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Abstract 

This research focuses on model formulation and optimization of facility locations on road 

networks, specifically for wireless charging infrastructure for electric vehicles. It 

encompasses a thorough account of the theoretical framework and creates the 

fundamentals to analyze and to determine the optimal location of charging infrastructure by 

taking different assumptions, boundaries and constraints into account. 

What is of particular interest is to analyze and to determine where to locate charging 

infrastructure and simultaneously to ensure that the relevant boundary conditions and 

constraints are integrated. This is achieved by developing two different mathematical model 

formulations. The first model deals with the optimal location of charging infrastructure 

considering traffic flow, travel times and a predetermined number of possible charging 

locations (flow-capturing location model with stochastic user equilibrium. The second model 

(set-covering location model with charging system design) incorporates a full coverage and 

more technical specifications into the design of the wireless charging system while 

assuming a pre-determined traffic pattern.  

For both, the flow-capturing location model with stochastic user equilibrium and the set-

covering location model with charging system design, the modelling frameworks, as well as 

the underlying assumptions and considerations are presented. Subsequently, the model 

formulations are depicted, followed by the illustration of the proposed solution method. 

Subsequently, the respective input parameters and analysis of the models’ results are 

presented. 
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1 Introduction 

The focus of this research is the modelling and optimization of facility locations on road 

networks, particularly for dynamic wireless charging infrastructure for electric vehicles. The 

motivation underlying this research is presented in section 1.1. Section 1.2 describes the 

problem statement and the objectives while section 1.3 entails the outline of this work, 

including an overview of the contents of the remaining sections. 

1.1 Motivation  

Given the restrictions on CO2 emissions, mobility is in a transition phase and electric 

vehicles offer the potential to reduce emissions as well as dependency on petroleum. 

Furthermore, in “the age of access” [RIFKIN, 2001], where facilities and services are more 

likely to be accessed by the users whenever a demand arises instead of everyone owning 

everything needed on an individual basis, the importance of the optimal location of facilities 

and services strongly increases. An example of an increasingly popular access service in 

the mobility sector is the publicly available charging station for electric vehicles. As the 

“access model” increases in economic importance, it is desirable that the given facilities or 

services are conveniently accessible to all parties that would like to make use of them. 

Five factors that influence the comprehensive implementation and usage of electric vehicles 

can be summarized as (1) the political framework, (2) the human attitude and expectation 

towards electric vehicles, (3) the technical vehicle specifications, (4) the costs and (5) the 

characteristics of the charging infrastructure. The first factor comprises the political will and 

resulting incentives towards a broader usage of electric vehicles. These incentives can 

include reduction of taxes and parking fees for electric vehicles and priority usage of the 

transportation network. Human attitude and expectation towards electric vehicles mainly 

deals with safety concerns and range anxiety that is defined as the fear of not being able to 

complete trips with an electric vehicle due to its insufficient range [EGBUE AND LONG, 2012]. 

The third category, technical vehicle specifications, entails factors such as battery lifetime 

and range of the electric vehicles whereas the forth category encompasses boundaries 

which are related to cost of buying and maintaining an electric vehicle as well as the costs 

of deploying, operating and maintaining charging infrastructure. The fifth category, charging 

infrastructure, deals with the technical specification, location and availability of charging 

infrastructure for electric vehicles. While all concerns and boundaries are important, this 

research focuses mainly on the fifth category of concerns: charging infrastructure. The lack 

of charging infrastructure is considered one of the main barriers hindering a broader 

implementation of electric vehicles.  
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The deployment of electromobility is supported by political decision makers through policies 

and incentives targeted at electric vehicles, making the total cost of ownership of electric 

vehicles comparable or in the future even lower than that of a vehicle with a conventional 

internal combustion engine motor [WU ET AL., 2015]. However, without sufficient provision of 

charging infrastructure, the broad deployment of electric vehicles will remain challenging 

due to the state-of-the-art technical vehicle specifications, especially the limited range, and 

the resulting human attitude towards electric vehicles, manifesting itself in range anxiety 

[EGBUE AND LONG, 2012]. 

1.2 Problem statement and objectives 

The provision of a comprehensive, convenient and cost-effective charging infrastructure is 

still under development. Hence, an analysis of technical and infrastructural constraints is 

crucial in order to determine the optimal locations of charging infrastructure for electric 

vehicles. Charging infrastructure for electric vehicles can be classified into several 

categories, including stationary plug-in charging (conductive), wireless charging (inductive) 

and battery swapping stations. Dynamic wireless charging infrastructure, a technical 

solution of charging infrastructure where vehicles charge while driving on the roadway, is 

not yet widely implemented and the existing systems operate mainly on a test and 

demonstration level. Hence, it is worthwhile to develop an optimization framework for 

determining optimal locations of dynamic wireless charging infrastructure beforehand in 

order to analyze and estimate the potential impact on the transportation system and the 

required number of charging facilities before the implementation. The first objective of this 

research is to set up a framework for modelling the problem of charging station placement 

for electric vehicles. Second, a focus is set on the determination of optimal locations of 

charging facilities for dynamic wireless charging and finally to identify the key factors for 

determining such optimal locations. Moreover, two approaches shall be followed: The first 

approach investigates how many electric vehicles can be covered when a predetermined 

number of facilities is assumed. The second approach examines how much charging 

infrastructure is required, given the condition that all demand must be covered. While the 

emphasis is firmly on wireless charging, stationary charging is included to illustrate specific 

points of the research. Taking these considerations into account the following research 

question is derived: 

How can the location of dynamic wireless charging infrastructure be optimized on a discrete 

road network? 

1. What percentage of charging demand of electric vehicles can be covered with a 

predetermined number of facilities?  

2. What is the minimum number of facilities and their locations that results in a full 

coverage of charging demand from electric vehicles?  
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The objective function and the constraints vary depending on the location problem to be 

solved. Therefore, two different approaches with specific objectives and constraints for the 

optimal location of wireless charging infrastructure for electric vehicles are included. Two 

mathematical models derived from classical location science are proposed to determine the 

optimal location of wireless charging facilities for electric vehicles (EVs). The first model 

deals with the optimal location of charging infrastructure by taking into account traffic flow, 

travel times and a predetermined number of possible charging locations. The second model 

includes pre-assigned traffic while taking into consideration full coverage and additional 

technical specifications for the design of the wireless charging system. The models are 

tested with varying input parameters to give insights on the required infrastructure 

deployment based on different scenarios.  

To summarize, two mathematical models are proposed to determine the optimal location of 

wireless charging facilities for EVs. The reasons to follow this approach are twofold: first, to 

fit the specific requirements of incorporating optimal location and equilibrium constraints 

and second, to model the technical and range requirements in detail. 

1.3 Outline 

The remainder of this work is organized as follows: In section 2, the literature relevant for 

location modelling of charging infrastructure of electric vehicles is collated and classified. 

First, methods for determining optimal locations and their applicability to charging 

infrastructure, second, different types of charging infrastructure and third, models for the 

placement of charging infrastructure are investigated.  

Based on the conclusions drawn from the literature review and the state of the art analysis 

and taking the research questions into account, two location models for the placement of 

wireless charging infrastructure for electric vehicles including their mathematical formulation 

and the applied solution methods are presented in section 3.  

The application of the proposed models is explored in section 4. Sets of numerical 

experiments are conducted taking a baseline network into consideration in order to 

demonstrate the model validity and solution quality. Furthermore, the computational 

modelling and optimization framework is described followed by the presentation of the 

model-specific applications and results.  

Section 5 provides a summary and conclusions, including the key findings, contributions 

and limitations. Moreover, an outline of future research is presented. An overview on the 

research framework and structure of this research work is depicted in Fig. 1.1.   
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Model application

1. Flow-capturing location model 
with stochastic user equilibrium

2. Set-covering location model 
with charging system design 

Conclusions

1. Definition of baseline network 
2. Computational modelling and optimization framework

3. Model-specific application and analysis

Model development

1. Flow-capturing location model 
with stochastic user equilibrium

2. Set-covering location model 
with charging system design 

1. Modelling framework: Considerations and assumptions
2. Model formulation 
3. Solution method

Research question: 
How can the location of dynamic wireless charging infrastructure be optimized on a discrete road network?

1. What percentage of charging demand of electric 
vehicles can be covered with a predetermined number 

of facilities? 

2. What is the minimum number of facilities and their 
locations that results in a full coverage of charging 

demand from electric vehicles?

Literature review and state of the art analysis

Optimal locations: Which methods to determine optimal locations exist? Are these applicable in the context of 
charging infrastructure for electric vehicles?   

Charging infrastructure for electric vehicles: What types of charging infrastructure for electric vehicles exist?

Placement of charging infrastructure for electric vehicles: Which approaches and models for the location 
optimization of charging infrastructure exist? How can they be classified? 

 

Fig. 1.1: Overview on research framework and structure 
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2 Literature review and state of the art analysis 

In this section, the literature relevant for modelling and optimizing facility locations in 

discrete networks in the context of charging infrastructure for electric vehicles is collated 

and classified. The purpose of this literature review is threefold: (1) to set out the 

mathematical fundaments of optimization and location science (section 2.1), (2) to present 

an overview of basic information and current knowledge on electric vehicles and their 

charging infrastructure (section 2.2) and (3) to give an adequate account of the existing 

approaches and models for determining optimal locations of charging infrastructure for 

electric vehicles (section 2.3). For each of the three aforementioned domains, the relevant 

literature is discussed and analyzed and finally conclusions are drawn in section 2.4.  

2.1 Optimal locations  

The following two subsections contain the general formulation and brief description of 

mathematical optimization problems (section 2.1.1) and the application of such optimization 

problems in location science (section 2.1.2).  

2.1.1 Mathematical optimization 

“Optimization is everywhere” [YANG AND KOZIEL 2011, p. 1] and it is used throughout a wide 

range of applications in engineering and science as well as in industrial applications. Due to 

the fact that resources, time and budget are mostly limited, the “optimal” use of these 

resources is crucial, especially in practice [YANG AND KOZIEL, 2011]. Depending on the 

respective application, the parameters that are to be considered within the optimization 

model and whether costs are to be minimized or savings to be maximized, the mathematical 

formulation of such an optimization model and the appropriate solution method vary. Yet, in 

any effort of mathematical optimization fit, the problem is first formulated and a method for 

solving the problem is chosen subsequently.      

2.1.1.1 Formulating optimization problems 

The basic formulation of a nonlinear optimization problem can be described as follows 

[YANG AND KOZIEL, 2011]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖(𝑥), (𝑖 = 1,2, … ,𝑀) 

Subject to: 

 ℎ𝑗(𝑥), (𝑗 = 1,2,… , 𝐽) 
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𝑔𝑘(𝑥)  ≤ 0, (𝑘 = 1,2,… , 𝐾) 

In this notation 𝑓𝑖, ℎ𝑗 and 𝑔𝑘 are general nonlinear functions, where the functions 𝑓𝑖 depict 

the objective or the cost functions, ℎ𝑗 the equality constraints and 𝑔𝑘 the inequality 

constraints. When 𝑓𝑖, ℎ𝑗 and 𝑔𝑘 are linear functions the overall problem is defined as being a 

linear problem. Furthermore, optimization problems can be classified into convex and non-

convex problems, where convex optimization is considered a generalization of linear 

programming [BOYD AND VANDENBERGHE, 2004]. 

If the specific vector 𝑥∗ has the smallest objective value compared to all vectors which 

satisfy the constraints, it is called optimal or a solution of the problem [BOYD AND 

VANDENBERGHE, 2004]. The vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) can be continuous, discrete or mixed in 

𝑛-dimensional space [YANG AND KOZIEL, 2011]. If some values of the vector 𝑥 are integer 

values (for instance binary values) the overall optimization problem is considered to be a 

mixed integer problem [YANG AND KOZIEL, 2011]. Mixed integer problems can be classified 

further and are referred to as mixed integer linear problem (MILP) and mixed integer 

nonlinear problem (MINLP).  

2.1.1.2 Solving optimization problems 

To compute the solution of an instance of the optimization problem case-specific solution 

methods must be used [BOYD AND VANDENBERGHE, 2004]. For instance, if the functions 𝑓𝑖, ℎ𝑗 

and 𝑔𝑘 are all linear, the overall optimization problem becomes linear as well and efficient 

solution methods can be applied to solve the optimization problem. Generally, for convex 

optimization problems, one can use efficient methods such as interior point methods for 

finding the optimum. For linear problems Dantzig’s simplex method can be used to solve 

the problem accordingly. Furthermore, for mixed integer linear problems, existing solution 

methods such as the branch and bound algorithms can be used for determining the solution 

of the optimization problem. For linear problems and mixed integer linear problems 

commercially available solvers such as the CPLEX optimization software package which 

includes IBM ILOG CPLEX Optimizer can be used [ILOG CPLEX OPTIMIZATION STUDIO, 2014]. 

Alternative solvers that can be used for mixed integer linear problems include Gurobi 

[GUROBI OPTIMIZATION, 2016] or FICO Xpress [FICO XPRESS OPTIMIZATION SUITE, 2014].  

Despite implementing the optimization problem with commercial optimization software and 

making use of a state of the art hardware, solving difficult problems may involve long 

computation time [KLOTZ ET AL., 2013a]. A comprehensive overview with suggestions on 

how to efficiently use optimizers to solve difficult linear and mixed integer linear programs is 

given by KLOTZ ET AL. [2013a] and KLOTZ ET AL. [2013b]. 
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Heuristics such as evolutionary algorithms can be applied to all types of problems, however, 

the algorithms must be designed to the optimization problem. Hence, it is generally not 

possible to utilize readily available software packages.  

To conclude, depending on the nature of the optimization problem, case-specific solutions 

methods must be applied. The extensive discussion of solution algorithms for optimization 

problems is out of scope of this research work and the interested reader can refer to BOYD 

AND VANDENBERGHE [2004] for a comprehensive insight on convex optimization and to YANG 

AND KOZIEL [2011] for an overview on computational optimization, methods and algorithms.    

2.1.2 Location science 

This section gives an overview of location science concepts and models for facility location 

problems. The theoretical framework for location science was established in the 17th century 

with a seemingly simple geometric problem, often referred to as Fermat’s problem [LAPORTE 

ET AL., 2015]. It encompasses finding the point at which the sum of distances between three 

given points in the Euclidian plane is minimized [LAPORTE ET AL., 2015]. However, it is not 

part of the concern of this research work to dwell on the historical development of location 

science. The interested reader may consult REVELLE AND EISELT [2005]; EISELT AND MARIANOV 

[2011] and LAPORTE ET AL. [2015] for detailed reviews.  

Typically, facility locations problems consist of “determining the “best” location for one or 

several facilities or equipments [sic] in order to serve a set of demand points” [LAPORTE ET 

AL., 2015, p. 1]. It should be noted that the denotation of “best” is subject to the model 

constraints and the objective considered [LAPORTE ET AL., 2015].  

This literature review focuses on discrete network location problems in the public sector as 

these are the basis for the models developed within this research. Discrete problems are 

defined as problems in which facilities must be placed at the nodes of a network, while in 

continuous problems facilities can be placed anywhere on the plane [SNYDER, 2011]. More 

specifically, the review concentrates on the set-covering location problem, the maximal 

covering location problem and the flow-covering location problem, which constitutes a 

further development of the classic maximal covering model by taking network flows instead 

of nodes into account. 

The basic components of a location problem are threefold: (1) a space with a defined 

distance measure, (2) a set of given points (customers or demands) and (3) candidate 

locations for the placement of new points (facilities) [EISELT AND MARIANOV, 2011]. Fig. 2.1 

illustrates these basic components.  
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Fig. 2.1 Schematic view of basic location problem components 

Due to the aforementioned differences in model constraints and objectives, which can be 

considered when determining the “best” location, location problems can be classified 

further. One major classification that can be employed is the application of these problems 

in different sectors. Classically, one would differentiate between location models applied in 

the private sector or in the public sector.  

Typically, private location problems seek to maximize profit or to capture larger market 

shares from a competitor [MARIANOV ET AL., 2002]. Public location problems rather reflect 

social optima and seek to minimize social cost, guarantee universality of service, efficiency 

and equity [MARIANOV ET AL., 2002]. Measuring these objectives proves to be rather difficult, 

hence supporting frameworks for formulation of the public location problems are often 

considered to find optima for public location problems. These supporting frameworks for 

the formulation of public location models could for instance seek to optimize costs of 

location and operation to obtain full coverage or to maximize coverage with a predefined 

number of facilities or budget in order to implicitly capture social optima [MARIANOV ET AL., 

2002]. 

A second common classification of locations problems is the space in which they are 

modelled [REVELLE AND EISELT, 2005]. REVELLE AND EISELT [2005] differentiate between 

location problems, which are modelled in “a subset of d-dimensional real space and 

networks” [REVELLE AND EISELT, 2005]. Both of these categories can be further classified into 

continuous or discrete location problems. In continuous location problems, facilities are to 

be placed anywhere in the space or the network, subsequently the mathematical 

formulations of those problems are likely to be nonlinear. On the other hand, discrete 
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location problems usually incorporate a preselected set of candidate facility locations at 

which the facilities may be located. This requires preprocessing of the space or network and 

thereby the creation of the set mentioned previously. Consequently, binary values are 

employed to model the choice between these discrete facility locations mathematically. This 

results in location problems that fall under the category of mixed integer problems. An 

overview of the most common discrete network location models, their objectives and the 

according publication is presented in Tab. 2.1. In all these models, the underlying networks 

as well as the locations of the demands and the facilities are given as input parameters 

[CURRENT ET AL., 2001].  

Distance or measures “functionally related to distance (e.g. travel time or cost, demand 

satisfaction)” [CURRENT ET AL., 2001, p. 2] are the basis of facility location problems. 

Subsequently such models can be differentiated into covering or maximum distance models 

and total or average distance models. Maximum distance models consider covering 

distances and determine demand satisfaction by ensuring that the nearest facility is within 

the covering distance. In cases where the closest facility is not within the covering distance, 

the demand is not satisfied [CURRENT ET AL., 2001]; while total or average distance models 

take the overall distance that must be traversed to reach the closest facility into account.  

Considering the objectives and the research questions defined in section 1.2, the set-

covering location problem that seeks to minimize the number of facilities to cover all 

demand and the maximal covering location problem which seeks to maximize covered 

demand with a predetermined number of facilities to be located are considered as adequate 

basic model formulations. Subsequently, a detailed overview of the model formulations 

including the inputs and sets, the decision variables, the objective function and the 

constraints are given for these two models. Furthermore, an overview of the flow-capturing 

location model that constitutes a special form of the maximal covering location model is 

given. The flow-covering location model includes origin-destination flows instead of static 

demand points.  
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Covering or Maximum Distance Models  

Model Objective Publication 

Set-covering location problem 

Minimize number of facilities 

required to cover all demand 

nodes 

TOREGAS ET AL. [1971] 

Maximal covering location 

problem 

Maximize covered demand with 

predetermined number of 

facilities, 𝑝 

CHURCH AND REVELLE 

[1974] 

p-center problem 

Minimize the maximum distance 

that demand is from its closest 

facility with a predetermined 

number of facilities, 𝑝 

HAKIMI [1964], HAKIMI 

[1965] 

Total or Average Distance Models  

Model Objective Publication 

p-median problem 

Minimize demand-weighted total 

distance between demand 

nodes and assigned facilities 

with a predetermined number of 

facilities, 𝑝 

HAKIMI [1964], HAKIMI 

[1965] 

Fixed charge location problem  
Minimize total facility and 

transportation costs 

(form of p-median) 

Hub location problems  

 

Minimize total cost (often as a 

function of distance) with a 

predetermined number of 

facilities, 𝑝 

Numerous models 

(e.g. O’KELLY [1986a], 

O’KELLY [1986b], 

CAMPBELL [1994]) 

Maxisum location problem  

 

Maximize total demand-

weighted distance between 

demand nodes and assigned 

facilities with predetermined 

number of facilities, 𝑝 

CURRENT ET AL. [2001] 

 

Tab. 2.1 Discrete network location models (adapted from CURRENT ET AL. [2001] and DASKIN [2008]) 
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2.1.2.1 Set-covering location problems 

The objective of the set-covering location problems (SCLP) is to locate a minimum number 

of facilities to “cover” all of the demand nodes [CURRENT ET AL., 2001] under the constraint 

that each demand node is covered by at least one facility. The distances between the 

demand nodes and the candidate facility locations as well as the distance coverage of the 

candidate facility locations is taken into consideration when creating the set of candidate 

locations that can cover the respective demand point. To ensure that each demand node is 

covered by a facility, a binary constraint, which is set to 1 if a facility is located at one of the 

candidate facility locations and 0 otherwise, is included within the model formulation. The 

mathematical formulation of the SCLP is depicted in Tab. 2.2. 

