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Abstract - Zusammenfassung

Abstract

In this thesis, we develop and investigate new computational methods for data ana-

lytical approximation problems belonging to the family of iteratively reweighted least

squares (IRLS) algorithms. First, we discuss the applicability of IRLS-methods in re-

gression problems with nonlinear measurement settings entailing nonconvex or even

nonsmooth optimization problems. Next, we introduce an IRLS-variant with a novel

reweighting strategy for learning low-rank matrices from few random measurements

that substantially enhances performance with respect to state-of-the-art methods. Fi-

nally, we present an IRLS-algorithm with a very general formulation allowing for learn-

ing signals with multiple or composed low-dimensional structures from a minimal num-

ber of measurements.

Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung und Untersuchung von Berechnungsver-

fahren für Approximationsprobleme im Bereich der Datenanalyse, die zur Familie der

Iteratively Reweighted Least Squares (IRLS)-Methoden gehören. Als Erstes wird die

Anwendung von IRLS-Methoden auf Regressionsprobleme diskutiert, bei denen der

zugrunde liegende Messprozess nichtlinear ist, was zu nichtkonvexen oder sogar nicht-

glatten Optimierungsproblemen führt. Anschließend wird eine Variante eines IRLS-

Algorithmus mit einer neuartigen Gewichtungsstrategie für das Lernen von Niedrig-

rangmatrizen aus wenigen Zufallsmessungen vorgestellt, die im Vergleich zu state-

of-the-art-Methoden wesentliche Performanceverbesserungen aufweist. Abschließend

präsentieren wir eine IRLS-Methode mit sehr allgemeiner Formulierung, die das Lernen

von Signalen mit mehreren oder zusammengesetzten Strukturen aus einer minimalen

Anzahl von Messungen erlaubt.
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Notation

Sets and operations on sets:

∅ empty set

Λ,Λc set and its complement

[n] set of natural numbers {1, . . . , n}
N set of natural numbers

N0 set of natural numbers including 0

R set of real numbers

R+ set of positive real numbers

C set of complex numbers

Bε(x) ball with radius ε > 0 around x w.r.t. the Euclidean norm

B|||·|||(x, ε) ball with radius ε > 0 around x w.r.t. the norm |||·|||

Functions and operations on functions:

In the following, let F : Rd → R, and ϕ : Rd → RN be arbitrary functions.

dom F , domϕ domain of the function F , domain of the function φ

∇F (x), ∇2F (x) the gradient and the Hessian of F at x

∂F (x) subdifferential of F at x

`F,C(c) level set of F on C corresponding to the value c, i.e.,

`F,C(c) = {x ∈ C : F (x) ≤ c} .
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In the following, consider the vectors x ∈ Rd, y ∈ Rm and the matrices X ∈ Rd1×d2

and an operator Φ : Rd → Rm

Vectors, matrices and operators:

Md1×d2 set of matrices in Rd1×d2

X[I,J ] submatrix of X w.r.t. the index sets I ⊂ {1, ...,m},
J ⊂ {1, ...,m}

X[i,·], X[·,j] i-th row and j-th column of X

(F (xi))
d
i=1 (F (xi))

d
i=1 = [F (x1), . . . , F (xd)]

T

Id identity matrix in dimension d× d
0d1×d2 d1 × d2-matrix with only 0-entries

1d1×d2 d1 × d2-matrix with only 1-entries

diag(x) diagonal matrix with diag(x)[ij] =

xi, i ∈ [d] i = j

0 i 6= j

Sd set of symmetric, real d× d matrices

Sd+ set of symmetric, real, positive semidefinite d× d-matrices

Sd++ set of symmetric, real, and positive definite d× d-matrices

Hd set of Hermitian d× d-matrices

Hd
+ set of Hermitian and positive semidefinite d× d-matrices

Hd
++ set of Hermitian and positive definite d× d-matrices

Od set of d× d-orthonormal matrices, i.e.,

{O ∈Md×d|OOT = Id}
Od1×d2 set of d1 × d2-matrices with orthonormal columns, i.e.,

{O ∈Md1×d2 |OTO = Id2}
Ud set of d× d-unitary matrices, i.e., {U ∈ Cd×d|UU∗ = Id}
Ud1×d2 set of d1 × d2-matrices with unitary columns, i.e.,

{U ∈ Cd1×d2|U∗U = Id2}
D(·) domain of an operator

Ran(·) range of an operator

N (·) nullspace of an operator

F(·, ·) set of elements in the domain that are mapped on y by Φ,

i.e., F(y,Φ) =
{
z ∈ Rd|Φ(z) = y

}
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In the following, let the vectors x, y ∈ Rd, z ∈ Rd1d2 and matrices A ∈ Rd×d1 ,

B ∈ Rd×d2 , C,D ∈ Rd×d, E ∈ Rd1×d1 and F ∈ Rd2×d2

Operations on vectors and matrices and operators:

(·)T transpose of a vector or matrix

(·)∗ conjugate transpose of a vector or matrix, adjoint operator

(·)−1, (·)† inverse of a square matrix, Moore-Penrose pseudo inverse

r(·) non-increasing rearrangement of the vector entries w.r.t.

their absolute values, i.e., r1(x) ≥ r2(x) ≥ · · · > 0

〈·, ·〉`2 , ‖ · ‖`2 Euclidean inner product and the Euclidean norm, i.e.,

〈x, y〉`2 =
∑

i xiyi, ‖x‖`2 = (
∑

i |xi|2)
1
2

〈·, ·〉W , ‖ · ‖`2(W ) weighted Euclidean inner product, i.e., 〈x, y〉W = 〈x,Wy〉
for a weight matrix W ∈ Sd×d+ and the induced norm

‖ · ‖`p `p-vector (quasi)norm, 0 < p ≤ ∞, i.e., ‖x‖`p = (
∑

i |xi|p)
1
p

tr(·) trace of a matrix, i.e., tr(A) =
∑

iAi,i

σi(·) the i-th singular values of a matrix

rank(·) rank of a matrix

〈·, ·〉F , ‖ · ‖F , Frobenius inner product 〈X, Y 〉F = tr [X∗Y ] and induced

Frobenius-norm of a matrix

〈·, ·〉W , ‖·‖F (W ) weighted Frobenius inner product, i.e., 〈A,B〉W = 〈A,WB〉
for a weight matrix W ∈ Sd×d+ and the induced norm

‖ · ‖Sp Schatten-p-matrix (quasi)norm, 0 < p ≤ ∞, i.e.,

‖A‖Sp = (
∑

i σi(A)p)
1
p =

(
tr(XXT )

) p
2

‖ · ‖`p,q `p,q-matrix (quasi) norm, 0 < p ≤ ∞, 1 ≤ q, i.e.,

‖A‖`p,q =
(∑

i ‖A[i,·]‖q`p
)

1
q

�, � partial ordering on the space Sd×d, i.e.,

D � C :⇔ D − C ∈ Sd×d++ , D � C :⇔ D − C ∈ Sd×d+

⊗ Kronecker product, i.e., the tensor product of matrices

w.r.t. the standard bases

⊕ Kronecker sum, i.e., E ⊕ F = E ⊗ Id2 + Id1 ⊗ F
� Hadamard product, i.e., (C �D)(i,j) = C(i,j) ·D(i,j)

(·)vec vectorization of a matrix by stacking its columns in a vector

(·)mat(d1,d2),(·)mat reshaping a vector of length d1d2 into a d1 × d2-matrix, i.e.,

zmat(d1,d2) = Z, where Z[i,j] = z(j−1)·d1+i; Z = (Zvec)mat
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Chapter 1

Introduction

The immersion into new environmental conditions confronts us with the interpreta-

tion of so far not experienced, maybe initially incomprehensible information obtained

from sensory impressions. In finding our way in the world around us - capturing new

concepts, learning to speak a language or deducing causalities - in a quite quick and

efficient manner, our brain is able to find structure and meaning in these streams of

incoming signals. Our minds have the impressive capability to make inferences which

apparently reach far beyond the available data helping us to predict and prepare our-

selves for future actions [147, 157]. How do we do it?

Just consider the situation of a young child trying to decipher the meanings of new

words. Parents experience and scientists confirm [10, 167] that average 2-year-old in-

fants can acquire the proper usage of an unknown word such as “dog” or “chair” from

facing few examples only. It is possible for them to capture the meaning, not only the

phonetic pronunciation by generalization and appropriately utilize the new word in

unfamiliar situations. This is indeed a remarkable feat considering this as a computa-

tional result from very limited sensory input data. Imagining the infinite space of all

possible items, there exist still infinite but substantially constrained subsets of objects

belonging to the categories “dog” or “chair” [147]. This rises the question, how a child

is able to capture the boundaries of these subsets from the observation of a handful

examples.

It is basic statistics knowledge that correlation does not imply causation. However, on

a regular basis, little children infer causal relationships from only a small number of

samples [67] that is by far too low to even reliably establish a correlation. Consequently,

there is no chance to draw exact inference for arbitrary models neither for the brain

nor any type of computer. Nevertheless, humans are capable to derive complex causal-
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ities, formulate strong generalizations, and establish powerful abstractions from data

that is insufficient, noisy and corrupted with outliers or ambiguous - in many aspects

very limited leading to a significant discrepancy between the level of available sensory

information and the level of insights and cognition gained from it [147].

This conundrum became known as “the problem of induction”, that concerned great

philosophers for ages, from ancient Greek Plato and Aristotle, over Hume to Carnap,

Quine, Goodman and later in the 20th century [61]. Solutions for this problem proposed

by philosophy did not change much in the course of time since Plato: The brain can de-

feat this “curse of dimensionality” [6] by invoking the “blessing of abstraction” [66, 120].

This means that, if the brain can reach beyond the data provided, this gap has to be

closed by another source of information. Our mind places assumptions on the world

around us constituting limitations what can be meaningfully represented, manipulated

or learned in general - the central statement of the “no free lunch theorem” [120, 165]. In

other words, sensible generalization is not feasible without further abstract background

knowledge generating and restricting the brain’s hypotheses [132]. Different scientific

disciplines in mathematics have come up with specific terms for this additional infor-

mation that is invoked: optimization experts speak of “constraints”, machine learning

researchers call it “inductive bias” and statisticians name it “priors”[147].

It is a common hypothesis that our brain builds up a simplified model of the world

by a-priori assuming that not every input and output variable and all relations bet-

ween them are relevant. Instead, only a small number of important interactions exists.

From a computational perspective, such an extraction of these relevant variables and

their relationship can be regarded as learning of these underlying structures with re-

duced complexity. More precisely, lower-dimensional structures represent constraints

on the input-output map which are appropriate for the natural world. Exploiting

these representations lets our brain reveal the hidden structure in our experienced

phenomenons and allows drawing inferences and conclusions - forming the basis for

human intelligence[13, 147].

These days researchers and scientists want to take a step further by creating artificial

intelligence (AI), enabling machines to learn from data reaching human or even super-

human level. Already today AI is changing our lives and advancing rapidly in many

areas from business over healthcare to sciences. Actually, AI and machine learning

are omnipresent and facilitating our day-to-day life, often in a rather obvious way, by

web search with all-knowing Google, offering assistance via Siri or Alexa, using our

smartphone that can recogonize your face and soon autonomously driving our cars and

operating our smart home devices by remote control. Beyond that, less directly visible,
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machine learning is now behind any major service, detecting credit card fraud or spam

mails, making purchase suggestions on Amazon, breaking down language barriers with

translation tools and smart non-player elements in games.

Similar to the exploitation of inherent structure with reduced complexity in sensory

information in our brains, also machine learning methods take advantage of low-

dimensional representations of incoming signals or the output data.

In this thesis, we are concerned with the design and analysis of algorithms tailored

for data analytical problems involving input signals or output variables with a specific

type of inherent structures. These particular structures allow for so-called sparse repre-

sentations with reduced dimensionality that we exploit for the computational efficient

treatment of the considered data analysis problems.

Let us discuss a few interesting application examples for illustration.

(i) Detection of faulty sensors in wireless sensor networks

We consider a wireless sensor network as in Figure 1.1 that contains several

but few faulty, compromised, or jammed sensors either sending no meaningful

or no signal at all to a signal receiver collecting the incoming measurements.

Hence, in such cases, sparse measurement outliers occur and it would be advan-

tageous to smartly detect and ignore the erroneous information transmitted by

the damaged sensors. The exploitation of this structural a-priori knowledge on

the measurement error is essential for the robust regression of wireless sensor data

contaminated by faulty sensors and allowing their detection and neglection[107].

https://pixabay.com/en/landscape-countryside-fields-nature-409551/	
https://commons.wikimedia.org/wiki/File%3AWifi.svg	
By	RRZEicons	(Own	work)	[CC	BY-SA	3.0	
(http://creativecommons.org/licenses/by-sa/3.0)],	via	Wikimedia	Commons	
	
	
	
	
	
	
	
	
	
	
	
	

														intact	sensor		

														faulty	sensor		

														signal	receiver	

Figure 1.1: Visualization of a wireless sensor network with faulty sensors (graphic by

Juliane Sigl, using pictures under creative commons licensing allowing modifications 1)

1https : //pixabay.com/en/landscape− countryside− fields− nature− 409551/,
https : //commons.wikimedia.org/wiki/F ile%3AWifi.svg, By RRZEicons (Own work) [CC BY-SA
3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
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(ii) Netflix movie recommendations

Recommendation engines are very powerful personalization tools that online

shopping retailers, for instance Amazon, and online movie services like Netflix

use to provide relevant content for the customer from a potentially overwhelming

set of choices. In the words of Steve Jobs - ”a lot of times, people don’t know

what they want until you show it to them” [62, 127].

In 2009, Netflix selected the winner of its famous contest, the so-called Netflix

prize, for the best algorithm able to accurately predict customers ratings of movies

based on those of previously seen movies [112] as illustrated in Figure 1.2.

https://commons.wikimedia.org/wiki/File:User_icon_2.svg	
	https://commons.wikimedia.org/wiki/File:User_icon_1.svg	
	https://commons.wikimedia.org/wiki/File:User_icon_3.svg	
https://commons.wikimedia.org/wiki/File:Emblem-person-grey.svg	
https://commons.wikimedia.org/wiki/File:Netflix_logo.svg	
https://www.flickr.com/photos/22284790@N06/2443224485		batman	
https://www.flickr.com/photos/tomkeil/7830257154	king	kong	
https://www.flickr.com/photos/jonatasciccone/8180401101	star	wars	
https://www.flickr.com/photos/krisolin/6859796173	pulp	fiction	
https://www.flickr.com/photos/methodshop/5245100040	inception	
https://www.flickr.com/photos/colinzhu/49684002	harry	potter	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	 	 	 	 	

	 	 	 	 	
	

	 	 	 	 	

	 	 	 	 	

U
se
rs
	

Movies	

Figure 1.2: Schematic representation of Netflix’s data base with user’s movie ratings
(graphic by Juliane Sigl, using pictures under creative commons licensing allowing modifications 2)

2https : //commons.wikimedia.org/wiki/F ile : User icon 1.svg,
https : //commons.wikimedia.org/wiki/F ile : User icon 2.svg,
https : //commons.wikimedia.org/wiki/F ile : User icon 3.svg,
https : //commons.wikimedia.org/wiki/F ile : Emblem− person− grey.svg,
https : //commons.wikimedia.org/wiki/F ile : Netflix logo.svg,
https : //www.flickr.com/photos/22284790@N06/2443224485,
https : //www.flickr.com/photos/jonatasciccone/8180401101,
https : //www.flickr.com/photos/krisolin/6859796173,
https : //www.flickr.com/photos/methodshop/5245100040,
https : //www.flickr.com/photos/colinzhu/49684002
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In fact, movies in the Netflix data base can be clustered according to genre, e.g.,

Comedy, Sci-Fi etc. or they star the same actor or actress and particular user

groups may identify their movie taste with certain of those categorizable features.

The basic assumption of Netflix is that, if the previous movie ratings of user A

and B have been similar in the past, they can be assigned to a subset of users with

matching movie taste. Based on the assumptions that the number of categories

of movies is way smaller than the total number of available films and the overall

count of customers is far larger than the number of groups of users with matching

taste, Netflix builds recommendations using similarity scores.

This representation of the mass of customers and movies in preference groups

with reduced dimension is another instance of sparsity structures: the Netflix

data base corresponds to a user-movie rating matrix with a large number of

missing entries and, due to the correlations between the inherent user and movie

groups, this matrix has low rank, i.e., the vector of its singular values is sparse.

This problem is called (low-rank) matrix completion and has received much at-

tention in recent years as there is a high demand for efficient solvers also for large

scale data sets in practical contexts [7]. Further examples of relevant, related ap-

plication scenarios, in which the recovery of low rank matrices occurs are system

identification [153] or global positioning in sensor networks [21].

(iii) Moving object detection and background separation in videos

One of the classical computational tasks in video surveillance is the detection of

objects in front of detailed background as exemplary shown in Figure 1.3. Given

a sequence of video frames, we want to identify objects and activities that stand

out from the background, which is difficult in busy video scenes, where every

frame may include perturbations.

If we stack all video frames as the columns of a large matrix X, due to the correla-

tion between frames, the stationary background will correspond to highly similar

columns, i.e., the matrix showcases approximate low-rankness. In general, moving

foreground objects, such as vehicles or pedestrians, constitute only a small frac-

tion of the pixels in the image frames and, therefore, can be treated as additive

sparse perturbation errors. Nevertheless, each single image frame has thousands

of pixels, and a video fragment consists of hundreds or thousands of frames. Con-

sequently, without efficient computational solution methods, the decomposition

of X in a low-rank and a sparse perturbation component is infeasible[19].

Another interesting application problem, where a similiar solution strategy can

be used, is face recognition, e.g., considering varying illumination situations.
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(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

Convex optimization (this work) Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence
taken in an airport [32]. (a) Frames of original video M . (b)-(c) Low-rank L̂ and sparse
components Ŝ obtained by PCP, (d)-(e) competing approach based on alternating minimization
of an m-estimator [47]. PCP yields a much more appealing result despite using less prior
knowledge.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to a state-of-
the-art technique from the computer vision literature, [47].12 That approach also aims at robustly
recovering a good low-rank approximation, but uses a more complicated, nonconvex m-estimator,
which incorporates a local scale estimate that implicitly exploits the spatial characteristics of natural
images. This leads to a highly nonconvex optimization, which is solved locally via alternating
minimization. Interestingly, despite using more prior information about the signal to be recovered,
this approach does not perform as well as the convex programming heuristic: notice the large
artifacts in the top and bottom rows of Figure 2 (d).

In Figure 3, we consider 250 frames of a sequence with several drastic illumination changes.
Here, the resolution is 168 ⇥ 120, and so M is a 20, 160 ⇥ 250 matrix. For simplicity, and to
illustrate the theoretical results obtained above, we again choose � = 1/

p
n1.

13 For this example,
on the same 2.66 GHz Core 2 Duo machine, the algorithm requires a total of 561 iterations and 36
minutes to converge.

Figure 3 (a) shows three frames taken from the original video, while (b) and (c) show the
recovered low-rank and sparse components, respectively. Notice that the low-rank component
correctly identifies the main illuminations as background, while the sparse part corresponds to the

12We use the code package downloaded from http://www.salleurl.edu/~ftorre/papers/rpca/rpca.zip, modi-
fied to choose the rank of the approximation as suggested in [47].

13For this example, slightly more appealing results can actually be obtained by choosing larger � (say, 2/
p

n1).

25

Figure 1.3: Moving object detection in video surveillance [19, Figure 2]; Left: video

surveillance frames, middle: separated background, right: moving foreground objects

In these applications mentioned above, the given data sets exhibit intrinsic low-

dimensional structures representing different kinds of sparse data features, that need

to be reflected in an appropriate model of the data analysis problems at hand. The

formulation of the corresponding approximation problems that have to be approached

for their solution typically involve `p-quasinorms for vectors or appropriate related

matrix-valued quasinorms.

Despite their, at first sight, very different nature, the three data analytical problems can

be translated into optimization problems that are efficiently solvable with algorithms

belonging to the class of Iteratively Reweighted Least Squares (IRLS) methods.

IRLS is an algorithmic strategy which classically imitates `p-minimization for vectors

in residual minimization or signal recovery. Its formulation can also be adapted to the

minimization of related matrix quasinorms. The algorithm is performing a successive

approximation of the `p-minimization problem by solving a weighted least squares

problem with an iteratively adapted weight matrix in each iteration. This procedure is

hopefully leading to convergence to the actual `p-minimizer.
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IRLS approximation constitutes a powerful and adaptable algorithmic scheme for a wide

range of problems in engineering and applied sciences. It can be employed as a fast

and robust computational tool in a large number of application scenarios, in particular

in statistics for robust regression, general nonlinear parameter estimation, maximum

or quasi-likelihood estimation, and in the expectation-maximization context. Beyond

that, IRLS methods were able to deliver remarkable results in signal processing in sparse

vector [35] and low-rank matrix [51] recovery as well as for the solution of minimization

problems involving bounded variation functions [26]. A superlinear convergence rate

can be reached even for nonsmooth and nonconvex optimization problems [36].

This thesis is a self-contained compendium of our research work, collected in the re-

search papers [86, 87, 135], and the so far unpublished research work in Section 5.1-5.2,

Subsection 5.3.2-5.3.3, Section 5.4-5.5. In this work, we contribute with novel iteratively

reweighted least squares algorithms both extending the applicability spectrum of this

algorithm class and enhancing performance for classical application settings with re-

spect to the state-of-the-art. The results in this thesis for this class of algorithms can

be conceptually summarized in the following two directions:

(i) IRLS for minimization of sparse nonlinear residuals [Chapter 3]

In the context of sparse measurement outliers, as in the example of faulty sensor

detection in a wireless sensor network, robust methods for regression also for

nonlinear measurement settings are desired.

In Chapter 3, that presents results first appearing in the paper [135] by the author

of this thesis, we discuss an IRLS method for sparsity-promoting `p-norm-residual

minimization involving nonlinear operators which allows the efficient numerical

treatment of such problems. In particular, the investigation of the algorithmic

behaviour and performance of IRLS as well as its applicability conditions and

limitations are of high interest for statistical analysis in relevant application cases.

We present a rigorous theoretical analysis of the convergence behaviour for this

IRLS-type algorithm called NR-IRLS under certain applicability conditions on

the nonlinear measurement operators. Actually, this work includes the cases,

where the measurement map is nonlinear and mildly smooth with parameter

1 ≤ p < 2 and, hence, we face not only a nonconvex but even a nonsmooth

optimization problem. More precisely, the novelty is its ability to deal with severe

nonsmoothness resulting from the cases, where p ≈ 1.
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(ii) IRLS for learning of signals with low-dimensional intrinsic structures

(a) Low-rank matrices [Chapter 4]

The occurrence of the matrix completion problem in recommender systems,

exemplary described above for the case of the Netflix movie streaming ser-

vice, and further highly relevant applications like system identification [153]

or global positioning in sensor networks [21] made the low-rank matrix recov-

ery problem a widely studied problem in the machine learning community.

The strategy of using an IRLS-type method for the approximation of the

low-rank matrix recovery problem via a Schatten-p-quasinorm minimization

problem appeared already in the papers [51, 106] published several years

ago. Still, both of the IRLS approaches presented in those publications are

not able to fully generalize the properties of the algorithm for sparse vector

recovery in [35]. In particular, for the algorithms defined in [51, 106] there

was no way to establish a provable rate of convergence.

However, the algorithm under discussion in this chapter, the harmonic mean

iteratively reweighted least squares (HM-IRLS), which was first presented in

[86] and [87] by the author of this thesis in collaboration with Christian

Kümmerle, introduces an important novelty. We use a new kind of weight

matrices, the so-called harmonic mean weight matrices, which are more sym-

metrical than the weight matrices previously used [51, 106]. This empowers

HM-IRLS to overcome the disadvantages of the weight matrices in [51, 106].

Similar to existing work, we introduce an auxiliary functional as a tool to

extend the previous convergence results to HM-IRLS, partly under null space

property assumptions. Moreover, as a main theoretical result, we show that,

in contrast to other IRLS variants, HM-IRLS can exhibits a locally super-

linear rate of convergence. This rate can be accurately verified in our nu-

merical tests and also practically reaches rates arbitrarily close to quadratic

for p → 0. Even more surprisingly, HM-IRLS demonstrates global conver-

gence and superior performance in terms of sample complexity in compari-

son with various state-of-the art methods in the literature, in particular in

the strongly nonconvex regime of p� 1.

(b) Signals with multiple structures or combination of structures [Chapter 5]

In this chapter, that contains so far unpublished work, we want to pass

over from the recovery of low-rank matrices to more general high dimen-

sional signals with multiple underlying structures from a minimal amount

of linear measurements. In practical applications like video surveillance or

face recognition, often the signal to be recovered is either a matrix with

– 12 –



multiple sparsity-type structures occurring simultaneously or is the linear

combination of several signals with different sparsity structures.

Recently, the negative results of Oymak e.a.[116] revealed that the intuitive

attempt of combining convex norms usually minimized to promote each of

the single structures will require just as many measurements as exploiting

only one (dominating) structure. Only the combination of the nonconvex

penalization functionals that are promoting a certain structural property

will be beneficial for a reduction of the number of measurements. Motivated

by this recently discovered fact, we investigate and analyse an IRLS-type

method as this algorithm family has proven to be an efficient tool even in

the nonconvex regime.

We present a very general formulation of an IRLS algorithm, named GIRLS,

fusing different reweighting strategies into one unified weight matrix. We

again utilize auxiliary functionals combining terms corresponding to the

single sparsity structures and allow constrained as well as unconstrained

formulations to incorporate the measurement information. Using this tool,

we show convergence results and error bounds, some of which are based on

null space properties of the measurement operator.

Additionally, we provide in Chapter 2 a synthetic overview on the fundamentals and

most important aspects in data analysis and optimization that, finally, pave the way

towards the formulation of iteratively reweighted least squares algorithms. We access

the topic from a data analysis point of view presenting the types of approximation goals

that will be of interest in this work and formulate corresponding optimization problems

for their solution. Of course, we provide a collection of useful tools from optimization

and explain the special aspects to consider for high dimensional data. Furthermore, we

introduce the concept of sparsity for vector and matrix valued data and its theoretical

foundations. With this chapter, we provide for the reader useful results from other

literature sources, that are required for the elaboration of the topics in the subsequent

chapters.

In accordance with the latest regulations concerning the authorship of the results ob-

tained in Ph.D. theses, I hereby declare that, if not clearly stated otherwise, the content

of the following chapters, sections and subsections are original and were obtained thanks

to my contribution

Chapter 3, Subsection 4.1.2, Section 4.2, Subsections 4.3.1-4.3.3, Subsections 4.3.5-

4.3.7, Section 4.4, Section 5.1-5.2, Subsection 5.3.2-5.3.3, Section 5.4-5.5.

Moreover, I hereby declare that, Christian Kümmerle and myself equally contributed
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to all results in the above listed sections and subsections belonging to Chapter 4 and 5.

The remaining chapters, sections and subsections are reelaborated versions of results

that can be found in the literature and that are necessary to make the thesis self-

contained.

Some pictures shown in this introduction were produced by myself using images licensed

under a Creative Commons license that allows modifications as can be verified by

following the related web addresses. Additionally, this introduction contains pictures

found in the literature and we give a reference to their source in the caption. The

pictures in the rest of the work were either autonomously produced in the context of

[135] or the outcome of the scientific partnership with the co-author of the paper [87].
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Chapter 2

En route to

iteratively reweighted least squares:

From data sets to optimization problems

This chapter paves the way for the reader towards the investigation of the powerful

class of Iteratively Reweighted Least Squares (IRLS) algorithms.

Starting from its origin in data analysis as a tool for the solution of approximation

problems, we present the classic least squares as an introductory example.

Thereafter, we continue with the modeling of data with low dimensional structures

and the translation into an optimization problem with an appropriate objective. Of

course we also provide the essential background in optimization. Subsequently, we

introduce Iteratively Reweighted Least Squares (IRLS) as the sequence of minimizations

of surrogate functionals to the original objective.

2.1 Data analysis and approximation problems

The acquisition of data in the form of output values of measurements with unidenti-

fied influence parameters or an unknown input signal is ubiquitous, e.g., in scientific

experiments, engineering tests, and financial market observations.

In many applications, it is necessary to relate these measured or observed values, that

are possibly afflicted with measurement inaccuracies, with the unknown input variables

by formulating a mathematical model describing the measurement process.

This de facto means, we employ modeling as an approximation to reality that gives us
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further insights on the influence factors of the observed process.

The upcoming subsection takes inspiration from parts of Chapter 6 on approximation

and fitting of the classic book [12] .

2.1.1 About data sets and approximation problems

Formulating this mathematically more precisely, we assume we are given a data set

y ∈ Rm with a number of m measurements yj, j ∈ [m] resulting from a measurement

process that can be described by the map Φ : Rd → Rm, often called measurement or

sampling operator. In some cases, we assume that an error e ∈ Rm is involved in the

measurement results as well , also referred to as measurement noise. The input variable

x ∈ Rd to the map Φ represents d possible influence parameters xi, i ∈ [d].

This relationship can be cast into a system of equations with m equations and d

unknowns as follows

Φ(x) + e = y. (2.1)

Let us for simplicity assume now that Φ(x) is a linear map with matrix representation

Φ(x) = Φx for Φ ∈Mm×d and that the error e = 0 resulting in the system

Φx = y. (2.2)

In the case that m = d and Φ is full rank, Φ is invertible and there exists a unique

solution to (2.2) that can be calculated explicitly

x = Φ−1y.

However, if e is nonzero, the result above might not be accurate enough, or if the

sampling operator Φ in (2.1) is nonlinear, not even in the case d = m a (unique)

solution of the equation system might exist, e.g., if y /∈ ran(Φ). As a consequence, an

appropriate approximation is desired.

This comes into effect in particular in the cases where m 6= d:

(i) m > d: equation (2.1) is an overdetermined equation system, for which it is

impossible to fulfill all equations exactly.

We need an approximation to the solution with minimal error with respect to

a certain error function in dependence of the residual e = Φ(x) − y, which we

denote with f(e).
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(ii) m < d: equation (2.1) is an underdetermined equation system with infinitely

many solutions, and further assumptions on the signal x are necessary to ensure

uniqueness. This can be realized by introducing a penalization or regularization

function g(x) which puts at disadvantage unfavored solutions, and then consider

minimization of g(x) under the constraint Φ(x) = y.

Our strategy is to identify an optimal solution x = xopt to the approximation problem

above as the minimizer of an objective functional J (x)

xopt = arg min
x
J (x), (2.3)

where J (x) reflects the requirements of the particular problem setting. We design J (x)

by the incorporation of function terms enforcing certain characteristics for the optimal

solution to (2.1) as follows:

(i) achieving a certain accuracy in the data fit, i.e., minimizing the approximation

error f(e)

xopt = arg min
x
J (x) = arg min

x
f(e) = arg min

x
f(Φ(x)− y) (2.4)

(ii) generalizing best to future observations by identifying the relevant parameters

and the underlying data structure, i.e., minimizing the regularization term g(x)

and thereby penalize undesired features

xopt = arg min
x
J (x) = arg min

Φ(x)=y

g(x) (2.5)

If both aspects are of relevance, we suggest solving a minimization problem combining

the two components f(e) and g(x) weighted by a factor λ > 0 according to their

importance in the problem context:

xopt = arg min
x
J (x) = arg min

x
f(e) + λg(x) = arg min

x
f(Φ(x)− y) + λg(x) (2.6)

This optimization problem always has a unique solution depending on the regulariza-

tion parameter λ.

– 17 –



2.1.2 Least squares: examples for error and penalization functions

Let us now consider the problem (2.2) for the overdetermined case with Φ ∈Mm×d for

m > d and measurement data that might be corrupted by nonzero noise e

Φx+ e = y. (2.7)

A standard approach in statistics for developing estimates of the model parameters x

in (2.7) is the so-called linear least squares fitting, i.e., minimizing the sum of squares

of the differences between the values predicted by a linear measurement model and the

actually observed data or measured results.

This corresponds to the approximation solution to (2.2) via the minimization problem

as in (2.4) with choice of the Euclidean norm as an error function

f(e) = ‖e‖`2 (2.8)

leading to

xLS = arg min
x
J (x) = arg min

x
‖e‖`2 = arg min

x
‖Φx− y‖`2 . (2.9)

	

	

y

�(x)

k�(x) � yk2
`2

Figure 2.1: Visualization of least squares fitting

For Φ with full column rank the solution xLS in (2.9) has the following closed-form
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representation

xLS = (ΦTΦ)−1ΦTy = Φ†y, (2.10)

where Φ† ∈ Rd×m is the Moore-Penrose pseudo inverse of Φ ∈Mm×d with m > d.

The least squares fitting constitutes the simplest and most common form of linear

regression with a wide field of practical applications.

It is possible to solve the for xLS in (2.10) by employing one of the approaches listed

below with increasing order of computational complexity and stability [59, 92]:

(i) Cholesky factorization of ΦTΦ,

(ii) QR-factorization of Φ, and

(iii) Singular Value Decomposition of Φ.

In applications, where least squares approximations to the solution of (2.1) are em-

ployed, often a Gaussian distribution of the error e is assumed, i.e., ej ∼ N (0, σ)

are i.i.d. zero-mean Gaussian random variables with standard deviation σ > 0 for

j ∈ [m] [65, 134]. Even in the case, where the measurement model map Φ is very

accurately approximating reality, the measurement noise e can disturb the quality of

the approximation result x. Therefore, the characteristic nature of the error occurring

in the measurements and the choice of the error function influence the goodness of the

solution for the particular problem.

As an example, for modeling different kinds of noise in statistical and data analytical

applications, from Gauss or Laplace distributed to impulsive noise, a widely used type

of error function is the more general `p-norm [134], i.e.,

f(e) = ‖e‖`p =

(
m∑
j=1

|ej|p
) 1

p

(2.11)

leading to the solution of the optimization problem

xLP = arg min
x
J (x) = arg min

x
‖e‖`p = arg min

x
‖Φ(x)− y‖`p . (2.12)

The parameter 0 ≤ p ≤ 2 is adjusted in dependence on the type of residual error [12],

e.g., in the case of Laplacian noise the Euclidean norm is replaced by the `1-norm

f(e) = ‖e‖`1 =
m∑
j=1

|ej| (2.13)
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resulting in so-called least absolute deviation fitting [104]

xL1 = arg min
x
J (x) = arg min

x
‖e‖`1 = arg min

x
‖Φ(x)− y‖`1 . (2.14)

	

	

y

�(x)

k�(x) � yk`1

Figure 2.2: Visualization of least absolute deviation fitting

In general, if the noise error is assumed to follow a certain design pattern, often corre-

sponding to a known type of probability distribution, one wants to enforce the choice

of an x that results in an error e = Φ(x)−y with the expected properties by employing

a suitable error function.

In contrast, considering the case of an underdetermined linear equation system, i.e.,

m < d, with error e = 0

Φx = y, (2.15)

the map Φ is not injective and we are confronted with infinitely many solutions. Indeed,

there is a (d−m)-dimensional affine space of vectors x = xp+N (Φ) solving this system,

where xp is any particular solution and N (Φ) denotes the null space of Φ [48].

The task here is to select the most suitable solution xopt for the specific problem out

of this set and to pose further assumptions on the solution vector, in the best case also

allowing unique identifiability of xopt.

In a like manner as described for assumptions on the noise above, to determine the so-

lution xopt matching best the desired characteristics, a-priori information on the signal

x needs to be integrated. This can be realized by the minimization of an appropriate
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penalization function under the linear constraint Φx = y in (2.5).

As an example, in the case that it is known to be close to the origin in Euclidean

distance, one can choose as a penalization function

g(x) = ‖x‖`2 (2.16)

giving rise to the least Euclidean norm solution

xLN = arg min
x
J (x) = arg min

Φx=y
‖x‖`2 . (2.17)

Again, if Φ has full row rank, the solution xLN in (2.17) can be represented in closed-

form as

xLN = ΦT (ΦΦT )−1y = Φ†y, (2.18)

where Φ† ∈Md×m is the Moore-Penrose pseudo inverse of Φ ∈Mm×d with m < d.

	

�(x) = y

`2-ball

Figure 2.3: Visualization of least norm or `2-norm penalty minimization

For additional examples and discussions on possible a priori assumption on the sig-

nal, introducing the concept of sparsity and the deduction of appropriate penalization

functions, we refer to Section 2.3.

2.1.3 Generalizing the example: weighted least squares

As seen in the examples above, for the choice of the Euclidean norm as an error or

penalization function, practical explicit calculation formulas for the solutions to the
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optimization problems (2.4) and (2.5) come in handy. We now want to consider a gen-

eralization of this approach by introducing a weighting matrix to be multiplied to the

argument of the Euclidean norm function. Thereby we can emphasize or deemphasize

certain components of the argument vector, i.e., of the error e for (2.4) or the signal x

for (2.5) respectively. [141]

Definition 2.1 (Weighted `2-norm). Let z, z̄ ∈ RN and W ∈ SN+ be a symmetric,

positive semidefinite weight matrix. We define the weighted `2-scalar product

〈z, z̄〉`2(W ) = 〈Wz, z̄〉 = 〈z,W z̄〉

and the induced reweighted `2-norm with weight matrix W as

‖z‖`2(W ) = 〈z, z〉`2(W ). (2.19)

As a special case, we consider W to be a diagonal matrix with positive entries, i.e.,

W = diag(w), where w ∈ RN with wi > 0 for i ∈ [N ]. In this case, we can define the

`2-norm with a vector valued weight w as

‖z‖`2(w) = 〈z, z〉`2(W ) =
N∑
i=1

wiz
2. (2.20)

The optimization problems in (2.4) can be formulated with f(e) = ‖e‖`2(W ) with an

appropriate choice for W ∈ Sm+ and (2.5) with g(x) = ‖x‖`2(W ) with W ∈ Sd+ respec-

tively.

	

	

y

�(x)

k�(x) � yk2
`2

k�(x) � yk2
`2(w)

Figure 2.4: Visualization of weighted least squares fitting
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The formulas for the solutions in (2.10) and (2.18) generalize for the case of a reweighted

`2-norm to the weighted least squares solution

xLSW = (ΦTWΦ)−1ΦTWy, (2.21)

and the minimum weighted norm solution

xLNW = W−1ΦT (ΦW−1ΦT )−1y, (2.22)

respectively.

These closed-form calculation rules for the solutions to the corresponding optimization

problems in (2.4) and (2.5) can be used as a standalone approximation, but they

will, moreover, be one of the fundamental building blocks for the development of an

iteratively reweighted least squares algorithm in Section 2.4.
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2.2 Nonlinear optimization problems and surrogate func-

tionals

In this section, we want to pave the ground for the solution of the optimization tasks

arising from data analysis problems as mentioned above. Our goal is to prepare the

reader for the generalization of least squares problems to nonlinear measurement op-

erators in Chapter 3. The solution of the nonconvex minimization problems resulting

from the introduction of the nonlinearity can be challenging and we will provide some

helpful tools for handling these difficulties.

The content of the next two subsections in general follows loosely the presentation of

Chapter 2 and 10 in [113] and the introduction to convex analysis and the subdifferential

in [54].

2.2.1 Prerequisites from optimization

Finding optimal solutions to application problems, e.g., in engineering, science, eco-

nomics or within more complex types of mathematical problem settings, is often for-

mulated as the minimization (or maximation) of functions in one or several variables,

possibly involving constraints on the variables as well. The field of optimization has

its mathematical foundations in linear algebra and multivariate calculus and utilizes

many tools from these branches of mathematics.

Let F : Rd → R be a real-valued function with d input variables in form of a vector in

Rd, where its function value at the point x ∈ Rd is denoted by F (x). In the literature,

the function F that we aim to minimize (or maximize) is often referred to as the

objective function. In the following, we will restrict our considerations without loss of

generality to minimization problems.

First let us consider unconstrained minimization problems of the form

min
x∈Rd

F (x). (2.23)

In this case, the vector x∗ ∈ Rd is called a local minimizer of F if there exists an ε > 0

such that

F (x∗) < F (x) for all x ∈ Bε(x
∗).
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We introduce the stronger notion that x∗ is a global minimizer of F if

F (x∗) < F (x) for all x ∈ Rd.

We now want to transfer the notion of minimizer also to constrained problems: we

aim at the minimization of the objective function F (x) subject to x ∈ C. This means,

we minimize F (x) over all x lying in a predefined set C ⊂ Rd, corresponding to the

constraint.

min
x∈C

F (x). (2.24)

We obtain a local minimizer x∗ of F subject to the set C if

F (x∗) < F (x) for all x ∈ Bε(x
∗) ∩ C.

Similarly, we define of the global minimizer of F over the set C

F (x∗) < F (x) for all x ∈ C.

As a first step, we introduce further terminology that will be useful for the upcoming

discussion on the existence of optimal solutions.

Definition 2.2. Let C ⊂ Rd be a subset of Rd, F : C → R be a real valued function

and c ∈ R be a constant. Then the level set of F on C corresponding to the value c is

a set of the form

`F,C(c) = {x ∈ C : F (x) ≤ c} .

Next we the proceed with the notion of lower semicontinuity, which is a useful gener-

alization of the continuity concept.

Definition 2.3. A function F : Rd → R is called lower semicontinuous if, for every

x ∈ Rd and every sequence (xj)j≥1 converging to x,

lim inf
j→∞

F (xj) ≥ F (x).

Of course, a continuous function F : Rd → R is lower semicontinuous. Let us mention

that lower semicontinuity of F is equivalent to the closedness of all its level sets `F,Rd(c).

To present also a nontrivial example of a lower semicontinuous function, we consider

the characteristic function XC of a proper subset C, which is not continuous, but lower

semicontinuous if and only if C is closed.
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Definition 2.4. A function F : Rd → R is called coercive with respect to the set C if

either C is bounded or it holds that

lim
‖x‖`2→∞

x∈C

F (x)→∞.

The coercivity of F : C → R is equivalent to the property that F has bounded level

sets `F,C(c).

Using the definitions above, we are able to present the following statement on the

existence of minimizers to the problems (2.23) and (2.24), derived from Weierstrass’

theorem in different variants [34, 58].

Theorem 2.5. Let C ⊆ Rd be a nonempty and closed set, and F : C → R be a lower

semicontinuous function on C. If any of the below conditions holds, then there exists a

nonempty, compact set of minimizers of F subject to C ⊆ Rd

(i) C is bounded.

(ii) F bounded from below by a value α, i.e., F (x) ≥ α for all x ∈ C and, moreover,

F is coercive with respect to the set C ⊆ Rd.

This result is also known as the “direct method of calculus of variations” [34]. The

proof of this statement uses the compactness of the level sets following from the lower

semicontinuity and the conditions (i) and (ii). Note that the second condition allows

C = Rd.

The question arising from these results is how to identify local or even global minimizers

of a given function F : Rd → R possibly subject to a constraint set C in a general

setting.

In the very general, difficult case that we aim at the minimization of a nondifferen-

tiable function F , it is possible to apply algorithms based only on function evaluation

values such as the Nelder-Mead algorithm [111] or pattern search [148]. However, these

algorithms are computationally demanding and smoothness of the objective function

is in general a very desirable property.

In a next step, we introduce the important concept of convexity discussing convex sets

and convex functions later on. Moreover, we give reasons why the convexity property

for constraint sets and objective functions is advanteguous as well. Convexity originates

from the field of mathematical analysis dealing with convex sets and convex functions

and constitutes a fundamental concept for optimization.
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Definition 2.6. We call a subset C ∈ Rd convex, if for all x, x̄ ∈ C,

tx+ (1− t)x̄ ∈ C for all 0 ≤ t ≤ 1,

meaning that the line segment connecting the points x and x̄ is contained in C. More-

over, it holds that a set C is convex if and only if, for all x1, . . . , xd ∈ C and t1, . . . , td ≥ 0

such that
∑d

i=1 ti = 1, the convex combination
∑d

i=1 tixi = 1 is also contained in C.

As typical examples for convex sets can be listed subspaces, affine spaces or norm balls

Bε(x), and intersections of convex sets are convex sets again.

Now we go on with the introduction of different types of convexity of functions with

the following definition

Definition 2.7. A function F : Rd → R is called

(i) convex if, for all x, x̄ ∈ Rd and 0 ≤ t ≤ 1,

F (tx+ (1− t)x̄) ≤ tF (x) + (1− t)F (x̄),

(ii) strictly convex if, for all x 6= x̄ ∈ Rd and 0 < t < 1,

F (tx+ (1− t)x̄) < tF (x) + (1− t)F (x̄),

(iii) strongly convex with parameter γ > 0 if, for all x, x̄ ∈ Rd and 0 ≤ t ≤ 1,

F (tx+ (1− t)x̄) ≤ tF (x) + (1− t)F (x̄)− γ

2
t(1− t)‖x− x̄‖2

`2
.

Examples of convex functions include linear and affine functions as well as all kinds of

norms. Moreover, note that a strongly convex function is strictly convex as well.

Finally, a fact pointing out an interesting connection between convex sets and convex

functions is the following

Proposition 2.8. Let C ⊆ Rd be a convex set, c ∈ R and consider a convex function

F : C → R. Then the level sets of F on C are convex.

Similar as for convex sets, convexity for functions can be defined using convex com-

binations: a function F : Rd → R is convex if and only if for all x1, . . . , xd ∈ Rd and
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t1, . . . , td ≥ 0 such that
∑d

i=1 ti = 1,

F

(
d∑
i=1

tixi

)
≤

d∑
i=1

tiF (xi).

We continue with a short note about continuity of convex functions.

Proposition 2.9. A convex function F : Rd → R is continuous on Rd.

A further characterization for different types of convexity of differentiable functions

can be formulated as follows:

Proposition 2.10. Let F : Rd → R be a differentiable function.

(i) F is convex if and only if, for all x, x̄ ∈ Rd,

F (x) ≥ F (x̄) + 〈∇F (x̄), x− x̄〉,

where ∇F (x̄) is the gradient of F at x̄.

(ii) F is strongly convex with parameter γ > 0 if and only if, for all x, x̄ ∈ Rd,

F (x) ≥ F (x̄) + 〈∇F (x̄), x− x̄〉+
γ

2
‖x− x̄‖2

`2
.

(iii) If F is twice differentiable, then it is convex if and only if, for all x ∈ Rd,

∇2F (x) � 0,

where ∇2F (x) is the Hessian of F at x.

Having collected important properties of convex sets and functions, we point out the

properties that make this class of sets and functions especially useful in the optimization

context both in theoretical and practical aspects.

We call an optimization problem a convex optimization problem if we aim at the

minimization of a convex function F over a convex set C ⊆ Rd.

Theorem 2.11. Let F : C → R be a convex function defined on a convex set C ⊆ Rd .

(i) Then every local minimizer of F over C is also a global minimizer.

(ii) If F is continuous and C is closed, then the set of local (and therefore global)

minimum points of F over C is a closed convex set.
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(iii) If F : C → R is strongly convex, the minimizer of F over C is unique.

From this theorem, it becomes clear why these types of problems are particularly

interesting, as property (i) implies that convex optimization problems allow for an

efficient algorithmic treatment.

The question arising from these results is, how to identify local or even global mini-

mizers of a given function F : Rd → R possibly subject to a constraint set C, also in a

general setting not restricted to the convex case.

To provide an adequate answer, we give conditions on the optimality of certain function

input values, that can also be the core idea for the construction of efficient algorithms.

2.2.2 Optimality conditions and a detour to nonlinear least squares

problems

In this next part, we focus on differentiable, nonlinear functions F and at least partly

give corresponding results for the nondifferentiable but convex case as well. However,

a detailed discussion of nonsmooth optimization will not be part of this thesis and we

refer to [4] for further results in this direction.

We start our considerations with unconstrained problems and present powerful opti-

mality conditions that can be derived from Taylor’s theorem.

Theorem 2.12. Let x∗ ∈ Rd and assume that F : Rd → R is twice continuously

differentiable. We consider the

(i) first-order necessary and sufficient condition: ∇F (x∗) = 0,

(ii) second-order necessary condition: ∇2F (x∗) � 0, i.e., ∇2F (x∗) pos. semidef.,

(iii) second-order sufficient condition: ∇2F (x∗) � 0, i.e., ∇2F (x∗) pos. def.

Points x∗ fulfilling condition (i) are called critical (or stationary) points of F .

On the one hand, if x∗ is a local minimizer of F , necessarily conditions (i) and (ii)

have to hold. On the other hand, if condition (i) and (iii) hold, x∗ is a local minimizer

of F .

The first-order condition stated in (i) implies that the gradient is zero at x∗. Fur-

thermore, the second-order condition can be interpreted as a kind of local convexity
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condition on F in the neighbourhood of x∗ if we compare conditions (ii) and (iii) to

Proposition 2.10 (iii).

Condition (i) gives us an instruction, how to find at least critical points of a given

function: by finding solutions x∗ to the equation system ∇F (x) = 0.

It is clear that if F is a quadratic function of the variable x, ∇F (x) = 0 is a linear

system of equations, where direct solvers and effective computational methods are

readily available.

In the general case, however, ∇F (x) = 0 is a d × d-dimensional nonlinear system of

equations, which can be very demanding to solve. In the case that F is nonconvex, even

determining whether a solution exists and whether it is unique is sometimes already a

hard problem. As in general no direct solution methods are applicable, we will have to

rely on heuristic algorithms that are not guaranteed to succeed but often work well in

practice.

One can try to solve this equation with iterative methods, for example Newton’s

method, and in this way obtain a critical point as a candidate for a local minimizer.

