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Abstract - Zusammenfassung

Abstract

In this thesis, we develop and investigate new computational methods for data ana-
lytical approximation problems belonging to the family of iteratively reweighted least
squares (IRLS) algorithms. First, we discuss the applicability of IRLS-methods in re-
gression problems with nonlinear measurement settings entailing nonconvex or even
nonsmooth optimization problems. Next, we introduce an IRLS-variant with a novel
reweighting strategy for learning low-rank matrices from few random measurements
that substantially enhances performance with respect to state-of-the-art methods. Fi-
nally, we present an IRLS-algorithm with a very general formulation allowing for learn-
ing signals with multiple or composed low-dimensional structures from a minimal num-

ber of measurements.

Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung und Untersuchung von Berechnungsver-
fahren fiir Approximationsprobleme im Bereich der Datenanalyse, die zur Familie der
Iteratively Reweighted Least Squares (IRLS)-Methoden gehoren. Als Erstes wird die
Anwendung von IRLS-Methoden auf Regressionsprobleme diskutiert, bei denen der
zugrunde liegende Messprozess nichtlinear ist, was zu nichtkonvexen oder sogar nicht-
glatten Optimierungsproblemen fiihrt. AnschlieBend wird eine Variante eines IRLS-
Algorithmus mit einer neuartigen Gewichtungsstrategie fiir das Lernen von Niedrig-
rangmatrizen aus wenigen Zufallsmessungen vorgestellt, die im Vergleich zu state-
of-the-art-Methoden wesentliche Performanceverbesserungen aufweist. Abschlieend
prasentieren wir eine IRLS-Methode mit sehr allgemeiner Formulierung, die das Lernen
von Signalen mit mehreren oder zusammengesetzten Strukturen aus einer minimalen

Anzahl von Messungen erlaubt.
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Notation

Sets and operations on sets:

B.(x)
By (z,¢)

empty set

set and its complement

set of natural numbers {1,...,n}

set of natural numbers

set of natural numbers including 0

set of real numbers

set of positive real numbers

set of complex numbers

ball with radius € > 0 around z w.r.t. the Euclidean norm

ball with radius € > 0 around z w.r.t. the norm |||-||

Functions and operations on functions:

In the following, let F': R? — R, and ¢ : R? — R be arbitrary functions.

dom F', domy
VF(x), V?F(z)
OF (z)

lpe(c)

domain of the function F'; domain of the function ¢
the gradient and the Hessian of F' at x
subdifferential of F' at x

level set of F' on C corresponding to the value ¢, i.e.,

lpe(c)={xeC: F(z) <c}.



In the following, consider the vectors x € R% y € R™ and the matrices X € R% x4z

and an operator ® : R — R™

Vectors, matrices and operators:

(£ ()
I
04, xds

1d1 X d2
diag(x)

Sd
s
S
Hd
HY

d
HY

Oy

Od1 ><d2

Ud1 ><d2

D()
Ran(+)
N()
]:'(.7 )

d
=1

set of matrices in R%1 %42
submatrix of X w.r.t. the index sets Z C {1,...,m},
J c{l,..,m}
i-th row and j-th column of X
(F(z)y = [F(1), ..., Faa)]T
identity matrix in dimension d X d
dy X dy-matrix with only O-entries
dy X de-matrix with only 1-entries
ri,i€[d i=j
0 LF
set of symmetric, real d x d matrices

diagonal matrix with diag(z)};; =

set of symmetric, real, positive semidefinite d x d-matrices
set of symmetric, real, and positive definite d x d-matrices
set of Hermitian d x d-matrices

set of Hermitian and positive semidefinite d X d-matrices
set of Hermitian and positive definite d x d-matrices

set of d x d-orthonormal matrices, i.e.,

{0 € Myyq|OOT =1,}

set of d; X dy-matrices with orthonormal columns, i.e.,

{0 € My, +4,|OTO =14,}

set of d X d-unitary matrices, i.e., {U € C*|UU* = 1,}
set of d; X de-matrices with unitary columns, i.e.,

{U € Ch*|U*U =1g4,}

domain of an operator

range of an operator

nullspace of an operator

set of elements in the domain that are mapped on y by ,

ie., Fly,®) = {z € RYD(z2) = y}



In the following, let the vectors z,y € R% z € R%9 and matrices A € R,
B eR¥>% O D e R EeRI*dN and F € RI=2x4

Operations on vectors and matrices and operators:

Codws [ leaow)
1+ lle,

tr(")

oi(")

rank(-)

G |- Hles

Cows e
- Ils,

- lle,.

-,

X

© &

')vec

o~~~

’)mat(d1,d2);<'>mat

transpose of a vector or matrix
conjugate transpose of a vector or matrix, adjoint operator
inverse of a square matrix, Moore-Penrose pseudo inverse

non-increasing rearrangement of the vector entries w.r.t.

their absolute values, i.e., ri(z) > ro(z) > --- >0
Euclidean inner product and the Euclidean norm, i.e.,
1
(T, 9)e = 2 i, [|2lley = (32, |2]*) 2
weighted Euclidean inner product, i.e., (x,y)w = (z, Wy)

for a weight matrix W € S‘fd and the induced norm
y-vector (quasi)norm, 0 < p < oo, ie., ||z[l, = (3, |x1]”)%
trace of a matrix, i.e., tr(4) => . A;;

the i-th singular values of a matrix

rank of a matrix

Frobenius inner product (X,Y)r = tr [X*Y] and induced

Frobenius-norm of a matrix

weighted Frobenius inner product, i.e., (A, B)y = (A, W B)
for a weight matrix W € ST*¢ and the induced norm
Schatten-p-matrix (quasi)norm, 0 < p < oo, i.e.,

[Alls, = (Z,o:(A))7 = (ir(xXT))*

?, ;matrix (quasi) norm, 0 < p < oo, 1 < g, ie.,

1A, = (ZllAgallg) 3
partial ordering on the space

D~C & D-CeS™, D=C & D-CesS¥

Séxd e,

Kronecker product, i.e., the tensor product of matrices

w.r.t. the standard bases

Kronecker sum, ie., E®QF =E®I; +15 @ F

Hadamard product, i.e., (C' ® D) jy = Cij) - Diijy
vectorization of a matrix by stacking its columns in a vector

reshaping a vector of length dids into a d; X dy-matrix, i.e.,

Zmat(dy,d2) = Z, where Z[i,j] = Z(j—1)-d1+i> Z = (Zvec)mat






CHAPTER 1

Introduction

The immersion into new environmental conditions confronts us with the interpreta-
tion of so far not experienced, maybe initially incomprehensible information obtained
from sensory impressions. In finding our way in the world around us - capturing new
concepts, learning to speak a language or deducing causalities - in a quite quick and
efficient manner, our brain is able to find structure and meaning in these streams of
incoming signals. Our minds have the impressive capability to make inferences which
apparently reach far beyond the available data helping us to predict and prepare our-

selves for future actions [147, 157]. How do we do it?

Just consider the situation of a young child trying to decipher the meanings of new
words. Parents experience and scientists confirm [10, 167] that average 2-year-old in-
fants can acquire the proper usage of an unknown word such as “dog” or “chair” from
facing few examples only. It is possible for them to capture the meaning, not only the
phonetic pronunciation by generalization and appropriately utilize the new word in
unfamiliar situations. This is indeed a remarkable feat considering this as a computa-
tional result from very limited sensory input data. Imagining the infinite space of all
possible items, there exist still infinite but substantially constrained subsets of objects
belonging to the categories “dog” or “chair” [147]. This rises the question, how a child
is able to capture the boundaries of these subsets from the observation of a handful

examples.

It is basic statistics knowledge that correlation does not imply causation. However, on
a regular basis, little children infer causal relationships from only a small number of
samples [67] that is by far too low to even reliably establish a correlation. Consequently,
there is no chance to draw exact inference for arbitrary models neither for the brain

nor any type of computer. Nevertheless, humans are capable to derive complex causal-



ities, formulate strong generalizations, and establish powerful abstractions from data
that is insufficient, noisy and corrupted with outliers or ambiguous - in many aspects
very limited leading to a significant discrepancy between the level of available sensory

information and the level of insights and cognition gained from it [147].

This conundrum became known as “the problem of induction”, that concerned great
philosophers for ages, from ancient Greek Plato and Aristotle, over Hume to Carnap,
Quine, Goodman and later in the 20th century [61]. Solutions for this problem proposed
by philosophy did not change much in the course of time since Plato: The brain can de-
feat this “curse of dimensionality” [6] by invoking the “blessing of abstraction” [66, 120].
This means that, if the brain can reach beyond the data provided, this gap has to be
closed by another source of information. Our mind places assumptions on the world
around us constituting limitations what can be meaningfully represented, manipulated
or learned in general - the central statement of the “no free lunch theorem” [120, 165]. In
other words, sensible generalization is not feasible without further abstract background
knowledge generating and restricting the brain’s hypotheses [132]. Different scientific
disciplines in mathematics have come up with specific terms for this additional infor-
mation that is invoked: optimization experts speak of “constraints”, machine learning

researchers call it “inductive bias” and statisticians name it “priors” [147].

It is a common hypothesis that our brain builds up a simplified model of the world
by a-priori assuming that not every input and output variable and all relations bet-
ween them are relevant. Instead, only a small number of important interactions exists.
From a computational perspective, such an extraction of these relevant variables and
their relationship can be regarded as learning of these underlying structures with re-
duced complexity. More precisely, lower-dimensional structures represent constraints
on the input-output map which are appropriate for the natural world. Exploiting
these representations lets our brain reveal the hidden structure in our experienced
phenomenons and allows drawing inferences and conclusions - forming the basis for

human intelligence[13, 147].

These days researchers and scientists want to take a step further by creating artificial
intelligence (AI), enabling machines to learn from data reaching human or even super-
human level. Already today Al is changing our lives and advancing rapidly in many
areas from business over healthcare to sciences. Actually, Al and machine learning
are omnipresent and facilitating our day-to-day life, often in a rather obvious way, by
web search with all-knowing Google, offering assistance via Siri or Alexa, using our
smartphone that can recogonize your face and soon autonomously driving our cars and

operating our smart home devices by remote control. Beyond that, less directly visible,



machine learning is now behind any major service, detecting credit card fraud or spam
mails, making purchase suggestions on Amazon, breaking down language barriers with

translation tools and smart non-player elements in games.

Similar to the exploitation of inherent structure with reduced complexity in sensory
information in our brains, also machine learning methods take advantage of low-

dimensional representations of incoming signals or the output data.

In this thesis, we are concerned with the design and analysis of algorithms tailored
for data analytical problems involving input signals or output variables with a specific
type of inherent structures. These particular structures allow for so-called sparse repre-
sentations with reduced dimensionality that we exploit for the computational efficient
treatment of the considered data analysis problems.

Let us discuss a few interesting application examples for illustration.

(i) Detection of faulty sensors in wireless sensor networks
We consider a wireless sensor network as in Figure 1.1 that contains several
but few faulty, compromised, or jammed sensors either sending no meaningful
or no signal at all to a signal receiver collecting the incoming measurements.
Hence, in such cases, sparse measurement outliers occur and it would be advan-
tageous to smartly detect and ignore the erroneous information transmitted by
the damaged sensors. The exploitation of this structural a-priori knowledge on
the measurement error is essential for the robust regression of wireless sensor data

contaminated by faulty sensors and allowing their detection and neglection[107].

intact sensor

L
x faulty sensor
~
A

signal receiver A

Figure 1.1: Visualization of a wireless sensor network with faulty sensors (graphic by

Juliane Sigl, using pictures under creative commons licensing allowing modifications !)

Lhttps : //pizabay.com/en/landscape — countryside — fields — nature — 409551/,
https : //commons.wikimedia.org/wiki/File%3AWi fi.svg, By RRZEicons (Own work) [CC BY-SA
3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons



(ii) Netflix movie recommendations

Figure 1.2: Schematic representation of Netflix’s data base with user’s movie ratings

(graphic by Juliane Sigl, using pictures under creative commons licensing allowing modifications 2)

Recommendation engines are very powerful personalization tools that online
shopping retailers, for instance Amazon, and online movie services like Netflix
use to provide relevant content for the customer from a potentially overwhelming

set of choices. In the words of Steve Jobs - "a lot of times, people don’t know

what they want until you show it to them” [62, 127].

In 2009, Netflix selected the winner of its famous contest, the so-called Netflix

prize, for the best algorithm able to accurately predict customers ratings of movies

based on those of previously seen movies [112] as illustrated in Figure 1.2.
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(iii)

In fact, movies in the Netflix data base can be clustered according to genre, e.g.,
Comedy, Sci-Fi etc. or they star the same actor or actress and particular user
groups may identify their movie taste with certain of those categorizable features.
The basic assumption of Netflix is that, if the previous movie ratings of user A
and B have been similar in the past, they can be assigned to a subset of users with
matching movie taste. Based on the assumptions that the number of categories
of movies is way smaller than the total number of available films and the overall
count of customers is far larger than the number of groups of users with matching

taste, Netflix builds recommendations using similarity scores.

This representation of the mass of customers and movies in preference groups
with reduced dimension is another instance of sparsity structures: the Netflix
data base corresponds to a user-movie rating matrix with a large number of
missing entries and, due to the correlations between the inherent user and movie

groups, this matrix has low rank, i.e., the vector of its singular values is sparse.

This problem is called (low-rank) matriz completion and has received much at-
tention in recent years as there is a high demand for efficient solvers also for large
scale data sets in practical contexts [7]. Further examples of relevant, related ap-
plication scenarios, in which the recovery of low rank matrices occurs are system

identification [153] or global positioning in sensor networks [21].

Moving object detection and background separation in videos

One of the classical computational tasks in video surveillance is the detection of
objects in front of detailed background as exemplary shown in Figure 1.3. Given
a sequence of video frames, we want to identify objects and activities that stand
out from the background, which is difficult in busy video scenes, where every

frame may include perturbations.

If we stack all video frames as the columns of a large matrix X, due to the correla-
tion between frames, the stationary background will correspond to highly similar
columns, i.e., the matrix showcases approximate low-rankness. In general, moving
foreground objects, such as vehicles or pedestrians, constitute only a small frac-
tion of the pixels in the image frames and, therefore, can be treated as additive
sparse perturbation errors. Nevertheless, each single image frame has thousands
of pixels, and a video fragment consists of hundreds or thousands of frames. Con-
sequently, without efficient computational solution methods, the decomposition

of X in a low-rank and a sparse perturbation component is infeasible[19].

Another interesting application problem, where a similiar solution strategy can

be used, is face recognition, e.g., considering varying illumination situations.



Figure 1.3: Moving object detection in video surveillance [19, Figure 2|; Left: video
surveillance frames, middle: separated background, right: moving foreground objects

In these applications mentioned above, the given data sets exhibit intrinsic low-
dimensional structures representing different kinds of sparse data features, that need
to be reflected in an appropriate model of the data analysis problems at hand. The
formulation of the corresponding approximation problems that have to be approached
for their solution typically involve ¢,-quasinorms for vectors or appropriate related

matrix-valued quasinorms.

Despite their, at first sight, very different nature, the three data analytical problems can
be translated into optimization problems that are efficiently solvable with algorithms

belonging to the class of Iteratively Reweighted Least Squares (IRLS) methods.

IRLS is an algorithmic strategy which classically imitates ¢,-minimization for vectors
in residual minimization or signal recovery. Its formulation can also be adapted to the
minimization of related matrix quasinorms. The algorithm is performing a successive
approximation of the f,-minimization problem by solving a weighted least squares
problem with an iteratively adapted weight matrix in each iteration. This procedure is

hopefully leading to convergence to the actual /,-minimizer.
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IRLS approximation constitutes a powerful and adaptable algorithmic scheme for a wide
range of problems in engineering and applied sciences. It can be employed as a fast
and robust computational tool in a large number of application scenarios, in particular
in statistics for robust regression, general nonlinear parameter estimation, maximum
or quasi-likelihood estimation, and in the expectation-maximization context. Beyond
that, IRLS methods were able to deliver remarkable results in signal processing in sparse
vector [35] and low-rank matrix [51] recovery as well as for the solution of minimization
problems involving bounded variation functions [26]. A superlinear convergence rate

can be reached even for nonsmooth and nonconvex optimization problems [36].

This thesis is a self-contained compendium of our research work, collected in the re-
search papers [86, 87, 135], and the so far unpublished research work in Section 5.1-5.2,
Subsection 5.3.2-5.3.3, Section 5.4-5.5. In this work, we contribute with novel iteratively
reweighted least squares algorithms both extending the applicability spectrum of this
algorithm class and enhancing performance for classical application settings with re-
spect to the state-of-the-art. The results in this thesis for this class of algorithms can

be conceptually summarized in the following two directions:

(i) IRLS for minimization of sparse nonlinear residuals [Chapter 3]
In the context of sparse measurement outliers, as in the example of faulty sensor
detection in a wireless sensor network, robust methods for regression also for

nonlinear measurement settings are desired.

In Chapter 3, that presents results first appearing in the paper [135] by the author
of this thesis, we discuss an IRLS method for sparsity-promoting ¢,-norm-residual
minimization involving nonlinear operators which allows the efficient numerical
treatment of such problems. In particular, the investigation of the algorithmic
behaviour and performance of IRLS as well as its applicability conditions and

limitations are of high interest for statistical analysis in relevant application cases.

We present a rigorous theoretical analysis of the convergence behaviour for this
IRLS-type algorithm called NR-IRLS under certain applicability conditions on
the nonlinear measurement operators. Actually, this work includes the cases,
where the measurement map is nonlinear and mildly smooth with parameter
1 < p < 2 and, hence, we face not only a nonconvex but even a nonsmooth
optimization problem. More precisely, the novelty is its ability to deal with severe

nonsmoothness resulting from the cases, where p ~ 1.

- 11 -



(ii) IRLS for learning of signals with low-dimensional intrinsic structures

(a)

Low-rank matrices [Chapter 4]

The occurrence of the matrix completion problem in recommender systems,
exemplary described above for the case of the Netflix movie streaming ser-
vice, and further highly relevant applications like system identification [153]
or global positioning in sensor networks [21] made the low-rank matrix recov-

ery problem a widely studied problem in the machine learning community.

The strategy of using an IRLS-type method for the approximation of the
low-rank matrix recovery problem via a Schatten-p-quasinorm minimization
problem appeared already in the papers [51, 106] published several years
ago. Still, both of the IRLS approaches presented in those publications are
not able to fully generalize the properties of the algorithm for sparse vector
recovery in [35]. In particular, for the algorithms defined in [51, 106] there

was no way to establish a provable rate of convergence.

However, the algorithm under discussion in this chapter, the harmonic mean
iteratively reweighted least squares (HM-IRLS), which was first presented in
[86] and [87] by the author of this thesis in collaboration with Christian
Kiimmerle, introduces an important novelty. We use a new kind of weight
matrices, the so-called harmonic mean weight matrices, which are more sym-
metrical than the weight matrices previously used [51, 106]. This empowers

HM-IRLS to overcome the disadvantages of the weight matrices in [51, 106].

Similar to existing work, we introduce an auxiliary functional as a tool to
extend the previous convergence results to HM-IRLS, partly under null space
property assumptions. Moreover, as a main theoretical result, we show that,
in contrast to other IRLS variants, HM-IRLS can exhibits a locally super-
linear rate of convergence. This rate can be accurately verified in our nu-
merical tests and also practically reaches rates arbitrarily close to quadratic
for p — 0. Even more surprisingly, HM-IRLS demonstrates global conver-
gence and superior performance in terms of sample complexity in compari-
son with various state-of-the art methods in the literature, in particular in

the strongly nonconvex regime of p < 1.

Signals with multiple structures or combination of structures [Chapter 5]

In this chapter, that contains so far unpublished work, we want to pass
over from the recovery of low-rank matrices to more general high dimen-
sional signals with multiple underlying structures from a minimal amount
of linear measurements. In practical applications like video surveillance or

face recognition, often the signal to be recovered is either a matrix with
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multiple sparsity-type structures occurring simultaneously or is the linear

combination of several signals with different sparsity structures.

Recently, the negative results of Oymak e.a.[116] revealed that the intuitive
attempt of combining convex norms usually minimized to promote each of
the single structures will require just as many measurements as exploiting
only one (dominating) structure. Only the combination of the nonconvex
penalization functionals that are promoting a certain structural property
will be beneficial for a reduction of the number of measurements. Motivated
by this recently discovered fact, we investigate and analyse an IRLS-type
method as this algorithm family has proven to be an efficient tool even in
the nonconvex regime.

We present a very general formulation of an IRLS algorithm, named GIRLS,
fusing different reweighting strategies into one unified weight matrix. We
again utilize auxiliary functionals combining terms corresponding to the
single sparsity structures and allow constrained as well as unconstrained
formulations to incorporate the measurement information. Using this tool,
we show convergence results and error bounds, some of which are based on

null space properties of the measurement operator.

Additionally, we provide in Chapter 2 a synthetic overview on the fundamentals and
most important aspects in data analysis and optimization that, finally, pave the way
towards the formulation of iteratively reweighted least squares algorithms. We access
the topic from a data analysis point of view presenting the types of approximation goals
that will be of interest in this work and formulate corresponding optimization problems
for their solution. Of course, we provide a collection of useful tools from optimization
and explain the special aspects to consider for high dimensional data. Furthermore, we
introduce the concept of sparsity for vector and matrix valued data and its theoretical
foundations. With this chapter, we provide for the reader useful results from other
literature sources, that are required for the elaboration of the topics in the subsequent

chapters.

In accordance with the latest regulations concerning the authorship of the results ob-
tained in Ph.D. theses, I hereby declare that, if not clearly stated otherwise, the content
of the following chapters, sections and subsections are original and were obtained thanks

to my contribution

Chapter 3, Subsection 4.1.2, Section 4.2, Subsections 4.3.1-4.3.3, Subsections 4.3.5-
4.3.7, Section 4.4, Section 5.1-5.2, Subsection 5.3.2-5.3.3, Section 5.4-5.5.

Moreover, I hereby declare that, Christian Kiimmerle and myself equally contributed
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to all results in the above listed sections and subsections belonging to Chapter 4 and 5.
The remaining chapters, sections and subsections are reelaborated versions of results
that can be found in the literature and that are necessary to make the thesis self-

contained.

Some pictures shown in this introduction were produced by myself using images licensed
under a Creative Commons license that allows modifications as can be verified by
following the related web addresses. Additionally, this introduction contains pictures
found in the literature and we give a reference to their source in the caption. The
pictures in the rest of the work were either autonomously produced in the context of

[135] or the outcome of the scientific partnership with the co-author of the paper [87].
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CHAPTER 2

En route to
iteratively reweighted least squares:

From data sets to optimization problems

This chapter paves the way for the reader towards the investigation of the powerful

class of Iteratively Reweighted Least Squares (IRLS) algorithms.

Starting from its origin in data analysis as a tool for the solution of approximation

problems, we present the classic least squares as an introductory example.

Thereafter, we continue with the modeling of data with low dimensional structures
and the translation into an optimization problem with an appropriate objective. Of
course we also provide the essential background in optimization. Subsequently, we
introduce Iteratively Reweighted Least Squares (IRLS) as the sequence of minimizations

of surrogate functionals to the original objective.

2.1 DATA ANALYSIS AND APPROXIMATION PROBLEMS

The acquisition of data in the form of output values of measurements with unidenti-
fied influence parameters or an unknown input signal is ubiquitous, e.g., in scientific

experiments, engineering tests, and financial market observations.

In many applications, it is necessary to relate these measured or observed values, that
are possibly afflicted with measurement inaccuracies, with the unknown input variables

by formulating a mathematical model describing the measurement process.

This de facto means, we employ modeling as an approximation to reality that gives us
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further insights on the influence factors of the observed process.

The upcoming subsection takes inspiration from parts of Chapter 6 on approximation
and fitting of the classic book [12] .

2.1.1 ABOUT DATA SETS AND APPROXIMATION PROBLEMS

Formulating this mathematically more precisely, we assume we are given a data set
y € R™ with a number of m measurements y;,j € [m] resulting from a measurement
process that can be described by the map ® : R? — R™, often called measurement or
sampling operator. In some cases, we assume that an error e € R is involved in the
measurement results as well , also referred to as measurement noise. The input variable

r € R% to the map ® represents d possible influence parameters z;,i € [d].

This relationship can be cast into a system of equations with m equations and d
unknowns as follows
O(x)+e=y. (2.1)

Let us for simplicity assume now that ®(z) is a linear map with matrix representation

®(x) = dx for € M,,«4 and that the error e = 0 resulting in the system
br =y, (2.2)

In the case that m = d and & is full rank, ® is invertible and there exists a unique

solution to (2.2) that can be calculated explicitly

=&y

However, if e is nonzero, the result above might not be accurate enough, or if the
sampling operator ® in (2.1) is nonlinear, not even in the case d = m a (unique)
solution of the equation system might exist, e.g., if y ¢ ran(®). As a consequence, an

appropriate approximation is desired.

This comes into effect in particular in the cases where m # d:

(i) m > d: equation (2.1) is an overdetermined equation system, for which it is
impossible to fulfill all equations exactly.
We need an approximation to the solution with minimal error with respect to
a certain error function in dependence of the residual e = ®(z) — y, which we
denote with f(e).
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(i) m < d: equation (2.1) is an underdetermined equation system with infinitely
many solutions, and further assumptions on the signal x are necessary to ensure
uniqueness. This can be realized by introducing a penalization or regularization
function g(z) which puts at disadvantage unfavored solutions, and then consider

minimization of g(x) under the constraint ®(z) = y.

Our strategy is to identify an optimal solution = x.p to the approximation problem

above as the minimizer of an objective functional J(x)
Topt = argmin J(x), (2.3)

where J () reflects the requirements of the particular problem setting. We design 7 ()
by the incorporation of function terms enforcing certain characteristics for the optimal

solution to (2.1) as follows:

(i) achieving a certain accuracy in the data fit, i.e., minimizing the approximation

error f(e)

Topt = argmin J (z) = argmin f(e) = argmin f(P(z) — y) (2.4)

T T xz

(ii) generalizing best to future observations by identifying the relevant parameters
and the underlying data structure, i.e., minimizing the regularization term g(z)

and thereby penalize undesired features

Topt = argmin J(x) = arg min g(z) (2.5)
x ®(z)=y

If both aspects are of relevance, we suggest solving a minimization problem combining
the two components f(e) and g(z) weighted by a factor A > 0 according to their

importance in the problem context:

Topt = arg;nin J(z) = argmin f(e) + A\g(x) = argmin f(P(x) —y) + Ag(x)  (2.6)

x x

This optimization problem always has a unique solution depending on the regulariza-

tion parameter \.

— 17 —



2.1.2 LEAST SQUARES: EXAMPLES FOR ERROR AND PENALIZATION FUNCTIONS

Let us now consider the problem (2.2) for the overdetermined case with ® € M, .4 for

m > d and measurement data that might be corrupted by nonzero noise e

bdr+e=y. (2.7)

A standard approach in statistics for developing estimates of the model parameters x
in (2.7) is the so-called linear least squares fitting, i.e., minimizing the sum of squares
of the differences between the values predicted by a linear measurement model and the

actually observed data or measured results.

This corresponds to the approximation solution to (2.2) via the minimization problem

as in (2.4) with choice of the Euclidean norm as an error function

fe) = llelle, (2.8)
leading to
rrs = argmin J(x) = argmin ||e||,, = arg min || Pz — y/|e,. (2.9)
' D(x)
/
y o

Figure 2.1: Visualization of least squares fitting

For ® with full column rank the solution x.g in (2.9) has the following closed-form
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representation
rrs = (PT0) 10Ty = dly, (2.10)

where & € R¥™ is the Moore-Penrose pseudo inverse of ® € M,,.4 with m > d.

The least squares fitting constitutes the simplest and most common form of linear

regression with a wide field of practical applications.

It is possible to solve the for z1¢ in (2.10) by employing one of the approaches listed

below with increasing order of computational complexity and stability [59, 92]:

(i) Cholesky factorization of ®7®,
(ii) QR-factorization of @, and

(iii) Singular Value Decomposition of ®.

In applications, where least squares approximations to the solution of (2.1) are em-
ployed, often a Gaussian distribution of the error e is assumed, i.e., ¢; ~ N(0,0)
are i.i.d. zero-mean Gaussian random variables with standard deviation ¢ > 0 for
Jj € [m] [65, 134]. Even in the case, where the measurement model map ¢ is very
accurately approximating reality, the measurement noise e can disturb the quality of
the approximation result x. Therefore, the characteristic nature of the error occurring
in the measurements and the choice of the error function influence the goodness of the

solution for the particular problem.

As an example, for modeling different kinds of noise in statistical and data analytical
applications, from Gauss or Laplace distributed to impulsive noise, a widely used type

of error function is the more general ¢,-norm [134], i.e.,

fle) = llelle, = (Z |€j|p> p (2.11)

leading to the solution of the optimization problem

rrp = argmin J (r) = argmin |le||,, = arg min ||®(z) — y||, . (2.12)

The parameter 0 < p < 2 is adjusted in dependence on the type of residual error [12],

e.g., in the case of Laplacian noise the Euclidean norm is replaced by the ¢;-norm

m

fle)=lleles =) lejl (2.13)

j=1
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resulting in so-called least absolute deviation fitting [104]

xrry = argmin J(z) = argmin ||e||,, = argmin ||®(z) — y|le, - (2.14)

1

Figure 2.2: Visualization of least absolute deviation fitting

In general, if the noise error is assumed to follow a certain design pattern, often corre-
sponding to a known type of probability distribution, one wants to enforce the choice
of an x that results in an error e = ®(x) —y with the expected properties by employing

a suitable error function.

In contrast, considering the case of an underdetermined linear equation system, i.e.,
m < d, with error e = 0
dx =y, (2.15)

the map ® is not injective and we are confronted with infinitely many solutions. Indeed,
there is a (d—m)-dimensional affine space of vectors = z,+N (®) solving this system,

where x, is any particular solution and N (®) denotes the null space of ® [48].

The task here is to select the most suitable solution zp for the specific problem out
of this set and to pose further assumptions on the solution vector, in the best case also

allowing unique identifiability of xp:.

In a like manner as described for assumptions on the noise above, to determine the so-
lution z,,, matching best the desired characteristics, a-priori information on the signal

x needs to be integrated. This can be realized by the minimization of an appropriate
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penalization function under the linear constraint ®x = y in (2.5).

As an example, in the case that it is known to be close to the origin in Euclidean

distance, one can choose as a penalization function

9(x) = [lzle, (2.16)
giving rise to the least Euclidean norm solution

xpy = argmin J (z) = arg min ||z||,. (2.17)
T dr=y

Again, if ® has full row rank, the solution xyy in (2.17) can be represented in closed-
form as
rry = OT(007) "1y = oly, (2.18)

where ®' € My, is the Moore-Penrose pseudo inverse of ® € M,, 4 with m < d.

. 7 tyball

Figure 2.3: Visualization of least norm or /;-norm penalty minimization

For additional examples and discussions on possible a priori assumption on the sig-
nal, introducing the concept of sparsity and the deduction of appropriate penalization

functions, we refer to Section 2.3.

2.1.3 GENERALIZING THE EXAMPLE: WEIGHTED LEAST SQUARES

As seen in the examples above, for the choice of the Euclidean norm as an error or

penalization function, practical explicit calculation formulas for the solutions to the

- 21 —



optimization problems (2.4) and (2.5) come in handy. We now want to consider a gen-
eralization of this approach by introducing a weighting matriz to be multiplied to the
argument of the Euclidean norm function. Thereby we can emphasize or deemphasize
certain components of the argument vector, i.e., of the error e for (2.4) or the signal z
for (2.5) respectively. [141]

Definition 2.1 (Weighted fy-norm). Let z,z € RY and W € S¥ be a symmetric,

positive semidefinite weight matrix. We define the weighted f5-scalar product
(2, 2)tow) = W2, 2) = (2, WZ)
and the induced reweighted fs-norm with weight matrix W as
12lle ) = (2, 2)eaw)- (2.19)

As a special case, we consider W to be a diagonal matrix with positive entries, i.e.,
W = diag(w), where w € RY with w; > 0 for i € [N]. In this case, we can define the

lo-norm with a vector valued weight w as
H’Z”fz( Z < ZQ(W Z wz . (220)

The optimization problems in (2.4) can be formulated with f(e) = ||e||¢,wy) With an
appropriate choice for W € ST and (2.5) with g(z) = ||z ¢,w) with W € S% respec-
tively.

2

()

v

Figure 2.4: Visualization of weighted least squares fitting
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The formulas for the solutions in (2.10) and (2.18) generalize for the case of a reweighted

lo-norm to the weighted least squares solution
Trsy = (PTWO) LT Wy, (2.21)
and the minimum weighted norm solution
Trny = WL (@W1oT) 1y, (2.22)

respectively.

These closed-form calculation rules for the solutions to the corresponding optimization
problems in (2.4) and (2.5) can be used as a standalone approximation, but they
will, moreover, be one of the fundamental building blocks for the development of an

iteratively reweighted least squares algorithm in Section 2.4.
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2.2 NONLINEAR OPTIMIZATION PROBLEMS AND SURROGATE FUNC-
TIONALS

In this section, we want to pave the ground for the solution of the optimization tasks
arising from data analysis problems as mentioned above. Our goal is to prepare the
reader for the generalization of least squares problems to nonlinear measurement op-
erators in Chapter 3. The solution of the nonconvex minimization problems resulting
from the introduction of the nonlinearity can be challenging and we will provide some

helpful tools for handling these difficulties.

The content of the next two subsections in general follows loosely the presentation of
Chapter 2 and 10 in [113] and the introduction to convex analysis and the subdifferential
in [54].

2.2.1 PREREQUISITES FROM OPTIMIZATION

Finding optimal solutions to application problems, e.g., in engineering, science, eco-
nomics or within more complex types of mathematical problem settings, is often for-
mulated as the minimization (or maximation) of functions in one or several variables,
possibly involving constraints on the variables as well. The field of optimization has
its mathematical foundations in linear algebra and multivariate calculus and utilizes

many tools from these branches of mathematics.

Let F': R? — R be a real-valued function with d input variables in form of a vector in
R?, where its function value at the point z € R is denoted by F(z). In the literature,
the function F' that we aim to minimize (or maximize) is often referred to as the
objective function. In the following, we will restrict our considerations without loss of

generality to minimization problems.

First let us consider unconstrained minimization problems of the form

min F(x). (2.23)

r€RC
In this case, the vector 2* € R? is called a local minimizer of F if there exists an € > 0

such that
F(2*) < F(z) for all x € B.(z").
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We introduce the stronger notion that z* is a global minimizer of F' if

F(x*) < F(x) for all z € R

We now want to transfer the notion of minimizer also to constrained problems: we
aim at the minimization of the objective function F(x) subject to = € C. This means,
we minimize F(z) over all  lying in a predefined set C C R? corresponding to the
constraint.

min F(x). (2.24)

zeC

We obtain a local minimizer x* of F' subject to the set C if
F(z*) < F(x) for all x € B.(z*)NC.
Similarly, we define of the global minimizer of F' over the set C

F(z*) < F(z) for all x € C.

As a first step, we introduce further terminology that will be useful for the upcoming

discussion on the existence of optimal solutions.

Definition 2.2. Let C C R? be a subset of R, F : C — R be a real valued function
and ¢ € R be a constant. Then the level set of F on C corresponding to the value c is

a set of the form

lpe(c) ={xeC:F(zx) <c}.
Next we the proceed with the notion of lower semicontinuity, which is a useful gener-
alization of the continuity concept.
Definition 2.3. A function F' : RY — R is called lower semicontinuous if, for every

z € R? and every sequence (z,);>1 converging to x,

lim inf F(z;) > F(z).

J]—00

Of course, a continuous function F : R¢ — R is lower semicontinuous. Let us mention

that lower semicontinuity of F is equivalent to the closedness of all its level sets £ ga(c).

To present also a nontrivial example of a lower semicontinuous function, we consider
the characteristic function Ay of a proper subset C, which is not continuous, but lower

semicontinuous if and only if C is closed.
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Definition 2.4. A function F : R? — R is called coercive with respect to the set C if
either C is bounded or it holds that

lim F(z) — oo.
lzll gy o0

zeC

The coercivity of F' : C — R is equivalent to the property that F' has bounded level
sets lpe(c).

Using the definitions above, we are able to present the following statement on the
existence of minimizers to the problems (2.23) and (2.24), derived from Weierstrass’

theorem in different variants [34, 58].

Theorem 2.5. Let C C R? be a nonempty and closed set, and F : C — R be a lower
semicontinuous function on C. If any of the below conditions holds, then there exists a

nonempty, compact set of minimizers of F subject to C C R?

(i) C is bounded.

(i) F bounded from below by a value o, i.e., F(x) > a for all x € C and, moreover,

F is coercive with respect to the set C C R?.

This result is also known as the “direct method of calculus of variations” [34]. The
proof of this statement uses the compactness of the level sets following from the lower
semicontinuity and the conditions (i) and (ii). Note that the second condition allows
C =R

The question arising from these results is how to identify local or even global minimizers
of a given function F' : R¢ — R possibly subject to a constraint set C in a general

setting.

In the very general, difficult case that we aim at the minimization of a nondifferen-
tiable function F, it is possible to apply algorithms based only on function evaluation
values such as the Nelder-Mead algorithm [111] or pattern search [148]. However, these
algorithms are computationally demanding and smoothness of the objective function

is in general a very desirable property.

In a next step, we introduce the important concept of converity discussing convex sets
and convex functions later on. Moreover, we give reasons why the convexity property
for constraint sets and objective functions is advanteguous as well. Convexity originates
from the field of mathematical analysis dealing with convex sets and convex functions

and constitutes a fundamental concept for optimization.
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Definition 2.6. We call a subset C € R¢ conwvez, if for all z,z € C,
tr+(1—t)zeCforal 0 <t <1,

meaning that the line segment connecting the points x and z is contained in C. More-
over, it holds that a set C is convex if and only if, for all x1,...,z4 € Cand t1,...,t4 >0

such that Ele t; = 1, the convex combination Zle t;x; = 1 is also contained in C.

As typical examples for convex sets can be listed subspaces, affine spaces or norm balls

B(z), and intersections of convex sets are convex sets again.

Now we go on with the introduction of different types of convexity of functions with

the following definition

Definition 2.7. A function F : R? — R is called

(i) convez if, for all 2,7 € R4 and 0 <t < 1,

F(tz + (1 — )7) < tF(z) + (1 — t)F(7),

(i) strictly conver if, for all z 2z € R? and 0 < t < 1,

F(te+ (1 —t)z) < tF(z)+ (1 —t)F(z),

iii) strongly conver with parameter v > 0 if, for all z,z € R¢ and 0 < ¢t < 1
(iii) gly p ot : : ,

F(te + (1 —1)7) < tF(x) + (1 — t)F(z) %t(l —t)||z — 2.

Examples of convex functions include linear and affine functions as well as all kinds of

norms. Moreover, note that a strongly convex function is strictly convex as well.

Finally, a fact pointing out an interesting connection between convex sets and convex

functions is the following

Proposition 2.8. Let C C R? be a convez set, ¢ € R and consider a convex function
F . C — R. Then the level sets of F' on C are conver.

Similar as for convex sets, convexity for functions can be defined using convex com-

binations: a function F : R? — R is convex if and only if for all z1,...,z4 € R? and
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t1,...,tq > 0such that 3¢ ¢, =1,

=1 =1

We continue with a short note about continuity of convex functions.

Proposition 2.9. A convex function F : R — R is continuous on R?,

A further characterization for different types of convexity of differentiable functions

can be formulated as follows:

Proposition 2.10. Let F': R — R be a differentiable function.
(i) F is convez if and only if, for all z,7 € RY,
F(z) =2 F(z) + (VF(T), © — T),

where VF(Z) is the gradient of F at T.

(ii) F is strongly conver with parameter v > 0 if and only if, for all x,z € R,

Flx) 2 F(8) + (VF(@),x = 7) + S« - 1,

(iii) If F is twice differentiable, then it is convex if and only if, for all x € R?,
ViF(z) = 0,
where V*F(x) is the Hessian of F at x.

Having collected important properties of convex sets and functions, we point out the
properties that make this class of sets and functions especially useful in the optimization

context both in theoretical and practical aspects.

We call an optimization problem a convex optimization problem if we aim at the

minimization of a convex function F over a convex set C C R%.

Theorem 2.11. Let F': C — R be a convex function defined on a convex set C C RY .

(i) Then every local minimizer of F' over C is also a global minimizer.

(ii) If F is continuous and C is closed, then the set of local (and therefore global)

minimum points of F over C is a closed convezx set.
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(i1i) If F: C — R is strongly convex, the minimizer of F' over C is unique.

