {cr} → V Mapping from virtual node vr or controller cr

to their physical host switch (network node) i:
function is de�ned for both virtual switches and

controllers.

the evaluations.

The physical SDN switch (location) of a vSDN network node is given by the function π(vr), i.e.,

π(vr) ∈ V . The location of the controller is also chosen among the available network node locations,

i.e., π(cr) ∈ V .

4.2.1.2 k-Network Hypervisor Placement Problem (k-HPP)

Table 4.5 speci�es the input of the k-HPP. For a given physical SDN network G and set of vSDN

requests R, a prescribed number k of hypervisor locations need to be chosen among all potential

hypervisor locationsH. The setH speci�es the hypervisor locations on the network; hypervisors can

only be placed at the locations H. In real networks, those hypervisor locations could be data center

locations, which are connected to the network topology at the given network locations i ∈ H ⊆ V .

Optimizing the k-hypervisor placement provides many outcomes: the locations of the hypervisors,

the assignment between switches and hypervisors, the routing of vSDN demands.

4.2.1.3 Multi-controller Switch Deployment Problem (McSDP)

We denote M for the number of multi-controller SDN network nodes. Solving our problem formu-

lation determines which switches should support multiple controllers (hypervisors). An alternative

input setting of our problem formulation could include a pre-determined set of switches supporting

the multiple controllers feature. In case M = 0, no physical SDN switch supports the multiple con-

trollers feature, i.e., no SDN switch can simultaneously connect to multiple hypervisor instances. For

0 < M < |V|, a subset of the physical SDN switches supports multiple controllers. In caseM = |V|,
all physical SDN switches support multiple controllers.

4.2. Placement Problems in Virtual Software-De�ned Networks 75

Table 4.5: Problem input for k-HPP and McSDP.

Notation Description

G Physical SDN network

R Set of virtual SDN network (vSDN) requests

k Number of hypervisor nodes to be placed

M Number of physical SDN switches (network nodes) supporting multiple con-

trollers

4.2.2 Problem Se�ing for Dynamic Hypervisor Placement Problem (DHPP)

The DHPP aims at dynamic tra�c scenarios: the number of vSDN requests changes over time. The

hypervisor locations should always provide the best possible latency for the di�erent amounts of

vSDN requests over time: e.g., whereas hypervisors might be co-located with vSDN controllers for

a small number of vSDN requests, the hypervisor locations might tend to more central locations for

a larger amount of vSDN requests. Changing the hypervisor locations introduces recon�gurations

(see Sec. 4.1.1.1).

4.2.2.1 Network Models for Dynamic Use

This section brie�y reports on the hypervisor problem setting for dynamic use. Taking the static

model setting as given, the section describes only the updated notation considering particular the

time aspect. In case a detailed explanation is missing, all explanations from the static case hold also

for the dynamic case.

Table 4.6: Notation of sets and constants for physical SDN network G for dynamic use.

Notation Description

T Set of points in time over a �nite time horizon Ψ = [0, T]

τ A point in time with τ ∈ T

Φ Set of hypervisor instances with |Φ| = k

Physical SDN network specification for dynamic use. Table 4.6 provides the main di�erence

between the dynamic and the static setup: the dynamic hypervisor placement is investigated for

points of time τ ∈ T where τ is the current point in time and τ − 1 is the point in time before τ . It

is assumed that changes do not happen between τ − 1 and τ . In contrast to the static use case, the

dynamic one additionally considers individual hypervisor instances, denoted by the set Φ. Model-

ing individual hypervisor instances makes it possible to account for recon�gurations of the adapted

hypervisor instance: for example, the hypervisor instances might store di�erent information about

their connected switches such as the �ow table settings of the switches. When recon�guring these

hypervisors, transmitting the di�erent state information might lead to di�erent recon�guration times

76 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

Table 4.7: Notation of sets and constants for virtual SDN network (vSDN) requestsRτ for dynamic use.

Notation Description

Rτ Set of virtual network requests at point in time τ ∈ T

r Virtual network request r ∈ Rτ

R̄τ = Rτ ∩Rτ−1
set of persistent virtual networks

due to varying sizes of state information. By di�erentiating the hypervisor instances, the model can

analyze the cost of such instance recon�gurations. All other notations of sets and constants can be

taken from the static use case as listed in Tab. 4.1; it is assumed that the substrate network settings

do not change over time.

Virtual SDN network (vSDN) request for dynamic use. Table 4.7 summarizes the notations

regarding the vSDN requests for the dynamic use case. The set Rτ denotes the requests existing at

time τ ; in parallel, the set Rτ−1
stands for the requests that are present before, i.e., the requests at

τ −1. As a special extension of the dynamic setup, the set R̄τ represents the persistent requests (i.e.,

virtual networks) that are present at both points in time τ − 1 and τ ; recon�gurations can increase

the latencies of the persistent requests r ∈ R̄τ . Table 4.8 outlines the additional helper functions for

the dynamic setup: ψτloc(v
r) andψτins(v

r). The functionψτloc(v
r) reveals the location of the responsible

hypervisor instance φ ∈ Φ for a given vr ∈ Vr at τ , whereas function ψτins(v
r) reveals the responsible

instance.

Table 4.8: Helper functions for virtual SDN network (vSDN) requestsRτ for dynamic use.

Notation Description

∀τ ∈ T , ∀r ∈ Rτ : ψτloc : Vr → H The function resolves for a virtual node vr at point in time

τ the hypervisor location h ∈ H.

∀τ ∈ T , ∀r ∈ Rτ : ψτins : Vr → Φ The function resolves for a virtual node vr at point in time

τ the hypervisor instance φ ∈ Φ.

4.2.2.2 Modeling vSDN Reconfigurations

Additional sets are introduced that make it possible to consider recon�gurations during optimiza-

tion. The three sets Zτ ,Zτins and Zτloc contain the virtual nodes of all r ∈ Rτ that are reconnected to

a new hypervisor instance or rerouted to a new hypervisor location due to a change; the sets capture

the vSDN nodes, i.e., their VCPs that are a�ected at point in time τ . The sets are de�ned as follows:

Zτloc =
⋃
r∈R̄τ
{vr|vr ∈ Vr : ψτ−1

loc (vr) 6= ψτloc(v
r)} (4.1)

Zτins =
⋃
r∈R̄τ
{vr|vr ∈ Vr : ψτ−1

ins (vr) 6= ψτins(v
r)} (4.2)

Zτ = Zτins ∪ Zτloc (4.3)

4.2. Placement Problems in Virtual Software-De�ned Networks 77

Eq. 4.1 introduces the set Zτloc containing the virtual nodes vr ∈ Vr of all requests Rτ whose loca-

tions change at τ ; this is independent of whether the instance changes or not. Eq. 4.2 gives the virtual

nodes vr ∈ Vr of all requests Rτ whose hypervisor instances change; again, this is independent of

whether the location changes or not. The set Zτ contains all virtual nodes that reconnect to new

locations or di�erent hypervisor instances: it is de�ned as the union of Zτloc and Zτins.

The sets Zτ
loc,ins

and Zτ
loc,ins

are subsets of Zτloc and Zτins; they additionally di�erentiate between

instance and location changes. They are de�ned as:

Zτ
loc,ins

=
⋃
r∈R̄τ
{vr|vr ∈ Vr : ψτ−1

loc (vr) 6= ψτloc(v
r) ∧ ψτins(v

r) = ψτ−1
ins (vr)} (4.4)

Zτ
loc,ins

=
⋃
r∈R̄τ
{vr|vr ∈ Vr : ψτ−1

ins (vr) 6= ψτins(v
r) ∧ ψτloc(v

r) = ψτ−1
loc (vr)} (4.5)

Eq. 4.4 de�nes the setZτ
loc,ins

containing the virtual nodes whose location changes but not the hyper-

visor instance; the VCPs are migrated with the hypervisor instance to a new location. Similarly, the

setZτ
loc,ins

as given by Eq. 4.5 provides the vSDN nodes where only the hypervisor instances change;

the vSDN nodes are always connected through the same physical node location to their controllers.

4.2.2.3 Dynamic Hypervisor Placement Problem (DHPP): Multi-Objective Optimization

Similar to the k-HPP and McSDP, the DHPP requires various input parameters summarized in Table

4.9: a physical SDN network G, a time horizon T , and for each point in time a set of requests Rτ .

For this input, a prescribed number k of hypervisor locations need to be chosen among all potential

hypervisor locationsH. Again, M de�nes the number of multi-controller switches.

The DHPP introduces con�icting objectives: minimizing the control plane latency and minimizing

the di�erent types of recon�gurations. For designing network virtualization layers, gaining knowl-

edge of the trade-o�s between achievable control plane latencies and the amount of recon�gurations

is important for e�cient resource management. For instance, a small relaxation of the latency con-

straint might potentially decrease the amount of recon�gurations signi�cantly, resulting in a more

stable network operation while still guaranteeing an acceptable control plane latency.

Di�erent methodologies exist to solve multi-objective optimizations: the weighting method, the

constraint method, the non-inferior set estimation method, the multi-objective simplex method etc..

In this thesis, the ε-constraint method is applied [CH08; Coh13]; it can reuse the existing HPP model

that optimizes latency only; it makes it possible to analyze the di�erent objectives in an isolated man-

ner by controlling relaxations through so called ε parameters. In contrast to the constraint method,

the weighting method does not e�ciently �nd the Pareto (non-inferior) points; a large number of

weights might be needed to �nd valuable solution points [Coh13]. Consequently, the constraint

method is chosen for optimizing the DHPP.

Figure 4.4 shows the multi-objective optimization steps. The �rst step minimizes one of the four

latency objectives (see Section 4.3.1.2); the second step minimizes the number of hypervisor location

changes (Eq. 4.27); the third step minimizes the number of hypervisor instance changes (Eq. 4.29).

The output of one optimization step is used as input for the next optimization step. For analyzing

78 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

Table 4.9: Problem input for DHPP.

Notation Description

G Physical SDN network

T Set of points in time over a �nite time horizon Ψ = [0, T]

Rτ Set of virtual SDN network (vSDN) requests

R̄τ Set of consistent virtual SDN network (vSDN) requests

k Number of hypervisor nodes to be placed

M Number of physical SDN switches (network nodes) supporting multiple con-

trollers

L′obj Optimal latency for the given input data; “obj” is a placeholder for avg,

avg max, max, or max avg

εlocation Fraction of vSDN nodes that is a�ected by a recon�guration from τ − 1 to τ
w.r.t. the location of the assigned hypervisor; εlocation ∈ [0, 1]

εinstance Fraction of vSDN nodes that is allowed to be recon�gured w.r.t. the hypervi-

sor instances; εinstance ∈ [0, 1]

εlatency Relative relaxation of target latency L′obj; εlatency ∈ R+

Minimize
Latency
(obj)

1 2 3

Minimize
Location
Changes

Minimize
Instance
Changes

latency
constraint

latency +
location
constraint

Figure 4.4: Optimization stages. obj ∈ {Lavg, Lavgmax, Lmax, Lmax avg}, the result of the previous stages is

added as a constraint to the current stage (Eq. 4.46 or/and Eq. 4.45).

the trade-o�s, i.e., creating the Pareto frontier, the parameters εinstance, εlatency and εlocation relax the

respective input values of the optimization steps; the next step uses the achieved objective value of

the previous step as (relaxed) input. L′obj denotes the value of the latency objective of the �rst step.

Solving the DHPP provides the following outcomes for a point in time τ : the achievable hypervisor

latency objective, the locations of the hypervisors at point in time τ , the assignments of switches to

hypervisor locations and instances, and the amount of recon�gurations. The results of this thesis re-

port on trade-o�s between minimizing one of the latency objectives (Lavg, Lavg max, Lmax, Lmax avg)

and the number of location changes.

4.3 Modeling Network Hypervisor and Multi-Controller Switch Place-
ments

Section 4.3.1 �rst introduces the hypervisor model for a static use. Section 4.3.2 introduces the dy-

namic model, which extends the static model for dynamic use.

4.3. Modeling Network Hypervisor and Multi-Controller Switch Placements 79

Table 4.10: Binary decision variables for k-HPP and McSDP.

Notation Description

yh =1, if a hypervisor is placed at potential hypervisor node (location) h ∈ H; 0,

otherwise

xr,vr,h,cr =1, if vSDN node vr ∈ Vr of request r is connected to its controller cr via

hypervisor node (location) h ∈ H; 0, otherwise

qi,h =1, if physical SDN node i ∈ V is controlled by hypervisor node h ∈ H; 0,

otherwise

wi =1, if physical SDN node i ∈ V is controlled by multiple hypervisor instances,

i.e., if multiple node to hypervisor (controller) connections exist; 0, otherwise

4.3.1 Modeling HPP and McSDP for Static Use

This section introduces the decision variables, the four objective functions, and the constraints guar-

anteeing a correct solution. The modeling does not consider capacity constraints.

4.3.1.1 Decision Variables

Table 4.10 speci�es the binary decision variables of the MILP formulation of the k-HPP and McSDP.

The variable yh determines whether a hypervisor is located at the network node (location) h ∈ H.

For a request r ∈ R, the variable xr,vr,h,cr is set to one if the vSDN node vr ∈ Vr is connected to

the vSDN controller cr via the hypervisor node (location) h ∈ H. Note that if a path xr,vr,h,cr is

set to one, then a hypervisor needs to be placed at the potential hypervisor node (location) h. The

variable qi,h indicates whether physical node i ∈ V is controlled by the hypervisor instance placed

at location h ∈ H. The variable wi indicates whether the multiple controllers feature is deployed

and used at physical node i ∈ V . In case of a multi-controller SDN switch, i.e., where wi = 1, the

variable qi,h for a given node i ∈ V is possibly one for multiple hypervisor nodes (locations) h ∈ H.

4.3.1.2 Objective Functions

We focus on objective functions that seek to minimize the control plane latency. In particular, we

introduce four latency metrics: maximum latency Lmax, average latency Lavg, average maximum

latency Lavg max, and maximum average latency Lmax avg. Note that optimizing for Lmax, Lavg max

and Lmax avg requires additional variables and constraints. These variables and constraints are sub-

sequently introduced when the metrics are presented. As these variables and constraints are speci�c

to an objective, Section 4.3.1.3 does not describe them with the general constraints.

Maximum latency. The maximum latency for a considered hypervisor placement is the maxi-

mum latency of all utilized shortest paths from all requests r ∈ R. Recall that the binary decision

variable xr,vr,h,cr indicates (i.e., is equal to one) when for a request r the path from vr via h to cr is

used. Thus, the maximum latency of all paths that have been selected to ful�ll the requests r ∈ R is

80 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

given by

Lmax = max
r∈R, vr∈Vr, h∈H

xr,vr,h,cr · dh(π(vr), h, π(cr)). (4.6)

Minimizing the latency metric Lmax involves minimizing a maximum over sets, which is not directly

amenable to some solvers. The maximum over sets can be readily expressed as an equivalent con-

strained minimization problem. Speci�cally, we can equivalently minimizeLmaxde�ned through the

constraints

Lmax ≥ xr,vr,h,cr · dh(π(vr), h, π(cr)), ∀r ∈ R, ∀vr ∈ Vr, ∀h ∈ H. (4.7)

The resulting objective function is

minLmax. (4.8)

Average latency. The average latency is the average of all path latencies of all VCPs. For a vSDN

request r, there are |Vr| vSDN nodes that need to be connected to the vSDN controller cr . Therefore,

for a set of requestsR, there are overall

∑
r∈R
|Vr| paths and the average latency is

Lavg =
1∑

r∈R
|Vr|

∑
r∈R

∑
vr∈Vr

∑
h∈H

xr,vr,h,cr · dh(π(vr), h, π(cr)). (4.9)

Note that this metric does not di�erentiate between the vSDNs. Here, no additional variables or

constraints are needed; thus the average latency objective function is

min Lavg. (4.10)

Average maximum latency. The average maximum latency for a given hypervisor placement is

de�ned as the average of all the maximum latencies of the individual vSDN requests r ∈ R. First, the

maximum path latency for each vSDN request r is evaluated. Second, the average of all maximum

path values is evaluated: the sum of the maximum path latencies is divided by the total number of

vSDN requests |R|.

Lavg max =
1

|R|
∑
r∈R

max
vr∈Vr, h∈H

xr,vr,h,cr · dh(π(vr), h, π(cr)). (4.11)

In order to circumvent the maxima over sets, we de�ne constraints for the maximum latency of each

given vSDN request r ∈ R:

Lrmax ≥ xr,vr,h,cr · dh(π(vr), h, π(cr)), ∀r ∈ R, ∀vr ∈ Vr, ∀h ∈ H. (4.12)

The objective function then minimizes the average of the Lrmax over all requests |R|:

min
1

|R|
∑
r∈R

Lrmax. (4.13)

This objective function provides a relaxed average latency towards a better maximum latency per

vSDN. Note that this objective function di�erentiates between vSDNs.

4.3. Modeling Network Hypervisor and Multi-Controller Switch Placements 81

Maximum average latency. The maximum average latency is de�ned as the maximum of the av-

erage latencies for the individual vSDNs. First, the average latency of each requested vSDN request

r ∈ R is determined. Second, the maximum of these averages is evaluated, i.e.,

Lmax avg = max
r∈R

1

|Vr|
∑
vr∈Vr

∑
h∈H

xr,vr,h,cr · dh(π(vr), h, π(cr)). (4.14)

This metric corresponds to the maximum of the vSDN average latencies, i.e., the maximum latencies

are relaxed per vSDN towards a better overall maximum average latency. Minimizing the maximum

over the setR is equivalent to minimizing Lmax avg de�ned through the constraints

Lmax avg ≥
1

|Vr|
∑
vr∈Vr

∑
h∈H

xr,vr,h,cr · dh(π(vr), h, π(cr)), ∀r ∈ R. (4.15)

The objective function then minimizes Lmax avg:

minLmax avg. (4.16)

4.3.1.3 Constraints

This section introduces the constraints for the k-HPP and McSDP.

Hypervisor selection constraint. We ensure that the number of placed hypervisor instances (i.e.,

the number of selected hypervisor nodes (locations)) is equal to k:∑
h∈H

yh = k. (4.17)

Virtual node path selection constraint. Each virtual node vr ∈ Vr of each vSDN request r ∈ R
must be connected to its corresponding controller cr via exactly one hypervisor node h. This means

that per virtual node vr per request r, exactly one path has to be used:∑
h∈H

xr,vr,h,cr = 1, ∀r ∈ R , ∀vr ∈ Vr. (4.18)

Hypervisor installation constraint. We place (install) a hypervisor instance at location h (i.e.,

set yh = 1) if at least one virtual node vr is connected to its controller cr via the hypervisor location

h (i.e., if xr,vr,h,cr = 1). At the same time, at most

∑
r∈R
|Vr| virtual nodes can be connected via a

given hypervisor location h to their respective controllers. Thus,∑
r∈R

∑
vr∈Vr

xr,vr,h,cr ≤ yh
∑
r∈R
|Vr|, ∀h ∈ H. (4.19)

Physical node to hypervisor assignment constraint. We let a hypervisor node (location) h

control a physical SDN switch (network node) vr , if a path of any request r ∈ R is selected to con-

nect a virtual node vr of Vr to its controller cr via h (i.e., if xr,vr,h,cr = 1) and additionally, this

virtual node is hosted on i, i.e., π(vr) = i. Thus:

xr,vr,h,cr ≤ qi,h, ∀r ∈ R, ∀vr ∈ Vr, i = π(vr), ∀h ∈ H. (4.20)

82 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

Multiple hypervisors constraint. We determine the physical SDN switches i ∈ V that can be

controlled by multiple hypervisors, i.e., the switches i (withwi = 1) that support multiple controllers.

For a given physical multi-controller SDN switch i ∈ V (with wi = 1), the number of controlling

hypervisors must be less than or equal to the total number of hypervisor nodes k, if the switch hosts

at least one virtual SDN switch (which needs to be connected to its controller). On the other hand,

for a physical single-controller SDN switch i ∈ V (with wi = 0), the number of controlling hyper-

visors must equal one, if the switch hosts at least one virtual SDN switch. Thus, for an arbitrary

physical SDN switch (node) i ∈ V (irrespective of whether i is a single- or multi-controller SDN

switch), the total number of controlling hypervisor instances (locations) must be less than or equal

to [1− wi] + k · wi. Thus, ∑
h∈H

qi,h ≤ [1− wi] + k · wi, ∀i ∈ V.
(4.21)

We note that some solvers may unnecessarily set some qi,h to one for a hypervisor node h, even

though network node i does not host any virtual node vr that is connected to its corresponding con-

troller cr via hypervisor node h. This is because the solver can �nd a valid minimal latency solution

while setting some qi,h unnecessarily to one. We circumvent this issue by forcing qi,h to zero if no

corresponding path for this hypervisor instance was selected:

qi,h ≤
∑
r∈R

∑
{vr∈Vr:i=π(vr)}

xr,vr,h,cr , ∀i ∈ V, ∀h ∈ H. (4.22)

Multi-controller switches constraint. We limit the number of special multi-controller SDN

switches that are physically deployed in the network:∑
i∈V

wi ≤M. (4.23)

Note that via this constraint the four di�erent architectures, as introduced in Sec. 4.1.1, can be mod-

eled, optimized, and analyzed. SettingM = 0 forces allwi to zero. Accordingly, there are no physical

multi-controller SDN switches in the network; a physical SDN switch node can only be controlled

by one hypervisor node. Thus, shared control domains, i.e., one node being controlled by multiple

hypervisor nodes, are not possible.

4.3.2 Modeling Network Hypervisor Placement for Dynamic Use

This section introduces the decision variables, objective functions, and the constraints needed to

solve the DHPP. In contrast to the static HPP, decision variables, objective functions, and constraints

of the DHPP need to additionally consider the hypervisor instances Φ and the time aspect T . The

static model can be used as a basis; as a consequence, this section only introduces the additional

constraints in detail. Moreover, it only brie�y outlines the equations that are updated with the hy-

pervisor instances or the time, or, if the case permits, it only shows an exemplary updated version

of an equation.

4.3. Modeling Network Hypervisor and Multi-Controller Switch Placements 83

Table 4.11: Binary decision variables for the DHPP with hypervisor instance di�erentiation. All variables

represent decisions at point in time τ .

Notation Description

yτφ,h =1, if the hypervisor instance φ ∈ Φ is placed at node h ∈ H at point in time

τ ; = 0, otherwise

xτr,vr,φ,h,cr =1, if virtual SDN node vr ∈ Vr is connected to controller cr via hypervisor

φ ∈ Φ at node h ∈ H; = 0, otherwise

qτi,h =1, if physical SDN node i ∈ V is controlled by at least one hypervisor at

node h ∈ H; = 0, otherwise

wτi =1, if physical SDN node i ∈ V is controlled by multiple hypervisor instances

that are located on di�erent nodes; = 0, otherwise.

zτr,vr,h,j,cr = 1 if the control path of vSDN node vr ∈ Vr is moved from a hypervisor

instance at node h ∈ H to an instance at node j ∈ H.

oτr,vr,φ,γ,cr = 1 if the control path of vSDN node vr ∈ Vr is moved from the instance

φ ∈ Φ to instance γ ∈ Φ

4.3.2.1 Decision Variables

To implement the DHPP di�erentiating hypervisor instances, six groups of binary variables are re-

quired. Four of the variables represent the hypervisor placement similar to the static case: xτr,vr,φ,h,cr ,

yτφ,h, qτi,h and wτi . The variables zτr,vr,h,j,cr and oτr,vr,φ,γ,cr indicate recon�gurations a�ecting vSDN

nodes at point in time τ . Table 4.11 gives an overview and explains each variable type in detail.

4.3.2.2 Objective Functions

Latency objectives. All objective functions Lmax, Lmax avg, Lavg max, Lavg as introduced for the

static placement are updated to consider the hypervisor instances Φ and the time τ ∈ T . For brevity,

only the updated version of the Lτmax (indicated by the superscript τ) is shown:

Lτmax = max
r∈Rτ , vr∈Vr

∑
φ∈Φ

∑
h∈H

xτr,vr,φ,h,cr · dh(π(vr), h, π(cr)). (4.24)

Additional constraint:

Lτmax ≥
∑
φ∈Φ

∑
h∈H

xτr,vr,φ,h,cr · dh(π(vr), h, π(cr)), ∀r ∈ Rτ , ∀vr ∈ Vr. (4.25)

Actual objective:

minLτmax. (4.26)

Reconfiguration objectives. The metrics Rτloc and Rτins consider location or instance changes.

The metric Rτloc simply counts the number of vSDN nodes that are rerouted to a new hypervisor

location: Rτloc = |Zτloc|. For this, it counts all zτr,vr,h,j,cr = 1 among all virtual nodes vr ∈ Vr and

84 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

their controller cr of all consistent requests R̄τ at point in time τ :

Rτloc =
∑
r∈R̄τ

∑
vr∈Vr

∑
{h,j∈H,h6=j}

zτr,vr,h,j,cr . (4.27)

Actual objective:

minRτloc. (4.28)

Similar, the metric Rτins considers the instance changes among all requests Rτ ; it counts the af-

fected virtual nodes vr ∈ Vr whose hypervisor instances change, i.e., oτr,vr,φ,γ,cr = 1:

Rτins =
∑
r∈R̄τ

∑
vr∈Vr

∑
{φ,γ∈Φ,φ 6=γ}

oτr,vr,φ,γ,cr (4.29)

Actual objective:

minRτins. (4.30)

4.3.2.3 Constraints

The constraints of the DHPP are classi�ed into four categories: the general constraints of the static

setup adapted to consider instances and time, the constraints counting the amount of recon�gura-

tions, the constraints bounding the fraction of recon�gurations, and the constraints bounding the

latency.

General constraints. All constraints as introduced for the static setup are adapted to the dynamic

use case as listed in Eq. 4.31-Eq. 4.38. In a nutshell, this includes allocating all k hypervisor instances,

assigning every vSDN node to one hypervisor instance, connect the physical nodes i ∈ V with the

hypervisor instances and limit the number of used multi-controller switches.∑
h∈H

yτφ,h = 1, ,∀φ ∈ Φ (4.31)∑
φ∈Φ

yτφ,h ≤ 1, ∀h ∈ H (4.32)

∑
φ∈Φ

∑
h∈H

xτr,vr,φ,h,cr = 1, ∀r ∈ Rτ , ∀vr ∈ Vr (4.33)

∑
r∈Rτ

∑
vr∈Vr

xτr,vr,φ,h,cr ≤ yτφ,h
∑
r∈Rτ

|Vr|, ∀φ ∈ Φ, ∀h ∈ H (4.34)∑
φ∈Φ

xτr,vr,φ,h,cr ≤ qτπ(vr),h, ∀r ∈ Rτ , ∀vr ∈ Vr, ∀h ∈ H (4.35)

qτi,h ≤
∑
r∈Rτ

∑
{vr∈Vr:π(vr)=i}

∑
φ∈Φ

xτr,vr,φ,h,cr , ∀h ∈ H, ∀i ∈ V (4.36)

∑
h∈H

qτi,h ≤ [1− wτi] + kwτi , ∀i ∈ V (4.37)∑
i∈V

xM(i) ≤M. (4.38)

4.3. Modeling Network Hypervisor and Multi-Controller Switch Placements 85

Reconfiguration constraints. The Eqs. 4.39-4.44 introduce the constraints tracking the amount

of recon�gurations. They ensure that the recon�guration variables zτr,vr,h,j,cr and oτr,vr,φ,γ,cr are

set properly; the variables should be pushed to 0 if no recon�guration happens and they should be

pushed to 1 if a recon�guration happens.

As an example, Eq. 4.39 sets zτr,vr,h,j,cr = 1 only if the sum of left hand side of the equation is

2. Meanwhile, Eqs. 4.40-4.41 push the variables zτr,vr,h,j,cr to 0 if the hypervisor instances Φ on the

hypervisor locations H are not used at any of the points in time τ and τ − 1. Eqs. 4.42-4.44 work

simultaneously for the hypervisor instance changes.

∑
φ∈Φ

(
xτ−1
r,vr,φ,h,cr + xτr,vr,φ,j,cr

)
− 1 ≤zτr,vr,h,j,cr , ∀r ∈ R̄τ , ∀vr ∈ Vr, h, j ∈ H, h 6= j

(4.39)

zτr,vr,h,j,cr ≤
∑
φ∈Φ

xτ−1
r,vr,φ,h,cr , ∀r ∈ R̄τ , ∀vr ∈ Vr, h, j ∈ H, h 6= j

(4.40)

zτr,vr,h,j,cr ≤
∑
φ∈Φ

xτr,vr,φ,j,cr , ∀r ∈ R̄τ , vr ∈ Vr, h, j ∈ H, h 6= j

(4.41)

∑
h∈H

(
xτ−1
r,vr,φ,h,cr + xτr,vr,γ,h,cr

)
− 1 ≤oτr,vr,φ,γ,cr , ∀r ∈ R̄τ , ∀vr ∈ Vr, φ, γ ∈ Φ, φ 6= γ

(4.42)

oτr,vr,φ,γ,cr ≤
∑
h∈H

xτ−1
r,vr,φ,h,cr , ∀r ∈ R̄τ , vr ∈ Vr, φ, γ ∈ Φ, φ 6= γ

(4.43)

oτr,vr,φ,γ,cr ≤
∑
h∈H

xτr,vr,γ,h,cr , ∀r ∈ R̄τ , vr ∈ Vr, φ, γ ∈ Φ, φ 6= γ

(4.44)

Reconfiguration bounding constraints. Restricting the number of recon�gurations makes it

possible to analyze the trade-o� between control plane latency and recon�gurations; if less recon-

�gurations are allowed, the virtualization layer may not completely adapt towards a new placement

that improves the latency. The introduced relaxation parameters εinstance and εlocation bound the

total amount of recon�gurations. The following Eq. 4.45 and Eq. 4.46 use the relaxation parameters;

they bound the total amount of location or instance changes among all vSDN requestsRτ . The right

hand sides of the equations provide the maximum possible number of changes; the maximum num-

ber is bounded by the total number of all vSDN nodes of persistent requests R̄τ . Multiplying this

86 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

number with εinstance or εlocation restricts the number of Rτins or Rτloc to be between [0,
∑
r∈R̄τ

|Vr|].

Rτloc ≤ εlocation ·

∑
r∈R̄τ

|Vr|

 (4.45)

Rτins ≤ εinstance ·

∑
r∈R̄τ

|Vr|

 (4.46)

Latency bounding constraints. Vice versa to bounding the recon�gurations, relaxing or restrict-

ing the latency via a constraint makes it possible to analyze the latency-to-recon�guration trade-o�.

The following equation describes the constraint:

Lobj ≤ (1 + εlatency)L′obj (4.47)

As previously described, the optimal latency L′obj for a given objective and the relaxation param-

eter εlatency are used as inputs; note that L′obj needs to be pre-determined. Relaxing the latency

should decrease the amount of needed recon�gurations; intuitively, with a higher acceptable latency

compared to the optimal latency, the hypervisor instances remain at their old locations.

4.4 Simulative Analysis of Hypervisor Placement Problems

This section investigates the hypervisor placement for static and dynamic tra�c scenarios. The

number of vSDNs is constant in a static tra�c scenario. Furthermore, the vSDNs themselves do not

change; tenants do not add or delete vSDN nodes neither do they request any further adaptation of

their vSDN requests like changing the positions of their controllers.

In the dynamic tra�c scenario, the virtualization layer faces vSDN requests arriving and leaving

the substrate network over time: the number of vSDN tenants changes. The analysis demonstrates

that the virtualization layer needs to adapt in order to always provide the best possible latency guar-

antees.

4.4.1 Simulator for CPP, HPP, DHPP and VNE: virtshouse

The Python-based simulation framework virtshouse has been implemented for all subsequent stud-

ies [BBZ+15; BBZ+16; BKS+16; BKS+17] of this thesis: (virtual) controller placement, hypervisor

placement, and virtual network embedding. The framework uses Gurobi [GO16] to solve MILP-

based problem formulations and algorithms relying on relaxed linear program formulations. In this

chapter, the evaluation focuses mainly on the latency and recon�guration analysis, i.e., the hyper-

visor placement (HP) latency values (de�ned in 4.3.1.2), the latency values of the individual vSDN

requests (see Sec. 4.4.2.2, Eq. 4.48 and Eq. 4.49), and the di�erent types of recon�gurations (introduced

in Sec. 4.2.2.2). Following [HSM12], the hypervisor architectures and objectives are analyzed when

deployed on the real SDN-based OS3E network topology [Os3], topologies taken from the Topology

Zoo (TZ) data set [KNF+11], or topologies from the SNDLib [OWP+10].

4.4. Simulative Analysis of Hypervisor Placement Problems 87

Table 4.12: Evaluation settings for k = 1 hypervisor.

Parameter Values

Number of vSDNs |R| 1, 10, 15, 20, 25, 40, 60, 80

Number of virtual nodes per vSDN |Vr| Uniformly distributed 2...10

Controller location for each vSDN cr Uniformly selected from set V
Virtual node locations π(v) Uniformly selected from V without replacement

Runs per model ≥ 30

HPP objectives Lmax, Lavg, Lavg max, Lmax avg

4.4.2 Placement Results for Static Use and the Cost of Virtualization

The �rst part (Sec. 4.4.2.1) of this section analyzes the deployment of one (k = 1) hypervisor on a

real network topology. Analyzing one hypervisor provides basic insights for the multiple hypervisor

scenario; it illustrates the impact of the hypervisor latency objective, the number of vSDNs, and the

vSDN objective. The second part (Sec. 4.4.2.2) then extends the analysis to multiple hypervisors. It

focuses on the potential bene�t of multiple hypervisors and it questions whether the observations

from one topology can be generalized for other topologies. All latency results will be given in mil-

liseconds [ms].

4.4.2.1 Analyzing the E�ect of one (k = 1) Hypervisor

The parameter settings are given in Table 4.12. The network topology is the ATT North America

topology (ATTMpls) [KNF+11], which consists of 25 nodes and 36 edges. We evaluate the HPP for

di�erent numbers |R| of vSDNs; a physical node thus hosts a variable number of vSDN switches,

possibly also 0. We call this the vSDN network density of the virtualization layer. For example, for

|R| = 1 only one virtual SDN network is considered during the hypervisor placement while |R| =
80 means that 80 vSDNs are considered. For all vSDN requests r ∈ R, we assume that the virtual

nodes and their controllers are given as input. The number of virtual nodes |Vr| per request r is

uniformly distributed between 2 and 10. The vSDN node locations are uniformly selected from all

available physical network locations V . For each request, the controller location cr is also uniformly

selected from all physical network locations V .

Is there a dominant location for the network hypervisor under di�erent objectives? We

start by comparing the di�erent objectives with respect to the geographical locations of the hyper-

visor nodes. Figure 4.5 shows the resolved hypervisor locations for each objective metric in case

|R| = 80. The size of a circle of a node represents the frequency of how often the node is selected

as the optimal hypervisor location over 30 runs. A physical node location that is colored white with

the smallest possible size indicates that the node is never selected as hypervisor location.

Figure 4.5a depicts the results for minimizing Lmax: the hypervisor location converges to the net-

work node 15 lying in the sparse part of the network. The longer links connecting between the east

88 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

(a) minLmax. (b) minLavg . (c) minLavgmax. (d) minLmax avg .

Figure 4.5: Hypervisor placement distribution over ATTMpls network topology. A node size indicates how

often this node is considered as a hypervisor location among all simulation runs. Simulation settings are k =
1, |R| = 80. One �gure per hypervisor latency objective. For the given settings, hypervisors are located only

on a subset of nodes. The new virtual objectives show with 4-5 nodes a higher distribution among potential

substrate locations.

and west parts of the network determine the hypervisor locations. The maximum latency of the

longer links are mostly impacting the objective function.

Figure 4.5b shows two dominant hypervisor locations towards the center of the network (node 9

and 13). In contrast to solving the model for the maximum latency, minimizing the average latency

considers all controller to virtual node connections of all vSDNs. As the vSDNs are randomly dis-

tributed, the hypervisor locations converge to the more populated part of the network, i.e., the east

of the network.

Figure 4.5c illustrates the hypervisor locations with a minimum Lavg max. As this model considers

the average of the maximum latency of all vSDNs, more physical locations (node 9, 12, 13, 15, 16) for

the hypervisor are optimal among the 30 runs. It can be observed that the hypervisor locations are

overlapping with the locations as shown in Figure 4.5b.

Finally, minimizing Lmax avg as shown in Figure 4.5d considers the maximum of the average la-

tency within each vSDN. This model results again in more candidate locations for the hypervisor

(node 2, 9, 11, 12, 13, 15, 16). Due to again minimizing the maximum among all average vSDN la-

tencies, the dominant hypervisor locations overlap with the locations shown in Figure 4.5a; vSDNs

with longer paths mainly determine the latency Lmax avg.

On the basis of the points mentioned above, it is apparent that only a subset of nodes are resolved

as candidate hypervisor locations under the given input parameters: the potential hypervisor loca-

tions concentrate on a small subset of physical locations for each objective. Such knowledge can be

used when targeting search space reduction mechanisms as analyzed in Chapter 5. Due to e�cient

search space reduction mechanisms, an optimization needs to consider only a subset of nodes when

determining a new placement. However, Lavg max or Lmax avg demand a higher optimization e�ort

as more nodes are providing an optimal solution for the hypervisor location.