Nevertheless, in the general case, it is only possible to find stationary points and check

whether they are local minimizers. However, it is not clear whether a global or local

minimizer was identified by employing this approach. In practise, such strategies only

succeed in finding a global minimizer if the initialization of the iterative method is

chosen smartly and sufficiently close to it already.

To illustrate the approach of an iterative algorithm for the solution of nonlinear op-

timization problems, we sketch the basic idea and the typical algorithmic procedure

that these strategies share:

Starting from a given initialization point x(0), the algorithm outputs a series of vectors

x(1), x(2), . . . called iterates, for which we hope that it converges to a point lim
n→∞

x(n) = x̄,

coinciding with a local minimizer x∗ for the objective function F .

Most of these methods implement criteria which enforce a descent condition on the

iterates. This can be realized by performing the n-th iteration step starting from the

current iterate x(n) as follows

• Determine a descent direction d (most popular choice: the gradient of F ), and

• Choose a step length α > 0 giving a good decrease in the objective function value.

• Set x(n+1) = x(n) + αd.
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Therefore, a descent method pursues the target

F (x(n+1)) < F (x(n))

in each step and often the algorithm terminates if the function values of the iterates

does not change significantly anymore. This means that if stopping criterion F (x(n))−
F (x(n−1)) < δ for δ > 0 is reached, for n = n̄ the final output result of the algorithm is

x̄ = x(n̄).

From this procedure it is clear that the output vector of the algorithm and there-

fore, also the local minimizer of the objective that is approached will depend on the

initialization value x(0).

With the decrease of the objective function in each step we aim at the decrease of the

distance of the iterates x(n) to the local minimizer x∗ as well, at least from a certain

iteration N on. Reformulating this goal in terms of the error E(n) = x(n) − x∗ gives

∣∣∣∣∣∣E(n+1)
∣∣∣∣∣∣ < ∣∣∣∣∣∣E(n)

∣∣∣∣∣∣ for n > N

for an appropriate norm |||·|||. Theoretically, convergence of the algorithm to the local

minimizer occurs if lim
n→∞

e(n) = 0 and we practically hope for an output x̄ = x(n̄) of the

algorithm with E(n̄) ≈ 0.

Please note that for different algorithmic strategies we can have different convergence

behaviour for the same problem. Some may exhibit convergence while others don’t.

Moreover, this decrease of the error per iteration and, therefore, the number of itera-

tions necessary until convergence can be different for different algorithmic strategies.

Algorithms can also exhibit different so-called convergence speed or convergence rates.

Depending on the relationship between
∣∣∣∣∣∣E(n+1)

∣∣∣∣∣∣ and
∣∣∣∣∣∣E(n)

∣∣∣∣∣∣ for n > N , i.e., when∣∣∣∣∣∣E(n)
∣∣∣∣∣∣ is already small, we can distinguish between

• Linear convergence rate:
∣∣∣∣∣∣E(n+1)

∣∣∣∣∣∣ ≤ µ
∣∣∣∣∣∣E(n)

∣∣∣∣∣∣ with 0 < µ < 1,

• Quadratic convergence rate:
∣∣∣∣∣∣E(n+1)

∣∣∣∣∣∣ ≤ µ
∣∣∣∣∣∣E(n)

∣∣∣∣∣∣2 with 0 < µ,

• Superlinear convergence rate:
|||E(n+1)|||
|||E(n)||| → 0 for n→∞.

The fact that convergence occurs or not is independent of the choice of |||·||| but not

the rate of convergence, that can vary for different choices of |||·|||.

At this point, we want to come back to the generalization of the sum of squares mini-

mization problem to nonlinear measurement operators Φ : Rd → Rm.
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In the linear case, the concatenation of the error function f(x) = ‖x‖`2 and the linear

residual e(x) = Φx − y leads to a quadratic objective F (x) = f(e(x)). For the min-

imization of this quadratic function one has to solve a linear equation resulting from

the first-order optimality condition, where the efficient solvers mentioned above are

available.

In contrast, the introduction of the nonlinear operator Φ leads to the concatenation of

f(x) = ‖x‖`2 with the nonlinear residual e(x) = Φ(x) − y and in the end leads to the

minimization of a in general nonconvex objective function

min
x
F (x) = min

x
‖e(x)‖`2 = min

x
‖Φ(x)− y‖`2 . (2.25)

Even though nonlinear least squares residual minimization is a widespread problem,

appearing for example in regression curve fitting or parameter determination from

scientific experiments, this field is not an extensively discussed subject within analysis.

We present the application of different iterative descent methods as introduced above

for the minimization of the nonlinear objective F (x) as in (2.25) exemplary for this

problem.

Let in the following J(x) be the Jacobian of F at the point x. If F (x) is twice contin-

uously differentiable, then we solve the nonlinear equation

∇F (x) = J(x)∗e(x) = 0,

which provides local stationary points for F (x).

The first algorithm we will investigate is the well-known Newton’s method. Its derivation

from Taylor’s theorem indicates a descent direction dN that is determined via the

solution of the equation

∇2F (x(n))dN = −∇F (x(n)).

Using the result with step length α = 1, we can formulate one iteration of this method,

the so-called Newton step, as

x(n+1) = x(n)−(∇2F (x(n)))−1∇F (x(n)) = x(n)−(J(x(n))∗J(x(n))+S(x(n)))−1J(x(n))∗e(x(n)),

(2.26)

where S(x(n)) denotes the matrix S(x(n)) =
m∑
j=1

ej(x
(n))∇2ej(x

(n)).

Newton’s method can reach quadratic convergence rate, but still it can be computa-

tionally expensive as it requires the calculation of md2 derivatives for the evaluation

of S(x(n)) at each step.
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A key observation towards computationally more efficient solvers related to Newton’s

method is the approximation of the Hessian

∇2F (x) = J(x)TJ(x) + S(x) ≈ J(x)TJ(x). (2.27)

resulting in the Gauß-Newton method with the subproblem:

[
J(x(n))TJ(x(n))

]
d

(n)
GN = −∇F (x(n)). (2.28)

This approximation can be justified with the assumption that, especially in the case of

mild nonlinearity of Φ, the residuals is small in the neighborhood of the solution and,

therefore, the first term is significantly more important.

However, performing a sequence of such iterations with updates x(n+1) = x(n) + d(n),

with the step size choice α = 1 as chosen above in (2.26) fails to reach convergence.

Therefore, for this kind of algorithms a more careful step size control is necessary.

Depending on the strategy used to determine the step size 0 ≤ α ≤ 1, one distinguishes

two main algorithm categories: line-search algorithms and trust-region algorithms.

(i) Line Search: As a first task within the iteration step of a line search method, a

descent direction d is determined, along which the value of the objective function

shall be decreased. Second we find a step size α that decides how far to move

along the direction to obtain a minimization of the function value. The value of

α can be optimized exactly but often an approximation reaching a decrease in

the objective function value is sufficient. In fact, most line search algorithms also

solve approximate models to obtain search directions, e.g., Gauß-Newton.

(ii) Trust Region: A trust region method uses a (in most cases quadratic) surrogate

model function to approximate the true objective function. It is crucial for this

kind of approaches that this approximation is only ”trusted” to be appropriate

over a subset of the search space centered around the current iterate, the so-

called trust region. In the next step, the trust region is either expanded in case

that the surrogate function proves to be a sufficiently good approximation and

successfully minimizes the actual objective function or otherwise it is contracted if

the approximation via the model function fails to decrease the objective function.

Then the surrogate optimization problem is adjusted and repeatedly solved.

We notice the duality between trust region methods and line search methods from the

perspective that they execute the two main steps of descent methods in the reversed

order: line search methods determine a step direction and then set an appropriate step
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size for the chosen direction while trust region methods first find an acceptable step

size determined by the size of the trust region and then decide for a step direction.

As an example, we will point out the most popular algorithm for solving non-linear least

squares problems referred to as the Levenberg-Marquardt algorithm [94, 108]. It actually

was also the very first trust region algorithm to be developed and can be considered as

a trust-region modification of the Gauss-Newton algorithm with the subproblem

d
(n)
LM = arg min

d∈Rd

1

2
‖J(x(n))d+ e(n)‖2

`2
, subject to ‖d‖ ≤ ∆(n). (2.29)

The Levenberg-Marquardt algorithm exhibits the same local convergence behaviour as

the Gauß-Newton method and is at least locally equivalent to a linear least squares

problem, but it has the major advantage that it is also globally convergent.

Now we end our detour to the solution of the nonlinear least squares problem and make

a step towards optimality results for functions that are nondifferentiable but convex

and, therefore, still have favourable optimization properties.

We first generalize the gradient to nondifferentiable functions with the definition of the

subdifferential.

Definition 2.13. The subdifferential of a function F : Rd → (−∞,∞] at a point

x ∈ Rd is defined by

∂F (x) =
{
y ∈ Rd : f(x̄) ≥ F (x) + 〈y, x̄− x〉 for all x̄ ∈ Rd

}
.

The elements of ∂F (x) are called subgradients of F at x.

In the case that F is differentiable at a point x, it holds that ∂F (x) = {∇f(x)}, which

means that the subdifferential ∂F (x) consists of one single element, the gradient of

F at x. The subdifferential ∂F can also be the empty set but for a convex function

F : Rd → R it is always nonempty.

To give an illustrative example of a function with a nontrivial subdifferential, we con-

sider F (x) = |x|, where ∂F =

{sign(x)} x 6= 0

[−1, 1] x = 0
.

Now, interestingly, the subdifferential allows a simple characterization of minimizers of

convex functions via a first-order type necessary and sufficient condition as follows:

Theorem 2.14. A vector x is a minimizer of a convex function F if and only if

0 ∈ ∂F (x).
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For the rest of the subsection, we will turn to constrained optimization problems. We

will concentrate on specific constraint sets C, that can be described by equalities or

inequalities.

We define the nonlinear optimization problem with equality/inequality constraints

minimize F (x)

subject to hk(x) = 0, k ∈ [m1]

gl(x) ≤ 0, l ∈ [m2]

(2.30)

where F , h1, h2, . . . , hm1 and g1, g2, . . . , gm2 are continuously differentiable functions

from Rd into R.

Moreover, we introduce the operators H : Rd → Rm1 and H(x) =

(h1(x), h2(x), ..., hm1(x)) and analogously G : Rd → Rm2 and G(x) =

(g1(x), g2(x), ..., gm2(x)) .

In problems with inequality constraints it is often difficult to determine which inequal-

ities are active in an optimal solution, meaning that they are fulfilled with equality. If

we knew the active inequalities, we would essentially have a problem with only equal-

ity constraints, H(x) = 0 plus the active equalities. The set of indices of the active

inequalities at x is denoted by Λ(x), so Λ(x) = {l ≤ m2 : gl(x) = 0}.

In the following, a point x is called regular if {∇h1(x), . . . ,∇hm1(x)} ∪ {∇gl(x) : l ∈
Λ(x)} is linearly independent.

We now present a main result in nonlinear optimization which gives the necessary

and sufficient first-order optimality conditions to the problem (2.30), the so-called

Karush-Kuhn-Tucker conditions, or simply the KKT conditions. Additionally, we will

give second-order conditions to obtain a full presentation of necessary and sufficient

conditions on optimality.

In order to present these conditions, we introduce the Lagrangian function L : Rd ×
Rm1 × Rm2 → R given by

L(x, λ, µ) = F (x) +

m1∑
k=1

λkhk(x) +

m2∑
l=1

µlgl(x) = f(x). (2.31)

with Lagrange multiplier vectors λ = (λ1, λ2, ..., λm1) and µ = (µ1, µ2, . . . , µm2).
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The gradient of L with respect to x is denoted by

∇xL(x, λ, µ) = ∇F (x) +

m1∑
k=1

λk∇hk(x) +

m2∑
l=1

µl∇gl(x). (2.32)

and the Hessian matrix of L at (x, λ, µ) by ∇xxL(x, λ, µ) containing the corresponding

second order partial derivatives of the Langrangian with respect to x.

The upcoming theorem first presents the first-order conditions, known as the KKT

conditions, as well as second order conditions that are subsequently put in context and

explained.

Theorem 2.15. Let x∗ ∈ Rd and assume that f , h1, h2, . . . , hm1 and g1, g2, . . . , gm2 are

twice continuously differentiable functions from Rd into R. We consider the

(i) first-order necessary and sufficient conditions (KKT conditions):

∇xL(x∗, λ∗, µ∗) = 0

µ∗l ≥ 0 l ∈ [m2]

µ∗l = 0 l /∈ Λ(x∗).

(2.33)

(ii) second-order necessary condition:

yT∇2
xxL(x∗, λ∗, µ∗)y ≥ 0 (2.34)

for all y with ∇hk(x∗)Ty = 0 for k ∈ [m1] and ∇gl(x∗)Ty = 0 for l ∈ Λ(x∗).

(iii) second-order sufficient condition:

yT∇2
xxL(x∗, λ∗, µ∗)y > 0 (2.35)

for all y with ∇hk(x∗)Ty = 0 for k ∈ [m1] and ∇gl(x∗)Ty = 0 for l ∈ Λ(x∗).

If x∗ is a local minimizer of (2.30) and x∗ is a regular point, then there are unique

Lagrange multiplier vectors λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
m1

) and µ∗ = (µ∗1, µ
∗
2, . . . , λm2) such that

necessarily conditions (i) and (ii) hold.

In case that x∗, λ∗ and µ∗ are such that x∗ is a feasible point and (i) and (iii) hold,

then x∗ is a local minimizer of (2.30).
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2.2.3 Optimization of surrogate functionals

Surrogate-based optimization [82, 122] refers to a branch of optimization frameworks

for the development of problem-driven algorithms that use surrogate model problems to

approximate the solution of an otherwise computationally intractable problem. More

concretely, surrogate methods iteratively solve a sequence of optimization problems at a

low computational cost, that typically consist of two main steps: First a model function

G(x) with favourable optimization properties is determined to substitute the original

objective function F (x). Then computationally efficient optimization techniques are

applied for this surrogate function, hoping for a good approximation of the optimizer

of the true objective function.

Of course, the design of the surrogate function is crucial for the success of the surrogate

model algorithms and one needs to find an appropriate trade-off between the following

two ambitions: On the one hand, the tighter the approximation of G(x) to the objective

F (x), the faster the convergence and therefore, the more efficient the derived algorithm.

On the other hand, a closed-form solution to the optimization problem resulting from

the surrogate model is preferable.

Finding the right balance between the two often contrary goals mentioned above re-

quires the smart application of inequalities bounding the objective function for the

construction of surrogate functions.

Some general principles and methods for the construction of surrogate functions, just

mentioning here three important representatives, can be

(i) Separation in variables : allowing parallel computing implementations in high di-

mensions.

(ii) Convexity and smoothness : favourable optimization properties, e.g., via lineariza-

tion of the concave part of the objective or Taylor expansion.

(iii) Special inequalities, e.g., Arithmetic-Geometric Mean Inequality, Cauchy-

Schwartz Inequality, Jensen’s Inequality.

For discussion of these techniques and further examples we refer to Lange et al. [90]

In the following, we want to give an example for the class of so-called maximation-

minimization algorithms (MM-algorithms). For this special type of methods the sur-

rogate function is ”maximizing” the objective, meaning that it is a local upperbound

approximation of the objective function, where the difference is minimal in the point

of the current iterate [89].
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Example [Convexification via quadratic perturbation]:

In the case we want to optimize a nonconvex objective function F (x), one can try to

approach this problem iteratively solving a sequence of locally convex problems with

a maximation-minimization strategy. More concretely, we consider, starting from an

initial point x(0), to perform a majorizing local convexification of the objective F (x)

around the current iterate x(n) at each iteration n > 0.

We propose an appropriate convexification Fµ,u by quadratic perturbations

Fµ,u(x) := F (x) + µ‖x− u‖2
`2

(2.36)

for µ > 0 and a reference point u ∈ Rd, which is rather standard and well-known in

the nonlinear optimization literature, for instance in sequential quadratic programming

[3]. Notice that Fµ,u(x) is coercive whenever F is bounded from below.

Related to this type of convexification we define µ-convexity of a function

Definition 2.16. Let F : Rd → R be a continuously differentiable function with

piecewise continuous and bounded second derivatives. We say F is µ-convex if there

exists µ > 0 such that F (·) + µ‖ · ‖2
`2

is convex.

We observe that, if F is µ-convex we can always assume that µ is chosen in such a

way that also Fµ,u(x) is ν-strongly convex with ν depending on F and µ, but not on u.

[2]

The function F 1
2
,z serves as a foundation for the formulation of the iterative proximal

point algorithm [89]

x(n+1) = proxµf (x(n)),

where the so-called proximal map is defined by

proxµF (z) = arg min
x

F 1
2
,z = arg min

x

[
F (x)− 1

2
‖x− z‖2

`2

]
.

Its scaled version for µ > 0 is often referred to as the the Moreau-Yosida regularization

F µ
MY (z) = arg min

x
Fµ,z = arg min

x

[
F (x)− µ‖x− z‖2

`2

]
.

Now we want to continue with the concepts of relaxation and convex envelopes, which

also belongs to the class of surrogate optimization methods, but one considers a mi-

norization of the actual objective function [16].
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Definition 2.17. Let dom(F ) ⊂ Rd be the domain of the function F : Rd → R. A

relaxation of the minimization problem

min
x∈dom(F )

F (x) (2.37)

is a surrogate minimization problem

min
x∈XR

FR(x) (2.38)

where XR ⊇ dom(f) and FR(x) ≤ F (x) for all x ∈ X. Let x∗ denote an optimal

solution of the original minimization problem and x∗R ∈ XR the optimal solution of the

surrogate problem, then x∗ ∈ X ⊆ XR and F (x∗) ≥ FR(x∗) ≥ FR(x∗R).

A special, quite important instance of a relaxation of an optimization problem is its

convex relaxation, which chooses the convex envelope of a function as the relaxation

function.

Definition 2.18. The convex envelope F̄ of a function F is the convex approximation

of F from below

F̄ (x) := sup {g(x) ≤ F (x) : g is a convex function} .

The convex minimization problem for F̄ on a compact set C has a unique global solution,

which will coincide with the a global minimizer on C of the relaxed function F , although

F might have several local minimizers.
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2.3 High-dimensional data: fighting the curse of dimen-

sionality

Many real-life problems naturally involve high-dimensional signal vectors, and we face

the case that the number of measurements m is way less than the number of variables

d we need to estimate, i.e., we consider the (linear) equation system

Φ(x) = y (2.39)

with x ∈ Rd, y ∈ Rm and Φ : Rd → Rm where m� d as typical, for example in image

processing [60, 139].

Theoretical considerations motivate the study of high-dimensional spaces, which evince

unexpected properties that completely differ from our intuition for low-dimensional

spaces as 2D or 3D, often entitled as the ”curse of dimensionality”.

The methaphorical expression ”curse of dimensionality” appeared first in the work

of Bellman [6]. He used this term in connection with the difficulties arising from the

overwhelming number of function evaluations necessary for the optimization of a con-

tinuous function to a certain accuracy by searching on a discrete grid with growing

number of function parameters. If for example one searches the optimum of a function

on the unit cube in dimension d using a Cartesian grid of spacing 1
s
, one has to carry

out sd function evaluations.

(a)

	Fraction of unit cube volume covered  

(b)

Figure 2.5: Visual explanation of the exponential growth of the space volume with the
dimension causing the ”curse of dimensionality” (a) Embedding of a cube of side length
s ∈ [0, 1] into the unit cube of dimension d (b) Fraction of the volume of the unit cube
covered by the embedded cube in dependence on the edge lengths. Picture source: [109]
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Hence in this scenario, without further simplifying assumptions, the number of data

samples required grows exponentially with the dimension. As usually only a limited

amount of data is available, high-dimensional spaces exhibit an inherent sparsity. This

fact, causing the curse of dimensionality in this case, is often referred to as the empty

space phenomenon [93].

Critical quantities related to the problem dimension or the number of measurements,

e.g., computational complexity are growing exponentially as well making the applica-

tion of most algorithmic approaches impractical.

In order to avoid or dampen the confrontation with the ”curse of dimensionality”

when working with high-dimensional data, one assumes that the significant influence

parameters are in a interdependent relationship inducing a certain data structure. The

geometry of this data structure in the ambient space provides a concise description of

the data information content[100].

The goal of dimensionality reduction is to make use of these dependencies to find a

lower complexity representation of the data but not loosing the structural information.

2.3.1 Low-dimensional subspace structures

In the case of (2.39), where m < d, from a traditional linear algebra perspective the

knowledge of Φ and y only does not permit the calculation of x. Nevertheless, such

underdetermined linear equation systems appear in the modeling of many practical

application problems where additional knowledge about x is available.

In a lot of relevant cases, the signal x ∈ Rd is assumed to be concentrated around

a subset Ω of the space representing an underlying structure, that has intrinsically

a lower dimension K in the high-dimensional ambient space [151]. The intersection of

this subset Ω with the affine solution space F(y,Φ) = {x|Φ(x) = y} of dimension d−m
then contains the set of qualified solutions.

The motivation justifying such a restriction of the space of eligible signals x to a

lower-dimensional subset is the following: in many cases of interest, the process that is

underlying the signal generation essentially only has few degrees of freedom compared

to the dimension of the signal [100].

In such cases, there exists a representation of the signal x ∈ Rd with a reduced number

of degrees of freedom via a parameter vector z ∈ RK in the intrinsic dimension K,

while still maintaining the full information content of the original signal x [151].
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In a lot of interesting application cases, the subset Ω is supposed to be a manifold that

can be smoothly parameterized by the K-dimensional parameter vector z ∈ RK , i.e.,

Ω =
{
x|x = Ψ(z),Ψ : RK → Rd

}
[45].

For example, manifolds have also been proposed as approximate models for signal

classes such as images of handwritten digits [76].

Figure 2.6: Images of handwritten digits: By making assumptions on the vague shape
of handwritten signs that represent a certain digit, we reduce the degrees of freedom
for the shapes that fall in the class of these digits; this allows for the classification of
handwritten digits. Picture source: [102]
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Figure 2.7: The manifold of the handwritten digit ’1’: (a) 200 samples of handwritten
digit ’1’ (b) Visualization of the sample points in the shape space of handwritten signs
and their accumulation around a lower-dimensional manifold. Picture source: [95]
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We make the observation that the so-called manifold hypothesis is a way of avoiding

the ”curse of dimensionality” [100]: by exploiting the structure with reduced degrees

of freedom K of the signal x, it is possible to perform a reduction of dimensionality.

Thereby, we obtain a more compact signal representation facilitating the identification

of structure specific characteristics of qualified solutions x as well as the formulation

of an appropriate penalization function g(x).

Another assumption which makes it possible to circumvent the curse of dimensionality

is sparsity[100].

In the following, we focus on this specific type of signal structures which allow for

a lower-dimensional representation of vectors x ∈ Rd via a k-dimensional coordinate

vector in an appropriate basis, so-called k-sparse vectors. Related structural concepts

for matrix valued data will be introduced as well.

The general outline and content of the next subsection is inspired by the books [48, 54].

2.3.2 An introduction: sparse vectors and related concepts for ma-

trix valued data

In a large number of application contexts only a part of the components of a signal

vector x ∈ Rd under consideration is of interest while the rest is negligible. More

precisely, for a signal x represented in an appropriate basis, only few indexes i ∈
Λ ⊂ [d] with |Λ| = k � d with significantly large absolute values |xi| correspond to

relevant influence parameters of, e.g., a physical phenomenon under consideration in

the measurement process. The other indices i ∈ Λc with xi ≈ 0 can essentially be

dropped from the signal model [11, 121].

Such vectors with mainly nearly vanishing entries and only a small number of significant

components for an advantageous choice of the basis are called sparse and the related

described phenomenon is referred to as sparsity.

It is an important observation that the degrees of freedom for a signal vector x ∈ Rd

with a fixed number of only k � d nonzero components is only k and, therefore, the

dimensionality of the signal model can be reduced.

As a consequence, by introducing the additional assumption of sparsity on the so-

lution vector x ∈ Rd and taking advantage of the low-dimensional signal structure,

reconstruction of x from the equation system

Φx = y (2.40)
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given the measurement result y ∈ Rm and a measurement matrix Φ ∈ Rm×d with

m � d, becomes a feasible problem. This problem of finding a sparse solution to an

underdetermined linear system became known as the sparse recovery or compressed

sensing problem.

In the 2000’s, the work of Candès, Romberg and Tao [25] and Donoho [40] built the

ground for a rigorous mathematical theory of sparse recovery. This publication marks

the start of the compressed sensing boom. A wide range of efficient algorithmic solvers

for the compressed sensing problem is available these days and compressed sensing

techniques are successfully applied to numerous relevant real-life problems, e.g. image

processing. For an overview of the fast growing field of compressed sensing and further

references, cf. [11, 54, 121].

Besides of this very classical type of sparsity for high-dimensional vectors with very

few nonzero elements, sparsity can have diverse manifestations that vary from one

application domain to another. We access the topic from sparse vector recovery and

introduce appropriate convenient notation and problem formulations in the context of

sparse vectors. These are applicable with modifications to the matrix case as well.

The concept of sparsity can be applied to the noise vector e ∈ Rm, but for the rest of

the section we focus on the sparse signal vectors x ∈ Rd and come back to noise or

residual vectors later in Chapter 3.

In the following, let k, d ∈ N and k ≤ d.

For an index set I, we consider subsets Λ ⊂ I with its cardinality |Λ| and its comple-

ment Λc = I \ Λ. The submatrix of a matrix Z ∈ Rd1×d2 only containing the columns

with indices in Λ = {i1, . . . , il} is expressed by ZΛ = [Z[:,i1], . . . , Z[:,il]] ∈ Rd1×d2 . Corre-

spondingly, for the vector z, the restriction zΛ = [zi1 , . . . , zil ] coincides with the entries

of z for the indices contained in the set Λ.

The support, i.e., the set of nonzero coordinates of a vector x ∈ Rd is referred to as Λ

or supp(x), i.e., Λ = supp(x) = {i ∈ [d]|xi 6= 0}.
Its cardinality is used to define the so called `0-norm, which actually is the counting

measure, by

‖x‖0 = ‖x‖`0 := |supp(x)| =
d∑
i=1

|xi|0 ,with |ξ|0 :=

0 ξ = 0

1 ξ 6= 0.

So the `0-norm counts the number of nonzero entries in a vector.

Using this notion, we are able to give a quite natural, concrete formulation of sparsity.
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The set of k-sparse vectors, i.e., vectors with at most k nonzero entries, is defined by

Σk =
{
x ∈ Rd : ‖x‖`0 := |supp(x)| ≤ k

}
. (2.41)

We note that the set Σk constitutes a union of k-dimensional linear subspaces in the

space Rd with ambient dimension d.

The `0-norm is not only nonconvex, nonsmooth but also discontinuous. It is in many

cases approximated by the `p-(quasi-)norm for a parameter p > 0

‖x‖p = ‖x‖`p :=

(
d∑
i=1

|xi|p
) 1

p

. (2.42)

For 0 < p < 1, we gain continuity but still have a nonconvex and nonsmooth quasi-

norm, that does not fulfill all norm axioms, as the triangle inequality only holds with

factor C = 21/p−1, while for p ≥ 1 we obtain a norm, which is convex.

We note that

lim
p→0
‖x‖p`p = |supp(x)| = ‖x‖`0 . (2.43)

We consider the case that signal information is obtained from linear, nonadaptive mea-

surements using a measurement matrix Φ ∈ Rm×d, where we expect a sparse solution

but the signal x and its support supp(x) are unknown a priori. The most immedi-

ate approach is to search for the vector x with smallest support compatible with the

measured data y = Φx.

As a support of low cardinality is desired, it comes natural to use an `0-quasinorm

penalty function g(x) for the formulation of an appropriate objective functional. This

leads us to the so called `0-minimization problem

min
x∈Rd
‖x‖0 subject to Φx = y (2.44)

and hopefully its solution coincides with the vector in demand.

The theoretical setting that has to be complied to ensure the recovery of the correct

solution is discussed in more detail in Section 2.3.3.

It should also be mentioned that, in contrast to the `2-norm, that is unitarily invariant,

other norms usually are not, and also the `0-quasinorm related definition of ”sparsity”

is highly dependent on the underlying basis. The definition in (2.41) is assuming that

the vector under consideration is sparse or nearly sparse in the canonical basis and

therefore is formulated in terms of the cardinality of the support set, that is modified
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under basis change.

In numerous real-life measurement settings, the vectors x̃ of interest living in an Eu-

clidean space Rn with n � d have a sparse representation with respect to a suitable

basis or frame {ϕj ∈ Rn, j = 1, · · · , d}. This means that z ∈ Rn can be represented

such that z =
d∑
j=1

xjϕj, where x has a small relevant set of indices with nonzero en-

tries while the rest of the components are (nearly) zero providing a sufficiently good

approximation to the expansion of z.

The sparse representability of real-life signals explains the increasing popularity and

successful practical applications of compressed sensing approaches, including very clas-

sical examples as image processing, where images are known to be sparsely repre-

sentable with respect to Wavelets, Curvelets or Shearlets for instance [138].

Therefore, in practical problems, often a basis transformation Ψ = {ϕ1, . . . , ϕd} ∈ Rd×d

is required that allows for an appropriate sparse representation x of z by considering

z = Ψx. 4 1 An Invitation to Compressive Sensing

Fig. 1.2 Top: 5-sparse vector of Fourier coefficients of length 64. Bottom: real part of time-domain
signal with 16 samples

recovery algorithm—the first question on the design of the measurement matrix is
equally important and delicate. We also emphasize that the matrix A should ideally
be designed for all signals x simultaneously, with a measurement process which is
nonadaptive in the sense that the type of measurements for the datum yj (i.e., the
jth row of A) does not depend on the previously observed data y1, . . . , yj−1. As it
turns out, adaptive measurements do not provide better theoretical performance in
general (at least in a sense to be made precise in Chap. 10).

Algorithms. For practical purposes, the availability of reasonably fast reconstruc-
tion algorithms is essential. This feature is arguably the one which brought so
much attention to compressive sensing. The first algorithmic approach coming to
mind is probably ℓ0-minimization. Introducing the notation ∥x∥0 for the number of
nonzero entries of a vector x, it is natural to try to reconstruct x as a solution of the
combinatorial optimization problem

Figure 2.8: Top: 5-sparse vector of Fourier coefficients of length 64. Bottom: real part
of the time-domain signal with 16 samples. Picture source: [54, Fig. 1.2]

In these cases instead of the linear system Φz = y one considers the substitute linear
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system Φz = ΦΨx =: Φ̃x = y and the corresponding optimization problem

min
x∈Rd
‖x‖0 subject to Φ̃x = y. (2.45)

Such aspects require a careful modeling of the underlying problem for the correct appli-

cation of sparse recovery methods, which is not subject of this work. In the following,

we assume without loss of generality sparsity in the canonical basis of the solution

vectors under consideration.

Unfortunately, computing the sparsest solution from (2.44) or (2.45) directly is a com-

binatorial optimization problem and, therefore, NP-hard [54, Theorem 2.1]. This means

that it in general requires prohibitive computations of exponential growing complex-

ity with respect to k,m, d. As a consequence, the solution of (2.44) quickly becomes

computationally intractable with growing dimensions, especially for big data problems.

In the following, we propose to find tractable algorithms by noting that the function

| · |p is a continuous relaxation of | · |0 for p > 0 and relaxing (2.44) [133],[110].

In this spirit, also the observation (2.43) suggests to replace the problem (2.44) by the

approximation of the `0-objective functional by `p-quasinorms for parameters p > 0.

More precisely, we consider

min
x∈Rd
‖x‖p subject to Φx = y. (2.46)

Our hope is that by solving this relaxed problem, its solution is close to the solution

of (2.44) as well.

In the case where p > 1, this optimization problem is convex, but it is not guaranteed

to find sparse vectors and therefore, is suitable only with some reservations. Recovery

of sparse vectors becomes possible for p ≤ 1 if the solution is sparse enough and Φ

fulfills certain spectral properties as we will explain in Section 2.3.3.

For the particular case of p = 1, probably the most studied case, this problem becomes

the well-known `1-norm minimization (`1-minimization) problem. The `1-norm con-

stitutes the convex relaxation of the `0-quasinorm, which makes it relatively easy to

solve with standard linear programming techniques, e.g., interior point methods. The

combination of these two properties makes the solution of the `1-minimization problem

a very attractive choice also for practical applications [11, 121].
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1.1 What is Compressive Sensing? 5

Fig. 1.3 Top: poor reconstruction via ℓ2-minimization. Bottom: exact reconstruction via
ℓ1-minimization

minimize ∥z∥0 subject to Az = y.

In words, we search for the sparsest vector consistent with the measured data
y = Ax. Unfortunately, ℓ0-minimization is NP-hard in general. Thus, it may
seem quite surprising that fast and provably effective reconstruction algorithms
do exist. A very popular and by now well-understood method is basis pursuit or
ℓ1-minimization, which consists in finding the minimizer of the problem

minimize ∥z∥1 subject to Az = y. (1.2)

Since the ℓ1-norm ∥ · ∥1 is a convex function, this optimization problem can
be solved with efficient methods from convex optimization. Basis pursuit can be
interpreted as the convex relaxation of ℓ0-minimization. Alternative reconstruction
methods include greedy-type methods such as orthogonal matching pursuit, as well

Figure 2.9: Top: poor reconstruction via `2-minimization. Bottom: exact reconstruction
via `1 -minimization [54, Fig. 1.3]

	

�(x) = y

`1-ball

Figure 2.10: Visualization of the sparsity enhancing property of the `1-norm penalty,
compare with Figure 2.3 for a visualization of `2-norm penalty minimization

For the parameter values 0 < p < 1, the optimization problem is nonconvex and local

minimizers can occur. Finding the global minimizer is again NP-hard as well as the
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`0-norm minimization problem. Nonetheless, the properties of the `p -minimization for

0 < p < 1 can prove useful from a theoretical point of view as the approximation to

the `0-problem is closer, which can also bring practical advantages in the end.

We would like to illustrate in a simplified example in R2 now, why the `p-minimization

is able to induce sparsity for 0 < p ≤ 1.

In the case for the signal dimension d = 2 and number of measurements m = 1, as

a representation for the solution space F(y,Φ) = {z : Φz = y} one can simply take

an affine line in R2. Moreover, the sparsest solution in this case only has one single

nonzero component. Visually explained, the nonconvex `p-norm-balls can be expanded

from small size until one of its spikes meets the affine space F(y,Φ) in a sparse solution,

while for p > 1 the first occurrence of tangency of the affine space to the norm-ball will

yield a non-sparse solution.

Our intuition tells us that the `p-minimization problem does not provide a worse ap-

proximation of the sparse solution than the solution of the original `0-minimization

problem for small p. However, we still have to justify this conjecture as it is not yet

clear when a global minimizer of (2.46) really coincides with a solution to (2.44). For

this purpose, we will introduce the so-called null space property and important related

matrix properties in the upcoming Section 2.3.3.

We note that many ideas from compressed sensing were recently applied to the recovery

of matrices with certain sparsity-type structures from incomplete linear measurements

[21, 125]. We now introduce some popular instances of structured matrices and gen-

eralize the concepts and notations presented above for sparse vectors accordingly. A

comparable collection and presentation of sparsity-type structures and their modeling

can be found in [17] and [84]. In Chapter 4 and Chapter 5 we will discuss compressed

sensing algorithms and applications related to these sparsity structures in detail.

Let X ∈ Md1×d2 be an arbitrary matrix and let X1, . . . , Xd2 ∈ Rd1 denote its columns

and XT
1 , . . . , X

T
d1
∈ Rd2 its rows respectively.

First we assume the columns of X ∈ Md1×d2 to have a common sparsity pattern, a

common support Λ = supp(X1) = · · · = supp(Xd2) of cardinality K < d1 in the

sense of vector sparsity. We call this common support the row-support (or row-sparsity

pattern) of sparsity K, i.e., there exists a set of coordinates Λrow := supprow(X) ⊂ [d]

with |Λ| = K such that

Λc
row := [d1] \ Λrow = {i ∈ [d1] | X[i,j] = 0 for all j ∈ [d2]}, (2.47)

or equivalently, Λrow = {i ∈ [d1] | ‖Xi‖`2 > 0}.
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The set of K-row-sparse matrices, i.e., matrices with row-support size at most K, is

defined by

Σrow
K = {X ∈Md1×d2 : |supprow(X)| ≤ K} . (2.48)

Moreover, the counterpart of the `0-quasinorm is the function ‖ · ‖`2,0 : Rd1×d2 → R≥0

with ‖X‖2,0 := ‖X‖`2,0 := |Λ| = |{i ∈ [d1] | ‖Xi‖`2 > 0}|, which we call the `2,0-norm.

Similarly, we generalize the `p-quasinorm, for 0 < p < ∞ and q ≥ 1, and de-

fine the (mixed) `q,p-norm of X as the non-negative number ‖X‖q,p := ‖X‖`q,p :=(∑n1

i=1 ‖Xi‖pq
)1/p

. We note that for the parameter choice p = q = 2 we obtain the

Frobenius norm, meaning ‖X‖2,2 = ‖X‖F .

At this point, we remember the discussion in the context of sparse vectors using the

low-dimensional signal structure to find solutions to underdetermined linear systems.

We see that for the setting of row-sparse matrices also the reconstruction of a matrix

X from the equation system

Φ(X) = Y (2.49)

with Y ∈ Rm and Φ : Md1×d2 → Rm with m � d1d2, becomes possible under the

structural assumption on the solution matrix and under appropriate conditions on the

map Φ, cf. Section 2.3.3 This results in solving the optimization [98] problem

min ‖X‖2,0 subject to Φ(X) = Y. (2.50)

The relaxed formulation of the problem above

min ‖X‖2,p subject to Φ(X) = Y (2.51)

corresponding to the `p-norm minimization problem for sparse vectors can be consid-

ered as a proxy for (2.50) as well.

Completely analogously, we can define the concept of column-sparsity along with the

‖·‖`0,2-quasinorm as ‖·‖`0,2 : Rd1×d2 → R≥0 with ‖X‖`0,2 := |Λ| = |{i ∈ [d1] | ‖XT
i ‖`2 >

0}|. For a relaxed version of ‖·‖`0,2 we employ the (mixed) `p,q-norm with appropriately

chosen parameters 0 < p <∞ and q ≥ 1, where p and q take the reversed roles in the

definition of the quasinorm above.

In the course of this thesis we will focus on the use of the ‖·‖`p,2-norm and ‖·‖`2,p-norm

only.

Another very useful matrix structure results from the application of the sparsity concept

to the singular values of a matrix, better known as low-rankness, that we will explain
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now in detail.

Let X ∈ Md1×d2 again and for simplicity consider the case d1 ≥ d2. We apply the

singular value decomposition (SVD) to X

X = USV ∗, (2.52)

where U ∈ Ud1 and V ∈ Ud2 are unitary matrices and

S =

(
diag [σ1(X), . . . , σd2(X)]

0(d1−d2)×mχ

)
∈ Rd1×d2

the diagonal matrix containing the d2 singular values σ1(X), . . . , σd2(X) of X, where

σ1(X) ≥ σ2(X) ≥ . . . ≥ σd2(X) ≥ 0. Using the result of the SVD, we define the

singular value vector σ̄(X) = [σ1(X), . . . , σd2(X)].

Note that in the case that σ̄ is r- sparse for some small r ∈ N with r � d2, it holds that

σr+1(X) = . . . = σd2(X) = 0 and as a consequence, it follows that X has low rank, i.e.,

rank(X) = r. Therefore, it is possible to express the low-rank assumption in terms of

the sparsity of the singular value vector σ̄(X). There exists a set Λrank = {i|σi(X) > 0},
where the sparsity measured by the `0-norm of the vector σ̄(X) corresponds to rank(X).

We define the set of matrices in dimension d1 × d2 of fixed rank r ≤ min(d1, d2) as

M r
d1×d2 := {X ∈ Rd1×d2 | rank(X) = r}. (2.53)

Moreover, we define as the equivalent to the `p-quasinorm for low-rankness the so-called

Schatten-p (quasi-)norm of X ∈ Rd1×d2 for 0 ≤ p ≤ ∞ as

‖X‖Sp :=


rank(X), for p = 0,[∑min(d1,d2)

j=1 σpj (X)
]1/p

, for 0 < p <∞,
σmax(X), for p =∞.

(2.54)

It is useful to notice that the p-th power of the Schatten-p norm for 0 < p <∞ can be

expressed as ‖X‖pSp = tr
[
(XTX)p/2

]
, where tr[X] denotes the trace of X defined by

the sum of its diagonal elements, tr[X] =
∑min(d1,d2)

j=1 Xjj.

Let us mention that for p = 1, the Schatten-p norm is also called nuclear norm some-

times denoted by ‖X‖∗ = ‖X‖S1 . The Schatten-2 norm corresponds to the Frobenius

norm, i.e., ‖X‖F = ‖X‖S2 =
√
〈X,X〉F .

Having in mind the discussion above on the solutions to underdetermined linear sys-
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tems, the equivalent to (2.44) for the recovery of a solution matrix under the additional

assumption of low-rank structure is the solution of the affine rank minimization prob-

lem [54]

min rank(X) subject to Φ(X) = Y. (2.55)

The relaxed version approximating (2.55) is formulated replacing the rank by the

Schatten-p quasinorm. This results in the problem

min ‖X‖Sp subject to Φ(X) = Y, (2.56)

which corresponds to an `p-minimization of the singular values of the matrix X.

At this point, we want to provide the following result originally stated by Wedin [160],

which corresponds to a bound on perturbations of the singular value decomposition

and will be useful in the context of low- rank matrices later on. It gives a bound on the

alignment of the subspaces spanned by the singular vectors of two matrices by their

norm distance under the requirement of a sufficiently pronounced gap between the first

singular values of the one matrix and the last singular values of the other matrix.

Lemma 2.19 (Wedin’s bound [140]). Let Z and Z̄ be two matrices of the same size

and their singular value decompositions

Z =
(
U1 U2

)(Σ1 0

0 Σ2

)(
V ∗1

V ∗2

)
and Z̄ =

(
Ū1 Ū2

)(Σ̄1 0

0 Σ̄2

)(
V̄ ∗1

V̄ ∗2

)
,

where the submatrices have the sizes of corresponding dimensions. Suppose that δ, α

satisfying 0 < δ ≤ α are such that α ≤ σmin(Σ1) and σmax(Σ̄2) < α− δ. Then

‖Ū∗2U1‖S∞ ≤
√

2
‖Z − Z̄‖S∞

δ
and ‖V̄ ∗2 V1‖S∞ ≤

√
2
‖Z − Z̄‖S∞

δ
. (2.57)

We stress again, that the `2,p-norm and `p,2-norm as well as the Schatten-p norm are

norms in the strict sense for p ≥ 1 and quasi-norms for 0 < p < 1, i.e. they fulfill the

norm axioms except for the triangle inequality. Their relations to the Frobenius norm

will become of major importance in the next Section 2.4.

By introducing the mentioned structural assumptions on matrices in Md1×d2 , we reduce

the d1 · d2 degrees of freedom of a general d1 × d2-matrix considerably.

In the case of row or column sparsity, it is straightforward that the number of degrees

of freedom is equivalent to the row support size times the number of columns K · d2 or

the column support size times the number of rows K · d1, respectively. The set of row
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sparse matrices as well as the set of column sparse matrices correspond to a union of

linear subspaces of these dimensions in the d1 · d2-dimensional ambient space.

For the low-rank case, the set of d1× d2-matrices of fixed rank r corresponds to a sub-

manifold of the d1 ·d2-dimensional space of dimension r(d1 +d2−r). The singular value

decomposition of X can serve as a tool to calculate the dimensionality as demonstrated

in [84, Lemma 3.1].

Lemma 2.20. The number of degrees of freedom of a real matrix X ∈ M r
d1×d2 of size

d1 × d2 with rank r is r(d1 + d2 − r).

2.3.3 Theoretical foundations of vector and matrix valued com-

pressed sensing

We noted in the last chapter, that under certain conditions on the measurement matrix

Φ and on the sparsity of the original signal vector x, the vector recovered by (2.46)

coincides with the sparsest solution x to the equation system (2.40) and, therefore, also

with the solution of (2.44).

In the following subsection, we investigate a necessary and sufficient condition for the

exact reconstruction of every sparse vector x as a solution of the `p-minimization prob-

lem (2.46) called the null space property. Moreover, we introduce a popular related near

isometry matrix property known as the restricted isometry property. The subsection is

oriented at the presentation in [54] and [48].

We again start from the case of a linear measurement operator Φ and a vector valued

signal x to give a first intuition of the most important tools in the field. Thereafter, we

extend the results to sparsity structures for matrices as mentioned above.

As a first step, we introduce further notation for the case of nearly sparse vectors and

the approximation of sparse solutions that will be useful later on.

In practice, in many measurement settings, the occurence of noise is typical and exactly

sparse vectors are often not realistic. Therefore, we aim at vectors x, which are not

necessarily exactly sparse but very close to an element of Σk in the sense of a suitable

(quasi-)norm ‖·‖`p , which we call compressible.

This implies that a compressible vector should have a fast decaying k-term best approx-

imation error, defined by

βk(x)`p = inf
z∈Σk
‖x− z‖`p 0 < p <∞.
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The related best k-term approximation x[k] of a vector x constitutes the minimal dis-

tance of x to a k-sparse vector as follows

x[k] = arg min
z∈Σk

‖x− z‖`p , 0 < p <∞.

The best k-term approximation error basically results from setting to zero its d − k

smallest coefficients. Moreover, we define the ε-smoothed `p-norm as

‖x‖`p,ε =

(
d∑
i=1

(x2
i + ε2)

p
2

) 1
p

(2.58)

In some cases, it is useful to describe sparse vectors by its nonincreasing rearrangement

r(x), for which

r(x)1 ≥ r(x)2 ≥ . . . ≥ r(x)d ≥ 0, (2.59)

and there is a permutation π : [d]→ [d] with r(x)i = |xπ(i)| for all i ∈ [d].

This corresponds to the arrangement of the vector components according to their mag-

nitude and, therefore, in the ranking of all entries and their corresponding indices

according to their significant contribution to the signal. It can be used to express

βk(x)`p =

(
d∑

i=k+1

ri(x)p

)1/p

, 0 < p <∞. (2.60)

Refer to [48],[123] for more details.

As already proclaimed above, `p-norm minimization is known to perform stable recov-

ery of the sparse solution vector x, in the sense that for the recovered vector xp it holds

that

‖x− xp‖`p ≤ cβk(x)`p . (2.61)

for a constant c > 0.

To verify this statement, we introduce a necessary and sufficient condition for exact

recovery of sparse vectors called the null space property for parameter p (p-NSP).

Definition 2.21. A matrix Φ ∈ Rm×d has the p-Null Space Property (p-NSP) of order

k for 0 < γk < 1 if

‖ηΛ‖p`p ≤ γk ‖ηΛc‖p`p
for all sets Λ ⊂ {1, . . . , d} , |Λ| ≤ k and for all η ∈ N = Ker(Φ).
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The NSP essentially prohibits the existence of sparse or highly compressible vectors in

the null space of Φ. This is a natural requirement, since otherwise no decoder would

be able to robustly distinguish a (nearly) sparse vector from zero. This makes the NSP

equivalent to stable recovery in the sense of (2.61) [33], [128].

Lemma 2.22. If Φ ∈ Rm×d fulfills the p-null space property for some 0 < p ≤ 1 of

order k with constant γk, then Φ also fulfills the q-null space property of same order

and constants for all 0 < q < p. [38, 70]

Moreover, the p-NSP has the following stability result as consequence.

Lemma 2.23 ([35, Lemma 7.6], [54, Theorem 4.14]). Assume that Φ ∈ Rm×d satisfies

the p-NSP of order k with constant γk for 0 < p ≤ 1. Then for any vectors x, x′ ∈
F(y,Φ) = {z : Φz = y} it holds

‖x′ − x‖p`p ≤
1 + γk
1− γk

(
‖x′‖p`p − ‖x‖

p
`p

+ 2βk(x)p`p

)
.

Next we familiarize the reader with a further interesting near isometry matrix property

that is widely used in the context of sparse recovery for the analysis of `p-minimization.

Definition 2.24. A matrix Φ ∈ Rm×d has the Restricted Isometry Property (RIP) of

order k if there exists 0 < δk < 1 such that

(1− δk) ‖x‖`2 ≤ ‖Φx‖`2 ≤ (1 + δk) ‖x‖`2

for all x ∈ Σk.

If for a matrix Φ the restricted isometry property is fulfilled, for every index set Λ with

|Λ| ≤ k the submatrix ΦΛ is well-conditioned or reformulated more explanatory, all

columns of Φ with index contained in Λ are nearly orthonormal.

The NSP is an important tool for the analysis of convergence and stability but often

difficult to show directly. Therefore, we establish its relationship to the RIP, which can

be addressed easier in practise.

We first state that the RIP implies the 1-NSP for simplicity and as a consequence from

Lemma 2.22 also the p-NSP for 0 < p < 1:

Lemma 2.25. Assume that Φ ∈ Rm×d has the RIP of order K = k+h with 0 < δK < 1.

Then Φ has the 1-NSP of order k and constant γk =
√

k
h

1+δK
1−δK

.

