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As embedded systems become ubiquitous and consistently gain new hardware and so ware features,
their complexity and code base continue to grow. Consequently, the attack surface and hence the
probability of successful attacks potentially increases, which can not only put users at risk, but also
corporation, such as mobile network operators. For instance, distributed denial-of-service (DDoS)
attacks from compromised mobile devices are a major threat to mobile networks. ¿at is why we
propose a mechanism based on a Trusted Platform Module (TPM), which enables mobile devices
to prove that their baseband stack is still trustworthy, while allowing the network to enforce a
certain version of the baseband at network connect. As a result, our approach represents an e�ective
method to block devices with a compromised baseband stack and reduce DDoS attacks against
mobile networks using remote attestation. In contrast to traditional remote attestation as speci�ed
by the Trusted Computing Group (TCG) however, our implicit attestation mechanism enables
lightweight attestation protocols, since it relies on e�cient symmetric cryptographic operations and
hash-based message authentication codes instead of asymmetric cryptography, especially digital
signatures, and extensive measurement logs. As a result, our implicit attestation mechanism is
particularly suitable for resource-constraint embedded devices.
To further improve security, we propose a system architecture based on microkernels, which

are not only signi�cantly smaller, but also less complex than monolithic kernels like Linux. While
most microkernel-based systems implement non-essential services as user-space tasks and strictly
separate those tasks during runtime, they o en rely on a static con�guration to ensure safety and
security. Although that bene�ts our implicit attestation mechanism, it does not necessarily imply
trustworthiness. ¿at is why we combine our microkernel-based system architecture with a TPM
and propose an integrity veri�cation mechanism for microkernel execution environments, which
calculates integrity measurements before loading (remote) binaries. As a result, our approach is the
�rst to adopt the main ideas of the Integrity Measurement Architecture (IMA), which has been pro-
posed for Linux-based systems, to a microkernel. In comparison, however, it signi�cantly reduces
the trusted computing base (TCB) and allows for a strict separation of the integrity veri�cation
component from any rich operating system, such as GNU/Linux or Android, running in parallel.
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We then enhance our system architecture with a multi-context hardware security module (HSM)
based on a TPM-inspired design, which enables integrity veri�cation, anomaly detection, and
e�cient lightweight attestation of multiple separated tasks. Our attestation mechanism, which
we formally veri�ed using ProVerif, implicitly proves the integrity of multiple tasks, e�ciently
communicates the result to a remote veri�er, and enables a secure update and recovery protocol
without the need for digital signatures. Finally, we enhance our implicit attestation mechanism with
TPM 2.0 policies, which can be speci�ed by the veri�er as well as the prover and are veri�ed and
enforced by a TPM instead of the host operating system. As a result, both parties have to cooperate
for a successful attestation, which implicitly creates veri�able proof of the prover’s trustworthiness
using mainly symmetric operations instead of expensive asymmetric cryptography.
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Während eingebettete Systeme nahezu allgegenwärtig sind und ständig neue Hardware- und
So warefeatures gewinnen, wächst ihre Komplexität und Code-Basis weiter an. Infolgedessen steigt
die Angri�s�äche und damit die Wahrscheinlichkeit erfolgreicher Angri�e im Allgemeinen an, was
nicht nur Anwender gefährden kann, sondern auchUnternehmen, wie z. B.Mobilfunknetzbetreiber.
So stellen zum Beispiel „Distributed Denial-of-Service (DDoS)“-Angri�e von kompromittierten
mobilen Geräten eine große Bedrohung für mobile Netzwerke dar. Das ist der Grund, warum wir
einen Mechanismus auf der Grundlage eines Trusted PlatformModule (TPM) präsentieren, der
es einerseits mobilen Geräten ermöglicht zu beweisen, dass ihre Baseband-So ware immer noch
vertrauenswürdig ist, und der es andererseits dem Netzwerk erlaubt, für das mobile Endgerät beim
Aufbau der Verbindung zum Mobilfunknetz eine bestimmten Baseband-Version zu erzwingen.
Unser Ansatz ist somit eine e�ektive Methode, durch Attestierung Geräte mit kompromittierter
Baseband-So ware zu blockieren und dadurchDDoS-Angri�e gegenMobilfunknetze zu reduzieren.
Im Gegensatz zur traditionellen Attestierung, wie sie von der Trusted Computing Group (TCG)
spezi�ziert wird, ermöglicht unser impliziter Attestierungsmechanismus jedoch leichtgewichtige
Attestierungsprotokolle, da er auf symmetrischen Verschlüsselungsoperationen und hashbasierten
Nachrichtenauthenti�zierungscodes anstelle von asymmetrischer Kryptographie, insbesondere
digitalen Signaturen, und umfangreichen Logdaten beruht. Daher eignet sich unser impliziter
Attestierungsmechanismus besonders für ressourcenschwache eingebettete Systeme.

Um die Sicherheit weiter zu verbessern, präsentieren wir eine Systemarchitektur auf der Basis
eines Mikrokernels, der nicht nur deutlich kleiner, sondern auch weniger komplex ist als ein
monolithischer Kernel wie z. B. Linux. Während die meisten Mikrokernel-basierten Systeme alle
nicht-essentielle Dienste als user-space Tasks implementieren und diese während der Laufzeit strikt
trennen, verlassen sie sich zumeist auf eine statische Kon�guration, um Sicherheit zu gewährleisten.
Auch wenn dies unseren impliziten Attestierungsmechanismus begünstigt, bedeutet dies nicht
unbedingt Vertrauenswürdigkeit. Aus diesemGrund kombinieren wir unsereMikrokernel-basierte
Systemarchitektur mit einem TPM und präsentieren einen Mechanismus zur Veri�kation der
Integrität, der in der Mikrokernel-gestützten Ausführungsumgebungen implementiert ist und vor
dem Laden von (ausführbaren) Dateien Integritätsmesswerte z. B. für eine Attestierung berechnet.
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Damit ist unser Ansatz einer der ersten, der die Grundgedanken der Integrity Measurement
Architecture (IMA), die für Linux-basierte Systeme entwickelt wurde, auf einem Mikrokernel
umsetzt. Im Vergleich reduziert unser Ansatz jedoch deutlich die trusted computing base (TCB)
und ermöglicht eine strikte Trennung der So warekomponenten für die Integritätsveri�kation
(z. B. von Betriebssystemen wie GNU/Linux oder Android, die gegebenenfalls parallel in einem
eigenen Teil des Systems laufend).
Anschließend erweitern wir unsere Mikrokernel-basierte Systemarchitektur um ein Hardware-

Sicherheitsmodul (HSM) mit mehreren kryptographischen Kontexten, das vom Design eines
Trusted PlatformModule (TPM) inspiriert ist und die Integritätsüberprüfung, Anomalieerkennung
und e�ziente leichtgewichtige Attestation mehrerer getrennter Mikrokernel-Tasks ermöglicht.
Unser Attestierungsmechanismus, dessen wesentliche Sicherheitseigenscha en wir mit ProVerif
formal veri�ziert haben, ermöglicht die Integrität mehrerer separate Tasks implizit zu beweisen, das
Ergebnis auf einfache Weise an einen Prüfer (Veri�er) zu kommunizieren und ein sicheres Update-
und Recovery-Protokoll ohne digitale Signaturen umzusetzen. Abschließend setzen wir unseren
impliziten Attestierungsmechanismus auch mit TPM 2.0 Policies um, die sowohl vom Veri�er als
auch vom Geprü en (Prover) spezi�ziert werden können und von einem TPM anstelle des Host-
Betriebssystems veri�ziert und durchgesetzt werden. Dies führt dazu, dass beide Parteien für eine
erfolgreiche Attestierung, bei der der Nachweis der Vertrauenswürdigkeit des geprü en Systems
implizit durch (vorwiegend) symmetrische Operationen anstelle von aufwendiger asymmetrischer
Kryptographie generiert wird, kooperieren müssen.
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1
Introduction

For decades, most computers used to be rather large, in the early days even room-sized1 machines,
which provided only a very limited set of features and required highly skilled operators to execute
even the most basic programs by today’s standard. It took years of research in miniaturization,
performance increases, and advanced so ware engineering to develop modern computer systems
as we know them, which have an incredible number of so ware and hardware features. As a result,
modern systems enable regular users, professionals, companies, and governments to run so ware
ranging from casual apps to highly complex programs. Without this research and development,
small user-customizable cellular phones, the Internet of ¿ings (IoT), airplanes with �y-by-wire
technology, self-driving cars, and industrial control systems with a large array of tiny sensors
connected and managed via the Internet would not have been possible.
Although there are still mainframe systems, super-computers, and other special-purpose systems,

e.g., for large data centers, which even look like their predecessors, the majority of today’s modern
computer systems are small, embedded systems2, which perform a dedicated function [Gan03].
Hence, it is not surprising that these embedded systems have found their way into our daily lives as
they change the way we view computers. Interestingly, however, most people do not even realize
howmuch they use, trust, and sometimes depend on such small, almost ‘invisible’ systems, whether
it be while they take a plane or drive a modern car3.

1 Examples include the Zuse Z3 (1941), the Harvard Mark I (1944), or the ENIAC (1946) [Com15].
2 ¿e BMBF estimated in 2006 that more than 90 percent of existing computer systems are embedded systems [Bun06].

Gartner forecasts 8.4 billion connected devices will be in use in 2017 (up 31 percent from 2016) [Gar17]
3 A recently manufactured high-end cars can have more than 70 electronic control units (ECUs) [Wol07].
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Chapter 1 Introduction

In contrast to general-purpose systems, such as personal computers (PCs), embedded systems
are o en de�ned as “a combination of computer hardware and so ware, and perhaps additional
mechanical or other parts, designed to perform a dedicated function” [Gan03]. ¿ose information
processing systems are, in turn, embedded into a larger system or device [cf. Bar06; Mar17; Osh13],
e.g., as an ECU in a car. Other examples of embedded systems include cell phones and similar
mobile devices, heart monitors, engine controllers, tra�c lights, thermostats, pacemakers, or blood
gas monitors [Gan03], but also include those larger systems, such as cars, trains, planes, as well as
telecommunication and fabrication equipment [Mar17].
As specialized computer systems, which are o en integrated as a part of a larger system and

“designed to form computational engines that will perform speci�c tasks” [Osh13], most embedded
systems are constraint in their application. While desktop systems are designed to perform general-
purpose functions, embedded systems are “built to control a function or a range of functions”
[Hea02]. Hence, they are not supposed to be programmed by the end user in the same way a PC
is, i.e., the user may be able to make choices concerning functionality, but cannot easily change
the functionality by adding or replacing so ware. In contrast, the so ware on a PC, which may
function, for example, as word processor or games machine, can be changed easily [cf. Hea02]. As a
result, the design of embedded systems is usually characterized by the intended application, which
o en also determines factors like hardware features, power consumption and cost.
Similar to general-purpose computers, the main components of embedded systems are the

processor, memory, and peripherals as well the so ware. A processor for an embedded system is
usually designed and later speci�cally selected for the intended function of the system in order
to optimize, for example, power consumption and costs. Consequently, most embedded systems
do not necessarily have the most recent and powerful hardware features that are available for
general-purpose device, such as PC workstations or laptop computers. In recent years, however,
features like hardware-protected execution environments have been made available to more and
more low-cost systems, which enables more secure system designs.
In addition, the size of availablememory has increased over time. A few years ago, a large portion

of embedded systems were only able to store the so ware they were designed to run. Nowadays,
even simple embedded systems, such as wireless sensor nodes or IoT devices, are able to collect
sensor data and store those values until they are transferred to a backend system.
Besides the processor and memory, embedded systems are typically equipped with various

peripherals. Characteristically, most embedded systems have input peripherals, such as sensors,
but also a number of output peripherals, which can include binary, serial, and analog outputs [cf.
Hea02]. Furthermore, embedded systems might be equipped with LED outputs and a display.
¿e so ware of a typical embedded systems includes initialization code and con�gurations, a

boot loader, an operating system (OS) and/or a runtime environment, applications as well as error
handling, as well as optional debug and maintenance code [cf. Hea02].
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As those embedded computer systems become part of our daily lives and provide more and
more features, both in hardware and so ware—a trend that is likely to continue—, they become
immensely complex and o en require a large code base. Unfortunately, it is a well-known fact that
with growing complexity and code size, the probability of bugs and errors signi�cantly increases1.
As a consequence of the increasing complexity and growing code base, most systems are and will be
vulnerable to unexpected failure andmalicious attacks, which exploit bugs in existing functionalities.
¿is troubling fact is especially dramatic and fatal for monolithic systems, such as Linux systems,
where a multitude of functionalities is combined in a large kernel running in privileged mode and
a malicious modi�cation of a privileged component, such as a kernel module, can compromise
or crash the entire system. However, there are alternative system architectures, e.g., based on a
microkernel, which use separation mechanisms to overcome this issue (or at least limit the e�ects).
A microkernel requires a fraction of the code of a monolithic kernel and, hence, relies on less

privileged code, which reduces the complexity and the attack surface, especially of privileged
parts. Since microkernel-based systems compartmentalize functionality and implement all non-
essential system services in user space, they enable a better recovery a er partial system failure
or an attack. ¿at way, a microkernel is perfectly suitable, for example, to act as a small core for a
virtual machine monitor (which runs in user space) and enable the virtualization of another OS,
such as a Linux-based OS like Debian or Android. By virtualizing the rich OS—for example, using
paravirtualization or hardware-assisted virtualization—, a microkernel-based system can severely
limit the e�ects of an attack, e.g., against the monolithic kernel of the rich OS, on the overall system.
Unfortunately, most microkernel-based systems do not support existing implementations for

calculating so ware integritymeasurements, such as the IntegrityMeasurement Architecture (IMA)
for Linux, which is not compatible with microkernels. In fact, integrity veri�cation2 and remote
attestation mechanisms for microkernel-based systems do not exist in the way they do for Linux.
Although the basic concepts can be applied to a system based on a microkernel, the limitations and
restrictions of a microkernel and a common embedded system architecture are quite signi�cant.
For example, without secure storage, e.g., provided by a hardware security module (HSM), such
as a TPM, the integrity measurements can be easily modi�ed, even if the system is based on a
microkernel. Unfortunately, most systems—especially embedded systems—are not equipped with
a security-enhanced chip(set) or an HSM. And even with an HSM or a TPM, security protocols
designed to securely communicate the integrity measurements to a remote veri�er are o en avoided.
¿e reason is that these remote attestation protocols are o en considered (too) complex, usually
require expensive asymmetric cryptographic operations3, and are hence ine�cient, which might
make them unsuitable for resource-constraint embedded or IoT systems.

1 In fact, that is one reason why some systems execute critical so ware components on separate hardware resources.
2 In this context, veri�cation means cryptographic validation, not a veri�cation with formal methods.
3 ¿is statement compares asymmetric with symmetric cryptography.
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1.1 Problem Statement
As the number of embedded systems, which control safety- and security-critical processes and
operations, grows and their complexity and code base increase, it becomes crucial that there exist
cryptographic methods to verify their integrity and trustworthiness. One approach, which, however,
is only one possible solution, is based on Trusted Computing (TC), speci�cally authenticated boot
and remote attestation in combination with a hardware-based secure element (SE), the TPM.

For a remote attestation as speci�ed by the Trusted Computing Group (TCG), hash values
of so ware components, so-called integrity measurements, which are stored in special-purpose
registers inside the TPM, are signed with an asymmetric key generated and protected by the TPM.
¿e integrity measurements are calculated during authenticated boot where the current component
in the boot chain hashes the next one before executing it and then they are sent to the remote veri�er
together with a measurement log containing additional details about individual measurements.
By comparing those integrity measurements with trusted reference values, aggregating them, and
verifying the digital signature, the attestor can determine the trustworthiness of a remote system.
However, it is not always desirable, necessary, or possible to create digital signatures and store the full
details about all integrity measurements in extensive logs for a subsequent comparison with trusted
reference values, especially with respect to resource-constraint devices. As a consequence, we
explore implicit attestation mechanisms, which do not rely on expensive asymmetric cryptographic,
but use symmetric cryptographic operations to prove the trustworthiness of a system without the
need for extensive measurement logs. Since symmetric cryptography is more e�cient compared to
asymmetric cryptographic operations, we expect that this lightweight approach can be integrated
more easily into existing security protocols, e.g., for authentication, secure access, and code updates.

Furthermore, authenticated boot—as the name suggests—only measures the boot chain and does
not prevent the execution of (potentially malicious) binaries a er the boot process has completed.
To overcome this limitation, IMA for Linux-based systems calculates integrity measurements
during runtime whenever a binary is loaded. However, since systems with monolithic kernels, such
as Linux, are di�cult to evaluate using IMA and remote attestation because of their complexity,
we explore the use of microkernel-based systems architectures. Microkernels are smaller in terms
of code size, hence less complex, and by implementing all non-essential system components in
separate user space tasks, microkernel-based systems have smaller trusted computing base (TCB).
By reducing the TCB [cf. Def85; Lam91; Rus81], the integrity measurements are more expressive
and the attestation is not only simpli�ed but also more focused on the relevant system components.
Unfortunately, IMA focuses on Linux-based systems, which means it is not compatible with a
microkernel, and does not prevent loading of remote binaries from an unknown source. For that
reason, we will propose similar measurement architecture for microkernel-based systems enabling
a secure loading mechanism, which makes sure that the integrity of our system is not compromised
a er a successful remote attestation and the execution of a remote binary provided by the veri�er.
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Lastly, since modern computer systems—including embedded systems—increasingly support
hardware-assisted virtualization, TPM-based remote attestation faces new challenges, because
current TPMs only provide limited native support for virtualization. Onemajor limitation concerns
the number of available cryptographic contexts. Due to hardware constraints, TPMs usually have,
for example, only one set of registers to store integritymeasurements. In a systemwith virtualization,
however, it would be desirable to have a set of these registers for each virtual machine (VM) in
order to separately store integrity measurements for di�erent VMs. As a result, systems featuring
virtualization currently implement virtual TPMs in so ware in order to provide each VM with its
own TPM, although the concept could be realized within dedicated hardware security modules.
For that reason, we explore how multiple cryptographic contexts can improve remote attestation
protocols and in what way our mechanism bene�ts from such a multi-context HSM. In addition,
we discuss how a Trusted Execution Environment (TEE) and cryptographic policies can further
assist in improving TPM-based remote attestation in a system featuring virtualization.
In summary, we focus on research in attestationmechanisms and protocols for embedded systems,

which are suitable for resource-constraint devices and are based on a secure microkernel-based
system architecture that make use of hardware-based isolation and takes advantage of a simpli�ed
and reduced TCB. In addition, the attestationmechanisms are aimed to be e�cient, lightweight, and
suitable for systems with virtualization. Furthermore, we explore how our attestation mechanism
can be integrated into existing protocols, e.g., for authentication or secure code updates, and how
TPM policies can make our implicit attestation bene�cial for both the veri�er and the prover.

1.2 Contributions
¿emain contributions of this thesis are outlined in the following paragraphs:

Implicit Attestation Mechanism based on E�cient Symmetric Cryptography

While traditional remote attestation as speci�ed by the TCG relies on expensive asymmetric
cryptography, we provide an attestation mechanism that is based on e�cient symmetric operations,
in particular hash functions and message authentication codes, particularly hash-based message
authentication code (HMAC). At the same time, ourwork introduces the notion of implicit attestation,
which communicates the cryptographic proof to infer knowledge about the trustworthiness of the
prover’s system without requiring digitally signed integrity measurements and a corresponding
measurement log with the entire history of the measurement process. Instead, our approach
provides a method to implicitly generate knowledge about the trustworthiness of the prover’s
system and enables the remote veri�er to infer security properties of the system. As a result, our
attestation mechanism does not require digitally signed integrity measurements, but relies on
symmetric cryptography to establish knowledge about trustworthiness, which makes the approach
more e�cient, lightweight, and hence suitable for resource-constraint embedded systems.
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Microkernel-based System Architecture with a TPM

As a basis for our attestation mechanism, we propose a detailed system architecture with a TPM,
which is based on a microkernel that only has a fraction of the code size of regular monolithic
kernel like Linux and thus signi�cantly reduces the complexity and the trusted computing base. In
addition, microkernel-based systems implement all non-essential system services, e.g., drivers, as
user-space tasks, strictly separate those tasks, and provide only a small number of system calls.

Combination of Attestation with Authentication, Secure Loading, and Update Protocols

Since remote attestation is not a stand-alone, autotelic1 security procedure or protocol, but rather
assists in making a reasonable decision about the trustworthiness of a remote system, our research
also focuses on the integration of attestation into existing protocols. In this thesis, we will therefore
explore and show how implicit attestation can be used in combination with authentication protocols.
In addition, our joint work withWeiss et al. [Wei14] demonstrates how implicit and local attestation
can enable sophisticated security-sensitive operations, such as secure loading of remote binaries.
We also show how attestation can assist in securely updating existing code on a remote system.

Lightweight Attestation for Multiple Cryptographic Contexts

Although the TCG speci�es methods to attest virtualized systems, which include deep attestation of
the underlying hypervisor and the virtual machines, traditional remote attestation su�ers from the
limitations of the TPM, more precisely the TPM 1.2, which only provides one cryptographic context.
In one of our main contributions, we present a system architecture with a multi-context HSM with
a TPM-like architecture and �rmware design, which enables a remote attestation of multiple tasks
with distinct cryptographic contexts. ¿is part of the thesis, which focuses on both hardware and
so ware aspects of a remote attestation for multiple contexts, highlights the necessary features in a
future hardware security module, which should be designed to support virtualization natively.

Policy-based Implicit Attestation with Mutual Bene�ts

With increasing interest, availability, and adoption of the TPM 2.0, the successor to the TPM 1.2,
a particular contribution of this work consequently focuses on the new TPM features, especially
TPM 2.0 policies. Based on the prior research conducted for this thesis, we propose and implement
an “extension” of the implicit attestation mechanism to utilize and incorporate TPM 2.0 policies.
As a result of this work, we provide an attestation mechanism for microkernel-based embedded
systems, which takes advantage of hardware-assisted virtualization, a hardware TEE, and a TPM 2.0.
By using TPM 2.0 policies, we can ensure that these policies are enforced by the TPM and do not
have to rely on the operating system of the host. Furthermore, the attestation mechanism enables
the veri�er as well as the prover to specify policies that need to be satis�ed by the other party.

1 ¿e word “autotelic” comes from the Greek word αὐτοτελής (autotelēs), which combines αὐτός (autos, “self ”) and
τέλος (telos, “goal”), and basically means that something has “a purpose in and not apart from itself ” [Mer17].
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Publications

Parts of the contributions mentioned above are published in the following scienti�c, peer-reviewed
articles, which also include additional contributions that are not covered in detail in this thesis:

[Wag12a] Wagner, Steffen, Christoph Krauss, and Claudia Eckert: “T-CUP: A TPM-Based
Code Update Protocol Enabling Attestations for Sensor Networks.” Security and Privacy
in Communication Networks: 7th International ICST Conference, SecureComm 2011,
London, UK, September 7-9, 2011, Revised Selected Papers. Ed. by Rajarajan, Mut-
tukrishnan, Fred Piper, Haining Wang, and George Kesidis. Vol. 96. LNICST.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: pp. 511–521

[Wag12b] Wagner, Steffen, Sascha Wessel, and Frederic Stumpf: “Attestation of Mobile
Baseband Stacks.” Network and System Security: 6th International Conference, NSS
2012, Wuyishan, Fujian, China, November 21-23, 2012. Proceedings. Ed. by Xu, Li, Elisa
Bertino, and YiMu. Vol. 7645. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012: pp. 29–43

[Wei14] Weiss, Michael, Steffen Wagner, Roland Hellman, and Sascha Wessel: “In-
tegrity Veri�cation and Secure Loading of Remote Binaries for Microkernel-Based
Runtime Environments.” 2014 IEEE 13th International Conference on Trust, Security
and Privacy in Computing and Communications. Sept. 2014: pp. 544–551

[Wag15] Wagner, Steffen, Christoph Krauss, and Claudia Eckert: “Lightweight Attesta-
tion and Secure Code Update for Multiple Separated Microkernel Tasks.” Information
Security: 16th International Conference, ISC 2013, Dallas, Texas, November 13-15, 2013,
Proceedings. Ed. by Desmedt, Yvo. Vol. 7807. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2015: pp. 20–36

[Wag16a] Wagner, Steffen and Claudia Eckert: “Policy-Based Implicit Attestation for Micro-
kernel-Based Virtualized Systems.” Information Security: 19th International Conference,
ISC 2016, Honolulu, HI, USA, September 3-6, 2016. Proceedings. Ed. by Bishop, Matt
and Anderson C A Nascimento. Cham: Springer International Publishing, 2016:
pp. 305–322

In addition, we have published and open sourced a script to extract the code of a fully functional
TPM 2.0 simulator, which is included in the public PDF version of the TCG TPM 2.0 Library Speci-
�cation [Tru14; Tru16], as part of this work. ¿e script, which hopefully enables other researchers to
start using a TPM and develop TPM-based security protocols more easily, can be found on GitHub:

[Wag16b] Wagner, Steffen, Sergej Proskurin, and Tamas Bakos: TPM 2.0 Simulator
Extraction Script. https://github.com/stwagnr/tpm2simulator. Jan. 2016
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1.3 Outline

In Chapter 2, we provide an overview of basic TC concepts and relevant aspects of secure system
architectures, which will be the basis for our integrity veri�cation and remote attestation protocols.
Speci�cally, we discuss the security capabilities and features of a TPM as well as related concepts
like authenticated boot, remote attestation, and trusted network connect. Furthermore, we describe
concepts and technologies, such as separation, isolation, virtualization, and security extensions,
which enable the implementation of secure system architectures as a basis for remote attestation.