Sets and Parameters 

𝐼 set of demand nodes indexed by 𝑖  

𝐽 set of candidate facility locations, indexed by 𝑗 

𝑑𝑖𝑗 distance between demand node 𝑖 and candidate site 𝑗 

𝐷𝑐 distance coverage 

𝑁𝑖 𝑁𝑖={ 𝑗 |𝑑𝑖𝑗 ≤ 𝐷𝐶}, set of all candidate locations that can cover demand point 𝑖 

Decision variables 

𝑥𝑗 Binary variable, 1 if there is a facility at location 𝑗, 0 otherwise 

Objective function  

Minimize ∑ 𝑥𝑗𝑗 ∈𝐽  

Constraints 

Subject to:  

∑ 𝑥𝑗 ≥ 1 ∀ 𝑖 ∈ 𝐼 

𝑗 ∈𝑁𝑖

 

𝑥𝑗  ∈ {0, 1}∀ 𝑗 ∈ 𝐽 

Tab. 2.2 Set-covering location problem (adapted from CURRENT ET AL. [2001] and TOREGAS ET AL. 
[1971]) 

A schematic view of a set-covering location problem and its solution is depicted in Fig. 2.2. 

The set of demand nodes 𝐼 = {1 ,2, 3, 4, 5, 6, 7, 8} and the set of candidate facility locations 
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𝐽 = {1, 2, 3, 4} are given as well as the distances between the demand nodes and the 

candidate sites (see Fig. 2.2) and the distance coverage 𝐷𝑐 = 1 𝑘𝑚. When considering the 

set-covering location problem depicted in Fig. 2.2, the set of all candidate locations that can 

cover the demand points 𝑁𝑖 can be derived by visual analysis. For each demand node it 

must be analysed whether it is located within the distance coverage radius of the candidate 

facility locations. Consequently, the analysis yields the following specific sets 𝑁1 = {1}, 

𝑁2 = {1, 2}, 𝑁3 = {1, 2, 4}, 𝑁4 = {1, 3}, 𝑁5 = {4}, 𝑁6 = {3}, 𝑁7 = {3, 4} and 𝑁8 = {4}. 

 

Fig. 2.2 Schematic view of a set-covering location problem 

Using visual analysis and taking the aforementioned constraints into consideration, it is 

apparent that a minimum of three candidate facility locations placed at locations 1, 3 and 4 

must be equipped with a facility to cover all demand nodes 1 to 8. The fourth facility at 

location 2 is not necessary. 

2.1.2.2 Maximal covering location problems 

The objective of maximal covering location problems (MCLP) is to locate a given number of 

facilities 𝑝 while simultaneously ensuring that the demand covered by the facilities is 

maximized. This approach differs from the set-covering location problem in that the number 

of facilities is given, introducing a budget constraint to the model. If not all demand can be 

covered by the new facilities, the facilities that cover the most demand will be selected by 

the model [CURRENT ET AL., 2001]. Constraining factors include that only covered demand is 

taken into account and the number of facilities to be located is predetermined. Furthermore, 

the decision to position a facility at a given location and demand coverage are both 

expressed using binary constraints as presented in Tab. 2.3.  
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Sets and Parameters 

𝐼 set of demand nodes indexed by 𝑖  

𝐽 set of candidate facility locations, indexed by 𝑗 

𝑑𝑖𝑗 distance between demand node 𝑖 and candidate site 𝑗 

𝐷𝑐 distance coverage 

𝑁𝑖 𝑁𝑖={ 𝑗 |𝑑𝑖𝑗 ≤ 𝐷𝐶}, set of all candidate locations that can cover demand point 𝑖 

ℎ𝑖 demand at node 𝑖 

𝑝 number of facilities to locate  

Decision variables 

𝑥𝑗 Binary variable, 1 if there is a facility at location 𝑗, 0 otherwise 

𝑧𝑖 Binary variable, 1 if demand node 𝑖 is covered, 0 otherwise 

Objective function  

Maximize ∑ ℎ𝑖𝑖 ∈ 𝐼 𝑧𝑖 

Constraints 

Subject to:  

∑ 𝑥𝑗 − 𝑧𝑖 ≥ 0 ∀ 𝑖 ∈ 𝐼 

𝑗 ∈𝑁𝑖

 

∑𝑥𝑗 = 𝑝 

𝑗 ∈𝐽

 

𝑥𝑗  ∈ {0, 1} ∀ 𝑗 ∈ 𝐽 

𝑧𝑖  ∈ {0, 1} ∀ 𝑖 ∈ 𝐼 

Tab. 2.3 Maximal covering location problem (adapted from CURRENT ET AL. [2001] and CHURCH AND 

REVELLE [1974]) 
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Accordingly, a schematic view of a set-covering location problem and its solution is 

depicted in Fig. 2.3. The set of demand nodes 𝐼 = {1,2,3,4,5,6,7,8} and the set of candidate 

facility locations 𝐽 = {1,2,3,4} are given as well as the distances (see Fig. 2.3) between the 

demand nodes and the candidate sites and the distance coverage 𝐷𝑐 = 1 𝑘𝑚. For 

simplification it is assumed that all demand points are characterized by equal amounts of 

demand (ℎ𝑖 = 1). Furthermore, the number of possible facilities to locate is restricted to 

𝑝 = 2. 

 

Fig. 2.3 Schematic view of a maximal covering location problem 

Hence, the two candidate facility locations 1 and 4 are the optimal solution as those cover 

the maximum cumulated demand. To round off the picture and to give another example, in 

case the number of possible facilities to locate is increased to 𝑝 = 3, locations 1, 3 and 4 

would be the optimal solution and consequently, all given demand points would be covered. 

The resulting location pattern is exactly the same as the one for the set-covering location 

problem presented in Fig. 2.2 due to the circumstance that with an increased number of 

possible facilities to locate all the given demand points would be covered as well.   

2.1.2.3 Flow-capturing location problems 

The flow-capturing location problem (FCLP) depicts a further development of the maximal 

covering location problem. It includes origin-destination (OD) flows instead of static demand 

points in the model formulation and its objective is to maximize the captured flow, which is 

the flow that intersects one of the facilities located [HODGSON, 1990]. As in the maximal 

covering location problem, the facility location decisions and the flow covered are both 
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expressed using binary constraints. The mathematical formulation of the FCLP is shown in 

Tab. 2.4. 

Sets and Parameters 

𝑄 set of all OD pairs, indexed by 𝑞  

𝐾 set of all candidate facility locations, indexed by 𝑘 

𝑓𝑞 flow between OD pair 𝑞 

𝑁𝑞 set of nodes capable of capturing 𝑓𝑞between 𝑂𝑖 and 𝐷𝑗 

𝑝 number of facilities to locate  

Decision variables 

𝑥𝑘 Binary variable, 1 if there is a facility at location 𝑘, 0 otherwise 

𝑦𝑞 Binary variable, 1 if demand node 𝑓𝑞is covered, 0 otherwise 

Objective function  

Maximize ∑ 𝑓𝑞𝑞 ∈ 𝑄 𝑦𝑞 

Constraints 

Subject to:  

∑ 𝑥𝑘 ≥ 𝑦𝑞  ∀ 𝑞 ∈ 𝑄 

𝑘 ∈𝑁𝑞

 

∑ 𝑥𝑘 = 𝑝 

𝑘 ∈𝐾

 

𝑥𝑘  ∈ {0, 1} ∀ 𝑘 ∈ 𝐾 

𝑦𝑞  ∈ {0, 1} ∀ 𝑞 ∈ 𝑄 

Tab. 2.4 Flow-capturing location problem [HODGSON, 1990] 

For illustration, a schematic view of a flow-location problem and its solution is depicted in 

Fig. 2.4. The following sets and parameters are given: The flow 𝑓𝑞 moves between the OD 

pair using the given network, where the link width indicates the amount of flow on the link, 

the set of candidate facility locations 𝐾 = {1, 2, 3, 4}, the number of facilities to locate 𝑝 = 1 

as well as the set of nodes capable of capturing the demand. 
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Fig. 2.4 Schematic view of a flow-covering problem 

The solution of this schematic example yields more than one optimal solution. Candidate 

facility locations 1 or 4 both satisfy the constraints equally well as locating a facility at both 

location could ensure capturing all demand and hence capture a maximum of the flow in the 

network. 
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2.2 Charging infrastructure for electric vehicles  

Charging infrastructure for electric vehicles can be classified into different types such as 

stationary plug-in charging (conductive), wireless charging (inductive) and battery swapping 

stations. The following review focuses solely on plug-in conductive charging and wireless 

inductive charging, hence in the next sections the system approaches for plug-in 

conductive charging and wireless inductive charging are specified in detail in sections 2.2.1 

and 2.2.2, respectively. More specifically, the system architecture, implementation examples 

and typical locations for plug-in and wireless charging infrastructure are presented.  

2.2.1 Plug-in charging infrastructure 

An overview of the different system approaches for plug-in charging infrastructure and their 

classification according to different standardization bodies is given in Fig. 2.5. Generally, 

approaches for plug-in conductive charging systems can be distinguished between 

alternating current (AC) and direct current (DC) charging and their according plugs and 

power levels. Plug types 1, 2 and 3 are specified for AC charging with power levels varying 

between 3.7 kW and 43 kW. The three most common plug types for DC charging currently 

are CHAdeMO (50 kW), Type 2 (up to 35 kW) and Combo Plug (200 kW). 

 

Fig. 2.5 System approaches for plug-in charging infrastructure for electric vehicles (adapted from 
German National Platform for Electric Mobility (NPE) [2014]) 

This type of charging infrastructure is designed to transfer the energy while the vehicle is 

parked as a cable must be plugged in to transfer energy and supply the battery within the 

vehicle. 

2.2.1.1 System architecture 

Plug-in conductive charging infrastructure receives commercial energy from the grid and 

subsequently the energy transfer is handled through a cable and direct contact to the 
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vehicle as depicted in Fig. 2.6. The energy is then converted within the vehicle and provided 

to the vehicle battery that powers the electric motor.  

 

Fig. 2.6 Plug-in charging system architecture (adapted from German National Platform for Electric 
Mobility (NPE) [2014]) 

2.2.1.2 Implementation and typical locations 

Charging infrastructure is typically located at either private or publicly accessible locations 

[German National Platform for Electric Mobility (NPE), 2015]. Typical locations for plug-in 

charging at private locations include garages or parking places at home, residential sites, 

apartment buildings or company car parks. Publicly accessible plug-in charging 

infrastructure is typically located at motorway service stations, shopping centers, car parks 

and curbside public parking spaces [German National Platform for Electric Mobility (NPE), 

2015].  

2.2.2 Dynamic wireless charging infrastructure  

Dynamic wireless charging infrastructure employs an electromagnetic field to transmit 

energy to a vehicle system that is equipped with a pick-up coil capable of collecting the 

energy and charging on-board batteries [KO, 2012]. This type of infrastructure is designed to 

transfer the energy while the vehicle is in motion; hence the vehicles are not required to stop 

during charging [HIGHWAYS ENGLAND, 2015]. Reported power levels transferred to the pick-

up coil vary between 17 kW (Online Electric Vehicle (OLEV)) and 200 kW depending on the 

implementation [HIGHWAYS ENGLAND, 2015]. 

2.2.2.1 System architecture 

The system architecture for dynamic wireless charging infrastructure based on the Online 

Electric Vehicle (OLEV) system is depicted in Fig. 2.7. The OLEV system entails a roadside 

system, the primary energy transmitter, which is embedded in the road, and the vehicle 

system. The primary energy transmitter is powered by commercial electricity from the grid 

and the electricity is picked up by the vehicle system through a pickup coil (power pick-up 

module) which provides the energy to the vehicle battery. The primary energy transmitters 
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are embedded in the road in segments, which vary in length from 1 m to 1 km [BRECHER ET 

AL., 2014]. 

 

Fig. 2.7 OLEV dynamic wireless charging system architecture (adapted from BRECHER ET AL. 
[2014]) 

2.2.2.2 Implementation and typical locations 

Dynamic wireless charging infrastructure is in the stage of research and early development, 

hence only a few services are implemented and operational. The measurement in 

Technology Readiness Levels (TRL) is often used to describe different stages of technology 

from basic principles to actual system and BRECHER ET AL. [2014] give an overview of 

wireless charging pilots and a classification of their TRLs.   

TRLs are based on the following scale [BRECHER ET AL., 2014]: 

- TRL 1: Basic principles observed and reported  

- TRL 2: Technology concept and/or application formulated 

- TRL 3: Analytical and experimental critical function and/or proof of concept 

- TRL 4: Component and system validation in laboratory environment 

- TRL 5: Laboratory scale, similar system validation in relevant environment 

- TRL 6: Engineering/pilot-scale validation in relevant environment 

- TRL 7: Full-scale validation in relevant environment 

- TRL 8: Actual system completed and qualified through test and demonstration 

- TRL 9: Actual system operated over full range of expectations 

Tab. 2.5 presents an overview of wireless charging pilots, their application and TRL levels. 

In general the wireless charging pilots are implemented to show the capability of wireless 

charging for high capacity public transportation such as electric buses and high capacity 

light rail. Reported TRL levels vary between the engineering/pilot scale validation and the 

actual completion of the system including tests and demonstration and most of the wireless 
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charging pilots depicted in Tab. 2.5 are categorized as TRL 8. However, a full range 

operational system is yet to be implemented.    

Supplier Application TRL 

IPT Technology (former 

Conductix-Wampfler) 

Electric Buses TRL 8 

OLEV SMFIR Electric bus and high capacity light rail 

vehicle 

TRL 8 (Bus) 

TRL 6-7 (Rail)  

WAVE Electric buses TRL 7-8 

Bombardier PRIMOVE Electric buses and light rail vehicles TRL 8 

EATON HyperCharger Electric buses TRL 7 

Tab. 2.5  Wireless charging pilots (adapted from BRECHER ET AL. [2014]) 

Due to the insufficient technological maturity of dynamic wireless charging, it is not yet 

widely distributed and is only implemented currently in private locations and roads such as 

small scale testing areas and amusement parks [KO ET AL., 2012]. However, potential use 

cases in the long term could include publicly accessible roads such as a motorway or urban 

street network. 
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2.3 Placement of charging infrastructure for electric vehicles  

The following section presents an account of different modelling approaches for locations of 

charging infrastructure for electric vehicles. First, modelling approaches for the optimal 

locations of plug-in charging infrastructure are reviewed in section 2.3.1, followed by 

modelling approaches for wireless charging infrastructure in section 2.3.2.  

2.3.1 Optimal locations for plug-in charging infrastructure  

Problems related to the optimal location of stationary charging facilities have received much 

attention from researchers. In this section, various modelling approaches for the placement 

of charging infrastructure for stationary charging that are relevant for this research work are 

presented. They are categorized based on their objective and the main inputs and outputs 

are summarized. Here, the models’ objectives are divided into four categories: (1) set-

covering approach (2) maximal covering approach, (3) flow covering approach and (4) 

equilibrium-based approach. 

2.3.1.1 Set-covering approach 

WANG [2007] formulated a model as set-covering location problem that focuses on the 

placement of charging infrastructure for electric scooters in a recreational context. The 

integer problem minimizes the cost of placing charging stations under the constraints that 

the time for recharging must be greater than the minimum recharge time for completing the 

trip, that the battery is fully charged at the beginning of a trip, that the number of scooters to 

be recharged is not greater than the number of recharge stations at a certain location and 

that the number of recharging stations at each location is not greater than their capacities. 

However, no routing costs are assumed as it is argued that the charging stations are 

located at trip destinations.   

Furthermore, WANG AND LIN [2009] present a set-covering model that incorporates a vehicle 

refueling logic into the model formulation. WANG AND WANG [2010] use the refueling logic 

constraints developed by WANG AND LIN [2009] and develop a mixed integer problem with a 

set-covering approach and the objective of minimizing the total cost of installing charging 

stations while maximizing the coverage. The inputs of the model are potential station 

locations, set of all arcs, set of all vehicles traveling along paths, costs of locating a station 

at a node, refueling capacity and the distance between nodes.  

2.3.1.2 Maximal covering approach 

FRADE ET AL. [2011] formulated a model with the objective to maximize the demand covered 

within a given distance or service level, by locating a fixed number of charging stations. 

Furthermore, a differentiation between daytime and nighttime demand is incorporated. The 



22  Modelling and location optimization of dynamic wireless charging infrastructure 

function includes a penalty to prevent unnecessary charging point locations. The inputs for 

this model are (1) the number of statistical divisions, (2) the number of the possible 

locations, (3) the proportion of users assigned to a charging station, (4) the coverage 

distance, (5) whether there is a charging station or not, (6) the number of refueling events 

during the day and night, (7) the maximum number of stations to be installed, (8) the 

capacity of the charging station, and (9) the number of charging points for the certain 

charging station. As model constraints, FRADE ET AL. [2011] consider the maximum number 

of charging stations to be installed, a maximum demand covered of 100 percent, a defined 

coverage distance for which the demand is not covered if the charging station is farther 

away than this distance, the capacity and the according number of charging points to be 

installed. The output of the model is the number of charging stations to be installed as well 

as the number of charging points to be installed at each possible location. Additionally, the 

level of coverage of the sections is given.  

2.3.1.3 Flow-covering approach 

Several modelling approaches extend the flow-capturing location problem for the 

application of optimizing charging infrastructure for electric vehicles. KUBY AND LIM [2005] 

introduce the flow-refueling locations model (FRLM) by incorporating a flow refueling logic 

to the classical flow-capturing location problem. The FRLM is continuously extended for 

example by KUBY AND LIM [2007] who present a method to determine possible candidate 

locations for the FRLM on links or by LIM AND KUBY [2010] who propose to solve the FRLM 

more efficiently by making use of heuristic algorithms. UPCHURCH ET AL. [2009] develop a 

capacitated flow refueling location model that ensures that no facility refuels more than its 

capacity and limits the number of vehicles refueled at each station. As an input, the model 

requires precise knowledge about where the flows need to be refueled. The model objective 

is to maximize the total flows refueled under consideration of the combination of facilities. A 

capacity constraint ensures that it is impossible for a single combination to refuel all flows of 

a particular OD pair and the fraction of the flow refueled is indicated. Furthermore, the 

capacity constraint is introduced. It is ensured that the total use of the facilities by all flows 

and all combinations of facilities for each flow does not exceed the capacity of the facility.  

Additionally, KIM AND KUBY [2012] introduce a deviation-flow model capable of taking 

deviations from the shortest path into account. Both KIM AND KUBY [2013] and HUANG ET AL. 

[2015] publish further extensions of the FRLM including deviation paths. The arc-cover path-

cover FRLM (AC-PC FRLM), which constitutes a more efficient formulation of the FRLM is 

introduced by CAPAR ET AL. [2013]. Moreover, WANG AND LIN [2013] introduce the formulation 

of a capacitated multiple-recharging-station-location model including a vehicle-refueling 

logic which takes the maximum number of types of charging stations that can be located at 

a specific node and the length of stay at nodes into account.  
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Another modelling approach that takes the flow-covering approach into consideration is 

suggested by SHUKLA ET AL. [2011]. The objective function of their binary integer linear 

problem maximizes the “intercepted” traffic flow. The constraints taken into account are a 

budget constraint which includes an investment budget to cost of charging station ratio that 

is not to be exceeded and a constraint which determines the intercepted traffic flow. A path 

is seen as intercepted if one or more facilities are located on the path.  

2.3.1.4 Equilibrium-based approach 

HE ET AL. [2013a] develop a model that incorporates facility locations for plug-in charging 

facilities and a coupled transportation and power network to determine the equilibrium 

state. The objective of the model is to “maximize social welfare of the coupled networks for 

an average hour” by taking the total expected utility of electric vehicle drivers, the charging 

expenses, the total generation cost of electricity and the total construction cost of charging 

stations into consideration. The model determines the optimal number of charging stations 

for dedicated metropolitan areas from a macroscopic perspective. It optimizes the 

placement of charging stations by considering the total number of charging stations to be 

located among a set of possible locations under the constraints of an equilibrium state of 

the traffic and power flows distributions and the price of electricity.  

Furthermore, HE ET AL. [2013b] use an equilibrium-based approach to formulate a model that 

incorporates electricity prices and road pricing as mechanisms to control and influence the 

management of transportation and power networks. Additionally, HE ET AL. [2014] develop 

three different network equilibrium models to integrate different flow dependencies and 

energy consumptions of electric vehicles and their recharging time under the assumption 

that drivers seek to minimize either trip time or cost while completing the trip without 

running out of energy.  

2.3.2 Optimal locations for dynamic wireless charging infrastructure  

KO ET AL. [2012] develop an optimization model for the placement of wireless charging 

technology. They assume that several identical vehicles are traveling on a circular fixed 

route, which is split into different segments depending on the properties of the road. The 

battery is charged when the vehicles pass over a road segment equipped with a power 

transmitter. Furthermore, they assume that the velocity profiles of the individual vehicles are 

known in advance. The formulated mixed integer problem aims to minimize the sum of the 

battery costs and the costs of the power transmitters (including inverter and inductive 

cable). The outputs of the model are the segments which are to be equipped with wireless 

charging technology and the capacity of the battery. The constraints take the energy level of 

the battery, which should be fully charged when starting and ending the trip and should not 

fall below a certain threshold during the trip, and the energy consumption during the trip into 

consideration.  
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An equilibrium-based approach to determine the maximum social welfare for different 

scenarios of full or partial electrification of roads is developed by HE ET AL. [2013c]. The 

optimal prices of electricity and wireless charging roads are determined by coupling the 

transportation and the power network.  

