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Abstract—Cellular networks beyond LTE must address the
requirements of Machine Type Communications (MTC). Many
MTC applications fall into category of the cyber-physical systems,
i.e., feedback systems with the physical processes integrated with
networks and computation. The challenge of CPS is to design
the communication network to support the underlying feedback
control loop. To address this challenge, we adopt a cross-layer
approach to scheduling in wireless networks. We formulate the
resource allocation problem with the objective of maximizing
the control performance in terms of the network-induced error.
Following that, we devise a Maximum Predicted Error First
(MPEF) scheduler, which provides a close to optimal performance
while only relying on offline information about the control loops.
In a case study of LTE cell, we compare MPEF with state-of-
the-art scheduling algorithms.

I. INTRODUCTION

Upcoming evolution of cellular networks from 4G to 5G
is largely driven by changing application demands. Instead
of solely focusing on data rate increase, 5G is envisioned
to be capable of satisfying a broad range of requirements
for Machine Type Communication (MTC), including vehic-
ular applications, industrial automation and cyber-physical
systems. In particular, METIS 2020 project defines two im-
portant MTC use cases: ultra-reliable and ultra-low latency
Machine Type Communication (uMTC) and massive Machine
Type Communication (mMTC) [1], [2]. In the recent years,
significant amount of research contributions has been done on
re-designing 3GPP Long Term Evolution (LTE) in order to
support both uMTC and mMTC [3], [4], [5]. In particular,
understanding distinct features of MTC in comparison to
conventional Human-to-Human (H2H) applications can lead to
efficient designs of communication solutions tailored to MTC
applications.

A common challenge of many MTC applications, especially
cyber-physical systems, is the fact that the underlying appli-
cation is a feedback control loop, whereas the communication
end points are the sensor, measuring the controlled plant’s
output, and the respective remote controller, reacting to the
sensor’s data. Many conventional MTC applications, such as
smart grids or industrial automation rely on a control loops
as underlying set-up. Clearly, the requirements of control
based applications are inherently different from H2H, and
their peculiarities are often ignored in the current wireless
systems. To address this challenge, we adopt a cross-layer
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Fig. 1: Scenario: N control loops are coupled via a wireless commu-
nication network, with resource allocation running at the base station.

design approach: by considering detailed models of feedback
control loops, we replace the traditional quality of service
with quality of control, and use it as an efficiency metric for
resource allocation in wireless radio access networks.

A. Related Work

Scheduling and medium access control (MAC) for control
applications – often referred to as networked control systems
(NCS) – have been previously studied in the control commu-
nity. Effects of delay and packet drops on the stability and
performance of feedback control loops are discussed in [6],
[7]. A lot of works have been targeting optimization tech-
niques for decentralized MAC (CSMA/CA, ALOHA-based
protocols) [8], [9], [10], with special attention to WLAN for
NCS [11], [12], [13]. There is however less related work on
the centralized MAC problems. The problem of joint control
and rate allocation is considered in [14], [15]. Centralized
approach for resource allocation, formulated as scheduling
problems, has been developed in [16], but only for simple
network models.

A well-known Maximum Error First Try-once-Discard ap-
proach for scheduling of feedback control systems has been
presented in [17], [18]. The authors propose to schedule
the control sub-system with the highest control error first,
in a greedy fashion. However, this approach requires the
scheduler to know the error of each control sub-system prior
to making a scheduling decision. Obtaining this knowledge
requires additional overhead, and, for some scenarios is simply
not possible, since it requires an estimator at the sensor side



in the uplink case [19]. In contrast to state-of-the-art, we
approach the control-aware communication problem from the
performance, and not from the stability point of view.

B. Contributions

In this paper, we study a scenario where multiple control
systems are contending for uplink wireless resources in a cel-
lular radio access network (RAN). We address the limitations
of the state-of-the-art by (i) adapting existing control-aware
scheduling problem to the wireless resource allocation prob-
lem for cellular networks. (ii) Next, we devise a scheduling
algorithm for allocating uplink wireless resources, which does
not require knowledge of the instantaneous control error at
the base station, and operates with prediction of network-
induced error based on the offline control system parameters.
The algorithm remains both control-aware and channel-aware.
(iii) We present a case study with a single LTE cell and
inverted pendulum as exemplary control system, evaluating
the performance of different scheduling algorithms.