How does the vSDN network density influence the hypervisor placement? Figure 4.6 shows

the impact of the vSDN density, i.e., number |R| of vSDNs. While the x-axis shows the vSDN density,

the y-axis shows the numbers of the network nodes. Again, the size of the circles indicate how often

a location is chosen among 30 or more runs.

4.4. Simulative Analysis of Hypervisor Placement Problems 89

135710 15 20 25 40 60 80
Num. vSDNs

0
1
2
3
4
5
6
7
9

10
12
13
14
15
16
17

20
21
22
23
24

Su
bs

tr
at

e
N

od
e

(a) minLmax.

135710 15 20 25 40 60 80
Num. vSDNs

0
1
2
3
4
5
6
7
8
9

10
12
13
14
15
16
17

20
21
22
23
24

Su
bs

tr
at

e
N

od
e

(b) minLavg .

135710 15 20 25 40 60 80
Num. vSDNs

0
1
2
4
5
7
8
9

10
12
13
14
15
16
17

20
21
22
23
24

Su
bs

tr
at

e
N

od
e

(c) minLavgmax.

135710 15 20 25 40 60 80
Num. vSDNs

0
1
2
3
4
5
6
7
8
9

10
12
13
14
15
16
17

20
21
22
23
24

Su
bs

tr
at

e
N

od
e

(d) minLmax avg .

Figure 4.6: Importance of substrate nodes as hypervisor locations over number of vSDNs. One �gure per

hypervisor objective. Figures indicate how often a node location was chosen relatively for all simulation runs

of one setting. The size of a circle indicates the frequency how often a location was chosen. A setting is de�ned

by the number of vSDNs. The x-axis gives the number of vSDNs and the y-axis shows the substrate node ids.

More vSDNs force the hypervisor to dominant locations: e.g., substrate node 15 is dominating for Lmax when

more than 25 vSDNs are hosted on the substrate network.

In case of a single vSDN network (|R| = 1), most physical nodes are selected at least one time

as a hypervisor location within the 30 runs. This can be explained by the fact that just one vSDN

network with 7 nodes on average is placed randomly among the network. This single vSDN deter-

mines the hypervisor location for all metrics; actually, as the hypervisor serves only one vSDN, it

could be co-located with the tenant controller, which achieves the lowest latency. Accordingly, more

potential hypervisor locations are optimal for each individual run. With an increasing vSDN den-

sity, the solutions converge to deterministic hypervisor location(s): more vSDNs are generated with

90 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

135710 15 20 25 40 60 80
Num. vSDNs

20

30

40

L
m
a
x
[m

s]

minLmaxavg

minLavgmax

minLmax

minLavg

(a) Lmax.

135710 15 20 25 40 60 80
Num. vSDNs

10

20

L
a
v
g
[m

s]

minLmaxavg

minLavgmax

minLmax

minLavg

(b) Lavg .

135710 15 20 25 40 60 80
Num. vSDNs

20

30

L
a
v
g
m
a
x
[m

s]

minLmaxavg

minLavgmax

minLmax

minLavg

(c) Lavgmax.

135710 15 20 25 40 60 80
Num. vSDNs

10

20

30

L
m
a
x
a
v
g
[m

s]
minLmaxavg

minLavgmax

minLmax

minLavg

(d) Lmax avg .

Figure 4.7: Hypervisor latency metric over number of vSDNs for all objectives; one �gure per hypervisor

latency metric (not objective). Each objective achieves the optimal solution with respect to its targeted metric.

An increasing number of vSDNs increases the achieved latencies. Metrics converge between 25 and 40 vSDNs;

adding vSDNs does not increase latencies further.

a possibly large geographical distribution. Since these vSDNs are spread with a higher probability

among the physical network, the topology of the physical network determines an upper bound for

the latencies. For instance, the long links from east to west determine the hypervisor locations when

minimizing Lmax.

To conclude, the vSDN network density has to be considered for the hypervisor placement: a high

density actually leads to a small subset of valuable nodes. This observation can be used to predeter-

mine a set of potential hypervisor locations. For instance, in case the number of vSDNs is varying

around a high density value, the hypervisor might potentially move only among the subset of nodes.

As a result, the execution cost of online adaptation algorithms might be decreased.

What are the trade-o�s between the objective metrics? In order to show the trade-o�s be-

tween the four objective metrics in more detail, we calculate the values of the other three metrics for

each optimization of an objective accordingly. Figure 4.7 shows the average of all metrics with 95 %

con�dence intervals. In general, optimizing the model for a particular metric also leads to the best

solution with respect to the metric. For instance, optimizing Lmax achieves the lowest Lmax value,

whereas minimizing Lavg achieves the best Lavg solution; a numerical indicator for the correctness

of the proposed model.

In Figure 4.6 we have observed that the sets of selected hypervisor locations for di�erent objec-

tives, e.g., Lavg and Lavg max, involve the same network node 9: the solutions of both objectives

4.4. Simulative Analysis of Hypervisor Placement Problems 91

10 15 20 25

Lmax[ms]

0.0

0.5

1.0

P
(X
≤
L
m
a
x
)

minLmaxavg

minLavgmax

minLmax

minLavg

(a) Lmax, |R| = 1.

35 40

Lmax[ms]

0.0

0.5

1.0

P
(X
≤
L
m
a
x
)

minLmaxavg

minLavgmax

minLmax

minLavg

(b) Lmax, |R| = 40.

35.0 37.5 40.0

Lmax[ms]

0.0

0.5

1.0

P
(X
≤
L
m
a
x
)

minLmaxavg

minLavgmax

minLmax

minLavg

(c) Lmax, |R| = 80.

10 15 20

Lavg[ms]

0.0

0.5

1.0

P
(X
≤
L
a
v
g
)

minLmaxavg

minLavgmax

minLmax

minLavg

(d) Lavg , |R| = 1.

18 20 22 24

Lavg[ms]

0.0

0.5

1.0
P
(X
≤
L
a
v
g
)

minLmaxavg

minLavgmax

minLmax

minLavg

(e) Lavg , |R| = 40.

18 20 22

Lavg[ms]

0.0

0.5

1.0

P
(X
≤
L
a
v
g
)

minLmaxavg

minLavgmax

minLmax

minLavg

(f) Lavg , |R| = 80.

Figure 4.8: Cumulative distribution functions of individual latency values for all hypervisor objectives. Each

sub�gure shows one vSDN setting (1,40,80). The latency objectives Lmax avg and Lavgmax trade-o� the maxi-

mum or average latency. For instance, Lmax avg worsens the maximum latency towards an improved average

latency.

overlap. As a result of the geographically overlapping locations, Figure 4.7 shows the same behav-

ior with respect to all metric values. As an example, Fig. 4.7a shows that minLmax avg achieves the

second best performance for Lmax. At the same time, it also improves Lavg compared to minLmax

(Fig. 4.7b) - minimizing Lmax avg worsens Lmax in order to improve Lavg.

To investigate this behavior in more detail, Figures 4.8a to 4.8f show the cumulative distribution

function for Lmax and Lavg for all objectives. We compare the behavior for |R| = 1, |R| = 40, and

|R| = 80 between each objective.

For |R| = 1, all models have the same latency results for the maximum latency (Lmax) as shown

in Figure 4.8a. This means that for all models the hypervisor location is placed on the path having

the maximum latency for the particular vSDN network. For the average latency, as illustrated in

Fig. 4.8d, optimizing for average or maximum average latency leads to better results. Note in par-

ticular the behavior of Lmax avg: since only one virtual network exists, the average latency of this

vSDN determines the maximum latency of Lmax avg. Both Lavg and Lmax avg optimize for all paths

and do not stop when the minimal maximum latency is reached.

Fig. 4.8b and Fig. 4.8e already show a trade-o� between the models for |R| = 40. In particular

for the objectives maximum latency and average latency, a clear gap exists. In contrast to |R| =

1, optimizing for multiple vSDNs leads to di�erent e�ects. In detail, optimizing for maximum and

maximum average as well as optimizing for average and average maximum show results that are

close together with respect to Lmax and Lavg.

For |R| = 80, as shown in Figures 4.8c and 4.8f, a clear trade-o� between optimizing for maximum

92 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

Table 4.13: Evaluation settings of static analysis.

Parameter Values

Network topology Abilene (|V| = 11, |E| = 14), Quest (|V| =
20, |E| = 31), OS3E (|V| = 34, |E| = 42)),

Bellcanada (|V| = 48, |E| = 64), Dfn (|V| =
51, |E| = 80)

Ratio of multi-controller switches Mr 0, 0.25, 0.5, 0.75, 1

Number of |R| 1, 3, 5, 7, 10, 15, 20, 40, 80

Number of |Vr| per vSDN Uniformly distributed 2, . . . , 10

Number of cr per request r 1

Virtual SDN controller placements (CP) Random (rnd), min average latency (avg),

min maximum latency (max); for avg and

max controller placement is solved optimally

a priori

Virtual node locations π(vr) Uniformly selected from set V
Hypervisor placement objectives Lmax, Lmax avg, Lavg max, Lavg

Runs per setup ≥ 30

or maximum average and average or average maximum can be observed. Furthermore, the resulting

latencies are varying less for |R| = 80 than for |R| = 40. In particular for Lmax, the optimization

leads to a small number of latency values, as indicated by the vertical process of the CDF. We con-

clude that the trade-o�s between the optimizations of the di�erent metrics depend on the density

of the vSDNs: their number and their locations are the dominant impact factor. Furthermore, with

increasing density, the values of the metrics are varying less among all objective optimizations; the

hypervisor control plane latency varies less when more virtual networks are hosted on the infras-

tructure.

4.4.2.2 Analyzing the E�ect of Multiple (k ≥ 1) Hypervisors

Many factors have already been identi�ed that impact the performance of a virtualization layer con-

sisting of a single hypervisor instance: mainly the number of vSDNs and the objective. In this section,

the initial analysis is extended towards multiple hypervisor instances. Since multiple hypervisor in-

stances open further options, e.g., the use of multi-controller switches, more aspects need to be ana-

lyzed. Operators require such detailed analysis in order to always choose the best option according

to the requirements of their customers. The evaluation settings are summarized in Table 4.13. We

analyze the k-HPP for the OS3E topology [Os3]: a topology for networking science having deployed

SDN located in North America. Hence, the results with respect to latency can be seen comparable to

the ones of the previous study on the ATTMpls topology.

For all architectures, we assume that all network nodes can host a hypervisor node, i.e., H = V .

The number of hypervisor nodes k and the number of multi-controller switches M determine the

type of hypervisor architecture. The centralized architecture, see Section 4.1.1 and Fig. 4.1a, is char-

4.4. Simulative Analysis of Hypervisor Placement Problems 93

acterized by k = 1 and M = 0, i.e., each switch has only one controller (hypervisor) connection.

Note also that k > 1 and M = 0 corresponds to the distributed architecture operating on single-

controller switches (see Fig. 4.1b), whereas 1 < M < |V| corresponds to the hybrid architecture

(Fig. 4.1d) andM = |V| represents the distributed architecture where only multi-controller switches

are deployed (cf. Fig. 4.1c).

The ratioMr = M/|V| = 0, 0.25, 0.5, 0.75, 1 de�nesM ; the ratio speci�es the maximum number

of network nodes supporting the multi-controller feature. For instance, Mr = 0.5 corresponds to

M = 17 multi-controller switches that can be placed inside the OS3E network. We initially compare

all four SDN network hypervisor architectures in terms of the hypervisor latency metrics de�ned in

Section 4.3.1.2. Subsequently, we analyze the latency values of the vSDN requests in order to evalu-

ate the impact of virtualization. We then show through a generalized topology-aware analysis how

the architectures behave for di�erent network topologies.

Impact of Hypervisor Placement (HP) on latency metrics. We �rst present and discuss a com-

pact representation of the results for varying number of vSDN requests |R| and increasing number

of hypervisor instances k in Fig. 4.9. Based on our observations we then conduct a more detailed

evaluation of selected setups in Fig. 4.10 to clearly illustrate the e�ects of di�erent architecture at-

tributes, namely multi-controller switches, number of hypervisor instances k, and controller place-

ments (CPs). In order to evaluate the virtualization overhead, i.e., the cost of virtualization, in terms

of additional control plane latency, we conclude the OS3E evaluation by investigating the individ-

ual request latencies of the vSDN requests in Figs. 4.12–4.14. Finally, we provide an analysis of �ve

di�erent substrates in Figs. 4.15–4.16 to assess how our observations may be generalized.

Severe impact of number of vSDN requests and hypervisor instances on HP latencymetrics. Figures 4.9a–

d provide a compact representation of the HP latency metrics for every combination of number of

hypervisors k and number of vSDN requests |R|. We consider the random CP strategy in order to

focus on the impact of the parameters k and |R|. The �gures show heatmaps of the latency values

averaged over at least 30 independent runs. The lowest latency value is represented in black color

and the highest latency value in bright yellow color. Red represents intermediate latency values.

When only a single vSDN is considered (|R| = 1), increasing the number of hypervisor instances

k does not reduce any of the resulting latency metrics. When only a single hypervisor instance is

considered (k = 1), the latencies are signi�cantly increasing with an increasing number of vSDNs

|R|. On the other hand, for multiple requested vSDNs (|R| > 1), we observe from Fig. 4.9 that

increasing the number of hypervisor instances k generally reduces the latencies.

The number of requested vSDNs |R| plays an important role when optimizing the HP. For small

|R|, a small number of hypervisor instances k su�ces to achieve optimal placements. In order to

investigate the impact of k, M (Mr), and the CP in more detail, we set |R| = 40 for the subsequent

evaluations as this setting has shown a clear e�ect of increasing k on the HP latencies.

Increasing the number of hypervisor instances k minimizes latency metrics di�erently. Figures 4.10a-

4.10d show the impact of the number of hypervisors k, the number of multi-controller switches M ,

and the CPs on the achieved latencies. Each �gure shows the result of one HP objective. Further-

94 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

(a) minLmax.

vS
D
N
s

(b) minLmax avg .

(c) minLavgmax.

vS
D
N
s

(d) minLavg .

Figure 4.9: Heatmaps show the latency values (in milliseconds [ms]) averaged over at least 30 independent

runs. Light yellow represents high latency values, while black represents low latency values. For each sub�g-

ure, the numbers of vSDN requests |R| are indicated on the left, the numbers of hypervisor instances k (Num.

HVs) on the bottom, and the heatmap scale for the latencies on the right. Fixed param.: no multi-controller

switches Mr = 0, random controller placement (CP).

more, the random CP is compared to the best CP, i.e., either average or maximum CP, which achieved

the best results in the conducted simulations.

We observe from Figs. 4.10a-4.10d that additional hypervisor instances generally reduce the la-

tency objectives for all setups. This decrease of latencies with increasing k is consistent with the

observations from Figs. 4.9, which considered increasing k for a range of numbers of vSDN requests

|R| (and Mr = 0). Notice in particular the continuous drop of Lavg in Fig. 4.9d.

However, we also observe from Figs. 4.10a-4.10d that for increasing k there is typically a point of

diminishing returns, where adding hypervisor instances does not further reduce the latency. This

point of diminishing returns varies according to latency objective and CP. For instance, the point

of diminishing returns ranges from k = 2 for random CP with the Lmax objective and Mr = 1

(Fig. 4.10a), to k = 7 for Lavg (Fig. 4.10d). That is, the convergence point di�ers strongly among the

setups. Thus, in case of changing the operation goal of a hypervisor deployment, e.g., for Mr = 0

from Lmax avg to Lavg max, a re-optimization of the HP may be necessary as a di�erent number k of

hypervisors may be needed for achieving an optimal latency value (e.g., from k = 5 for Lmax avg to

k = 7 for Lavg max with random CP).

More multi-controller switches demand less hypervisor instances for an optimal solution. Fig. 4.10 also

shows that the objectives bene�t from multi-controller switches. This means that increasing the

number of multi-controller switches M (Mr) decreases the number of hypervisor instances k re-

4.4. Simulative Analysis of Hypervisor Placement Problems 95

1 2 3 5 7

Num. Hvs

20

25

30

35

L
m
a
x

[m
s]

Mr = 0,rnd
Mr = 0.5,rnd
Mr = 1,rnd

Mr = 0,max
Mr = 0.5,max
Mr = 1,max

(a) minLmax.

1 2 3 5 7

Num. Hvs

10

15

20

25

30

L
m
a
x
a
v
g

[m
s]

Mr = 0,rnd
Mr = 0.5,rnd
Mr = 1,rnd

Mr = 0,avg
Mr = 0.5,avg
Mr = 1,avg

(b) minLmax avg .

1 2 3 5 7

Num. Hvs

15

20

25

L
a
v
g
m
a
x

[m
s]

Mr = 0,rnd
Mr = 0.5,rnd
Mr = 1,rnd

Mr = 0,max
Mr = 0.5,max
Mr = 1,max

(c) minLavgmax.

1 2 3 5 7

Num. Hvs

10

12

15

18

20

L
a
v
g

[m
s]

Mr = 0,rnd
Mr = 0.5,rnd
Mr = 1,rnd

Mr = 0,avg
Mr = 0.5,avg
Mr = 1,avg

(d) minLavg .

Figure 4.10: Latency values (95 % con�dence intervals over 30 runs, in milliseconds [ms]) obtained with

the di�erent latency minimization objectives Lmax, Lmax avg, Lavgmax, and Lavg as a function of number of

hypervisor instances k. The number of multi-controller switches is M = 0, M = 17, and M = 34. The

controller placement (CP) strategies are random and maximum for Lmax and Lmax avg and random and av-

erage for Lavg and Lavgmax. Di�erent markers indicate the di�erent settings for all objectives. Deploying

multi-controller switches and optimizing CP a priori improves achieved average latencies for all objectives.

Latency values converge for 5 hypervisor instances.

quired for an optimal solution - the point of diminishing returns is reached earlier. For instance,

Lmax (Fig. 4.10a) achieves for k = 2 hypervisor instances in combination with Mr = 0.5 or 1.0 the

same latency as with k = 5 hypervisor instances without any multi-controller switches Mr = 0:

Lmax can save 3 hypervisor instances due to the deployment of multi-controller switches. Lavg shows

a more signi�cant bene�t of multi-controller switches over all k (Fig. 4.10d): for both CP strategies,

there is always a gap between Mr = 0 and Mr = 0.5 or 1. Using multi-controller switches can

always reduce the hypervisor control plane latency for Lavg. To conclude, with respect to all ob-

jectives, only 50 % of switches need to support the multi-controller feature in order to achieve an

optimal HP, as it is shown by the overlapping lines of Mr = 0.5 and Mr = 1.

The best controller placement strategy depends on the hypervisor latency objective. Fig. 4.10 indicates

that an optimized controller placement signi�cantly decreases the values of all latency metrics, in

some cases by more than 50 %. For instance, for the objective Lmax, the latency is reduced by nearly

96 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

42 % from an average value of 30 ms to 18 ms (Fig. 4.10a). The optimized CP also improves the cen-

tralized architecture (k = 1) for the Lmax, Lavg, and Lavg max objectives. For Lmax avg, however,

an optimized CP does not signi�cantly reduce the latency of the centralized architecture (k = 1).

Furthermore, the best CP strategy depends on the HP objective. The maximum CP achieves the most

pronounced latency reduction for the Lmax and Lavg max latency objectives. For Lavg and Lmax avg,

the average CP shows the best performance improvement.

The average/maximum controller placements demand more hypervisors for an optimal solution. In

addition to reducing the latency values in general, the maximum and average controller placements

demand less hypervisor instances k (Fig. 4.10) to achieve optimal placements. Also, the number

of multi-controller switches M impacts the convergence point per HP objective. For the Lmax avg,

Lavg max, and Lavg objectives (Fig. 4.10b,Fig. 4.10c, and Fig. 4.10d), there is a small gap between

Mr = 0 and Mr = 1. However, for Lmax (Fig. 4.10a), there is a pronounced gap between Mr = 0

and Mr = 1; and only for k = 7 hypervisor instances do the Mr = 0 and Mr = 1 curves con-

verge. For the Lmax avg objective, the convergence point is also only reached for k = 7 hypervisor

instances. When comparing all latency values for k = 1, only Lmax avg bene�ts neither from an

optimized controller placement nor from multi-controller switches. This e�ect can be explained by

the examination of the individual latencies of the vSDN requests, as investigated next.

Analysis of the vSDN requests’ control plane latencies—The Cost of Virtualization. Before

analyzing the impact of the HP on the individual vSDN requests, we �rst examine the impact of the

CP on the individual requests without virtualization. This means that we calculate for each request

the best possible latency values, which are determined by the CP. Without virtualization, the con-

nections between the requested switches and controllers do not have to pass through any hypervisor

instance. We de�ne the maximum request latency

LV N,CPmax (r) = max
vr∈Vr

d(π(vr), π(cr)), ∀r ∈ R (4.48)

and the average request latency

LV N,CPavg (r) =
1

|Vr|
∑
vr∈Vr

d(π(vr), π(cr)), ∀r ∈ R. (4.49)

Note that these are the de�nitions of the request latencies without any virtualization. For calcu-

lating the latencies with virtualization LV N,HPavg (r) and LV N,HPmax (r), the function d(π(vr), π(cr))

denoting the distance without intermediate node (hypervisor) needs to be replaced by the function

dh(π(vr), h, π(cr)), which denotes the distances of the paths via the used hypervisor instances. We

omit the request speci�cation ’(r)’ in the following to avoid notational clutter.

Fig. 4.11 shows the LV N,CPavg and LV N,CPmax CDFs for the random, average, and maximum CPs with-

out virtualization (i.e., no HP). In general, they show the best possible request latencies that can be

achieved for each request. Virtualization, i.e., hypervisor placement, will achieve in the best case

the latency values as shown by the �gures. The average CP achieves the lowest latency values for

LV N,CPavg (Fig. 4.11a), while the maximum CP achieves the lowest latencies for LV N,CPmax (Fig. 4.11b).

Interestingly, the results of the maximum CP are close to the average CP for LV N,CPavg . The reason

is that the maximum CP places the controller in the middle of the longest path between two virtual

4.4. Simulative Analysis of Hypervisor Placement Problems 97

0 10 20

LVN
avg [ms]

0.0

0.2

0.4

0.6

0.8

1.0

P
(X
≤

L
V
N

a
v
g
)

rnd
avg
max

(a) Average request latency.

0 10 20 30

LVN
max [ms]

0.0

0.2

0.4

0.6

0.8

1.0

P
(X
≤

L
V
N

m
a
x
)

rnd
avg
max

(b) Maximum request latency.

Figure 4.11: Cumulative distribution functions of average (P (X ≤ LV N,CPavg)) and maximum (P (X ≤
LV N,CPmax)) latencies for direct virtual switch to controller connections of individual requested vSDNs r ∈ R,

without traversing hypervisors. The controller placement (CP) strategies are: random (solid line), average

(dashed line), and maximum (dotted line).

1 2 3 5 7

Num. HV

10

15

20

25

30

L
V
N
,H

P
m
a
x

[m
s]

rnd
avg

max

(a) minLmax, req. lat. LV N,HPmax .

1 2 3 5 7

Num. HV

10

20

30

40

L
V
N
,H

P
m
a
x

[m
s]

rnd
avg

max

(b) minLmax avg , req. lat. LV N,HPmax .

1 2 3 5 7

Num. HV

10

20

L
V
N
,H

P
a
v
g

[m
s]

rnd
avg

max

(c) minLavgmax, req. lat. LV N,HPavg .

1 2 3 5 7

Num. HV

10

20

L
V
N
,H

P
a
v
g

[m
s]

rnd
avg

max

(d) minLavg , req. lat. LV N,HPavg .

Figure 4.12: Mean values with 95 % con�dence intervals of average (LV N,HPmax) and maximum (LV N,HPavg)

latencies for VCP connections of individual vSDNs r ∈ R. For each HP latency minimization objective, the

impact of k hypervisor instances and the controller placement (CP) are depicted: random CP (boxes), average

CP (triangles up), and maximum CP (crosses). Fixed parameters: Mr = 0.5 multi-controller switches, 40
vSDNs.

SDN switches to reduce LV N,CPmax . In most case, this is a central position of the vSDN, which leads

also to low LV N,CPavg values.

Figure 4.12 shows the impact of CPs and the number of hypervisor instances k on the request laten-

cies LV N,HPmax and LV N,HPavg . Each �gure shows the behavior for a given HP objective. For distributed

architectures (k > 1), we set the number of multi-controller switches to M = 17 (Mr = 0.5) as the

98 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

hybrid architecture has already optimal HP latency values. To begin with, we observe from Fig. 4.12a

that the maximum CP achieves the lowest maximum request latenciesLV N,HPmax while the average CP

achieves the lowest average request latencies LV N,HPavg (Fig. 4.12d). Another simulation-based proof

of correctness of the proposed models.

Adding hypervisor instances may increase the virtual request latency with maximum-based objectives
(Lmax and Lmax avg). For the maximum-based latency objectives Lmax and Lmax avg, which consider

the maximum or the maximum of the average vSDN (request) latencies (see Eqn. (4.14)), Fig. 4.12a

and Fig. 4.12b show interesting working behaviors. Whereas the maximum CP achieves generally

the lowest individual maximum request latencies LV N,HPmax , additional hypervisor instances may in-

crease the request latencies in case of an average CP. This is because both maximum-based latency

objectives strive to minimize the maximum path latency or the maximum average latency over all

requested vSDNs (see Eqn. (4.6)). For this, they relax the maximum request latency LV N,HPmax (r) and

average request latency LV N,HPavg (r) for some vSDN requests in order to improve the maximum la-

tency over all requests. Thus, a single vSDN request, e.g., the vSDN with the longest VCP forLmax or

the highest average request latency for Lmax avg, governs the optimal latency objective value. For all

other vSDNs not increasing the objective, the responsible hypervisors may not be placed optimally

with respect to LV N,HPmax and LV N,HPavg .

In summary, while adding hypervisors can improve the overall objective, it may worsen individual

latency objectives. Similarly, additional hypervisors increase the request latencies for several other

combinations of CPs and request latency metrics, which are not shown for brevity.

Average-based latency objectives always bene�t from additional hypervisor instances. As an example

for the average objectives Lavg and Lavg max, we observe from Figure 4.12c that for the average-

based latency objective Lavg max the individual requests always bene�t from additional hypervisor

instances, i.e., from increasing k. By averaging through the maximum path lengths of all vSDN

requests (Lavg max), the average-based latency metrics consider all vSDN requests and exploit addi-

tional hypervisor instances to achieve lower latency objectives and lower individual vSDN request

latencies.

Signi�cant request latency trade-o�s among all objectives can be observed. In order to achieve their op-

timization goal, the objectives lead to trade-o�s among the request latencies LV N,HPmax and LV N,HPavg .

We illustrate these trade-o�s for the hybrid architecture (M = 17,Mr = 0.5) with k = 7 hypervisor

instances. The following observations hold in general also for other setups. As depicted in Fig. 4.13a,

the Lavg objective achieves the lowest request latencies. We observe a clear trade-o� between the

Lavg max and Lmax avg objectives with respect to LV N,HPavg . As expected, Lmax avg pushes down the

maximum average latency among all requests, thus, achieving lower latencies for the upper 20 % of

the requests. By pushing down the individual maximum path latencies over all requests, Lavg max

pays more attention to the individual paths, i.e., controller to switch connections, of the requests.

Consequently, Lavg max accepts larger values for 20 % of the requests in order to improve the latency

of the 80 % remaining requests.

Fig. 4.13b shows again important trade-o�s among all objectives. Although Lmax minimizes the

maximum request latency, it accepts overall worse request latencies than Lavg and Lavg max. Further,

4.4. Simulative Analysis of Hypervisor Placement Problems 99

0 10 20

LVN,HP
avg [ms]

0.0

0.2

0.4

0.6

0.8

1.0

P
(X
≤

L
V
N
,H

P
a
v
g

)

minLavg

minLmax

minLavgmax

minLmaxavg

LV N,CP
avg

(a) Average request latency (HP).

0 20 40

LVN,HP
max [ms]

0.0

0.2

0.4

0.6

0.8

1.0

P
(X
≤

L
V
N
,H

P
m
a
x

)

minLavg

minLmax

minLavgmax

minLmaxavg

LV N,CP
max

(b) Maximum request latency (HP).

Figure 4.13: Cumulative distribution functions of average (P (X < LV N,HPavg)) and maximum (P (X <

LV N,HPmax)) individual vSDN request latencies with virtualization; LV N,CPavg and LV N,CPmax show the request

latencies without virtualization (cf. Fig. 4.11). Fixed param.: k = 9 hypervisors, Mr = 0.5 multi-contr.

switches.

the curve of minLmax avg illustrates the working behavior of minimizing Lmax avg. While minimiz-

ing Lmax avg pushes the maximum average latencies of all requests down (Fig. 4.13a), it relaxes the

request latencies LV N,HPmax towards higher values (Fig. 4.13b).

Controller placement strategy and additional hypervisor instances can signi�cantly reduce virtualiza-
tion overhead. Having observed that the di�erent latency objectives show trade-o�s among individual

request latencies, we now analyze the virtualization overhead per vSDN request in detail. We intro-

duce metrics that re�ect the virtualization overhead ratio, i.e., the cost of virtualization. We de�ne

the maximum latency overhead ratio of a request r ∈ R

RV Nmax(r) =
LV N,HPmax (r)

LV N,CPmax (r)
(4.50)

and the average latency overhead ratio

RV Navg (r) =
LV N,HPavg (r)

LV N,CPavg (r)
. (4.51)

The control plane latency of a request is increased due to virtualization if an overhead ratio is larger

than one. An overhead ratio of one means that the request latency is not increased by virtualization.

For analysis, the distributed hybrid architecture (k > 1, Mr = 0.5) is chosen as it has shown an

optimal performance for the HP latency objectives. We selected k = 1, 2, 3, 7 to provide a repre-

sentative set to illustrate the impact of using additional hypervisor instances. Figures 4.14a-4.14d

represent the latency overhead ratios of all latency objectives. Boxplots depict how additional hy-

pervisor instances and the CP impact the overhead ratios. As shown by Fig. 4.14, for some vSDN

requests the controller latency is up to 100 times higher: small vSDN networks at the border of the

network are connected to hypervisor instances on the opposite side of the network. The random CP

has the lowest virtualization overhead since it has already a relative high LV N,CPavg and LV N,CPmax , see

Fig. 4.11.

Generally, we observe from Fig. 4.14 that the objectivesLavg max andLavg achieve the lowest over-

heads (see k = 7). Speci�cally forRV Navg , the objectives Lavg max and Lavg achieve decreasing latency

100 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

1
H

Vs
,rn

d
2

H
Vs

,rn
d

3
H

Vs
,rn

d
7

H
Vs

,rn
d

1
H

Vs
,a

vg
2

H
Vs

,a
vg

3
H

Vs
,a

vg
7

H
Vs

,a
vg

1
H

Vs
,m

ax
2

H
Vs

,m
ax

3
H

Vs
,m

ax
7

H
Vs

,m
ax

100

101

R
V
N

m
a
x

(a) minLmax.

1
H

Vs
,rn

d
2

H
Vs

,rn
d

3
H

Vs
,rn

d
7

H
Vs

,rn
d

1
H

Vs
,a

vg
2

H
Vs

,a
vg

3
H

Vs
,a

vg
7

H
Vs

,a
vg

1
H

Vs
,m

ax
2

H
Vs

,m
ax

3
H

Vs
,m

ax
7

H
Vs

,m
ax

100

101

R
V
N

m
a
x

(b) minLmax avg .

1
H

Vs
,rn

d
2

H
Vs

,rn
d

3
H

Vs
,rn

d
7

H
Vs

,rn
d

1
H

Vs
,a

vg
2

H
Vs

,a
vg

3
H

Vs
,a

vg
7

H
Vs

,a
vg

1
H

Vs
,m

ax
2

H
Vs

,m
ax

3
H

Vs
,m

ax
7

H
Vs

,m
ax

100

101

102

R
V
N

a
v
g

(c) minLavgmax.

1
H

Vs
,rn

d
2

H
Vs

,rn
d

3
H

Vs
,rn

d
7

H
Vs

,rn
d

1
H

Vs
,a

vg
2

H
Vs

,a
vg

3
H

Vs
,a

vg
7

H
Vs

,a
vg

1
H

Vs
,m

ax
2

H
Vs

,m
ax

3
H

Vs
,m

ax
7

H
Vs

,m
ax

100

101

102

R
V
N

a
v
g

(d) minLavg .

Figure 4.14: Boxplots for the maximum and average latency overhead ratios RV Nmax and RV Navg (Eqs. (4.50)

and (4.51)). An overhead ratio of one corresponds to no overhead, i.e., a zero cost of virtualization. The green

boxes show the upper 75 % quartile and the lower 25 % quartile. The white marker shows the mean and the

black line the median. In case the upper and the lower quartile are equal, the whiskers reach the maximum

outlier value, shown via dashed lines. The crosses indicate the outliers that do not fall into the 1.5 times in-

terquartile range of the whiskers. For each �gure, k = 1, 2, 3, 7 hypervisor instances (HVs) are compared for

the three controller placement (CP) strategies (rnd, max, avg). Y-axes are scaled logarithmically.

overheads as more hypervisor instances are deployed, i.e., k is increased. More than 75 % of the re-

quests (Fig. 4.14c and Fig. 4.14d) achieve an overhead ratio RV Nmax = 1, i.e., their maximum latencies

are not increased at all by virtualization, when k = 5 or 7. In contrast, Lmax avg exhibits again the

mixed behavior for increasing k as observed in Sec. 4.4.2.2.

To conclude, with a moderately high number of hypervisor instances (k = 5), the average-based

latency objectives Lavg max and Lavg have demonstrated the lowest overhead ratios, irrespective of

the CP strategy. Thus, when individual request latencies need to be optimized, the objectives Lavg

and Lavg max should be chosen over Lmax or Lmax avg. Besides, since latencies of only a minor num-

ber of vSDNs are signi�cantly increased, a virtualization layer should prepare for those outliers: e.g.,

additional small-scaled hypervisor instances that only serve small vSDN requests.

Analysis of di�erent substrate network topologies. We now examine the impact of di�erent

network topologies. The examination should determine which observations from the OS3E network

can be generalized to other topologies. We focus on minimizing Lavg as it has generally achieved

low latency values so far, including the individual request latencies LV N,HPmax and LV N,HPavg . The sub-

strate topologies have varying numbers of network nodes and links. We set the number of requested

vSDNs to |R| = 40 for a close comparison to the preceding analysis. Throughout, we present the

4.4. Simulative Analysis of Hypervisor Placement Problems 101

1 2 3 5 7

k

0.0

0.2

0.4

0.6

0.8

1.0
G
L

a
v
g
(k

)

k
=
1

Dfn
�est
OS3E

Bellcanada
Abilene

(a) Mr = 0.

1 2 3 5 7

k

0.0

0.2

0.4

0.6

0.8

1.0

G
L

a
v
g
(k

)

k
=
1

Dfn
�est
OS3E

Bellcanada
Abilene

(b) Mr = 1.

Figure 4.15: Latency reduction due to adding hypervisor instances for �ve substrate topologies (indicated by

marker styles and colors). Multi-controller ratios Mr = 0 and Mr = 1 are compared for average CP.

0.00 0.25 0.50 0.75 1.00

Mr

0.00

0.02

0.04

0.06

0.08

G
L

a
v
g

M
r
=
0

Dfn
�est
OS3E

Bellcanada
Abilene

(a) 2 hypervisor instances.

0.00 0.25 0.50 0.75 1.00

Mr

0.00

0.02

0.04

0.06

0.08

G
L

a
v
g

M
r
=
0

Dfn
�est
OS3E

Bellcanada
Abilene

(b) 7 hypervisor instances.

Figure 4.16: Relative latency reduction due to increasing ratio Mr of multi-controller switches in 0.25 steps

for di�erent topologies (indicated by marker styles and colors). Distributed architectures are compared for

k = 2 and 7 hypervisor instances for average CP.

results as relative values: the performance gain of a speci�c feature is compared to a baseline setup

in order to facilitate comparisons across di�erent topologies.

Impact of adding hypervisor instances. We start to examine the impact of adding hypervisor instances,

i.e., we evaluate the latency reduction (performance gain)

G
Lavg(k)
k=1 = 1− Lavg(k)

Lavg(k = 1)
. (4.52)

Lavg(k) denotes the latency for k hypervisor instances and Lavg(k = 1) is the latency of the cen-

tralized architecture. A higher gain when increasing k indicates that adding hypervisors reduces the

latency. Figs. 4.15a-4.15b show the gains when using the average CP for up to k = 7 hypervisor

instances. The latency reduction can reach 40 %, even without (Mr = 0) multi-controller switches

(Fig. 4.15a). As already seen for the OS3E topology, the improvement slowly converges from k = 5

onward. This also holds for the distributed architectures, where all switches (Mr = 1) can operate

in multi-controller mode (Fig. 4.15b).