In Chapter 3, we discuss related work on TC-based integrity measurement and veri�cation
concepts as well as existing attestation protocols, such as traditional remote attestation as speci�ed
by the TCG. In particular, we contrast existing remote attestation protocols, which usually send
integrity measurements signed by the TPM to a remote veri�er, to our implicit attestation technique.
In contrast to most existing attestation mechanisms, which o en rely on expensive asymmetric
cryptography, our lightweight implicit attestation uses symmetric operations to create veri�able
proof of the system’s trustworthiness, which make it suitable for resource-constraint devices.

In Chapter 4, we present four di�erent attestation scenarios, which focus on speci�c aspects
of secure access to trusted (remote) resources, e.g., �les on a corporate network or sensor data
produced by an industrial control system. In addition, we specify an attackermodel for the scenarios,
our remote attestation, and the derived protocols, which include secure loading and code updates.
In the following chapter, we use the model in our security discussions and evaluations.

In Chapter 5, we describe our comprehensive system architecture, which is comprised of various
protection domains and serves as the basis for our implicit attestation mechanism. More precisely,
we present a �exible system architecture with an application processor and a baseband processor,
a hardware securitymodule, andmultiple separate execution environments for so ware components
with di�erent criticality. Aswe focus on speci�c parts and di�erent aspects of our system architecture
during the course of this thesis, we continually improve our architecture by extending and describing
the relevant protection domains and execution environments, such as the TEE, in more detail.

In Chapter 6, we start by exploring the integrity veri�cation and remote attestation of systems
with a baseband stack, such as mobile phones, since these so ware stacks are usually executed on
dedicated baseband processors, which o en act as a system master, especially in mobile devices.
Although mobile phones already take advantage of a smart card to securely authenticate towards
the backend systems of the network operator, we propose the use of a TPM to establish and
communicate the integrity and trustworthiness of the baseband so ware stack to a remote veri�er.
¿is mechanism allows the network operator to evaluate and verify the trustworthiness of a critical
part of a mobile system before granting access to resources within the network. In particular, we
present an attestation protocol for the baseband stack, which uses e�cient symmetric operations and
integrates into existing protocols used to authenticate mobile devices towards a network operator.

8
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In Chapter 7, we shi our focus to the main application processor and describe our approach to
adapt and extend the well-known Integrity Measurement Architecture for Linux to a microkernel,
which is one key element of our secure system architecture. Since microkernels are generally very
small in terms of code size and signi�cantly less complex compared to monolithic kernels like
Linux, integrity measurement and attestation services only rely on a very small and robust TCB.
Furthermore, our approach for adapting and extending IMA enables a remote party to securely load
external binaries into an isolated execution environment, which is separated by the microkernel
from a rich operating system that is virtualized and executed on the same hardware. Finally, this
chapter also presents details about our prototype implementation and discusses our evaluation,
especially with respect to security, code size, and performance.
Based on the previous results, Chapter 8 extends our microkernel-based system architecture

with additional security features, such as the possibility to collect events generated by an anomaly
detection component and stored in a custom multi-context HSM with a TPM-like �rmware design.
By enabling the collection of integrity measurements as well as runtime anomaly detection events
in a multi-context HSM, we propose and describe an approach for an implicit attestation of multiple
separated microkernel tasks with distinct cryptographic contexts that integrates anomaly detection.
¿e proposed attestation protocol thereby extends and advances the notion of implicit attestation,
which does not require to digitally sign PCR values, but implicitly proves the trustworthiness to
a remote veri�er through e�cient symmetric cryptographic operations, which is expected to be
particularly important for system featuring virtualization.
In Chapter 9, we build on the results of the research discussed in the previous chapters and present

a policy-based implicit attestation mechanism for microkernel-based systems with a hardware TEE.
Similar to the previous chapter, where we integrated anomaly detection events, this attestation
mechanism shows a method to integrate policies into the attestation protocol by taking advantage of
TPM 2.0 authorization policies. As a result, this variation of implicit remote attestation focuses on
security technologies, such as a hardware TEE and also hardware-assisted virtualization, and shows
the bene�ts of combining those hardware-based separation mechanisms with security protocols
like TPM-based remote attestation.
In Chapter 10, we conclude this thesis by illustrating and summarizing how the contributions

presented above result in an e�cient, lightweight remote attestation suitable for embedded systems.
In addition, we draw conclusions based on the research conducted during the course of this thesis,
in particular related to hardware-based remote attestation. Finally, this chapter also highlights
potential directions for future research in the area of integrity veri�cation and hardware-based
remote attestation.

9
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2
Background

In this chapter, we provide relevant background information that serves as a comprehensive basis for
the following chapters and the research conducted in this work. In particular, we give an overview
of the ideas and concepts behind Trusted Computing and explain how TC aims to enforce that a
system consistently behaves as expected and, hence, can be considered trusted. We also introduce
complementary concepts as well as so ware- and hardware-based technologies designed to develop
trustworthy and secure system architectures. Since we take advantage of those existing concepts,
e.g., microkernel-based system designs, and utilize them as a basis for our own contributions, we
not only describe their speci�c characteristics, but also highlight their advantages and bene�ts,
especially in relation to our contributions.
¿is chapter is structured as follows. Section 2.1 presents the ideas and goals of TC, describes

the TPM as one of the main cornerstones of TC, and brie�y contrasts the di�erences between the
TPM 1.2 and the TPM 2.0. Based on the overview, this section subsequently describes fundamental
TC concepts, such as authenticated boot and remote attestation, which are relevant for our research.
Following the introduction and overview of TC, Section 2.2 presents additional concepts and
available technologies to develop a secure system architecture for embedded devices. More precisely,
it describes theoretical concepts, such as isolation and separation, as well as existing technologies
like ARM Virtualization and Security Extensions [ARM12; ARM09; ARM10].
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Chapter 2 Background

2.1 Trusted Computing
¿e termTrusted Computing is based on themore general notion of trusted systems, which describes
and assess systems that—to a speci�ed extent—can be relied upon to behave in a speci�ed way
and enforce a speci�ed set of (security) rules and policies. In this context, TC de�nes speci�c
requirements for a system and speci�es the hardware, so ware, and protocols to enable the system
to behave according to speci�ed security policies. More speci�c, the TC components ensure that
the system will consistently “behave in the expected manner” [cf. Mit05; Tru16, Root of Trust],
which is the basic de�nition for trust in Trusted Computing.
To enforce consistent systembehavior, the TrustedComputingGroup, a consortiumof companies,

research institutions, and governments, which was formed in 2003 as a successor to the Trusted
Computing Platform Alliance (TCPA), collaboratively speci�es the TC technology comprising of
both hardware and so ware components, particularly the Trusted Platform Module. ¿e TPM,
which is usually a non-programmable hardware-based security module, but can be a so ware
implementation in a secure runtime environment, is the cornerstone of this speci�cation e�ort.
Together with so ware, such as the TCG So ware Stack (TSS), and protocols like authenticated
boot and remote attestation, the TPM can enforce a speci�ed behavior and ensure that the system
acts according to its policies.

2.1.1 Motivation and Goals

As the importance of computer security has been increasing since the mid-1990s and the number
of vulnerabilities that have been discovered and are exploited grows daily, TC aims to provide
mechanisms to improve the security of personal, o�-the-shelf as well as corporate, server-oriented
computer platforms. ¿e reason is that the hardware and so ware of regular platforms (without TC
technology) usually provide insu�cient protections, because they are usually highly complex and
o en lack e�ective isolation mechanisms. As a result, their system so ware is usually susceptible to
attacks, such as malicious modi�cation of boot components. Consequently, TC aims to improve the
security of computing platforms, for example, by reducing their TCB and isolating critical functions.
In addition, the goals of TC include compatibility with existing commodity systems, both hardware
and so ware, the ability to reuse existing components, such as the OS, and an open architecture (at
least regarding the standards and speci�cations). ¿ese goals aim to enable a user or a remote party
to reason about the trustworthiness of a system that is enhanced with TC technology.
To achieve the goals of TC, the TCG proposes to solve some of the problems with an addition

security component, the TPM, which acts as a trust anchor and helps to create a trusted platform.
¿e main idea of the TCG’s approach is to establish trust by relinquishing control to the TPM, i.e.,
by transferring control to TC hardware and so ware. Since those TC components are outside of the
control of the regular system (including any malicious code) and only allow speci�ed operations,
the user as well as any remote party can expect a speci�ed behavior, i.e., trust the system.
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Obviously, this type of technology, which forces the owner of a system to relinquishing control
(at least to a certain degree), can raise suspicion. Since TC can potentially be used to implement
digital rights management (DRM), restrict the freedom of the owner’s choice, e.g., regarding the
so ware on the device, or violate privacy, the applications of TC technology can be controversial.
As a concept, however, TC provides security bene�ts and, hence, can enable the design of a more
secure system. As such, we use the TC technology, especially the TPM, as a basis for our integrity
veri�cation and remote attestation mechanisms, which help to assess and verify our system.

2.1.2 Trusted PlatformModule

Usually, a Trusted Platform Module is described as a microcontroller with additional security
features similar to a smart card, such as a subscriber identity module (SIM). However, a TPM is
actually a speci�cation, more precisely an international standard1, for a security component, which
acts as a hardware-based root of trust (or trust anchor) and has standardized features and interfaces.
In fact, while a TPM 1.2 generally is a secure crypto-processor in a dedicated hardware component,
such as a secure microcontroller, the speci�cation of a TPM 2.0 explicitly allows for so ware-based
implementations, in particular �rmware TPMs, which use security features of the host’s system,
such as a TEE, to ensure their security guarantees.
In addition to dedicated TPMs and �rmware implementations, there are also integrated TPMs,

which are part of a hardware chip that also provides functions not necessary related to security,
as well as so ware TPMs, which—as the name suggests—implement a TPM purely in so ware.
While integrated TPMs are resistant to so ware bugs, but not tamper-resistant like dedicated
TPMs, so ware and �rmware-based TPMs are inherently less secure. Since so ware-based TPM
implementations usually cannot be hardened against sophisticated physical and side channel attacks,
hence lack tamper resistance, the majority of TPMs is predominantly hardware-based and built
into PCs and servers during production and hardware assembly.
As dedicated security modules, which are part of the platform’s hardware architecture, these

hardware TPMs provides the highest level of security and can securely store and protect sensitive
information, such as cryptographic keys, even against most physical attacks. Since TPMs are
logically and physically linked to a platform (not to a person like smart cards), their main function
is to secure the device by providing secure key storage, authentication services, and integrity
measurements to the system. In particular, by collecting measurements of the system’s integrity,
TPMs can be used to implement security protocols, e.g., remote attestation, which will be described
in Section 2.1.3 following an overview of a TPM’s architecture, keys, and security-speci�c features.

1 ¿e TPM 1.2 Main Speci�cation (Revision 103) has been approved by JTC 1, a joint technical committee of the
International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC),
as international standard ISO/IEC 11889:2009 [ISO09] and the TPM 2.0 Library Speci�cation (Revision 01.16) as
ISO/IEC 11889:2015 [ISO15].
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2.1.2.1 Architecture of a TPM

¿e basic architecture of a hardware TPM 1.2 (Figure 2.1) or TPM 2.0 (Figure 2.2), respectively,
can be divided into two parts: one comprised of standard microcontroller components (gray) and
one consisting of TPM-speci�c components (white). However, although the gray components
are building blocks of a standard microcontroller, such as the CPU (central processing unit),
input/output (I/O), random access memory (RAM), read-only memory (ROM), and EEPROM
(electrically erasable programmable read-only memory), a hardware TPM as a security controller
has special protection and anti-tamper mechanisms, e.g., internal encryption, power sensors, and
shielding, which protect against most attacks including physical tampering, such as probing.
On the right, Figure 2.1 shows the main TPM-1.2-speci�c low-level hardware components, such

as the cryptographic engines for RSA (Rivest-Shamir-Adleman cryptosystem) [C1] and the Secure
Hash Algorithm 1 (SHA-1) [C5] as well as the random number generator (RNG) [C4] which is,
for example, used by the key generation component [C2]. ¿e TPM 1.2 components also include
an HMAC engine [C3], which is for internal use only, and an integrated AES module, which is
part of the cryptographic engine(s) and also not available externally. Additional components are
a power detection module [C6], an opt-in component [C7], and an execution engine [C8] that
handles commands. Furthermore, TPMs provide non-volatile (NV) memory [C9], e.g., for certain
keys (cf. Sections 2.1.2.2 and 2.1.2.3), and volatile memory [C10] including PCRs, which can be
used to collect and record integrity measurements and create a platform con�guration in form of a
continuous hash chain (see Section 2.1.2.4 and the following).
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Figure 2.1: Architecture of a TPM 1.2 (based on and with references to [Tru11, Part 1, Figure 4:a])

14



Ba
ck
gr
ou

nd

Trusted Computing Section 2.1

In comparison, a hardware TPM 2.0 is also based on a secure microcontroller as shown on the le 
of Figure 2.2. However, in contrast to a TPM 1.2, the TPM components have changed signi�cantly,
for example, because the TPM 2.0 supports algorithm agility. ¿e main idea of algorithm agility (or
crypto agility) is to include the capability into the TPM speci�cation to support a set of algorithms
rather than only one cryptographic system, e.g., RSA (and SHA-1), like the TPM 1.2 has mandated.
As a result, the architecture of a TPM 2.0 comprises, for example, (multiple) hash engines, which
might provide SHA-1, but also support Secure Hash Algorithm 2 (SHA-2) with di�erent sizes for the
digest or any other approved hash algorithm. As a consequence, some TPMs have generic PCRs to
support di�erent algorithms, while others have multiple PCR banks, where each bank implements
its own algorithm. Similar to the hash engines, a TPM 2.0 provides asymmetric engines, e.g., for
RSA and elliptic curve cryptography (ECC), and symmetric engines, e.g., for AES, which can even
be available externally. ¿e engines are directly connected to the key generation component which,
in turn, utilizes the RNG that provides the necessary entropy for cryptographic key.
While the rest of the components shown on the right of Figure 2.2 resemble their counterparts in a

TPM 1.2, there are also some newmodules, such as the authorization andmanagement components.
¿e authorization components is responsible for new TPM 2.0 authorization mechanisms, which
are no longer limited to weak authentication methods (cf. Section 2.1.2.5, Enhanced Authorization).
¿e management module handles new features, such as �eld upgrades and the new TPM 2.0 control
domains, where the TCG distinguish between platform, owner, and privacy administrator controls
and separates TPM objects, such as cryptographic keys.
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Figure 2.2: Architecture of a TPM 2.0 (based on and with references to [Tru16, Part 1, Figure 2])
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2.1.2.2 Roots of Trust

To ensure that a platform behaves in an expected manner, TC requires an initial basis for trust, also
referred to as Roots of Trust, which must be relied upon without further veri�cation and validation,
because modi�cations or misbehavior cannot be detected and remedied. In its speci�cations, the
TCG postulates three Roots of Trust:

1. Root of Trust for Measurement (RTM)

2. Root of Trust for Reporting (RTR)

3. Root of Trust for Storage (RTS)

Each Root of Trust ensures that a particular TC primitive (integrity measurements, remote attes-
tation, and secure storage for cryptographic keys) is based on a component, which can be relied
upon. It is hence not surprising that the TPM implements most parts of the three Roots of Trust,
RTM, RTR and RTS, and only partially relies on the host system for some aspects of the RTM.

Root of Trust for Measurement

¿eRTM is the basis for the collection of integrity measurements and the subsequent establishment
of a platform con�guration, which can be used and reported in a remote attestation (cf. Section 2.1.3).
¿e measurement process starts with the Core Root of Trust for Measurement (CRTM), which is
usually a piece of so ware that is executed immediately a er the system starts booting. Although
the CRTM is supposed to be immutable, it is usually part of the Basic Input/Output System (BIOS)
or Uni�ed Extensible Firmware Interface (UEFI) on x86-based systems1. A er the CRTM has
measured the BIOS, it stores the integrity measurements inside the PCRs of the TPM.¿us, the
TPM implements the other half of the RTM, i.e., secure storage for integrity measurements.

Root of Trust for Reporting

¿e RTR, which is located in a shielded location of the TPM, is the root of trust for reporting the
current state of the platform, i.e., the current integrity measurements stored inside the PCRs. To
link the reported platform con�guration and its integrity measurements to a particular system, each
TPM has a so-called Endorsement Key (EK), which basically implements the RTR. In a TPM 1.2,
the EK is a 2048-bit RSA key pair, which is usually generated during production, stored inside the
non-volatile memory of the TPM, and originally could not be changed during the TPM’s lifetime2.
However, because of privacy concerns (and since the EK is not intended to directly encrypt or sign
arbitrary data), it is not possible to report the current platform con�guration by signing PCR values
with the EK. Instead, attestation identity keys, which are described in Section 2.1.2.3, are used.

1 Despite the negative implications, the TCG allows this type of implementation as long as the update process is secure.
2 In the latest version of the speci�cation [Tru11], a revokable EK may be created using TPM_CreateRevocableEK,

which can then be deleted using TPM_RevokeTrust.

16



Ba
ck
gr
ou

nd

Trusted Computing Section 2.1

In contrast, a TPM 2.0 allows a so-called privacy administrator, which is o en identical with the
owner, to create a virtually unlimited number of EKs. ¿ose EKs, which are based on a TPM-speci�c
seed value (cf. Section 2.1.2.3, Endorsement Primary Seed), solve the privacy issue and remove the
need for attestation identity keys. As a result, the RTRs of a TPM 2.0 is e�ectively a large random
value, which is stored in a protected location inside the TPM and never leaves the TPM.

In comparison to a TPM 1.2, the RTR of a TPM 2.0 is not only the root of trust for reporting
evidence of a platform con�guration stored in PCRs. ¿e TPM 2.0 can also use the RTR to certify
audit logs and key properties (cf. [Tru16, Part 1, Section 9.4.3]). Although we do not use audit logs
in this work, the possibility of certifying key properties might complement our protocols.

Root of Trust for Storage

¿e RTS, which is also stored in a shielded location of the TPM, is the root of trust for protecting
keys that are stored on the host’s system in encrypted form. Since the TPM can be trusted to prevent
inappropriate access to its shielded memory, it can act as an RTS [cf. Tru16, Part 1, Section 9.4.2].
As such, the RTS is the anchor inside the TPM, which enables protected storage of encrypted keys
and data outside the TPM and solves the problem of its limited internal storage capacities.

In a TPM 1.2, the RTS is realized as a 2048-bit RSA key pair, which is referred to as Storage Root
Key (SRK). ¿e SRK is generated when the owner of the TPM is created via TPM_TakeOwnership.
As a root of trust, the private portion of the SRK never leaves the TPM, otherwise the whole key
hierarchy would be compromised. ¿e SRK is deleted (and the other keys invalidated), when the
TPM is cleared using TPM_Clear.

In comparison, a TPM 2.0 allows the owner to create a virtually unlimited number of “SRKs”,
which are referred to as Storage Primary Keys and are based on a TPM-speci�c seed value (cf.
Section 2.1.2.3, Storage Primary Keys and Storage Primary Seed). As a result, the RTS of a TPM 2.0
is e�ectively a seed value, which never leaves the TPM and is changed a er each TPM2_Clear.

2.1.2.3 Key Types and Constraints

One of the main functions of a TPM is the secure generation and handling of di�erent keys, which
have a certain purpose and, hence, are used in speci�c cryptographic operations provided the TPM.
¿ose cryptographic keys not only di�er in their values and parameters, they also have speci�c
types and constraints, which are speci�ed by the TCG.

¿e type of a key usually de�nes, but also limits a key’s usage. For example, an asymmetric
TPM 1.2 signature key cannot be used as an HMAC or encryption key. In a TPM 2.0, types and
constraints are de�ned by attributes, which include the intended use (e.g., signing or encryption),
the cryptographic type (e.g., symmetric or asymmetric) and algorithm, such as AES, ECC, or RSA,
as well as restrictions on use and key management [Art15, Key Types and Attributes, p. 125].
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Furthermore, most TPM 1.2 keys can bemigratable or non-migratable, which is a constraint on
key management and usage. Migratable keys can be transferred from one TPM to a di�erent TPM,
e.g., for backup purposes, while non-migratable keys are restricted to a speci�c TPM, which means
the private portion of the key never leaves that particular TPM. In a TPM 2.0, migratable keys are
called duplicable, which emphasizes that a duplicable key can be copied to a di�erent TPM and exist
in two or more TPMs at the same time. Consequently, TPM 2.0 Duplication, which is described in
detail in Section 2.1.2.5, is the process of securely migrating a duplicable key to a di�erent TPM
enabling, for example, key backups. We use duplication to securely migrate a key with speci�c
attributes to a di�erent TPM and, thereby, establish a shared cryptographic basis for our attestation
protocol (see Chapter 9).

TPM 1.2 Key Types

¿eTPM 1.2 Main Speci�cation [Tru11] de�nes the following key types (not including authorization
change and legacy keys, which are not relevant for our work):

Storage Keys: A storage key is an RSA key pair with a minimum key length of at least 2048 bit.
Storage keys can only be used locally by the TPM, may be protected with a password, and
optionally cryptographically bound to certain PCR values. ¿is type of key is used to create
a key hierarchy starting with the SRK. Hence, storage keys mainly encrypt other TPM keys,
such as binding or signature keys, which can then be securely stored on the host system.
Storing keys externally is necessary because of the limited storage capacity of the TPM.

Binding Keys: A binding key is an asymmetric RSA key pair, which can be used by any platform or
user to encrypt data that can only be decrypted by a TPM with the private portion of that
particular binding key.

Signature Keys: Since the TPM 1.2 usually only supports RSA, signatures keys are asymmetric RSA
key pairs that must have a speci�ed length, usually 1024 or 2048 bit. As the name suggests,
this type of key can be used to sign arbitrary data provided to the TPM by the host system.
Signatures keys can be either migratable or non-migratable.

Identity Keys: For security reasons and due to privacy concerns, the EK can not be used directly
to calculate signatures [cf. Tru11, Section 11.4]. Instead, an Attestation Identity Key (AIK)
provides an alias for the EK, i.e., acts as a pseudonym, and can be used to sign certain TPM
data structures. As such, AIKs are special-purpose non-migratable signature keys.

In addition to those keys, the TPM 1.2 dynamically calculates (session) secrets, which are used
during the authorization protocols between the host system and the TPM.¿ese TPM 1.2 protocols
are called Object-Speci�c Authorization Protocol (OSAP) and Object Independent Authorization
Protocol (OIAP).¿ey basically create secure sessions for authorizations, which ensure authenticity,
con�dentiality, and integrity of the data transferred between the host and the TPM.
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TPM 2.0 Key Types

¿e TPM 2.0 Library Speci�cation [Tru16] de�nes the following three main types of keys:

Primary Keys: All Primary Keys are mainly derived from one of the three TPM Primary Seeds (PS):
the Platform Primary Seed (PPS), the Storage Primary Seed (SPS), or the Endorsement
Primary Seed (EPS). APrimaryKey is thereby always associatedwith corresponding hierarchy
of the Primary Seed, i.e., the Platform Hierarchy (PH), Storage Hierarchy (SH), or the
Endorsement Hierarchy (EH). In addition, a Primary Key never leaves the TPM.