The remainder of the paper is organized as follows. In
Sec. II we introduce the considered scenario and define the
resource allocation problem. Next, in Sec. III we define qual-
ity of control metrics and control-aware scheduling policies.
Sec. IV presents the results of the case study; finally, we
conclude with Sec. V.

II. SCENARIO AND PROBLEM FORMULATION

We consider a networked control system of N independent
linear time invariant (LTI) control sub-systems, each consisting
of a plant Pi, controller Ci, and sensor Si (see Fig. 1). The
behavior of the plant process of the ith sub-system is described
by a difference equation:

xik+1 = Aix
i
k +Biu

i
k + wi

k, (1)

where xik ∈ Rni and uik ∈ Rdi are the ith system state and
controller input at time-step k, respectively. The matrices Ai ∈
Rni×ni , Bi ∈ Rni×di describe the system and input matrices.
The noise wi

k ∈ Rni is considered to be an independent and
identically distributed (i.i.d) vector, distributed according to a
zero-mean multivariate normal distribution with the covariance
matrix Wi.

Plant and controller are assumed to be co-located, however
the sensor is measuring output of the plant remotely and,
hence, the measurements have to be sent via a wireless
network. We consider a scenario where all the sensors send
an uplink transmission towards a base station, from where
the packet is delivered via the backhaul network to the
respective controllers and plants. In the following, we assume
an uncongested backhaul and, therefore, ignore its impact on
the control systems. We further assume that the sensors are
synchronized and have equal sampling periods.

A. Wireless Resource Allocation

The resource allocation for sensor transmissions is done
by a central scheduler located at the base station (BS). We
assume an exemplary wireless system based on the LTE
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Fig. 2: Resource grid and resource blocks (RBs) of an LTE system
according to 3GPP standards.

RAN, see Fig. 2. While taking a decision, the base station
has information about the current buffer size and uplink
channel quality of a UE via Buffer Status Reports (BSR)
and Sounding Reference Signals (SRS), respectively. The base
station allocates the necessary amount of resource blocks (RBs)
to satisfy the demand of a given sensor. We assume that the
scheduling decision is taken with the same periodicity as the
sampling time of a control system. In our exemplary setup,
this corresponds to scheduling once in a 10 ms long LTE
frame. Correspondingly, we ignore short-term channel quality
variations (i.e., fast fading effects). The smallest allocated
resource unit, in other words the scheduling granularity, is
a single RB, i.e., a tRB = 0.5 ms long slot in time domain and
∆f = 180 kHz bandwidth in frequency domain.

Scheduling the transmissions of control systems is funda-
mentally different from the conventional applications, e.g.,
video streaming, due to the fast cycle of “out-dating” of infor-
mation. That is, if the ith control system’s state information is
not transmitted during the sampling interval k, it becomes out-
of-date as soon as the new state measurements are available.
Hence, while scheduling the next transmission, only the new
measurements should be sent, and the out-of-dated packet is to
be discarded (Try-once-Discard [17]). The consequence is that
the buffer of any sensor contains only a single packet of length
S bytes. We define the resource demand of the sensor i in
frame k as the minimum number of RBs required to guarantee
a successful transmission:

dik =

⌈
S

rik

⌉
RBs, (2)

where rik defines the expected throughput per resource block,
and depends on the uplink channel quality of sensor i. Hence,
if we define the total number of available uplink RBs per frame
as R, and the vectors of utilities and demands as ck,dk ∈ ZN ,
respectively, the scheduling problem can be formulated as:

arg max
qk

qk
ᵀck s.t. qk

ᵀdk ≤ R, (3)



where qk is the allocation vector with elements1

qik =

{
1 if sensor i is scheduled,
0 if sensor i is blocked.