Impact of adding multi-controller switches. We proceed to examine the performance gain from adding

102 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

Table 4.14: Evaluation settings of dynamic analysis.

Parameter Values

Network topology Cost266 (V = 37, E = 57)

Ratio of multi-controller switches Mr 0

Number ofR 10, 15, 20, 25

Number of |Vr| per vSDN Uniformly distributed 2, . . . , 10

Number of cr per request r 1

k 2,3,5,7

Virtual SDN controller placements (CP) Random (rnd)

Virtual node locations π(vr) Uniformly selected from set V
Hypervisor placement objectives Lmax, Lmax avg, Lavg max, Lavg

Runs per setup ≥ 30

εlatency 0, 0.01, 0.02, 0.05, 0.1, 0.2

multi-controller switches. Figs.4.16a-4.16b depict the relative latency reduction

G
Lavg(Mr)
Mr=0 = 1− Lavg(Mr)

Lavg(Mr = 0)
, (4.53)

when increasing the ratio (proportion) of multi-controller switches from Mr = 0 to Mr = x =

0.25, 0.5, 0.75, 1. The �gures compare k = 2 with k = 7 hypervisor instances. When Mr = 0.5

multi-controller switches are deployed, an architecture with k = 2 hypervisor instances can achieve

up to 8 % performance gain (Fig. 4.16a). The larger Dfn topology bene�ts more from the multiple

controllers feature than smaller topologies like Abilene. The point of diminishing returns of the con-

sidered topologies ranges from Mr = 0.25 to 0.5. For k = 7 hypervisor instances, the absolute

performance gain is slightly lower than for k = 2 instances. Again, Dfn bene�ts more from the de-

ployment of multi-controller switches than smaller topologies. Note however that some topologies

(OS3E, Quest) still bene�t from adding hypervisor instances.

In summary, whereas the topologies show di�erent numbers in terms of absolute values, they all

show similar trends. Mr = 0.5 multi-controller switches are enough to achieve optimal performance

gains.

4.4.3 Placement Results for Dynamic Use and the Cost of Adaptation

Whereas the static use case does not consider any dynamics, e.g., changing vSDN requests or failures,

the dynamic use case faces those dynamics. Hence, this analysis considers the case where the number

of total vSDN requests changes over time. It focuses on a setup where for a given initial hypervisor

placement and a given number of vSDN requests, a new vSDN request arrives. A virtualization layer

would have to correctly connect the new vSDN demand under a given latency objective.

The static placement analysis actually revealed that for a varying number of vSDN requests, net-

work operators might need to deploy the hypervisor instances at di�erent network locations. Ac-

4.4. Simulative Analysis of Hypervisor Placement Problems 103

Lav
g

Lav
gm

ax

Lm
ax
av
g

Lm
ax

Objective

0.0

0.5

1.0

L
o
b
j

c
h

a
n

g
e
d

(a) k = 3.

Lav
g

Lav
gm

ax

Lm
ax
av
g

Lm
ax

Objective

0.0

0.5

1.0

L
o
b
j

c
h

a
n

g
e
d

(b) k = 5.

Lav
g

Lav
gm

ax

Lm
ax
av
g

Lm
ax

Objective

0.0

0.5

1.0

L
o
b
j

c
h

a
n

g
e
d

(c) k = 7.

Figure 4.17: Frequency of objective changes over four latency objectives; one �gure per k = 3, 5 and 7. The

y-axes are normalized by the total amount of scenarios for each objective function. Whereas latency always

changes in case of average objectives, latency value changes in less than 0.2 of all scenarios for maximum

objectives.

cordingly, adding a new vSDN request might demand the hypervisor instances to change their lo-

cations in order to still serve the vSDNs optimally. As changing the locations of the hypervisor

instances might lead to recon�gurations, it is the aim of this section to answer the following ques-

tions:

• What is the impact of the number of hypervisors?

• What is the impact of the objective function?

• What is the impact of the number of vSDN requests?

• What is the cost of recon�guration (number of vSDN requests whose connections are poten-

tially interrupted, adapted hypervisor instances, severity of hypervisor adaptation)?

The �rst three questions have also been addressed in the static analysis; they showed the highest

impact when analyzing the static setups. The last question particularly targets at the cost of adap-
tation - a new aspect when looking at dynamic scenarios. Table 4.14 summarizes all settings of the

following analysis. We take the Cost266 topology [OWP+10] for our investigation. It is similar in

size to OS3E and ATTMpls. Furthermore, the results are comparable to those of ATTMpls.

E�ect of number of hypervisor instances k and number of vSDNs. The �rst Figure 4.17 de-

picts how often the latency objective changed among all simulations; the �gures plot the frequency

of changes of Lobj of all scenarios for a given objective (obj). Independent of the number of hyper-

visor instances, the objective values always changed for Lavg and Lavg max, whereas they changed

rarely in case of Lmax avg and Lmax. The observation might lead to a false hypothesis: when adding

a new vSDN for the �rst two objectives, the placement needs to be checked and possibly updated; in

contrast, the maximum objectives might not demand an adaptation at all.

Fig. 4.18, however, illustrates that for any objective independent of k and |Rτ |, the virtualization

layer needs to recon�gure VCPs to guarantee an optimal placement independent of the objective.

The Figures 4.18a-4.18c indicate the probability P (Rτloc > 0) of a hypervisor location change for any

virtual node over the number of all initial vSDNs: the probability that at least one VCP is rerouted to

104 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

10 15 20 25

Num. initial vSDNs

0.00

0.25

0.50

0.75

1.00

P
(R
τ lo
c
>

0
)

Lavg

Lavgmax

Lmaxavg

Lmax

(a) k = 3.

10 15 20 25

Num. initial vSDNs

0.00

0.25

0.50

0.75

1.00

P
(R
τ lo
c
>

0
)

Lavg

Lavgmax

Lmaxavg

Lmax

(b) k = 5.

10 15 20 25

Num. initial vSDNs

0.00

0.25

0.50

0.75

1.00

P
(R
τ lo
c
>

0
)

Lavg

Lavgmax

Lmaxavg

Lmax

(c) k = 7.

Figure 4.18: Probability thatRτloc > 0 over the number of initial vSDN requests for all objectives and k = 3, 5
and 7. For each scenario, if there is at least one location change Rτloc, it will be counted to approximate the

probability P (Rτloc > 0). The di�erent marker styles indicate the di�erent objectives: Lavg (circle), Lavgmax

(box), Lmax avg (hexagon), Lmax (triangle down). Lmax has the lowest probability P (Rτloc > 0) with 0.25,

whereas the average objectives show the highest probability with 0.75. The probability of at least one change

is slightly decreasing with more vSDNs.

10 15 20 25

vNets in initial state

0.0

0.2

0.4

0.6

0.8

1.0

R
τ lo
c

k = 3

k = 5

k = 7

(a) Hypervisor objective: Lmax avg .

10 15 20 25

vNets in initial state

0.0

0.2

0.4

0.6

0.8

1.0

R
τ lo
c

k = 3

k = 5

k = 7

(b) Hypervisor objective: Lavgmax.

Figure 4.19: Boxplots showing the ratio of vSDN networks facing hypervisor location changes for k = 3
(triangle up), k = 5 (circle) and k = 7 (triangle left) hypervisor instances over the total number of vSDN

networks (10, 15, 20, 25) of the initial state at point in time τ − 1. More hypervisor instances decrease the

amount ofRτloc. The numbers of vSDNs do not signi�cantly increase or decrease the ratios ofRτloc. Note that
Rτloc is normalized by the total number of vSDN requests for every setup.

a new hypervisor location. The average objectives (Lavg and Lavg max) show the highest probability

for a location change; this correlates with the �rst observation that the hypervisor objective changes

when a new vSDN arrives. Vice versa, the maximum objectives (Lmax and Lmax avg) show a lower

probability; however, the probabilities still vary between 0.24 and 0.49. Beside, whereas the proba-

bility slightly decreases for more vSDNs in case of the average objectives, the maximum objectives

show a more constant behavior; every vSDN contributes to the average objectives whereas only a

subset of dominating vSDNs determine the maximum objectives.

More hypervisors need to reconfigure less vSDNs. Fig. 4.19 illustrates how many vSDNs

are assigned to new hypervisor locations; the Figures 4.19a-4.19b show boxplots for Lmax avg and

Lavg max (the results for Lmax and Lavg are similar). The boxplots illustrate the frequency of location

changes per simulation run for k = 3, 5 and 7. More hypervisor instances recon�gure less VCPs.

This result is independent of the objective and the number of vSDNs. Deploying more hypervisors

4.4. Simulative Analysis of Hypervisor Placement Problems 105

1 2 3

RHV,add

0

20

40
N

u
m

.
S
c
e
n

a
r
i
o

s

Avg

AvgMax

MaxAvg

Max

(a) k = 3.

1 2 3 4 5

RHV,add

0

20

40

N
u

m
.

S
c
e
n

a
r
i
o

s

Avg

AvgMax

MaxAvg

Max

(b) k = 5.

1 2 3 4 5 6 7

RHV,add

0

20

40

N
u

m
.

S
c
e
n

a
r
i
o

s

Avg

AvgMax

MaxAvg

Max

(c) k = 7.

Figure 4.20: Empirical distributions of migrated hypervisor instances (i.e., location changes) among simu-

lation runs for twelve scenarios. RHV,add indicates the number of hypervisors that were added (migrated)

to a new location. One �gure shows the distribution among all objective functions for one k (k = 3, 5, 7).

For all k, most scenarios have one hypervisor migration independent of the objectives. Note that for k = 7,

some scenarios have even �ve hypervisor migrations. Moreover, note that the number of scenarios is not
normalized by the total number of location changes.

makes the adaptation of the virtualization more �exible; only a small subset of hypervisors need to

change their locations. Overall, k = 7 recon�gures only up to 20 % of vSDNs in contrast to nearly

60 % with k = 3. Consequently, operators should use between k = 5−7 hypervisors for potentially

interrupting the least amount of VCPs.

How many hypervisors need to be flexible/dynamic? Fig. 4.20 con�rms the previous obser-

vation: the virtualization layer relocates only up to three hypervisor instances to achieve a latency-

optimal placement. The Figures. 4.20a-4.20c show barplots of the empirical frequency of how many

hypervisors have been moved among all simulation runs for each objective; the sub�gures represent

the distribution of moved hypervisors for k = 3, 5 and 7. As it can be observed in all �gures, one

hypervisor instance is relocated in most cases. The number of relocated hypervisors then decreases

until only a few scenarios demand to relocate 4 or more hypervisors for k = 5, 7. This also explains

the previously observed e�ect: a larger k a�ects less vSDNs. With more instances, the vSDNs are

more distributed among all instances, which causes less hypervisors to be relocated. When looking

at the individual objectives, the maximum objectives migrate less hypervisor instances in total than

the average objectives; hence, less vSDNs need to be rerouted to a new location.

Hypervisors might move through the whole network. Figure 4.21 shows the empirical distri-

butions of hops that hypervisors need to move among all scenario settings with 10-25 vSDNs and 5

hypervisor instances. As indicated in Fig. 4.21a, Lavg moves a hypervisor only by one or two hops.

In contrast, Fig. 4.21b shows that the chance of a movement is uniformly distributed between 1 and

6 hops for Lmax; the virtualization layer moves an instance up to 6 hops to achieve a new optimal

placement. Although Lmax might rarely adapt locations, there is high chance that the migration

distance is signi�cant. In order to avoid such long migration distances, network operators should

particular pay attention when minimizing the maximum objectives.

Trade-o� between latency and reconfiguration: How much do we need to relax latency to
avoid reconfigurations? The �nal investigation looks at the trade-o� between recon�gurations

and latencies. It targets the following question: how much additional latency has to be accepted to

106 Chapter 4. Modeling and Optimization of NV Layer Placement Problems

1 2 3 4 5 6 7 8 9

Hops moved

0.0

0.2

0.4

0.6
F
r
e
q

u
e
n

c
y

(a) minLavg .

1 2 3 4 5 6 7 8 9

Hops moved

0.0

0.2

0.4

0.6

F
r
e
q

u
e
n

c
y

(b) minLmax.

Figure 4.21: Empirical distributions of hops that a hypervisor needs to migrate among all simulation runs

of two scenarios. Here, the data contains all vSDN settings (10, 15, 20, 25) for k = 5 hypervisor instances.

One �gure shows the result for one objective (Lavg, Lmax). Whereas Lavg migrates hypervisors at most 1 or

2 hops, hypervisors migrate up to 7 hops for Lmax with most hops between 4 and 5.

0.00 4.92 9.83 14.75

Rτloc

13.70

13.82

13.94

14.06

L
a
v
g
m
a
x

10 vSDNs

15 vSDNs

20 vSDNs

25 vSDNs

(a) Lavgmax.

0.25 1.96 3.66 5.37

Rτloc

13.62

14.14

14.66

15.18

L
m
a
x
a
v
g

10 vSDNs

15 vSDNs

20 vSDNs

25 vSDNs

(b) Lmax avg .

Figure 4.22: Line plots indicating the trade-o� between average number of location changes and latency value

of the respective objective function (Lmax avg (left) and Lavgmax (right)) for k = 5 hypervisor instances. The

latency relaxation factors εlatencyare: 0, 0.01, 0.02, 0.05, 0.1, 0.2.

completely avoid recon�gurations? The intuition is that when a new demand arrives, a network op-

erator accepts a larger hypervisor latency in order to not recon�gure the virtualization layer; the old

hypervisor placement achieves the relaxed optimal latency. Simulations with an increasing εlatency

are conducted in order to analyze this trade-o�.

Fig. 4.22 shows lines that approximate the Pareto optimal solutions of this multi-objective opti-

mization problem; the markers denote the average values of the respective objective solutions. For

both latencies Lavg max (Fig. 4.22a) and Lmax avg (Fig. 4.22b), relaxing the latency reduces the amount

of recon�gurations. When more than 15 vSDNs share a network, εlatency = 0.01 can reduce the

average number of recon�gurations to less than 2.5. The reason is that a higher number of vSDNs

forces the hypervisors to dominant locations (see again Fig. 4.5). When adapting the virtualization

layer, the hypervisors are only moved among these locations (see Sec. 4.4.2.1).

Lavg max bene�ts more from relaxing the latency than Lmax avg; whereas relaxing Lavg max by

4.5. Summary 107

εlatency = 0.01 reduces recon�gurations by seven times, only εlatency = 0.2 bringsRτloc close to 0 for

Lmax avg. Note, however, that the amount of recon�gurations is already quite low for Lmax avg. Since

the average objectives (Lavg, Lavg max) consider all VCPs of all requests Rτ , a new vSDN changes

the hypervisor objective less than in case of the maximum objectives (Lmax, Lmax avg).

In summary, average objectives lead to more recon�gurations than maximum objectives. However,

maximum objectives need a higher relaxation to decrease the amount of recon�gurations. It is impor-

tant to take such observations into account when planning and operating a dynamic virtualization

layer in order to not in�ate signi�cant latency overhead or to introduce unneeded recon�gurations.

4.5 Summary

In this chapter, we investigate the placement of the hypervisor instances for static and dynamic use;

hypervisor instances are the critical components when virtualizing SDN networks. We de�ne MILP

models for a centralized and three distributed SDN network virtualization hypervisor architectures.

Furthermore, we investigate the impact of multi-controller switches that can simultaneously connect

to multiple hypervisor instances. For evaluation of the four modeled architectures, we investigate

the impact of the hypervisor placement on the control plane latencies of the entire network as well

as individual vSDN. We identify the control plane latency overhead due to the requirement for the

SDN Virtual Control Path (VCP) connections to traverse a hypervisor instance for virtualization.

This latency overhead represents the cost of virtualization.

We observe that virtualization can add signi�cant control latency overhead for individual vSDNs.

However, we also show that adding hypervisor instances and using multi-controller switches can

reduce the hypervisor latencies for a range of substrate network topologies. Overall, the introduced

optimization models let network operators rigorously examine the trade-o�s between using SDN

hypervisor instances and multi-controller SDN switches.

We extend the study of the hypervisor placement for a static use case to a dynamic tra�c scenario:

a virtual network request arrives over time and needs to be served by the virtualization layer. Such

kind of scenarios are particularly important due to the emerging trend of network softwarization,

where virtual networks can be provisioned at runtime. Dynamic scenarios force the virtualization

layer to adapt. Adapting the virtualization introduces recon�gurations that should be considered;

neglecting recon�gurations can lead to network instabilities resulting in service interruptions or

network outages [PZH+11; ICM+02; GJN11; GMK+16]. We extend the MILP model for static use

to count for recon�gurations; as minimizing recon�gurations and minimizing latency are con�ict-

ing objectives, a multi-objective optimization procedure based on the epsilon-constraint method is

proposed. Using this model, we analyze the trade-o� between recon�gurations and latency. Relax-

ing the latency represents the cost of adaptation; a new angle when looking at dynamic hypervisor

deployments. We notice that the targeted objective functions signi�cantly di�er in the amount of

recon�gurations when adapting the virtualization layer towards a new optimal placement. We also

show that relaxing the latency can help to reduce the amount of hypervisor location changes; how-

ever, for some objectives, it is harder to reduce the amount of recon�gurations.

Chapter 5

Machine Learning-based Algorithm
Preprocessing for Virtual Network
Provisioning

Combining NV and SDN requires a strict performance isolation and resource reservation on both

control and data plane. Only by tackling the resource management in both control and data plane, op-

erators can provide guaranteed and predictable performance for virtual networks. Generally, the vir-

tual resources available in virtualized environments, like cloud resources, should be instantiated and

scaled quickly to fully exploit the advantages of shared environments [AFG+10; AFG+09; JS15]. With

virtual networks a�ecting provisioned cloud resources [BVS+17], fast and e�cient network provi-

sioning algorithms are becoming as important as virtual machine provisioning algorithms [AFG+09;

LC16; GHM+08]: e.g., in order to reach to changing networking conditions due to failures or unfore-

seen behaviors of the provisioned virtual resources. Moreover, operators can cherry-pick requests in

a competitive business environment with faster provisioning algorithms [CSB10]. Overall, operators

bene�t from mechanisms that quickly and e�ciently provision virtual network resources [AIS+14;

AFG+10].

Resource provisioning in a shared networking environment is also known as the VNE problem;

however, this problem is NP-hard [ACK+16; RS18]. The problem has been studied intensively over

the last years [FBB+13]. While various optimal and heuristic solutions to the VNE problem have been

proposed, current systems are lacking procedures that improve algorithm runtime and consequently

algorithm e�ciencies.

Beside the VNE problem, many hard algorithmic problems lie at the heart of resource manage-

ment tasks in virtual SDN environments: network planning for virtualization, deployment of virtual

SDN controllers, and operational tasks such as control path recon�gurations etc. Accordingly, over

the last decades, we have witnessed a continuous pursuit for ever more accurate and faster algo-

rithms solving each of those single tasks. However, literature so far has overlooked a simple but

yet powerful optimization opportunity. Existing algorithms solve frequently a given hard computer

networking problem but they do not use their produced data - the problem and solution data. As

an example, VNE algorithms are executed repeatedly on potentially similar problem instances. This

chapter makes two contributions to address the existing challenges and shortcomings.

109

110 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

First, this chapter presents NeuroViNE, a novel approach to speed up and improve a wide range of

existing VNE algorithms. NeuroViNE relies on a Hop�eld network, a special kind of Arti�cial Neural

Network (ANN). NeuroViNE preprocesses a problem instance (a substrate state and a virtual network

request) and reduces the search space for this instance by extracting a good combination of substrate

nodes and links. The extracted subgraph can then be handed to existing VNE algorithms for faster

and more resource-e�cient virtual network embeddings, i.e., resource reservations.

Second, this chapter o�ers o’zapft is: an ML approach to network algorithm optimization and de-

sign in the spirit of data-driven networking. We investigate the feasibility of learning from previous

solutions to similar problem instances, the so called problem/solution-pairs, and thereby speed up

the solution process in the future; o’zapft is predicts upper and lower bounds on objective values,

e.g., operator costs or revenues; it e�ectively prunes the search space, e.g., for MILPs solving the vir-

tual controller placement; it predicts the feasibility of problems instances. Consequently, o’zapft is
improves algorithm e�ciency.

Content and outline of this chapter. Background and related work of this chapter are partly

based on content from [BKS+16; BKS+17; BKJ+18]. Sec. 5.2 introduces NeuroViNE, which is taken in

parts from [BKJ+18]. Sec. 5.3 presents o’zapft is; its content is taken in parts from [BKJ+18; BKS+17;

BKS+16; KZM+17]. Finally, Sec. 5.4 summarizes this chapter.

5.1 Background

The �rst Sec. 5.1.1 introduces graph models and network topology sources used for evaluating the

systems introduced in this chapter. Sec. 5.1.2 reports on ML in general, and on classi�ers, regressors,

and measures in particular. In Sec. 5.1.3, Hop�eld networks are introduced; they are one represen-

tative realizing the concept of neural computation. The evaluations of the proposed systems mainly

target the VNE problem, which is introduced in Sec. 5.1.4.

5.1.1 Graph Theory

This section brie�y describes the following basics of graph theory: graph types, graph measures, and

graph and network models. They are necessary to understand the system designs and the results

presented in this chapter.

5.1.1.1 Graph Types

A graph can be simply seen as a set of points (nodes, vertices) interconnected by a set of lines (links,

edges). Graphs are used to represent many ”objects” in networking science, with the Internet as the

most prominent example. Besides, many optimization problems rely on the presentation of problem

instances as graphs: the Traveling Salesman Problem, the Graph Coloring Problem, etc.

Due to the huge variety of speci�cations of graphs, one way to di�erentiate graph types is to look

more closely at the edges of a graph; nodes can either be connected by a single undirected edge,

a directed edge, or even multiple edges. Moreover, nodes can connect to themselves by self-loops.

Whereas undirected edges describe situations where a bidirectional connection between two vertices

5.1. Background 111

exists, directed edges are used in situations where only direct connections exist. For instance, bidi-

rectional communication in computer networks can be represented via undirected edges; directed

edges are used, e.g., to describe hyperlinks of a graph representing a network of webpages. All prob-

lems investigated in this chapter rely on the representation of graphs with undirected edges without

self-loops or multi-edges between nodes.

In this chapter, a network or graph G = (V, E) is a tuple consisting of the set of nodes V and

the set of links E . The interconnections of an undirected graph are captured by its adjacency matrix

denoted as A ∈ {0, 1}N×N where N = |V|. Many problems and network representations only rely

on the information whether a connection between two vertices exists or not: edges show a simple

on/o� connection. However, situations exist where further information is needed: for instance, the

transmission of data from i to j induces a real value. Accordingly, in its weighted variant, the en-

tries of the adjacency matrix carry further information, such as the cost of routing. For undirected

networks without edge (cost) weights, the adjacency matrix is represented by a symmetric, binary

matrix.

5.1.1.2 Graph Classification & Measures

Classifying graphs is generally hard. The reason is the underlying graph isomorphism problem:

are two �nite graphs isomorphic? The question is, whether for two graphs G1 = (V1, E1) and

G2 = (V2, E2), is there a function f : V1 → V2
such that two edges in i, j ∈ E1

are only adjacent if

and only if f(i), f(j) are adjacent in E2
[Gra]. As it is not known whether this problem can be solved

in polynomial time, di�erent heuristic ways to compare graph instances have been proposed in lit-

erature. A common method to classify graphs resp. networks is to employ graph kernels. However,

kernels are expensive to compute [GFW03].

Another way to describe, and also to classify graphs, is given by graph and node measures, e.g.,

the degree of a node or the average node degree of a graph. Graph measures were originally used to

quantitatively argue about graphs. Node measures can be used to make a point about nodes’ impor-

tance when arguing about speci�c use cases, e.g., routing. Table 5.1 provides an overview about the

most well-known graph and node measures and their computational complexities [LSY+12]. Each

measure captures one or more interesting features of a graph or a node respectively. For instance, the

betweenness centrality of a node can indicate important nodes in computer networks: many short-

est paths are using a node with a high betweenness centrality. With respect to graphs, an average

node degree can be used to quantify the general connectivity inside a graph: a high average node

connectivity might yield a graph with many alternative routes. Later, this chapter will report on the

node and graph features used for representation and learning (see Sec. 5.3.2).

Beside their ability to help quantifying graphs, using measures allows the representation of a graph

or nodes as a �xed-length real-valued vector. For instance, graphs of similar sizes can initially and

quite easily be compared by looking at their number of nodes or edges. It has been shown that they

can also be used by ML algorithms to classify graphs [LSY+12]. In this chapter, both node and graph

measures are used for representing graph data for learning.

112 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

Table 5.1: Node and graph features used for problem representation and learning. Note that node features can

also be used as comprehensive graph features: for instance, taking the average of all nodes’ degrees of a graph

provides the average node degree of a graph. Node and graph representations as introduced in Sec. 5.3.2.2

make use of di�erent forms of node-based graph features, namely also the minimum, maximum, and standard

deviation value of a feature of all nodes.

Node/Graph Feature Computational Complexity

Node Degree O(n+m)

Neighbor Degree O(n+m)

Closeness Centrality O(n3)

Betweenness Centrality O(n3)

Eigenvector Centrality O(n3)

Clustering Coe�cient O(m
2

n)

E�ective Eccentricity O(2n2 + nm)

E�ective Eccentricity O(2n2 + nm)

Path Length O(2n2 + nm)

Neighbor Degree O(2n2 + nm)

Percentage of Central Points O(2n2 + nm)

Percentage of Endpoints O(n+m)

Number of Nodes O(n+m)

Number of Edges O(n+m)

Spectral Radius O(n3)

Second Largest Eigenvalue O(n3)

Energy O(n3)

Number of Eigenvalues O(n3)

Label Entropy O(n)

Neighborhood Impurity O(ndmax)

Link Impurity O(n+m)

5.1. Background 113

5.1.1.3 Graph Models and Network Topologies

In order to provide �rst general insights into how well the proposed systems of this chapter perform

on various network topologies, �ve substrate graph types are used for evaluation: the three random

graph models Erdős-Rényi (ER) [ER59], Barabási-Albert (BA) [BR99], and Waxman (WAX) [Wax88],

real substrate topologies from the Topology Zoo (TZ) [KNF+11], and the two data center topologies

FatTree (FT) [AFL08] and BCube (BC) [GLL+09].

Whereas the latter three types of networks are representing classes of real networks, random

graphs are network models where some speci�c attributes of the network are pre-determined while

others are random. For instance, a simple model is the one where the number of vertices n and the

number of edges m is given, and the n vertices are interconnected with m edges randomly.

Erdős-Rényi (ER). The ER graph model G(n, p), also called random graph, ”Poisson random

graph” (refers to its degree distribution), or ”Bernoulli random graph” (refers to its edge distribution)

has the number of vertices n which are interconnected with a probability p. The probability for one

instance of graph G following this model is given by:

P (G) = p|E|(1− p)(
|V|
2)−|E|, (5.1)

where each graph G = (V, E) exists with probability P (G) [New10]. Note that for a given n and

p, the number of edges is not �xed due to the generation process: for a given number of vertices n,

each edge between a pair of nodes exists with probability Ber(p) (hence the name ”Bernoulli random

graph”). As a result, the total number of edges is binomially distributed with mean n(n− 1)/2 · p.

The ER model generates graph instances which have shortcomings when compared to real net-

work topologies: e.g, they do not show any clustering; there is no correlation between the degrees

of their adjacent vertices; the shape of the degree distributions of the nodes follow a Poisson distri-

bution, which is completely di�erent from the power law distributions of node degrees of prominent

graphs like the Internet [New10].

Barabási-Albert (BA). Generative network models try to overcome the mentioned issues of ran-

dom network graphs. Generative network models create graphs given a generative process. One of

the best known model is the ”preferential attachment model”, which is successfully accommodated

by the BA network model. Generative network models like BA conduct a simple process to create a

network: they add vertices one by one and connect them following a given rule of attachment. The

number of new edges per node, e.g., c, is pre-determined. In case of BA, edges are added proportion-

ally to the degree of existing vertices (preferential attachment).

Given this generation process, it has been shown that the BA model generates networks with

nodes having a power law degree distribution (with exponent exactly = 3). The generated networks

have some important attributes to be noted: e.g., (central) vertices that are generated �rst generally

have high betweenness and closeness centrality values - attributes which can be observed in real

network topologies [KNF+11].

This, in turn, leads to some criticisms: e.g., the linearity of the generation process; the changing

importance of a vertex is neglected. However, as most existing research analyzes their algorithms

114 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

for the most general models, we also use them for evaluation. A more detailed study of di�erent

generative models is an important aspect for future work.

Waxman (WAX). This is a random graph model. In contrast to ER and BA, the WAX model bases

the existence of edges on the spatial location of incidents. The basic WAX model places vertices in

a unit square, i.e., it generates both x and y coordinates of nodes according to a given distribution:

e.g., uniform distribution or normal distribution. Then, the nodes are interconnected with probabil-

ity [Wax88]:

p((vi, vj)) := β exp(−d(vi, vj)

αdmax
), (5.2)

where d : R × R → R is the euclidean distance between two vertices i and j and dmax is a pre-

determined maximum distance between any two vertices. The parameters α, β ∈ [0, 1] additionally

control the generation process; β a�ects the density, i.e., a larger value generates a more dense net-

work; α controls the ratio of short to long edges, e.g., smaller α values increase the number of shorter

edges.

The WAX graph model has disadvantages too: its generation process makes it di�cult to provide

any analytical expressions describing some features [RTP15]; the degree distributions of nodes of

generated graphs do not follow a power law degree distribution [MMB00].

Topology Zoo (TZ). Simple and parameterized graph models are mostly criticized due to one

main reason: their inability to capture attributes of realistic network topologies; hence, they do not

generate network instances that are close to realistic network topologies. The reason is that realistic

network topologies exhibit certain properties which cannot be modeled easily [KBK+17]. Accord-

ingly, Knight et al. [KNF+11] proposed the Topology Zoo (TZ): a set of real network topologies.

The set contains topologies with up to 709 nodes. The topologies belong to di�erent types: access,

backbone, customer, testbed, transit and Internet exchange points. Moreover, the footprints of the

topologies range from metro areas to global networks covering countries among di�erent continents.

Data Centers (DCs). The FatTree (FT) [AFL08] is one of the most common data center topologies.

A k-ary FT topology consists of k pods of servers; one pod is connected via two layers of switches

where each layer consists of
k
2 -k-port switches. (k2)2

-k-port core switches interconnect the pods;

each core switch connects to one switch per pod. A k-ary FT interconnects
k3

4 hosts. All shortest

paths between any hosts have a length of 6 hops.

The BCube (BC) topology is another DC topology [GLL+09]. The parameters are k and n: k is

the number of BCubes and n the number of hosts per switch. It is a recursively de�ned topology:

a BCubek is constructed from n BCubek−1 and nk n-port switches. Contrary to the FT topology,

switches in the BC topology are never directly connected to other switches; one switch connects

only to hosts; one host connects to multiple switches. A BCube0 with k = 0 consist of n hosts that

are all connected to a single switch. A BCubek,n topology has a total of nk+1
hosts. The longest

shortest path in the network has a length of 2(k + 1) hops.

5.1.2 Machine Learning

Machine Learning (ML) is a sub�eld of Arti�cial Intelligence (AI) that aims at developing self-learning

algorithms that can make intelligent decisions. Whereas humans tried to �nd rules for reasoning

5.1. Background 115

about complex systems, ML relies on e�cient mechanisms to recognize patterns in data; hence,

algorithms can make data-driven decisions based on patterns, which gradually improves, e.g., the

performance of optimization processes which face similar problem instances over runtime. Design-

ing a system for network optimization that uses ML, i.e., designing an ML application best suited for

a particular networking use case, does not only involve the original problem modeling and solving,

but also needs solving the problems of designing an e�cient ML system.

5.1.2.1 Supervised Learning

The ML application tries to �nd a mapping between the input training data X and its target values

Y by approximating a function f : X → Y ; it then uses the inferred function to predict the targets

for unseen data [Bis06]. In more detail, supervised ML applications use a data set of n iid input

vectors x1, ...,xn ∈ X along with their output (target) values y1, ..., yn ∈ Y for training to produce

an inferred mapping function. The mapping, i.e., the relationship between input and output data, is

captured by f . Hence, for instance, f(x1) provides the predicted value for x1.

The successful design of an ML application for supervised learning encompasses many challenges

[Tri17]:

• De�ning the supervised learning problem

• Finding the ”best” representation of the data

• Collecting the training data

• Finding the ”best” structure for the mapping function

• Choosing the best learning algorithm

Classification. The ML application learns a classi�cation if the output values are chosen from a

�nite number of discrete categories; it classi�es data into given categories [Bis06]. Binary classi�-
cation considers output values with two categories (0/1) [Bis06]. The overall outcome of classi�ers

can be di�erentiated into True Positives (TPs), False Positives (FPs), True Negatives (TNs) and False

Negatives (TNs).

• True Positive (TP): Counts the samples that were classi�ed correctly as the correct class (1).

• False Positive (FP): Counts the samples that were classi�ed incorrectly as the correct class (1).

• True Negative (TN): Counts the samples that were classi�ed correctly as the wrong class (0).

• False Negative (FN): Counts the samples that were classi�ed incorrectly as the wrong class (0).

Regression. If the output set contains values or vectors of continuous variables, then the ML ap-

plication does a regression task [Bis06]. An example is linear regression: the model describes a linear

relationship between input variables and the continuous response variable (output).

116 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

5.1.2.2 Machine Learning Algorithms

Di�erent ML models and algorithms with varying complexities exist that can be trained for either

classi�cation or regression tasks. The following list outlines the algorithms used in the evaluation

part of this chapter.

• Linear Regression & Linear Regression Classi�er: both ML models rely on a linear model of

the mapping function [Bis06].

• Bayesian Ridge Regressor: Similar like linear regression, a Bayesian Ridge regressor makes a

parameter estimation of a linear model by applying Bayesian inference. The Bayesian approach

additionally models uncertainty, which can also be used for analysis.

• Decision Tree Classi�er/Regressor: A Decision Tree Classi�er/Regressor [Qui86] consists of

decision nodes and leafs. Decisions are made on nodes based on features. Leafs represent the

actual classi�cation or regression result. For a given input vector, multiple decisions are made

upon its features until a leaf is reached.

• Random Forest Regressor: The Random Forest Regressor [Bre01] is an ensemble learning

method: it uses the average result of a number of decision tree classi�ers. Thereby, it tries

to avoid the general problem of over�tting of decision tree classi�ers.

• Extra Tree Classi�er: Whereas training the tree of the Random Forest Regressor [GEW06]

works like for a decision tree when taking decisions, the Extra Tree Classi�er always chooses

the decision parameter at random.

• AdaBoost Classi�er: This classi�er enhances the learning of a Decision Tree by retraining an

instance with higher weights on misclassi�ed training examples [FS97].

• Support Vector Regressor/Classi�er: The basic idea behind support vector machines is to deter-

mine hyperplanes between the samples of the di�erent classes that achieve a maximal margin

- the distance between the hyperplane and the di�erent classes of the training samples that

are closest to the hyperplane [SC08].

• (Recurrent) Neural Network: A Neural Network is built by interconnecting an input vector

with a layer of arti�cial neurons to an output layer. Training such single-layer neural network

means to adapt the weights connecting di�erent layers (input layer, a neuron layer, output

layer). In particular the ”backpropagation” algorithm enabled the breakthrough of neural net-

works in machine learning [RHW86].

5.1.2.3 Machine Learning Measures/Metrics

The following metrics are used to quantify the performance of regressors:

• Coe�cient of determination (R2
): The R2

is de�ned as

R2 = 1−
∑n

i=1(yi − f(xi))
2∑n

i=1(yi − ȳ)2
, (5.3)

5.1. Background 117

where ȳ is the mean of a set of target values. The nominator of the fraction gives the sum of

squares of residuals and the denominator the total sum of squares. For regression, R2 = 1

indicates a precise regression approximation and negative values (up to −∞) indicate a bad

performance; 0 means that a model is as good as predicting the average value of a set of sam-

ples.

• Root Mean Squared Error (RMSE): Another metric used to indicate the general error of a model

is RMSE given as

RMSE =

√√√√ 1

n

n∑
i=1

(f(xi)− yi)2. (5.4)

A value of 0 means that there is no deviation between the predicted value and the true value.

The larger the value, the worse the prediction. This value has always to be put into relation to

the target to obtain meaningful interpretations.

The following metrics provide information on the performance of classi�ers:

• Accuracy: Gives general information on how many samples were classi�ed correctly:

ACC =
TP + TN

TP + FP + TN + FN
(5.5)

Using Accuracy as a measure in highly skewed data sets is problematic. In such case, a clas-

si�er can achieve a high accuracy by classifying all samples as the majority class (majority

vote).

• Precision (or Positive Predictive Value (PPV)): This measure reveals the amount of samples of

the positive class divided by all samples that were classi�ed as positive (TP and FP):

PRE =
TP

TP + FP
(5.6)

A high precision means that the majority of samples that were classi�ed as positive are be-

longing to the true positive class (How many selected items are relevant?).