FULLER [2016] uses a flow-based set-covering approach based on the seminal research 

work of WANG AND LIN [2009] and TOREGAS ET AL. [1971] to analyze the potential for wireless 

dynamic charging taking range and recharge issues into account. The objective of his model 

is to minimize the capital cost of the dynamic wireless charging facilities under the 

constraints of the design of the dynamic wireless charging system, the battery capacity, the 

routes of the electric vehicles and the according range requirements.  

2.4 Summary and conclusions  

The previous sections present an account of the literature and state of the art technologies 

relevant for determining how to optimize locations of dynamic wireless charging 

infrastructure on a discrete road network. The concept of mathematical optimization is 

presented with a subsequent detailed overview of the location optimization models used 

commonly in the context of the optimization of charging infrastructure: the set-covering 

location problem, the maximal covering location problem and the flow-covering location 

problem. When using mathematical optimization, it is desirable to formulate optimization 

problems as linear programs as these type of formulations allow for the use of existing 

solution algorithms and the use of readily available optimization software packages.  

Moreover, an account of the basics of the charging infrastructure for electric vehicles for 

both plug-in and dynamic wireless charging infrastructure is given. Dynamic wireless 

charging infrastructure is not yet widely implemented and the existing systems mainly 

operate on a test and demonstration level. However, it is worthwhile to develop an 

optimization framework that determines optimal locations for this type of charging 

infrastructure to analyze the potential impact and the required extent of such systems 

before they are implemented.      

The final part of the literature review provides an overview of previous research that deals 

with the placement of charging infrastructure for electric vehicles for plug-in and dynamic 

wireless charging infrastructure. The literature reviewed shows that throughout different 

research works the placement of charging infrastructure for electric vehicles is modelled 

with various different inputs and assumptions. Generally, there are a wide variety of model 

objectives ranging from economic, travel demand, distance, energy and traffic flow 

approaches. However, only the main objectives are used to classify the models and even 

though the objective of the model is for instance minimizing the cost, other factors such as 

travel demand or energy related objectives can be considered in the constraints of the 
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model as well. Most of the reviewed model approaches take an economic viewpoint and 

seek to optimize the placement of charging infrastructure based on the cost. The type of 

costs taken into consideration differs between the models. Furthermore, compared to 

location optimization models which consider plug-in charging, models for dynamic wireless 

charging are not yet widely researched.  

To conclude, the essence of the literature review leads to three conclusions concerning the 

potential for research that is pursued to answer the formulated research questions. First, the 

optimal locations of dynamic wireless charging infrastructure can be investigated on a 

discrete road network by employing mathematical optimization, more specifically facility 

location models can incorporate the specifics of traffic flow and charging infrastructure. 

Various fundamental models for determining optimal facility locations are available and the 

application of these well-established models allows for the exemplary investigation of 

different scenarios. This is specifically advantageous for exploring the effects of locating 

facilities under different objectives and constraints. Considering the basic components of a 

location problem (a space with a defined distance measure, a set of given demand and 

candidate locations), it can be concluded that they are applicable to the context of optimal 

locations for charging infrastructure for electric vehicles. More specifically, the space with a 

defined distance measure is depicted by the transportation network, the set of given 

demand is depicted by the charging demands of electric vehicles and the candidate 

locations are depicted by the possible locations of charging infrastructure. Furthermore, the 

fundamental concepts of set-covering and maximal covering location problems are well 

suited for answering the formulated research questions. Set-covering location models seek 

to minimize the number of facilities required to cover all demand nodes. Hence, they can be 

applied directly to the context of the optimization of charging infrastructure deployment 

when the objective is to seek the minimum number of facilities required to cover all charging 

demand. However, in cases when handed a budget and hence potentially only a limited 

number of locations is available and with which charging demand is to be met, the maximal-

covering location model, which seeks to maximize the covered demand with a 

predetermined number of facilities, is the optimization model of choice. Both set-covering 

and maximal-covering models include integer decision variables in their basic model 

formulation. Furthermore, depending on the nature of the optimization problem, case-

specific solutions methods must be applied. In the context of mixed integer linear 

optimization problems methods for solving these models already exist. Hence, the approach 

of formulating the optimization problem as a mixed integer linear problem is pursued further 

in this research work.   

Second, flow-capturing and flow-refueling location problems discussed in the literature 

review classify link traffic flow on the network as an exogenously given input parameter. 

Usually, the assignment of the origin-destination (OD) demand to the shortest paths is 

implemented through preprocessing using common shortest path algorithms. 
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Consequently, only the resistance weights (such as trip distance) assumed beforehand 

governs the route choice behavior of the motorists. The availability of charging stations and 

flow-dependent travel times cannot be depicted with these standard models. However, for 

both FCLM and FRLM, traffic flow on the network is included as a weight in the objective 

function and subsequently determines a crucial model parameter. Subsequently, the 

availability of charging facilities and the resulting effect on route choice of electric vehicle 

drivers are to be taken into consideration for the model formulation developed in this 

research work. This can be achieved by pursuing a modelling approach that simultaneously 

considers the optimal facility locations and the equilibrium traffic flow pattern within the 

transportation network.  

Third, besides the fact that dynamic wireless charging infrastructure is not yet implemented 

on a large scale, limited research efforts concerned with modelling and optimization of this 

type of infrastructure have been undertaken. The flow-based set-covering model, which 

takes refueling of electric vehicles and dynamic wireless charging infrastructure into 

consideration can be extended by investigating the length of the segments of dynamic 

charging infrastructure and the energy to be transmitted as additional decision variables 

besides the facility location. 
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3 Model development 

This section presents an insight into the modelling approaches and methodology applied 

within this research (section 3.1). The two models that are developed are explained in 

section 3.2 and section 3.3. These models can be applied to optimally locate charging 

facilities with wireless power transfer capabilities. The first is an extension of the flow-

covering model including simultaneous traffic assignment with stochastic user equilibrium 

(SUE) and the second is an extension of the set-covering model with charging system 

design. For each model, this research work presents the modelling framework and the 

underlying assumptions and considerations. Subsequently, the model formulation and the 

applied solution method are depicted. 

3.1 Modelling approaches  

The main question to be answered is how the location of dynamic wireless charging 

infrastructure can be optimized on a discrete road network. To answer this question, two 

mathematical models to determine the optimal location of dynamic wireless charging 

infrastructure for electric vehicles are developed and applied. In line with the basic 

components of a facility location problem, for both models the following three building 

blocks are considered, first the transportation network, second the charging infrastructure 

and third the electric vehicles.  

Existing models from literature serve as the basis and are refined and extended in order to 

formulate mathematical optimization models which capture the specifics of dynamic 

wireless charging infrastructure. The two different model formulations are derived based on 

the research questions presented in section 1.2. 

Due to these model extensions, however, initially both optimization models are formulated 

as nonlinear models. Given the rationale presented in the literature review, it is desirable to 

create a modelling framework that allows for the application of existent solution methods 

already available in software packages. In summary, the further modelling approach after 

identifying the potential for extending existing location models can be described as follows:  

1. Definition of the modelling framework 

2. Formulation of the model based on the developed modelling framework  

3. Application of a solution method that transforms the model into a mixed integer 

linear formulation of the optimization model 

This approach is deployed to both models which were developed and it is reflected 

accordingly in the division of the subsections.  
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First, a newly developed mathematical model for determining the location of wireless 

charging infrastructure using a flow-covering approach that simultaneously assigns traffic 

flow and selects locations for charging infrastructure (referred to as the “flow-capturing 

location model with stochastic user equilibrium”) is presented in section 3.2. This model can 

be deployed to give insights on the percentage of charging demand that can be covered 

when a predetermined number of facilities for dynamic wireless charging is available.  

Second, a flow-based set-covering approach, the “set-covering location model with 

charging system design” which seeks to minimize the number and locations of facilities 

while ensuring full demand coverage and taking specifics of the charging system design into 

consideration, is described in section 3.3. 

3.2 Flow-capturing location model with stochastic user equilibrium  

Contents of this section were previously published in Riemann, R., Wang, D. Z. W. and 

Busch, F., 2015. Optimal location of wireless charging facilities for electric vehicles: Flow-

capturing location model with stochastic user equilibrium. Transportation Research Part C: 

Emerging Technologies, 58, pp.1–12. 

The flow-capturing location model with stochastic user equilibrium approaches the problem 

of optimally locating wireless charging facilities in discrete road networks. The model takes 

a predetermined number of wireless charging facilities to be located and electric vehicles’ 

traffic flows into account. The modelling framework and the underlying assumptions and 

considerations are described in section 3.2.1.  

Furthermore, it seeks to maximize the captured traffic flow, which implies that a maximum 

number of electric vehicles may use these links and access the wireless charging facilities. 

The AC-PC FRLM introduced by CAPAR ET AL. [2013] constitutes the basis of the model 

formulation that is illustrated and detailed in 3.2.2. Because of the interaction between the 

location of charging facilities on the network and the traffic flow assignment, the AC-PC 

FRLM is extended by equilibrium constraints, which capture the route choice behavior 

depending on preferences. 

The proposed mathematical model is formulated as a mixed integer nonlinear problem. A 

global optimization method is applied in section 3.2.3 to the formulated model by 

transforming the nonlinear objective function into equivalent linear equations and by 

approximating the multinomial logit-based (MNL) model and the nonlinear travel time 

function with piecewise linearization techniques.  

To summarize, the objective is to capture maximum traffic flow on the network under the 

constraints of a given number of wireless charging facilities which can be selected from a 

predetermined set of candidate facility locations and equilibrium traffic flow patterns. The 
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traffic flow pattern follows the stochastic user equilibrium and incorporates drivers’ routing 

choice behavior in the model. Both the wireless charging facility location and the traffic flow 

pattern are decision variables of the model that are attained endogenously from the model 

solution. The resulting model formulation is a mixed integer nonlinear problem (MINLP); 

therefore, a global optimization solution method is developed by applying linearization 

techniques to obtain the solution of the problem.  

3.2.1 Modelling framework: Considerations and assumptions 

The objective of the proposed model is to maximize the captured flow of electric vehicles, 

which is equivalent to that of the classical flow-capturing models. However, to capture and 

investigate changes in route choice and travel times due to the availability of charging 

infrastructure on the network, equilibrium constraints are incorporated to the model 

formulation.  

In contrast to previous FCLM and FRLM, in the proposed model, both traffic flow and the 

availability of wireless charging facilities are considered simultaneously when locating the 

charging facilities in the network. It is assumed that charging facility availability might affect 

the route choice of electric vehicle drivers in such a way that they are more likely to choose 

routes with charging facilities. That is particularly true when dynamic wireless charging 

infrastructure is deployed as the electric vehicles will recharge their batteries while driving 

on the electrified roadway. This is a crucial factor for complementing the trips, as the range 

of the vehicles is limited. In addition, it may affect the attitude and expectations towards 

electric vehicles as it could mitigate range anxiety. Therefore, the interactions of facility 

location and traffic assignment are captured in the flow-capturing model with equilibrium 

constraints. The arc cover-path cover flow-refueling location model, which is a 

computationally more efficient formulation of the FRLM, is introduced by CAPAR ET AL. [2013] 

and constitutes the basis of this model formulation. However, the model is extended by 

taking equilibrium constraints into account.  

Travel times are computed endogenously trough the Bureau of Public Roads (BPR) function 

[COMSIS CORP., 1983] which takes link free flow travel times, link capacities and the 

assigned continuous traffic flow on the links into account when computing flow dependent 

link travel times. Consequently, potential bottlenecks that may occur due to the availability 

of charging facilities and the resulting changes in route choice behavior are identified in 

advance as travel times are modelled as flow dependent variables.  

Changes in route choice due to travel times and the availability of charging infrastructure in 

the network are modelled by using the concept of stochastic user equilibrium (SUE). This 

implies that the perceived travel times are modelled endogenously as flow and infrastructure 

dependent variables by applying a multinomial logit-based loading model. In the state of 

stochastic user equilibrium, no one can improve the utility of their route by “unilaterally 



30  Modelling and location optimization of dynamic wireless charging infrastructure 

changing routes” [SHEFFI, 1985]. Additionally, this implies that the utility on all routes will not 

be equal [SHEFFI, 1985]. In the proposed model formulation, the utility of choosing a route 

depends on the travel time and the availability of charging stations. In the MNL, the travel 

time is subject to a negative scaling parameter as a higher travel time implies a lower utility 

for the route. In contrast, the availability of a charging facility is subject to a positive scaling 

parameter as the possibility of charging the electric vehicles and therefore completing the 

routes (if the range is not sufficient to complete the trip) implies a higher utility.  

Consequently, by utilizing this approach, the interaction between the location of charging 

facilities, route choice and therefore traffic flow on the links is incorporated explicitly in the 

proposed model formulation. To summarize, the optimal location of wireless charging 

facilities is influenced by the traffic flow, which in turn affects routing choice behavior, and 

thus the equilibrium traffic flow. Travel time and the availability of charging infrastructure are 

considered as the two factors influencing utility.   

However, the utilization of a nonlinear travel time function and a MNL model indicates that 

the resulting model must be classified as mixed integer non-linear model (MINLP). The 

approach to formulate the flow-capturing location model with stochastic user equilibrium 

serves two purposes: First, to locate wireless charging facilities on the network and second, 

to incorporate both travel time and the availability of charging facilities endogenously when 

assigning traffic in the network.  

The following assumptions have to be made to enable the modelling effort. Due to the 

incorporation of non-linear constraints the model formulation is quite complex. For this 

reason, all vehicles in the network are assumed to be electric vehicles. Furthermore, all of 

the vehicles start their trips with a fully charged battery, implying that at each node of trip 

origin access to a stationary charging facility exists. The possible candidate locations for the 

wireless charging facilities are all assumed to be located in the center of the links, at the 

centroid node of each link in the network. The charging process is conducted dynamically 

while the vehicles are driving over the links equipped with a wireless charging facility. 

Furthermore, as this model focuses on the macroscopic formulation of the location problem, 

instead of modelling the detailed technical properties of the wireless charging system, a full 

recharge is assumed when an electric vehicle uses a link hosting a wireless charging facility. 

Consequently, when the electric vehicles traverse a link equipped with a wireless charging 

facility, there is no time loss for recharging. If electric vehicles can complete a particular 

route without running out of energy, this particular route flow is regarded as “captured”. 

However, a vehicle will run out of energy if not all the centroid-link segments can be 

refueled. These EV flows cannot complete their trips and are regarded as “not captured”. 

This definition is according to the logic of the existent flow-capturing models. The 

parameters necessary for the calibration of the stochastic user equilibrium are assumed to 

be given beforehand as the focus of this research is on model formulation. Taking these 
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considerations and assumptions into account, the notation presented in Tab. 3.1 is 

employed for the mathematical formulation of the sets and parameters of the FCLM with 

equilibrium constraints. Furthermore, the sets and parameters are classified according to 

the building blocks (transportation network, charging infrastructure and electric vehicles) 

taken into consideration for the model formulation.   

Sets and Parameters 

Building block: transportation network  

𝑊 Set of all OD pairs 𝑤 

𝑁 Set of all nodes 𝑛 in network 

𝐴 Set of all links 𝑎 in network 

𝐺 Network 𝐺 = (𝑁, 𝐴) consisting of sets of nodes 𝑁 and links 𝐴 

𝑂 Set of all origin nodes 𝑜 , where 𝑂 𝑁 

𝐷 Set of all destination nodes 𝑑, where 𝐷 𝑁 

𝑍 Set of all centroid nodes 𝑧 of links 𝑎, 𝑎 ∈ 𝐴  

𝑀 
Set of all origin nodes, centroid nodes and destination nodes 𝑚, where 

𝑀 =  𝑂 ∪ 𝑍 ∪ 𝐷, with 𝑖, 𝑗 ∈ 𝑀 

𝑎𝑖,𝑗 Segment starting from node i and ending at node j of neighboring links, 𝑖, 𝑗 ∈ 𝑀 

𝐴𝑖,𝑗,𝑟
𝑤  Ordered set of segments 𝑎𝑖,𝑗 on route 𝑟 of OD pair 𝑤 ∈ 𝑊 

𝐶𝑎 Set of all link capacities  𝑎 , 𝑎 ∈ 𝐴 

𝐷𝑎 Set of all length of link distances 𝑑𝑎 

𝑇𝑎
0 Set of all link free flow travel times 𝑡𝑎

0, 𝑎 ∈ 𝐴 

𝑅𝑤 Set of all feasible routes 𝑟 of OD pair 𝑤 ∈ 𝑊  

𝛿𝑎,𝑟
𝑤  

Link-path incidence, 𝛿𝑎,𝑟
𝑤 = 1 if link 𝑎 ∈ 𝐴 belongs to route 𝑟 between OD pair 

𝑤, 0 otherwise 

𝑞𝑤 OD travel demand  

𝛼 Negative scaling parameter for travel time  
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Building block: charging infrastructure 

𝛽 Positive scaling parameter for the availability of charging facilities  

𝐾 Set of all candidate facility locations 𝑘  

𝛹𝑖,𝑗,𝑟
𝑤  

Set of candidate facility locations capable of recharging EV flows so that the EV 

can traverse the segment 𝑎𝑖,𝑗 in 𝐴𝑖,𝑗,𝑟
𝑤 (EV range and link distances are taken into 

consideration when this set is generated)  

𝑝 Number of wireless charging facilities to be located 

Building block: electric vehicles 

𝐸𝑉𝑅 Range of EVs 

Tab. 3.1 Sets and parameters FCLM with stochastic user equilibrium 

The notation of the decision variables of the FCLM with equilibrium constraints is depicted 

below in Tab. 3.2.  

Decision variables 

𝑥𝑘 Binary variable, 1 if there is a wireless charging facility at location 𝑘, 0 otherwise 

𝑦𝑟
𝑤 Binary variable, 1 if flow on route 𝑟 is captured, 0 otherwise 

𝑓𝑟
𝑤 Continuous flow variable on route 𝑟 between OD pair 𝑤 ∈ 𝑊 

ℎ𝑎 Continuous flow variable on link 𝑎 

𝑃𝑟
𝑤 Probability of flow choosing route 𝑟 between OD pair 𝑤 ∈ 𝑊 

𝑡𝑎 Travel time when using link 𝑎 ∈ 𝐴 

𝑡𝑟
𝑤 Travel time when using route 𝑟 between OD pair 𝑤 ∈ 𝑊 

Tab. 3.2 Decision variables FCLM with stochastic user equilibrium 

3.2.2 Model formulation 

In this section, the objective function and the constraints of the flow-capturing model with 

equilibrium constraints for the determination of wireless charging facilities in a network are 

presented. The illustrated problem formulation constitutes a mixed integer non-linear 

problem. Initially, the complete mathematical formulation is shown, followed by a detailed 

description of the model.  
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Maximize:  

∑ ∑ 𝑓𝑟
𝑤𝑦𝑟

𝑤

𝑟 ∈ 𝑅𝑤𝑤 ∈ 𝑊

  (1) 

Subject to: 

∑ 𝑥𝑘 ≥  𝑦𝑟
𝑤

𝑘 ∈ 𝛹𝑖,𝑗,𝑟
𝑤

,   ∀ 𝑎𝑖,𝑗  ∈  𝐴𝑖,𝑗,𝑟
𝑤 , 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (2) 

∑ 𝑥𝑘 =  𝑝

𝑘 ∈ 𝐾

  (3) 

ℎ𝑎 = ∑ ∑ 𝑓𝑟
𝑤𝛿𝑎,𝑟

𝑤

𝑟 ∈ 𝑅𝑤

,

𝑤 ∈ 𝑊

   ∀𝑎 ∈ 𝐴 (4) 

𝑃𝑟
𝑤 =

exp (𝛼𝑡𝑟
𝑤 +  𝛽𝑦𝑟

𝑤)

∑ exp (𝛼𝑡𝑠
𝑤 +  𝛽𝑦𝑠

𝑤)𝑠 𝜖 𝑅𝑤
,   

∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊 (5) 

𝑡𝑟
𝑤 = ∑ 𝛿𝑎,𝑟

𝑤 𝑡𝑎
𝑎 ∈ 𝐴

,   ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (6) 

𝑡𝑎 = 𝑡𝑎
0 [1 +  0.15 (

ℎ𝑎

𝑐𝑎
)
4
], 

∀𝑎 ∈ 𝐴 (7) 

𝑓𝑟
𝑤 = 𝑞𝑤𝑃𝑟

𝑤,   ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (8) 

𝑥𝑎 ∈  {0|1},  ∀𝑎 ∈ 𝐴  (9) 

𝑦𝑎,𝑟
𝑤 ∈  {0|1} , ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴  (10) 

The objective stated in (1) is to maximize the total captured traffic flow. The objective 

function is the first nonlinear term within this model formulation as both the flow-capturing 

variable 𝑦𝑟
𝑤 and the flow variable 𝑓𝑟

𝑤 are defined as decision variables that are solved 

endogenously. In the conventional AC-PC FRLM, the flow 𝑓𝑟
𝑤 is given as exogenous input, 

which is computed by solving the shortest path problem. 