From this theorem, it becomes clear why these types of problems are particularly
interesting, as property (i) implies that convex optimization problems allow for an

efficient algorithmic treatment.

The question arising from these results is, how to identify local or even global mini-
mizers of a given function F : R? — R possibly subject to a constraint set C, also in a

general setting not restricted to the convex case.

To provide an adequate answer, we give conditions on the optimality of certain function

input values, that can also be the core idea for the construction of efficient algorithms.

2.2.2 OPTIMALITY CONDITIONS AND A DETOUR TO NONLINEAR LEAST SQUARES
PROBLEMS

In this next part, we focus on differentiable, nonlinear functions F' and at least partly
give corresponding results for the nondifferentiable but convex case as well. However,
a detailed discussion of nonsmooth optimization will not be part of this thesis and we

refer to [4] for further results in this direction.

We start our considerations with unconstrained problems and present powerful opti-

mality conditions that can be derived from Taylor’s theorem.

Theorem 2.12. Let z* € RY and assume that F : R? — R is twice continuously
differentiable. We consider the

(i) first-order necessary and sufficient condition: ~ VF(z*) =0,
(ii) second-order necessary condition:  V2F(x*) = 0, i.e., V2F(x*) pos. semidef.,

(iii) second-order sufficient condition: V2F(x*) = 0, i.e., VEF(x*) pos. def.
Points x* fulfilling condition (i) are called critical (or stationary) points of F.
On the one hand, if ©* is a local minimizer of F, necessarily conditions (i) and (ii)

have to hold. On the other hand, if condition (i) and (iii) hold, x* is a local minimizer
of F.

The first-order condition stated in (i) implies that the gradient is zero at z*. Fur-

thermore, the second-order condition can be interpreted as a kind of local convexity
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condition on F' in the neighbourhood of z* if we compare conditions (ii) and (iii) to

Proposition 2.10 (iii).

Condition (i) gives us an instruction, how to find at least critical points of a given

function: by finding solutions z* to the equation system VF(z) = 0.

It is clear that if F' is a quadratic function of the variable z, VF(z) = 0 is a linear
system of equations, where direct solvers and effective computational methods are

readily available.

In the general case, however, VF(z) = 0 is a d x d-dimensional nonlinear system of
equations, which can be very demanding to solve. In the case that F'is nonconvex, even
determining whether a solution exists and whether it is unique is sometimes already a
hard problem. As in general no direct solution methods are applicable, we will have to
rely on heuristic algorithms that are not guaranteed to succeed but often work well in

practice.

One can try to solve this equation with iterative methods, for example Newton’s
method, and in this way obtain a critical point as a candidate for a local minimizer.
Nevertheless, in the general case, it is only possible to find stationary points and check
whether they are local minimizers. However, it is not clear whether a global or local
minimizer was identified by employing this approach. In practise, such strategies only
succeed in finding a global minimizer if the initialization of the iterative method is

chosen smartly and sufficiently close to it already.

To illustrate the approach of an iterative algorithm for the solution of nonlinear op-
timization problems, we sketch the basic idea and the typical algorithmic procedure

that these strategies share:

Starting from a given initialization point =9, the algorithm outputs a series of vectors

2)_ ... called iterates, for which we hope that it converges to a point lim z(™ = z,
n—o0

20 4

coinciding with a local minimizer x* for the objective function F'.

Most of these methods implement criteria which enforce a descent condition on the
iterates. This can be realized by performing the n-th iteration step starting from the

current iterate (™ as follows

e Determine a descent direction d (most popular choice: the gradient of F'), and
e Choose a step length o > 0 giving a good decrease in the objective function value.

e Set ("D = (M 4 ad.
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Therefore, a descent method pursues the target
F(z"Dy < F(2™)

in each step and often the algorithm terminates if the function values of the iterates
does not change significantly anymore. This means that if stopping criterion F(z(™) —
F(z™Y) < § for § > 0 is reached, for n = i the final output result of the algorithm is

z =z,

From this procedure it is clear that the output vector of the algorithm and there-
fore, also the local minimizer of the objective that is approached will depend on the

initialization value z(®.

With the decrease of the objective function in each step we aim at the decrease of the
distance of the iterates (™ to the local minimizer * as well, at least from a certain

iteration N on. Reformulating this goal in terms of the error E™ = z(™ — 2* gives
E < 2| for n > N

for an appropriate norm |||-||. Theoretically, convergence of the algorithm to the local
minimizer occurs if li_)m e(™ = 0 and we practically hope for an output z = 2™ of the
algorithm with E(ﬁ)nzoa.

Please note that for different algorithmic strategies we can have different convergence
behaviour for the same problem. Some may exhibit convergence while others don’t.
Moreover, this decrease of the error per iteration and, therefore, the number of itera-

tions necessary until convergence can be different for different algorithmic strategies.

Algorithms can also exhibit different so-called convergence speed or convergence rates.
Depending on the relationship between |HE("+1)|H and }HE(”)H‘ for n > N, i.e., when

}HE(") |H is already small, we can distinguish between

e Linear convergence rate: H|E("+1)H| < uH|E(")H| with 0 < p < 1,

e Quadratic convergence rate: |HE("+1)|H < ,LL|HE(")|H2 with 0 < p,

(n+1)
e Superlinear convergence mte:H — 0 for n — oo.
The fact that convergence occurs or not is independent of the choice of ||| but not

the rate of convergence, that can vary for different choices of [|-||.

At this point, we want to come back to the generalization of the sum of squares mini-

mization problem to nonlinear measurement operators ® : R4 — R™,
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In the linear case, the concatenation of the error function f(x) = ||z||¢, and the linear
residual e(x) = ®x — y leads to a quadratic objective F(x) = f(e(z)). For the min-
imization of this quadratic function one has to solve a linear equation resulting from
the first-order optimality condition, where the efficient solvers mentioned above are

available.

In contrast, the introduction of the nonlinear operator ® leads to the concatenation of
f(z) = ||z||s, with the nonlinear residual e(z) = ®(z) — y and in the end leads to the

minimization of a in general nonconvex objective function
min F(z) = min [le(x) ¢, = min [ @(z) — y]. (2.25)

Even though nonlinear least squares residual minimization is a widespread problem,
appearing for example in regression curve fitting or parameter determination from

scientific experiments, this field is not an extensively discussed subject within analysis.

We present the application of different iterative descent methods as introduced above
for the minimization of the nonlinear objective F'(z) as in (2.25) exemplary for this

problem.

Let in the following J(x) be the Jacobian of F' at the point z. If F'(z) is twice contin-

uously differentiable, then we solve the nonlinear equation

which provides local stationary points for F(z).

The first algorithm we will investigate is the well-known Newton’s method. Its derivation
from Taylor’s theorem indicates a descent direction dy that is determined via the

solution of the equation
V2F(z")dy = —VF(z™).

Using the result with step length o = 1, we can formulate one iteration of this method,

the so-called Newton step, as

2t — x(”)—(V2F(x(”)))_1VF(x(”)) — x(")—(J(:L"(”))*J(x("))—}-S(:c(")))_1J(x(”))*e(x(”)),
(2.26)
where S(z(™) denotes the matrix S(z™) = 3~ ¢;(z™)V2¢;(z™).
j=1

Newton’s method can reach quadratic convergence rate, but still it can be computa-
tionally expensive as it requires the calculation of md? derivatives for the evaluation
of S(x™) at each step.

— 32 —



A key observation towards computationally more efficient solvers related to Newton’s

method is the approximation of the Hessian
V2F(z) = J(z) ' J(z) + S(x) = J(2)" T (). (2.27)
resulting in the Gaufl-Newton method with the subproblem:
[z J ()] d5y = =V F(z™). (2.28)

This approximation can be justified with the assumption that, especially in the case of
mild nonlinearity of ®, the residuals is small in the neighborhood of the solution and,

therefore, the first term is significantly more important.

However, performing a sequence of such iterations with updates z(*t1) = (" 4 ¢,
with the step size choice @ = 1 as chosen above in (2.26) fails to reach convergence.
Therefore, for this kind of algorithms a more careful step size control is necessary.
Depending on the strategy used to determine the step size 0 < o < 1, one distinguishes

two main algorithm categories: line-search algorithms and trust-region algorithms.

(i) Line Search: As a first task within the iteration step of a line search method, a
descent direction d is determined, along which the value of the objective function
shall be decreased. Second we find a step size o that decides how far to move
along the direction to obtain a minimization of the function value. The value of
a can be optimized exactly but often an approximation reaching a decrease in
the objective function value is sufficient. In fact, most line search algorithms also

solve approximate models to obtain search directions, e.g., Gauf-Newton.

(ii) Trust Region: A trust region method uses a (in most cases quadratic) surrogate
model function to approximate the true objective function. It is crucial for this
kind of approaches that this approximation is only "trusted” to be appropriate
over a subset of the search space centered around the current iterate, the so-
called trust region. In the next step, the trust region is either expanded in case
that the surrogate function proves to be a sufficiently good approximation and
successfully minimizes the actual objective function or otherwise it is contracted if
the approximation via the model function fails to decrease the objective function.

Then the surrogate optimization problem is adjusted and repeatedly solved.
We notice the duality between trust region methods and line search methods from the

perspective that they execute the two main steps of descent methods in the reversed

order: line search methods determine a step direction and then set an appropriate step
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size for the chosen direction while trust region methods first find an acceptable step

size determined by the size of the trust region and then decide for a step direction.

As an example, we will point out the most popular algorithm for solving non-linear least
squares problems referred to as the Levenberg-Marquardt algorithm [94, 108]. It actually
was also the very first trust region algorithm to be developed and can be considered as

a trust-region modification of the Gauss-Newton algorithm with the subproblem
n 1 .
d(L]\)J = arg min §\|J(:U(”))d + M|, subject to ||d| < AM. (2.29)
deR
The Levenberg-Marquardt algorithm exhibits the same local convergence behaviour as

the GauB-Newton method and is at least locally equivalent to a linear least squares

problem, but it has the major advantage that it is also globally convergent.

Now we end our detour to the solution of the nonlinear least squares problem and make
a step towards optimality results for functions that are nondifferentiable but convex

and, therefore, still have favourable optimization properties.

We first generalize the gradient to nondifferentiable functions with the definition of the

subdifferential.

Definition 2.13. The subdifferential of a function F' : R? — (—o0,00] at a point
r € R? is defined by

OF(z) = {yERd:f(;f) > F(z) + (y,7 — z) for all 7 € R}

The elements of OF(z) are called subgradients of F' at x.

In the case that F is differentiable at a point z, it holds that OF (z) = {V f(z)}, which
means that the subdifferential 0F(z) consists of one single element, the gradient of
F at x. The subdifferential OF can also be the empty set but for a convex function

F :R? — R it is always nonempty.

To give an illustrative example of a function with a nontrivial subdifferential, we con-
sign(z x #0

sider F(x) = |z|, where OF = tsign(z)} x# .

[—1,1] r=0

Now, interestingly, the subdifferential allows a simple characterization of minimizers of

convex functions via a first-order type necessary and sufficient condition as follows:

Theorem 2.14. A vector x is a minimizer of a convex function F if and only if
0 € 0F (x).
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For the rest of the subsection, we will turn to constrained optimization problems. We
will concentrate on specific constraint sets C, that can be described by equalities or

inequalities.

We define the nonlinear optimization problem with equality /inequality constraints

minimize F'(x)
subject to hg(z) = 0,k € [m,] (2.30)
gi(x) < 0,1 € [m]

where F', hy,ho, ... hy, and g1, 6o, ..., gm, are continuously differentiable functions

from R? into R.

Moreover, we introduce the operators H : RY — R™ and H(x) =
(hi(z), ho(x), ..., hmy (z)) and analogously G : R4 — R™ and G(z) =
(91(2), g2(2), -, Gma () -

In problems with inequality constraints it is often difficult to determine which inequal-
ities are active in an optimal solution, meaning that they are fulfilled with equality. If
we knew the active inequalities, we would essentially have a problem with only equal-
ity constraints, H(xz) = 0 plus the active equalities. The set of indices of the active
inequalities at x is denoted by A(z), so A(z) = {{ < ms : gi(x) = 0}.

In the following, a point x is called regular if {Vhy(z),..., Vi, ()} U{Vgl(z): 1€
A(z)} is linearly independent.

We now present a main result in nonlinear optimization which gives the necessary
and sufficient first-order optimality conditions to the problem (2.30), the so-called
Karush-Kuhn-Tucker conditions, or simply the KKT conditions. Additionally, we will
give second-order conditions to obtain a full presentation of necessary and sufficient

conditions on optimality.

In order to present these conditions, we introduce the Lagrangian function L : RY x
R™ x R™ — R given by

L g = F@) + Y M) + 3 mgi(e) = £(2). (2.31)

with Lagrange multiplier vectors A = (A1, Aa, .oy Ay ) and g = (fa, 2, -« s flamy )-
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The gradient of L with respect to x is denoted by

VoL(z, A p) = VF(z) + Y MVhg(x) + > uVa(x). (2.32)
k=1 =1

and the Hessian matrix of L at (x, A, i) by V. L(z, A, 1) containing the corresponding

second order partial derivatives of the Langrangian with respect to x.

The upcoming theorem first presents the first-order conditions, known as the KKT
conditions, as well as second order conditions that are subsequently put in context and

explained.

Theorem 2.15. Let 2* € R? and assume that f, hi,ha, ..., hy, and g1, g2, ..., Gm, are
twice continuously differentiable functions from R® into R. We consider the

(i) first-order necessary and sufficient conditions (KKT conditions):

V. L(z", A", 1*) =0
>0 [ € [mo (2.33)
=0 [ ¢ A(x™).

(71) second-order necessary condition:
YT V2 L(x*, \*, u*)y >0 (2.34)

for all y with Vhi(z*)Ty =0 for k € [my] and Vg, (z*)Ty =0 for l € A(z*).

(#ii) second-order sufficient condition:
y' V2 L(z*, N\ u)y >0 (2.35)

for all y with Vhy(z*)Ty =0 for k € [my] and Vg (x*)'y =0 for 1 € A(z*).

If x* is a local minimizer of (2.30) and x* is a regular point, then there are unique
Lagrange multiplier vectors \* = (N, A5, ..., A% ) and p* = (i3, ub, ..., Am,) such that

Y mi

necessarily conditions (i) and (ii) hold.

In case that x*, \* and p* are such that x* is a feasible point and (i) and (iii) hold,

then z* is a local minimizer of (2.30).
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2.2.3  OPTIMIZATION OF SURROGATE FUNCTIONALS

Surrogate-based optimization [82, 122] refers to a branch of optimization frameworks
for the development of problem-driven algorithms that use surrogate model problems to
approximate the solution of an otherwise computationally intractable problem. More
concretely, surrogate methods iteratively solve a sequence of optimization problems at a
low computational cost, that typically consist of two main steps: First a model function
G(z) with favourable optimization properties is determined to substitute the original
objective function F'(x). Then computationally efficient optimization techniques are
applied for this surrogate function, hoping for a good approximation of the optimizer

of the true objective function.

Of course, the design of the surrogate function is crucial for the success of the surrogate
model algorithms and one needs to find an appropriate trade-off between the following
two ambitions: On the one hand, the tighter the approximation of G(x) to the objective
F(z), the faster the convergence and therefore, the more efficient the derived algorithm.
On the other hand, a closed-form solution to the optimization problem resulting from

the surrogate model is preferable.

Finding the right balance between the two often contrary goals mentioned above re-
quires the smart application of inequalities bounding the objective function for the

construction of surrogate functions.

Some general principles and methods for the construction of surrogate functions, just

mentioning here three important representatives, can be

(i) Separation in variables: allowing parallel computing implementations in high di-

mensions.

(ii) Convezxity and smoothness: favourable optimization properties, e.g., via lineariza-

tion of the concave part of the objective or Taylor expansion.

(i) Special inequalities, e.g., Arithmetic-Geometric Mean Inequality, Cauchy-

Schwartz Inequality, Jensen’s Inequality.

For discussion of these techniques and further examples we refer to Lange et al. [90]
In the following, we want to give an example for the class of so-called mazimation-
minimization algorithms (MM-algorithms). For this special type of methods the sur-
rogate function is "maximizing” the objective, meaning that it is a local upperbound
approximation of the objective function, where the difference is minimal in the point
of the current iterate [89].
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Example [Convexification via quadratic perturbation]:

In the case we want to optimize a nonconvex objective function F(x), one can try to
approach this problem iteratively solving a sequence of locally convex problems with
a mazimation-minimization strategqy. More concretely, we consider, starting from an
initial point %), to perform a majorizing local convezification of the objective F(x)

around the current iterate ™ at each iteration n > 0.

We propose an appropriate convexification F),, by quadratic perturbations
Fyu(z) = F(a) + pllz — ullf, (2.36)

for i > 0 and a reference point v € R?, which is rather standard and well-known in
the nonlinear optimization literature, for instance in sequential quadratic programming

[3]. Notice that F),,(x) is coercive whenever F' is bounded from below.

Related to this type of convexification we define p-convezity of a function

Definition 2.16. Let F : RY — R be a continuously differentiable function with
piecewise continuous and bounded second derivatives. We say F' is u-convex if there

exists p > 0 such that F(-) 4 | - |7, is convex.

We observe that, if F' is p-convex we can always assume that p is chosen in such a

way that also F,,(x) is v-strongly convex with v depending on F' and i, but not on w.
[2]

The function F .
point algorithm [89]

serves as a foundation for the formulation of the iterative prorimal

n+1

g — prox‘;(x(”)),

where the so-called proximal map is defined by

1
prox’(z) = arg min Fy ., = argmin F(z)— §Hx —z|I7,

Its scaled version for pn > 0 is often referred to as the the Moreau- Yosida regularization

Fly(2) = argmin F, , = argmin [F(z) — pllz — 2||;,] -

Now we want to continue with the concepts of relaxation and convex envelopes, which
also belongs to the class of surrogate optimization methods, but one considers a mi-

norization of the actual objective function [16].
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Definition 2.17. Let dom(F) C R? be the domain of the function F : R — R. A

relaxation of the minimization problem

in F 2.37
Jopin F(x) (2.37)
is a surrogate minimization problem
in F 2.38
min Fr(z) (2.38)

where Xp D dom(f) and Fr(zr) < F(x) for all x € X. Let z* denote an optimal
solution of the original minimization problem and z}, € Xy the optimal solution of the
surrogate problem, then z* € X C X and F(z*) > Fg(2*) > Fgr(ah).

A special, quite important instance of a relaxation of an optimization problem is its
convex relaxation, which chooses the convex envelope of a function as the relaxation

function.

Definition 2.18. The convex envelope F of a function F is the convex approximation

of F' from below

F(z) :==sup {g(z) < F(z) : g is a convex function} .

The convex minimization problem for F on a compact set C has a unique global solution,
which will coincide with the a global minimizer on C of the relaxed function F', although

F might have several local minimizers.
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2.3 HIGH-DIMENSIONAL DATA: FIGHTING THE CURSE OF DIMEN-
SIONALITY

Many real-life problems naturally involve high-dimensional signal vectors, and we face
the case that the number of measurements m is way less than the number of variables

d we need to estimate, i.e., we consider the (linear) equation system
O(x) =y (2.39)

with z € R?, y € R™ and ® : R? — R™ where m < d as typical, for example in image
processing [60, 139].

Theoretical considerations motivate the study of high-dimensional spaces, which evince
unexpected properties that completely differ from our intuition for low-dimensional

spaces as 2D or 3D, often entitled as the ”curse of dimensionality”.

The methaphorical expression ”curse of dimensionality” appeared first in the work
of Bellman [6]. He used this term in connection with the difficulties arising from the
overwhelming number of function evaluations necessary for the optimization of a con-
tinuous function to a certain accuracy by searching on a discrete grid with growing
number of function parameters. If for example one searches the optimum of a function
on the unit cube in dimension d using a Cartesian grid of spacing %, one has to carry

out s¢ function evaluations.

g
@

Edge length of cube
o o
> w

o
w

o
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0 0.2 0.4 0.6 0.8 1
Fraction of unit cube volume covered

(a) (b)

Figure 2.5: Visual explanation of the exponential growth of the space volume with the
dimension causing the ”curse of dimensionality” (a) Embedding of a cube of side length
s € [0,1] into the unit cube of dimension d (b) Fraction of the volume of the unit cube
covered by the embedded cube in dependence on the edge lengths. Picture source: [109]
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Hence in this scenario, without further simplifying assumptions, the number of data
samples required grows exponentially with the dimension. As usually only a limited
amount of data is available, high-dimensional spaces exhibit an inherent sparsity. This
fact, causing the curse of dimensionality in this case, is often referred to as the empty

space phenomenon [93].

Critical quantities related to the problem dimension or the number of measurements,
e.g., computational complexity are growing exponentially as well making the applica-

tion of most algorithmic approaches impractical.

In order to avoid or dampen the confrontation with the ”curse of dimensionality”
when working with high-dimensional data, one assumes that the significant influence
parameters are in a interdependent relationship inducing a certain data structure. The
geometry of this data structure in the ambient space provides a concise description of

the data information content[100].

The goal of dimensionality reduction is to make use of these dependencies to find a

lower complexity representation of the data but not loosing the structural information.

2.3.1 LOW-DIMENSIONAL SUBSPACE STRUCTURES

In the case of (2.39), where m < d, from a traditional linear algebra perspective the
knowledge of ® and y only does not permit the calculation of x. Nevertheless, such
underdetermined linear equation systems appear in the modeling of many practical

application problems where additional knowledge about x is available.

In a lot of relevant cases, the signal 2 € R? is assumed to be concentrated around
a subset 2 of the space representing an underlying structure, that has intrinsically
a lower dimension K in the high-dimensional ambient space [151]. The intersection of
this subset Q with the affine solution space F(y, ®) = {z|®(z) = y} of dimension d—m

then contains the set of qualified solutions.

The motivation justifying such a restriction of the space of eligible signals x to a
lower-dimensional subset is the following: in many cases of interest, the process that is
underlying the signal generation essentially only has few degrees of freedom compared

to the dimension of the signal [100].

In such cases, there exists a representation of the signal € R? with a reduced number
of degrees of freedom via a parameter vector z € R¥X in the intrinsic dimension K,

while still maintaining the full information content of the original signal z [151].
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In a lot of interesting application cases, the subset €2 is supposed to be a manifold that
can be smoothly parameterized by the K-dimensional parameter vector z € R¥ | i.e.,

Q= {zlz =U(z),V: RF - R} [45].

For example, manifolds have also been proposed as approximate models for signal

classes such as images of handwritten digits [76].
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Figure 2.6: Images of handwritten digits: By making assumptions on the vague shape
of handwritten signs that represent a certain digit, we reduce the degrees of freedom
for the shapes that fall in the class of these digits; this allows for the classification of
handwritten digits. Picture source: [102]
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Figure 2.7: The manifold of the handwritten digit "1’: (a) 200 samples of handwritten
digit ’1’ (b) Visualization of the sample points in the shape space of handwritten signs
and their accumulation around a lower-dimensional manifold. Picture source: [95]
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We make the observation that the so-called manifold hypothesis is a way of avoiding
the ”curse of dimensionality” [100]: by exploiting the structure with reduced degrees
of freedom K of the signal x, it is possible to perform a reduction of dimensionality.
Thereby, we obtain a more compact signal representation facilitating the identification
of structure specific characteristics of qualified solutions = as well as the formulation

of an appropriate penalization function g(z).

Another assumption which makes it possible to circumvent the curse of dimensionality

is sparsity[100].

In the following, we focus on this specific type of signal structures which allow for
a lower-dimensional representation of vectors z € R? via a k-dimensional coordinate
vector in an appropriate basis, so-called k-sparse vectors. Related structural concepts

for matrix valued data will be introduced as well.

The general outline and content of the next subsection is inspired by the books [48, 54].

2.3.2 AN INTRODUCTION: SPARSE VECTORS AND RELATED CONCEPTS FOR MA-
TRIX VALUED DATA

In a large number of application contexts only a part of the components of a signal
vector # € R? under consideration is of interest while the rest is negligible. More
precisely, for a signal x represented in an appropriate basis, only few indexes i €
A C [d] with |A] = k < d with significantly large absolute values |x;| correspond to
relevant influence parameters of, e.g., a physical phenomenon under consideration in
the measurement process. The other indices i € A® with x; ~ 0 can essentially be

dropped from the signal model [11, 121].

Such vectors with mainly nearly vanishing entries and only a small number of significant
components for an advantageous choice of the basis are called sparse and the related

described phenomenon is referred to as sparsity.

It is an important observation that the degrees of freedom for a signal vector z € R?
with a fixed number of only k£ < d nonzero components is only k£ and, therefore, the

dimensionality of the signal model can be reduced.

As a consequence, by introducing the additional assumption of sparsity on the so-
lution vector z € R? and taking advantage of the low-dimensional signal structure,

reconstruction of x from the equation system

br =y (2.40)
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given the measurement result ¥ € R™ and a measurement matrix ® € R™*¢ with
m < d, becomes a feasible problem. This problem of finding a sparse solution to an
underdetermined linear system became known as the sparse recovery or compressed

sensing problem.

In the 2000’s, the work of Candes, Romberg and Tao [25] and Donoho [40] built the
ground for a rigorous mathematical theory of sparse recovery. This publication marks
the start of the compressed sensing boom. A wide range of efficient algorithmic solvers
for the compressed sensing problem is available these days and compressed sensing
techniques are successfully applied to numerous relevant real-life problems, e.g. image

processing. For an overview of the fast growing field of compressed sensing and further
references, cf. [11, 54, 121].

Besides of this very classical type of sparsity for high-dimensional vectors with very
few nonzero elements, sparsity can have diverse manifestations that vary from one
application domain to another. We access the topic from sparse vector recovery and
introduce appropriate convenient notation and problem formulations in the context of

sparse vectors. These are applicable with modifications to the matrix case as well.

The concept of sparsity can be applied to the noise vector e € R™, but for the rest of
the section we focus on the sparse signal vectors z € R? and come back to noise or

residual vectors later in Chapter 3.
In the following, let k,d € N and k£ < d.

For an index set Z, we consider subsets A C Z with its cardinality |A| and its comple-
ment A° = Z \ A. The submatrix of a matrix Z € R%*492 only containing the columns
with indices in A = {i1,...,4;} is expressed by Zx = [Z}.;,),. .., 2] € R4 42 Corre-
spondingly, for the vector z, the restriction zy = [2;,, ..., 2;| coincides with the entries

of z for the indices contained in the set A.

The support, i.e., the set of nonzero coordinates of a vector z € R? is referred to as A

or supp(x), i.e., A = supp(x) = {i € [d]|z; # 0}.
Its cardinality is used to define the so called ¢y-norm, which actually is the counting

measure, by

£=0

d
lzlly = llzll,, := |supp(a)| = > sy, with €], =
’ ' ; ’ 1 eo0

So the fy-norm counts the number of nonzero entries in a vector.

Using this notion, we are able to give a quite natural, concrete formulation of sparsity.
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The set of k-sparse vectors, i.e., vectors with at most k nonzero entries, is defined by
Y= {zeR": %], == |supp(z)| < k}. (2.41)

We note that the set ¥ constitutes a union of k-dimensional linear subspaces in the

space R? with ambient dimension d.

The ¢y-norm is not only nonconvex, nonsmooth but also discontinuous. It is in many

cases approximated by the ¢,-(quasi-)norm for a parameter p > 0

d »
lzll, = llll,, == (Z |:c¢|”) . (2.42)
=1

For 0 < p < 1, we gain continuity but still have a nonconvex and nonsmooth quasi-
norm, that does not fulfill all norm axioms, as the triangle inequality only holds with

factor C' = 21/P~1 while for p > 1 we obtain a norm, which is convex.

We note that
: p _ _
tim o, = [supp(@)] = 1] (2.43)

We consider the case that signal information is obtained from linear, nonadaptive mea-
surements using a measurement matrix ® € R™*?, where we expect a sparse solution
but the signal z and its support supp(z) are unknown a priori. The most immedi-
ate approach is to search for the vector  with smallest support compatible with the

measured data y = Px.

As a support of low cardinality is desired, it comes natural to use an {y-quasinorm
penalty function g(x) for the formulation of an appropriate objective functional. This

leads us to the so called ¢y-minimization problem
min ||z||, subject to ¢z =1y (2.44)
rER?

and hopefully its solution coincides with the vector in demand.

The theoretical setting that has to be complied to ensure the recovery of the correct

solution is discussed in more detail in Section 2.3.3.

It should also be mentioned that, in contrast to the f5-norm, that is unitarily invariant,
other norms usually are not, and also the fy-quasinorm related definition of ”sparsity”
is highly dependent on the underlying basis. The definition in (2.41) is assuming that
the vector under consideration is sparse or nearly sparse in the canonical basis and

therefore is formulated in terms of the cardinality of the support set, that is modified
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under basis change.

In numerous real-life measurement settings, the vectors z of interest living in an Eu-
clidean space R"™ with n < d have a sparse representation with respect to a suitable

basis or frame {¢; € R",j =1,---,d}. This means that = € R" can be represented
d

such that z = ) x;p;, where x has a small relevant set of indices with nonzero en-
j=1
tries while the rest of the components are (nearly) zero providing a sufficiently good

approximation to the expansion of z.

The sparse representability of real-life signals explains the increasing popularity and
successful practical applications of compressed sensing approaches, including very clas-
sical examples as image processing, where images are known to be sparsely repre-

sentable with respect to Wavelets, Curvelets or Shearlets for instance [138].

Therefore, in practical problems, often a basis transformation ¥ = {1, ..., @4} € R4
is required that allows for an appropriate sparse representation x of z by considering

z=Wx.

05
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Figure 2.8: Top: 5-sparse vector of Fourier coefficients of length 64. Bottom: real part
of the time-domain signal with 16 samples. Picture source: [54, Fig. 1.2]

In these cases instead of the linear system ®z = y one considers the substitute linear
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system &z = OUx =: Dy = y and the corresponding optimization problem

min ||z||, subject to dx = y. (2.45)
zeRY

Such aspects require a careful modeling of the underlying problem for the correct appli-
cation of sparse recovery methods, which is not subject of this work. In the following,
we assume without loss of generality sparsity in the canonical basis of the solution

vectors under consideration.

Unfortunately, computing the sparsest solution from (2.44) or (2.45) directly is a com-
binatorial optimization problem and, therefore, NP-hard [54, Theorem 2.1]. This means
that it in general requires prohibitive computations of exponential growing complex-
ity with respect to k,m,d. As a consequence, the solution of (2.44) quickly becomes

computationally intractable with growing dimensions, especially for big data problems.

In the following, we propose to find tractable algorithms by noting that the function
| - |p is a continuous relaxation of | - |p for p > 0 and relaxing (2.44) [133],[110].

In this spirit, also the observation (2.43) suggests to replace the problem (2.44) by the
approximation of the fy-objective functional by /¢,-quasinorms for parameters p > 0.

More precisely, we consider
min |z, subject to dx =y. (2.46)

Our hope is that by solving this relaxed problem, its solution is close to the solution
of (2.44) as well.

In the case where p > 1, this optimization problem is convex, but it is not guaranteed
to find sparse vectors and therefore, is suitable only with some reservations. Recovery
of sparse vectors becomes possible for p < 1 if the solution is sparse enough and &

fulfills certain spectral properties as we will explain in Section 2.3.3.

For the particular case of p = 1, probably the most studied case, this problem becomes
the well-known ¢;-norm minimization ({;-minimization) problem. The ¢;-norm con-
stitutes the convex relaxation of the fy-quasinorm, which makes it relatively easy to
solve with standard linear programming techniques, e.g., interior point methods. The
combination of these two properties makes the solution of the ¢;-minimization problem

a very attractive choice also for practical applications [11, 121].
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Figure 2.9: Top: poor reconstruction via fo-minimization. Bottom: exact reconstruction
via ¢; -minimization [54, Fig. 1.3]

€1—ball

Figure 2.10: Visualization of the sparsity enhancing property of the ¢;-norm penalty,
compare with Figure 2.3 for a visualization of /o-norm penalty minimization

For the parameter values 0 < p < 1, the optimization problem is nonconvex and local

minimizers can occur. Finding the global minimizer is again NP-hard as well as the

— 48 —



{p-norm minimization problem. Nonetheless, the properties of the ¢, -minimization for
0 < p < 1 can prove useful from a theoretical point of view as the approximation to

the p-problem is closer, which can also bring practical advantages in the end.

We would like to illustrate in a simplified example in R? now, why the £,-minimization
is able to induce sparsity for 0 < p < 1.

In the case for the signal dimension d = 2 and number of measurements m = 1, as
a representation for the solution space F(y,®) = {z: ®z =y} one can simply take
an affine line in R?. Moreover, the sparsest solution in this case only has one single
nonzero component. Visually explained, the nonconvex ¢,-norm-balls can be expanded
from small size until one of its spikes meets the affine space F(y, ®) in a sparse solution,
while for p > 1 the first occurrence of tangency of the affine space to the norm-ball will

yield a non-sparse solution.

Our intuition tells us that the £,-minimization problem does not provide a worse ap-
proximation of the sparse solution than the solution of the original fy-minimization
problem for small p. However, we still have to justify this conjecture as it is not yet
clear when a global minimizer of (2.46) really coincides with a solution to (2.44). For
this purpose, we will introduce the so-called null space property and important related

matrix properties in the upcoming Section 2.3.3.

We note that many ideas from compressed sensing were recently applied to the recovery
of matrices with certain sparsity-type structures from incomplete linear measurements
[21, 125]. We now introduce some popular instances of structured matrices and gen-
eralize the concepts and notations presented above for sparse vectors accordingly. A
comparable collection and presentation of sparsity-type structures and their modeling
can be found in [17] and [84]. In Chapter 4 and Chapter 5 we will discuss compressed

sensing algorithms and applications related to these sparsity structures in detail.

Let X € My, 4, be an arbitrary matrix and let X1, ..., X, € R4 denote its columns

and X7, ... ,XdT1 € R® its rows respectively.

First we assume the columns of X € My, 4, to have a common sparsity pattern, a
common support A = supp(X;) = .-+ = supp(Xy,) of cardinality K < d; in the
sense of vector sparsity. We call this common support the row-support (or row-sparsity
pattern) of sparsity K, i.e., there exists a set of coordinates A,y = SUPD, ., (X) C [d]
with |A] = K such that

Aoy = [di] \ Apow = {7 € [d1] | X}z ;) = 0 for all j € [ds]}, (2.47)

row

or equivalently, A,., = {i € [di] | [|Xi||e, > 0}.
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The set of K-row-sparse matrices, i.e., matrices with row-support size at most K, is
defined by
Z;gw = {X € Md1><d2 : |suppmw(X)] < K} (248)

Moreover, the counterpart of the {y-quasinorm is the function || - [l¢,, : R#*% — R

with | X||2,0 := | X[y, := |A| = [{i € [di] | || Xille, > 0}], which we call the f54-norm.

Similarly, we generalize the ¢,-quasinorm, for 0 < p < oo and ¢ > 1, and de-
fine the (mived) {,,-norm of X as the non-negative number || X||,, = [ X, =
> ||Xi||g)1/p. We note that for the parameter choice p = ¢ = 2 we obtain the
22 = [ X]|p.

Frobenius norm, meaning || X

At this point, we remember the discussion in the context of sparse vectors using the
low-dimensional signal structure to find solutions to underdetermined linear systems.
We see that for the setting of row-sparse matrices also the reconstruction of a matrix
X from the equation system

o(X)=Y (2.49)

with Y € R™ and @ : My, «q, = R™ with m < d;ds, becomes possible under the
structural assumption on the solution matrix and under appropriate conditions on the

map P, cf. Section 2.3.3 This results in solving the optimization [98] problem

min || X ||2,0 subject to &(X) =Y. (2.50)

The relaxed formulation of the problem above
min || X ||z, subject to &(X) =Y (2.51)

corresponding to the £,-norm minimization problem for sparse vectors can be consid-

ered as a proxy for (2.50) as well.

Completely analogously, we can define the concept of column-sparsity along with the
Il o-auasinorm as ||« [lgy , - R — R with || X[|g, == [A] = [{i € [di] | [| X [le, >
0}|. For a relaxed version of ||-|4,, we employ the (mixed) £, ,-norm with appropriately
chosen parameters 0 < p < co and ¢ > 1, where p and ¢ take the reversed roles in the

definition of the quasinorm above.

In the course of this thesis we will focus on the use of the |- ||, ,-norm and || - ||, ,-norm

only.

Another very useful matrix structure results from the application of the sparsity concept

to the singular values of a matrix, better known as low-rankness, that we will explain
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now in detail.
Let X € Mg, x4, again and for simplicity consider the case d; > dy. We apply the

singular value decomposition (SVD) to X
X =U5V", (2.52)
where U € Uy, and V' € U, are unitary matrices and

g (dlag [UI(X)a s 70d2(X)]> c R xdz
O(dl—dQ)XmX

the diagonal matrix containing the dy singular values o1(X),...,04,(X) of X, where
o1(X) > 0o(X) > ... > 04,(X) > 0. Using the result of the SVD, we define the
singular value vector 6(X) = [01(X), ..., 04,(X)].

Note that in the case that & is r- sparse for some small » € N with r < d», it holds that
or11(X) = ... =04,(X) =0 and as a consequence, it follows that X has low rank, i.e.,
rank(X) = r. Therefore, it is possible to express the low-rank assumption in terms of
the sparsity of the singular value vector a(X). There exists a set Ayqgni = {i|o:(X) > 0},
where the sparsity measured by the fp-norm of the vector (X)) corresponds to rank(X).

We define the set of matrices in dimension d; X dy of fixed rank r < min(d;, dy) as

M} g o= {X € R"*® | rank(X) = r}. (2.53)

Moreover, we define as the equivalent to the £,-quasinorm for low-rankness the so-called
Schatten-p (quasi-)norm of X € R¥*42 for 0 < p < oo as

rank(X), for p =0,
. 1/p
1Xlls, = § [ orx)] ", for0<p<os, (2.54)
0max<X); fOI' p = OQ.

It is useful to notice that the p-th power of the Schatten-p norm for 0 < p < oo can be

expressed as [ X3 = tr [((XTX)P/?], where tr[X] denotes the trace of X defined by

the sum of its diagonal elements, tr[X] = Z?:iri(dl’d” X

Let us mention that for p = 1, the Schatten-p norm is also called nuclear norm some-

times denoted by || X||« = || X||s,- The Schatten-2 norm corresponds to the Frobenius
norm, i.e., || X||r = [| X]ls, = (X, X)p.

Having in mind the discussion above on the solutions to underdetermined linear sys-
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tems, the equivalent to (2.44) for the recovery of a solution matrix under the additional
assumption of low-rank structure is the solution of the affine rank minimization prob-
lem [54]

min rank(X) subject to ®(X) =Y. (2.55)

The relaxed version approximating (2.55) is formulated replacing the rank by the

Schatten-p quasinorm. This results in the problem
min || X||g, subject to ®(X) =Y, (2.56)

which corresponds to an £,-minimization of the singular values of the matrix X.

At this point, we want to provide the following result originally stated by Wedin [160],
which corresponds to a bound on perturbations of the singular value decomposition
and will be useful in the context of low- rank matrices later on. It gives a bound on the
alignment of the subspaces spanned by the singular vectors of two matrices by their
norm distance under the requirement of a sufficiently pronounced gap between the first

singular values of the one matrix and the last singular values of the other matrix.

Lemma 2.19 (Wedin’s bound [140]). Let Z and Z be two matrices of the same size

and their singular value decompositions

oo () () ez e (5 8) ()

where the submatrices have the sizes of corresponding dimensions. Suppose that 0, «
satisfying 0 < § < a are such that & < owin(X1) and opax(S2) < a— 5. Then
Z| 5.

_ 7 —
1U; U5 < valZ=Zls

_ Z—-7Z
s ana vvils. < Va2 =Ase - (257)

J

We stress again, that the {5 ,-norm and ¢, ;-norm as well as the Schatten-p norm are
norms in the strict sense for p > 1 and quasi-norms for 0 < p < 1, i.e. they fulfill the
norm axioms except for the triangle inequality. Their relations to the Frobenius norm

will become of major importance in the next Section 2.4.

By introducing the mentioned structural assumptions on matrices in My, x4,, we reduce

the d; - dy degrees of freedom of a general d; X dy-matrix considerably.

In the case of row or column sparsity, it is straightforward that the number of degrees
of freedom is equivalent to the row support size times the number of columns K - ds or

the column support size times the number of rows K - dy, respectively. The set of row
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sparse matrices as well as the set of column sparse matrices correspond to a union of

linear subspaces of these dimensions in the d; - do-dimensional ambient space.

For the low-rank case, the set of d; X dy-matrices of fixed rank r corresponds to a sub-
manifold of the d; - dr-dimensional space of dimension r(dy 4+ dy —r). The singular value
decomposition of X can serve as a tool to calculate the dimensionality as demonstrated
in [84, Lemma 3.1].