• Recall (or True Positive Rate (TPR)):

REC =
TP

TP + FN
(5.7)

A high recall means that among all samples originally belonging to the positive class most

were correctly classi�ed (How many of the relevant items are selected?).

• Speci�city (or True Negative Rate (TNR)):

SPE =
TN

TN + FP
(5.8)

A high speci�city means that among all samples originally belonging to the 0 class, most were

correctly retrieved.

118 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

Neuron States

Input Bias Vector

Weight Matrix

Figure 5.1: A Hop�eld Network with 3 neurons. The output of one neuron is fed back as input to the other

neurons. Input and output have the same size. The �nal output is given by the values of the neurons.

• F1 score [Sør48]: This metric is mainly used to provide a more comprehensive performance

presentation of a classi�er. It combines both precision and recall:

F1 = 2 · PRE · REC

PRE + REC
(5.9)

This measure is particularly useful when working with skewed data sets; a poor performance

for the underrepresented positive class equally a�ects the F1 score as the overrepresented neg-

ative class. Hence, the F1 score is robust against skewed data sets.

5.1.3 Neural Computation with Hopfield Networks

Neural computation covers research �elds where a network of neurons is used to process informa-

tion: e.g., neural networks are used for prediction or to solve optimization problems. Generally,

neural computation is based on the idea to create a structure similar to the brain, which can be used

to process information. For this, information is passed through a network of neurons, like in ANNs.

Generally, the study of ANNs has been inspired by studies of biological neural networks. Moreover,

ML techniques such as deep learning rely on the use of deep neural networks.

Hopfield networks. Hop�eld networks are a form of recurrent ANNs [Hop84]. A Hop�eld net-

work consists of one layer of neurons that are all interconnected. Fig. 5.1 shows a Hop�eld network

consisting of three neurons. The input Ui of each neuron i is the sum of the output of all other

neurons and the bias value Ii. A Hop�eld network has the following parameters:

• Number of neurons m.

• Vector U ∈ [0, 1]m representing each neuron’s internal state.

• Vector V ∈ [0, 1]m representing each neuron’s external state.

• Bias vector I ∈ Rm serving as independent input to each neuron.

• Symmetric weight matrix T ∈ Rm×m, with Tij = Tji being the weight of the connection

between neuron i and j and Tii = 0.

5.1. Background 119

• Activation function h : Rm → [0, 1]m calculating the activation, i.e., the external state of each

neuron from its internal state.

We use a smooth approximation to the step function as activation function h, which was proposed

by Hop�eld and Tank [HT85] for optimization problems:

V = h(U) =
1

2
·
(

1 + tanh

(
U

u0

))
. (5.10)

The free parameter u0 controls the steepness of the curve. We �x u0 to 1 in our experiments since

its variation showed no signi�cant impact on our results. With the above parameters, a scalar value

can be calculated; the energy E of the Hop�eld network:

E = −1

2
VTTV −VT I. (5.11)

Originally, Hop�eld networks were considered in the context of content addressable memory [Hop84],

due to their ability to reconstruct noisy or partially available memory patterns. This is achieved by

associating the pattern to be remembered, i.e., states of the neurons, with low values of the energy

function by adapting the weights T. Given a noisy or corrupted sample, the original pattern is re-

covered by recursively computing

V(t+ 1) = h (TV(t) + I) (5.12)

until the system converges to a stable state. Note here the use of time t, which simply describes the

state of the network at a given time t. Hence, t+ 1 is an indicator for the next time step. When used

for optimization of a constrained optimization problem, parameters T and I have to be chosen in

such a way that they represent the optimization problem to be minimized (or maximized). A state V

for whichE attains a minimum then corresponds to a solution of the optimization problem [Hop84],

i.e., a state where the objective should be at a (local or global) minimum while all problem constraints

are satis�ed.

When executing Hop�eld networks, their evolution can also be expressed by the following di�er-

ential equation, as demonstrated by [Hop84]:

dU

dt
= − U

τHF
+ T

1

2

(
1 + tanh

(
U

u0

))
+ I. (5.13)

Since Eq. 5.13 captures the Hop�eld network’s temporal behavior, solving Eq. 5.13 gives a stable

state, and thus a solution to the optimization problem [TCP91]. Parameter τHF causes the neuron

input U to decay towards zero in the absence of any input. Results presented in Section 5.2.3 are

obtained with τHF �xed to 1 as also originally proposed [HT85].

5.1.4 Virtual Network Embedding (VNE)

The Virtual Network Embedding (VNE) problem targets the problem of embedding Virtual Network

Requests (VNRs) to a substrate network. The VNE problem is NP-hard in general [ACK+16]. Two

variants of the VNE problem are studied in literature: an online variant and an o�ine variant. In the

120 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

o�ine variant, one or more virtual networks are given; the task is either to embed as many VNRs as

possible with the highest possible revenue or to embed all VNRs with a minimal resource footprint.

The online variant of the VNE problem targets a dynamic use-case; a substrate network operator

needs to embed VNRs arriving over time. In this thesis, we focus on the online VNE problem.

5.1.4.1 Virtual Network Embedding Formulation

The VNE formulation is an adapted version of the formulation introduced in [MSK+13].

Substrate network. We consider an undirected graph Gs := (N s,Ls, Cs,Bs) to describe a sub-

strate network. N s
is the set of all physical nodes N s := {N s

i }ιi=1 where ι is the number of nodes

of the substrate. Ls is the set of physical edges with Ls ⊆ N s×N s
and Lsij = (N s

i , N
s
j). Each node

N s
i ∈ N s

has a capacity Csi (e.g., CPU) and a residual capacity Csi (t) at time t. Every link Lsij ∈ Ls

has bandwidth Bs
ij and a residual bandwidth Bs

ij(t) at time t.

Virtual network requests (VNRs). A Virtual Network Request (VNR) is an undirected graph

Gv := (N v,Lv, Cv,Bv). N v
is the set of all virtual nodesN v := {Nv

m}rm=1 of a VNR, where r is the

number of virtual nodes. Lv contains all virtual links with Lv ⊆ N v ×N v
and Lvmn = (Nv

m, N
v
n).

Vice versa, every virtual node Nv
m ∈ N v

has a resource requirement Cvm and every virtual link

Lvmn ∈ Lv has a bandwidth requirement Bv
mn.

The Virtual Network Embedding (VNE) problem. VNE algorithms map arriving VNRs Gv ∈
Gv to a substrate network Gs ∈ Gs, de�ning a node mapping fN and a link mapping fL:

fN : N v → N s, (5.14)

fL : Lv → 2L
s \ ∅, (5.15)

such that

∀Nv
m ∈ N v : Cvm ≤ CsfN (Nv

m)(t), (5.16)

∀Lvmn ∈ Lv : ∀Lsij ∈ fL(Lvmn) : Lvmn ≤ Lsij(t). (5.17)

For a valid mapping of Gv to Gs, two steps are important. First, all virtual nodes N v
need to be

mapped to di�erent substrate nodes N s
(Eq. 5.14). Second, all virtual links Lv need to be assigned

to at least one path in the substrate network (Eq. 5.15), i.e., a subset of links Lp′ ∈ 2L
s \ ∅. Note that

we assume unsplittable �ows in this work. For a VNR to be embedded, the resource requirements

of its virtual nodes (Eq. 5.16) and the bandwidth requirements of its virtual edges must be ful�lled

(Eq. 5.17). The right hand sides of Eq. 5.16 and Eq. 5.17 give the residual capacity of physical nodes

and links respectively. Moreover, two additional functions are de�ned to indicate the mapped virtual

nodes/edges on a substrate node/edge: f−1
N and f−1

L :

f−1
N : N s → N v, (5.18)

f−1
L : Ls → Lv. (5.19)

5.1. Background 121

5.1.4.2 Virtual Network Embedding Performance Metrics

The following metrics are used to quantify the quality of the solution for the online VNE problem.

All metrics are standard in literature to quantify VNE algorithms. The result sections discuss the

various metrics and trade-o�s among them in more detail.

Acceptance Ratio (AR) is the ratio of accepted VNRs among all received VNRs. Formally, the AR
for a given time interval T := [tstart, tend] is de�ned as

AR(T) :=
| Racc(T) |

| Rrej(T) ∪Racc(T) |
, (5.20)

whereRacc(T) is the set of accepted VNRs andRrej(T) is the set of rejected VNRs during T .

Virtual Network Embedding Cost (EC) comes from the invested node and link resources to re-

alize a mapping of a VNR. While there is a 1-to-1 mapping between requested and assigned node

resources, the costs for realizing a virtual path depend on the physical path length. The embedding

cost EC(Gv) of a VNR Gv ∈ Gv is the sum of all substrate resources that have been used to embed

the nodes and links for the VNR. It is de�ned as:

EC(Gv) :=
∑

Nv
m∈N v

Cvm +
∑

Lvmn∈Lv
| fL(Lvmn) | ·Bv

mn, (5.21)

where | fL(Lvmn) | provides the length of the physical path on which the virtual edgeLvmn is mapped.

Revenue (REV) of a VNR is simply determined by the requested virtual resources. The revenue

REV(Gv) of a VNR is the sum of all its requested virtual link and node resources. It is given as:

REV(Gv) :=
∑

Nv
m∈N v

Cvm +
∑

Lvmn∈Lv
Bv
mn. (5.22)

The more resources a virtual network requests, the higher the revenue.

Total Revenue (TR) in a time interval T is the sum over all accepted VNRs Gv ∈ Racc(T):

TR(T) :=
∑

Gv∈Racc(T)

REV(Gv). (5.23)

Revenue-Cost-Ratio (RCR) indicates the relation between revenue and embedding cost. The best

possible RCR can be achieved by a 1-to-1 mapping between requested and allocated demands, i.e., all

virtual nodes and links are implemented on one physical node and link respectively. The RCR(Gv)

of a VNR is de�ned as the fraction of its revenue REV(Gv) divided by its embedding cost EC(Gv)

RCR(Gv) :=
REV(Gv)

EC(Gv)
. (5.24)

A high Revenue-Cost-Ratio (RCR) indicates a low cost of an embedding: an inevitable target for

network operators.

122 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

5.1.4.3 Virtual Network Embedding Algorithms

A general survey of existing VNE algorithms is given in [FBB+13]. Algorithms for solving the VNE

problem broadly fall in two categories: those which solve the VNE problem in one step, during which

both nodes and links are mapped, and those which divide the problem into separate node and link

mapping steps. An example for the former are exact algorithms based on mathematical program-

ming [MSK+13]. An example for a non-optimal one step algorithm is [CRB12].

Most heuristic algorithms are 2-step algorithms. In the �rst step, every virtual node is assigned

to the best substrate node that ful�lls the capacity constraints. In order to determine the best sub-

strate node for every virtual node, the substrate nodes are usually ranked according to substrate

node attributes, e.g., based on their remaining CPU [YYR+08] or graph measure [ZA06; CSZ+11].

To integrate the physical connections between nodes, i.e., physical links and paths, into the rank-

ing, algorithms apply a global ranking procedure. For instance, the MCRank [ZQW+12] or the GRC

rating [GWZ+14] make a global rating of the nodes. For each node, their global ranking metric inte-

grates also the distance to all other nodes, e.g., by using random walks through the substrate network.

In the second step, after all nodes are �rst rated and successfully embedded, shortest path or multi

commodity �ow approaches are used to interconnect the nodes. For evaluations in this chapter, the

following optimal, rounding-based, as well as heuristic VNE algorithms are investigated.

• Optimal algorithms. The Load Balancing Algorithm (LB) tries to �nd a mapping solution that

�rst targets a minimum maximum node utilization. In contrast to LB, the Shortest Distance

Path Algorithm (SDP) tries to �nd a cost-optimal embedding with respect to the used links:

this is bene�cial if link resources are scarce in the substrate network [MSK+13]. Whereas LB

works ”well” in situations where bandwidth resources are of no concern, SDP particular targets

situations where bandwidth is rarely available.

• Rounding-based algorithms. The Deterministic Virtual Network Embedding Algorithm (DViNE)

and the Randomized Virtual Network Embedding Algorithm (RViNE) use a relaxed integer pro-

gramming formulation of the VNE problem [CRB09; CRB12]. Either deterministic (DViNE) or

randomized (RViNE) rounding is applied to the relaxed solutions of the VNE problem to �nd

a feasible solution. For the evaluation in this thesis, the shortest path versions of DViNE and

RViNE are used.

• Heuristic algorithms. The Greedy Algorithm (GDY) is an algorithm with low complexity orig-

inally introduced by [YYR+08]. The algorithm rates the nodes based on their residual CPU

capacities. In the edge embedding stage, GDY embeds all virtual edges one after the other de-

pending on their ranks. The edges are mapped using the shortest path in terms of number of

hops. Gong et al. [GWZ+14] introduced the Global Resource Capacity Algorithm (GRC). The

GRC calculates the global resource capacity metric for every node of the substrate network. It

then embeds the virtual nodes to the substrate nodes with the highest metric values. The edge

mapping stage is the same as one used by GDY.

5.2. Algorithm Preprocessing System Using Neural Computation: NeuroViNE 123

5.2 Algorithm Preprocessing System Using Neural Computation:
NeuroViNE

Operators and tenants clearly pro�t from a fast and e�cient embedding of virtual networks: sav-

ing computational cost, faster provisioning of virtual networks, smaller waiting times of subsequent

virtual network recon�gurations etc. Many exact and heuristic algorithms exist [BK13; FLW+14;

ZQW+12; CRB09; CRB12; YYR+08; CSZ+11; FBB+13] for solving the VNE problem. While exact

solutions are attractive for their resource e�ciency (in terms of resource footprints of virtual net-

works), they are expensive to compute [ACK+16]. In contrast, heuristic algorithms solve the VNE

problem in acceptable time, but, their embedding footprints can be far from optimal. Especially prob-

lematic are heuristic algorithms that split the embedding problem into a node and a link mapping

step [GWZ+14]: substrate nodes that may be ranked highly in the node embedding step (e.g., due to

their available node resources) might be located far away from each other.

This chapter o�ers NeuroViNE, which is motivated by the observation that e�cient solutions to

the VNE problem place frequently communicating nodes close to each other. Moreover, we observe

that many existing time-intensive VNE algorithms may bene�t if they can be executed on subgraphs

selected intelligently from the substrate network. Accordingly, NeuroViNE extracts subgraphs that

provide (1) a high probability for being able to accommodate a virtual network and (2) ensure a low-

cost embedding. As a consequence, NeuroViNE can potentially shorten network algorithm runtimes

while preserving a high embedding quality.

5.2.1 Related Work

ANNs have already been successfully applied on a variety of combinatorial optimization problems,

including the Traveling Salesman Problem [HT85; Hop84] (which introduced the Hop�eld network),

the shortest path problem [RW88], the hub-placement problem [SKP96], or the Knapsack prob-

lem [AKH92; HK92; OPS93]. In the context of communication networks, recent work used Hop-

�eld networks, e.g., for channel selection in radio networks [AEE15]. Besides, recent work has

successfully demonstrated the application of deep neural networks, i.e., deep reinforcement learn-

ing [MAM+16] in the context of cloud resource management.

5.2.2 Neural Preprocessor for Virtual Network Embedding

Figure 5.2 shows an overview of NeuroViNE. In a nutshell, NeuroViNE is a preprocessor which ex-

tracts subgraphs to improve the solution quality of both rigorous (exact) or heuristic embedding

algorithms which are executed subsequently on the subgraphs.

5.2.2.1 System Overview

NeuroViNE is based on a Hop�eld network. The main components of NeuroViNE are the ratings for

nodes and links of the substrate, the �ltering functions ζ determining the number of physical nodes

in the subgraph, and the parameters of the Hop�eld network, i.e., the weight matrix T, the bias vec-

tor I and the energy function E. Our goal is to accept as many virtual networks as possible while

preserving a high Revenue-Cost-Ratio (RCR), which also means to save cost per accepted virtual

124 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

Hopfield Network

Substrate

VNR

Subgraph

Actual embedding

VNE
Algorithm

Figure 5.2: NeuroViNE �rst uses a Hop�eld network to create a subgraph of the substrate and then applies a

VNE algorithm. The VNR size determines the number of preselected nodes. The substrate size determines the

number of neurons of the Hop�eld network, here �ve. The substrate provides the input for the weight matrix

T and the bias vector I. Subsequently, the VNE algorithm uses the subgraph to determine the embedding.

Algorithm 1: Pre-selection and Virtual Network Embedding.

Input: Gs,Gv
Output: NodeMapping fN and LinkMapping fL

1 Ξ(t)← β· calculateNoderanks(N s)
2 Ψ(t)← γ calculateEdgeranks(Ls)
3 ζ ← setNumberOfPreselectedNodes(| N v |)
4 (T, I)← createHop�eldNetwork(Ξ, Ψ, ζ)
5 V← executeHop�eldNetwork(T, I)
6 Gs, subgraph ← Gs
7 for Vi ∈ V do
8 if Vi < 0.5 then
9 removeFilteredNode(Gs, subgraph, N s, subgraph

i)

10 fN ← mapNodes(Gv , Gs, subgraph)
11 fL ← mapEdges(Gv , Gs, fN)
12 return fN , fL

network. The process is shown in-depth in Algorithm 1 and all steps are explained in the following

subsections.

5.2.2.2 Substrate Node and Edge Ranking

In NeuroViNE, neurons in the Hop�eld network represent substrate nodes. In order to select the

potentially best nodes and edges from the substrate, the neurons representing those nodes must be

associated with low values of Eq. 5.13. We introduce a node and edge (node connectivity) rating for

this purpose, which will be used for the initialization of parameters T and I in Section 5.2.2.4. Line 1

and line 2 of Algorithm 1 calculate ratings for all nodes and edges of the substrate network. As a

good solution for an optimization problem is related with a low energy value of the Hop�eld network,

node and edge ratings have to be designed accordingly. More in detail, this means that a rating score

needs to be low for potentially good substrate nodes; low rating values for both nodes and edges

reveal good solutions. Note further that all rankings, matrices etc. are recalculated whenever a new

VNR needs to be embedded.

The node calculation step (line 1) can consider any node attribute, e.g., memory or CPU, or any

edge attribute, e.g., latency or data rate. In this work, the node ranking vector Ξ(t) ∈ R|N s| considers

5.2. Algorithm Preprocessing System Using Neural Computation: NeuroViNE 125

the residual CPU capacities at time t as follows:

Ξi(t) = β ·
maxNs

j ∈N s C
s
j (t)− Csi (t)

maxNs
j ∈N s C

s
j (t)

∀N s
i ∈ N s, (5.25)

where β is a parameter that weights the importance of the node ranking. By taking the residual

CPU, the Hop�eld network tries to identify subgraphs with a high remaining CPU capacity, which

provides a high chance for acceptance. Dividing by the highest available CPU capacity normalizes

the ranking in the interval between 0 and 1. Setting β = 7 showed the best performance in the

conducted simulations.

The edge ratings (line 2) are represented in the matrix Ψ(t) ∈ [0, 1]|N
s|×|N s|

. Determining the

values of Ψ(t) involves two steps; (1) setting the weights of all links and (2) calculating the shortest

paths between all nodes based on these weights. The weights of all links are set as

wHF(ij) = Bs
max(t)−

Bs
ij(t)

Bs
max(t)

, (5.26)

where Bs
max(t) := maxLsij∈Ls B

s
ij(t) is the maximum residual bandwidth at time t among all links.

The idea behind the weight setting is to integrate the distance between nodes while simultaneously

considering the remaining capacities of links. The link weights wHF are then used to calculate the

distance matrix D(t) containing the costs of shortest paths between all nodes at time t. Finally, the

values of the matrix Ψ are

Ψij(t) = γ · Dij(t)

max(D(t))
, (5.27)

where every value is normalized by the maximum value of the matrix D(t), and the parameter γ

weights the edge ratings. Setting γ = 3 provided the best results in the simulations. Note that

we assume that at least one path with remaining capacity exists, otherwise the algorithm would

not be executed at all. The obtained ranking results in the selection of a subset of substrate nodes

with small distances in terms of hop count to each other, and high residual capacities on connecting

links/paths. Combining distance and residual capacity into the path calculation should ensure that

the virtual nodes can be connected successfully with low cost.

This ranking procedure makes it possible that the Hop�eld network selects a subset of nodes that

have few hops between each other, which should result in low path cost solutions. Selecting nodes

with high residual capacities ensures that the selected substrate nodes can host the requested virtual

nodes. Similarly, integrating the residual capacity into the link weighting should ensure that the

virtual nodes can be connected successfully.

5.2.2.3 Node Number Selection Functions

The node number selection functions determine the amount of nodes that should be preselected. The

preselected nodes determine the subgraph. As this function is interchangeable, it can be adapted to

the embeddings of speci�c goals. For instance, the selection function can weight smaller networks

higher than larger networks. In order to realize such strategy, an operator would simply have to

select more nodes for smaller networks than larger networks. Thereby, the acceptance ratio for

126 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

smaller networks might be larger than for larger networks. In this work, three selection functions

are proposed: ζconst(Gv), ζfactor(Gv), and ζinverse(Gv).

Line 3 calculates the number of nodes based on one speci�c function. Function ζconst(Gv) simply

sets ζ to any pre-de�ned constant value κ for all VNRs; it is independent of the requested graph Gv :

ζ = ζconst(Gv) = κ (5.28)

Function ζfactor(Gv) uses the size of a VNR Gv , i.e, | N v |:

ζ = ζfactor(Gv) = κ· | N v | . (5.29)

κ allows to linearly scale the number of selected nodes: e.g., κ = 1 forces the Hop�eld network to

select exactly the number of requested VNR nodes. Larger κ should increase the probability of ac-

cepting a VNR. Function ζinverse selects ζ inversely proportional to the number of requested virtual

nodes:

ζ = ζinverse(Gv) =
κ

| N v |
(5.30)

ζinverse is tailored towards the demands of optimal algorithms. When embedding small networks, op-

timal algorithms can use the entire network, while for VNRs with many virtual nodes, the substrate

search space should be reduced for runtime reasons.

For NeuroViNE to function correctly, it is important that its Hop�eld network preselects a number

of nodes that is equal or greater than the number of requested nodes of a VNR (i.e. ζ ≥| N v | or κ ≥
1). Note that the Hop�eld network may not always select exactly the requested number of nodes.

Instead the number of selected nodes might slightly vary around ζ resp. ζ(Gv) (Note that we omit to

write ζ(Gv) later on for brevity). Increasing the amount of preselected nodes increases the likelihood

that a VNR can be accepted but also decreases the e�ciency of NeuroViNE. Accordingly, Sec. 5.2.3.5

analyzes the e�ect of the choice and the parameter settings of the selection functions.

5.2.2.4 Hopfield Network Creation

Having determined the rankings and the number of nodes that have to be selected, the Hop�eld

network can be created. The Hop�eld network has | N s | neurons. Its creation is done in line 4 of

Algorithm 1. This step involves the calculation of the neuron weight matrix T and the bias vector

I. First, we calculate the parts of T and I that are caused by the constraints Tconstraint
and Iconstraint

.

This is done for all elements of the weight matrix and bias vector using the k-out-of-n rule proposed

by [TCP91] as follows

Tconstraint

ij =

 1 if i 6= j,

0 if i = j,

Iconstraint

k = −(2 · ζ − 1),

(5.31)

where i and j are the indexes of the weight matrix Tconstraint
and k is the index of the bias vector

Iconstraint
. The k-out-of-n rule ensures that for a decision problem with n, e.g., Integer variables, k

variables will be chosen, i.e., be set to 1. Accordingly, the Hop�eld network chooses ζ substrate nodes

out of all N s
. Finally, the actual weight matrix T and the actual bias vector I can be calculated:

5.2. Algorithm Preprocessing System Using Neural Computation: NeuroViNE 127

Algorithm 2: Execution of the Hop�eld Network.

Input: I,T,∆, imax, dc_flag, C0

Output:
1 U← U([0, 1])|U|

2 i← 0
3 ∆←∞
4 while (∆ >∞) ∧ (i < imax) do
5 i← i+ 1
6 k1 ← T ·V + I−U

7 k2 ← T(1
2(1 + tanh(

U+ 1
2
τk1

u0
))) + I− (U + 1

2τk1)

8 k3 ← T(1
2(1 + tanh(U−τk1+2τk2

u0
))) + I− (U− τk1 + 2τk2)

9 dU← k1+4k2+k3
6

10 if dc_flag == True then
11 for i ∈ C0 do
12 Ui ← −∞
13 dUi← 0

14 U← U + τ · dU
15 ∆← |dU|
16 V← 1

2(1 + tanh(U
u0

))

17 return V

T = −2(Ψ(t) + α ·Tconstraint), (5.32)

I = −(Ξ(t) + α · Iconstraint). (5.33)

The parameter α weighs the constraint terms against the optimization terms. The energy function

of the network is given as:

E = VT (Ψ(t) + α ·Tconstraint)V + VT (Ξ(t) + α · Iconstraint), (5.34)

where V is the vector of the neuron states. The inclusion of the terms Tconstraint
and Iconstraint

en-

sures that the correct number of nodes is selected. When Eq. 5.34 is at its minimum, it implies the

best possible combination of nodes according to the edge and node ranking. In particular, the sum of

the edge rating of the paths between the selected nodes and the node rankings of the selected nodes

is at the smallest possible value, i.e., a locally optimal best combination of substrate nodes has been

found. The inclusion of the terms Tconstraint
and Iconstraint

should satisfy the constraint to select a

number of substrate nodes as determined by the node number selection function.

5.2.2.5 Hopfield Network Execution

We use the Runge-Kutta-Method [Run95] to solve di�erential Equation 5.13, which is described in

Algorithm 2. First, U, the iteration count i and the state change variable ∆ are initialized (line 1 to

line 3). The while loop (line 4 to line 16) repeats until either the change to the neuron state vector ∆

is smaller than a threshold δ or the maximum number of iterations imax is reached. Inside the while

128 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

loop, the next iteration of U and the di�erence to the last iteration are calculated (line 6 to line 11).

Finally, the activation function calculates the output of the neurons (line 11).

5.2.2.6 Modifications for Data Center Use Case

So far, we made the usual assumption that virtual nodes can be embedded on any substrate node. In

order to apply our Hop�eld network-based algorithm in data centers, we introduce additional con-

cepts; in more detail, the Hop�eld algorithm is adapted to count for the fact that only servers can

host virtual machines.

To model data center topologies, we leverage that Hop�eld networks can �x some variables before

executing them. This method is called clamping [GS89]: certain neurons are �xed to certain values.

Clamping can be useful when variables should be excluded from the search space or if some variable

solutions are already given.

The algorithm now requires additional information about whether the substrate is a data center

and also the set of switches C0. The set C0 contains all switches, which are used by the Hop�eld

algorithm according to Constraint 5.35.

Vi = 0 ∀N s
i ∈ C0. (5.35)

For each switch N s
i ∈ C0, Constraint 5.35 forces the associated neuron to 0; switches are excluded

from the subgraph.

The parts relevant for data centers are marked in blue in Algorithm 2. If the topology is a data

center, the elements of the internal state vector U representing switches (C0) are set to large negative

values while the deviations dU are set to 0 (11-13). When the Hop�eld network execution converges,

the solution contains nodes C0 which are all set to 0, which excludes switches from the subgraph.

To be a compatible alternative, the data center algorithm uses a fallback algorithm (any VNE al-

gorithm) in case the preprocessor-based subgraph leads to an early rejection. This might increase

the computational resources and runtime; nevertheless, as the results will demonstrate, the bene�ts

in terms of cost savings and revenues favor this design. Furthermore, using a heuristic algorithm as

alternative still guarantees compatible algorithm runtime.

5.2.2.7 Embedding of the Links and Nodes

After the pre-selection is complete, the subgraph Gs, subgraph
is created (line 6 to line 9 of Algo-

rithm 1.). Gs, subgraph
contains only the substrate nodesN

s, subgraph

i ∈ N s, subgraph
for which Vi ≥ 0.5.

In line 10 of Algorithm 1, we call the node mapping function with the subgraph Gs, subgraph
. After it

has mapped all virtual nodes, the edges are mapped in line 11. The edge mapping is done with the

complete substrate network Gs. If node and link mappings are successful, the network is embedded

to the substrate; otherwise, it is rejected.

5.2.3 Evaluation

NeuroViNE can be employed together with many existing algorithms. The results show howNeuroViNE
works on random network graphs and real topologies in combination with di�erent VNE algorithms.

5.2. Algorithm Preprocessing System Using Neural Computation: NeuroViNE 129

Table 5.2: Simulation parameters for the study of NeuroViNE. Note the di�erent arrival rates and lifetimes

between real/random topologies and data center topologies.

Parameter Values

Simulation Process on Random and Real Topologies

Arrival rate λ Exponential distribution with λ = 5
100

Lifetime Exponentially distributed with mean 100

Number of VNRs 2 500

Simulation Process on Data Center Topologies

Arrival rate λ Exponentially distributed with λ = 5
100 (FT), λ = 10

100 (BC)

Lifetime Exponentially distributed with mean 1 000

Number of VNRs 2 500

VNE Algorithms and Hop�eld Variants

VNE algorithms GRC, SDP, GDY, DViNE, RViNE

Hop�eld-VNE algorithms Hop�eld-enhanced Global Resource Capacity Algorithm (HF-GRC),

Hop�eld-enhanced Shortest Distance Path Algorithm (HF-SDP),

Hop�eld-enhanced Deterministic Virtual Network Embedding

Algorithm (HF-DViNE), Hop�eld-enhanced Randomized Virtual

Network Embedding Algorithm (HF-RViNE), Hop�eld-enhanced

Global Resource Capacity Data Center Algorithm (HF-GRC-DC-FB)

5.2.3.1 Methodology

The following sections summarize the simulation setups involving VNE algorithms, substrate net-

work graphs and virtual network requests. For all settings, 10 runs are performed: e.g., 10 substrate

graphs are generated for an ER topology with connection probability 0.11. For every setup, a simu-

lation lasts until 2 500 VNRs are processed. All simulation parameters are summarized in Table 5.2.

Virtual network embedding algorithms. In our evaluation, we compare �ve embedding algo-

rithms with and without NeuroViNE: the Global Resource Capacity Algorithm (GRC) [GWZ+14], the

Greedy Algorithm (GDY) [YYR+08], the optimal Shortest Distance Path Algorithm (SDP) [MSK+13],

and the two ViNEYard [CRB09] algorithms Deterministic Virtual Network Embedding Algorithm

(DViNE) and Randomized Virtual Network Embedding Algorithm (RViNE). We use NeuroViNE in

combination with GRC, SDP, DViNE and RViNE as VNE algorithms; we refer to the algorithm vari-

ants with Hop�eld preprocessing as HF-GRC, HF-SDP, HF-DViNE and HF-RViNE. The Hop�eld data

center variant using GRC as fallback is called HF-GRC-DC-FB.

Substrate network graphs. We compare the performance of the algorithms for �ve substrate

graph types: the two random network graph models ER [ER59] and BA [BR99], real substrate topolo-

130 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

Table 5.3: Evaluation parameters for substrate network settings.

Parameter Values

Substrate

Graph type ER BA TZ BC FT

Number of nodes | N s | 100 100 ≥ 50 64 54

Model Parameter - - - k=2,n=4 k=6

Connection Probability 0.11 - - - -

m0 - 20 - -

m - 1-10 - -

Node capacity Cs ∼ U(50, 100) ∼ U(50, 100) 100

Edge Capacity Bs ∼ U(50, 100) ∼ U(250, 500) 100

gies from the TZ [KNF+11], and the two data center topologies FT and BC. The con�gurations of the

various topologies are summarized in Table 5.3

Virtual network requests. For ER, BA and TZ substrates, the VNRs are created using the ER

method [ER59]. The number of virtual nodes is equally distributed in the range between 2 and 20.

The connection probability is set to 0.5. The required CPU capacities and bandwidths of virtual

nodes and links are equally distributed in the range from 0 to 50. The arrival rate λ of VNRs is set to

5 arrivals per 100 time units. Every VNR has a negative exponentially distributed lifetime with an

average of 500 time units. This VNR generation is identical to the one used by [GWZ+14].

For data center topologies, the WAX graph model is used. The model parameters are set as fol-

lows: αWAX = 0.2 and βWAX = 0.4. The number of nodes is distributed between 3 and 10; the

CPU capacities of the nodes between 2 and 20; the virtual link demands between 1 and 10. This is

in compliance with a recently published study of VNE in data center networks [HT16].

5.2.3.2 Optimization Opportunities

We �rst analyze the impact of the node selection function on the three key performance metrics:

Acceptance Ratio (AR), Total Revenue (TR) (where the time interval lasts until all 2 500 requests

are processed), and Revenue-Cost-Ratio (RCR) for the linear and the constant selection function.

Figure 5.3a shows the performance improvement for the constant function ζconst and Figure 5.3b il-

lustrates the improvement for the linear function ζfactor. For each selection size, the �gures show

the bar plots of the improvement de�ned as Improvement = (HF-GRC− GRC)/GRC · 100 %; e.g., a

positive value of the AR indicates that HF-GRC accepts more virtual networks.

Constant selection size. Figure 5.3a illustrates that HF-GRC blocks many virtual networks

(73 %) when ζ (= ζconst) is set to a small value like 5 nodes. Consequently, the TR is decreased

as less virtual networks are accepted. The RCR, however, is higher: the nodes of the small virtual

5.2. Algorithm Preprocessing System Using Neural Computation: NeuroViNE 131

5 10 15 25 50

Number of nodes to select ζ

-0.96
-0.73
-0.50
-0.28
-0.05
0.18
0.41
0.63

Im
pr

ov
em

en
t

[1
0
0
%

]

AR
TR
RCR

(a) ζ = ζconst.

2 4 6 8 15

Selection Factor ζ(GV)

-0.07
-0.04
-0.01
0.02
0.05
0.08
0.11
0.14

Im
pr

ov
em

en
t

[1
0
0
%

]

AR
TR
RCR

(b) ζ(Gv).

Figure 5.3: Impact of the selected number of nodes: the left �gure shows a constant selection size ζ = ζconst;

the right �gure shows the impact of the selection factor ζ(Gv). We show the improvement in percent for each

measure: Acceptance Ratio (AR), Revenue (REV), and Revenue-Cost-Ratio (RCR). Positive values indicate a

performance improvement. Embedding algorithm: GRC.

networks are always embedded very close to each other. Increasing the number of nodes to 25 in-

creases the AR to a level that is minimally higher than the one of GRC; whereas TR is still lower. Yet,

NeuroViNE achieves an up to 18 % higher RCR. When NeuroViNE allows only to select subgraphs

with ζ = 50 nodes, it shows slightly higher AR and TR, while it still provides a 9 % higher RCR: with

NeuroViNE, all virtual networks with a size up to 20 nodes can be embedded much more e�ciently.

However, the problem of the constant function is that it is sensitive to the substrate network size

and the VNR request size in terms of nodes. It needs to be pre-determined based on the VNR request

size to function well.

Selection factor - dependent on the number of virtual nodes. Accordingly, Fig. 5.3b shows

that the factor-based function ζ(Gv) has almost the same AR as GRC, except for κ = 2. Also the

TR is insigni�cantly di�erent from the performance of GRC, again besides for κ = 2 where it is

slightly lower. For κ = 2, the Hop�eld network does not always select enough nodes for bigger

networks. Thus, bigger networks are rejected even before the �nal embedding stage, i.e., before the

VNE algorithm, can be run. Fig. 5.3b indicates that HF-GRC improves the RCR ratio up to 8 % for

factors ranging from 2 to 8. We believe that trading o� the increased RCR for the slightly worse AR
and TR is justi�able: decreasing the cost by 10 % for 1 % lower TR. As we aim at a signi�cantly

higher RCR for real topologies in the following studies, we use ζ(Gv) with κ = 2.5 showing a still

acceptable trade-o� between RCR and AR or TR.

5.2.3.3 How does it perform on di�erent topology types (random graphs vs. realistic)?

In order to illustrate the impact of di�erent substrate topology models, Fig. 5.4, Fig. 5.5 and 5.6 show

the performance of all algorithms for BA, ER and substrates with more than 50 nodes from TZ. Each

�gure shows the results of one metric (AR, REV, and RCR).

On the Acceptance Ratio (AR). Fig. 5.4a and Fig. 5.4b demonstrate that GRC accepts slightly more

Virtual Networks (VNs) on random network graphs, whereas HF-GRC accepts the most VNRs on

realistic network graphs (Fig. 5.4c) - HF-GRC is highly e�cient when faced with sparsely connected

real topologies. While DViNE and RViNE are generally not able to compete with GRC and HF-GRC

132 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0.1

0.2

0.3

A
R

(a) Barabási-Albert (BA).

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0.2

0.4

0.6

A
R

(b) Erdős-Rényi (ER).

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0.2

0.4

A
R

(c) Topology Zoo (TZ).

Figure 5.4: AR boxplots over VNE algorithms for three topologies (BA, ER, TZ). Sub�gures show boxplots

of AR over algorithms. VNE algorithms: GRC, DViNE, RViNE. Hop�eld variants: HF-GRC, HF-DViNE, HF-

RViNE.

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0

500

1000

R
ev

.V
N

R

(a) Barabási-Albert (BA).