Constraint (2) is based on the flow-cover constraint proposed by CAPAR ET AL. [2013] for the 

formulation of the AC-PC FRLM. It depicts the flow-cover component of the model for each 

specific route 𝑟. If an EV can utilize all the links on its route without running out of energy, 

this route is considered to be covered, thus 𝑦𝑟
𝑤 = 1. In contrast to CAPAR [2013] in the 

proposed model formulation, the set candidate facility locations capable of recharging EV 

flows so that the EV can traverse the segment 𝑎𝑖,𝑗 in 𝐴𝑖,𝑗,𝑟
𝑤  (𝛹𝑖,𝑗,𝑟

𝑤 ) is generated by taking the 

distances between the centroid nodes of neighboring link as the segment that has to be 

traversed without running out of energy. This assumption is made as dynamic wireless 
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charging facilities are to be installed on the links of a network; hence, the candidate facility 

locations are a set of the centroid-points of the links. Moreover, in contrast to CAPER ET AL. 

[2013], round-trips are not considered.  

The predetermined EV range and the lengths of the links are taken as input parameters for 

generating the set 𝛹𝑖,𝑗,𝑟
𝑤 , which is utilized by constraint (2). A schematic view of the set 

generation logic for the set of candidate facility locations capable of recharging EV flows so 

that the EV can traverse the segments, 𝛹𝑖,𝑗,𝑟
𝑤 , is illustrated in Fig. 3.1. The available range of 

the electric vehicles is taken into account when generating the set. 

The four diamond shapes in Fig. 3.1, which are located at the centroid point of each link, 

depict the set of candidate locations for charging facilities. With the assumption that a 

vehicle has a range of 60 km and that the battery is fully charged at the beginning of the trip, 

the route depicted would be considered traversable if a charging facility would to be located 

at the candidate facility location between nodes 3 and 4. If no facility is located at this 

candidate location, the route would not be traversable, hence it would not be considered as 

being a “captured” route.  

 

Fig. 3.1 Schematic view of the set generation logic for set 𝛹𝑖,𝑗,𝑟
𝑤  

Constraint (3) determines the number of total wireless charging facilities 𝑝 to be located. 

This is in line with the conventional FCLMs and FRLMs, for which the total number of 

facilities to be located is predetermined as well.  

The incorporation of constraints (4), (5) and (8), which describe the stochastic user 

equilibrium [SHEFFI, 1985], allows for the determination of the traffic flow pattern and for the 

investigation of changes in route choice due to travel times and the availability of charging 

infrastructure in the network. The flow on each link in the network is computed as the sum 

over the products of the route flow, 𝑓𝑟
𝑤, and the link-path incidence, 𝛿𝑎,𝑟

𝑤  for each link in 

constraint (4).  

Constraint (5) entails the MNL model which determines the electric vehicles drivers’ routing 

choice behaviour. The MNL model depicts the interaction between equilibrium traffic flow 

assignment and location of charging facilities as it includes both decision variables into the 

Node
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utility function. The behaviour is assumed to be influenced by two factors: The flow-

dependent route travel time 𝑡𝑟
𝑤 and the availability of charging facilities as incorporated by 

the variable 𝑦𝑟
𝑤. Both of these are weighted with scaling parameters 𝛼 and 𝛽, respectively, 

to incorporate routing decision sensitivity in the utility function for travel time and availability 

of charging facilities.  

In practice, the values of parameters 𝛼 and 𝛽 must be calibrated and validated (for instance 

by utilizing survey data). However, as this research focuses on model formulation, 𝛼 and 𝛽 

are assumed to be given as input parameters. The effects of the parameters on the overall 

model solution are analyzed in section 4.2.  

Travel times are determined by constraints (6) and (7). The total travel time when using route 

𝑟 is determined by constraint (6) and constraint (7) allows for the computation of the link 

travel time, which is based on the Bureau of Public Roads’ (BPR) travel time function 

[COMSIS CORP. 1983]. The BPR travel time function entails the interrelationship of link free 

flow travel time, 𝑡𝑎
0, link capacity  𝑎 and flow on each link ℎ𝑎. 

The flow on each route is computed by using constraint (8), which takes the OD travel 

demand and the probability of the flow choosing a route between an OD pair into account. 

Finally, constraints (9) and (10) are added to express the binary properties of the decision 

variables 𝑥𝑘 and 𝑦𝑟
𝑤. 

Taken together, the objective function and the model constraints enable the investigation of 

the interaction between the facility locations and the traffic flow in the network. However, 

the proposed model is a mixed integer nonlinear problem. The solution method and the 

resulting reformulated model are presented in subsection 3.2.3. 

3.2.3 Solution method 

In this section, the solution method to solve the model formulation is presented. It is 

intended to employ a global optimization method. Hence, the original nonlinear model 

formulation is transformed into a linear model to which common solution algorithms 

available through commercially available software can be applied. Nonlinearity is introduced 

into the model in three ways: First, the objective function entails the term 𝑓𝑟
𝑤𝑦𝑟

𝑤, second, 

constraint (5) includes the nonlinear MNL model and third, constraint (7) entails the nonlinear 

BPR travel time function.  

The objective function is linearized by applying the reformulation-linearization technique 

(RLT). Constraints (5) and (7) are linearized by transformation into logarithmic terms, 

followed by piecewise linear approximation.  
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3.2.3.1 Linearization of objective function 

The first nonlinearity in the proposed model stems from the terms in the objective function, 

more specifically the variable 𝑓𝑟
𝑤, which determines the continuous flow on route 𝑟 between 

OD pair 𝑤 ∈ 𝑊, and the binary variable 𝑦𝑟
𝑤, which controls the flow that is considered to be 

captured, or otherwise. By employing the reformulation-linearization technique, originally 

proposed by SHERALI AND ADAMS [1994] the objective function can be substituted by a set of 

linear constraints. Another application of this technique in the context of transportation 

networks can be found for example in WANG ET AL. [2015]. 

The new set of linear constraints and the equivalence of this set to the original objective 

function are demonstrated in detail below. First, a new auxiliary variable φ𝑟
𝑤 as depicted in 

equation (11) is introduced to substitute the term in the objective function.  

𝜑𝑟
𝑤 = 𝑓𝑟

𝑤𝑦𝑟
𝑤, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (11) 

Second, a parameter 𝑓𝑟
𝑤 to set the lower bound and a parameter 𝑓𝑟

𝑤 to set the upper bound 

of the route flow variable are introduced. These parameters must be set sufficiently small 

(𝑓𝑟
𝑤) and sufficiently large (𝑓𝑟

𝑤), respectively, to ensure that the feasible domain of 𝑓𝑟
𝑤 is not 

reduced. 

Third, the four additional linear constraints shown in equations (12) - (15) incorporate the 

newly defined parameters 𝑓𝑟
𝑤 and 𝑓𝑟

𝑤 and must be employed to transform the objective 

function into equivalent linear constraints.  

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤𝑦𝑟
𝑤 ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (12) 

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤𝑦𝑟
𝑤 ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (13) 

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤 + 𝑓𝑟
𝑤(1 − 𝑦𝑟

𝑤) ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (14) 

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤 + 𝑓𝑟
𝑤(1 − 𝑦𝑟

𝑤) ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (15) 

Variable 𝑦𝑟
𝑤 can only obtain the values zero or one due to its binary nature. Hence, in order 

to prove the equivalence of equation (11) and the linear constraints in equations (12) – (15), it 

must be proven for both cases of 𝑦𝑟
𝑤 = 0 and 𝑦𝑟

𝑤 = 1. 

For the first case, if 𝑦𝑟
𝑤 = 0, the product 𝜑𝑟

𝑤 = 𝑓𝑟
𝑤𝑦𝑟

𝑤 = 0. Accordingly, the linear constraints 

in equations (12) – (15) form equations (16) and (17) below. Both inequalities are only 

satisfied if 𝜑𝑟
𝑤 = 0. 

0 ≤ 𝜑𝑟
𝑤 ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (16) 
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𝑓𝑟
𝑤 − 𝑓𝑟

𝑤 ≤ 𝜑𝑟
𝑤  ≤ 𝑓𝑟

𝑤 − 𝑓𝑟
𝑤, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (17) 

For the second case, if 𝑦𝑟
𝑤 = 1, the product 𝜑𝑟

𝑤 = 𝑓𝑟
𝑤 𝑦𝑟

𝑤 = 𝑓𝑟
𝑤. Accordingly, the linear 

constraints in equations (12) – (15) form equations (18) and (19). Both inequalities are only 

satisfied if 𝜑𝑟
𝑤 = 𝑓𝑟

𝑤. 

𝑓𝑟
𝑤 ≤ 𝜑𝑟

𝑤 ≤ 𝑓𝑟
𝑤, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (18) 

𝑓𝑟
𝑤 ≤ 𝜑𝑟

𝑤  ≤ 𝑓𝑟
𝑤, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (19) 

To conclude, for both cases, 𝑦𝑟
𝑤 = 0 and 𝑦𝑟

𝑤 = 1, the equivalence is proven. Hence, the 

nonlinear objective function in equation (1) can be substituted by equation (11) as the new 

objective function and by equations (12) – (15) as additional linear model constraints.  

3.2.3.2 Linearization of the route choice probability constraint 

The MNL model in constraint (5) introduces the second nonlinearity. It is incorporated to 

govern the traffic flow choosing its route 𝑟 between OD pair 𝑤. Constraint (5) can be 

converted into the following two equations (20) and (21) due to the property of 

Independence from Irrelevant Alternatives (IIA) which is inherent to the MNL model. This 

property entails that “the ratio of probabilities of any two alternatives is independent of the 

choice set” [BEN-AKIVA AND BIERLAIRE, 1999]. Equation (20) expresses the ratio of the 

probabilities of the flow choosing route 𝑟 between OD pair 𝑤 and equation (21) ensures that 

the sum of all probabilities for the relevant routes equals one which is according to any 

probability mass function.  

𝑃𝑟
𝑤

𝑃𝑠
𝑤 =

exp (𝛼𝑡𝑟
𝑤 +  𝛽𝑦𝑟

𝑤)

exp (𝛼𝑡𝑠
𝑤 +  𝛽𝑦𝑠

𝑤)
 , 

∀ 𝑟, 𝑠  ∈ 𝑅𝑤, 𝑟 ≠ 𝑠, 𝑤 ∈ 𝑊 (20) 

∑ 𝑃𝑟
𝑤 = 1

𝑟 ∈ 𝑅𝑤

, ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊 (21) 

The linearization of the route choice probability constraint is performed according to the 

method presented by LIU AND WANG [2015]. According to their method, taking the logarithm 

of both sides of equation (20) results in equation (22).  

Then, employing standard logarithmic identities yields equation (23). 

𝑙𝑛 (
𝑃𝑟
𝑤

𝑃𝑠
𝑤)  = 𝑙𝑛 (

exp (𝛼𝑡𝑟
𝑤 +  𝛽𝑦𝑟

𝑤)

exp (𝛼𝑡𝑠
𝑤 +  𝛽𝑦𝑠

𝑤)
), 

∀ 𝑟, 𝑠  ∈ 𝑅𝑤, 𝑟 ≠ 𝑠, 𝑤 ∈ 𝑊 (22) 

𝑙𝑛( 𝑃𝑟
𝑤) − 𝑙𝑛( 𝑃𝑠

𝑤)=𝛼(𝑡𝑟
𝑤 − 𝑡𝑠

𝑤) +  𝛽(𝑦𝑟
𝑤 − 𝑦𝑠

𝑤), ∀ 𝑟, 𝑠  ∈ 𝑅𝑤, 𝑟 ≠ 𝑠, 𝑤 ∈ 𝑊 (23) 
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Consequently, equations (21) and (23) are used to express the nonlinear route choice 

probability constraint (5). The remaining nonlinearity lies in the logarithmic function, which is 

to be linearized using piecewise approximation and which is presented in the remainder of 

this section. 

3.2.3.3 Linearization of link travel time  

The following linearization of the link tavel time is performed according to the method 

presented by LIU AND WANG [2015]. It should be noted that the BPR function in equation (7), 

that is included for the computation of the link travel time, contains another nonlinear term. 

The continuous flow variable ℎ𝑎 which is a decision variable in the model, is exponential by 

a factor of 4 ((ℎ𝑎)
4) in the BPR function. Subsequently, the auxiliary variable 𝑘𝑓𝑎 is included 

to express this power function (see equation (24)).   

𝑘𝑓𝑎 = (ℎ𝑎)
4, ∀𝑎 ∈ 𝐴 (24) 

First, the logarithm on both sides of equation (24) is taken, which yields equation (25). 

Similiar to the method of linearizing the route choice probability constraint, the nonlinearity 

of the power function is thus expressed using a logarithmic function.  

𝑙𝑛 (𝑘𝑓𝑎) = 4 (𝑙𝑛 ℎ𝑎), ∀𝑎 ∈ 𝐴 (25) 

Next, the nonlinear term in the BPR function in equation (7) is replaced by the auxiliary 

variable 𝑘𝑓𝑎, which results in a linearization of the BPR link travel time function as shown in 

equation (26).  

𝑡𝑎 = 𝑡𝑎
0 [1 +

0.15

( 𝑎)
4
𝑘𝑓𝑎] , 

∀𝑎 ∈ 𝐴 (26) 

Subsequently, equations (25) and (26) are included as supplementary constraints to the 

model. 

3.2.3.4 Piecewise linearization of logarithmic terms 

To conclude, the logarithmic functions constitute the remaining nonlinearity in the model. 

Logarithmic functions are globally concave, hence the linearization can be implemented 

straightforwardly using piecewise linear approximation. Several linearization methods are 

published to deal with this problem, for example the mixed integer linearization method of 

WANG AND LO [2010] and LIU AND WANG [2015].  

Instead, here, the piecewise linearization is implemented using Special Ordered Sets  

Type 2. BEALE AND TOMLIN [1970] created the theoretical framework for Special Ordered 

Sets in order to facilitate the process of finding global optimum solutions to problems 

featuring piecewise linear approximations of nonlinear functions. They describe two types of 
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Special Ordered Sets (SOS): SOS Type 1 and SOS Type 2. SOS Type 1 are defined as “sets 

of variables of which not more than one member may be nonzero to the final solution” 

[BEALE AND FORREST, 1976]. Accordingly, in SOS Type 2 “not more than two members may 

be nonzero in the final solution” [BEALE AND FORREST, 1976] and furthermore, if two 

members of the set are nonzero they must be adjacent [BEALE AND FORREST, 1976]. With this 

definiton at hand, the formulation of the piecewise linearization of the logarithmic function is 

illustrated.  

First, 𝑙ℎ𝑎
=  𝑙𝑛 ℎ𝑎 is introduced as an auxiliary variable. Then, the feasible domain of the 

logarithmic function is subdivided into intervals delimited by a set of 𝑛 breakpoints BP 

(ℎ𝑎
𝑛|𝑙𝑛 ℎ𝑎

𝑛). Furthermore, the SOS Type 2  𝛦𝑎
𝑛 with 𝑛 members  𝜀𝑎

𝑛 of non-negative convex 

combination weights associated with each breakpoint is introduced. By definition, not more 

than two members of the set   𝛦𝑎
𝑛 are strictly positive and if so, these two members must be 

adjacent. This is to ensure that the piecewise approximation of the feasible domain of the 

logarithmic function is triggered only for one specific interval.  

Following the notation of SOS Type 2 [BEALE AND FORREST, 1976] the logarithmic function 

can be expressed by the following linear constraints (27) - (30): 

ℎ𝑎 =  ∑ ℎ𝑎
𝑛 𝜀𝑎

𝑛

𝑛 ∈ 𝑁

 ,  (27) 

𝑙ℎ𝑎
= ∑ ln (ℎ𝑎

𝑛) 𝜀𝑎
𝑛 ,

𝑛 ∈ 𝑁

  (28) 

∑  𝜀𝑎
𝑛

𝑛 ∈ 𝑁

= 1 ,  (29) 

SOS Type 2: 𝜀𝑎
1,  𝜀𝑎

2, … 𝜀𝑎
𝑛, ∀𝑎 ∈ 𝐴 (30) 

To further illustrate the principle of piecewise linearization using SOS Type 2, a logarithmic 

function including a schematic view of the piecewise linear approximations of the respective 

logarithmic function including breakpoints is depicted in Fig. 3.2.  
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Fig. 3.2 Schematic view of piecewise linearization with SOS Type 2 

Last, the logarithmic functions in equations (23) and (25) are expressed by the following 

auxiliary variables: 𝑙𝑃𝑟𝑤 =  𝑙𝑛 (𝑃𝑟
𝑤), 𝑙𝑃𝑠𝑤 =  𝑙𝑛( 𝑃𝑠

𝑤) and 𝑙𝑘𝑓𝑎
=  𝑙𝑛 𝑘𝑓𝑎. This leads in turn to the 

set of equations (31) and (32): 

𝑙𝑃𝑟𝑤 − 𝑙𝑃𝑠𝑤 =𝛼(𝑡𝑟
𝑤 − 𝑡𝑠

𝑤) +  𝛽(𝑦𝑟
𝑤 − 𝑦𝑠

𝑤)        (31) 

𝑙𝑘𝑓𝑎
= 4 (𝑙ℎ𝑎

)            (32) 

These equations in combination with the equations resulting from the piecewise 

approximation using SOS Type 2 (equations (27) – (30)) result in the linearization of the 

logarithmic terms.   

3.2.3.5 Reformulated model 

The model can be formulated as a mixed integer linear program by replacing the previously 

described non-linear objective function and the nonlinear constraints with the linearized 

versions of these equations and employed them as constraints. Objective function (33) and 

constraints (2) – (4), (6), (8) – (10), (12) – (15), (21), and (26) – (32) depict the framework for the 

linearized version of the flow-capturing model with equilibrium constraints. 
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The reformulated model is illustrated below.  

Maximize:  

∑ ∑ 𝜑𝑟
𝑤

𝑟 ∈ 𝑅𝑤𝑤 ∈ 𝑊

  (33) 

 

Subject to: 

∑ 𝑥𝑘 ≥  𝑦𝑟
𝑤

𝑘 ∈ 𝛹𝑖,𝑗,𝑟
𝑤

, ∀ 𝑎𝑖,𝑗  ∈  𝐴𝑖,𝑗,𝑟
𝑤 , 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (2) 

∑ 𝑥𝑘 =  𝑝

𝑘 ∈ 𝐾

  (3) 

ℎ𝑎 = ∑ ∑ 𝑓𝑟
𝑤𝛿𝑎,𝑟

𝑤

𝑟 ∈ 𝑅𝑤𝑤 ∈ 𝑊

 ,  ∀𝑎 ∈ 𝐴 (4) 

𝑡𝑟
𝑤 = ∑ 𝛿𝑎,𝑟

𝑤 𝑡𝑎
𝑎 ∈ 𝐴

  , ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (6) 

𝑓𝑟
𝑤 = 𝑞𝑤𝑃𝑟

𝑤  , ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (8) 

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤𝑦𝑟
𝑤 ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (12) 

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤𝑦𝑟
𝑤 ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (13) 

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤 + 𝑓𝑟
𝑤(1 − 𝑦𝑟

𝑤) ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (14) 

𝜑𝑟
𝑤 − 𝑓𝑟

𝑤 + 𝑓𝑟
𝑤(1 − 𝑦𝑟

𝑤) ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (15) 

∑ 𝑃𝑟
𝑤 = 1

𝑟 ∈ 𝑅𝑤

 , ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊 (21) 

𝑡𝑎 = 𝑡𝑎
0 [1 +

0.15

( 𝑎)
4
𝑘𝑓𝑎] , 

∀𝑎 ∈ 𝐴 (26) 

 

ℎ𝑎 =  ∑ ℎ𝑎
𝑛 𝜀𝑎

𝑛

𝑛 ∈ 𝑁

 , ∀𝑎 ∈ 𝐴 (27) 

𝑙ℎ𝑎
= ∑ ln (ℎ𝑎

𝑛) 𝜀𝑎
𝑛

𝑛 ∈ 𝑁

 , ∀𝑎 ∈ 𝐴 (28) 
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∑  𝜀𝑎
𝑛

𝑛 ∈ 𝑁

= 1 , ∀𝑎 ∈ 𝐴 (29) 

𝑙𝑃𝑟𝑤 − 𝑙𝑃𝑠𝑤 =𝛼(𝑡𝑟
𝑤 − 𝑡𝑠

𝑤) +  𝛽(𝑦𝑟
𝑤 − 𝑦𝑠

𝑤), ∀ 𝑟, 𝑠  ∈ 𝑅𝑤, 𝑟 ≠ 𝑠, 𝑤 ∈ 𝑊 (31) 

𝑙𝑘𝑓𝑎
= 4 (𝑙ℎ𝑎

), ∀𝑎 ∈ 𝐴 (32) 

𝑥𝑎 ∈  {0|1}, ∀𝑎 ∈ 𝐴 (9) 

𝑦𝑎,𝑟
𝑤 ∈  {0|1},  ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴 (10) 

SOS Type 2: 𝜀𝑎
1,  𝜀𝑎

2, … 𝜀𝑎
𝑛, ∀𝑎 ∈ 𝐴 (30) 

To conclude, the proposed flow-capturing location model with equilibrium constraints is 

reformulated into a mixed integer linear program. First, the objective function is linearized 

and expressed by equation (33) and (12) – (15). Equations (21) and (31) constitute the 

linearization of the route choice probability constraint and equations (26) and (32) the 

linearization of link travel time. Finally, the resulting logarithmic terms are linearized in a 

piecewise manner using Special Ordered Sets Type 2 by equations (27) – (30). By 

developing a fully linearized model, existing solution algorithms (e.g. Simplex, Branch-and-

Bound) and commercially available software packages employing these algorithms for 

solving linear programs can be deployed.  