Lemma 2.20. The number of degrees of freedom of a real matriz X € My ., of size
dy X doy with rank r is r(dy + dy — 7).

2.3.3 THEORETICAL FOUNDATIONS OF VECTOR AND MATRIX VALUED COM-
PRESSED SENSING

We noted in the last chapter, that under certain conditions on the measurement matrix
® and on the sparsity of the original signal vector z, the vector recovered by (2.46)
coincides with the sparsest solution x to the equation system (2.40) and, therefore, also
with the solution of (2.44).

In the following subsection, we investigate a necessary and sufficient condition for the
exact reconstruction of every sparse vector x as a solution of the £,-minimization prob-
lem (2.46) called the null space property. Moreover, we introduce a popular related near
isometry matrix property known as the restricted isometry property. The subsection is

oriented at the presentation in [54] and [48].

We again start from the case of a linear measurement operator ® and a vector valued
signal x to give a first intuition of the most important tools in the field. Thereafter, we

extend the results to sparsity structures for matrices as mentioned above.

As a first step, we introduce further notation for the case of nearly sparse vectors and

the approximation of sparse solutions that will be useful later on.

In practice, in many measurement settings, the occurence of noise is typical and exactly
sparse vectors are often not realistic. Therefore, we aim at vectors x, which are not
necessarily exactly sparse but very close to an element of ¥, in the sense of a suitable

(quasi-)norm ||-||, , which we call compressible.

This implies that a compressible vector should have a fast decaying k-term best approz-

imation error, defined by

Belw)e, = inf Jlz =2, 0<p<oo
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The related best k-term approximation xp) of a vector x constitutes the minimal dis-

tance of x to a k-sparse vector as follows

T =argmin ||z —z|[, , 0<p<oo.
ZEX P

The best k-term approximation error basically results from setting to zero its d — k

smallest coefficients. Moreover, we define the e-smoothed {,-norm as

d ,
2le,.c = (}:cﬁ-+eas> (2.58)

In some cases, it is useful to describe sparse vectors by its nonincreasing rearrangement
r(x), for which
r(@h > r(x)s > ... > r(x)a >0, (2.59)

and there is a permutation 7 : [d] — [d] with r(2); = 2| for all i € [d].

This corresponds to the arrangement of the vector components according to their mag-
nitude and, therefore, in the ranking of all entries and their corresponding indices

according to their significant contribution to the signal. It can be used to express

d 1/p
Br(x)e, = ( Z 7“7;(1’)”> , 0<p<oo. (2.60)

i=k+1

Refer to [48],[123] for more details.

As already proclaimed above, £,-norm minimization is known to perform stable recov-
ery of the sparse solution vector z, in the sense that for the recovered vector z, it holds
that

= 2,ll,, < cBila)s,. (2.61)
for a constant ¢ > 0.

To verify this statement, we introduce a necessary and sufficient condition for exact

recovery of sparse vectors called the null space property for parameter p (p-NSP).

Definition 2.21. A matrix ® € R™*? has the p-Null Space Property (p-NSP) of order
kfor 0 <y < 1if

Inally, < v llmaclly,

for all sets A C {1,...,d},|A| <k and for all n € N = Ker(®).
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The NSP essentially prohibits the existence of sparse or highly compressible vectors in
the null space of ®. This is a natural requirement, since otherwise no decoder would
be able to robustly distinguish a (nearly) sparse vector from zero. This makes the NSP

equivalent to stable recovery in the sense of (2.61) [33], [128].

Lemma 2.22. If ® € R™? fulfills the p-null space property for some 0 < p < 1 of
order k with constant v, then ® also fulfills the q-null space property of same order
and constants for all 0 < g < p. [38, T0]

Moreover, the p-NSP has the following stability result as consequence.

Lemma 2.23 ([35, Lemma 7.6], [54, Theorem 4.14]). Assume that ® € R™*? satisfies
the p-NSP of order k with constant v, for 0 < p < 1. Then for any vectors x,z’ €
Fly,®) ={z: Pz =y} it holds

I+
o' =17, < T2 (1, — ol + 260001, )

Next we familiarize the reader with a further interesting near isometry matrix property

that is widely used in the context of sparse recovery for the analysis of /,-minimization.
Definition 2.24. A matrix ® € R™*? has the Restricted Isometry Property (RIP) of
order k if there exists 0 < d;, < 1 such that

(1= 0p) llzlly, < [[Pxll,, < (1+68) [zl

for all x € .

If for a matrix ® the restricted isometry property is fulfilled, for every index set A with
|A] < k the submatrix ®, is well-conditioned or reformulated more explanatory, all

columns of ® with index contained in A are nearly orthonormal.

The NSP is an important tool for the analysis of convergence and stability but often
difficult to show directly. Therefore, we establish its relationship to the RIP, which can

be addressed easier in practise.

We first state that the RIP implies the 1-NSP for simplicity and as a consequence from
Lemma 2.22 also the p-NSP for 0 < p < 1:

Lemma 2.25. Assume that ® € R™* has the RIP of order K = k+h with 0 < §x < 1.

k 145
Then ® has the 1-NSP of order k and constant vy, = \/;;_“—(ﬁ

The proof of this lemma can be found, for instance, in [50].
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A more precise estimation result of the upper bound on the RIP constant for 0 < p < 1

is given in Theorem 2.3. in [143]

Lemma 2.26 (Theorem 2.3. in [143]). Let 0 < p < 1, and m,d and k integers that
satisfy 2k < m < d, ® € R™*? be a matriz fulfilling the restricted isometry property
(RIP) with constant 0 < do < 1. Then ® has the p-null space property (p-NSP) of

order k with constant 7y satisfying vyar < b(p, };g;i), where
b(p,0) =6 inf ma L+ 100 s 2y
= inf max{ ———F— u
b, 0<ro<1 (1+ Tg(SCI)l/q ’ ﬁ(l—ro)cS?SySl (14 2-9/2y2+a)V/a’

S 3y
up
Va(i-roys/2<y<t (1 +9)"/% sup g, (1@%

Further discussions on the relationship between RIP-type assumptions and exact re-

covery via ¢,-minimization can be found in [53].

The RIP does imply the NSP, but the converse is not true. Actually, the RIP is signif-

icantly more restrictive.

Summarizing, for matrices satisfying the RIP and, therefore, also the p-NSP, /-
minimization can provide exact recovery results under stable performance with error

bounds as stated above.

Consequently, it is an important question to ask for which classes of matrices the RIP

can be shown to hold with optimal constants, i.e.,

b o m
“logd/m +1°

Up to now, it was not possible to specify deterministic matrices for which optimal
performance can be guaranteed. In contrast, as the RIP is a spectral concentration
property, different classes of random matrices can fulfill optimal RIP, at least with high
probability. Therefore, mainly random matrices are used in the context of compressed

sensing, e.g., the most popular ones among them being Gaussian matrices.

Theorem 2.27. (Theorem 2.14 in [48]) Suppose that m,d and 0 < § < 1 are fized.
If ® is a Gaussian random matrix of size m X d, then there exist constants cy,co > 0

depending on § such that the RIP holds for ® with constant § and k < Cllogd/% with

com

probability exceeding 1 — e~

Moreover, for structured random matrices, for example, partial random circulant ma-
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trices or random partial Fourier matrices, the RIP can be shown to hold with high
probability as soon as m > Cklog*(IN) [24, 48, 54, 83, 130]. As the verification of the
RIP property for a special types of random matrices can be very demanding, this topic
is not covered here in detail. An extensive review on RIP properties also for structured

random matrices of other types can be found in [123].

As presented above, many ideas from sparse vector recovery can be applied to the
recovery of matrices with sparsity structures from incomplete linear measurements
21, 125].

We want to pick up the matrix structures discussed in the previous subsection and
transfer the theoretical tools corresponding to the classical NSP and RIP for sparse

vectors also to the concepts of row- and column-sparsity and low-rankness.

Before we start, let us consider the vectorized form Xy = [X{,..., X7, ... ,X[;g}T €
R%% of a matrix X € My, «a, with columns X, j € {1,...,ds}. The reverse recast
of a vector x € RU% into a matrix of dimension d; x ds is denoted by Tmat(dy,d2) =
(X1,..., Xj, ..., Xg,], where X; = [T(g,—1)j41, - s Tda-1)jtds) » J = 1,...,dy are col-
umn vectors, or X, if the dimensions are clear from the context. Obviously, it holds
that X = (Xyec)mat-

A useful connection is the equality of the Frobenius norm of a matrix X and the /¢

norm of its vectorization Xyec, i.e., || X||r = || Xveel|e,-

To give a unified presentation of the properties mentioned above for the matrix case,
whose advantages will become clear in the upcoming Chapter 4 and Chapter 5, we
use in the following the vectorized version of matrices and corresponding adaption of
the dimensions of the measurement operator ®. This means, we consider linear maps
® : R™*%%2 which allow more general types of linear measurements than the ones

presented in the linear equation systems (2.39) above.

All properties presented below related to row sparsity and the ¢, ;-norm can be formu-

lated analogously for the concept of column sparsity and the corresponding /5 ,-norm.

We begin with the presentation of the appropriate formulation of the null space prop-

erties for these structures

Definition 2.28. Let 0 < p < 1. We say that a matrix ® € R™*d1d2 fylfills the

(1) lap-null space property (ls,-NSP) of order K with constant 0 < vyx < 1 if for all
elements 7 € N (®) := {n € Ma,xd, | P(Mvec) = 0} in the null space N'(P) of ¥ it
holds that

1nalle,, < vllnaellz, (2.62)
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for all row support sets A of cardinality |[A| < K.

(ii) Schatten-p-null space property (Schatten-p-NSP) of order r with constant 0 <
v < 1if for all elements n € N(®) := {n € My, xa, | P(vec) = 0} in the null
space N (®) of ® it holds that

r min(di,d2)
Sty < Y ot (2.63)
i=1 i=r+1

Moreover, we provide following restricted isometry properties:

Definition 2.29 (Row sparse RIP [44] and rank-RIP [125]). We say that a linear map
D Md1><d2 — R™ fulfills

(i) the row sparse restricted isometry property (row sparse RIP) of order K € N with
constant dx € (0; 1) if, for every K-joint sparse matrix X € My, «q,, it holds that

(1= ) 1 X[IE < N1P(Xveo)ll7, < (1 + 051X I3 (2.64)

(ii) the rank restricted isometry property (rank-RIP) of order r € N with constant
0, € (0;1) if, for every rank-r matrix X € My, «q,, it holds that

(1= o) XIF < 1P(Xveo) Iz, < (1 + 001 X% (2.65)

The constants dx resp. 9, are called restricted isometry constants of the corresponding

order.

Next we present a result that the RIP in its respective variants is fullfilled by Gaussian

matrices ® € R™*%1% if the number of measurements m is chosen large enough.

Theorem 2.30 ([21, 44]). Let ® € R™*%% pe q matriz with i.i.d. centered Gaussian

entries with variance 1/m. Then

(i) for all0 <6 <1 and 0 < € < 1, there exists a constant Cs > 0 such that the row
sparse-RIP of order K with constant dx < 0 is fulfilled with probability at least
1 — € provided that

m > Cs(Kdsy + K log(di/K) + log(2¢ 7)),
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(ii) for all0 < § <1 and 0 < € < 1, there exists a constant Cs > 0 such that the
rank-RIP of order r with constant §, < ¢ is fulfilled with probability at least 1 — €
provided that

m > Cs(r(dy + ds) + log(2¢7")).

Proof. (i) This follows from [44, Proposition 4], (ii) Follows from [21, Theorem 2.3]. [

For the sake of completeness, we present some important conclusions from these prop-
erties for the reader. Again it is possible to show that the null space properties as
defined in Definition 2.28 hold for appropriately chosen constants if the above RIPs
are satisfied and this result is established in the following theorem. The proofs of these

results can be found in [84].

Theorem 2.31 (Connection of RIP with NSP). The following holds true:

(i) Let ® € R™* %% pe q matriz that satisfies the row sparse RIP (2.64) with constant
dox < 1/2. Then there exists a number 0 < po(dox) < 1 such that for any
p < po(dar), © fulfills the s ,-block-NSP (2.62) of order K with constant
2— 1-p/2
52K 2_5sz +p(2_§2K

T < =
23551{ (1 - 52K)

)2/1? p/2

(ii) Let ® € R™* 4% pe q matriz that satisfies the rank-RIP (2.65) with constant
0 < 09 < 1. Then there exists a number 0 < po(do,) < 1 such that for any
p < po(d2r), ® satisfies the Schatten-p-NSP (2.63) of order r with constant

Tr S b(pv \/(1 - 527”)/(1 + 52r))p <1

with the function b(q,d) as in Lemma 2.26

The following reverse triangle inequalities can be derived from the NSPs above and will
serve as useful tools for the analysis of algorithms in situations where the NSP holds
true [35, 51, 55]. For further details we again refer to [84].

Lemma 2.32. Let ® : My, w4, — R™ be a linear map.
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(1) If @ fulfills the {5 ,-NSP of order K with constant vk from Definition 2.28, then

1+
I1X = 21, < =< (120, ~ IXIE, +266(X0E,) - (266)

for all X, Z € My, wa, such that ®X e. = ®PZyee, where
B (X)e,, = inf {||X — X'||e,,, X' € My, xa, is K-row sparse}

is the best K-row approximation of X € Mg, xa, in the ly,-quasinorm.

(i1) If ® fulfills the Schatten-p-NSP of order 2r with constant -y, from Definition
2.28, then

1+ 79,
X - z|p < -2
Spl

(1215, — IX1, +25.(X)3,) (2.67)
forall X, Z € My, wa, Such that ®Xec = ®Z,ec, where
Br(X)s, = inf {||X — X"||s,, X' € My, xa, has rank r}

18 the best rank-r approximation of X € My, «q, in the Schatten-p-quasinorm.
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2.4 ITERATIVELY REWEIGHTED LEAST SQUARES METHODS IN DATA
ANALYSIS

In this section, we want to introduce the iteratively reweighted least squares (IRLS)
method, a powerful optimization algorithm, which will be the central topic under dis-
cussion in this thesis. In the following chapters, several variants of the core algorithmic
design of IRLS for different relevant application scenarios will be developed and ana-

lyzed.

Iteratively reweighted least squares is an algorithmic strategy which classically imitates
¢,-minimization for vectors. Moreover, it can also be extended to the minimization of
related matrix quasinorms as already appearing in the problems (2.12) for residual
minimization or (2.46) for signal recovery. The algorithm is performing a successive
approximation of the £,-minimization problem. A weighted least squares problem with
an iteratively adapted weight matrix is carried out in each iteration, hopefully leading

to convergence to the actual £,-minimizer.

IRLS approximation constitutes a powerful and adaptable method for a vast number
of problems in engineering and applied sciences. In a wide range of applications, it is
employed as a fast and robust approximation tool, in particular in statistics for robust
regression, maximum or quasi-likelihood estimation, general nonlinear parameter esti-
mation as well as in the expectation-maximization framework. Besides that, IRLS has
lead to very impressive results in signal processing in sparse vector [35] and low-rank
matrix [51] recovery as it can exhibit superlinear convergence rate even for nonsmooth
and nonconvex optimization problems [36]. Another area, where IRLS- algorithms are
successfully applied is the solution of minimization problems involving bounded vari-
ation functions [26] and, in particular, for the approximation the weak solution of the

p-Poisson problem [39].

First we will put forward the fundamental observations to clarify the relation be-
tween the algorithmic concepts of weighted least squares and those for £,-(quasi-)norm-
minimization inspired by [48] and [35]. A generalization to matrix quasi-norms will be

provided towards the end of this section.

Thereafter, we consider the variational nature of the problem. This will lead to the
formulation of an iterative algorithm which characterizes an approximate solution as

the minimizer of an energy functional.
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2.4.1 GENERAL CONCEPT OF ITERATIVELY REWEIGHTED LEAST SQUARES

As a start, we note that from an optimization perspective direct ¢,-minimization is
somewhat inconvenient as it is a nonsmooth optimization. The crucial idea now is to

substitute the occurring absolute value in the following simple way:

2

t
1t = for t # 0.

T

Using this, we hope that we can recast the ¢,-quasinorm into a weighted ¢5-norm, which
is smooth and quadratic and, hence, much more practical from an optimization point
of view. We obtain for 2 € RY with z; # 0 for i € [N]

N N N
-2 -2
Iz}, =Y 1zl =) 2 sl =)l ™ = |2l = 212,
i=1 i=1 i=1

where W = diag(w) = diag(wy, . .., wy) with w; = |z[">.

Here one has to take into account that the weights will approach infinity for z; — 0 in
the case that z is tending to be sparse!
To avoid this issues, we introduce a smoothing parameter ¢ > 0 and hope to obtain a

good approximation by using

_ *\2 QLEQN * | p—2
wi =z} + 7 &P (2.68)

This enables us to use our observation to formulate the following iterative strategy for
the £,-minimization in an optimization problem involving a function ¢ : RY — R¥Y

possibly with respect to a constraint set C C R¢

min [[¢(z) e, - (2.69)

e Suppose we are given a start weight matrix W° = diag(w®) € R¥*Y with w) > 0
for i € [N].

e We then iterate for n > 0

— Define

+1 : 2
" = argmin 12(2) [l uom)

— Update €™ such that "1 < e®
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— Construct a new weight matrix using the updated variables such that

p—2
2

wZnJrl — }@(1}”“)? 4 (6n+1>2‘

for all i € [N] to obtain Wt = diag(w"t!) € RV*V,

Hopefully, for a decreasing sequence of appropriately chosen ¢, — 0, the iteration of
this procedure realizes a contraction principle, which allows for the convergence of the

iterates ™ — x¢ = min [|p(x)||,, for n — oo.
zeC

Remark 2.33. The concept of iterative reweighting can not only be applied to (quasi-)
norms as demonstrated above, but it can also be applied to other concave nondecreasing
objective functions as for example indicated in Wipf e.a. [164], Malek-Mohammadi
e.a.[103]. Nevertheless, we will not further discuss this extension to other more general

functions in this thesis.

Before we come closer to the concrete establishment of the iteratively reweighted least
squares algorithm, we want to give a variational interpretation of our developed concept

and hereby show a key tool for its analysis.

The first step towards this makes clever use of the fact that [¢|P for ¢ € R can be

expressed as the minimum of a function of the weight w > 0
9 _
|t = min 2 (wt2 + —pwpiz) :
w>0 2 p
Its unique minimizer is w = [¢[P~2.

Combining this with our considerations above, we construct the following surrogate

Y Y N 2 Zz(w) N x Zg(w) w fpp :

majorizing the first weighted least squares term in the w-component. Now we can
formulate our iteration process as the alternating minimization of this energy functional

with respect to its different variables in Algorithm 1.

The advantages of simplicity, adaptability, and straightforward implementation of IRLS
explain its popularity for quick and efficient numerical testing also for beginners and

the long history of its application in statistics and engineering contexts.

The first appearance of iteratively reweighted least squares algorithms can be reported
already in the 1960s. The doctoral thesis of Lawson in 1961 [91] introduces an IRLS-type
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Algorithm 1 Typical structure iteratively reweighted least squares algorithm (IRLS)

Input: Map ¢ : R? — RV, constraint set C € R, non-convexity parameter 0 < p < 1.
Output: Sequence (™)™ C R%.
Initialize n = 0, €@ =1 and w® = 1y, € RV.

repeat
n+l __ : n o n\ __ :
2" = argmin J (z,w", ") = arg min [l (2) 1, n) - (2.71)
< e (2.72)
w" = arg m;%l T (" w, e, (2.73)
n=n-++1.

until stopping criterion is met.
Set ng = n.

method in the form of an algorithm for achieving solutions to approximation problems,
in particular involving Chebyshev polynomials, via limits of weighted ¢,-norm solu-
tions. For this algorithm, often referred to as Lawson’s algorithm, a linear convergence
rate was shown in [32] and extensions of Lawson’s algorithm for ¢,-minimization were
proposed by Rice and Usow in 1968 [129]. In the context of robust regression, IRLS-type
algorithms first appeared in the work of Beaton and Tukey in the mid 70s [5] followed
by a discussion on local as well as global convergence properties by Dutter in 1975 [42].
Slightly later, Holland and Welsch came up with a variant of the IRLS algorithm using
alternative explicitly defined weights instead of the standard weights.

Moreover, IRLS algorithms were suggested in inference related topics by Wedderburn
in 1974 based on the concept of quasi-likelihood. Thereby he established the connection
between the IRLS algorithm for maximum likelihood estimation and the Gauss-Newton
method for least-squares fitting in nonlinear regression. These results could be gener-
alized for the multivariate case by McCullagh a decade later [105, 159]. Around the
same time, Green (1984 ,[69]) investigated the relation of IRLS to Newton-Raphson
and Fisher scoring as appearing in generalized linear models, linear and nonlinear re-

gression.

A thorough discussion of IRLS-type methods can be found in the works Huber [77] and
the possibly most far-reaching mathematical performance analysis for IRLS with /-
minimization for the parameter range 1 < p < 3 is provided by Osborne [115]. Further

details on the history of IRLS methods in regression can be found in [14].

No substantial innovations in the field can be documented for some time, before total
variation minimization in image processing as proposed by [131] attracted the attention

of the community in the early 1990s and IRLS came to the fore again.
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Its straightforward applicability and implementation for total variation regularized
functionals is demonstrated in [26]. Moreover, also the availability of computationally
very efficient preconditioning methods [156] make IRLS methods an attractive choice in
this context, that outperforms universal optimization techniques such as interior point
methods.

Shortly before the millenial, the publications [68] and [137] suggested the application
of IRLS for the reconstruction of sparse vectors already before Candes, Romberg, Tao

and Donoho [25, 40] lay the foundation for the literal boom in compressed sensing.

A comprehensive theoretical analysis of the convergence properties of IRLS for the £,-
norm minimization problem under linear measurement constraints was developed in
the papers [28, 29, 35, 124], where we will give an insight on the results of the later

below.

In 2010, a further extension of IRLS to the problem of low-rank matrix recovery from
a minimal number of linear measurements was pursued more or less in parallel by
Fornasier e.a. [51] and Fazel e.a. [106]. Moreover, building upon the results in [26] for
solving total variation minimization problems, IRLS is employed also for the solution

of quasi-linear elliptic equations in [56] as so-called Kacanov iteration.

In the last ten years, a growing interest on topics related to IRLS, in particular in
statistics and signal processing, resulted in an ongoing rapid research development.
Beyond the breakthroughs mentioned above, it is hard to provide a complete survey of
the most recent state-of-the-art results in the field. For a further collection of references

to the quite recent literature in this direction we refer to [114].

2.4.2 IRLS FOR SPARSE VECTOR RECOVERY AND MATRIX VALUED SIGNALS

Let us now examplary consider in more detail the application of an IRLS-strategy to

the solution of a minimization problem as in (2.46)
min ||z, (2.74)
Dr=y

involving a linear measurement map ® € R™*¢ as analyzed in the context of sparse
signal recovery in [35]. This corresponds to the realization of the algorithm sketched
above for ¢(z) = z and C = F(y, ®) = {z € RY®(2) = y}.

In this case, as presented in (2.18), the weighted f>-minimization step can be solved
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directly by calculating

2D (W(n))—lq)T ((I)(W(n))—lq)T)_l Y,

p—2

where W™ is the diagonal weight matrix diag(w™) with wz(n) = ‘(xl(n))2 + (em)?|
The update rule for the smoothing parameter sequence €™ and its convergence limit
lim €™ = € will play an important role in the algorithm’s theoretical analysis. It is

n—oo
carried out as follows

(n+1)
(D) i <6<n>’ %) , (2.75)

where 7(X) is the non-increasing rearrangement as introduced in (2.59) and K is an

approximate guess of the sparsity-level of the solution of (2.74).

A detailed pseudo code version of the classical IRLS algorithm for sparse recovery is

presented in Section 7.2 in [35].

We observe, that the iterates ™ of this IRLS-algorithm are in general no sparse vectors

and even their limit lim 2™ = Z is not necessarily exactly sparse.
n—o0

v

62 (wo)—ball
1 .//ﬁg (wq)-ball

Figure 2.11: Visualization of the principle of the IRLS-algorithm

— 0606 —



As a first step towards a discussion of theoretical analysis results for this algorithm
in [35], we remember the sparse vector recovery guarantees as presented in (2.61) for
¢,-minimization. These hold true under the condition that ® satisfies the corresponding
p-NSP. Since we are mimicking the solution of (2.74) by the IRLS algorithm as explained
above, these NSP-based recovery results stay applicable also for the analysis of the IRLS
algorithm.

The central elements necessary to conduct the proof of convergence are some straight-
forward derivable variational properties of the corresponding auxiliary functional, the
NSP, and the nonincreasing rearrangement. We will restrict our presentation to a sketch
of the final result and refer to [48, p.115ff] and [35, p.12ff] for further details.

Theorem 2.34. Let K (the same index as used in the update rule (2.75) ) be chosen
m ; ; 2

such that ® € R™*? satisfies the p-NSP of order K, with v < 1 — %z Then, for each

y € R™, the output of the IRLS algorithm in Section 7.2 in [35] converges to a vector

z, with r(Z) k41 = d lim €™ and the following hold
n—oo

(i) If e = lim €™ = 0 then T is K-sparse; therefore, in this case, there is a unique
j—)OO
Cy-manimizer xg and T = To;
(it) If e = lim €™ > 0, then & = 2¢ = argmin ||z|,, ., where |||, is the e-smoothed
]*)OO

z€F (y,P)
l,-norm as in (2.58).

Surprisingly, in the case that the approximation by the iterates is already close enough
and the iterates enter a certain region around the actual minimizer, the convergence

rate speeds up to superlinear.
To establish this superlinear rate of convergence, we define for the sequence of output
vectors 2" the according error vector sequence ™ := 2™ — 24 € N and

B = o, = ezl

We note that from Theorem 2.34 follows in the case that there exists a k-sparse vector

xg € Fly, ) with k < K — % such that ™ — z, and therefore £ — 0 and give

the superlinear convergence rate for the IRLS algorithm in the following statement:

Theorem 2.35. Assume ® satisfies p-NSP of order K with constant v € (0,1) and that
F(y, ®) contains a k-sparse vector xy with k < K. Suppose that for a given 0 < p < 1

and an iteration ng € N we have

EM) < (pr(zo)i)? = R*.
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If p and v are sufficiently small, there exists u(p, K,~y,p,d) > 0 such that for all n > ny
we have
E(n+1) < N<E(n))2fp

For illustration of this result, one can think of superlinear convergence happening
as soon as the iterates z(™ enter a ball centered at z, with radius R*, ie., 2 €
Bf%l (o). Moreover, note that the smaller the nonconvexity parameter p, the faster the

convergence rate, even approaching quadratic rate for p — 0.

The proof of this statement uses again the NSP as well as variational properties of the
auxiliary functional as detailed in [48, p.122ff] and [35, p.16ff].

The interested reader is encouraged to get further information about IRLS for sparse

vector recovery from [35, p.22ff].

After the discussion of theoretical aspects on IRLS-type methods we want to close the

section with some comments on more practical issues:

Remark 2.36. (i) If we assume to be in the case where €™ — 0, it follows that
(™) g 1| — 0 for n — oo from the definition of ¢™. In this situation, the
weights (w™); will become extremely large until reaching the limits of machine
representability for the indices ¢ > K. On the one hand, this issue enforces the
practical need for a lower bound ¢ > 0 to avoid computational instabilities. On
the other hand, with the incorporation of a factor é we introduce an intrinsic
limitation for the IRLS algorithm: it is only capable of finding an approximation
of the exact solution and no longer coincides with the solution predicted by the
theoretical analysis. One has to find an appropriate tradeoff: to reach sufficient
recovery accuracy one has to choose € small enough, but this unfortunately can
cause numerical complications, e.g., setting é = le™® results in weight factors
(w™); of the order of 1e*®. As a consequence the execution of numerical opera-
tions can result in significant numerical errors strongly affecting the calculation
results. As a conclusion, most likely the application of IRLS will not allow recov-

ery errors in the regime of machine precision.

(ii) Moreover, if iterative methods are employed for the solution of the internal op-
timization problems in each step, we, additionally, encounter an approximation
error depending on the particular termination tolerance of the chosen approach.

This further deteriorates the expected accuracy of an IRLS method.

We now want to generalize the concept of IRLS also to the matrix valued case and
draw the connection from the matrix (quasi-)norms corresponding to the underlying

structures as considered above to weighted least squares problems.
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Note at this point that in the vector case we considered mostly vector valued weights
that could be used to obtain a formulation of the weighted least squares problem with
a diagonal weight matrix with the weights on the diagonal. In the matrix valued case,

one can in general use more flexible weighting concepts also allowing full matrices.

Definition 2.37. We now point out that each of the (quasi-)norms above can be

expressed as a classical reweighted fo-norm || - ||¢,w) if considered in a vectorized
formulation.
dy do 4 do 4 do dy-do
: p_zz ~“ZZ p-2 2_§: W 2_§:N 2
(i) HZHep = Zy; P = ZylPZ;; = Wi Ziy = Wiz
i=1 j=1 i=1 j=1 i=1 j=1 l

= HWl/QZ\,eCHZ = ”ZveCH?Q(W)
where [ = (i — 1) -dy +j and W is the diagonal weight matrix in R%-d2xdrd2 with

entries Wy, = |Z;;[P~2 |

di [ do P2 g do ®=2)/2 /4, di da
(i) 1Z]17,, = ( Z%) =2 ( Z) (Z Z%-) =) W (Z Z%-)
j=1 j=1 j=1 i=1 j=1

d1-d2N
- Z VVlZl2 = HWl/QZVBCHZ = ”ZVECH%Q(W)’
=1

where | = (i — 1) - dy + j and W is the diagonal weight matrix in Rdd2xdi-d>
entries Wy = (Zjil Z%)(P*Q)/?

(i) [|Z1l7,, = tr(ZZ7 PR = (227022 27)) = we(WZZT) = |[WRZ|3
= ||W1/22ve0||22 - ||ZveC||z%2(W)>

where W is the symmetric weight matrix (ZZ7)P~2 in R%*% and W is the block

diagonal weight matrix in R%92%d1d2 with W repeating on the diagonal.

Similar to (2.68) we define the smoothed weight functions Wy(Z,€) for the weight
matrices introduced in Definition 2.37 by perturbations by a smoothing parameter

e > 0 to avoid singularity and instability problems.

(diag ((((|Zl|)2 + 62)%22>j1.d2) for (4)

W(Z) = | diag (ZQ(ZU-)2 + 62> ) for (ii) . (2.76)

j=1

p=2\ d2
diag (((ZZT+62-]d1) : ) ) for (i)

\
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Remark 2.38. For all cases of the quasi-norms we obtain symmetric and positive definite
weight matrices W(Z).

The next chapter of this thesis discusses an IRLS algorithm for solving the nonlinear
least squares problem as already introduced in (2.12), i.e., for a nonlinear measurement

map ® : R — R™ we attempt to solve the optimization problem
min (@) |5, = min [9(z) — yll, 2.77)

by the application of an IRLS-strategy as presented above, where p(z) = ®(x) —y and
C =R<.
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CHAPTER 3

Nonlinear residual minimization via IRLS

In practice, measurement models in the applied sciences and engineering, that we rep-
resented by the operator ® : R — R™ z + ®(z), are in most cases not linear but
nonlinear, resulting in the task to find solutions to an overdetermined nonlinear equa-

tion system
O(z) =y

for measurement results y € R™ with d < m. Nevertheless, simplified linear models
of the processes under consideration are used, or often nonlinearities are neglected.
Unfortunately linearization, i.e., the assumption ®(z) ~ ®z for ® € R™? is not
reasonable in a wide range of applications with strong nonlinear behaviour of ®, where

linear model is not reflecting reality adequately enough.

When aiming at the fitting of the measurement results y € R™ to the model output
®(z) € R™ by minimization of the residual in the ¢,-norm, i.e., considering the problem

formulation
in ||® — . 3.1
ifelgé |®(z) y”lp (3.1)

for 1 < p < 2, satisfactory solutions can not be expected from an oversimplified

approach.

For a nonlinear but smooth operator ® and the parameter-range 1 < p < 2, the overall
objective function in (3.1) is smooth and, for example, also allows the application of
the standard Newton method. However, such general types of optimization algorithms
are not applicable for the case of nonsmooth operators ® or the practically very rel-
evant case of p &~ 1 (or even p = 1). In these cases, less efficient, adapted versions of
the Newton methods, as for instance the semi-smooth Newton method [150] can be

considered.
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These methods, however, do not take advantage of the particular structure of the
objective function involving a ¢,-norm term. It is reasonable to prefer more specialized
approaches as an IRLS method, that more directly exploits the problem’s peculiarities,

over general optimization tools.

An instance of a practical application, where nonlinear regression problems of this type
appear, was illustrated in the introductory example (i) “Detection of faulty sensors in

wireless sensor networks” (see also Figure 1.1) and is discussed in more detail in [107].

Another motivation for the examination of this problem setting for the author of this
thesis was that the model (3.1) intuitively occurs as an intermediate step in the ap-
plication of greedy-type strategies for the solution of nonlinear equations with sparse
solutions. These methods and applications were discussed in previous work of the au-
thor of this thesis together with Fornasier and Ehler in [43]. A popular instance of such
a case is for the modeling of the phase retrieval problem, which we will discuss later in

the context of our numerical test experiments in this chapter.

In the previous section, we demonstrated the formulation of an iteratively reweighted
least squares strategy for general optimization problems as in (2.69). This chapter
discusses its application for nonlinear residual minimization as already indicated above.
More concretely, in the context of (2.69), we choose the constraint set C = R¢ and the
objective function F : R? — R™, F(x) = ®(x) — y and obtain the setting of (3.1).

Moreover, from a practical point of view, the implementation of the IRLS algorithm for
the nonlinear residual minimization problem (3.1) is easy and straightforward following

the structure of Algorithm 1 as introduced above.

As a matter of fact, unfortunately, literature on algorithmic performance results such
as convergence for the IRLS algorithm for residual minimization is very much limited

to the case where ® is a linear map.

Therefore, the investigation of the algorithmic behaviour and performance of IRLS for
the £,-norm-minimization problem (3.1), involving nonlinear operators @, in particular
its applicability conditions and limitations, is of high interest of the statistical as well

as the applied sciences community.

In this chapter, we present a rigorous theoretical analysis of the convergence behaviour
for IRLS for nonlinear residual minimizations under certain applicability conditions on
the measurement setting for nonlinear operators ® as in (3.1). These results have been
introduced in the paper [135] by the author of this thesis.

The presentation in [135] includes the cases, where ® is allowed to be nonlinear and
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mildly smooth, and 1 < p < 2 and, hence, the objective functions can be not only
nonconvex but nonsmooth. More precisely, the novelty in [135] is its ability to deal
with severe nonsmoothness resulting from the cases, where p ~ 1, as appearing in, e.g.,

2] that constitute difficult instances of optimization problems.

As already mentioned, [35, 51] provide analysis results for IRLS in the context of sparse
vector and low-rank matrix recovery respectively, using an auxiliary functional similar
to the one in (2.70). Following this variational methodology, in Section 3.1, an ap-
propriate functional Jyg(x,€,w) (see Definition 3.1) is also formulated for the IRLS
method in the nonlinear residual minimization context. The algorithm is deduced as
an alternating minimization of its variables as demonstrated for Algorithm 1. In the
publications [35, 51], as an additional coercivity requirement, the appropriate formu-
lations of the Restricted Isometry Property (RIP) as introduced above in (2.24) and
Definition 2.29 were assumed. Inspired by these previous approaches, in Section 3.2
a relaxed version of the RIP is employed as well, that was already introduced in the
author’s paper together with Fornasier and Ehler [43]. Using this coercivity assumption
the convergence error decay rates results for the IRLS algorithm can be shown in case
that the auxiliary function Jyg(z, €, w) is convex. Otherwise, it is shown in Section 3.3
that convexification by quadratic perturbations of the objective functional is a viable
option. Convergence of the modified approach to a good approximation of stationary
points of the original problem can be guaranteed in an analogous fashion as presented
in Section 3.4. Within this theoretical analysis part, let us in particular point out the
technically demanding calculations and results in Lemma 3.14 and Lemma 3.19 and

Remark 3.20.

For illustration of the theoretical results, the chapter is closed by the presentation of
several numerical experiment results in Section 3.5. First of all, the output vectors of
standard built-in Matlab methods applied to the original £,-minimization problem are
compared to the output vectors of our IRLS algorithm for a visually approachable toy
example. The experiment demonstrates that in several instances the local minimizers
found by IRLS and the ones output by standard methods are different, also when giving
the same initialization point as an input for the algorithms. Moreover, the theoretical
findings from previous sections are verified in the more complex context of the recovery
of sparse solutions to phase retrieval problems, where IRLS is showing significantly
superior performance with respect to standard MATLAB methods. The last numerical
experiment explores the recovery capability of IRLS on the task of the recovery of
measurement data that was corrupted by impulsive noise, aiming for a sparse residual

vector.
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3.1 AUXILIARY FUNCTIONAL AND NONLINEAR RESIDUAL ITERA-
TIVELY REWEIGHTED LEAST SQUARES ALGORITHM

In the setting of (3.1), for the realization of the iteratively reweighted least squares, in-
stead of the original £,-minimization problem, we solve a sequence of weighted quadratic
problems
(n+1) _ : . 2
2" = arg min [|2(2) =yl (3.2)
with a smoothed weight sequence w? = |(®(z™) — )2 + (eM)2*z", i = 1,...,m,
hoping for the convergence of the iterates to the ground truth vector xg, i.e., " — xg

for n — oo.

It is important to note that if ® is smooth enough, the sequence of problems (3.2) can
be addressed by efficient and standard methods as detailed in Section 2.2.2 (including

possible preconditioning and fine tuning etc.).

Similar to the convergence analysis in [26, 35, 51] for IRLS, we build a variational
formulation for our algorithmic scheme denoted above. We employ an surrogate energy
functional as presented in (2.70) for the deduction of the different steps of the IRLS

algorithm. More precisely, the auxiliary functional for the problem (3.1) takes the form:

Definition 3.1. Given € > 0, z € R%, and a weight vector w € R™, with positive
entries w; > 0,7 € [m] and 1 < p < 2 we define

a3 (e) -+ 3 (2 222 f/@—”)],xeRd. o
p

We now use Jyg to interpret an IRLS algorithm resulting from the scheme in (3.2) as

an alternating minimization over its different variables.
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Algorithm 2 Nonlinear residual iteratively reweighted least squares (NR-IRLS)

Input: A map ® : R? — R™, image y = ®(z9) € R™ of ground truth vector x,
parameter 1 < p < 2.

Output: Sequence (z(™)", C RY.

Initialize n = 0, €® =1 and w° = 1,,,; € R™.

repeat
2" = argmin Ty p(z, w'™, ™) = arg min | ®(z) — yll7, (0m) (3.4)
zcRd z€R4
NFY = min(|@; (¢")) = g;)]) and MY = max(|@y (2" Y) = y,]),
") = min (max(N"Y &), ™ M) with € > 0 (3.5)
p—2\ M
w(n+1) = arg min jNR(x(”H),w,e(”H)) _ ((q)(l‘(n+l))i . yi)2 + (6(n+1))2) 2 ) )
weRT =1
3.6)
n=mn+ 1.
until stopping criterion is met.
Set ng = n.
In theory, the algorithm stops when ¢™ = 0 and one then defines ) := 2(™ for

N > n. Nevertheless, in this way the output sequence (z"),en of the algorithm will
be a set with an infinite number of distinct iteration vectors, and a more practical

criterion is to stop as soon as €™ falls below a threshold ¢ fixed a-priori.

Remark 3.2. (i) In general, due to the nonlinearity of the map ®, nonconvexity of
the objective J (-, w®, ¢(®) can not be excluded and, as a consequence, more than
one critical point can occur. Therefore, starting from different points x4+ With
an iterative method for the solution of the nonlinear least squares problem in this
first step might have an influence on the convergence behaviour and, hence, the

resulting output of the algorithm.

(ii) At each step of the algorithm, we encounter a d-dimensional nonlinear weighted
least squares problem, where the standard methods mentioned above are avail-
able for its numerical solution. We stress again, that these methods in general
only converge to critical points, which constitutes an intrinsic limitation of the
NR-IRLS algorithm!
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3.2 THEORETICAL ANALYSIS AND CONVERGENCE RESULTS FOR
NR-IRLS

As a first step towards an analysis of Algorithm 2, we will point out several properties
as boundedness of the iterates (m(”))neN and their closeness for n — oo. They will serve
as tools for the proof of convergence and the convergence rate of NR-IRLS assuming
adapted versions of common condition in the context of the analysis of IRLS-type
methods.