(4)

Due to the fact that the above defined scheduling problem is
NP-hard, greedy heuristics are typically applied. However, we
make two important simplifications in this work: (1) channel
quality for given sensor is constant in the frequency domain,
i.e., it is the same for all RBs; and (2) channel quality does
not vary within frames. Both assumptions are typical and hold
for low-mobility applications (e.g., Smart Grid) and relatively
narrowband communication systems [20], [21].

These simplifications allow us to treat the scheduling
problem defined by Eqn. (3) as a 0/1 knapsack problem,
which can be solved in pseudo-polynomial time by dynamic
programming algorithms [22]. In the following, we consider
both optimal (solved by knapsack) algorithms, and greedy low
complexity heuristics.

III. CONTROL AWARE RESOURCE ALLOCATION

A. Network-Induced Error

In order to choose the utility function properly, we need
to define a quality of control (QoC) metric. In general, the
plant behavior depends both on network and control law. To
make the metric independent from the controller type, we
assume that the control law is described by the mapping of
past observations:

uik = −Li E
[
xik|Zi

k

]
E
[
xik|Zi

k

]
= (Ai −BiLi)E

[
xik−1|Zi

k−1

]
(5)

where Zi
k is the observation history of the i controller, and

Li is the stabilizing feedback gain. A model-based estimator
E
[
xik|Zi

k

]
is used if the sensor i is blocked from transmission.

Following that, we define the network-induced estimation
error eik as the difference between the estimated and actual
states of the system:

eik = xik − E
[
xik|Zi

k

]
. (6)

It has been shown in the previous work, that the network-
induced error can be considered independent of the system
state [16], [8], [9]:

eik+1 = (1− qik)Aie
i
k + wi

k. (7)

Following this, we define a control performance metric as
the expected quadratic norm of the network induced error:

E [eᵀkek] =

N∑
i=1

E
[
ei

ᵀ

k e
i
k

]
=

N∑
i=1

E
[
‖eik‖2

]
. (8)

1We assume that Hybrid ARQ guarantees packet delivery up to the desired
reliability level, hence, we do not consider packet loss, and transmission
success is only determined by the allocation variable qik .

B. Control aware Utility Choice

1) Maximum Error First: As outlined in Subsec. I-A,
several control-oriented scheduling metrics have been consid-
ered so far. Most prominent example is Maximum-Error-First
(MEF) scheduling [17], [18]. In the case of MEF, the utility
for resource allocation at a step k is:

ck =
[
‖e1k‖2, ‖e2k‖2, . . . , ‖eNk ‖2

]ᵀ
, cik = ‖eik‖2 (9)

While the MEF approach is proven to be optimal for minimiz-
ing the network-induced error, it is challenging to implement
it in real systems. That is, for the uplink transmission scenario,
two prerequisites have to be met: first, for computing the error,
a sensor must have an estimator to calculate the difference
between the real and estimated state vector. With the sensors
being typically of low complexity, this assumption is hardly
realistic for most of the systems [19]. Secondly, collecting the
error information from all sensors at the base station introduces
high overhead and latencies.

2) Proposed Prediction based Control aware Scheduler: To
overcome the limitations of the MEF scheduler, we introduce
the Maximum Predicted Error First (MPEF) Scheduler, which
relies solely on the knowledge of plant parameters: the system
matrix Ai and the noise covariance matrix Wi. Given these
parameters, the quadratic network-induced error norm of user
i at time-step k can be predicted. If we denote the time-step
at which the subsystem i transmitted for the last time by ti,
the expected value of the quadratic error norm E

[
ei

T
k e

i
k

]
is

obtained by:

E
[
ei

T

k e
i
k

]
=

k−ti−1∑
p=0

tr((AT
i )pAp

iWi). (10)

Ap represents the p-th power of any square matrix Ai ∈
Rni×ni with A0

i being equal to the ni × ni identity matrix.
Now, we use Eqn. (10) as a new utility function for the

sensor i at time k for greedy allocation:

cik =
E
[
ei

T
k e

i
k

]
max
m

E
[
emT

k e
m
k

]rik for m ∈ [1, N ], (11)

and for optimal resource allocation:

cik = E
[
ei

T

k e
i
k

]
. (12)

Greedy MPEF uses both the estimated quadratic error
norm and the expected data rate rik while calculating the
utility. Additionally, the expected value is normalized by the
maximum value in the network and used for weighting the
expected data rate.