Ordinary Keys: In comparison to Primary Keys, Ordinary Keys are regular keys in one of the three
TPM 2.0 hierarchies. ¿ey are created underneath a Primary Key (or another Ordinary Key),
which acts as the parent key. Ordinary Keys are seeded with entropy from the TPM’s RNG
and can be duplicable, hence, migrated to a di�erent TPM.

Derived Keys: While Ordinary Keys use entropy from the RNG, Derived Keys are generated using
the key derivation function KDFa and inputs like the sensitive value of the Derivation Parent.

Based on those main key types, the con�guration of key attributes determines the properties of a
particular key. In addition to key’s use and overall type (e.g., asymmetric RSA key for signing with
a key length of 2048 bits), the attributes also de�ne the restrictions on duplication and key usage
[cf. Art15, Key Types and Attributes, p. 125]. For example, the main duplication attributes are:

fixedTPM: If this attribute is set to TRUE, a key cannot be duplicated (at all), because it is always
restricted to this particular TPM. Even a duplication within the same TPM is not possible.

fixedParent: A key with this attribute set to TRUE is restricted to a particular parent key, i.e., this
key cannot be duplicated to a di�erent parent key. However, migration is indirectly possible
if the parent key is duplicable. In this case, both keys form a duplication group.

Finally, the TPM 2.0 speci�es two pre-de�ned variations of the attributes, which result in two
particular key types, which are similar to TPM 1.2 AIKs and Storage Keys:

Restricted Signing Keys: As the name suggests, this key is basically a signing key, which is however
restricted to only sign TPM (attestation) structures. ¿ose structures include PCR quotes,
audit logs, certi�ed key properties, and the TPM time [cf. Art15, p. 128]. In order to make
sure that the structures have not been created externally, the TPM always adds and veri�es
the existence of a magic 4-byte value, TPM_GENERATED. If the input value for the signatures
starts with this value, the TPM does not produce a signature. ¿at way, a remote veri�er can
be sure that the TPM created the signed value internally.

Restricted Decryption Keys: ¿is type of key is essentially a storage key, which only decrypts certain
data structures that have a speci�ed format. ¿ose keys are mainly used to decrypt child
objects, such as externally stored keys, or to activate a credential [cf. Art15, p. 129].
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2.1.2.4 Platform Con�guration Registers

As shown in the architecture (cf. Figures 2.1 and 2.2), a TPM provides secure volatile memory,
which includes special-purpose memory referred to as Platform Con�guration Registers (PCRs).
PCRs are designed to record cryptographic measurements of the current con�guration and so ware
state of the platform. As such, PCRs are automatically set to zeros once the host platform and TPM
are powered up and it is ensured that they cannot be cleared without resetting the whole system1.
However, since TPMs have limited storage capacities and, hence, cannot provide an unlimited
number of PCRs to store the integrity measurement of each so ware component separately, they
usually only implement 24 PCRs (since TPM 1.2, before that 16).
To overcome this limitation and enable a TPM to record a virtually unlimited number of integrity

measurements, the speci�cation de�nes an update function, which extends the current value in a
PCR with a new measurement using concatenation and a cryptographic hash function, i.e.,

PCR[i] = Hash( PCR[i] || integrity measurement ) .

¿at way, a PCR not only stores one integrity value, but records a complete chain of measurements.
As a consequence of using a hash function, however, the individual measurements in a PCR can no
longer be distinguished and need to be stored separately on the host system. Fortunately, since the
extend function is implemented inside the TPM and the PCRs are part of the shielded locations, the
most recent PCR values (and thereby also the complete chain of all measurements) are protected.
¿at means if an attacker modi�es the externally stored individual measurements, any remote
veri�er is able to check and detect the attack, because the TPM always signs the internally stored
PCR values and never externally provided data that looks like PCR values.
Since the TPM calculates the PCR values using an internal hash function, the digests are always

160-bit SHA-1 hash values in case of a TPM 1.2, because SHA-1 is the only available hash algorithm.
¿at means a TPM 1.2 implements only one set of PCRs with a �xed size and the measurement log
with the individual integrity values can use a simple format. On the other hand, as SHA-1 is more
and more deemed insecure, an upgrade to a new hash function usually requires a hardware change.
For the TPM 2.0, in contrast, it is possible to select one of the implemented hash algorithms.

Since the TPM 2.0 supports the concept of algorithm agility, there is usually more the one hash
algorithm available. As mentioned above, that means a TPM 2.0 has to provide �exible PCRs:
¿e TPM can either implement a generic set of PCRs with the size of the maximum length of all
implemented hash digests or provide separate PCR banks, which are activated depending on the
selected hash algorithm. In both cases, the TPM 2.0 transparently provides a set of 24 PCRs, which
are suitable for the selected hash algorithm.

1 Actually, the TPM 1.2 as well as the TPM 2.0 speci�cations reserve PCR 16 as a debug PCR, which can be used to test
so ware and is the only PCR that can be reset without a power cycle of the host system.
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2.1.2.5 TPM 2.0 Features

Since the TPM 2.0 signi�cantly improves and extends the features of its predecessor, the TPM 1.2,
this section gives a brief overview of the relevant TPM 2.0 features, which we will use in our work.
¿ese features include Authorization Sessions, which enable three types of authorization methods,
Enhanced Authorization, which improves the authorization mechanisms and implements policies,
Duplication of keys, which has already been introduced in Section 2.1.2.3, as well as NV Indices,
which extend the TPM 1.2 non-volatile storage interface, e.g., by providing new NV types and
integrating authorization policies for internal TPMmemory.

Authorization Sessions

According to the TPM 2.0 Library Speci�cation, a session is a collection of TPM state that changes
a er each use of that session [Tru16]. As such, session are a generic concept, which can be used
for authorizations, audits, and encryption. Since we primarily use authorization sessions in our
attestation protocol, we brie�y describe this type of session (and refer to the speci�cation for the
other session types).
As the name suggests, authorization sessions are a speci�c type of session, which can be used to

authorize actions related to TPM entities, such as cryptographic keys. Sessions are created using
the command TPM2_StartAuthSession, which generates a new session handle inside the TPM
that can be used to reference that session.
To authorize actions via sessions, the TPM provides three types of authorization sessions:

Password “Sessions”: Apassword session is actually a one-time authorization (not actually a session),
which uses a plaintext password to authorize an action and, hence, does not maintain a state.
Since no session context is created by the TPM, this type of authorization does not require
the use of TPM2_StartAuthSession.

HMAC Sessions: As amore securemethod to use password-based authorization, this type of session
calculates an HMAC, which is mainly based on the authentication value of the TPM entity.
¿is value is referred to as AuthValue, set at the creation of the TPM object, and only one
of the inputs to the HMAC calculation used for a more secure authorization. Other inputs
are random numbers (noncesTPM and nonceCaller), which protect against replay attacks.

Policy Sessions: Built on top of HMAC sessions, policy sessions extend the methods of authorizing
actions related to a speci�c TPM entity. ¿e name policy session comes from the fact that
this type of authorization enhances HMAC-based authorizations with cryptographic policies
(see Enhanced Authorization). While HMAC sessions are mainly based on the AuthValue,
policies can include, for example, passwords, TPM state information (e.g., PCR values),
command sequences, or content in non-volatile memory. ¿ose authorization elements can
even be combined using TPM2_PolicyOR in order to create complex policies.
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Enhanced Authorization

With Enhanced Authorization (EA), the TPM 2.0 improves and extends the previously very limited
authorization mechanism and uni�es the method for authorizing TPM operations and objects.
While TPM 1.2 authorizations are mainly based on passwords (authorization secrets), EA provides
a novel authorization mechanism based on TPM 2.0 policies, which can authorize the use of any
TPM entity, such as cryptographic keys, NV memory, or TPM functions. As such, EA is a TPM
capability that allows entity-creators (or administrators) to require speci�c tests or operations to
be performed before an action can be authorized and completed (based on [Tru16, Part 1, Section
19.7.1]). ¿e speci�c policy for an entity is stored in a value referred to as authPolicy, which is
short for authorization policy.

A TPM 2.0 policy is represented as a single cryptographic hash value, which is constructed in a
similarwayPCRvalues are calculated: ¿e initial policy hash created by TPM2_StartAuthSession
is always all zeros. Because of algorithm agility, the size of the hash digest depends on the selected
hash algorithm. To construct a particular policy, the initial policy hash is “extended” in a speci�ed
way, which describes the test conditions and operations that have to be performed before the new
entity can be used in a speci�c way as indicated in the policy.

For example, a policy for a new key could require particular PCR values and a speci�c content in
a certain NV location. To construct such as policy, one has to start a new policy session, which
creates the initial policy hash (and a session handle), and extend the two policy conditions onto
the initial policy hash as speci�ed in the TPM 2.0 Library Speci�cation resulting in a hash chain,
which is the policy. By referencing the session handle, the key can be created and later used if the
policy can be re-created, i.e., the current conditions match the speci�ed policy conditions.

As mentioned in the previous section, EA not only extents the method of authorization from a
password to a sequence of authorization steps, but also enables the use of Boolean operators OR via
TPM2_PolicyOR to combine multiple alternative authorization paths to a policy tree. If a leaf of
the policy tree can be reached, the TPM entity can be used as speci�ed by that policy.

Key Duplication

Duplication is the process of migrating cryptographic keys from one TPM to a di�erent TPM or
within key hierarchies of the same TPM. As described in Section 2.1.2.3, a key can be migrated
if the key has both attributes, fixedTPM and fixedParent, set to FALSE. In case the attribute
fixedParent is set to TRUE, the key cannot be migrated directly, but moves with its parent if
that key is duplicable. If fixedTPM is set to TRUE, a migration (even within the same TPM) is
not possible at all. In addition, duplicable keys need to be associated with a policy, which must
at least contain the command code for TPM2_Duplicate. Such a policy can be created using
TPM2_PolicyCommandCode, which enters a special authorization role for duplication (DUP).
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NV Indices

As described in Section 2.1.2.1, the TPM includes non-volatile memory, which is required to store,
for example, authorization values, proofs and secrets, seeds, as well as state information (e.g., counter
or clock values). ¿e NVmemory can also be used to make TPM entities, such as cryptographic
keys, persistent, hey are readily available.
In addition to those data structures de�ned by the TPM 2.0 Library Speci�cation, the platform

or a user can also store unspeci�ed data in dynamic NV locations, so-called NV Indices. ¿ese NV
indices are created using TPM2_NV_DefineSpace and have a certain size, (user-de�ned) handle,
authorization value, and one of the following (data) types, which are de�ned in the speci�cation:

Ordinary: Ordinary NV indices are similar to TPM 1.2 NV spaces. ¿ey can be used to store
arbitrary data using TPM2_NV_Write and only limit the size of data that can be written to
the index.

Bit �eld: NV bit �elds also contain 64 bits that are initialized to all zeros. As de�ned by the
speci�cation, bits in a NV bit �eld can be set using TPM2_NV_SetBits, but not cleared.

Counter: NV counters store 64-bit values, which are initialized to the maximum value that any
counter ever had on the same TPM. According to the speci�cation, NV counters can only be
incremented (using TPM2_NV_Increment).

Extend: NV extend indices behave like PCRs and are associated with a particular hash function,
which determines the size and, in some respect, the content of the NV space. Initially, the
index is set to zero and is extended with new values using TPM2_NV_Extend.

In contrast to the TPM 1.2, which also provides user-de�ned NVmemory locations, NV indices can
only be read a er they have been initialized with a write operation. Otherwise, the TPM prevents
reading the content of the index and returns an error message, which ultimately results in failed
read operation. ¿at way, it is no possible to inadvertently use an uninitialized NV index.
Furthermore, access to user-de�nedNV spaces can not only be protected by a secret, which is used

in an HMAC-based authorization, localities (a level indicating the current mode of operation), PCR
values, or physical presence. TPM 2.0 NV indices can alternatively be associated with a policy, which
must be satis�ed to be able to read or write data. While the corresponding policy hash is initially
part of the public information, which is used to create the NV index with TPM2_NV_DefineSpace,
the policy hash is later stored as authPolicy in protected memory.
In addition, TPM entities can reference an NV index in their policy using TPM2_PolicyNV,

which requires a certain value in the NV memory location to satisfy the policy of that TPM
entity. Depending on the type of NV index, the speci�cation de�nes several operations, such as
a comparison of equality or a bit check, which can be speci�ed in the policy. We use policies
associated with NV policies in our remote attestation protocol described in Chapter 9.

23



Ba
ck
gr
ou

nd
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2.1.3 Trusted Computing Concepts and Protocols

¿is section gives a brief overview of relevant TC concepts, in particular, authenticated boot and
remote attestation. While authenticated boot is a method for collecting integrity measurements,
attestation is a way to report those integrity measurements to a remote party, which can, in turn,
cryptographically verify those measurements to evaluate the platform’s trustworthiness.

2.1.3.1 Authenticated Boot (and the Integrity Measurement Architecture)

If a platform supports TC and is equipped with a TPM, it canmeasure each boot component starting
from the CRTM and store the integrity measurement in the TPM’s platform con�guration registers
before executing the next component in the boot chain. ¿is process is called authenticated boot
(or sometimesmeasured boot). In contrast to secure boot, which veri�es cryptographic signatures
for each boot component before executing the component, authenticated boot merely measures
so ware, such as the BIOS, and its con�guration to establish a so-called platform con�guration.
Since the measurement process starts with the CRTM, which is one half of the RTM, the chain of
measurements is rooted in a trusted component. By measuring the next component in the boot
chain before executing it, the TPM (the second half of the RTM) continues that chain. As a result,
authenticated boot creates a transitive chain of trust, which is rooted in the RTM and contains the
integrity measurements of all boot components including their con�guration as well as the OS.
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Figure 2.3: TCG Authenticated Boot for BIOS (PCR assignment based on [Art15, p. 152] and [Bul13])
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As depicted in Figures 2.3 and 2.4, which show the authenticated boot process for a BIOS- and
a UEFI-based system, the procedure starts with the CRTMmeasuring the BIOS/UEFI (step 0a).
However, since the CRTM is usually part of the BIOS/UEFI �rmware, this measurement includes
the CRTM as well. ¿e BIOS/UEFI, in turn, measures their con�gurations, additional components,
such as Option ROMs or Extensible Firmware Interface (EFI) Drivers, as well as the Master Boot
Record (MBR) or UEFI OS loader (steps 1a-4a). ¿e results are extended into PCRs 0-4 (steps
0b-4b) and control is handed over to the MBR (boot loader) or the UEFI OS loader.
In steps 5-8, the boot loader in the BIOS-based systemmeasures the partition table, state transition

and wake events, the platform-speci�c components, and the static operating system (steps 5a-9a).
Similarly, the UEFI OS loader measures the EFI variables and Globally Unique Identi�er (GUID)
partition table, state transition and wake events, secure boot keys and variables, as well as the static
operating system. ¿e resulting integrity measurements are extended into PCRs 5-9 as indicated
in steps 5b-8b. For the �nal step 9, the boot loader hands over control to the kernel of the static
operating system, which might measure OS speci�c components, such as the boot sector and boot
block of the root �le system. ¿ose integrity measurements are usually extended into PCRs 10-15.
As a result of the authenticated boot process, the PCR values cryptographically represent the

state of the platform. Since each boot component is measured before its is executed, an attacker
cannot simply modify a boot component to compromise the measurement process. Also, such an
attack can be easily detected by comparing the contents of the PCRs with trusted reference values.

UEFI
PEI/DXE, 
Boot and 
Runtime 

Services, etc.
CRTM

Static
Operating System

TPM

PCR 0 PCR 1 PCR 2 PCR 3 PCR 4 PCR 5 PCR 6 PCR 7

UEFI
OS Loader and 

Applications

Configuration

EFI Drivers

EFI Driver 
Configuration

4a

0a

1a

2a

3a

8a

0b 1b 2b 3b 4b

PCR 8-15

EFI Variables, 
GUID Partition 

Table

5a

5b

State Transitions
and Wake Events

6a

Secure Boot keys
(PK/KEK), 
variables
(dbx, …)

7a

7b6b 8b

#a Measure

#b Extend

Boot Sequence: UEFI → Boot Loader → Static OS

1

2

3

# Execution Order

PCR 16-23

9b

9a

Figure 2.4: TCG Authenticated Boot for UEFI (PCR assignment based on [Art15, p. 152] and [Bul13])
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Unfortunately, since authenticated boot only measures the boot components, the cryptographic
measurements of the platform merely represent the state of the system when the boot process
has completed. A er some time, the integrity values stored in the TPM no longer describe the
actual platform state, since malicious binaries might have been executed and have been able to
compromise the system in the meantime. As a consequence, the integrity measurements inevitably
su�er a loss of trustworthiness, when the system solely relies on authenticated boot.
To overcome this limitation, the Integrity Measurement Architecture [Sai04] has been proposed

for Linux-based systems, where integrity values are calculated during run-time whenever a new
binary is loaded. Particularly, the IMA subsystem is responsible for calculating the hashes of �les,
i.e., application binaries, regular �les, libraries, and others, before they are loaded (and executed).
As shown in Figure 2.5 (step 10), the resulting integrity measurements are stored in PCR 10, which
is primarily used for IMA and initially contains a measurement value that is an aggregate of all
preceding boot measurements linking the authenticated boot measurements to IMA. In addition
to collecting run-time measurements, IMA also maintains a measurement list, which contains
the individual integrity values and enables a (remote) veri�cation of the platform state and its
trustworthiness. As a result, IMA continues the chain of measurements started with the CRTM
and established by an authenticated boot process. Most signi�cantly, it provides a more recent state
of the platform, because it contains measurements for all relevant �les of a Linux-based system,
particularly binaries, con�guration �les, and scripts.
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Figure 2.5: Integrity Measurement Architecture for Linux-based Systems
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To be able to securely measure the relevant �les, IMA is proposed as a so-called Linux Integrity
Module (LIM) on top of Linux SecurityModules (LSMs), which instrument certain kernel functions
equipped with security hooks. ¿ose hooks enable the extension of existing kernel functions by
calling additional (privileged) code before or a er security-critical parts of the original kernel
function. More precisely, IMA mainly utilizes the security hooks security_bprm_check (which
invokes ima_bprm_check(bprm)) and security_mmap_file (which invokes ima_file_mmap)
to measure the contents of a �le, whenever the Linux kernel maps that �le to memory.
For example, when the Linux program loader maps a statically linked binary or a binary with no

library dependencies into memory, that �le is measured and the integrity value extended into the
TPM before it is executed using the system call execve. Similarly, IMA measures binaries with
shared libraries, which are loaded by the dynamic linker/loader ld.so or ld-linux.so.{1,2},
respectively. In this case, the loader uses mmap to map those libraries into memory which, in turn,
invokes the security hook security_mmap_file and executes ima_file_mmap, which triggers
the measurement process.
If the Linux kernel does not provide a security hook in a mapping or loader function, IMA

requires a modi�cation to the existing code. For example, in case of Linux Kernel Modules (LKMs),
the system call sys_init_module is used to inform the kernel about a new kernel module, which
has been loaded into user-space memory and needs to be copied into kernel memory and relocated.
However, since there was no suitable security hook available in kernel 2.6, the authors of IMA
added a measure call into the load_module routine that was called by the init_module system
call, when the LKM resided in kernel memory and before it was relocated [cf. Sai04, Section 5.1
(Inserting Measurement Point), Kernel Modules]. ¿at way, binaries like kernel modules can be
measured, too, even if there is not pre-de�ned security hook.
As a result, the IMA concept and implementation for Linux enforces themeasurement of integrity

values for (relevant) �les like binaries, including dynamically linked programs, before executing
those binaries. In addition, regular �les like con�gurations or scripts can be hashed and extended
into the TPM, which provides a more recent cryptographic representation of the platform state. As
such, IMA is a useful extension for authenticated boot and a strong basis for further veri�cation
mechanisms, such as IMA-appraisal, which enforces local validation of measurements, or the
Extended Veri�cation Module (EVM), which can detect o�ine modi�cations and prevent execution.
Unfortunately, IMA is only available for Linux-based system and, without the additional security

extensions like appraisal mode, does not prevent the execution of (potentially malicious) binaries.
¿at is why we will adopt the IMA concepts to our microkernel-based system architecture and
implement a secure loader, which enforces authenticity and integrity veri�cation of binaries before
executing them. Furthermore, our system will provide a mechanism, usually referred to as remote
attestation, which allows a remote party to verify the platform’s trustworthiness. ¿e concept of a
remote attestation as speci�ed by the TCG is described in the following section.
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2.1.3.2 Remote Attestation

Since authenticated boot and IMA cannot fully prevent the execution of potentially malicious
binaries, an attacker might be able to compromise a system component, such as the boot loader or
an OS component, during boot or run-time. ¿at means the malicious component is measured,
but nonetheless executed, which (unknowingly) puts the system in a untrustworthy state. In fact,
this compromised state is di�cult to detect, because the system has no way to reliably verify its
own integrity measurements without a separated execution environment that can be trusted even
a er some components have been compromised.
As a consequence, the TCG has speci�ed a protocol referred to as remote attestation, which is

designed to enable a remote veri�er to evaluate the trustworthiness of a platform equipped with
a TPM.¿e main idea of remote attestation is to create cryptographic evidence, which supports
a platform’s claim about its current state and its general behavior, hence its trustworthiness. ¿is
cryptographic evidence usually has the form of a digital signature, which is calculated by the TPM,
and since the TPM cannot be easily tampered with by an attacker or the platform to report arbitrary
integrity measurements, it can be trusted to only produce and sign legitimate integrity values.
Hence, remote attestation and the TPM acting as a trusted component enable a remote veri�er to
reason about the trustworthiness of a TPM-equipped platform.
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Figure 2.6: Remote Attestation as speci�ed by the TCG (simpli�ed)
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More precisely, for a remote attestation as speci�ed by the TCG, which is depicted in Figure 2.6,
the TPM signs a selection of PCRs representing the current platform state and sends it to a remote
party for veri�cation. As shown on the le of Figure 2.6, the remote veri�er usually starts by
generating a nonce using its RNG in order to ensure freshness (step 1). ¿e nonce is sent to the
platform equipped with the TPM as part of an attestation request, which can also contain a selection
of PCRs that must be included in the attestation.
When the platform receives the attestation request, the TSS issues an TPM[2]_Quote command

including the nonce as shown in step 2 on the right of Figure 2.6. ¿e TPM, in turn, calculates a
hash based on the selected PCRs, which is referred as composite hash (step 3). ¿is hash is part of
an attestation data structure (quote), which is digitally signed by the TPM with a non-migratable
signing key in step 4. If the platform is equipped with a TPM 1.2, this key is an AIK; if a TPM 2.0 is
used, the key is a restricted signing key. ¿e resulting signature is then sent to the remote veri�er
together with the so-called stored measurement log (SML) and the certi�cate for the signing key.
A er the veri�er has received the attestation response, the remote veri�er compares the integrity

measurements listed in the SML with a set of trusted or well-known references values (step 5).
Based on the validated measurements of the SML, the veri�er can then calculate the expected
PCR values in step 6. ¿e expected signature hash is then generated by hashing the nonce and the
expected PCR values as speci�ed by the TCG (step 7).
Furthermore, to check the digital signature of the TPM quote, the remote party validates the

certi�cate and decrypts the signature using the public key from the certi�cate, which should not
only result in the same hash as calculated by the TPM in step 3, but also as freshly created in step 7.
If the hash values match, the remote party knows that the content of the quote is fresh, because
it includes the random nonce (cf. step 1), and that the measurement log has not been tampered
with. In addition, if the remote party can match all measurements to trusted and/or well-known
references values, it is ensured or at least very likely that no unknown binaries has been executed
before the TPM has created the quote1. Hence, the remote veri�er can make an informed decision
whether the platform is (still) trustworthy.
In this thesis, we call this protocol speci�ed by the TCG explicit remote attestation, because

the complete measurement log is transferred to the remote veri�er and the entries are evaluated
individually by the remote party. In contrast, we will present a remote attestation mechanism,
which does not require digital signatures and the transmission of a log, but relies on symmetric
cryptography. We refer to this type of lightweight attestation as implicit remote attestation. While
explicit attestation is designed to PC and server platforms, our attestation is targeted at resource-
constraint embedded system.