The proof of this lemma can be found, for instance, in [50].
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A more precise estimation result of the upper bound on the RIP constant for 0 < p < 1

is given in Theorem 2.3. in [143]

Lemma 2.26 (Theorem 2.3. in [143]). Let 0 < p ≤ 1, and m, d and k integers that

satisfy 2k ≤ m ≤ d, Φ ∈ Rm×d be a matrix fulfilling the restricted isometry property

(RIP) with constant 0 < δ2k < 1. Then Φ has the p-null space property (p-NSP) of

order k with constant γk satisfying γ2k ≤ b(p,
√

1−δ2k
1+δ2k

), where

b(p, δ) = δ−1 inf
0<r0<1

max

{
1 + r0δ

(1 + rq0δ
q)1/q

, sup√
2(1−r0)δ/2≤y≤1

2y

(1 + 2−q/2y2+q)1/q
,

sup√
2(1−r0)δ/2≤y≤1

3y

(1 + y)1/q, sup1≤y
2y

(1+y)1/q

}

Further discussions on the relationship between RIP-type assumptions and exact re-

covery via `p-minimization can be found in [53].

The RIP does imply the NSP, but the converse is not true. Actually, the RIP is signif-

icantly more restrictive.

Summarizing, for matrices satisfying the RIP and, therefore, also the p-NSP, `p-

minimization can provide exact recovery results under stable performance with error

bounds as stated above.

Consequently, it is an important question to ask for which classes of matrices the RIP

can be shown to hold with optimal constants, i.e.,

k � m

log d/m+ 1
.

Up to now, it was not possible to specify deterministic matrices for which optimal

performance can be guaranteed. In contrast, as the RIP is a spectral concentration

property, different classes of random matrices can fulfill optimal RIP, at least with high

probability. Therefore, mainly random matrices are used in the context of compressed

sensing, e.g., the most popular ones among them being Gaussian matrices.

Theorem 2.27. (Theorem 2.14 in [48]) Suppose that m, d and 0 < δ < 1 are fixed.

If Φ is a Gaussian random matrix of size m × d, then there exist constants c1, c2 > 0

depending on δ such that the RIP holds for Φ with constant δ and k < c1
m

log d/m+1
with

probability exceeding 1− e−c2m.

Moreover, for structured random matrices, for example, partial random circulant ma-
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trices or random partial Fourier matrices, the RIP can be shown to hold with high

probability as soon as m ≥ Ck log4(N) [24, 48, 54, 83, 130]. As the verification of the

RIP property for a special types of random matrices can be very demanding, this topic

is not covered here in detail. An extensive review on RIP properties also for structured

random matrices of other types can be found in [123].

As presented above, many ideas from sparse vector recovery can be applied to the

recovery of matrices with sparsity structures from incomplete linear measurements

[21, 125].

We want to pick up the matrix structures discussed in the previous subsection and

transfer the theoretical tools corresponding to the classical NSP and RIP for sparse

vectors also to the concepts of row- and column-sparsity and low-rankness.

Before we start, let us consider the vectorized form Xvec =
[
XT

1 , . . . , X
T
j , . . . , X

T
d2

]T ∈
Rd1d2 of a matrix X ∈ Md1×d2 with columns Xj, j ∈ {1, . . . , d2}. The reverse recast

of a vector x ∈ Rd1d2 into a matrix of dimension d1 × d2 is denoted by xmat(d1,d2) =

[X1, . . . , Xj, . . . , Xd2 ], where Xj = [x(d1−1)·j+1, . . . , x(d1−1)·j+d1 ]
T , j = 1, . . . , d2 are col-

umn vectors, or Xmat if the dimensions are clear from the context. Obviously, it holds

that X = (Xvec)mat.

A useful connection is the equality of the Frobenius norm of a matrix X and the `2

norm of its vectorization Xvec, i.e., ‖X‖F = ‖Xvec‖`2 .

To give a unified presentation of the properties mentioned above for the matrix case,

whose advantages will become clear in the upcoming Chapter 4 and Chapter 5, we

use in the following the vectorized version of matrices and corresponding adaption of

the dimensions of the measurement operator Φ. This means, we consider linear maps

Φ : Rm×d1d2 which allow more general types of linear measurements than the ones

presented in the linear equation systems (2.39) above.

All properties presented below related to row sparsity and the `p,2-norm can be formu-

lated analogously for the concept of column sparsity and the corresponding `2,p-norm.

We begin with the presentation of the appropriate formulation of the null space prop-

erties for these structures

Definition 2.28. Let 0 < p ≤ 1. We say that a matrix Φ ∈ Rm×d1d2 fulfills the

(i) `2,p-null space property (`2,p-NSP) of order K with constant 0 < γK < 1 if for all

elements η ∈ N (Φ) := {η ∈Md1×d2 | Φ(ηvec) = 0} in the null space N (Φ) of Φ it

holds that

‖ηΛ‖p`2,p ≤ γK‖ηΛc‖p`2,p , (2.62)
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for all row support sets Λ of cardinality |Λ| ≤ K.

(ii) Schatten-p-null space property (Schatten-p-NSP) of order r with constant 0 <

γr < 1 if for all elements η ∈ N (Φ) := {η ∈ Md1×d2 | Φ(ηvec) = 0} in the null

space N (Φ) of Φ it holds that

r∑
i=1

σpi (η) ≤ γr

min(d1,d2)∑
i=r+1

σpi (η). (2.63)

Moreover, we provide following restricted isometry properties :

Definition 2.29 (Row sparse RIP [44] and rank-RIP [125]). We say that a linear map

Φ : Md1×d2 → Rm fulfills

(i) the row sparse restricted isometry property (row sparse RIP) of order K ∈ N with

constant δK ∈ (0; 1) if, for every K-joint sparse matrix X ∈Md1×d2 , it holds that

(1− δK)‖X‖2
F ≤ ‖Φ(Xvec)‖2

`2
≤ (1 + δK)‖X‖2

F . (2.64)

(ii) the rank restricted isometry property (rank-RIP) of order r ∈ N with constant

δr ∈ (0; 1) if, for every rank-r matrix X ∈Md1×d2 , it holds that

(1− δr)‖X‖2
F ≤ ‖Φ(Xvec)‖2

`2
≤ (1 + δr)‖X‖2

F . (2.65)

The constants δK resp. δr are called restricted isometry constants of the corresponding

order.

Next we present a result that the RIP in its respective variants is fullfilled by Gaussian

matrices Φ ∈ Rm×d1d2 if the number of measurements m is chosen large enough.

Theorem 2.30 ([21, 44]). Let Φ ∈ Rm×d1d2 be a matrix with i.i.d. centered Gaussian

entries with variance 1/m. Then

(i) for all 0 < δ < 1 and 0 < ε < 1, there exists a constant Cδ > 0 such that the row

sparse-RIP of order K with constant δK ≤ δ is fulfilled with probability at least

1− ε provided that

m ≥ Cδ
(
Kd2 +K log(d1/K) + log(2ε−1)

)
,
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(ii) for all 0 < δ < 1 and 0 < ε < 1, there exists a constant Cδ > 0 such that the

rank-RIP of order r with constant δr ≤ δ is fulfilled with probability at least 1− ε
provided that

m ≥ Cδ
(
r(d1 + d2) + log(2ε−1)

)
.

Proof. (i) This follows from [44, Proposition 4], (ii) Follows from [21, Theorem 2.3].

For the sake of completeness, we present some important conclusions from these prop-

erties for the reader. Again it is possible to show that the null space properties as

defined in Definition 2.28 hold for appropriately chosen constants if the above RIPs

are satisfied and this result is established in the following theorem. The proofs of these

results can be found in [84].

Theorem 2.31 (Connection of RIP with NSP). The following holds true:

(i) Let Φ ∈ Rm×d1d2 be a matrix that satisfies the row sparse RIP (2.64) with constant

δ2K < 1/2. Then there exists a number 0 < p0(δ2K) ≤ 1 such that for any

p < p0(δ2K), Φ fulfills the `2,p-block-NSP (2.62) of order K with constant

γK <

[
δ2K

2−p
2−δ2K

+ p( 1−p/2
2−δ2K

)2/p

2−p
2−δ2K

(1− δ2K)

]p/2
.

(ii) Let Φ ∈ Rm×d1d2 be a matrix that satisfies the rank-RIP (2.65) with constant

0 < δ2r < 1. Then there exists a number 0 < p0(δ2r) ≤ 1 such that for any

p < p0(δ2r), Φ satisfies the Schatten-p-NSP (2.63) of order r with constant

γr ≤ b(p,
√

(1− δ2r)/(1 + δ2r))
p < 1

with the function b(q, δ) as in Lemma 2.26

The following reverse triangle inequalities can be derived from the NSPs above and will

serve as useful tools for the analysis of algorithms in situations where the NSP holds

true [35, 51, 55]. For further details we again refer to [84].

Lemma 2.32. Let Φ : Md1×d2 → Rm be a linear map.
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(i) If Φ fulfills the `2,p-NSP of order K with constant γK from Definition 2.28, then

‖X − Z‖p`2,p ≤
1 + γK
1− γK

(
‖Z‖p`2,p − ‖X‖

p
`2,p

+ 2βK(X)p`2,p

)
(2.66)

for all X,Z ∈Md1×d2 such that ΦXvec = ΦZvec, where

βK(X)`2,p := inf
{
‖X −X ′‖`2,p , X ′ ∈Md1×d2 is K-row sparse

}
is the best K-row approximation of X ∈Md1×d2 in the `2,p-quasinorm.

(ii) If Φ fulfills the Schatten-p-NSP of order 2r with constant γ2r from Definition

2.28, then

‖X − Z‖pSp ≤
1 + γ2r

1− γ2r

(
‖Z‖pSp − ‖X‖

p
Sp

+ 2βr(X)pSp

)
(2.67)

for all X,Z ∈Md1×d2 such that ΦXvec = ΦZvec, where

βr(X)Sp := inf
{
‖X −X ′‖Sp , X ′ ∈Md1×d2 has rank r

}
is the best rank-r approximation of X ∈Md1×d2 in the Schatten-p-quasinorm.
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2.4 Iteratively reweighted least squares methods in data

analysis

In this section, we want to introduce the iteratively reweighted least squares (IRLS)

method, a powerful optimization algorithm, which will be the central topic under dis-

cussion in this thesis. In the following chapters, several variants of the core algorithmic

design of IRLS for different relevant application scenarios will be developed and ana-

lyzed.

Iteratively reweighted least squares is an algorithmic strategy which classically imitates

`p-minimization for vectors. Moreover, it can also be extended to the minimization of

related matrix quasinorms as already appearing in the problems (2.12) for residual

minimization or (2.46) for signal recovery. The algorithm is performing a successive

approximation of the `p-minimization problem. A weighted least squares problem with

an iteratively adapted weight matrix is carried out in each iteration, hopefully leading

to convergence to the actual `p-minimizer.

IRLS approximation constitutes a powerful and adaptable method for a vast number

of problems in engineering and applied sciences. In a wide range of applications, it is

employed as a fast and robust approximation tool, in particular in statistics for robust

regression, maximum or quasi-likelihood estimation, general nonlinear parameter esti-

mation as well as in the expectation-maximization framework. Besides that, IRLS has

lead to very impressive results in signal processing in sparse vector [35] and low-rank

matrix [51] recovery as it can exhibit superlinear convergence rate even for nonsmooth

and nonconvex optimization problems [36]. Another area, where IRLS- algorithms are

successfully applied is the solution of minimization problems involving bounded vari-

ation functions [26] and, in particular, for the approximation the weak solution of the

p-Poisson problem [39].

First we will put forward the fundamental observations to clarify the relation be-

tween the algorithmic concepts of weighted least squares and those for `p-(quasi-)norm-

minimization inspired by [48] and [35]. A generalization to matrix quasi-norms will be

provided towards the end of this section.

Thereafter, we consider the variational nature of the problem. This will lead to the

formulation of an iterative algorithm which characterizes an approximate solution as

the minimizer of an energy functional.
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2.4.1 General concept of iteratively reweighted least squares

As a start, we note that from an optimization perspective direct `p-minimization is

somewhat inconvenient as it is a nonsmooth optimization. The crucial idea now is to

substitute the occurring absolute value in the following simple way:

|t|p =
t2

|t|p−2 for t 6= 0.

Using this, we hope that we can recast the `p-quasinorm into a weighted `2-norm, which

is smooth and quadratic and, hence, much more practical from an optimization point

of view. We obtain for z ∈ RN with zi 6= 0 for i ∈ [N ]

‖z‖p`p =
N∑
i=1

|zi|p =
N∑
i=1

z2
i |zi|p−2 =

N∑
i=1

z2
iw

p−2
i = ‖z‖2

`2(w) = ‖z‖2
`2(W )

where W = diag(w) = diag(w1, . . . , wN) with wi = |zi|p−2.

Here one has to take into account that the weights will approach infinity for zi → 0 in

the case that z is tending to be sparse!

To avoid this issues, we introduce a smoothing parameter ε > 0 and hope to obtain a

good approximation by using

wi =
∣∣(z∗i )2 + ε2

∣∣ p−2
2 ≈ |z∗i |p−2 . (2.68)

This enables us to use our observation to formulate the following iterative strategy for

the `p-minimization in an optimization problem involving a function ϕ : Rd → RN

possibly with respect to a constraint set C ⊆ Rd

min
x∈C
‖ϕ(x)‖`p . (2.69)

• Suppose we are given a start weight matrix W 0 = diag(w0) ∈ RN×N with w0
i > 0

for i ∈ [N ].

• We then iterate for n ≥ 0

– Define

xn+1 = arg min
x∈C
‖ϕ(x)‖2

`2(wn)

– Update εn+1 such that εn+1 ≤ εn
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– Construct a new weight matrix using the updated variables such that

wn+1
i =

∣∣ϕ(xn+1)2
i + (εn+1)2

∣∣ p−2
2

for all i ∈ [N ] to obtain W n+1 = diag(wn+1) ∈ RN×N .

Hopefully, for a decreasing sequence of appropriately chosen εn → 0, the iteration of

this procedure realizes a contraction principle, which allows for the convergence of the

iterates xn → x0 = min
x∈C
‖ϕ(x)‖`p for n→∞.

Remark 2.33. The concept of iterative reweighting can not only be applied to (quasi-)

norms as demonstrated above, but it can also be applied to other concave nondecreasing

objective functions as for example indicated in Wipf e.a. [164], Malek-Mohammadi

e.a.[103]. Nevertheless, we will not further discuss this extension to other more general

functions in this thesis.

Before we come closer to the concrete establishment of the iteratively reweighted least

squares algorithm, we want to give a variational interpretation of our developed concept

and hereby show a key tool for its analysis.

The first step towards this makes clever use of the fact that |t|p for t ∈ R can be

expressed as the minimum of a function of the weight w > 0

|t|p = min
w>0

p

2

(
wt2 +

2− p
p

w
p
p−2

)
.

Its unique minimizer is w = |t|p−2.

Combining this with our considerations above, we construct the following surrogate

energy functional

J (x,w, ε) :=
p

2

[
‖ϕ(x)‖2

`2(w) + ε2‖1N×1‖2
`2(w) + ‖w‖

p
p−2

` p
p−2

]
(2.70)

majorizing the first weighted least squares term in the w-component. Now we can

formulate our iteration process as the alternating minimization of this energy functional

with respect to its different variables in Algorithm 1.

The advantages of simplicity, adaptability, and straightforward implementation of IRLS

explain its popularity for quick and efficient numerical testing also for beginners and

the long history of its application in statistics and engineering contexts.

The first appearance of iteratively reweighted least squares algorithms can be reported

already in the 1960s. The doctoral thesis of Lawson in 1961 [91] introduces an IRLS-type
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Algorithm 1 Typical structure iteratively reweighted least squares algorithm (IRLS)

Input: Map ϕ : Rd → RN , constraint set C ∈ Rd, non-convexity parameter 0 < p ≤ 1.
Output: Sequence (x(n))n0

n=1 ⊂ Rd.
Initialize n = 0, ε(0) = 1 and w0 = 1N×1 ∈ RN .
repeat

xn+1 = arg min
x∈C
J (x,wn, εn) = arg min

x∈C
‖ϕ(x)‖`2(wn) , (2.71)

εn+1 < εn (2.72)

wn+1 = arg min
w>0
J (xn+1, w, εn+1), (2.73)

n = n+ 1.

until stopping criterion is met.
Set n0 = n.

method in the form of an algorithm for achieving solutions to approximation problems,

in particular involving Chebyshev polynomials, via limits of weighted `p-norm solu-

tions. For this algorithm, often referred to as Lawson’s algorithm, a linear convergence

rate was shown in [32] and extensions of Lawson’s algorithm for `p-minimization were

proposed by Rice and Usow in 1968 [129]. In the context of robust regression, IRLS-type

algorithms first appeared in the work of Beaton and Tukey in the mid 70s [5] followed

by a discussion on local as well as global convergence properties by Dutter in 1975 [42].

Slightly later, Holland and Welsch came up with a variant of the IRLS algorithm using

alternative explicitly defined weights instead of the standard weights.

Moreover, IRLS algorithms were suggested in inference related topics by Wedderburn

in 1974 based on the concept of quasi-likelihood. Thereby he established the connection

between the IRLS algorithm for maximum likelihood estimation and the Gauss-Newton

method for least-squares fitting in nonlinear regression. These results could be gener-

alized for the multivariate case by McCullagh a decade later [105, 159]. Around the

same time, Green (1984 ,[69]) investigated the relation of IRLS to Newton-Raphson

and Fisher scoring as appearing in generalized linear models, linear and nonlinear re-

gression.

A thorough discussion of IRLS-type methods can be found in the works Huber [77] and

the possibly most far-reaching mathematical performance analysis for IRLS with `p-

minimization for the parameter range 1 < p < 3 is provided by Osborne [115]. Further

details on the history of IRLS methods in regression can be found in [14].

No substantial innovations in the field can be documented for some time, before total

variation minimization in image processing as proposed by [131] attracted the attention

of the community in the early 1990s and IRLS came to the fore again.
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Its straightforward applicability and implementation for total variation regularized

functionals is demonstrated in [26]. Moreover, also the availability of computationally

very efficient preconditioning methods [156] make IRLS methods an attractive choice in

this context, that outperforms universal optimization techniques such as interior point

methods.

Shortly before the millenial, the publications [68] and [137] suggested the application

of IRLS for the reconstruction of sparse vectors already before Candes, Romberg, Tao

and Donoho [25, 40] lay the foundation for the literal boom in compressed sensing.

A comprehensive theoretical analysis of the convergence properties of IRLS for the `p-

norm minimization problem under linear measurement constraints was developed in

the papers [28, 29, 35, 124], where we will give an insight on the results of the later

below.

In 2010, a further extension of IRLS to the problem of low-rank matrix recovery from

a minimal number of linear measurements was pursued more or less in parallel by

Fornasier e.a. [51] and Fazel e.a. [106]. Moreover, building upon the results in [26] for

solving total variation minimization problems, IRLS is employed also for the solution

of quasi-linear elliptic equations in [56] as so-called Kačanov iteration.

In the last ten years, a growing interest on topics related to IRLS, in particular in

statistics and signal processing, resulted in an ongoing rapid research development.

Beyond the breakthroughs mentioned above, it is hard to provide a complete survey of

the most recent state-of-the-art results in the field. For a further collection of references

to the quite recent literature in this direction we refer to [114].

2.4.2 IRLS for sparse vector recovery and matrix valued signals

Let us now examplary consider in more detail the application of an IRLS-strategy to

the solution of a minimization problem as in (2.46)

min
Φx=y

‖x‖`p (2.74)

involving a linear measurement map Φ ∈ Rm×d as analyzed in the context of sparse

signal recovery in [35]. This corresponds to the realization of the algorithm sketched

above for ϕ(x) = x and C = F(y,Φ) =
{
z ∈ Rd|Φ(z) = y

}
.

In this case, as presented in (2.18), the weighted `2-minimization step can be solved
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directly by calculating

x(n+1) = (W (n))−1ΦT
(
Φ(W (n))−1ΦT

)−1
y,

where W n is the diagonal weight matrix diag(w(n)) with w
(n)
i =

∣∣∣(x(n)
i )2 + (ε(n))2

∣∣∣ p−2
2

.

The update rule for the smoothing parameter sequence ε(n) and its convergence limit

lim
n→∞

ε(n) = ε̄ will play an important role in the algorithm’s theoretical analysis. It is

carried out as follows

ε(n+1) := min

(
ε(n),

r(x(n+1))K+1

d

)
, (2.75)

where r(X) is the non-increasing rearrangement as introduced in (2.59) and K is an

approximate guess of the sparsity-level of the solution of (2.74).

A detailed pseudo code version of the classical IRLS algorithm for sparse recovery is

presented in Section 7.2 in [35].

We observe, that the iterates xn of this IRLS-algorithm are in general no sparse vectors

and even their limit lim
n→∞

x(n) = x̄ is not necessarily exactly sparse.

	

�(x) = y

x1

x2

x3

`2(w1)-ball

`2(w0)-ball

`2(w2)-ball

Figure 2.11: Visualization of the principle of the IRLS-algorithm
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As a first step towards a discussion of theoretical analysis results for this algorithm

in [35], we remember the sparse vector recovery guarantees as presented in (2.61) for

`p-minimization. These hold true under the condition that Φ satisfies the corresponding

p-NSP. Since we are mimicking the solution of (2.74) by the IRLS algorithm as explained

above, these NSP-based recovery results stay applicable also for the analysis of the IRLS

algorithm.

The central elements necessary to conduct the proof of convergence are some straight-

forward derivable variational properties of the corresponding auxiliary functional, the

NSP, and the nonincreasing rearrangement. We will restrict our presentation to a sketch

of the final result and refer to [48, p.115ff] and [35, p.12ff] for further details.

Theorem 2.34. Let K (the same index as used in the update rule (2.75) ) be chosen

such that Φ ∈ Rm×d satisfies the p-NSP of order K, with γ < 1− 2
K+2

. Then, for each

y ∈ Rm, the output of the IRLS algorithm in Section 7.2 in [35] converges to a vector

x̄, with r(x̄)K+1 = d lim
n→∞

ε(n) and the following hold

(i) If ε = lim
j→∞

ε(n) = 0 then x̄ is K-sparse; therefore, in this case, there is a unique

`p-minimizer x0 and x̄ = x0;

(ii) If ε = lim
j→∞

ε(n) > 0, then x̄ = xε = arg min
x∈F(y,Φ)

‖x‖`p,ε, where ‖x‖`p,ε is the ε-smoothed

`p-norm as in (2.58).

Surprisingly, in the case that the approximation by the iterates is already close enough

and the iterates enter a certain region around the actual minimizer, the convergence

rate speeds up to superlinear.

To establish this superlinear rate of convergence, we define for the sequence of output

vectors xn the according error vector sequence η(n) := x(n) − x0 ∈ N and

E(n) :=
∥∥η(n)

∥∥p
`p

=
∥∥x(n) − x0

∥∥p
`p
.

We note that from Theorem 2.34 follows in the case that there exists a k-sparse vector

x0 ∈ F(y,Φ) with k < K − 2γ
1−γ such that x(n) → x0 and therefore E(n) → 0 and give

the superlinear convergence rate for the IRLS algorithm in the following statement:

Theorem 2.35. Assume Φ satisfies p-NSP of order K with constant γ ∈ (0, 1) and that

F(y,Φ) contains a k-sparse vector x0 with k ≤ K. Suppose that for a given 0 < ρ < 1

and an iteration n0 ∈ N we have

E(n0) ≤ (ρr(x0)k)
p = R∗.
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If ρ and γ are sufficiently small, there exists µ(ρ,K, γ, p, d) > 0 such that for all n ≥ n0

we have

E(n+1) < µ(E(n))2−p.

For illustration of this result, one can think of superlinear convergence happening

as soon as the iterates x(n) enter a ball centered at x0 with radius R∗, i.e., x(n) ∈
B`pR∗(x0). Moreover, note that the smaller the nonconvexity parameter p, the faster the

convergence rate, even approaching quadratic rate for p→ 0.

The proof of this statement uses again the NSP as well as variational properties of the

auxiliary functional as detailed in [48, p.122ff] and [35, p.16ff].

The interested reader is encouraged to get further information about IRLS for sparse

vector recovery from [35, p.22ff].

After the discussion of theoretical aspects on IRLS-type methods we want to close the

section with some comments on more practical issues:

Remark 2.36. (i) If we assume to be in the case where ε(n) → 0, it follows that

|(x(n))K+1| → 0 for n → ∞ from the definition of ε(n). In this situation, the

weights (w(n))i will become extremely large until reaching the limits of machine

representability for the indices i > K. On the one hand, this issue enforces the

practical need for a lower bound ε̂ > 0 to avoid computational instabilities. On

the other hand, with the incorporation of a factor ε̂ we introduce an intrinsic

limitation for the IRLS algorithm: it is only capable of finding an approximation

of the exact solution and no longer coincides with the solution predicted by the

theoretical analysis. One has to find an appropriate tradeoff: to reach sufficient

recovery accuracy one has to choose ε̂ small enough, but this unfortunately can

cause numerical complications, e.g., setting ε̂ = 1e−8 results in weight factors

(w(n))i of the order of 1e+8. As a consequence the execution of numerical opera-

tions can result in significant numerical errors strongly affecting the calculation

results. As a conclusion, most likely the application of IRLS will not allow recov-

ery errors in the regime of machine precision.

(ii) Moreover, if iterative methods are employed for the solution of the internal op-

timization problems in each step, we, additionally, encounter an approximation

error depending on the particular termination tolerance of the chosen approach.

This further deteriorates the expected accuracy of an IRLS method.

We now want to generalize the concept of IRLS also to the matrix valued case and

draw the connection from the matrix (quasi-)norms corresponding to the underlying

structures as considered above to weighted least squares problems.
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Note at this point that in the vector case we considered mostly vector valued weights

that could be used to obtain a formulation of the weighted least squares problem with

a diagonal weight matrix with the weights on the diagonal. In the matrix valued case,

one can in general use more flexible weighting concepts also allowing full matrices.

Definition 2.37. We now point out that each of the (quasi-)norms above can be

expressed as a classical reweighted `2-norm ‖ · ‖`2(W ) if considered in a vectorized

formulation.

(i) ‖Z‖p`p =

d1∑
i=1

d2∑
j=1

|Zij|p =

d1∑
i=1

d2∑
j=1

|Zij|p−2Z2
ij =

d1∑
i=1

d2∑
j=1

W̃ijZ
2
ij =

d1·d2∑
l

W̃lZ
2
l

= ‖W 1/2Zvec‖2
`2

= ‖Zvec‖2
`2(W )

where l = (i− 1) · d1 + j and W is the diagonal weight matrix in Rd1·d2×d1·d2 with

entries Wll = |Zij|p−2 ,

(ii) ‖Z‖p`2,p =

d1∑
i=1

(
d2∑
j=1

Z2
ij

)p/2

=

d1∑
i=1

(
d2∑
j=1

Z2
ij

)(p−2)/2( d2∑
j=1

Z2
ij

)
=

d1∑
i=1

W̃i

(
d2∑
j=1

Z2
ij

)

=

d1·d2∑
l=1

W̃lZ
2
l = ‖W 1/2Zvec‖2

`2
= ‖Zvec‖2

`2(W ),

where l = (i − 1) · d1 + j and W is the diagonal weight matrix in Rd1·d2×d1·d2

entries Wll = (
∑d2

j=1 Z
2
ij)

(p−2)/2.

(iii) ‖Z‖p`Sp = tr(ZZT )p/2 = tr[(ZZT )(p−2)/2(ZZT )] = tr(W̃ZZT ) = ‖W̃ 1/2Z‖2
F

= ‖W 1/2Zvec‖2
`2

= ‖Zvec‖2
`2(W ),

where W̃ is the symmetric weight matrix (ZZT )p−2 in Rd1×d2 and W is the block

diagonal weight matrix in Rd1·d2×d1·d2 with W̃ repeating on the diagonal.

Similar to (2.68) we define the smoothed weight functions Ws(Z, ε) for the weight

matrices introduced in Definition 2.37 by perturbations by a smoothing parameter

ε > 0 to avoid singularity and instability problems.

Wε(Z) =



diag

(((
(|Zl|)2 + ε2

) ps−2
2

)d1·d2
l=1

)
for (i)

diag


( d2∑

j=1

(Zij)
2 + ε2

) p−2
2

d1·d2

l=1

 for (ii)

diag

(((
ZZT + ε2 · Id1

) p−2
2

)d2
i=1

)
for (iii)

. (2.76)
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Remark 2.38. For all cases of the quasi-norms we obtain symmetric and positive definite

weight matrices Wε(Z).

The next chapter of this thesis discusses an IRLS algorithm for solving the nonlinear

least squares problem as already introduced in (2.12), i.e., for a nonlinear measurement

map Φ : Rd → Rm we attempt to solve the optimization problem

min
x
‖e(x)‖`p = min

x
‖Φ(x)− y‖`p . (2.77)

by the application of an IRLS-strategy as presented above, where ϕ(x) = Φ(x)− y and

C = Rd.
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Chapter 3

Nonlinear residual minimization via IRLS

In practice, measurement models in the applied sciences and engineering, that we rep-

resented by the operator Φ : Rd → Rm, x 7→ Φ(x), are in most cases not linear but

nonlinear, resulting in the task to find solutions to an overdetermined nonlinear equa-

tion system

Φ(x) = y

for measurement results y ∈ Rm with d � m. Nevertheless, simplified linear models

of the processes under consideration are used, or often nonlinearities are neglected.

Unfortunately linearization, i.e., the assumption Φ(x) ≈ Φ̃x for Φ̃ ∈ Rm×d is not

reasonable in a wide range of applications with strong nonlinear behaviour of Φ, where

linear model is not reflecting reality adequately enough.

When aiming at the fitting of the measurement results y ∈ Rm to the model output

Φ(x) ∈ Rm by minimization of the residual in the `p-norm, i.e., considering the problem

formulation

min
x∈Rd
‖Φ(x)− y‖`p . (3.1)

for 1 ≤ p ≤ 2, satisfactory solutions can not be expected from an oversimplified

approach.

For a nonlinear but smooth operator Φ and the parameter-range 1� p ≤ 2, the overall

objective function in (3.1) is smooth and, for example, also allows the application of

the standard Newton method. However, such general types of optimization algorithms

are not applicable for the case of nonsmooth operators Φ or the practically very rel-

evant case of p ≈ 1 (or even p = 1). In these cases, less efficient, adapted versions of

the Newton methods, as for instance the semi-smooth Newton method [150] can be

considered.
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These methods, however, do not take advantage of the particular structure of the

objective function involving a `p-norm term. It is reasonable to prefer more specialized

approaches as an IRLS method, that more directly exploits the problem’s peculiarities,

over general optimization tools.

An instance of a practical application, where nonlinear regression problems of this type

appear, was illustrated in the introductory example (i) “Detection of faulty sensors in

wireless sensor networks” (see also Figure 1.1) and is discussed in more detail in [107].

Another motivation for the examination of this problem setting for the author of this

thesis was that the model (3.1) intuitively occurs as an intermediate step in the ap-

plication of greedy-type strategies for the solution of nonlinear equations with sparse

solutions. These methods and applications were discussed in previous work of the au-

thor of this thesis together with Fornasier and Ehler in [43]. A popular instance of such

a case is for the modeling of the phase retrieval problem, which we will discuss later in

the context of our numerical test experiments in this chapter.

In the previous section, we demonstrated the formulation of an iteratively reweighted

least squares strategy for general optimization problems as in (2.69). This chapter

discusses its application for nonlinear residual minimization as already indicated above.

More concretely, in the context of (2.69), we choose the constraint set C = Rd and the

objective function F : Rd → Rm, F (x) = Φ(x)− y and obtain the setting of (3.1).

Moreover, from a practical point of view, the implementation of the IRLS algorithm for

the nonlinear residual minimization problem (3.1) is easy and straightforward following

the structure of Algorithm 1 as introduced above.

As a matter of fact, unfortunately, literature on algorithmic performance results such

as convergence for the IRLS algorithm for residual minimization is very much limited

to the case where Φ is a linear map.

Therefore, the investigation of the algorithmic behaviour and performance of IRLS for

the `p-norm-minimization problem (3.1), involving nonlinear operators Φ, in particular

its applicability conditions and limitations, is of high interest of the statistical as well

as the applied sciences community.

In this chapter, we present a rigorous theoretical analysis of the convergence behaviour

for IRLS for nonlinear residual minimizations under certain applicability conditions on

the measurement setting for nonlinear operators Φ as in (3.1). These results have been

introduced in the paper [135] by the author of this thesis.

The presentation in [135] includes the cases, where Φ is allowed to be nonlinear and
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mildly smooth, and 1 ≤ p < 2 and, hence, the objective functions can be not only

nonconvex but nonsmooth. More precisely, the novelty in [135] is its ability to deal

with severe nonsmoothness resulting from the cases, where p ≈ 1, as appearing in, e.g.,

[2] that constitute difficult instances of optimization problems.

As already mentioned, [35, 51] provide analysis results for IRLS in the context of sparse

vector and low-rank matrix recovery respectively, using an auxiliary functional similar

to the one in (2.70). Following this variational methodology, in Section 3.1, an ap-

propriate functional JNR(x, ε, w) (see Definition 3.1) is also formulated for the IRLS

method in the nonlinear residual minimization context. The algorithm is deduced as

an alternating minimization of its variables as demonstrated for Algorithm 1. In the

publications [35, 51], as an additional coercivity requirement, the appropriate formu-

lations of the Restricted Isometry Property (RIP) as introduced above in (2.24) and

Definition 2.29 were assumed. Inspired by these previous approaches, in Section 3.2

a relaxed version of the RIP is employed as well, that was already introduced in the

author’s paper together with Fornasier and Ehler [43]. Using this coercivity assumption

the convergence error decay rates results for the IRLS algorithm can be shown in case

that the auxiliary function JNR(x, ε, w) is convex. Otherwise, it is shown in Section 3.3

that convexification by quadratic perturbations of the objective functional is a viable

option. Convergence of the modified approach to a good approximation of stationary

points of the original problem can be guaranteed in an analogous fashion as presented

in Section 3.4. Within this theoretical analysis part, let us in particular point out the

technically demanding calculations and results in Lemma 3.14 and Lemma 3.19 and

Remark 3.20.

For illustration of the theoretical results, the chapter is closed by the presentation of

several numerical experiment results in Section 3.5. First of all, the output vectors of

standard built-in Matlab methods applied to the original `p-minimization problem are

compared to the output vectors of our IRLS algorithm for a visually approachable toy

example. The experiment demonstrates that in several instances the local minimizers

found by IRLS and the ones output by standard methods are different, also when giving

the same initialization point as an input for the algorithms. Moreover, the theoretical

findings from previous sections are verified in the more complex context of the recovery

of sparse solutions to phase retrieval problems, where IRLS is showing significantly

superior performance with respect to standard MATLAB methods. The last numerical

experiment explores the recovery capability of IRLS on the task of the recovery of

measurement data that was corrupted by impulsive noise, aiming for a sparse residual

vector.
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3.1 Auxiliary functional and nonlinear residual itera-

tively reweighted least squares algorithm

In the setting of (3.1), for the realization of the iteratively reweighted least squares, in-

stead of the original `p-minimization problem, we solve a sequence of weighted quadratic

problems

x(n+1) = arg min
x∈Rm

‖Φ(x)− y‖2
`2(w(n)) , (3.2)

with a smoothed weight sequence wni = |(Φ(x(n)) − y)2
i + (ε(n))2| p−2

2 , i = 1, . . . ,m,

hoping for the convergence of the iterates to the ground truth vector x0, i.e., xn → x0

for n→∞.

It is important to note that if Φ is smooth enough, the sequence of problems (3.2) can

be addressed by efficient and standard methods as detailed in Section 2.2.2 (including

possible preconditioning and fine tuning etc.).

Similar to the convergence analysis in [26, 35, 51] for IRLS, we build a variational

formulation for our algorithmic scheme denoted above. We employ an surrogate energy

functional as presented in (2.70) for the deduction of the different steps of the IRLS

algorithm. More precisely, the auxiliary functional for the problem (3.1) takes the form:

Definition 3.1. Given ε > 0, x ∈ Rd, and a weight vector w ∈ Rm, with positive

entries wi > 0, i ∈ [m] and 1 ≤ p < 2 we define

JNR(x,w, ε) :=

[
m∑
i=1

wi(Φi(x)− yi)2 +
m∑
i=1

(
ε2wi +

2− p
p

w
p/(p−2)
i

)]
, x ∈ Rd. (3.3)

We now use JNR to interpret an IRLS algorithm resulting from the scheme in (3.2) as

an alternating minimization over its different variables.
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Algorithm 2 Nonlinear residual iteratively reweighted least squares (NR-IRLS)

Input: A map Φ : Rd → Rm, image y = Φ(x0) ∈ Rm of ground truth vector x0,
parameter 1 < p ≤ 2.

Output: Sequence (x(n))n0
n=1 ⊂ Rd.

Initialize n = 0, ε(0) = 1 and w0 = 1m×1 ∈ Rm.
repeat

x(n+1) = arg min
x∈Rd

JNR(x,w(n), ε(n)) = arg min
x∈Rd

‖Φ(x)− y‖2
`2(w(n)) (3.4)

N (n+1) = min
i

(|Φi(x
(n+1))− yi)|) and M(n+1) = max

i
(|Φi(x

(n+1))− yi|),

ε(n+1) = min
(
max(N (n+1), ε̃), ε(n),M(n+1)

)
with ε̃ > 0 (3.5)

w(n+1) = arg min
w∈Rm+

JNR(x(n+1), w, ε(n+1)) =

((
Φ(x(n+1))i − yi)2 + (ε(n+1))2

) p−2
2

)m
i=1

.

(3.6)

n = n+ 1.

until stopping criterion is met.
Set n0 = n.

In theory, the algorithm stops when ε(n) = 0 and one then defines x(N) := x(n) for

N > n. Nevertheless, in this way the output sequence (xn)n∈N of the algorithm will

be a set with an infinite number of distinct iteration vectors, and a more practical

criterion is to stop as soon as ε(n) falls below a threshold δ fixed a-priori.

Remark 3.2. (i) In general, due to the nonlinearity of the map Φ, nonconvexity of

the objective J (·, w(0), ε(0)) can not be excluded and, as a consequence, more than

one critical point can occur. Therefore, starting from different points xstart with

an iterative method for the solution of the nonlinear least squares problem in this

first step might have an influence on the convergence behaviour and, hence, the

resulting output of the algorithm.

(ii) At each step of the algorithm, we encounter a d-dimensional nonlinear weighted

least squares problem, where the standard methods mentioned above are avail-

able for its numerical solution. We stress again, that these methods in general

only converge to critical points, which constitutes an intrinsic limitation of the

NR-IRLS algorithm!
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3.2 Theoretical analysis and convergence results for

NR-IRLS

As a first step towards an analysis of Algorithm 2, we will point out several properties

as boundedness of the iterates (x(n))n∈N and their closeness for n→∞. They will serve

as tools for the proof of convergence and the convergence rate of NR-IRLS assuming

adapted versions of common condition in the context of the analysis of IRLS-type

methods.

In the following, we make a suitable choice for the relevant search domain C ∈ Rd

for the optimimum of (3.1), containing the ground truth vector x0 and the origin 0.

Moreover, as a requirement we have that C contains the first iterate x(1).

Further requirements on the measurement map Φ will be pointed out in the following.

Let Φ be continuous and bounded on C and, moreover, consider the following property

that is an appropriate generalization of the RIP in Definition 2.24, which we entitle

the boundedness and coercivity condition (BCC):

Definition 3.3. Let Φ : Rd → Rm be a nonlinear, continuous map. We say that Φ

fulfills the boundedness and coercivity condition (BCC) at x ∈ C if there exist α, β > 0

such that

α‖x− z‖`2 ≤ ‖Φ(x)− Φ(z)‖`p ≤ β‖x− z‖`2
for all z ∈ C.

Remark 3.4. The lower bound in the BCC implies that the level set `Φ,C(Φ(x)) is a

singleton only containing x itself. Therefore, the BCC at the ground truth solution x0

is a necessary condition to guarantee identifiability from the nonlinear measurements

y = Φ(x0) without making further assumptions on x0. The upper bound, however, is

the requirement of Lipschitz continuity at x.

Next we comment on some straightforward observation for the functional in Defini-

tion 3.1. First we note that, after the n-th step, it holds that

JNR(x(n+1), w(n+1), ε(n+1)) =
m∑
i=1

[(Φ(x(n+1))i − yi)2 + (ε(n+1))2]p/2.

From the minimization steps in Algorithm 2, we can use the optimality of the variable

updates to deduce the following monotonicity property:
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Lemma 3.5. The inequalities

JNR(x(n+1), w(n+1), ε(n+1)) ≤ JNR(x(n+1), w(n), ε(n+1)) ≤ JNR(x(n+1), w(n), ε(n))

≤ JNR(x(n), w(n), ε(n))

hold for all n ≥ 0.

Proof: The first inequality is a result from the optimality property of w(n+1), while

the second inequality is a simple consequence of ε(n+1) ≤ ε(n). Furthermore, the last

inequality follows from the minimization property of the update x(n+1).�

From Lemma 5.3 we deduce that JNR(x(n), w(n), ε(n)) can be bounded by the

value of JNR at the first step, which is a constant, i.e., JNR(x(n), w(n), ε(n)) ≤
JNR(x(1), w(0), ε(0)). This fact will be helpful to show the boundedness of the iterates

(x(n))n∈N:

Lemma 3.6. Let Φ : Rd → Rm be a nonlinear, continuous map that fulfills the bound-

edness and coercivity condition (BCC) at x0 ∈ C and y = Φ(x0) ∈ Rm. Then the

sequence of iterates
(
x(n)
)
n

defined by Algorithm 2 is bounded and, hence, lies in the

ball B(0, R∗), where R∗ = 1
α
JNR(x(0), w(0), ε(0))1/p + 1

α
‖Φ(x0)− y‖`p + ‖x0‖`2.

Proof. For all n ∈ N

‖x(n)‖`2 ≤ ‖x(n) − x0‖`2 + ‖x0‖`2 ≤
1

α
‖Φ(x(n))− Φ(x0)‖`p + ‖x0‖`2

≤ 1

α

(
m∑
i=1

[(Φ(x(n))i − yi)2 + (ε(n))2]p/2

)1/p

+
1

α
‖Φ(x0)− y‖`p + ‖x0‖`2

≤ 1

α
JNR(x(n), w(n), ε(n))1/p +

1

α
‖Φ(x0)− y‖`p + ‖x0‖`2 .

By the monotonicity property in Lemma 5.3, we obtain

‖x(n)‖`2 ≤
1

α
JNR(x(1), w(0), ε(0))1/p +

1

α
‖Φ(x0)− y‖`p + ‖x0‖`2 = R∗,

where all terms composing on the right hand side are bounded.

Remark 3.7. The ball B(0, R∗), that bounds the iterates, might be large, in particular

in the case that the BCC constant α is small.

The ball’s radius R∗ > 0 depends on the unknown ground truth vector x0, but it is

possible to derive a sovereign estimate from above only depending on parameters that
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are given or fixed a-priori. First, we note that from the optimality of the solution x0 it

follows that

‖Φ(x0)− y‖`p ≤ ‖Φ(0)− y‖`p

and we calculate

‖x0‖`2 = ‖x0 − 0‖`2 ≤
1

α
‖Φ(x0)− Φ(0)‖`p

≤ 1

α

(
‖Φ(x0)− y‖`p + ‖Φ(0)− y‖`p

)
≤ 2

α
‖Φ(0)− y‖`p

Therefore, we can give an upper bound R̂ to R∗

R∗ ≤ R̂ :=
1

α

(
JNR(x(1), w(0), ε(0))1/p + 3‖Φ(0)− y‖`p

)
.

As mentioned earlier in Remark 3.2, nonconvexity of the functional JNR(·, w, ε) might

occur, which can cause serious difficulties in the optimization task that has to be carried

out in the first step of Algorithm 2. Additionally, nonconvexity poses are more difficult

theoretical problem for the analysis of the convergence behaviour of NR-IRLS.

For the convergence analysis of NR-IRLS, we will start with the easier case assuming

local convexity of the functional JNR(·, w, ε) and later extend and generalize these

results by appropriate modification of the algorithmic scheme for the case, where local

convexity can not be assumed.

For the rest of the section, we will place the assumption of strong convexity on the

functional JNR(·, w(n), ε(n)) locally at x(n+1) as in Definition 2.7 for all n ≥ 0 and

formulate this uniform property in the subsequent definition:

Definition 3.8. Let Φ : Rd → Rm be a nonlinear, continuous map and the functional

JNR(·, w(n), ε(n)) be defined for the variables w(n), ε(n) as generated by Algorithm 2

for all n ≥ 0 with minimizer x(n+1). We say that the first uniform strong convexity

condition (USCC-1) is fulfilled if there exists a uniform constant C > 0 such that, for

all n ≥ 0, the following condition holds

JNR(x(n), w(n), ε(n))− JNR(x(n+1), w(n), ε(n))

= ‖Φ(x(n))− y‖2
`2(w(n)) − ‖Φ(x(n+1))− y‖2

`2(w(n))

≥ C‖x(n) − x(n+1)‖2
`2

(3.7)

Remark 3.9. It is clear that the USCC-1 holds if the functional JNR(·, w(n), ε(n)) with

fixed variables w(n), ε(n), for each step n, is strongly convex at x(n+1) with a constant

C > 0 independent of n within the ball B(0, R∗).
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Additionally, the strong convexity of the map x→ ‖Φ(x)−y‖2
`p

at the desired solution

x0 would be another advantageous property for the map Φ. This is expressed via the

following property definition:

Definition 3.10. Let Φ : Rd → Rm be a nonlinear, continuous map and x0 a minimizer

of ‖Φ(x)− y‖2
`p

. We say that the second uniform strong convexity condition (USCC-2)

is fulfilled if there exists a uniform constant Ĉ > 0 such that for all n ≥ 0 the following

condition holds

‖Φ(x(n))− y‖2
`p − ‖Φ(x0)− y‖2

`p ≥ Ĉ‖x(n) − x0‖2
`2
. (3.8)

Remark 3.11. (i) We observe that, in the case that ‖Φ(·) − y‖2
`p

is totally convex

at x0 according to the definition of total convexity in [15], also (3.8) holds true.

Another conclusion from the results in [15] is that the function ‖Φ(·) − y‖2
`p

is

also strictly convex in the set B(0, 2R∗).

(ii) In the case that Φ(x0) = y, note the equivalence of the condition (3.8) with the

lower bound of the BCC with Ĉ = α2.

3.2.1 Preliminary results

Next, we will provide further useful tools for the convergence proof for Algorithm 2 in

the form of several Lemmata.The first important observation we note is that we can

conclude from the convergence of the sequence JNR(x(n), w(n), ε(n)) that the iterates

x(1), · · · , x(n), x(n+1), · · · ∈ Rd generated by the NR-IRLS algorithm come arbitrarily

close to each other for n→∞ under the assumption of the USCC-1.

Lemma 3.12. Let Φ : Rd → Rm be a nonlinear, continuous map and given y ∈ Rm.

In the case that the USCC-1 property as in Definition 3.8 holds true with constant C,

it follows for the iterates of Algorithms 2 thaty

lim
n→∞

‖x(n) − x(n+1)‖2
`2

= 0.

Proof. For each n = 1, 2, ... it holds

[
JNR(x(n), w(n), ε(n))− JNR(x(n+1), w(n+1), ε(n+1))

]
≥
[
JNR(x(n), w(n), ε(n))− JNR(x(n+1), w(n), ε(n))

]
≥ C

∥∥x(n+1) − x(n)
∥∥2

`2

– 79 –



We conclude from monotonicity as in Lemma 5.3 and boundedness of the sequence of

functional values
(
JNR(x(n), w(n), ε(n))

)
n∈N that

lim
n→∞

(JNR(x(n), w(n), ε(n))− JNR(x(n+1), w(n+1), ε(n+1))) = 0.

Therefore, it follows

lim
n→∞

‖x(n) − x(n+1)‖2
`2

= 0.

As the sequence (ε(n))n∈N is monotone, it holds that the limit ε := limn→∞ ε
(n) exists

and also is non-negative. Next we introduce a functional that will be important for the

formulation of the proof of convergence, in particular in the case ε > 0.

Definition 3.13. (ε-perturbed `p-norm residual) Let Φ : Rd → Rm be a nonlinear map

and y ∈ Rm. We define the ε-perturbed `p-norm residual as the functional

fε(x) :=
m∑
i=1

((Φ(x)i − yi)2 + ε2)p/2.

If we assume for a moment that x(n) converges to a vector x̄ and using

JNR(x(n), w(n), ε(n)) =
m∑
i=1

((Φ(x(n))− y)2
i + (ε(n))2)p/2, (3.9)

we notice that the limit of the sequence JNR(x(n), w(n), ε(n)) for n→∞ coincides with

the ε-perturbed `p-norm residual in x̄, fε(x̄). The corresponding minimizer depending

on ε is denoted as

xε ∈ arg min
x

fε(x). (3.10)

The following lemma gives a characterization of these minimizers, that will be helpful

for the convergence proof later on.

Lemma 3.14. Let ε > 0 and define the ε-smoothed weight vector w(z, ε) = ((Φ(z) −
y)2
i + ε2)(p−2)/2)mi=1. If

‖Φ(z)− y‖2
`2(w(z,ε)) ≤ ‖Φ(z̃)− y‖2

`2(w(z,ε)) for all z̃,

we have z = xε ∈ arg min
x

fε(x).
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Proof. Our goal is to show that, if

‖Φ(z)− y‖2
`2(w(z,ε)) ≤ ‖Φ(z̃)− y‖2

`2(w(z,ε)) for all z̃,

it holds fε(z) ≤ fε(z̃) for all z̃.