3.2.3.6 Simplification of travel time function 

In order to reduce complexity of the model, the BPR travel time function in constraint (7) can 

be replaced by a linear travel time function. This linear travel time function can be 

formulated by introducing an additional set 𝑆𝑎 that includes capacity related scaling factors 

𝑆𝑎 , 𝑎 ∈ 𝐴 which are specified for each link. These scaling factors are multiplied with the 

specific flow on each link (ℎ𝑎) and added to the link free flow travel time (𝑡𝑎
0). Consequently, 

constraint (7) is replaced by the linear travel time function expressed by equation (34):  

𝑡𝑎 = 𝑆𝑎ℎ𝑎  +  𝑡𝑎
0 ∀𝑎 ∈ 𝐴 (34) 

The advantages of assuming that the link travel time can be calculated by applying a linear 

travel time function can be summarized by the following aspects: First, no additional 

linearization of the BPR function is necessary. Second, the number of Special Ordered Sets 

in the optimization problem is reduced, which in return decreases the computation time 

required for solving the optimization problem.  
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3.3 Set-covering location model with charging system design  

The set-covering location model with charging system design approaches the problem of 

optimally locating wireless charging facilities in discrete road networks from a different 

perspective than the flow-capturing model with equilibrium constraints. It tackles the 

limitation of the flow-covering model with equilibrium constraints, namely the assumption 

that vehicles can fully recharge when traversing a wireless charging station. Hence, a flow-

based set-covering location model approach that incorporates the infrastructural 

constraints and the design of the wireless charging system is formulated.  

This approach seeks to minimize the total length of the wireless charging system that is to 

be installed while covering all electric vehicles’ charging demand and taking technical 

specifications of the dynamic wireless charging infrastructure and transportation 

infrastructure into account. The complete modelling framework and the underlying 

assumptions and considerations are described in section 3.3.1.  

The interactions between facility locations, electric vehicles’ charging demand, 

specifications of the charging system and costs are implicitly captured by integrating the 

length of wireless charging segments into the model formulation as decision variables and 

hence, providing them as endogenously computed variables of the model. The proposed 

model formulation extends the flow-based set-covering approach developed by FULLER 

[2016] and is described in section 3.3.2. 

Again, the proposed mathematical model results in a formulation that is a mixed integer 

nonlinear problem. The global optimization method presented in section 3.2.3 is applied to 

the nonlinear terms of the set-covering location model with charging system design by 

transforming the nonlinear objective function into equivalent linear equations. The 

description of the solution method to linearize the set-covering model with charging system 

design is illustrated in section 3.3.3. 

3.3.1 Modelling framework: Considerations and assumptions 

The objective of the model is to minimize the total length of the wireless charging system 

that must be installed to cover all charging demand in the network. The modelled system 

simultaneously considers the following three building blocks: wireless charging 

infrastructure, electric vehicles and the transportation network. The decision variables of the 

model include the charging facilities’ location plan, as well as the length of the wireless 

charging segments to be installed; both of which are obtained endogenously from the 

model solution.  
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The model seeks to cover all charging demand of electric vehicles in the network; hence no 

changes in route choice due to the availability of charging infrastructure are expected. 

Therefore, the assignment of the origin-destination (OD) demand to the shortest paths is 

implemented through preprocessing using common shortest path algorithms. The design of 

the charging system is modelled on a rather detailed level as power consumption, power 

level and vehicle speed are taken into consideration. The amount of energy that can be 

received by the electric vehicle while using a link with wireless charging infrastructure 

depends on the time the vehicle spends on this link. Hence, vehicle speed is a crucial factor 

for determining the design of the charging infrastructure. 

The flow-based set-covering approaches developed by WANG AND LIN [2009] and by FULLER 

[2016] serves as basis for the model formulation. As an extension to the model by FULLER 

[2016] the length of the segments of dynamic charging infrastructure and the energy which 

has to be transmitted are incorporated into the model as decision variables in addition to 

the facility location. Furthermore, the proposed model entails a different approach for 

determining if the charging demand during a trip is considered to be satisfied or otherwise. 

For each sequential sub-route an additional constraint is added. These constraints 

determine if the charging demand is satisfied. Subsequently, as both the objective function 

and the constraint determining the added energy entail nonlinear terms, the model is 

classified as mixed integer nonlinear model (MINLP). However, by utilizing this approach, 

the facility location plan, the charging demand and the charging system design is 

determined simultaneously.  

Again, assumptions are made before formulating the mathematical model. All vehicles on 

the network are assumed to be electric vehicles. The origin and destination relations are 

considered as input parameters and no dynamic traffic assignment to the network is 

assumed. These assumptions are justifiable because first, the model locates as many 

charging facilities as necessary to cover all the charging demand in the network and 

second, due to the full coverage there are no expected changes in route choice behavior as 

travelers can keep their planned routes without running out of energy in any case. 

Additionally, it is assumed that all electric vehicles have access to a charging facility at each 

node of trip origin and consequently, start their trips with a fully charged battery. All links in 

the network are considered as candidate facility location where a dynamic wireless charging 

infrastructure could potentially be located. Hence, for this model formulation, no additional 

set for the candidate facility locations is introduced. The required lengths of the charging 

segments are computed endogenously by the model taking vehicles speed, power 

consumption and power level received by the electric vehicle from dynamic charging 

segment on each individual link into consideration. The required length of charging facilities 

strongly influences the total cost of the infrastructure to be installed. Subsequently, the 

interaction of charging demand, the total length of installed dynamic wireless charging 

infrastructure and driving behavior is captured by the model formulation. The charging 
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process is implemented as dynamic process and vehicles can charge without time loss 

while driving. Furthermore, it is assumed that the installed infrastructure ensures that the 

range of the vehicles never falls below 20% of the total range. This assumption is included 

in order to account for range anxiety by ensuring that a minimum range is always available. 

However, the amount of energy charged depends on the speed, the power level of the 

segment and the length of the dynamic wireless charging infrastructures’ segment. The 

charging demand of the vehicles is satisfied if they can complete their routes without 

running out of energy. The range and the lengths of the links are taken into consideration 

when determining if they can complete their routes and consequently, added as model 

constraints.  

The notation presented in Tab. 3.3 is used for the mathematical formulation of the sets and 

parameters of the set-covering model with charging system design. Similarly, the building 

blocks (transportation network, charging infrastructure and electric vehicles) taken into 

account for the model formulation are taken as basis to classify the sets and parameters.  
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Sets and Parameters 

Building block: transportation network 

𝑊  Set of all OD pairs 𝑤 

𝑁  Set of all nodes 𝑛 in network, 𝑖, 𝑗 ∈ 𝑁 

𝐴  Set of all links 𝑎 in network 

𝐺  Network 𝐺 = (𝑁, 𝐴) consisting of sets of nodes 𝑁 and links 𝐴 

𝑅𝑤  Set of all feasible routes 𝑟 of OD pair 𝑤 ∈ 𝑊 

𝑀  Cardinality of set 𝑅𝑤  

𝑆𝑟
𝑤 

 Set of all links on sub-routes 𝑠 of all feasible routes 𝑟 of OD pair 

𝑤 ∈ 𝑊, starting with first link of routes 𝑟 

𝛿𝑎,𝑟
𝑤  

 Link-path incidence, 𝛿𝑎,𝑟
𝑤 = 1 if link 𝑎 ∈ 𝐴 belongs to route 𝑟 between 

OD pair 𝑤, 0 otherwise 

𝐷𝑎 [𝑘𝑚] Set of all length of link distances 𝑑𝑎 

Building block: charging infrastructure 

𝑃𝐿𝑎 [𝑘𝑊] 
Power level received by vehicle from dynamic charging segment on 

link 𝑎 

Building block: electric vehicles 

𝑅𝑠𝑡𝑎𝑟𝑡 [𝑘𝑚] Electric range of EVs at trip start 

𝑅𝑚𝑎𝑥 [𝑘𝑚] Maximum electric range of EVs 

𝑃𝐶 [
𝑘𝑊ℎ

100𝑘𝑚
] Average power consumption of EVs 

𝑉𝑎 [
𝑘𝑚

ℎ
] Average vehicle speed on link 𝑎 

Tab. 3.3 Sets and parameters set-covering location model with charging system design 
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The notation of the decision variables of the set-covering model with charging system 

design is presented below in Tab. 3.4.  

Decision variables 

𝑥𝑎 
 Binary variable, 1 if there is a wireless charging facility on link 𝑎, 0 

otherwise 

𝑦𝑎,𝑟
𝑤  

 Binary variable, 1 if EVs are recharged on link 𝑎, on route 𝑟 of OD 

pair 𝑤 ∈ 𝑊, 0 otherwise 

𝑙𝑎 [𝑘𝑚] Length of wireless charging segment on link 𝑎 < 𝑑𝑎  

𝑝𝑎𝑒𝑟𝑎 [𝑘𝑚] Potentially added electric range from charging on link 𝑎 

𝑎𝑒𝑟𝑎,𝑟
𝑤  [𝑘𝑚] Added electric range on link 𝑎, on route 𝑟 of OD pair 𝑤 ∈ 𝑊 

Tab. 3.4 Decision variables set-covering location model with charging system design 

3.3.2 Model formulation 

The model formulation of the set-covering model with charging system design is 

demonstrated below taking the considerations and the assumptions for the modelling 

framework into consideration. The presented model is based on previous research of WANG 

AND LIN [2009] and FULLER [2016]. However, the objective function and specifics of the 

constraints were modified and extended to improve accounting for specifics of the 

installation of a dynamic wireless charging system. Specifically, the potentially variable 

length of dynamic wireless charging segments is incorporated to capture the charging 

demand more efficiently. In the section below, a detailed account of the models’ objective 

and constraint is given.  

Minimize:  

∑ 𝑙𝑎  𝑥𝑎
𝑎 ∈ 𝐴

  (35) 

Subject to:   

∑ 𝑎𝑒𝑟𝑎,𝑟
𝑤 ≥ 0.2 𝑅𝑚𝑎𝑥 − 𝑅𝑠𝑡𝑎𝑟𝑡 + ∑ 𝑑𝑎

𝑎 ∈ 𝑆𝑟
𝑤𝑎 ∈ 𝑆𝑟

𝑤

 , ∀ 𝑎 ∈ 𝑆𝑟
𝑤 (36) 

∑ 𝑎𝑒𝑟𝑎,𝑟
𝑤 ≤ 𝑅𝑚𝑎𝑥 − 𝑅𝑠𝑡𝑎𝑟𝑡 + ∑ 𝑑𝑎

𝑎 ∈ 𝑆𝑟
𝑤𝑎 ∈ 𝑆𝑟

𝑤

 , ∀  𝑎 ∈ 𝑆𝑟
𝑤 (37) 

𝑎𝑒𝑟𝑎,𝑟
𝑤 = 𝑦𝑎,𝑟

𝑤  𝑝𝑎𝑒𝑟𝑎,  ∀𝑎 ∈ 𝐴 (38) 
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𝑝𝑎𝑒𝑟𝑎 =
𝑃𝐿𝑎
𝑣𝑎𝑃𝐶

 𝑙𝑎  , 
∀𝑎 ∈ 𝐴 (39) 

∑ 𝑦𝑎,𝑟
𝑤 ≤  𝑀 𝑥𝑎

𝑟 ∈ 𝑅𝑤

,   ∀𝑎 ∈ 𝐴 (40) 

𝑥𝑎 ∈  {0|1}, ∀𝑎 ∈ 𝐴 (41) 

𝑦𝑎,𝑟
𝑤 ∈  {0|1}, ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴 (42) 

𝑙𝑎 ≤ 𝑑𝑎, ∀𝑎 ∈ 𝐴 (43) 

0 ≤ 𝑎𝑒𝑟𝑎,𝑟
𝑤 ≤ 𝑅𝑚𝑎𝑥 , ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴 (44) 

0 ≤ 𝑝𝑎𝑒𝑟𝑎 ≤ 𝑅𝑚𝑎𝑥 ,  ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴 (45) 

The objective function of the proposed model as presented in equation (35) seeks to 

minimize the length of the dynamic wireless charging infrastructure that is to be installed to 

cover all charging demand in the network. It presents the first nonlinear term of the model 

as it involves the product of the two decision variables 𝑙𝑎 which determines the length the 

wireless charging segments to be installed, and 𝑥𝑎 which determines whether a wireless 

charging segment is installed or not.  

Constraints (36) and (37) incorporate the recharging logic of the electric vehicles by taking 

the maximum EV range (𝑅𝑚𝑎𝑥), the range with which the EVs start their trip (𝑅𝑠𝑡𝑎𝑟𝑡), the link 

distances (𝑑𝑎) and the added electric range (𝑎𝑒𝑟𝑎,𝑟
𝑤 ) into consideration. Firstly, it is assumed 

that the remaining range after traversing any link on the network and the potentially received 

additional range from a wireless charging segment on that specific link must never fall below 

20% of the maximum EV range. Second, this term must never exceed the maximum EV 

range: 

0.2 Rmax ≤ 𝑅𝑎,𝑟
𝑤 − 𝑑𝑎 +𝑎𝑒𝑟𝑎,𝑟

𝑤 ≤ Rmax, ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴  (46) 

The fundamental consideration presented in equation (46) is to be satisfied on each link by 

taking the length of previous links and previously added energy into account. Consequently, 

constraint (36) ensures that the actual range never falls below 20% of the maximal range 

when the vehicle is fully charged so that all vehicles can complete their trips. This is 

achieved by taking the distance traveled on each sub-route of all routes and the energy that 

is added on each sub-route by the wireless charging segment into consideration. To 

specify, each link sub-route is considered separately, allowing for the incorporation of route-

specific path history as the constraint takes the link distances and the added energy on the 

wireless charging segments which were passed through previously into account. This allows 

for a truly flow-based depiction of the recharging.  
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In addition, constraint (37) restricts the sum of all added energy on each sub-route to always 

be less or equal as the sum of the distances traveled and the difference of the maximum 

range and the range with which the vehicles start their trips. Furthermore, constraint (38) is 

included to determine if an EV is recharged on a link and how much electric range is 

potentially added from charging on the specific link.  

The amount of energy that can be supplied to the electric vehicles is calculated by 

constraint (39) which takes the power level received by the vehicle from the dynamic 

charging segment on the roadway, the average vehicle speed and the average vehicle 

power consumption as constant parameters into account. Furthermore, the length of the 

wireless charging segment to be installed on a link is incorporated as a decision variable, 

which allows the model to determine the optimal length endogenously. Constraint (40) 

determines which links are equipped with a wireless charging facility and furthermore 

ensures that the maximal possible sum of EV charging processes 𝑦𝑎,𝑟
𝑤  on a link is not 

exceeded. Constraints (41) and (42) ensure that the binary properties of the decision 

variables 𝑥𝑎 and 𝑦𝑎,𝑟
𝑤  are implemented. Constraint (43) limits the maximum length of wireless 

charging segments to the according link length. Furthermore, constraints (44) and (45) 

define the boundaries of the potentially added energy and the added energy on the links 

between zero and the maximum range of the electric vehicles.  

Subsequently, the objective function and the model constraints form the set-covering 

location model with charging system design, which allows for the analysis of the minimum 

length of wireless charging infrastructure under the assumption of full coverage, is defined. 

As well as the flow-capturing model with equilibrium constraints, the set-covering location 

model with charging system design is formulated as a mixed integer nonlinear problem. In 

the next section 3.3.3 the solution method for the set-covering location model is derived. 

Moreover, the reformulated model is presented.   
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3.3.3 Solution method 

The solution method to solve the model formulation is described in this section. The 

proposed model is to be classified as a mixed integer nonlinear program (MINLP). The 

global optimization solution method developed in section 3.2.3 to linearize the model is 

applied to the set-covering model with charging system design as well.  

The nonlinearity in the set-covering model with charging system design is twofold: First, the 

objective function includes the product of two decision variables: the length of the wireless 

charging segment on link 𝑎 (𝑙𝑎) and the binary variables 𝑥𝑎 that determines whether a facility 

is to be located. Next, constraint (38) which determines the added electric range on link 𝑎 

on route 𝑟 of OD pair 𝑤, 𝑎𝑒𝑟 𝑎,𝑟
𝑤 , contains a nonlinear term. It is expressed as the product of 

the two decision variables, first the variable to determine the potentially added electric range 

from charging on link 𝑎, 𝑝𝑎𝑒𝑟 𝑎, and second, the the binary variable 𝑦𝑎,𝑟
𝑤  that determines if 

the electric vehicles are considered to be recharged on link 𝑎, on route 𝑟 of OD pair 𝑤. 

The objective function and constraint (38) are both linearized by applying the reformulation-

linearization technique (RLT). The result of this linearization process is the transformation of 

the original mixed integer nonlinear model into a mixed integer linear problem which can be 

solved by making use of the appropriate solution algorithm such as branch and bound.  

3.3.3.1 Linearization of objective function  

The first nonlinearity of the set-covering model with charging system design stems from the 

objective function. Consequently, by employing the reformulation-linearization technique, 

originally proposed by SHERALI AND ADAMS [1994], the nonlinear term can be substituted by 

an equivalent set of linear constraints. The linearization approach is correspondent to the 

approach presented in section 3.2.3 for the linearization of the objective function of the 

flow-covering model with equilibrium constraints. Consequently, a condensed version of the 

linearization process is presented below.  

The new auxiliary variable 𝜙𝑎 as depicted in equation (47) is added as the new objective 

function to express and substitute the original term in the objective function. 

𝜙𝑎 = 𝑙𝑎𝑥𝑎, ∀ 𝑎 ∈ 𝐴  (47) 

The representation of the lower and upper bounds, respectively, of the variable 𝑙𝑎 is 

conducted by introducing parameters 𝑙𝑎 and 𝑙𝑎. In order to ensure the retention of the 

feasible range of the decision variable 𝑙𝑎 the selected parameters must be chosen 

sufficiently small (𝑙𝑎) and sufficiently large (𝑙𝑎).  
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Subsequently, the linearization of the objective function is expressed by equation (47) and 

the four additional linear equations shown in equations (48) - (51). These additional 

constraints are incorporated into the model formulation as well.   

𝜙𝑎 − 𝑙𝑎𝑥𝑎 ≥ 0, ∀ 𝑎 ∈ 𝐴 (48) 

𝜙𝑎 − 𝑙𝑎𝑥𝑎 ≤ 0, ∀ 𝑎 ∈ 𝐴 (49) 

𝜙𝑎 − 𝑙𝑎 + 𝑙𝑎(1 − 𝑥𝑎) ≤ 0, ∀ 𝑎 ∈ 𝐴 (50) 

𝜙𝑎 −  𝑙𝑎 + 𝑙𝑎(1 − 𝑥𝑎) ≥ 0, ∀ 𝑎 ∈ 𝐴 (51) 

The proof of equivalence of these four additional constraints to the proposed objective 

function corresponds to the proof of equivalence provided in section 3.2.3 for the 

linearization of the objective function of the flow-covering model with equilibrium 

constraints.  

3.3.3.2 Linearization of added energy constraint 

The second nonlinearity of the set-covering model with charging system design is in 

equation (38) which determines the added energy constraint. However, as shown in the 

section above this nonlinear term can be converted into an equivalent set of linear 

constraints by adopting the reformulation-linearization technique. The term is expressed by 

the variable 𝑎𝑒𝑟𝑎,𝑟
𝑤  as depicted in constraint (38): 

𝑎𝑒𝑟𝑎,𝑟
𝑤 = 𝑦𝑎,𝑟 

𝑤 𝑝𝑎𝑒𝑟𝑎, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (38) 

Next, parameters 𝑝𝑎𝑒𝑟𝑎 and 𝑝𝑎𝑒𝑟𝑎 are added as auxiliary variables to represent the lower 

and upper bounds, respectively, of the variable 𝑝𝑎𝑒𝑟𝑎. Again, the variables must be 

sufficiently small (𝑝𝑎𝑒𝑟𝑎) and sufficiently large (𝑝𝑎𝑒𝑟𝑎) to avoid a reduction of the feasible 

range of the decision variable 𝑝𝑎𝑒𝑟𝑎.  