1 In practice, the so-called time of check to time of use (TOCTOU) problem describes the fact that there is usually a
time gap between the calculation of the quote by the TPM and its veri�cation by the remote party.
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2.1.3.3 Trusted Network Connect

With remote attestation, the TCG speci�es a protocol that enables a system to reason about the
trustworthiness of a remote platform. However, the speci�cation of a remote attestation does not
de�ne where or how the decision is made and what the consequences of a particular decision are.
¿at is why the TCG Trusted Network Communication work group additionally speci�es a complex
abstract architecture which enables a Trusted Network Connect (TNC) that ensures endpoint
compliance with integrity policies at and a er network connect using remote attention.
As shown in Figure 2.7, the TNC architecture consists of �ve roles: the access requestor (AR),

the policy enforcement point (PEP), the policy decision point (PDP), the metadata access point
(MAP), and the MAP clients (MAPCs). ¿e AR is an arbitrary system equipped with a TPM, which
executes an Integrity Measurement Collector (IMC) that utilizes the TPM though a platform trust
service (PTS), a TNC client (TNCC), and a network access requestor (NAR). By using the NAR
component, the system requests access to the network, which is granted or denied by the PDP’s
network access authority (NAR) and enforced by the PEP.¿e PDP’s decision is based on the results
of the Integrity Measurement Veri�er (IMV) in the integrity measurement layer, which is provided
with integrity measurements by AR’s TNCC sending the measurements to the TNC server (TNCS).
Based on the decision, the MAP enables access to MAPCs, such as sensors or controllers.
As a result, TNC speci�es abstract components and interfaces, which enable the implementation

of a TCG remote attestation and the subsequent enforcement of network access policies, and ensures
that a system requesting access behaves in a certain way. In this thesis, we adopt the idea of TNC
and propose a lightweight approach for secure network access to mobile networks in Chapter 6.
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2.2 Concepts and Technologies for Secure System Architectures
In addition to TC, this section presents relevant concepts and technologies, which enable the design
and implementation of system architectures with a strong focus on security. ¿e main concepts,
which we utilize for our secure system architecture, are isolation and the principle of least privilege.
Isolation requires that the system prevents components from interacting with each other, unless

those components are explicitly allowed to communicate. As a consequence, isolation can be
archived through a combination of separation, a reduced number of interfaces, and a privileged
system core (ideally with small TCB), which can control communication. Possible variants include:

Hardware Separation: Dedicated so ware components are implemented for separate hardware
resources. For instance, a system like a mobile phone with special-purpose so ware, such as a
baseband stack, might run this component on a dedicated (baseband) processor. Alternatively,
other systems might use a separate Field Programmable Gate Array (FPGA) or a secure
co-processor to execute security-critical so ware.

So ware-driven Separation: In this case, so ware is divided into components and assigned to
compartments, which use speci�c parts of the same hardware. For instance, a microkernel-
based system, such as Fiasco.OC with L4Re, can create user-space compartments in so ware,
which are (to some degree) independent of the underlying hardware.

Virtualization: As a combination of hardware and so ware separation, virtualization can execute
so ware (even a complete OS) within a VM. To achieve isolation, the hypervisor dynamically
divides/assigns hardware resources and focuses on keeping the boundaries of VMs secure.

Trusted Execution Environment: TEE-based separation divides so ware into security-critical and
non-critical parts and statically assigns critical components to secure hardware resources
while executing non-critical components in a non-secure environment on the same hardware.

¿e second main concept, the principle of least privilege, states that the system must only grant
those rights that are necessary to ful�ll a speci�c task. To achieve this objective, we target and
develop a secure system architecture based on a microkernel, which implements all non-essential
system components in user-space tasks and strictly separates those tasks. Since the microkernel
has a very small TCB and, in general, controls all communication channels, e.g., using capabilities,
it can not only isolate the microkernel tasks, but also assign �ne-grained access rights.
In the rest of the section, we will discuss separation mechanisms and privileges in more detail.

Speci�cally, we focus on hardware separation (Section 2.2.1) as well as so ware-based separation
though microkernels (Section 2.2.2), which serves as an example for the principle of least privilege.
Furthermore, we give a brief overview of virtualization and trusted execution environments in
Sections 2.2.3 and 2.2.4. As part of the overview, we describe the virtualization and security
technology on ARM systems, which we use to implement our secure embedded system architecture.
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2.2.1 Hardware Separation

Similar to hardware redundancy, which can ensure robustness and availability, especially in safety-
critical systems, dedicated hardware resources can provide a high level of security through isolation.
By providing distinct hardware components, such as dedicated (co-)processors, and using those
hardware resources to separate critical or sensitive components from the rest of the system, security
can be signi�cantly increased.
Practically, there are a number of possible ways to make use of hardware separation. For example,

a system can consist of multiple processors or integrate a programmable hardware component, such
as an FPGA, which can be used to implement security functions or components in hardware. Other
systems include a dedicated programmable security co-processor, such as an HSM, or a special-
purpose security module like a SIM. An example of a non-programmable security co-processor is a
TPM. In the following section, we give an overview of relevant approaches on hardware separation.

2.2.1.1 Multi-Processor Systems

Computer systems, in general, harness and utilize more than one processor for two main reasons:
to increase overall computational performance or to enable certain functionalities, which could
not be realized otherwise. While the �rst reason applies, for example, to large computing centers,
which o en use symmetric multi-processor systems for performance reasons, the second aspect
is more important for resource-constraint devices. For example, embedded systems and mobile
devices, such as smartphones, o en rely on (asymmetric) multi-processor architectures, which
might provide a dedicated processor for their baseband stacks or energy-e�cient co-processors for
data acquisition and processing1.
However, system with multiple separate processors not only bene�t from an increase in system

performance and a reduced energy consumption in case of asymmetric multi-processor systems.
By isolating security-critical or real-time components, such as the baseband stack, using dedicated
hardware resources, the rami�cations of a successful attack on the main system can also be limited.
For example, if the OS of a mobile phone runs on the application processor and is compromised by
an attacker, so ware on the baseband processor is not necessarily a�ected.
As multi-processor architectures are common in embedded systems, especially mobile devices,

we develop a remote attestation mechanism, which is suitable for this speci�c type of architecture.
In particular, our attestation mechanism takes into consideration that multiple processors alone
cannot realize a secure system architecture, which is why those system usually have an additional
hardware-based security module, such as a SIM and/or TPM. Consequently, we describe this
approach—the use of an (independent) hardware security module—in the following section.

1 For instance, Apple mobile devices, such as iPhone or iPad, use an Apple M7/M8 coprocessor based on an ARM
Cortex-M3 for low-energy collection and processing of data, e.g., produced by motion sensors.

32



Ba
ck
gr
ou

nd

Concepts and Technologies for Secure System Architectures Section 2.2

2.2.1.2 Dedicated Security Co-Processors

In contrast to separate general-purpose processors, which can be used to isolate arbitrary so ware
components with di�erent criticality, but are usually unable to protect against physical tampering,
a dedicated security co-processor primarily implements and isolates security-related functions.
Consequently, those secure hardware components provide elaborate protection mechanisms, such
as shielding, which protect against sophisticated, in many cases even invasive physical attacks.
For instance, most HSMs provide tamper-resistant key generation and secure hardware-based
cryptographic accelerators. ¿at way, an HSM can assist the host system in performing, for instance,
computationally intensive cryptographic operations in real-time while protecting keys and secrets
against extraction and misuse.

As security co-processors, which can protect against a range of physical and remote attacks,
HSMs can be either realized as peripheral devices, such as extension modules or security chip cards,
or integrated into a microcontroller. In both cases, those HSMs generally run a secure �rmware,
which enables the execution of HSM applications. For instance, SIM cards used in mobile networks
are external security chip cards, which usually provides a Java Card platform and execute a smart
card operating system, such as Java Card OpenPlatform (JCOP), that allows the operator as well as
the user to run applications referred to as applets. Network operator, in particular, distribute SIM
cards as trust anchors for mobile phones in order to implement a secure authentication process
based in keys stored on the SIM. In this case, the SIM card acts as a hardware-based secure key store
and trusted hardware component for a device, which otherwise must be considered untrusted.

In case of a TPM as a non-programmable security co-processor, the application executed by
the smart card �rmware is the TPM application logic and command interface, which is de�ned in
the TPM speci�cations. As such, a TPM is basically a security chip card with a speci�ed so ware
interface, which is attached to a platform and implements the TPM speci�cation. Since the TPM
does not provide the ability to execute arbitrary code, remote parties can establish trust in a platform
equipped with a TPM, because it becomes much harder to compromise the TPM. As a consequence,
a TPM can act as a trust anchor, which isolates speci�c security functions and provides those
functions as a service to the host system.

By separating security-critical functions from the rest of the system and isolating those func-
tions in a dedicated security co-processors with a speci�ed interface, the system architecture can
signi�cantly increase security. As a result, dedicated hardware-based security modules are used in
mission-critical systems that have high security requirements as well as in regular devices, such as
mobile phones, which require a hardware trust anchor, e.g., for authentication purposes. Hence,
our system architecture will take advantage of a hardware-based security module, more precisely
a TPM or HSM, respectively, in order to secure cryptographic keys and enable a secure remote
attestation protocol.
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2.2.2 Software-driven Separation

In this section, we brie�y discuss relevant hardware-enforced, but so ware-driven separation
concepts and architecture designs, particularly process isolation and system compartmentalization.
Based on the discussions of these concepts, we introduce microkernel-based systems and their
characteristics, such as the small TCB and the implementation of the principle of least privilege,
which includes a high-level comparison with operating systems relying on monolithic kernels, such
as Linux.

2.2.2.1 Process Isolation

¿e concept of process isolation requires the system to separate each process and protect an
individual process from indiscriminate and unrestricted (write) access by other processes. Although
the idea has been introduced decades ago, the concept of process isolation is so fundamental that it
still applies today and might be more relevant than ever.

One way to realize process isolation is the use ofmemory segmentation, which divides the system’s
main memory and/or programs into segments or sections. Typically, di�erent segments are created
for di�erent so ware components or for di�erent types of program memory, e.g., code and data
segments. A second concept for process isolation is based on per-process virtual address spaces,
where one process address space is di�erent from another virtual address space, hence preventing
one process from writing onto other processes. Virtual memory is usually combined with paging, a
memory management scheme, where the system stores and retrieves pages of data to and from
secondary storage for use in main memory. ¿is technique uses (per-process) page tables, which
de�ne the mapping used for virtual to physical address translation. To e�ectively implement this
type of process isolation, most modern operating systems take advantage of special hardware
components, such as a Memory Management Unit (MMU). An MMU is responsible for protecting
memory segments and for translating a location, i.e., a segment and o�set, into a physical memory
address. Similarly, the MMU translates virtual memory addresses into physical addresses, handles
page mappings, and checks that the mapping is valid and permitted.

In addition, modern operating systems o en provide kernel and system features for advanced
process isolation, which are directly based on the privileged role of the kernel, which controls the
resources of the entire system. For example, the Linux kernel supports mechanisms for enforcing
security policies, e.g., via Security-Enhanced Linux (SELinux), which implements mandatory access
control. A complementary approach is the concept of namespaces, which separate resources and
assign di�erent names to objects, such as �le system and network resources, process IDs, inter-
process communication (IPC), or user and group IDs. Based on these so ware-based isolation
techniques, the Linux kernel is able to support (so ware) containers, which allow for executing
Linux-based user-space instances (cf. LXC [LXC08], Docker [Doc13]).
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2.2.2.2 System Compartmentalization

In comparison to process isolation mechanisms, the concept of system compartmentalization not
only isolates unprivileged user-space processes, but also proposes to de-privilege kernel components,
such as memory management, �le system implementations, and drivers, as depicted in Figure 2.8.
Ultimately, the main goal is to increase security by reducing the complexity of the privileged code,
which intuitively results in a decreased probability of a fatal �aw compromising the whole system.
One way to achieve this objective is to move all non-essential system components into user space
and, thus, reduce the amount of privileged code in the kernel core component.

To implement such a compartmentalized system, however, it is not only crucial that the system
components in the various compartments stay isolated, the kernel also needs to implement a fast
communication mechanism. ¿e reason is that system components typically run in kernel mode
and, hence, can communicate directly and without delays. With system compartmentalization,
those de-privileged components run in usermode and are required to utilize the kernel for privileged
operations and may need the kernel’s support to establish a communication channel with other
compartments. Hence, without e�cient IPC, the system performance signi�cantly degrades.

Assuming that the system provides a strict separation of system components, which are imple-
mented as unprivileged components in user-space compartments, and e�cient IPC communication,
a compartmentalized system can be a strong basis for a secure system architecture. For that reason,
we not only explore system architecture with dedicated hardware, but also research microkernel-
based, compartmentalized systems and propose remote attestation protocols for this particular
type of system design.

Network
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Drivers

Graphics
Drivers

File Systems

Applications

Memory
Management

Core

Compartment with
Unprivileged Component

Privileged Core Component for 
System Compartmentalization

Figure 2.8: System Compartmentalization (based on [Fes06])
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2.2.2.3 Microkernel-based Systems

As described in the previous section, the concept of compartmentalization proposes to separate
and de-privilege kernel components, execute these components in user-space compartments, and
strictly isolate those so ware compartments using mechanisms provided by a small, robust core.
Consequently, modern system designs have adopted this concept for a secure system architecture
and, furthermore, aim to minimize the complexity and size of the core, resulting in amicrokernel.
A microkernel is a near-minimum amount of privileged code that is as small as practically possible
and still provides the necessary mechanisms to implement a complete OS. As shown on the right of
Figure 2.9, these mechanisms include address space and thread management, scheduling, and IPC.
In contrast to a monolithic kernel, which is shown on the le of Figure 2.9, a microkernel

implements all non-essential system components as user-space tasks, whereas a monolithic system
combines various services that o en require a large amount of privileged code in a complex kernel.
As a general rule,

“[a] concept is tolerated inside the microkernel only if moving it outside the kernel, i.e.,
permitting competing implementations, would prevent the implementation of the system’s
required functionality.” [Lie95]

For example, a monolithic kernel, such as Linux, handles memory management in kernel space,
while a microkernel, such as Fiasco.OC, implements memory management servers in user space.
Similarly, device drivers and services like networking are provided by servers running in user space.
As a result, a microkernel-based system architecture can signi�cantly decrease the probability that
a fatal �aw in a component, such as a device driver, can compromise the whole system. As long

Hardware Hardware

Monolithic Kernel

Hardware Access

Applications

LibrariesLibrariesLibrary

ApplicationsApplication

Memory Management, Page allocation, 
Address Spaces, Swapping

File Systems, Virtual File System (VFS),
File System Implementations

Inter-Process Communication (IPC), Scheduling

System Call Interface

I/O, Device Drivers

Microkernel

Address Spaces, Threads, Scheduling, IPC 

System Call Interface

Ke
rn

el 
Sp

ac
e

U
se

r S
pa

ce

Applications

LibrariesLibrariesLibrary

ApplicationsApplication

File Systems, 
VFS, 
File System 
Implementations

Networking, Sockets, Protocols

Hardware Access Ke
rn

el 
Sp

ac
e

U
se

r S
pa

ce

Networking, 
Sockets, 
Protocols

Device Drivers

Memory 
Management, 
Page 
allocation, 
Swapping

Figure 2.9:Monolithic System Design vs. Microkernel-based System Architecture (based on [Wei17])
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as the system compartment is isolated, a device driver in user space can be restored and restarted
without rebooting the complete system. ¿us, a compromised component in one compartment
usually cannot a�ect a component in a di�erent compartment. More important, an attack on a
user-space component, in general, has no impact on the core and, hence, no fatal rami�cations.

From a security perspective, compartmentalized microkernel-based systems also naturally apply
and enforce the principle of least privilege. Since system components, such as memory servers,
which are usually referred to as pagers, only require the right to assign and manage speci�c memory,
the system only grants those privileges. In a monolithic kernel, all kernel components can access
all kernel data structures, hence there is only a small degree of separation and each component
e�ectively has more privileges than required for its speci�c task.

Furthermore, modern microkernels like the 3rd generation microkernel Fiasco.OC and others,
such as seL4 orNova, are characterized by an Application Programming Interface (API) with a focus
on security, where access to resources is controlled by capabilities. In contrast to monolithic systems,
which usually implement hierarchical protection domains (also referred to as protection rings),
capabilities are system-wide unique object identities or tokens, which can be transferred, but not
easily forged. Similar to a key, a capability is required to access a speci�c object or resource, which
is locked or linked to that capability. Consequently, applications or services in capability-based
systems directly share capabilities with each other according to the principle of least privilege.

Applications of Microkernel-based Systems

Based on their resilience against attacks and �aws, their reduced complexity and code size, as
well as their strict organizational structure and implementation of the principle of least privi-
lege, microkernels are perfectly suitable for safety- and security-critical applications. ¿at means
microkernel-based systems are not only suited for embedded systems, but also provide a robust
way to implement, for example, a resilient hypervisor and virtualize other operating systems. Since
the TCB of a microkernel-based hypervisor would be very small as the virtual machine monitor is
executed in user space, hence requires only a small amount of privileged code for the host-VM-
transition, we explore this particular application and design our attestation protocols to make use
of this system architecture.

However, before we describe the concept and main ideas of virtualization in more detail, we
will provide a short overview of the two microkernel-based systems, which we will use in our
work: Fiasco.OC (with L4Re) and Genode. Both microkernel-based systems are open source and,
hence, perfectly suited to research new applications for remote attestation mechanisms, which are
designed for embedded systems with virtualization capabilities, where the microkernel acts as a
very small hypervisor.
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Fiasco.OC

¿emicrokernel Fiasco.OC is a very small and robust 3rd generation real-time kernel supporting
preemption and hard priorities, which implements a uni�ed universal mechanism for naming,
authorization, and communication control referred to as object-capability (OC) model [TUD11b].
As a multi-tasking, multi-address-space kernel, Fiasco.OC can create, isolate, and execute multiple
microkernel tasks simultaneously. In addition, Fiasco.OC supports para- and hardware-assisted
virtualization, which enables the system to run other operating systems, e.g., based on Linux.
Primarily, however, Fiasco.OC is designed to run the L4 Runtime Environment (L4Re), which

is a user-space infrastructure that includes basic services, such as program loading and memory
management [TUD11a]. As shown in Figure 2.10, a minimal L4Re-based system consists of three
components: the Fiasco.OC microkernel, the root pager (Sigma0), as well as the root task (Moe).
¿e root pager Sigma0 is started as �rst user-space component, initially owns all system resources,
and is usually only required to resolve page faults for theMoe root task. Moe, in turn, provides
the essential services to normal user applications, such as an initial program loader, a region-map
service for virtual memory management, and a memory (data space) allocator [TUD11a]. Most
L4Re-based system, in addition, include the init task (Ned) and the input/output server (Io).
We use those components in our work to implement our integrity veri�cation, remote attestation,

and secure loading mechanism described in Chapter 7. More precisely, we extend the system with
additional tasks and device drivers for a TPM to measure and report a integrity values stored in the
TPM’s PCRs. Furthermore, we adapt the root taskMoe to securely verify remote binaries, initiate
the measurement process, and load the veri�ed remote binaries into a new address space, i.e., create
and execute the binary as a microkernel task.

Fiasco.OC

Root Pager (Sigma0)

Init Process (Ned)

Task A Task B Task C

Hardware

Root Task (Moe)

Io
(I/O Server)

Privileged Mode

User Mode

Figure 2.10: Fiasco.OC and L4Re So ware Architecture
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Genode

¿eGenode OS framework aims to provide a generic, microkernel-agnostic user-level infrastructure,
which can be executed, for example, on top of an existing third-partymicrokernel, such as Fiasco.OC.
As shown in Figure 2.11(a), Genode therefore provides user-space components similar to L4Re,
which include a core (speci�c to the microkernel API), an init process, and a set of device drivers.
As a result, Genode enables the development of microkernel-independent services and client
applications by providing generic microkernel and OS interfaces.
In addition to the user-level components, Genode also provides a bare-metal implementation of

its core component, which normally runs in user space on top of a third-party kernel like Fiasco.OC.
As shown in Figure 2.11(b), this bare-metal core is executed directly on the hardware and eliminates
the need for a third-party kernel, which further reduces the complexity and size of the TCB. Similar
to the Fiasco.OC microkernel, the base-metal Genode core implements only required system
functionalities and utilizes capability-based authorization mechanisms, e.g., to protect access to
kernel objects and control communication channels.
Furthermore, like Fiasco.OC and L4Re, the Genode OS supports para- and hardware-assisted

virtualization and can be executed inside the ARM TrustZone in order to implement a trusted OS
inside a hardware TEE. Since Genode can be used in both cases as a trusted so ware component or
operating system, which contains a near-minimum amount of privileged code, and we explore this
approach in our work, the concepts behind virtualization and a TEE are described in the following
Sections 2.2.3 and 2.2.4.

(a) Genode on top of Fiasco.OC
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Figure 2.11: System Architectures based on Genode OS Framework

39



Ba
ck
gr
ou

nd

Chapter 2 Background

Advantages and Disadvantages of Microkernel-based Systems

Although microkernel-based systems might be considered more robust compared to monolithic
systems, because they require less privileged code and implement all non-essential operating system
services in user space, performance is a concern and can su�er if IPC is not implemented e�ciently.
Research [Lie93] has shown that “[IPC] has to be fast and e�ective, otherwise programmers will
not use remote procedure calls (RPC), multithreading and multitasking adequately”. Hence, IPC
performance is crucial, especially for microkernel-based systems, because of the higher number of
system calls as well as context switches compared to monolithic operating systems.
However, as a consequence of reducing privileged code und implementing OS services as user

space tasks, microkernel-based systems are usually also considered more resilient against faults.
¿e reason is that if one service is compromised or crashes, other services are generally not a�ected,
since they are isolated by the microkernel and continue functioning as they use separate resources.
Since the microkernel is very small and much less complex compared to monolithic kernels, such
as Linux, the chance of successfully compromising a microkernel is, in general, signi�cantly lower,
which is why microkernel-based systems are o en used in safety- and security-critical applications,
such as airplanes.
By strictly following the principle of least privilege, i.e., implementing all non-essential tasks

(even critical ones) in user space, isolating those tasks, and restrictively granting access rights,
microkernel-based systems aim to reduce the risk of complete system compromise or failure.
However, implementing critical tasks in unprivileged user space might also open up the possibility
that those tasks are more vulnerable to attack. Hence, it is crucial that the microkernel strictly
separates and protects tasks by correctly handling permissions, managing kernel objects, and
controlling communication channels. Fortunately, compared to most complex monolithic kernels,
the implementation of these vital tasks and functions of a microkernel can be veri�ed more easily,
because the code base of microkernels is inherently smaller by design and signi�cantly less complex.
Finally, one major drawback of microkernel-based systems is the fact that most implementations

are research projects and highly experimental for the most part [cf. Gen17; TUD11b]. ¿ere only
exist a small number of commercial products, such as SYSGO’s PikeOS [SYS91] or SiMKo 3 [Tel13]
developed by Deutsche Telekom (T-Labs), Trust2Core, TU Berlin, TU Dresden, and Kernkonzept.
Although some modern operating systems, such as Apple’s iOS [App07], make use of a few features
adapted frommicrokernels (e.g., themessage passing capability ormemory protectionmechanisms),
iOS employs a hybrid kernel (XNU [App96]) and, therefore, does not have the same design goals,
such as minimality [Lie95]. One of the main reasons not to use a microkernel-based OS usually is
that performance was being a concern, especially in commercial products, such as mobile devices.
However, as PikeOS or SiMKo 3 demonstrate, microkernel-based systems can be the right solution
if the requirements, such as high fault tolerance and robustness, mandate a very resilient OS, e.g., in
government-issued communication devices, avionic systems, or critical infrastructure components.
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2.2.3 Virtualization

In the 1960s, mainframe systems �rst started to use a basic form of virtualization as a method
for locally dividing system resources, such as CPU time or memory. One main objective was to
e�ectively enable di�erent applications to run simultaneously without interference by separating
resources and isolating applications. In the following decades, research and development broadened
the concept of virtualization, which today includes, but is not limited to memory/storage, network,
so ware, and hardware virtualization techniques.
For instance, most modern computer systems provide so ware and hardware mechanisms to

implement virtual memory, which creates the impression of a (large) contiguous memory region,
although the underlying physical memory is usually fragmented (and much smaller). As a result,
each application has its individual, exclusive virtual address space, while the system is able to
manage and restrict access to physical memory addresses, which enables, for example, process
isolation and compartmentalization.
Another variation is OS-level (so ware) virtualization, which enables a kernel of a host operating

system to execute multiple virtualized user-space environments o en referred to as containers.
While running on a shared kernel, individual (so ware) containers are isolated by kernel-based
separation mechanisms, which can be rooted in physical hardware components, such as an MMU.
As a consequence of running directly on a shared kernel, OS-level virtualization usually imposes
little to no overhead, but cannot easily execute a guest operating system di�erent from the host OS,
because is is not designed to virtualize a di�erent guest kernel.
In comparison to so ware virtualization, the concept of hardware virtualization usually refers to

the emulation of a physical computer system by a hypervisor or virtual machine monitor (VMM),
which creates, manages, and isolates system virtual machines1. Depending on the type of emulation,
hardware virtualization concepts can be divided into paravirtualization and full virtualization.
While paravirtualization simulates a virtual hardware environment and provides an API to the
guest OS, hence requires modi�cations to the guest, full virtualization emulates actual hardware
with the help of a hypervisor/VMM such that a guest OS can be executed without modi�cations.
However, since the emulation of actual hardware results in a signi�cant performance impact and a
complex hypervisor, modern CPUs usually implement hardware-assisted virtualization capabilities,
such as Intel Virtualization Technology (VT) [Nei06] or ARM’s Virtualization Extensions [ARM12;
ARM10], which enable e�cient full virtualization with a relatively simple hypervisor.
In the next sections, we discuss paravirtualization and full virtualization in more detail, as we

explore and propose attestation mechanisms for virtualized systems. We also provide an overview
of hardware-assisted virtualization, since it can signi�cantly reduce the complexity of the hypervisor.