As a start, we consider the inequality

‖Φ(z)− y‖2
`2(w(z,ε)) =

∑
i

(Φ(z)i − yi)2

[(Φ(z)i − yi)2 + ε2](2−p)/2
≤
∑
i

(Φ(z̃)i − yi)2

[(Φ(z)i − yi)2 + ε2](2−p)/2

= ‖Φ(z̃)− y‖2
`2(w(z,ε))

and add ε2 to each summand’s numerator. Next we take the square root of both sides

of the inequality, which is a monotone operation on the expressions that gives(∑
i

[(Φ(z)i − yi)2 + ε2]

[(Φ(z)i − yi)2 + ε2](2−p)/2

)1/2

≤
(∑

i

[(Φ(z̃)i − yi)2 + ε2]

[(Φ(z)i − yi)2 + ε2](2−p)/2

)1/2

.

We observe that the left side relates to fε(z) and employ the 1
2
- triangle inequality for

the square root to obtain

(fε(z))1/2 ≤
(∑

i

[(Φ(z̃)i − yi)2 + ε2]

[(Φ(z)i − yi)2 + ε2](2−p)/2

)1/2

≤
∑
i

[(Φ(z̃)i − yi)2 + ε2]1/2

[(Φ(z)i − yi)2 + ε2](2−p)/4
.

Using Hölder’s inequality gives

(fε(z))1/2 ≤
(∑

i

((Φ(z̃)i − yi)2 + ε2)p/2

)1/p

·
(∑

i

((Φ(z)i − yi)2 + ε2)
p−2
4
· p
p−1

) 2(p−1)
2p

= (fε(z̃))
1
p ·

(∑
i

((Φ(z)i − yi)2 + ε2)
p−2
4
· p
p−1

)2(p−1)/(p−2)

p−2
2p

.

Having in mind 1
(a+b)τ

≤ 1
aτ

+ 1
bτ

for a, b, τ > 0, and noting that 2(p−1)
p−2

is negative, we

can use this estimate on each summand to see

(fε(z))1/2 ≤ (fε(z̃))
1
p ·
[(∑

i

((Φ(z)i − yi)2 + ε2)
p
2

)] p−2
2p

= (fε(z̃))
1
p · (fε(z))

p−2
2p .

Rearranging the terms

(fε(z))
1
2
− p−2

2p = (fε(z))
1
p ≤ (fε(z̃))

1
p
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and using the monotonicity of the p-th square root gives the desired result

fε(z) ≤ fε(z̃).

3.2.2 Convergence and error decay rates

At this point, we have established the foundations to formulate our convergence re-

sults for Algorithm 2, namely Definition 3.3 and Definition 3.8. In the course of the

subsection, under the assumption of the strong convexity of ‖Φ(·) − y‖2
`p

at x0 with

constant Ĉ and certain conditions on this constant, we will be able to establish a linear

error decay rate if y ∈ Ran(Φ), or otherwise, only adding an error term scaling in the

ineliminable factor ‖Φ(x0)− y‖`p .

Theorem 3.15. Let Φ : Rd → Rm be a nonlinear, continuous map and given y ∈ Rm.

Consider the functionals JNR(x,w(n), ε(n)) for w(n), ε(n) as generated by Algorithm 2

for all n ≥ 0 and the following conditions shall hold

(a) the boundedness and coercivity condition (BCC), i.e., there exist α, β > 0 such

that, for all z ∈ B(0, R∗):

α‖x0 − z‖`2 ≤ ‖Φ(x0)− Φ(z)‖`p ≤ β‖x0 − z‖`2 ;

(b) and the first uniform strong convexity condition (USCC-1), i.e., there exists a

uniform constant C > 0 such that for all n ≥ 0 the following conditions holds

JNR(x(n), w(n), ε(n))− JNR(x(n+1), w(n), ε(n)) (3.11)

= ‖Φ(x(n))− y‖2
`2(w(n)) − ‖Φ(x(n+1))− y‖2

`2(w(n)) ≥ C‖x(n) − x(n+1)‖2
`2
. (3.12)

Then the sequence (x(n))n∈N generated by Algorithm 2 converges to a vector x̄.

(i) if ε = lim
n→∞

ε(n) = 0, and condition (a) holds, then x̄ = x0 is the solution to the

`p-minimization problem (3.1). Moreover, y ∈ Ran(Φ) and y = Φ(x0).

(ii) if ε = lim
n→∞

ε(n) > 0, and both conditions (a) and (b) hold, then x̄ = xε as defined

in (5.39) and xε ∈ B(0, R∗). Here we assume that xε is indeed the unique global

minimizer of fε.
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(c) Denote the error at the n-th step as E(n) and the unavoidable error as E0 =

‖Φ(x0)− y‖2
`p

. If condition (a) is fulfilled as well as the the second uniform con-

vexity condition(USCC-2), i.e, there exists a uniform constant Ĉ > 0 such that

for all n ≥ 0, the following conditions hold

‖Φ(x(n))− y‖2
`p − ‖Φ(x0)− y‖2

`p ≥ Ĉ‖x(n) − x0‖2
`2

for all n ≥ 0, where Ĉ > 0 is such that µ := 21+2/p(m2+1)β2

Ĉ
< 1 and ν =

21+2/p(m2+1−2−2/p)

Ĉ
, we can furthermore infer the property:

(iii) the error decay rate can be characterized in terms of the errors E(n) and E0 as

follows:

E(n+1) ≤ µE(n) + νE0 (3.13)

or

E(n+1) ≤ µnE0 +
n∑
r=1

µrνE0. (3.14)

Taking the limits for n→∞ gives an asymptotic error of the order of E0

Ē := ‖Φ(x̄)− y‖2
`p ≤

ν

1− µE0. (3.15)

Proof. (i) Our goal is to show the convergence of the sequence x(n) and that its limit

coincides with the minimizer of problem (3.1). Let us first consider the case that it

occurs ε(n0) = 0 for some n0 and, therefore, the stopping criterion is fulfilled and the

algorithm sets n = n0 and x(n) = x(n0), n ≥ n0. This implies that the output is x̄ = x(n0).

Then we can conclude from the definition of εn that also maxi((Φ(x(n+1))i − yi))2 = 0

and, hence, ‖Φ(x̄)− y‖p`p = 0. Having in mind (a), it follows that x̄ = x0.

Next we consider the case, where ε(n) > 0 for all n. As we assumed ε(n) → 0, there is

an increasing sequence of indices nl for which holds ε(nl) < ε(nl−1) for all l.

We observed in Lemma 5.4 that the sequence x(n) is bounded and hence there exists

a convergent subsequence (ts)s∈N of (nl)l∈N yielding (x(ts))s∈N whose limit point we

denote by x̃. Using the definition of εts , we can conclude∑
i

((Φ(x(ts))i − yi)2
i + (ε(ts))2)p/2 <

∑
i

2p/2 max
j
|Φ(x(ts))j − yj|p.

In the case that ε(ts) falls below the small constant ε̃, we infer from the definition of

(εn)n∈N that εts = maxj |Φ(x(ts))j − yj| < ε̃. As a consequence, from ε(ts) → 0 follows

that also maxj |Φ(x(ts))j − yj| → 0. We make use of the fact that Φ is continuous, it

– 83 –



follows that

0 ≤
∑
i

|Φ(x̃)i − yi|p = lim
s→∞

∑
i

((Φ(x(ts))i − yi)2 + (ε(ts))2)p/2 ≤ lim
s→∞

2p/2m(ε(ts))p = 0.

It remains to verify that x(n) → x0. From x(ts) → x0 and ε(ts) → 0, we conclude

JNR(x(ts), w(ts), ε(ts)) → 0 =
∑

i |Φ(x0)i − yi|p and by the monotonicity property of

JNR, moreover, we have JNR(x(n), w(n), ε(n))→ 0 =
∑

i |Φ(x0)i − yi|p.

We continue by using (3.9) to infer

JNR(x(n), w(n), ε(n))−m(ε(n))p ≤
∑
i

|Φ(x(n))i − yi|p ≤ JNR(x(n), w(n), ε(n)),

and combining this with the results above, we get

lim
n→∞

∑
i

|Φ(x(n))i − yi|p =
∑
i

|Φ(x0)i − yi|p = 0.

Exploiting the BCC, we can deduce the statement that x(n) → x0 in this case:

0 ≤ lim sup
n→∞

∥∥x(n) − x0

∥∥
2

< lim sup
n→∞

 1

α

(∑
i

|Φ(x(n))i − yi|p
)1/p

+
1

α

(∑
i

|Φ(x0)i − yi|p
)1/p


=

2

α
lim
n→∞

(∑
i

|Φ(x(n))i − yi|p
)1/p

= 0.

(ii) As a first step, we aim to show that x(n) → xε, n→∞ where xε ∈ arg min
x

fε(x). We

already established the result that the sequence (x(n))n∈N0 is bounded and lies within

the ball B(0, R∗) and therefore, accumulation points of this sequence exist. We denote

any convergent subsequence of (x(n))n∈N0 with with (x(nl))l∈N0 and its limit with x̄. Our

goal is now to prove x̄ = xε.

Using that Φ is continuous, we get lim
l→∞

w
(nl)
i = [(Φ(x̄)i − yi)2 + ε2](p−2)/2 = w(x̄, ε)i :=

w̄i, i ∈ [m]. Moreover, employing the result Lemma 5.5, it follows x(nl+1) → x̄, i→∞.

From the definition of x(nl+1) via the minimization step in the algorithm, we have that

it holds ∥∥Φ(x(nl+1))− y
∥∥
`2(w(nl))

≤ ‖Φ(z)− y‖`2(w(nl)) , for all z ∈ Rd. (3.16)
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For a fixed value of z, we can infer for nl →∞

‖Φ(x̄)− y‖`2(w̄) ≤ ‖Φ(z)− y‖`2(w̄) .

From Lemma 3.14, we conclude that x̄ = xε as we made the assumption that xε

constitutes the unique minimizer of fε. Hence, it has to be the unique accumulation

point of (x(n))n∈N and also its limit which establishes the result.

(iii) Our goal is to show an error bound for the (n+ 1)-th iteration, starting from the

error bound for the step before as follows, using the BCC,

‖x(n) − x0‖2
`2
≥ 1

β2
‖Φ(x(n))− Φ(x0)‖2

`p ≥
1

β2

(
1

2
‖Φ(x(n))− y‖2

`p − ‖Φ(x0)− y‖2
`p

)
.

(3.17)

We get back to our functional JNR for exploiting its monotonicity along the iterations as

derived in Lemma 5.3. First we define the term ‖ε(n)‖`2(w(n)) := ‖ε(n) ·(1, . . . , 1)T‖`2(w(n))

and observe that

‖Φ(x(n))− y‖2
`p =

(
m∑
i=1

|Φ(x(n))i − yi|p
) 2

p

≥
(

m∑
i=1

(Φ(x(n))i − yi)2 + (ε(n))2 − (ε(n))2

((Φ(x(n))i − yi)2 + (ε(n))2)(2−p)/2

) 2
p

≥ 21−2/pJNR(x(n), w(n), ε(n))
2
p − ‖ε(n)‖

4
p

`2(w(n))

≥ 21−2/pJNR(x(n+1), w(n+1), ε(n+1))
2
p − ‖ε(n)‖

4
p

`2(w(n))

≥ 21−2/p‖Φ(x(n+1))− y‖2
`p − ‖ε(n)‖

4
p

`2(w(n))
.

From this result in combination with (3.17), we see that

‖x(n) − x0‖2
`2
≥ 1

2β2

[
21−2/p‖Φ(x(n+1))− y‖2

`p − ‖ε(n)‖
4
p

`2(w(n))
− 2‖Φ(x0)− y‖2

`p

]
.

Adding and subtracting 1−2−2/p

β2 ‖Φ(x0)− y‖2
`p

on both sides of the inequality and rear-

ranging the terms gives

‖x(n) − x0‖2
`2

+
1− 2−2/p

β2
‖Φ(x0)− y‖2

`p +
1

2β2
‖ε(n)‖

4
p

`2(w(n))

≥ 1

22/pβ2

(
‖Φ(x(n+1))− y‖2

`p − ‖Φ(x0)− y‖2
`p

)
.

Using Definition 3.10 and further rearrangement lead to

‖x(n) − x0‖2
`2

+
1− 2−2/p

β2
‖Φ(x0)− y‖2

`p +
1

2β2
‖ε(n)‖

4
p

`2(w(n))
≥ Ĉ

21+2/pβ2
‖x(n+1) − x0‖2

`2
.
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Next we estimate the expression ‖ε(n)‖
4
p

`2(w(n))
from above, using the definition of ε(n) and

the simple observation that the norm of a vector is exceeding the maximum absolute

value of a single vector entry by value:

‖ε(n)‖
4
p

`2(w(n))
=

(
m∑
i=1

(ε(n))2

[(Φ(x(n))i − yi)2 + (ε(n))2](2−p)/2

) 2
p

≤
(

m∑
i=1

(ε(n))p

) 2
p

≤ m2‖Φ(x(n))− y‖2
`p ≤ 2m2‖Φ(x(n))− Φ(x0)‖2

`p + 2m2‖Φ(x0)− y‖2
`p

≤ 2β2m2‖x(n) − x0‖2
`2

+ 2m2‖Φ(x0)− y‖2
`p ,

We summerize the results obtained above and achieve (3.13)

E(n) = ‖x(n+1) − x0‖2
`2

≤ 21+2/p(m2 + 1)β2

Ĉ
‖x(n) − x0‖2

`2
+

21+2/p(m2 + 1− 2−2/p)

Ĉ
‖Φ(x0)− y‖2

`p

= µE(n+1) + νE0.

The recurrent substitution of E(n) by its predecessors gives (3.14)

E(n+1) ≤ µnE(0) +
n∑
r=1

µrνE0.

From passing to the limit n→∞, we get (3.15).

Remark 3.16. (i) We note that the values of µ and ν are worst upper bounds up to

the point, where εn =M(n) in NR-IRLS. When ε(n) = N (n), it is possible to define

the constants µ̃ = 22+2/pβ2

Ĉ
, ν̃ = 22+2/p−2

Ĉ
replacing µ, ν in these particular steps

giving better constant values.

(ii) Due to the global minimization of JNR(x,w(nl), ε(nl)) w.r.t. x it is necessary that

the inequality in Lemma 3.14 holds for all z̃ and not only for z ∈ B(0, 2R∗). From

the corresponding minimization property, we obtain x(nl+1), which constitutes the

global minimizer in comparison to all other vectors z in (3.16) in step (ii).

(iii) We observe that in the case x̄ = x0 the result (3.15) is trivial. On the other

hand, for x̄ = xε, we obtain from (3.15) further information on the vector xε as

a quasi-minimizer.

– 86 –



3.3 Local convexification of the auxiliary functional

In this section, we want to turn to the more general case, where the uniform strong

convexity condition of Definition 3.8 does not hold. This corresponds to a situation,

where we cannot even assume locally convexity for the optimization problem we are

confronted with. Therefore, we can not give theoretical guarantees as formulated above

for the version of the NR-IRLS Algorithm 2. Instead, we follow the strategy of adaptive

modification of Algorithm 2 by introducing local convexification around the current

iterate, using the techniques presented in Section 2.2.3. This will enable us to show

convergence of this adapted version of the algorithm to at least a critical point of the

ε-perturbed `p-norm residual fε under appropriate assumptions.

The first iteration of Algorithm 2 as stated above, that is performed using w(0) =

(1, . . . , 1)T for the minimization of JNR(x,w(0), ε(0)), corresponds to a standard non-

linear `2-least squares step. At this early stage already, the local nonconvexity of the

functional in the x-component can lead to the occurence of several local minimizers.

Depending on the initialization vector x(0), that is provided as an input to the iterative

solver for this nonconvex optimization problem, one of these local minimizers will be

set as the next iterate x(1).

We need to keep this dependence on x(0) in mind for the local convexification centered

around the current iterate that we aim at now. We have to be aware that the choice

of the initialization vector influences the overall behaviour of the algorithm and the

output results can strongly differ even for close starting points!

Assuming that Φ(x) is an analytic function, it follows from classical complex analysis

that there only exists a finite set of isolated zeros of ∇‖Φ(x) − y‖p`p for p > 1 on any

compact set. Our hope is that critical points of the functional ∇‖Φ(x) − y‖p`p would

not change too strongly with p and that the global minimizer for 1 < p < 2 will be in a

neighborhood of a local minimizer of the least squares problem solved in the first step.

Therefore, we propose to invest the computational effort to explore more than one or

even as much as possible critical points of the nonconvex problem appearing in the

first step using the methods described in Section 2.2.2, e.g., the Levenberg-Marquardt

algorithm with several, possibly random initial points. The identified critical points will

be listed as x∗1`2 , x
∗2
`2
, . . . , x∗L`2 and will serve as initialization points for the convexified

NR-IRLS algorithm, that will be derived in this section. After having executed this

adjusted version of NR-IRLS for all x∗12 , x
∗2
2 , . . . , x

∗L
2 and having obtained L possible

solutions x∗1 , x∗2 , . . . , x∗L for the `p-minimization problem, we chose the x∗s giving the

lowest value of ‖Φ(x∗s)− y‖`p as our preferred approximation to the `p-minimizer.
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We want to surmount the drawbacks of the failure of the condition in Definition 3.8

by establishing an approach for a locally convexifying adaption of Algorithm 2 and,

thereby, acquire convergence guarantees also under these circumstances. We fix w, ε

and now present the convexified version of the previously introduced functional JNR
by constructing its Moreau envelope (see Section 2.2.3) as a surrogate:

J ω,u
NR (x,w, ε) = JNR(x,w, ε) + ω‖x− u‖2

`2
, (3.18)

for a parameter ω > 0 and u ∈ Rd.

We will include this straightforward convexified formulation (3.18) into the first step of

NR-IRLS to obtain a regularized minimization problem, resulting in the corresponding

sequence of iterates x(n). This requires the appropriate choice of the parameters u and

ω for the additional regularization term: we decide to fix ω > 0 generously large and

constant over all iterations and, moreover, u = x(n) for the n-th step, which leads to a

iterative scheme as follows

x(n+1) = arg min
x

J ω,x(n)

NR (x,w(n), ε(n)). (3.19)

An adapted version of the NR-IRLS algorithm can now be formulated as follows:

Algorithm 3 Convexified nonlinear residual IRLS (NR-IRLS 2)

Input: A map Φ : Rd → Rm, image y = Φ(x0) ∈ Rm of ground truth vector x0,
convexification parameter, ω, parameter 1 < p ≤ 2.

Output: Sequence (x(n))n0
n=1 ⊂ Rd.

Initialize n = 0, ε(0) = 1 and w(0) = 1m×1 ∈ Rm.
repeat

x(n+1) = arg min
x∈Rd

J ω,x(n)

NR (x,w(n), ε(n)) = arg min
x∈Rd

‖Φ(x)− y‖2
`2(w(n)) + ω‖x− x(n)‖2

`2

(3.20)

N (n+1) = min
i

(|Φ(x(n+1))i − yi)|) and M(n+1) = max
i

(|Φ(x(n+1))i − yi|),

ε(n+1) = min
(
max(N (n+1), ε̃), ε(n),M(n+1)

)
with ε̃ > 0 (3.21)

w(n+1) = arg min
w∈Rm+

J ω,x(n)

NR (x(n+1), w, ε(n+1)) =

((
(Φ(x(n+1))i − yi)2 + (ε(n+1))2)

) p−2
2

)m
i=1

.

(3.22)

n = n+ 1.

until stopping criterion is met.
Set n0 = n.
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Remark 3.17. (a) This particular choice for the modification of the objective func-

tional and the first step of the algorithm that will introduce the desired local

convexity will be justified later and presented alongside with recommendations

for the concrete choice of the parameter ω in the theory section.

(b) We already mentioned a range of viable techniques for the solution of the convex

minimization problem in (3.19), where a wide range of other methods exists

beyond that.
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3.4 Convergence analysis for the convexified algorithm

The study of the convergence behaviour of Algorithm 3 will be carried out in an

analogous fashion to the analysis of Algorithm 2 in this section.

3.4.1 Preliminary results

Again we start with the monotonicity property of the modified functional:

Lemma 3.18. The inequalities

JNR(x(n), w(n), ε(n)) = J ω,x(n)

NR (x(n), w(n), ε(n)) ≥ J ω,x(n)

NR (x(n+1), w(n), ε(n)) (3.23)

≥ J ω,x(n)

NR (x(n+1), w(n), ε(n+1)) ≥ J ω,x(n)

NR (x(n+1), w(n+1), ε(n+1))

(3.24)

≥ J ω,x(n+1)

NR (x(n+1), w(n+1), ε(n+1)) = JNR(x(n+1), w(n+1), ε(n+1))

(3.25)

hold for all n ≥ 0.

Proof. The first inequality is a consequence of the minimization property that defines

x(n+1) in NR-IRLS2. Moreover, the second one results from the fact that ε(n+1) ≤ ε(n)

and the third inequality from the minimization property of w(n+1). The last inequality

follows from the non-negativity of the norm of a difference of vectors.

We can conclude from this property and the boundedness of the sequence

(J (x(n), w(n), ε(n)))n∈N that it also has to be convergent.

In an analogous manner to Lemma 5.4, we can conclude also for the convexified case

that the sequence (x(n))n∈N bounded and the iterates lie in a ball of radius R∗, i.e.,

(x(n))n∈N ∈ B(0, R∗).

Now we want to justify in more detail the choice of the formulation in (3.19) for the

modification of the functional J . Here the introduction of the Moreau envelope as

a regularization is crucial for winning back the USCC-1 property for the modified

version of the functional (3.18). Our aim is to establish the existence of a positive

USCC-1 constant C̃, that will depend on ω and therefore can be influenced with its

choice appropriately.
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Lemma 3.19. Let Φ : Rd → Rm be a nonlinear, continuous map and J (x,w, ε) as

defined in Definition 4.4 and J ω,u
NR (x,w, ε) as defined in (3.18). Moreover, we assume

that ∣∣∣t[‖Φ(txn + (1− t)xn+1)− y‖2
`2(w(n)) − ‖Φ(x(n))− y‖2

`2(w(n))] (3.26)

+(1− t)[‖Φ(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖Φ(x(n+1))− y‖2

`2(w(n))]
∣∣∣

≤ Lt(t− 1)‖x(n) − x(n+1)‖2
`2
.

for some L > 0 independent of n ∈ N and for all t ∈ [0, 1]. Let (x(n))n∈N be the output

sequence of minimizers of Algorithm 3. Then for ω > 0 large enough the USCC-1 is

fulfilled for the adapted functional in (3.18), i.e., there exists a uniform constant C̃ > 0

such that for all n ≥ 0 holds

J ω,x(n)

NR (x(n), w(n), ε(n))− J ω,x(n)

NR (x(n+1), w(n), ε(n)) ≥ C̃‖x(n+1) − x(n)‖2
`2

Remark 3.20. We want to explain the validity of (3.26) and assume for the moment

that Φ is twice continuously differentiable and ε(n) ≥ ε for all n ∈ N and that the

Hessian of the map

x→ Fw(n)(x) = ‖Φ(x)− y‖2
`2(w(n)),

which can be expressed as

∇2Fw(n)(x) =
m∑
i=1

w
(n)
i

[
∇Φ(x)i∇Φ(x)∗i + (Φ(x)i − yi)∇2Φ(x)i

]
,

is uniformly bounded on B(0, R∗) by a constant L′ > 0. We consider the Tay-

lor expansion of the function Fw(n)(x) = ‖Φ(x) − y‖2
`2(w(n))

around the point x =

tx(n) + (1− t)x(n+1), to achieve a uniform estimate of the type (3.26):∣∣∣t[‖Φ(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖Φ(x(n))− y‖2

`2(w(n))]

+(1− t)[‖A(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖A(x(n+1))− y‖2

`2(w(n))]
∣∣∣

=
∣∣−t∇Fw(n)(tx(n) + (1− t)x(n+1))T (x(n) − tx(n) + (1− t)x(n+1))

−t(x(n) − tx(n) + (1− t)x(n+1))T∇2Fw(n)(ξ
(n)
t )(x(n) − tx(n) + (1− t)x(n+1))

−(1− t)∇Fw(n)(tx(n) + (1− t)x(n+1))T (x(n+1) − tx(n) + (1− t)x(n+1)) +

−(1− t)(x(n+1) − tx(n) + (1− t)x(n+1))T∇2Fw(n)(η
(n)
t )(x(n+1) − tx(n) + (1− t)x(n+1))

∣∣∣ .
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Now, we have that

− t∇Fw(n)(tx(n) + (1− t)x(n+1))T (x(n) − tx(n) + (1− t)x(n+1))

= −t(1− t)∇Fw(n)(tx(n) + (1− t)x(n+1))T (x(n) − x(n−1))

and
− (1− t)∇Fw(n)(tx(n) + (1− t)x(n+1))T (x(n+1) − tx(n) + (1− t)x(n+1))

= t(1− t)∇Fw(n)(tx(n) + (1− t)x(n+1))T (x(n) − x(n−1)).

This means that the first order terms in the sum cancel each other and only the second

order terms are remaining. We continue with the observation

‖(x(n) − tx(n) + (1− t)x(n+1)‖2
`2

= (1− t)2‖x(n) − x(n+1)‖2
`2
, and

‖(x(n+1) − tx(n) + (1− t)x(n+1)‖2
`2

= t2‖x(n) − x(n+1)‖2
`2

using the boundedness of the Hessians and we see that∣∣∣t[‖Φ(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖Φ(x(n))− y‖2

`2(w(n))]

+(1− t)[‖Φ(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖(xn+1)− y‖2

`2(wn)]
∣∣∣

≤ L′t(1− t)2‖x(n) − x(n+1)‖2
`2

+ L′t2(1− t)‖x(n) − x(n+1)‖2
`2

≤ Lt(t− 1)‖x(n) − x(n+1)‖2
`2
,

using that t ∈ [0, 1] and L = 2L′. Consequently we assert that (3.26) is a reasonable

assumption, even if the map Φ is not as smooth. A key point here is the fact that

ε(n) ≥ ε for all n ∈ N, which is used in the proof of Theorem 3.22.

Proof. Having in mind (3.26), we carry out the estimates for t ∈ [0, 1]∣∣∣JNR(tx(n) + (1− t)x(n+1), w(n), ε(n))− [tJ (
NRx

(n), w(n), ε(n)) + (1− t)JNR(x(n+1), w(n), ε(n))]
∣∣∣

≤
∣∣∣t[‖Φ(tx(n) + (1− t)x(n+1))− y‖2

`2(w(n)) − ‖Φ(x(n))− y‖2
`2(w(n))]

+(1− t)[‖Φ(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖Φ(x(n+1))− y‖2

`2(w(n))]
∣∣∣

≤ Lt(t− 1)‖x(n) − x(n+1)‖2
`2
.

Hence, we get

JNR(tx(n) + (1− t)x(n+1), w(n), ε(n))

≤ tJNR(x(n), w(n), ε(n)) + (1− t)JNR(x(n+1), w(n), ε(n))− Ct(1− t)‖x(n) − x(n−1)‖2
`2
,
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with a not necessarily positive, uniform constant C = −L, as there is not yet an

assumption placed on the strong convexity for the functional JNR(·, w(n), ε(n)) at this

point but certainly C > −∞.

Next we add the term ω‖tx(n) + (1− t)x(n+1) − x(n)‖2
`2

to both sides of the inequality

JNR(tx(n) + (1− t)x(n+1), w(n), ε(n)) + ω‖tx(n) + (1− t)x(n+1) − x(n)‖2
`2

≤ tJ (x(n), w(n), ε(n)) + (1− t)J (x(n+1), w(n), ε(n))− Ct(1− t)‖x(n) − x(n−1)‖2
`2

+ ω‖tx(n) + (1− t)x(n+1) − x(n)‖2
`2

and rearrange

J ω,x(n)

NR (tx(n) + (1− t)x(n+1), w(n), ε(n)) ≤ tJ ω,x(n)

NR (x(n), w(n), ε(n))

+ (1− t)J (x(n+1), w(n), ε(n))− Ct(1− t)‖x(n) − x(n−1)‖2
`2

+ (1− t)2ω‖x(n) − x(n+1)‖2
`2
.

Furthermore, by adding and subtracting the expression (1 − t)ω‖x(n) − x(n+1)‖2
`2

, we

obtain

J ω,xn

NR (tx(n) + (1− t)x(n+1), w(n), ε(n))

≤ tJ ω,x(n)

NR (x(n), w(n), ε(n))

+ (1− t)J ω,x(n)

NR (x(n+1), w(n), ε(n))− (C + ω)t(1− t)‖x(n) − x(n−1)‖2
`2
.

We note that, actually, the last inequality leads to the establishment of the strong

convexity condition for the functional J ω,x(n)

NR (·, w(n), ε(n)) at x(n+1) at x(n). Analogous

calculations to those presented in proof of Lemma 5.5 executed also in this case lead

to

J ω,x(n)

NR (x(n), w(n), ε(n))− J ω,x(n)

NR (x(n+1), w(n), ε(n)) ≥ C̃‖x(n+1) − x(n)‖2
`2
,

with constant C̃ = C + ω. Here C̃ is positive for ω large enough.

As a next step, we want to show that the iterates
(
x(n)
)
n∈N come arbitrarily close for

n→∞.

Lemma 3.21. Let Φ : Rd → Rm be a nonlinear, continuous map with Φ and (x(n))n∈N

and (w(n))n∈N be the sequences generated by Algorithm 3, so that condition (3.26) holds.

Then, for ω > 0 large enough

∥∥x(n) − x(n+1)
∥∥2

`2
→ 0 as n→∞.
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Proof. Using the monotonicity property, we see that

‖JNR(x(n), w(n), ε(n))− JNR(x(n+1), w(n+1), ε(n+1))‖2
`2

≥ ‖J ω,x(n)

NR (x(n), w(n), ε(n))− J ω,x(n)

NR (x(n+1), w(n), ε(n))‖2
`2
.

Moreover, employing Lemma 3.19 it follows that

‖J ω,x(n)

NR (x(n), w(n), ε(n))− J ω,x(n)

NR (x(n+1), w(n), ε(n))‖2
`2
≥ C̃‖x(n) − x(n+1)‖2

`2

Using the fact that ‖JNR(x(n)w(n), ε(n)) − J (x(n+1), w(n+1), ε(n+1))‖2
`2
→ 0 as n → ∞,

we obtain

‖x(n) − x(n+1)‖2
`2
→ 0 as n→∞.

3.4.2 Convergence

Now we have all the necessary tools at hand to present the convergence results for

Algorithm 3:

Theorem 3.22. Fix y ∈ Rm, x0 ∈ Rd. Let Φ : Rd → Rm be a nonlinear, countinuously

differentiable map with Φ for which the boundedness and coercivity condition (BCC)

holds, i.e., there exist α, β > 0 such that, for all z ∈ B(0, R∗):

α‖x0 − z‖`2 ≤ ‖Φ(x0)− Φ(z)‖`p ≤ β‖x0 − z‖`2 .

Additionally, we require that, for the sequences (xn)n∈N and (wn)n∈N generated by

Algorithm 3,∣∣∣t[‖Φ(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖Φ(x(n))− y‖2

`2(w(n))] (3.27)

+(1− t)[‖Φ(tx(n) + (1− t)x(n+1))− y‖2
`2(w(n)) − ‖Φ(x(n+1))− y‖2

`2(w(n))]
∣∣∣

≤ Lt(t− 1)‖x(n) − x(n+1)‖2
`2

for some L > 0 independent of n ∈ N and for all t ∈ [0, 1]. For ω > 0 large enough

(determined according to Lemma 3.19), we get the following properties of Algorithm 3:

(i) If ε = lim
n→∞

ε(n) = 0, then the sequence (x(n))n∈N converges to a vector x̄, which is

the solution to the `p-minimization problem (3.1). Moreover, if y ∈ Ran(Φ) and

y = Φ(x0), then x0 is the unique minimizer, thus x̄ coincides with x0.
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(ii) if ε = lim
n→∞

εn > 0, then all accumulation points of (x(n))n∈N are critical points of

the ε-perturbed `p-norm residual fε defined in (5.39), all lying in B(0, R∗).

Proof. (i) the proof can be deduced in an analogous fashion to Theorem 5.8.

(ii) We know that the sequence is bounded (x(n))n∈N and, therefore, accumulation

points exists. Denote with (x(n`))`∈N any convergent subsequence of (x(n))n∈N0 and

its limit with x̄, for which we want to establish that it is a critical point of (5.39).

From w
(n)
i = [(Φ(x(n))i − yi)2 + (ε(n))2](p−2)/2 ≤ (ε(n))p−2 ≤ εp−2 we deduce that

up to the extraction of an additional subsequence, it holds lim
`→∞

w
(n`)
i = [(Φ(x̄)i−

yi)
2 + ε2](p−2)/2 = w(x̄, ε)i := w̄i, i = 1, . . . ,m. Moreover, using Lemma 3.21, we

see that x(n`+1) → x̄, `→∞. We observe that here ε(n) ≥ ε > 0 and the discussion

in Remark 3.20 can be used to justify the assumption (3.27).) In a similar fashion,

it follows w(n`+1) → w̄ for ` → ∞. From the assumption that Φ is continuously

differentiable, it follows that the map x → JNR(·, w(n), ε(n)) is differentiable as

well and we conclude using (3.19),

0 = ∇xJ ω,x(n`)

NR (x(n`+1), w(n`), ε(n`)) = ∇xJ (x(n`+1), w(n`), εn`) + 2ω(xn`+1 − xn`)

or

−2ω(x(n`+1) − x(n`)) = ∇xJ (x(n`+1), w(n`), ε(n`)).

Employing Lemma 3.21, we can conclude that by passing to the limit `→∞

0 ∈ ∇xJ (x̄, w̄, ε) = ∇f ε(x̄).

Remark 3.23. (a) Instead of assuming that Φ is continuously differentiable as we did

above, it is also possible to consider to lower smoothness, i.e., Φ continuous and

require additional properties for subdifferentials. Nevertheless, generalizing our

results to nonsmooth maps does not give us significantly new insight and is not

considered here in detail.

(b) It is interesting to note that the error decay rate shown in (iii) in Theorem 5.8 can

be validated also for Algorithm 3 in the case that condition (c) in Theorem 5.8

holds true.

We can summarize our results as follows: Either we reach the exact minimizer of the

functional ‖Φ(x)−y‖p`p or otherwise, we have that every accumulation point is a critical

point of the ε-perturbed `p-norm residual fε(x).
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3.5 Numerical experiments

In this section, we illustrate and validate our theoretical findings by presenting sev-

eral numerical experiments. Our first tests are carried out for a simple experiment

framework to get a certain intuition for the algorithmic behaviour. Thereafter, the per-

formance of NR-IRLS is evaluated in the context of higher dimensional `p-minimization

problems, whose optimal solution is often difficult to investigate.

In the first example, we will examine the behaviour of the iterates of the NR-IRLS

algorithm in each step and make comparisons of the algorithm output with the results of

standard MATLAB optimization methods. Subsequent experiments consider nonlinear

compressed sensing problems as examined in [43]. More concretely, we employ NR-IRLS

in the intermediate step of of a greedy-type algorithm for the reconstruction of sparse

vectors from quasilinear measurements. We claim that, if the overall recovery results

obtained by the described algorithmic scheme is correct, the intermediate results must

have lead to correct solutions as well. In the last experiment in this section, we will

examine a measurement setting, where the measurement data is corrupted by so-called

impulsive noise, which corresponds to sparsity structure appearing in the residual. We

study the influence of the noise level on the recovery success of NR-IRLS.

All numerical experiments in this section were performed on a MacBook Pro 9.1. with

a 2.6 GHz Intel Core i7 quad-core-processor and 8GB memory. Computations were run

in MATLAB R2012b version 8.0.0.

3.5.1 Visually accessible example

In a simple test example case, we examine the algorithmic behaviour of NR-IRLS for a

map

Φ : R→ R2, x 7→
(
x

x2

)
and a measurement vector y ∈ [0, 1]2, and, consequently, the `p-minimizer x0 :=

arg min
x
‖Φ(x)− y‖p`p will lie in [0, 1], too.

First we verify that the BCC in Definition 3.3 is fulfilled for 1 < p < 2 in this particular

setting with the lower BCC-bound α = 1:

‖Φ(x)− Φ(x0)‖`p = (|x− x0|p + |x2 − (x0)2|p)1/p ≥ |x− x0| ≥ α‖x− x0‖`2 .

– 96 –



For the upper bound β we obtain (1 + 2p)1/p:

‖Φ(x)− Φ(x0)‖`p = (|x− x0|p + |x2 − (x0)2|p)1/p = (|x− x0|p + |x− x0|p · |x+ x0|p)1/p

≤ (|x− x0|p + |x− x0|p · 2p)1/p = (1 + 2p)1/p|x− x0| = β‖x− x0‖`2

In this situation, we usually encounter a nonconvex problem with possibly more than

one local minimizer and aim to study the convergence behaviour of the of NR-IRLS

in the version of Algorithm 2 in dependence of the nonconvexity paramter p. The

variation of p also corresponds to the alteration of the underlying optimization problem

and different minimizers or even a changing number of minimizers is possible. Here

we investigate the differences in the optimization results for varying values of p and

different choices of the initialization vector x(0). We compare the behaviour of NR-IRLS

and MATLAB’s built-in lsqnonlin-function, which is a realization of a trust-region-

reflective or Levenberg-Marquardt strategy.

We provide a more detailed description of the parameter setting for our numerical tests

in the following. For measurements y = (0, 0.9)T and varying values of p in the range

between 1 and 2, more precisely for the values p ∈ {1.1, 1.3, 1.7, 1.9}, we study the

algorithms recovery results.

For the specific setting of the algorithm parameters, we allow a maximum number

of 50 iterations for NR-IRLS. Furthermore, we employ the MATLAB built-in function

fminunc for the solution of the locally convex minimization problem in each internal

step with default settings and use the last iterate for initialization. Also for running the

lsqnonlin-function, which we directly use to solve the `p-minimization problem, we use

MATLAB’s default settings, too. For the experiments with both algorithms, we start

from different points x(0) in the interval [0, 1], more precisely x(0) ∈ {0, 0.25, 0.5, 0.75, 1},
and study their convergence behaviour resulting in different local minimizers as their

outputs.

Via the graphical assessment of the algorithms’ behaviour, we report the following ex-

perimental results: From Figure 3.1 and 3.2 it becomes clear that NR-IRLS converges to

the critical point of the objective function with least distance to the `2-local minimizer

resulting in the algorithms’ first step, regardless of the value of p but in dependence on

the starting point x(0) in the first step. The Figures 3.3 and 3.4 further underline the

influence of the initialization point for the solution of the first nonlinear least squares

problem. Also here NR-IRLS converges to the critical point that is closest to the mini-

mizer of the `2-norm problem, while the standard MATLAB method converges to the

local minimizer with least distance to the initialization point.

We draw as a conclusion that NR-IRLS has the potential to identify different local
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Figure 3.1

minimizers compared to standard gradient based methods also if the same starting

point is provided to the methods.

3.5.2 High dimensional examples in a nonlinear compressed sensing ap-

plication context

The paper [43] by the author of the thesis together with Fornasier and Ehler sug-

gests a greedy algorithm (Algorithm 1) for the recovery of sparse vectors from a mini-

mal amount of nonlinear measurements. This type of reconstruction problems will be

called nonlinear compressed sensing problems, in particular for the case that the mea-

surements generation involves randomness. We note that as a key operation of this

algorithmic strategy is the solution of a nonlinear `p-minimization problem (3.1) in

dimension d: at the d-th iteration of the algorithm it is necessary to identify the vector

with at most d nonzero entries with best data fit, i.e., finding the solution to a minimal

norm nonlinear residual problem as defined in (3.1).

In [43], the authors also considered p ∈ [1, 2] as a norm parameter in the so-called

Restricted Isometry Property (RIP), that is closely related to the BCC (see formula

(3.1) in [43]). In the following experiments, we use nonlinear maps Φ : Rk → Rm,

which are restrictions to k-dimensional index subspaces of two different types of mea-

surement maps studied in [43]. One the one hand, we consider nonlinear maps that are

constructed as the Lipschitz perturbations of matrices fulfilling the RIP. On the other
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hand, the second setting in [43] involves the quadratic map Φ(x) = (|〈x, φi〉|2)i=1,...,m,

which encodes the amplitudes of the scalar products of a vector x using a given col-

lection of measurement vectors {φ1, . . . , φm}. We note that here for the second type

of map solving the equation Φ(x) = y reduces to the recovery of the unknown signs

of the scalar products, which is also the fundamental challenge in the solution of the

more complex phase retrieval problem with applications, e.g., in X-ray crystallography

[41, 47, 57].

For both of these measurement settings, we conduct numerical experiments testing

NR-IRLS as in Algorithm 2 and the locally convexified version NR-IRLS2 as in Algorithm

3 in comparison with standard MATLAB optimization methods. MATLAB source code

implementing the greedy algorithm in the context of nonlinear compressed sensing is

available at http://www-m15.ma.tum.de/Allgemeines/SoftwareSite.

3.5.2.1 Locally convex case: Nonlinear perturbation of linear RIP-matrices

We want to familiarize the reader first with a result presented in [43, Section 3.2.1].

Proposition 3.24. Assume k ≤ m ≤ N and Φ1 ∈ Rm×N satisfies the δ-RIP of order

2k, i.e.,

(1− δ)‖z‖`N2 ≤ ‖Φ1z‖`m2 ≤ (1 + δ)‖z‖`N2 ,
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for all z ∈ RN with at most 2k nonzero entries. If Φρ : RN → Rm is chosen as

Φρ(z) := Φ1z + ρf(‖z − z◦‖2
`2

)Φ2z, (3.28)

where z◦ ∈ RN is some reference vector in RN , f : [0,∞)→ R is a bounded Lipschitz

continuous function with f(0) = 0, ρ > 0 is a sufficiently small scaling factor, and

Φ2 ∈ Rm×N arbitrarily fixed, then there are constants α, β > 0, such that for p = 2

α‖z − z̄‖`N2 ≤ ‖Φρ(z)− Φρ(z̄)‖`mp ≤ β‖z − z̄‖`N2

for all z with at most k nonzero entries and z̄ is another fixed vector of at most k

nonzero entries. For other p ∈ [1, 2), these inequalities hold again with different con-

stants α, β, derived, for instance, by equivalence of norms: for 0 < r < q we have

‖z‖`q ≤ ‖z‖`r ≤ N1/r−1/q‖z‖`q .

One can infer from the proposition above that any restriction of Φρ to vectors that

are supported on a certain fixed index set Λ ⊂ {1, . . . , N} with cardinality #Λ = k

satisfies the BCC condition. Therefore, in the following, without loss of generality we

place the assumption Λ = {1, . . . , k} and let

Φ : Rk × R+ → Rm, (x, ρ) 7→ Φ(x, ρ) = Φρ(x
Λ),

where z = xΛ represents the zero padding extension of x to a vector in higher dimension

RN .

As shown in [135], in the linear case of Φ(·, 0), i.e., where ρ = 0 and Φ(x, 0) = (Φ1)|Λ

boils down to a matrix in Rm×k, the first USCC holds true. Assuming that the param-

eter ρ > 0 is small, the map Φ(·, ρ) is only a slight nonlinear perturbation of Φ(·, 0).

Moreover, we introduce the additional condition that f is twice continuously differen-

tiable on R+ as used for the definition of Φρ to extend the first USCC to Φ(·, ρ) on a

small ball around x0 but do not present details of the rather clear elaboration of the

argument.

We want to describe the setting for the upcoming numerical experiments where we

perform the recovery of a sparse vector z0 ∈ RN with maximal k nonzero entries,

where k ∈ [1, 10] ∩ N from measurement results y = Φρ(z0) applying the method [43,

Algorithm 1]. At each step of this algorithm, the minimization or a norm nonlinear

residual has to be performed, where we employ Algorithm 2 of the present chapter.

The ambient dimension N = 80 as well as the number of measurements m = 30 are

fixed and we sample at random RIP matrices Φ1 with i.i.d. Gaussian entries. Next we
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set Φ2 to be as the matrix with all ones and the perturbation function f is the squared

Euclidean distance from the given solution vector z0, i.e., f(‖z − z0‖2
`2

) = ‖z − z0‖2
`N2

.

We already mentioned earlier via the parameter ρ > 0, that steers the nonlinearity

of the measurement operator, it is possible to regulate the validity of the BCC and

the USCC property. In our tests, we explored the dependence of success rate on the

nonlinearity by observing results for the parameter range ρ ∈ {0, 0.5, 1, 3, 5, 10, 20} in

100 randomly generate synthetic problems for each of these choices of ρ. As we use

synthetic data and the true sparse minimizer z0 is known, we can use z0 to measure

the recovery success and categorize a reconstruction as successful as soon as the error

is within a 1% of the norm of the solution vector z0. Additional measurement noise

was not included in these experiments.

We are quite generous and allow the execution of 3k steps of the greedy algorithm [43],

which corresponds to a number ob iterations that is notably exceeding the intrinsic

dimension of the sparse solution. This gives the algorithm the chance to correct wrongly

chosen indices, that were added to the support set in previous iterations. The maximum

number of iterations for the nonlinear `p-residual minimization performed with NR-IRLS

is set to 50. Again, we employ the MATLAB built-in function fminunc with its default

settings inititalization in the origin for solving the locally convex minimization problem

appearing in each inner step.

First we present the empirical probability of successful recovery of sparse vectors for

[43, Algorithm 1] implementing Algorithm 2 for the execution of the `p-minimization

for varying values of p in the following Figure 3.5.

Our expectations on a decreasing recovery performance with growing sparsity level k

and, consequently, increasing dimension of the `p-optimization problem were met by the

experiment results. Also an increasing perturbation factor ρ > 0 for the construction

of Φρ, which corresponds to the severity of the nonlinearity, was supposed and verified

in our experiments. The better recovery performance for the parameters p closer to 2

can be explained by the fact that the BCC condition has tighter bounds α and β in

these cases.
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Figure 3.5: Recovery rates for the greedy strategy developed in [43] used for the
measurement setting with perturbed RIP matrix as defined above in dimension
N = 80,m = 30, where Φ1 has i.i.d. Gaussian entries, Φ2 being the matrix with
all ones , f(x) = ‖x − x0‖2

`2
, and solution vector x0 with ‖x0‖`2 = 0.015. Reconstruc-

tion is executed 50 times for each signal and sparsity level k to obtain stable recovery
rates.

3.5.2.2 Phase retrieval problem

As introduced in [43] for the setting of phase retrieval, we consider a sequence of Gaus-

sian random vectors φi ∈ RN , i = 1, . . . ,m and construct the nonlinear measurement

map as follows

Φ(x) = (|〈φ1, x〉|2, . . . , |〈φm, x〉|2)>. (3.29)

With slight modifications to its original formulation, a BCC-type property holds for

p = 1 replacing the `2-norm on both sides of the inequality by a Hilbert-Schmidt

norm, which does not have disturb the validity of the results above. The existence of

the corresponding BCC-constants α, β > 0 can be assured by [43, Theorem 3.12] and

according to [43, Formula (3.14)].

Unfortunately, in the general case, we can not assume that the USCC-property holds

true in this setting and, therefore, the convexified NR-IRLS as in Algorithm 3 is applied.

As in the experiments above, the signal dimension is chosen to be N = 80 and the

number of measurements and, thereby, the number of sampled i.i.d. Gaussian random
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vectors φi, i = 1, . . . ,m is set to m = 30. We generate synthetic sparse solutions z0 with

‖z0‖`2 = 1 with respective sparsity levels in the range k ∈ {1, 3, 6, 9, 12, 15, 18, 21} and a

nonincreasing rearrangement of their entries with decay rate κ ∈ {1, 0.8, 0.6, 0.4}, where

a precise definition of the vector class Dκ can be found in [43]. The convergence results

in [43] demand such a decay property and this theoretical requirement was justified by

numerical tests involving MATLAB optimization routines in the intermediate steps.

For each of the mentioned parameter combinations, we create 50 noise free problem

instances. Again, we exploit the knowledge of the solution vector z0 for the classification

of the recovery success which is defined to occur, when the error does not exceed 1%

of the solution’s norm.

Similar to the procedural settings in the experiments above, the greedy algorithm [43,

Algorithm 1] performs maximally 3k steps and the maximum number iterations of the

NR-IRLS method is bounded from above by 100. As we use the convexified version of

NR-IRLS, we chose the regularization parameter ω = 100 > 0, which is large enough in

our context. Again, we use the MATLAB function fminunc with its default settings

now starting from randomly chosen points within a ball with radius of the solutions

norm for performing the convex minimization in the internal step.