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0

1000

2000

R
ev

.V
N

R

(b) Erdős-Rényi (ER).

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0

500

1000

1500

R
ev

.V
N

R

(c) Topology Zoo (TZ).

Figure 5.5: REV boxplots over VNE algorithms for three topologies (BA, ER, TZ). Sub�gures show boxplots

of REV over algorithms. VNE algorithms and Hop�eld variants.

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0.25

0.50

0.75

1.00

R
C

R

(a) Barabási-Albert (BA).

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0.4

0.6

0.8

1.0

R
C

R

(b) Erdős-Rényi (ER).

G
R

C

H
F-

G
R

C

D
V

iN
E

H
F-

D
V

iN
E

R
V

iN
E

H
F-

R
V

iN
E

0.25

0.50

0.75

1.00

R
C

R

(c) Topology Zoo (TZ).

Figure 5.6: RCR boxplots over VNE algorithms for three topologies (BA, ER, TZ). Sub�gures represent re-

sults of all accepted VNRs over algorithms. Comparison between VNE algorithms and their Hop�eld variants.

NeuroViNE achieves higher RCR values on all topology types.

in terms of AR, NeuroViNE still slightly improves the AR for both algorithms, as indicated by HF-

RViNE and HF-DViNE.

On the Revenue (REV) per VNR. For BA topologies (Fig. 5.5a), NeuroViNE shows the same revenue

5.2. Algorithm Preprocessing System Using Neural Computation: NeuroViNE 133

(a) GRC. (b) HF-GRC.

Figure 5.7: Comparison of node locations of a single VNR on the Kentucky Datalink (KDL) [KNF+11] between

GRC and HF-GRC. Violet-�lled squares show the node placement for GRC (left �gure), yellow-�lled diamonds

for HF-GRC (right �gure).

distributions as all other algorithms; the same holds for ER topologies (Fig. 5.5b). For real topologies,

NeuroViNE again improves the revenues; it even accepts more larger VNRs on real network topolo-

gies on average and for 50 % of VNRs (shown by the black median line). NeuroViNE does not only

accept more VNRs, it even accepts larger VNRs.

On the Revenue-Cost-Ratio (RCR) per accepted VNR. As Fig. 5.6 illustrates for RCR, NeuroViNE
outperforms all other VNE algorithms executed without preprocessing, independent of the topology

type: HF-GRC, HF-DViNE and HF-RViNE achieve always the highest RCR values when compared

to the VNE algorithms without preprocessing. NeuroViNE selects for every algorithm a subgraph

that provides a RCR that is on average always higher than 0.5. We conclude that NeuroViNE can on

average improve the RCR independent of the topology.

An illustrative example. Fig. 5.7 illustrates an exemplary embedding for one VNR for both GRC

(Fig. 5.7a) and HF-GRC (Fig. 5.7b) on the Kentucky Datalink (KDL) graph (709 nodes and 815 links)

from the TZ: this should better explain the working behavior of NeuroViNE. As we see, GRC embeds

virtual nodes to central nodes on this topology; unfortunately, these central nodes do not need to

be near each other, as the spatially distributed green squares illustrate in Fig. 5.7a; long paths need

to be taken in order to connect the virtual nodes. In contrast to GRC, HF-GRC selects nodes that

are close to each other and have high capacities in their vicinities, as indicated by the orange-�lled

nodes centrally located in the network in Fig. 5.7b. Since all nodes are close, the paths between those

nodes are also shorter, improving not only the embedding quality (RCR) but also the AR and TR.

We conclude that NeuroViNE is indispensable on realistic network topologies; it �nds valuable

nodes in sparsely connected network topologies. Furthermore, independently of the VNE algorithm,

it can help to improve the RCR; as a consequence, it reduces cost.

5.2.3.4 Do the Benefits Extend to Data Centers?

Fig. 5.8 reports on the results for data center topologies when using GRC, HF-GRC-DC-FB, and GDY.

The Hop�eld variant HF-GRC-DC-FB slightly increases AR for the FatTree (FT) topology, whereas

134 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

FT BC

0.85

0.90

0.95

A
R

HF-GRC-DC-FB
GRC

Greedy

(a) Acceptance ratio.

FT BC

2.0

2.1

2.2

2.3

2.5

To
t.

R
ev

.[
1
×

10
6]

HF-GRC-DC-FB
GRC

Greedy

(b) Total revenue.

FT BC

0.45

0.50

0.55

R
C

R

HF-GRC-DC-FB
GRC

Greedy

(c) Revenue-cost-ratio..

Figure 5.8: Absolute performance comparison between three embedding algorithms for data centers. Metrics

are AR (left �gure), TR (middle �gure), RCR (right �gure).

almost no change is observable for the BCube (BC) topology (Fig. 5.8a). Note the high AR values

that are already obtained without applying NeuroViNE; the values actually range from 0.95 to 0.98

for the FT topology. As a consequence, the total revenue (Fig. 5.8b) is rather una�ected, because of

the low blocking probability: both version yield the same total revenue. However, the improvements

achieved by NeuroViNE in RCR are signi�cant (Fig. 5.8c); HF-GRC-DC-FB improves the performance

by 10 % for FT and by 7 % for BC. The cost of all embeddings is reduced by placing clusters within

racks where nodes are close to each other. This brings numerous advantages: the clusters might yield

lower inter-communication latency or the provider can operate the network more energy e�ciently.

5.2.3.5 Can We Speed Up Optimal (Exact) Algorithms?

To answer this question, we compare the performance of SDP and the Hop�eld (HF) variants HF-SDP

with the linear and the inverse node selection function. For the linear function, κ is set to 2.5 and

for the inverse function to 300. Fig. 5.9 shows all sub�gures presenting the results for the individual

metrics and measures. Fig. 5.9a-5.9c show the results over time: either they show the average or

the sum for the particular metric from the beginning of the simulation until the speci�c point in

simulation time. The x-axis of the Figures 5.9d-5.9f are showing the number of nodes of the VNRs:

the y-axis shows the mean with the 95 % con�dence interval of the given metric over all networks

with the given node size.

Fig. 5.9a demonstrates that both HF variants always achieve a higher acceptance ratio. Whereas

HF-SDP (linear) only shows a minor improvement, HF-SDP (inverse) achieves a 6 % higher accep-

tance ratio. As it can be seen in Fig. 5.9b, NeuroViNE improves the total revenue over time. Note how

the gap between the HF variants and SDP is slowly increasing over time: the longer NeuroViNE is

used, the higher is the revenue gain.

NeuroViNE selects closer subgraphs. Fig. 5.9c illustrates again NeuroViNE’s working behavior:

NeuroViNE selects subgraphs with nodes that are located close to each other. In contrast to SDP,

the average edge utilization is decreased for both variants by more then 50 %, while HF-SDP shows

the lowest edge utilization. Interestingly, this contradicts the intuition that a more e�cient network

utilization leads to an increase of the acceptance ratio. The reason for this behavior is due to the

fact that the network consists of bottleneck links, which determine the overall embedding perfor-

5.2. Algorithm Preprocessing System Using Neural Computation: NeuroViNE 135

10.0 20.0 30.0 40.0 50.0

Time Units [1× 103]

0.60

0.63

0.66

0.69

0.72

A
R SDP

HF-SDP (inverse)
HF-SDP (linear)

(a) Acceptance Ratio.

10.0 20.0 30.0 40.0 50.0

Time Units [1× 103]

1.9

4.0

6.1

8.2

10.2

To
ta

lR
ev

.[
1
×

10
6]

SDP
HF-SDP (inverse)
HF-SDP (linear)

(b) Total revenue over time.

10.0 20.0 30.0 40.0 50.0

Time Units [1× 103]

0.2

0.4

0.6

Ed
ge

U
ti

l[
%

] SDP
HF-SDP (inverse)
HF-SDP (linear)

(c) Edge Utilization.

5 7 9 11 13

Number of Nodes of VNR

0.00

0.25

0.50

0.75

1.00

R
C

R

SDP
HF-SDP (inverse)
HF-SDP (linear)

(d) Revenue-cost-ratio.

5 7 9 11 13

Number of Nodes of VNR

0

50

100

M
od

el
in

g
Ti

m
e

[s
]

SDP
HF-SDP (inverse)
HF-SDP (linear)

(e) Model Creation Time.

5 7 9 11 13

Number of Nodes of VNR

0

10

20

30

So
lv

in
g

Ti
m

e
[s

]

SDP
HF-SDP (inverse)
HF-SDP (linear)

(f) Solver Time.

Figure 5.9: Performance comparison between SDP and HF-SDP with linear and inverse selection function.

ER substrate graph with 100 nodes. Note that AR, TR and edge utilization are plotted over simulation time,

whereas RCR, model creation time and solver time are plotted over number of VNR nodes. Hop�eld solutions

are superior.

mance. However, embedding networks more e�ciently, i.e., with nodes closer to each other, helps

to circumvent this fact.

Fig. 5.9d forti�es this fact: NeuroViNE improves the RCR over the number of nodes. Both Hop-

�eld variants are better than SDP, demonstrating again how NeuroViNE selects subgraphs with nodes

that are physically close to each other. In particular for larger networks, the RCR can be improved

by more than 10 %. This improvement is signi�cant as larger networks are more complex to be

embedded.

NeuroViNE shows another interesting angle for performance improvement: the preprocessing ef-

�ciently decreases the model creation time and model solving time of the optimal algorithm while

preserving its solution quality. The model creation time encompasses the time to create the model

for the solver used by the optimal algorithm, e.g., to acquire memory and to set all variables and all

constraints. For the HF variants, it also involves the creation and execution of the Hop�eld networks.

The linear selection function decreases the model creation and solving time the most, as shown

in Fig. 5.9e-5.9f: the solver spends the least time to �nd a feasible solution; the solver even achieves

a ten times lower model creation time. In contrast, SDP and HF-SDP (inverse) are consuming the

whole given processing time (30 s) for VNRs having more than 8 nodes when solving the model.

Generally, time savings could be spent on improving already embedded VNs or they could be spent

to �nd solutions for larger network requests.

We conclude that using NeuroViNE in combination with an optimal algorithm is very bene�cial;

NeuroViNE achieves higher acceptance ratios and total revenues while it actually lowers the cost by

decreasing the edge utilization of the networks.

136 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

5.3 System for Data-Driven Network Algorithm Optimization and
Design: o’zap� is

Networking algorithms play an important role in essentially any aspect of operating and managing

virtualized networks: from the design of the virtual network topologies, the e�cient operation of the

virtual network resources, etc. The design of networking algorithms, however, can be challenging

as the underlying problems are often computationally hard, and at the same time, need to be solved

fast. For example, tra�c engineering or admission control problems, or the problem of embedding

entire virtual networks, underly hard unsplittable network �ow allocation problems; or the problem

of placing a virtual SDN controller or virtualization functions can be seen as k-center clustering and

facility location problem. Most networking algorithms share a common paradigm: they are executed

frequently producing a big data set of problem-solution pairs, which are not yet used e�ciently.

In this chapter, we want to demonstrate how to exploit the wealth of data generated by network-

ing algorithms. We propose a system concept that enhances the lifetime of networking algorithms;

we thus promote a radically di�erent approach to designing networking algorithms. In particular,

this section outlines an ML-based approach, relying on supervised learning, that taps into the pro-

duced data of networking algorithms. Thereby, we demonstrate how the approach can improve the

algorithm e�ciencies for two use cases: facility location and Virtual Network Embedding (VNE).

5.3.1 Related Work

Obviously, the potential of ML in the context of networked and distributed systems optimization has

already been observed in many publications. To just name a few examples, Gao [Gao14] showed that

a neural network framework can learn from actual operations data to model plant performance and

help improving energy consumption in the context of Google data centers.

Another emerging application domain for arti�cial intelligence is the optimization of networking

protocols. Many Internet protocols come with several properties and parameters which have not

necessarily been optimized rigorously when they were designed, but which o�er potential for im-

provement. To just name one example, [WB13] have proposed a computer-driven approach to design

congestion control protocols as they are used by TCP.

The concept of deep reinforcement learning has been applied to resource management of cloud

network resources [MAM+16]. The proposed system learns to manage resources from experience.

In a wider sense, Bello et al. [BPL+16] propose Neural Combinatorial Optimization, a framework that

relies on reinforcement learning and neural networks to solve combinatorial optimization problems,

as demonstrated for the Traveling Salesman Problem. In contrast to our approach, these concepts do

not rely on labeled data, i.e., operate in an unsupervised fashion.

The potential of learning methods has been demonstrated in di�erent domains already, beyond

distributed systems and networks. A particularly interesting example is the parameterization of

MILP solvers, such as CPLEX, Gurobi, and LPSOLVE [HHLB10; Hut14], or the design of branching

strategies [KBS+16].

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 137

produceProblem

Instances
Optimization
Algorithm

Problem
Solution

(a) Traditional Network Algorithm.

Input

produceProblem

Instances
Optimization

Algorithm
Problem
Solution

Machine
Learning

Solution
Information

learn from

(b) o’zapft is: learn from problem solution.

Figure 5.10: Traditional networking algorithm vs. o’zapft is. The input to both systems are Problem Instances.
Traditionally, an Optimization Algorithm provides, if possible, a problem solution for each problem instance

independently. o’zapft is leverages ML to learn from prior problem solutions, to compute additional Solution
Information (e.g., reduced search space, upper and lower bounds, initial feasible solutions, good parameters,

etc.) and hence to optimize the networking algorithm.

Liu et al. [LAL+14] propose that data mining can be used to reduce the search space of high-

dimensional problems, hence speeding up the solution of combinatorial optimization and continuous

optimization problems.

5.3.2 o’zap� is: Challenges, Approach, and Exemplary Implementations

In this section, we identify challenges of our data-driven network optimization system, discuss the

design space and optimization opportunities, and point out limitations. In particular, we describe a

general framework, called o’zapft is1, and provide two concrete examples, the �rst one representing

a packing optimization problem and the second one representing a covering optimization problem.

o’zap� is: tapping network algorithm’s big data. We envision history-aware systems enhanc-

ing networking algorithms, which learn from the outcomes of networking algorithms; we propose

such system called o’zapft is, see Figure 5.10. For a given network problem, the target of o’zapft is is

to learn from problem solutions that were obtained earlier by an optimization algorithm, in order to

improve the future executions of new problem instances. When faced with new problem instances,

the optimization algorithm can make use of solution information that is provided by ML models.

The focus of o’zapft is are network problems which can be expressed in terms of graphs. Graphs are

used to describe physical network topologies, but also tra�c demands, routing requests and virtual

networks (e.g., virtual private networks, virtual clusters, etc.) can be described in terms of graphs.

5.3.2.1 Challenges

When facing such problem types and in order to automatically learn solutions to networking algo-

rithms, we identify four main challenges that need to be solved by a concept such as o’zapft is:
1

Inspired by the Bavarian expression for “[the barrell] has been tapped” (cf. Fig. 5.10), used to proclaim a famous festival

in October.

138 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

• Common patterns (C1): A model from one set of network optimization problems should be

generalizable and applicable also to other, similar networking problems: e.g., solutions from

smaller networks should be useful to predict solutions for larger networks as well; routing

problems could be classi�ed based on requests between similar areas (e.g., subnets) of the net-

work, or re�ect distance measures.

• Compact representations (C2): It is often infeasible to store the entire history of problem

solutions (e.g., the costs and embeddings of all past virtual networks) in a learning framework

explicitly. An e�cient way to store and represent problem solutions could rely on probabilis-

tic vectors, e.g., capturing likelihoods of nodes visited along a route computed by a routing

algorithm.

• Data skewness and bias (C3): Making good predictions for highly-biased problems (e.g.,

containing 1% yes-instances for which feasible virtual network embeddings actually exist and

99% no-instances) is trivial: simply always output no. Clearly, such solutions are useless and

mechanisms are needed which account for skewness and bias in the data and solution space.

Note that the problem arises both when quantifying the performance and also when training

the models.

• Data training/test split (C4): In terms of methodology, a good split between training and

test set must be found. The training/test set typically cannot be split by taking network node

samples from the overall data randomly, as each node sample belongs to a unique graph. Tak-

ing the example of graphs further, the data set should be split by the nodes belonging to the

individual graphs. In case of graphs of di�erent sizes, test and training data set should contain

graphs that mimic the overall distribution of the overall data set.

5.3.2.2 Approach

In order to address the challenges (C1-C4) identi�ed above, o’zapft is builds upon (and tailors to the

networking use case) a number of existing concepts.

• C1: A common method to classify graphs resp. networks (Challenge C1) is to employ graph
kernels. However, kernels are expensive to compute [LSY+12; GFW03]. An interesting alter-

native applied in o’zapft is is to use node, edge, and graph features, e.g., based on existing net-

work centrality concepts [BKER+12], to e�ciently classify graphs resp. networks to represent

problem-solutions pairs.

• C2: We consider �xed-length real-valued feature vectors instead of storing whole adjacency

matrices for solutions, which can potentially even outperform alternative methods such as

graph kernels [GFW03] as shown in [LSY+12]. For the facility location problem, we also in-

troduce the respective node features per substrate node. Furthermore, we additionally use

minimum, maximum, average, and standard deviations of all graph/node features.

• C3: There exist standard techniques to overcome bias and data skewness, e.g., misclassi�-
cation cost assignment, under-sampling, or over-sampling [MB02]. Misclassi�cation costs can

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 139

Substrate

Machine
Learning

Optimization
Algorithm

Substrate & Selected
Nodes

(a) Facility location procedure: the Machine Learning module makes a pre-selection among all nodes (black nodes). The

Optimization Algorithm searches for a feasible solution among pre-selected nodes (orange nodes).

Machine
Learning

Substrate

0.6
y

(b) Facility location procedure for a single node: the function φN (Ns
i) converts the single node (surrounded by a square)

into a representation for the Machine Learning module. The Machine Learning module outputs a probability (y = 0.6) for

this node.

Machine
Learning

Substrate Substrate &
Solution Information

(c) Facility location procedure for all nodes: the Machine Learning module makes predictions for all nodes; the vector y
contains all each probability yi. The Heaviside function maps these node probabilities into a binary vector, which results

in the orange-colored nodes.

Figure 5.11: Facility location: sub�gures illustrate the di�erent steps involved in the overall optimization pro-

cess. Fig. 5.11a gives an abstract overview. Fig. 5.11b shows how the prediction for one node works, Fig. 5.11c

depicts how a pre-selection is created among all nodes.

be assigned if the real cost, e.g., the impact of a wrong prediction on the overall embedding

performance, is known. To not loose valid data as in case for under-sampling, we use over-

sampling of instances from the underrepresented class. Note that sampling can only be applied

to training data, as, of course, the true/false values are not known for test data beforehand.

• C4: We split the overall data based on entire graphs, and hence avoid, e.g., problems of node-

based samples. That is to say, training data and test data both contain all samples of a substrate

graph. As an example for VNE, all VNRs that were embedded on a substrate graph are either

in the training or the test data.

5.3.2.3 Example I: Placement Prediction for Facility Location-related Optimization Prob-
lems

We consider an archetypal network optimization problem: facility location. Many existing network

optimization problems �nd their roots in the facility location problem: content placement, cache

placement, proxy placement, SDN controller placement, virtual SDN controller placement etc. Be-

cause of this, we see the study of the facility location problem as fundamental for future ML-based

network optimization approaches.

140 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

Concept. Fig. 5.11 provides an overview about the system. The system consists of an ML part and

a placement algorithm, e.g., a virtual SDN controller placement algorithm (Fig. 5.11a). Generally, the

input of an uncapacitated simple facility location problem is a substrate network Gs = (N s,Ls), a

set of demandsD that need to be connected to k to-be-allocated facilities F . Every demand needs to

be connected to at least one facility. The minimum k-center variant of this problem is already NP-

hard. The ML part predicts for each substrate node whether it will host a facility (Fig. 5.11b). Every

time, the input of the ML algorithm is speci�c to a node N s
i ∈ N s

. There are di�erent examples for

how to use the prediction output: search space reduction, initial starting point, or even as a solution.

Network node representation. The features of a network node N s
i ∈ N s

for a given substrate

graph Gs ∈ Gs must allow a distinction between nodes that will host a facility and the ones that do

not. In order to have a representation that is independent of the graph size, the node presentation

for facility location problems in this chapter uses graph and node features. For studying the impact

of the use of features of di�erent types and complexity on the ML results, three feature settings

are compared, namely the low complex (LC) feature setting, the node features-related (NF) one, and

the node plus graph features-based (NF+GF) one. The LC feature setting uses all graph and node

features with linear complexity; NF uses all node-related measures, e.g., betweenness centrality as

well as the min/max values of those measures corresponding to the inspected graph; NF+GF uses all

available node and graph features, i.e., also pure graph features like energy or average path length

(see Table 5.1). Consequently, φN is de�ned as φN : N s → Rn, where n is the number of features

contained by the used feature setting.

Machine learning input. Formally, an ML algorithm learns a mapping m : Rn → z with z ∈
{0, 1}: a node either hosts a facility (1) or not (0). The used classi�ers actually predict y ∈ [0, 1).

This allows a direct probabilistic interpretation of the prediction y: P (zi = 1|φN (N s
i)) = y (node i

hosts a facility) and P (zi = 0|φN (N s
i)) (node i does not host a facility).

Fig. 5.11c illustrates the next steps. Making a prediction per node, the overall output of the ML

system is a vector y = (y1, ..., y|N s|)
T

providing the probability of hosting a facility for all nodes.

Based on a threshold, e.g., θ = 0.5, the optimization system makes for each node a decision zi = 1

if P (zi) = y > θ = 0.5. Such decision can be implemented by using the Heaviside function with

Θ0.5(y − 0.5). Note that this might classify more than k nodes as facilities.

Hence, di�erent ways to process y can be applied. For instance, the vector can be sorted and the

best k nodes can be chosen; or the sorted vector can be used to reduce the search space. A facility

location algorithm will only search among the candidate nodes that have either a higher chance (e.g.,

P (z) > 0.3) or it will look among the best 50 % of the nodes (see again Fig. 5.11a).

5.3.2.4 Example II: Admission Control System for Virtual Network Embedding

The embedding of virtual nodes and routes between them is an archetypal problem underlying many

resource allocation and tra�c engineering problems in computer networks. The common theme of

these problems is that network resource consumption should be minimized, while respecting ca-

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 141

Machine
Learning

VNE
Algorithm

reject

accept

Substrate

VNR

accept
&

embed

Substrate & embedded VNR

reject

Figure 5.12: Admission control for an algorithm for the VNE problem. A Machine Learning module takes the

vector-based representations of a VNR and a substrate as input in order to predict the feasibility of the request,

i.e., to reject or to accept and forward the request a VNE algorithm. If the VNR is accepted, the substrate state

is updated; otherwise, the substrate remains in the old state (before the arrival of the VNR).

pacity constraints. We investigate whether ML can be used to predict the embedding costs or the

feasibility of serving VNRs.

Concept. Figure 5.12 shows a schematic view of the proposed system. The system consists of two

main blocks: the ML part, e.g., an admission control, and the VNE algorithm. It is the goal of the

ML part to assess the VNR before processing it by the VNE algorithm. The ML part predicts various

VNE performance measures: it either predicts the chance for a successful generation of a solution

by the VNE algorithm, or it predicts measures such as the cost of a VNR. Guessing the potential

success means that the ML part classi�es the VNR that arrived at time t. A VNRGvt arriving at point

in time t can be either infeasible, unsolvable in acceptable time (no solution), or accepted. Predicting

measures means the ML implements a regression task. Any appropriate ML algorithm can be used

to implement the classi�cation/regression functionality.

The input of the ML algorithm needs to be compact and independent of the size of the substrateGs

and the to-be-embedded VNR Gvt . For this, the functions φS (Substrate Network Representation) and

φV (Virtual Network Request Representation) create feature vector representations of the substrate

network respectively the VNR, which will be explained in the following paragraphs.

Substrate network representation. Features for substrate graphs Gs ∈ Gs must allow the

distinction of states in which a request can be embedded. Hence, we consider the inverse graph

Gs′ := (N s′,Ls′) induced by the embedded requests on the actual graph Gs. The set of edges is

de�ned as Ls′ := {ls ∈ Ls | 0 <| f−1
L (ls) |} and the node set is de�ned as N s′ := {ns ∈ N s | 0 <|

f−1
N (ns) |} ∪ {{u, v} | (u, v) ∈ Ls′}. As f−1

L and f−1
N change over time, we obtain a network with a

changing topology. All graph features are recalculated (see Table 5.1) whenever the used resources of

the substrate network changes: for instance, it captures the changing amount of used nodes and links

by considering only nodes and links that are actually used. Note however that the current procedure

works only for a connected graph Gs′. Whereas the inverse network has never been disconnected

in any simulation, a procedure for unconnected graphs is needed for future.

In addition, so called VNE resource features (RF) are introduced to enrich the network represen-

tations: three CPU features (free CPU, occupied CPU, and total CPU), three bandwidth features (free

142 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

bandwidth, occupied bandwidth, and total bandwidth) as well as two embedding features (total num-
ber of currently embedded edges and total number of currently embedded nodes). All resource features

have linear complexity.

Finally, φs(Gs) : G → Rn de�nes the mapping from a graph Gs ∈ Gs to the graph and resource

features. The �nal feature vector is given by xs := (xGF1 , . . . , xGFi , xRFi+1, . . . , x
RF
n). For proof of

concept, all ML algorithms for VNE use all 21 graph features xGF1 , . . . , xGF21 and the eight resource

features xRF22 , . . . , x
RF
29 . However, the analysis in this chapter will also use other feature settings in

order to investigate the potential of features with linear or log-linear complexity.

Virtual network request representation. The features used to represent VNRs need to ful�ll in

particular one task: the distinction between VNRs following di�erent graph types. Alike, the repre-

sentation of similar graphs should be similar. For graphs G1
, G2

and G3
where N v

1 = N v
2 = N v

3

but EG1 , EG2 ∼ B(n, p1) and EG3 ∼ B(n, p2) with p1 su�ciently di�erent from p2, it is required

that d
(
φ
(
GN

s
1
)
, φ
(
GN

s
2
))
≤ d

(
φ
(
GN

s
1
)
, φ
(
GN

s
3
))
' d

(
φ
(
GN

s
2
)
, φ
(
GN

s
3
))

for some distance

function d de�ned on Rn.

To obtain a compact but preliminary representation, a Principal Component Analysis (PCA) was

performed on a set of feature vectors {φV (G1),··· , φV (Gm)} consisting of all graph features. The

features are extracted from a set of graphs {G1,··· , G
m} generated according to di�erent models:

ER, BA, and WAX. The features were then selected based on high coe�cients in the linear trans-

formation of the input data obtained via the PCA. The features with the highest load are number of
nodes, spectral radius, maximum e�ective eccentricity, average neighbor degree, number of eigenvalues,
average path length and number of edges. They allow the recovery of the models using Multinomial

Linear Regression with an accuracy of 99.0 % and thus satisfy the requirements on the representation

stated above. The VNR representation is then given by the mapping φV : Gv → Rn with n = 7 and

φV (GV) = xV = (x1, . . . , x7) where xi corresponds to one of the features listed above.

Machine learning input. The input to the ML algorithms is the vector x := (xs,xv) with xs =

φS(Gs(t)) and xv = φV (Gv)), which is a combination of xs and xv for the substrate and the request

as de�ned in the previous section. Formally, an ML algorithm learns either the classi�cation mapping

c : Rn → z with z ∈ {0, 1} or the regression mapping r : Rn → o with o ∈ R where n = 36 (the

dimension of φS(Gs) is 29 and 7 for φV (Gv)). For z, 0 represents reject and 1 accept. For o, a value

represents either the cost or the potential revenue, which can also be negative.

5.3.3 Case Study I: Predicting Facility Locations

The �rst case focuses on predicting facility locations. It analyzes the potential of using the data

of exact placement solutions for (1) exactly predicting the placement of facilities on unseen graph

instances and (2) for reducing the search space of exact algorithms.

5.3.3.1 Se�ings

In order to provide insights into the performance of an ML-based optimization system, three facility

location algorithms are compared with three ML-based algorithms. The comparison is conducted on

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 143

di�erent graph types.

Simulation data. The following analysis uses random graphs and graphs taken from the Topology

Zoo (TZ). The random graph data consists of random graphs generated with the ER and BA models.

All graphs have 40 nodes and a connection probability of 0.11, which results in graphs that have

a comparable node-to-edge ratio as graphs generated with the GT-ITM tool [ZCB96]. The TZ data

contains all graphs from the TZ having at least 20 nodes.

Facility location algorithms. The task of the algorithms is to choose up to k facilities out of F
facility locations on a graphGs = (N s,Ls); in our studyF = N s

. We use three baseline algorithms

in our study: an optimal Mixed Integer Linear Programming (MILP) algorithm, a Greedy Algorithm

(GDY), and a Random Algorithm (RND). GDY solves the facility location by iteratively taking the

next node which maximizes the reduction of the objective function; GDY executes k iterations. RND

just chooses k nodes from N s
randomly.

Machine learning-based facility location algorithms. As stated in Sec. 5.3.2.3, the outcome of

the ML part is a vector y = (y1, ..., y|N s|)
T

containing probabilities for each node to host a facility.

We propose di�erent procedures how to use y.

The exact algorithm (o’zapft is-Exact) uses the k nodes with the highest probability ranking. The

pre-selection-based algorithms (o’zapft is-MILPX) use a ratio (either 0.25 or 0.5) parameter to de-

termine the number of nodes to select among all substrate nodes. For instance, for a network of 40

substrate nodes and a ratio of 0.25, o’zapft is-MILP0.25 selects the ten nodes with the highest prob-

abilities. Then for o’zapft is-MILPX, the MILP is executed on the preselected subset of nodes to �nd

the best solution.

Machine learning algorithms. Four classi�ers are compared: Logistic Regression Classi�er

(LRC), Extra Trees Classi�er (ETC), AdaBoost Classi�er (ABC), and Support Vector Classi�er (SVC).

For all models, a grid search is applied on the parameters to identify the best performing one. When

presenting results, either an explicit classi�er is mentioned or the results show the outcome of the

best performing classi�er.

For training/testing the ML algorithms, both random and TZ data are split with a 80/20 ratio: 80 %

train/test data and 20 % for actually validating the facility location algorithms. To train and validate

the ML algorithms, the exact solutions for up to 10 facilities are used; the MILP is actually executed

on all topologies with k = 1, ..., 10, which produces the overall data. An ML algorithm is always

trained for one set of graph types: one model for each random graph and one for the TZ graphs.

5.3.3.2 Evaluation

The evaluation part targets at answering the following questions:

• Using exact solutions, can we exactly predict facility locations?

• Can we e�ciently reduce the search space?

• Which features are useful for prediction?

144 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

1 2 4 10

Number of Facilities

1

2

La
te

nc
y

[m
s]

MILP
Rnd.
Gdy.

o‘zap� is-MILP0.5

o‘zap� is-MILP0.25

o‘zap� is-Exact

(a) Barabási-Albert (BA).

1 2 4 10

Number of Facilities

0

20

40

60

La
te

nc
y

[m
s]

MILP
Rnd.
Gdy.

o‘zap� is-MILP0.5

o‘zap� is-MILP0.25

o‘zap� is-Exact

(b) Topology Zoo (TZ).

Figure 5.13: Sub�gures show the latency values of the facility location algorithms among an increasing k
(1,2,4,10). Left sub�gure shows the results for BA substrates, right sub�gure for the TZ substrates.

1 2 3 4 5 6 7 8 9 10

Number of Facilities

0.00

0.25

0.50

0.75

1.00

F1
Sc

or
e

NF+GF
LC
NF

(a) Barabási-Albert (BA).

1 2 3 4 5 6 7 8 9 10

Number of Facilities

0.00

0.25

0.50

0.75

1.00
F1

Sc
or

e

(b) Topology Zoo (TZ).

Figure 5.14: F1 score comparison for three feature complexities: NF, NF+GF, and LC. Increasing the number

of facilities increases the F1 score.

Exact is hard. Learning optimal placements is a challenging goal, as shown for the latency values

in Fig. 5.13. All results show that the MILP achieves the best performance as expected, and RND the

worst; however, o’zapft is-Exact already comes next to RND among all scenarios. This means that

the facility locations cannot be exactly learned and more research is required. Nevertheless, as we

will see in the following, o’zapft is can be attractive for supporting exact algorithms.

Search space can be reduced. Fig. 5.13 illustrates that o’zapft is-MILP0.5 performs as good as the

MILP for a small number of facilities (1-4) and as good as or better than GDY, while only scanning

half of the substrate nodes. This holds for most combinations of substrate, facility number, and ob-

jective. o’zapft is-MILP0.25 shows a similar behavior, except for 10 facilities. The reason is that for 10

facilities, o’zapft is-MILP0.25 works like o’zapft is-Exact. While this only a�ects o’zapft is-MILP0.25

for BA topologies (Fig. 5.13a), o’zapft is-MILP0.5’s’s performance is worse for 10 facilities on real

network topologies (Fig. 5.13b). The reason is that the TZ dataset contains also topologies with 20

nodes. For these topologies, even a ratio of 0.5 selects always only 10 nodes. Thus, the algorithms

work like o’zapft is-Exact, which is in general not able to keep pace with GDY in such cases.

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 145

Potential for speed-up. We �nd that graph and complex node features are not important when

predicting facility locations for random networks. Fig. 5.14 compares the F1 score of the true data for

three feature settings: low complexity (LC), node (NF), and node+graph features (GF). The results

demonstrate the need to di�erentiate among topology types and sources. While the F1 score for

random networks is less a�ected, the TZ results show a more clear gap between low complexity fea-

tures and more advanced graph/node features, where, e.g., betweenness centrality and eigenvector

centrality are added.

We conclude that pre-selection with ML does not diminish the performance of optimal algorithms:

an interesting angle to improve networking algorithms’ e�ciencies. However, the mechanisms can-

not be simply generalized as shown for 10 facilities and small substrate networks; simply taking ML

here might even diminish the performance when compared to the solution of a greedy algorithm.

5.3.4 Case Study II: Predicting the Costs of Virtual Network Requests

When facing the VNE problem, various measures are used to quantify VNE algorithms. Predicting

such measures can be useful in many ways: for instance, when guessing the cost of a VNR, is it worth

to execute an algorithm and accept it [GWZ+14].

5.3.4.1 Se�ings

In the second case study, we analyze the potential of o’zapft is to automatically learn and predict

the embedding costs of VNRs. Again, this section �rst introduces the analyzed VNE algorithms and

provides information on the overall simulation and ML process and data.

Virtual network embedding process & data. We consider �ve frequently used substrate net-

work types to evaluate VNE algorithms: graphs generated with the models ER and BA and three

real topologies (a TZ graph, and the two data center topologies FT and BC). The parameter for the

random network models are like introduced in Table 5.3. From the TZ [KNF+11], we choose the

KDL topology: This network consists of 734 nodes and serves as an example of a large scale IP-layer

access network deployed in Kentucky, USA. To study data center networks, we consider a 6-ary FT

and a BC2 with 42
-port switches (DC-BC).

The VNRs arrive according to a Poisson process with average rate of 5 per 100 time units. The

service processing times are exponentially distributed either with mean 500 time units for ER, BA

and TZ graphs or with mean 1 000 time units for the data center topologies. The service times for

data center topologies are increased to achieve higher and more realistic utilizations of the networks.

For BA and ER substrate networks, VNRs have 2 to 20 nodes; for data center topologies, VNRs have

3 to 10 nodes; whereas when analyzing optimal algorithms, the number of nodes of VNRs ranges

from 5 to 14.

For each setup, i.e., combination of VNE algorithm and embedding process, at least 5 runs with

2 500 VNRs each are generated to create the training data. For training and testing, only the accepted

VNRs are used, as only those provide information on the true embedding cost.

Virtual network embedding algorithms. We compare the two heuristics, GDY [YYR+08] and

GRC [GWZ+14], and the optimal algorithms SDP and LB [MSK+13]. These algorithms are frequently

146 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

0.
09

0.
86

1.
72

2.
58

3.
44

4.
30

5.
15

6.
01

6.
87

7.
73

8.
59

No. Training Samples [1× 103]

−0.4

−0.2

0.0

0.2
C

os
t

D
ev

.[
10

0
%

]

(a) Greedy.

0.
10

1.
03

2.
06

3.
09

4.
12

5.
15

6.
18

7.
21

8.
24

9.
26

10
.2

9

No. Training Samples [1× 103]

−0.50

−0.25

0.00

0.25

C
os

t
D

ev
.[

10
0

%
]

(b) GRC.

0.
08

0.
85

1.
70

2.
55

3.
40

4.
25

5.
10

5.
94

6.
79

7.
64

8.
49

No. Training Samples [1× 103]

−1

0

C
os

t
D

ev
.[

10
0

%
]

(c) SDP.

0.
06

0.
55

1.
10

1.
65

2.
20

2.
76

3.
31

3.
86

4.
41

4.
96

5.
51

No. Training Samples [1× 103]

−1

0

C
os

t
D

ev
.[

10
0

%
]

(d) LB.