Lastly, the four additional linear constraints shown in equations (52) – (55) must be added to 

the model to transform constraint (38) into a set of equivalent linear constraints. 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎 𝑦𝑎,𝑟

𝑤 ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (52) 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎  𝑦𝑎,𝑟

𝑤 ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (53) 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎 + 𝑝𝑎𝑒𝑟𝑎(1 − 𝑦𝑎,𝑟

𝑤 ) ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (54) 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎 + 𝑝𝑎𝑒𝑟𝑎(1 − 𝑦𝑎,𝑟

𝑤 ) ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (55) 
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Again, the proof of equivalence of these four additional constraints to the original constraint 

(38) corresponds to the proof of equivalence provided in section 3.2.3 for the linearization of 

the objective function of the flow-covering model with equilibrium constraints.  

3.3.3.3 Reformulated model 

The model can be formulated as a mixed integer linear program when the nonlinear 

objective function and the nonlinear added energy constraint (38) are substituted by the 

equations derived from the linearization process. Objective function (56) and constraints  

(36), (37), (39) – (45), and (48) - (55) describe the linearized version of the set-covering model 

with charging system design. The reformulated model is depicted below.  

Minimize:  

∑ 𝜙𝑎  

𝑎 ∈ 𝐴

  (56) 

Subject to:   

∑ 𝑎𝑒𝑟𝑎,𝑟
𝑤 ≥ 0.2 𝑅𝑚𝑎𝑥 − Rstart + ∑ 𝑑𝑎

𝑎 ∈ 𝑆𝑟
𝑤𝑎 ∈ 𝑆𝑟

𝑤

, ∀ 𝑎 ∈ 𝑆𝑟
𝑤 (36) 

∑ 𝑎𝑒𝑟𝑎,𝑟
𝑤 ≤ 𝑅𝑚𝑎𝑥 − Rstart + ∑ 𝑑𝑎

𝑎 ∈ 𝑆𝑟
𝑤𝑎 ∈ 𝑆𝑟

𝑤

, ∀  𝑎 ∈ 𝑆𝑟
𝑤 (37) 

𝑝𝑎𝑒𝑟𝑎 =
𝑃𝐿𝑎
𝑣𝑎𝑃𝐶

 𝑙𝑎 , 
∀𝑎 ∈ 𝐴 (39) 

∑ 𝑦𝑎,𝑟
𝑤 ≤  𝑀 𝑥𝑎

𝑟 ∈ 𝑅𝑤

,   ∀𝑎 ∈ 𝐴 (40) 

𝜙𝑎 − 𝑙𝑎𝑥𝑎 ≥ 0, ∀ 𝑎 ∈ 𝐴 (48) 

𝜙𝑎 − 𝑙𝑎𝑥𝑎 ≤ 0, ∀ 𝑎 ∈ 𝐴 (49) 

𝜙𝑎 − 𝑙𝑎 + 𝑙𝑎(1 − 𝑥𝑎) ≤ 0, ∀ 𝑎 ∈ 𝐴 (50) 

𝜙𝑎 − 𝑙𝑎 + 𝑙𝑎(1 − 𝑥𝑎) ≥ 0, ∀ 𝑎 ∈ 𝐴 (51) 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎 𝑦𝑎,𝑟

𝑤 ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (52) 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎  𝑦𝑎,𝑟

𝑤 ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (53) 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎 + 𝑝𝑎𝑒𝑟𝑎(1 − 𝑦𝑎,𝑟

𝑤 ) ≤ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (54) 



Model development 53 

𝑎𝑒𝑟𝑎,𝑟
𝑤 − 𝑝𝑎𝑒𝑟𝑎 + 𝑝𝑎𝑒𝑟𝑎(1 − 𝑦𝑎,𝑟

𝑤 ) ≥ 0, ∀ 𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (55) 

𝑥𝑎 ∈  {0|1}, ∀𝑎 ∈ 𝐴 (41) 

𝑦𝑎,𝑟
𝑤 ∈  {0|1}, ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴 (42) 

𝑙𝑎 ≤ 𝑑𝑎 , ∀𝑎 ∈ 𝐴 (43) 

0 ≤ 𝑎𝑒𝑟𝑎,𝑟
𝑤 ≤ 𝑅𝑚𝑎𝑥, ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴 (44) 

0 ≤ 𝑝𝑎𝑒𝑟𝑎 ≤ 𝑅𝑚𝑎𝑥, ∀ 𝑟 ∈ 𝑅𝑤 , 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴 (45) 

The formulation above reflects the mixed integer linear program of the set-covering location 

model with wireless charging system design. Both previously nonlinear terms, the objective 

function as well as the constraints for determining the added energy are expressed as linear 

terms by equations (48) – (51) and (52) – (55).    
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4 Model application  

Preliminary considerations for the application and analysis framework, in particular the 

definition of the baseline network and the computational modelling and optimization 

framework that are valid for both models are described in section 4.1. The model-specific 

scenarios and results of the application of the flow-capturing location model with stochastic 

user equilibrium to a discrete road network are presented in section 4.2. In addition, the 

model-specific scenarios and results of the application of the set-covering location model 

with charging system design are given in section 4.3.  

4.1 Application and analysis framework 

In the following section, a framework for testing and analyzing both models is developed in 

order to demonstrate validity and solution quality of both models. The following three steps 

are conducted for the model application: 

1. Definition of baseline network  

2. Computational modelling and optimization framework 

3. Model-specific application and analysis 

a. Scenario design  

b. Evaluation of results  

First, the baseline transportation network that is used for both models is defined. Second, 

an overview on the applied computational modelling and optimization framework is given. 

Third, in line with the building blocks of both model formulations, a set of scenarios to be 

analyzed is created in order to present a proof of concept, give practical insights into the 

capability and ensure traceability of both models. The scenarios determine which input 

parameters and sets are to be varied for the numerical experiments and which outputs are 

to be analyzed in detail. Furthermore, numerical experiments are conducted to give a 

practical example of how the applied model performs and to give guidance on the expected 

outcomes for further prospective model applications. Subsequently, for both models, the 

respective scenarios, input parameters and the analyses of the models’ results are 

presented differentiating between vehicle, system and location analyses. 

4.1.1 Definition of baseline network  

The experiments are performed using the NGUYEN AND DUPUIS [1984] network as a 

benchmark network. Possible facilities for dynamic wireless charging infrastructure are 

assumed to be located at the centroid of each link. The network, including nodes, directed 

links and the possible locations of the possible dynamic wireless charging facilities are 

presented in Fig. 4.1.  
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Fig. 4.1 Nguyen-Dupuis network with possible wireless charging facilities 

In addition to defining the network and the potential facilities that are to be analyzed, the 

developed models require further link properties as input parameters. Link distances must 

be defined for both models and furthermore, in order to investigate the flow-capturing 

location model with stochastic user equilibrium additional link properties such as free-flow 

travel time and link capacity must be included as well. These parameter settings are listed in 

Tab. 4.1. Free-flow travel times and link capacity are taken from XU ET AL. [2011].  
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Link: Nodes Free-flow  

travel time [min] 

Link distance [km] Link  

Capacity [vehicles/h] 

1: 1-5 7 14 300 

2: 1-12 9 18 200 

3: 4-5 9 18 200 

4: 4-9 12 24 200 

5: 5-6 3 6 350 

6: 5-9 9 18 400 

7: 6-7 5 10 500 

8: 6-10 13 26 250 

9: 7-8 5 10 250 

10: 7-11 9 18 300 

11: 8-2 9 18 500 

12: 9-10 10 20 550 

13: 9-13 9 18 200 

14: 10-11 6 12 400 

15: 11-2 9 18 300 

16: 11-3 8 16 300 

17: 12-6 7 14 200 

18: 12-8 14 28 300 

19: 13-3 11 22 200 

Tab. 4.1 Input parameters for Nguyen-Dupuis network: Free-flow travel time, link distance and link 
capacity 

Moreover, for both models the feasible route sets have to be defined. Instead of choosing to 

assign traffic flow to all possibly feasible routes within the network, a 𝑘 shortest path 

approach is chosen and respectively, two and three shortest paths (𝑘 = 2 or 𝑘 = 3) are used 
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as basis paths for route choice. For further details on finding the 𝑘 shortest paths, please 

refer to YEN [1971] and EPPSTEIN [1998]. Offering this variation of feasible route sets is 

considered sufficient for conducting the reference study for the reason that the objective of 

the model application is to illustrate the model performance. Nevertheless, it should be 

mentioned that the choice of feasible route sets varies according to the use case 

investigated. In addition, when applying the flow-capturing location model with equilibrium 

constraints, it is necessary to prescribe the origin-destination (OD) demand to be assigned 

to the network beforehand. OD demand is assumed to account for 25% of the OD demand 

suggested by NGUYEN AND DUPUIS [1984]. The reduction of the OD demand is justified as the 

focus of this study is not to compute the equilibrium state in a congested network but to 

determine the effects on route choice and travel times due to the availability of charging 

infrastructure on the network. OD demand and feasible route sets are presented in Tab. 4.2. 

OD pair OD demand Paths (k = 2) Paths (k = 3) 

1 – 2 100 2-18-11 

1-5-7-9-11 

 

2-18-11 

1-5-7-9-11 

1-5-7-10-15 

1 – 3 200 1-6-13-19 

1-5-7-10-16 

1-6-13-19 

1-5-7-10-16 

1-5-8-14-16 

4 – 2 150 3-5-7-10-15 

3-5-7-9-11 

4-12-14-15 

3-5-7-9-11 

3-5-7-10-15 

4 – 3 50 4-13-19 

3-5-7-10-16 

4-13-19 

3-5-7-10-16 

4-12-14-16 

Tab. 4.2 OD demand and feasible routes sets 
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4.1.2 Computational modelling and optimization framework 

Returning to the fully linearized model formulations given before, solutions methods to solve 

linear problems, which are already implemented in software optimization packages, can be 

applied. The computational programming was performed in a Python 2.7 environment, and 

the Python application programming interface (API) of CPLEX 12.6 was employed to solve 

the set of numerical experiments.  

CPLEX is chosen as solver as it provides the appropriate flexibility for solving the two 

formulated mixed integer linear problems. In addition, because CPLEX offers a Python API 

for solving the mathematical model, this approach offers the possibility to manage the 

mathematical program within a Python environment. Not only is Python particularly 

advantageous for creating a comprehensive optimization and analysis framework, but also 

considering the available packages and libraries for data analysis and visualization, for 

instance NetworkX for creating and manipulating networks [HAGBERG ET AL., 2008] and 

matplotlib for data analysis and visualization [HUNTER, 2007]. Both sets of experiments were 

conducted on a 64-bit Windows 8 Server 2012 R2 operating system, an Intel(R) Xeon(R) 

CPU E5-2640 v3 @ 2.60GHz and 128 GB RAM.  

4.2 Flow-capturing location model with stochastic user equilibrium 

The following subsections contain first, an overview over the designed scenarios and model 

inputs (4.2.1), followed by the evaluation of results (4.2.2) and the discussion of results 

(4.2.3).    

4.2.1 Scenario design  

Considering the model formulation of the flow-capturing model with stochastic user 

equilibrium, the model outputs can be analyzed to answer further specifics of the research 

question. First, how much flow is captured when assuming different vehicle setups? Taking 

the model formulation into account, a difference in vehicle setup can be achieved by 

assuming different ranges that the vehicle is able to cover. Hence, the model input for the 

range of the electric vehicles (EV) is varied to generate the inputs for the according 

scenarios. 

Second, how much flow is captured when assuming different system setups for the 

charging infrastructure and the transportation network? Subsequently, by varying the 

parameter for sensitivity towards the availability of charging facilities 𝛽 and the set of 

feasible routes 𝑅𝑤 , the effects of different system setups can be investigated.  
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Third, at which candidate facility locations are wireless charging facilities placed and what 

are the resulting equilibrium traffic flow patterns and travel times? These effects are to be 

investigated in order to determine if the formulated model behaves as expected.     

For all analyses, the experiments are performed using the NGUYEN AND DUPUIS [1984] 

network as a benchmark network (see Fig. 4.1). For each experiment, it is assumed that 

every link in the network can accommodate a wireless charging facility. However, note that 

the model formulation allows more practical considerations regarding the suitability of links 

for accommodating such facilities depending on the structural conditions of the specific link. 

Possible facilities for dynamic wireless charging infrastructure are assumed to be located at 

the centroid of each link. Furthermore, it is assumed that all of the vehicles start their trips 

with a fully charged battery, hence at each node of trip origin access to a stationary 

charging facility must exist. Furthermore, the MNL parameter α (scaling parameter for travel 

time) is kept constant at α = 0.1 because the effects of the variation of 𝛽 which is related to 

the charging infrastructure are to be analyzed. In addition, the BPR travel time function is 

used to calculate the travel time. The piecewise linearization is implemented by applying 

SOS Type 2 using up to 15 breakpoints in the partition scheme when linearizing the 

logarithmic functions.  

To summarize, the flow-capturing location model with stochastic user equilibrium is tested 

on the presented 19-link transportation network under varying number of facilities to be 

located, varying sensitivity to availability of charging stations (β), varying feasible routes and 

varying EVR (electric vehicle range) for determining the percentage of captured flow and 

locations of charging stations. Tab. 4.3 presents the parameters which are to be varied for 

model application.     

Building block Parameter  

Charging system Number of wireless charging facilities to be located, 𝑝 

 Positive scaling parameter for the availability of charging 

facilities, β  

Vehicle EVR 

Transportation network  𝑅𝑤, Set of all feasible routes 𝑟 of OD pair 𝑤 ∈ 𝑊  

Tab. 4.3 Varied parameters for scenario development: FCLM with stochastic user equilibrium 

The model application with all parameter variations would lead to a large set of experiments 

to be conducted. Hence, when creating the parameter settings, a prioritization according to 

the specific analyses is taken into consideration. The scenarios with the concrete parameter 

settings for the respective analyses are derived in sections 4.2.1.1, 4.2.1.2 and 4.2.1.3.  
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4.2.1.1 Vehicle analysis 

The change of EVR is investigated in order to determine how much flow is captured when 

different vehicles setups are taken into consideration. This would imply that the vehicles can 

be equipped with different sets of batteries depending on the average range that is to be 

achieved. For determining the boundaries for the EVR, network specifics were taken into 

consideration. The lower boundary for the EVR is set to 40 km, as a lower range does not 

allow for the creation of the set of candidate facility locations capable of recharging EV 

flows so that the EV can traverse the segment (𝛹𝑖,𝑗,𝑟
𝑤 ). The upper boundary for the EV range 

is set to 80 km because the longest total trip length that is considered falls below 80 km as 

well. Consequently, the impact of different EV ranges of 40 km, 50 km, 60 km, 70 km and  

80 km on the model solution is investigated. It should be noted that electric vehicles already 

available in the market today can exceed the assumed range. Nevertheless, the range which 

is assumed for the vehicle analysis is justified from a theoretical standpoint as the aim of the 

numerical study is to present a proof of concept of the model and second, from a practical 

standpoint when electric vehicles with dynamic charging capabilities are introduced a 

reduction in battery size and range can be expected. Furthermore, the number of wireless 

charging facilities to be located is varied between 0 and 19 since the transportation network 

consists of a total of 19 links with candidate facility locations for wireless charging 

infrastructure. The parameter for the availability of charging facilities is set to 𝛽 = 0.8 to 

account for a high sensitivity of EV drivers towards the availability of a charging facility on 

their respective route. In addition, the set of feasible routes is based on the 𝑘 = 2 scenario. 

The overview over the input parameters for the vehicles analysis is given in Tab. 4.4.  

Building block Parameter  Unit Value 

Charging 

system 

Number of wireless charging facilities to 

be located, 𝑝 

[ ] 0-19 

 Positive scaling parameter for the 

availability of charging facilities, β  

[ ] 0.8 

Vehicle 
EVR 

[km] 40, 50, 60, 

70, 80  

Transportation 

network  

𝑅𝑤, Set of all feasible routes 𝑟 of OD pair 

𝑤 ∈ 𝑊  

[ ] k = 2 

Tab. 4.4 Input parameters for vehicle analysis: variation of EVR 
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4.2.1.2 System analysis 

To determine the percentage of captured flow with varying system setups, two scenarios for 

the system analysis are developed and analyzed. First, the scaling parameter β (where β is 

the scaling parameter for the availability of charging facilities) and second, the number of 

feasible routes is varied in order to determine if the model behaves as expected.  

Variation of scaling parameter β for the availability of charging facilities  

First, the impact of β on route choice and the model solution are investigated. Through the 

incorporation of β into the MNL, which dictates the route choice, the sensitivity of EV drivers 

towards the availability of a charging facility on their respective route is included into the 

model formulation. A system analysis is conducted for different values of β varying between 

0.0 and 1.0 (in steps of 0.1) to determine if the model is truly capable of incorporating the 

changes in traffic flow towards routes which host a wireless charging facility. It is expected 

that a higher value of β leads to higher links flows on links which are equipped with a 

wireless charging facility. Given the baseline network and the feasible routes, the range of 

the EVs is set to 50 km to ensure that electric vehicles have to charge at a wireless charging 

station in order to complete their trips. Furthermore, to illustrate the general effects of a 

variation of β, it is deemed sufficient to perform the experiments with the set of feasible 

routes based on the 𝑘 = 2 scenario. As higher values of wireless charging facilities to be 

located might lead to a fully captured flow and consequently the availability of a charging 

facility would not influence route choice anymore. In order to investigate the effects of 

placed facilities on route choice, it is necessary to perform the model application with small 

numbers of facilities to be located. Consequently, two different scenarios are investigated, 

one in which only one facility is to be located (𝑝 = 1) and the other where two facilities are to 

be located (𝑝 = 2). An overview of the input parameters for the system analysis is shown in 

Tab. 4.5.  

Tab. 4.5 Input parameters for system analysis: variation of β 

Building block Parameter  Unit Value 

Charging 

system 

Number of wireless charging facilities to 

be located, 𝑝 

[ ] 1, 2 

 Positive scaling parameter for the 

availability of charging facilities, β  

[ ] 0.0-1.0  

Vehicle EVR [km] 50 

Transportation 

network  

𝑅𝑤, Set of all feasible routes 𝑟 of OD pair 

𝑤 ∈ 𝑊  

[ ] k = 2 
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Variation of feasible routes  

The impact of a varying number of facilities to be located on the percentage of captured 

flow is analyzed for the 𝑘 = 2 and 𝑘 = 3 scenarios in order to determine the effects of 

varying the feasible routes 𝑟 of OD pair 𝑤. Generally, an increase in feasible routes should 

involve an increased number of facilities which are to be located. The range is kept constant 

at 50 km for all numerical experiments in order to ensure comparability and ensure that the 

effects of the varied parameters on the objective value can be captured. Furthermore, the 

parameter for the availability of charging facilities, β, is set to 0.3, 0.5 and 0.8, respectively in 

order to determine and investigate the expected changes in traffic flow. The input 

parameters for the number of wireless charging facilities to be located, the EVR and the 

scaling parameters for the  𝑘 = 2 scenario are given in Tab. 4.6. 

Building block Parameter  Unit Value 

Charging 

system 

Number of wireless charging facilities to 

be located, 𝑝 

[ ] 0-19 

 Positive scaling parameter for the 

availability of charging facilities, β  

[ ] 0.3, 0.5, 0.8 

Vehicle EVR [km] 50 

Transportation 

network  

𝑅𝑤, Set of all feasible routes 𝑟 of OD pair 

𝑤 ∈ 𝑊  

[ ] k = 2 

Tab. 4.6 Input parameters for system analysis: variation of feasible routes 𝑘 = 2 

Similarly, the input parameters for the 𝑘 = 3 scenario are given Tab. 4.7. 

Building block Parameter  Unit Value 

Charging 

system 

Number of wireless charging facilities to 

be located, 𝑝 

[ ] 0-19 

 Positive scaling parameter for the 

availability of charging facilities, β  

[ ] 0.3, 0.5, 0.8 

Vehicle EVR [km] 50 

Transportation 

network  

𝑅𝑤, Set of all feasible routes 𝑟 of OD pair 

𝑤 ∈ 𝑊  

[ ] k = 3 

Tab. 4.7 Input parameters for system analysis: variation of feasible routes 𝑘 = 3 
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4.2.1.3 Location analysis 

Two scenarios for the location analysis are developed in order to investigate which links are 

equipped with wireless charging facilities and to analyze the resulting traffic flow patterns on 

each link. Furthermore, the resulting changes in travel times compared to the free flow travel 

times are to be analyzed.   