The graphics in Figures 3.6-3.7 below show the success rates of [43, Algorithm 1] imple-

menting Algorithm 3 for the execution of the `p-minimization for varying values of p for

the recovery of sparse vectors from measurements of the type Proposition 3.24. To our

great surprise, the influence of the decay rate of the nonincreasing rearrangement of the

solution vector z0 on the recovery success is becoming less prominent when employing

NR-IRLS for the solution of the internal `p-minimization problem. This observation is

in stark contrast to the experiment results presented in [43], in which we applied the

built-in MATLAB functions fminunc, fminsearch or lsqnonlin. For illustration of

the performance differences, we compare the recovery results of the greedy algorithm

incorporating NR-IRLS and the corresponding results obtained from an implementa-

tion using lsqnonlin. We observe that the later are significantly outperformed by

the implementation using NR-IRLS in cases, where the decay rate of the nonincreasing

rearrangement of the vector z0 is not sufficiently pronounced.
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Figure 3.6: Recovery rates for the greedy strategy developed in [43] implemented with
NR-IRLS used on the phase retrieval problem with Gaussian measurement vectors as
above with N = 80,m = 30, and we use solutions x0 with ‖x0‖ = 1 . Reconstruction
is repeated 50 times for each signal and k, κ.
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Figure 3.7: Recovery rates for the greedy strategy developed in [43] implemented with
lsqnonlin used on the phase retrieval problem with Gaussian measurement vectors as
above with N = 80,m = 30, and we use solutions x0 with ‖x0‖ = 1 . Reconstruction
is repeated 50 times for each signal and k, κ.
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3.5.3 Recovery from data with impulsive noise perturbation

In this last subsection, we consider the case of observed measurement results y that are

additionally corrupted by noise. As already explained in Section 2.1, the choice of the

error function for the nonlinear residual minimization depends on the particular kind of

noise. In the following, we will examine the particular case of measurement corruption

by impulsive noise. This type of noise is characterized by the random appearences of

instantaneous perturbations of the residual components which appear in the form of

spikes or pulses with random amplitude. This corresponds the occurrence of sparse

residual distortions and, therefore, sparsity enhancing error functions such as the `1-

norm are a reasonable choice.

We again consider the phase retrieval problem as described above introducing impulsive

noise on the measurements and adopt the experimental setting used in the prior nu-

merical tests up to slight modifications mentioned below. With the experiments in this

subsection, we aim at to explore the influence of the choice of the parameter 1 ≤ p ≤ 2

on the recovery success rates for impulsive noise corrupted measurement results.

First we want to give a clear description of our statistical model for the impulsive noise:

for this purpose we combine a binary-valued random sequence model for modeling

the time of occurrence of the noise pulse with a continuous-valued random process

model defining the pulse amplitude. An important instance of a statistical process for

impulsive noise modeling by an amplitude modulated binary sequence is the so-called

Bernoulli-Gaussian process [155]. In this specific model of an impulsive noise process,

the random time of the impulse occurrence is modeled by a binary Bernoulli process

Bαp with a probability of success αp and as an amplitude model a Gaussian process

N(0,1) with mean 0 and standard deviation 1 is used.

Now having a proper model for impulsive noise at hand, we give a detailed description

of the measurement setting for the noisy phase retrieval problem.

As in previous experiments, we set N = 80, m = 30 and sample i.i.d. Gaussian ran-

dom vectors φi, i = 1, . . . ,m. Again we generate synthetic unit norm solutions z0 with

respective sparsity k ∈ {1, 2, 3, 5, 7, 9} and decay rate κ = 0.5 for the nonincreasing

rearrangement of the absolute value of their entries, where we refer to [43]for the defini-

tion of the vector class Dκ. Next we create impulsive Bernoulli-Gaussian noise vectors

with parameters αp ∈ {0.5, 0.4, 0.3, 0.2, 0.1, 0.0}, respectively adjusting the scaling to

the norm of the measurement vector y, and add the result to the exact measurement

vector. We generate 100 problem instances for each parameter combinations, and again

use the solution z0 for the determination of the recovery success, which we claim to be

– 106 –



reached when the error is within a 5%-margin of the solution’s norm. We use a similar

algorithm set up as above executing 3k steps of the greedy algorithm [43, Algorithm

1] and for NR-IRLS itself the limit for the number of iterations is set to 50. We chose

the parameter ω = 100 and use the MATLAB built-in function fminunc with default

settings and random starting points within the ball with radius of the solutions norm

for the application to the convex minimization problem in each inner step.

The plots in Figure 3.8 illustrate the success rates of [43, Algorithm 1] for sparse vector

recovery from measurements of the type Proposition 3.24 perturbed by impulsive noise,

which implemens Algorithm 3 for the execution of the `p-minimization for variying

values of p.

The visual assessment of the phase transition diagrams can be summarized as follows:

minimization for small values of p and, therefore, the stronger the nonsmoothness

of the error function, are preferable to standard `2-least squares minimization which

matches our expectations. Additionally, we observe that, if p is getting close to 1 and

low sparsity level k, recovery with NR-IRLS is very robust even for strong impulsive

noise perturbations.
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Figure 3.8: Recovery rates for the greedy strategy developed in [43] implemented with
NR-IRLS used on the phase retrieval problem with Gaussian measurement vectors as
above with N = 80,m = 30, and we use solutions x0 with ‖x0‖ = 1 . Reconstruction is
repeated 50 times for each signal with sparsity k and the particular noise perturbation
as given above.
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Chapter 4

Harmonic mean IRLS for low-rank matrix

recovery

In the last years, the problem of recovering large scale matrix-valued signals with an

inherent low-rank structure from incomplete linear measurements as discussed in Sec-

tion 2.3 and especially in Section 2.3.2, attracted the attention of the signal processing

and machine learning community. That means we aim at the unique identification of

an unknown matrix X0 ∈Md1×d2 from a linear equation system

Φ(X) = Y (4.1)

with a linear operator Φ : Md1×d2 → Rm and measurement vector Y ∈ Rm for m� d1d2

under the additional assumption that X0 has rank r < min(d1, d2).

Having in mind the discussion on intrinsic structures, in particular sparsity type struc-

tures in Section 2.3.1 and Section 2.3.2, we recognized that with the additional assump-

tion of the low-rank structure of the solution, the recovery of X0 from (4.1) becomes

feasible by solving the affine rank minimization problem (2.55)

min rank(X) subject to Φ(X) = Y. (4.2)

Low-rank matrix recovery problems of this type appear in application frameworks such

as system identification [96, 97], signal processing [1], quantum tomography [71, 73],

recommender systems [22, 64, 136] and phase retrieval [18, 23, 72].

A widely studied instance of the low-rank matrix recovery problem with great relevance

in recommender systems is the problem of the identification and recovery of a large

scale low-rank matrix from a subset of revealed entries, the so-called matrix completion
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problem, i.e., the choice of the measurement operator Φ : Md1×d2 → Rm, where we are

given m sample entries

Φ(X)` = Xi`,j` , (4.3)

for ` ∈ [m] and some i` ∈ [d1] and j` ∈ [d2] depending on `. A well-known example is

the Netflix problem aiming at the completion of a matrix with user ratings for movies

with more than 108 entries [7].

Despite the fact that the low-rank matrix recovery problem is NP-hard just like in the

sparse vector case, a number of tractable methods that can provably achieve recov-

ery in many relevant scenarios have been developed. For instance, the nuclear norm

minimization (NNM) approach is particularly well-understood [22, 46], considering the

convex relaxation of (4.2) as a proxy and solving the problem

min ‖X‖S1 subject to Φ(X) = Y, (4.4)

called nuclear norm minimization [21, 22, 126]. For NMM, the number of measurements

necessary for successful recovery scales with optimal order, i.e., m ≥ ρr(d1 + d2 − r).
Nevertheless, the oversampling factor ρ is significantly larger than 1 . Therefore, the

number of measurements is not optimal in the sense of the information theoretical lower

bound r(d1 +d2−r) corresponding to the degrees of freedom presented in Lemma 2.20.

For the interesting case of matrix completion the required number of measurements for

reconstruction is even higher involving additional log-factors of the matrix dimension

[31]. Although computation time for the solution of NNM scales polynomially, it becomes

computationally challenging for growing dimensionality of the problem and intractable

for many potential application settings.

With regard to these limitations of techniques based on convexification, the investi-

gation of nonconvex optimization methods for low-rank matrix recovery [74, 78, 79,

145, 146, 149, 154, 161–163, 169] is proceeding rapidly already, where for several meth-

ods theoretical recovery guarantees comparable to those of NNM have been developed

[20, 142, 144, 149, 169]. They have practical advantages such as a high empirical recov-

ery rate and an efficient algorithm implementation, but, nevertheless, their successful

convergence to the low-rank minimizer often heavily depends on a distinct, computa-

tionally demanding initialization step.

Following this path, in this chapter we will discuss a new iteratively reweighted least

squares algorithm for the low-rank matrix recovery problem based on the minimization

of the Schatten-p quasi-norm with non-convexity parameter 0 < p < 1

min ‖X‖pSp subject to Φ(X) = Y. (4.5)
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The abovementioned IRLS-algorithm was first introduced in the conference paper [86]

and the respective journal article preprint [87] by Christian Kümmerle and the author of

the thesis, where both contributed equally to all parts of the publication. The statement

of the results in this chapter closely follows the presentation in [87].

The strategy of using an IRLS-type method for the approximation of (4.5) is not new

and the corresponding algorithms appeared already in the papers[51, 106] published

several years ago. Still, both of the IRLS-approaches presented in those publications are

not able to fully generalize the properties of the algorithm for sparse vector recovery in

[35]. The most important point is that neither the theoretical nor the numerical results

in [51, 106] indicate the occurrence of the superlinear convergence rate for non-convex

parameters p < 1 that is significantly pronounced in the vector case [35].

However, the algorithm under discussion in this chapter, introduces a new kind of

weight matrices, so-called harmonic mean weight matrices, that will lead to several

important improvements and innovations. The construction method for the weight

matrices can be interpreted as the averaging of left- and right-sided weight matrices

introduced in [51, 106] by taking their harmonic mean. This interpretation led to the

choice of the name harmonic mean iteratively reweighted least squares (HM-IRLS) for

the algorithm.

This new design of the weight matrices is more symmetrical than the weight matrices

previously used [51, 106], and this empowers HM-IRLS to exploit the information in both

the column and the row space of the iterates. More precisely, the specific structure of

the harmonic mean weight matrices allows a better alignment of the left-singular and

right-singular vectors of the iterates with those of the low-rank matrix to be recovered.

In the course of this chapter, we will demonstrate that by the employment of the

harmonic mean weight matrices in HM-IRLS it is not only possible to overcome the

disadvantages of the weight matrices used in [51, 106] but to also outperform them.

In the first section, we will introduce as a calculation tool the Kronecker product, which

helps us to introduce the construction concept for the harmonic mean weight matrix.

Thereafter, in Section 4.3, we take inspiration from the theoretical analysis of existing

IRLS-methods, where some of the findings are based on null space properties of the

map Φ, to derive the corresponding analysis results also for HM-IRLS. To be more

precise, using a similar auxiliary functional JHM , we are able to prove convergence of

the sequence of iterates of HM-IRLS to stationary points of an ε-smoothed Schatten-p

functional (analogous to (2.58)). In the case ε = 0, recovery of a low-rank matrix is

proven and in contrast to the IRLS-methods in [51, 106], we are able to establish a
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local superlinear convergence rate (of order 2− p) for HM-IRLS in Section 4.3.6, which

implies that for the parameters p→ 0 the convergence rate is approaching quadratic.

Within the theoretical analysis section we want to draw the reader’s attention in par-

ticular to the high technical sophistication of the proofs of the results in Lemma 4.6

and Theorem 4.16.

Our theoretical guarantees are validated by numerical experiments presented in Sec-

tion 4.4 comparing the recovery ability and convergence speed of HM-IRLS with re-

lated IRLS-algorithms for low rank recovery. Moreover, we conduct extensive numer-

ical tests comparing the recovery performance of HM-IRLS with the exisiting IRLS

variants [51, 106], Riemannian optimization techniques [154], alternating minimization

approaches [74, 146], algorithms based on iterative hard thresholding [9, 85], and oth-

ers [118], with respect to sample complexity. Although our theoretical findings are not

directly applicable to the matrix completion measurement model, we focused on this

setting in our experiments due to its popularity in the machine learning community

facilitating the comparison with other algorithms.
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4.1 Towards a harmonic mean weight matrix

4.1.1 Kronecker and Hadamard products

Considering the matrices A = (aij)i∈[d1],j∈[d3] ∈ Rd1×d3 and B ∈ Rd2×d4 , the representa-

tion in matrix form of their tensor product with respect to the standard bases is referred

to as the Kronecker product A⊗B ∈ Rd1·d2×d3·d4 . The matrix resulting from this opera-

tion, A⊗B is a block matrix with d2×d4 blocks whose block of index (i, j) ∈ [d1]× [d3]

is the matrix aijB ∈ Rd2×d4 . Illustrating this exemplary for A ∈ Rd1×d3 with d1 = 2

and d3 = 3 we obtain

A⊗B =

[
a11 a12 a13

a21 a22 a23

]
⊗B =

[
a11B a12B a13B

a21B a22B a23B

]
.

A collection of basic properties of the Kronecker product can be found in [8, Chapter

7], [152] and we present some of them that will be particularly useful in calculations

later on:

(i) (A⊗B)∗ = A∗ ⊗B∗,

(ii) (A⊗B)−1 = A−1 ⊗B−1 (whenever A and B are invertible),

(iii) (A⊗B)(C ⊗D) = (AC ⊗BD),

(iv) A⊗ (B ⊗ C) = (A⊗B)⊗ C.

Next we introduce the Hadamard product A ◦ B ∈ Rd1×d2 of two matrices A ∈ Rd1×d2

and B ∈ Rd1×d2 , that corresponds to their entry-wise product

(A ◦B)i,j = Ai,jBi,j

with i ∈ [d1] and j ∈ [d2]. In the literature, the Hadamard product is sometimes also

referred to as Schur product, and for the reader’s convenience we provide some of its

basic calculation rules.

(i) A ◦B = B ◦ A,

(ii) (A ◦B)∗ = A∗ ◦B∗,

(iii) A ◦ (B + C) = A ◦B + A ◦ C,

(iv) A ◦ (B ◦ C) = (A ◦B) ◦ C.
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Further properties are listed in [8, Chapter 7].

The Kronecker product often appears in the context of matrix equations which involve

multiplications of matrices from the left and right side to the variable X as follows

AXB∗ = Y if and only if (B ⊗ A)Xvec = Yvec.

Moreover, for matrices A and B with d1 = d3 and d2 = d4, we give the definition of

the Kronecker sum A⊕ B ∈ Rd1d2×d1d2 of two matrices A ∈ Rd1×d1 and B ∈ Rd2×d2 as

the following matrix in Rd1d2×d1d2

A⊕B = (Id2 ⊗ A) + (B ⊗ Id1).

The Kronecker sums are a useful tool for the reformulation of the Sylvester matrix

equation problem, where one wants to find X ∈Md1×d2 solving the equation system

AX +XB∗ = Y (4.6)

for fixed A ∈ Rd1×d1 , B ∈ Rd2×d2 and Y ∈ Rd1×d2 given. We can reformulate the

equation above

(A⊕B)Xvec = Yvec,

where, again, the vectorizations of X and Y is used. In this framework, we can exploit

the explicit formula of the inverse (A⊕B)−1 of the Kronecker sum A⊕B that expresses

this matrix in terms of singular vectors and singular values of A and B.

Lemma 4.1 ([80]). Let A ∈ Hd1 and B ∈ Hd2, where one of the matrices is positive

definite and the other positive semidefinite. Denote the singular vectors of A by ui ∈
Rd1, i ∈ [d1], its singular values by σi, i ∈ [d1] and the singular vectors resp. values of

B by vj ∈ Rd2 resp. µj, j ∈ [d2], then

(A⊕B)−1 =

d1∑
i=1

d2∑
j=1

vjv
∗
j ⊗ uiu∗i
σi + µj

= (V ⊗ U)D(V ⊗ U)∗, (4.7)

where D ∈ Md1d2×d1d2 is a diagonal matrix with entries dl = (σi + µj)
−1 > 0 for

l = (i− 1)d2 + j, U = [u1, . . . , ud1 ], and V = [v1, . . . , vd2 ].

Furthermore, the action of (A⊕B)−1 on the matrix space Md1×d2 can be written as

[
(A⊕B)−1Zvec

]
mat

= U
(
H ◦ (U∗ZV )

)
V ∗. (4.8)
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for Z ∈Md1×d2 and the matrix H ∈Md1×d2 with the entries Hi,j = (σi+µj)
−1, i ∈ [d1],

j ∈ [d2].

For proving Lemma 4.1, one can employ the Kronecker product calculation rules pre-

sented above.

4.1.2 Averaging of weight matrices

Let us for the moment suppose that Z ∈ Rd1×d2 is a square matrix with d1 = d2 of full

rank. Having in mind Definition 2.37, we now introduce two different reformulations

of the p-th power of its Schatten-p quasi-norm as weighted `2-norms for the vectorized

notation Xvec involving the Kronecker product,

(i) ‖Z‖pSp = tr[(ZZ∗)
p
2 ] = tr[(ZZ∗)

p−2
2 (ZZ∗)] = tr(WLZZ

∗) = ‖W
1
2
L Z‖2

F = ‖Z‖2
F (WL)

= ‖(Id2 ⊗WL)
1
2Zvec‖2

`2
= ‖Zvec‖2

`2(Id2⊗WL),

where WL is the symmetric weight matrix (ZZ∗)
p−2
2 in Md1×d1 and Id2 ⊗WL is

the block diagonal weight matrix in Md1·d2×d1·d2 with d2 instances of WL on the

diagonal blocks,

(ii) ‖Z‖pSp = tr[(Z∗Z)
p
2 ] = tr[(Z∗Z)(Z∗Z)

p−2
2 ] = tr(Z∗ZWR) = ‖ZW

1
2
R‖2

F = ‖Z∗‖2
F (WR)

= ‖(WR ⊗ Id1)
1
2Zvec‖2

`2
= ‖Zvec‖2

`2(WR⊗Id1 ),

where WR is the symmetric weight matrix (Z∗Z)
p−2
2 in Md2×d2 . The weight

matrix WR ⊗ Id1 ∈ Md1d2×d1d2 is, as can be calculated from the definition

of the Kronecker product, a block matrix of diagonal blocks of the type

diag((WR)ij, . . . , (WR)ij) ∈ Rd1×d1 , i, j ∈ [d2].

Note that in the case that the matrix Z is not of full rank or also if d1 6= d2, the

calculations carried out above can not be well-defined: at least one of the matrices

ZZ∗ ∈ Rd1×d1 or Z∗Z ∈ Rd2×d2 is singular, which does not allow for the inversion

appearing in the definition of the matrices WR = (Z∗Z)
p−2
2 or WL = (ZZ∗)

p−2
2 for

p < 2. As already suggested in Section 2.4, we can avoid these problems by introducing a

smoothing parameter ε > 0 and defining the smoothed weight matrices WL(Z, ε) ∈ Hd1
++

and WR(Z, ε) ∈ Hd2
++ as follows

WL(Z, ε) := (ZZ∗ + ε2Id1)
p−2
2 , (4.9)

WR(Z, ε) := (Z∗Z + ε2Id2)
p−2
2 , (4.10)
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In the papers [51, 106] the strategy of the reformulation of the Schatten-p norm via the

left-sided reweighted Frobenius-norm ‖ · ‖2
F (WL) was already exploited for their versions

of IRLS algorithms for low-rank matrix recovery [51, 106]. Let us stress again that none

of the two papers pointed out the idea of a reformulation of the Schatten-p norm using

a weighted Frobenius-norm which involves the multiplication of the weight matrix WR

from the right.

In this chapter, our goal is to take advantage of the low rank information in the column

and the row space by the combination of both reweighting strategies into one weight

matrix reflecting this symmetry.

We first want to present the possibly most intuitive or naive way to a more symmetric

exploitation of the low rank structure in the following lemma.

Lemma 4.2. Let 0 < p ≤ 2 and Z ∈ Md1×d2 with d = d1 = d2 be a full rank matrix.

Then

‖Z‖pSp =
1

2

(
‖W

1
2
L Z‖2

F + ‖ZW
1
2
R‖2

F

)
=

∥∥∥∥∥
(
WL ⊕WR

2

) 1
2

Zvec

∥∥∥∥∥
2

`2

= ‖Zvec‖2
`2(W(arith))

,

where
1

2
(Id2 ⊗WL +WR ⊗ Id1) =

WL ⊕WR

2
=: W(arith)

is the arithmetic mean matrix of the symmetric and positive definite weight matrices

Id2 ⊗WL and WR ⊗ Id1, WL := (ZZ∗)
p−2
2 , and WR := (Z∗Z)

p−2
2 .

Proof. Using the computations above as well as the cyclicity of the trace, we calculate

‖Z‖pSp =
1

2

(
‖W

1
2
L Z‖2

F + ‖ZW
1
2
R‖2

F

)
=

1

2

(
‖(Id2 ⊗WL)

1
2Zvec‖2

`2
+ ‖(WR ⊗ Id1)

1
2Zvec‖2

`2

)
=

1

2

[
tr
(

(Id2 ⊗WL)
1
2ZvecZ

∗
vec(Id2 ⊗WL)

1
2

)
+ tr

(
(WR ⊗ Id1)

1
2ZvecZ

∗
vec(WR ⊗ Id1)

1
2

)]
=

1

2
[tr ((Id2 ⊗WL)ZvecZ

∗
vec) + tr ((WR ⊗ Id1)ZvecZ

∗
vec)]

=
1

2
tr ([(Id2 ⊗WL) + (WR ⊗ Id1)]ZvecZ

∗
vec) =

1

2

∥∥∥(Id2 ⊗WL +WR ⊗ Id1)
1
2 Zvec

∥∥∥2

`2

=

∥∥∥∥∥
(
WL ⊕WR

2

) 1
2

Zvec

∥∥∥∥∥
2

`2

.

Unfortunately, we make the observation that the introduction of the arithmetic mean

weight matrix does not lead to convincing improvements with respect to the one-sided

reweighting strategies used in [51, 106]. No particularly notable advantages neither in

numerical experiments nor in the theoretical examination of the convergence rate of
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a corresponding IRLS-method for low-rank matrix recovery can be reported, cf. also

subsection 4.4.2 and Remark 4.19.

On the contrary, using as a combination approach the harmonic mean of the

weight matrices Id2 ⊗WL and WR ⊗ Id1 , i.e., weight matrices constructed as follows

2
(
W−1
R ⊗ Id1 + Id2 ⊗W−1

L

)−1
= 2

(
W−1
L ⊕W−1

R

)−1
=: W(harm) significantly outper-

forms other weight matrix composition variants in both theoretical as well as practical

aspects. These surprising results will be presented in detail in the subsequent sections

of this chapter.

With the upcoming lemma we show that the harmonic mean of the weight matrices

Id2 ⊗WL and WR⊗ Id1 can be used for a legitimate reformulation of the p-th power of

the Schatten-p quasi-norm.

Lemma 4.3. Let 0 < p ≤ 2 and Z ∈ Rd1×d2 with d = d1 = d2 be a full rank matrix.

Then

‖Z‖pSp = 2
∥∥∥(W−1

L ⊕W−1
R

)− 1
2 Zvec

∥∥∥2

`2
= ‖Zvec‖2

`2(W(harm))
,

where 2
(
W−1
R ⊗ Id1 + Id2 ⊗W−1

L

)−1
= 2

(
W−1
L ⊕W−1

R

)−1
=: W(harm)

is the harmonic mean matrix of the symmetric and positive definite weight matrices

Id2 ⊗WL and WR ⊗ Id2, WL := (ZZ∗)
p−2
2 and WR := (Z∗Z)

p−2
2 .

Proof. Let Z = USV ∗ ∈ Md×d be the singular value decomposition of Z. Hence for

the vectorized version Zvec = (V ⊗ U)Svec holds true. Using the definitions of WL

and WR, we express W−1
L = US2−pU∗ and W−1

R = V S2−pV ∗. By the Kronecker sum

inversion formula as stated in (4.7), we get
(
W−1
L ⊕W−1

R

)−1
= (V ⊗ U)D(V ⊗ U)∗,

where D ∈ Md1d2×d1d2 is a diagonal matrix with entries dl = (s2−p
i + s2−p

j )−1 > 0 for

l = (i− 1)d2 + j, if i ∈ [d1] and j ∈ [d2].

Using these facts, we obtain from the orthonormality of the columns of U and V and

the particular structure of the diagonal matrix D

‖Zvec‖2
`2(W(harm))

= ‖W
1
2

(harm)Zvec‖2
`2

= 2
∥∥∥(W−1

L ⊕W−1
R

)− 1
2 Zvec

∥∥∥2

`2

= 2tr
(((

W−1
L ⊕W−1

R

)−1
Zvec

)∗
mat

Z
)

= 2tr ([(V ⊗ U)D(V ⊗ U)∗(V ⊗ U)Svec]
∗ (V ⊗ U)Svec)

= 2tr (S∗vecDSvec)

= 2

(
d∑
i=1

s2
i

2s2−p
i

)
= ‖Z‖pSp .
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4.2 Harmonic mean iteratively reweighted least squares

algorithm

At this point, we are ready to give a formulation of a new type of iteratively reweighted

least squares algorithm for the low-rank matrix recovery problem, the so-called har-

monic mean iteratively reweighted least squares algorithm (HM-IRLS). Similar as in ex-

isting variants, we perform the solution of a sequence of weighted least squares problems

for the recovery of a low-rank matrix X0 ∈Md1×d2 from only few linear measurements

Y = Φ(X0) ∈ Rm. The weight matrices that will be involved in the weighted least

squares steps can be interpreted as the harmonic mean of the weight matrices in (4.9)

and (4.10).

Let 0 < p ≤ 1 and denote d = min(d1, d2), D = max(d1, d2). Let us now describe our

suggested approach as follows: Given a non-increasing sequence of numbers (ε(n))∞n=1,

with ε(n) ≥ 0 for n ∈ N, we chose an initialization for a symmetric and positive definite

weight matrix W̃ (0) ∈ Hd1d2
++ . Define recursively for n = 1, 2, . . . , the iterate

X(n) = arg min
Φ(X)=Y

‖Xvec‖2
`2(W̃ (n−1))

(4.11)

and the weight matrix

W̃ (n) = 2
[
U (n)(sΣ

(n)
d1

)2−pU (n)∗ ⊕ V (n)(sΣ
(n)
d2

)2−pV (n)∗
]−1

(4.12)

with the diagonal matrices sΣ
(n)
dt
∈Mdt×dt for dt = {d1, d2} such that

(sΣ
(n)
dt

)ii =

(σi(X
(n))2 + ε(n)2)

1
2 if i ≤ d,

0 if d < i ≤ D
(4.13)

and the matrices U (n) ∈ Md1×d1 and V (n) ∈ Md2×d2 , containing the left and right

singular vectors of X(n) in its columns, respectively.

Note that the update rule for W̃ (n) given above can be interpreted as an ε-stabilized

version of the harmonic mean weight matrix W(harm) in Lemma 4.3. The stabilization

factor ε is introduced to avoid ill-conditioned instances of W̃ (n) as soon as some of the

singular values of X(n) are getting close to zero and, even beyond that, for the matrices

(X(n)X(n)∗)
2−p
2 ⊕ (X(n)∗X(n))

2−p
2 we already face singularity when X(n) is not of full

rank.

To enable the concise formulation of the first step (4.11) of HM-IRLS defining the next
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iterate, we introduce for n ∈ N the linear operator W̃(n)−1 : Md1×d2 →Md1×d2 as

(W̃(n)−1)(Z) :=
1

2

[
U (n)(sΣ

(n)
d1

)2−pU (n)∗Z + ZV (n)(sΣ
(n)
d2

)2−pV (n)∗
]
, (4.14)

which corresponds to the operation of the inverse of W̃ (n) on Md1×d2 .

We give a pseudo code summary of our formulation of HM-IRLS as follows.

Algorithm 4 Harmonic Mean IRLS for low-rank matrix recovery (HM-IRLS)

Input: A linear map Φ : Md1×d2 → Rm, image Y = Φ(X0) of the ground truth matrix
X0 ∈Md1×d2 , rank parameter r̃, non-convexity parameter 0 < p ≤ 1.

Output: Sequence (X(n))n0
n=1 ⊂Md1×d2 .

Initialize n = 0, ε(0) = 1 and W̃ (0) = Id1d2 ∈Md1d2×d1d2 .
repeat

X(n+1) = arg min
Φ(X)=Y

‖Xvec‖2
`2(W̃ (n))

= (W̃(n)−1 ◦ Φ∗ ◦ (Φ ◦ W̃(n)−1 ◦ Φ∗)−1)(Y ),

(4.15)

ε(n+1) = min
(
ε(n), σr̃+1(X(n+1))

)
, (4.16)

W̃ (n+1) = 2
[
U (n+1)(sΣ

(n+1)
d1

)2−pU (n+1)∗ ⊕ V (n+1)(sΣ
(n+1)
d2

)2−pV (n+1)∗
]−1

, (4.17)

where U (n+1) ∈Md1×d1V
(n+1) ∈Md2×d2 are matrices containing the left and right

singular vectors of X(n+1) in its columns, and sΣ(n+1) is defined as in (4.13).

n = n+ 1.

until stopping criterion is met.
Set n0 = n.

We note that in practise the explicit calculation of the large weight matrices W̃ (n+1) ∈
Hd1d2

++ (cf. (4.17)) does not have to be performed in an implementation of Algorithm

4. Fortunately, the formulas (4.14) and (4.15) indicate that only the operation of its

inverse (W̃ (n+1))−1 resp. (W̃ (n))−1 has to be executed, which allows the implementation

by matrix-matrix multiplications on the space Md1×d2 : For matrices X,Z ∈Md1×d2 , it

holds that W̃ (n)Xvec = Zvec if and only if Xvec = (W̃ (n))−1Zvec, which can be reformu-

lated in matrix-matrix operations as follows

X =
1

2

[
U (n)(sΣ

(n)
d1

)2−pU (n)∗Z + ZV (n)(sΣ
(n)
d2

)2−pV (n)∗
]
.

Here the definition of W̃ (n) (cf. (4.17)) in combination with the Kronecker sum property
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implies the last equivalence.

In section 4.4.4, we will provide a more extensive discussion on the implementation

details.
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4.3 Theoretical analysis

Similar to previously discussed analysis approaches for IRLS, we again introduce an

appropriate auxiliary functional JHM to obtain a variational interpretation of the algo-

rithmic procedure. For the rest of the section, let d = min(d1, d2) and D = max(d1, d2).

Definition 4.4. Let 0 < p ≤ 1. Given a full-rank matrix W ∈Md1×d2 , let

W̃ (W ) := 2
[
Id2 ⊗ (WW ∗)

1
2

] [
(WW ∗)

1
2 ⊕ (W ∗W )

1
2

]−1 [
(W ∗W )

1
2 ⊗ Id1

]
∈ Hd1d2×d1d2

(4.18)

be the harmonic mean matrix W̃ associated to W .

We define the auxiliary functional JHM : Md1×d2 × R≥0 ×Md1×d2 → R≥0 as

JHM(X, ε,W )

:=


p
2
‖Xvec‖2

`2(W̃ (W ))
+ ε2p

2

d∑
i=1

σi(W ) + 2−p
2

d∑
i=1

σi(W )
p

(p−2) if rank(W ) = d,

+∞ if rank(W ) < d.

(4.19)

Let us point out that the matrix W̃ of (4.18) corresponds to forming the harmonic

mean of the matrices W̃1 := Id2 ⊗ (WW ∗)
1
2 and W̃2 = (W ∗W )

1
2 ⊗ Id1 , as explained in

section 4.1.2, if (WW ∗)
1
2 and (W ∗W )

1
2 are positive definite. Please note that in this

case, (WW ∗)
1
2⊕(W ∗W )

1
2 = W̃1+W̃2 is indeed an invertible matrix as (A−1+B−1)−1 =

A(A+B)−1B for any positive definite matrices A,B of the same dimensions,

W̃ (W ) = 2W̃1

(
W̃1 + W̃2

)−1
W̃2 = 2(W̃−1

1 + W̃−1
2 )−1. (4.20)

In the following, we use the more general definition formulated in (4.18) as it is well-

defined for any full-rank W ∈ Md1×d2 and allows handling the case of non-square

matrices, i.e., matrices W with d1 6=d2, where either (WW ∗)
1
2 or (W ∗W )

1
2 has to be

singular. Additionally, by involving the Moore-Penrose pseudo inverse W̃+
1 and W̃+

2 of

both matrices W̃1 and W̃2, it is possible to reformulate (4.18) as follows

W̃ (W ) = 2W̃1

(
W̃1 + W̃2

)−1
W̃2 = 2(W̃+

1 + W̃+
2 )−1.

As a next step, we interpret Algorithm 4 as an alternating minimization of the auxiliary

functional JHM(X, ε,W ) with respect to its three arguments X, ε and W .

In order to do so, we need to justify the update formula (4.17) for the weight matrix
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W̃ (n+1) as the evaluation result of the expression W̃ (n+1) = W̃
(
W (n+1)

)
of W̃ from

Definition 4.4 at the unique minimizer

W (n+1) = arg min
W∈Md1×d2

JHM(X(n+1), ε(n+1),W ). (4.21)

Furthermore, we need to show that the formula (4.15) can be interpreted as

X(n+1) = arg min
X∈Md1×d2

Φ(X)=Y

‖Xvec‖2
`2(W̃ (W (n)))

= arg min
X∈Md1×d2

Φ(X)=Y

JHM(X, ε(n),W (n)). (4.22)

In the following subsections we will verify these statements.

Remark 4.5. It is important to realize that ‖Xvec‖2
`2(W̃ (W ))

6= ‖X‖2
F ((W ∗W )1/2)

6=
‖X∗‖2

F ((WW ∗)1/2)
. While the weighted norm on the left hand side involves a symmetrized

weight acting in both the column and the row space, the norms on the right hand side

only use one-sided reweighting in the column or row space respectively.

To close this subsection we introduce the ε-perturbed Schatten-p-norm of a matrix

X ∈Md1×d2 as

fε(X) =
d∑
i=1

(si(X)2 + ε2)
p
2 . (4.23)

4.3.1 Optimization of the auxiliary functional with respect to W

Let us fix the matrix X ∈Md1×d2 with the corresponding singular value decomposition

X =
∑d

i=1 siuiv
∗
i , where ui ∈ Rd1 vi ∈ Rd2 are the left and right singular vectors

respectively and si = si(X) the singular values for i ∈ [d].

In this subsection, we aim at the justification of formula (4.17) via the building blocks

that are used to construct the matrix W̃ (n+1). More precisely, we consider the mini-

mization problem

arg min
W∈Md1×d2

JHM(X, ε,W ) (4.24)

for ε > 0.

Lemma 4.6. The unique minimizer of (4.24) is given by

Wopt =
d∑
i=1

(si(X)2 + ε2)
p−2
2 uiv

∗
i .
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Furthermore, the value of JHM at the minimizer Wopt is

JHM(X, ε,Wopt) =
d∑
i=1

(si(X)2 + ε2)
p
2 = fε(X) (4.25)

for p > 0.

Proof. As a first step we introduce the function

fX,ε(W ) = JHM(X, ε,W )

=


p
2
‖Xvec‖2

`2(W̃ (W ))
+ ε2p

2

d∑
i=1

σi(W ) + 2−p
2

d∑
i=1

σi(W )
p

(p−2) if rank(W ) = d,

+∞ if rank(W ) < d,

for X ∈ Md1×d2 , ε > 0 fixed and with W ∈ Md1×d2 as its only argument. Please

note that the set of minimizers of the function fX,ε(W ) does not contain an in-

stance W with rank smaller than d as at such points fX,ε(W ) takes an infinite value.

Consequently, we can limit our search for minimizers on the set of rank-d matrices

Ω = {Z ∈Md1×d2|rank(Z) = d}. We point out that the set Ω is an open set and the

following properties of the function fX,ε(W ) hold true

(a) fX,ε(W ) is lower semicontinuous, which means that any sequence (W k)k∈N with

W k k→∞−→ W fulfills lim inf
k→∞

fpX,ε(W
k) ≥ fX,ε(W ),

(b) fX,ε(W ) ≥ α for all W ∈Md1×d2 for some constant α,

(c) fX,ε(W ) is coercive, i.e., for any sequence (W k)k∈N with ‖W k‖F k→∞−→ ∞, we have

fpX,ε(W
k)

k→∞−→ ∞.

We verify the statements above: The function fX,ε(W )|Ω is a concatenation of an indi-

cator function of an open set, which is lower-semicontinuous and a sum of continuous

functions on Ω and hence property (a) is true. Obviously property (b) is true for the

parameter choice α = 0.

As a justification for (c), we point out that fX,ε(W ) > ε2p
2

d∑
i=1

σi(W ) = ε2p
2
‖W‖S1 ≥

ε2p
2
‖W‖F implies coercivity as directly following from its definition. We can con-

clude from (a) and (c), that the level sets as introduced in (2.2) `fX,ε(W ),Ω(c) =

{W ∈Md1×d2|fX,ε(W ) ≤ c} are closed and bounded and, hence, compact.

Via the direct method of calculus of variations as stated in Theorem 2.5, we derive from

the validity of the properties (a) - (c) that fX,ε(W ) has at least one global minimizer,
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which is contained in the set of critical points of fX,ε(W ) [34, Theorem 1].

As a next step, we want to find a characterization of the set of critical points of fX,ε(W ),

by explicitly calculating its derivative with respect to W and equating the result with

zero.

Let us without loss of generality consider the case d = d1 = d2 and define the set

Ω = {W ∈Md×d s.t. rank(W ) = d} .

We already mentioned in (4.20), we can rewrite the harmonic mean matrix W̃ (W ) in

the form

W̃ (W ) = 2W̃1

(
W̃1 + W̃2

)−1
W̃2 = 2(W̃−1

1 + W̃−1
2 )−1

for W ∈ Ω with the definitions W̃1 := Id ⊗ (WW ∗)
1
2 and W̃2 = (W ∗W )

1
2 ⊗ Id. For

W ∈ Ω, we reformulate the auxiliary functional such that

fX,ε(W ) = JHM(X, ε,W ) =
p

2
‖Xvec‖2

`2(W̃ (W ))
+
ε2p

2

d∑
i=1

σi(W ) +
2− p

2

d∑
i=1

σi(W )
p

(p−2)

=
p

2
‖Xvec‖2

`2(W̃ (W ))
+
ε2p

2
‖(W ∗W )1/2‖2

F +
2− p

2
‖(W ∗W )

p
2(p−2)‖2

F .

Now we aim at the identification of the set of critical points of fX,ε(W ) located in Ω

and compute its derivative with respect to W using the derivative rules (7), (12), (13),

(15), (16), (18), (20) in Chapter 8.2 and Theorem 3 in Chapter 8.4 of [101]. Using the

notation of [101], we calculate

∂fX,ε(W )

∂W
=− p

2
tr

(
X∗vecW̃

∂W̃−1

∂W
W̃Xvec

)

+
pε2

4

(
tr
(
W (W ∗W )−

1
2∂W ∗

)
+ tr((W ∗W )−

1
2W ∗∂W )

)
− p

4

(
tr
(
W (W ∗W )

4−p
2(p−2)∂W ∗

)
+ tr((W ∗W )

4−p
2(p−2)W ∗∂W )

)
where

∂W̃−1

∂W
=

1

2

∂
[
(WW ∗)−

1
2 ⊕ (W ∗W )−

1
2

]
∂W

= −1

4

[(
(W ∗W )−

3
2W ∗∂W + ∂W ∗W (W ∗W )−

3
2

)
⊗ Id1

]
− 1

4

[
Id2 ⊗

(
∂W (WW ∗)−

3
2W ∗ + (WW ∗)−

3
2W∂W ∗

)]
.

(4.26)
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Reformulating the first term as follows using the cyclicity of the trace, gives

−p
2

tr

(
X∗vecW̃

∂W̃−1

∂W
W̃Xvec

)
=
p

8

[
tr
(

(W̃Xvec)
∗
mat(W̃Xvec)mat(W

∗W )−
3
2W ∗∂W

)
+ tr

(
W (W ∗W )−

3
2 (W̃Xvec)

∗
mat(W̃Xvec)mat∂W

∗
)

+tr
(
W ∗(WW ∗)−

3
2 (W̃Xvec)mat(W̃Xvec)

∗
mat∂W

)
+tr

(
(W̃Xvec)mat(W̃Xvec)

∗
mat(WW ∗)−

3
2W∂W ∗

)]
.

Summarizing the calculations above, we obtain

∂fX,ε(W )

∂W
=
p

8

[
tr
(

(W̃Xvec)
∗
mat(W̃Xvec)mat(W

∗W )−
3
2W ∗∂W

)
+ tr

(
W (W ∗W )−

3
2 (W̃Xvec)

∗
mat(W̃Xvec)mat∂W

∗
)

+tr
(
W ∗(WW ∗)−

3
2 (W̃Xvec)mat(W̃Xvec)

∗
mat∂W

)
+tr

(
(W̃Xvec)mat(W̃Xvec)

∗
mat(WW ∗)−

3
2W∂W ∗

)]
+
pε2

4

(
tr
(
W (W ∗W )−

1
2∂W ∗

)
+ tr((W ∗W )−

1
2W ∗∂W )

)
− p

4

(
tr
(
W (W ∗W )

4−p
2(p−2)∂W ∗

)
+ tr((W ∗W )

4−p
2(p−2)W ∗∂W )

)
.

In order to find the critical points of fX,ε(W ), the terms above are rearranged, and we

equate the derivative with zero, which yields

∂fX,ε(W )

∂W
=
p

8
tr
([

(W̃Xvec)
∗
mat(W̃Xvec)mat(W

∗W )−
3
2W ∗

+W ∗(WW ∗)−
3
2 (W̃Xvec)mat(W̃Xvec)

∗
mat

+2ε2(W ∗W )−
1
2W ∗ − 2(W ∗W )

4−p
2(p−2)W ∗

]
∂W

)
p

8
tr
([
W (W ∗W )−

3
2 (W̃Xvec)

∗
mat(W̃Xvec)mat

+(W̃Xvec)mat(W̃Xvec)
∗
mat(WW ∗)−

3
2W

+2ε2W (W ∗W )−
1
2 − 2W (W ∗W )

4−p
2(p−2)

]
∂W ∗

)
:=

p

8
tr (A∂W ) +

p

8
tr (A∗∂W ∗)

=
p

8
tr ((A⊕ A)∂W )

= 0,
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where

A =
[
(W̃Xvec)

∗
mat(W̃Xvec)mat(W

∗W )−
3
2W ∗ +W ∗(WW ∗)−

3
2 (W̃Xvec)mat(W̃Xvec)

∗
mat

+2ε2(W ∗W )−
1
2W ∗ − 2(W ∗W )

4−p
2(p−2)W ∗

]
.

(4.27)

As a next step, we need to find W such that A⊕A = 0. This has the implication that

all eigenvalues of A⊕A = A⊗Id+Id⊗A have to be zero. We note at this point that the

eigenvalues of the Kronecker sum matrix of two matrices A1 and A2 with eigenvalues λs

and µt with s, t ∈ [d] correspond to the sum of the eigenvalues λs + µt. As we consider

the case A = A1 = A2, it follows that all eigenvalues of A itself have to be zero, which

is only possible if A is identical to the zero matrix.

Let W = UΣV ∗ ∈ Md×d with U ∈ Ud, V ∈ Ud,Σ ∈ Md×d, where Σ = diag(σ) is a

diagonal matrix with ascending entries. Define the matrix H = Hi,j = 2
σ−1
i +σ−1

j

for

i = 1, . . . , d, j = 1, . . . , d, which corresponds to the result of reshaping the diagonal of

the d2×d2-matrix 2(Σ⊕Σ) into a d×d-matrix. Note that we can express (W̃Xvec)mat =

U
(
H ◦ (U∗XV )

)
V ∗ using (4.8) and denote B := H ◦ (U∗XV ).

Next we plug the decomposition W = UΣV ∗ into the equation (4.27) and calculate

A = 0⇔ (UBV ∗)∗(UBV ∗)(V Σ2V ∗)−3/2(UΣV ∗)∗

+ (UΣV ∗)∗(UΣ2U∗)∗)−3/2(UBV ∗)(UBV ∗)∗

+ 2ε2(V Σ2V ∗)−1/2(UΣV ∗)∗ − 2(V Σ2V ∗)
4−p

2(p−2) (UΣV ∗)∗ = 0

⇔ V B∗BΣ−2U∗ + V Σ−2BB∗U∗ + 2ε2V IdU
∗ − 2V Σ

2
p−2U∗ = 0

⇔ B∗BΣ−2 + Σ−2BB∗ + 2ε2Id − 2Σ
2
p−2 = 0.

(4.28)

Noting that 2ε2Id−2Σ
2
p−2 is diagonal, it follows that also B∗BΣ−2+Σ−2BB∗ is diagonal.

Moreover, observe that also the sum of matrices B∗B + Σ−2BB∗Σ2 is diagonal matrix

as well, with a symmetric first summand B∗B. As the sum or difference of symmetric

matrices is again symmetric, it follows that also the second summand Σ−2BB∗Σ2 is

symmetric, i.e., Σ−2BB∗Σ2 = (Σ−2BB∗Σ2)∗ = Σ2BB∗Σ−2. This implies that it holds

that BB∗Σ4 = Σ4BB∗ and, as a consequence, Σ4 and BB∗ commute.

This is only the case if either Σ is a multiple of the identity or if the matrix BB∗ is

diagonal. Assuming the first case, we conclude from (4.28) that also BB∗ and B∗B are

a multiple of the identity. Hence, the first case, where Σ is assumed to be a multiple

of the identity, is only a special case of the second possible scenario, where BB∗ is a

diagonal matrix. Therefore, it is sufficient to limit further considerations to the more

– 126 –



general second case. (Considerations for B∗B can be carried out analogously.)

Diagonality of BB∗ only occurs if B is either orthonormal or diagonal. The first pos-

sibility, orthonormality, leads to contradictions with the equations in (4.28). Thus the

matrix B = H ◦ (U∗XV ) has to be diagonal.

Let now be X = Ū S̄V̄ ∗ the singular value decomposition of X. From the fact that H

has no zero entries due to the full rank of W , we conclude the diagonality of U∗Ū S̄V̄ ∗V .

Consequently, U and V have to be chosen such that P = [U∗Ū ]d×d and P ∗ = [V̄ ∗V ]d×d

for a permutation matrix P ∈ Ud. We denote the reshuffled indexing corresponding to

the permutation P by p(i) ∈ [d] for i ∈ [d]. Remembering that Hii = σi for i ∈ [d], we

get

(H◦(PS̄P ∗))∗(H ◦ (PS̄P ∗))Σ−2 + Σ−2(H ◦ (PS̄P ∗))(H ◦ (PS̄P ∗))∗ + 2ε2Id − 2Σ
2
p−2 = 0

⇔ 2s̄2
p(i) + 2ε2 = 2σ

2
p−2

i for all i ∈ [d]

⇔ σi = (s̄2
p(i) + ε2)

p−2
2 for all i ∈ [d].

Using the assumption that the diagonal of Σ has ascending entries and the diagonal

of S̄ has descending entries, we can conclude that the permutation matrix P coincides

with the identity matrix. We infer from P = Id, that U = Ū and V = V̄ and hence

also Σ = (S̄2 + ε2Id)
p−2
2 .

We can now summarize our detailed calculations above with the statement that

Wopt = ŪΣV̄ ∗ = Ū(S̄2 + ε2Id)
p−2
2 V̄ ∗

is the only critical point of fpX,ε on the domain Ω.

We point out that the deduced results extend for the case d1 6= d2, where the defini-

tion of W̃ (W ) is modified by the introduction of the Moore-Penrose pseudo inverse of

(WW ∗)1/2

W̃ (W ) = 2W̃1

(
W̃1 + W̃2

)−1
W̃2 = 2(W̃+

1 + W̃−1
2 )−1.

In Theorem 5 in Chapter 8.4 of [101], one can find the corresponding derivative rule

for the calculation in (4.26).

We close this part of the proof with stating that the only critical point and consequently

the unique global minimizer of fpX,ε(W ) is

Wopt =
d∑
i=1

(s2
i + ε2)

p−2
2 uiv

∗
i =:

d∑
i=1

σiuiv
∗
i .
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In a next step, we define the matrices WL
opt :=

∑d
i=1 σiuiu

∗
i and WR

opt :=
∑d

i=1 σiviv
∗
i ,

and note that

W̃ (Wopt) = 2(WR−1

opt ⊕WL−1

opt )−1

with Definition 4.4.

For the verification of the second part of the theorem, the optimal solution Wopt is

plugged into the functional JHM and we calculate using (4.7)

JHM(X, ε,Wopt) =
p

2
‖Xvec‖2

`2(W̃ (Wopt))
+
ε2p

2

d∑
i=1

σi(Wopt) +
2− p

2

d∑
i=1

σi(Wopt)
p
p−2

=
p

2

d∑
i=1

[
s2
i (u
∗
i ⊗ v∗i )2

(
d2∑
k=1

d1∑
j=1

uku
∗
k ⊗ vjv∗j

σ−1
k + σ−1

j

)
(ui ⊗ vi)

]
ii

+
ε2p

2

d∑
i=1

σi +
2− p

2

d∑
i=1

σ
p
p−2

i

=
p

2

d∑
i=1

[
2s2

i

(
d2∑
k=1

d1∑
j=1

u∗iuku
∗
kui ⊗ v∗i vjv∗j vi
σ−1
k + σ−1

j

)]
ii

+
ε2p

2

d∑
i=1

σi +
2− p

2

d∑
i=1

σ
p
p−2

i

=
p

2

d∑
i=1

(s2
i + ε2)σi +

2− p
2

d∑
i=1

σ
p
p−2

i

=
p

2

d∑
i=1

(s2
i + ε2)(s2

i + ε2)
p−2
2 +

2− p
2

d∑
i=1

(s2
i + ε2)

p
2

=
d∑
i=1

(s2
i + ε2)

p
2 .