In the following, we make a suitable choice for the relevant search domain C € R
for the optimimum of (3.1), containing the ground truth vector zy and the origin 0.

Moreover, as a requirement we have that C contains the first iterate ("),

Further requirements on the measurement map ® will be pointed out in the following.
Let @ be continuous and bounded on C and, moreover, consider the following property
that is an appropriate generalization of the RIP in Definition 2.24, which we entitle
the boundedness and coercivity condition (BCC):

Definition 3.3. Let ® : R? — R™ be a nonlinear, continuous map. We say that ®
fulfills the boundedness and coercivity condition (BCC) at x € C if there exist a,, 5 > 0
such that

allz =zl < (0(x) = 2(2)[le, < Blle = 2],

for all z € C.

Remark 3.4. The lower bound in the BCC implies that the level set lpo(P(2)) is a
singleton only containing x itself. Therefore, the BCC at the ground truth solution x,
is a necessary condition to guarantee identifiability from the nonlinear measurements
y = ®(zo) without making further assumptions on xy. The upper bound, however, is

the requirement of Lipschitz continuity at x.

Next we comment on some straightforward observation for the functional in Defini-
tion 3.1. First we note that, after the n-th step, it holds that

jNR(Qf(n—H)a w(n—i—l)’ 6(n—i—l)) _ Z{(@(x(n-i—l))i . yi)2 + (€(n+1))2]p/2'

i=1

From the minimization steps in Algorithm 2, we can use the optimality of the variable

updates to deduce the following monotonicity property:
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Lemma 3.5. The inequalities

jNR(x(nJrl)v w(n-‘,—l)’ E(n+1)) S jNR(x(n—H)v ,w(n)7 E(n—H)) S jNR(x(n—H)? w(n)’ E(n))

< Ivr(x™ w™ ™)

hold for all n > 0.

Proof: The first inequality is a result from the optimality property of w1 while
the second inequality is a simple consequence of €1 < ¢ Furthermore, the last

inequality follows from the minimization property of the update ) .1

From Lemma 5.3 we deduce that Jyg(z™,w™ e™) can be bounded by the
value of Jyp at the first step, which is a constant, i.c., Jygr(z™,w™, ™) <
TInr(@M, w® €©), This fact will be helpful to show the boundedness of the iterates

(x(n))neN:

Lemma 3.6. Let ® : RY — R™ be a nonlinear, continuous map that fulfills the bound-
edness and coercivity condition (BCC) at xy € C and y = ®(xy) € R™. Then the
sequence of iterates (x("))n defined by Algorithm 2 is bounded and, hence, lies in the
ball B(0, R*), where R* = ijNR(x(o),w(O),e(o))l/p + L)1 ®(z0) — ylle, + llzolles -

Proof. For alln € N

n n 1 n
1z, < fl2™ = zolle, + l|zolle, < EH@(%( ) = ®(x0)lle, + lzolle,

m

1/p
1 1
35(21@@W»—MP+MMWW) + = 10(w0) — yll, + ol
i=1
1 1
< = Tovn(a®, 0, )+ = w0) =yl + ol
By the monotonicity property in Lemma 5.3, we obtain

1 1 .
2 ey < =T, w0, €)1+~ @(20) =yl + 1zolles = R,

where all terms composing on the right hand side are bounded. O]

Remark 3.7. The ball B(0, R*), that bounds the iterates, might be large, in particular

in the case that the BCC constant « is small.

The ball’s radius R* > 0 depends on the unknown ground truth vector xq, but it is

possible to derive a sovereign estimate from above only depending on parameters that

— 77 —



are given or fixed a-priori. First, we note that from the optimality of the solution xg it
follows that

1@ (20) = ylle, < [IP(0) = ylle,

and we calculate
1
lzollez = llzo = Olle, < —[1®(w0) — 2(O)]e,

< = (1G0) = yll, + 19(0) — yll,) < Z18(0) — gl

Therefore, we can give an upper bound R to R*

~

1
R* < R:= — (Ina(@W,w®, )P 1 3]10(0) — yllg,) -

o
As mentioned earlier in Remark 3.2, nonconvexity of the functional Jyg(-, w, €) might
occur, which can cause serious difficulties in the optimization task that has to be carried
out in the first step of Algorithm 2. Additionally, nonconvexity poses are more difficult

theoretical problem for the analysis of the convergence behaviour of NR-IRLS.

For the convergence analysis of NR-IRLS, we will start with the easier case assuming
local convexity of the functional Jng(-,w,€) and later extend and generalize these
results by appropriate modification of the algorithmic scheme for the case, where local

convexity can not be assumed.

For the rest of the section, we will place the assumption of strong convexity on the
functional Jyg(-,w™,e™) locally at ™+ as in Definition 2.7 for all n > 0 and

formulate this uniform property in the subsequent definition:

Definition 3.8. Let ® : R — R™ be a nonlinear, continuous map and the functional
Inr(-,w™, ™) be defined for the variables w(™, e™ as generated by Algorithm 2
(n+1) We say that the first uniform strong convexity
condition (USCC-1) is fulfilled if there exists a uniform constant C' > 0 such that, for

all n > 0, the following condition holds

for all n > 0 with minimizer z

Tnr(@™, 0™ ) Z Fyp (20D ) )

= 12(2™) = ylI7, umy = 12") = ylI7, ) (3.7)
> Cllat™ — 2™V,

Remark 3.9. Tt is clear that the USCC-1 holds if the functional Jyxg(-, w™, ™) with
fixed variables w(™, €™ for each step n, is strongly convex at z("*Y with a constant
C' > 0 independent of n within the ball B(0, R*).
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Additionally, the strong convexity of the map x — [|®(x) — y||§p at the desired solution
xo would be another advantageous property for the map ®. This is expressed via the

following property definition:

Definition 3.10. Let ® : R? — R™ be a nonlinear, continuous map and z, a minimizer
of ||®(z) — y||%p. We say that the second uniform strong convezity condition (USCC-2)
is fulfilled if there exists a uniform constant C' > 0 such that for all n > 0 the following

condition holds
(™) = yll7, = 1®(x0) — yl7, > Clla™ — woll7,. (3.8)

Remark 3.11. (i) We observe that, in the case that ||®(-) — y||§p is totally convex
at x¢ according to the definition of total convexity in [15], also (3.8) holds true.
Another conclusion from the results in [15] is that the function [|®(-) — yl|7 is

also strictly convex in the set B(0,2R").

(ii) In the case that ®(xy) = y, note the equivalence of the condition (3.8) with the
lower bound of the BCC with C' = o2

3.2.1 PRELIMINARY RESULTS

Next, we will provide further useful tools for the convergence proof for Algorithm 2 in
the form of several Lemmata.The first important observation we note is that we can
conclude from the convergence of the sequence Jyg(z™,w™, ™) that the iterates
oM o g g+ oo R? generated by the NR-IRLS algorithm come arbitrarily

close to each other for n — oo under the assumption of the USCC-1.

Lemma 3.12. Let ® : R? — R™ be a nonlinear, continuous map and given y € R™.
In the case that the USCC-1 property as in Definition 3.8 holds true with constant C,
it follows for the iterates of Algorithms 2 thaty

: n n+1)112 __
Tim [|l2™ — 2™, = 0.

Proof. For each n = 1,2, ... it holds

[jNR(:v(n),w(n),e(N)) _ jNR(:L,(n-H),w(n+1)7€(n+1)>]
> [jNR(x(n)yw(n)ye(N)) _ jNR(x(n-i-l)’w(n)’E(n))]

> O|a+) — 2|,

- 79 —



We conclude from monotonicity as in Lemma 5.3 and boundedness of the sequence of

functional values (Jnp(z™,w™, e(”)))neN that
lim (jNR(x(n),w(n), 6(n)) o jNR(l,(nJrl)’w(nJrl)’ €(n+1)>> = 0.
n—oo

Therefore, it follows

: n n+1)(2
Tim [|l2™) — 2™V, = 0.

As the sequence (¢M™),cy is monotone, it holds that the limit e := lim,,_,,, e™ exists
and also is non-negative. Next we introduce a functional that will be important for the

formulation of the proof of convergence, in particular in the case € > 0.

Definition 3.13. (e-perturbed £,-norm residual) Let ® : R? — R™ be a nonlinear map

and y € R™. We define the e-perturbed £,-norm residual as the functional

m

fo(m) = (@(x)i — a)* + €272,

=1

If we assume for a moment that 2™ converges to a vector Z and using

m

Ine(a™, w™ e) =3 (@(x™) = y)f + (€))7, (3.9)

=1

we notice that the limit of the sequence Jyg(z™,w™, ™) for n — oo coincides with
the e-perturbed ¢,-norm residual in Z, f.(Z). The corresponding minimizer depending
on € is denoted as

x¢ € argmin f.(x). (3.10)

The following lemma gives a characterization of these minimizers, that will be helpful

for the convergence proof later on.

Lemma 3.14. Let € > 0 and define the e-smoothed weight vector w(z,e) = ((P(z) —
y)i + )L f

2 ~ 2 ~
[9(2) — y||e2(w(z,e)) < ||@(2) — yll&(w(w)) for all z,

we have z = x¢ € argmin f(z).
x
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Proof. Our goal is to show that, if

2 ~ 2 ~
||(I)(z) - y||Z2(w(z7€)) S H(I)<Z> - y”b(w(z,e)) fOl" all Z,

it holds fc(z) < fe(2) for all Z.

As a start, we consider the inequality

2 (P(2)i — i) (P(2)i — wi)?
19G) ~Wliutcon = 3 (@, = 77 AT S O (@3~ 7 T AT

% %

5 2
= 12(2) = Yty w0

and add €2 to each summand’s numerator. Next we take the square root of both sides

of the inequality, which is a monotone operation on the expressions that gives

1/2 1/2
[((2)i —4:)* + €] [(D(2)i — 4:)* + €]
(Z [(®(2)i — i) + 62](2—10)/2) = (Z [(®(2): — yi)? + 62](2—]3)/2) :

7 %

We observe that the left side relates to f.(z) and employ the %— triangle inequality for

the square root to obtain

1/2
1o [(®(2): — i) + €] (®(2): — ) + )
(fe(Z)) / < (Z [(CD(Z)@ _ %)2 + 62](2—;7)/2) < Z [(CI)(Z)Z — %’)2 i 62](2_73)/4'

Using Holder’s inequality gives

2(p—1)

1/p -
(fe(2))'? < (Z((‘D(g’)z — i)+ ez)p/2> : (Z((Cb(z)z — i)+ 62)1)12'13)1)

) )

) » 2(p-1)/(p—2) | 2»
= (f(2))? - (Z((@(Z)i—yi)%r?)”&) :

i

Having in mind ﬁ < a% + b% for a,b, 7 > 0, and noting that % is negative, we

can use this estimate on each summand to see

(fe(Z))1/2 < (f€(2>>% . [(Z((@(z)z — yi)2 + 62)]5)] r _ (f€(§>)% . (fe(Z))W.

Rearranging the terms
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and using the monotonicity of the p-th square root gives the desired result

fe(z) < fe(2).

3.2.2 CONVERGENCE AND ERROR DECAY RATES

At this point, we have established the foundations to formulate our convergence re-
sults for Algorithm 2, namely Definition 3.3 and Definition 3.8. In the course of the
subsection, under the assumption of the strong convexity of [|®(-) — y||7 at zo with
constant C' and certain conditions on this constant, we will be able to establish a linear
error decay rate if y € Ran(®), or otherwise, only adding an error term scaling in the

ineliminable factor || ®(xo) — ylle, -

Theorem 3.15. Let ® : R — R™ be a nonlinear, continuous map and given y € R™.
Consider the functionals Jng(x, w™, ™) for w™ ™ as generated by Algorithm 2
for all n > 0 and the following conditions shall hold

(a) the boundedness and coercivity condition (BCC), i.e., there exist a, f > 0 such
that, for all z € B(0, R*):

allzo = zlle, < [|®(z0) — P(2)]le, < Bllzo = zlles;

(b) and the first uniform strong convezity condition (USCC-1), i.e., there exists a
uniform constant C' > 0 such that for all n > 0 the following conditions holds

jNR($(n), w(”), e(”)) _ jNR(J7(n+1)7 w(”), e(”)) (3.11)
= (™) — g2 iy — 1@ — g2, o > Clla™ — 22 (3.12)

Then the sequence (™) en generated by Algorithm 2 converges to a vector T.

(i) if e = lim €™ = 0, and condition (a) holds, then T = x¢ is the solution to the
n—oo

C,-minimization problem (3.1). Moreover, y € Ran(®) and y = ®(xy).

(ii) if e = lim €™ > 0, and both conditions (a) and (b) hold, then T = x¢ as defined
n—oo
in (5.39) and x¢ € B(0, R*). Here we assume that x¢ is indeed the unique global

mainimizer of fe.
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(c) Denote the error at the n-th step as E™ and the unavoidable error as Ey =
|®(x0) — yll7,- If condition (a) is fulfilled as well as the the second uniform con-
vexity condition(USCC-2), i.e, there exists a uniform constant C' > 0 such that
for allm > 0, the following conditions hold

12 (2™) — yllf, — @ (z0) - yllf, > Clla"™ — ol

21+2/p(m2+1)52

G <1 and v =

for all n > 0, where C > 0 is such that o=
21+2/P(m241-2-2/7)

c

, we can furthermore infer the property:

(iii) the error decay rate can be characterized in terms of the errors E™ and Ey as

follows:
EMY < yB™ 4 yE, (3.13)
or
EC) < By + > p'vE. (3.14)
r=1

Taking the limits for n — oo gives an asymptotic error of the order of Fy

B = |o(7) - |2, < ——Eo. (3.15)

=1-,

Proof. (i) Our goal is to show the convergence of the sequence (™ and that its limit
coincides with the minimizer of problem (3.1). Let us first consider the case that it
occurs €™0) = 0 for some ny and, therefore, the stopping criterion is fulfilled and the
algorithm sets n = ng and (™ = 2("0) n > ny. This implies that the output is z = z(").
Then we can conclude from the definition of ¢, that also max;((®(z"V); —y;))? =0

and, hence, [|®(z) — y||; = 0. Having in mind (a), it follows that = .

Next we consider the case, where €™ > 0 for all n. As we assumed €™ — 0, there is
an increasing sequence of indices n; for which holds ™) < e~ for all I.

We observed in Lemma 5.4 that the sequence z(™ is bounded and hence there exists
a convergent subsequence (ty)sen of (n;)ien vielding (z()),cny whose limit point we

denote by Z. Using the definition of ¢, we can conclude

Z(((b(x(tS))i — i) + (e(ts))2>p/2 < Z op/2 max |¢(x(ts))j — ;P
- J

%

In the case that e(*s) falls below the small constant &, we infer from the definition of
(€n),en that €, = max;|®(z*)); — y;| < & As a consequence, from el**) — 0 follows
that also max; |®(z*)); — y;| — 0. We make use of the fact that ® is continuous, it
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follows that

0< D [®(F); — wil” = lim Y ((@(x")); — ;)* + ("))*)P/? < Tim 27/*m (™)) = 0.
- §—00 “—

§—00

It remains to verify that ™ — zy. From z*) — 2z, and €*) — 0, we conclude
Inr(@t) wt) elts)) — 0 = 3. |®(zg); — y;|P and by the monotonicity property of
Jnr, moreover, we have Jyg(z™, w™ ™) — 0= |®(xq); — vil".

We continue by using (3.9) to infer
jNR($(n), w™, 6(n)) _ m(e(n))p < Z Iq)(x("))i — P < jNR(w("),w(n), E(n)%
and combining this with the results above, we get
nh_{goz |q)($(n))z' —uil" = Z |®(x0)i — il” = 0.
Exploiting the BCC, we can deduce the statement that 2™ — z, in this case:

0 < lim sup Hx(") — x0H2
n—oo

1/p 1/p
: 1 " 1
< lim sup o (Z |®(2™); — yi|p> + o (Z |P(20); — yi|p)

n—oo
9 1/p
_ (n)y. _ ,.|P _
~ lim (Z@(w )i — uil ) 0.

ii) As a first step, we aim to show that I‘(n) — IE, n — oo where x¢ € arg min e\ ). We
g
T

already established the result that the sequence (2(™),cx, is bounded and lies within
the ball B(0, R*) and therefore, accumulation points of this sequence exist. We denote
any convergent subsequence of (z(™),,cy, with with (z(")),cy, and its limit with z. Our

goal is now to prove & = x°.

Using that & is continuous, we get lim wi™ = [(®(Z); — y;)? + P2 = w(z, ), =
—00
w;, 1 € [m]. Moreover, employing the result Lemma 5.5, it follows z(™*1) — i — oo,
From the definition of 2+ via the minimization step in the algorithm, we have that
it holds
122" *Y) =yl ey S N2E) = Yllgy oy - for all 2 € R (3.16)
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For a fixed value of z, we can infer for n; — oo

12(2) = yll ) < N1P(2) = Yllgya) -

From Lemma 3.14, we conclude that = x° as we made the assumption that z¢
constitutes the unique minimizer of f.. Hence, it has to be the unique accumulation

point of (2(™), ey and also its limit which establishes the result.

(ili) Our goal is to show an error bound for the (n + 1)-th iteration, starting from the

error bound for the step before as follows, using the BCC,

. 1
2 — wolI7, > BQIICP( ") — ®(xo)I?

1 n
I, 2 o (3106 ~ i, - o) ~ 3, ).

(3.17)

We get back to our functional Jy g for exploiting its monotonicity along the iterations as
derived in Lemma 5.3. First we define the term ||¢™) Il 23wy = le™-(1,..., D7l 4 (w0

and observe that

2 m (n) yi)? + (eM)2 — ()2
||<I>( B y“e (Z |<I> Mﬁ) <Z yz) i (E(n))Q)(Q—p)/Q
> 2172/ijR(g; n 7w(”), 6("))% - H€ " HZ(w(“))

() — et

SAIN]

> 2172/1)‘:7]\”%(x(n+1)7 w(n+1) HZ(w(n))

Y

1-2 n+1 2 n)||lp
> 2172 (a) —yF, — |l >\\52(w<n>).
From this result in combination with (3.17), we see that

4
™ 272 () =yl = 1€ i) — 202(0) = wllZ,

xOHEQ = 262

Adding and subtracting =222 ||®(zo) — yll7, on both sides of the inequality and rear-

ranging the terms gives

12 — 2oz, + 222 (a) = yll2 + e
0 12 /8 0 y fp 2/62 1) w(”))

1 n
> s (126G =yl 12(z0) ~wll,)

Using Definition 3.10 and further rearrangement lead to

1 —92-2/p

n n C n
||ZL'( ) _ J/‘OH?Q + /B—||®(x0) - y”ép 2/82 || ||g2 (n)) = 21+2—/p52 (n+1)

Iz — oI,
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Next we estimate the expression |[|€ from above, using the definition of €™ and

4
n) ||[P2 (w(n))
the simple observation that the norm of a vector is exceeding the maximum absolute

value of a single vector entry by value:

oy & (dm)? L )
||6( )H£2(w(n)) = (Z [(@(IL‘("))Z- — %‘)2 T (E(n))g]@_p)/g> < <Z(6( )) )

i=1 i=1

<m?||@(a™) = yll7, < 2m?|P(a"™) = (w0, + 2m*||@(x0) — yllIF,

< 268°m?[|2™ — wo|7, + 2m?||®(x0) — ylI7,

We summerize the results obtained above and achieve (3.13)

B = [la+) — 2,
21+2/p(m2 + 1)B2 . 21+2/p(m2 +1— 2—2/p)
< = l#™) = o7, + = 18 (z0) = ll7,
C

= pE™Y 4 yE,.

The recurrent substitution of £™ by its predecessors gives (3.14)
E(n+1) < ,u"E(O) + ZMTVEO'
r=1

From passing to the limit n — oo, we get (3.15). O

Remark 3.16. (i) We note that the values of p and v are worst upper bounds up to
the point, where €, = M in NR-IRLS. When €™ = N it is possible to define
22+2/p62 ~ 22+2/p72
¢ V=76
giving better constant values.

the constants 1 = replacing i, v in these particular steps

(ii) Due to the global minimization of Jyg(x,w™) ™)) w.r.t. 2 it is necessary that
the inequality in Lemma 3.14 holds for all Z and not only for z € B(0,2R*). From
the corresponding minimization property, we obtain 2™+ which constitutes the

global minimizer in comparison to all other vectors z in (3.16) in step (ii).

(iii) We observe that in the case T = zo the result (3.15) is trivial. On the other
hand, for z = z¢, we obtain from (3.15) further information on the vector z¢ as

a quasi-minimizer.
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3.3 LOCAL CONVEXIFICATION OF THE AUXILIARY FUNCTIONAL

In this section, we want to turn to the more general case, where the uniform strong
convexity condition of Definition 3.8 does not hold. This corresponds to a situation,
where we cannot even assume locally convexity for the optimization problem we are
confronted with. Therefore, we can not give theoretical guarantees as formulated above
for the version of the NR-IRLS Algorithm 2. Instead, we follow the strategy of adaptive
modification of Algorithm 2 by introducing local convexification around the current
iterate, using the techniques presented in Section 2.2.3. This will enable us to show
convergence of this adapted version of the algorithm to at least a critical point of the

e-perturbed ¢,-norm residual f. under appropriate assumptions.

The first iteration of Algorithm 2 as stated above, that is performed using w©® =
(1,...,1)T for the minimization of Jyg(z, w®, ), corresponds to a standard non-
linear /y-least squares step. At this early stage already, the local nonconvexity of the
functional in the z-component can lead to the occurence of several local minimizers.
Depending on the initialization vector (%), that is provided as an input to the iterative
solver for this nonconvex optimization problem, one of these local minimizers will be

set as the next iterate z().

We need to keep this dependence on z(®) in mind for the local convexification centered
around the current iterate that we aim at now. We have to be aware that the choice
of the initialization vector influences the overall behaviour of the algorithm and the

output results can strongly differ even for close starting points!

Assuming that ®(x) is an analytic function, it follows from classical complex analysis
that there only exists a finite set of isolated zeros of V||®(z) — ylf; for p > 1 on any
compact set. Our hope is that critical points of the functional VI[|®(z) — y||7 would
not change too strongly with p and that the global minimizer for 1 < p < 2 will be in a
neighborhood of a local minimizer of the least squares problem solved in the first step.
Therefore, we propose to invest the computational effort to explore more than one or
even as much as possible critical points of the nonconvex problem appearing in the
first step using the methods described in Section 2.2.2; e.g., the Levenberg-Marquardt
algorithm with several, possibly random initial points. The identified critical points will
be listed as z,), 7,7, ..., 1,"
NR-IRLS algorithm, that will be derived in this section. After having executed this

adjusted version of NR-IRLS for all x3', x5%, ..., x5"

and will serve as initialization points for the convexified
and having obtained L possible

solutions z*!, 2*2, ... z** for the {,-minimization problem, we chose the x*s giving the

lowest value of ||®(z**) — y||¢, as our preferred approximation to the ¢,-minimizer.
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We want to surmount the drawbacks of the failure of the condition in Definition 3.8
by establishing an approach for a locally convexifying adaption of Algorithm 2 and,
thereby, acquire convergence guarantees also under these circumstances. We fix w, e
and now present the convexified version of the previously introduced functional Jygr

by constructing its Moreau envelope (see Section 2.2.3) as a surrogate:
Inw(@,w,€) = Inr(@,w,€) + wllz —ullf,, (3.18)

for a parameter w > 0 and u € R%.

We will include this straightforward convexified formulation (3.18) into the first step of
NR-IRLS to obtain a regularized minimization problem, resulting in the corresponding
sequence of iterates (™. This requires the appropriate choice of the parameters v and
w for the additional regularization term: we decide to fix w > 0 generously large and
constant over all iterations and, moreover, u = (™ for the n-th step, which leads to a

iterative scheme as follows

2" = arg min \7]‘\‘,”5(”) (z,w™, ™), (3.19)

T

An adapted version of the NR-IRLS algorithm can now be formulated as follows:

Algorithm 3 Convexified nonlinear residual IRLS (NR-IRLS 2)

Input: A map ® : R? — R™ image y = ®(x9) € R™ of ground truth vector x,
convexification parameter, w, parameter 1 < p < 2.

Output: Sequence (z(™)", c R?.

Initialize n = 0, €@ =1and w® =1,,,; € R™.

repeat
2" = argmin jﬁﬁ(n) (z,w™, ™) = arg min ||®(z) — y|7 (woy T wllz — ™2
rER4 z€eR4 ?
(3.20)
N = min(|@(a"V); - y)]) and MUY = max(|(2"); - i),
") = min (max(N"Y €), e M) with € > 0 (3.21)
n p—2
wm ) = argeglin T (@) [, ety = (((‘I’(fﬂ(n+l))i —yi)* 4 (")) 2 )
weRT:
(3.22)
n=mn+ 1.

until stopping criterion is met.
Set ng = n.

=1
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Remark 3.17. (a) This particular choice for the modification of the objective func-
tional and the first step of the algorithm that will introduce the desired local
convexity will be justified later and presented alongside with recommendations

for the concrete choice of the parameter w in the theory section.

(b) We already mentioned a range of viable techniques for the solution of the convex
minimization problem in (3.19), where a wide range of other methods exists
beyond that.
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3.4 CONVERGENCE ANALYSIS FOR THE CONVEXIFIED ALGORITHM

The study of the convergence behaviour of Algorithm 3 will be carried out in an

analogous fashion to the analysis of Algorithm 2 in this section.

3.4.1 PRELIMINARY RESULTS

Again we start with the monotonicity property of the modified functional:

Lemma 3.18. The inequalities

Tnr(@™, w™ ™) = goa ) )M )y > e o) 4,m (n) (3.23)

E(n+1))
(3.24)

> jﬁg<n+l)<1’(n+l)yw(n+l)a €(n+1)) _ JNR(x(n+1)’w(n+1)7 E(n-‘rl))

(3.25)

> jﬁ}if(n) (x(n—i-l)’w(n)’e(n-l—l)) > jﬁgw(x(”“),w("“),

hold for all n > 0.

Proof. The first inequality is a consequence of the minimization property that defines
("D in NR-IRLS2. Moreover, the second one results from the fact that et < ™
and the third inequality from the minimization property of w(™*Y. The last inequality

follows from the non-negativity of the norm of a difference of vectors. m

We can conclude from this property and the boundedness of the sequence

(T (2™, w™ ™)), oy that it also has to be convergent.

In an analogous manner to Lemma 5.4, we can conclude also for the convexified case

that the sequence (x("))neN bounded and the iterates lie in a ball of radius R*, i.e.,
(2™ )nen € B(0, RY).

Now we want to justify in more detail the choice of the formulation in (3.19) for the
modification of the functional J. Here the introduction of the Moreau envelope as
a regularization is crucial for winning back the USCC-1 property for the modified
version of the functional (3.18). Our aim is to establish the existence of a positive
USCC-1 constant C, that will depend on w and therefore can be influenced with its

choice appropriately.
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Lemma 3.19. Let ® : R — R™ be a nonlinear, continuous map and J(z,w,€) as
defined in Definition 4.4 and Jyg(x,w,€) as defined in (3.18). Moreover, we assume
that

(™ + (1= 2™ = Y12 oy — [8(2) = Y12, o) (3.26)
(L= D@ + (1= 02 = ylI2 o) = 1D@D) = g2 o)

< Lt(t = 1)t — 2",

for some L > 0 independent of n € N and for all t € [0,1]. Let (™), ey be the output
sequence of minimizers of Algorithm 3. Then for w > 0 large enough the USCC-1 is
fulfilled for the adapted functional in (3.18), i.e., there exists a uniform constant C>0
such that for all n > 0 holds

w,z(™ n n n w,z(™ n n n ~ n n
T (x( )7w( )76( )) — T (x( +1)7w( )76( )) > CHJI( 1) _ )H?2

Remark 3.20. We want to explain the validity of (3.26) and assume for the moment
that ® is twice continuously differentiable and €™ > ¢ for all n € N and that the

Hessian of the map
&= Fyon () = [ @) = yll7, womys

which can be expressed as
V2, (x) = > w [VO(@);VO(x); + (®(x); — ;) V2P(x);] ,
i=1

is uniformly bounded on B(0, R*) by a constant L' > 0. We consider the Tay-

lor expansion of the function Fm(x) = ||®(x) — yH?2 around the point =z =

(w™)

tr™ + (1 — )2V to achieve a uniform estimate of the type (3.26):

[ED(E + (1= 02t 0) = gl ) = 1) = Yl o)

HI= DA + (1= 02) = I, o) — 1A = gl ]|
= |—tVE,m(tz™ + (1 =)z )T (2 — tx(") + (1 = t)zmh)

—t(z™ — 2™ + (1 = )z NIV F o (€7) (2™ — ta™ + (1 — )z D)

—(1 = t)VE, o (tx™ + (1 — )2 T (D) ™) (1 — )2 D)

—(1 = 1) (@™ — 2™ 1 (1 — )z TNTV2E, (o () (@D — 2™ 4 (1 - t)x<n+1>)) .
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Now, we have that

—tVE,m (t;n(") +(1— t)x(n+1))T($(n) —tx™ 4 (1— t)x(n+1))
= —t(1 — ) VE,m (tz™ + (1 — £)z™)T (2™ — zn=1)

and
— (1 = t)VF, (tz™ + (1 = )2 N T (+D) ™) (1 — ¢)z(+D)

= t(1 = )V E o (tz™ + (1 — )x TN T (M) — gn=1),

This means that the first order terms in the sum cancel each other and only the second

order terms are remaining. We continue with the observation

2™ — ™ 4 (1 =)™ D)2 = (1 —t)?|l2™ — 2|2 | and
52 é2

@) = 2 4 (1= 2D, = 2a) - oD,

using the boundedness of the Hessians and we see that

tll@(t2™ + (1 = )a"™*D) —ylI7, oy = 12(2™) = ylIZ, (o)
(L =@t + (L= )20) =yl oy — 1) =yl )]
< L1 =t 2™ = 2VYE + L (1 = 1|l — oI

< Lt(t = 1)t — 2"V,

using that ¢ € [0,1] and L = 2L'. Consequently we assert that (3.26) is a reasonable
assumption, even if the map ® is not as smooth. A key point here is the fact that
™ > ¢ foralln e N, which is used in the proof of Theorem 3.22.

Proof. Having in mind (3.26), we carry out the estimates for ¢ € [0, 1]

‘jNR(tQ:(n) +(1— t)x("“),w(”), 6(n)) _ [tj]S,Ra:("),w("), 6(n)) +(1— t)jNR(JI(”H), w(n), 6(n)>]
< [ttt + (1 = 2 D) =yl o) = 19GE) = g2, o)

(1 = DR 4 (1= ) = |2, oy — [2E) =yl o)

< Lt(t — 1)[|2™ — 202 .

Hence, we get

JNR(tiC(n) +(1— t)x(”“), w™., 6(n))
< t (@™, w™, ) + (1= ) Iyp(a", 0™, ) = CH(1 = 1)||2™) — 20 V|R,,
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with a not necessarily positive, uniform constant C' = —L, as there is not yet an
assumption placed on the strong convexity for the functional Jyg(-,w™, ™) at this
point but certainly C' > —oo.

Next we add the term wl[tz(™ + (1 — t)z"*) — 2|2 to both sides of the inequality

Inr(tz™ + (1= 1)z w™ e) + wlitz™ + (1 = 1)a"D — 2|
< tj(x(”), w™, E(n)) +(1— t)j(x(”+1), w™, e(n)) —Ct(1 - t)||x(") _ I(n_l)HZ
+ wltz™ + (1 — )™+ — x(")||?2

and rearrange

T (tzm 4(1 = )zt ) () < g g™ (g gy ()
+ (1= )T @D, 0™, ™) = Ct(1 = £)[J2™ — 2 D2 + (1 — t)w|[2™) — 2|2

Furthermore, by adding and subtracting the expression (1 — t)w||z™ — 2"+ D[12 | we

obtain

jﬁﬁn (m(n) + (1 _ t)x(”+1), w(n)’ 6(n))
< tjﬁﬁw( (n)’ w("), E(n))
+ (1= )TZE" (@D ™ ™) — (O + w)t(1 — 1) 2™ — 2|2,

We note that, actually, the last inequality leads to the establishment of the strong
convexity condition for the functional Jyx i >(~, M em)) at 2"+ at 2. Analogous
calculations to those presented in proof of Lemma 5.5 executed also in this case lead

to

w,z(™ n n n w,z(™ n n (n n
Ing (@™ w™, M) — o (@0, w™ ) > O la" D — 2|7

with constant C' = C' + w. Here C' is positive for w large enough. O]

As a next step, we want to show that the iterates (x(”)) come arbitrarily close for

neN
n — oQ0.

Lemma 3.21. Let ® : R? — R™ be a nonlinear, continuous map with ® and (2™),en
and (w'™),en be the sequences generated by Algorithm 3, so that condition (3.26) holds.
Then, for w > 0 large enough

Hx(”) — m("H)HZ — 0 as n — oo.
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Proof. Using the monotonicity property, we see that

||jNR(x(n)7w(n)7€(n)) - jNR( (1) w(n+1) E(n+1))||1%2
> (|22 (@, w™ ey — FEa™ () ) )2

Moreover, employing Lemma 3.19 it follows that
wx(”) n w,z(™) (n n n ~ n n
1Tng (@™, w0, ™) = Fyg™ (20D w2 > Cllat™ — 207

Using the fact that || Typ(z™w®™, e™) — F(z®D) 0D D)2 — 0 as n — oo,

we obtain

x(nJrl) H 2

|2 7, — 0 asn — oo.

3.4.2 CONVERGENCE

Now we have all the necessary tools at hand to present the convergence results for
Algorithm 3:

Theorem 3.22. Fizy € R™, zy € R?. Let ® : R? — R™ be a nonlinear, countinuously
differentiable map with ® for which the boundedness and coercivity condition (BCC)
holds, i.e., there exist o, 5 > 0 such that, for all z € B(0, R*):

allzo = 2lle, < |9(z0) = B(2)lle, < Bllzo = 2o,

Additionally, we require that, for the sequences (z™)pen and (wW")nen generated by
Algorithm 3,
tl| @™ + (1= 6)z™ ) — |17 oy = [12™) = Y17, )] (3.27)
(1= B + (1= ™) =yl o — [BEH) — gl o]
< Lt(t = 1) ||z — 2|7,

for some L > 0 independent of n € N and for all t € [0,1]. For w > 0 large enough
(determined according to Lemma 3.19), we get the following properties of Algorithm 3:

(i) If e = lim €™ =0, then the sequence (z\™),cn converges to a vector T, which is
n—oo

the solution to the {,-minimization problem (3.1). Moreover, if y € Ran(®) and

y = ®(x9), then xq is the unique minimizer, thus T coincides with x.
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(ii) if € = lim €, > 0, then all accumulation points of (x™),cxn are critical points of
n—oo
the e-perturbed (,-norm residual f. defined in (5.39), all lying in B(0, R*).

Proof. (i) the proof can be deduced in an analogous fashion to Theorem 5.8.

(i) We know that the sequence is bounded (™), ey and, therefore, accumulation
points exists. Denote with (2(")),cy any convergent subsequence of (2(™),,¢cx, and
its limit with Z, for which we want to establish that it is a critical point of (5.39).
From wgn) = [(®(z™); — ;)% + ()2 P=2/2 < (M)P=2 < =2 we deduce that
up to the extraction of an additional subsequence, it holds ehjgo wzw) = [(®(z); —
yi)? + 2)P=2/2 = w(z, €); := w;,i = 1,...,m. Moreover, using Lemma 3.21, we
see that 2™+ — Z ¢ — 0o. We observe that here €™ > ¢ > 0 and the discussion
in Remark 3.20 can be used to justify the assumption (3.27).) In a similar fashion,
it follows w(™*+Y) — @ for £ — oco. From the assumption that ® is continuously
differentiable, it follows that the map = — Jyg(-, w™, ™) is differentiable as

well and we conclude using (3.19),
0= ijﬁg(nw(x(w-l-l)’ w(w)) E(nz)) — ij(x(w-i-l)’ w(w)’ €n,) + 2w(xne+1 — ™)
or
—2w(x("‘5+1) — :U(”‘)) = ij(m("”l), w™) €(ny))-

Employing Lemma 3.21, we can conclude that by passing to the limit / — oo

0€ V. J(Z,w,e) =Vf(x).

]

Remark 3.23. (a) Instead of assuming that ® is continuously differentiable as we did
above, it is also possible to consider to lower smoothness, i.e., & continuous and
require additional properties for subdifferentials. Nevertheless, generalizing our
results to nonsmooth maps does not give us significantly new insight and is not

considered here in detail.

(b) It is interesting to note that the error decay rate shown in (iii) in Theorem 5.8 can
be validated also for Algorithm 3 in the case that condition (c) in Theorem 5.8
holds true.

We can summarize our results as follows: Either we reach the exact minimizer of the
functional || @(z) —y||; or otherwise, we have that every accumulation point is a critical

point of the e-perturbed ¢,-norm residual f.(x).
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3.5 NUMERICAL EXPERIMENTS

In this section, we illustrate and validate our theoretical findings by presenting sev-
eral numerical experiments. Our first tests are carried out for a simple experiment
framework to get a certain intuition for the algorithmic behaviour. Thereafter, the per-
formance of NR-IRLS is evaluated in the context of higher dimensional ¢,-minimization

problems, whose optimal solution is often difficult to investigate.

In the first example, we will examine the behaviour of the iterates of the NR-IRLS
algorithm in each step and make comparisons of the algorithm output with the results of
standard MATLAB optimization methods. Subsequent experiments consider nonlinear
compressed sensing problems as examined in [43]. More concretely, we employ NR-IRLS
in the intermediate step of of a greedy-type algorithm for the reconstruction of sparse
vectors from quasilinear measurements. We claim that, if the overall recovery results
obtained by the described algorithmic scheme is correct, the intermediate results must
have lead to correct solutions as well. In the last experiment in this section, we will
examine a measurement setting, where the measurement data is corrupted by so-called
impulsive noise, which corresponds to sparsity structure appearing in the residual. We

study the influence of the noise level on the recovery success of NR-IRLS.

All numerical experiments in this section were performed on a MacBook Pro 9.1. with
a 2.6 GHz Intel Core i7 quad-core-processor and 8GB memory. Computations were run
in MATLAB R2012b version 8.0.0.

3.5.1 VISUALLY ACCESSIBLE EXAMPLE

In a simple test example case, we examine the algorithmic behaviour of NR-IRLS for a

®:R — R% 2 (93)
x?

and a measurement vector y € [0,1]%, and, consequently, the ¢,-minimizer x, :=

map

arg min [|®(x) — yll; will lie in [0, 1], too.
Firgt we verify that the BCC in Definition 3.3 is fulfilled for 1 < p < 2 in this particular
setting with the lower BCC-bound o = 1:

1©(x) — @(xo)lle, = (| — @of” + |2* — (20)*[")/ > |2 — 20| 2 | — wole,-
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For the upper bound 3 we obtain (1 + 27)'/:

1@ (x) = @(z0)le, = (Jo = w0’ + |2* — (20)*[")'"" = (J& — wol’ + |& — wol” - | + wo|") /7

< (|2 = mo|P + |z — z0[7 - 2°)/P = (1 + 2°)7|z — zo| = Bz — o]l

In this situation, we usually encounter a nonconvex problem with possibly more than
one local minimizer and aim to study the convergence behaviour of the of NR-IRLS
in the version of Algorithm 2 in dependence of the nonconvexity paramter p. The
variation of p also corresponds to the alteration of the underlying optimization problem
and different minimizers or even a changing number of minimizers is possible. Here
we investigate the differences in the optimization results for varying values of p and
different choices of the initialization vector z(°). We compare the behaviour of NR-IRLS
and MATLAB’s built-in [sqnonlin-function, which is a realization of a trust-region-

reflective or Levenberg-Marquardt strategy.

We provide a more detailed description of the parameter setting for our numerical tests
in the following. For measurements y = (0,0.9)7 and varying values of p in the range
between 1 and 2, more precisely for the values p € {1.1,1.3,1.7,1.9}, we study the
algorithms recovery results.

For the specific setting of the algorithm parameters, we allow a maximum number
of 50 iterations for NR-IRLS. Furthermore, we employ the MATLAB built-in function
fminunc for the solution of the locally convex minimization problem in each internal
step with default settings and use the last iterate for initialization. Also for running the
1sgnonlin-function, which we directly use to solve the £,-minimization problem, we use
MATLAB'’s default settings, too. For the experiments with both algorithms, we start
from different points 2(®) in the interval [0, 1], more precisely z(*) € {0,0.25,0.5,0.75, 1},
and study their convergence behaviour resulting in different local minimizers as their

outputs.