Flow analysis 

The flow analysis is comprised of investigating the resulting traffic flow patterns when the 

number of facilities to be located is varied. The number of wireless charging facilities to be 

located is varied between 0 and 19. β is varied between 0.3 and 0.8 in order to depict a 

lower and upper sensitivity scenario. Furthermore, to give an insight into the general model 

behavior, an analysis of the 𝑘 = 2 scenario is included. The parameter setting for the flow 

analysis are presented in Tab. 4.8.  

Building block Parameter  Unit Value 

Charging 

system 

Number of wireless charging facilities to 

be located, 𝑝 

[ ] 0-19 

 Positive scaling parameter for the 

availability of charging facilities, β  

[ ] 0.3, 0.8 

Vehicle EVR [km] 50 

Transportation 

network  

𝑅𝑤, Set of all feasible routes 𝑟 of OD pair 

𝑤 ∈ 𝑊  

[ ] k = 2 

Tab. 4.8 Input parameters for location analysis: flow analysis 

Travel times analysis 

The travel time analysis deals with the impact of the number of facilities that are located on 

the percentage increase of travel time on each link compared to the free-flow travel time. 

The parameter settings are set to those used for the flow analysis (see Tab. 4.8). However, 

in order to determine the effects of placed facilities on the link travel times, it is deemed 

sufficient to conduct the model application for the travel time analysis with β = 0.8. Tab. 4.9 

depicts an overview over the parameter settings.   
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Building block Parameter  Unit Value 

Charging 

system 

Number of wireless charging facilities to 

be located, 𝑝 

[ ] 0-19 

 Positive scaling parameter for the 

availability of charging facilities, β  

[ ] 0.8 

Vehicle EV range, EVR [km] 50 

Transportation 

network  

𝑅𝑤, Set of all feasible routes 𝑟 of OD pair 

𝑤 ∈ 𝑊  

[ ] k = 2 

Tab. 4.9 Input parameters for location analysis: travel time analysis 

4.2.2 Evaluation of results   

Contents of this section were previously published in Riemann, R., Wang, D. Z. W. and 

Busch, F., 2015. Optimal location of wireless charging facilities for electric vehicles: Flow-

capturing location model with stochastic user equilibrium. Transportation Research Part C: 

Emerging Technologies, 58, pp.1–12. 

The results of the model application for the flow-capturing location model with stochastic 

user equilibrium are concerned with the analysis of the results in relation to a vehicle-

specific, system-specific and location-specific analysis and presented in sections 4.2.2.1 – 

4.2.2.3. The according parameters are varied as defined in the scenario design.  
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4.2.2.1 Vehicle analysis 

Fig. 4.2 presents the percentage of captured flow (model objective) under varying EVR. The 

results show that the range has a great impact on the number of facilities that must be 

located in order of capture the entire flow. To achieve a full coverage and with the lowest 

range of 40 km, five facilities on the network are required whereas only four facilities are 

required for the ranges of 50 km and 60 km, respectively. Three facilities are required to 

capture the total flow with the range of 70 km. However, the range of 70 km requires no 

charging facility at all in order to capture more than 80% of all flow on the network. In 

comparison, the lowest range of 40 km would require at least three charging facilities to 

capture around 80% of the flow as well. When the range is set to 80 km, no additional 

wireless charging facility is required in order to complete the trips. 

 

Fig. 4.2 Number of located wireless charging facilities and percentage of flow being able to 
complete trips  

4.2.2.2 System analysis 

Variation of scaling parameter β for the availability of charging facilities  

Fig. 4.3 depicts the resultant percentage of total flow captured under varying values of β 

and varying numbers of facilities to be located. For all settings of β when only one facility is 
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located, less flow is captured in comparison to the experiments when two facilities are 

available. Furthermore, the results show that in both cases when only facility, respectively 

two facilities are to be located, higher β-values (with a constant sensitivity to travel time α) 

lead to a higher percentage of captured flow.  

 

Fig. 4.3 Impact of β on captured flow 

Variation of feasible routes  

Fig. 4.4 illustrates that as the number of wireless charging facilities rises, the percentage of 

captured flow increases steadily until the entire traffic flow is captured. Again, the 

percentage of captured flow increases with higher values of β. When one charging facility is 

built more than 70% of flow is captured for any parameter setting of β (0.3, 0.5 and 0.8). In 

addition, the entire traffic flow will be captured when three charging facilities are built for any 

parameter setting of β. Likewise, when the number of possible routes is increased (𝑘 = 3) 

the number of wireless charging facilities which need to be installed to capture the total 

traffic flow on the network also increases (see Fig. 4.5). Again, the value of the β parameter 

influences the total amount of captured flow when one, two, three or four facilities are 

located. However, when five facilities are located the total amount of flow can be captured 

for each parameter setting. In comparison to the 𝑘 = 2 scenario, for the 𝑘 = 3 scenario, the 
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number of charging facilities required to capture 100% of the flow increases from three to 

five facilities.  

 

Fig. 4.4 Percentage of captured flow depending on number of facilities to be located 𝑝 (𝑘 = 2) 

 

Fig. 4.5 Percentage of captured flow depending on number of facilities to be located 𝑝 (𝑘 = 3) 
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4.2.2.3 Location analysis 

Flow analysis 

Fig. 4.6 depicts the traffic flow pattern on the network when zero wireless charging facilities 

are to be located. The results show equal amounts of link traffic flow ℎ𝑎 for both parameter 

settings of β that determines the utility of the availability of a wireless charging facility for the 

EV drivers.  

 

Fig. 4.6 Link flow ℎ𝑎 (𝑝 = 0, 𝑘 = 2) 

In addition, Fig. 4.7 illustrates the traffic flow pattern on the network when one wireless 

charging facility is to be located. The charging facility is located on link 5, which shows the 

highest value of link flow ℎ𝑎 besides link 7. Moreover, the results illustrate that the 

distribution of link flow is significantly influenced by the scaling parameter β. The traffic flow 

on link 5 increases when the parameter is set higher and vice versa. When comparing the 

two scenarios for the two different scaling parameters, the traffic flows differ from each 

other on the majority of links and only link 15 exhibits equal link flows. 
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Fig. 4.7 Link flow ℎ𝑎 (𝑝 = 1, 𝑘 = 2) 

Additionally, the link flows ℎ𝑎 for two and three wireless charging facilities (𝑝 = 2, 𝑝 = 3) to 

be located are presented in Fig. 4.8 and Fig. 4.9. The second link to be equipped with a 

facility following link 5 is link 13 (Fig. 4.8). As compared to the scenario where only one 

facility is located, the results shows that the amount of traffic flow ℎ𝑎 on some links, for 

example links 3, 10  and 19, is equal even under different values of the scaling parameter β.  



Model application 71 

 

Fig. 4.8 Link flow ℎ𝑎 (𝑝 = 2, 𝑘 = 2) 

As presented in Fig. 4.4, all of the traffic flow is captured when three wireless charging 

facilities are located (𝑝 = 3). The corresponding facilities are located on links 5, 13 and 18 as 

illustrated in Fig. 4.9. When three charging facilities are placed on the network, it is 

observable that the resulting traffic flow patterns are equal for the two scenarios with β = 0.3 

and β = 0.8, respectively. Furthermore, the resulting link traffic flow when three facilities are 

located is equal to the link traffic flow when zero facility is located (see Fig. 4.6).  
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Fig. 4.9 Link flow ℎ𝑎 (𝑝 = 3, 𝑘 = 2) 

It shall be noted that for the remaining scenarios when four to nineteen facilities (𝑝 = 4 to 

𝑝 = 19) are to be located, the resulting flows on each link are equal to the scenario when 

𝑝 = 3. Subsequently, the remaining results for four to nineteen facilities to be located are not 

presented in this section.  

Travel time analysis 

Tab. 4.10 illustrates the results of the travel time analysis and depicts the increase in travel 

time 𝑡𝑎 compared to free flow travel times 𝑡𝑎
0 when different numbers of wireless charging 

facilities are to be located, namely zero to three facilities. When no facility is located zero 

flow is captured and when three facilities are located all flow is captured (see Fig. 4.4). The 

results show that the first facility is placed at link 5 and subsequently, a strong increase in 

travel time of 18.30% compared to the free flow travel time is observable. Furthermore, 

travel time on link 3 increases from 6.90% to 9.10%. When two or three facilities are located 

the average travel time on link 5 decreases from 18.30% to 11.80% and to 9.60%, 

respectively and in addition, the travel time on link 3 decreases again to 6.90% from 9.10%. 

Travel times on link 13 which hosts the second wireless charging facility show a decrease of 

travel time when one facility is located (from 1.40% to 0.30%) in comparison to the 
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scenarios when zero, two or three facilities are located (1.40%). Furthermore, the third link 

which is equipped with a wireless charging facility and where only a small amount of link 

flow is present (link 18, see Fig. 4.6-4.9) does not show any increase in travel time.    

 

Tab. 4.10 Comparison of increase in link travel time 𝑡𝑎 compared to free-flow travel time 𝑡𝑎
0 (𝑘 = 2) 

4.2.3 Discussion of results 

The results of the vehicle, system and location analysis presented in sections 4.2.2.1 – 

4.2.2.3, are discussed in subsections 4.2.3.1. – 4.2.3.3.  

4.2.3.1 Vehicle analysis 

The variation of EVR showed that with an increasing range the number of facilities to 

capture the total flow decreases. Hence, the model results are in line with the expected 

outcome. It should be noted that trips can be completed (hence the flow is considered 

captured) due to the input assumption that at the nodes of trip origin access to a stationary 

charging facility must exist. When assuming that vehicles with a range of 80 km are fully 

charged at the beginning of their trips and with the input that no trip exceeds a length of  

80 km, no further wireless charging facility is required during the trips as the vehicles can 

complete their trips with their initial range.  

  

Link p=0 p=1 p=2 p=3 p=0 p=1 p=2 p=3

1     6.00% 7.20% 7.30% 6.00%

2     0.10% 0.00% 0.00% 0.10%

3     6.90% 9.10% 6.90% 6.90%

4     0.00% 0.00% 0.00% 0.00%

5     9.60% 18.30% 11.80% 9.60%

6     0.00% 0.00% 0.00% 0.00%

7     2.50% 4.40% 3.10% 2.50%

8     0.00% 0.00% 0.00% 0.00%

9     1.50% 2.60% 2.60% 1.40%

10     3.20% 4.70% 3.20% 3.20%

11     0.60% 0.60% 0.50% 0.60%

12     0.00% 0.00% 0.00% 0.00%

13     1.40% 0.30% 1.40% 1.40%

14     0.00% 0.00% 0.00% 0.00%

15     0.00% 0.00% 0.00% 0.00%

16     0.90% 1.70% 0.90% 0.90%

17     0.00% 0.00% 0.00% 0.00%

18     0.00% 0.00% 0.00% 0.00%

19     1.40% 0.30% 1.40% 1.40%

Facility placed at link? Increase in travel time 
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4.2.3.2 System analysis 

Variation of scaling parameter β for the availability of charging facilities  

As expected and intended by the formulated model, a higher β-value (with a constant 

sensitivity to travel time α) leads to a higher percentage of captured flow as EV drivers are 

set to be more sensitive towards the availability of a charging station, hence they are more 

likely to choose a route with a charging station. Furthermore, the results show that it is 

crucial to consider the setting of the scaling parameters when there are not enough 

charging stations available to capture all charging demand.  

Variation of feasible routes  

The observation of the results for the variation of feasible routes indicates that the model 

behaves as expected since more available routes require more facilities to be located in 

order to capture the total flow of electric vehicles. Furthermore, the results show, that at 

least for this scenario, an increase of the β-value does not influence the number of facilities 

required to capture the total flow.  

4.2.3.3 Location analysis 

Flow analysis 

The results of the flow analysis illustrate the location of the facilities and the resulting flow 

pattern assigned to the links of the network. As the model seeks to locate facilities in order 

to maximize the captured flow, it stands to reason that link 5, as the link with the maximum 

amount of flow passing through, constitutes the first link to be equipped with a wireless 

charging facility. Moreover, the results show that the distribution of link flow is significantly 

influenced by the scaling parameter β that determines the utility of the availability of a 

wireless charging facility for the EV drivers. The traffic flow on link 5 increases when the 

parameter is set higher and vice versa.  

It is observable that while the first facility is located at the link with the highest values of 

links flows, the subsequent facilities however are not located at links with second or third 

highest values. This is due to the fact that the model considers the complete vehicle routes 

and not only links when determining if flows are captured or not.   

Furthermore, when a sufficient number of charging facilities is placed on the network and all 

flow can be captured, all routes are equally favourable in terms of the availability of charging 

infrastructure. Hence, in this case the number of facilities to be located and the scaling 

parameter β do not impact route choice which in return results in equal traffic flow patterns 

for the two scenarios with β = 0.3 and β = 0.8, respectively. 
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Travel time analysis 

The results of the travel time analysis show that the traffic flow pattern and the resulting 

travel times are equal for the “zero flow captured” (𝑝 = 0) scenario and the “all flow 

captured” (𝑝 = 3). These results occur due to the reason that when no facility is located, the 

assignment of the traffic flow on each link depends solely on travel time. Similarly, when 

three facilities are placed and subsequently all traffic flow is captured by the respective 

charging facilities, the traffic assignment solely depends on travel time as well as the 

availability of charging stations will not have an impact on route choice anymore.   

However, changes in travel times are observable when analyzing the model results for one 

or two wireless charging facilities to be located (𝑝 = 1 or 𝑝 = 2). When one facility is located 

on link 5, travel times strongly increase on this link as more flow is passing through the link 

in order to be intercepted by a charging facility. As the equilibrium flow pattern depends on 

both travel time and charging station availability, the percentage increase in link travel time 

gets more balanced and decreases again on most links when two facilities are located, as 

additional routes with a charging station become available. When analyzing the “in between 

scenarios” the sometimes counteracting effects of the different utilities for travel time and 

charging station availability must be taken into consideration. More specifically, the effects 

of minimizing travel times and the availability of charging stations somewhat counteract, as 

a high scaling parameter for the availability of charging stations will influence the electric 

vehicles in choosing routes, which may demonstrate higher route travel times, yet enable 

the charging of batteries on these longer routes. To summarize, the results show that the 

location of wireless charging facilities significantly influences traffic flow patterns and the 

resulting travel times.  

  



76  Modelling and location optimization of dynamic wireless charging infrastructure 

4.3 Set-covering location model with charging system design 

The following subsections are comprised of an overview over the designed scenarios and 

model inputs (4.3.1), followed by the evaluation of results (4.3.2) and the discussion of 

results (4.3.3).    

4.3.1 Scenario design   

Taking the model formulation of the set-covering location model with charging system 

design into consideration, the model outputs can be analyzed to answer further specifics of 

the research question. First, what is the minimum length of wireless charging facilities and 

their locations when assuming different vehicle setups? In this context, different vehicle 

setups can be accounted for by setting different ranges that the vehicle is able to cover, as 

well as different average speed and average power consumptions.  

Second, what is the minimum length of wireless charging facilities and their locations when 

assuming different system setups for the charging infrastructure and the transportation 

network? Consequently, the variation of the power level received by the vehicle from the 

dynamic charging segment on link 𝑎 allows for the investigation of different system setups. 

Third, which candidate facility locations are equipped with wireless charging properties and 

what percentage of the transportation network must be equipped with wireless charging 

facilities in order to capture all electric vehicles? 

The set of experiments for the set-covering location model with charging system design is 

conducted using the NGUYEN AND DUPUIS [1984] network as benchmark example (Fig. 4.1). 

Moreover, it is assumed that every link is capable of hosting a dynamic wireless charging 

facility. All vehicles are assumed to start their trips with a fully charged battery, which 

implies that at each node of trip origin, electric vehicles must have access to a charging 

facility. In order to ensure comparability, the scenarios are analyzed for equal feasible routes 

𝑟 of OD pair 𝑤. It is assumed that all k-3-routes (see Tab. 4.2) are feasible route sets; hence, 

all possible k-3-routes are traversable and must be covered. The parameters to be varied 

for the model application are given in Tab. 4.11.   
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Building 

block 

Parameter  

Charging 

system 

Power level received by vehicle from dynamic charging segment on link 𝑎, 

𝑃𝐿𝑎 

Vehicle EV power consumption, 𝑃𝐶   

Maximum electric range of EVs, 𝑅𝑚𝑎𝑥 

Average vehicle speed on link 𝑎, 𝑉𝑎 

Tab. 4.11 Varied parameters for scenario development: set-covering location model with charging 
system design 

Similarly, the model outputs are analyzed and it is investigated if the results are in line with 

the expected model behavior. When creating the parameter settings for the specific 

analyses, a prioritization according to the effects which are to be analyzed is taken into 

consideration. The scenarios with the concrete parameter setting which are derived for the 

respective analyses are presented in sections 4.3.1.1, 4.3.1.2 and 4.3.1.3.  

4.3.1.1 Vehicle analysis 

The impact of different vehicle setups on the total length of wireless charging segments to 

be installed is investigated. For the set-covering location model with charging system 

design, the different vehicle setups can be modelled by varying the parameters of the range, 

the speed and the power consumption of the electric vehicles which are assigned to the 

network. The default value of 13 kWh/100km for the average power consumption is based 

on a reported average power consumption of an electric vehicle available in the market 

[BMW, 2016]. Moreover, the input parameters for the power levels received by the vehicles 

are based on the reported power levels which can be achieved by dynamic wireless 

charging test beds as presented in section 2.2.2. 

Variation of range 

First, the variation of the available range of electric vehicles is investigated in order to 

determine the total length of wireless charging facilities that have to be built. The 

considerations concerning the boundaries for the range are according to the considerations 

set out in section 4.2.2.1. However, the maximum parameter setting for the range is 

increased to 100 km as the formulation of the set-covering model with wireless charging 

system design accounts for a 20% range buffer. For analyzing the effects of the variation of 

the range, the model is solved with the following input parameters: power levels are varied 

between 50 kW, 100 kW, 150 kW and 200 kW, EV power consumption is set to the default 

value of 13 kWh/100km and the range is analyzed between 40 km and 100 km with intervals 
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of 10 km. In addition, in order to create a lower and higher average speed scenario, the 

average speed is set to 50 km/h and to 100 km/h. It should be noted that equal values of 

average speed are assumed for all links in the network in order to ensure direct 

comparability of different speed levels. Nevertheless, theoretically the model formulation 

allows for the consideration of different average speeds on each link. An overview over the 

input values is given in Tab. 4.12  

Building 

block 

Parameter  Unit Value 

Charging 

system 

Power level received by vehicle from 

dynamic charging segment on link 𝑎, 𝑃𝐿𝑎 

[kW] 50, 100, 150, 

200 

Vehicle EV power consumption, 𝑃𝐶   [kWh/100km] 13 

Maximum electric range of EVs, 𝑅𝑚𝑎𝑥 [km] 40-100 

Average vehicle speed on link 𝑎, 𝑉𝑎 [km/h] 50, 100 

Tab. 4.12 Input parameters for vehicle analysis: variation of 𝑅𝑚𝑎𝑥 

Variation of speed 

Next, the variation of average speeds between 20 km/h and 160 km/h with intervals of  

10 km/h in the network is analyzed. The input parameters for solving the optimization model 

are depicted in Tab. 4.13. Again, the EV power consumption is set to the default value of  

13 kWh/100km, EV ranges are varied between 40 km and 60 km and power levels which 

can be received by the vehicles from the dynamic charging infrastructure are set to 50 kW, 

100 kW, 150 kW and 200 kW.  

Building 

block 

Parameter  Unit Value 

Charging 

system 

Power level received by vehicle from 

dynamic charging segment on link 𝑎, 𝑃𝐿𝑎 

[kW] 50, 100, 150, 

200 

Vehicle EV power consumption, 𝑃𝐶   [kWh/100km] 13 

Maximum electric range of EVs, 𝑅𝑚𝑎𝑥 [km] 40, 60 

Average vehicle speed on link 𝑎, 𝑉𝑎 [km/h] 20-160 

Tab. 4.13 Input parameters for vehicle analysis: variation of 𝑉𝑎 
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Variation of power consumption 

The third analysis which is concerned with the electric vehicle investigates the effects of a 

variation in power consumption on the overall lengths of wireless charging segments which 

need to be installed within the transportation network. Tab. 4.14 presents the input 

parameters which are used to solve the set-covering model. Again power levels are fixed to 

50 kW, 100 kW, 150 kW and 200 kW, EV ranges are classified into two categories of 40 km 

and 60 km and in order to ensure comparability the average speed in the network is set to 

50 km/h. Furthermore, the model is solved for average power consumptions between 5 and 

20 kW/100km with intervals of 1 kW/100km.  