4.3.2 Optimization of the auxiliary functional with respect to X

Now we continue with the proof of the fact that the definition rule (4.15) of X(n+1) as

used the first step of Algorithm 4 can be interpreted as the minimization of the auxiliary

functional JHM with respect to the variable X. Moreover, we provide arguments that

this minimization step can be executed via the solution of a weighted least squares

problem with weight matrix W̃ (n).

Lemma 4.7. Let 0 < p ≤ 1. Given a full-rank matrix W ∈ Md1×d2, let W̃ (W ) :=

2([(WW ∗)
1
2 ]+ ⊕ [(W ∗W )

1
2 ]+)−1 ∈ Hd1d2×d1d2 be the matrix from Definition 4.4 and
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W−1 : Md1×d2 →Md1×d2 the linear operator of its inverse

W−1(Z) :=
1

2

[
[(WW ∗)

1
2 ]+Z + Z[(W ∗W )

1
2 ]+
]
.

Then the matrix

Xopt =
(
W−1 ◦ Φ∗ ◦ (Φ ◦W−1 ◦ Φ∗)−1

)(
Y
)
∈Md1×d2

is the unique minimizer of the optimization problems

arg min
Φ(X)=Y

JHM(X, ε,W ) = arg min
Φ(X)=Y

‖Xvec‖2
`2(W̃ )

. (4.29)

Moreover, a matrix Xopt ∈ Md1×d2 is a minimizer of the minimization problem (4.29)

if and only if it fulfills the property

〈W̃ (W )(Xopt)vec, Hvec〉`2 = 0 for all H ∈ N (Φ) and Φ(Xopt) = Y. (4.30)

Proof. We start with noting that the equality of the optimization problems (4.29)

follows from the fact that only the first summand of the functional JHM(X, ε,W )

depends on X.

Next we see that W̃ (W ) = 2([(W ∗W )
1
2 ]+⊕ [(WW ∗)

1
2 ]+)−1 is positive definite: Let W =∑d

i=1 σiuiv
∗
i , where ui, vi for i ∈ [d] are the left and right singular vector respectively

and σi for i ∈ [d] are the singular values of W . Since W ∗W =
∑d

i=1 σ
2
i viv

∗
i � 0,

also for the generalized inverse root holds that [(WW ∗)
1
2 ]+ � 0 and for WW ∗ =∑d

i=1 σ
2
i uiu

∗
i � 0, it follows that [(WW ∗)

1
2 ]+ � 0. As already mentioned above, at

least one of the matrices (WW ∗)
1
2 and (W ∗W )

1
2 is positive definite and consequently,

1
2
[(W ∗W )

1
2 ]+⊕ [(WW ∗)

1
2 ]+ = 1

2
[(W ∗W )

1
2 ]+⊗ Id1 + Id2 ⊗ [(WW ∗)

1
2 ]+ � 0. We conclude

that also for its inverse holds W̃ (W ) � 0.

Using the fact that W̃ (W ) � 0, we can show analogously to the standard equivalence

of [54, Proposition A.23] that a matrix sX ∈Md1×d2 is a minimizer of ‖Xvec‖2
`2(W̃ (W ))

=

〈W̃ (W )Xvec, Xvec〉`2 under the linear constraint Φ(X) = Y if and only if

〈W̃ (W ) sXvec, ψvec〉`2 = 0 for all ψ ∈ N (Φ) and Φ( sX) = Y.

Moreover, the latter condition holds if and only if Xopt =
(
W−1 ◦ Φ∗ ◦ (Φ ◦ W−1 ◦

Φ∗)−1
)(
Y
)
∈ Md1×d2 . Indeed, the property (4.30) is equivalent to the existence of

vector λ ∈ Rm, for which holds Φ∗(λ)vec = W̃ (W )(Xopt)vec. Using the definition of

W̃ (W )−1, we observe that W̃ (W )−1 = 1
2
([(WW ∗)

1
2 ]+ ⊕ [(W ∗W )

1
2 ]+) and we conclude
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that

Xopt =
[
W̃ (W )−1(Φ∗(λ)vec)

]
mat

=
1

2

(
[(WW ∗)1/2]+Φ∗(λ) + Φ∗(λ)[(W ∗W )1/2]+

)
= (W−1 ◦ Φ∗)(λ).

(4.31)

As Y = Φ(Xopt) = (Φ◦W−1 ◦Φ∗)(λ) in this case, we compute λ = (Φ◦W−1 ◦Φ∗)−1(Y )

and we yield from (4.31) that Xopt = (W−1 ◦Φ∗ ◦ (Φ ◦W−1 ◦Φ∗)−1)(Y ). On the other

hand, any matrix defined as Xopt = (W−1 ◦Φ∗ ◦ (Φ ◦W−1 ◦Φ∗)−1)(Y ) fulfills (4.30) by

construction. Hence, we can conclude this proof by pointing out that Xopt fulfills the

condition (4.30).

4.3.3 Basic properties of the algorithm

In the course of this subsection, we have a closer look at Algorithm 4 and examine

some of its properties, that will be useful for developing the proof of convergence and

to determine the rate of convergence later on. In particular, we show the boundedness

of the sequence of iterates (X(n))n∈N and the fact that as n→∞ two successive iterates

get arbitrarily close.

We start with a collection of properties of the functional JHM that appear in a similar

fashion already in the existing IRLS-literature.

Lemma 4.8. Let (X(n), ε(n))n∈N be the sequence of iterates and smoothing parameters

of Algorithm 4. Let X(n) =
∑d

i=1 σ
(n)
i u

(n)
i v

(n)∗
i be the SVD of the n-th iterate X(n). Let

(W (n))n∈N be a corresponding sequence such that

W (n) =
d∑
i=1

(σ
(n)2
i + ε(n)2)

p−2
2 u

(n)
i v

(n)∗
i

for n ∈ N. Then the following properties hold:

(a) JHM(X(n), ε(n),W (n)) ≥ JHM(X(n+1), ε(n+1),W (n+1)) for all n ≥ 1,

(b) ‖X(n)‖pSp ≤ JHM(X(1), ε(0),W (0)) =: Jp,0 for all n ≥ 1,

(c) The iterates X(n), X(n+1) come arbitrarily close as n → ∞, i.e., lim
n→∞

‖(X(n) −
X(n+1))vec‖2

`2
= 0.
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Proof. (a) Using the minimization property that defines X(n+1) in (4.22) together with

the inequality ε(n+1) ≤ ε(n), we obtain

JHM(X(n), ε(n),W (n)) ≥ JHM(X(n+1), ε(n),W (n)) ≥ JHM(X(n+1), ε(n+1),W (n))

Combining this with the minimization property that defines W (n+1) in (4.21) and the

results in Lemma 4.6, we have

JHM(X(n+1), ε(n+1),W (n)) ≥ JHM(X(n+1), ε(n+1),W (n+1)),

which finishes the proof of (a).

(b) For all n ∈ N, it holds that

‖X(n)‖pSp ≤ gp
ε(n)

(X(n)) = JHM(X(n), ε(n),W (n)) ≤ JHM(X(1), ε(0),W (0)),

where we used Lemma 4.6 as well as the monotonicity property shown in (a).

(c) With property (a) and Definition 4.4 we obtain for each n ∈ N

2

p

[
JHM(X(n), ε(n),W (n))− JHM(X(n+1), ε(n+1),W (n+1))

]
≥ 2

p

[
JHM(X(n), ε(n),W (n))− JHM(X(n+1), ε(n),W (n)))

]
= ‖X(n)

vec‖2
`2(W̃ (W (n))) − ‖X

(n+1)
vec ‖2

`2(W̃ (W (n)))

= 〈(X(n) +X(n+1))vec, (X
(n) −X(n+1))vec〉`2(W̃ (n)),

with the notation W̃ (n) := W̃ (W (n)) in the last equality. Using the facts that X(n+1) is

the minimizer of ‖Xvec‖2
`2(W̃ (n))

under the linear constraint and that X(n) − X(n+1) ∈
N (Φ), we conclude together with (4.30) that

〈W̃ (n)X(n+1)
vec , (X(n) −X(n+1))vec〉 = 0.

Therefore, we get

〈(X(n) +X(n+1))vec, (X
(n) −X(n+1))vec〉`2(W̃ (n))

= 〈(X(n) −X(n+1))vec, (X
(n) −X(n+1))vec〉`2(W̃ (n))

= ‖(X(n) −X(n+1))vec‖2
`2(W̃ (n))

.

As a next step, we want to estimate σd1d2(W̃
(n)) to derive a bound on the difference
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of iterates independent of the involved weighting matrix in the expressions above. We

remind the reader that 1 = σd1d2(Z)σ1(Z−1) for any invertible matrix Z ∈ Md1d2×d1d2

and, hence, it remains to compute σ1

(
(W̃ (n))−1

)
to gain sufficient information on

σd1d2
(
W̃ (n)

)
.

As discussed in [8, Proposition 7.2.3], the spectrum of a Kronecker sum matrix A⊕B
consists of the pairwise sum of the spectra of the individual matrices A and B. We use

this to compute,

σp1
(
(W̃ (n))−1) =

[
1

2

(
(σ

(n)2
1 + ε(n)2)

2−p
2 + (σ

(n)2
1 + ε(n)2)

2−p
2

)]p
=
(
σ

(n)2
1 + ε(n)2

) p
2

(2−p)

≤
(
fp
ε(n)

(X(n))
)2−p

=
(
JHM(X(n), ε(n),W (n))

)2−p ≤
(
JHM(X(1), ε(0),W (0))

)2−p
,

employing Lemma 4.6 and the monotonicity of JHM .

Therefore, it follows that

σmin(W̃ (n)) = σd1d2(W̃
(n)) ≥

(
JHM(X(1), ε(0),W (0))

)1− 2
p = J 1− 2

p

p,0

and we combine this result with the previous calculations yielding

2

p

[
JHM(X(n), ε(n),W (n)) −JHM(X(n+1), ε(n+1),W (n+1))

]
=

2

p
‖(X(n) −X(n+1))vec‖2

`2(W̃ (n))

≥ 2

p
σmin(W̃ (n))‖(X(n) −X(n+1))vec‖2

`2
≥ 2

p
J 1− 2

p

p,0 ‖(X(n) −X(n+1))vec‖2
`2

= Cp‖(X(n) −X(n+1))vec‖2
`2

with the constant Cp := 2
p
J 1− 2

p

p,0 > 0. Using the monotonicity as in (a) and the bound-

edness of the sequence
(
JHM(X(n), ε(n),W (n))

)
n∈N, we infer that

lim
n→∞

[
JHM(X(n), ε(n),W (n))− JHM(X(n+1), ε(n+1),W (n+1))

]
= 0,

and hence also

lim
n→∞

‖(X(n) −X(n+1))vec‖2
`2

= 0.

Now we note that with the assumption X(n) → sX and ε(n) → ε for n→∞ with limit

point ( sX, ε) ∈Md1×d2 × R≥0, one can deduce that

JHM(X(n), ε(n),W (n))→ fε( sX)

for n→∞ by equation (4.25).
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Given ε > 0, a measurement vector Y ∈ Rm and the linear map Φ we consider the

optimization problem

min
Φ(X)=Y

fε(X) (4.32)

with fε(X) =
∑d

i=1(σi(X)2 + ε2)
p
2 and σi(X) being the i-th singular value of X, cf.

(4.25). In the case that fε(X) is non-convex, i.e., for p < 1, one might practically only

be capable of reaching critical points of the function.

Lemma 4.9. Let X ∈ Md1×d2 be a matrix with the SVD such that X =
∑d

i=1 σiuiv
∗
i ,

let ε > 0. If we define

W̃ (X, ε) = 2

[( d∑
i=1

(σ2
i + ε2)

2−p
2 uiu

∗
i

)
⊕
( d∑
i=1

(σ2
i + ε2)

2−p
2 viv

∗
i

)]−1

∈ Hd1d2×d1d2 ,

then W̃ (X(n), ε(n)) = W̃ (n), with W̃ (n) defined as in Algorithm 4, cf. (4.12).

Furthermore, X is a critical point of the optimization problem (4.32) if and only if

〈W̃ (X, ε)Xvec, Hvec〉`2 = 0 for all H ∈ N (Φ) and Φ(X) = Y. (4.33)

In the case that fε is convex, i.e., if p = 1, (4.33) implies that X is the unique minimizer

of (4.32).

Proof. The first statement W̃ (X(n), ε(n)) = W̃ (n) follows straightforward from the def-

inition of W̃ (X, ε) and (4.12).

Now we aim to show the necessity of (4.33). Let X ∈Md1×d2 be a critical point of (4.32)

and without loss of generality we assume d1 ≤ d2. We see from an easy calcualtion that

in this case fε(X) = tr
[
(XX∗ + ε2Id1)

p/2
]
. We use the matrix derivative rules of [101,

(7),(15),(18),(20) of Chapter 8.2] to derive that

∇gpε (X) = p(XX∗ + ε2Id1)
p−2
2 X = p

d∑
i=1

(σ2
i + ε2)

p−2
2 σiuiv

∗
i ,

where the singular value decomposition X =
∑d

i=1 σiuiv
∗
i is used in the last equality.

We employ the Kronecker sum inversion formula (4.7), to obtain

[
W̃ (X, ε)Xvec

]
mat

=

d1∑
i=1

d2∑
j=1

2σk

(σ2
i + ε2)

2−p
2 + (σ2

j + ε2)
2−p
2

d∑
k=1

uiu
∗
iukv

∗
kvjv

∗
j

=
d∑
i=1

(σ2
i + ε2)

p−2
2 σiuiv

∗
i
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and thus ∇fε(X) = p
[
W̃ (X, ε)Xvec

]
mat

.

Consider an arbitrary H ∈ N (Φ) and the function hε(t) = fε(X + tH)− fε(X). We see

that (hε)
′(0) = 〈∇fε(X), H〉F and, hence, if X is a critical point of (4.32), then 0 is a

critical point of hε as well, i.e., (hε)
′(0) = 0. Consequently,

0 = (hε)
′(0) = 〈∇fε(X), H〉F = p

〈
W̃ (X, ε)Xvec, Hvec

〉
`2
,

which implies (4.33).

To show the sufficiency of (4.33), let X ∈Md1×d2 such that Φ(X) = Y and also

〈W̃ (X, ε)Xvec, Hvec〉 = 0

for all H ∈ N (Φ). Using the calculation results above, it follows

0 = 〈W̃ (X, ε)Xvec, Hvec〉 =
1

p
〈∇gpε (X), H〉F .

This means that the gradient ∇fε(X) is perpendicular to the null space N (Φ) of Φ

and as a consequence

∇fε(X) ∈ Ran(Φ∗) and Φ(X) = Y.

This corresponds exactly to first order optimality conditions of (4.32) and hence we

can deduce that X is a critical point of fε under the linear constraint.

In the case p = 1, fε is a strictly convex function as ε > 0 and therefore, the problem

(4.32) has a unique minimizer. If we assume that X ∈ Md1×d2 fulfills (4.33), this

implies that this minimizer just conincides with X, as for any X ′ ∈ Md1×d2 such that

Φ(X ′) = Y , it follows that X −X ′ ∈ N (Φ) and thus by convexity of fε,

fε(X
′) ≥ fε(X) + 〈∇fε(X), X ′−X〉F = fε(X) + 〈W̃ (X, ε)Xvec, (X

′−X)vec〉`2 = fε(X).

4.3.4 Strong Schatten-p-null space property

For the analysis of HM-IRLS algorithm, we define the strong Schatten-p null space

property which is closely related to the version we introduced already in Section 2.3.3

[51, 54, 117].

– 134 –



Definition 4.10 (Strong Schatten-p null space property). Let 0 < p ≤ 1. We say that

a linear map Φ : Md1×d2 → Rm matrix fulfills the strong Schatten-p null space property

(Schatten-p NSP) of order r with constant 0 < γr ≤ 1 if

( r∑
i=1

σ2
i (Z)

)p/2
<

γr

r1− p
2

( d∑
i=r+1

σpi (Z)

)
(4.34)

for all Z ∈ N (Φ) \ {0}.

We note that this version of the NSP implies the one in Definition 2.28 with con-

stant γr = 1, which we call the weak Schatten-p-NSP, and constitutes a necessary and

sufficient condition for solutions to the problem (4.2) to be rank-r matrices.

Theorem 4.11 ([52]). Let Φ : Md1×d2 → Rm be a linear map, let 0 < p ≤ 1 and r ∈ N.

Then every matrix X0 ∈Md1×d2 with rank(X0) ≤ r and Φ(X0) = Y ∈ Rm can be exactly

recovered by Schatten-p minimization (4.5) if and only if Φ fulfills Definition 2.28 with

constant γr = 1.

Remark 4.12. The sufficiency of the weak Schatten-p NSP in Theorem 4.11 was already

shown in [117]. However, to show the necessity as stated in the theorem, one also needs

the recent generalization of Mirsky’s singular value inequalities to concave functions as

appeared in[3, 52].

We note that the (weak) Schatten-p NSP of Theorem 4.11 becomes a stronger require-

ment for growing p, which means that the Schatten-p property implies the Schatten-p′

property if 0 < p′ ≤ p ≤ 1. As already presented in Theorem 2.31 for the weak NSP,

also the strong Schatten-p null space property for any 0 < p ≤ 1 is implied by the rank

restricted isometry property (rank-RIP) for a sufficiently small rank restricted isometry

constant δr. This classical tool for the analysis of low-rank matrix recovery algorithms

[21, 126] was already introduced in Definition 2.29. In the proof of [30, Theorem 4.1] it

is shown that a restricted isometry constant of order 2r fulfilling δ2r <
2√
2+3
≈ 0.4531

indeed implies the strong Schatten-p NSP of order r with a constant γr < 1 for any

0 < p ≤ 1. To be more precise, one obtains that a constant δ2r <
2√
2+3

implies that the

validity of the strong Schatten-p NSP (5.17) of order r with γr = (
√

2+1)p

2p
δp2r

(1−δ2r)p .

As already discussed in Section 2.3.3, in particular Theorem 2.30, the rank-RIP is

fulfilled for a large number of random measurement models, e.g., for Gaussian, in the

optimal measurement regime with overwhelming probability [21].

A useful tool that we will use for the convergence analysis of Algorithm 4, is the

following version of the reverse triangle inequalities similar to Lemma 2.32 (ii), which

is a consequence the strong Schatten-p NSP:
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Lemma 4.13. Let 0 < p ≤ 1. Assume that the linear map Φ : Md1×d2 → Rm fulfills the

strong Schatten-p-NSP (5.17) of order r with constant γr ∈ (0, 1). Recall the definition

of the best rank-r Schatten-p approximation error

βr(Z)Sp := inf
{
‖Z − Z̃‖pSp , Z̃ ∈Md1×d2 has rank r

}
=

d∑
i=r+1

σi(Z)p (4.35)

of a matrix Z ∈Md1×d2.

Let Z,Z ′ ∈Md1×d2 such that Φ(Z − Z ′) = 0. Then

‖Z ′ − Z‖pF ≤
2pγ

1−p/2
r

r1−p/2
1

1− γr

(
‖Z ′‖pSp − ‖Z‖

p
Sp

+ 2βr(Z)Sp

)
. (4.36)

Proof. The proof can be carried out by the modification of the proof of the corre-

sponding result for `p-minimization [55, Theorem 13] by involving the generalization

of Mirksy’s singular value inequality to concave functions [3, 52]. Moreover, the proof

of the statement [81, Threorem 12] can serve as the basis to show (4.36).

Remark 4.14. It is important to note that, if m < d1d2, null space property-type

assumptions as (5.17) or the weak Schatten-p NSP are unfortunately not valid for the

relevant case of matrix completion measurements [22], where Φ(X) is given as in (4.3).

4.3.5 Convergence results

Having provided some basic properties of HM-IRLS, we present now the convergence

guarantees for the algorithm to at least critical points of a smoothed Schatten-p func-

tional fε as defined in (4.25) without placing any additional assumptions. Beyond that,

under the assumption of the strong Schatten-p null space property for the measurement

operator Φ, we prove the a-posteriori exact recovery statement that HM-IRLS indeed

converges to the low-rank minimizer X0 in the case that lim
n→∞

εn = 0. Additionally, we

provide a local convergence guarantee, which states that HM-IRLS recovers the low-rank

matrix X0 if we obtain an iterate X(sn) that is in a close enough neighborhood to X0.

Theorem 4.15. Let Φ : Md1×d2 → Rm be a linear operator, Y ∈ Ran(Φ) a vector

in its range. Let (X(n))n≥1 and (ε(n))n≥1 be the sequences produced by Algorithm 4 for

input parameters Φ, Y, r and 0 < p ≤ 1, let ε = limn→∞ ε
(n).

(i) If ε = 0 and if Φ fulfills the strong Schatten-p NSP (5.17) of order r with constant

0 < γr < 1, then the sequence (X(n))n≥1 converges to a matrix sX ∈Md1×d2 of rank
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at most r that is the unique minimizer of the Schatten-p minimization problem

(4.5). Moreover, there exists an absolute constant Ĉ > 0 such that for any Z with

Φ(Z) = Y and any r̃ ≤ r, it holds that

‖Z − sX‖pF ≤
Ĉ

r1−p/2βr̃(Z)Sp , (4.37)

where Ĉ = 2p+1γ
1−p/2
r

1−γr and βr̃(Z)Sp is the best rank-r̃ Schatten-p approximation

error, cf. (4.35).

(ii) If ε > 0, then each accumulation point sX of (X(n))n≥1 is a stationary point of

the ε-perturbed Schatten-p functional fε as in (4.23) under the linear constraint

Φ(X) = Y . If, additionally, p = 1, then sX is the unique global minimizer of fε.

(iii) If Φ fulfills the strong Schatten-p NSP of order 2r with constant γ2r < 1, assume

that there exists a matrix X0 ∈Md1×d2 with Φ(X0) = Y of rank r̃ ≤ r ≤ min(d1,d2)
2

,

a constant 0 < ρ < 1 and an iteration sn ∈ N such that

‖X(sn) −X0‖S∞ ≤ ρσr̃(X0)

and εsn = σr+1(Xsn).

If the condition number κ = σ1(X0)
σr̃(X0)

of X0 and ρ are sufficiently small (see (4.40)

and (4.41)), then

X(n) → X0 for n→∞.

Proof. (i) Let us first assume that there exists an iteration sn ∈ N such that ε(sn) = 0.

Define sX := X(sn), which fulfills by construction that Φ( sX) = Y and σr+1( sX) = 0, i.e.,

rank( sX) ≤ r.

In the other case, where ε(n) > 0 for all n ∈ N, there exists a subsequence (n`)l∈N of

(n)n≥n0 such that ε(n`) < ε(n`−1) for all ` ∈ N. As shown in Lemma 5.4(b), (X(n))n is

bounded and one can extract a further subsequence, which we denote again by (X(n`))l

converging to a limit sX := liml→∞X
(n`). As liml→∞ ε

(n`) = 0, we conclude as well that

liml→∞ σr+1(X(n`)) ≤ liml→∞ ε
(n`−1) = 0. Furthermore, we obtain by Weyl’s stability

estimate for the (r + 1)-th singular value [51, Theorem 7.1] that σr+1( sX) = 0. As a

consequence, also for this case, sX fulfills Φ( sX) = Y and rank( sX) ≤ r.

As a next step, we aim to show that the whole sequence (X(n))n converges to sX.

According to (4.25), we have that

JHM(X(n), ε(n),W (n)) = fε(n)(X
(n))
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for any n ∈ N. Since (X(n`))
l→∞−−−→ sX and ε(n`)

l→∞−−−→ 0, we see consequently that

JHM(X(n`), ε(n`),W (n`))
l→∞−−−→ ‖ sX‖pSp .

Using the non-increasing monotonicity from Lemma 5.3(a) it already follows that the

same is valid for the whole sequence (X(n))n≥1, i.e., JHM(X(n), ε(n),W (n))
n→∞−−−→ ‖ sX‖pSp .

By the application of the triangle inequality for the p-power of the Schatten-p quasi-

norms ‖ · ‖pSp , it follows

JHM(X(n), ε(n),W (n))− d(ε(n))p ≤ ‖X(n)‖pSp ≤ JHM(X(n), ε(n),W (n)).

Since limn→∞ d(ε(n))p = 0, we get that

‖X(n)‖pSp
n→∞−−−→ ‖ sX‖pSp .

It still remains to prove that X(n) → sX. We note that from Lemma 4.13, it follows

that

‖ sX −X(n)‖pF ≤
2pγ

1−p/2
r

r1−p/2
1

1− γr

(
‖ sX‖pSp − ‖X(n)‖pSp + 2βr+1( sX)Sp

)
and therefore, using βr+1( sX)Sp = 0, we get

‖ sX −X(n)‖pF ≤
2pγ

1−p/2
r

r1−p/2
1

1− γr

(
‖ sX‖pSp − ‖X(n)‖pSp

)
.

Now passing to the limit n→∞ gives that lim
n→∞

‖ sX−X(n)‖F = 0, and thus X(n) → sX

for n→∞.

Using the fact that sX is of rank at most r and also fulfills Φ(X) = Y , the strong

Schatten-p null space property implies via Lemma 4.13 that sX is indeed the unique

solution to (4.5) coinciding with X0.

For deriving the error bound (5.23), we observe that any matrix Z with Φ(Z) = Y

fulfills

‖Z− sX‖pF ≤
2pγ

1−p/2
r

r1−p/2
1

1− γr

(
‖ sX‖pSp − ‖Z‖

p
Sp

+ 2βr(Z)Sp

)
≤ 2p+1γ

1−p/2
r

r1−p/2
1

1− γr
βr(Z)Sp ,

(4.38)

where we used Lemma 4.13 in the first inequality and the minimization property of
sX in the second inequality. We conclude the proof of (5.23) with the observation that

βr(Z)Sp ≤ βr̃(Z)Sp if r̃ ≤ r.
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(ii) As a first step, we want to prove X(n) → Xε, n → ∞, where Xε ∈ Md1×d2 is a

critical point of fε under the linear constraint. We already made the observation that

the sequence (X(n))n≥1 is bounded and, hence, has accumulation points. Denote with

(X(n`))`≥1 any convergent subsequence of (X(n))n≥1 and with limit sX.

As the weight matrix W̃ (X, ε) as defined in Lemma 5.7 depends continuously on the

variables X and ε, we can conclude

lim
`→∞

W̃ (X(n`), ε(n`)) = W̃ ( sX, ε) =: W.

On the other hand, using Lemma 5.5(c), it also follows that X(n`+1) → sX for ` → ∞
and as a consequence we have lim

`→∞
W̃ (n`+1) = W as well. Note that from interpreting

X(n`+1) as a minimizer of the functional JHM in (4.29) and the proof of Lemma 4.7,

we can conclude that

W̃ (n`)X(n`+1) ∈ Ran(Φ∗) and Φ(X(n`+1)) = Y.

This implies the existence of λ ∈ Rm such that W̃ (n`+1)X(n`) = Φ∗(λ). Next we note

that for all H ∈ N (Φ) and all ` ∈ N holds true that,

〈W̃ (n`)X(n`+1)
vec , Hvec〉 = 〈Φ∗(λ), Hvec〉 = 〈λ,Φ(η)〉 = 0.

Consequently, 〈W sXvec, ηvec〉 = lim
`→∞
〈W̃ (n`)X

(n`+1)
vec , Hvec〉 = 0 for all H ∈ N (Φ). As

shown in Lemma 5.7, this implies that sX is a stationary point of fε and in the convex

case, i.e., if p = 1, we even showed coincidence with the unique minimizer Xε.

(iii) This statement follows from Theorem 4.16, which is proven below.

4.3.6 Locally superlinear convergence

The goal of the next subsection is to introduce our locally superlinear convergence rate

result for HM-IRLS in Theorem 4.16 under the assumption that the operator Φ fulfills

an appropriate Schatten-p null space property.

Theorem 4.16 (Locally Superlinear Convergence Rate). Assume that the linear map

Φ : Md1×d2 → Rm fulfills the strong Schatten-p NSP of order 2r with constant γ2r < 1

and that there exists a matrix X0 ∈ Md1×d2 with rank(X0) = r ≤ min(d1,d2)
2

such that

Φ(X0) = Y . Let Φ, Y, r and 0 < p ≤ 1 be the input parameters of Algorithm 4.

Moreover, let κ = σ1(X0)
σr(X0)

be the condition number of X0 and η(n) := X(n) − X0 be

the residuals of the n-th output matrix of Algorithm 4 for n ∈ N.
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Assume that there exists an iteration sn ∈ N and a constant 0 < ρ < 1 such that

‖η(sn)‖S∞ ≤ ρσr(X0) (4.39)

and ε(sn) = σr+1(X(sn)).

If, additionally, the condition number κ and ρ are small enough such that

µ‖η(sn)‖p(1−p)S∞
< 1 (4.40)

with the constant

µ := 25p(1 + γ2r)
p
(γ2r(3 + γ2r)(1 + γ2r)

(1− γ2r)

)2−p(d− r
r

)2− p
2
rp
σr(X0)p(p−1)

(1− ρ)2p
κp, (4.41)

then

‖η(n+1)‖S∞ ≤ µ1/p
(
‖η(n)‖S∞

)2−p

and

‖η(n+1)‖Sp ≤ µ1/p
(
‖η(n)‖Sp

)2−p

for all n ≥ sn.

As a first step towards the proof of Theorem 4.15, we show the following lemma.

Lemma 4.17. Let (X(n))n be the output sequence of Algorithm 4 for parameters Φ, Y, r

and 0 < p ≤ 1, and X0 ∈Md1×d2 be a matrix such that Φ(X0) = Y .

(i) Let η
(n+1)
2r be the best rank-2r approximation of η(n+1) = X(n+1) −X0. Then

‖η(n+1) − η(n+1)
2r ‖2p

Sp
≤ 22−p

( d∑
i=r+1

(
σ2
i (X

(n)) + ε(n)2
) p

2

)2−p

‖η(n+1)
vec ‖2p

`2(W̃ (n))
,

where W̃ (n) denotes the harmonic mean weight matrix from (4.12).

(ii) Assume that the linear map Φ : Rd1×d2 → Rm fulfills the strong Schatten-p NSP

of order 2r with constant γ2r < 1. Then

‖η(n+1)‖2p
S2
≤ 2p

γ2−p
2r

r2−p

( d∑
i=r+1

(
σ2
i (X

(n)) + ε(n)2
) p

2

)2−p

‖η(n+1)
vec ‖2p

`2(W̃ (n))
(4.42)
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(i) Under the same assumption as for (ii), it holds that

‖η(n+1)‖2p
Sp
≤ (1 + γ2r)

222−p
( d∑
i=r+1

(
σ2
i (X

(n)) + ε(n)2
) p

2

)2−p

‖η(n+1)
vec ‖2p

`2(W̃ (n))
.

Proof of Lemma 4.17. (i) Let the X(n) = Ũ (n)Σ(n)Ṽ (n)∗ be the (full) singular value

decomposition of X(n), i.e., Ũ (n) ∈ Ud1 and Ṽ (n) ∈ Ud2 are unitary matrices and Σ(n) =

diag(σ1(X(n)), . . . , σr(X
(n))) ∈ Md1×d2 . We define U

(n)
T ∈ Ud1×r as the matrix of the

first r columns of Ũ (n) and U
(n)
Tc
∈ Ud1×(d1−r) as the matrix of its last d1 − r columns,

so that Ũ (n) =
(
U

(n)
T U

(n)
Tc

)
, and similarly V

(n)
T and V

(n)
Tc

.

As Id1 = U
(n)
T U

(n)∗
T + U

(n)
Tc
U

(n)∗
Tc

and Id2 = V
(n)
T V

(n)∗
T + V

(n)
Tc
V

(n)∗
Tc

, we note that

U
(n)
Tc
U

(n)∗
Tc

η(n+1)V
(n)
Tc
V

(n)∗
Tc

= η(n+1) − U (n)
T U

(n)∗
T η(n+1) + U

(n)
Tc
U

(n)∗
Tc

η(n+1)V
(n)
T V

(n)∗
T ,

while U
(n)
T U

(n)∗
T η(n+1) +U

(n)
Tc
U

(n)∗
Tc

η(n+1)V
(n)
T V

(n)∗
T has a rank of at most 2r. This implies

that

‖η(n+1) − η(n+1)
2r ‖Sp ≤ ‖U (n)

Tc
U

(n)∗
Tc

η(n+1)V
(n)
Tc
V

(n)∗
Tc
‖Sp = ‖U (n)∗

Tc
η(n+1)V

(n)
Tc
‖Sp . (4.43)

Using the definitions of Ũ (n) and Ṽ (n), we write the harmonic mean weight matrices of

the n-th iteration (4.12) as

W̃ (n) = 2(Ṽ (n) ⊗ Ũ (n))
(
sΣ

(n)2−p
d1

⊕ sΣ(n)2−p
d2

)−1
(Ṽ (n) ⊗ Ũ (n))∗, (4.44)

where sΣ
(n)
d1
∈ Md1×d1 and sΣ

(n)
d2
∈ Md2×d2 are the diagonal matrices with the smoothed

singular values of X(n) from (4.13), but filled up with zeros if necessary. Using the

abbreviation

Ω := (Ṽ (n) ⊗ Ũ (n))∗W̃ (n) 1
2η(n+1)

vec ∈ Rd1d2 , (4.45)

we rewrite

η(n+1)
vec = W̃ (n)− 1

2 W̃ (n) 1
2η(n+1)

vec = 2−1/2(Ṽ (n) ⊗ Ũ (n))
(
sΣ

(n)2−p
d1

⊕ sΣ(n)2−p
d2

)1/2
Ω

= 2−1/2(Ṽ (n) ⊗ Ũ (n))
[
(Id2 ⊗ sΣ

(n) 2−p
2

d1
)DL + (sΣ

(n) 2−p
2

d2
⊗ Id1)DR

]
Ω

(4.46)

with the diagonal matrices DL, DR ∈Md1d2×d1d2 such that

(DL)i+(j−1)d1,i+(j−1)d1 =
(

1 +
(σ2

j (X
(n)) + ε(n)2

σ2
i (X

(n)) + ε(n)2

) 2−p
2
)−1/2

– 141 –



and

(DR)i+(j−1)d1,i+(j−1)d1 =
((σ2

i (X
(n)) + ε(n)2

σ2
j (X

(n)) + ε(n)2

) 2−p
2

+ 1
)−1/2

for i ∈ [d1] and j ∈ [d2]. This can be seen from the definitions of

the Kronecker product ⊗ and the Kronecker sum ⊕ (cf. section 4.1.1), as((
sΣ

(n)2−p
d1

⊕ sΣ(n)2−p
d2

)1/2
)
i+(j−1)d1,i+(j−1)d1

= (si + sj)
1/2 = si(si + sj)

−1/2 + sj(si +

sj)
−1/2 = s

1/2
i (1 +

sj
si

)−1/2 + s
1/2
j ( si

sj
+ 1)−1/2, if s` denotes the `-th diagonal entry of

sΣ
(n)2−p
d2

and sΣ
(n)2−p
d1

for ` ∈ [max(d1, d2)].

If we write sΣ
(n) 2−p

2
d1,Tc

∈ M(d1−r)×(d1−r) for the diagonal matrix containing the d1 − r

last diagonal elements of sΣ
(n)2−p
d1

and sΣ
(n) 2−p

2
d2,Tc

∈ M(d1−r)×(d1−r) for the diagonal matrix

containing the d2 − r last diagonal elements of sΣ
(n)2−p
d2

, it follows from (4.46) that

∥∥U (n)∗
Tc

η(n+1)V
(n)
Tc

∥∥p
Sp

= 2−
p
2

∥∥∥U (n)∗
Tc

Ũ (n)
[
sΣ

(n) 2−p
2

d1
(DLΩ)mat + (DRΩ)mat

sΣ
(n) 2−p

2
d2

]
Ṽ (n)∗V

(n)
Tc

∥∥∥p
Sp

= 2−
p
2

∥∥∥sΣ(n) 2−p
2

d1,Tc

[
(DLΩ)mat

]
Tc,Tc

+
[
(DRΩ)mat

]
Tc,Tc

sΣ
(n) 2−p

2
d2,Tc

∥∥∥p
Sp

≤ 2−
p
2

∥∥∥sΣ(n) 2−p
2

d1,Tc

[
(DLΩ)mat

]
Tc,Tc

∥∥∥p
Sp

+
∥∥∥[(DRΩ)mat

]
Tc,Tc

sΣ
(n) 2−p

2
d2,Tc

∥∥∥p
Sp

(4.47)

with the notation that MTc,Tc denotes the submatrix of M which contains the intersec-

tion of the last d1 − r rows of M with its last d2 − r columns.

Now, Hölder’s inequality for Schatten-p quasinorms (e.g. [63, Theorem 11.2]) can be

used to see that∥∥∥sΣ(n) 2−p
2

d1,Tc

[
(DLΩ)mat

]
Tc,Tc

∥∥∥p
Sp
≤
∥∥∥sΣ(n) 2−p

2
Tc

∥∥∥p
S 2p

2−p

∥∥∥[(DLΩ)mat

]
Tc,Tc

∥∥∥p
S2

. (4.48)

Inserting the definition

∥∥∥sΣ(n) 2−p
2

Tc

∥∥∥p
S 2p

2−p

=

(
d∑

i=r+1

(
σ2
i (X

(n)) + ε(n)2
) 2−p

4
2p
2−p

) 2−p
2

=

(
d∑

i=r+1

(
σ2
i (X

(n)) + ε(n)2
) p

2

) 2−p
2

allows us to rewrite the first factor, while the second factor can be bounded by∥∥[(DLΩ)mat

]
Tc,Tc

∥∥p
S2
≤
∥∥(DLΩ)mat

∥∥p
S2
≤ ‖Ωmat‖pS2

= ‖(Ṽ (n) ⊗ Ũ (n))∗W̃ (n) 1
2η(n+1)

vec ‖p`2
= ‖W̃ (n) 1

2η(n+1)
vec ‖p`2 = ‖η(n+1)

vec ‖p`2(W̃ (n))
,

as the matrix DL ∈ Md1d2×d1d2 from (4.46) fulfills ‖DL‖S∞ ≤ 1 since its entries are

bounded by 1; we also recall the definition (4.45) of Ω and that Ṽ (n) and Ũ (n) are
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unitary.

The term
∥∥∥[(DRΩ)mat

]
Tc,Tc

sΣ
(n) 2−p

2
d2,Tc

∥∥∥p
Sp

in (4.47) can be estimated analogously. Combin-

ing this with (4.43), we obtain

‖η(n+1) − η(n+1)
2r ‖2p

Sp
≤ 2−p

(
2
( d∑
i=r+1

(
σ2
i (X

(n)) + ε(n)2
) p

2

) 2−p
2
)2

‖η(n+1)
vec ‖2p

`2(W̃ (n))
,

concluding the proof of statement (i).

(ii) Using the strong Schatten-p null space property (5.17) of order 2r and that η(n+1) ∈
N (Φ), we estimate

‖η(n+1)‖2p
S2

=
(
‖η(n+1)

2r ‖2
S2

+ ‖η(n+1) − η(n+1)
2r ‖2

S2

)p ≤ (γ2/p
2r + γ

2/p−1
2r

(2r)2/p−1
‖η(n+1) − η(n+1)

2r ‖2
Sp

)p
≤ γ2−p

2r (γ2r + 1)p

(2r)2−p ‖η(n+1) − η(n+1)
2r ‖2p

Sp
≤ 2p

γ2−p
2r

22−pr2−p‖η
(n+1) − η(n+1)

2r ‖2p
Sp
,

(4.49)

where we use in the second inequality a version of Stechkin’s lemma [81, Lemma 3.1],

which leads to the estimate

‖η(n+1)−η(n+1)
2r ‖2

S2
≤
(‖η(n+1)

2r ‖S2

2r

)2−p
‖η(n+1)−η(n+1)

2r ‖pSp ≤
γ

2/p−1
2r

(2r)2/p−1
‖η(n+1)−η(n+1)

2r ‖2
Sp .

Combining (4.49) with statement (i), this results in

‖η(n+1)‖2p
S2
≤ 2p

γ2−p
2r

r2−p

( d∑
i=r+1

(
σ2
i (X

(n)) + ε(n)2
) p

2

)2−p

‖η(n+1)
vec ‖2p

`2(W̃ (n))
,

which shows statement (ii).

(iii) For the third statement, we use the strong Schatten-p NSP (5.17) to see that

‖η(n+1)‖pSp = ‖η(n+1)
2r ‖pSp + ‖η(n+1) − η(n+1)

2r ‖pSp ≤ (1 + γ2r)‖η(n+1) − η(n+1)
2r ‖pSp ,

and combine this with statement (i).

Lemma 4.18. Let (X(n))n be the output sequence of Algorithm 4 with parameters

Φ, Y, r and 0 < p ≤ 1, and W̃ (n) be the harmonic mean weight matrix (4.12) for n ∈ N.

Let X0 ∈ Md1×d2 be a rank-r matrix such that Φ(X0) = Y with condition number

κ := σ1(X0)
σr(X0)

.
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(i) If (4.39) is fulfilled for iteration n, then η(n+1) = X(n) −X0 fulfills

∥∥η(n+1)
vec

∥∥2p

`2(W̃ (n))
≤ 4prp/2(s0

r)
p(p−1)

(1− ρ)2p
κp
‖η(n)‖2p−p2

S∞

(ε(n))2p−p2 ‖η
(n+1)‖pS2

.

(ii) Under the same assumption as for (i), it holds that

∥∥η(n+1)
vec

∥∥2p

`2(W̃ (n))
≤ 7prp/2 max(r, d− r)p/2(s0

r)
p(p−1)

(1− ρ)2p
κp
‖η(n)‖2p−p2

S∞

(ε(n))2p−p2 ‖η
(n+1)‖pS∞ .

Proof of Lemma 4.18. (i) Recall that X(n+1) = arg min
Φ(X)=Y

‖Xvec‖2
`2(W̃ (n))

is the minimizer

of the weighted least squares problem with weight matrix W̃ (n). As η(n+1) = X(n+1)−X0

is in the null space of the measurement map Φ, it follows from Lemma 4.7 that

0 = 〈W̃ (n)X(n+1)
vec , η(n+1)

vec 〉 = 〈W̃ (n)(η(n+1) +X0)vec, η
(n+1)
vec 〉,

which is equivalent to

∥∥η(n+1)
vec

∥∥2

`2(W̃ (n))
= 〈W̃ (n)η(n+1)

vec , η(n+1)
vec 〉 = −〈W̃ (n)(X0)vec, η

(n+1)
vec 〉. (4.50)

Using Hölder’s inequality, we can therefore estimate∥∥η(n+1)
vec

∥∥2

`2(W̃ (n))
= −〈W̃ (n)(X0)vec, η

(n+1)
vec 〉`2 = −〈[W̃ (n)(X0)vec]mat, η

(n+1)〉F
≤
∥∥[W̃ (n)(X0)vec

]
mat

∥∥
S2
‖η(n+1)‖S2 .

(4.51)

To bound the first factor, we first rewrite the action of W̃ (n) on X0 in the matrix space

as[
W̃ (n)(X0)vec

]
mat

= 2[(Ṽ (n) ⊗ Ũ (n))
(
sΣ

(n)2−p
d1

⊕ sΣ(n)2−p
d2

)−1
(Ṽ (n) ⊗ Ũ (n))∗(X0)vec]mat =

= Ũ (n)
(
H(n) ◦ (Ũ (n)∗X0Ṽ

(n))
)
Ṽ (n)∗,

using (4.44) and Lemma 4.17 about the action of inverses of Kronecker sums, with the

notation that H(n) ∈Md1×d2 such that

H
(n)
ij = 2

[
1{i≤d}(σ

2
i (X

(n)) + ε(n)2)
2−p
2 + 1{j≤d}(σ

2
j (X

(n)) + ε(n)2)
2−p
2

]−1

for i ∈ [d1], j ∈ [d2], where 1{i≤d} = 1 if i ≤ d and 1{i≤d} = 0 otherwise. This enables
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us to estimate∥∥∥[W̃ (n)(X0)vec

]
mat

∥∥∥2

S2

=
∥∥∥Ũ (n)

(
H(n) ◦ (Ũ (n)∗X0Ṽ

(n))
)
Ṽ (n)∗

∥∥∥2

S2

=
∥∥∥H(n) ◦ (Ũ (n)∗X0Ṽ

(n))
∥∥∥2

S2

=

∥∥∥∥∥H(n) ◦
(
U

(n)∗
T X0V

(n)
T U

(n)∗
T X0V

(n)
Tc

U
(n)∗

Tc
X0V

(n)
T U

(n)∗
Tc

X0V
(n)
Tc

)∥∥∥∥∥
2

S2

=
∥∥∥H(n)

T,T ◦ (U
(n)∗
T X0V

(n)
T )

∥∥∥2

S2

+
∥∥∥H(n)

T,Tc
◦ (U

(n)∗
T X0V

(n)
Tc

)
∥∥∥2

S2

+
∥∥∥H(n)

Tc,T
◦ (U

(n)∗
Tc

X0V
(n)
T )

∥∥∥2

S2

+
∥∥∥H(n)

Tc,Tc
◦ (U

(n)∗
Tc

X0V
(n)
Tc

)
∥∥∥2

S2

,

(4.52)

using the notation from the proof of Lemma 4.17. To bound the first summand, we

calculate

∥∥∥H(n)
T,T ◦ (U

(n)∗
T X0V

(n)
T )

∥∥∥
S2

≤
∥∥∥H(n)

T,T ◦ (U
(n)∗
T X(n)V

(n)
T )

∥∥∥
S2

+
∥∥∥H(n)

T,T ◦ (U
(n)∗
T (−η(n))V

(n)
T )

∥∥∥
S2

≤
∥∥∥H(n)

T,T ◦ Σ
(n)
T

∥∥∥
S2

+
∥∥∥H(n)

T,T ◦ (U
(n)∗
T η(n)V

(n)
T )

∥∥∥
S2

≤
( r∑

i=1

σ2
i (X

(n))(
σ2
i (X

(n)) + ε(n)2
)2−p

)1/2

+
r

max
i,j=1
|H(n)

i,j |‖U (n)∗
T η(n)V

(n)
T ‖S2

≤ √rσp−1
r (X(n)) + (σ2

r(X
(n)) + ε(n)2)

p−2
2 ‖U (n)∗

T η(n)V
(n)
T ‖S2

≤ √rσp−1
r (X(n)) + σp−2

r (X(n))
√
r‖η(n)‖S∞ =

√
rσp−2

r (X(n))
[
σr(X

(n)) + ‖η(n)‖S∞
]
,

(4.53)

denoting Σ
(n)
T = diag(σi(X

(n)))ri=1 and that the matrices U
(n)
T and V

(n)
T contain the first

r left resp. right singular vectors of X(n) in the second inequality, together with the

estimates ‖X‖S1 ≤
√
r‖X‖S2 ≤ r‖X‖S∞ for (r × r)-matrices X.

We recall the notations s0
r = σr(X0) and s0

1 = σ1(X0) and note that

σr(X
(n)) ≥ s0

r(1− ρ),

as the assumption (4.39) implies that

s0
r = σr(X0) = σr(X

(n) − η(n)) ≤ σr(X
(n)) + σ1(η(n)) ≤ σr(X

(n)) + ρs0
r,

using [8, Proposition 9.6.8] in the first inequality.
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Therefore, we can bound the term of (4.53) such that∥∥∥H(n)
T,T ◦ (U

(n)∗
T X0V

(n)
T )

∥∥∥
S2

≤ √r(s0
r(1− ρ))p−2[s0

r(1− ρ) + ρs0
r] =
√
r(s0

r)
p−1(1− ρ)p−2.

(4.54)

For the second summand in the estimate of
∥∥∥[W̃ (n)(X0)vec

]
mat

∥∥∥2

S2

, similar arguments

and again assumption (4.39) are used to compute∥∥∥H(n)
T,Tc
◦ (U

(n)∗
T X0V

(n)
Tc

)
∥∥∥
S2

≤
∥∥∥H(n)

T,Tc
◦ (U

(n)∗
T X(n)V

(n)
Tc

)
∥∥∥
S2

+
∥∥∥H(n)

T,Tc
◦ (U

(n)∗
T η(n)V

(n)
Tc

)
∥∥∥
S2

=

∥∥∥∥H(n)
T,Tc
◦ (U

(n)∗
T U

(n)
T Σ

(n)
T

=0︷ ︸︸ ︷
V

(n)∗
T V

(n)
Tc

+

=0︷ ︸︸ ︷
U

(n)∗
T U

(n)
Tc

Σ
(n)
Tc
V

(n)∗
Tc

V
(n)
Tc

)

∥∥∥∥
S2

+
∥∥∥H(n)

T,Tc
◦ (U

(n)∗
T η(n)V

(n)
Tc

)
∥∥∥
S2

≤ max
i∈[r],j∈{r+1,...,d2}

|H(n)
i,j |‖U (n)∗

T η(n)V
(n)
Tc
‖S2 ≤ 2

[
(σr(X

(n))2 + ε(n)2)
2−p
2

]−1‖U (n)∗
T η(n)V

(n)
Tc
‖F

(4.55)

≤ 2σr(X
(n))p−2‖U (n)∗

T η(n)V
(n)
Tc
‖S2 ≤ 2

√
r(s0

r(1− ρ))p−2‖η(n)‖S∞
≤ 2ρ

√
r(s0

r)
p−1(1− ρ)p−2.