1 Compared to system virtual machines, which provide a virtual representation for a real machine, process virtual
machines like the Java Virtual Machine (JVM) are designed to run programs in a platform-independent environment.
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2.2.3.1 Paravirtualization

¿e term paravirtualization refers to a concept and technique, which simulates a virtual hardware
platform and, thus, enables the execution of virtualized guest operating systems. However, since
paravirtualization does not fully emulate actual hardware, but instead simulates virtual hardware
with an interface that is di�erent from the underlying physical hardware, guests need to be modi�ed.
¿e reason for the modi�cation and the interface, which is usually referred to as the para-API, is
to increase performance and reduce the complexity of the VMM by relocating the execution of
certain operations, which are di�cult to virtualize, from the virtual to the host/physical domain.

One example of a paravirtualized system is L4Linux [Här97], which is executed on Fiasco.OC.
L4Linux is a modi�ed Linux kernel, which has been ported to run as a service on L4 microkernels.
As a result, the L4Linux kernel can be execute next to regular microkernel tasks and, simultaneously,
acts as a root pager and task for ordinary Linux processes, which enables the execution of a rich
Linux-based operating system on top of a microkernel. In our work, we take advantage of this
virtualized system architecture in order realize our remote attestation and secure loading protocols.
In our proposed system architecture, the paravirtualized Linux acts as a rich OS, which provides,
for example, networking capabilities in a complex and untrusted environment.

2.2.3.2 Full Virtualization

In contrast to paravirtualization, the concept of full virtualization emulates actual hardware and
provides a virtual representation of a physical computer system in form of a system virtual machine.
To emulate actual hardware and isolate virtual machines, full virtualization o en utilizes binary
translation, a technique that allows to automatically detect and replace (or trap and emulate) unsafe
or privileged instructions, e.g., I/O operations, which alter the state of other VMs or the hardware.
Besides binary translation and I/O emulation, full virtualization usually also requires the shadowing
of certain data structures used by the processor(s) in order to fully emulate the hardware. As a result,
full virtualization can create a virtual machine environment, which is a complete emulation of the
underlying physical hardware. In addition, since the guest is not required to use a host interface
like a para-API, modi�cations of the guest OS are not necessary.

Unfortunately, full virtualization o en means a considerable overhead, which usually results
in a signi�cant decrease in performance over systems executed natively. In addition, since the
virtual machine monitor needs to fully simulate the actual hardware, virtual machine monitors
for full virtualization are usually relatively large, complex, and privileged so ware components.
To overcome these issues and because some hardware platforms like IA-32 (Intel Architecture,
32-bit) have not always provided support for full virtualization, modern CPUs implement hardware
virtualization extensions. ¿ose extensions enable e�cient hardware-assisted full virtualization and
much simpler hypervisors. As a result, the TCB of virtualized systems can be decreased signi�cantly.
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2.2.3.3 Hardware-assisted Virtualization

Although system virtualization is possible without support by the underlying physical hardware,
so ware-based virtualization generally results in a performance degradation compared to systems
executed natively and requires a rather complex hypervisor. As a result, more andmore systems with
advanced CPUs implement hardware-based capabilities, which enable e�cient full virtualization.
In general, these virtualization capabilities enhance the hardware with an additional privilege level
or CPU mode for the virtual machine monitor. As a consequence of the hardware extensions,
privileged instructions can be trapped and handled more e�ciently by a much simpler hypervisor,
which requires signi�cantly less privileged code and, hence, reduces the TCB.
Two of the most widely used hardware virtualization extensions are Intel VT [Nei06] and ARM’s

Virtualization Extensions [ARM12; ARM10], which add an additional privilege level or mode for the
hypervisor to the CPU, implement system registers speci�cally designed for system virtualization,
and provide support for memory, I/O, and device virtualization. Since our work concentrates on
embedded systems, which are predominantly equipped with ARM-based system on chips (SoCs),
we focus on ARM virtualization extensions, which are described in the following paragraph.

ARM Virtualization Extensions

As shown in Figure 2.12, the ARM Virtualization Extensions implement a CPU mode for the
hypervisor in a privilege level 2, which is referred to as HYP mode. Furthermore, the hardware
extensions provide additional system registers designed for virtualization purposes and extend
hardware components, such as the MMU, timers, or the ARM Generic Interrupt Controller (GIC),
with virtualization support. ¿at way, the hypervisor can e�ciently virtualize multiple guest
operating systems, which are executed in their own (protection) domains as depicted in Figure 2.12.
In particular, since the VMM is located in a higher privilege level (PL2), sensitive instructions that
change the state of another VM or the hardware can be trapped and handled transparently.
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PL0 Modes
(User Space)

PL1 Modes
(Kernel Space)

Virtual Machine Monitor / Hypervisor

Application

Guest Operating 
System 1

Guest Operating 
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Figure 2.12: ARM Virtualization Extensions: HYP Mode and Protection Domains
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To enable transparent hardware-assisted full virtualization, the ARM Virtualization Extensions
provide virtualization-speci�c system registers, which are accessible in HYP mode only, e.g., the
Virtualization Translation Control Register (VTCR), the Hyp Con�guration Register (HCR), or
Virtualization Translation Table Base Register (VTTBR), which, for example, stores an 8-bit �eld
called VMID, ¿e VMID allows the hypervisor to track the current VM in a similar way the OS tracks
processes and their memory pages using an Address Space Identi�er (ASID) from the Translation
Table Base Register (TTBR) as tags for the entries in the translation lookaside bu�er (TLB).
¿e main purpose of the VTTBR, VTCR, and HCR, however, is the setup and con�guration of

the second-stage address translation (SLAT), also referred to as nested paging or Stage-2 page-tables,
which enables a guest OS in a virtual machine to set up its own pages tables in a Stage-2 MMU.
As shown in Figure 2.13, the guest OS can subsequently translate guest virtual to guest physical
addresses (stage 1) using the Stage-1 MMU and its own page tables without impacting the VMM
and its translation from guest physical to host physical addresses (stage 2). ¿e hypervisor, in turn,
can not only setup translations from guest/immediate to host physical addresses, but also trap
memory access by a guest OS, which enables, for example, emulation of memory-mapped devices.
As a result, the hardware assists in translating addresses over multiple stages and enable the

VMM to e�ectively create distinct protection domains for virtual machines, which are isolated by
hardware-based separation mechanisms, and con�gure memory traps. In addition, the complexity
of the hypervisor can be reduced signi�cantly, because the management of guest virtual and
physical address translations is mostly handled by the MMUs. As a result, hardware-assisted
virtualization enables the design of a near-minimum hypervisor, which is the basis for our secure
system architecture and discussed in the following paragraph.

Host Physical Addresses
(Real System Physical Address Map)

Guest Physical Addresses
(Intermediate Physical Address Map)

Guest Virtual Addresses Map
(Virtual Address Map)

VA-to-GPA
(Guest OS 1)

VA-to-GPA
(Guest OS 2)

GPA-to-HPA
(VMM)

Stage 1 Address Translation
(owned by Guest OS)

Stage 2 Address Translation
(owned by VMM)

Figure 2.13: ARM Virtualization Extensions: 2-Stage Memory Address Translation
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Near-MinimumHypervisor

Hypervisors are usually classi�ed as type-1 or type-2 hypervisor based on their implementation and
location in the system [Pop74]: type-1 hypervisors, which are o en referred to as bare-metal or
native hypervisors, run directly on physical hardware (see Figure 2.14(a)), while type-2 hypervisors
require a host OS as shown in Figure 2.14(b) and, hence, are also referred to as hosted hypervisors.
In practice, however, the distinction between type-1 and type-2 hypervisors is not necessary clear.
For example, Kernel-based Virtual Machine (KVM) for Linux and FreeBSD’s bhyve e�ectively
convert the host OS into a type-1 hypervisor, while practically competing for resources with other
applications running on the OS and, hence, behaving like a type-2 hypervisor. Nevertheless, the
categories help to analyze the design of hypervisors and assess their characteristics and suitability.

Evidently, for the implementation of a simple, near-minimum hypervisor with a small TCB,
type-1 hypervisors are inherently more suitable, since their design and implementation require no
host OS. Additionally, type-1 hypervisors are more likely to support embedded systems, because
those system usually have limited resources and type-1 hypervisors can run directly on hardware.
As a result, the use of a microkernel acting as a very simple core for a compartmentalized system in
combination with hardware-assisted virtualization further enables the design of a hypervisor with a
near-minimum amount of privileged code as shown in Figure 2.14(c). Hence, we use this design for
our hypervisor-based architecture, which we will introduce in Chapter 5 and explore in Chapter 9.

(a) Type-1 Hypervisor

Hypervisor

Guest OS

Hardware

Guest OS

VM / Domain 1 VM / Domain 2

(b) Type-2 Hypervisor

Hypervisor

Guest OS

Hardware

Guest OS

Host OS

VM / Domain 1 VM / Domain 2

(c)Microkernel-based VMM

VM / Domain 1

Microkernel

Hardware

Guest OS Guest OSVMM

VM / Domain 2Domain 0

Init

Figure 2.14: Type-1 and Type-2 Hypervisors versus Microkernel-based VMM
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2.2.4 Trusted Execution Environment

While virtualization enables the execution of virtual machines with rich operating systems and
platforms may even use hardware virtualization capabilities to e�ciently run and isolate those VMs,
a Trusted Execution Environment (TEE) usually focuses on securing critical so ware and data,
such as trusted applications and their cryptographic keys. Hence, in addition to isolated execution,
a TEE may o�er secure storage, remote attestation, secure provisioning, and a trusted path [Vas12].
One way to realize a (very limited) TEE is based on a TPM, which not only isolates the execution

of cryptographic operations, but also helps to implement secure storage despite its own internal
storage constraints. Furthermore, a TPM provides mechanisms for a remote attestation as well
as secure provisioning, which includes, for example, the secure generation of cryptographic keys.
However, since TPMs are passive security modules, which rely on an RTM provided by the CPU,
TPMs alone are unable to create a trusted path without the help of the platform and, hence, cannot
provide a full TEE [Bai11; Glo11], which supports, for example, custom trusted applications.
Fortunately, other hardware-based technologies, such as ARM’s Security Extensions (also known

as TrustZone) or Intel’s So ware Guard Extensions (SGX), enable the implementation of a fully
isolated TEE, which can accommodate and protect a trusted OS, applications, and sensitive data.
Intel SGX, for example, allows user-level code to create private memory regions known as Enclaves,
which are protected from other code (and vice versa) by hardware-based separation mechanisms.
¿us, Intel SGX provides the basis for a CPU-based TEE, which allows for isolated execution of
code and helps to create secure storage. Since the technology is tightly integrated with the CPU,
Intel SGX also enables secure provisioning of cryptographic keys (stored in CPU-internal memory),
the measurement of integrity values, remote attestations, and the creation of a trusted path.
However, since our work focuses on embedded system, which predominately use ARM-based

systems, where Intel SGX is not available, we concentrate on the ARM Security Extensions instead.
As shown in Figure 2.15, ARM TrustZone provides a privileged CPUmode known asMonitor Mode
and separates the system into two execution environments—the Secure and the Non-secure World.

Secure WorldNon-secure World

Application

Rich OS

ApplicationRich OS
Application

ApplicationApplicationTrusted
Application

ARM-based SoC with Security Extensions (TrustZone)

SMC or Trap
Monitor Mode

Trusted OS
Monitor

Figure 2.15: ARM Security Extensions: Secure World and Non-secure World
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A switch between the Secure World and the Non-Secure World is only possible via Monitor Mode,
which can be entered by deliberately issuing a Secure Monitor Call (SMC) or by triggering a trap.
As a result, an ARM-based system with TrustZone support can host a rich operating system in the
Non-secure World and rely on a trusted OS in the Secure World.
As depicted in Figure 2.16, the ARM Security Extensions are orthogonal to the Virtualization

Extensions, which provide hardware-assisted virtualization, e.g., by extending the Non-secure
World with HYP mode in PL2 and enable the e�cient virtualization of more than one rich OS.
ARM Security Extensions provide the Monitor Mode, which is considered more privileged than
any privilege level in the Non-secure World. Hence, ARM TrustZone e�ectively extends the system
with an additional secure execution mode. ¿is secure execution mode is not limited to the CPU,
but also includes the CPU busses as well as all TrustZone-aware peripherals. In Monitor Mode, the
current executionmode can be con�gured via Secure Con�guration Register (SCR), which includes
the so-called non-secure (NS) bit. By setting this bit to zero, the CPU, caches, main memory, and
peripherals switch to secure execution mode, which means the Non-secure World is no longer able
to access secure resources, such as RAM regions or devices, which have been tagged as secure.
Since we focus on ARM-based embedded systems, we use TrustZone in combination with a TPM,

which is accessible via Secure World only, to create a TPM-equipped TEE based on a microkernel.
Our �nal system architecture presented in Chapter 9 also uses a near-minimum hypervisor, which
is also based on a microkernel and executed in a separate privilege level in the Non-secure World.
As a result, our system architecture enables a sophisticated remote attestation mechanism.
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PL1 Modes
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Monitor Mode

PL2 Modes

PL0 Modes

PL1 Modes

Virtual Machine Monitor / Hypervisor
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Guest Operating 
System 1
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Figure 2.16: ARM Security Extensions: TrustZone-based System Architecture
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3
Related Work

¿is chapter presents related work on integrity measurement and veri�cation concepts as well as
remote attestation, in particular, hardware-based attestation mechanisms, mobile device attestation,
and attestation protocols for virtualized systems. Speci�cally, we discuss existing remote attestation
schemes based on TC concepts and contrast their characteristics to our attestation mechanisms,
which are described in detail in the following chapters, more precisely Chapters 6 to 9.

As a result, this chapter provides a broad overview of related work regarding integrity veri�cation
with a focus on hardware-based remote attestation mechanisms. Furthermore, by including related
work onmobile device attestation, this chapter alsomotives the need for a comprehensive attestation,
which comprises all critical so ware components in a system, such as the mobile baseband stack.
In addition, the discussion of related work on integrity veri�cation and remote attestation concepts
for virtualized systems aims to contrast these approaches with our own integrity measurement
concept, which supports microkernel-based systems, and our attestation mechanism, which uses
e�cient symmetric cryptography instead of expensive asymmetric operations.

¿e remainder of this chapter is structured as follows. In Section 3.1, we present related work
on integrity measurement concepts based on authenticated boot or UEFI secure boot, such as
IMA with its various extensions, which add, for example, local integrity veri�cation capabilities.
In Section 3.2, we discuss existing so ware- and hardware-based attestation schemes, particularly
their core mechanisms to create veri�able cryptographic proof for the trustworthiness of a platform.
Furthermore, we present additional related work on mobile devices attestation in Section 3.2.1 and
discuss attestation mechanisms speci�cally designed for virtualized systems in Section 3.2.2. Finally,
we discuss selected dissertations with related topics in an addendum.
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3.1 TC-based Integrity Measurement and Veri�cation Concepts

In the context of Trusted Computing, authenticated boot as speci�ed by the TCG (cf. Section 2.1.3.1)
was one of the �rst TPM-basedmechanisms for establishing a cryptographic platform con�guration,
i.e., a set of cryptographic integrity measurements for all components involved in the boot process.
Unfortunately, TPM-based authenticated boot does not include all components of the OS and is
not intended to enable the measurement of drivers, applications, or �les loaded during runtime.
Similarly, UEFI Secure Boot [UEF12, Sect. 27] may be able to protect the boot process by verifying
digital signatures of certain boot components, which prevents loading of unsigned and possibly
malicious drivers or OS loaders. Nevertheless, secure boot is also not designed to measure and/or
verify OS components or applications, which are loaded a er the boot process has been completed.

To solve this problem, Sailer et al. [Sai04] proposed IMA for Linux, which measures every
binary that is executed (cf. Section 2.1.3.1) and, by today, includes various extensions, such as IMA-
appraisal and IMA’s EVM, which enable local integrity veri�cation of binary and con�guration �les.
Jaeger et al. [Jae06], for example, extended IMA for Linux with a mechanism based on SELinux,
which additionally veri�es information �ows at runtime. In an implementation for Samsung
smartphones, which is referred to as TrustZone-based Integrity Measurement Architecture (TIMA)
and part of Samsung KNOX [Sam13], the IMA components run in the ARM TrustZone, which
enables the so ware in the Secure World to measure and verify the Linux kernel executed in the
Non-secure World.

However, since IMA is usually realized as part of the monolithic Linux kernel, its implementation
is not directly compatible withmicrokernel-based operating systems or similar embedded/real-time
operating systems, e.g., for baseband processors, which usually do not use Linux. In those cases,
integrity measurement values are collected during authenticated or secure boot if at all, which only
enables a remote attestation of a static platform con�guration (see Chapter 6). As a consequence,
we present a concept and implementation of IMA for microkernel-based systems in Chapter 7,
where the integrity measurement components are executed as unprivileged user-space servers,
while still enabling the system to measure microkernel application binaries before they are loaded.
As a result, the microkernel-based system can calculate a set of cryptographic integrity values
including run-time measurements, which allows for a remote attestation of a dynamic platform
con�guration.

Based on the platform con�guration, which is composed of integrity measurements, a remote
attestation is the cryptographic process for creating veri�able proof that enables a remote veri�er
to detect modi�cations to the prover’s system, thus allowing the attestor to determine the prover’s
trustworthiness. As a consequence, it is not surprising that most remote attestation are based on
some type of integrity measurements, while their attestation mechanisms and integrity veri�cation
process can di�er signi�cantly as the following section shows.
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Alternative and Complementary Concepts for Integrity Veri�cation

In addition to TC-inspired integrity measurement and veri�cation concepts, there are a number
of alternate approaches, such a virtual machine introspection (VMI), control �ow integrity (CFI),
or various methods for anomaly detection (AD) based on machine learning. ¿ose concepts can
compliment the idea of cryptographic, hash-based integrity veri�cation, especially during runtime.
For microkernel-based systems, those integrity veri�cation techniques likely need to be adapted to
address the characteristics of such a particular system architecture, which should be feasible.

Although these alternative concepts for integrity veri�cation, i.e., VMI, CFI, or AD, are not
a focus of this thesis, we present a brief overview of the basic ideas and research conducted in
these �elds as far as relevant. We highlight di�erences as well as opportunities to combine those
concepts with our approach, which might bene�t both techniques as they complement each other.
In particular, we detail the ideas behind anomaly detection, which is o en based on sophisticated
machine learning techniques. ¿e reason is that we integrate such a mechanism in Chapter 8 to
show how our approach can include AD results in an implicit remote attestation. At the same time,
the remote veri�er can trust in the AD component if the integrity of the system is veri�ed through
remote attestation and the system deemed trustworthy with respect to the load-time integrity
measurements.

Virtual Machine Introspection (VMI)

¿emain goal of VMI is to understand and assess a VM by “externally monitoring the runtime state
of a system-level virtual machine” [Pay11], e.g., from the virtual machine monitor or another VM.
Although VMI was originally introduced by Garfinkel et al. [Gar03] as “a way to protect a security
application from attack by malicious so ware” [Pay11], the mechanism can also be used in a broader
context for intrusion detection, forensic analysis, malware analysis, or kernel debugging [Sch11].
To achieve its objective, VMI components can monitor various aspects of a virtual machine, such
as processor registers, memory, network tra�c, or hardware-level events. For e�ective monitoring,
however, the so-called semantic gap between the view of the VMI tool, e.g., located in the hypervisor,
and the observed VM, needs to be bridged, which is not a trivial task to accomplish [Pfo10; Sch11].

As mentioned above, VMI can complement the TC-inspired, hash-based cryptographic integrity
veri�cation of a system-level VM. While TC-based collection of integrity measurements combined
with a TPM-based remote attestation can report the load-time integrity and trustworthiness of a
system, VMI tools can monitor VMs during runtime. ¿ose VMI tools can be implemented either
in a dedicated VM, in the hypervisor, or as a user-space task in a microkernel-based system. For
example, Xen [Len15; Xen17] as a widely used hypervisor, which uses a microkernel-inspired design,
supports VMI on Intel and ARM platforms and implements VMI functionality in a dedicated VM.
Similarly, in most regular microkernel-based systems, the VMI tools would be implemented as a
user-space task within a dedicated protection domain.
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Control Flow Integrity (CFI)

Another technique for the veri�cation of so ware components is referred to as control �ow integrity
that has been the focus of security researchers for several years [Aba05; Vog14;Wan10; Xia12a; Zha13].
¿e main goal of CFI is to design e�ective mechanisms that prevent attackers from redirecting the
�ow of execution of otherwise benign programs. For that purpose, CFI [Aba05] implements checks
to ensure that the control �ow of a program remains within its control �ow graph. ¿e control �ow
graph is determined using static analysis, while the protection is usually realized by instrumenting
the call sites with runtime checks, which enforce that the function being called is actually in the
set of functions identi�ed by the static analysis. ¿e runtime checks can also be implemented as
part of the hypervisor [Hor15], which veri�es and enforces correct runtime behavior, e.g., using
transparent page-based execution tracing. Similarly, such CFI mechanisms could be integrated into
the microkernel-based system, more precisely a dedicated security task responsible for checking
the control �ow of other tasks, either based on function calls or page jumps. ¿is should be feasible
in principle, but would certainly require the adaptation of those concepts to the characteristics of a
microkernel-based system, such as the principle of minimality (cf. Section 2.2.2.3).

Anomaly Detection (AD)

While VMI monitors the runtime state of virtual machines and CFI aims to prevent attackers from
redirecting the �ow of execution during runtime, anomaly detection mainly focuses on a reliable
classi�cation of behavior and events relevant to system integrity using machine learning techniques.
As such, anomaly detection concepts can be used to recognize faults in embedded systems [Max02],
manipulation of components for critical infrastructures [Rac12], malware detection [Pfo13], and
various other types of attacks, e.g., against the memory of a system or execution �ow of so ware
components [Cuz15; Vie17; Yoo17; Yoo15]. Anomaly detection and machine learning can also be
utilized to model and monitor system behavior [Xia13a; Xia13b; Xia12b; Xia13e; Xia15]. However,
since the systembehavior usually depends on external inputs, this approachmight require additional
protections against attacks that try to compromise the model or the implementation of the machine
learning algorithm, hence, proper isolation of the AD component.