In comparison to MEF, proposed MPEF approach does not
require instantaneous knowledge of the network-induced error.
The prediction only requires the knowledge of control system
parameters Ai, Wi, which do not vary over time for LTI
systems. This makes it feasible to apply the policy for uplink
direction as well as for downlink.



IV. CASE STUDY

In this section, we evaluate the performance of the proposed
MPEF against the state-of-the-art approaches, in a case study
of N independent discrete control systems, transmitting uplink
sensor readings via a single-cell LTE network.

A. Control System Model

As an example of the open-loop unstable control system,
we consider the inverted pendulum application: a pendulum
mounted on a motorized cart [23] (see Fig. 3a). The con-
troller’s objective is to hold the pendulum in an upright
position by moving the cart back and forward. The state vector
of the system is chosen as

[
pk, ṗk, φ, φ̇k

]T
, where p and φ

denote the cart position and pendulum angle, respectively. The
equilibrium point is located at zero for both, i.e., p = 0 and
φ = 0. The matrices A and B for the discrete state-space
representation with a sampling time of 10 ms are:

A =


1 0.01 0.0001 0
0 0.9982 0.0267 0.0001
0 0 1.0016 0.01
0 −0.0045 0.3119 1.0016

 , B =


0.0001
0.0182
0.0002
0.0454


The Linear Quadratic Regulator (LQR) method is used to
determine the stabilizing feedback gain L:

L =
[
−61.9933 −33.5040 95.0597 18.8300

]
To evaluate control-aware scheduling algorithms, we create

diversity by using a second class of control systems, namely
open-loop stable applications. Their system and input matrices
Â and B̂ are obtained from inverted pendulum matrices as
Â = 0.8A, and B̂ = B. The difference to the inverted pendu-
lum is that this class of systems will converge to a certain finite
state over time, while still occasionally requiring actuation to
compensate for the performance degradation caused by the
noise. In every simulation, half of the control systems are
open-loop unstable, Ai = A, Bi = B, for i ∈ [1, N/2]; and
half of them are open-loop stable, Ai = Â, Bi = B̂, for i ∈
[N/2 + 1, N ].

Finally, the noise for all control systems is assumed to be
zero-mean gaussian vector with covariance matrix:

W =


6.40 · 10−9 0 0 0

0 4.90 · 10−9 0 0
0 0 2.74 · 10−5 0
0 0 0 4.87 · 10−5


B. Wireless Network

We assume that a 1.4 MHz band is used with frequency divi-
sion duplex (FDD) mode with symmetrical spectra for uplink
and downlink (consistent with Cat. M1 introduced in 3GPP
LTE Release 13 [24], [25]). Furthermore, we constructed a grid
to simulate the cell model (see Fig. 3b). The BS is located at
the middle point and sensors are uniformly distributed over a
cell of dimension 500×500 m. The plants are located outdoors
in an urban micro cell propagation scenario. The path loss and
shadow fading are characterized by stochastic models defined
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Fig. 3: Inverted pendulum (a), and exemplary single-cell network (b).
Color intensity shows the uplink channel quality sensor to BS.
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Fig. 4: Exemplary evolution of the states p (position) and φ (angle)
over 20 s run with RR scheduling. Y-axis intervals [−0.4,+0.4] m
and [−0.2,+0.2] rad represent the required states region.

by 3GPP [26]. The line-of-sight probability depends on the
distance between sensor and BS [26].