(4.56)

From exactly the same arguments it follows that also∥∥∥H(n)
Tc,T
◦ (U

(n)∗
Tc

X0V
(n)
T )

∥∥∥
S2

≤ 2ρ
√
r(s0

r)
p−1(1− ρ)p−2. (4.57)

It remains to bound the last summand
∥∥∥H(n)

Tc,Tc
◦ (U

(n)∗
Tc

X0V
(n)
Tc

)
∥∥∥2

S2

. We see that

∥∥∥H(n)
Tc,Tc
◦ (U

(n)∗
Tc

X0V
(n)
Tc

)
∥∥∥
S2

≤ max
i∈{r+1,...,d1}
j∈{r+1,...,d2}

∣∣H(n)
i,j

∣∣‖U (n)∗
Tc

X0V
(n)
Tc
‖S2

≤ (ε(n))p−2‖U (n)∗
Tc

X0V
(n)
Tc
‖S2 ≤ (ε(n))p−2‖U (n)∗

Tc
U0
T‖S∞‖S0‖S2‖V 0∗

T V
(n)
Tc
‖S∞

≤ (ε(n))p−2

√
2‖η(n)‖S∞
(1− ρ)s0

r

√
rs0

1

√
2‖η(n)‖S∞
(1− ρ)s0

r

= 2
√
r‖η(n)‖2

S∞(ε(n))p−2(1− ρ)−2(s0
r)
−1 s

0
1

s0
r

(4.58)

where Hölder’s inequality for Schatten norms was used in the third inequality. In the

fourth inequality, Wedin’s singular value perturbation bound of Lemma 2.19 is used

with the choice Z = X0, sZ = X(n), α = s0
r and δ = (1− ρ)s0

r, and finally ε(n) ≤ ρs0
r in

the last inequality, which is implied by the rule (4.16) for ε(n) together with assumption

(4.39).
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Summarizing the estimates (4.54), (4.55), (4.57) and (4.58), we conclude that∥∥∥[W̃ (n)(X0)vec

]
mat

∥∥∥2

S2

≤ r(s0
r)

2p−2(1− ρ)2p−4

[
1 + 8ρ2 + 4

‖η(n)‖4
S∞

(1− ρ)2p
(ε(n))2p−4(s0

r)
−2p

(
s0

1

s0
r

)2 ]
=
r(s0

r)
2p−2

(1− ρ)4

[
(1 + 8ρ2)(1− ρ)2p + 4

‖η(n)‖4−2p
S∞

(ε(n))4−2p

‖η(n)‖2p
S∞

(s0
r)

2p

(
s0

1

s0
r

)2 ]
≤ r(s0

r)
2p−2

(1− ρ)4

[
9 + 4

‖η(n)‖4−2p
S∞

(ε(n))4−2p
ρ2pκ2

]
≤ 13r(s0

r)
2p−2

(1− ρ)4

[‖η(n)‖4−2p
S∞

(ε(n))4−2p
κ2

]
,

as 0 < ρ < 1, ε(n) ≤ σr+1(X(n)) = ‖X(n)
Tc
‖S∞ ≤ ‖η(n)‖S∞ and using the assumption

(4.39) in the second inequality. This concludes the proof of Lemma 4.18(i) together

with inequality (4.51) as 13p/2 ≤ 16p/2 = 4p.

(ii) For the second statement of Lemma 4.18, we proceed similarly as before, but note

that by Hölder’s inequality, also

∥∥η(n+1)
vec

∥∥2

`2(W̃ (n))
≤
∥∥[W̃ (n)(X0)vec

]
mat

∥∥
S1
‖η(n+1)‖S∞ ,

cf. (4.51). Furthermore

∥∥[W̃ (n)(X0)vec

]
mat

∥∥
S1
≤
∥∥∥H(n)

T,T ◦ (U
(n)∗
T X0V

(n)
T )

∥∥∥
S1

+
∥∥∥H(n)

T,Tc
◦ (U

(n)∗
T X0V

(n)
Tc

)
∥∥∥
S1

+
∥∥∥H(n)

Tc,T
◦ (U

(n)∗
Tc

X0V
(n)
T )

∥∥∥
S1

+
∥∥∥H(n)

Tc,Tc
◦ (U

(n)∗
Tc

X0V
(n)
Tc

)
∥∥∥
S1

.

The four Schatten-1 norms can then be estimated by max(r, (d−r))1/2 times the corre-

sponding Schatten-2 norms. Using then again inequalities (4.54)− (4.58), we conclude

the proof of (ii).

Proof of Theorem 4.16. First we note that(
d∑

i=r+1

(
σ2
i (X

(n)) + ε(n)2
) p

2

)2−p

≤ 2p−
p2

2 (d− r)2−pσr+1(X(n))p(2−p) (4.59)

as ε(n) ≤ σr+1(X(n+1)) due to the choice of ε(n) in (4.16). We proceed by induction over

n ≥ sn. Lemmas 4.17(ii) and 4.18(ii) imply together with (4.59) that for n = sn,

‖η(n+1)‖pS∞ ≤
‖η(n+1)‖2p

S2

‖η(n+1)‖pS∞
≤ 2pγ2−p

2r 2p−
p2

2

(d− r
r

)2−p/2 7prp(s0
r)
p(p−1)

(1− ρ)2p
κp‖η(n)‖2p−p2

S∞

≤ 25pγ2−p
2r

(d− r
r

)2−p/2 rp(s0
r)
p(p−1)

(1− ρ)2p
κp‖η(n)‖p(2−p)S∞

(4.60)
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as σr+1(X(n)) = ε(n) by assumption for n = sn.

Similarly, by Lemmas 4.17(iii) and 4.18(ii) and (4.59), the error in the Schatten-p

quasinorm fulfills

‖η(n+1)‖2p
Sp
≤ (1 + γ2r)

222+2p
(
d− r

)2−p rp/2(s0
r)
p(p−1)

(1− ρ)2p
κp‖η(n)‖p(2−p)S∞

‖η(n+1)‖pS2
(4.61)

for n = sn. Using the strong Schatten-p null space property of order 2r for the operator

Φ, we see from the arguments of (4.49) that

‖η(n)‖pS∞ ≤ ‖η(n)‖pS2
≤ 2p−1γ

1−p/2
2r

r1−p/2 ‖η(n)‖pSp

and also ‖η(n+1)‖pS2
≤ 2p−1γ

1−p/2
2r

r1−p/2
‖η(n+1)‖pSp . Inserting that in (4.61) and dividing by

‖η(n+1)‖pSp , we obtain

‖η(n+1)‖pSp ≤ 24p(1 + γ2r)
2γ2−p

2r

(d− r
r

)2−p rp/2(s0
r)
p(p−1)

(1− ρ)2p
κp‖η(n)‖p(1−p)S∞

‖η(n)‖pSp .

Under the assumption that (4.40) holds, it follows from this and (4.60) that

‖η(n+1)‖pS∞ ≤ ‖η(n)‖pS∞ and ‖η(n+1)‖pSp ≤ ‖η(n)‖pSp (4.62)

for n = sn, which also entails the statement of Theorem 4.16 for this iteration.

Let now n′ > sn be such that (4.62) is true for all n with n′ > n ≥ sn. If σr+1(X(n′)) ≤
ε(n
′−1), then ε(n

′) = σr+1(X(n′)) and the arguments from above show (4.62) also for

n = n′.

Otherwise, it holds that σr+1(X(n′)) > ε(n
′−1) and there exists n′ > n′′ ≥ sn such that

ε(n
′) = ε(n

′′) = σr+1(X(n′′)). Then

‖η(n′+1)‖pS∞

≤ 2p
γ2−p

2r

r2−p

( d∑
i=r+1

(σ2
i (X

(n′))

ε(n′′)2
+ 1
) p

2

)2−p
7prp/2 max(r, d− r)p/2(s0

r)
p(p−1)

(1− ρ)2p
κp‖η(n′)‖p(2−p)S∞
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and we compute

( d∑
i=r+1

(σ2
i (X

(n′))

ε(n′′)2
+ 1
) p

2

)2−p

≤
( d∑
i=r+1

σpi (X
(n′))

ε(n′′)p
+ (d− r)

)2−p

≤
(‖η(n′)‖pSp

ε(n′′)p
+ (d− r)

)2−p

≤
(‖η(n′′)‖pSp

ε(n′′)p
+ (d− r)

)2−p

≤
(

2(1 + γ2r)‖X(n′′)
Tc
‖pSp

(1− γ2r)ε(n
′′)p

+ (d− r)
)2−p

≤
(

3 + γ2r

1− γ2r

)2−p

(d− r)2−p,

using that X0 is a matrix of rank at most r in the second inequality, the inductive

hypothesis in the third and an analogue of Lemma 4.13 for a Schatten-p quasinorm

on the left hand side (cf. [81, Lemma 3.2] for the corresponding result for p = 1). The

latter argument uses the assumption on the null space property. This shows that

‖η(n′+1)‖pS∞ ≤ µ‖η(n′)‖p(2−p)S∞

for

µ̃ := 24pγ2−p
2r

((3 + γ2r)(d− r)
(1− γ2r)r

)2−p rp/2(s0
r)
p(p−1)

(1− ρ)2p
κp max

(
2p(d− r) p2 , (1 + γ2r)

2
)
,

(4.63)

and ‖η(n′+1)‖pS∞ ≤ ‖η(n′)‖pS∞ under the assumption (4.40) of Theorem 4.16, as µ̃ ≤ µ

with µ as in (4.41). Indeed µ̃ ≤ µ since

max
(

2p(d− r) p2 , (1 + γ2r)
2
)(d− r

r

)2−p
rp/2 ≤ 2p(1 + γ2r)

2
(d− r

r

)2−p/2
rp.

The same argument shows that ‖η(n′+1)‖pSp ≤ ‖η(n′)‖pSp , which finishes the proof.

Proof of Theorem 4.15(iii). The statement follows from Theorem 4.16, since for r̃ ≤ r,

an operator Φ fulfilling the Schatten-p NSP of order 2r with constant γ2r < 1 trivially

fulfills the Schatten-p NSP of order 2r̃ with constant γ2r̃ ≤ γ2r < 1.

Remark 4.19. We note that the left- and right-sided weight matrices of previous IRLS

approaches [51, 106] at iteration n could be expressed in our notation as

Id2 ⊗W (n)
L := Id2 ⊗ U (n)(sΣ

(n)
d1

)p−2U (n)∗

and

W
(n)
R ⊗ Id1 := V (n)(sΣ

(n)
d2

)p−2V (n)∗ ⊗ Id1 ,

respectively.
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Let

T (n) := span
{
u

(n)
i y∗, xv

(n)∗
i | x ∈ Rd1 , y ∈ Rd2 , i ∈ [r]

}
,

where u
(n)
1 , . . . , u

(n)
r resp. v

(n)
1 , . . . , v

(n)
r are the first r left and right singular vectors of

X(n). T (n) is a space that can be considered as a generalized support of the best rank-r

approximation of X(n).

With this remark, we want to give an explanation for the fact that left- or right-sided

weight matrices do not lead to algorithms with superlinear convergence rates for p < 1.

This argument will be based on the observation that there are always parts of the

space T (n) that are equipped with too large weights if X(n) = U (n)Σ(n)V (n)∗ is already

approximately low-rank. In particular, proceeding as in (4.52), we obtain for Id2⊗W (n)
L∥∥∥[(Id2 ⊗W (n)

L

)
(X0)vec

]
mat

∥∥∥2

S2

=
∥∥∥(sΣ(n)

T

)p−2
U

(n)∗
T X0V

(n)
T

∥∥∥2

S2

+
∥∥∥(sΣ(n)

T

)p−2
U

(n)∗
T X0V

(n)
Tc

∥∥∥2

S2

+
∥∥∥(sΣ(n)

Tc

)p−2
U

(n)∗
Tc

X0V
(n)
T

∥∥∥2

S2

+
∥∥∥(sΣ(n)

Tc

)p−2
U

(n)∗
Tc

X0V
(n)
Tc

∥∥∥2

S2

if sΣ
(n)
T denotes the diagonal matrix with the first r non-zero entries of sΣ

(n)
d1

and sΣ
(n)
Tc

the one of the remaining entries.

Here, the third of the four summands would become too large for p < 1 to allow for

a superlinear convergence when the last d − r singular values of X(n) approach zero.

An analogous argument can be used for the right-sided weight matrix W
(n)
R ⊗ Id1 and,

notably, also for arithmetic mean weight matrices W
(n)
(arith) = Id2 ⊗W (n)

L + W
(n)
R ⊗ Id1 ,

cf. section 4.1.2.

4.3.7 Discussion and comparison with existing IRLS algorithms

Optimally, one could ask for a statement in Theorem 4.15 about the accumulation

points sX being global minimizers of fε, instead of mere stationary points, cf. [51, The-

orem 6.11], [35, Theorem 5.3]. As we will see in the next section, numerical experiments

indicate that at least empirically the recovery of global minimizers for a large number

of problem instances in the matrix completion context is achieved. Due to the strong

nonconvexity of the Schatten-p quasinorm and of the ε-perturbed version fε for small

ranges of p, such a strong theoretical statement is unfortunately difficult to prove.

Nevertheless, our results can be interpreted as analogues of the results in [35, Theorem

7.7], which discusses the convergence behaviour of an IRLS algorithm for the sparse

vector case based on `p-minimization with p < 1.
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As already mentioned, one can view the algorithm of [51] as an asymmetric variant of

HM-IRLS with parameter choice p = 1 in our notation and under this point of view,

our result Theorem 4.15 recovers the results of [51, Theorem 6.11(i-ii)] for p = 1 and

provides a generalization, although with weaker conclusions due to the non-convexity,

also to the cases 0 < p < 1. Non-convex choices 0 < p < 1 have been considered in

[106] for the algorithm IRLS-p, that is very similar to the one in [51]. However, the

convergence result [106, Theorem 5.1] in the non-convex case corresponds to Theorem

4.15(ii) but does not give statements similar to (i) and (iii) of Theorem 4.15.

To the best of our knowledge, the convergence rate result in Theorem 4.16 is new in

the sense that so far,in the literature, there are no convergence rate proofs for IRLS

algorithms for the low-rank matrix recovery problem. In fact, Remark 4.19 provides an

argument why it is not possible for existing IRLS-variants of [51] and [106] to exhibit

superlinear convergence rates, unlike HM-IRLS.

Finally, let us point out the close connection between the statements of Theorems 4.15

and 4.16 and results presented for IRLS in the context of the sparse vector recovery

problem [35, Theorems 7.7 and 7.9].
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4.4 Numerical experiments

In this section, we verify numerically the theoretically predicted superlinear conver-

gence rate for Algorithm 4 (HM-IRLS) in Theorem 4.16 even for relevant measurement

operators not fulfilling theoretical requirements, more precisely the strong null space

property.

In particular, also for the important framework of matrix completion, HM-IRLS exhibits

a superlinear convergence rate of order 2− p that can be observed very clearly in the

experiment results reported in subsection 4.4.2. Moreover, we report that for other

IRLS-type algorithms as in [51, 106], and a variant implementing arithmetic mean

weight matrices (see Lemma 4.2) instead of harmonic mean weight matrices such a

superlinear rate of any form was not observed in our numerical tests.

Beyond that, we study in our experiments the recovery performance of HM-IRLS as well

as of other algorithms for the matrix completion measurement setting. We compare

them with a focus on the measurement complexities necessary for successful recovery

for a large number of random problem instances in subsection 4.4.3. The methods

covered in this comparison to HM-IRLS include not only variants of IRLS, but also

other types of cutting-edge low-rank matrix recovery approaches. Interestingly, our

numerical tests reveal that even for cases where the oversampling factor is very low

(ρ ≈ 1), HM-IRLS is able to recover the desired low-rank matrix, without requesting a

special initialization, although the underlying recovery problem is severely non-convex.

In particular, HM-IRLS recovers low-rank matrices systematically with nearly the optimal

number of measurements and needs fewer measurements than all the state-of-the-art

algorithms, including previously existing IRLS methods, involved in our experiments.

All numerical experiments discussed in this section are performed on a MacBook Pro

9.1 with a 2.6 GHz Intel Core i7 quad-core-processor and 8GB memory. Computations

are run in MATLAB R2014a, version 8.3.0.532. An implementation of the HM-IRLS

algorithm and a minimal test example are available at https://www-m15.ma.tum.de/

Allgemeines/SoftwareSite.

4.4.1 Measurement setting

In our experiments, we consider d1 × d2 low-rank matrices X0 of rank(X0) = r, which

we construct by the multiplication of matrices UΣV , where U ∈ Rd1×r, V ∈ Rr×d2

are matrices with i.i.d. standard Gaussian entries and Σ ∈ Rr×r is diagonal with i.i.d.

Gaussian entries as well.
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As noted in Lemma 2.20, a low-rank matrix X ∈Md1×d2 of rank r has df = r(d1+d2−r)
degrees of freedom, which corresponds to the theoretical lower bound on the number

of measurements necessary for exact recovery [21].

We give a detailed description of the random measurement setting for our experiments.

We will consider the matrix completion framework, choosing m = bρ · dfc entries of

X0 uniformly over its d1 · d2 indices to get our measurement result Y = Φ(X0). The

so-called oversampling factor d1d2
df
≥ ρ ≥ 1 regulates the hardness of the recovery

problem.

However, a sampling scheme as just described above can yield instances of measurement

maps Φ with insufficient information content to guarantee the well-posedness of the

corresponding low-rank matrix recovery problem, even for the cases where ρ > 1. To

be more precise, if the number of sampled entries in any row or column is below its

rank r it is impossible to recover a matrix exactly. A more detailed explanation and

proof can be found in the context of [119, Theorem 1].

Therefore, the uniform sampling model is adapted in such a way that measurement

operators Φ are excluded and generated again until the requirement of minimium r

entries per column/row is met. Thereby, we ensure that reconstruction is possible from

a theoretical point of view.

The phenomenon just described above is closely related to the fact that recovery guar-

antees for matrix completion for the uniform sampling model require at least one ad-

ditional log factor, which means that at least m ≥ log(max(d1, d2))df sampled entries

are required. [37, Section V].

Although we only present experiments for the matrix completion setting in this section,

we point out that also in the case of Gaussian measurement models we obtain similar

results in numerical tests.

4.4.2 Convergence rate comparison with other IRLS type algorithms

In the following, we compare the HM-IRLS algorithm to existing variants of IRLS for low-

rank matrix recovery that only employ reweighting in the column space as presented

in [51] (IRLS-M) called IRLS-FRW, and the strongly related version in[106] (IRLS-p)

denoted by IRLS-MF. Additionally, we consider the performance comparison of HM-IRLS

with an alternative method incorporating reweightings in both the row and column

space: we add to our list of test algorithms an arithmetic mean iteratively reweighted

least squares (AM-IRLS), which employs a weight matrix composed according to the
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arithmetic mean

W̃ (n) =
1

2

[(
U (n)S(n)S(n)∗U (n)∗ + ε(n)2Id1

) p−2
2 ⊕

(
V (n)S(n)∗S(n)V (n)∗ + ε(n)2Id2

) p−2
2

]
of left- and right-sided weight matrices, where X(n) = U (n)S(n)V (n)∗ is the full SVD of

the iterate X(n). We refer to subsection 4.1.2 for the introduction of the weight matrix

used in AM-IRLS.

With our present experiments we aim at the examination of the convergence behaviour,

in particular the convergence speeds of the four test algorithms for hard and easy matrix

completion problems. In our numerical tests, we set the dimension of the solution matrix

to d1 = d2 = 40, rank r = 10, oversampling factor ρ = 2.0, 1.2, 1.0 and consider the

instances of the random model as explained in subsection 4.4.1. The experiments are

performed for non-convexity parameters p = {0.0001, 0.05, 0.1, 0.25, 0.5, 0.65, 0.8, 1.0}
appearing in the Schatten-p minimization problems (4.5), which all variants of the IRLS

algorithm strive to solve.

The plots in Figures 4.1 to 4.3 show the behaviour of the Frobenius error in logarithmic

scale log(‖X(n) −X0‖F ) for the iterations n = 1, . . . , n̄ of the listed algorithms, where

we denote with n̄ the first iteration at which the Frobenius error falls below a certain

tolerance level or a maximum number of iterations nmax is exceeded.

4.4.2.1 Results for HM-IRLS

It can be verified from inspecting Figure 4.1a that, for parameters p < 1, HM-IRLS ex-

hibits superlinear rates of convergence very accurately of the orders 2−p as theoretically

predicted by Theorem 4.16. As a consequence, we observe a dramatic enhancement of

the convergence rate from linear to arbitrarily close to quadratic for p tending from 1

to 0. When decreasing the oversampling factor ρ from ρ = 2 in Figures 4.1 to ρ = 1.2

in Figure 4.2 and eventually even to ρ = 1 in Figure 4.3, which corresponds to the

increase of the hardness of the matrix completion problem, we observe the divergence

of the HM-IRLS algorithm for larger values p � 0. This behaviour is very predictable,

as it is known for nuclear norm minimization to fail at the recovery of low-rank matrix

in cases where the oversampling factor ρ is getting close to 1 and, for the parameter

choice p = 1, HM-IRLS just approximates NNM.

On the other hand, we get an interesting result illustrated by Figures 4.2a and 4.3:

with the choice of p close to 0, even for the very difficult reconstruction problems with

very low sample complexities ρ = 1.2 and ρ = 1, the HM-IRLS algorithm is able to

successfully recover the low-rank matrix, still performing with a convergence rate of
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(c) IRLS-MF
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(d) AM-IRLS

Figure 4.1: Behaviour of the log error log(‖X(n) − X0‖F ) for successive iterations for
different parameter values of 0 < p ≤ 1 and fixed measurement oversampling factor
ρ = 2.0. Note that the x-axis in (a) has a different scaling, indicating a much faster
convergence of HM-IRLS.

order 2− p.

4.4.2.2 Results for other IRLS-type algorithms for low rank matrix recovery

For the other variants IRLS-FRW, IRLS-MF and AM-IRLS, we observe a contrasting

algorithmic behaviour. Figures 4.2b–4.2d show that these methods do not converge

to the ground truth low-rank matrix X0 for hard reconstructions problems with low

sampling complexity rates ρ = 1.2 and ρ = 1.0, regardless of the choice of the parameter

p. The corresponding plots for ρ = 1.0 are omitted as in these cases a lack of convergence

is observed as well.
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(c) IRLS-MF
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(d) AM-IRLS

Figure 4.2: Behaviour of the log error log(‖X(n) − X0‖F ) for successive iterations for
different parameter values of 0 < p ≤ 1 and fixed measurement oversampling factor
ρ = 1.2. Note that the x-axis in (a) has a different scaling, indicating a much faster
convergence of HM-IRLS.

We observe convergence of the mentioned methods for easier matrix completion prob-

lems corresponding to ρ = 2.0 as shown in Figure 4.1b–4.1d. Nevertheless in these cases

at best they exhibit a linear rate of convergence only, also if the parameter p is chosen

significantly smaller than 1. If we provide such a generous amount of measurements,

we find that IRLS-FRW and IRLS-MF show slightly faster convergence for p approaching

0 and only for AM-IRLS larger values of p yield more promising results (cf. again Figure

4.1b–4.1d).

For the oversampling factor ρ = 1.2, which gives intermediate difficulty level for recon-

struction, the methods IRLS-FRW, IRLS-MF and AM-IRLS become unstable very easily
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Figure 4.3: Behaviour of the log error log(‖X(n) − X0‖F ) for successive iterations for
different parameter values of 0 < p ≤ 1 for measurement oversampling factor ρ = 1.0,
two different instances of the measurement model of section 4.4.1.

for small choices of p. Therefore, we pose the conjecture that there exists an optimal

value 0 < popt < 1 for each algorithm, that we do not investigate further.

4.4.2.3 HM-IRLS as the best extension of IRLS for sparse recovery

As a summary of the experiments above, we can state that among the four variants

HM-IRLS, IRLS-FRW, IRLS-MF and AM-IRLS, only HM-IRLS is capable of solving the low-

rank matrix recovery problem for very low oversampling factor ρ ≈ 1. Additionally,

HM-IRLS is the only IRLS algorithm for low-rank matrix recovery, which showcases a

superlinear convergence rate at all.

We consider it just as interesting to compare the algorithmic behaviour of HM-IRLS with

the properties of the IRLS algorithm of [35] for sparse vector recovery, which mimics

the `p-minimization for 0 < p ≤ 1. The superlinear convergence rate of the algorithm in

[35] as illustrated in Figure 8.3 in [35] could not be generalized to the low-rank matrix

recovery problem by any of the versions IRLS-FRW, IRLS-MF or AM-IRLS, as obvious

from Figures 4.1a, 4.2a and 4.3.

Taking the theoretical guarantees as well as the numerical evidence into account, we

claim that HM-IRLS is the best extension of IRLS for vector recovery [35] to the low-

rank matrix recovery setting, providing a substantial improvement over the reweighting

strategies of [51, 106].

We even go a step further, by pointing out two observations which suggest that HM-IRLS

in some sense even exhibits more favorable properties than the version of IRLS for the
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vector case in [35]:

(i) First, the superlinear convergence in the vector case is only observable locally

after a considerable number of iterations with a linear error decay have been

executed as discussed in [35, Section 8]. In contrast to such behaviour, for our

algorithm HM-IRLS, superlinear error decay can be observed quite early (i.e., for

example even as early as after 2 or 3 iterations), at least in cases where a large

enough oversampling factor can be provided, cf. Figure 4.1a.

(ii) Second, in cases where p < 0.5, we observe a loss of global convergence of the

algorithm in [35] [35, Section 8]. In contrast to that, the HM-IRLS algorithm

does not suffer from this convergence breakdown for p � 0.5. Consequently, we

suggest the choice of very small parameters p ≤ 0.1 in order to achieve very fast

convergence, cf. Figure 4.3.

4.4.3 Recovery performance comparison with state-of-the-art algo-

rithms

After the performance comparison of HM-IRLS with other IRLS-type methods, we ex-

tend the list of our test algorithms in our experiments with strategies different from

IRLS.

In order to provide a comprehensive picture in our numerical tests, we involve a broad

variety of state-of-the-art algorithms in the experiments: from the already studied IRLS

algorithms IRLS-FRW, IRLS-MF [51, 106], over Riemannian optimization techniques

Riemann Opt of [154], alternating minimization approaches p MC AltMin, ASD and BFGD

of [74, 118, 146], finally to iterative thresholding-based methods such as MatrixALPSII,

CGIHT Matrix in [9, 85].

Our goal in the following experiments is to systematically study the empirical recovery

probabilities of the different algorithms for varying sample complexities m = bρ · dfc,
parametrized by the oversampling factor ρ, which regulates the hardness of the low-

rank recovery problem. Here, a large parameter ρ corresponds to an easy reconstruction

problem, and a small value of ρ, e.g., ρ ≈ 1 describes very hard problems.

Again, we adopt the matrix completion measurement setting as explained in subsection

4.4.1, setting the dimensions of the ground truth matrices X0 to d1 = d2 = 100 and the

rank to r = 8. We now randomly sample 150 instances ofX0 and Φ for different numbers

of measurements increasing from mmin = 1500 to mmax = 4000, which corresponds to

a growing oversampling factor ρ from ρmin = 0.975 to ρmax = 2.60.
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Figure 4.4: Recovery success rate with varying oversampling factor ρ for state-of-the-
art-algorithms

We define an attempt for the recovery of X0 as successful if the relative Frobenius

error ‖Xout − X0‖F/‖X0‖F for the output matrix Xout is smaller than 10−3. We run

the different algorithms either until convergence or until a maximal number of iterations

nmax (e.g. nmax = 10000) is exceeded, where nmax is chosen generously large enough to

guarantee that a recovery failure is not caused by a lack of iterations.

For the conduction of our experiments, we employ implementations that were made

available by the authors of the corresponding research papers for our comparison al-

gorithms, setting the default input parameters provided with the authors’ software

packages. We collected the respective code sources in the reference section.

4.4.3.1 Beyond the state-of-the-art performance of HM-IRLS

Surprisingly, the experiment results displayed in Figure 4.4 reveal that HM-IRLS reaches

a very high empirical recovery probability for parameters p = 0.1 and p = 0.01 as soon

as the oversampling factor ρ is larger than 1.0. This implies that for the recovery of

(d1×d2)-dimensional rank-r matrices a number of m = bρr(d1 +d2−r)c measurements

with ρ ≈ 1 is already sufficient, which is extremely close to the information theoretical

lower bound of df = r(d1 + d2 − r). Moreover, we report the interesting fact, that

already for a measurement complexity factor of ρ ≈ 1.15 HM-IRLS achieves an empirical

recovery percentage of 100%.

For all algorithms tested, we make the contrasting observation that they basically

– 159 –



always fail to perform recovery for any rank-r matrix if ρ < 1.2, and in most cases need

an oversampling factor of ρ > 1.7 to exceed an empirical recovery success rate of a mere

50%. Only after rising ρ above 2.0, a recovery percentage of nearly 80% is approached

at least for a subset of the comparison algorithms, more precisely for Matrix ALPS II,

BFGD, p MC AltMin and the existing IRLS approaches IRLS-FRW and IRLS-MF. Even for

large oversampling factors up to ρ = 2.5, all other competing algorithms are incapable

of systematically achieving the empirical probability of 100%. Although we do not rule

out that possible parameter tuning can slightly enhance the recovery performance of

any of the other algorithms, we report that, for hard matrix completion problems,

the experimental evidence for the very significant gap in the recovery performance of

HM-IRLS in comparison with all other methods is striking.

Hence, our observations can be summarized as follows: for the choice of the non-

convexity parameter p� 1 the proposed HM-IRLS algorithm is able to recover low-rank

matrices systematically with nearly the optimal number of measurements and needs

fewer measurements than all the state-of-the-art algorithms included in our experi-

ments.

In Figure 4.4 a very sharp phase transition between failure and success of recovery can

be observed very clearly for HM-IRLS. This indicates that the oversampling factor ρ

indeed plays a major role for the determination of the success of HM-IRLS. In contrast,

for all other algorithms we have wider phase transitions suggesting the existence of

further influence factors such as the realizations of the random sampling model or

possible interactions between the measurement operator Φ and solution matrix X0.

A last important conclusion that we draw from the very high empirical recovery prob-

ability of 100% in those cases where the sample complexity factor ρ is large enough,

is that local minimizers are not an issue for HM-IRLS, but it always converges to the

global minimizer, although the underlying Schatten-p quasinorm for, e.g., p = 0.01, is

severely nonconvex.

Therefore, we conclude that the initialization of X(1) as the Frobenius norm minimizer

that we choose can already ensure global convergence. In contrast, other non-convex

low-rank recovery methods might show a heavy dependence on a smartly chosen start-

ing point. In this point of view, our experimental results indicate that the non-convex

low-rank matrix recovery algorithms included in our tests do not seem to be able to

capture the desired basin of attraction of the global minimum in many cases if the sam-

ple complexity is low (i.e., if ρ is small). This entails the discovery of local minimzers

only.
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4.4.4 Computational complexity

Although the harmonic mean weight matrix W̃ (n) (cf. (4.17)) is the inverse of a (d1d2×
d1d2)-matrix and consequently a dense (d1d2 × d1d2)-matrix in the general case, this

is not relevant for the practical implementation of the algorithm as it never has to be

computed explicitly. Moreover, neither there is a practical need to compute its inverse

(W̃ (n))−1 = 1
2

(
U (n)(sΣ(n))2−pU (n)∗ ⊕ V (n)(sΣ(n))2−pV (n)∗) explicitly.

Indeed, the harmonic mean weight matrix is just involved in the form of the linear

operator (W(n))−1 (cf. (4.14)) acting on the space of matrices Md1×d2 , which can be

represented as a left- and right-sided matrix multiplication as it can be derived from

(4.11) and the definition of the Kronecker sum (4.6).

Consequently, the application of the operator (W(n))−1 is feasible in O(d1d2(d1 + d2))

and can be implemented via the naive matrix multiplication algorithm, and, hence, can

be easily parallelized.

The computation costs for the expression Φ ◦ W̃(n)−1 ◦Φ∗ ∈Mm×m also depend on the

linear measurement operator Φ. We note that in particular, for the matrix completion

setting (4.3), where Φ is a just an entry selection operator, we do not have to perform

additional arithmetic operations.

We point out that the execution of the HM-IRLS algorithm involves of two major com-

putational steps in each iteration: On the one hand, the computation of the SVD of

the d1 × d2-matrix X(n) with time complexity O(d1d2 min(d1, d2)). On the other hand

the solution of the least squares problem under the linear constraint in (4.15), whose

time complexity depends on Φ. In the matrix completion case, the second step is dom-

inated by the inversion of a symmetric, m×m sparse linear system, which has a time

complexity of at most O(max(d1, d2)3r3).

For the matrix completion setting, we are able to perform recovery of low-rank matrices

up to, e.g., d1 = d2 = 3000 on a single machine from only very few given entries.

Acceleration possibilities and extensions

A key idea for also enabling the solution of higher dimensional problems in reasonable

runtimes is to speed up the solution of the m×m linear system in (4.15), which consti-

tutes the computational bottleneck of the algorithm, by employing iterative solvers. In

the sparse vector case, a significant gain in computational speed of the corresponding

IRLS algorithm [35] could be reached by the incorporation of conjugate gradient (CG)

methods as discussed in [49]. In this work, a competitive solver for the sparse recovery
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problem is suggested, which introduces an effective preconditioning and couples the

accuracy of the CG solutions to the outer IRLS iteration. A similar modification could

be employed for an acceleration of HM-IRLS.

Furthermore, it could be interesting to explore whether additional computational speed

up is possible by replacing the full SVDs of the iterates X(n), which are used to define

the linear operator (W(n))−1 in Algorithm 4, by an approximation via truncated and

randomized SVDs [75].
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Chapter 5

Generalized IRLS for recovery of matrices

with multiple structures

In this chapter, we want to pass over from the recovery of low-rank matrices to more

general high dimensional signals with multiple underlying structures from a minimal

amount of linear measurements

Φ(X) = Y (5.1)

with a linear map Φ : Md1×d2 → Rm, Y ∈ Rm and m� d1 · d2. More precisely, we want

to consider matrix recovery problems that involve the different sparsity-type structures

introduced in Section 2.3.2. In practical applications, often signals with even more than

one structural property or a combination of the above mentioned ones - sparse vectors

or vectorized matrices, row and column-sparse matrices and low-rank matrices - emerge,

e.g., row-sparse and low rank matrices or the sum of sparse and low-rank matrices. In

the following, we will explore recovery problems, where the matrix to be recovered is

either a matrix with multiple sparsity-type structures occurring simultaneously or is

the linear combination of several matrices with different sparsity structures.

For a matrix X with sparsity structures ss, s ∈ [t], the equivalents to “support” Ss,

”support size or order” ks in the vector case are summarized in the following table:

property ss support Ss order ks = |Ss|
sparsity Λ = {l | Xi,j 6= 0, l = (i− 1) · d1 + j } # entries 6= 0

row-sparsity Λrow =
{
i |∑d2

j=1 Xi,j 6= 0
}

# rows 6= 0

column-sparsity Λcol =
{
j |∑d2

i=1Xi,j 6= 0
}

# columns 6= 0

low-rank Λrank = {i | singular value σi(X) 6= 0} rank

Table 5.1: Structural properties, analog to support, and order in the vector case
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For this problem setting of recovery of multi-structured matrices from an equation

system (5.1), we want to consider the following nonconvex and nonsmooth model in

the constrained formulation :

minF 0
1 (X) =

t∑
s=1

λs‖X‖N0
s
, (5.2)

s.t. Φ(X) = Y,

where ‖ · ‖N0
s

is one the following structure inducing quasi-norms

(i) ‖ · ‖`0 for sparsity,

(ii) ‖ · ‖`2,0 for row-sparsity,

(iii) ‖ · ‖`0,2 for column-sparsity,

(iv) ‖ · ‖`S0 for low rank.

Moreover, it is possible that the measurement data is supposed to have structured

perturbations and that the residual Φ(X) = Y shows sparsity type features as well.

We can incorporate this information via an unconstrained model formulation:

minF 0
2 (X) =

t∑
s=1

λs‖X‖N0
s

+ µ‖Φ(X)− Y ‖N0
r
. (5.3)

In the case, a matrix valued representation of measurement results is possible, i.e.,

Y = Ỹvec for Ỹ ∈ Rm1×m2 with m = m1m2, we can consider ‖ · ‖N0
r

to be again any of

the above mentioned quasi-norms applied to (Φ(X) − Y )mat(m1,m2). Otherwise, in the

case of a vector valued residual Φ(X) − Y , we only assume sparsity as a reasonable

structure and, therefore, ‖ · ‖N0
r

= ‖ · ‖`0 .

As already mentioned, sparsity-type recovery problems in their formulation via the

minimization of nonconvex functionals involving terms promoting the specific sparsity

structure are NP-hard to solve. Therefore, it is useful to consider their relaxation and

substitution by an appropriate convex norm minimization problem (see Table 5.2).

A straightforward approach towards recovery strategies for the case of simultaneously

structured signals would be the linear combination of the convex norms usually mini-

mized for each of the single structures. Recently, the negative results of Oymak e.a.[116]

surprised the community. They revealed that this intuitive attempt of combining con-

vex norms will require just as many measurements as exploiting only one (dominating)
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property nonconvex functional convex relaxation

sparsity ‖ · ‖`0 ‖ · ‖`1
row-sparsity ‖ · ‖`2,0 ‖ · ‖`2,1
column-sparsity ‖ · ‖`0,2 ‖ · ‖`1,2
low-rank rank(·) ‖ · ‖∗

Table 5.2: Structural properties and nonconvex and convex promotion functional

structure. Only the combination of the nonconvex functionals that are promoting a

certain structural property will be beneficial for a reduction of the number of measure-

ments.

In general, by combining different structural assumptions, we reduce the d1d2 degrees of

freedom of a general (d1×d2)-matrix considerably. Nevertheless, the necessary number

of measurements depends on the recovery strategy that is employed and Oymak e.a.

[116] show that there is a significant difference for convex and nonconvex approaches

for simultaneously structured matrix recovery.

A first approach towards a solution is to only mildly relax the formulation of the prob-

lem (5.2) to attenuate its nonconvexity but not progressing until reaching convexity.

This leads, finally, to the model problems we want to work on in this chapter:

(1) constrained problem formulation: the objective functional F1(X) to be minimized

is a combination of (quasi-)norms of the signal in matrix form X under the linear

constraint

minF1(X) =
t∑

s=1

λs‖X‖Ns , (5.4)

s.t. ΦX = Y

(2) unconstrained problem formulation: the objective functional F2(X) to be mini-

mized is a combination of (quasi-)norms of the signal in matrix form X itself and

some (quasi-)norm of its residuals

minF2(X) =
t∑

s=1

λs‖X‖Ns + µ‖Φ(X)− Y ‖Nr , (5.5)

where λs ∈ R+, s ∈ [t] and ‖ · ‖Ns , ‖ · ‖Nr are one the following (quasi-)norms

(i) ‖ · ‖p`p , for 0 < p ≤ 2 promoting sparsity,

(ii) ‖ · ‖p′`2,p′ , for 0 < p′ ≤ 2 promoting row-sparsity,
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(ii) ‖ · ‖p′′`p′′,2 , for 0 < p′′ ≤ 2 promoting column-sparsity,

(iii) ‖ · ‖p′′′`S′′′p , for 0 < p′′′ ≤ 2 promoting low rank.

We note that the popular problem of low rank and sparse matrix decomposition also

known as robust principal component analysis (RPCA) as in [19, 27, 166, 168, 170] is

a special case of our setting with Φ = Id1 .

The solution of the nonconvex minimization problems above is in general a hard prob-

lem and standard relaxation based compressed sensing approaches will fail to be appli-

cable. In this chapter, we present a generalized Iteratively Reweighted Least Squares

method inspired by the ability of IRLS-type algorithms to approximate the different

nonconvex problems for the individual structures, for some of them even with a su-

perlinear rate of convergence. This approach was already explored for the special case

of row-sparse and low-rank matrices in the master’s thesis of Christian Kümmerle

[84], which was co-supervised by the author of this thesis. The concept is extended

to general simultaneously occurring sparsity-type structures for matrices and convex

combinations of those in this chapter of the thesis, based on unpublished results in

joint work with Christian Kümmerle. The present version of IRLS, named General-

ized Iteratively Reweighted Least Squares (GIRLS) will be able to handle any kind of

combination of nonconvex (quasi-)norms (5.2) and (5.3) as described in full detail in

the later section of either the signal in matrix form X itself or different kinds of linear

measurement residuals.

This extension to a generalized framework contributes novel theoretical results while

no further numerical experiments were conducted beyond Kümmerle’s master’s thesis.

Therefore, we refer to his work for details on numerical tests in this context.

Moreover, the optimal choice of the parameters λs ∈ R+, s ∈ [t] is still an interesting

open problem, where it would be possible to explore methods used in the framework

of multi-parameter regularization [99] and to apply them in our setting as well.
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5.1 Auxiliary functional and generalized IRLS algorithm

for structured matrices

As we observed in Definition 2.37, each of the (quasi-)norms ‖·‖Ns (or also ‖·‖Nr) above

can be expressed as a classical reweighted `2-norm ‖·‖`2(Ws) if considered in a vectorized

formulation. The weight matrices corresponding to the different sparsity-types have

certain structural patterns and Table 5.3 summarizes these structures presented in

Section 2.4. Note that the weight matrices Ws for `2(Ws)- minimization (or analogously

for Wr and `2(Wr)) given in the table are applied to the vectorized version of Z,

Zvec ∈ Rd1d2 and we use the indices l ∈ [d1d2], l = (i− 1) · d1 + j, i ∈ [d1], j ∈ [d2].

property ‖ · ‖Ns weight matrix Ws ∈ Rd1d2×d1d2

sparsity ‖ · ‖`p Ws = diag(Wl)
d1d2
l=1 with Wl = |Zl|p−2

row-sparsity ‖ · ‖`2,p Ws = diag(Wl)
d1d2
l=1 with Wl = (

∑d2
j=1 |Zij|2)

p−2
2

column-sparsity ‖ · ‖`p,2 Ws = diag(Wl)
d1d2
l=1 with Wl = (

∑d1
i=1 |Zij|2)

p−2
2

low rankness ‖ · ‖Sp Ws = Id2 ⊗WL with WL = ZZT

low rankness ‖ · ‖Sp Ws = WR ⊗ Id1 with WR = ZTZ

Table 5.3: Structural properties, corresponding quasinorms ‖ · ‖Ns and weight matrices
for `2(Ws)-minimization

To prevent singularity and instability problems a smoothing factor ε can be incor-

porated into the weight matrices and we refer to (2.76) for the respective smoothed

versions Ws,ε(X).

Having understood these facts, we can use the linearity of ‖ · ‖2
`2(W ) to unify the sum

of reweighted `2-norms for a vector z ∈ Rd and weight matrices Wn ∈ Rd as follows:

N∑
n=1

‖z‖2
`2(Wn) =

N∑
n=1

d∑
i=1

(Wn)iz
2
i =

d∑
i=1

(
N∑
n=1

(Wn)i

)
z2
i = ‖z‖2

`2(
∑N
n=1Wn)

. (5.6)

We can apply (5.6) to obtain the objective functional F1 in (5.4) and the first term in

the objective functional F2 in (5.5)

t∑
s=1

λs‖Xvec‖2
`2(Ns) =

t∑
s=1

d1∑
i=1

d2∑
j=1

λs(Ws)ijX
2
ij =

d1∑
i=1

d2∑
j=1

(
t∑

n=1

λs(Ws)ij

)
X2
ij

= ‖Xvec‖2
`2(

∑t
s=1 λsWs)

= ‖Xvec‖2
`2(W1),

(5.7)

where the weight matrix W1 =
∑t

s=1 λsWs.
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We define the weight matrix W2 of the residual term Φ(X)− Y as

W2 = µWr. (5.8)

As a conclusion from the calculations above, we can reformulate (5.4) and (5.5) in a

unified simple structure as follows

(1◦) constrained problem formulation: the objective functional F1(X) to be minimized

will be a combination of (quasi-)norms of the signal in matrix form X under linear

constraints

minF ◦1 (X) = ‖Xvec‖2
`2(W1) (5.9)

s.t. Φ(X) = Y,

where W1 is defined as above.

(2◦) unconstrained problem formulation: the objective functional F2(X) to be min-

imized will be a combination of (quasi-)norms of the signal in matrix form X

itself and its residuals

minF ◦2 (X) = ‖Xvec‖2
`2(W1) + ‖Φ(X)− Y ‖2

`2(W2), (5.10)

where W1 and W2 are defined as above.

Remark 5.1. In the even more general case, one can consider several measurement sets

Φr(X) = Yr, r ∈ [R],

where Φr : Md1×d2 → Rmr , Yr ∈ Rmr and the corresponding residuals with different

structures enforced by the different norms ‖ · ‖Nr

‖Φr(X)− Yr‖Nr , r ∈ [R].

The unconstrained problem formulation generalizes to the objective functional F2(X)

as follows

minF2(X) =
t∑

s=1

λs‖X‖Ns +
R∑
r=1

µr‖Φr(X)− Yr‖Nr . (5.11)

To keep notations simple, we restrict the formulation of the problems, algorithms and

analysis in the rest of the paper to a single linear constraint.
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One key tool to treat the different terms to be minimized are the transformations of

(5.2) and (5.3) to their unified reweighted `2-norm minimization of the form of (5.9)

and (5.10).

5.2 Algorithm formulation for the constrained case

At this point, we introduce a useful tool for the formulation and theoretical analysis

of an iteratively reweighted least squares algorithm for problems of type (5.2) in the

form of the following functional:

Definition 5.2. Let Φ : Md1×d2 → Rm, Y ∈ Rm and X ∈ Md1×d2 . Moreover, consider

the quasi-norms ‖ · ‖Ns for s ∈ [t] and the corresponding parameters εs > 0, s ∈ [t]

as well as the weight matrices Ws ∈ Rd1·d2×d1·d2 corresponding to the quasi-norms in

dependence of X and εs. Set W1 =
t∑

s=1

λspsWs. We define the auxiliary functional for

the constrained algorithm as

JGIRLS(X, (εs)s=1,...,t, (Ws)s=1,...,t) :=

1

2

[
‖Xvec‖2

`2(W1) +
t∑

s=1

‖εs · 1d1·d2‖2
`2(λspsWs) + 2− psλs‖W ps/(ps−2)

s ‖2
F

]
.

(5.12)

Next, we define the auxiliary variable for a matrix X ∈Md1×d2

Ns(X) =



rKs+1 (X)/(d1 · d2)1/ps , for ‖ · ‖Ns = ‖ · ‖ps`ps ,

rKs+1

( d2∑
j=1

(Xij)
2

)1/2
/d1/ps

1 , for ‖ · ‖Ns = ‖ · ‖ps`2,ps ,

rKs+1

((
d1∑
i=1

(Xij)
2

)1/2
)
/d

1/ps
2 , for ‖ · ‖Ns = ‖ · ‖ps`ps,2 ,

σKs+1(X)/(min(d1, d2))1/ps , for ‖ · ‖Ns = ‖ · ‖psSps .

Moreover, let

J̃GIRLS(W )
(n+1)
s̄ = JGIRLS(X(n+1), (ε(n+1)

s )s=1,...,t, (W
(n+1)
s )s=1,...,s̄−1,W, (W

(n)
s )s=s̄+1,...,t).

An iteratively reweighted least squares algorithm for the approximation of the solution

of (5.2) can be formulated as an alternating minimization of the just defined auxiliary

functional with respect to its arguments.

– 169 –



Algorithm 5 Generalized IRLS for structured matrices (GIRLS)

Input: Φ : Md1·d2 → Rm, Y = Φ(X0) ∈ Rm for ground truth matrix X0 ∈ Md1×d2 ,
nonconvexity parameters ps for s ∈ [t].

Output: X(1), X(2), . . . ∈Md1×d2
Initialize ε

(0)
s = 1, set W

(0)
s = λsps · Id1·d2 for s ∈ [t].

repeat

X(n+1) = arg min
Φ(X)=Y

JGIRLS(X, (ε(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t) (5.13)

= arg min
Φ(X)=Y

‖Xvec‖2

`2(W
(n)
1 )

=
(
W

(n)−1
1 ◦ Φ∗ ◦ (Φ ◦W (n)−1

1 ◦ Φ∗)−1
)(
Y
)

for s = 1, . . . , t

ε(n+1)
s = min

(
ε(n)
s ,max(Ns(X(n+1)), ε̃),max

s
(Ns(X(n+1)))

)
with ε̃ > 0,

(5.14)

for s = 1, . . . , t

W (n+1)
s =



arg min
W>0,W diag

J̃GIRLS(W )
(n+1)
s , for ‖ · ‖Ns = ‖ · ‖ps`ps ,

arg min
W=Id2⊗W,W>0,Wdiag

J̃GIRLS(W )
(n+1)
s , for ‖ · ‖Ns = ‖ · ‖ps`2,ps ,

arg min
W=W⊗Id1 ,W>0,Wdiag

J̃GIRLS(W )
(n+1)
s , for ‖ · ‖Ns = ‖ · ‖ps`2,ps ,

arg min
W=Id2⊗W,W>0

J̃GIRLS(W )
(n+1)
s , for ‖ · ‖Ns = ‖ · ‖psSps ,

arg min
W=W⊗Id1 ,W>0

J̃GIRLS(W )
(n+1)
s , for ‖ · ‖Ns = ‖ · ‖psSps

= W
s,ε

(n+1)
s

(X(n+1)) as defined in (2.76). (5.15)

W
(n+1)
1 =

t∑
s=1

λspsW
(n+1)
s .

n = n+ 1.

until stopping criterion is met ;
Set n0 = n.