Although the research of e�ective anomaly detection mechanisms is not the focus of this thesis,
we take advantage of AD concepts in Chapter 8, where we integrate the result of an anomaly
detection component in our implicit attestation protocol. ¿is AD component, which runs as a
microkernel task in our system design, monitors other components, i.e., microkernel tasks, classi�es
certain events, such as system calls, and records anomalies in dedicated registers of an HSM, which
are similar to PCRs, but for anomalies. In our attestation protocol, we use those anomaly detection
records in combination with the PCR values in order to not only prove cryptographic integrity, but
also a classi�cation for the current system behavior. More precisely, we assert that the probability
of anomalous behavior is below a certain threshold.
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3.2 Remote Attestation
In this section, we discuss existing remote attestation schemes, in particular their main idea for
determining the current state of a platform as well as their core mechanism for creating veri�able
cryptographic proof and reporting it as a statement about the system’s trustworthiness to a veri�er.
We show that attestation schemes o en greatly di�er depending on their intension and application,
but have the common goal to provide the means to securely determine the trustworthiness of a
platform.
While the focus of the section is on hardware-based remote attestation, speci�cally TPM-based

attestation protocols, we start by providing a brief overview of so ware-based attestation schemes.
Although so ware-based attestation techniques may not provide the same security guarantees,
e.g., regarding the protection of integrity measurements or cryptographic keys, those attestation
schemes can still be useful in some scenarios, e.g., when the veri�er component is actually attached
to the platform. In those cases, the attestation is o en implemented in form of a challenge-response
protocol without the need for integrity measurements or cryptographic keys. Even though such
an application of challenge-response protocols only technically constitute a remote attestation,
so ware-based attestation schemes are nonetheless related to the work conducted in this thesis.

Software-based Remote Attestation

In the absence of a hardware security module, such as TPM, which acts as a hardware trust anchor,
e.g., to securely store integrity measurements or protect cryptographic keys, so ware-based remote
attestation schemes [Li10; Pre13; Ses04; Sha05; Sri10] usually rely on a challenge-response protocol.
¿e general idea is that the veri�er sends a challenge, e.g., a random number, which the prover
has to incorporate in its measurement process and, thereby, in the response. ¿e veri�er, in turn,
calculates the measurement result locally and compares it with the response generated by the prover.
As an example of such a so ware-based attestation technique, SWATT [Ses04] “verif[ies] the

memory contents of embedded devices and establish[es] the absence of malicious changes to
the memory contents” by hashing a speci�ed memory region. Similarly, SBAP [Li10] extends
this approach to peripherals and measures the so ware/�rmware as part of a challenge-response
protocol. Unfortunately, those protocols assume that the attacker is not able to modify the hardware,
in particular the memory, and that the veri�es knows the exact hardware speci�cations, which can
be considered rather restrictive.
Based on the concept of a so ware-based trust anchor, SobrTrA [Hor14] proposes and implements

a veri�cation mechanism speci�cally for ARM Cortex application processors. ¿is mechanism,
although not designed for attestation purposes, can also be used to verify the trustworthiness of a
platform. In comparison to a hardware-based trust anchor, such as a TPM, however, the mechanism
requires hardware-speci�c implementations (e.g., for di�erent Cortex-A-processor), which makes
this approach di�cult to use in practice.
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Hardware-based Remote Attestation

In a hash-based remote attestation as speci�ed by the TCG [Tru11; Tru16], the prover’s system
calculates static load-time integrity measurements for all relevant so ware components, which are
securely stored inside the PCRs of the TPM and can be used to prove the system’s integrity to a
remote veri�er. More precisely, each boot component hashes the next so ware component during
authenticated boot starting from an immutable CRTM as described in Chapter 2, Section 2.1.3.1.
A er the boot process has been completed, the operating system continues to measure so ware
binaries through integrity veri�cationmechanisms such as IMA. For a hash-based remote attestation,
the integrity measurements inside the PCRs are signed by the TPM and sent to the remote veri�er
as described in Section 2.1.3.2. With the corresponding public key and a so-called SML, the remote
party is able to verify the signature and check the entries of the SML against expected measurements
provided the prior signature veri�cation was successful.

To address privacy concerns related to the attestation key, the TCG alternatively also adopted a
remote attestation primitive called Direct Anonymous Attestation (DAA) [Bri04], which aims to
preserve the prover’s privacy using zero-knowledge proofs. Since the attestation key for a traditional
remote attestation is a cryptographic pseudonym in form of a certi�cate that needs to be signed by
a certi�cate authority (CA), this Privacy CA can easily correlate any attestation key with a certi�cate
that it signed to a speci�c TPM and, hence, must be trusted. DAA tries to solve this issue by
providing a (rather complex) cryptographic scheme based on a zero-knowledge protocol, which
enables the prover to convince the veri�er that the attestation key is a cryptographic key created by
a valid TPM that belongs to the prover without disclosing the identity of that TPM.

However, since both primitives speci�ed by the TCG, traditional remote attestation and DAA,
focus on hash-based load-time integrity measurements for so ware binaries only, other schemes,
such as property-based [Che06; Küh07; Sad04], group-based [Als10], or logical attestation [Sir11],
have extended and generalized the attestation mechanism. For example, the idea behind property-
based attestation is to prove certain security characteristics and qualities rather than to verify
the hash-based integrity of certain so ware components. Similarly, logical attestation is based
on attributable, veri�able statements about so ware properties, which are expressed in a logic.
Group-based attestation, in turn, uses Chameleon signatures [Kra98] to enhance privacy and the
ability to manage so ware integrity. As a result, group-based attestation, for example, solves the
problem that the same so ware change over time and old versions need to be deprecated.

Most of these remote attestation protocols, however, mainly rely on quite expensive cryptographic
operations—more precisely, digital signatures. Even with a dedicated cryptographic coprocessor,
such operations are, in general, mathematically complex, rather ine�cient compared to symmetric
operations, and thus may not be suitable for a remote attestation of mobile devices and virtualized
embedded systems with a microkernel-based so ware architecture.
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3.2.1 Mobile Device Attestation

Existing integrity veri�cation/attestation schemes [Kun06; Mut08; Yin10; Zha09] for mobile devices,
such as smartphones, may be able to justify a phone system’s integrity and provide cryptographic
proof that the device is in a trustworthy state, but they usually only focus on the integrity of the
operating system and applications executed on the application processor. As a result, the main
idea of these remote attestation protocols is primarily based on traditional TC concepts, such as
hash-based remote attestation, which digitally signs integrity measurements stored inside a TPM.

However, since these protocols only consider the so ware executed on the application processor,
e.g., the operating system and applications, they usually ignore the baseband stack running on a
dedicated baseband processor. ¿us, they cannot be directly used to prove the trustworthiness of
the baseband stack, e.g., towards the mobile network. As a consequence, they are not able to prevent,
for example, attacks on the mobile network infrastructure in case an attacker has been able to
compromise the baseband stack of a larger number ofmobile devices. Unfortunately, research shows
that such kind of attacks are a realistic scenario, since there already exist a number of demonstrated
exploits for vulnerabilities in mobile baseband stacks [Mul11; Tra09].

¿at is why we present a remote attestation mechanism for mobile devices with a baseband
processor, which creates cryptographic proof that the baseband stack is still trustworthy (see
Chapter 6). In addition, since previously proposed attestation protocols mainly rely on expensive
asymmetric cryptographic operations, such as signing, which are rather expensive compared to
symmetric cryptography, we have designed the attestation mechanism to use symmetric operations.

Regarding the trustworthiness of operating systems executed on themobile application processor,
more recent attestation concepts [Ben11; Mar13; Nau10] focus on providing veri�able proof for
the integrity of mobile operating systems, such as Android, because of its increasing popularity.
Nauman et al. [Nau10], for instance, propose a remote attestation scheme speci�cally designed
for Android systems. To collect measurements, they extended the ClassLoader of the Dalvik VM,
Android’s process virtual machine [Smi05, p. 38], which allows to execute Java binaries. For native
applications that do not run in the Dalvik VM and the Dalvik binary itself, however, they still rely
on IMA in order to collect measurements. In addition, those concepts are unable to prevent loading
of unknown binaries, since they only measure, but do not verify the integrity of binaries before
they are executed.

Furthermore, those existing remote attestation protocols ignore the baseband stack completely,
although they are o en speci�cally designed for mobile phones, which most likely have a dedicated
baseband processor with a separate so ware stack. And since the baseband stack is o en even more
critical to the mobile device (and the mobile network), it should be imperative to also include it
in a remote attestation of a mobile device. One way is presented in Chapter 6 which details our
attestation mechanisms and how it �ts into the standardized mobile network authentication.
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3.2.2 Remote Attestation of Virtualized Systems

For virtualized systems, Berger et al. [Ber06] proposed the concept and implementation of a
virtual TPM (vTPM), which provides the facilities to create a virtual version of the hardware TPMs
for each VM. As a result, the concept of vTPMs enables a traditional remote attestation as speci�ed
by the TCG for individual VMs. Unfortunately, since TPMs, especially the TPM 1.2, only provide
limited support for virtualization, some components of the vTPM, such as the virtualized PCRs,
have to implemented in so ware. As a consequence, it is critical to isolate the virtualized TPMs
from the rest of the system, e.g., using isolation mechanisms provided by the hypervisor or an
additional secure co-processor. Alternatively, PCRs of a hardware TPM can theoretically be shared
by adequately multiplexing the process of extending integrity values for di�erent VMs [Vel13].
While the concept of vTPMs focuses on the virtualization of TPMs and relies on a hypervisor

or secure co-processor to isolate the so ware-based TPMs, other virtualization-based proposals
primarily utilize the hypervisor to separate the integrity measurement and remote attestation code
from a rich operating system kernel. For example, Härtig et al. [Här05] proposed the so-called
Nizza Secure-System Architecture for microkernel-based systems, which describes how applications
can be isolated from a virtualized rich operating system, such as Android, which is also executed
on top of the microkernel [Lan11]. However, although the Nizza secure-system architecture enables
the isolation of critical applications, such as the measurement code, this theoretical concept mainly
focuses on the separation mechanisms and the reduction of the TCB while only brie�y mentioning
a need for a TPM-based remote attestation.
Unfortunately, most existing proposals do not implement a secure system architecture like Nizza

and are either based on a hosted VMM [Che08], Xen [Sch09], or KVM [Hof13; Sch12] for Intel
architectures. Other concepts rely on a TEE utilizing hardware features of an x86 processor [McC08]
or a custom hypervisor [McC10], which also requires a modern processor from AMD or Intel.
Hence, none of the concepts deal with a TCB-reduced microkernel-based system architecture on
an embedded ARM platform as described in Chapter 7, which is equipped with a hardware TPM
for securely storing integrity measurements.
For instance, Joshua Schiffman et al. [Sch12] proposed an attestationmechanism for virtualized

systems, which includes a local representative (proxy) of the backend system. It is designed to
increase the performance and e�ciency by implementing a proxy component on the prover’s
system, which veri�es that system locally and, thus, reduces the time between the attestation and
the veri�cation of the result. Similar to our local attestation approach proposed in Chapter 7,
this reduces the gap between time of measurement and the attestation (cf. TOCTOU problem).
However, they do not focus on providing a near-minimal TCB for their proxy as they rely on KVM
as their hypervisor utilizing IMA. In addition, this approach still relies on traditional attestation
mechanisms based on digital signatures to verify the hypervisor, virtualized device drivers, and the
proxy component.
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In comparison, our remote attestationmechanismdescribed inChapter 8, focuses on a lightweight
attestation, which relies on symmetric cryptographic operations rather than digital signatures and
only requires very small messages to prove the integrity of the hypervisor, which is based on a mi-
crokernel, and multiple microkernel tasks. Additionally, our protocol enables secure code updates
based on the integrity of certain critical tasks, such as the microkernel or the baseband stack. ¿at
allows for the installation of new security-critical tasks and applications, which depend on the
trustworthiness of those existing tasks. ¿e trustworthiness, in turn, depends on the cryptographic
veri�cation of those tasks, which is evaluated by the remote veri�er and follows the de�nition by
the TCG, which requires so ware to behave as expected.
In contrast to the attestation protocols mentioned above, which are based on characteristics,

qualities, and logical properties that are enforced by the operating system, our attestationmechanism
presented in Chapter 9 is based on hash-based cryptographic policies that are enforced by a TPM2.0.
¿is TPM can either be a dedicated hardware TPM or implemented as a so ware TPMwithin a TEE.
In both cases, the TPM so ware stack is protected by the ARM TrustZone security mechanism,
which separates the components within the Secure Word from the so ware in the Non-secure World,
e.g., a Linux-based OS.
In addition, due to the use of ARM’s hardware-assisted virtualization, our system architecture

used in Chapter 9, which employs a secondmicrokernel as near-minimal hypervisor (cf. Chapter 5),
allows for the virtualization of multiple rich operating systems in the Non-secure World. As a result,
the attestation protocol presented in Chapter 9 can, for example, be combined with complimentary
systems designs for a rich OS, such as trust|me [Hub16]. ¿is Linux-based system architecture,
which was originally designed for mobile devices, focuses on OS-level virtualization, which “allows
to simultaneously operate multiple user land OS instances on one physical device” [Hub16].
As a result of this comprehensive system architecture, our approach presented in Chapter 9

can protect and isolated various so ware components based on their trust levels. ¿at enables a
policy-based implicit attestation, which does not rely on expensive cryptographic operations, such
as digital signatures, to create veri�able proof for the integrity of the prover’s system (include the
virtualized rich OS). Furthermore, our remote attestation mechanism, which is designed for, but
not limited to microkernel-based virtualized systems, enables a veri�er to protect the integrity of
data, e.g., from a virtualized device, while implicitly verifying the trustworthiness of the prover’s
system.
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Addendum: Delimitation to Related Dissertations
In this supplementary section, we brie�y discuss selected dissertations [Vel17; Wei16] dealing
with related topics, in particular microkernel-based security architectures, TPM-based remote
attestation as well as hardware-based integrity veri�cation and protection for virtualized systems.
¿e reason for the delimitation is that the authors of those dissertations work at the same research
institution as the authors of this thesis and part of the research is joint work [Wei14] or certain
general topics, e.g., the usage of TPMs for integrity protection, have been researched in parallel.
In the dissertation byWeiss [Wei16], which includes results from a joint publication [Wei14], the

author develops system architectures to improve trust, integrity, and resilience of embedded systems.
Similar to our approach, the author proposes to make use of a microkernel to separate a so ware-
based trusted execution environment from a rich operating system. ¿e author’s objective is the
design of a secure system architecture that enables secure loading of remote binaries, which is a goal
we share. In comparison, however, the author focuses on a purely microkernel-based architecture
and explores the security of that so ware-based separation layer, while we will ultimately propose a
system architecture with a hardware-based trusted execution environment with hardware-assisted
virtualization instead of paravirtualization. We believe that this system architecture can provide a
higher level of security and trust, because the hardware security features are considered to be much
harder to attack. On the other hand, the security of the separation layer and the e�ectiveness of
side channel attacks as described in [Wei16] continues to be of concern. ¿at is why the results of
the dissertation by Weiss are still relevant, even in our hardware-based security architecture.
¿e dissertation by Velten [Vel17], on the other hand, focuses in parts on the integration of

a TPM 1.2 into a virtualized system, where each VM should get access to the TPM. However,
since the TPM 1.2 does not support virtualization natively and the VMs are usually provided with
so ware-based virtualized instances of the hardware TPM, one main objective is the possibility
to store integrity measurements of multiple VMs in a single PCR of the hardware TPM. In order
to achieve this objective, the author proposes a protocol to multiplex and conceal the integrity
measurements of VMs when they are extended into the TPM.¿at way, a remote attestation is based
on integrity measurements stored in the TPM and an attestation only reveals the measurements of
a particular VM, because the other measurements are concealed. In comparison to the work in this
thesis, the approach by Velten extends the concept of traditional remote attestation as speci�ed by
the TCG, while we propose a novel mechanism that focuses on symmetric cryptography and on
hardware security modules, which better supports virtualization, such as the TPM 2.0. However,
hardware-based virtualization support is likely to support only a limited number of VMs, whereas
the concept described in [Vel17] allows a virtually unlimited number of VMs with the drawback
that the size of measurement logs increases signi�cantly.
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4
Attestation Scenarios and Attacker Model

¿is chapter �rst de�nes four scenarios, which aim to provide context for the remote attestation use
cases and motivate the work presented in the following chapters. Based on the descriptions of our
attestation scenarios in Section 4.1, which include potential threats, we further de�ne our attacker
model in Section 4.2, which speci�es capabilities and a few reasonable limitations of an adversary.

¿e four scenarios are secure mobile network access, which focuses onmobile devices for accessing
mobile network infrastructures, secure loading of (remote) applications, secure code updates for
microkernel-based systems, and a secure data access. Although these four attestation scenarios,
which are detailed in the following sections, are quite diverse, they unite in a common objective,
which is secure access to critical or sensitive remote (network) resources, applications, and data.

Furthermore, the scenarios have in common that they are o en based on embedded systems,
such as a mobile phone, industrial control system, automobile, or airplane, which execute safety-
and security-critical components alongside a rich OS, are equipped with a number of peripheral
devices like sensors, and have some type of (mobile) internet connectivity. Since a large number
of such embedded devices are used in various areas, be it in a private, corporate, industrial, or
public/government environment, integrity veri�cation and remote attestation protocols can not
only help to protect those devices, but also the networks they connect to against attacks.

As a consequence, our remote attestation mechanisms are designed to provide veri�able proof
for the trustworthiness of those systems and protect the network against attacks by an attacker.
Furthermore, since we take advantage of a microkernel-based system architecture with a TPM, we
can protect keys and make sure the cryptographic proof is based on strong protection mechanisms.
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Chapter 4 Attestation Scenarios and Attacker Model

4.1 Attestation Scenarios
As a basis for our attestation and integrity veri�cation/protection protocols, we de�ne four di�erent
attestation scenarios, which can be combined to a high-level scenario that focuses on secure access
to critical/sensitive remote (network) resources, applications, and data. ¿ose four scenarios are:

Scenario 1: Secure Mobile Network Access (Chapter 6)
¿is scenario focuses on the secure authentication and authorization for mobile devices with
a baseband stack (e.g., cellular phones) and is described in detail in Section 4.1.1.

Scenario 2: Secure Loading (Chapter 7)
In this scenario, a remote party (e.g., a bank) provides its own application, which must be
securely executed inside a protected microkernel-based compartment (see Section 4.1.2).

Scenario 3: Secure Update and Recovery (Chapter 8)
¿is scenario, which is detailed in Section 4.1.3, focuses on secure code updates and recovery
for a microkernel-based OS with multiple operational and cryptographic contexts.

Scenario 4: Secure Data Access (Chapter 9)
In this �nal scenario, a remote party can access data (e.g., generated by a sensor) on the
embedded system and needs to ensure that it can trust its integrity (see Section 4.1.4).

Since secure access to resources is based on the result of a remote attestation in all our scenarios,
we de�ne two recurring parties for each attestation scenario, the prover 𝒫 and the veri�er 𝒱 .
While the prover 𝒫 is usually our microkernel-based embedded system, which is derived from the
following scenarios and described in Chapter 5, the nature of the veri�er 𝒱 generally depends on
the speci�c scenario.

4.1.1 Scenario 1: Secure Mobile Network Access

In the �rst scenario, we focus on secure access to a mobile network with a mobile device featuring
a multi-CPU architecture, i.e., with a separate baseband stack executed on a dedicated baseband
processor, and an SE issued by the network operator. In this scenario, the prover 𝒫 is the mobile
device and the veri�er 𝒱 is a set of veri�cation components within the mobile network.
To access the mobile network, the mobile device has to register and cryptographically sign in,

which is mostly handled by the SE that protects the keys and implementations of the cryptographic
algorithms. However, while the network operator can trust in the fact that the keys and algorithms
are protected by the SE, the so ware of the baseband processor, the baseband stack, is usually
unprotected and can be manipulated. ¿at enables an attacker to not only compromise the mobile
device, but also the mobile network. Hence, we propose to equip the mobile device with a TPM and
show that an e�cient implicit remote attestationmechanism can be integrated into the standardized
authentication protocol of 3G and 4G networks, which enables the mobile network to detect
compromised baseband stacks and quarantine those mobile devices.
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Attestation Scenarios Section 4.1

4.1.2 Scenario 2: Secure Loading

Our second scenario describes the case that a remote party, such as a bank, wants to provide its
own security-sensitive application, such as an o�ine banking, to its customers. Unfortunately, most
monolithic system would be viewed as too insecure to realize such a scenario, while microkernel-
based systems might provide adequate security though separation and strict isolation, but are
usually statically con�gured. In addition, the bank must be sure that the system is not compromised
and that the application is securely executed inside a protected compartment on their customers’
devices. Hence, the trustworthiness of those devices must be veri�ed in advance, e.g., using a
TPM-based remote attestation, which means we have two parties: an embedded device, such as a
smartphone, which acts as the prover 𝒫 , and a remote party, e.g., a bank, which is the veri�er 𝒱 .
To access and use the application provided by the bank, the customer’s system �rst has to provide

veri�able cryptographic proof that the system can be trusted. Only if the customer’s device can
convince the bank that the system is not compromised and that the banking application is executed
in an isolated compartment, the bank can be con�dent that o�ine transactions generated with the
applications are legitimate and not compromised by an attacker.
As a result, we propose that the customer’s device uses a microkernel-based system with a small

TCB as well as a TPM, which can be used to provide secure storage for application-speci�c keys and
integrity measurements. In addition, if the integrity measurement component is implemented as
microkernel task and the banking application is executed in themicrokernel execution environment,
it is possible to realize secure loading of remote binaries and use cases like secure o�ine payments.

4.1.3 Scenario 3: Secure Update and Recovery

For our secure update and recovery scenario, the prover 𝒫 is an embedded system with di�erent
security- or safety-critical applications and at least one virtualized rich OS, such as an airplane or
modern car. ¿is system uses a multi-context HSM, which supports virtualization and collects
events from an anomaly detection component. 𝒱 , on the other hand, is a remote veri�er, e.g., a
manufacturer, which is considered honest, trustworthy, and well-known to the prover.
Without any loss of generality, we assume that the prover is a airplane with a microkernel-

based system architecture, which can execute various tasks in isolated execution environments.
Typical tasks are the baseband stack for communications with a mobile network, virtualized device
drivers for hardware components, native tasks for security-critical applications, such as a secure
communication, and regular user applications running on a rich operating system, e.g., a Linux-
based Android. Since those tasks have di�erent levels of criticality, they are strictly isolated by the
separation mechanisms of the microkernel and the hardware. However, a remote attacker might
still be able to compromise tasks, e.g., by fuzzing their interfaces. ¿at is why the prover has to
provide veri�able evidence for the integrity of relevant tasks before the veri�er grants access to
restricted resources, such as emails, con�dential documents, or updates.
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Chapter 4 Attestation Scenarios and Attacker Model

For example, in this scenario, the airplane might regularly connect to a airline network via
virtual private network (VPN), whenever the user needs access to internal resources. To establish
a secure connection, the veri�er in the airline’s network �rst requires proof for the integrity of
security-critical tasks, such as certain device drivers and the VPN client. Based on the attestation
result, access to the airline’s network is granted or denied. In case access is denied, e.g., because the
VPN client was compromised, the veri�er should be able to provide a code update based on the
integrity of only the most basic security-critical tasks, such as the microkernel and the baseband
stack. ¿at way the prover is able to recover.