Figure 5.15: Boxplots of virtual network embedding cost prediction deviations (Cost Dev.) with random for-

est model in percentage as a function of training samples. VNE algorithms: GDY, GRC, SDP and LB. Note the

di�erent x-axis and y-axis scales. The more training data is available, the better becomes the performance for

GDY, GRC and SDP. However, learning for the load balancing algorithm LB is harder, as more load-balanced-

optimal solutions might generally exist.

studied in literature and hence serve as good initial representatives to demonstrate the feasibility of

o’zapft is. Since the underlying problem is NP-hard and the optimal algorithms slow in large network

topologies (> 50 substrate nodes), we prematurely interrupted computations after timeouts of 30,

60, and 90 seconds.

Machine learning algorithms. We compare four ML regressors: Linear Regression (LR), Bayesian

Ridge Regressor (BRR), Random Forest Regressor (RF), and Support Vector Regression (SVR).

Strawman. For comparison, we implemented a Strawman approach (SM). SM is based on the intu-

ition that the number of VNR nodes and links are mostly related to the cost. As equal-sized VNRs are

not always embedded similarly, we use the average among all VNRs of the training data. To predict

the embedding cost, SM takes the number of virtual (requested) links and virtual nodes as input and

calculates the cost based on a steadily interpolated 2D surface, which has been �tted to the training

data.

5.3.4.2 Evaluation

Tapping data is useful. We �rst investigate how much learning is required to make useful pre-

dictions of VNE costs. Our experiments show that already after a short training period, VNE costs

can be estimated well. Fig. 5.15 shows boxplots of the (embedding) cost deviation over an increasing

amount of training samples for all VNE algorithms. The whiskers of the boxplots show 90 % of the

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 147

Table 5.4: Regressors’ performances for all VNE algorithms. Performance given via the achieved mean cost,

Coe�cient of determination (R2
) score and Root Mean Squared Error (RMSE) for ER substrates. ML models:

Bayesian Ridge Regressor (BRR), Linear Regression (LR), Random Forest Regressor (RF), and Support Vector

Regression (SVR).

VNE Alg. Mean Perf. Regressors R2 RMSE

Greedy 1274.55

BRR 0.989 131.8

RF 0.990 127.8

LR 0.989 131.8

SVR 0.990 125.1

SM -0.860 1710.3

GRC 1571.68

BRR 0.974 249.5

RF 0.979 224.2

LR 0.974 249.9

SVR 0.983 203.3

SM -0.920 2129.3

SDP 1026.54

BRR 0.893 278.5

RF 0.907 259.7

LR 0.892 279.2

SVR 0.898 272.2

SM -0.923 1180.4

LB 1803.45

BRR 0.635 670.2

RF 0.638 666.7

LR 0.620 683.8

SVR 0.605 697.0

SM -0.964 1553.9

test data; we do not depict outliers.

Interestingly, while the mean values are quite stable, models typically underestimate the cost of

VNRs. The prediction quality of all models increases with more training data. For GDY, the accuracy

for 90 % of the data improves from an underestimation of 40 % to an underestimation of 20 %. In

case of the optimal algorithms SDP and LB, Figures 5.15c-5.15d demonstrate that even when increas-

ing the number of training samples, both are su�ering from outliers. For 50 % of the data, however,

the deviations are comparable to the ones of the heuristic algorithms: they are in the range from an

underestimation of 20 % to an overestimation of roughly 5 %.

148 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

re
q.

ca
p.

(V
)

nu
m

.e
dg

es
(V

)

nu
m

.n
od

es
(V

)

sp
ec

t.r
ad

.(
V

)

nu
m

.e
ig

.(
V

)

re
q.

C
P

U
(V

)

av
g.

pa
th

.le
n.

(V
)

av
g.

ne
ig

h.
de

g.
(V

)

ot
he

rs

0

2

4

Im
po

rt
an

ce

ER
BA
KDL
DC-BC
DC-FT

(a) Greedy.

re
q.

ca
p.

(V
)

nu
m

.e
dg

es
(V

)

nu
m

.n
od

es
(V

)

re
q.

C
P

U
(V

)

sp
ec

t.r
ad

.(
V

)

nu
m

.e
ig

.(
V

)

av
g.

pa
th

.le
n.

(V
)

cu
r.m

ap
.e

dg
es

(S
)

ot
he

rs

0

2

4

Im
po

rt
an

ce

ER
BA
KDL
DC-BC
DC-FT

(b) GRC.

re
q.

ca
p.

(V
)

nu
m

.e
dg

es
(V

)

sp
ec

t.r
ad

.(
V

)

nu
m

.n
od

es
(V

)

av
g.

ne
ig

h.
de

g.
(V

)

nu
m

.e
ig

.(
V

)

re
q.

C
P

U
(V

)

av
g.

pa
th

.le
n.

(V
)

ot
he

rs

0

2

Im
po

rt
an

ce

ER 30
ER 60
ER 90

(c) SDP.

re
q.

ca
p.

(V
)

nu
m

.e
dg

es
(V

)

sp
ec

t.r
ad

.(
V

)

av
g.

ne
ig

h.
de

g.
(V

)

nu
m

.n
od

es
(V

)

nu
m

.e
ig

.(
V

)

re
q.

C
P

U
(V

)

oc
c.

ca
p.

(S
)

ot
he

rs

0

2

4

Im
po

rt
an

ce

ER 30
ER 60
ER 90

(d) LB.

Figure 5.16: Feature importance of random forest models. VNR features are indicated via (V), substrate ones

via (S). All remaining importances are accumulated in “others". For GDY and GRC, the results are shown for

di�erent substrate types. For SDP and LB, the results are shown for the timeouts of 30/60/90 seconds. The

requested capacities are the dominating feature in case of GDY and GRC. For SDP, feature importance is more

distributed while requested capacity is still very important. In case of LB, feature importance values are much

more distributed; again, more good load-balanced solutions might exist, which makes it hard to predict the

cost.

Let us next investigate to what extent the performance depends on the ML model, the substrate

network and the VNE algorithm. To provide a more general comparison of models for di�erent sub-

strate networks and VNE algorithms, we report on the R2
, the goodness of �t of an ML model, and

the RMSE in Tab. 5.4. In our experiments, we �nd that the ML models can achieve highR2
scores be-

tween 0.8 and 0.99 across all substrate network types, while RF and SVR always achieve the highest

values.

The Strawman (SM) approach generally shows the worst performance. Note the lower R2
scores

for SDP. The same observations hold for RMSE values, where values are in 30 % range of the mean

performance. We �nd that while o’zapft is can predict the performance of heuristic algorithms well,

the performance is worse for optimal algorithms: given the high complexity of the MILP solutions,

this is not surprising (it is impossible to perfectly and quickly guess an optimal solution to an NP-

hard problem). Yet, the solutions are promising, and they show the potential of the approach (and

for the design of more advanced ML algorithms).

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 149

B
A ER

D
C

-B
C

D
C

-F
T

K
D

L

0.00

0.25

0.50

0.75

1.00
R

2
All Features Low Complex

(a) GDY.

B
A ER

D
C

-B
C

D
C

-F
T

K
D

L

0.00

0.25

0.50

0.75

1.00

R
2

All Features Low Complex

(b) GRC.

Figure 5.17: Comparison of R2
of Linear Regression (LR) model for taking all features (All Features) versus

taking only features with low complexity (Low Complex) for all substrate networks for GDY and GRC em-

bedding algorithms. The linear model cannot learn with low complex features for GRC and BA topologies

anymore. Missing features like the closeness centrality make it harder to achieve high R2
values.

Speeding-up machine learning computations. o’zapft is comes with interesting �exibilities to

speed up the networking algorithms further: perhaps a small number of low-complexity features are

su�cient to obtain good approximations? First, to study which features are actually important for

the solution learning, let us focus on the Random Forest (RF) model, which allows the examination

of the importances of features. For GRC and GDY, we report on di�erent substrate network types.

For SDP and LB, we report on the feature importance for all timeout settings of 30/60/90 seconds.

Fig. 5.16 shows that the most important feature is the requested link capacity. For the BC data

center topology, the number of edges and the number of nodes have a signi�cant in�uence. Here,

we cannot note that the timeout settings di�er in the feature importances. Comparing SDP and LB

to the heuristics, the feature importance is more distributed across all features. This is to be expected

as optimal algorithms face a larger search space and hence the variation of solutions is larger.

So we may ask: is it even su�cient to focus on linear-time graph features to obtain accurate

cost predictions? To �nd out, we trained our regressors with features that have complexity O(n),

O(n+m) andO(n·log n). As Fig. 5.17 shows for theR2
score of LR, interestingly, even the low com-

plex features provide high R2
scores in particular for GDY (Fig. 5.17a). In case of GRC (Fig. 5.17b),

however, the BA substrate prediction is negatively a�ected by the features choice and the simple

linear regression model cannot compensate for some of the high-complexity features.

5.3.5 Case Study III: Predicting the Acceptance Probabilities of Virtual Network
Requests

Alongside predicting the cost, there is another useful measure to predict: the acceptance of a VNR.

When using optimal and time-costly algorithms, predicting the outcome of algorithms can save run-

time. If a VNR is actually infeasible, it is not needed to create a potentially big problem instance

of an optimal model. Moreover, computational resources can be saved if knowing that a VNR so-

lution cannot be found in acceptable algorithm runtime. Saved resources could rather be spent on

improving already embedded VNs.

150 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

Table 5.5: Grid Search parameters for training the recurrent neural network. Chosen values are printed in

bold.

Parameter Values

Optimizer adam [KB14], RMSprop [JCS+15]

Size of hidden layer 100, 200, 300

RMSprop step-rate 0.1, 0.01, 0.001

RMSprop momentum 0.3, 0.6, 0.7, 0.8, 0.9

RMSprop decay 0.3, 0.6, 0.7, 0.8, 0.9

5.3.5.1 Se�ings

Virtual network embedding process & data. The substrate graphs are generated with the ER

model with 50, 75 and 100 nodes. The connection probability is 0.11. Substrate node and edge capac-

ities are unit-less; their capacity is following a uniform distribution between 50 and 100. The VNRs

are also generated with the ER model. Their connection probability is 0.5. The number of nodes

are uniformly distributed between 5 and 14. Node and edge capacities are also uniformly distributed

between 50 and 100. The inter-arrival time of the VNRs follow an exponential distribution (exp.

distr.) with arrival rates λ = 1
100 ,

3
100 ,

5
100 . Each accepted VNR stays for an exponentially distributed

lifetime with mean 1 000. This results in an overall training of 18 ML models. All chosen parameter

settings in this thesis are in accordance with existing VNE research [CRB09; MSK+13; RB13]. For

generating training data, 10 runs are conducted. The �nal admission control system is tested for at

least one run.

Virtual network embedding algorithms. We investigate the SDP algorithm [MSK+13], which

showed generally the best performance among all VNE algorithms (Tab.5.4). In addition, we use a

modi�ed version of the Melo algorithm which just seeks the �rst feasible solution, which we call Fea-

sibility Seeking VNE Algorithm (FEAS). By using both algorithms, we want to investigate the ability

of the ML model to predict VNE measures for two completely di�erent algorithm behaviors. The

algorithms are interrupted after pre-determined timeouts: 30, 60, and 90 seconds. Because of this,

a VNR is classi�ed as feasible, infeasible, or as no solution if a solver cannot �nd a feasible solution

in time T . Note that this does not imply that the VNR is generally infeasible; it might be possible

to �nd a solution after the time constraint T . An operator can use the time constraint T to trade

o� embedding quality and needed computational runtime. Adding the time to the algorithm name

denotes the di�erent variants; SDP30 has a timeout of 30 seconds.

Machine learning algorithm. The admission control systems uses a Recurrent Neural Network

(RNN) for classifying VNRs. The RNN consists of one hidden layer with 200 hidden units. The output

transfer function is the sigmoid function σ(x) = (1 + e−x)−1
, the hidden transfer function is the

hyperbolic tangent function tanh(x) = (e2x − 1)(e2x + 1)−1
, the loss optimized on is the Bernoulli

cross-entropy lossL(c | y) = −z log(y)−(1−z) log(1−y), where z ∈ {0, 1} is the class label and y

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 151

Table 5.6: Prediction model performance for SDP and FEAS VNE algorithms for three substrate and timing

settings. ER50-SDP30 denotes an ML model trained for ER-based substrate networks with 50 nodes, SDP al-

gorithm, and T = 30 s. All models show an accuracy that is higher than the Majority Vote (MV). High True

Positive Rates (TPR) and True Negative Rates (TNR) con�rm that the model can learn the classi�cation task

very well.

RNN Model Accuracy [%] TPR [%] TNR [%] MV [%]

ER50-SDP30 92.70 86.57 95.35 69.86

ER50-SDP60 92.60 87.88 94.98 66.53

ER50-SDP90 92.91 89.71 94.59 65.61

ER75-SDP30 90.57 88.68 92.39 50.89

ER75-SDP60 90.52 91.88 89.16 50.03

ER75-SDP90 89.64 89.85 89.44 50.23

ER100-SDP30 90.61 92.36 87.85 61.26

ER100-SDP60 90.30 92.97 85.87 62.45

ER100-SDP90 90.15 91.82 87.31 62.91

ER50-FEAS30 97.77 92.30 98.78 84.38

ER50-FEAS60 98.02 92.88 99.01 83.93

ER50-FEAS90 97.68 92.33 98.68 84.17

ER75-FEAS30 96.24 88.98 98.29 77.97

ER75-FEAS60 96.34 90.10 98.03 78.62

ER75-FEAS90 96.22 89.10 98.17 78.46

ER100-FEAS30 94.21 87.52 96.70 72.87

ER100-FEAS60 93.48 86.39 96.26 71.79

ER100-FEAS90 92.86 87.61 94.89 72.01

the prediction. Two optimizers are used to train the RNN: the adam optimizer or the RMSprop opti-

mizer. The RMSprop optimizer is taken from the publicly available climin [JCS+15] library. The RNN

is implemented in the publicly available breze library [JCM+16]. Based on a grid search among the

parameters that Table 5.5 describes, the best setting of RMSprop is a step-rate of 0.001, a momentum

of 0.7, and a decay of 0.9.

Runtime measure. The optimal VNE algorithm uses Gurobi [GO15] to solve the mathematical

model. This process consists of two potentially time-consuming parts: the model creation and the

actual model solving. In case of using the admission control system, the overall runtime also includes

the feature calculations φV (Gvt) and φS(Gst−1) and the calculation of the prediction value.

152 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

T=
30

,λ
=

5
T=

30
,M

L,
λ
=

5
T=

30
,λ

=
3

T=
30

,M
L,
λ
=

3
T=

30
,λ

=
1

T=
30

,M
L,
λ
=

1
T=

60
,λ

=
5

T=
60

,M
L,
λ
=

5
T=

60
,λ

=
3

T=
60

,M
L,
λ
=

3
T=

60
,λ

=
1

T=
60

,M
L,
λ
=

1
T=

90
,λ

=
5

T=
90

,M
L,
λ
=

5
T=

90
,λ

=
3

T=
90

,M
L,
λ
=

3
T=

90
,λ

=
1

T=
90

,M
L,
λ
=

1

0.00

0.25

0.50

0.75

1.00

O
ut

co
m

e
R

at
io

s
Accepted
No Solution

Infeasible
Filtered

(a) SDP VNE Algorithm.

T=
30

,λ
=

5
T=

30
,M

L,
λ
=

5
T=

30
,λ

=
3

T=
30

,M
L,
λ
=

3
T=

30
,λ

=
1

T=
30

,M
L,
λ
=

1
T=

60
,λ

=
5

T=
60

,M
L,
λ
=

5
T=

60
,λ

=
3

T=
60

,M
L,
λ
=

3
T=

60
,λ

=
1

T=
60

,M
L,
λ
=

1
T=

90
,λ

=
5

T=
90

,M
L,
λ
=

5
T=

90
,λ

=
3

T=
90

,M
L,
λ
=

3
T=

90
,λ

=
1

T=
90

,M
L,
λ
=

1

0.00

0.25

0.50

0.75

1.00

O
ut

co
m

e
R

at
io

s

Accepted
No Solution

Infeasible
Filtered

(b) Feasibility VNE Algorithm.

Figure 5.18: Outcome ratios (accepted, no solution, infeasible, �ltered) of VNE algorithms with and without

admission control. The four colors represent the ratios of accepted (blue), no solution (red), infeasible (green),

and �ltered (purple) ratios of VNRs by the system, i.e., by the admission control and the VNE algorithm. ER

substrate network with size 100. For both algorithms, the admission control �lters requests that do not provide

a solution in acceptable time (no solution) or that are infeasible.

5.3.5.2 Evaluation

The evaluation answers the question whether ML can actually help to improve algorithm e�ciency.

As a proof of concept, it targets at improving the performance of an optimal algorithm; optimal VNE

algorithms have the highest potential for runtime improvement. In contrast to optimal algorithms,

heuristic algorithms may already have a quite low runtime; however, the question whether ML is

bene�cial here has initially been addressed in [HKB+17].

Are we be�er than a majority vote? We �rst inform on the performance of our ML algorithm.

The question is whether the ML algorithm is better than a majority vote, i.e., either simply rejecting

or accepting all VNRs. Table 5.6 summarizes the results of all trained models. It shows the accuracy,

the true positive rate and the true negative rate. The accuracies of the models are between 89 % and

98 % in all scenarios: they are better than the respective majority votes - the ML predicts successfully

the outcome of the algorithms.

Generally, the datasets are very skewed: the majority vote (MV) can already achieve up to 84.38 %

as shown for ER50-FEAS30. Nevertheless, the ML algorithm has a higher accuracy; it beats the ma-

jority vote. Moreover, we observe that the results are similar for the di�erent network sizes. Hence,

we focus on a substrate size of 100 nodes.

Figs. 5.18a-5.18b di�erentiate between the di�erent classes of the VNR classi�cation. The di�erent

colors represent the ratios of accepted (blue), no solution (yellow) and infeasible (green) VNRs. The

ratio of VNRs, which are �ltered by the admission control system, is shown in purple. We �rst note

general observations for increasing timeouts and lambda values.

An increasing timeout parameter does not signi�cantly improve the acceptance ratio for the same

lambda values; the optimal algorithm does not bene�t from additional solver time here. Besides,

5.3. System for Data-Driven Network Algorithm Optimization and Design: o’zapft is 153

T=
30

,λ
=

5

T=
30

,λ
=

3

T=
30

,λ
=

1

T=
60

,λ
=

5

T=
60

,λ
=

3

T=
60

,λ
=

1

T=
90

,λ
=

5

T=
90

,λ
=

3

T=
90

,λ
=

1

0.0

0.5

1.0

1.5
R

ev
en

ue
[1
×

10
3] SDP

SDP-ML

(a) Revenue REV.

T=
30

,λ
=

5

T=
30

,λ
=

3

T=
30

,λ
=

1

T=
60

,λ
=

5

T=
60

,λ
=

3

T=
60

,λ
=

1

T=
90

,λ
=

5

T=
90

,λ
=

3

T=
90

,λ
=

1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

EC
[1
×

10
3]

SDP
SDP-ML

(b) Virtual Network Embedding Cost EC.

Figure 5.19: VNE metrics of SDP for ER substrate with network size 100. The graphs show boxplots with

whiskers ranging from the lower 2.5 % to the upper 97.5 % of the REV and EC values; outliers are not shown.

Results with and without admission control are similar. Using ML does not decrease the VNE performance in

terms of revenue and cost.

decreasing the lambda values leads to more accepted VNRs; the substrate is less populated, hence,

more VNRs can be accepted. A larger lambda value leads to more infeasible VNRs as the substrate is

more densely populated.

Independent of this fact, the ML algorithm achieves a high accuracy among all classes; it forwards

feasible solutions and successfully �lters infeasible solutions and no solutions. The acceptance ratio

slightly varies around the true acceptance ratio; it is either a bit higher with 2.37 % for SDP, T =

60, λ = 5 or slightly lower with 7.01 % for FEAS, T = 60, λ = 5. As FEAS generally shows a low

AR, we continue our study with the SDP algorithm as we are generally interested in speeding up

algorithms solving the VNE problem with good performance.

Do we keep the virtual network embedding performance? Figures 5.19a-5.19b provide a

comparison between SDP and the admission control system for the two metrics REV and EC.

Whereas the parameter λ a�ects the absolute metrics, the additional timeout parameter shows only

a minor a�ect. Independent of both variables, the ML algorithm does not signi�cantly diminish REV
or EC.

When looking at the RCR illustrated in Fig. 5.20, it can be noted that using the prediction im-

proves the RCR slightly. The ML algorithm tends to reject time-consuming VNRs; in addition, it

rejects the VNRs which potentially use the available solving time T , i.e., which might come close to

the threshold. Generally, requests that tend to consume more solving time also have a lowerRCR. An

interesting aspect that should be investigated deeper in future studies of systems combining optimal

algorithms and ML.

What is the runtime gain? In order to provide deeper insights into the runtime gain, Fig. 5.21

reports on the mean modeling times and the mean solving times for all VNRs. As Fig. 5.21a depicts,

the gain in modeling time is signi�cant: this is again independent of the timeout T and the arrival

rate λ. When looking at the solving time in Fig. 5.21b, the previous observation can be con�rmed:

154 Chapter 5. ML-based Algorithm Preprocessing for VN Provisioning

T=
30

,λ
=

5

T=
30

,λ
=

3

T=
30

,λ
=

1

T=
60

,λ
=

5

T=
60

,λ
=

3

T=
60

,λ
=

1

T=
90

,λ
=

5

T=
90

,λ
=

3

T=
90

,λ
=

1

0.0

0.2

0.4

0.6

0.8

1.0

R
C

R

SDP
SDP-ML

Figure 5.20: Boxplots of RCR over combinations of timeout settings and arrival processes. Boxplots show the

RCR of SDP with ML (SDP-ML) and without SDP. Interestingly, the ML system slightly increases the average

RCR. Apart from that, it does not signi�cantly improve or worsen the overall RCR.

T=
30

,λ
=

5

T=
30

,λ
=

3

T=
30

,λ
=

1

T=
60

,λ
=

5

T=
60

,λ
=

3

T=
60

,λ
=

1

T=
90

,λ
=

5

T=
90

,λ
=

3

T=
90

,λ
=

1

0

20

40

60

80

M
od

el
in

g
Ti

m
e

[s
]

SDP-ML SDP

(a) Modeling Time.

T=
30

,λ
=

5

T=
30

,λ
=

3

T=
30

,λ
=

1

T=
60

,λ
=

5

T=
60

,λ
=

3

T=
60

,λ
=

1

T=
90

,λ
=

5

T=
90

,λ
=

3

T=
90

,λ
=

1

0

30

60

90
So

lv
in

g
Ti

m
e

[s
]

SDP-ML SDP

(b) Solving Time.

Figure 5.21: Modeling time and solving time over combinations of timeout settings and arrival processes

for SDP with and without ML. The left sub�gure shows the average model creation time (Modeling Time in

seconds); the right sub�gure shows the average runtime of the solver (Solving Time in seconds) to process a

VNR. Using ML can reduce modeling time by 1.4 times (T = 60, λ = 1) up to 2.1 times (T = 30, λ = 5). On

average, the algorithms generally do not use the available solving time.

the admission control system �lters time-consuming VNRs, i.e., the ones that exhaust the available

timeout threshold. It can be noted that by using the admission control system, up to 50 % of overall

computational time can be saved without a�ecting the overall VNE metrics.

To summarize, the admission control improves algorithm e�ciencies while it does not signi�cantly

diminish the overall system performance in terms of VNE metrics.

5.4 Summary

Rapidly and e�ciently solving network optimization problems is inevitable for next generation net-

works. With the increase in �exibility due to SDN and NV, resource management of those systems

faces new challenges: changing resource assignments at runtime on short timescales. As a conse-

5.4. Summary 155

quence, we see ML as one elementary concept that helps improve the e�ciency of systems facing

complex optimization and resource management problems.

The �rst system concept, called NeuroViNE, is a preprocessor for VNE algorithms. NeuroViNE uses

a Hop�eld network to subtract subgraphs that have a high potential to host VNRs e�ciently. Any

VNE algorithm can be used to conduct the �nal embedding on the deduced subgraph. Speci�cally

real network topologies, such as wide area networks or data center networks, show structures which

NeuroViNE can exploit e�ciently to extract better subgraphs. Further, because NeuroViNE relies on

a neural network data structure that can be parallelized, it can be implemented with a high compu-

tational e�ciency.

The second system concept, called o’zapft is, shows that a supervised learning approach can be

used to improve the e�ciency of networking algorithms. By simply considering the produced data of

networking algorithms, which are represented compactly by graph and node features, o’zapft is can

predict the outcome of time consuming optimization processes: e.g., the potential objective values

or the feasibilities of an optimization problem. In summary, o’zapft is improves the computational

e�ciency of optimization systems, e.g., it decreases the runtime by more than 50 % for optimal al-

gorithms.

Chapter 6

Conclusion and Outlook

Network operators need mechanisms that allow communication networks to be adapted in case of

new demands arising from new services, applications, and user expectations. The virtualization of

software-de�ned networks is a tremendous step towards making today’s networks ready for adapta-

tion. Virtualized software-de�ned networks combine the bene�ts of Network Virtualization (NV) and

Software-De�ned Networking (SDN). Whereas NV runs multiple virtual networks whose resources

are tailored towards di�erent service and application demands in parallel on one infrastructure, SDN

makes it possible to easily program virtual networks at runtime.

While both concepts NV and SDN proclaim to broaden the dimensions of adaptability and �exi-

bility, combining them comes with new challenges. Within the framework of virtualizing software-

de�ned networks, tenants do not only share resources on the data plane, but also on the control

plane; therefore, tenants can not only interfere on the data plane resources of networks, but also

on the control plane resources. Measurement procedures need to identify existing shortcomings of

SDN-based architectures realizing the sharing of networking resources; at the same time new system

architectures are needed to mitigate the potentially existing shortcomings.

With the virtualization of software-de�ned networks comes an additional layer; this layer is usu-

ally implemented by software-based network hypervisors, which provide the control logic for the

virtualization tasks. Since any commodity server can host network hypervisors, the control logic can

be distributed and even migrated among a network at runtime. However, exploiting this new free-

dom of placement is algorithmically hard; in contrast to the placement problem of SDN controllers

in non-virtualized networks, the placement of network hypervisors adds the dimension of serving

multiple vSDNs at the same time.

Virtualizing software-de�ned networks does not only require e�cient implementations and al-

gorithms for control plane resource management, but also fast and e�cient provisioning of virtual

networks on the data plane. Since solving the problem of sharing resources among virtual networks

is NP-hard, algorithm designers need new ways to speed up provisioning times in order to take ad-

vantage of the operational �exibility of SDN and NV. Mechanisms that exploit the produced data of

algorithms, such as Machine Learning (ML), might open new paths towards improving the e�ciency

of networking algorithms.

157

158 Chapter 6. Conclusion and Outlook

6.1 Summary

This work addresses three important challenges of virtualizing software-de�ned networks. The �rst

part studies the real SDN network hypervisor implementations and proposes mechanisms to cir-

cumvent existing shortcomings of these implementations. The second part studies the placement

problem of SDN virtualization layers. The third part focuses on the study of neural computation and

ML-based systems for improving the e�ciency of network algorithms for virtual network environ-

ments.

Measurement and design of virtualization layer. The virtualization layer with its realization

via SDN network hypervisors is the integral part when virtualizing software-de�ned networks. In

order to analyze the existing SDN network hypervisor deployments, we propose a benchmarking tool

for SDN network hypervisors: a missing ingredient for benchmarking virtual SDN environments so

far. Whereas existing benchmark tools for OpenFlow (OF)-based networks are not designed for vir-

tualized SDN environments, our new tool puts e�cient benchmarks into e�ect. Deep benchmarks on

two existing hypervisors, FlowVisor (FV) and OpenVirteX (OVX), present important characteristics

and uncover potential issues. Both hypervisors show varying performance trade-o�s with respect

to how they realize the virtualization of SDN networks. Whereas FV provides a more predictable

operation, i.e., its processing shows less variation with respect to control plane latency, OVX o�ers

higher scalability at the cost of less predictability.

Furthermore, we identify control plane isolation and adaptability as missing pieces of existing

hypervisor concepts. Therefore, we propose HyperFlex - an SDN virtualization framework towards

�exibility, adaptability and improved control plane predictability. By realizing virtualization func-

tions in software or/and in hardware, HyperFlex increases the �exibility when operating a virtualiza-

tion layer. Using network or software isolation, HyperFlex improves the predictability of the control

plane operation of virtual network tenants connected to FV. Moreover, we identify a new challenge

when adapting virtualization layers: recon�guration events that increase the control plane latency

and, as a consequence, worsen the predictability of operating virtual networks.

Deployment optimization of virtualization layer. Putting the control logic into software, vir-

tualizing SDN networks o�ers a new dimension of where to place the control logic. With SDN, any

commodity server can host software running the control logic of SDN virtualization layers. In order

to analyze the various trade-o�s between existing hypervisor architectures, we provide a �rst model

for the hypervisor placement problem facing static network scenarios. With this model targeting at

minimum control plane latencies, we analyze design trade-o�s: e.g., from the number of hypervisor

instances to the deployment of multi-controller switches. As a result, up to 50 % multi-controller

switches and k = 5 hypervisor instances are enough to provide an optimal control plane latency.

In order to accommodate the full �exibility of virtual SDN networks, e.g., the embedding of vir-

tual SDN networks at runtime, we extend our model for static network use cases towards dynamic

tra�c scenarios. Beside targeting control plane latency, our model also takes recon�gurations of

the virtualization layer into account; minimizing recon�gurations yields more predictable network

operations. Based on a Pareto analysis, we show the trade-o�s between control plane latency and

6.2. Future Work 159

the total number of recon�gurations. To summarize, accepting up to 8 % higher latency can already

put the amount of needed recon�gurations close to 0.

Improving virtual network provisioning. Combining SDN and NV o�ers new dimensions of

faster and more �exible network operation. Hence, mechanisms are needed that improve the e�-

ciencies of VNE algorithms to fast and quickly provide virtual networks. We propose systems using

neural computation and ML for improving the e�ciency of networking algorithms in general, and

VNE algorithms in particular. Our �rst system NeuroViNE neurally computes subgraphs yielding

a high embedding e�ciency; virtual nodes and links can be e�ciently placed on these subgraphs.

Hence, NeuroViNE improves embedding footprints and shortens the runtime of optimal algorithms

by shrinking the search space.

Our second system is o’zapft is - a data-driven approach to designing network algorithms. o’zapft is
learns in a supervised fashion from solutions of network problems; thereby, it can guess good initial

solutions for unseen problem instances. o’zapft is reduces the search space and/or predicts the fea-

sibilities of problem instances to save runtime. For the VNE problem, we demonstrate how o’zapft is
helps optimal algorithms to gain speed ups by up to 50 %.

6.2 Future Work

We believe that the following future work might be of particular interest.

Reconfiguration analysis of SDN network hypervisors for complex network topologies.
Virtualization of SDN networks require complex operations: topology abstraction, data plane ad-

dressing isolation, state and diverse hardware abstractions etc. So far, the benchmarks consider

rather simple topologies with one switch only, while they have analyzed a wide range of OF mes-

sage types, hypervisor implementations, and multi-tenant setups. Yet, benchmarking hypervisors

and, in particular, virtualization functions demands varying performance benchmark setups such as

complex network topologies. Since the number of di�erent setups is large, smart mechanisms are

needed that can still provide useful insights into the performance of hypervisors.

Capacitated hypervisor placement problems. Although control plane latency is seen as one

major impact factor when managing SDN networks, placement optimizations must be extended to

scenarios where network and computational capacities are limited. Understanding the behavior of

capacity limitations is an important step towards improving virtualization layers for SDN networks.

Preparedness of placements - towards flexibility and empowerment. The proposed place-

ment models can be used to investigate the trade-o� between control plane latency and recon�g-

urations. Beside analyzing this trade-o�, virtualization layers should be optimized with respect to

�exibility; it is expected that a more �exible hypervisor design yields advantages when adapting

to demand changes or new incoming virtual network requests. Instead of steering a hypervisor

placement always to a latency optimal solution, it could also be steered towards integrating Empow-

erment [SGP14]: empowered solutions are expected to react to changes more e�ciently.

160 Chapter 6. Conclusion and Outlook

Problem and solution representation for learning. Interesting future work might dig deeper

into the way how to represent structured data, i.e., problems and solutions, for learning as many

proposals already exist in literature: graph kernels, random walks, or graph embeddings that are in-

spired by graphical model inference algorithms. Furthermore, the data-driven optimization should be

extended to other algorithms for SDN: e.g., an initial proposal has demonstrated its extension to the

SDN controller placement problem [HKB+17]. Above all, the proposed system should be extended

to further network optimization problems and research areas including routing, QoS management,

wireless network resource management etc.

From o�line to online learning. The proposed ML models so far were only trained o�ine: they

are not able to capture online changes of data patterns. Accordingly, mechanisms are needed that

can e�ciently update the ML models at runtime. Other ML concepts, such as reinforcement learning

or advanced neural network architectures, open further potential optimization improvements. At

the same time, it is important to better understand the limitations of ML-based approaches.

Bibliography

Publications by the Author

Book Chapters

[SBD+18] Susanna Schwarzmann, Andreas Blenk, Ognjen Dobrijevic, Michael Jarschel, Andreas

Hotho, Thomas Zinner, and Florian Wamser. “Big-Data Helps SDN to Improve Ap-

plication Speci�c Quality of Service.” In: Big Data and Software De�ned Networks. Ed.

by Javid Taheri. The Institution of Engineering and Technology (IET), January 2018,

pp. 433–455.

Journal Papers

[BBD+18] Arsany Basta, Andreas Blenk, Szymon Dudycz, Arne Ludwig, and Stefan Schmid. “Ef-

�cient Loop-Free Rerouting of Multiple SDN Flows.” In: IEEE/ACM Trans. on Netw.
(ToN) 26.2 (April 2018), pp. 948–961.

[BBH+17] Arsany Basta, Andreas Blenk, Klaus Ho�mann, Hans Jochen Morper, Marco Ho�-

mann, and Wolfgang Kellerer. “Towards a Cost Optimal Design for a 5G Mobile Core

Network based on SDN and NFV.” In: IEEE Trans. on Netw. and Serv. Manage. 14.4

(December 2017), pp. 1061–1075.

[BBR+16] Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer. “Survey on

Network Virtualization Hypervisors for Software De�ned Networking.” In: IEEE Com-
mun. Surveys & Tutorials 18.1 (2016), pp. 655–685.

[BBZ+16] Andreas Blenk, Arsany Basta, Johannes Zerwas, Martin Reisslein, and Wolfgang Kellerer.

“Control Plane Latency With SDN Network Hypervisors: The Cost of Virtualization.”

In: IEEE Trans. on Netw. and Serv. Manage. 13.3 (September 2016), pp. 366–380.

[KBB+18] Wolfgang Kellerer, Arsany Basta, Péter Babarczi, Andreas Blenk, Mu He, Markus

Kluegel, and Alberto Martínez Alba. “How to Measure Network Flexibility? - A Pro-

posal for Evaluating Softwarized Networks.” In: IEEE Commun. Mag. PP.99 (2018),

pp. 2–8.

161

162 Bibliography

[WBS+15] Florian Wamser, Andreas Blenk, Michael Seufert, Thomas Zinner, Wolfgang Kellerer,

and Phuoc Tran-Gia. “Modelling and performance analysis of application-aware re-

source management.” In: International Journal of Network Management 25.4 (May

2015). nem.1894, pp. 223–241.

Conference Papers

[BBB+15] Arsany Basta, Andreas Blenk, Hassib Belhaj Hassine, and Wolfgang Kellerer. “To-

wards a dynamic SDN virtualization layer: Control path migration protocol.” In: Proc.
IFIP/IEEE CNSM. Barcelona, Spain: IEEE, November 2015, pp. 354–359.

[BBK15] Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. “HyperFlex: An SDN virtualiza-

tion architecture with �exible hypervisor function allocation.” In: Proc. IFIP/IEEE Int.
Symp. IM Netw. Ottawa, ON, Canada: IEEE, May 2015, pp. 397–405.

[BBL+15] Arsany Basta, Andreas Blenk, Yu-Ting Lai, and Wolfgang Kellerer. “HyperFlex: Demon-

strating control-plane isolation for virtual software-de�ned networks.” In: Proc. IFIP/IEEE
Int. Symp. IM Netw. Ottawa, ON, Canada: IEEE, May 2015, pp. 1163–1164.

[BBZ+15] Andreas Blenk, Arsany Basta, Johannes Zerwas, and Wolfgang Kellerer. “Pairing SDN

with network virtualization: The network hypervisor placement problem.” In: Proc.
IEEE NFV-SDN. San Francisco, CA, USA, November 2015, pp. 198–204.

[BK13] Andreas Blenk and Wolfgang Kellerer. “Tra�c pattern based virtual network embed-

ding.” In: Proc. ACM CoNEXT Student Workshop. Santa Barbara, California, USA: ACM,

December 2013, pp. 23–26.