Via the graphical assessment of the algorithms’ behaviour, we report the following ex-
perimental results: From Figure 3.1 and 3.2 it becomes clear that NR-IRLS converges to
the critical point of the objective function with least distance to the fs-local minimizer
resulting in the algorithms’ first step, regardless of the value of p but in dependence on
the starting point £(®) in the first step. The Figures 3.3 and 3.4 further underline the
influence of the initialization point for the solution of the first nonlinear least squares
problem. Also here NR-IRLS converges to the critical point that is closest to the mini-
mizer of the fo-norm problem, while the standard MATLAB method converges to the

local minimizer with least distance to the initialization point.

We draw as a conclusion that NR-IRLS has the potential to identify different local
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¢,-norm minimization for different starting vectors for y = [0,0.9] and p = 1.1

X(O): 0 X(O): 0.25

Iterates of NR-IRLS
NR-IRLS solution
o0 Matlab solution

Figure 3.1

minimizers compared to standard gradient based methods also if the same starting

point is provided to the methods.

3.5.2 HIGH DIMENSIONAL EXAMPLES IN A NONLINEAR COMPRESSED SENSING AP-
PLICATION CONTEXT

The paper [43] by the author of the thesis together with Fornasier and Ehler sug-
gests a greedy algorithm (Algorithm 1) for the recovery of sparse vectors from a mini-
mal amount of nonlinear measurements. This type of reconstruction problems will be
called nonlinear compressed sensing problems, in particular for the case that the mea-
surements generation involves randomness. We note that as a key operation of this
algorithmic strategy is the solution of a nonlinear f,-minimization problem (3.1) in
dimension d: at the d-th iteration of the algorithm it is necessary to identify the vector
with at most d nonzero entries with best data fit, i.e., finding the solution to a minimal

norm nonlinear residual problem as defined in (3.1).

In [43], the authors also considered p € [1,2] as a norm parameter in the so-called
Restricted Isometry Property (RIP), that is closely related to the BCC (see formula
(3.1) in [43]). In the following experiments, we use nonlinear maps ® : R* — R™
which are restrictions to k-dimensional index subspaces of two different types of mea-
surement maps studied in [43]. One the one hand, we consider nonlinear maps that are

constructed as the Lipschitz perturbations of matrices fulfilling the RIP. On the other
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¢,-norm minimization for different values of p for y = [0,0.9] and x?=1
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¢,-norm minimization for different values of p for y = [0,0.9] and x©=0.25
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hand, the second setting in [43] involves the quadratic map ®(z) = (|(z, ¢;)|*)i=1....m,
which encodes the amplitudes of the scalar products of a vector x using a given col-
lection of measurement vectors {¢1,...,¢n,}. We note that here for the second type
of map solving the equation ®(z) = y reduces to the recovery of the unknown signs
of the scalar products, which is also the fundamental challenge in the solution of the
more complex phase retrieval problem with applications, e.g., in X-ray crystallography
[41, 47, 57].

For both of these measurement settings, we conduct numerical experiments testing
NR-IRLS as in Algorithm 2 and the locally convexified version NR-IRLS2 as in Algorithm
3 in comparison with standard MATLAB optimization methods. MATLAB source code
implementing the greedy algorithm in the context of nonlinear compressed sensing is

available at http://www-m15.ma.tum.de/Allgemeines/SoftwareSite.

3.5.2.1 Locally convex case: Nonlinear perturbation of linear RIP-matrices
We want to familiarize the reader first with a result presented in [43, Section 3.2.1].

Proposition 3.24. Assume k < m < N and ®, € R™V satisfies the 6-RIP of order
2k, i.e.,

(1 =0zlley < l[Przllgy < (1+0)l|zlley,
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for all z € RN with at most 2k nonzero entries. If ®,: RN — R™ is chosen as
D,(2) = @1z + pf (I — |12 02, (3.28)

where 2° € RN is some reference vector in RN, f :[0,00) — R is a bounded Lipschitz
continuous function with f(0) = 0, p > 0 is a sufficiently small scaling factor, and

o, € R™N arbitrarily fized, then there are constants o, 3 > 0, such that for p = 2
allz = 2lly < [[®p(2) = @p(2)llep < Bllz — Zlley

for all z with at most k nonzero entries and Z is another fized vector of at most k
nonzero entries. For other p € [1,2), these inequalities hold again with different con-
stants «, B, derived, for instance, by equivalence of norms: for 0 < r < q we have
1zlle, < lzlle. < NV 14| 2],

One can infer from the proposition above that any restriction of ®, to vectors that
are supported on a certain fixed index set A C {1,..., N} with cardinality #A = k
satisfies the BCC condition. Therefore, in the following, without loss of generality we

place the assumption A = {1,...,k} and let
O :RF xRy = R™, (z,p) = ®(z,p) = D,(2"),

where z = 2 represents the zero padding extension of  to a vector in higher dimension
RN

As shown in [135], in the linear case of ®(-,0), i.e., where p = 0 and ®(z,0) = ($1)}a
boils down to a matrix in R™** the first USCC holds true. Assuming that the param-
eter p > 0 is small, the map ®(-, p) is only a slight nonlinear perturbation of ®(-,0).
Moreover, we introduce the additional condition that f is twice continuously differen-
tiable on R as used for the definition of ®, to extend the first USCC to ®(-, p) on a
small ball around xy but do not present details of the rather clear elaboration of the

argument.

We want to describe the setting for the upcoming numerical experiments where we
perform the recovery of a sparse vector zp € RY with maximal k¥ nonzero entries,
where £ € [1,10] NN from measurement results y = ®,(2) applying the method [43,
Algorithm 1]. At each step of this algorithm, the minimization or a norm nonlinear
residual has to be performed, where we employ Algorithm 2 of the present chapter.
The ambient dimension N = 80 as well as the number of measurements m = 30 are

fixed and we sample at random RIP matrices ®; with i.i.d. Gaussian entries. Next we
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set @, to be as the matrix with all ones and the perturbation function f is the squared
Euclidean distance from the given solution vector zg, i.e., f(|[z — zll7,) = ||z — Zo||§év~
We already mentioned earlier via the parameter p > 0, that steers the nonlinearity
of the measurement operator, it is possible to regulate the validity of the BCC and
the USCC property. In our tests, we explored the dependence of success rate on the
nonlinearity by observing results for the parameter range p € {0,0.5,1,3,5,10,20} in
100 randomly generate synthetic problems for each of these choices of p. As we use
synthetic data and the true sparse minimizer zy is known, we can use zy to measure
the recovery success and categorize a reconstruction as successful as soon as the error
is within a 1% of the norm of the solution vector zy. Additional measurement noise

was not included in these experiments.

We are quite generous and allow the execution of 3k steps of the greedy algorithm [43],
which corresponds to a number ob iterations that is notably exceeding the intrinsic
dimension of the sparse solution. This gives the algorithm the chance to correct wrongly
chosen indices, that were added to the support set in previous iterations. The maximum
number of iterations for the nonlinear ¢,-residual minimization performed with NR-IRLS
is set to 50. Again, we employ the MATLAB built-in function fminunc with its default
settings inititalization in the origin for solving the locally convex minimization problem

appearing in each inner step.

First we present the empirical probability of successful recovery of sparse vectors for
[43, Algorithm 1] implementing Algorithm 2 for the execution of the ¢,-minimization

for varying values of p in the following Figure 3.5.

Our expectations on a decreasing recovery performance with growing sparsity level k
and, consequently, increasing dimension of the £,-optimization problem were met by the
experiment results. Also an increasing perturbation factor p > 0 for the construction
of ®,, which corresponds to the severity of the nonlinearity, was supposed and verified
in our experiments. The better recovery performance for the parameters p closer to 2
can be explained by the fact that the BCC condition has tighter bounds « and S in

these cases.
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p=1.1
k
p=17
Figure 3.5: Recovery rates for the greedy strategy developed in [43] used for the
measurement, setting with perturbed RIP matrix as defined above in dimension
N = 80,m = 30, where ®; has i.i.d. Gaussian entries, ®, being the matrix with
all ones , f(z) = ||z — xol|7,, and solution vector zy with [|zo|ls, = 0.015. Reconstruc-

tion is executed 50 times for each signal and sparsity level k to obtain stable recovery
rates.

3.5.2.2 Phase retrieval problem

As introduced in [43] for the setting of phase retrieval, we consider a sequence of Gaus-
sian random vectors ¢; € RY, i = 1,...,m and construct the nonlinear measurement

map as follows
O(x) = ([{or, 2) % - [(Gms 2)P) (3.29)

With slight modifications to its original formulation, a BCC-type property holds for

= 1 replacing the /o-norm on both sides of the inequality by a Hilbert-Schmidt
norm, which does not have disturb the validity of the results above. The existence of
the corresponding BCC-constants «, f > 0 can be assured by [43, Theorem 3.12] and
according to [43, Formula (3.14)].

Unfortunately, in the general case, we can not assume that the USCC-property holds

true in this setting and, therefore, the convexified NR-IRLS as in Algorithm 3 is applied.

As in the experiments above, the signal dimension is chosen to be N = 80 and the

number of measurements and, thereby, the number of sampled i.i.d. Gaussian random
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vectors ¢;, i = 1,...,mis set to m = 30. We generate synthetic sparse solutions zy with
| 20]le, = 1 with respective sparsity levels in the range k € {1, 3,6,9,12,15,18,21} and a
nonincreasing rearrangement of their entries with decay rate k € {1,0.8,0.6,0.4}, where
a precise definition of the vector class D, can be found in [43]. The convergence results
in [43] demand such a decay property and this theoretical requirement was justified by

numerical tests involving MATLAB optimization routines in the intermediate steps.

For each of the mentioned parameter combinations, we create 50 noise free problem
instances. Again, we exploit the knowledge of the solution vector z, for the classification
of the recovery success which is defined to occur, when the error does not exceed 1%

of the solution’s norm.

Similar to the procedural settings in the experiments above, the greedy algorithm [43,
Algorithm 1] performs maximally 3k steps and the maximum number iterations of the
NR-IRLS method is bounded from above by 100. As we use the convexified version of
NR-IRLS, we chose the regularization parameter w = 100 > 0, which is large enough in
our context. Again, we use the MATLAB function fminunc with its default settings
now starting from randomly chosen points within a ball with radius of the solutions

norm for performing the convex minimization in the internal step.

The graphics in Figures 3.6-3.7 below show the success rates of [43, Algorithm 1] imple-
menting Algorithm 3 for the execution of the £,-minimization for varying values of p for
the recovery of sparse vectors from measurements of the type Proposition 3.24. To our
great surprise, the influence of the decay rate of the nonincreasing rearrangement of the
solution vector zy on the recovery success is becoming less prominent when employing
NR-IRLS for the solution of the internal ¢,-minimization problem. This observation is
in stark contrast to the experiment results presented in [43], in which we applied the
built-in MATLAB functions fminunc, fminsearch or lsqnonlin. For illustration of
the performance differences, we compare the recovery results of the greedy algorithm
incorporating NR-IRLS and the corresponding results obtained from an implementa-
tion using lsgnonlin. We observe that the later are significantly outperformed by
the implementation using NR-IRLS in cases, where the decay rate of the nonincreasing

rearrangement of the vector zy is not sufficiently pronounced.
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Figure 3.6: Recovery rates for the greedy strategy developed in [43] implemented with
NR-IRLS used on the phase retrieval problem with Gaussian measurement vectors as

above with N = 80, m = 30, and we use solutions zy with [|zo]| = 1 . Reconstruction
is repeated 50 times for each signal and k, k.

p=1.1 p=13
EL L
k
p=17

Figure 3.7: Recovery rates for the greedy strategy developed in [43] implemented with
1sqgnonlin used on the phase retrieval problem with Gaussian measurement vectors as
above with N = 80, m = 30, and we use solutions zy with ||z¢|| = 1 . Reconstruction
is repeated 50 times for each signal and k, k.
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3.5.3 RECOVERY FROM DATA WITH IMPULSIVE NOISE PERTURBATION

In this last subsection, we consider the case of observed measurement results y that are
additionally corrupted by noise. As already explained in Section 2.1, the choice of the
error function for the nonlinear residual minimization depends on the particular kind of
noise. In the following, we will examine the particular case of measurement corruption
by impulsive noise. This type of noise is characterized by the random appearences of
instantaneous perturbations of the residual components which appear in the form of
spikes or pulses with random amplitude. This corresponds the occurrence of sparse
residual distortions and, therefore, sparsity enhancing error functions such as the ¢;-

norm are a reasonable choice.

We again consider the phase retrieval problem as described above introducing impulsive
noise on the measurements and adopt the experimental setting used in the prior nu-
merical tests up to slight modifications mentioned below. With the experiments in this
subsection, we aim at to explore the influence of the choice of the parameter 1 < p < 2

on the recovery success rates for impulsive noise corrupted measurement results.

First we want to give a clear description of our statistical model for the impulsive noise:
for this purpose we combine a binary-valued random sequence model for modeling
the time of occurrence of the noise pulse with a continuous-valued random process
model defining the pulse amplitude. An important instance of a statistical process for
impulsive noise modeling by an amplitude modulated binary sequence is the so-called
Bernoulli-Gaussian process [155]. In this specific model of an impulsive noise process,
the random time of the impulse occurrence is modeled by a binary Bernoulli process
B,, with a probability of success a;, and as an amplitude model a Gaussian process

/\/'(071) with mean 0 and standard deviation 1 is used.

Now having a proper model for impulsive noise at hand, we give a detailed description

of the measurement setting for the noisy phase retrieval problem.

As in previous experiments, we set N = 80, m = 30 and sample i.i.d. Gaussian ran-
dom vectors ¢;, © = 1,...,m. Again we generate synthetic unit norm solutions zy with
respective sparsity k£ € {1,2,3,5,7,9} and decay rate K = 0.5 for the nonincreasing
rearrangement of the absolute value of their entries, where we refer to [43]for the defini-
tion of the vector class D,. Next we create impulsive Bernoulli-Gaussian noise vectors
with parameters o, € {0.5,0.4,0.3,0.2,0.1,0.0}, respectively adjusting the scaling to
the norm of the measurement vector y, and add the result to the exact measurement
vector. We generate 100 problem instances for each parameter combinations, and again

use the solution zy for the determination of the recovery success, which we claim to be

- 106 —



reached when the error is within a 5%-margin of the solution’s norm. We use a similar
algorithm set up as above executing 3k steps of the greedy algorithm [43, Algorithm
1] and for NR-IRLS itself the limit for the number of iterations is set to 50. We chose
the parameter w = 100 and use the MATLAB built-in function fminunc with default
settings and random starting points within the ball with radius of the solutions norm

for the application to the convex minimization problem in each inner step.

The plots in Figure 3.8 illustrate the success rates of [43, Algorithm 1] for sparse vector
recovery from measurements of the type Proposition 3.24 perturbed by impulsive noise,
which implemens Algorithm 3 for the execution of the ¢,-minimization for variying

values of p.

The visual assessment of the phase transition diagrams can be summarized as follows:
minimization for small values of p and, therefore, the stronger the nonsmoothness
of the error function, are preferable to standard /¢>-least squares minimization which
matches our expectations. Additionally, we observe that, if p is getting close to 1 and
low sparsity level k, recovery with NR-IRLS is very robust even for strong impulsive

noise perturbations.
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Figure 3.8: Recovery rates for the greedy strategy developed in [43] implemented with
NR-IRLS used on the phase retrieval problem with Gaussian measurement vectors as
above with N = 80, m = 30, and we use solutions xy with ||zg|| = 1 . Reconstruction is
repeated 50 times for each signal with sparsity & and the particular noise perturbation
as given above.
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CHAPTER 4

Harmonic mean IRLS for low-rank matrix

recovery

In the last years, the problem of recovering large scale matrix-valued signals with an
inherent low-rank structure from incomplete linear measurements as discussed in Sec-
tion 2.3 and especially in Section 2.3.2, attracted the attention of the signal processing
and machine learning community. That means we aim at the unique identification of

an unknown matrix Xo € My, «q4, from a linear equation system
o(X)=Y (4.1)

with a linear operator ® : My, «4, — R™ and measurement vector Y € R™ for m < dyds

under the additional assumption that Xy has rank r < min(dy, ds).

Having in mind the discussion on intrinsic structures, in particular sparsity type struc-
tures in Section 2.3.1 and Section 2.3.2, we recognized that with the additional assump-
tion of the low-rank structure of the solution, the recovery of X, from (4.1) becomes

feasible by solving the affine rank minimization problem (2.55)

min rank(X) subject to ®(X) =Y. (4.2)

Low-rank matrix recovery problems of this type appear in application frameworks such
as system identification [96, 97|, signal processing [1], quantum tomography [71, 73],
recommender systems [22, 64, 136] and phase retrieval [18, 23, 72].

A widely studied instance of the low-rank matrix recovery problem with great relevance
in recommender systems is the problem of the identification and recovery of a large

scale low-rank matrix from a subset of revealed entries, the so-called matriz completion

- 109 —



problem, i.e., the choice of the measurement operator ® : My, .4, — R, where we are
given m sample entries

(I)(X>€ = Xiz,jw (4'3)

for ¢ € [m] and some i, € [d;] and j, € [d2] depending on ¢. A well-known example is
the Netfliz problem aiming at the completion of a matrix with user ratings for movies

with more than 10® entries [7].

Despite the fact that the low-rank matrix recovery problem is NP-hard just like in the
sparse vector case, a number of tractable methods that can provably achieve recov-
ery in many relevant scenarios have been developed. For instance, the nuclear norm
minimization (NNM) approach is particularly well-understood [22, 46|, considering the

convex relaxation of (4.2) as a proxy and solving the problem
min ||X||s, subject to ®(X) =Y, (4.4)

called nuclear norm minimization [21, 22, 126]. For NMM, the number of measurements
necessary for successful recovery scales with optimal order, i.e., m > pr(d, + ds — ).
Nevertheless, the oversampling factor p is significantly larger than 1 . Therefore, the
number of measurements is not optimal in the sense of the information theoretical lower
bound r(d; +dy —r) corresponding to the degrees of freedom presented in Lemma 2.20.
For the interesting case of matrix completion the required number of measurements for
reconstruction is even higher involving additional log-factors of the matrix dimension
[31]. Although computation time for the solution of NNM scales polynomially, it becomes
computationally challenging for growing dimensionality of the problem and intractable

for many potential application settings.

With regard to these limitations of techniques based on convexification, the investi-
gation of nonconvex optimization methods for low-rank matrix recovery [74, 78, 79,
145, 146, 149, 154, 161-163, 169] is proceeding rapidly already, where for several meth-
ods theoretical recovery guarantees comparable to those of NNM have been developed
20, 142, 144, 149, 169]. They have practical advantages such as a high empirical recov-
ery rate and an efficient algorithm implementation, but, nevertheless, their successful
convergence to the low-rank minimizer often heavily depends on a distinct, computa-

tionally demanding initialization step.

Following this path, in this chapter we will discuss a new iteratively reweighted least
squares algorithm for the low-rank matrix recovery problem based on the minimization

of the Schatten-p quasi-norm with non-convexity parameter 0 < p < 1

min [ X |5 subject to ®(X) =Y. (4.5)
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The abovementioned IRLS-algorithm was first introduced in the conference paper [86]
and the respective journal article preprint [87] by Christian Kiimmerle and the author of
the thesis, where both contributed equally to all parts of the publication. The statement

of the results in this chapter closely follows the presentation in [87].

The strategy of using an IRLS-type method for the approximation of (4.5) is not new
and the corresponding algorithms appeared already in the papers[51, 106] published
several years ago. Still, both of the IRLS-approaches presented in those publications are
not able to fully generalize the properties of the algorithm for sparse vector recovery in
[35]. The most important point is that neither the theoretical nor the numerical results
in [51, 106] indicate the occurrence of the superlinear convergence rate for non-convex

parameters p < 1 that is significantly pronounced in the vector case [35].

However, the algorithm under discussion in this chapter, introduces a new kind of
weight matrices, so-called harmonic mean weight matrices, that will lead to several
important improvements and innovations. The construction method for the weight
matrices can be interpreted as the averaging of left- and right-sided weight matrices
introduced in [51, 106] by taking their harmonic mean. This interpretation led to the
choice of the name harmonic mean iteratively reweighted least squares (HM-IRLS) for

the algorithm.

This new design of the weight matrices is more symmetrical than the weight matrices
previously used [51, 106], and this empowers HM-IRLS to exploit the information in both
the column and the row space of the iterates. More precisely, the specific structure of
the harmonic mean weight matrices allows a better alignment of the left-singular and

right-singular vectors of the iterates with those of the low-rank matrix to be recovered.

In the course of this chapter, we will demonstrate that by the employment of the
harmonic mean weight matrices in HM-IRLS it is not only possible to overcome the

disadvantages of the weight matrices used in [51, 106 but to also outperform them.

In the first section, we will introduce as a calculation tool the Kronecker product, which

helps us to introduce the construction concept for the harmonic mean weight matrix.

Thereafter, in Section 4.3, we take inspiration from the theoretical analysis of existing
IRLS-methods, where some of the findings are based on null space properties of the
map P, to derive the corresponding analysis results also for HM-IRLS. To be more
precise, using a similar auxiliary functional Jpy,s, we are able to prove convergence of
the sequence of iterates of HM-IRLS to stationary points of an e-smoothed Schatten-p
functional (analogous to (2.58)). In the case ¢ = 0, recovery of a low-rank matrix is

proven and in contrast to the IRLS-methods in [51, 106], we are able to establish a
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local superlinear convergence rate (of order 2 — p) for HM-IRLS in Section 4.3.6, which

implies that for the parameters p — 0 the convergence rate is approaching quadratic.

Within the theoretical analysis section we want to draw the reader’s attention in par-
ticular to the high technical sophistication of the proofs of the results in Lemma 4.6
and Theorem 4.16.

Our theoretical guarantees are validated by numerical experiments presented in Sec-
tion 4.4 comparing the recovery ability and convergence speed of HM-IRLS with re-
lated TRLS-algorithms for low rank recovery. Moreover, we conduct extensive numer-
ical tests comparing the recovery performance of HM-IRLS with the exisiting IRLS
variants [51, 106], Riemannian optimization techniques [154], alternating minimization
approaches [74, 146], algorithms based on iterative hard thresholding [9, 85], and oth-
ers [118], with respect to sample complexity. Although our theoretical findings are not
directly applicable to the matrix completion measurement model, we focused on this
setting in our experiments due to its popularity in the machine learning community

facilitating the comparison with other algorithms.
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4.1 TOWARDS A HARMONIC MEAN WEIGHT MATRIX
4.1.1 KRONECKER AND HADAMARD PRODUCTS

Considering the matrices A = (a;;)icjay] jejds] € R?*% and B € R%*% the representa-
tion in matrix form of their tensor product with respect to the standard bases is referred
to as the Kronecker product A® B € R4'42%ds-d1 The matrix resulting from this opera-
tion, A® B is a block matrix with dy x d4 blocks whose block of index (i, j) € [d1] X [ds]
is the matrix a;; B € R%*%. Illustrating this exemplary for A € R"*% with d; = 2

and d3 = 3 we obtain

CLHB ‘ a12B ‘ algB
ang ‘ a22B ‘ aggB

@11 a2 Q13

A® B = ® B =

Q21 dAg22 (23

A collection of basic properties of the Kronecker product can be found in [8, Chapter
7], [152] and we present some of them that will be particularly useful in calculations

later on:

(i) (A® B)* = A*® B*,

(i) (A® B)™' = A~' @ B™! (whenever A and B are invertible),
(iii) (A® B)(C ® D) = (AC ® BD),
(iv) A (BeC)=(A®B)®C.

Next we introduce the Hadamard product A o B € R1*% of two matrices A € R%1*42

and B € R“1*92 that corresponds to their entry-wise product
(Ao B)i; = Ai;Bi,

with i € [dy] and j € [dy]. In the literature, the Hadamard product is sometimes also
referred to as Schur product, and for the reader’s convenience we provide some of its

basic calculation rules.
(i) AoB=BoA,
(ii) (Ao B)* = A* o B*,
(iii) Ao(B4+C)=AoB+Ao(C,

(iv) Ao(BoC)=(AoB)oC.
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Further properties are listed in [8, Chapter 7].

The Kronecker product often appears in the context of matrix equations which involve

multiplications of matrices from the left and right side to the variable X as follows

AXB*=Y ifandonly if (B ® A)Xyee = Yyec-

Moreover, for matrices A and B with d; = ds and dy = d4, we give the definition of
the Kronecker sum A @ B € R1%2x4d2 of two matrices A € R4*% and B € R%2X% a5

the following matrix in R%d2xd1dz

A®B=I4,®A)+ (BeI1y).

The Kronecker sums are a useful tool for the reformulation of the Sylvester matrix

equation problem, where one wants to find X € My, «q4, solving the equation system
AX+XB*=Y (4.6)

for fixed A € RW>*4 B € R2X% and Y € R4*% given. We can reformulate the
equation above

(A S B>Xvoc = vaoc;

where, again, the vectorizations of X and Y is used. In this framework, we can exploit
the explicit formula of the inverse (A@® B)~! of the Kronecker sum A B that expresses

this matrix in terms of singular vectors and singular values of A and B.

Lemma 4.1 ([80]). Let A € H" and B € H®, where one of the matrices is positive
definite and the other positive semidefinite. Denote the singular vectors of A by u; €
R, i € [d], its singular values by o;, i € [dy] and the singular vectors resp. values of

B by v; € R® resp. p;, j € [do], then

di  da

VU ® uiug
(AeB) ' =YY 2L ——=(VeU)DVaU), (4.7)
i=1 =1 G
where D € Mg, gyxd,d, 1 a diagonal matriz with entries d; = (o; + p;)~' > 0 for

= (Z—l)d2+j, U= [ul,...,udl], and V = [Ul,...,Ud2].

Furthermore, the action of (A @® B)™! on the matriz space My, xq, can be written as

[(A® B) ' Zyee] =U(Ho (U ZV))V". (4.8)

mat
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for Z € My, xa, and the matriz H € My, w4, with the entries H; j = (o;+p;) ", @ € [di],
J € [do].

For proving Lemma 4.1, one can employ the Kronecker product calculation rules pre-

sented above.

4.1.2 AVERAGING OF WEIGHT MATRICES

Let us for the moment suppose that Z € R¥*% is a square matrix with d; = ds of full
rank. Having in mind Definition 2.37, we now introduce two different reformulations
of the p-th power of its Schatten-p quasi-norm as weighted ¢s-norms for the vectorized

notation X involving the Kronecker product,

. %\ 2 %\ 222 * * 1
() 1215, = te[(Z227)2] = w[(Z227) = (22")) = e(WpZZ") = W2 Z |7 = || 2| Fowy)

L 2 2
= H(Idz ® WL)ZZVBCHKQ = “ZveCHEQ(IdeE@WL)a
where W, is the symmetric weight matrix (ZZ *)¥ in My, x4, and Iy, ® Wy, is
the block diagonal weight matrix in My, .4,xd,.4, With do instances of Wy, on the

diagonal blocks,

2 * * r7\ =2 * % *
(i) 2|5, = t[(Z"2)2) = (2" 2)(2°2) =) = u(Z" ZWR) = [|ZWil[7 = 12" [

= |(Wg ®Id1)%Zvec||?2 = ||Zvec||?2(WR®Id1)7
where Wx is the symmetric weight matrix (Z*Z)% in Mg,xa4,- The weight
matrix Wr ® Iy, € Mgy d,xd,d, 1S, as can be calculated from the definition
of the Kronecker product, a block matrix of diagonal blocks of the type

diag((WR)Z-j, ey (WR)”) & Rledl, Z,j - [dg]

Note that in the case that the matrix Z is not of full rank or also if d; # ds, the
calculations carried out above can not be well-defined: at least one of the matrices
Z7* € Ruxd or 7*7 € R%*% ig singular, which does not allow for the inversion
appearing in the definition of the matrices Wy = (Z*Z)p%2 or Wi, = (ZZ*)¥ for
p < 2. As already suggested in Section 2.4, we can avoid these problems by introducing a
smoothing parameter € > 0 and defining the smoothed weight matrices Wy (Z, €) € ]I-]I‘i1 .
and Wg(Z,¢) € H®, as follows

Wi(Z,€) == (22" + 1y,) "7, (4.9)
Wr(Z.€) = (Z°Z + 1) "7, (4.10)
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In the papers [51, 106] the strategy of the reformulation of the Schatten-p norm via the
left-sided reweighted Frobenius-norm || - H%(WL) was already exploited for their versions
of IRLS algorithms for low-rank matrix recovery [51, 106]. Let us stress again that none
of the two papers pointed out the idea of a reformulation of the Schatten-p norm using
a weighted Frobenius-norm which involves the multiplication of the weight matrix Wx

from the right.

In this chapter, our goal is to take advantage of the low rank information in the column
and the row space by the combination of both reweighting strategies into one weight

matrix reflecting this symmetry.

We first want to present the possibly most intuitive or naive way to a more symmetric

exploitation of the low rank structure in the following lemma.

Lemma 4.2. Let 0 < p <2 and Z € My, wq, with d = dy = dy be a full rank matriz.

Then
1 2
1 1 1 Wi, @& Wg\?2
|w%=§mmwm+wwm®=W}jr—)a% el r
Lo
1 W, oW,
where 3 (I, W +WgrR1,) = % =: Wiaritn)

is the arithmetic mean matrix of the symmetric and positive definite weight matrices

L, @ Wi and Wr® 14, Wi, := (ZZ*)%, and Wg = (Z"‘Z)nyg2
Proof. Using the computations above as well as the cyclicity of the trace, we calculate

1 1 1 1 1
1215, = 5 (W2 215+ 1ZWEI%) = 5 (10 © W)t Zuoll, + | (Wa © 1) Zce 3 )

1
2
1

= 5 |:t1” <(Id2 & WL)%ZvecZ:ec(Idg ® WL)%) +tr <(WR ® Idl)%ZVGCZ:ec<WR ® Idl)%>]

1
= ) [tr (Ta, @ Wi) ZveeZyee) + 11 (Wr @ 1a,) Zyec Zyee)]

1 1 1
— St (L, ® We) + (Wa © 1)) ZuweZiee) = 5 || (s © Wi+ Wi ©1a)? Ze

2
1 2
(W) 7
2 L

2

2

]

Unfortunately, we make the observation that the introduction of the arithmetic mean
weight matrix does not lead to convincing improvements with respect to the one-sided
reweighting strategies used in [51, 106]. No particularly notable advantages neither in

numerical experiments nor in the theoretical examination of the convergence rate of
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a corresponding IRLS-method for low-rank matrix recovery can be reported, cf. also
subsection 4.4.2 and Remark 4.19.

On the contrary, using as a combination approach the harmonic mean of the
weight matrices I, ® Wy and Wi ® 1, i.e., weight matrices constructed as follows
2(Wi' @y +1, @ W) = 2(W e W)

forms other weight matrix composition variants in both theoretical as well as practical

=: Wharm) significantly outper-

aspects. These surprising results will be presented in detail in the subsequent sections

of this chapter.

With the upcoming lemma we show that the harmonic mean of the weight matrices
I, ® W, and Wi ® 1, can be used for a legitimate reformulation of the p-th power of

the Schatten-p quasi-norm.

Lemma 4.3. Let 0 < p < 2 and Z € R"*% with d = d; = dy be a full rank matriz.

Then
2

_1
12118, = 2| (W' @ W) ™ Zuee|, = 1 Zuee s

where 2 (ng Iy + 14, ® VVL_I)_1 =2 (W,—:l &) VVJEI)_1 =: Wiharm)

1s the harmonic mean matrix of the symmetric and positive definite weight matrices

Lo, ® Wi and Wg @ La,, W = (ZZ*)%Q and Wg = (Z*Z)p%g.

Proof. Let Z = USV* € Myxq be the singular value decomposition of Z. Hence for
the vectorized version Zye. = (V ® U)Syee holds true. Using the definitions of Wy,
and Wg, we express W; ' = US> PU* and W' = V.S?PV*. By the Kronecker sum
inversion formula as stated in (4.7), we get (W, @ ng)_l = (VeU)DV eU)*,
where D € My, d,xd,a, is a diagonal matrix with entries d; = (s77 + s7 7)~! > 0 for
l=(i—1)dy+j,ifi € [d] and j € [ds].

Using these facts, we obtain from the orthonormality of the columns of U and V' and

the particular structure of the diagonal matrix D

1 B 1 2
HZV€CH§2(W(harm)) - HI/V(iarm)Z"eCHg? =2 H (WL 1 © WRl) " Dvee

= 2tr (((ng oW Zvec> ;at Z)
= 2tr ([(V @ U)D(V @ U)*(V & U)Syee] (V & U)Syee)
— 2tr (S7%,.DSyec)

vec

r
d 2
(Saks) - e,

i=1

I
)
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4.2 HARMONIC MEAN ITERATIVELY REWEIGHTED LEAST SQUARES
ALGORITHM

At this point, we are ready to give a formulation of a new type of iteratively reweighted
least squares algorithm for the low-rank matrix recovery problem, the so-called har-
monic mean iteratively reweighted least squares algorithm (HM-IRLS). Similar as in ex-
isting variants, we perform the solution of a sequence of weighted least squares problems
for the recovery of a low-rank matrix Xy € My, «4, from only few linear measurements
Y = ®(X;) € R™. The weight matrices that will be involved in the weighted least
squares steps can be interpreted as the harmonic mean of the weight matrices in (4.9)

and (4.10).

Let 0 < p <1 and denote d = min(dy,dy), D = max(dy,ds). Let us now describe our
suggested approach as follows: Given a non-increasing sequence of numbers (e(”))ff’:l,

with €™ > 0 for n € N, we chose an initialization for a symmetric and positive definite

weight matrix wo ¢ Hﬁlrlf. Define recursively for n = 1,2, ..., the iterate
XM = arg min || Xyec||? . 4.11
i e, -, (4.11)
and the weight matrix
— _ _ -1
wm =9 U(”)(Zgl‘))z_pU(")* ® V(n)(gﬁg))z—pv(n)*] (4.12)
with the diagonal matrices ig) € My, «q, for d; = {dy,dy} such that
. (0 (XM)2 4 €2z if 4 < d,
(S5)i = (4.13)

0 iftd<i<D

and the matrices U™ ¢ My, «q, and v e Mg, «d4,, containing the left and right

singular vectors of X in its columns, respectively.

Note that the update rule for wm given above can be interpreted as an e-stabilized
version of the harmonic mean weight matrix Wyarm) in Lemma 4.3. The stabilization
factor € is introduced to avoid ill-conditioned instances of W™ as soon as some of the
singular values of X ™ are getting close to zero and, even beyond that, for the matrices
(XMx (”)*)2%? @ (XX (”))? we already face singularity when X ™) is not of full

rank.

To enable the concise formulation of the first step (4.11) of HM-IRLS defining the next
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iterate, we introduce for n € N the linear operator W1 . My wa, = My, <q, as

WO1)(Z) = = [T 2P 7 4 Zv e (S)2ry e ] (4.14)

N | —

which corresponds to the operation of the inverse of W® on My, wd,-

We give a pseudo code summary of our formulation of HM-IRLS as follows.

Algorithm 4 Harmonic Mean IRLS for low-rank matrix recovery (HM-IRLS)

Input: A linear map ® : My, «q, — R™, image Y = ®(Xj) of the ground truth matrix
Xo € My, «q4,, rank parameter 7, non-convexity parameter 0 < p < 1.
Output: Sequence (X™) € My, va,.
Initialize n = 0, €(® =1 and WO — Liya, € Ma,dyxdyds-
repeat

x (1) arg min ||XV€C||Z(N — (W(n)—l o d*o ((I) o W(n)—l o (I)*)—l)(y)y

®(X)=Y wim)

(4.15)
€D — min (e gy (X)) (4.16)
W — g [ (£ 0 ory e b g v Dy eet] T g

where U™ e Mdlxdlv("+ € Mg, x4, are matrices containing the left and right

singular vectors of X"+ in its columns, and £™*Y is defined as in (4.13).
n=n-+1.

until stopping criterion is met.
Set ng = n.

We note that in practise the explicit calculation of the large weight matrices Wt ¢
HA% (cf. (4.17)) does not have to be performed in an implementation of Algorithm
4. Fortunately, the formulas (4.14) and (4.15) indicate that only the operation of its
inverse (W™+D)=1 resp. (W™)=1 has to be executed, which allows the implementation
by matrix-matrix multiplications on the space My, «q4,: For matrices X, Z € My, «q,, it
holds that W™ X e = Zuyee if and only if Xyee = (W™)~1Z,e, which can be reformu-

lated in matrix-matrix operations as follows

Here the definition of W™ (cf. (4.17)) in combination with the Kronecker sum property
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implies the last equivalence.

In section 4.4.4, we will provide a more extensive discussion on the implementation
details.
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4.3 'THEORETICAL ANALYSIS

Similar to previously discussed analysis approaches for IRLS, we again introduce an
appropriate auxiliary functional Jg s to obtain a variational interpretation of the algo-

rithmic procedure. For the rest of the section, let d = min(d;, dy) and D = max(dy, ds).

Definition 4.4. Let 0 < p < 1. Given a full-rank matrix W € My, «4,, let

WW) := 2[1d2 ® (WW*)%} [(WW*)% ® (W*W)%} -1 [(W*W)% 2 Idl] € [hdexdidz
(4.18)

be the harmonic mean matriz /V\V/ associated to W.

We define the auziliary functional T © Ma,xd, X R0 X Mg, xa, = R>o as

jHM(XJ €, W)

, d o e
§||Xvec||i(w(w>) + £ z:zl o) (W) + 42 ; o;(W)e-2  if rank(W) =d, (4.19)

+0o0 if rank(IV) < d.

Let us point out that the matrix W of (4.18) corresponds to forming the harmonic
mean of the matrices W, := I, ® (WW*)z and W, = (W*W)z @1, as explained in
section 4.1.2, if (WW*)2 and (W*W)2 are positive definite. Please note that in this
case, (WW*)2 & (W*W)2 = W, + W, is indeed an invertible matrix as (A1 +B~1)~1 =
A(A + B)7!'B for any positive definite matrices A, B of the same dimensions,

W (W) = 2W, (Wy + Wa) Wy = 200 + Wy )~ (4.20)

In the following, we use the more general definition formulated in (4.18) as it is well-
defined for any full-rank W € My «4, and allows handling the case of non-square
matrices, i.c., matrices W with dy#dy, where either (WW*)z or (W*W)z has to be
singular. Additionally, by involving the Moore-Penrose pseudo inverse ﬁ//fr and W; of

both matrices Wl and Wg, it is possible to reformulate (4.18) as follows

W (W) = 2Wy (W, + Wa) ™ Wy = 2(W;F + W)L,

As a next step, we interpret Algorithm 4 as an alternating minimization of the auxiliary

functional Jya (X, €, W) with respect to its three arguments X, e and W.

In order to do so, we need to justify the update formula (4.17) for the weight matrix

- 121 —



W+ as the evaluation result of the expression WT+) = /I/IV/(W (1)) of W from

Definition 4.4 at the unique minimizer

W = argmin Jpp (XD, D W), (4.21)
WeMa, xd,

Furthermore, we need to show that the formula (4.15) can be interpreted as

XY = argmin (| Xeel[? Grpeny = argmin T (X, e, W) (4.22)
€My xdy €My xdy
(X)=Y P(X)=Y

In the following subsections we will verify these statements.

2
L(W (W) HX”F((W*W)”Q) 7

While the weighted norm on the left hand side involves a symmetrized

Remark 4.5. Tt is important to realize that || Xye|?
HXV*H2 F(WW=*)1/2)"
weight acting in both the column and the row space, the norms on the right hand side

only use one-sided reweighting in the column or row space respectively.

To close this subsection we introduce the e-perturbed Schatten-p-norm of a matrix
X e Md1><d2 as

fe(X) :Z( si(X)? 4¢3, (4.23)

4.3.1 OPTIMIZATION OF THE AUXILIARY FUNCTIONAL WITH RESPECT TO W

Let us fix the matrix X € My, x4, with the corresponding singular value decomposition
X = Z?Zl s;uvf, where u; € R® v; € R% are the left and right singular vectors

7

respectively and s; = s;(X) the singular values for i € [d].

In this subsection, we aim at the justification of formula (4.17) via the building blocks
that are used to construct the matrix W+ More precisely, we consider the mini-

mization problem

argmin Jgp (X, e, W) (4.24)

for e > 0.

Lemma 4.6. The unique minimizer of (4.24) is given by
d

Wopt = Z(si(X)2 + 62)]02;21%1}:.

i=1
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Furthermore, the value of Junr at the minimizer Wy is

Trinr(X, €, Wopt) = Y (5:(X)* + €)% = fo(X) (4.25)

i=1

forp > 0.