4.1.4 Scenario 4: Secure Data Access

¿e secure data access scenario focuses on the protected access to data, e.g., generated by sensors.
We assume that the prover’s system creates the data records, hence acts as the data producer, while
the veri�er is interested in (and maybe willing to pay for) those data records or at least aggregated
values, thus acts as data consumer. Furthermore, data access control should be realized by policies.
In this scenario, the prover 𝒫 is an embedded data collection system, such as a monitoring

or industrial control system with data access control. Hence, 𝒫 is equipped with a TPM 2.0
as it implements policy-based authorization natively. 𝒫 is also able to virtualize rich operating
systems, such as Linux or Android, though hardware-based virtualization technologies like ARM’s
Virtualization Extensions, e.g., to provide a user interface. Since we assume the prover also executes
safety- or security-critical applications as native microkernel tasks, which must be strictly isolated
from the rich operating systems (and sometimes even the VMM), the prover’s system additionally
provides hardware-enforced separation mechanism like ARM’s TrustZone as the basis for a TEE.
𝒱 , on the other hand, is a veri�er that is generally considered honest and trustworthy in the context
of our protocol, however, may try to maximize its bene�ts by accessing as much data as possible.
Like the prover, 𝒱 is also equipped with a TPM 2.0 to store sensitive information, e.g., keys.
Without loss of generality, we assume that the prover is an industrial control system with at

least one rich operating system and a set of sensorsmonitoring its state, environmental conditions,
and a �xed number of attached components. In our scenario, the veri�er is allowed to log into
the rich operating system with credentials provided by the prover’s administrator and, hence, is
able to interact with certain sensors. However, since the rich operating system is virtualized and
device access has to go through the hypervisor, which is controlled by the prover, the veri�er can
only access said sensors in a very controlled and restricted way. As a result, the veri�er cannot
be sure that the data from a virtualized device has not been modi�ed. For example, the data of a
heartbeat sensor might have been modi�ed by the prover to re�ect a system working without any
interruptions or anomalies, while the system was, in fact, not available for some time. Obviously,
we also have to assume that an attacker might try to modify the data when sent to the veri�er’s
system for further evaluation if that is part of the scenario.
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4.2 Attacker Model
For our attestation scenarios, we de�ne an attacker model based on the Dolev-Yao model [Dol83]1,
a formal model (originally designed for public key protocols), which enables to prove cryptographic
security properties of interactive, multi-party protocols, such as a remote attestation. In the model,
communication parties in the network can exchange messages that consist of formal terms, which
are de�ned by the protocol and can reveal some of the internal structure of the messages to the
attacker, but can also hide other parts from the adversary because of cryptographic protections.
According to the model, an adversary can overhear, intercept, drop, and generate any message and
is only restricted by the constraints of the cryptographic algorithms used to protect those messages.
In our attacker model, as a consequence, an adversary𝒜 can read messages sent between the

prover 𝒫 and the veri�er 𝒱 as long as those messages are not encrypted with a scheme that is
still considered secure [Eck14, Sect. 1.3.2, Defense against Attacks, Encryption]. ¿e attacker can
also initiate communication, create new messages, drop messages, and try to replay old ones. An
adversary is also able to manipulate data if its integrity is not protected [Eck14, Sect. 1.3.2 and 8.1.4],
e.g., by amessage authentication code (MAC). As a result,𝒜 can only decrypt an encrypted message
or forge a correct MAC for a modi�ed message if the attacker has access to the correct key [Eck14;
Ker83, Kerckho�s’ Principle]. In particular, an attacker is not able to invert cryptographic hash
functions and break state-of-the-art MACs or encryption schemes like AES.
In addition, an attacker might be able to compromise the rich OS by exploiting its so ware

components. However, we assume that the attacker is limited to the rich execution environment, i.e.,
assets inside the trusted execution environment are protected by hardware separation mechanisms.
Furthermore, hardware attacks are not feasible, as speci�ed for most remote attestation protocols,
which only consider a remote attacker. As a consequence, we can assume that removing hardware
components, such as the TPM, the SE, or an Secure Digital (SD) memory card, is not possible. In
particular, security mechanisms, which are tightly integrated into the chip, like ARM TrustZone,
or provided by a TPM or HSM cannot be removed or otherwise compromised by an attacker.
¿at means we have to assume that the implementation of hardware-based security features, e.g.,
cryptographic engines or security extensions, and any �rmware components for security hardware
implemented in so ware is correct.
As a result, our attacker model allows for a very powerful adversary, which can compromise

so ware components executed on our embedded device as along as this so ware and its integrity
is not veri�ed and protected in any way. In fact, the adversary is omnipotent regarding the network
and only restricted by the security guarantees provided by the cryptographic methods used to
protect the messages sent between the prover and the veri�er.

1 We explicitly use this model in Chapter 8 to formally prove the most critical security properties of our attestation
protocol, such as key secrecy or correctness of integrity measurements.
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Chapter 4 Attestation Scenarios and Attacker Model

4.3 Summary
To provide context and show the practical bene�ts of an e�cient remote attestation, we de�ned
and described four attestation scenarios, such as secure mobile network access, which highlight
speci�c aspects of a more comprehensive scenario regarding the secure access to trusted resources.
¿e purpose of the scenarios is to motivate our research in local integrity veri�cation and e�cient
lightweight attestation suitable for resource constraint embedded devices, such as mobile phones.
Primarily, however, the four attestation scenarios describe the general settings and the parties
involved in the integrity veri�cation and attestation protocols, in particular the prover and veri�er.
In all scenarios, we show that the remote attestation protocol can enable the veri�er to reason about
the trustworthiness of the prover’s system and make an informed decision whether to grant or deny
the prover access to a trusted resource, such as a mobile network, a so ware binary, or sensitive data.
In this chapter, we also de�ned a global attacker model, which not only describes the capabilities of
an adversary, but also makes reasonable assumptions about the attacker’s range of in�uence and
limitations of the adversary, e.g., regarding cryptographic mechanisms and their implementations.
Hence, the results of this chapter are a detailed description of the attestation scenarios focusing
on the prover and the veri�er as well as a characterization of the attacker focusing on capabilities.
¿ose results are the basis for the security discussions, which are conducted in the following chapter
and include speci�c attacks based on the respective scenario.
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System Architecture

In this chapter, we present our system architecture for embedded systems, which enables an e�cient
remote attestation, while separating security-critical so ware using hardware-based isolation
mechanisms in form of dedicated security components like a TPM or hardware features of the SoC.
¿ese features include hardware-assisted virtualization capabilities and hardware-based separation
mechanisms like ARM TrustZone, which facilitate the implementation of a full TEE, especially in
combination with a microkernel-based operating system. In our system architecture, which has
some similarities to the one proposed in [Len14], we primarily take advantage of a microkernel,
which acts as a near-minimum (i.e., as small and simple as practically possible) hypervisor as well
as a so ware basis for our TEE, because it signi�cantly reduces the amount of privileged code and,
more importantly, its complexity.

Furthermore, since modern embedded systems, such as cell phones, become more and more
complex and o en contain not only an application processor, but also a dedicated baseband
processor for their baseband stack, we also consider this multi-processor architecture. As a result,
our system architecture features two hardware domains that are described in detail in this chapter,
which is structured as follows. In Section 5.1, we present an overview of our system architecture
focusing on the two processor domains. Subsequently, Section 5.2 highlights the characteristics of
the application processor domain while Section 5.3 describes the baseband processor domain.

Please note that this chapter is a result of a uni�cation of di�erent systems architectures that have
already been presented at various security conferences and are published in their corresponding
peer-reviewed proceedings [Wag16a; Wag15; Wag12b; Wei14]. Furthermore, some of the results and
contributions are joint work with other authors.
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Chapter 5 System Architecture

5.1 Overview
As shown in Figure 5.1, our system architecture mainly consists of two processor-based domains,
the Application Processor Domain (DomA) as well as the Baseband Processor Domain (DomB).
While DomA consists of a modern SoC with an application processor and an additional TPM,
DomB is an optional domain with an ARM SoC featuring a dedicated baseband processor, which
is connected to a Universal Subscriber Identity Module (USIM), a security chip for mobile devices.
DomA, the Application Processor Domain, which is shown on the le of Figure 5.1, features a

modern SoC for embedded systems with near-minimum microkernel-based system, which allows
to execute virtualized guest operating systems in a distinct Rich Execution Environment (REE).
According to theNizza architecture (cf. Figure 5.2), all safety- and security-criticalmicrokernel tasks
are executed in an isolated Microkernel Execution Environment (MEE) that is strictly separated by
the microkernel, which acts as a near-minimum separation layer or as a hypervisor1, respectively.
Optionally, our proposed design of a secure system architecture also considers the use of a TEE in

the Application Processor Domain, which can enable more advanced remote attestation protocols.
As trusted OS, we propose the use of a microkernel-based system, which reduces the complexity
and size of the privileged code in the TEE, while still enabling the execution of trusted applications.
In comparison, the Baseband Processor Domain or DomB shown on the right of Figure 5.1 is

mainly comprised of a baseband stack running in a Baseband Execution Environment (BEE) on a
dedicated processor. Although the entire DomB is optional and mainly relevant for mobile devices,
such as smartphones, this domain and its processor can, in practice, be more privileged than the
application processor, e.g., by acting as a master for certain critical memory regions or devices.

SoC with 
Application Processor

TEE (optional)

Privileged

Unprivileged

Privileged
Microkernel

Application

Rich OS

MEEREE

ApplicationTaskApplicationApplicationApplication

Microkernel

ApplicationApplicationTrusted
Tasks

USIM

Privileged

Baseband Stack

TPM

Baseband 
Information

Application Processor Domain (DomA) Baseband Processor Domain (DomB)

BEE (optional)

Baseband OS

RAM RAM SoC with 
Baseband Processor

Figure 5.1: Overview of our System Architecture

1 ¿e role of a hypervisor, which puts the kernel of the rich OS in a semi-privileged mode, is shown in Figure 5.4.
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5.2 Application Processor Domain

Since most modern application processors, which are part of advanced SoCs for embedded systems,
utilize ARM architectures, e.g., because they allow for creating energy e�cient, yet capable SoCs,
we consider ARM-based embedded systems as the primary targets for our system architecture.
Although the core of our Application Processor Domain is based on ideas of the Nizza architecture,
whichmeans it can be used to create secure so ware architectures on virtually anymodern hardware,
our system architecture aims to take advantage of as many hardware security features as possible,
be it integrated features of the SoC like TrustZone or dedicated hardware components like an HSM.
Consequently, our system architecture aims to combine the advantages of the Nizza secure-system
architecture, which focuses on separating critical applications from a rich OS using a microkernel,
with a hardware security module, more precisely a TPM, enabling hardware-based attestations.

To realize novel hardware-based attestation schemes, our Nizza-inspired system architecture,
which employs a microkernel as separation/virtualization layer as shown in Figure 5.2, not only
signi�cantly reduces the TCB compared to monolithic kernels like Linux, but also enables the
implementation of integrity measurement and veri�cation components within the isolated MEE.
As a result, our microkernel-based system architecture provides the basis to execute legacy systems
in their own REE while isolating critical tasks, like integrity measurement code or the TPM driver.

Furthermore, since modern ARM-based SoCs have been extended with advanced hardware
capabilities, such as virtualization or security extensions, as described in Chapter 2, our proposed
system architecture naturally evolves during the course of this thesis. Initially, our architecture
is heavily in�uenced by the concept and ideas of paravirtualization and the Nizza secure-system
architecture, whereas later versions take advantage of hardware-assisted virtualization capabilities,
which enable e�cient full virtualization of a rich OS. Finally, the implementation of a microkernel-
based system within the ARM TrustZone allows for the realization of a full hardware-based TEE,
which is optional, but enables more sophisticated remote attestation schemes (cf. Chapter 9).

Legacy OS

ApplicationApplicationLegacy
Application

GUISecure StorageNetwork Driver

Small Kernel

MEE

Loader

Secure 
Application

…

REE

secure-platform
layer

Figure 5.2: Nizza Architecture (based on [Här05, Figure 1])
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Chapter 5 System Architecture

5.2.1 Microkernel-based Operating System

At the core of our system architecture for the DomA, which is inspired by the Nizza architecture,
a small microkernel-based operating system enables the execution of a legacy/rich OS alongside
(security-critical) microkernel tasks as shown in Figure 5.3. In this core system architecture, the
microkernel implements a very simple and small separation and virtualization layer that isolates
the rich OS and its applications in the REE from the microkernel tasks executed in the MEE, such
as OS services, the code to measure the integrity of other components or a TPM device driver.

Depending on the hardware capabilities of the SoC, the rich OS in our system architecture is
either paravirtualized (Chapters 7 and 8), which requires modi�cations to the rich OS (cf. L4Linux),
or fully virtualized by hardware-assisted virtualization (Chapter 9), where the microkernel acts as a
near-minimum hypervisor. ¿is is indicated by a gradient background for the rich OS in Figure 5.3.

In both cases, the microkernel-based OS is responsible to handle the access to privileged and/or
security-critical hardware, such as the TPM. As mentioned above, the microkernel also separates
security-critical tasks, such as the TPM device driver, virtualizes hardware devices for the rich OS,
and enables the implementation of isolated integrity veri�cation and remote attestation components.
As a consequence, our TPM-equipped microkernel-based system can securely measure so ware
components and store their integrity values inside the PCRs of the TPM while relying on the strong
separation mechanisms of the microkernel and the isolation features of the underlying hardware.

SoC with Application Processor

Privileged

TEE

PL 1
Modes

Unprivileged

Microkernel

Application

Rich OS

MEEREE

ApplicationTaskApplicationApplicationApplication

Microkernel

Trusted
Tasks

TPM

Application Processor Domain (DomA)

Monitor Mode

Figure 5.3: DomA: Microkernel-based Partial System Architecture with TPM
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5.2.2 Trusted Execution Environment

As an extension, our system architecture also considers the optional use of a TEE, which can provide
further hardware-based protections against attacks. As shown in Figure 5.4, an additional TEE,
which might also execute a microkernel-based OS, enables the implementation of security-critical
microkernel tasks, such as the TPM device driver, within a hardware-separated part of the DomA.
Since we focus on ARM-based embedded system, we primarily utilize a TrustZone-based TEE,
which provides very simple interfaces: so ware outside the TEE can either issue an SMC call or
trigger a trap, which both lead to de�ned entry points for the TEE.¿ose entry points are controlled
by the privileged code inside the TEE and, hence, cannot be modi�ed by untrusted so ware outside
the TEE, because any illegal attempt to modify privileged con�guration registers is trapped and
intercepted through a combination of hardware and so ware mechanisms.
In comparison to a microkernel-based system architecture, which mainly relies on so ware

isolation techniques to separate individual microkernel tasks within the MEE, this extended system
architecture enables the separation and distribution of microkernel tasks between the MEE and
the TEE. As a result, it is possible to not only reduce the TCB of the TEE even further, but also
assign security-critical hardware, such as a TPM, to the SecureWorld of the ARM-based embedded
system if it supports TrustZone. However, since not all SoCs support a hardware TEE, we will �rst
explore systems without a TEE in Chapters 6 to 8 and focus on bene�ts of a TEE in Chapter 9.

SoC with Application Processor

PL 1
Modes

TEE

PL 1
Modes

PL 0
Modes

PL 2
ModesMicrokernel

Application

Rich OS

MEEREE

ApplicationTaskApplicationApplicationApplication

Microkernel

ApplicationApplicationTrusted
Tasks

TPM

Application Processor Domain (DomA)

Monitor Mode

Figure 5.4: DomA: Extended Partial System Architecture with TPM connected via TEE
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Chapter 5 System Architecture

5.3 Baseband Processor Domain
In addition to the SoC with an embedded application processor, our system architecture also
considers the presence of an additional baseband processor, which is common in mobile devices.
Although mobile devices in a 3G or 4G network are very heterogeneous mass of devices, most
of these devices, e.g., smartphones or 3G USB (Universal Serial Bus) modems, usually have a
multi-CPU architecture.
As shown in Figure 5.5, communication between those two processors is o en possible, e.g.,

via a serial connection or shared memory. Interestingly, the baseband processor usually acts as
master and not the application processor, which means the baseband so ware may have full access
to sensitive data of the OS executed on the application processor, but not the other way around.
¿us, for such a architecture, it is at least as important to measure the integrity of the baseband
stack as it is to measure the integrity of the so ware executed on the application processor.
As a result, our dual-domain system architecture considers the fact that the baseband processor

has privileged access to the TPM, which is shared with the application processor in our proposal.
E�ectively, this means the processor in DomB has access to two separate hardware security modules,
which serve, however, two completely di�erent purposes. In addition, theUSIM is usually removable
and provisioned by the network operator, while the TPM is integrated with the system and owned
by the platform vendor, operating system vendor, and/or the user1.

USIM

Unprivileged

Privileged

TPM

Baseband 
Information

Baseband Processor Domain (DomB)

BEE (optional)

Flash Memory ROM

Application
Processor

Slave Master

DomA

RAM Baseband Processor

Unprivileged

Privileged

RAM

Serial 
Communication

or Shared Memory

(Hardware 
independent)

Baseband
Software Stack

(Hardware specific) 
Baseband OS

Figure 5.5: DomB: Partial System Architecture with TPM and USIM

1 We do not go into detail about the concerns regarding control of the TPM, although this is an important issue.
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Baseband Processor Domain Section 5.4

5.3.1 Baseband Hardware Architecture

As described above, most devices that enable users to access a mobile network, have some type of
baseband hardware, which usually consists of the following parts: radio frequency (RF) front end,
analog baseband, digital baseband consisting of a digital signal processor (DSP), and an ARM SoC.
In this thesis, we focus on the ARM SoC with the baseband processor, as they communicate with
the outside world, although other parts may theoretically be included in a remote attestation, too.
To the baseband processor, an exchangeable USIM is connected as depicted in Figure 5.5, which

is a smart card issued by the provider. ¿e USIM holds in its ROM an operating system and the
security algorithms for authentication and key generation. In its EEPROM, it stores speci�c identity
information, namely the International Mobile Subscriber Identity (IMSI) and Temporary Mobile
Subscriber Identity (TMSI) as well as a pre-shared secret key Ki, which is shared with the provider.
However, today’s mobile devices completely lack a comparable secure element to identify the

device itself. ¿e existing device-unique International Mobile Equipment Identity (IMEI), for
instance, is not stored securely, hence needs to be considered untrusted. For our concept of a
remote attestation of the baseband stack, we thus propose to extend the hardware architecture of
mobile devices with an TPM. In contrast to existing solutions, we propose to directly connect the
TPM to the baseband processor, but share it with the application processor as shown in Figure 5.5.

5.3.2 Baseband Software Components

Today’s baseband so ware usually consists of a small real-time operating system, which is referred
to as baseband OS in Figure 5.5 and responsible for parts of layer 1 (hardware speci�c physical
layer) and everything above. For layer 2 and 3, the baseband OS provides an hardware independent
so ware stack with nested implementations of all 2G/3G/4G layers Hence, it is called baseband
so ware stack in Figure 5.5.
For the sake of simplicity, we divide the baseband so ware in the following two parts: the

baseband binary B, which contains the baseband OS as well as the baseband so ware stack, and the
baseband information BI including device- or operator-speci�c con�guration data. Although there
might exist other binaries, such as fail-safe or backup binaries, we assume that only one baseband
stack is running on the baseband processor at a given time.
Furthermore, we presume that a boot loader, which is usually very small and simple, loads

the baseband binary from memory. We assume that the loader is stored in ROM to prevent
unauthorized modi�cations, securely boot the baseband stack, and authenticate updates that need
to have a cryptographic signature created by the baseband vendor BV .
For our remote attestation protocol, which is speci�cally designed for mobile baseband stacks

and presented in Chapter 6, we extend the boot loader and the baseband stack with the functionality
to communicate with the TPM. Additionally, the USIM so ware now executes critical parts of the
minimal TSS internally.
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Chapter 5 System Architecture

5.4 Summary
In this chapter, we derived, developed, and described a comprehensive secure system architecture for
embedded systems, which incorporatesmodern hardware- and so ware-based security features and
is designed to enable secure local integrity veri�cation and e�cient lightweight remote attestation.
To this end, we have combined current research e�orts, e.g., focused on microkernel-based systems,
with existing security concepts and technologies, such as Trusted Computing, dedicated HSMs, and
integrated security features of modern ARM SoCs, e.g., for virtualization or a hardware-based TEE.
As a result, our proposed architecture is not only able to separate security-critical so ware using
hardware-based isolationmechanisms, but also handle long-term cryptographic keys, securely store
integrity measurements, and provide a trust anchor for security protocols like remote attestation.
¿us, based on our system architecture and its particular design, we are able to explore and develop
local integrity veri�cation, which rely on a strict separation, as well as more e�cient attestation
mechanisms, which are presented and described in detail in the following chapters.
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6
Attestation of Mobile Baseband Stacks on

Dedicated Baseband Processors

Mobile cellular networks provide the necessary infrastructure for location-independent global
communications, i.e., phone calls, short messages, and data connections. Many people, businesses,
and governments heavily rely on those means to communicate with each other, their customers,
and counterparts in di�erent parts of the world. ¿at is why mobile communication networks are
considered part of the critical infrastructures and need to be secure and highly available, because
malfunction or failure can lead to potentially high damage and costs.

In contrast to mobile network nodes like cell towers, which are fully controlled by their operators,
the billions ofmobile devices are usually beyond their sphere of in�uence, thus considered untrusted.
For that reason, network operators generally issue a smart card, which securely stores the pre-shared
authentication information, e.g., keys, to access the network and thereby establishes mutual trust.
However, as the complexity and functionality of most so ware components increase, it becomes
easier for an adversary to compromise and remotely control a mobile device [Mul11]. In particular,
the baseband stack which is o en executed on a dedicated and privileged baseband processor is
an interesting attack target, because it implements the so ware stack to communicate with the
mobile network. If an attacker is able to exploit baseband stack vulnerabilities of a large number
of mobile devices, those individual devices are not only compromised, but also critical attacks,
such as distributed denial-of-service (DDoS) attacks, on the cellular network or related critical
infrastructure components like emergency services [Gur16] become possible.
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Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

6.1 TPM-based Remote Attestation of Mobile Baseband Stacks
One approach to detect malicious modi�cations of mobile baseband stacks and protect a mobile
network from coordinated attacks by compromised devices is based on TC concepts and a TPM.
As described in Chapter 2, a TPM or its mobile version, a Mobile Trusted Module (MTM) [Tru10],
can be used to securely handle cryptographic keys, which can be marked as non-migratable to
prevent extraction and external usage. A TPM also provides mechanisms for a remote attestation
which enables a mobile device platform to prove that no adversary has tampered with its so ware.
However, these security services provided by the TPM primarily focus on operating system and
applications that are executed on the application processor. ¿e main reason is that hardware
security modules like the TPM, which are attached to a platform (in contrast to smart cards, which
are commonly assigned to a person), are usually integrated with the application processor. Hence,
a TPM usually cannot be directly used to prove the trustworthiness of the baseband stack and to
prevent attacks on the network infrastructure, which are caused by manipulated baseband stacks
running on the baseband processor.
In this chapter, we thus present an implicit hardware-based attestation mechanism for mobile

baseband stacks according to our Scenario 1 (Secure Mobile Network Access), which is based on
a TPM that is connected to the baseband processor. Our attestation enables a mobile device to
e�ciently prove its trustworthiness towards the network without the need for expensive asymmetric
cryptography. Instead, symmetric operations transfer the result of the attestation from the prover
to the veri�er. Based on the attestation, the mobile network can grant (or restrict) access to mobile
network components. As a result, the risk and the potential damage of attacks on the network from
devices with a compromised baseband stack can be limited. It even enables the network to enforce
a certain baseband version, which prevents attacks that exploit vulnerabilities in a (prior version of
the) baseband stack in order to attack the network.
¿e rest of this chapter is structured as follows. Section 6.2 �rst brie�y explains the infrastructure

of mobile networks and discusses possible attacks on those cellular networks based on compro-
mised mobile devices, which motivates the need for a remote attestation of the baseband stack.
In Section 6.3, we describe the notation, cryptographic keys, and the concept of our attestation
protocol. Finally, we provide a detailed security analysis in Section 6.4. A summary of this chapter
can be found in Section 6.5.