The expected data rate is obtained from the Shannon’s ca-
pacity theorem. To make the simulations more realistic for LTE
RAN, yet computationally simple, we use the approximation
model introduced in [27], which adjusts the Shannon capacity
to the LTE case by taking into account the bandwidth- and
SNR efficiencies ∆feff and γeff, and a correction factor η
of LTE (suitable values are taken from [27]). The resulting
amount of data rik transmitted per resource block for sensor i
at time step k is calculated as follows:

rik = tRB ×∆f ×∆feff × η × log2

(
1 +

γik
γeff

)
Bytes, (13)

where tRB denotes RB duration, ∆f - RB bandwidth, γik -
Signal to Noise Ratio (SNR). Simulation parameters are listed
in Table I.

C. Simulation Set-up

We benchmark the proposed MPEF scheduler to the state-
of-the-art LTE scheduling policies, and to the state-of-the-
art control-aware scheduling. In addition, for control-aware
policies we consider the greedy resource allocation, and op-
timal, using dynamic programming solution to the resource
allocation problem (formulated as 0/1 knapsack). This results
in the following list of schedulers:

• Proposed MPEF, optimal (MPEF opt) and greedy (MPEF
gre), with utilities defined by Eqns. (11) and (12), respec-
tively.
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Fig. 5: Simulation results for the case study: network induced error ē with (a) and without (b) MT scheduler; avg. data rate R̄ per cell with
(d) and without (e) MT scheduler; (c) state error x̄; (f) number of requirement violations (as defined in Eqns. (14)-(17), respectively). The
simulations are performed over the number of nodes N , with 0.95 confidence intervals.

TABLE I: Simulation parameters

Parameter Value
Cell dimensions 500 × 500 m
Minimum distance to BS 11 m
Tx power (UE) 23 dBm
Center frequency 2 GHz
Antenna height UE / BS 1.5 / 10 m
Shadowing: σSF Line-of-sight 3 dB

No line-of-sight 4 dB
Noise: - figure 5 dB

- density −174 dBm/Hz
Efficiencies: - bandwidth ∆feff 0.83

- SNR γeff 1.25

Correction factor η 0.9

RB bandwidth ∆f 180 kHz
Packet size S 750 Bytes
Channel coherence time 180 ms

• Maximum-Error First, optimal (MEF opt) and greedy
(MEF gre), as defined in III-B1, with utility as in Eqn. (9).
We simulate it as a base line.

• Maximum throughput (MT) [28]: greedy scheduler, allo-
cating the resources to the best channel quality UE first.

• Round Robin (RR) [28]: allocated to all UEs same
amount of resources equally.

• Proportional Fair (PF) [28]: resources are allocated pro-
portionally, considering average data rate and instanta-
neous channel quality. Fairness factor β = 0.5.

Duration of every simulation run is TD = 2000 sam-
pling periods (corresponding to 20 s), and the simulation is
performed with 30 runs for every number of sub-systems
N ∈ [5, 15, 25, . . . , 115] to generate 95 % confidence intervals.
We record the following performance metrics:

• Average data rate:

R̄ =
1

TD

TD∑
k=1

qk
ᵀdk. (14)

• Average network induced error norm ē:

ē =
1

TDN

N∑
i=1

TD∑
k=1

‖eik‖. (15)

• Average state error norm x̄:

x̄ =
1

TDN

N∑
i=1

TD∑
k=1

‖xik‖. (16)

• Number of nodes violating the maximum allowed pen-
dulum deviation and cart position:

|φmax| ≤ 0.2 rad,
|pmax| ≤ 0.4 m. (17)



An exemplary evolution of the pendulum states p and φ as
a function of time is depicted in Fig. 4. We can observe that
during the 20 s run the position requirement is violated, i.e.,
p leaves the allowed region ±0.4 m, while resource allocation
was performed by RR scheduler.

D. Simulation Results

Figs. 5(a-f) accumulate resulting performance plots of
the selected schedulers as we increase number of nodes
N . Figs. 5a) and d) show the performance with maximum
throughput scheduler. As expected, we observe that, MT
achieves the highest data rate, but at the same time it drives
the network-induced error into unacceptable region. Clearly,
this is a consequence of unfairness, if an unstable sensor
happens to be on the edge of the cell, it will never get an
opportunity to send the measurements to the controller. To
avoid visual clutter, Figs. 5b) and e) are showing a close-up
on the performance of all schedulers without MT.