Proof. As a first step we introduce the function

fX,e(W) = jHM(Xa €, W)

€2 d . _p__ .
Sl Xeelly, gy T F 2 oi(W) + = L oi(W)T - if rank(W) = d,

+0o0 if rank(WW) < d,

for X € Mgy, x4,, € > 0 fixed and with W € My, «q4, as its only argument. Please
note that the set of minimizers of the function fx (V) does not contain an in-
stance W with rank smaller than d as at such points fx (W) takes an infinite value.
Consequently, we can limit our search for minimizers on the set of rank-d matrices
Q= {Z € My, «a,|rank(Z) = d}. We point out that the set € is an open set and the
following properties of the function fx (W) hold true

(a) fx.(W) is lower semicontinuous, which means that any sequence (W*)cy with
W 2% W fulfills lim inf 5 (WF) > fx (W),
—00 ’

(b) fx.e(W) >« for all W € My, x4, for some constant a,

(¢) fx.(W) is coercive, i.e., for any sequence (W¥),en with ||[W¥|| g 2% 50, we have

o (WH) 2% oo

We verify the statements above: The function fx (W)|q is a concatenation of an indi-
cator function of an open set, which is lower-semicontinuous and a sum of continuous
functions on 2 and hence property (a) is true. Obviously property (b) is true for the

parameter choice a = 0.

d
As a justification for (c), we point out that fx (W) > 627” Yoo(W) = 627p\|W|]51 >
=1

62TI’HVVH F implies coercivity as directly following from its definition. We can con-
clude from (a) and (c), that the level sets as introduced in (2.2) ff, (wya(c) =
{W € My, xay| fx.e(W) < ¢} are closed and bounded and, hence, compact.

Via the direct method of calculus of variations as stated in Theorem 2.5, we derive from

the validity of the properties (a) - (c¢) that fx (W) has at least one global minimizer,
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which is contained in the set of critical points of fx (W) [34, Theorem 1].
As a next step, we want to find a characterization of the set of critical points of fx (W),
by explicitly calculating its derivative with respect to W and equating the result with

Zero.

Let us without loss of generality consider the case d = d; = dy and define the set
Q= {W € Myyq s.t. rank(W) = d}

We already mentioned in (4.20), we can rewrite the harmonic mean matrix W (W) in
the form

W (W) = 2Wy (Wy + Wa) ™ Wy = 2(W 4+ Wy )~

for W € Q with the definitions W, := I; @ (WW*)2 and Wy = (W*W)2 ® I,. For

W € Q, we reformulate the auxiliary functional such that

o d d
D €“p 2—p P
fX,e(W) == jHM<X7 €, W) = §HXvec”?2(W(W)) + 7 ;UZ(W) + T ZIUZ(W) (r=2)

p
|

€2p * 2 —D * S
: + YW + 22w |,

2
veella i om)
Now we aim at the identification of the set of critical points of fx (W) located in €2
and compute its derivative with respect to W using the derivative rules (7), (12), (13),
(15), (16), (18), (20) in Chapter 8.2 and Theorem 3 in Chapter 8.4 of [101]. Using the

notation of [101], we calculate

o~ N_l/-\_/
afxW) __p (X* W@LWX%C)

oW o\ e T
+ %62 <tr (W(W*W)—%aw*) +tr<<W*W)—%W*aW)>
p

2 (tr (W(W*W)%aw*) +tr((W*W)%W*aW))
where

g1 10 [(WW*)*% ® (W*W)*%]

ow 2 ow

1

= [(ww)tweow + ow wrw) ) o1, (4.26)

njw
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Reformulating the first term as follows using the cyclicity of the trace, gives

Lt <XveCW o WX%C) = £ [n( (W X o)t (W X o) mas (W W) 2 aW)

+otr ( WXvec)mat(WXvec)mat8W*>
i <W*(WW*)*5 (WXvec)mat(WXvec)mat8W>
it <(vaec)mat(vaec)mat(ww*)—ﬁwaw*>}

Summarizing the calculations above, we obtain

ane [ (WXVeC* (”WXvec)madW*W)’%W*aW)

mat

3

2 (WXvec)mat<WXvec)mataW*>

»

+ tr

l\.’)C/J

(vaec)mat (WXvec)mat (9W>

(wov
o (W (W)
(w

(W Xoee)mat WXvec)mat(WW )_5W8W*>}
T s p
_ g (tr (W(W*W)%aw*) + tr((W*W)%W*al/V)) |

In order to find the critical points of fx (W), the terms above are rearranged, and we

equate the derivative with zero, which yields

Afx,. (W) _Pp W W)W
W N §tr ([(WXvec)mat(WXveC)mat<W W) w

FWHWW) ™2 (W X o) mat (W Xvee) ot
L2 (W) E W — 2(W*W)WW*] aW)
Eer ([W OV W) VX ae V X
(W X oo Jmat (W Xoee )t (W) "2
LW (W W)~ 5 — 2W(W*W)ﬁ} aw*)
- gtr (AOW) + gtr (A*OW™)
— gtr (A® A)IW)

=0,
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where

A = [ (WX o) ae W X ot (VW) EW W W) 73 X s (W X
L2(WHIW) 3 W™ — 2(W W) 2o D W
(4.27)

As a next step, we need to find W such that A @ A = 0. This has the implication that
all eigenvalues of A A = ARI;+1;® A have to be zero. We note at this point that the
eigenvalues of the Kronecker sum matrix of two matrices A; and A, with eigenvalues A
and p; with s, ¢ € [d] correspond to the sum of the eigenvalues \s + ;. As we consider
the case A = A; = A,, it follows that all eigenvalues of A itself have to be zero, which

is only possible if A is identical to the zero matrix.

Let W = UXV* € Myyq with U € Uy, V € Uy, ¥ € Myyq, where ¥ = diag(o) is a
diagonal matrix with ascending entries. Define the matrix H = H;; = # for
1=1,...,d,5=1,...,d, which corresponds to the result of reshaping the diagonal of
the d? x d*>-matrix 2(X@Y) into a d X d-matrix. Note that we can express (WXveC)mat =

U(H o (U*XV))V* using (4.8) and denote B := H o (U*XV).

Next we plug the decomposition W = UXV* into the equation (4.27) and calculate

A=0<s (UBV)*(UBVH)(VZV*)#2(UZV*)*
+ (USVHNUS2U)) 2 (UBV*)(UBV*)*
F2R(VERV)TR(USVH) — 2VERVH) T s (USVY) = 0 (4.28)
& VB*BY2U" + VS 2BBU* + 282VI,U* — 2VS5aU* = 0
& B*BY % + Y 2BB" + 264, — 257 7 = 0.

Noting that 26210{—221’% is diagonal, it follows that also B* BY. 724X "2 BB* is diagonal.
Moreover, observe that also the sum of matrices B*B + X 2BB*%? is diagonal matrix
as well, with a symmetric first summand B*B. As the sum or difference of symmetric
matrices is again symmetric, it follows that also the second summand X72BB*¥? is
symmetric, i.e., L"2BB*Y? = (X 72BB*X?)* = X?2BB*Y¥. "2 This implies that it holds
that BB*Y* = ¥*BB* and, as a consequence, ¥* and BB* commute.

This is only the case if either X is a multiple of the identity or if the matrix BB* is
diagonal. Assuming the first case, we conclude from (4.28) that also BB* and B*B are
a multiple of the identity. Hence, the first case, where X is assumed to be a multiple
of the identity, is only a special case of the second possible scenario, where BB* is a

diagonal matrix. Therefore, it is sufficient to limit further considerations to the more
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general second case. (Considerations for B*B can be carried out analogously.)

Diagonality of BB* only occurs if B is either orthonormal or diagonal. The first pos-
sibility, orthonormality, leads to contradictions with the equations in (4.28). Thus the
matrix B = H o (U*XV) has to be diagonal.

Let now be X = USV* the singular value decomposition of X. From the fact that H
has no zero entries due to the full rank of W, we conclude the diagonality of U*USV*V .
Consequently, U and V have to be chosen such that P = [U*U]gyxq and P* = [V*V]4x4
for a permutation matrix P € U;. We denote the reshuffled indexing corresponding to
the permutation P by p(i) € [d] for i € [d]. Remembering that H;; = o, for i € [d], we
get

(Ho(PSP*))*(H o (PSP*))S ™% + £72(H o (PSP*))(H o (PSP*))" + 2¢°T, — 2577 =0

_2
& 250, +2¢8 =207 for all i € [d]

& o= (512)(1‘) + 62)172;2 for all i € [d].

Using the assumption that the diagonal of ¥ has ascending entries and the diagonal
of S has descending entries, we can conclude that the permutation matrix P coincides
with the identity matrix. We infer from P = I, that U = U and V = V and hence
also ¥ = (5% + €21,)"z".

We can now summarize our detailed calculations above with the statement that
Wope = USV* = U(S? + 1) "2 V*

is the only critical point of f% _ on the domain Q.

We point out that the deduced results extend for the case d; # dy, where the defini-
tion of W(W) is modified by the introduction of the Moore-Penrose pseudo inverse of
(Ww*)l/Z

W(W) =2W, (Wl + /Wvg)ilvaz = 2(Wy + Wy )7L,

In Theorem 5 in Chapter 8.4 of [101], one can find the corresponding derivative rule
for the calculation in (4.26).

We close this part of the proof with stating that the only critical point and consequently

the unique global minimizer of f% (W) is
d

d
W = 2 2 %72 * . *
opt = Y (87 +€) T uvl =) ou;.
i=1

=1
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— d * R ._ d *
= Yizg oiwu and Wop, = 3 5, oy,

In a next step, we define the matrices Wk opt

opt :
and note that

—~

W (W) = 20WE " @ wk !

opt opt

with Definition 4.4.

For the verification of the second part of the theorem, the optimal solution Wy is

plugged into the functional Jgy and we calculate using (4.7)

2 d d
p €p 2—p »
jHM(Xa €, Wopt) - §||Xvec||?2(w(wopt)) + 7 z;o-i(wopt) + — 42:0-1‘(I/I/opt)pf2

d d2 dy * *
P . . UpUy, @ VU
03 o (353 0 )

k=1 j=1

I
N3
ME
| —— |
)
V)
=N
oS
M=
\'M&
e
&
<
=
)
ik
T ®
Q| <
SR
SRS
Sl
<
S
&
N——
| I |

Il
N |3
=,
+
mw
el
+
w‘ |
=
Q
i

4.3.2 OPTIMIZATION OF THE AUXILIARY FUNCTIONAL WITH RESPECT TO X

Now we continue with the proof of the fact that the definition rule (4.15) of X ™*1 as
used the first step of Algorithm 4 can be interpreted as the minimization of the auxiliary
functional Jgps with respect to the variable X. Moreover, we provide arguments that
this minimization step can be executed via the solution of a weighted least squares

problem with weight matrix W,

Lemma 4.7. Let 0 < p < 1. Gwen a full-rank matric W € My, «q,, let W(W) =
2([(WW*2t @ [(WW)2]H) ™t € Hyuywaia, be the matriz from Definition 4.4 and
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WL My, wa, — My, xa, the linear operator of its inverse

WL(Z) = [[(WW*)éﬁz + Z[(W*W)%]+] .

DN | —

Then the matrix
Xopt = (W o® 0 (@oW 1 o®) ) (Y) € My,
1s the unique minimizer of the optimization problems

argmin Jpp (X, e, W) = argmin || Xyec
o(X)=Y o(X)=Y

2
||22(W). (4.29)
Moreover, a matriz Xop € My, xa, is a minimizer of the minimization problem (4.29)
if and only if it fulfills the property

(W (W) (Xopt Jvees Heeodey = 0 for all HE N(®) and ®(Xop) = Y- (4.30)

Proof. We start with noting that the equality of the optimization problems (4.29)
follows from the fact that only the first summand of the functional Jmp (X, e, W)
depends on X.

Next we see that W (W) = 2([(W*W)z]t @ [(WW*)z]T) ! is positive definite: Let W =
S oiur, where u;, v; for i € [d] are the left and right singular vector respectively
and o; for i € [d] are the singular values of W. Since W*W = Y20, o2v0f = 0,
also for the generalized inverse root holds that [(WW*)2]t = 0 and for WW* =
S cZuul = 0, it follows that [(WW*)2]*t = 0. As already mentioned above, at
least one of the matrices (WW*)% and (W*W)z is positive definite and consequently,
LW W)t @ (W]t = LW )]+ @1, + Ly, @ [(WIW*)2]* = 0. We conclude

that also for its inverse holds W (W) = 0.

Using the fact that W(W) > 0, we can show analogously to the standard equivalence
of [54, Proposition A.23] that a matrix X € My, x4, is a minimizer of || Xyec

(W (W)X yee, Xvee)s, under the linear constraint ®(X) =Y if and only if

15, 7y =
W (W)

—_—

(W (W) X e, Vvec)e, = 0 for all o € N(®) and ®(X) =Y.

Moreover, the latter condition holds if and only if X, = (V\f1 odP*o(®oWlo
&)™) (Y) € My xa,. Indeed, the property (4.30) is equivalent to the existence of
vector A € R™, for which holds ®*(\)ye. = W(W)(Xopt)vec. Using the definition of
W (W)L, we observe that W(W)~! = %([(VVVV*)%]Jr & [(W*W)z]T) and we conclude
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that

Kope = [WOV) (@ W) s = 5

(W)@ () + " (W) (W W) 2
= (W o d)(N).

(4.31)
AsY = O(Xypt) = (PoW Lo ®*)()) in this case, we compute A = (Po W Lod*)~1(Y)
and we yield from (4.31) that Xope = (W o ®* o (o WL o®*)71)(Y). On the other
hand, any matrix defined as Xop, = (W1 o®* o (PoW 1o ®*)71)(Y) fulfills (4.30) by
construction. Hence, we can conclude this proof by pointing out that X, fulfills the
condition (4.30).

4.3.3 BASIC PROPERTIES OF THE ALGORITHM

In the course of this subsection, we have a closer look at Algorithm 4 and examine
some of its properties, that will be useful for developing the proof of convergence and
to determine the rate of convergence later on. In particular, we show the boundedness
of the sequence of iterates (X ™), cy and the fact that as n — oo two successive iterates

get arbitrarily close.
We start with a collection of properties of the functional Jx,, that appear in a similar

fashion already in the existing IRLS-literature.

Lemma 4.8. Let (X™ ™), oy be the sequence of iterates and smoothing parameters
of Algorithm 4. Let X =% o™y pe the SVD of the n-th iterate X™. Let

(W),en be a corresponding sequence such that

d
W — Z(ngnn X E(n)z)%?u(n)vgn)*

i=1
for n € N. Then the following properties hold:
n n n n+1 n+1 n+1
H 9 ) - ) ) - L
() Taar(X™, e WY > Ty (X O D) WD) for all n > 1
(b) ||X(n)||§p < Tumu(XV O WO = 7 for alln > 1,

(c) The iterates X, XY come arbitrarily close as n — oo, i.e., lim ||(X™ —

n—oo
X(n+1))vec||§2 = 0.
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Proof. (a) Using the minimization property that defines X ™+ in (4.22) together with

the inequality e™t1) < €™ we obtain
Trnr(X W, e W) > Fypp (XD ) W) > Fypp (XD et D) )y

Combining this with the minimization property that defines W1 in (4.21) and the

results in Lemma 4.6, we have
T (XD 4D )y > 7, (x(n4D) (D) D)),

which finishes the proof of (a).

(b) For all n € N, it holds that
||X(” ||P < ge(n)(X(n)) - jHM(X(”),e(”),W(”)) < jHM(X(l),E(O),W(O)),

where we used Lemma 4.6 as well as the monotonicity property shown in (a).

(c) With property (a) and Definition 4.4 we obtain for each n € N

2 [jHM(X(n)7 e("), W(n)) _ jHM(X(n+1)7€(n+1), W(n+1))}

p
2

> ]_) [jHM(X(”),e("),W(”)) _ jHM(X(”H),e("),W(”)))}
|| vec” ( W(n)) H)(venc+1 H ( W (W) )

— <(X( n) + X(n+1)>vecy (X(n) _ ‘X(n-i-l))Vec>€2(W(n))7

with the notation W® := W(W(”)) in the last equality. Using the facts that X+ is

the minimizer of ||Xvec|| ) under the linear constraint and that X™ — X+l ¢

N (@), we conclude together with (4.30) that

(W Xt () _ x )y oy

vec

Therefore, we get

<(X(n) + X(n+1))veCa (X(n) - X(n+1))VBC>Z2(W("))
= <(X(n) _ X(n+1)>veca (X(") _ X(nJrl))vec)
= [[(x = x4

(W)

vec ||E2(W("))

As a next step, we want to estimate o4, 4, (W(”)) to derive a bound on the difference
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of iterates independent of the involved weighting matrix in the expressions above. We
remind the reader that 1 = 04,4,(Z)o1(Z7!) for any invertible matrix Z € Mg, dyxd,d,

and, hence, it remains to compute 01((W(”))_1) to gain sufficient information on
0dids (W(n)) .

As discussed in [8, Proposition 7.2.3], the spectrum of a Kronecker sum matrix A& B
consists of the pairwise sum of the spectra of the individual matrices A and B. We use

this to compute,

T (n)\— 1 n)2 n)2\ 2=2 n)2 2-p
o (W) = | (01 + 23" 4 (o7 4 e 5

IN

(f2 (X)) = (Taar (X, ™ WON T < (Fyag (XD, O, WO)) 7
employing Lemma 4.6 and the monotonicity of Jga.

Therefore, it follows that

—~ —

Umin(W(n)) = Ud1d2(W(n)) > (jHM(X(l)v 6(0)7 W(O))) r= ‘-710,0 :

and we combine this result with the previous calculations yielding

2

Ek&mxmiwﬂmm_deﬂmqgmqwmm”:_mxw_xmm)
P p

— 2 q_2
2 _Umin(W(n))”(X(n) - X(nﬂ))vecngz Z pjpo 3 ”( n) - X(n+1)>ve0||%2

vec HZ (W(n))

h< RN )

= Gl (X™ = X)) |17,

2

1-
with the constant C), : o > 0. Usmg the monotonicity as in (a) and the bound-

edness of the sequence (j (XM, e W) we infer that

neN’

lim [JHM(X("), E(n)7 W(n)) _ jHM(X(n-&-l)’ e(n—i-l), W(n—i—l))} =0,

n—0o0

and hence also
lim ||(X(n) - X(nﬂ))vecngg =0.

n—oQ

[]

Now we note that with the assumption X™ — X and €™ — € for n — oo with limit
point (X,€) € My, xa, X R, one can deduce that

T (XM, e W) 5 £(X)

for n — oo by equation (4.25).
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Given € > 0, a measurement vector Y € R and the linear map ® we consider the

optimization problem

pin Je(X) (4.32)

with f.(X) = Z?Zl(ai(X)Q + €%)7 and 0;(X) being the i-th singular value of X, cf.
(4.25). In the case that f.(X) is non-convex, i.e., for p < 1, one might practically only

be capable of reaching critical points of the function.

Lemma 4.9. Let X € My, «q, be a matriz with the SVD such that X = Z?:1 o7,
let € > 0. If we define

d d -1
W<X7 6) =2 |:<Z(0-12 + 62)2%1)1%“:) D (Z(Uf + 62)2;]01}17}:)] € Hd1d2><d1d27
i=1 i=1

then W(X ) = W™ with W™ defined as in Algorithm 4, cf. (4.12).

Furthermore, X is a critical point of the optimization problem (4.32) if and only if
(W(X, €)Xy, Hyeedt, = 0 for all H e N(®) and ®(X) =Y. (4.33)

In the case that f. is conver, i.e., if p = 1, (4.33) implies that X is the unique minimizer

of (4.32).

Proof. The first statement W(X M) ) = W™ follows straightforward from the def-
inition of W (X, ¢) and (4.12).

Now we aim to show the necessity of (4.33). Let X € My, «a, be a critical point of (4.32)
and without loss of generality we assume d; < dy. We see from an easy calcualtion that
in this case f.(X) = tr[(XX* + €14,)?/%]. We use the matrix derivative rules of [101,
(7),(15),(18),(20) of Chapter 8.2] to derive that

VP(X) =p(XX* + EQIdl)przX = ]z)Z(ai2 + 62)L520iuiv;‘,

where the singular value decomposition X = Zle o;uv; is used in the last equality.

We employ the Kronecker sum inversion formula (4.7), to obtain

dy do
E E E WU UR VRV U

2) 2)
z1j10+€ 2+a+e bl

2 9\ P=2
= E (07 +€) 2 ou]
i=1

WX, )Xo

mat

- 133 —



—

and thus er(X) = p[W(X, 6))(vec] m

at”

Consider an arbitrary H € N (®) and the function h(t) = f(X +tH) — f.(X). We see
that (he)'(0) = (V f(X), H)r and, hence, if X is a critical point of (4.32), then 0 is a
critical point of h, as well, i.e., (he)’(0) = 0. Consequently,

0= (he)/(o) = <Vf6(X)7 H>F = p<W(X7 €>XV607 HVeC>£2’

which implies (4.33).
To show the sufficiency of (4.33), let X € My, x4, such that &(X) =Y and also

<W(X7 E)XV6C7 Hvec> =0
for all H € N(®). Using the calculation results above, it follows
= 1
0= <W(X7 E)Xvem Hvec> = —(ng(X), H>F
p

This means that the gradient Vf.(X) is perpendicular to the null space N(®) of ®

and as a consequence
Vf(X) € Ran(®*) and &(X) =Y.
This corresponds exactly to first order optimality conditions of (4.32) and hence we

can deduce that X is a critical point of f. under the linear constraint.

In the case p = 1, f. is a strictly convex function as € > 0 and therefore, the problem
(4.32) has a unique minimizer. If we assume that X € My, «q4, fulfills (4.33), this
implies that this minimizer just conincides with X, as for any X’ € My, «4, such that
®(X') =Y, it follows that X — X’ € N(®) and thus by convexity of f,

fE(X,) > fe(X)+ <vf6(X>7X/_X>F = fE(X>+<W(X7 E)Xveca (X/_X)vec>€2 = fe(X)

]

4.3.4 STRONG SCHATTEN-p-NULL SPACE PROPERTY

For the analysis of HM-IRLS algorithm, we define the strong Schatten-p null space
property which is closely related to the version we introduced already in Section 2.3.3
[51, 54, 117].
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Definition 4.10 (Strong Schatten-p null space property). Let 0 < p < 1. We say that
a linear map ® : My, «q4, — R™ matrix fulfills the strong Schatten-p null space property
(Schatten-p NSP) of order r with constant 0 < v, < 1 if

(gaf(Z))f"/2 _ 172( Zd: ag’(Z)) (4.34)

r i=r+1

for all Z € N (®) \ {0}.

We note that this version of the NSP implies the one in Definition 2.28 with con-
stant v, = 1, which we call the weak Schatten-p-NSP, and constitutes a necessary and

sufficient condition for solutions to the problem (4.2) to be rank-r matrices.

Theorem 4.11 ([52]). Let ® : My w4, — R™ be a linear map, let 0 < p <1 andr € N.
Then every matriz Xo € My, x4, with rank(Xg) < r and ®(Xo) =Y € R™ can be exactly
recovered by Schatten-p minimization (4.5) if and only if ® fulfills Definition 2.28 with

constant v, = 1.

Remark 4.12. The sufficiency of the weak Schatten-p NSP in Theorem 4.11 was already
shown in [117]. However, to show the necessity as stated in the theorem, one also needs
the recent generalization of Mirsky’s singular value inequalities to concave functions as

appeared in[3, 52].

We note that the (weak) Schatten-p NSP of Theorem 4.11 becomes a stronger require-
ment for growing p, which means that the Schatten-p property implies the Schatten-p’
property if 0 < p’ < p < 1. As already presented in Theorem 2.31 for the weak NSP,
also the strong Schatten-p null space property for any 0 < p < 1 is implied by the rank
restricted isometry property (rank-RIP) for a sufficiently small rank restricted isometry
constant ¢,. This classical tool for the analysis of low-rank matrix recovery algorithms
[21, 126] was already introduced in Definition 2.29. In the proof of [30, Theorem 4.1] it
is shown that a restricted isometry constant of order 2r fulfilling s, < ﬁ ~ 0.4531
indeed implies the strong Schatten-p NSP of order r with a constant v, < 1 for any
2

0 < p < 1. To be more precise, one obtains that a constant d,, < or3 implies that the
%y

validity of the strong Schatten-p NSP (5.17) of order r with v, = W;”p Ty

As already discussed in Section 2.3.3, in particular Theorem 2.30, the rank-RIP is
fulfilled for a large number of random measurement models, e.g., for Gaussian, in the

optimal measurement regime with overwhelming probability [21].

A useful tool that we will use for the convergence analysis of Algorithm 4, is the
following version of the reverse triangle inequalities similar to Lemma 2.32 (ii), which

is a consequence the strong Schatten-p NSP:
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Lemma 4.13. Let 0 < p < 1. Assume that the linear map ® : My, «q, — R™ fulfills the
strong Schatten-p-NSP (5.17) of order r with constant . € (0,1). Recall the definition

of the best rank-r Schatten-p approximation error
_ _ d
Bi(Z)s, =it {|Z = Z|[% , Z € My,xa, has rank v} = > 0y(Z)" (4.35)
i=r+1

of a matriz Z € My, xd,-

Let Z, 7" € Mgy, «q, such that ®(Z — Z') = 0. Then

Pyt P2

12/~ 20 < i = (1715, ~ 1215, +26.2)s,) . (4.36)

Proof. The proof can be carried out by the modification of the proof of the corre-
sponding result for ¢,-minimization [55, Theorem 13| by involving the generalization
of Mirksy’s singular value inequality to concave functions [3, 52]. Moreover, the proof
of the statement [81, Threorem 12] can serve as the basis to show (4.36). O

Remark 4.14. It is important to note that, if m < dyds, null space property-type
assumptions as (5.17) or the weak Schatten-p NSP are unfortunately not valid for the

relevant case of matrix completion measurements [22], where ®(.X) is given as in (4.3).

4.3.5 CONVERGENCE RESULTS

Having provided some basic properties of HM-IRLS, we present now the convergence
guarantees for the algorithm to at least critical points of a smoothed Schatten-p func-
tional f. as defined in (4.25) without placing any additional assumptions. Beyond that,
under the assumption of the strong Schatten-p null space property for the measurement
operator ®, we prove the a-posteriori exact recovery statement that HM-IRLS indeed
converges to the low-rank minimizer X, in the case that nll_)IIQlo €, = 0. Additionally, we

provide a local convergence guarantee, which states that HI-IRLS recovers the low-rank

matrix Xy if we obtain an iterate X ™ that is in a close enough neighborhood to Xj.

Theorem 4.15. Let © : My, wa, — R™ be a linear operator, Y € Ran(®) a vector
in its range. Let (X™),>; and (™), be the sequences produced by Algorithm 4 for
input parameters .Y, r and 0 < p < 1, let € = lim,_,o0 ™.

(i) If e = 0 and if ® fulfills the strong Schatten-p NSP (5.17) of order r with constant
0 <, <1, then the sequence (X(”))nzl converges to a matriz X € My, «a, of rank
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at most r that is the unique minimizer of the Schatten-p minimization problem
(4.5). Moreover, there exists an absolute constant C > 0 such that for any Z with
®(Z)=Y and any 7 < r, it holds that

~

- C
1Z = XIF < 5 0(2)s,, (4.37)
N » —p/ ) . . .
where C' = % and B3(Z)s, is the best rank-r Schatten-p approzimation

error, cf. (4.35).

(ii) If € > 0, then each accumulation point X of (X™),>, is a stationary point of
the e-perturbed Schatten-p functional f. as in (4.23) under the linear constraint
®(X) =Y. If. additionally, p =1, then X is the unique global minimizer of f..

(1ii) If ® fulfills the strong Schatten-p NSP of order 2r with constant v, < 1, assume
that there exists a matriz Xo € Mg, xa, with ®(Xo) =Y of rank7m <r < %1"12),
a constant 0 < p < 1 and an iteration n € N such that

IX™ — Xolls.. < por(Xo)

and €" = 0,41 (X™).
If the condition number k = Zigg; of Xo and p are sufficiently small (see (4.40)
and (4.41)), then

XM 5 Xy forn — .

Proof. (i) Let us first assume that there exists an iteration 7 € N such that ¢® = 0.
Define X := X which fulfills by construction that ®(X) =Y and o,,1(X) =0, i.e.,

rank(X) <r.

In the other case, where €™ > 0 for all n € N, there exists a subsequence (ng);ey of
(N)n>n, such that ™) < =1 for all £ € N. As shown in Lemma 5.4(b), (X™),, is
bounded and one can extract a further subsequence, which we denote again by (X ™)),
converging to a limit X := lim;_,oc X ™). As lim;_, €™) = 0, we conclude as well that
limy o0 0741 (X (W)) < limy_,o €™~1 = 0. Furthermore, we obtain by Weyl’s stability

estimate for the (r + 1)-th singular value [51, Theorem 7.1] that o,,,(X) = 0. As a
consequence, also for this case, X fulfills ®(X) =Y and rank(X) < r.

As a next step, we aim to show that the whole sequence (X)), converges to X.
According to (4.25), we have that

jHM(X(n)7 e("), W(n)) = f.m (X(”))

- 137 —



for any n € N. Since (X (™)) 2% X and ™) 2% 0, we see consequently that

Tirng (X0, ) gy 225 | X ||p

Using the non-increasing monotonicity from Lemma 5.3(a) it already follows that the
same is valid for the whole sequence (X ),>1, i.e., Tuar (X ™, e W) 222, H)Z'ng.
By the application of the triangle inequality for the p-power of the Schatten-p quasi-

norms | - [[g, , it follows
jHM(X("),e(”),W(")) —d( )p < HX Hp < Tan(X® ) )y,
Since lim,, o d(e™)?P = 0, we get that

XN, == X1,

It still remains to prove that X — X. We note that from Lemma 4.13, it follows
that

I1X = Xl < = (IX15, = IX I, +251(5)s, )
and therefore, using 3,11(X)s, = 0, we get

Py P2

I = X0l < == (1K1, — X1, ).

Now passing to the limit n — oo gives that lim || X — X™||z = 0, and thus X — X
n—oQ

for n = oo.

Using the fact that X is of rank at most r and also fulfills ®(X) = Y, the strong
Schatten-p null space property implies via Lemma 4.13 that X is indeed the unique
solution to (4.5) coinciding with Xj.

For deriving the error bound (5.23), we observe that any matrix Z with ®(Z) =Y
fulfills
_ 2p71 p/2 4 gp 1] 1-p/2
2l < 2L (1, - 12 +25.005) < T2 s
(4.38)

where we used Lemma 4.13 in the first inequality and the minimization property of

X in the second inequality. We conclude the proof of (5.23) with the observation that
8:(Z)s, < Br(Z)s, if T <.
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(ii) As a first step, we want to prove X — X¢ n — oo, where X¢ € My, .q, is a
critical point of f. under the linear constraint. We already made the observation that
the sequence (X (”))@1 is bounded and, hence, has accumulation points. Denote with

(X(®)) 5 any convergent subsequence of (X™),~; and with limit X.

As the weight matrix W(X ,€) as defined in Lemma 5.7 depends continuously on the

variables X and e, we can conclude

—~

Jim W(X ) )y = W (X, e) = W.
—00

On the other hand, using Lemma 5.5(c), it also follows that X ™+Y) — X for £ — oo

and as a consequence we have Zlim W) = W as well. Note that from interpreting
—00

X+ as a minimizer of the functional Jy in (4.29) and the proof of Lemma 4.7,

we can conclude that
W) X (et € Ran(®*) and ®(X +V) = v,

This implies the existence of A € R™ such that WM+ x () — ®*(\). Next we note
that for all H € N(®) and all £ € N holds true that,

<fW/(W)X(W+1), Hyee) = (P*(N), Hyee) = (A, @(n)) = 0.

vec

Consequently, (WX ee, vec) = élim (W(W)X\%H),H\m} = 0 for all H € N(®). As
—00 B
shown in Lemma 5.7, this implies that X is a stationary point of f. and in the convex

case, i.e., if p = 1, we even showed coincidence with the unique minimizer X¢.

(iii) This statement follows from Theorem 4.16, which is proven below. H

4.3.6 LOCALLY SUPERLINEAR CONVERGENCE

The goal of the next subsection is to introduce our locally superlinear convergence rate
result for HM-IRLS in Theorem 4.16 under the assumption that the operator ® fulfills
an appropriate Schatten-p null space property.

Theorem 4.16 (Locally Superlinear Convergence Rate). Assume that the linear map
b 2 My, wa, — R™ fulfills the strong Schatten-p NSP of order 2r with constant va, < 1
and that there ezists a matric Xo € Mg, xa, with rank(Xy) = r < % such that
O(Xog) =Y. Let ®,Y,r and 0 < p < 1 be the input parameters of Algorithm 4.
Moreover, let k = 91X0) pe the condition number of Xy and 77(”) = XM _ X, be

or(Xo)
the residuals of the n-th output matriz of Algorithm 4 for n € N.
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Assume that there exists an iteration n € N and a constant 0 < p < 1 such that
17|l < pon(Xo) (4.39)

and €™ = g, (X™).

If, additionally, the condition number k and p are small enough such that
lln ™15 (4.40)

with the constant

1 2-p rd — r\2-% X, )p—1)
(= 25p(1+72r)p<72r(3+72r)( +’er)> p( r) 2#’%/{”, (4.41)

(T~ ) r (1-p)?
then
IO lls < 1 (1™ ls)*
and
In™Dlls, < 1 (In™ls,) >
for alln > n.

As a first step towards the proof of Theorem 4.15, we show the following lemma.

Lemma 4.17. Let (X ™), be the output sequence of Algorithm, 4 for parameters ®,Y,r
and 0 < p <1, and Xog € Mg, xa, be a matriz such that ®(Xy) =Y.

(i) Let 7]2"+1 be the best rank-2r approzimation of n"t) = X+ — X,. Then

d 2—
n n+1 - n n 5 .
e =l Ol < 2o (3 (@) ) ) e
i=r+1

where W™ denotes the harmonic mean weight matriz from (4.12).

(ii) Assume that the linear map ® : R¥>42 — R™ fulfills the strong Schatten-p NSP
of order 2r with constant v, < 1. Then

r2—p

—p d 2-p
n 7 T n n)2) %
||T] +1)||2p < op J2r 2 < E (O’?(X( )) +€( )2)2> |’nvcj1)||2pw(n)) (442)
i=r+1
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(i) Under the same assumption as for (ii), it holds that

d 2—
n 2 B " m2)s .
1 < 02 3 (@) ) E) e

i=r+1

Proof of Lemma 4.17. (i) Let the X = UMS®y ™ he the (full) singular value
decomposition of X i.e., um e U4, and v e Uy, are unitary matrices and X =
diag(o (X™), ..., 0.(X™)) € My, vq,- We define U}") € Uj, xr as the matrix of the
first r columns of U™ and Uy (n) € Ug,x(d,—r) as the matrix of its last d; — r columns,
so that U™ = (U}") U}n)> and similarly V" and V:ﬁf)

As 1y, = U U "+ U U(n and I, = V(n V(n)* + V(n |% cn)*, we note that

while UM UMt 4 U U DY IMYIM* has a rank of at most 2r. This implies
that

n (n+1) n)rr(n)*, (n n)y(n)* n)xp(n
0™ = a5 Vlls, < NUE ORIV s, = NUE 0OV s

c I

(4.43)

Using the definitions of U™ and 17("), we write the harmonic mean weight matrices of
the n-th iteration (4.12) as

—~

W =2V @ UM (E(* P @ S{27) 1O @ 00, (4.44)

where f]gf) € My, «q, and f]g;) € My,«q, are the diagonal matrices with the smoothed
singular values of X™ from (4.13), but filled up with zeros if necessary. Using the
abbreviation

Q= (VO @ UMy Wyt ¢ Rhdz, (4.45)

we rewrite
77&2:1) _ W(")‘%W")%nézj” _ 2_1/2(V ® [y )(E n)2—p @ E( n)2— p)1/2Q

} K e 2= (4.46)
0 50 (1, 0 50D, + (50 8 1,04 0

with the diagonal matrices Dy, Dr € Mg, 4,xd,4, such that

Uj?(x(n)) + M2 22 12
(Dr)i+(-1d1i+ -1y = <1 + (a?(X(”)) + e(n)2> )
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and

2(x(n) (n)2\ 2=z —-1/2
((az( )+e )2 +1>

(DR)i+(jfl)d1,i+(]’*1)d1 -

for ¢ € |[dy] and j € |[doJ. This can be seen from the definitions of

the Kronecker product ® and the Kronecker sum & (cf. section 4.1.1), as
TP g R 1/2> = (s; + 8)Y2 = si(s;i + ;)7 V2 + s;(s +
<( d1 ) i+(j—1)dy i+ (j—1)dy ( 3) ( i) i
s;)71? = 33/2(1 + 372 4 sjl-/Q(% + 1)7Y2if s, denotes the (-th diagonal entry of
J

S " and S for £ € [max(dy, dp)].

—(n 2—p
If we write Zé )T2 € M4, —ryx(d,—r) for the diagonal matrix containing the d; —r
2—p
last diagonal elements of E WP and 8 do )T2 € M4, —r)x(d,—r) for the diagonal matrix

containing the dy — r last dlagonal elements of EWQ P it follows from (4.46) that

H U:(r?)*n(nH)VT(?) Hl;p — 9%

UY({L)*[’J'(TL) |:E( ) (DLQ)mat + (DRQ)matE i| V(n)*v

Sp
_p||am)3F2 a(n) 252 ||P
=272 d1,Tc2 KDLQ)IHM}TC,TC + [(DRQ)mat}TC,TCEd%TcQ S
P
_p|lan)EE P =(n)22||P
<272 dy Tf [(DLQ)mat} T..Te|| g + H [(DRQ)mat} TC,TcEdQ,Tcz S
P P

(4.47)

with the notation that My, 7, denotes the submatrix of M which contains the intersec-

tion of the last dy — r rows of M with its last dy — r columns.

Now, Hélder’s inequality for Schatten-p quasinorms (e.g. [63, Theorem 11.2]) can be

used to see that

S0 2 (D0 T l=@= " Lo ’ 4.48
dy,Te [( L )mat}TT = Te [( L )mat}TT : (4.48)
clellg 5271) ertellgy
Inserting the definition
2—p 2—p
=( )Q p d 2-p 2p 2 d P 2
2-p =T i=r

allows us to rewrite the first factor, while the second factor can be bounded by

< (DL Dmat| |5, < N Qmael[, = |V @ T W2l e

H [(DLQ)mat] Te,Te C
= [Weepln e, = [Inec V117

W(n))

as the matrix Dy € My, gyxa,4, from (4.46) fulfills ||Dplls,, < 1 since its entries are
bounded by 1; we also recall the definition (4.45) of € and that V@ and U™ are
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unitary.

The term H [(DRQ)mat}T T_ié:?n%p
ing this with (4.43), we obtain

" in (4.47) can be estimated analogously. Combin-
Sp

d 2
n (n+1) n n 5 .
I 2 < o (2 30 (o000 + ) E) ) gl
i=r+1

concluding the proof of statement (i).

(ii) Using the strong Schatten-p null space property (5.17) of order 2r and that 71 ¢
N(®), we estimate

2/p 2/p—1

n+1))12 (n+1) n (n+1 Yor + Vor n n+1
IO = (I VN2, + [+ — nfV)I2,)F < <—2<2r>2/p Il = V) )
2— 2—
< Yo, (Yor +1)P || (n+1) _ (n+1) || 9P Yar " I (n+1) _ (n+1) ||
— (2r)2 n s, 92-pp2—p ! '

(4.49)

where we use in the second inequality a version of Stechkin’s lemma [81, Lemma 3.1],

which leads to the estimate

n+1 2 1
I (n4+1) _ n+1 ” ||772 )”52 2_pH (n4+1) _ n+1 || 727{p I (n+1) _ n+1 ||
n Sg —= 9o n (27“)2/p 1 n Sp*
Combining (4.49) with statement (i), this results in
Y2 - A
n 2 r n n)2\ 2 n 2
e <22 (3 @)+ <)) I
i=r+1
which shows statement (ii).
(iii) For the third statement, we use the strong Schatten-p NSP (5.17) to see that
n n+1) n n+1 n n+1)
I DI, = a1, + D = ni ™1, < (220 I+ = ny ™V,
and combine this with statement (i). O

Lemma 4.18. Let (X(”))n be the output sequence of Algorithm 4 with parameters
O Y rand0<p<1, and W™ be the harmonic mean weight matriz (4.12) forn € N.

Let Xo € My, xa, be a rank-r matriz such that ®(Xo) = Y with condition number

o1(Xo)

R = o (Xo0)
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(i) If (4.39) is fulfilled for iteration n, then n"*) = X — X fulfills

_ 2
| (nt1) 4prp/2(32)p(p 1) p||77 || p—p’

e VA
Thec " lg, W(n)) = (1—p)2r (e( ))217 p?