Building 

block 

Parameter  Unit Value 

Charging 

system 

Power level received by vehicle from 

dynamic charging segment on link 𝑎, 𝑃𝐿𝑎 

[kW] 50, 100, 150, 

200 

Vehicle EV power consumption, 𝑃𝐶   [kWh/100km] 5-20 

Maximum electric range of EVs, 𝑅𝑚𝑎𝑥 [km] 40, 60 

Average vehicle speed on link 𝑎, 𝑉𝑎 [km/h] 50 

Tab. 4.14 Input parameters for vehicle analysis: variation of 𝑃𝐶   
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4.3.1.2 System analysis 

For the system analysis, the power levels are varied between 20 kW and 200 kW in intervals 

of 10 kW and the maximal EV ranges are set to 40 km, 50 km, 60 km, 70 km and 80 km. The 

EV power consumption and the average speed are set to the default values of 13 

kWh/100km. For the experiments, the two average speeds of 50 km/h and 100 km/h are 

chosen to investigate differences in the objective values (see Tab. 4.15). 

Building 

block 

Parameter  Unit Value 

Charging 

system 

Power level received by vehicle from 

dynamic charging segment on link 𝑎, 𝑃𝐿𝑎 

[kW] 20-200 

Vehicle EV power consumption, 𝑃𝐶   [kWh/100km] 13 

Maximum electric range of EVs, 𝑅𝑚𝑎𝑥 
[km] 40, 50, 60, 70, 

80 

Average vehicle speed on link 𝑎, 𝑉𝑎 [km/h] 50, 100 

Tab. 4.15 Input parameters for system analysis: variation of 𝑃𝐿𝑎 

4.3.1.3 Location analysis 

The location analysis is comprised of investigating the locations and lengths of dynamic 

wireless charging infrastructure that must be installed at each link in the network. The range 

is set to 40 km and varying power levels of 50 kW and 200 kW are assumed. Furthermore, 

EV power consumption is set to the default value and for comparability of the lower speed 

scenario, the average vehicle speed is set to 50 km/h. For both sets of experiments, the 

percentage of link length which would need to be equipped with a wireless charging facility 

is investigated. The parameters are summarized in Tab. 4.16. 

Building 

block 

Parameter  Unit Value 

Charging 

system 

Power level received by vehicle from 

dynamic charging segment on link 𝑎, 𝑃𝐿𝑎 

[kW] 50, 200 

Vehicle EV power consumption, 𝑃𝐶   [kWh/100km] 13 

Maximum electric range of EVs, 𝑅𝑚𝑎𝑥 [km] 40 

 Average vehicle speed on link 𝑎, 𝑉𝑎 [km/h] 50 

Tab. 4.16 Input parameters for location analysis: variation of 𝑃𝐿𝑎 
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4.3.2 Evaluation of results   

The results of the model application of the set-covering location model with charging 

system design are concerned with the analysis of the results in relation to a vehicle-specific, 

system-specific and location-specific analysis. The parameter variations are defined in the 

scenario design serve as basis for the model application.  

4.3.2.1 Results of vehicle analysis 

Variation of range 

The length of wireless charging segments depending on varying EV ranges 𝑅𝑚𝑎𝑥 and power 

levels 𝑃𝐿𝑎 are depicted in Fig. 4.10 and Fig. 4.11. First, Fig. 4.10 shows that an increase in 

the power level results in a linear decrease in the total length of wireless charging segments 

which have to be installed in order to cover all routes. However, with an increasing range of 

electric vehicles the differences in the total length of wireless charging segments which have 

to be installed decreases as well.  

 

Fig. 4.10 Total length of wireless charging segments depending on Range 𝑅𝑚𝑎𝑥 and power level 
𝑃𝐿𝑎 (𝑉𝑎  = 50km/h) 
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When the experiment is conducted with the higher average speed 𝑉𝑎 = 100 km/h (Fig. 4.11) 

the overall trends of a smaller total length of wireless charging segments with increasing 

range and increasing power levels can be observed as well. Nevertheless, when the average 

speed 𝑉𝑎 in the network increases, the magnitude of total length of wireless charging 

segments which needs to be installed doubles.  

 

Fig. 4.11 Total length of wireless charging segments depending on Range 𝑅𝑚𝑎𝑥 and power level 
𝑃𝐿𝑎  (𝑉𝑎  = 100km/h) 

The differences in range as well as in average speed have a significant impact on the overall 

length of wireless charging segments. The higher the range and the lower the average 

speed, the lower the total length of the dynamic wireless charging infrastructure segments. 

However, when the optimization model is solved under the constraints of lower average 

speeds such as 50 km/h, the lengths of the wireless charging segments for the 

infrastructure significantly decrease as compared to the scenarios with higher average 

speeds. Both scenarios show that only ranges of at least 90 km allow the vehicles to 

complete their trips without falling below 20% of the starting range.   
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Variation of speed  

The results for the scenario with a range 𝑅𝑚𝑎𝑥 of 40 km which are depicted in Fig. 4.12 

show that depending on the power level 𝑃𝐿𝑎, the total length of wireless charging segments 

linearly increases. In addition, the higher the average speed 𝑉𝑎, the more links must be 

equipped with longer segments of wireless charging facilities.  

 

Fig. 4.12 Total length of wireless charging segments depending on speed 𝑉𝑎  and power level 𝑃𝐿𝑎 
(𝑅𝑚𝑎𝑥  = 40km) 

In Fig. 4.13 the results for the scenario with a range 𝑅𝑚𝑎𝑥 of 60 km are depicted. The same 

trends influencing the increase in total required length of charging segments as in the 

scenario with a maximum range of 40 km are observable. The results of both scenarios 

which were conducted show that besides the power level that can be received by the 

vehicle from the roadway, the average speed has a significant impact on the length of 

wireless charging segments as well. Furthermore, the differences between the power levels 

𝑃𝐿𝑎 of 50 kW, 100 kW, 150 kW and 200 kW at each speed level are not constant.  
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Fig. 4.13 Total length of wireless charging segments depending on speed 𝑉𝑎  and power level 𝑃𝐿𝑎 
(𝑅𝑚𝑎𝑥  = 60km) 

Variation of power consumption 

Fig. 4.14 depicts the influence of different average power consumption of EVs  𝑃𝐶 and 

various power levels  𝑃𝐿𝑎 on the objective value for a vehicle range 𝑅𝑚𝑎𝑥 = 40 km. The total 

length of wireless charging segments that must be installed linearly increases with 

increasing power consumption. In addition, higher power levels lead to a decrease in total 

length of for wireless charging segments.  
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Fig. 4.14 Total length of wireless charging segments depending on power consumption 𝑃𝐶 and 
power level 𝑃𝐿𝑎 (𝑅𝑚𝑎𝑥  = 40km) 

The according analysis for the scenario with a range of 60 km is illustrated in Fig. 4.15. 

Again, the analysis and comparison of both sets of experiments yields to results with equal 

trends. The analysis shows that depending on power consumption and power level the 

length of wireless charging segments which need to be installed to cover all demand 

drastically changes. It can be observed, that the power consumption linearly influences the 

overall length of wireless charging segments necessary to equip the network with sufficient 

wireless charging infrastructure to cover all energy demand. 
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Fig. 4.15 Total length of wireless charging segments depending on power consumption 𝑃𝐶 and 
power level 𝑃𝐿𝑎 (𝑅𝑚𝑎𝑥  = 60km) 

4.3.2.2 System analysis 

The variation of the power which can be received by the vehicles 𝑃𝐿𝑎 in relation to the 

length of wireless charging segments which must be installed to cover all charging demand 

is depicted in Fig. 4.16 and Fig. 4.17. For the scenario with with an EV range of  

𝑅𝑚𝑎𝑥 = 40 km one can obtain from Fig. 4.16 that the total length of wireless charging 

segments that must be installed is more than 50% lower when comparing power levels of 

20 kW and 50 kW.  
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Fig. 4.16 Total length of wireless charging segments depending on power level 𝑃𝐿𝑎 and Range 
𝑅𝑚𝑎𝑥 (𝑉𝑎  = 50km/h) 

For the analysis with an average speed of 𝑉𝑎 = 100km/h, there is as well an observable 

increase in total length of wireless charging segments which have to be installed within the 

network. Again, with higher EV ranges the overall length of dynamic charging infrastructure 

segments decreases as less infrastructure needs to be installed in order to cover all 

charging demand. Especially when assessing the lower levels between 20 kW and 50 kW of 

power that vehicles can pick up from the roadway, the total length of wireless charging 

segments is significantly influenced.  

  

 

 

 



88  Modelling and location optimization of dynamic wireless charging infrastructure 

 

Fig. 4.17 Total length of wireless charging segments depending on power level 𝑃𝐿𝑎 and Range 
𝑅𝑚𝑎𝑥 (𝑉𝑎 =100km/h) 

4.3.2.3 Location analysis 

The results depicted in Tab. 4.17 and 4.18 illustrate the percentage share of wireless 

charging segments which must be installed at each link to ensure a full coverage of the 

charging demand. Tab. 4.17 illustrates that a total of approximately 5.95% of the total 

length of the transportation network would have to be equipped with wireless charging 

infrastructure in order to ensure that all demand is covered when the defined scenario is 

taken as input for the model application. However, the percentage share of wireless 

charging segment per link differs largely between the links. The model results show that 

26% of the length of link 5 would have to be equipped with wireless charging segments 

while 7.43%, 8.67%, 13%, 7.8%, 7.22%, 17.33%, 10.11%, 9.75%, 6.50% and 13% are 

required for links 1, 3, 11, 12, 13, 14, 15, 16, 18 and 19 in order to cover all charging 

demand.  
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Link 
number 

Link 
length 
[km] 

Length wireless 
charging segment [km] 

Percentage of wireless 
charging segment per link [%] 

1 14 1.04 7.43 

2 18 0.00 0.00 

3 18 1.56 8.67 

4 24 0.00 0.00 

5 6 1.56 26.00 

6 18 0.00 0.00 

7 10 0.00 0.00 

8 26 0.00 0.00 

9 10 0.00 0.00 

10 18 0.00 0.00 

11 18 2.34 13.00 

12 20 1.56 7.80 

13 18 1.30 7.22 

14 12 2.08 17.33 

15 18 1.82 10.11 

16 16 1.56 9.75 

17 14 0.00 0.00 

18 28 1.82 6.50 

19 22 2.86 13.00 

Total  328 19.50 5.95 

Tab. 4.17 Lengths of wireless charging segments (𝑃𝐿𝑎  = 50 kW) 

 

When taking the same boundary conditions into account but increasing the power level to 

200 kW, approximately 1.5% of the total length of the network would have to be equipped 

with wireless charging segments in order to cover all charging demand (see Tab. 4.18). 

Furthermore, the analysis shows that wireless charging segments must be installed at links 

2, 5, 10, 11, 12, 13, 14 and 15. While 10.83% of link 5 must host wireless charging 

segments and thereby constitutes the upper level, the lower level of required percentage of 

charging segments is observable on link 15 with 0.33%. 
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Link 
number 

Link 
length 
[km] 

Length wireless 
charging segment [km] 

Percentage of wireless 
charging segment per link [%] 

1 14 0.00 0.00 

2 18 0.58 3.22 

3 18 0.00 0.00 

4 24 0.00 0.00 

5 6 0.65 10.83 

6 18 0.00 0.00 

7 10 0.00 0.00 

8 26 0.00 0.00 

9 10 0.00 0.00 

10 18 0.52 2.89 

11 18 0.45 2.50 

12 20 0.39 1.95 

13 18 1.30 7.22 

14 12 0.91 7.58 

15 18 0.06 0.33 

16 16 0.00 0.00 

17 14 0.00 0.00 

18 28 0.00 0.00 

19 22 0.00 0.00 

Total 328 4.86 1.48 
 

Tab. 4.18 Lengths of wireless charging segments (𝑃𝐿𝑎  = 200 kW) 

To summarize, when installing wireless charging segments with power levels of 50 kW and 

200kW, eleven and eight links would have to be equipped with wireless charging 

infrastructure. However, when increasing the power levels, the total length of wireless 

charging segments which must be installed significantly decreases from 5.95% to 1.48% of 

the total network length.  

4.3.3 Discussion of results 

The impact of different vehicle setups on the total length of wireless charging segments to 

be installed is investigated and the results of the vehicle, system and location analysis are 

discussed in subsections 4.3.3.1. – 4.3.3.3.  

4.3.3.1 Vehicle analysis 

Variation of range 

Higher ranges result in a decrease in total length of wireless charging segments which have 

to be installed. In addition, higher average speed results in an increase in total length of 
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wireless charging segments. Hence, the model behaviour is in line with the expected 

behaviour. Even though the longest trip in the network falls below 80 km, ranges of at least 

90 km are necessary to ensure that all vehicles can complete their trips without recharging. 

This effect occurs due to the modelling assumption for the range constraints which ensure 

that for all vehicles in the network the available range never falls below 20%. Hence, even 

with ranges of 80 km, vehicles would have to recharge to ensure that the range never falls 

below safety margin.  

Variation of speed 

Lower speeds allow the vehicles to capture more energy from the roadway. Consequently, 

the length of dynamic charging segments which have to be installed decreases with lower 

speed levels. Furthermore, the results imply that the category of the roads (e.g. urban road 

or motorway) and their average speeds must be taken into consideration when planning the 

locations of dynamic wireless charging infrastructure. In urban road scenarios where the 

typical average speed is below 50 km/h and especially under the constraint of lower EV 

ranges (e.g. 40 km) the overall lengths of wireless charging segments are drastically lower 

as compared to scenarios where the average speed is above 100 km/h.   

Variation of power consumption 

When vehicles are modelled with a higher average power consumption, the total length of 

wireless charging segments which must be installed to ensure that all flow is captured, 

increases. Subsequently, the model results confirm the expected outcome when analyzing 

the variation of power consumption. 

4.3.3.2 System analysis 

More specifically, the observable increase in total length of wireless charging segments with 

lower levels of power received is not surprising as this causes the vehicles to receive less 

energy from one charging infrastructure and consequently more charging segments must be 

installed. Furthermore, with higher EV ranges the overall length of dynamic charging 

infrastructure decrease as less infrastructure must be installed in order to cover all charging 

demand. To conclude, the system analysis showed as well that the model results are in line 

with the expected model behavior. 

4.3.3.3 Location analysis 

The analysis showed that the model is capable of determining the percentage of the 

transportation network that would have to be equipped with wireless charging facilities in 

order to cover all charging demand of electric vehicles. Furthermore, the link-based location 

of the required facilities can be deducted from the model results as well. The observed 

results are in line with the expected model results. First, the total length of wireless charging 
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segments is varying depending on the power levels and second, higher power levels result 

in a lower total length of installed wireless charging segments.  

 

 

 



Conclusion  93 

5 Conclusion 

The following concluding section is comprised of a review of the research work (section 

5.1), an overview over the key findings, contributions and limitations (section 5.2) and 

suggestions for future research (section 5.3).  

5.1 Review 

First, the relevant literature for modelling and optimizing facility locations in discrete 

networks in the context of charging infrastructure for electric vehicles is presented. The 

review showed that the placement of charging infrastructure for electric vehicles can be 

modelled with various different inputs and assumptions and a comprehensive approach is 

required when modelling the placement of charging stations for electric vehicles. 

Furthermore, it showed that previous research did not consider modelling optimal 

placement of wireless charging infrastructure and traffic assignment. Moreover, little peer-

reviewed research has been conducted for the optimal placement of wireless charging 

infrastructure and system design.  

Subsequently, two different modelling approaches were developed to optimally locate 

charging facilities with wireless power transfer capabilities, the flow-capturing location 

model with stochastic user equilibrium and the set-covering location model with charging 

system design. The first model uses the flow-covering location problem as a basis but is 

extended with the capability to take vehicle range and wireless charging infrastructure into 

consideration. In addition, simultaneous traffic assignment following stochastic user 

equilibrium (SUE) is considered. The second model is an extension of the set-covering 

model that seeks to cover all charging demand in the network and refines the charging 

system design and additionally taking vehicle speed, range and power consumption into 

account.  

When revisiting the research question: “How can the location of dynamic wireless charging 

infrastructure be optimized on a discrete road network?  

1. What percentage of charging demand of electric vehicles can be covered with a 

predetermined number of facilities?  

2. What is the minimum number of facilities and their locations that results in a full 

coverage of charging demand from electric vehicles?”  

it can be concluded that the results of the flow-capturing location model with stochastic 

user equilibrium answers the first specification, and the second specification is answered by 

the results of the set-covering model with wireless charging system design. Furthermore, 

when an optimization problem is formulated as a mixed integer linear problem, existing 
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algorithms can be used for solving the model. Hence, as both models are initially formulated 

as mixed integer nonlinear problems and this research seeks to solve the models with 

readily available solution methods implemented in standard software packages, both 

models are linearized. Finally, both models and their applications are discussed and an 

overview of the lessons learned is presented.  

5.2 Contributions and limitations 

Contributions 

First, previous flow-capturing and flow-refueling location problems discussed in the 

literature review usually classify link traffic flow on the network as an exogenously given 

input parameter, which is determined by the assignment of the origin-destination (OD) 

demand to the shortest paths. These shortest paths are determined using standard shortest 

path algorithms such as Dijkstra’s algorithm. This leads to the route choice behavior of the 

network users only being influenced by the trip distance but not by travel times which can 

change with the assigned traffic flow. Hence, the proposed model incorporates both the 

captured traffic flow and a route choice model, which takes the availability of wireless 

charging facilities and travel time into account. The change in route choices is modelled by 

extending the standard flow-capturing models with the consideration of stochastic user 

equilibrium. In addition, the proposed model simultaneously considers the assignment of 

traffic flow and the optimal locations of wireless charging infrastructure. Subsequently, this 

approach allows for the modelling of the interactions between the optimally placed wireless 

charging infrastructure and actual traffic flow on the routes which in return influences the 

travel times in the network. Furthermore, depending on the setting of the scaling 

parameters, the attractiveness or the utility of the availability of a charging facility as well as 

the travel times is influenced. 

Secondly, the set-covering location model with charging system design seeks to minimize 

the total length of the wireless charging system that must to be installed to cover all 

charging demand in the network. It encompasses the design of the wireless charging 

infrastructure, the setup of the electric vehicles and the transportation network. The solution 

of the model results in the charging facilities’ location plan and the according length of the 

wireless charging segments that are to be installed.  

In comparison to the flow-capturing location model with equilibrium constraints, the set-

covering location model features a model detailed view on the charging system design and 

incorporates a more realistic recharging logic. The vehicles do not fully recharge at each 

available facility but can only recharge as much as the charging system design allows. 

Subsequently, the proposed model depicts a flow-based set-covering location model that 
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incorporates infrastructural and vehicular constraints as well as charging system design 

constraints.  

Limitations 

Models generally depict a restricted view of the reality and the degree of modelling accuracy 

especially in relation to the modelling of cost is limited and only implicitly incorporated by 

the number of facilities which must be located to serve the charging demand. The objective 

functions and consequently, the parameters and constraints of both models could be 

extended by including cost terms. This could be achieved by incorporating different types of 

costs that arise for the design, installation, operation and maintenance of dynamic wireless 

charging infrastructure. Furthermore, both model formulation assume that all vehicles in the 

network are electric vehicles, hence, different types of users within the road network and 

different electric vehicle types are not considered. Consequently, this simplification does not 

allow to model other potential means of transport that could influence route choice, travel 

times and average speed in the network. Moreover, the presented model formulations do 

not consider the capabilities of the power system and detailed technical properties of the 

dynamic wireless charging system.  

Taking the model formulations into consideration, the nature of the formulated facility 

location problems includes binary constraints (does the location for the proposed charging 

link exist yet?), subsequently, this approach will lead to a mixed integer model formulation. 

It is worthwhile to explore further possibilities of either formulating the models as linear 

problems which could lead to enhanced solution efficiency and possible applicability to 

bigger networks.  

5.3 Future research  

This research laid out the basic model framework and the proposed models are tested on a 

benchmark network. However, in future research, it is worthwhile testing the model 

framework on real networks and implement real boundary conditions to optimally locate 

charging infrastructure in a real city. While the models are applicable to any network, one 

has to ensure that abstractions of real networks are made where necessary. Second, it must 

be kept in mind that due to the large number of integers the solving times may increase for 

large networks. To circumvent this limitation, the application of different solution strategies 

such a heuristics could be taken into consideration when bigger networks are to be 

analyzed. Furthermore, the models proposed could be integrated into traffic management 

and planning tools in order to account for charging infrastructure in future applications.   

The location model, the prediction of charging behavior and the spatial analysis of possible 

locations play a crucial role in the different approaches. Therefore, in future research more 
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comprehensive approaches taking the aforementioned variables and limitations into 

account are worthwhile investigating. In addition, the field of modelling frameworks for the 

placement of charging infrastructure for electric vehicles is an active field of research and it 

can be expected that more sophisticated and comprehensive approaches will be developed 

in future research. To conclude, further advances on location optimization of charging 

infrastructure are worthy areas of future research, as electric vehicles will only become more 

present in our transportation system if well-planned and well-designed charging 

infrastructure is implemented.   
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