Additionally, we see that the optimal schedulers, MEF
(opt) and MPEF (opt) perform very close to their greedy
counterparts in terms of minimizing network-induced error.
Interestingly, these control performance gains (if any) come at
at the cost of higher bandwidth utilization, especially for MEF:
a decrease of the network-induced error by only ≈ 1 % results
in 28 % higher bandwidth utilization (for N = 95). We expect
the optimal schedulers to perform better than their greedy
counterparts in a scenario with higher channel variations,
hence more diverse resource demands.

We can observe that the proposed MPEF scheduler out-
performs both RR and PF, and shows similar error-dependent
dynamics as MEF. MPEF keeps the network-induced error
low, while relying only on the static parameters of control
systems. Figs. 5c) and f) confirm the performance trends for
the network-induced error, expressed in the state error norm
(for cart position and pendulum angle), and the number of
nodes violating the requirements. State error is reduced up
to 30 % by MPEF compared to closest performance by PF,
and the number of requirements violations is reduced up to
2.5 times.

1) MEF vs. MPEF trade-off: As discussed in Sec. III-B1,
implementation of MEF relies on the presence of an estimator
at the sensor side. For most cases (low complexity and low cost
sensors, distributed sensors, etc.), this implementation would
not be possible [19], therefore, MPEF scheduling approach
presents a viable alternative.

However, in the cases where MEF scheduling is imple-
mentable, it still requires communication overhead. Every
sensor, prior to scheduling decision, needs to report (e.g., with
control information elements) the current network-induced
error to the BS. This implies a scheduling overhead per sensor
δiSCH, thus more uplink resources are consumed. To evaluate
the effect of the overhead, we define a total error cost function
C(N):

C(N) =

N∑
i=1

(1 + δiSCH)
1

TD

TD∑
k=1

‖eik‖. (18)
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Fig. 6: Total error cost C(N) as a function of number of sensors N ,
for different error reporting overhead δSCH ∈ {0, 0.12, 0.5, 0.8}.

Intuitively, the term δiSCH can be viewed as the amount of
additional uplink resources for error reporting in the case of
MEF. Hence, the function C(N) shows the total network-
induced error among all control sub-systems, with the ad-
ditional term accounting for overhead. For MPEF scheduler
δiSCH = 0, as it only relies on offline information. For simplic-
ity of the evaluation, we further assume that the overhead is the
same for all sensors, i.e., δiSCH = δSCH ∀ i. Fig. 6 presents the
resulting dependency C(N) for MPEF, and MEF for different
overhead δSCH. We see that in the δiSCH = 0 case (realistic for
downlink only), MEF outperforms MPEF, while for the case of
δSCH = 0.12, their performances are almost identical. For all
values δSCH > 0.12, overhead becomes significant, therefore,
MPEF performans than MEF. If the number of states of the
control system ni, as defined in Sec. II is relatively low, or
only some of the states are being measured, high overhead is
very likely, and, hence, MPEF usage is favorable.

V. CONCLUSIONS

In this paper, we have considered the problem of allocating
wireless resources in a cellular network for the networked
control system of LTI independent control loops. We have
devised a novel scheduling method (both greedy and optimal),
based on the utility defined by the prediction of the networked
induced error - Maximum Predicted Error First (MPEF)
scheduler. We have shown via a comprehensive case study that
the proposed MPEF demonstrates performance close to the
optimal Maximum Error First (MEF) approach, but without
the need for knowing the instantaneous error values of all
control systems. Compared to MEF, proposed MPEF can be
used in the case where no estimation at the sensor side is
possible, and, for other cases, MPEF is outperforming MEF
for the overhead more than 12 %.

Future work in this area can address the stability of the con-
trol systems, and develop scheduling algorithms with stability
bounds as a part of the utility function. Also, more sophisti-
cated resource allocation models, including power constraints
and variations of channel quality within a given bandwidth,
can increase the practical value of the approach presented in
our paper.
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