(i) Under the same assumption as for (i), it holds that

e _ T max(r,d = AP0 02

|| H (n+1)Hp
vec Ly (W () (1 _ p)2p ( (n))Qp —p?

Proof of Lemma 4.18. (i) Recall that X ("1 = arg min ||Xvec|| () is the minimizer
o(X)=Y

of the weighted least squares problem with weight matrix W®. As n(+D) = X+ _ X

is in the null space of the measurement map &, it follows from Lemma 4.7 that

0 = (WM X @D gty = (o) (D) 4 x ) plntD)y

vec ? 77VeC

which is equivalent to

(n+1)

H Nyec ||€2 W(n) = <W(n)7]\(12j1)777\(120+1)> - _<W(n) (X(J)VGC???\(/?;jl))' (450)

Using Holder’s inequality, we can therefore estimate

anzjl HZ(W(”)) = _<W(") <X0)VGC’ nx(fe:rl)>52 = _<[W(n) (XO)vec]mat777(n+1)>F
< || [/WV(n) (XO)VGC]

X (4.51)
a7 s,

To bound the first factor, we first rewrite the action of W™ on Xp in the matrix space

as

[fWV(n) (XO)VeC} [(V(n) ® U n)) (Z (n)2=p ©® 222)2_10)71(‘7(71) ® ﬁ(n))*(XO)VeC]mat =

mat

—m (H(") o (U(”)*XOV(”)))V(”)*,

using (4.44) and Lemma 4.17 about the action of inverses of Kronecker sums, with the
notation that H™ € My, v4, such that
2—p

_ —1
H™ =9 [1{i§d}(af(X(”)) + e(”)2)27p + 1{j§d}(a]2-(X(")) + 6(”)2)7]

for i € [dy], j € [do], where 1f<qp = 1 if i < d and 1(;<4p = 0 otherwise. This enables
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us to estimate

2 2

__ - - - - 2 -~
H[WUL)(XO)Vec}mat - T (H® o (T X, 7)) P - HH(n)O(U(n) XV ™) )
2 2 2
T )* n T )* n 2
g U XV Ui X, v
U(”) X()V(n) U(")*Xov(") <
2
2
ko x|+ g, o x|
2
2
|| H o (U Xo V™) +HHT o (UR XV
2
(4.52)

using the notation from the proof of Lemma 4.17. To bound the first summand, we

calculate
H TT o XOV( n) : < HH%T)’O (U}n)*X(n)ngn)) . + HHI(’HT)‘ ° (U}n)*( 77(n))‘/vj(jn)) .
< HHT,TOE%) s + ‘H:(rT%O(U:(r”)*??(”)VT(”))

- JZZ(X(n)) 2 T n n (n
< (Z TR ) + max | B U Vs,

i1 (Ui(Xn)+€”) J=1
< VPP XM 4 (02(X ™) 4 em2) 72 || Ui pmy)| o,
< Vro? HX ™) + o2 X M)V In™|s. = Vet (X ™) [0 (X ) + [In™]ls. ],

(4.53)

denoting E = diag(o;(X™))r_, and that the matrices UT and V ) contain the first
r left resp. right singular vectors of X in the second inequality, together with the
estimates || X||s, < /7| X||s, < 7]|X]|s., for (r x r)-matrices X.

We recall the notations s = 7,(Xj) and s = 01(Xj) and note that
52 (X)) > (1~ p),
as the assumption (4.39) implies that
sy = 0:(Xo) = 0,(X — ™) < 0, (XT) + 01 (™) < 0,(X) + ps],

using [8, Proposition 9.6.8] in the first inequality.
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Therefore, we can bound the term of (4.53) such that

| Ey 0 (U XV

o S VI ) E L = p) + ) = V(P (1
(4.54)

2
, similar arguments
2

For the second summand in the estimate of H [W(”) (Xo)vec] mat | ¢

and again assumption (4.39) are used to compute

[ o @ o0

< |[fg, o P x V)
2
=0 =0

(n) ()% r(n) y2(n) v/ (n)*y /(1) (n)*77(n) s (n)y - (n)*y (1)
:HHT,TCO(UT Up Xp VoV P+ Up VU " 2 Vi, VTC)

+ [, o W)
Sz 52

Sa
+||E, o WiV

2

n n)* n n n)2y\ 2=21—1 n)x (n n
< max  [HPUS Vs, < 2[(00(X ™) 4 €™2)FE ] T US OVE | 6

—ier]je{r+1,..da}

(4.55)
< 20, (XU OV s, < 207(20 = )" 20l (4.56)
< 2pv/r(s))" (1 = p)" 7 '
From exactly the same arguments it follows that also
|82 0 W XV)|| | < 20w 0= gy (457)

It remains to bound the last summand HHY(ZZ,)TC o (U}?)*XOVT(ZL))

2
. We see that
Sa

|78, 0 @R XV < o 1 VR XV s,
]6{7"+1:---:d2

< (€2 US XV |15y < (€™ U UL 5.0 IS0 su IV VA || s
V2(n™s V2(n™s 9
SE p—2 oo\/_O o 2\/_?7 n)p?l_p728871_1
(™) = = ™% (€™)P=2(1 — p)~2(s2) 3

(4.58)

where Holder’s inequality for Schatten norms was used in the third inequality. In the
fourth inequality, Wedin’s singular value perturbation bound of Lemma 2. 19 is used
with the choice Z = X;, Z = XM, a =5 and § = (1 — p)s, and finally €™ < ps? in
the last inequality, which is implied by the rule (4.16) for €™ together with assumption
(4.39).
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Summarizing the estimates (4.54), (4.55), (4.57) and (4.58), we conclude that

—~ ) 2
H [W(n (XO)VeC} mat
Sa
22 o IS a0y (3
<7(s)" (L= p)P 7|1+ 8p" + 4m(€ )P (sy) 20

<>{ ) N O P Pl F A
= ————1(1+8)(1—p)?+4

gyt [T = 2 i e 59
<r<s°>2p2[9+4\ln I Kz]<13r<s2>2p—2[||n<n>||§jp }

(1 - p)t (e(m))4-2p P 1= p)t | ()2 k

as 0 < p<1, e <o (XM) = ||X(7CL)||SOo < ||[n™]s.. and using the assumption
(4.39) in the second inequality. This concludes the proof of Lemma 4.18(i) together
with inequality (4.51) as 137/2 < 167/2 = 4.

(ii) For the second statement of Lemma 4.18, we proceed similarly as before, but note

that by Hélder’s inequality, also

e oy < IV )] e, 17" i

cf. (4.51). Furthermore

I [0 (Xo) vee] H HT"% (U XOVT(,”))’ .

+ ||, o XV

mat
1

+ HHTC,T ° (UCE“TZ)*XOVI(’H))‘ s
1

| E o W x|

1

The four Schatten-1 norms can then be estimated by max(r, (d—r))/? times the corre-
sponding Schatten-2 norms. Using then again inequalities (4.54) — (4.58), we conclude
the proof of (ii). O
Proof of Theorem 4.16. First we note that

2

d 2=p
(Z (03<X<">>+6(")2>2) <PTE(d— 1) o (XOPET (459)

i=r+1

as €™ < g, 1(X™H)) due to the choice of €™ in (4.16). We proceed by induction over
n > n. Lemmas 4.17(ii) and 4.18(ii) imply together with (4.59) that for n = n,

(n+1))2p -
IO, _||’|n r—‘||p i ()
— 77 n+1) r r 1-— p <
d —r\2-p/27P(s0)P(P=1) _
5p r D|,,(n) p(2—p)
<2 727" ( ) (1 _p>2p K ”77 HSOO
(4.60)
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as 0,41(X ™) = €™ by assumption for n = n.

Similarly, by Lemmas 4.17(iii) and 4.18(ii) and (4.59), the error in the Schatten-p

quasinorm fulfills

92— rp/Q(Sg)p(p_l) n 2_ n
’ K| EE P+ (4.61)

(n+1)|2p 20242p _
In “Sp < (1 +792r)72 (d T) (1—p)2r

for n = n. Using the strong Schatten-p null space property of order 2r for the operator

¢, we see from the arguments of (4.49) that

2
™,

15, < )5, < 2

1—
p—1 p
2 Yor

/2
and also [[n™V}, < —22; ||77(n+1)||7;p. Inserting that in (4.61) and dividing by

[+ D], we obtain

n — n 1— n
In™ VN < 2%(1 + y2r) 295, K2 ™ I ™ .

<d _ T> 2—p 7—1’/2<32)p(?*1)

r 1—p)>

Under the assumption that (4.40) holds, it follows from this and (4.60) that
IV, < In™ 1%, and [l g, < 0™, (4.62)

for n = n, which also entails the statement of Theorem 4.16 for this iteration.

Let now n’ > 7 be such that (4.62) is true for all n with n’ > n > 7. If g,1(X™)) <
™= then ™) = ¢,,1(X™)) and the arguments from above show (4.62) also for

n=n.

Otherwise, it holds that o, 1(X ™)) > ¢~ and there exists n’ > n” > 7 such that
¢ =€) = g (X)), Then

In™ D%

< 2P 7373 . (gi?(X(”')) + 1)§ o 7p7,,p/2 max(r, d— T)p/Q(Sg)p(pil) pH (n") Hp(2—p)
far R S K

RN (1= p) Tl
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and we compute

d 2( v (n') 2\ 2-p d Py (n) 2-p
o (X)) 2 o (X))
(Z(W“)) S(ZWHCZ—T)

1=r+1 i=r+1
I 1%, "I, o
S(G(n—,,)p-i-(d—r)> S(W-i-(d—r))

2(1 + 7o, | X, P 3\ 2P
< c P d _ < T d _ 2—p
- ( (1 — 7o, )P * r>> - ( ) (@=n)",

using that X, is a matrix of rank at most r in the second inequality, the inductive
hypothesis in the third and an analogue of Lemma 4.13 for a Schatten-p quasinorm
on the left hand side (cf. [81, Lemma 3.2] for the corresponding result for p = 1). The

latter argument uses the assumption on the null space property. This shows that

In™F VIR < |2 P)
for
_ (34 v, )(d — r)\2-PprP/2 59 p(p—1) »

(4.63)
and [l V|% < |[n™)|%_ under the assumption (4.40) of Theorem 4.16, as fi < p
with p as in (4.41). Indeed 1 < p since

max <2p(d _ T)§7 (1+ ,72T)2) (?)2177“1;/2 < 2°(1 + 79,)? (d — r>2p/2rp‘

The same argument shows that || D|g < [[n™) % | which finishes the proof. [

Proof of Theorem 4.15(iii). The statement follows from Theorem 4.16, since for 7 < r,
an operator ® fulfilling the Schatten-p NSP of order 2r with constant 5, < 1 trivially
fulfills the Schatten-p NSP of order 2r with constant vor < 7o, < 1. O

Remark 4.19. We note that the left- and right-sided weight matrices of previous IRLS

approaches [51, 106] at iteration n could be expressed in our notation as
Ly, @ W =1y, @ UM (E()p-20 ™

and
ngu’,n) ® Idl = V(n)(i&?)p—2v(n)* ® Idl’

respectively.
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Let
T™ .= span {ugn)y*,xvgn)* |z e Ry e RZ,i € [r]},

where u§”), e ,uﬁ”) resp. v%n), e ,vfﬂn) are the first r left and right singular vectors of

X® 7™ is a space that can be considered as a generalized support of the best rank-r

approximation of X .

With this remark, we want to give an explanation for the fact that left- or right-sided
weight matrices do not lead to algorithms with superlinear convergence rates for p < 1.
This argument will be based on the observation that there are always parts of the
space T that are equipped with too large weights if X = ULy )+ ig already

approximately low-rank. In particular, proceeding as in (4.52), we obtain for I, ® Wé")

2

mat

- )y
2

2 — — * n
o ey
2

0T © WE) (o] |

2

S o

2 S(n)\P—277(n)x n 2
S + H(E(Tc))p UC(FC) XOvT(C)
2

2

if ig? ) denotes the diagonal matrix with the first 7 non-zero entries of Z_JEZ) and igj )

the one of the remaining entries.

Here, the third of the four summands would become too large for p < 1 to allow for
a superlinear convergence when the last d — r singular values of X approach zero.
An analogous argument can be used for the right-sided weight matrix WI({Z) ® Iy, and,
notably, also for arithmetic mean weight matrices W((;)ith) =1 ® WL(") + Wén) ® Iy,

cf. section 4.1.2.

4.3.7 DISCUSSION AND COMPARISON WITH EXISTING IRLS ALGORITHMS

Optimally, one could ask for a statement in Theorem 4.15 about the accumulation
points X being global minimizers of f., instead of mere stationary points, cf. [51, The-
orem 6.11], [35, Theorem 5.3]. As we will see in the next section, numerical experiments
indicate that at least empirically the recovery of global minimizers for a large number
of problem instances in the matrix completion context is achieved. Due to the strong
nonconvexity of the Schatten-p quasinorm and of the e-perturbed version f. for small

ranges of p, such a strong theoretical statement is unfortunately difficult to prove.

Nevertheless, our results can be interpreted as analogues of the results in [35, Theorem
7.7], which discusses the convergence behaviour of an IRLS algorithm for the sparse

vector case based on {,-minimization with p < 1.
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As already mentioned, one can view the algorithm of [51] as an asymmetric variant of
HM-IRLS with parameter choice p = 1 in our notation and under this point of view,
our result Theorem 4.15 recovers the results of [51, Theorem 6.11(i-ii)] for p = 1 and
provides a generalization, although with weaker conclusions due to the non-convexity,
also to the cases 0 < p < 1. Non-convex choices 0 < p < 1 have been considered in
[106] for the algorithm IRLS-p, that is very similar to the one in [51]. However, the
convergence result [106, Theorem 5.1] in the non-convex case corresponds to Theorem

4.15(ii) but does not give statements similar to (i) and (iii) of Theorem 4.15.

To the best of our knowledge, the convergence rate result in Theorem 4.16 is new in
the sense that so far,in the literature, there are no convergence rate proofs for IRLS
algorithms for the low-rank matrix recovery problem. In fact, Remark 4.19 provides an
argument why it is not possible for existing IRLS-variants of [51] and [106] to exhibit

superlinear convergence rates, unlike HM-IRLS.

Finally, let us point out the close connection between the statements of Theorems 4.15
and 4.16 and results presented for IRLS in the context of the sparse vector recovery
problem [35, Theorems 7.7 and 7.9].
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4.4 NUMERICAL EXPERIMENTS

In this section, we verify numerically the theoretically predicted superlinear conver-
gence rate for Algorithm 4 (HM-IRLS) in Theorem 4.16 even for relevant measurement

operators not fulfilling theoretical requirements, more precisely the strong null space

property.

In particular, also for the important framework of matrix completion, HMI-IRLS exhibits
a superlinear convergence rate of order 2 — p that can be observed very clearly in the
experiment results reported in subsection 4.4.2. Moreover, we report that for other
IRLS-type algorithms as in [51, 106], and a variant implementing arithmetic mean
weight matrices (see Lemma 4.2) instead of harmonic mean weight matrices such a

superlinear rate of any form was not observed in our numerical tests.

Beyond that, we study in our experiments the recovery performance of HM-IRLS as well
as of other algorithms for the matrix completion measurement setting. We compare
them with a focus on the measurement complexities necessary for successful recovery
for a large number of random problem instances in subsection 4.4.3. The methods
covered in this comparison to HM-IRLS include not only variants of IRLS, but also
other types of cutting-edge low-rank matrix recovery approaches. Interestingly, our
numerical tests reveal that even for cases where the oversampling factor is very low
(p ~ 1), HM-IRLS is able to recover the desired low-rank matrix, without requesting a
special initialization, although the underlying recovery problem is severely non-convex.
In particular, HM-IRLS recovers low-rank matrices systematically with nearly the optimal
number of measurements and needs fewer measurements than all the state-of-the-art

algorithms, including previously existing IRLS methods, involved in our experiments.

All numerical experiments discussed in this section are performed on a MacBook Pro
9.1 with a 2.6 GHz Intel Core i7 quad-core-processor and 8 GB memory. Computations
are run in MATLAB R2014a, version 8.3.0.532. An implementation of the HM-IRLS
algorithm and a minimal test example are available at https://www-m15.ma.tum.de/

Allgemeines/SoftwareSite.

4.4.1 MEASUREMENT SETTING

In our experiments, we consider d; X dy low-rank matrices Xy of rank(Xy) = r, which
we construct by the multiplication of matrices ULV, where U € RU*" V ¢ Rr*dz
are matrices with i.i.d. standard Gaussian entries and > € R"™*" is diagonal with i.i.d.

Gaussian entries as well.
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As noted in Lemma 2.20, a low-rank matrix X € My, «4, of rank r has dy = r(dy+dy—7)
degrees of freedom, which corresponds to the theoretical lower bound on the number

of measurements necessary for exact recovery [21].

We give a detailed description of the random measurement setting for our experiments.
We will consider the matrix completion framework, choosing m = |p - dy] entries of
Xo uniformly over its d; - dy indices to get our measurement result Y = ®(X,). The
so-called oversampling factor d;% > p > 1 regulates the hardness of the recovery

problem.

However, a sampling scheme as just described above can yield instances of measurement
maps ¢ with insufficient information content to guarantee the well-posedness of the
corresponding low-rank matrix recovery problem, even for the cases where p > 1. To
be more precise, if the number of sampled entries in any row or column is below its
rank r it is impossible to recover a matrix exactly. A more detailed explanation and

proof can be found in the context of [119, Theorem 1].

Therefore, the uniform sampling model is adapted in such a way that measurement
operators ® are excluded and generated again until the requirement of minimium r
entries per column/row is met. Thereby, we ensure that reconstruction is possible from

a theoretical point of view.

The phenomenon just described above is closely related to the fact that recovery guar-
antees for matrix completion for the uniform sampling model require at least one ad-
ditional log factor, which means that at least m > log(max(d;, dy))ds sampled entries

are required. [37, Section V].

Although we only present experiments for the matrix completion setting in this section,
we point out that also in the case of Gaussian measurement models we obtain similar

results in numerical tests.

4.4.2 CONVERGENCE RATE COMPARISON WITH OTHER IRLS TYPE ALGORITHMS

In the following, we compare the HM-IRLS algorithm to existing variants of IRLS for low-
rank matrix recovery that only employ reweighting in the column space as presented
in [51] (IRLS-M) called IRLS-FRW, and the strongly related version in[106] (IRLS-p)
denoted by IRLS-MF. Additionally, we consider the performance comparison of HM-IRLS
with an alternative method incorporating reweightings in both the row and column
space: we add to our list of test algorithms an arithmetic mean iteratively reweighted

least squares (AM-IRLS), which employs a weight matrix composed according to the
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arithmetic mean

—~ 1 p=2 p=2
W = 2 [(Um) S G 4 (m2p, VI g (0 g gy 4 (2, ) }
of left- and right-sided weight matrices, where X = U™ My (* ig the full SVD of
the iterate X (™. We refer to subsection 4.1.2 for the introduction of the weight matrix

used in AM-IRLS.

With our present experiments we aim at the examination of the convergence behaviour,
in particular the convergence speeds of the four test algorithms for hard and easy matrix
completion problems. In our numerical tests, we set the dimension of the solution matrix
to dy = dy = 40, rank r = 10, oversampling factor p = 2.0,1.2,1.0 and consider the
instances of the random model as explained in subsection 4.4.1. The experiments are
performed for non-convexity parameters p = {0.0001,0.05,0.1,0.25,0.5,0.65,0.8,1.0}
appearing in the Schatten-p minimization problems (4.5), which all variants of the IRLS

algorithm strive to solve.

The plots in Figures 4.1 to 4.3 show the behaviour of the Frobenius error in logarithmic
scale log([| X ™ — X;||r) for the iterations n = 1,...,7 of the listed algorithms, where
we denote with n the first iteration at which the Frobenius error falls below a certain

tolerance level or a maximum number of iterations n,., is exceeded.

4.4.2.1 Results for HM-IRLS

It can be verified from inspecting Figure 4.1a that, for parameters p < 1, HM-IRLS ex-
hibits superlinear rates of convergence very accurately of the orders 2—p as theoretically
predicted by Theorem 4.16. As a consequence, we observe a dramatic enhancement of
the convergence rate from linear to arbitrarily close to quadratic for p tending from 1
to 0. When decreasing the oversampling factor p from p = 2 in Figures 4.1 to p = 1.2
in Figure 4.2 and eventually even to p = 1 in Figure 4.3, which corresponds to the
increase of the hardness of the matrix completion problem, we observe the divergence
of the HM-IRLS algorithm for larger values p > 0. This behaviour is very predictable,
as it is known for nuclear norm minimization to fail at the recovery of low-rank matrix
in cases where the oversampling factor p is getting close to 1 and, for the parameter

choice p = 1, HM-IRLS just approximates NNM.

On the other hand, we get an interesting result illustrated by Figures 4.2a and 4.3:
with the choice of p close to 0, even for the very difficult reconstruction problems with
very low sample complexities p = 1.2 and p = 1, the HM-IRLS algorithm is able to

successfully recover the low-rank matrix, still performing with a convergence rate of
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Figure 4.1: Behaviour of the log error log(||X™ — X;||r) for successive iterations for
different parameter values of 0 < p < 1 and fixed measurement oversampling factor
p = 2.0. Note that the x-axis in (a) has a different scaling, indicating a much faster
convergence of HM-IRLS.

order 2 — p.

4.4.2.2 Results for other IRLS-type algorithms for low rank matrix recovery

For the other variants IRLS-FRW, IRLS-MF and AM-IRLS, we observe a contrasting
algorithmic behaviour. Figures 4.2b—4.2d show that these methods do not converge
to the ground truth low-rank matrix X, for hard reconstructions problems with low
sampling complexity rates p = 1.2 and p = 1.0, regardless of the choice of the parameter
p- The corresponding plots for p = 1.0 are omitted as in these cases a lack of convergence

is observed as well.
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Figure 4.2: Behaviour of the log error log(||X™ — Xy||r) for successive iterations for
different parameter values of 0 < p < 1 and fixed measurement oversampling factor
p = 1.2. Note that the x-axis in (a) has a different scaling, indicating a much faster
convergence of HM-IRLS.

We observe convergence of the mentioned methods for easier matrix completion prob-
lems corresponding to p = 2.0 as shown in Figure 4.1b—4.1d. Nevertheless in these cases
at best they exhibit a linear rate of convergence only, also if the parameter p is chosen
significantly smaller than 1. If we provide such a generous amount of measurements,
we find that TRLS-FRW and IRLS-MF show slightly faster convergence for p approaching

0 and only for AM~IRLS larger values of p yield more promising results (cf. again Figure
4.1b-4.1d).

For the oversampling factor p = 1.2, which gives intermediate difficulty level for recon-
struction, the methods IRLS-FRW, IRLS-MF and AM-IRLS become unstable very easily
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Figure 4.3: Behaviour of the log error log(]|X ™ — Xyl||r) for successive iterations for
different parameter values of 0 < p < 1 for measurement oversampling factor p = 1.0,
two different instances of the measurement model of section 4.4.1.

for small choices of p. Therefore, we pose the conjecture that there exists an optimal

value 0 < popy < 1 for each algorithm, that we do not investigate further.
4.4.2.3 HM-IRLS as the best extension of IRLS for sparse recovery

As a summary of the experiments above, we can state that among the four variants
HM-IRLS, IRLS-FRW, IRLS-MF and AM-IRLS, only HM-IRLS is capable of solving the low-
rank matrix recovery problem for very low oversampling factor p ~ 1. Additionally,
HM-IRLS is the only IRLS algorithm for low-rank matrix recovery, which showcases a

superlinear convergence rate at all.

We consider it just as interesting to compare the algorithmic behaviour of HM-IRLS with
the properties of the IRLS algorithm of [35] for sparse vector recovery, which mimics
the ¢,-minimization for 0 < p < 1. The superlinear convergence rate of the algorithm in
[35] as illustrated in Figure 8.3 in [35] could not be generalized to the low-rank matrix
recovery problem by any of the versions IRLS-FRW, IRLS-MF or AM-IRLS, as obvious
from Figures 4.1a, 4.2a and 4.3.

Taking the theoretical guarantees as well as the numerical evidence into account, we
claim that HM-IRLS is the best extension of IRLS for vector recovery [35] to the low-
rank matriz recovery setting, providing a substantial improvement over the reweighting
strategies of [51, 106].

We even go a step further, by pointing out two observations which suggest that HM-IRLS

in some sense even exhibits more favorable properties than the version of IRLS for the
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vector case in [35]:

(i) First, the superlinear convergence in the vector case is only observable locally
after a considerable number of iterations with a linear error decay have been
executed as discussed in [35, Section 8]. In contrast to such behaviour, for our
algorithm HM-IRLS, superlinear error decay can be observed quite early (i.e., for
example even as early as after 2 or 3 iterations), at least in cases where a large

enough oversampling factor can be provided, cf. Figure 4.1a.

(ii) Second, in cases where p < 0.5, we observe a loss of global convergence of the
algorithm in [35] [35, Section 8]. In contrast to that, the HM-IRLS algorithm
does not suffer from this convergence breakdown for p < 0.5. Consequently, we
suggest the choice of very small parameters p < 0.1 in order to achieve very fast

convergence, cf. Figure 4.3.

4.4.3 RECOVERY PERFORMANCE COMPARISON WITH STATE-OF-THE-ART ALGO-
RITHMS

After the performance comparison of HM-IRLS with other IRLS-type methods, we ex-
tend the list of our test algorithms in our experiments with strategies different from
IRLS.

In order to provide a comprehensive picture in our numerical tests, we involve a broad
variety of state-of-the-art algorithms in the experiments: from the already studied IRLS
algorithms IRLS-FRW, IRLS-MF [51, 106], over Riemannian optimization techniques
Riemann Opt of [154], alternating minimization approaches p_-MC_A1tMin, ASD and BFGD
of [74, 118, 146], finally to iterative thresholding-based methods such as MatrixALPSII,
CGIHT Matrix in [9, 85].

Our goal in the following experiments is to systematically study the empirical recovery
probabilities of the different algorithms for varying sample complexities m = [p - dy],
parametrized by the oversampling factor p, which regulates the hardness of the low-
rank recovery problem. Here, a large parameter p corresponds to an easy reconstruction

problem, and a small value of p, e.g., p &~ 1 describes very hard problems.

Again, we adopt the matrix completion measurement setting as explained in subsection
4.4.1, setting the dimensions of the ground truth matrices X, to dy = dy = 100 and the
rank to r = 8. We now randomly sample 150 instances of Xy and ® for different numbers
of measurements increasing from my;, = 1500 to M. = 4000, which corresponds to

a growing oversampling factor p from ppi, = 0.975 to ppax = 2.60.
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Recovery Success Rate with Varying Oversampling Factor for State-of-the-Art Algorithms
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Figure 4.4: Recovery success rate with varying oversampling factor p for state-of-the-
art-algorithms

We define an attempt for the recovery of X, as successful if the relative Frobenius
error || X" — Xy||p/|| Xo||F for the output matrix X°U is smaller than 1073. We run
the different algorithms either until convergence or until a maximal number of iterations
Nmax (€8 Nmax = 10000) is exceeded, where ny,y is chosen generously large enough to

guarantee that a recovery failure is not caused by a lack of iterations.

For the conduction of our experiments, we employ implementations that were made
available by the authors of the corresponding research papers for our comparison al-
gorithms, setting the default input parameters provided with the authors’ software

packages. We collected the respective code sources in the reference section.
4.4.3.1 Beyond the state-of-the-art performance of HM-IRLS

Surprisingly, the experiment results displayed in Figure 4.4 reveal that HM-IRLS reaches
a very high empirical recovery probability for parameters p = 0.1 and p = 0.01 as soon
as the oversampling factor p is larger than 1.0. This implies that for the recovery of
(dy x dg)-dimensional rank-r matrices a number of m = | pr(d; +dy — )| measurements
with p = 1 is already sufficient, which is extremely close to the information theoretical
lower bound of df = r(d; + d2 — r). Moreover, we report the interesting fact, that
already for a measurement complexity factor of p &~ 1.15 HM-IRLS achieves an empirical

recovery percentage of 100%.

For all algorithms tested, we make the contrasting observation that they basically

- 139 —



always fail to perform recovery for any rank-r matrix if p < 1.2, and in most cases need
an oversampling factor of p > 1.7 to exceed an empirical recovery success rate of a mere
50%. Only after rising p above 2.0, a recovery percentage of nearly 80% is approached
at least for a subset of the comparison algorithms, more precisely for Matrix ALPS II,
BFGD, p MC_AltMin and the existing IRLS approaches IRLS-FRW and IRLS-MF. Even for
large oversampling factors up to p = 2.5, all other competing algorithms are incapable
of systematically achieving the empirical probability of 100%. Although we do not rule
out that possible parameter tuning can slightly enhance the recovery performance of
any of the other algorithms, we report that, for hard matrix completion problems,
the experimental evidence for the very significant gap in the recovery performance of

HM-IRLS in comparison with all other methods is striking.

Hence, our observations can be summarized as follows: for the choice of the non-
convexity parameter p < 1 the proposed HM-IRLS algorithm is able to recover low-rank
matrices systematically with nearly the optimal number of measurements and needs
fewer measurements than all the state-of-the-art algorithms included in our experi-

ments.

In Figure 4.4 a very sharp phase transition between failure and success of recovery can
be observed very clearly for HM-IRLS. This indicates that the oversampling factor p
indeed plays a major role for the determination of the success of HM-IRLS. In contrast,
for all other algorithms we have wider phase transitions suggesting the existence of
further influence factors such as the realizations of the random sampling model or

possible interactions between the measurement operator ® and solution matrix Xj.

A last important conclusion that we draw from the very high empirical recovery prob-
ability of 100% in those cases where the sample complexity factor p is large enough,
is that local minimizers are not an issue for HM-IRLS, but it always converges to the
global minimizer, although the underlying Schatten-p quasinorm for, e.g., p = 0.01, is

severely nonconvex.

Therefore, we conclude that the initialization of X as the Frobenius norm minimizer
that we choose can already ensure global convergence. In contrast, other non-convex
low-rank recovery methods might show a heavy dependence on a smartly chosen start-
ing point. In this point of view, our experimental results indicate that the non-convex
low-rank matrix recovery algorithms included in our tests do not seem to be able to
capture the desired basin of attraction of the global minimum in many cases if the sam-
ple complexity is low (i.e., if p is small). This entails the discovery of local minimzers

only.
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4.4.4 COMPUTATIONAL COMPLEXITY

Although the harmonic mean weight matrix W® (cf. (4.17)) is the inverse of a (dydy X
dyds)-matrix and consequently a dense (dyds X djdy)-matrix in the general case, this
is not relevant for the practical implementation of the algorithm as it never has to be

computed explicitly. Moreover, neither there is a practical need to compute its inverse
(W(n))*l = % (U(n)(i(n))%p[](n)* D V(n)(i(n))%pv(n)*) explicitly.

Indeed, the harmonic mean weight matrix is just involved in the form of the linear
operator (W(™)~1 (cf. (4.14)) acting on the space of matrices My, x4,, which can be
represented as a left- and right-sided matrix multiplication as it can be derived from
(4.11) and the definition of the Kronecker sum (4.6).

Consequently, the application of the operator (W™)~! is feasible in O(dydy(d; + d»))
and can be implemented via the naive matrix multiplication algorithm, and, hence, can

be easily parallelized.

The computation costs for the expression ® o W16 d* ¢ M, «m also depend on the
linear measurement operator ®. We note that in particular, for the matrix completion
setting (4.3), where ® is a just an entry selection operator, we do not have to perform

additional arithmetic operations.

We point out that the execution of the HM-IRLS algorithm involves of two major com-
putational steps in each iteration: On the one hand, the computation of the SVD of
the d; x dy-matrix X ™ with time complexity O(d;dy min(dy,d,)). On the other hand
the solution of the least squares problem under the linear constraint in (4.15), whose
time complexity depends on ®. In the matrix completion case, the second step is dom-
inated by the inversion of a symmetric, m x m sparse linear system, which has a time

complexity of at most O(max(dy, da)3r?).

For the matrix completion setting, we are able to perform recovery of low-rank matrices

up to, e.g., dy = dy = 3000 on a single machine from only very few given entries.

Acceleration possibilities and extensions

A key idea for also enabling the solution of higher dimensional problems in reasonable
runtimes is to speed up the solution of the m x m linear system in (4.15), which consti-
tutes the computational bottleneck of the algorithm, by employing iterative solvers. In
the sparse vector case, a significant gain in computational speed of the corresponding
IRLS algorithm [35] could be reached by the incorporation of conjugate gradient (CG)

methods as discussed in [49]. In this work, a competitive solver for the sparse recovery
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problem is suggested, which introduces an effective preconditioning and couples the
accuracy of the CG solutions to the outer IRLS iteration. A similar modification could

be employed for an acceleration of HM-IRLS.

Furthermore, it could be interesting to explore whether additional computational speed
up is possible by replacing the full SVDs of the iterates X ™, which are used to define
the linear operator (W)~ in Algorithm 4, by an approximation via truncated and
randomized SVDs [75].
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CHAPTER 5

Generalized IRLS for recovery of matrices

with multiple structures

In this chapter, we want to pass over from the recovery of low-rank matrices to more
general high dimensional signals with multiple underlying structures from a minimal
amount of linear measurements

O(X)=Y (5.1)

with a linear map ® : My, x4, =& R™, Y € R™ and m < d; - d2. More precisely, we want
to consider matrix recovery problems that involve the different sparsity-type structures
introduced in Section 2.3.2. In practical applications, often signals with even more than
one structural property or a combination of the above mentioned ones - sparse vectors
or vectorized matrices, row and column-sparse matrices and low-rank matrices - emerge,
e.g., row-sparse and low rank matrices or the sum of sparse and low-rank matrices. In
the following, we will explore recovery problems, where the matrix to be recovered is
either a matrix with multiple sparsity-type structures occurring simultaneously or is

the linear combination of several matrices with different sparsity structures.

For a matrix X with sparsity structures sg, s € [t], the equivalents to “support” S,

"support size or order” kg in the vector case are summarized in the following table:

property s support S order ks = | S|
sparsity A={l|X,; #0,l=(Gi—-1)-di+j} # entries # 0
row-sparsity Npow = {@ | 2?2:1 Xij # O} # rows # 0
column-sparsity Aot = { J| Zfil X, # O} # columns # 0
low-rank Avank = {i | singular value o;(X) # 0} rank

Table 5.1: Structural properties, analog to support, and order in the vector case
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For this problem setting of recovery of multi-structured matrices from an equation
system (5.1), we want to consider the following nonconvex and nonsmooth model in

the constrained formulation :

t
min F{(X) = 3" A JX g (5.2
s=1
st. ®(X) =Y,
where | - || yo is one the following structure inducing quasi-norms
(i) | - |le, for sparsity,
(i) || - ||y, for row-sparsity,
(iii) || - ||, for column-sparsity,

(iv) I+ lleg, for low rank.

Moreover, it is possible that the measurement data is supposed to have structured
perturbations and that the residual ®(X) = Y shows sparsity type features as well.

We can incorporate this information via an unconstrained model formulation:

t
min F(X) = 3 A1 X]

s=1

No 4 pl| (X)) = Y| no. (5.3)

In the case, a matrix valued representation of measurement results is possible, i.e.,
Y = Y. for Y € R™>m2 with m = mimg, we can consider || - ||yo to be again any of
the above mentioned quasi-norms applied to (®(X) — Y)mat(m,,m.). Otherwise, in the
case of a vector valued residual ®(X) — Y, we only assume sparsity as a reasonable

structure and, therefore, || - ||xo = || - [|¢,-

As already mentioned, sparsity-type recovery problems in their formulation via the
minimization of nonconvex functionals involving terms promoting the specific sparsity
structure are NP-hard to solve. Therefore, it is useful to consider their relaxation and

substitution by an appropriate convex norm minimization problem (see Table 5.2).

A straightforward approach towards recovery strategies for the case of simultaneously
structured signals would be the linear combination of the convex norms usually mini-
mized for each of the single structures. Recently, the negative results of Oymak e.a.[116]
surprised the community. They revealed that this intuitive attempt of combining con-

vex norms will require just as many measurements as exploiting only one (dominating)
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property nonconvex functional | convex relaxation
sparsity |- 1o |- [lex
row-sparsity I| - ||z2,0 | - ||£2,1
column-sparsity |- 1leos I 1lers
low-rank rank(-) |- Il

Table 5.2: Structural properties and nonconvex and convex promotion functional

structure. Only the combination of the nonconvex functionals that are promoting a
certain structural property will be beneficial for a reduction of the number of measure-

ments.

In general, by combining different structural assumptions, we reduce the d;ds degrees of
freedom of a general (d; x dy)-matrix considerably. Nevertheless, the necessary number
of measurements depends on the recovery strategy that is employed and Oymak e.a.
[116] show that there is a significant difference for convex and nonconvex approaches

for simultaneously structured matrix recovery.

A first approach towards a solution is to only mildly relax the formulation of the prob-
lem (5.2) to attenuate its nonconvexity but not progressing until reaching convexity.

This leads, finally, to the model problems we want to work on in this chapter:

(1) constrained problem formulation: the objective functional F(X) to be minimized
is a combination of (quasi-)norms of the signal in matrix form X under the linear

constraint

t
min Fy (X) =Y A X]w.. (5.4)
s=1
st. X =Y

(2) unconstrained problem formulation: the objective functional F5(X) to be mini-
mized is a combination of (quasi-)norms of the signal in matrix form X itself and

some (quasi-)norm of its residuals

t
min Fy(X) = ) A X|

N, + pl|2(X) = Yln,. (5.5)
s=1
where \s € Ry, s € [t] and || - ||n., || - ||, are one the following (quasi-)norms
(i) |- 17, for 0 < p < 2 promoting sparsity,
(i) | - HZ ., for 0 < p’ < 2 promoting row-sparsity,
P
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(ii) || - ||§://,27 for 0 < p” < 2 promoting column-sparsity,

(iii) || - Hf;;/, for 0 < p” < 2 promoting low rank.

We note that the popular problem of low rank and sparse matrix decomposition also
known as robust principal component analysis (RPCA) as in [19, 27, 166, 168, 170] is

a special case of our setting with ® = I;,.

The solution of the nonconvex minimization problems above is in general a hard prob-
lem and standard relaxation based compressed sensing approaches will fail to be appli-
cable. In this chapter, we present a generalized Iteratively Reweighted Least Squares
method inspired by the ability of IRLS-type algorithms to approximate the different
nonconvex problems for the individual structures, for some of them even with a su-
perlinear rate of convergence. This approach was already explored for the special case
of row-sparse and low-rank matrices in the master’s thesis of Christian Kiimmerle
[84], which was co-supervised by the author of this thesis. The concept is extended
to general simultaneously occurring sparsity-type structures for matrices and convex
combinations of those in this chapter of the thesis, based on unpublished results in
joint work with Christian Kiimmerle. The present version of IRLS, named General-
ized Iteratively Reweighted Least Squares (GIRLS) will be able to handle any kind of
combination of nonconvex (quasi-)norms (5.2) and (5.3) as described in full detail in
the later section of either the signal in matrix form X itself or different kinds of linear

measurement residuals.

This extension to a generalized framework contributes novel theoretical results while
no further numerical experiments were conducted beyond Kiimmerle’s master’s thesis.

Therefore, we refer to his work for details on numerical tests in this context.

Moreover, the optimal choice of the parameters A\; € R, s € [t] is still an interesting
open problem, where it would be possible to explore methods used in the framework

of multi-parameter regularization [99] and to apply them in our setting as well.
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5.1 AUXILIARY FUNCTIONAL AND GENERALIZED IRLS ALGORITHM
FOR STRUCTURED MATRICES

As we observed in Definition 2.37, each of the (quasi-)norms ||-||, (or also ||-||n,) above
can be expressed as a classical reweighted fo-norm ||-||¢,(w,) if considered in a vectorized
formulation. The weight matrices corresponding to the different sparsity-types have
certain structural patterns and Table 5.3 summarizes these structures presented in
Section 2.4. Note that the weight matrices W for £5(Wy)- minimization (or analogously
for W, and ly(W,)) given in the table are applied to the vectorized version of Z,
Z oo € RU% and we use the indices | € [dyds], 1 = (i — 1) -dy + j, i € [d1],7 € [da].

property - 1. weight matrix W, € Rédzxdidz
sparsity |- le, W, = diag(W,)"® with W, = |Z,|P~2
vow-sparsity | || lle, | Wo = diag(Wi)i2® with Wy = (232, 1 Z) ">
column-sparsity | || |l¢,, | W, = diag(W))2% with W; = (0, ]ZZ-]-\Z)I%2
low rankness |- ls, W, =14 @ Wp, with W, = 22"

low rankness |- ls, W, =Wgr @Iy with W =212

Table 5.3: Structural properties, corresponding quasinorms || - |
for ¢5(W;)-minimization

~. and weight matrices

To prevent singularity and instability problems a smoothing factor ¢ can be incor-
porated into the weight matrices and we refer to (2.76) for the respective smoothed

versions W (X).