We stop the algorithm if ε
(n)
s = 0 for s ∈ [t] and set X(j) := X(n) for j > n. However, in

general, the algorithm will generate an infinite sequence (X(n))n∈N of distinct matrices

and it is convenient to keep the variables εs,Ws fixed as soon as ε
(n)
s falls below an

appropriately chosen threshold and only continue updating the other variables.

The details of the derivation of explicit expressions to calculate X(n+1),W
(n)
s as de-

fined in (2.76) is omitted here. They can be obtained by deducing the appropriate

Langrangian from JGIRLS and the corresponding constraints and minimizing the re-

sulting functional, where each of the minimization steps carried out in the algorithm
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constitutes a convex optimization problem.

5.3 Theoretical analysis and convergence results for the

constrained case

In the following section, we will have a closer look at Algorithm 5 and point out some

of its properties. In particular, we show that the iterates (X(n))n∈N stay bounded and

the fact that two consecutive iterates are getting arbitrarily close as n → ∞. These

results will be useful to develop finally the proof of convergence for Algorithm 5 under

conditions determined along the way.

5.3.1 Unified presentation of properties for different sparsity struc-

tures

At this point, we want to summarize certain useful notations and matrix properties

in their specific variants for the sparsity structures mentioned above and give their

formulation for general structured X ∈Md1×d2 :

(i) RIP: A map Φ : Md1×d2 → Rm fulfills the RIP for a structure ss of order ks with

constant δs ∈ (0, 1) if for every matrix X with sparsity structure ss of order ks

holds

(1− δs)‖X‖2
F ≤ ‖Φ(X)‖2

`2
≤ (1 + δs)‖X‖2

F . (5.16)

Moreover, each of these versions of the restricted isometry properties implies the cor-

responding nullspace property (NSP) ([88, 117, 124, 158]):

(ii) NSP: A map Φ : Md1×d2 → Rm fulfills the NSP for a structure ss of order ks

with constant γs ∈ (0, 1) if for all elements η ∈ Md1×d2 of the nullspace of Φ,

N (Φ) holds

‖ηSs‖Ns ≤ γk‖ηScs‖Ns . (5.17)

(iii) Best ks-term approximation error[54]: For ps > 0, the best ks-term approxi-

mation error to a matrix X ∈Md1×d2 is defined by

βks(X)Ns := inf
{
‖X − Z‖Ns , Z has sparsity structure ss of order ks

}
.

A quite straightforward consequence of the above NSP is the following corresponding

inequality
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(iv) Inequality from NSP [35, 55, 116]: If a map Φ : Md1×d2 → Rm fulfills the NSP

for a structure ss of order ks with constant γs ∈ (0, 1) and Z,Z ′ with Φ(Z) = Y

and Φ(Z ′) = Y we have

‖Z ′ − Z‖Ns ≤
1 + γs
1− γs

(‖Z ′‖Ns − ‖Z‖Ns + 2βks(Z)Ns) . (5.18)

5.3.2 Preliminary results

In this section, we formulate several Lemmata that will be fundamental ingredients for

the proof of convergence of Algorithm 5.

In the following, we want to assume that our desired solution matrix X0 has sparsity

structure ss, s ∈ [t] of order ks, s ∈ [t] and the map Φ fulfills the corresponding NSP of

order Ks, s ∈ [t] with Ks > ks respectively, where Ks is representing a generous guess

of the sparsity level ks.

Denote J (n)
GIRLS = JGIRLS(X(n), (ε

(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t). Our first quite straightfor-

ward observation is that at iteration n of Algorithm 5 the following holds

J (n)
GIRLS =

1

2

(
‖X(n)

vec‖2
`2(W̄ (n)) +

t∑
s=1

‖ε(n)
s · 1d1·d2‖2

`2(λsW
(n)
s )

+
t∑

s=1

(2− ps)‖(W (n)
s )ps/(ps−2)‖2

`2

)

=
t∑

s=1

λs
ps
2

d1·d2∑
l=1

W l
s(X

(n)
l )2 + λs

ps
2

d1·d2∑
l=1

W l
s(ε

(n)
s )2 +

2− ps
2

λs(W
l
s)

ps
ps−2

=
t∑

s=1

λsf
ε
(n)
s
Ns

(X(n)),

(5.19)

where f εsNs(X) =



∑d1·d2
l=1 (|Xl|2 + ε2s)

ps
2 for ‖ · ‖Ns = ‖ · ‖ps`ps ,∑d1

i=1

(∑d2
j=1 |Xij|2 + ε2s

) ps
2

for ‖ · ‖Ns = ‖ · ‖ps`2,ps ,∑d2
j=1

(∑d1
i=1 |Xij|2 + ε2s

) ps
2

for ‖ · ‖Ns = ‖ · ‖ps`ps,2 ,
tr
((
XXT + ε2s · Id1

) ps
2

)
for ‖ · ‖Ns = ‖ · ‖psSps ,

tr
((
XTX + ε2s · Id2

) ps
2

)
for ‖ · ‖Ns = ‖ · ‖psSps .

(5.20)

We note that f εsNs is a good approximations to ‖ · ‖Ns , which will be useful later.

Furthermore, we observe that due to the minimization properties resulting from Algo-

rithm 5, the following monotonicity property holds.
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Lemma 5.3. The inequalities

J (n)
GIRLS = J1(X(n), (ε(n)

s )s=1,...,t, (W
(n)
s )s=1,...,t)

≥ JGIRLS(X(n+1), (ε(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t)

≥ JGIRLS(X(n+1), (ε(n+1)
s )s=1,...,t, (W

(n)
s )s=1,...,t)

≥ JGIRLS(X(n+1), (ε(n+1)
s )s=1,...,t, (W

(n+1)
s )s=1,...,t) = J (n+1)

GIRLS

hold for all n ≥ 0.

Proof. Here the first inequality follows from the minimization property that defines

X(n+1), the next inequalities from ε
(n+1)
s ≤ ε

(n)
s , and the last inequality from the mini-

mization properties that define W
(n+1)
s .

Due to Lemma 5.3, we can state that

JGIRLS(X(n), (ε(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t) ≤ JGIRLS(X(1), (ε(0)

s )s=1,...,t, (W
(0)
s )s=1,...,t),

where the right hand side is a constant and this will help to obtain the boundedness

of the iterates (X(n))n∈N:

Lemma 5.4. The sequence of iterates
(
X(n)

)
n∈N defined by Algorithm 5 fulfills

t∑
s=1

λs‖X(n)‖Ns ≤ JGIRLS(X1, (ε(0)
s )s=1,...,t, (W

(0)
s )s=1,...,t) := J (0)

GIRLS.

Proof. For all n ∈ N

t∑
s=1

λs‖X(n)‖Ns ≤
t∑

s=1

λsf
ε
(n)
s
Ni

(X(n)) = JGIRLS(X(n), (ε(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t)

≤ JGIRLS(X(1), (ε(0)
s )s=1,...,t, (W

(0)
s )s=1,...,t) = JGIRLS(0),

where the last inequality is a consequence of the monotonicity property stated in

Lemma 5.3.

As a next result, we would like to state that from the sequence J (n)
GIRLS being conver-

gent it follows that the iterates X(0), . . . , X(n), X(n+1), . . . of Algorithm 5 are getting

arbitrarily close for n→∞.

Lemma 5.5. For the iterates of Algorithms 5 it holds

lim
n→∞

‖X(n) −X(n+1)‖2
`2

= 0.
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Proof. For each n = 1, 2, ... we have

2
[
J (n)
GIRLS − J

(n+1)
GIRLS

]
≥ 2

[
J (n)
GIRLS − JGIRLS(X(n+1), (ε(n)

s )s=1,...,t, (W
(n)
s )s=1,...,t)

]
= ‖X(n)

vec )‖2

`2(W
(n)
1 )
− ‖X(n+1)

vec ‖2

`2(W
(n)
1 )

= 〈(X(n) +X(n+1))vec, (X
(n) −X(n+1))vec〉`2(W

(n)
1 )

Analogously to [35], we notice that the `2(W )-norm is strictly convex and, therefore,

its minimizer, which we denote by XW , is unique. It is possible to characterize this

minimizer by

〈(XW )vec, ηvec〉`2(W ) = 0

for all η ∈ N (Φ). Since X(n+1) is the minimizer of ‖Xvec‖2

`2(W
(n)
1 )

and X(n) −X(n+1) ∈
N (Φ), it also holds that

〈X(n+1)
vec , (X(n) −X(n+1))vec)〉`2(W

(n)
1 )

= 0.

Moreover, we need an estimate on σmin(W
(n)
1 ) to obtain a bound on the difference of

iterates independent of the reweighting matrix. Since 1 = σmin(X)σmax(X−1) for any

invertible matrix X, it is sufficient to calculate σmax((W
(n)
1 )−1) to gain information on

σmin(W
(n)
1 ). Notice that (W

(n)
s )−1 can be bounded by direct calculation as follows

σ1

(
(W (n)

s

)−1
) ≤

(
λsf

ε
(n)
s
s (X(n))

) 2−ps
ps ≤ (J (0)

GIRLS)
2−ps
ps .

Hence, we conclude that σmin(W
(n)
s ) ≥ (J (0)

GIRLS)1− 2
ps .

We can then summarize the results above to obtain

2
[
J (n)
GIRLS − J

(n+1)
GIRLS

]
= 〈(X(n) +X(n+1))vec, (X

(n) −X(n+1))vec〉`2(W
(n)
1 )

= 〈(X(n) −X(n+1))vec, (X
(n) −X(n+1))vec〉`2(W

(n)
1 )

= ‖(X(n) −X(n+1))vec‖2

`2(
t∑

s=1
λspsWs)

=
t∑

s=1

λsps‖(X(n) −X(n+1))vec‖2
`2(Ws)

≥
t∑

s=1

λspsσmin(W (n)
s )‖(X(n) −X(n+1))vec‖2

`2

=
t∑

s=1

λsps(J (0)
GIRLS)1− 2

ps ‖(X(n) −X(n+1))vec‖2
`2
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:= C‖(X(n) −X(n+1))vec‖2
`2
.

The monotonicity property stated in Lemma 5.3 and the boundedness of the sequence(
J (n)
GIRLS

)
n∈N

imply that

lim
n→∞

(J (n)
GIRLS − J

(n+1)
GIRLS) = 0,

hence also

lim
n→∞

‖(X(n) −X(n+1))vec‖2
`2

= 0.

From the monotonicity of the components of
(
ε

(n)
s

)
s=1,...,t

we know that εs :=

limn→∞ ε
(n)
s exists and is non-negative. Define ε := (εs)s=1,...,t. The following functional

will play a role in our proof of convergence, especially if all components of ε are positive.

Definition 5.6. (ε-perturbed objective functional ) We define the ε-perturbed objec-

tive functional to be of the following form

F ε(X) :=
t∑

s=1

λsf
εs
Ns

(X)

and the corresponding minimization problem

min
Φ(X)=Y

F ε(X). (5.21)

Notice that, if we knew that X(n) converged to a point X̄, then, having in mind (4.25),

F ε(X̄) would be the limit of JGIRLS(X(n),
(
ε

(n)
s

)
s=1,...,t

,
(
W

(n)
s

)
s=1,...,t

) for n → ∞. In

the case that F ε is nonconvex one might practically only be able to find critical points.

We denote by Zε(Y ) its set of global minimizers Z with Φ(Z) = Y . Moreover, let a

minimizer in dependence of (εs)s=1,...,t be denoted as

Xε ∈ arg min
Φ(X)=Y

F ε(X) = Zε(Ỹ ). (5.22)

Lemma 5.7. Let ε > 0 and Z with Φ(Z) = Y . Then Z is a critical point of F ε, i.e.,

∇Z(F ε)(Z) =
(
∂F ε(Z)
Zl

)d1·d2
l=1

= 0 if and only if 〈Zvec, ηvec〉W1(Z,ε) = 0 for all η ∈ N (Φ),

where W1(Z, ε) =
t∑

s=1

λspsWs(Z, εs). In the case that F ε is convex, i.e., ps ≥ 1 for all

s ∈ [t], 〈Zvec, ηvec〉W1(Z,ε) = 0 implies that Z = Xε is the unique minimizer.
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Proof. First we prove the ”only if” part. Let Z be a critical point of F ε meaning

(F ε)′(Z) = 0 and η ∈ N (Φ). Consider the function F̃ ε(t) = F ε(Z + tη)− F ε(Z). Note

that (F̃ ε)′(0) = 〈∇Z(F ε)(Z)vec, ηvec〉 and that, if Z is a critical point of F ε, 0 is also a

critical point of F̃ ε, i.e., (F̃ ε)′(0) = 0. Therefore, if

0 = (F̃ ε)′(0) = 〈∇Z(F ε)(Z)vec, ηvec)〉 =

〈(
t∑

s=1

λs(∇Z(f εsNs)(Z)

)
vec

, ηvec

〉

where

(∇Z(f εsNs)(Z)))vec =



(
psZl (Z

2
l + ε2s)

ps−2
2

)d1·d2
l=1

for ‖ · ‖Ns = ‖ · ‖ps`ps(
psZl

(∑d2
j=1 |Zij|2 + ε2s

) ps−2
2

)d1·d2
l=1

for ‖ · ‖Ns = ‖ · ‖ps`2,ps ,(
psZl

(∑d1
i=1 |Zij|2 + ε2s

) ps−2
2

)d1·d2
l=1

for ‖ · ‖Ns = ‖ · ‖ps`ps,2 ,(
psZ

T
(
ZZT + ε2s · Id1

) ps−2
2

)
vec

for ‖ · ‖Ns = ‖ · ‖psSps ,(
psZ

(
ZTZ + ε2s · Id2

) ps−2
2

)
vec

for ‖ · ‖Ns = ‖ · ‖psSps .

=



ps diag
(

(Z2
l + ε2s)

ps−2
2

)d1·d2
l=1

Zvec for ‖ · ‖Ns = ‖ · ‖ps`ps ,

ps diag

((∑d2
j=1 |Zij|2 + ε2s

) ps−2
2

)d1·d2
l=1

Zvec for ‖ · ‖Ns = ‖ · ‖ps`2,ps ,

ps diag

((∑d1
i=1 |Zij|2 + ε2s

) ps−2
2

)d1·d2
l=1

Zvec for ‖ · ‖Ns = ‖ · ‖ps`ps,2 ,

ps

((
Id2 ⊗

(
ZZT + ε2s · Id1

) ps−2
2

))
Zvec for ‖ · ‖Ns = ‖ · ‖psSps ,

ps

((
ZTZ + ε2s · Id2

) ps−2
2 ⊗ Id1

)
Zvec for ‖ · ‖Ns = ‖ · ‖psSps .

It follows that

0 = 〈
t∑

s=1

λsps(Ws(Z, εs)Z)vec, ηvec〉

= 〈W1(Z, ε)Zvec, ηvec〉 = 〈Zvec, ηvec)〉W1(Z,ε).

Now we treat the ”if” part. Let Z ∈ Md1×d2 be such that Φ(Z) = Y and assume that

for all η ∈ N (Φ) holds

0 = 〈Zvec, ηvec〉W1(Z,ε).

Following the lines of the previous calculations, we see that

0 = 〈Zvec, ηvec〉W1(Z,ε) = 〈W1(Z, ε)Zvec, ηvec〉 = 〈(∇Z(F ε)(Z))vec, ηvec〉.

This means that (∇Z(F ε)(Z))vec is perpendicular to the nullspace of Φ and therefore
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it holds

(∇Z(F ε)(Z))vec ∈ Ran(Φ∗) and Φ(Z) = Y.

Therefore, Z satisfies the KKT conditions of (5.21) and Z is a critical point of F ε under

the linear constraint. This proves the first part of the lemma.

For the convex case, assume that Φ(Z) = Y and 〈Z, η〉W1(Z,ε) = 0 for all η ∈ N (Φ),

where W1(Z, ε) is defined as above. We shall show that, if 〈Zvec, ηvec〉W1(Z,ε) = 0, Z is

the minimizer of F ε
1 for all Φ(Z) = Y and, therefore, coincides with Xε. Since F ε is a

combination of the functions f εsNs , for any point Z0, we obtain by convexity

F ε(Z̄) =
t∑

s=1

λsf
εs
Ns

(Z̄) ≥
t∑

s=1

λsf
εs
Ns

(Z0) +
t∑

s=1

λs〈(∇Z(f εsNs)(Z0))vec, (Z̄ − Z0)vec〉

= F ε(Z0) + 〈(Z0)vec, (Z̄ − Z0)vec〉W1(Z0,ε).

If we take now Z̄ such that Φ(Z̄) = Y and Z0 = Z, we have that Z̄ − Z ∈ N (Φ) and

obtain

F ε(Z̄) ≥ F ε(Z) + 〈Zvec, (Z̄ − Z)vec〉W1(Z,ε) = F ε(Z),

which yields the result.
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5.3.3 Convergence results

Finally, we can state the convergence results for Algorithm 5.

Theorem 5.8. Fix Y ∈ Rm. Let Φ : Md1×d2 → Rm and the functional

JGIRLS(X(n), (ε
(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t) be defined for (ε

(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t as gen-

erated by Algorithm 5 for all n ≥ 0. Assume that the matrix X0 ∈Md1×d2 has property

Ss of order ks for all s ∈ [t]. Let Z̄ε be the set of accumulation points of the sequence

(X(n))n∈N generated by Algorithm 5.

(i) If ε = (εs)s=1,...,t = (0)s=1,...,t, and

(a) the matrix Φ fulfills the corresponding NSP for all structures Ss,

s ∈ [t], of order Ks as defined in Definition 4.10,

or (b) if ps = p for all s ∈ [t] and, if there exists some s0 ∈ [t] such that Φ fulfills

the NSP corresponding to structure Ss0 of order Ks0,

then Z̄ε consists of a single point X̄ that has sparsity structure Ss of order Ks

for all s ∈ [t] and X̄ = X0 is the solution to the minimization problem (5.4).

Moreover, in case (a), we have for ks ≤ Ks, s ∈ [t] and any Z with Φ(Z) = Y

that

t∑
s=1

λs‖Z − X̄‖Ns ≤
t∑

s=1

ĈsβKs(Z)Ns , where Ĉs =
2λs(1 + γs)

(1− γs)
. (5.23)

(ii) If ε = (εs)s=1,...,t with εs > 0 for any s, then each point X̄ ∈ Z̄ε is a stationary

point of the ε-perturbed objective functional F ε
1 . In the case that F ε

1 is convex,

i.e., ps ≥ 1 for s ∈ [t] then X̄ = Xε is the unique global minimizer of F ε
1(X).

(iii) In the case of (ii), if the matrix Φ fulfills the corresponding NSPs corresponding

to the structures ss of order Ks for all s ∈ [t] as defined in Definition 4.10 with

γs < 1− 2
Ks+2

(or equivalently, if 2γs
1−γs < Ks), then we have, for all X̄ ∈ Z̄ε ∩Zε

and all Z with Φ(Z) = Y and any ks < Ks − 2γs
1−γs that

t∑
s=1

λs‖Z − X̄‖Ns ≤


∑t

s=1 C̃sβKs(Z)Ns if εs ≥ ε̃ for all s ∈ [t],∑t
s=1 C̃s max

s
βKs(Z)Ns if εs < ε̃ for any s ∈ [t]

with C̃s := 2λs(1+γs)
1−γs

[
Ks−ks+ 3

2

Ks−ks− 2γs
1−γs

]
.

As a consequence, this case is excluded if there exists a matrix Z with Φ(Z) = Y

and sparsity structure Ss of order ks < Ks − 2γs
1−γs .
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Proof. (i) Since εs = 0, s ∈ [t] and by monotonicity, there exist ns ∈ N such that

ε
(ns)
s < ε, but ε

(ns−1)
s ≥ ε. By the definitions of ε

(n)
s , this can only happen if the third

terms of the definitions are the minima. This, on the other hand, means that the ns

are equal for all s ∈ [t]. We denote this number as n0 in the following. It holds that

the sequences (ε
(n)
s )n∈N, s ∈ [t] are equal for all n ≥ n0. Thus, we can define a sequence

(ε(n))n≥n0 with ε(n) := ε
(n)
s , s ∈ [t].

We first assume that there exists an n̄ ∈ N such that ε(n̄) = 0. Then we have X(n̄) = X̄

and it holds that βKs+1(X̄)Ns = 0. Otherwise, we have that ε(n) > 0 for all n ∈ N. In

this case, there exists a subsequence (nl)l∈N of (n)n≥n0 such that ε(nl+1) < ε(nl) for all

l ∈ N. By Lemma 5.4, (X(nl+1))l is bounded and we can extract a further subsequence,

which we denote again by (X(nl+1))l, and that converges to some X̄ := liml→∞X
(nl+1).

Since liml→∞ ε
(nl+1) = 0, it also follows that liml→∞ βKs+1(X(nl))Ns = 0. Moreover, by

continuity of the non-incresasing rearrangement resp. Ki + 1-th singular value, we get

that βKs+1(X̄)Ns = 0 and thus X̄ is a solution to Φ(X) = Y with sparsity structure ss

of order Ks.

We now show that the whole sequence converges to X̄. According to (4.25), for n ≥ n0,

it holds that

JGIRLS(X(n), (ε(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t) =

t∑
s=1

λsf
ε
(n)
s
Ns

(X(n)). (5.24)

Since (X(nl+1))
l→∞−−−→ X̄ and ε(nl+1) l→∞−−−→ 0,

JGIRLS(X(n), (ε(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t)

l→∞−−−→
t∑

s=1

λs‖X̄‖Ns . (5.25)

By the non-increasing monotonicity property stated in Lemma 5.3,

that the same holds true for the whole sequence (X(n))n≥`0 , i.e.,

JGIRLS(X(n), (ε
(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t)

n→∞−−−→ ∑t
s=1 λs‖X̄‖Ns . By introducing the

structure-dependent dimension parameter ds, where

ds =



d1 · d2 for ‖ · ‖`ps ,
d1 for ‖ · ‖`2,ps ,
d2 for ‖ · ‖`ps,2 ,
min(d1, d2) for ‖ · ‖`Sps ,

we see that

J (n)
GIRLS −

t∑
s=1

dsλs(ε
(n))ps ≤

t∑
s=1

λs‖X(n)‖Ns ≤ J (n)
GIRLS, (5.26)
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for n ≥ n0. Since limn→∞
∑t

s=1 dsλs(ε
n)ps = 0, we conclude that also

t∑
s=1

λs‖X(n)‖Ns
n→∞−−−→

t∑
s=1

λs‖X̄‖Ns . (5.27)

Now, it remains to show that X(n) → X̄.

By Lemma 4.13

‖X̄ −X(n)‖Ns ≤
1 + γs
1− γs

(
‖X̄‖Ns − ‖X(n)‖Ns + 2βKs+1(X̄)Ns

)
and therefore,

min
s=1,...,t

1− γs
1 + γs

t∑
s=1

λs‖X̄ −X(n)‖Ns ≤
t∑

s=1

λs(‖X̄‖Ns − ‖X(n)‖Ns)

=
t∑

s=1

λs‖X̄‖Ns −
t∑

s=1

λs‖X(n)‖Ns ,

as βKs+1(X) = 0 due to the fact Ni(X) = 0. Thus, we can summarize

min
s=1,··· ,t

‖X̄ −X(n)‖psF ≤
1∑t
s=1 λs

t∑
s=1

λs‖X̄ −X(n)‖psF ≤
1∑t
s=1 λs

t∑
s=1

λs‖X̄ −X(n)‖Ns

≤
min

s=1,··· ,t
1+γs
1−γs∑t

s=1 λs

(
t∑

s=1

λs‖X̄‖Ns −
t∑

s=1

λs‖X(n)‖Ns

)

:= C0

(
t∑

s=1

λs‖X̄‖Ns −
t∑

s=1

λs‖X(n)‖Ns

)
.

Taking the limit n→∞ gives lim
n→∞

‖X̄−X(n)‖F = 0. Therefore, it follows that X(n) →
X̄.

To obtain (5.23), we first consider a variable Z with Φ(Z) = Y and use Lemma 4.13

t∑
s=1

λs‖Z − X̄‖Ns ≤
t∑

s=1

λs(1 + γs)

(1− γs)
(
‖X̄‖Ns − ‖Z‖Ns + 2βKs(Z)Ns

)
≤

t∑
s=1

2λs(1 + γs)

(1− γs)
βKs(Z)Ns ,

(5.28)

where the second inequality follows from the fact that X̄ is the unique minimizer of

(5.4).
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In the case, where ps = p for all s ∈ [t], we only need that the NSP corresponding to

only one of the structures ss holds.

We first observe that for all Z holds that
min
s
d
1
2−

1
p

s∑t
s=1 λs

∑t
s=1 λs‖Z‖Ns ≤ ‖Z‖pF ≤

1∑t
s=1 λs

∑t
s=1 λs‖Z‖Ns .

Therefore, we also have ‖X(n)‖pF
n→∞−−−→ ‖X̄‖pF . By the equivalence of (quasi-) norms we

can conclude that also ‖X(n)‖Ns
n→∞−−−→ ‖X̄‖Ns . Using again Lemma 4.13, we get

‖X̄ −X(n)‖Ns ≤
1 + γs
1− γs

(
‖X̄‖Ns − ‖X(n)‖Ns + 2βk+1(X̄)Ns

)
and obtain immediately

‖X̄ −X(n)‖pF ≤
1 + γs
1− γs

(
‖X̄‖Ns − ‖X(n)‖Ns

)
:= C0

(
‖X̄‖Ns − ‖X(n)‖Ns

)
.

Taking the limit n→∞ yields again lim
n→∞

‖X̄−X(n)‖F = 0 and proves the convergence

with less restrictive assumptions.

(ii) We shall first show that X(n) → Xε for n → ∞ with Xε being a stationary point

of F ε(X). We already observed that (X(n))n∈N0 is a bounded sequence and, hence, this

sequence has accumulation points. Let (X(nl))l∈N0 be any convergent subsequence of

(X(n))n∈N0 and X̄ its limit. We want to show that X̄ = Xε.

Since W1(X, ε), as defined in Lemma 5.7, depends continuously on X and ε, it follows

that lim
l→∞

W
(n)
1 = lim

l→∞
W1(X(nl), (εnls )s=1,...,t) := W1(X̄, ε) = �W1.

On the other hand, by invoking Lemma 5.5, we obtain also that X(nl+1) → X̄, l →∞
and, therefore, also lim

l→∞
W

(nl+1)
1 = �W1. We observe that with the minimality property

of X(nl+1) the KKT conditions for the optimization problem in (5.13) are fulfilled, i.e.,

W
(nl)
1 X(nl+1) ∈ Ran(Φ∗) and Φ(X(nl+1)) = Y.

This implies that there exists θ ∈ Rm such that W
(nl+1)
1 X(nl) = Φ∗(θ). Note that for

all η ∈ N (Φ) and all nl, l > 0,

〈X(nl+1)
vec , ηvec〉W (nl)

1

= 〈W (nl)
1 X(nl+1)

vec , ηvec〉 = 〈Φ∗(θ), ηvec〉 = 〈θ,Φ(η)〉 = 0.

Consequently, 〈X̄vec, ηvec〉�W1
= lim

l→∞
〈X(nl+1)

vec , ηvec〉W (nl)
1

= 0. By Lemma 5.7, this implies

that X̄ is a stationary point of F ε and even coincides with the unique minimizer Xε in

the convex case.

(iii) To prove the error estimate stated in (iii), we first observe that with the minimizing
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property of Xε, for every Z̃ with Φ(Z̃) = Y , we have

t∑
s=1

λs‖Xε‖Ns ≤ F ε(Xε) ≤ F ε(Z̃) ≤
t∑

s=1

λs‖Z̃‖Ns +
t∑

s=1

dsλsε
ps
s .

Hence we obtain

t∑
s=1

λs‖Xε‖Ns −
t∑

s=1

λs‖Z̃‖Ns ≤
t∑

s=1

dsλsε
ps
s

Furthermore, using Lemma 4.13, we have that

t∑
s=1

λs‖Xε − Z̃‖Ns ≤
t∑

s=1

λs
1 + γs
1− γs

(dsε
ps
s + 2βks(Z̃)Ns). (5.29)

From the definition of ε, we obtain

t∑
s=1

λsε
ps
s = lim

n→∞

t∑
s=1

λs(ε
(n)
s )ps

≤

 lim
n→∞

∑t
s=1 λs(rks(X

(n)))ps εs ≥ ε̃ for all s ∈ [t]

lim
n→∞

∑t
s=1 λs max

s
(rks(X

(n)))ps εs < ε̃ for any s ∈ [t]

=


∑t

s=1 λs(rks(X
ε))ps εs ≥ ε̃ for all s ∈ [t]∑t

s=1 λs max
s

(rks(X
ε))ps εs < ε̃ for any s ∈ [t].

However, it is easy to see that |βks(Z)Ns − βks(Z ′)Ns| ≤ ‖Z − Z ′‖Ns . From this obser-

vation and Lemma 4.13, we conclude that

(Ks + 1− ks)dsεpss

≤

(Ks + 1− ks)(rks(Xε))ps εs ≥ ε̃ for all s ∈ [t],

(Ks + 1− ks) max
s

(rks(X
ε))ps εs < ε̃ for any s ∈ [t]

≤

(‖Xε − Z̃‖Ns + βks(Z̃)Ns) εs ≥ ε̃ for all s ∈ [t],

max
s

(‖Xε − Z̃‖Ns + βks(Z̃)Ns) εs < ε̃ for any s ∈ [t]

≤

(1+γs
1−γs [dsε

ps
s + 2βks(Z̃)Ns ] + βks(Z̃)Ns) εs ≥ ε̃ for all s ∈ [t],

(1+γs
1−γs max

s
[dsε

ps
s + 2βks(Z̃)Ns + βks(Z̃)Ns ]) εs < ε̃ for any s ∈ [t].
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Since we assumed that Ks − ks ≥ 2γs
1−γs ,

dsε
ps
s + 2βks(Z̃)Ns ≤

2(Ks − ks) + 3

(Ks − ks)− 2γs
1−γs

βks(Z̃)Ns

in the case εs ≥ ε̃, for all s ∈ [t] and

dsε
ps
s + 2βks(Z̃)Ns ≤ max

s
ds[(ε

ps
s ) + 2(βks(Z̃)Ns)] ≤

2(Ks − ks) + 3

(Ks − ks)− 2γs
1−γs

max
s

(βks(Z̃)Ns)

in the case εs < ε̃ for any s ∈ [t]. Plugging this into (5.29) and continuing as in the

calculation (5.28) gives

t∑
s=1

λs‖Z − X̄‖Ns ≤
t∑

s=1

λs(‖Z − Z̃‖Ns + ‖Z̃ − X̄‖Ns)

≤
t∑

s=1

λs(σmin(Φ̃))−1‖Ŷ − Ỹ ‖Ns +
t∑

s=1

λs(1 + γs)

(1− γs)
(
‖X̄‖Ns − ‖Z̃‖Ns + 2βks(Z̃)Ns

)

≤


∑t

s=1 λsC̃sβks(Z)Ns εs ≥ ε̃ for all s ∈ [t]∑t
s=1 λsC̃s max

s
βks(Z)Ns εs < ε̃ for any s ∈ [t]

(5.30)

Remark 5.9. The theoretical error bound obtained in (iii) does not outperform the

bound obtained by the minimization of one norm, i.e., the exploitation of only one

structure. However, numerical experiments in the thesis of Kümmerle [84] show that

practically the recovery error is significantly lower for Algorithm 5 than using only one

structure (except of cases, where one structure is extremely dominating).
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5.4 Algorithm formulation for the unconstrained case

Analogously to the constrained case, we also want to introduce a similar auxiliary

functional that will be helpful for the formulation of a second version of IRLS for

problems of type (5.5), assuming that m = m1 ·m2 and that Φ(X) − Y ∈ Rm can be

reshaped into a m1 ×m2-matrix:

Definition 5.10. Given Φ : Md1×d2 → Rm, Y ∈ Rm. Consider ‖ · ‖Ns , ‖ · ‖Nr and the

corresponding real numbers εs > 0, εr > 0, and weight matrices Ws ∈ Rd1·d2×d1·d2 ,Wr ∈
Rm×m for s ∈ [t] derived from the norms ‖ · ‖Ns and ‖ · ‖Nr . Set W1 =

∑ns
s=1 λspsWs

and W2 = µprWr. We define the following auxiliary functional

JGIRLS2(X, (εs)s=1,...,t, εr, (Ws)s=1,...,t,Wr) :=

1

2

(
‖Xvec‖2

`2(W1) +
t∑

s=1

‖εs · 1d1·d2‖2
`2(λspsWs) + (2− ps)λs‖W ps/(ps−2)

s ‖2
`2

+ ‖Φ(X)− Y ‖2
`2(W2) + ‖εr · 1m‖2

`2(W2) + (2− pr)µ‖W pr/(pr−2)
r ‖2

`2

) (5.31)

Again, we define an additional auxiliary variable for the formulation of the algorithm

Nr(X) =



rKs+1 (Φ(X)− Y )/m1/pr , for ‖ · ‖Nr = ‖ · ‖pr`pr ,

rKs+1

(m2∑
j=1

(((Φ(X)− Y )ij)
2

)1/2
/d1/pr

1 , for ‖ · ‖Nr = ‖ · ‖ps`2,ps ,

rKs+1

((
m1∑
i=1

((Φ(X)− Y )ij)
2

)1/2
)
/d

1/pr
2 , for ‖ · ‖Nr = ‖ · ‖pr`pr,2 ,

σKs+1(Φ(X)− Y )/(min(m1,m2))1/pr , for ‖ · ‖Ns = ‖ · ‖prSpr ,

and

Mr(X) =



rm (Φ(X)− Y ) /m1/pr , for ‖ · ‖Nr = ‖ · ‖pr`pr ,

rm1

(m2∑
j=1

((Φ(X)− Y )ij)
2

)1/2
 /m

1/pr
1 , for ‖ · ‖Nr = ‖ · ‖ps`2,ps ,

rm2

((
m1∑
i=1

(((Φ(X)− Y )ij)
2

)1/2
)
/m

1/pr
2 , for ‖ · ‖Nr = ‖ · ‖ps`ps,2 ,

σmin(m1,m2)(Φ(X)− Y )/(min(m1,m2))1/pr , for ‖ · ‖Nr = ‖ · ‖prSpr .

Moreover, let

J̃GIRLS2(W )(n+1)
u = JGIRLS(X(n+1), (ε(n+1)

u )u=1,...,t, (W
(n+1)
u )u=1,...,u−1,W, (W

(n)
u )u=u+1,...,t+1)
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for u ∈ [t+ 1] corresponding to s ∈ [t] for u ∈ [t] or r if u = t+ 1.

GIRLS2 again performs an alternating minimization of the functional JGIRLS2.

Algorithm 6 Generalized IRLS for structured matrices and residuals 2 (GIRLS2)

Input: Φ : Md1·d2 → Rm, Y = Φ(X0) ∈ Rm for a ground truth matrix X0 ∈Md1×d2 ,
nonconvexity parameters ps for s ∈ [t], pr.

Output: X(1), X(2), . . . ∈Md1×d2
Initialize ε

(0)
s = 1, set W

(0)
s = λsps · Id1·d2 for s ∈ [t] and ε

(0)
r = 1, set W

(0)
r =

µpr · Im1·m2 .
repeat

X(n+1) = arg min
Φ(X)=Y

JGIRLS2(X, (ε(n)
s )s=1,...,t, (W

(n)
s )s=1,...,t,W

(n)
r ) (5.32)

= arg min
Φ(X)=Y

‖Xvec‖2

`2(W
(n)
1 )

+ ‖Φ(X)− Y ‖2

`2(W
(n)
2 )

=
[(
W

(n)
1 + Φ∗ ◦W (n)

2 ◦ Φ
)−1 ◦ Φ∗ ◦W (n)

2

(
Y
)]

mat

for s ∈ [t] (5.33)

ε(n+1)
s = min

(
ε(n)
s ,max(Ns(X(n+1)), ε̃),max

s
(Ns(X(n+1)))

)
and (5.34)

ε(n+1)
r = min

(
ε(n)
r ,max(N (n+1)

r , ε̃),M(n+1)
r

)
with ε̃ > 0 (5.35)

W (n+1)
u =



arg min
W>0,W diag

J̃GIRLS(W )
(n+1)
u , for ‖ · ‖Nu = ‖ · ‖pu`pu ,

arg min
W=Id2⊗W,W>0,Wdiag

J̃GIRLS2(W )
(n+1)
u , for ‖ · ‖Nu = ‖ · ‖pu`2,pu ,

arg min
W=W⊗Id1 ,W>0,Wdiag

J̃GIRLS2(W )
(n+1)
u , for ‖ · ‖Nu = ‖ · ‖pu`2,pu ,

arg min
W=Id2⊗W,W>0

J̃GIRLS2(W )
(n+1)
u , for ‖ · ‖Nu = ‖ · ‖puSpu ,

arg min
W=W⊗Id1 ,W>0

J̃GIRLS2(W )
(n+1)
u , for ‖ · ‖Nu = ‖ · ‖puSpu

(5.36)

=

{
W
s,ε

(n+1)
s

(X(n+1)) as defined in (2.76) u ∈ [t],

W
r,ε

(n+1)
r

((Φ(X(n+1))− Y ) as defined in (2.76) u = t+ 1.
.

W
(n+1)
1 =

t∑
s=1

λspsW
(n+1)
s and W

(n+1)
2 = µprW

(n+1)
r . (5.37)

n = n+ 1.

until stopping criterion is met.;
Set n0 = n.

We stop the algorithm if εs = 0, for s ∈ [t] and εr = 0. In this case, we define

X(j) := X(n) for j > n. However, in general, the algorithm will generate an infinite

sequence (X(n))n∈N of distinct vectors and it is convenient to keep the variables (εs,Ws)
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or (εr,Wr) fixed, as soon as εs or εr, respectively falls below an appropriately chosen

threshold and only continue updating the others.

5.5 Theoretical analysis and convergence results for the

unconstrained case

The preliminary results obtained for Algorithm 5 can be deduced in an analogous man-

ner, e.g., by using the monotonicity property and the boundedness of the iterates. This

is why we omit the details except for the parts that demand for significant adaptions.

5.5.1 Preliminary results

We start with the result that the iterates of Algorithm 6 are coming arbitrarily close

for n→∞.

Lemma 5.11. Fix Y ∈ Rm. Let Φ : Md1×d2 → Rm with σmin(Φ) > 0. For the iterates

of Algorithms 6, it holds that

lim
n→∞

‖X(n) −X(n+1)‖2
F = 0.

Proof. For each n = 1, 2, ..., by monotonicity we have

2
[
J (n)
GIRLS2 − J

(n+1)
GIRLS2

]
≥ 2

[
J (n)
GIRLS2 − JGIRLS2(X(n+1),

(
ε(n)
s

)
s=1,...,t

, ε(n)
r ,
(
W (n)
s

)
s=1,...,t

,W (n)
r )
]

= ‖X(n)
vec‖2

`2(W
(n)
1 )
− ‖X(n+1)

vec ‖2

`2(W
(n)
1 )

+ ‖Φ(X(n))− Y ‖2

`2(W
(n)
2 )
− ‖Φ(X(n+1))− Y ‖2

`2(W
(n)
2 )

.

Moreover, if we exploit the convexity of the functional JGIRLS2 in X and the minimality

property of X(n+1), we obtain that

‖X(n)
vec‖2

`2(W
(n)
1 )
− ‖X(n+1)

vec ‖2

`2(W
(n)
1 )

+ ‖Φ(X(n))− Y ‖2

`2(W
(n)
2 )
− ‖Φ(X(n+1))− Y ‖2

`2(W
(n)
2 )

≥ ‖X(n+1)
vec ‖2

`2(W
(n)
1 )

+ 2〈X(n+1)
vec , (X(n) −X(n+1))vec〉W (n)

1

+ (X(n) −X(n+1))TvecW
(n)
1 (X(n) −X(n+1))vec − ‖X(n+1)

vec ‖2

`2(W
(n)
1 )

+ ‖Φ(X(n+1))− Y ‖2

`2(W
(n)
2 )

+ 2〈Φ(X(n+1))− Y,Φ(X(n) −X(n+1)))〉
W

(n)
2

+ [Φ(X(n) −X(n+1))]TW
(n)
2 [Φ(X(n) −X(n+1))]− ‖Φ(X(n+1))− Y ‖2

`2(W
(n)
2 )
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= (X(n) −X(n+1))TvecW
(n)
1 (X(n) −X(n+1))vec

+ (Φ(X(n) −X(n+1)))TW
(n)
2 Φ(X(n) −X(n+1)).

Next, we calculate σmin(W
(n)
s ) and σmin(W

(n)
r ) and continue the estimation as follows

2
[
J (n)
GIRLS2 − J

(n+1)
GIRLS2

]
≥

t∑
s=1

λspsσmin(W (n)
s )‖X(n) −X(n+1)‖2

F

+
t∑

s=1

µprσmin(W (n)
r )‖Φ(X(n) −X(n+1))‖2

`2

≥
t∑

s=1

λsps(J̃ (0)
GIRLS2)1− 2

ps ‖X(n) −X(n+1)‖2
F

+
t∑

s=1

µpr(J̃ (0)
GIRLS2)1− 2

pr σmin(Φ)4‖X(n) −X(n+1)‖2
F

=

[
t∑

s=1

λsps(J̃ (0)
GIRLS2)1− 2

ps +
t∑

s=1

µpr(J̃ (0)
GIRLS2)1− 2

pr σmin(Φ)4

]
‖X(n) −X(n+1)‖2

F

:= C̃‖X(n) −X(n+1)‖2
F .

Again, by monotonicity and the boundedness of the sequence
(
J (n)
GIRLS2

)
n∈N

we know

that

lim
n→∞

[
J (n)
GIRLS2 − J

(n+1)
GIRLS2

]
= 0,

and, therefore, also

lim
n→∞

‖X(n) −X(n+1)‖2
F = 0.

Remark 5.12. The assumption on the singular values of Φ are very weak and, e.g.,

fulfilled for random matrices with high probability.

From the monotonicity of (ε
(n)
s )s=1,...,t and ε

(n)
r , we know that εs := limn→∞ ε

(n)
s and

εr := limn→∞ ε
(n)
r exist and are non-negative. We define ε :=

[
(εs)s=1,...,t , εr

]
. The

following functional will play a role in our proof of convergence, especially for ε > 0.

Definition 5.13. (ε-perturbed objective functional for the unconstrained case)

We define the ε-perturbed objective functional to be of the following form

F ε
2(X) :=

t∑
s=1

λsf
εs
Ns

(X) + f εrNr(Φ(X)− Y )
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and the corresponding minimization problem

min
X

= F ε1,ε2
2 (X). (5.38)

Notice that, if we knew thatX(n) converged to a point X̄, then F ε
2(X̄) would be the limit

of JGIRLS2

(
X(n), (ε

(n)
s )s=1,...,t, (ε

(n)
r )r=1,...,n2 , (W

(n)
s )s=1,...,t, (W

(n)
r )r=1,...,n2

)
for n → ∞.

We denote by Zε(Ỹ ) the set of global minimizers Z of the functional F ε
2(X) with

Φ(Z) = Y and in the case that we consider a unique global minimizer in dependence

of ε with

Xε ∈ arg min
X

F ε
2(X), (5.39)

5.5.2 Convergence results

Finally, we can state the convergence results for Algorithm 6 under the NSP conditions

already mentioned above.

Theorem 5.14. Let Φ : Md1×d2 → Rm, Y ∈ Rm and the functionals

JGIRLS2

(
X(n), (ε

(n)
s )s=1,...,t, (ε

(n)
r )r=1,...,n2 , (W

(n)
s )s=1,...,t,W

(n)
r

)
be defined for

(ε
(n)
s )s=1,...,t, ε

(n)
r , (W

(n)
s )s=1,...,t,W

(n)
r as generated by Algorithm 6 for all n ≥ 0.

In the following, we want to assume that our desired solution matrix X0 has property

ss, s ∈ [t] of order ks, s ∈ [t] and Φ(X0) − Y has property sr. Let Z̄ε be the set of

accumulation points of the sequence (X(n))n∈N generated by Algorithm 6.

(i) If ε = [(εs)s=1,...,t, εr] = 0, and

(a) the map Φ fulfills the corresponding NSP for structure ss of order Ks, s ∈
[t] as defined in Definition 4.10,

(b) ps = p, s ∈ [t] and the matrix Φ fulfills the NSP corresponding to structure

ss of order Ks

then Z̄ε consists of one single point X̄ = X0 with sparsity structure ss of order

Ks, s ∈ [t] and X̄ is the solution to the minimization problem (5.5).

Moreover, in case (a), we have for ks ≤ Ks, s ∈ [t] and any Z with Φ(Z) = Y that

t∑
s=1

λs‖Z − X̄‖Ns ≤
t∑

s=1

Ĉsβks(Z)Ns , (5.40)

where Ĉs = 2λs(1+γs)
(1−γs) .
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(ii) If ε1 = (εs)s=1,...,t with εs > 0 for any s and εr > 0, then every X̄ ∈ Z̄ε is a

stationary point of the ε-perturbed objective functional F ε
2 . In the case that F ε

2 is

convex, i.e., ps, pr ≥ 1 for s ∈ [t] we assume for simplicity that Xε is actually the

unique global minimizer of F ε
2 . Then X̄ = Xε.

(iii) If, in addition to the assumptions in case (ii), the map

Φ fulfills the corresponding NSPs for the structures ss of order Ks, s ∈ [t]

as defined in Definition 4.10 with γs < 1− 2
Ks+2

(or equivalently, if 2γs
1−γs < Ks),

then we have, for all X̄ ∈ Z̄ε ∩ Zε and all Z with Φ(Z) = Y and any

ks < Ks − 2γs
1−γs that

t∑
s=1

λs‖Z − X̄‖Ns

≤


∑t

s=1 C̃sλsβks(Z)Ns + C2 if εs ≥ ε̃, s ∈ [t],∑t
s=1 C̃sλs max

s
βks(Z)Ns + C2 if ∃s s.t. εs < ε̃

with C̃s := 2(1+γs)
1−γs

[
Ks−ks+ 3

2

Ks−ks− 2γs
1−γs

]
and C2 =

∑t
s=1

1+γs
1−γsµdr ε̃.

As a consequence, this case is excluded if there exists a matrix Z with Φ(Z) = Y

and sparsity structure Ss of order ks < Ks − 2γs
1−γs .

The proof is in great parts analogous to Theorem 5.8 and we only give additional

comments and hints.

Proof. (i) The first part of the proof follows the one of Theorem 5.8. From

liml→∞ ε
(nl+1) = 0 and the definition of εr we deduce that the residuals Φ(X̄) − Y

vanish. Thus, X̄ is a solution to Φ(X) = Y with sparsity structure ss of order Ks.

(iii) To prove the error estimate stated in (iii), we first observe that by the minimizing

property of Xε for every Z with Φ(Z) = Y , we have

t∑
s=1

λs‖Xε‖Ns + µ‖Φ(Xε)− Y ‖Nr ≤ F ε
2(Xε) ≤ F ε

2(Z)

≤
t∑

s=1

λs‖Z‖Ns + µ‖Φ(Z)− Y ‖Nr +
t∑

s=1

dsλsε
ps
s + drµε

pr
r

=
t∑

s=1

λs‖Z‖Ns +
t∑

s=1

dsλsε
ps
s + drµε

pr
r .

– 189 –



From this we obtain that

t∑
s=1

λs‖Xε‖Ns −
t∑

s=1

λs‖Z‖Ns ≤
t∑

s=1

dsλsε
ps
s − µ‖Φ(Xε)− Y ‖Nr + drµε

pr
r .

In the case that εr > ε̃, we have that

−µ‖ΦXε
vec − Y ‖Nr + drµε

pr
r < 0.

In the other case,

−µ‖Φ(Xε)− Y ‖Nr + drε
pr
r < drµε̃

pr .

By Lemma 4.13, we have that

t∑
s=1

λs‖Xε − Z‖Ns ≤
t∑

s=1

λs
1 + γs
1− γs

(dsε
ps
s +

µ∑t
s=1 λs

dr ε̃
pr + 2βks(Z)Ns)

≤
t∑

s=1

λs
1 + γs
1− γs

(dsε
ps
s + 2βks(Z)Ns) +

t∑
s=1

λs
1 + γs
1− γs

µ∑t
s=1 λs

dr ε̃
pr
2

≤
t∑

s=1

λs
1 + γs
1− γs

(dsε
ps
s + 2βks(Z)Ns) + C((γs)s=1,...,t, µ, dr, pr, ε̃)

=
t∑

s=1

λs
1 + γs
1− γs

(dsε
ps
s + 2βks(Z)Ns) + C2.

(5.41)

The rest of the proof follows the arguments of Theorem 5.8 (iii) and and this leads

directly to the bound in (5.40).
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least squares minimization for sparse recovery. Communications on Pure and

Applied Mathematics, 63:1–38, 2010.

– 193 –



[36] I. Daubechies, R. A. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively re-
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