[BKJ+18] Andreas Blenk, Patrick Kalmbach, Michael Jarschel, Stefan Schmid, and Wolfgang

Kellerer. “NeuroViNE: A Neural Preprocessor for Your Virtual Network Embedding

Algorithm.” In: Proc. IEEE INFOCOM. Honolulu, HI, USA, April 2018, pp. 1–9.

[BKS+16] Andreas Blenk, Patrick Kalmbach, Patrick Van Der Smagt, and Wolfgang Kellerer.

“Boost Online Virtual Network Embedding : Using Neural Networks for Admission

Control.” In: Proc. IFIP/IEEE CNSM. Montreal, QC, Canada, October 2016, pp. 10–18.

[BKS+17] Andreas Blenk, Patrick Kalmbach, Stefan Schmid, and Wolfgang Kellerer. “o’zapft is:
Tap Your Network Algorithm‘s Big Data!” In: Proc. ACM SIGCOMM Workshop Big-
DAMA. Los Angeles, CA, USA: ACM, August 2017, pp. 19–24.

[BKW+13] Andreas Blenk, Wolfgang Kellerer, Florian Wamser, and Thomas Zinner. “Dynamic

HTTP download scheduling with respect to energy consumption.” In: Proc. Tyrrhenian
Int. Workshop on Dig. Commun. - Green ICT (TIWDC). Genoa, Italy: IEEE, September

2013, pp. 1–6.

[DBK15] Raphael Durner, Andreas Blenk, and Wolfgang Kellerer. “Performance study of dy-

namic QoS management for OpenFlow-enabled SDN switches.” In: Proc. IEEE IWQoS.

Portland, OR, USA: IEEE, June 2015, pp. 177–182.

163

[HBB+17a] Mu He, Arsany Basta, Andreas Blenk, and Wolfgang Kellerer. “How �exible is dynamic

SDN control plane?” In: Proc. IEEE INFOCOMWorkshop (INFOCOMWKSHPS). Atlanta,

GA, USA, April 2017, pp. 689–694.

[HBB+17b] Mu He, Arsany Basta, Andreas Blenk, and Wolfgang Kellerer. “Modeling �ow setup

time for controller placement in SDN: Evaluation for dynamic �ows.” In: Proc. IEEE
ICC. Paris, France, May 2017, pp. 1–7.

[HKB+17] Mu He, Patrick Kalmbach, Andreas Blenk, Stefan Schmid, and Wolfgang Kellerer.

“Algorithm-Data Driven Optimization of Adaptive Communication Networks.” In:

Proc. IEEE ICNP Workshop on Machine Learning and Arti�cial Intelligence in Computer
Networks. Toronto, ON, Canada: IEEE, October 2017, pp. 1–6.

[KBB16] Wolfgang Kellerer, Arsany Basta, and Andreas Blenk. “Using a �exibility measure for

network design space analysis of SDN and NFV.” In: Proc. IEEE INFOCOM Workshop.

IEEE, April 2016, pp. 423–428. arXiv: 1512.03770.

[KBK+17] Patrick Kalmbach, Andreas Blenk, Markus Klügel, and Wolfgang Kellerer. “Generat-

ing Synthetic Internet- and IP-Topologies using the Stochastic-Block-Model.” In: Proc.
IFIP/IEEE Int. Workshop on Analytics for Netw. and Serv. Manage. (AnNet). Lisbon, Por-

tugal, May 2017, pp. 911–916.

[KBK+18] Patrick Kalmbach, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. “Themis: A

Data-Driven Approach to Bot Detection (Short Abstract).” In: Proc. IEEE INFOCOM.

Honolulu, HI, USA, 2018, pp. 1–2.

[KZB+18] Patrick Kalmbach, Johannes Zerwas, Andreas Blenk, Wolfgang Kellerer, and Stefan

Schmid. “Empowering Self-Driving Networks.” In: Proc. ACM SIGCOMM Workshop
on Self-Driving Networks (SelfDN). accepted for publication. Budapest, Hungary, 2018,

pp. 1–6.

[SBB+16a] Christian Sieber, Arsany Basta, Andreas Blenk, and Wolfgang Kellerer. “Online re-

source mapping for SDN network hypervisors using machine learning.” In: Proc. IEEE
NetSoft Conf. and Workshops (NetSoft). April. Seoul, South Korea: IEEE, June 2016,

pp. 78–82.

[SBB+16b] Christian Sieber, Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. “hvbench: An

open and scalable SDN network hypervisor benchmark.” In: Proc. IEEE NetSoft Conf.
and Workshops (NetSoft). Seoul, South Korea: IEEE, June 2016, pp. 403–406.

[SBB+16c] Christian Sieber, Andreas Blenk, Arsany Basta, David Hock, and Wolfgang Kellerer.

“Towards a programmable management plane for SDN and legacy networks.” In:

Proc. IEEE NetSoft Conf. and Workshops (NetSoft). Seoul, South Korea: IEEE, June 2016,

pp. 319–327.

[SBH+15a] Christian Sieber, Andreas Blenk, Max Hinteregger, and Wolfgang Kellerer. “The cost

of aggressive HTTP adaptive streaming: Quantifying YouTube’s redundant tra�c.” In:

Proc. IFIP/IEEE Int. Symp. IM Netw. Ottawa, ON, Canada: IEEE, May 2015, pp. 1261–

1267.

http://arxiv.org/abs/1512.03770

164 Bibliography

[SBH+15b] Christian Sieber, Andreas Blenk, David Hock, Marc Scheib, Thomas Hohn, Stefan

Kohler, and Wolfgang Kellerer. “Network con�guration with quality of service ab-

stractions for SDN and legacy networks.” In: Proc. IFIP/IEEE Int. Symp. IM Netw. Ot-

tawa, ON, Canada: IEEE, May 2015, pp. 1135–1136.

[SWD+11] Barbara Staehle, Florian Wamser, Sebastian Deschner, Andreas Blenk, Dirk Staehle,

Oliver Hahm, Nicolai Schmittberger, and G Mesut. “Application-Aware Self-Optimiza-

tion of Wireless Mesh Networks with AquareYoum and DES-SERT.” In: Proc.Würzburg
Workshop on IP: Joint ITG and Euro-NF Workshop "Visions of Future Generation Net-
works". Würzburg, Germany, August 2011, pp. 3–4.

[ZKF+18] Johannes Zerwas, Patrick Kalmbach, Carlo Fuerst, Arne Ludwig, Andreas Blenk, Wolf-

gang Kellerer, and Stefan Schmid. “Ahab: Data-Driven Virtual Cluster Hunting.” In:

Proc. IFIP Networking. Zurich, Switzerland, May 2018, pp. 1–9.

Technical Reports

[BBK+17] Arsany Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. “Logically Iso-

lated, Actually Unpredictable? Measuring Hypervisor Performance in Multi-Tenant

SDNs.” In: Computer Research Repository (CoRR) (April 2017), pp. 1–7. arXiv: 1704 .

08958.

[ZBK16] Johannes Zerwas, Andreas Blenk, and Wolfgang Kellerer. “Optimization Models for

Flexible and Adaptive SDN Network Virtualization Layers.” In: Computer Research
Repository (CoRR) V (November 2016), pp. 1–4. arXiv: 1611.03307.

General Publications

[802] IEEE 802.1AB - Station and Media Access Control Connectivity Discovery. 2005.

[ACK+16] Edoardo Amaldi, Stefano Coniglio, Arie M.C.A. Koster, and Martin Tieves. “On the

computational complexity of the virtual network embedding problem.” In: Electronic
Notes in Discrete Mathematics 52.10 (June 2016), pp. 213–220.

[ADG+14] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, William Snow, and

Guru Parulkar. “OpenVirteX: A Network Hypervisor.” In: Proc. USENIX Open Netw.
Summit (ONS). Santa Clara, CA, March 2014, pp. 1–2.

[ADK14] Niels L. M. van Adrichem, Christian Doerr, and Fernando A. Kuipers. “OpenNetMon:

Network monitoring in OpenFlow Software-De�ned Networks.” In: Proc. IEEE/IFIP
NOMS. IEEE, May 2014, pp. 1–8.

[AEE15] Madyan Alsenwi, Hany Elsayed, and Mona Elghoneimy. “Optimization of channel se-

lection in cognitive heterogeneous wireless networks.” In: 11th ICENCO. December

2015, pp. 38–43.

http://arxiv.org/abs/1704.08958
http://arxiv.org/abs/1704.08958
http://arxiv.org/abs/1611.03307

165

[AFG+09] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.

Above the Clouds : A View of Cloud Computing. Tech. rep. 2009, pp. 1–25.

[AFG+10] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D. Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.

“A View of Cloud Computing.” In: Commun. ACM 53.4 (April 2010), pp. 50–58.

[AFL08] Mohammad Al-Fares and Amin Loukissas Alexanderand Vahdat. “A scalable, com-

modity data center network architecture.” In: Proc. ACM SIGCOMM. Seattle, WA, USA:

ACM, August 2008, pp. 63–74.

[AIS+14] Patrick Kwadwo Agyapong, Mikio Iwamura, Dirk Staehle, Wolfgang Kiess, and Anass

Benjebbour. “Design considerations for a 5G network architecture.” In: IEEE Commun.
Mag. 52.11 (2014), pp. 65–75.

[AKE+12] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, and Balaji Prabhakar. “Less is More :

Trading a little Bandwidth for Ultra-Low Latency in the Data Center.” In: Proc. USENIX
Symp. NSDI. San Jose, CA: USENIX Association, April 2012, pp. 19–19.

[AKH92] Shigeo Abe, Junzo Kawakami, and Kotaroo Hirasawa. “Solving inequality constrained

combinatorial optimization problems by the hop�eld neural networks.” In: Neural Net-
works 5.4 (1992), pp. 663–670.

[ALL+96] Karen Aardal, Martine Labbé, Janny Leung, and Maurice Queyranne. “On the Two-

Level Uncapacitated Facility Location Problem.” In: INFORMS Journal on Computing
8.3 (August 1996), pp. 289–301.

[ALS14] Ali Al-Shabibi, Marc De Leenheer, and Bill Snow. “OpenVirteX: Make Your Virtual

SDNs Programmable.” In: Proc. ACM Workshop on Hot Topics in Softw. De�ned Netw.
Chicago, Illinois, USA: ACM, August 2014, pp. 25–30.

[APS+05] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. “Overcom-

ing the Internet impasse through virtualization.” In: IEEE Computer 38.4 (April 2005),

pp. 34–41.

[BAM10] Theophilus Benson, Aditya Akella, and David a. Maltz. “Network tra�c characteris-

tics of data centers in the wild.” In: Proc. ACM SIGCOMM IMC. New York, New York,

USA: ACM Press, November 2010, p. 267.

[BBE+13] Md Faizul Bari, Raouf Boutaba, Rafael Esteves, Lisandro Zambenedetti Granville,

Maxim Podlesny, Md Golam Rabbani, Qi Zhang, and Mohamed Faten Zhani. “Data

center network virtualization: A survey.” In: IEEE Commun. Surveys & Tutorials 15.2

(2013), pp. 909–928.

[BBG+10] Andrea Bianco, Robert Birke, Luca Giraudo, Manuel Palacin, Dipartimento Elettron-

ica, and Politecnico Torino. “OpenFlow Switching : Data Plane Performance.” In: Proc.
IEEE ICC. May 2010, pp. 1–5.

[BCK+11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. “Towards pre-

dictable datacenter networks.” In: Proc. ACM SIGCOMM. Toronto, Ontario, Canada:

ACM, August 2011, pp. 242–253.

166 Bibliography

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew War�eld. “Xen and the art of virtualization.” In:

Proc. ACM Symp. on Operating Systems. Bolton Landing, NY, USA: ACM, 2003, pp. 164–

177.

[BDW01] Oded Berman, Zvi Drezner, and George O. Wesolowsky. “Location of facilities on a

network with groups of demand points.” In: IIE Transactions (Institute of Industrial
Engineers) 33.8 (2001), pp. 637–648.

[BGH+14] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, William Snow, Guru Parulkar, Brian O’Connor, and Pavlin

Radoslavov. “ONOS: Towards an Open, Distributed SDN OS.” In: Proc. ACMWorkshop
on Hot Topics in Softw. De�ned Netw. Chicago, Illinois, USA, August 2014, pp. 1–6.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[BKER+12] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. “NetSim-

ile: A Scalable Approach to Size-Independent Network Similarity.” In: Computer Re-
search Repository (CoRR) (September 2012), pp. 1–8. arXiv: 1209.2684.

[BP12] Zdravko Bozakov and Panagiotis Papadimitriou. “AutoSlice: Automated and Scalable

Slicing for Software-de�ned Networks.” In: Proc. ACM CoNEXT Student Workshop.

Nice, France: ACM, December 2012, pp. 3–4.

[BP14] Zdravko Bozakov and Panagiotis Papadimitriou. “Towards a scalable software-de�ned

network virtualization platform.” In: Proc. IEEE/IFIP NOMS. Krakow, Poland, May 2014,

pp. 1–8.

[BPL+16] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. “Neu-

ral Combinatorial Optimization with Reinforcement Learning.” In: Computer Research
Repository (CoRR) (November 2016). arXiv: 1611.09940.

[BR99] Albert-László Barabási and Albert Réka. “Emergence of Scaling in Random Networks.”

In: Science 286.5439 (October 1999), pp. 509–512.

[BRC+13] Md. Faizul Bari, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi Zhang, Mohamed

Faten Zhani, Reaz Ahmed, and Raouf Boutaba. “Dynamic Controller Provisioning in

Software De�ned Networks.” In: Proc. IFIP/IEEE CNSM. October 2013, pp. 18–25.

[Bre01] Leo Breiman. “Random Forests.” In: Machine Learning 45.1 (2001), pp. 5–32.

[BVS+17] Marcel Blöcher, Malte Viering, Stefan Schmid, and Patrick Eugster. “The Grand CRU

Challenge.” In: Proc. Workshop on Hot Topics in Container Networking and Networked
Systems (HotConNet ’17). New York, New York, USA: ACM Press, 2017, pp. 7–11.

[CB08] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. “A survey of network virtual-

ization.” In: Computer Networks 54 (2008), pp. 862–876.

[CB09] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. “Network virtualization: state

of the art and research challenges.” In: IEEE Commun. Mag. 47.7 (July 2009), pp. 20–26.

http://arxiv.org/abs/1209.2684
http://arxiv.org/abs/1611.09940

167

[CFG14] Martin Casado, Nate Foster, and Arjun Guha. “Abstractions for software-de�ned net-

works.” In: Communications of the ACM 57.10 (September 2014), pp. 86–95.

[CGR+12] Roberto Doriguzzi Corin, Matteo Gerola, Roberto Riggio, Francesco De Pellegrini,

and Elio Salvadori. “VeRTIGO: Network virtualization and beyond.” In: Proc. IEEE Eu.
Workshop on Software De�ned Netw. October 2012, pp. 24–29.

[CH08] Vira Chankong and Yacov Y Haimes.Multiobjective decisionmaking: theory andmethod-
ology. Courier Dover Publications, 2008.

[CKR+10] Martín Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. “Virtualizing

the network forwarding plane.” In: Proc. ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow (PRESTO). Philadelphia, Pennsylvania: ACM, Novem-

ber 2010, 8:1–8:6.

[CMG+14] Stuart Clayman, Elisa Maini, Alex Galis, Antonio Manzalini, and Nicola Mazzocca.

“The dynamic placement of virtual network functions.” In: Proc. IEEE/IFIP NOMS. May

2014, pp. 1–9.

[CMT+11] Andrew R Curtis, Je�rey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet

Sharma, and Sujata Banerjee. “DevoFlow: Scaling Flow Management for High-Perfor-

mance Networks.” In: ACM SIGCOMMComputer Communication Review 41.4 (October

2011), p. 254.

[Coh13] Jared L Cohon. Multiobjective programming and planning. Courier Corporation, 2013.

[Cor02] R. J. Corsini. The Dictionary of Psychology. Psychology Press, 2002.

[CRB09] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. “Virtual Net-

work Embedding with Coordinated Node and Link Mapping.” In: Proc. IEEE INFOCOM.

April 2009, pp. 783–791.

[CRB12] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. “ViNEYard: Vir-

tual Network Embedding Algorithms With Coordinated Node and Link Mapping.” In:

IEEE/ACM Trans. Netw. 20.1 (February 2012), pp. 206–219.

[CSB10] Mosharaf Chowdhury, Fady Samuel, and Raouf Boutaba. “PolyViNE.” In: Proc. ACM
SIGCOMMWorkshop on Virtualized Infrast. Systems and Arch. (VISA). New Delhi, India:

ACM, 2010, pp. 49–56.

[CSO+09] Ítalo Cunha, Fernando Silveira, Ricardo Oliveira, Renata Teixeira, and Christophe Diot.

“Uncovering Artifacts of Flow Measurement Tools.” In: Passive and Active Network
Measurement: 10th International Conference, PAM 2009, Seoul, Korea, April 1-3, 2009.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 187–196.

[CSZ+11] Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan Luo, and

Jie Wang. “Virtual network embedding through topology-aware node ranking.” In:

ACM SIGCOMM Computer Commun. Rev. 41.2 (April 2011), p. 38.

[DAR12] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. “Toward Predictable Per-

formance in Software Packet-Processing Platforms.” In: Proc. USENIX Symp. NSDI. San

Jose, CA: USENIX Association, April 2012, pp. 11–11.

168 Bibliography

[DJS12] Alisa Devlic, Wolfgang John, and P Sköldström. Carrier-grade Network Management
Extensions to the SDN Framework. Tech. rep. Erricson Research, 2012.

[DK13] Fred Douglis and Orran Krieger. “Virtualization.” In: IEEE Internet Computing 17.2

(2013), pp. 6–9.

[DK16] Christina Delimitrou and Christos Kozyrakis. “HCloud: Resource-E�cient Provision-

ing in Shared Cloud Systems.” In: Proc. ASPLOS. New York, New York, USA: ACM

Press, 2016, pp. 473–488.

[DKR13] Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. “Scalable Network Virtualization

in Software-De�ned Networks.” In: IEEE Internet Computing 17.2 (2013), pp. 20–27.

[DSG+14] Roberto Doriguzzi Corin, Elio Salvadori, Matteo Gerola, Hagen Woesner, and Marc

Sune. “A Datapath-centric Virtualization Mechanism for OpenFlow Networks.” In:

Proc. IEEE Eu. Workshop on Software De�ned Netw. September 2014, pp. 19–24.

[DW00] Zvi Drezner and George O. Wesolowsky. “Location Models With Groups Of Demand

Points.” In: INFOR: Information Systems and Operational Research 38.4 (2000), pp. 359–

372.

[EABL+11] Mohammed El-Azzab, Imen Limam Bedhiaf, Yves Lemieux, and Omar Cherkaoui.

“Slices Isolator for a Virtualized Open�ow Node.” In: Proc. Int. Symp. on Netw. Cloud
Computing and Appl. (NCCA). November 2011, pp. 121–126.

[EH08] Jeremy Elson and Jon Howell. “Handling Flash Crowds from Your Garage.” In: Proc.
USENIX Annual Technical Conference. June 2008, pp. 171–184.

[ER13] Je�rey Erman and K.K. Ramakrishnan. “Understanding the super-sized tra�c of the

super bowl.” In: Proc. ACM SIGCOMM IMC. Barcelona, Spain: ACM, 2013, pp. 353–360.

[ER59] Paul Erdős and Alfréd. Rényi. “On random graphs.” In: Publicationes Mathematicae 6

(1959), pp. 290–297.

[Eri13] David Erickson. “The beacon open�ow controller.” In: Proc. ACM Workshop on Hot
Topics in Softw. De�ned Netw. Hong Kong, China: ACM, August 2013, pp. 13–18.

[FBB+13] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann de Meer, and Xavier

Hesselbach. “Virtual Network Embedding: A Survey.” In: IEEE Commun. Surveys &
Tutorials VLiM (2013), pp. 1–19.

[FGR07] Nick Feamster, Lixin Gao, and Jennifer Rexford. “How to lease the internet in your

spare time.” In: ACM SIGCOMM Computer Commun. Rev. 37.1 (January 2007), p. 61.

[FHF+14] Reza Zanjirani Farahani, Masoud Hekmatfar, Behnam Fahimnia, and Narges Kazem-

zadeh. “Hierarchical facility location problem: Models, classi�cations, techniques, and

applications.” In: Comp. Ind. Eng. 68.1 (2014), pp. 104–117.

[FKL04] Fang Yu, R.H. Katz, and T.V. Lakshman. “Gigabit rate packet pattern-matching using

TCAM.” In: Proc. IEEE ICNP. October 2004, pp. 174–183.

[FLH+00] Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. Generic Routing
Encapsulation (GRE). RFC 2784. http://www.rfc-editor.org/rfc/rfc2784.txt. RFC Editor,

March 2000.

http://www.rfc-editor.org/rfc/rfc2784.txt

169

[FLW+14] Min Feng, Jianxin Liao, Jingyu Wang, Sude Qing, and Qi Qi. “Topology-aware Virtual

Network Embedding based on multiple characteristics.” In: Proc. IEEE ICC. June 2014,

pp. 2956–2962.

[FRZ14] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The Road to SDN: An Intellectual

History of Programmable Networks.” In:ACMSIGCOMMComputer Commun. Rev. 44.2

(April 2014), pp. 87–98.

[FS97] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting.” In: Journal of Computer and System Sciences
55.1 (August 1997), pp. 119–139.

[Gao14] Jim Gao. “Machine learning applications for data center optimization.” In: Google
White Paper (2014).

[GDFM+12] Jose Luis Garcia-Dorado, Alessandro Finamore, Marco Mellia, Michela Meo, and Maur-

izio M. Munafo. “Characterization of ISP Tra�c: Trends, User Habits, and Access Tech-

nology Impact.” In: IEEE Trans. on Netw. and Serv. Manage. 9.2 (June 2012), pp. 142–

155.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized trees.” In:

Machine Learning 63.1 (April 2006), pp. 3–42.

[GFM+12] Vinicius Gehlen, Alessandro Finamore, Marco Mellia, and Maurizio M. Munafò. “Un-

covering the Big Players of the Web.” In: Tra�c Monitoring and Analysis: 4th Inter-
national Workshop, TMA 2012, Vienna, Austria, March 12, 2012. Proceedings. Ed. by

Antonio Pescapè, Luca Salgarelli, and Xenofontas Dimitropoulos. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 15–28.

[GFW03] Thomas Gärtner, Peter Flach, and Stefan Wrobel. “On graph kernels: Hardness results

and e�cient alternatives.” In: Learning Theory and Kernel Machines. Springer, 2003,

pp. 129–143.

[GHJ+09] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon

Kim, Parantap Lahiri, David a. Maltz, Parveen Patel, and Sudipta Sengupta. “Vl2: A

Scalable and Flexible Data Center Network.” In: ACM SIGCOMM Computer Commun.
Rev. 39.4 (2009), p. 51.

[GHM+08] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. “The Cost of

a Cloud: Research Problems in Data Center Networks.” In: ACM SIGCOMM Computer
Commun. Rev. 39.1 (December 2008), p. 68.

[GJN11] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. “Understanding Network Fail-

ures in Data Centers: Measurement, Analysis, and Implications.” In: Proc. ACM SIG-
COMM. Toronto, Ontario, Canada: ACM, August 2011, pp. 350–361.

[GKP+08] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfa�, Martín Casado, Nick McKe-

own, and Scott Shenker. “NOX: towards an operating system for networks.” In: ACM
SIGCOMM Computer Commun. Rev. 38.3 (2008), pp. 105–110.

170 Bibliography

[GKS+15] Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz Ahmed, and

Raouf Boutaba. “Elastic Virtual Network Function Placement.” In: Proc. IEEE Cloud-
Net. October 2015, pp. 255–260.

[GLL+09] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen

Tian, Yongguang Zhang, and Songwu Lu. “BCube: A High Performance, Server-centric

Network Architecture for Modular Data Centers.” In: ACM SIGCOMMComputer Com-
mun. Rev. 39.4 (October 2009), pp. 63–74.

[GMK+16] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.

“Evolve or Die: High-Availability Design Principles Drawn from Googles Network In-

frastructure.” In: Proc. ACM SIGCOMM. New York, New York, USA: ACM Press, 2016,

pp. 58–72. arXiv: arXiv:1011.1669v3.

[GMM00] Sudipto Guha, A. Meyerson, and K. Munagala. “Hierarchical placement and network

design problems.” In: IEEE FOCS. November 2000, pp. 603–612.

[GO15] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2015.

[GO16] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016.

[Gol74] Robert P Goldberg. “Survey of virtual machine research.” In: IEEE Computer 7.6 (1974),

pp. 34–45.

[Gra] Graph isomorphism. url: https://en.wikipedia.org/wiki/Graph_isomorphism.

[GS89] Lars Gislén, Carsten, and Bo Söderberg. “"Teachers and Classes" with Neural Net-

works.” In: International Journal of Neural Systems 01.02 (January 1989), pp. 167–176.

[GW15] Pankaj Garg and Yu-Shun Wang.NVGRE: Network Virtualization Using Generic Routing
Encapsulation. RFC 7637. RFC Editor, September 2015.

[GWZ+14] Long Gong, Yonggang Wen, Zuqing Zhu, and Tony Lee. “Toward pro�t-seeking virtual

network embedding algorithm via global resource capacity.” In: Proc. IEEE INFOCOM.

April 2014, pp. 1–9.

[HFW+13] Keqiang He, Alexis Fisher, Liang Wang, Aaron Gember, Aditya Akella, and Thomas

Ristenpart. “Next stop, the cloud: Understanding modern web service deployment in

ec2 and azure.” In: Proc. ACM SIGCOMM IMC. ACM. 2013, pp. 177–190.

[HG13] Shufeng Huang and James Gri�oen. “Network Hypervisors: managing the emerging

SDN Chaos.” In: Proc. IEEE ICCCN. July 2013, pp. 1–7.

[HHLB10] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Automated Con�guration of

Mixed Integer Programming Solvers.” In: Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems. Vol. 6140 LNCS. 2010,

pp. 186–202.

[HK92] Benjamin J. Hellstrom and Laveen N. Kanal. “Knapsack Packing Networks.” In: IEEE
Trans. Neural Netw. 3.2 (March 1992), pp. 302–307.

[Hop84] John J. Hop�eld. “Neurons with graded response have collective computational prop-

erties like those of two-state neurons.” In: Proc. Natl. Acad. Sci. USA 81.10 (May 1984),

pp. 3088–3092.

http://arxiv.org/abs/arXiv:1011.1669v3
https://en.wikipedia.org/wiki/Graph_isomorphism

171

[HSM12] Brandon Heller, Rob Sherwood, and Nick McKeown. “The controller placement prob-

lem.” In: Proc. ACM Workshop on Hot Topics in Softw. De�ned Netw. Helsinki, Finland:

ACM, August 2012, pp. 7–12.

[HSS+16] Luuk Hendriks, Ricardo De O Schmidt, Ramin Sadre, Jeronimo A Bezerra, and Aiko

Pras. “Assessing the Quality of Flow Measurements from OpenFlow Devices.” In: Proc.
International Workshop on Tra�c Monitoring and Analysis (TMA). 2016, pp. 1–8.

[HT16] Soroush Haeri and Ljiljana Trajković. “Virtual Network Embeddings in Data Cen-

ter Networks.” In: IEEE International Symposium on Circuits and Systems. May 2016,

pp. 874–877.

[HT85] John J. Hop�eld and David W. Tank. “"Neural" computations of decisions in optimiza-

tion problems.” In: Biological Cybernetics 52 (1985), pp. 141–152.

[Hut14] Frank Hutter. Machine Learning for Optimization: Automated Parameter Tuning and
Beyond. 2014.

[HWG+14] Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, and Shiduan Cheng. “On

reliability-optimized controller placement for Software-De�ned Networks.” In: China
Communications 11.2 (February 2014), pp. 38–54.

[ICM+02] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier, Supratik Bhattacharyya, and

Christophe Diot. “Analysis of link failures in an IP backbone.” In: Proc. ACM SIGCOMM
Workshop on Internet Measurment (IMW). Marseille, France: ACM, November 2002,

pp. 237–242.

[JCM+16] Justin Bayer, Christian Osendorfer, Max Karl, Maximilian Soelch, and Sebastian Urban.

breze. TUM, 2016.

[JCPG14] Yury Jimenez, Cristina Cervelló-Pastor, and Aurelio J. García. “On the controller place-

ment for designing a distributed SDN control layer.” In: Proc. IFIP Networking. June

2014, pp. 1–9.

[JCS+15] Justin Bayer, Christian Osendorfer, Sarah Diot-Girard, Thomas Rueckstiess, and Se-

bastian Urban. climin - A pythonic framework for gradient-based function optimization.

Tech. rep. TUM, 2015.

[JGR+15] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. “CoVisor: A Compo-

sitional Hypervisor for Software-De�ned Networks.” In: Proc. USENIX Symp. NSDI.
Oakland, CA: USENIX Association, May 2015, pp. 87–101.

[JLM+12] Michael Jarschel, Frank Lehrieder, Zsolt Magyari, and Rastin Pries. “A �exible Open-

Flow-controller benchmark.” In: Proc. IEEE Eu. Workshop on Software De�ned Netw.
October 2012, pp. 48–53.

[JMZ+14] Michael Jarschel, Christopher Metter, Thomas Zinner, Ste�en Gebert, and Phuoc Tran-

Gia. “OFCProbe: A platform-independent tool for OpenFlow controller analysis.” In:

Proc. IEEE Int. Conf. on Commun. and Electronics (ICCE). July 2014, pp. 182–187.

172 Bibliography

[JOS+11] Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, and Sebastian Goll.

“Modeling and performance evaluation of an OpenFlow architecture.” In: Proc. ITC.

September 2011, pp. 1–7.

[JP13] Raj Jain and Subharthi Paul. “Network virtualization and software de�ned network-

ing for cloud computing: a survey.” In: IEEE Commun. Mag. 51.11 (November 2013),

pp. 24–31.

[JS15] Brendan Jennings and Rolf Stadler. “Resource Management in Clouds: Survey and Re-

search Challenges.” In: Journal of Network and Systems Management 23.3 (July 2015),

pp. 567–619.

[KAB+14] Teemu Koponen et al. “Network Virtualization in Multi-tenant Datacenters.” In: Proc.
USENIX Symp. NSDI. Seattle, WA: USENIX Association, April 2014, pp. 203–216.

[KAG+12] Eric Keller, Dushyant Arora, Soudeh Ghorbani, Matt Caesar, and Jennifer Rexford.

“Live Migration of an Entire Network (and its Hosts).” In: Princeton University Com-
puter Science Technical Report (2012), pp. 109–114.

[KB14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” In:

CoRR abs/1412.6980 (2014). arXiv: 1412.6980.

[KBS+16] Elias B Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. “Learn-

ing to Branch in Mixed Integer Programming.” In: Proc. AAAI. Phoenix, Arizona: AAAI

Press, 2016, pp. 724–731.

[KCG+10] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,

Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott

Shenker. “Onix: A Distributed Control Platform for Large-scale Production Networks.”

In: Proc. USENIX Conf. OSDI. Vancouver, BC, Canada: USENIX Association, October

2010, pp. 351–364.

[KCI+15] T. Koponen, M. Casado, P.S. Ingram, W.A. Lambeth, P.J. Balland, K.E. Amidon, and D.J.

Wendlandt. Network virtualization, US Patent 8,959,215. February 2015.

[KD05] Andreas Klose and Andreas Drexl. “Facility location models for distribution system

design.” In: European J. Operational Res. 162.1 (2005), pp. 4–29.

[KNF+11] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Rou-

ghan. “The Internet Topology Zoo.” In: IEEE Journal on Selected Areas in Commun. 29.9

(October 2011), pp. 1765–1775.

[Kog11] Jochen Kogel. “One-way delay measurement based on �ow data: Quanti�cation and

compensation of errors by exporter pro�ling.” In: Proc. ICOIN. IEEE, January 2011,

pp. 25–30.

[KOO+16] Kota Kawashima, Tatsuya Otoshi, Yuichi Ohsita, and Masayuki Murata. “Dynamic

Placement of Virtual Network Functions Based on Model Predictive Control.” In: Proc.
IEEE/IFIP NOMS. April 2016, pp. 1037–1042.

[KPK14] Maciej Kuzniar, Peter Peresini, and Dejan Kostic. What you need to know about SDN
control and data planes. Tech. rep. EPFL, TR 199497, 2014.

http://arxiv.org/abs/1412.6980

173

[KPK15] Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. “What You Need to Know About

SDN Flow Tables.” In: Passive and Active Measurement: 16th International Conference,
PAM 2015, New York, NY, USA, March 19-20, 2015, Proceedings. Ed. by Jelena Mirkovic

and Yong Liu. Cham: Springer International Publishing, 2015, pp. 347–359.

[KRV+15] Diego Kreutz, Fernando MV Ramos, PE Verissimo, C Esteve Rothenberg, Siamak

Azodolmolky, and Steve Uhlig. “Software-de�ned networking: A comprehensive sur-

vey.” In: Proc. IEEE 103.1 (2015), pp. 14–76.

[KSG+09] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie

Chaiken. “The nature of data center tra�c.” In: Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference - IMC ’09. Microsoft. New York, New

York, USA: ACM Press, 2009, p. 202.

[KV07] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
4th. Springer Publishing Company, Incorporated, 2007.

[KZM+17] Patrick Kalmbach, Johannes Zerwas, Michael Manhart, Andreas Blenk, Stefan Schmid,

and Wolfgang Kellerer. Data on ”o’zapft is: Tap Your Network Algorithm’s Big Data!”
TUM. 2017. url: https://mediatum.ub.tum.de/1361589.

[LAL+14] Ruoqian Liu, Ankit Agrawal, Wei-keng Liao, and Alok Choudhary. “Search Space Pre-

processing in Solving Complex Optimization Problems.” In: Workshop on Complexity
for Big Data. 2014.

[Lar] Linux Advanced Routing & Tra�c Control. url: http://lartc.org/.

[LBB+15] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Marinho Pilla

Barcellos, and Luciano Paschoal Gaspary. “Piecing together the NFV provisioning puz-

zle: E�cient placement and chaining of virtual network functions.” In: Proc. IFIP/IEEE
IM. May 2015, pp. 98–106.

[LC16] Philipp Leitner and Jürgen Cito. “Patterns in the Chaos—A Study of Performance Vari-

ation and Predictability in Public IaaS Clouds.” In: ACM Transactions on Internet Tech-
nology 16.3 (April 2016), pp. 1–23.

[LGS+15] Stanislav Lange, Ste�en Gebert, Joachim Spoerhase, Piotr Rygielski, Thomas Zinner,

Samuel Kounev, and Phuoc Tran-Gia. “Specialized Heuristics for the Controller Place-

ment Problem in Large Scale SDN Networks.” In: Proc. ITC. September 2015, pp. 210–

218.

[LGZ+15] Stanislav Lange, Ste�en Gebert, Thomas Zinner, Phuoc Tran-Gia, David Hock, Michael

Jarschel, and Marco Ho�mann. “Heuristic Approaches to the Controller Placement

Problem in Large Scale SDN Networks.” In: IEEE Trans. on Netw. and Serv. Manage.
12.1 (March 2015), pp. 4–17.

[LLJ10] Yunfa Li, Wanqing Li, and Congfeng Jiang. “A survey of virtual machine system: Cur-

rent technology and future trends.” In: Proc. IEEE Int. Symp. on Electronic Commerce
and Security (ISECS). July 2010, pp. 332–336.

https://mediatum.ub.tum.de/1361589
http://lartc.org/

174 Bibliography

[LLN14] Lingxia Liao, Victor C M Leung, and Panos Nasiopoulos. “DFVisor: Scalable Network

Virtualization for QoS Management in Cloud Computing.” In: Proc. CNSM and Work-
shop IFIP. November 2014, pp. 328–331.

[LMC+13] Lei Liu, Raül Muñoz, Ramon Casellas, Takehiro Tsuritani, Ricardo Martínez, and It-

suro Morita. “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic

optical path networks.” In: OSA Opt. Express 21.4 (2013), pp. 4194–4204.

[Lox] OpenFlowJ Loxi. url: https://github.com/�oodlight/loxigen/wiki/OpenFlowJ-Loxi.

[LSL15] Lingxia Liao, Abdallah Shami, and V. C. M. Leung. “Distributed FlowVisor: a dis-

tributed FlowVisor platform for quality of service aware cloud network virtualisation.”

In: IET Networks 4.5 (2015), pp. 270–277.

[LSY+12] Geng Li, Murat Semerci, Bülent Yener, and Mohammed J Zaki. “E�ective graph clas-

si�cation based on topological and label attributes.” In: Statistical Analysis and Data
Mining 5.4 (August 2012), pp. 265–283.

[LTH+14] Aggelos Lazaris, Daniel Tahara, Xin Huang, Erran Li, Andreas Voellmy, Y Richard

Yang, and Minlan Yu. “Tango: Simplifying SDN Control with Automatic Switch Prop-

erty Inference, Abstraction, and Optimization.” In: Proc. ACM CoNEXT. Sydney, Aus-

tralia: ACM, December 2014, pp. 199–212.