Having understood these facts, we can use the linearity of || - HZ(W) to unify the sum

of reweighted fy-norms for a vector z € R? and weight matrices W,, € R? as follows:

N N d d N
P EARED BHBUAEDS (Z%’i) Z = sy w60
n=1

n=1 i=1 i=1 \n=1

We can apply (5.6) to obtain the objective functional F} in (5.4) and the first term in
the objective functional F; in (5.5)

t t di do dy da t
S Ky = 33 S a2 = 3030 (z AS<WS>”‘) X
s=1

s=1 i=1 j=1 i=1 j=1 \n=1

(5.7)

= [ Xeeelltyse_ awy = 1 Xveellizmn)-

where the weight matriz W, = ZZ=1 AW,
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We define the weight matriz Wy of the residual term ®(X) — Y as

W = ulW,. (5.8)

As a conclusion from the calculations above, we can reformulate (5.4) and (5.5) in a

unified simple structure as follows

(1°) constrained problem formulation: the objective functional F;(X) to be minimized
will be a combination of (quasi-)norms of the signal in matrix form X under linear
constraints

min F7(X) = || Xvecl7, w) (5.9)

s.t. (X) =Y,

where W, is defined as above.

(2°) unconstrained problem formulation: the objective functional F»(X) to be min-
imized will be a combination of (quasi-)norms of the signal in matrix form X

itself and its residuals
min F5 (X) = || Xvee|l7, 1) + 12(X) = Y17, 1), (5.10)

where W, and W5 are defined as above.

Remark 5.1. In the even more general case, one can consider several measurement sets
¢.(X)=Y,, rel[R]

where @, : My «q, — R™, Y, € R™ and the corresponding residuals with different

structures enforced by the different norms || - |

Ny
1®:(X) = Yolln,,r € [R].

The unconstrained problem formulation generalizes to the objective functional Fy(X)

as follows

t R
min F(X) = > Al X v, + Y | @o(X) = VoI, (5.11)
s=1 r=1

To keep notations simple, we restrict the formulation of the problems, algorithms and

analysis in the rest of the paper to a single linear constraint.
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One key tool to treat the different terms to be minimized are the transformations of
(5.2) and (5.3) to their unified reweighted ¢;-norm minimization of the form of (5.9)
and (5.10).

5.2  ALGORITHM FORMULATION FOR THE CONSTRAINED CASE

At this point, we introduce a useful tool for the formulation and theoretical analysis
of an iteratively reweighted least squares algorithm for problems of type (5.2) in the

form of the following functional:

Definition 5.2. Let ® : My, 4, — R™, Y € R™ and X € My, «4,- Moreover, consider

n. for s € [t] and the corresponding parameters e > 0,s € [t]

the quasi-norms || - |

as well as the weight matrices W, € Ré-d2xdidz corresponding to the quasi-norms in

t

dependence of X and €,. Set W1 = >~ Ap;W,. We define the auziliary functional for
s=1

the constrained algorithm as

jGIRLS(X7 (65)5:1,...,t7 (Ws)szl ..... t) =

1 ) d ) - (5.12)
2 HXV«ECHZQ(WQ + Z €s - 1d1'd2H£2()\spSWS) + 2 = P [|[WESP2 T

s=1

Next, we define the auxiliary variable for a matrix X € My, «4,

i1 (X)/(dy - do)V/Pe, for || [~ = 1II- Zfs’
0 1/2
TKs+1 ( ' (Xij)2> /d}/psa for H ’ |Ns = H ) ggs,psv
N(X) = L
K41 ( i:ll(Xz‘j)z) )/dé/psa for || - v, = 1[I 117 .
| o +1(X)/(min(dy, dz)) /7, for || - ln, = [ - ;-

Moreover, let

jGIRLS(W)én—H) - jGIRLS(X(n+1)7 (E(sn+1))s:1,...,t7 (Ws(n+1)>s:1,...,§—1a VV7 (Ws(n)>s:§+1 ..... t)-

An iteratively reweighted least squares algorithm for the approximation of the solution
of (5.2) can be formulated as an alternating minimization of the just defined auxiliary

functional with respect to its arguments.
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Algorithm 5 Generalized IRLS for structured matrices (GIRLS)

Input: & : My, 4, — R™ Y = &(X,) € R™ for ground truth matrix Xy € My, xa,,
nonconvexity parameters p, for s € [t].

Output: X X@ € My 4,

Initialize ego) =1, set WS(O) = AsDs * Lg,.a, for s € [t].

repeat
X0 = arg min Jorres (X, () sm1, 6y W) o1 o) (5.13)
>(X)=Y
== . Xvec 2 n
arg min ¥ veclly, oy
(W oo (o W 0 8 1) (¥)
fors=1,...,t
eg"“) = min <e§"), maX(./\fs(X(nH))a g)a max(/\/;(X("H)))) with € > 0,
(5.14)
fors=1,...,t
( arg min jGJRLs(W)gnH); for || - [|v, = || - Zfs?
W>0,W diag .
arg min jGIRLS(W>gn+1)7 for || - [|n, = | - ]é);p '
W=I,;, oW, W >0,Wdiag w
D) _ argmin _ Jorres(WE, for |- v, = |- 1%,
S W=Wgl;, ,W>0,Wdiag
arg min jGIRLS(W)gn+1)a for || - [|v, = || - g;?
W=L;, ®W,W >0
argmin  Jarrrs(W)I Y, for [| - v, =l - 5,
L W=W®Id1 ,W>0
=W, €(n+1)(X(”+1)) as defined in (2.76). (5.15)
t
W1(n+1) _ Z AspsWS(nH)-
s=1
n=n+1.

until stopping criterion is met;
Set ng = n.

We stop the algorithm if e = 0 for s € [t] and set X@ := X™ for j > n. However, in
general, the algorithm will generate an infinite sequence (X ™),y of distinct matrices
and it is convenient to keep the variables e,, W fixed as soon as egn) falls below an

appropriately chosen threshold and only continue updating the other variables.

The details of the derivation of explicit expressions to calculate X+ Ws(n) as de-
fined in (2.76) is omitted here. They can be obtained by deducing the appropriate
Langrangian from Jgrrrs and the corresponding constraints and minimizing the re-

sulting functional, where each of the minimization steps carried out in the algorithm
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constitutes a convex optimization problem.

5.3 THEORETICAL ANALYSIS AND CONVERGENCE RESULTS FOR THE
CONSTRAINED CASE

In the following section, we will have a closer look at Algorithm 5 and point out some
of its properties. In particular, we show that the iterates (X (™), cn stay bounded and
the fact that two consecutive iterates are getting arbitrarily close as n — oo. These
results will be useful to develop finally the proof of convergence for Algorithm 5 under

conditions determined along the way.

5.3.1 UNIFIED PRESENTATION OF PROPERTIES FOR DIFFERENT SPARSITY STRUC-
TURES

At this point, we want to summarize certain useful notations and matrix properties
in their specific variants for the sparsity structures mentioned above and give their

formulation for general structured X € My, x4,:

(i) RIP: A map ® : My, g, — R™ fulfills the RIP for a structure s, of order kg with
constant d; € (0, 1) if for every matrix X with sparsity structure ss of order k;
holds

(L= 0)IXNE < [@XONZ < (1 + 8 X (5.16)

Moreover, each of these versions of the restricted isometry properties implies the cor-
responding nullspace property (NSP) ([88, 117, 124, 158)):

(ii)) NSP: A map ® : My «q, — R™ fulfills the NSP for a structure s, of order k;
with constant vs € (0, 1) if for all elements n € My, x4, of the nullspace of @,
N (®) holds

Ims,llv, < vellnsell - (5.17)

(iii) Best k,-term approximation error[54]: For p, > 0, the best ky-term approxi-

mation error to a matrix X € My, «q, is defined by

Br. (XN, == inf{||X - 7|

N., <4 has sparsity structure ss of order k:s}.

A quite straightforward consequence of the above NSP is the following corresponding

inequality
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(iv) Inequality from NSP [35, 55, 116]: If a map ® : M, w4, — R™ fulfills the NSP
for a structure s, of order kg with constant v, € (0,1) and Z, Z' with ®(Z) =Y
and ®(Z') =Y we have

1+~
12 = 2w, < 7 (1 Z'lv. = 2]l + 285 (Z)w.) (5.18)

S

5.3.2 PRELIMINARY RESULTS

In this section, we formulate several Lemmata that will be fundamental ingredients for

the proof of convergence of Algorithm 5.

In the following, we want to assume that our desired solution matrix X, has sparsity
structure s, s € [t] of order kg, s € [t] and the map ® fulfills the corresponding NSP of
order K, s € [t] with K, > ks respectively, where K is representing a generous guess

of the sparsity level k.

Denote \7((;"13%5 = Jarrps(X™, (Egn))s:1 ..... t (Ws(n))s 1

ward observation is that at iteration n of Algorithm 5 the following holds

¢). Our first quite straightfor-

77777

t
s = (u X i+ 31 Lacal i, = 30— IOHP n@)
s=1
d1 dg dl d2

t
- Z_;)\S% 121: WM a2 Z Wi 2 =P (e
= Zt:)\sfegn)(X( )

s=1

(5.19)
P (X2 4 )T o for -l =112
Sl (S X+ e) T for |-l =11

where f3 (X) = Zj?zl <Z?;1 X5, ]2 + 62);723 for || - ||n, = || - 2’:572, (5.20)
(X7 1) %) dor |- v = 111
w((XTX 4 1u)F)  for | = -1

We note that f is a good approximations to || - [|n,, which will be useful later.

Furthermore, we observe that due to the minimization properties resulting from Algo-

rithm 5, the following monotonicity property holds.
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Lemma 5.3. The inequalities

Téinrs = TUXD (oot s W) imi,0)
> Jarrps(X ™, (6271))5:1,...,75, (Ws(n))s:l,...,t)
> Jarres(X™Y, (e
> Jarrs(X ™ (

hold for all n > 0.

Proof. Here the first inequality follows from the minimization property that defines

X @+ “the next inequalities from et < e&”), and the last inequality from the mini-
mization properties that define W™, O

Due to Lemma 5.3, we can state that

Jorrs(X™ (€)oo 4, (Ws(n))szl,...,t) < Jarrps(XW, (6§°))s:1,.,.,t, (WS(O))szl,.,.,t),

[ARE)

where the right hand side is a constant and this will help to obtain the boundedness
of the iterates (X ™), cn:

Lemma 5.4. The sequence of iterates (X(”))neN defined by Algorithm 5 fulfills

N, < Torres (X5 (€Yo o WOy ) =T .

t
D Ax ™

s=1

Proof. For all n € N

t t
Q) n n n n
Z)\SHX(n)HNS S Z)\sf]\;l (X( )) = jGIRLS(X( )a (Es ))szl,...,t7 (Ws( )>s:1,...,t)
s=1 s=1
< Terrrs(XY, (€)sor e W) oot 1) = Tarrrs(0),

where the last inequality is a consequence of the monotonicity property stated in
Lemma 5.3. ]

As a next result, we would like to state that from the sequence j((;?)RLS being conver-
gent it follows that the iterates X(©@ ... X0 X®+D  of Algorithm 5 are getting

arbitrarily close for n — oo.

Lemma 5.5. For the iterates of Algorithms 5 it holds

lim || XM — X012 = 0.
n—oo
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Proof. For each n = 1,2, ... we have

2 [jc(%m \7@7}225] > 2 [jc(?RLs - jGIRLS(X Wl)a (€Yo, oty (W) t)]

= <(X(n) + X(n+1))veca (X( ) X(n+1))vec>

12 (Wl(n))

Analogously to [35], we notice that the (W )-norm is strictly convex and, therefore,
its minimizer, which we denote by Xy, is unique. It is possible to characterize this
minimizer by

<<XW>vecv 7]vec>E2(W) =0
for all n € N(®). Since X1 is the minimizer of ||Xvec||? — and XM — xn+l) ¢
2
N(®), it also holds that !

(n+1) (n) _ (n+1)
(Kjee 5 (X = X )vec))

vec

Moreover, we need an estimate on Jmin(Wl(")) to obtain a bound on the difference of
iterates independent of the reweighting matrix. Since 1 = 0 (X)omax (X 1) for any
invertible matrix X, it is sufficient to calculate o ((WL™)~1) to gain information on
Tmin(W{™). Notice that (W ™)~1 can be bounded by direct calculation as follows

2—ps

2—ps
(W) < (W X)) 7 < (T 5

Hence, we conclude that amin(Ws(")) > (jG((})RLS)l_ﬁ.

We can then summarize the results above to obtain

n+1 n n n n
jGIRLS jC(?I—];L)S] = <(X( ) + X( —H))veca (X( ) — X( +1))Vec>gQ(Wl(n))
= <(X(n) _ X(n+1))veca (X(”) _ X(n+1))vec>

- ||(X(n) - *XV(H—’—I))\Iec||2 ¢
52( ;1 Aspsws)

(W)

t
= 3 Al = X0 2

t
2 Z )\spso—min(Wg(n)) || (X(n) - X(n+1))VEC HZ

t
0 _2 n n
=3 AT rrs) P (X = X D) 2,
s=1
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= C|(X™ — XOHD) 2.

The monotonicity property stated in Lemma 5.3 and the boundedness of the sequence
<\7((;})RLS> o imply that

: (n (n+1)
nlgrolo(jGI)RLS - GIRLS) =0,

hence also
lim “(X(n) - X(nﬂ))vecnig =0.

n—0o0

]

From the monotonicity of the components of <e§n)> we know that e, =
s=1,...,t

lim,, o0 ™ exists and is non-negative. Define € := (&)

-----
s=1,...,

will play a role in our proof of convergence, especially if all components of € are positive.

Definition 5.6. (e-perturbed objective functional ) We define the e-perturbed objec-

tive functional to be of the following form

t
FX) =) AR (X)

s=1

and the corresponding minimization problem

i ¢ . 21
@(%;EYF (X) (5.21)

Notice that, if we knew that X (™ converged to a point X, then, having in mind (4.25),
F¢(X) would be the limit of Jorrrs(X™, (egn))szl 77777 o ( s(n))szl 77777 ) for n — oo. In
the case that F'° is nonconvex one might practically only be able to find critical points.
We denote by Z¢(Y') its set of global minimizers Z with ®(Z) = Y. Moreover, let a

minimizer in dependence of (e5),_, , be denoted as

-----

X € argmin F¢(X) = ZY). (5.22)
o(X)=Y

Lemma 5.7. Let € > 0 and Z with ®(Z) =Y. Then Z is a critical point of F*, i.e.,
g di-da
V2(F)NZ) = (aFTz(Z)>l,1 = 0 if and only if (Zyec, vec)wr(z,e) = 0 for all n € N (®),

t
where Wi(Z,€) = > AspsWs(Z,€5). In the case that F€ is convex, i.e., ps > 1 for all
s=1

s € [t], (Zvec, Mvec) W (z,e) = 0 implies that Z = X¢ is the unique minimizer.
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Proof. First we prove the "only if” part. Let Z be a critical point of F'° meaning
(F<Y(Z) = 0 and n € N(®). Consider the function F*(t) = F*(Z + tn) — F<(Z). Note
that (F€)(0) = (V2(F)(Z)vee; vee) and that, if Z is a critical point of F€, 0 is also a
critical point of F*, i.e., (F€)(0) = 0. Therefore, if

0= (Fe)/([)) = <VZ(F6)(Z)vecanvec)> = <<Z )\S(VZ( ]E\TSS)(Z)) 777Vec>

where
( dy-da
(po21 (22 +)"F) for || - I, = 1| - 117,
=1 dds
e ;
(i (Shzr+e) ™) ol =11,
=1
_ dy-da
V €s Z v — Bar2 s
(V2[5 )(Z) e (p |ZU|2+€) : ) for || I, = || - 117
1=1
s—2
(p2" (227 + & 1)) dor|llw =1
ps—2
( 2(27Z+ 1)) - for el =105,
. I = S Ps
pS diag <(Zl +e€) 2 )l—l Zvec for || v, = I - s’
T pe—2x di-de
. d 2 s
DPs dlag ((Z]il |Z74]’2 + Ez) > ZVBC for H ’ ’Ns = H ' Z,ps’
=1
ps—2\ d1-d2
B ps diag ((Ejil ‘Zi'P + €§> 2 ) Zveo for ” . |NS - H ' ]4?:5,2’
=1
s—2
Ps <<Id2 X (ZZT + 6 Idl) E ) Zvec for ” ’ ’Ns = H ) g;s’
s—2
2 (7724 € 10)™ ©1,) Zuue for |- I, = - 15,

It follows that

0= Z )\sps Z Es )vec> 77vec>

= <W1<Z, E)Zvecanvec> = <Zveca77vec)>W1(Z,e)-

Now we treat the "if” part. Let Z € My, «q4, be such that ®(Z) =Y and assume that
for all n € N (®) holds

0 = (Zyecs 77veC>W1(Z7€)'

Following the lines of the previous calculations, we see that

0= <Zveca nvec>W1 7€) <W1(Z E)Zveca 77Vec> = <(VZ(F€)(Z))VGC7T/VGC>'

This means that (Vz(F)(Z))ve is perpendicular to the nullspace of ® and therefore
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it holds
(VZ2(F)(Z))vec € Ran(®*) and ®(Z) =Y.

Therefore, Z satisfies the KKT conditions of (5.21) and Z is a critical point of F© under
the linear constraint. This proves the first part of the lemma.

For the convex case, assume that ®(Z) =Y and (Z,n)w,(ze = 0 for all n € N (D),
where W1 (Z, €) is defined as above. We shall show that, if (Zyec, vec)w;(z,6) = 0, Z is
the minimizer of Ff for all ®(Z) =Y and, therefore, coincides with X¢. Since F* is a

combination of the functions fy , for any point Z,, we obtain by convexity

FE<Z) = Z /\sfje\;s(Z) > Z Asf]ifss(zﬂ) + Z AS((VZ(fJG\i)(ZO))Vem (Z - ZO>vec>

s=1

= FE(ZO) + <(ZO)V607 (Z - ZO)vec>W1(Zo,e)-

If we take now Z such that ®(Z) =Y and Z, = Z, we have that Z — Z € N(®) and

obtain

F(Z) 2 F(2) + (Zwee: (Z = D)vec)wi(z) = F(2),

which yields the result. O
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5.3.3 CONVERGENCE RESULTS

Finally, we can state the convergence results for Algorithm 5.

Theorem 5.8. iz Y € R™. Let ® : My, «q, — R™ and the functional

Terrns(X ™, (e8) oo,y W) omn, ) be defined for (e)smr oo (W)
erated by Algorithm 5 for alln > 0. Assume that the matrix Xo € My, «q, has property
S, of order k, for all s € [t]. Let Z¢ be the set of accumulation points of the sequence

(X™), cn generated by Algorithm 5.

.....

(a) the matriz ® fulfills the corresponding NSP for all structures Ss,
s € [t], of order K, as defined in Definition 4.10,

or (b) if ps = p for all s € [t] and, if there exists some sy € [t] such that ® fulfills
the NSP corresponding to structure Sg, of order K,

then Z¢ consists of a single point X that has sparsity structure Sy of order K,
for all s € [t] and X = X, is the solution to the minimization problem (5.4).
Moreover, in case (a), we have for ks < Ky, s € [t| and any Z with ®(Z) =Y
that

206 (1 + )

0 (523)

t t
S NNIZ = Xlln, €Y CiBr.(Z) ., where C, =
s=1 s=1

(i) If € = (€&),—y,, with €, > 0 for any s, then each point X € Z¢ is a stationary

point of the e-perturbed objective functional Fy. In the case that Fy is convex,

i.e., ps > 1 for s € [t] then X = X is the unique global minimizer of Ff(X).

(iii) In the case of (ii), if the matriz ® fulfills the corresponding NSPs corresponding
to the structures sy of order Ky for all s € [t] as defined in Definition 4.10 with

Yo < 1 — Kfﬁ (or equivalently, if % < K,), then we have, for all X € Z°N Z¢
and all Z with ®(Z) =Y and any k, < K, — {2 that
St CBr.(Z)n, if €5 > € for all s € [t],

t
Y AIZ =Xy, <
s=1

Zts:l Comax B (Z)n, if €5 <€ for any s € [t]

1=ys | Ko—ks— 12

As a consequence, this case is excluded if there ezists a matriz Z with ®(Z) =Y

with C, 1= 2s(t7) { Kokt 2

and sparsity structure Ss of order ks < K — 12_%
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Proof. (i) Since ¢, = 0,s € [t| and by monotonicity, there exist ny € N such that
") < & but Y > & By the definitions of ¢, this can only happen if the third
terms of the definitions are the minima. This, on the other hand, means that the n,
are equal for all s € [t]. We denote this number as ng in the following. It holds that
the sequences (egn))neN, s € [t] are equal for all n > ng. Thus, we can define a sequence
(€™),5n, With € = e s e 1.
We first assume that there exists an 7 € N such that €™ = 0. Then we have X = X
and it holds that B, 1(X)y, = 0. Otherwise, we have that ¢™ > 0 for all n € N. In
this case, there exists a subsequence (1n;)ien of (n)n>n, such that e+ < ) for all
[ € N. By Lemma 5.4, (X (”l“))l is bounded and we can extract a further subsequence,
which we denote again by (X™*1), and that converges to some X := lim;_,o X ™+,
Since lim;_,. e™*1) = 0, it also follows that lim;_,. B, +1(X ™))y, = 0. Moreover, by
continuity of the non-incresasing rearrangement resp. K; + 1-th singular value, we get
that B, 1(X)y, = 0 and thus X is a solution to ®(X) =Y with sparsity structure s,
of order Kj.
We now show that the whole sequence converges to X. According to (4.25), for n > ny,
it holds that

jGIRLS(X(n): (€§”))5:1,...,t, (W™ oz, Z Asf X(” (5.24)
Since (X(”H’l)) o0 X and e(nl"rl) H—OO> 0

Tarrns(X™ (M) oy o, WM 2y (5.25)

By the non-increasing monotonicity property stated in Lemma 5.3,
that the same holds true for the whole sequence (X™),5,, ie.,
Tarrrs(X™ (€M) omy o, W) 225 2 A X||y.. By introducing the

structure-dependent dimension parameter d,, where

p
dl'dQ for ||'|€ps’

ds _ d1 fOI‘ || ’ HZZ,ps’
d2 for || ’ ”617372’
\min(dl,dg) for || - Hfsps7

we see that

jGIRLS Zd As(e™)Pe < Z/\ X"y, < jGIRLS7 (5.26)
s=1
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for n > ng. Since lim,,_, Zizl dsAs(€")Ps = 0, we conclude that also

(5.27)

Now, it remains to show that X — X.
By Lemma 4.13

1+ /< " _
- (X 1w, = X n, + 285,41 (X)w,)

— Is

IX = Xy, <

and therefore,

— [|x™)]

%Z)\HX X ||N<Z>\

N.)

t
— ZASHX(W
s=1

as Bk, 11(X) = 0 due to the fact Aj(X) = 0. Thus, we can summarize
1 t
P Z AslIX =

mln HVS
<t
Zs 1

s=1 s=1

-----

Ns?

t
1 _
¥ S DMK - X,

s=1"' g5=1

)

Taking the limit n — oo gives hm | X — X™|| - = 0. Therefore, it follows that X ™ —

X.
To obtain (5.23), we first consider a variable Z with ®(Z) =Y and use Lemma 4.13

min ||X — X(
s=1, t

1 +'ys _
E AllZ = Xy, < E (XN~ = 1Z1ln, + 28K.(Z)w.)
(5.28)

205 (1 + 75
_Z 1_ 7 T 5 (Z)

where the second inequality follows from the fact that X is the unique minimizer of
(5.4).
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In the case, where p; = p for all s € [t], we only need that the NSP corresponding to

only one of the structures sg holds.

%_L
ind2 P

msln t
We first observe that for all Z holds that mzszl

t
22:11 As Zs:l
Therefore, we also have || X™ |2, 222 || X ||%.. By the equivalence of (quasi-) norms we

< 2%

can conclude that also || X ||y, == || X||x,. Using again Lemma 4.13, we get
I = X0, < 722 (1K = X, + 2802 (X))
and obtain immediately
I = X0 < 752 (1K, - 1)
= Co (| X ,) -

Taking the limit n — oo yields again lim || X — X ™|z = 0 and proves the convergence
n—oo

with less restrictive assumptions.

(ii) We shall first show that X™ — X¢ for n — oo with X¢ being a stationary point
of F¢(X). We already observed that (X™),cy, is a bounded sequence and, hence, this
sequence has accumulation points. Let (X());cy, be any convergent subsequence of
(X™),cn, and X its limit. We want to show that X = X*.

Since W1 (X €), as defined in Lemma 5.7, depends continuously on X and e, it follows
that lim W = Bim Wy (X0, () sen,..) = WX, €) = T,

On the other hand, by invoking Lemma 5.5, we obtain also that X+ — X [ — oo

nH—l

and, therefore, also hm Wy — ;. We observe that with the minimality property

of X+ the KKT condltlons for the optimization problem in (5.13) are fulfilled, i.e.,
W™ X +D ¢ Ran(®*) and &(X V) = V.

This implies that there exists # € R™ such that Wl("lH)X () = ®*(#). Note that for
all n € N(®) and all n;,1 > 0,

vec vec

(K )yt = W XD, hee) = (87 (0), e = (6,2 () = 0.
Conse_quently7 (Xvees Tvee) i, = lliglo(X\(,ZéH), nvec>W1<nl) = 0. By Lemma 5.7, this implies
that X is a stationary point of /' and even coincides with the unique minimizer X¢ in
the convex case.

(iii) To prove the error estimate stated in (iii), we first observe that with the minimizing
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property of X¢, for every Z with ®(Z) =Y, we have

Z)\ 1 Xy, < F(X) < F(Z) < ZA 1Z]|n, +Zd P

s=1

Hence we obtain

t t
- Z )‘SHZ”NS < ZdSAS“:gS
s=1 s=1

Furthermore, using Lemma 4.13, we have that

ZAIIXG Z||N<ZA ”Sd P28, (2)n,). (5.29)

From the definition of €, we obtain

t t
Szl)\sejgs _ TLII_{EOZAS(G?))]?

lim S0 Ay (ry, (X ™))Pe €; > € for all s € [t]
n—o0

| m A max(rk (XM))ps €, < & for any s € [t]
n—oo
S A, (X)) e, > € for all s € [t]

S Asmax(ry, (X6))Ps e, < € for any s € [{].

However, it is easy to see that |Sx, (Z)n, — Br.(Z') N,

vation and Lemma 4.13, we conclude that

< ||Z — Z'||n,. From this obser-

(Ks+1— ky)dgebs

(Ks+ 1 — k) (rg, (X€))P €s > € for all s € [t],
<
| (K + 1 — k) max(rg, (X€))Ps e, < € for any s € [t]
_ (|IX€ = Z||n, + Br.(Z2)n.) €s > € for all s € [t],
B maX(HXE Z\ln, + Be.(Z)n.) € < € for any s € [t]
(}Jrzs[d € + 26, (Z)n.] + Br.(Z)n.) €s > € for all s € [t],
<

(F22 max{d,e? + 25, (Z2)n. + B (Z)n]) e < € for any s € [1].

- 182 —



Since we assumed that K, — k, > -2

1—s
- 2(Ks —ks) +3 ~
dye? + 26, (Z)n, < Z
€ B (Z)n, (K. — ) — 12%51@3( ).
in the case e, > ¢, for all s € [t] and
_ _ 2K, — k) +3 .
e+ 20 (Z)n, € maxd () + 20 (D)) < L (B (D))

1—7s

in the case €, < € for any s € [t]. Plugging this into (5.29) and continuing as in the

calculation (5.28) gives

t t
D ANZ =X, <D A2 = 2w, + 112 = X

NS)
s=1 s=1
~1 s(1 _'_'VS) % > >
< ZA Ouin( @)Y = VL, + Z 5 (1%, = 1211, + 264, (2)x.)
St ANCB (Z)n, €; > € for all s € [t]
S AComax By, (Z)n, € < € for any s € [t]
(5.30)
[

Remark 5.9. The theoretical error bound obtained in (iii) does not outperform the
bound obtained by the minimization of one norm, i.e.;, the exploitation of only one
structure. However, numerical experiments in the thesis of Kiimmerle [84] show that
practically the recovery error is significantly lower for Algorithm 5 than using only one

structure (except of cases, where one structure is extremely dominating).
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5.4 ALGORITHM FORMULATION FOR THE UNCONSTRAINED CASE

Analogously to the constrained case, we also want to introduce a similar auxiliary
functional that will be helpful for the formulation of a second version of IRLS for
problems of type (5.5), assuming that m = my - ms and that ®(X) —Y € R™ can be

reshaped into a m; X me-matrix:

Definition 5.10. Given ® : My w4, — R™, Y € R™. Consider || - | | - ||n, and the
corresponding real numbers €, > 0,¢, > 0, and weight matrices W, € RA-dexdid2 1}/ ¢
R™ ™ for s € [t| derived from the norms || - ||n, and || - ||n,. Set Wi = >0 Ap W
and Wy = up,W,.. We define the following auxiliary functional

Ns7

jGIRLS2<X7 (Es)szl ..... ty €ry (Ws)szl ..... ts Wr) =
t
1 _
(X By + 3 s Lol + 2= pONIW/ DI (53
s=1

(X)) = Ylyws) + & Lalleyr) + (2 - pr)u!!WfT/(p“”I!@

Again, we define an additional auxiliary variable for the formulation of the algorithm

;

i, (P(X) = Y)/mi/rr, for |- [v, = I Iz,
1/2
m2
TK.+1 Zl Y)z‘j)2> Jdy/"r, for ||+ |lv, = |- [
—_ ]:
NH(X) = . o
1/pr r
K41 ( ; Y)ij)2) >/dz/p , o for |-l =117
| T+ (R(X) = Y)/(min(my, mg)) /P, for |- [[v, =11 1[5, ,
and
(
T (P(X) =) /m!/Pr, for || - [ln, =11 - 117,
12
- 1/pr .
T, (Zl((q)(X) - Y)z’j)2> [/, or | v, = |- Orpe
M,(X) = =

my 1/2
- ((;«@(X) -¥)) )/mé/pz for - v = I .

| Fmin(my no) (P(X) = Y)/(min(my, ma))or, - for || Iy, = |- |15, -

Moreover, let

jGIRLSQ(W)(n+ = JorrLs(X D, (€£n+l))u:1

---------
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for u € [t + 1] corresponding to s € [t] for w € [t] or r if u =t + 1.

GIRLS2 again performs an alternating minimization of the functional Jgrrrse.

Algorithm 6 Generalized IRLS for structured matrices and residuals 2 (GIRLS2)

Input: ¢ : My,.4, > R™ Y = &(X) € R™ for a ground truth matrix Xo € Mg, xdy,,
nonconvexity parameters p, for s € [t], p,.

Output: XU X@ € My «q,

Tnitialize ¢ = 1, set wo — AsPs * Lay.a, for s € [t] and 0 — 1, set w0 —

KDy - [m1-m2'
repeat
X = arg min Jorrrsa (X, (Esn))s:L...,ta (Wgn)%:lmtv Wr(n)) (5.32)
B(X)=Y
_ in | X2 . PX)-Y|? |
arg min 1 Xveelly, pmy + I1BCX) =Y, o)
— [(Wl(") + d*o WQ(") o (ID)_I od* o Wz(n) (Y)]
mat
for s € [t] (5.33)
) = min (&), max(NL (X), &), max(AL (X)) and (5,34
6£n+1) = min (Egn)7 max(./\/;(”H), 6)7 Ms“n+1)) with €>0 (535)
( arg min jGIRLS(W)SLnH), for ||+ |ln, = || - ||I£:uv
W>0,W diag _
argmin _ Jorresa (WS, for || v, = - 172,
W=L,, &W,W>0,Wdiag o
WD argmin Tarres2 (WS, for || |ln, = |- [
u W=W®I;, ,W>0,Wdiag o
arg min jGIRLsz(W)(unH)a for ||+ |ln, = || - gzuv
W=I,,®@W,W>0
arg min jGIRLS2(W)1(Ln+1)> for [| - ||, = | - |g:u
(W=W&l,, , W>0
(5.36)
W_ (s (X)) as defined in (2.76) u € [t],
B w 6(nH)((CI)(X(”“)) —Y) as defined in (2.76) u=t+1.
t
D S A ad WD — o) 6
s=1
n=n+1.

until stopping criterion is met.;
Set ng = n.

We stop the algorithm if ¢, = 0, for s € [t] and ¢, = 0. In this case, we define
X .= X® for j > n. However, in general, the algorithm will generate an infinite

sequence (X ™), oy of distinct vectors and it is convenient to keep the variables (e, W)
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or (€., W,) fixed, as soon as € or €., respectively falls below an appropriately chosen

threshold and only continue updating the others.

5.5 THEORETICAL ANALYSIS AND CONVERGENCE RESULTS FOR THE
UNCONSTRAINED CASE

The preliminary results obtained for Algorithm 5 can be deduced in an analogous man-
ner, e.g., by using the monotonicity property and the boundedness of the iterates. This

is why we omit the details except for the parts that demand for significant adaptions.

5.5.1 PRELIMINARY RESULTS

We start with the result that the iterates of Algorithm 6 are coming arbitrarily close

for n — oo.

Lemma 5.11. Fiz Y € R™. Let ® : My, «q, — R™ with omin(P) > 0. For the iterates
of Algorithms 6, it holds that

lim || X — X2 =,
n—o0
Proof. For each n = 1,2, ..., by monotonicity we have

n+1
|:‘7GIRLSZ jC(HRL)SZ:|
R =m0 () 2 000 6]

s=1,...,
vty — XV, +ex™) -v|? le(xT ) Y2

wll?

|| VeC W(”)) W(”)) W(”))

Moreover, if we exploit the convexity of the functional Jgrrrs2 in X and the minimality
property of X1 we obtain that

2
I;

vy — 1K,

£ 2(XE, (X0 = X000,

vec

X ey FIBX) = VIE o — B~V

(n+1)
> XN oo,

—{—(X(n) _Xn—i-l)

W(")

mwww = X0 ) = XN,

HIRXT) = V7 ) + 2BXD) = ¥, o(X )—X(”“)))>W<n>

+ [ = XOH) W [@(X ™ — X)) — @(x ™) — Y2 W)
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= (XM — X ()T pm) x(n) _ x(ndn)y

vec

Next, we calculate Umin(Ws(")) and O'min(Wr(n)) and continue the estimation as follows

n+1)
|:\7GIRL52 jGIRLSQ]

Z Z Aspso'mln<Ws(n)>HX(n) - X(TLJrl)”%

s=1

t
3 1 Gin (W) (X — X402

s=1
t
~(0 1-2 n n
= ZAsps(jC(U)RLSQ) pe | X — X5,
s=1
¢ 2
~(0 — = n n
+Z“pr(jG(I)RL52)1 7 Onin (@) | X — XD,
s=1

2
Z)‘Sps Tétnrs)' ™ + Zﬂpr Tirnss) Umin(q))4] | X — X D
= ClIX™ — X3

Again, by monotonicity and the boundedness of the sequence (JG(GL)R LSQ) we know
neN
that

. n (n+1)
7}1_{20 [jc(lzstz jGIRLSQ] =0,
and, therefore, also
lim || X" — X" H)12 = 0.
n—oo
[

Remark 5.12. The assumption on the singular values of ® are very weak and, e.g.,

fulfilled for random matrices with high probability.

From the monotonicity of (e!”),_. ; and €™, we know that €, := lim,_,o €5 and
€ = lim,_ o0 ™ exist and are non-negative. We define € := |(e),_; ,,€|. The

.....

following functional will play a role in our proof of convergence, especially for e > 0.

Definition 5.13. (e-perturbed objective functional for the unconstrained case)

We define the e-perturbed objective functional to be of the following form

ZA X) + [y, (@(X) = Y)
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and the corresponding minimization problem

m)}n = [0 (X). (5.38)

Notice that, if we knew that X ™ converged to a point X, then F5(X) would be the limit
of jGIRLSQ <X(n)7 (ng))szl ty (‘51(”n))r:1 no (Ws(n)>s:1 ty (Wr(n))rzl ng) for n — oo.

....................

We denote by Z¢(Y') the set of global minimizers Z of the functional Fj(X) with
®(Z) =Y and in the case that we consider a unique global minimizer in dependence
of € with

Xe arg;nin F5(X), (5.39)

5.5.2 (CONVERGENCE RESULTS

Finally, we can state the convergence results for Algorithm 6 under the NSP conditions

already mentioned above.

Theorem 5.14. Let & : My, x4, = R™ Y € R™ and the functionals
JGIRLS? (X("), (Egn))szl ..... t (Es“n))rzl ..... nas ( s(n))szl ..... t Wr(n)> be defined  for
() emtne™, (W)

777777777

In the following, we want to assume that our desired solution matriz Xy has property
ss,8 € [t] of order ks, s € [t] and ®(Xy) — Y has property s.. Let Z¢ be the set of

accumulation points of the sequence (X™),cn generated by Algorithm 6.

(Z) [fE = [(65)5:1 ..... tye'r‘] — 0, and

(a) the map @ fulfills the corresponding NSP for structure s of order K, s €
[t] as defined in Definition 4.10,

(b) ps = p,s € [t] and the matriz @ fulfills the NSP corresponding to structure
ss of order K,

then Z¢ consists of one single point X = X, with sparsity structure s, of order
K,,s € [t] and X is the solution to the minimization problem (5.5).
Moreover, in case (a), we have for ks < Ky, s € [t] and any Z with ®(Z) =Y that

t t
> ANZ =Xy, <) CBr(Z)n,, (5.40)
s=1 s=1

where Cy = 2:U+7:)
§ (1) -~
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.....

stationary point of the e-perturbed objective functional Fy. In the case that Fy is
convet, i.e., ps,pr > 1 for s € [t] we assume for simplicity that X€ is actually the

unique global minimizer of Fy. Then X = X°.

(iii) If, in  addition to the assumptions in  case (i), the map
O fulfills the corresponding NSPs for the structures ss of order K, s € [t]
as defined in Definition 4.10 with v, < 1 — Ks2+2 (or equivalently, if 12_7;3 < Ky),

then we have, for all X € Z¢N Z¢ and all Z with ®(Z) = Y and any
ks < Ky — 2 that

t
s=1

S OB (Z) N, + Cy ife.>¢&s€elt],
Zizl C~’s)\s msaX/Bks(Z)Ns + 02 Zf ds s.t. €s < €

; N 2(1+’Ys) K57k5+§ . t 1+~ ~
with Cy := == Ks—kg—fgs and Cy =) ., T pdyE.
° —s

As a consequence, this case is excluded if there ezists a matriz Z with ®(Z) =Y

and sparsity structure Ss of order ky < Ky — 12:’; .

The proof is in great parts analogous to Theorem 5.8 and we only give additional

comments and hints.

Proof. (i) The first part of the proof follows the one of Theorem 5.8. From
limy_,oo €™*) = 0 and the definition of ¢, we deduce that the residuals ®(X) — Y
vanish. Thus, X is a solution to ®(X) =Y with sparsity structure s, of order K.

(iii) To prove the error estimate stated in (iii), we first observe that by the minimizing

property of X¢ for every Z with ®(Z) =Y, we have

t
> X

s=1

t t
<Y NIZNw A 1 D(Z) = Yiin, + D dAe + dypued

s=1 s=1

i t
= Z Al Z ]|, + stASEf;S + d,pelr.

s=1 s=1

N, +pl[®(XC) =Yy, < F5(X9) < F5(2)
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From this we obtain that
t t t
SOAIX v, = SNl < ST AN~ B(X) =V, + ol
=1 s=1 s=1
In the case that €. > €, we have that
—,UH(I) vec Y”Nr + drﬂ,éfr <0.

In the other case,
—pl|@(X) = Y|, + drelr < dppue’.

By Lemma 4.13, we have that

t t
147 % .
MIX = Zln, € 3 M (dyel + i d + 28, (Z),)
t
147 1475
<S de? + 2 d, &
< D A (e + 200 (2 NS+Z 1—%2,& E

gZ)\ ”w P4 265, (2)3) + CUOW)smtcts 1, 1 )

L+
Syl Tl + 2650, (2)n.) + o
s=1 5
(5.41)

The rest of the proof follows the arguments of Theorem 5.8 (iii) and and this leads
directly to the bound in (5.40). O
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