[LTM+11] Lei Liu, Takehiro Tsuritani, Itsuro Morita, Hongxiang Guo, and Jian Wu. “Experimen-

tal validation and performance evaluation of OpenFlow-based wavelength path con-

trol in transparent optical networks.” In: OSA Opt. Express 19.27 (2011), pp. 26578–

26593.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: enabling innova-

tion in campus networks.” In: ACM SIGCOMM Computer Commun. Rev. 38.2 (2008),

pp. 69–74.

[MAM+16] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. “Resource

Management with Deep Reinforcement Learning.” In: Proc. ACM Workshop HotNets.
Atlanta, GA, USA: ACM, November 2016, pp. 50–56.

[MB02] Maria Carolina Monard and Gustavo E A P A Batista. “Learning with skewed class

distributions.” In: Advances in Logic, Arti�cial Intelligence and Robotics (2002), pp. 173

–180.

[MDD+14] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and

C. Wright. Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlay-
ing Virtualized Layer 2 Networks over Layer 3 Networks. RFC 7348. http://www.rfc-

editor.org/rfc/rfc7348.txt. RFC Editor, August 2014.

[MJS+11] Jon Matias, Eduardo Jacob, David Sanchez, and Yuri Demchenko. “An OpenFlow based

network virtualization framework for the Cloud.” In: Proc. IEEE CloudCom. November

2011, pp. 672–678.

https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
http://www.rfc-editor.org/rfc/rfc7348.txt
http://www.rfc-editor.org/rfc/rfc7348.txt

175

[MKL+12] Seokhong Min, S Kim, Jaeyong Lee, and Byungchul Kim. “Implementation of an Open-

Flow network virtualization for multi-controller environment.” In: Proc. Int. Conf. on
Advanced Commun. Techn. (ICACT). February 2012, pp. 589–592.

[MMB00] Alberto Medina, Ibrahim Matta, and John Byers. “On the Origin of Power Laws in

Internet Topologies.” In: ACM SIGCOMM Computer Commun. Rev. 30.2 (April 2000),

pp. 18–28.

[MOL+14] Lucas F. Muller, Rodrigo R Oliveira, Marcelo C Luizelli, Luciano P Gaspary, and Mar-

inho P Barcellos. “Survivor: An enhanced controller placement strategy for improving

SDN survivability.” In: Proc. IEEE Globecom. December 2014, pp. 1909–1915.

[MRF+13] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.

“Composing Software-De�ned Networks.” In: Proc. USENIX Symp. NSDI. Lombard, IL:

USENIX Association, April 2013, pp. 1–13.

[MSK+13] Marcio Melo, Susana Sargento, Ulrich Killat, Andreas Timm-Giel, and Jorge Carap-

inha. “Optimal Virtual Network Embedding: Node-Link Formulation.” In: IEEE Trans.
on Netw. and Serv. Manage. 10.4 (December 2013), pp. 356–368.

[New10] Mark Newman.Networks: An Introduction. Oxford University Press, March 2010. eprint:

1212.2425.

[NVN+13] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo Bian-

chini. “Deepdive: Transparently identifying and managing performance interference

in virtualized environments.” In: Proc. USENIX Annual Technical Conference. San Jose,

CA: USENIX Association, June 2013, pp. 219–230.

[Oft] OFTest—Validating OpenFlow Switches. url: http://www.project�oodlight.org/oftest/.

[Ope13] OpenDaylight. A Linux Foundation Collaborative Project. 2013.

[OPS93] Mattias Ohlsson, Carsten Peterson, and Bo Söderberg. “Neural Networks for Opti-

mization Problems with Inequality Constraints: The Knapsack Problem.” In: Neural
Computation 5.2 (March 1993), pp. 331–339.

[Os3] Internet2 Open Science, Scholarship, and Services Exchange (OS3E). url: http:://www.

internet2.edu/network/ose.

[OWP+10] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. “SNDlib 1.0—Survivable Net-

work Design Library.” In: Networks 55.3 (2010), pp. 276–286.

[PJ98] Hasan Pirkul and Vaidyanathan Jayaraman. “A multi-commodity, multi-plant, capaci-

tated facility location problem: formulation and e�cient heuristic solution.” In: Comp.
& Op. Res. 25.10 (1998), pp. 869–878.

[PJG12] Rastin Pries, Michael Jarschel, and Sebastian Goll. “On the usability of OpenFlow in

data center environments.” In: Proc. IEEE ICC. IEEE, June 2012, pp. 5533–5537.

[PPA+09] Ben Pfa�, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott

Shenker. “Extending Networking into the Virtualization Layer.” In: HotNets-VIII. Oc-

tober 2009, pp. 1–6.

1212.2425
http://www.projectfloodlight.org/oftest/
http:://www.internet2.edu/network/ose
http:://www.internet2.edu/network/ose

176 Bibliography

[PS02] Rina Panigrahy and Samar Sharma. “Reducing TCAM power consumption and in-

creasing throughput.” In: Proc. IEEE High Perf. Interconnects. August 2002, pp. 107–

112.

[PS06] Kostas Pagiamtzis and Ali Sheikholeslami. “Content-addressable memory (CAM) cir-

cuits and architectures: A tutorial and survey.” In: IEEE J. Solid-State Circuits 41.3

(2006), pp. 712–727.

[PZH+11] Abhinav Pathak, Ming Zhang, Y. Charlie Hu, Ratul Mahajan, and Dave Maltz. “Latency

in�ation with MPLS-based tra�c engineering.” In: Proc. ACM SIGCOMM IMC. Berlin,

Germany: ACM, November 2011, pp. 463–472.

[Qui86] J.R. Quinlan. “Induction of Decision Trees.” In: Machine Learning 1.1 (1986), pp. 81–

106.

[RAB+14] Charalampos Rotsos, Gianni Antichi, Marc Bruyere, Philippe Owezarski, and Andrew

W Moore. “An open testing framework for next-generation OpenFlow switches.” In:

Proc. IEEE Eu. Workshop on Software De�ned Netw. September 2014, pp. 127–128.

[RB13] M. R. Rahman and R. Boutaba. “SVNE: Survivable Virtual Network Embedding Algo-

rithms for Network Virtualization.” In: IEEE Trans. on Netw. and Serv. Manage. 10.2

(June 2013), pp. 105–118.

[RHW86] David E Rumelhart, Geo�rey E Hinton, and Ronald J Williams. “Learning representa-

tions by back-propagating errors.” In: Nature 323.6088 (October 1986), pp. 533–536.

[RNM+14] Navaneeth Rameshan, Leandro Navarro, Enric Monte, and Vladimir Vlassov. “Stay-

Away , protecting sensitive applications from performance interference.” In: Proc. In-
ternational Middleware Conference - Middleware ’14. December. New York, New York,

USA: ACM Press, December 2014, pp. 301–312.

[RS18] Matthias Rost and Stefan Schmid. “NP-Completeness and Inapproximability of the Vir-

tual Network Embedding Problem and Its Variants.” In: CoRR abs/1801.03162 (2018).

arXiv: 1801.03162.

[RSU+12] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W. Moore.

“OFLOPS: An Open Framework for OpenFlow Switch Evaluation.” In: Passive and Ac-
tive Measurement: 13th International Conference, PAM 2012, Vienna, Austria, March 12-
14th, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 85–

95.

[RTP15] M. Roughan, J. Tuke, and E. Parsonage. “Estimating the Parameters of the Waxman

Random Graph.” In: Computer Research Repository (CoRR) (June 2015).

[Run95] Carl Runge. “Ueber die numerische Au�ösung von Di�erentialgleichungen.” In: Math-
ematische Annalen 46 (1895), pp. 167 –178.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture.
RFC 3031. http://www.rfc-editor.org/rfc/rfc3031.txt. RFC Editor, January 2001.

[RW88] H.E. Rauch and T. Winarske. “Neural networks for routing communication tra�c.” In:

IEEE Control Systems Magazine 8.2 (April 1988), pp. 26–31.

http://arxiv.org/abs/1801.03162
http://www.rfc-editor.org/rfc/rfc3031.txt

177

[Ryu] RYU SDN Framework, http://osrg.github.io/ryu.

[SBD+18] Susanna Schwarzmann, Andreas Blenk, Ognjen Dobrijevic, Michael Jarschel, Andreas

Hotho, Thomas Zinner, and Florian Wamser. “Big-Data Helps SDN to Improve Ap-

plication Speci�c Quality of Service.” In: Big Data and Software De�ned Networks. Ed.

by Javid Taheri. The Institution of Engineering and Technology (IET), January 2018,

pp. 433–455.

[SC08] Ingo Steinwart and Andreas Christmann. Support Vector Machines. 1st. Springer Pub-

lishing Company, Incorporated, 2008.

[SCB+11] E. Salvadori, R. D. Corin, A. Broglio, and M. Gerola. “Generalizing Virtual Network

Topologies in OpenFlow-Based Networks.” In: Proc. IEEE Globecom. December 2011,

pp. 1–6.

[SCS+15] Lalith Suresh, Marco Canini, Stefan Schmid, Anja Feldmann, and Telekom Innovation

Labs. “C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection.”

In: Proc. USENIX Symp. NSDI. Oakland, CA: USENIX Association, May 2015, pp. 513–

527.

[SDQR10] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. “Runtime measurements in

the cloud.” In: Proc. VLDB Endow. 3.1-2 (September 2010), pp. 460–471.

[SGN+12] Balazs Sonkoly, Andras Gulyas, Felician Nemeth, Janos Czentye, Krisztian Kurucz,

Barnabas Novak, and Gabor Vaszkun. “OpenFlow Virtualization Framework with Ad-

vanced Capabilities.” In: Proc. IEEE Eu. Workshop on Software De�ned Netw. October

2012, pp. 18–23.

[SGP14] Christoph Salge, Cornelius Glackin, and Daniel Polani. “Changing the environment

based on empowerment as intrinsic motivation.” In: Entropy 16.5 (2014), pp. 2789–

2819. arXiv: 1406.1767.

[SGY+09] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick

Mckeown, and Guru Parulkar. FlowVisor: A Network Virtualization Layer. Tech. rep.

OpenFlow Consortium, 2009, p. 15.

[SJ13] Pontus Skoldstrom and Wolfgang John. “Implementation and Evaluation of a Carrier-

Grade OpenFlow Virtualization Scheme.” In: Proc. IEEE Eu. Workshop on Software De-
�ned Netw. October 2013, pp. 75–80.

[SKP96] Kate Smith, M. Krishnamoorthy, and M. Palaniswami. “Neural versus traditional ap-

proaches to the location of interacting hub facilities.” In: Location Science 4.3 (October

1996), pp. 155–171.

[SML10] Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. “Virtualization: A survey

on concepts, taxonomy and associated security issues.” In: Proc. IEEE Int. Conf. on
Computer and Netw. Techn. (ICCNT). April 2010, pp. 222–226.

[SN05] James E Smith and Ravi Nair. “The architecture of virtual machines.” In: IEEE Computer
38.5 (2005), pp. 32–38.

http://arxiv.org/abs/1406.1767

178 Bibliography

[SNS+10] Rob Sherwood et al. “Carving research slices out of your production networks with

OpenFlow.” In: ACM SIGCOMM Computer Commun. Rev. 40.1 (January 2010), pp. 129–

130.

[Sof09] Rute C So�a. “A survey of advanced ethernet forwarding approaches.” In: IEEE Com-
mun. Surveys & Tutorials 11.1 (2009), pp. 92–115.

[SSH15] Afrim Sallahi and Marc St-Hilaire. “Optimal Model for the Controller Placement Prob-

lem in Software De�ned Networks.” In: IEEE Communications Letters 19.1 (January

2015), pp. 30–33.

[Sør48] T. Sørensen. “A method of establishing groups of equal amplitude in plant sociology

based on similarity of species and its application to analyses of the vegetation on Dan-

ish commons.” In: Biol. Skr. 5 (1948), pp. 1–34.

[TCP91] G Tagliarini, J Christ, and E Page. “Optimization using neural networks.” In: IEEE
Trans. Comp. 40.12 (December 1991), pp. 1347–1358.

[TG10] Amin Tootoonchian and Yashar Ganjali. “HyperFlow: A distributed control plane for

OpenFlow.” In: Proc. USENIX Internet Network Management Conf. on Research on En-
terprise Netw. San Jose, CA: USENIX Association, April 2010, pp. 3–3.

[TGG+12] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. “On Controller

Performance in Software-de�ned Networks.” In: Proc. USENIX Wkshp. on Hot Topics
in Management of Internet, Cloud, and Enterprise Networks and Services. Berkeley, CA,

USA: USENIX Association, April 2012, pp. 10–10.

[THS10] Voravit Tanyingyong, Markus Hidell, and Peter Sjödin. “Improving PC-based Open-

Flow switching performance.” In: Proc. ACM/IEEE ANCS. New York, New York, USA:

ACM Press, 2010, p. 1.

[TMV+11] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou So�a. “The

impact of memory subsystem resource sharing on datacenter applications.” In: ACM
SIGARCH Computer Architecture News 39.3 (July 2011), p. 283.

[Tri17] A. Tripathi. Machine Learning Cookbook. Packt Publishing, Limited, 2017.

[TT05] J.S. Turner and D.E. Taylor. “Diversifying the Internet.” In: Proc. IEEE Globecom. Vol. 2.

December 2005, 6 pp.–760.

[TTS+11] Brian Trammell, Bernhard Tellenbach, Dominik Schatzmann, and Martin Burkhart.

“Peeling Away Timing Error in NetFlow Data.” In: ed. by Nina Taft and Fabio Ricciato.

Vol. 7192. March. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 194–203.

[VGM+13] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Rat-

nasamy, and Scott Shenker. “Low latency via redundancy.” In: Proc. ACM CoNEXT.

New York, New York, USA: ACM Press, 2013, pp. 283–294.

[VRV14] Allan Vidal, Christian Esteve Rothenberg, and Fábio Luciano Verdi. “The lib�uid Open-

Flow driver implementation.” In: Proc. 32nd Brazilian Symp. Comp. Netw.(SBRC). 2014,

pp. 1029–1036.

179

[Wax88] B.M. Waxman. “Routing of multipoint connections.” In: IEEE Journal on Selected Areas
in Commun. 6.9 (1988), pp. 1617–1622. eprint: 49.12889 (10.1109).

[WB13] Keith Winstein and Hari Balakrishnan. “TCP ex machina.” In: Proc. ACM SIGCOMM.

Hong Kong, China: ACM, August 2013, pp. 123–134.

[XHB+00] Xipeng Xiao, Alan Hannan, Brook Bailey, and Lionel M Ni. “Tra�c Engineering with

MPLS in the Internet.” In: IEEE Network 14.2 (2000), pp. 28–33.

[YBL+14] Guang Yao, Jun Bi, Yuliang Li, and Luyi Guo. “On the Capacitated Controller Place-

ment Problem in Software De�ned Networks.” In: IEEE Communications Letters 18.Au-

gust (August 2014), pp. 1339–1342.

[YKI+14a] Hiroaki Yamanaka, Eiji Kawai, Shuji Ishii, Shinji Shimojo, and Communications Tech-

nology. “AutoVFlow: Autonomous Virtualization for Wide-area OpenFlow Networks.”

In: Proc. IEEE Eu. Workshop on Software De�ned Netw. September 2014, pp. 67–72.

[YKI+14b] Hiroaki Yamanaka, Eiji Kawai, Shuji Ishii, and Shinji Shimojo. “OpenFlow Network

Virtualization on Multiple Administration Infrastructures.” In: Proc. Open Networking
Summit. March 2014, pp. 1–2.

[YRF+10] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. “Scalable �ow-based

networking with DIFANE.” In: ACM SIGCOMM Computer Commun. Rev. 40.4 (October

2010), pp. 351–362.

[YRS15] Abdulsalam Yassine, Hesam Rahimi, and Shervin Shirmohammadi. “Software de�ned

network tra�c measurement: Current trends and challenges.” In: IEEE Instrumentation
& Measurement Magazine 18.2 (April 2015), pp. 42–50.

[YYR+08] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. “Rethinking virtual network

embedding.” In: ACM SIGCOMM Computer Commun. Rev. 38.2 (March 2008), p. 17.

[ZA06] Y. Zhu and M. Ammar. “Algorithms for Assigning Substrate Network Resources to

Virtual Network Components.” In: Proc. IEEE INFOCOM. IEEE, April 2006, pp. 1–12.

[ZCB96] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee. “How to model an internetwork.” In:

Proc. IEEE INFOCOM. Vol. 2. IEEE Comput. Soc. Press, 1996, pp. 594–602.

[ZJX11] Jun Zhu, Zhefu Jiang, and Zhen Xiao. “Twinkle: A fast resource provisioning mecha-

nism for internet services.” In: Proc. IEEE INFOCOM. IEEE, April 2011, pp. 802–810.

[ZLW+14] Zhaoning Zhang, Ziyang Li, Kui Wu, Dongsheng Li, Huiba Li, Yuxing Peng, and Xi-

cheng Lu. “VMThunder: fast provisioning of large-scale virtual machine clusters.” In:

IEEE Trans. Parallel and Distr. Systems 25.12 (December 2014), pp. 3328–3338.

[ZQW+12] Sheng Zhang, Zhuzhong Qian, Jie Wu, and Sanglu Lu. “An Opportunistic Resource

Sharing and Topology-Aware mapping framework for virtual networks.” In: Proc. IEEE
INFOCOM. i. IEEE, March 2012, pp. 2408–2416.

[ZSR+16] Eitan Zahavi, Alexander Shpiner, Ori Rottenstreich, Avinoam Kolodny, and Isaac

Keslassy. “Links as a Service (LaaS).” In: Proc. ANCS. Santa Clara, California, USA:

ACM, March 2016, pp. 87–98.

49.12889

180 Bibliography

[Ope09] Open Networking Foundation (ONF). OpenFlow Switch Speci�cations 1.0 (ONF TS-001).
https: //www.opennetworking.org/wp- content/uploads/2013/04/open�ow- spec-

v1.0.0.pdf. December 2009.

[Ope11a] Open Networking Foundation (ONF). OpenFlow Switch Speci�cations 1.1.0 (ONF TS-
002). https://3vf60mmveq1g8vzn48q2o71a- wpengine.netdna- ssl .com/wp- content/

uploads/2014/10/open�ow-spec-v1.1.0.pdf. February 2011.

[Ope11b] Open Networking Foundation (ONF). OpenFlow Switch Speci�cations 1.2 (ONF TS-003).
https://www.opennetworking.org/images/stories/downloads/sdn- resources/onf-

speci�cations/open�ow/open�ow-spec-v1.2.pdf. October 2011.

[Ope12] Open Networking Foundation (ONF). OpenFlow Switch Speci�cations 1.3.0 (ONF TS-
006). https://3vf60mmveq1g8vzn48q2o71a- wpengine.netdna- ssl .com/wp- content/

uploads/2014/10/open�ow-spec-v1.3.0.pdf. October 2012.

[Ope13] Open Networking Foundation (ONF). OpenFlow Switch Speci�cations 1.4 (ONF TS-012).
https://www.opennetworking.org/images/stories/downloads/sdn- resources/onf-

speci�cations/open�ow/open�ow-spec-v1.4.0.pdf. October 2013.

[Ope14a] Open Networking Foundation (ONF). OpenFlow Switch Speci�cations 1.5.0 (ONF TS-
020). https://www.opennetworking.org/images/stories/downloads/sdn- resources/

onf-speci�cations/open�ow/open�ow-switch-v1.5.0.noipr.pdf. December 2014.

[Ope14b] Open Networking Foundation (ONF). SDN Architecture Overview, Version 1.0, ONF TR-
502. https://www.opennetworking.org/images/stories/downloads/sdn- resources/

technical-reports/TR_SDN_ARCH_1.0_06062014.pdf. June 2014.

[Ope14c] Open Networking Foundation (ONF). SDN Architecture Overview, Version 1.1, ONF TR-
504. https://www.opennetworking.org/images/stories/downloads/sdn- resources/

technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf. November 2014.

https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf

List of Figures

1.1 Thesis structure. 6

2.1 Comparison of business models. 10

2.2 Comparison of legacy and software-de�ned network. 11

2.3 Comparison of virtual networks, SDN network, and virtual SDN networks. 13

2.4 Comparison of SDN and Virtual Software-De�ned Network (vSDN). 14

2.5 Comparison between switch partitioning and switch partitioning & aggregation. 15

2.6 Comparison between link abstraction procedures. 16

2.7 Isolation Attributes of Virtual SDN Networks. 17

3.1 SDN switch benchmarking and SDN controller benchmarking (without virtualization). 25

3.2 vSDN switch benchmarking with a single switch and multiple switches. 30

3.3 vSDN controller benchmarking with single vSDN controller and muliple vSDN controllers. 30

3.4 Conceptual view and architecture of perfbench. 33

3.5 Network hypervisor benchmarking and measurement setup. 37

3.6 Boxplots of OF control plane latency values over message rates for four di�erent message types.

Comparison between switch-only, FV and OVX. 40

3.7 Boxplots of OF control plane latency impact of the TCP_ND feature on the hypervisor perfor-

mance for OFPT_FLOW_MOD messages. 42

3.8 Comparison between the impact of a single tenant and multi-tenancy on the control plane latency

provided by FV and OVX. 43

3.9 Comparison between the impact of a single tenant and multi-tenancy on CPU consumption by

FV and OVX. 43

3.10 Cumulative Distribution Functions of latencies for four multi-tenant settings. One �gure per hy-

pervisor. 44

3.11 Comparison of the control plane latency provided by FV and OVX between single-switch and

multi-switch setups. 45

3.12 Comparison of the CPU consumption by FV and OVX between single-switch and multi-switch

setups. 45

3.13 HyperFlex architecture. 48

3.14 Resource reservation pipeline. 50

3.15 HypeFlex’s deployment of isolation functions. 51

3.16 Two isolation measurement setups. 53

3.17 Latency boxplots with and without hardware isolation for two tenants. 55

3.18 Latency boxplots with and without software isolation for two tenants. 56

3.19 Software isolation-based infrastructure overload protection. 57

3.20 Software isolation-based infrastructure overload protection. 57

3.21 HyperFlex’s adaptation support. 59

181

182 List of Figures

3.22 Evaluation setup for the control path migration protocol. 60

3.23 Time-series of control plane latencies for three runs with OF message rates 100 msg/s and 1000 msg/s. 61

3.24 Latency over number of OF messages and a�ected messages due to recon�gurations. 62

4.1 Four hypervisor architectures characterized by number of hypervisor instances k and number of

multi-controller switches Mr in relation to the number of physical switches |V|. 67

4.2 Motivation: From HPP to DHPP. 69

4.3 Di�erent types of recon�gurations: hypervisor instance change, hypervisor location change, and

hypervisor instance & location change. 69

4.4 Optimization stages when solving multi-objective DHPP. 78

4.5 Hypervisor placement distribution over ATTMpls network topology. 88

4.6 Importance of substrate nodes as hypervisor locations over number of vSDNs; one �gure per

hypervisor objective. 89

4.7 Hypervisor latency metric over number of vSDNs for all objectives; one �gure per hypervisor

latency metric (not objective). 90

4.8 Cumulative distribution functions of hypervisor latency values (Lmax, Lavg) for all hypervisor

objectives; one �gure per number of vSDNs (1,40,80). 91

4.9 Heatmaps showing latency values over at least 30 indepentend runs. 94

4.10 Mean latency values over number of hypervisors for di�erent combinations of Mr and CP strat-

egy; one �gure per hypervisor objective. 95

4.11 Cumulative distribution functions of individual request latencies; one �gure per individual latency

metric (LV N,CPavg , LV N,CPmax). 97

4.12 Mean average latencies for each CP strategy over number of hypervisor instances k; one �gure

per hypervisor objectives. 97

4.13 Cumulative distribution functions of average (P (X < LV N,HPavg)) and maximum (P (X <

LV N,HPmax)) individual vSDN request latencies with virtualization. 99

4.14 Boxplots of overhead ratiosRV Nmax andRV Navg over number of hypervisor instances k and CP strate-

gies for all latency objectives. 100

4.15 Latency reduction due to adding hypervisor instances for �ve substrate topologies. 101

4.16 Latency reduction due to increasing multi-controller switch ratio Mr ; one �gure per k (2,7). . . . 101

4.17 Frequency of latency changes over all hypervisor latency objectives; one �gure per k (3,5,7). . . . 103

4.18 Comparison of number of initial vSDNs against probabilities P (Rτloc > 0) between all objectives

for k = 3, 5, 7 hypervisor instances. 104

4.19 Boxplots showing the ratio of vSDNs facing hypervisor location changes for two objectives

(Lmax avg, Lavgmax). One �gure shows three groups of boxplots; one group for each k (3,5,7). . . 104

4.20 Empirical distributions of migrated hypervisor instances among simulation runs for twelve sce-

narios. 105

4.21 Empirical distributions of hops that a hypervisor needs to migrate among all simulation runs of

two scenarios. 106

4.22 Line plots indicating the trade-o� between average number of location changes and hypervisor

latency objective. One �gure per latency objectives (Lavgmax, Lmax avg). 106

5.1 Exemplary Hop�eld network. 118

5.2 NeuroViNE architecture. 124

5.3 Comparison of selection functions on improvement over con�guration parameters. 131

5.4 Acceptance-ratio boxplots over VNE algorithms for three topologies (BA, ER, TZ). 132

5.5 Revenue boxplots over VNE algorithms for three topologies (BA, ER, TZ). 132

5.6 Revenue-cost-ratio boxplots over VNE algorithms for three topologies (BA, ER, TZ). 132

List of Figures 183

5.7 Comparison of node locations of a single VNR on the Kentucky Datalink (KDL) between GRC and

HF-GRC. 133

5.8 Absolute performance comparison between three embedding algorithms for data centers. 134

5.9 Performance comparison between SDP and HF-SDP with linear and inverse selection function . . 135

5.10 Traditional networking algorithm vs. o’zapft is. 137

5.11 Facility location procedures. Realization of o’zapft is for placing facilities. 139

5.12 Admission Control system for the online VNE problem. 141

5.13 Latency values of the facility location algorithms among an increasing k for BA and TZ topologies. 144

5.14 F1 score comparison for three feature complexities. 144

5.15 Boxplots of virtual network embedding cost prediction deviations with random forest model in

percentage as a function of training samples. 146

5.16 Feature importance of the random forest models for VNE algorithms. 148

5.17 R2
of Linear Regression (LR) model for low complex features and all features. 149

5.18 Outcome ratios (accepted, no solution, infeasible, �ltered) of VNE algorithms with and without ML. 152

5.19 Revenue and embedding cost of SDP for ER substrate with and without ML. 153

5.20 Boxplots of RCR over combinations of timeout settings and arrival processes for SDP with and

without ML. 154

5.21 Modeling time and solving time over combinations of timeout settings and arrival processes for

SDP with and without ML. 154

List of Tables

3.1 Feature comparison of OpenFlow benchmark tools. 35

3.2 Measurement con�gurations for single-tenant/switch and multi-tenant/multi-switch setups. . . . 38

3.3 Hypervisor control plane messages throughput with a single tenant and a single switch. 39

3.4 Isolation measurement con�gurations. 54

4.1 Notation of sets for physical SDN network G for static use. 73

4.2 Notation of helper functions for physical SDN network G. 73

4.3 Notation of sets and constants for virtual SDN network (vSDN) requestsR. 74

4.4 Notation of helper functions for virtual SDN network (vSDN) requestsR. 74

4.5 Problem input for k-HPP and McSDP. 75

4.6 Notation of sets and constants for physical SDN network G for dynamic use. 75

4.7 Notation of sets and constants for virtual SDN network (vSDN) requestsRτ for dynamic use. . . 76

4.8 Helper functions for virtual SDN network (vSDN) requestsRτ for dynamic use. 76

4.9 Problem input for DHPP. 78

4.10 Binary decision variables for k-HPP and McSDP. 79

4.11 Binary decision variables for the DHPP with hypervisor instance di�erentiation 83

4.12 Evaluation settings for k = 1 hypervisor. 87

4.13 Evaluation settings of static analysis. 92

4.14 Evaluation settings of dynamic analysis. 102

5.1 Node and graph features used for problem representation and learning. 112

5.2 Hop�eld VNE simulation parameters. 129

5.3 Evaluation parameters for substrate network settings. 130

5.4 Regressors’ performance for all VNE algorithms. 147

5.5 ML grid search parameters for training the recurrent neural network. 150

5.6 Prediction model performance for SDP and FEAS. 151

185

Acronyms

R2
Coe�cient of determination. 116, 117, 147–149, 183

A-CPI Application-Controller Plane Interface. 12, 14

AI Arti�cial Intelligence. 2, 114

ANN Arti�cial Neural Network. 110, 118, 123

AR Acceptance Ratio. 121, 130, 131

BA Barabási-Albert. 113, 114, 129–132, 142–145, 149, 182, 183

BC BCube Data Center Topology. 113, 114, 129, 130, 134, 145, 149

CPP Controller Placement Problem. 4, 70, 71

CPS Cyber-Physical System. 1

CPU Central Processing Unit. 5, 10, 16, 18

D-CPI Data-Controller Plane Interface. 11, 13, 14, 24, 26

DC Data Center. 114

DHPP Dynamic Hypervisor Placement Problem. 7, 75, 77, 78, 82–84, 182, 185

DViNE Deterministic Virtual Network Embedding Algorithm. 122, 129, 131, 132

EC Virtual Network Embedding Cost. 121

ER Erdős-Rényi. 113, 114, 129–133, 135, 142, 143, 145, 147, 150–153, 182, 183

FEAS Feasibility Seeking VNE Algorithm. 150, 151, 153, 185

FLP Facility Location Problem. 70

FN False Negative. 115

FP False Positive. 115

FT FatTree Data Center Topology. 113, 114, 129, 130, 133, 134, 145

FV FlowVisor. 21–23, 35–48, 53, 55–57, 62, 67, 158, 181

GDY Greedy Algorithm. 122, 129, 133, 143–149

GRC Global Resource Capacity Algorithm. 122, 129–133, 145, 146, 148, 149, 183

187

188 Acronyms

HF Hop�eld. 134, 135

HF-DViNE Hop�eld-enhanced Deterministic Virtual Network Embedding Algorithm. 129, 132, 133

HF-GRC Global Resource Capacity Algorithm with Hop�eld Preprocessor. 129–133, 183

HF-GRC-DC-FB Global Resource Capacity Algorithm with Hop�eld Preprocessor for Data Center Topolo-

gies. 129, 133, 134

HF-RViNE Hop�eld-enhanced Randomized Virtual Network Embedding Algorithm. 129, 132, 133

HF-SDP Hop�eld-enhanced Shortest Distance Path Algorithm. 129, 134, 135, 183

HPP Network Hypervisor Placement Problem. ii, 4, 7, 65, 66, 69, 70, 72, 74, 75, 77, 79, 81, 82, 87, 92, 185

InP Infrastructure Provider. 2, 10, 13

IP Internet Protocol. 10–12, 20, 23, 39, 52, 145

ISP Internet Service Provider. 9, 10

LB Load Balancing Algorithm. 122, 145–149

LLDP Link Layer Discovery Protocol. 21, 23

MAC Media Access Control. 23

McSDP Multi-controller Switch Deployment Problem. ii, 65, 66, 72, 75, 77, 79, 81, 185

MILP Mixed Integer Linear Programming. 7, 8, 66, 72, 79, 86, 107, 110, 136, 143, 144, 148

ML Machine Learning. 3, 5, 7, 8, 110, 111, 114–116, 118, 136, 137, 139–143, 145–148, 150–155, 157–160, 183,

185

MPLS Multiprotocol Label Switching. 10, 17

NFV Network Function Virtualization. 28

NOS Network Operating System. 2, 14, 16

NV Network Virtualization. 1–3, 6, 7, 9, 10, 12–15, 19, 109, 154, 157, 159

OF OpenFlow. 12, 13, 17–27, 29, 31–36, 38–40, 42, 44, 50–56, 58–63, 67, 158, 159, 181, 182

ONF Open Networking Foundation. 20

OSI Open Systems Interconnection. 51, 52

OvS Open vSwitch. 37–39, 41, 53, 54, 57, 60

OVX OpenVirteX. 22, 23, 35–48, 62, 158, 181

PCA Principal Component Analysis. 142

PCP Priority Code Point. 22

QoS Quality-of-Service. 1, 21, 71, 160

RCR Revenue-Cost-Ratio. 121, 123, 130, 131, 133

REV Revenue. 121, 131, 132

Acronyms 189

RMSE Root Mean Squared Error. 117, 147, 148

RND Random Algorithm. 143, 144

RViNE Randomized Virtual Network Embedding Algorithm. 122, 129, 131, 132

SDN Software-De�ned Networking. 1–27, 29–35, 37, 38, 41, 46–51, 53, 58–60, 62, 65–68, 70–79, 81–83, 86, 87,

92, 93, 97, 102, 107, 109, 136, 139, 140, 154, 157–160, 181, 185

SDP Shortest Distance Path Algorithm. 122, 129, 134, 135, 145–151, 153, 154, 183, 185

SLA Service Level Agreement. 19, 54

SP Service Provider. 2, 9, 10

TCAM Ternary Content-Addressable Memory. 12, 16, 22, 49

TCP Transmission Control Protocol. 12, 20, 22, 32, 41, 42, 52, 55, 58, 59, 70, 136

TN True Negative. 115

TP True Positive. 115

TR Total Revenue. 121, 130

TZ Topology Zoo. 86, 113, 114, 130–133, 143–145, 182, 183

UDP User Datagram Protocol. 33, 34

VCP Virtual Control Path. 69, 70, 76, 77, 80, 97, 98, 103–105, 107

VLAN Virtual Local Area Network. 9, 10, 21, 22

VM Virtual Machine. 2, 28

VN Virtual Network. 131, 135, 149

VNE Virtual Network Embedding. 5, 7, 109, 110, 119–124, 128–133, 136, 139, 141, 142, 145–148, 150–155, 159,

182, 183

VNF Virtual Network Function. 71, 72

VNR Virtual Network Request. 119–121, 124, 126, 129–135, 139, 141, 142, 145–150, 152–155, 183

vSDN Virtual Software-De�ned Network. 2–4, 12–14, 17, 20, 22, 29–32, 34, 36, 41, 47, 50–52, 58, 62, 65–67,

69–81, 83–94, 96–100, 102–107, 157, 181, 182, 185

WAX Waxman. 113, 114, 130, 142

	Introduction
	Research Challenges
	Contributions
	Outline

	Combining Network Virtualization and Software-Defined Networking
	Paradigms and Definitions
	Network Virtualization (NV)
	Software-Defined Networking (SDN)

	From Software-Defined Networks to Virtual Software-Defined Networks
	SDN Network Hypervisors - An Introduction
	SDN Controllers versus SDN Network Hypervisors
	SDN Network Hypervisors: Virtualization Tasks and Functions

	Measurements and Design for Virtual Software-Defined Networks
	Background and Related Work
	OpenFlow Protocol
	SDN Network Hypervisors
	SDN Analysis and Benchmarking
	Related Work

	Measurement Procedure for Network Hypervisors
	Measurement Tool for Benchmarking Network Hypervisors: perfbench
	Architecture and Implementation
	Procedure for Latency Estimation
	Conceptual Comparison to SDN Benchmarking Tools

	Measurement Evaluation of Network Hypervisors
	Existing Hypervisor Measurements
	Benchmark Settings for FlowVisor (FV) and OpenVirteX (OVX)
	Systematic and Exploratory Evaluation

	NV Layer Architecture Towards Predictable Control Plane Performance: HyperFlex
	Architecture Overview
	Virtualization Layer Control Plane Isolation
	Virtualization Layer Adaptation

	Summary

	Modeling and Optimization of NV Layer Placement Problems
	Background and Related Work
	Background on SDN Network Hypervisor Architectures
	Related Work

	Placement Problems in Virtual Software-Defined Networks
	Problem Setting for the hpp and the mcsdp
	Problem Setting for the Dynamic Hypervisor Placement Problem (DHPP)

	Modeling Network Hypervisor and Multi-Controller Switch Placements
	Modeling HPP and McSDP for Static Use
	Modeling Network Hypervisor Placement for Dynamic Use

	Simulative Analysis of Hypervisor Placement Problems
	Simulator for CPP, HPP, DHPP and VNE: virtshouse
	Placement Results for Static Use and the Cost of Virtualization
	Placement Results for Dynamic Use and the Cost of Adaptation

	Summary

	Machine Learning-based Algorithm Preprocessing for Virtual Network Provisioning
	Background
	Graph Theory
	Machine Learning
	Neural Computation with Hopfield Networks
	Virtual Network Embedding (VNE)

	Algorithm Preprocessing System Using Neural Computation: NeuroViNE
	Related Work
	Neural Preprocessor for Virtual Network Embedding
	Evaluation

	System for Data-Driven Network Algorithm Optimization and Design: o'zapft is
	Related Work
	o'zapft is: Challenges, Approach, and Exemplary Implementations
	Case Study I: Predicting Facility Locations
	Case Study II: Predicting the Costs of Virtual Network Requests
	Case Study III: Predicting the Acceptance Probabilities of Virtual Network Requests

	Summary

	Conclusion and Outlook
	Summary
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Acronyms