Please note that some parts of this chapter, especially the remote attestation mechanism, have
already been presented at the Network and System Security (NSS) conference in 2012 and are
published in its peer-reviewed proceedings [Wag12b]. Although this chapter explores the use of
a TPM 1.2, which is still the most widely used version of the TPM, the fundamental idea behind
implicit attestation can be transferred to the TPM 2.0, which we will demonstrate in Chapter 9 and
shows that the attestation mechanism is �exible in terms of implementation aspects.
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Excursus: Mobile Network Infrastructure and Potential Attacks Section 6.2

6.2 Excursus: Mobile Network Infrastructure and Potential Attacks

In the following excursus, we �rst brie�y describe the architecture of a mobile network and show
that mobile devices with a compromised baseband stack can in�ict potentially high damage to the
mobile network.

6.2.1 Mobile Network Architecture

In general, a cellular mobile network is composed of a Core Network (CN), several Radio Access
Networks (RANs), and User Equipment (UE) [3rd12a], such as smartphones or tablets. As shown
in Figure 6.1, the UE wirelessly connects to a RAN, which is interconnected with the CN, to access
the user’s Home Network (HN), usually via a Service Network (SN).

¿eUE comprises theMobile Equipment (ME), typically amobile device with the necessary radio
and protocol functionality, and the USIM, which securely stores the authentication information,
mainly a shared cryptographic key, to access the mobile network. In order to access the network,
the USIM and the network run an Authentication and Key Agreement (AKA) [3rd12c; Nie02],
which is a standardized challenge-response protocol that uses symmetric cryptography.

¿e RAN usually consists of transceiver stations called NodeB (3G), which are managed by a
Radio Network Controller (RNC), or eNodeB (short for Evolved NodeB) in 4G, respectively, which
embed their own controller functionality. ¿ese stations are connected tomanagement components
and support gateways, especially to a so-called Mobile Switching Center (MSC) with the Visitor
Location Register (VLR) in a 3G and a Mobility Management Entity (MME) in a 4G network.

Core Network 

Circuit Core 

UTRAN
(UMTS Terrestrial Radio Access Network)

3G Devices
(UE: ME with USIM) NodeB

RNC

EUTRAN
(Evolved Universal Terrestrial Radio Access Network)

4G Devices
(UE: ME with USIM)

Packet Core (3G)

Evolved Packet Core (4G)

MME

SGW

HSS

GGSN

SGSN

HLR
AuC

MSC/VLR

eNodeB

USIM

USIM

PGW

Internet

Figure 6.1: 3G/4G Mobile Network Infrastructure (simpli�ed, based on [For10])
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Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

Apart from the interface and administration components for RANs, the CN mainly provides the
Home Location Register (HLR) or Home Subscriber Server (HSS) depending on the network as well
as the Authentication Center (AuC), whichmanage the relevant information for user authentication
and accounting. In particular, the security credentials to access the network, e.g., the standardized
pre-shared key Ki between the USIM and the network, are securely stored in the AuC.

6.2.2 Potential Attacks on Mobile Networks (the Veri�er 𝒱)
As described in the introduction to this chapter, mobile networks are an interesting attack target.
¿ey belong to the critical infrastructures, because they provideworld-wide communication services
though a network of global access nodes. Furthermore, they heavily rely on centralized core
components like the HSS and AuC for authentication, as described in the previous section, which
could lead to complete network failure in the case of a successful attack against those components.
Based on the centralized architecture of mobile communication networks, an adversary might,

for instance, try to attack the network components directly. However, a direct attack against the
network is not very promising, since the core components usually only communicate with other
trusted network components. Nevertheless, an attacker could still be able to attack the critical
components indirectly by launching a DDoS attack.
For such an attack, the adversary needs to successfully compromise a large number of mobile

devices, e.g., by sending non-speci�cation-compliant short message service (SMS) messages, which
exploit certain weaknesses of the message parser [Mul11]. ¿e attacker could also try to manipulate
or replace the baseband stack. If the attacker, for instance, can convince amobile device to download
a malicious version of the baseband binary and install it, the device is compromised as well.
With thousands of mobile devices under their control, attackers could launch a DDoS attack. In

contrast to local attacks via low-layer access channels, e.g., RACHell [gru10], such global attacks
can potentially produce a system-wide critical overload in the backend components of the mobile
network [Tra09]. For example, if all the compromised devices drop o� the network [3rd12c, 5.3.8
Detach procedure] and simultaneously re-connect again [3rd12c, 5.3.2 Attach procedure], the
HSS might not be able to handle all the authentication requests [Mul11]. Another example is the
call-forwarding functionality, which is also handled by the HSS. If an attacker can change the
settings for a large number of mobile devices at the same time, the overload could crash the HSS
and the network could fail completely.
As a result, we have to acknowledge that attacks on mobile networks based on manipulated

baseband stacks are realistic and they can in�ict high damage, potentially a complete network failure.
Consequently, we explore the use of hardware-based remote attestation to provide cryptographic
proof that the baseband stack of a mobile device has not been tampered with. In the following
sections, we hence propose an e�cient attestation mechanism, which can be integrated into the
standardized authentication process for mobile network devices, such as smartphones.
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Providing Veri�able Proof for the Trustworthiness of Mobile Baseband Stacks Section 6.3

6.3 Providing Veri�able Proof for the Trustworthiness of Mobile

Baseband Stacks
To prevent attacks on networks based on compromised or non-speci�cation-compliant baseband
stacks, we propose an attestation protocol to verify the trustworthiness of a mobile device before it
can communicate with the core components of a mobile network, such as the HSS.

¿e main idea is that only trustworthy mobile devices are allowed to fully access the critical
components of a network. To demonstrate its trustworthiness, the baseband stack running on
a mobile phone has to prove its authenticity and integrity. If the attestation procedure fails, the
network only allows limited access, e.g., to download a trustworthy version of the baseband stack,
which is signed by its vendor, to replace the compromised one. ¿at way, the proposed attestation
protocol allows the mobile device to recover frommalicious modi�cations and protects the network
from attacks by compromised mobile devices.

In the following sections, we �rst de�ne the notation in Section 6.3.1 and specify the cryptographic
keys in Section 6.3.2. We then explain the concept in Section 6.3.3 and present a description of our
protocol in Sections 6.3.4 and 6.3.5.

6.3.1 Notation – Part 1 of 3

In this section, we de�ne the notation for common cryptographic functions, artifacts, and states
used in this chapter and throughout this thesis. In particular, we provide de�nitions for the notation
of a cryptographic hash functions, message authentication codes, and a TPMplatform con�guration.
Where required, we will extend the notation in the following chapters.

Cryptographic Hash Functions

A cryptographic hash function H is a one-way function with pre-image, second pre-image, and
collision resistance that compresses input data of virtually arbitrary length to a �xed sized output of
length l, that is H ∶ {0,1}∗→{0,1}l . ApplyingH tomessage m is denoted as H(m), which generates
a hash h.

Pre-image resistance means that, given a hash value h, it should be hard to �nd any message
m such that h = H(m). Second pre-image resistance means that, given an input message m1, it
should be hard to identify another input message m2 with m1 ≠ m2, such that H(m1) ≠ H(m2).
¿is second property is sometimes referred to as weak collision resistance.

A hash function is collision resistant if it is hard to �nd two di�erent inputs that are hashed to
the same output value, i.e., two messages m1 and m2 with m1 ≠ m2, such that H(m1) = H(m2).
In other words, since every hash function with more inputs than outputs will necessarily have
collisions (pigeonhole principle [Her64]), a cryptographic hash function should ensure that it is
hard to �nd a collision, i.e., two inputs with the same hash value.

77



A
tt
es
ta
tio

n
of

M
ob

ile
Ba

se
ba

nd
St
ac
ks

on

D
ed

ic
at
ed

Ba
se
ba

nd
Pr
oc

es
so
rs

Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

Message Authentication Codes

Amessage authentication code (MAC) is a cryptographic value, which is based on a shared symmetric
key and allows to verify the authenticity (regarding the data origin) and the integrity of a message.
Formally, a MAC algorithm is a function that calculates a message digest d with �xed length l for a
secret key key K and a given inputm with virtually arbitrary size asMAC(K,m) = d = {0,1}l.
One method to construct a MAC algorithm is based on cryptographic hash functions, which are

one-way functions with pre-image, second pre-image, and collision resistance as described above.
As an example, an HMAC function generates a message authentication digest for datam based on
key K as HMAC(K,m) = H((K⊕ opad) ⋃︀⋃︀H((K⊕ ipad) ⋃︀⋃︀m)), where ⋃︀⋃︀ denotes a concatenation,
⊕ the exclusive OR, opad the outer and ipad the inner padding [Bel96; Eck14, Sect. 8.1.4, HMAC].

Platform Con�guration and the Extension of PCRs

A particular system state is represented by a set of integrity measurements stored in the (usually
up to 24) hardware-protected PCRs of an TPM. Such a set of PCR values is o en referred to as
platform con�guration P ∶= (PCR(︀i1⌋︀, . . . , PCR(︀ik⌋︀), where index i ∈ {0 . . . n−1}, k ≤ n, and n is
the number of available PCRs.

A er a reset of the platform, the contents of all PCRs is set to zero, i.e., PCR(︀i⌋︀ ← 0 ∀i < 24.
To store a fresh integrity measurement µ in a PCR with index i, the current value inside the TPM
is combined with the fresh measurement value using extend(PCR(︀i⌋︀, µ), which is speci�ed as
PCR(︀i⌋︀ ← H(PCR(︀i⌋︀ ⋃︀⋃︀ µ) and implemented as TPM[2]_Extend in the TPM.

Binding/Wrapping and Sealing

In general, binding datam to the public portion of an asymmetric TPM key (pk) is denoted as {m}pk
and essentially encrypts data for a private key or even a particular TPM if the key is non-migratable.

Based on the notation for binding data, wrapping a cryptographic key K with a public key pk to
a speci�c platform con�guration P is denoted as {K}Ppk and encrypts a TPM key K, e.g., to enable
external storage. To decrypt the wrapped key with the corresponding private/secret key sk, the
current platform con�guration P′ needs to match exactly the speci�ed platform con�guration P.

To encrypt and bind arbitrary data m to a platform con�guration P, the TPM 1.2 essentially
provides a TPM_Seal command, which is referred to as seal for the sake of simplicity. With unseal,
which is short for TPM_Unseal, the TPM 1.2 can decrypt the messagem if the system is in a state
which matches the speci�ed platform con�guration P. Given a non-migratable asymmetric key
K = (pk, sk), we denote the result of sealing arbitrary datam to the platform con�guration P with
{m}Ppk = seal(P, pk,m). To unseal the sealed data {m}Ppk , it is required that the current platform
con�guration P′ is equal to the speci�ed platform con�guration P: m = unseal(P′=P, sk, {m}Ppk).
In other words, only if those two platform con�gurations are cryptographically identical, the sealed
blob is decrypted by the TPM returning datam.
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Providing Veri�able Proof for the Trustworthiness of Mobile Baseband Stacks Section 6.3

6.3.2 Cryptographic Keys

In this section, we specify cryptographic keys for our remote attestation of mobile baseband stacks.
¿e keys include a wrapping, a sealing, and an integrity key, which are securely handled in the TPM.
¿e USIM, furthermore, securely stores an attestation key in addition to the pre-shared key Ki,
which is standardized within the mobile network authentication protocol.
¿us, we de�ne a non-migratable asymmetric wrapping key Kwrap = (pkwrap, skwrap) and a non-

migratable sealing key Kseal = (pkseal, skseal), where pkwrap and pkseal are the public keys while
skwrap and skseal are the secret keys of the respective keys. Both asymmetric keys are securely
generated by the TPM and are supposed to never leave the protected/shielded locations of the TPM,
except in encrypted form.
With the public key pkseal, a public signing key pk

BV
sig is sealed to a platform con�guration (PBL),

where all PCRs are selected, but have the value zero, except for the PCR, which contains the
integrity measurement value of the boot loader BL. As a result, the sealed key {pkBV

sig}
PBL
pkseal

can only
be unsealed by the boot loader, which is stored in the baseband processor’s ROM and executed �rst.
¿is unsealed key pkBV

sig is used in case of an update to verify the signature (sig) of a baseband update
before installation of a new baseband binary, which we assume is issued by a trusted vendor BV .
With the pubic wrapping key pkwrap, an asymmetric integrity key Kint = (pkint, skint) is wrapped

to a trusted platform con�guration (PB) as {Kint}
PB
pkwrap

. Later on in our protocol, the wrapped
integrity key is used to verify the integrity of the baseband. Although B denotes the baseband, it
does not limit the platform con�guration, which is likely to include more measurements.
It is also important to note that the platform con�guration PB invalidates PBL, which means the

platform con�guration PBL can no longer be used as a valid platform con�guration for cryptographic
operations, e.g., to unseal a key, but especially to seal a (potentially malicious) public signing key.
¿is can be achieved by extending the PCR of the boot loader BL with the unsealed public key pkBV

sig.
Together with the authentication value (Authseal) for Kseal, both keys are stored in the baseband

processor’s �ash memory in encrypted form (sealed or wrapped) during initialization. However,
having Authseal in �ash memory is not a security problem, because the sealing key Kseal is crypto-
graphically protected by the platform con�guration PBL, hence it is only available to BL. ¿e boot
loader, in turn, is protected against any modi�cations, since we assume that it is stored in ROM.
Furthermore, as mentioned in the �rst paragraph, the USIM holds the pre-shared key Ki and

an attestation key Katt = (pkatt, skatt), which are both shared with the AuC. In addition, the USIM
securely stores the authentication value (Authwrap) for wrapping key Kwrap, which is an important
part of the setup for our remote attestation protocol. Since the use of the wrapping key requires
authorization based on Authwrap, placing this value in the USIM makes sure that the USIM is
involved in the unwrapping of {Kint}

PB
pkwrap

, which implicitly veri�es the platform con�guration B,
i.e., the baseband stack.
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Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

6.3.3 Concept andMain Ideas

In contrast to existing hardware-based attestation protocols, which are o en based on asymmetric
cryptographic operations provided by an TPM, we propose a symmetric approach to e�ciently
prove the integrity and the trustworthiness of a mobile device, in particular, its baseband stack. As
a result, the core of our remote attestation mechanism does not require digital signatures and can
be directly integrated into the authentication and authorization protocols for mobile networks.
Like most existing attestation protocols, we rely on an authenticated boot process starting from

a CRTM as described in Section 2.1.3.1, where the current so ware binary calculates a hash of the
following binary in the boot chain and extends the integrity measurement value into a PCR of
the TPM before executing the measured binary. For the sake of simplicity, the boot loader acts as
CRTM in our concept, which is why it must be stored in ROM as indicated in Figure 6.2 (top le ),
which shows a partial view of our system architecture (cf. Figure 5.5, page 70, DomB with a TPM).
Together with the baseband binary (top right), Figure 6.2 also depicts a boot procedure in the top
and the relevant hardware components, namely the TPM (bottom le ), the �ash memory (center),
the USIM (right), and the SoC with the baseband processor, in the bottom half.

6. executes

(loads wrapped 
integrity key

for attestation)

Baseband
Binary (B)

Boot Loader (BL)
[CRTM in ROM]

Baseband 
Information (BI)

USIMTPM Flash Memory

SoC with Baseband Processor

Software

Hardware

Figure 6.2: Partial System Architecture with a Focus on the Baseband Processor (based on Figure 5.1)
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Providing Veri�able Proof for the Trustworthiness of Mobile Baseband Stacks Section 6.3

In the boot procedure depicted at the top of Figure 6.2, the boot loader BL �rst measures itself and
extends the PCR(︀BL⌋︀ (the designated PCR for BL, steps 1 and 2) creating the temporary platform
con�guration PBL. In case of an update, the loader unseals the sealed public signing key {pkBV

sig}
PBL
pkseal

,
veri�es the signature sig of the new baseband binary with the unsealed pkBV

sig (step 3) and re-wraps the
integrity key Kint to the new platform con�guration. In the process, the unseal operation implicitly
validates the integrity of the boot loader BL (represented by PBL) and the public signing key veri�es
the new baseband with its signature. A er that, the boot loader measures the baseband B (step 4)
and extends the PCR(︀B⌋︀ (the designated PCR for B, step 5), which creates the trusted platform
con�guration PB and invalidates the platform con�guration PBL. Finally, it executes the baseband
binary B (step 6).
For a remote attestation, the TPM normally signs the list of PCRs representing the current

platform con�guration and sends it to a remote veri�er. Based on the values and a so called
SML, the remote party can then decide whether the platform is still trustworthy. We call this
mechanism explicit attestation, because the complete measurement log needs to be transferred.
For our protocol, however, we adapt the concepts of implicit attestation, which does not need
to transfer the measurement log. Instead, implicit attestation usually relies on some pre-shared
(authentication) information, such as a sealed symmetric key or hash chain [Kra07], which can
only be accessed, if the platform is still trustworthy. ¿is approach is, for instance, used to validate
whether the boot loader is in a trusted state before a new baseband binary is loaded in case of an
update (step 3). So, as long as the prover can successfully authenticate itself, the veri�er has implicit
proof of the integrity of the prover’s system.
However, most existing implicit attestation protocols still rely on relatively expensive asymmetric

cryptographic operations, such as signing or unsealing a sealed key. ¿at is why we propose a
more e�cient approach based on symmetric cryptographic operations to implicitly prove the
trustworthiness of a mobile device, especially its baseband stack. ¿e main idea is that the USIM
only grants access to the attestation key Katt which is necessary to calculate an attestation response
for the network if the baseband stack is trustworthy. To prove its trustworthiness, the baseband
merely needs to load the integrity keyKint, which is cryptographically bound (wrapped) to a trusted
platform con�guration PB based on a signed baseband stack B. Note that the initial wrap operation
is necessary only once during initialization and thus has no direct in�uence on the overall e�ciency
of our attestation protocol. More important, the TPM only needs to actually unwrap the wrapped
key if the key is not yet decrypted and loaded, because the key itself is never used for security critical
operations. Finally, to be able to securely verify the baseband stack B, we moved the calculation of
authentication value, which is an HMAC value based on Authwrap and needed to load the key Kint,
inside the USIM. So, the baseband has to request the correct authentication value from the USIM
before it can load the key inside the TPM. If the load operation is successful, the USIM can verify
the HMAC-authenticated result that is protected by the long-term authentication value Authwrap.
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Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

6.3.4 Integrity Veri�cation of the Baseband Stack

For the integrity veri�cation or local attestation between the baseband stack (prover 𝒫 ’), and the
USIM (veri�er 𝒱 ’), which is depicted in detail in Figure 6.3, the baseband system (center) loads the
wrapped integrity key {Kint}

PB
pkwrap

into the TPM (le ) and the USIM (right) veri�es the HMAC-
authenticated result. However, since we moved the HMAC calculation for the cryptographic
authentication and veri�cation (steps 3 and 10) from the TSS on the baseband SoC inside the USIM,
all security critical operations are performed inside one of the hardware secure elements.

In other words, a TSS executed on the host processor is usually responsible to calculate and
assemble the necessary parts of the command, such as the parent authentication value (Authparent)
for the wrapping key Kwrap (steps 1–4), and to send the complete command structure to the
TPM. In our protocol, however, one of the main ideas is to migrate this calculation of the value
Authparent, which authenticates and authorizes the load operation for the wrapping keyKwrap, inside
the USIM.¿at way, the passphrase or authentication value Authwrap never leaves the hardware-
based secure environment of the USIM. As a result, the USIM needs to securely generate the
required authentication value Authparent on behalf of the usual so ware component, which requires
modi�cations to theUSIM, but can be implemented entirely in so ware and, hence, easily integrated
into the existing USIM �rmware.

attestation request

(incoming command structure)

TPM Result (outgoing 
command structure)

USIM [verifier]Baseband [prover]TPM

Figure 6.3: Attestation of the Baseband Stack towards the USIM
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Providing Veri�able Proof for the Trustworthiness of Mobile Baseband Stacks Section 6.3

¿e value of Authparent is generated from concatenated HMAC inputs (denoted by 1H1 to 4H1) as

Authparent = HMAC(Authwrap, 1H1 ⋃︀⋃︀ 2H1 ⋃︀⋃︀ 3H1 ⋃︀⋃︀4H1) , (6.1)

where

1H1 = H(TPM_ORD_LoadKey2 ⋃︀⋃︀ {Kint}
PB
pkwrap

)

2H1 = authLastNonceEven

3H1 = nonceOdd, and

4H1 = continueAuthSession,

according to the TCG speci�cation [Tru11, p. 76, Section 10.5 (TPM_LoadKey2)].
When the TPM receives the TPM_LoadKey2 command, it internally veri�es the authentication

value Authparent and matches the speci�ed platform con�guration PB against the current platform
con�guration P′ (step 5). If the equation P = P′ holds, the TPM loads the key. For e�ciency reasons,
the TPM should only verify the pre-conditions, e.g., the platform con�guration and authentication
data, and not actually decrypt the key if the key is already loaded. ¿e TPM then calculates a result
message, which includes a speci�ed return code, e.g., TPM_SUCCESS, the nonceOdd, and a second
HMAC Authres to authenticate the response (step 8).
To complete the attestation procedure, theUSIM receives the result of the TPMkey load operation

TPM_LoadKey2 ({Kint}
PB
pkwrap

, Authparent) and merely needs to verify the return message: For that
purpose, the USIM compares the output nonceOdd with the input nonceOdd, which must be exactly
the same and prevents replay attacks (step 9). By recalculating and checking the HMAC Authres

(and the return code), the USIM can e�ciently verify whether the key was correctly loaded, thus,
stating that PB matches P′ (step 10). ¿e fresh HMAC Auth′res is calculated again according to
Equation 6.1, where

1H1 = H(returnCode ⋃︀⋃︀TPM_ORD_LoadKey2)

2H1 = nonceEven

3H1 = nonceOdd, and

4H1 = continueAuthSession

as speci�ed by the TCG [Tru11, p. 76, Section 10.5 (TPM_LoadKey2)]. If the load operation has
been successful, which is indicated by the returnCode, the veri�er has implicitly proven that the
baseband stack is still unmodi�ed and has not been compromised. As shown in Figure 6.3, the
USIM now allows access to the attestation key Katt, which is limited to the current AKA protocol
run indicated by the random number (RAND).
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Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

6.3.5 Generation of Authentication Vectors

Based on the result of a local baseband attestation, the USIM (now prover 𝒫”) is able to provide
proof of the baseband’s trustworthiness towards the network (veri�er 𝒱”). We only need to slightly
modify the authentication vectors (AVs) used in the AKA protocol. Depending on the network
type (3G or 4G), the AVs are usually generated as

UMTS AV ∶= (RAND ⋃︀⋃︀XRES ⋃︀⋃︀CK ⋃︀⋃︀ IK ⋃︀⋃︀AUTN) or (6.2)

EPS AV ∶= (RAND ⋃︀⋃︀XRES ⋃︀⋃︀KASME ⋃︀⋃︀AUTN) , (6.3)

where RAND is a random number, XRES = f2K(RAND) is the pre-calculated (and expected)
authentication result, CK = f3K(RAND) is a con�dentiality and IK = f4K(RAND) an integrity
key, and AUTN ∶= SQN⊕AK ⋃︀⋃︀AMF ⋃︀⋃︀MAC an authentication token (⊕ means the exclusive OR).
¿ese cryptographic components are calculated as depicted in Figure 6.4, where f1 and f2 are MACs
and f3 to f5 as well as KDF are key derivation functions (KDFs).

In our concept, we add an expected attestation value (XATT) to the AV, which allows the Service
Network to verify the trustworthiness of the mobile device. ¿is additional attestation value is
generated from the random number RAND with a dedicated attestation key Katt (which is only
available, if the local baseband attestation has been successful), that is

XATT = HMAC(Katt,RAND) . (6.4)

Since the symmetric attestation key Katt is only known to the HSS (and the USIM, of course),
the Home Network has to pre-calculate the HMAC for the Service Network. ¿at way, the SN can
compare the attestation value (ATT) from the USIM with the expected attestation value XATT
without the knowledge of Katt.

Generate RAND

Generate SQN

AMF

SQN

RAND

f1 f2 f3 f4 f5

MAC XRES CK IK AK

KDF
SN id

Figure 6.4: Generation of Authentication Vectors (adapted from [3rd12b; 3rd12c; For10])

84



A
tt
es
ta
tio

n
of

M
ob

ile
Ba

se
ba

nd
St
ac
ks

on

D
ed

ic
at
ed

Ba
se
ba

nd
Pr
oc

es
so
rs

Providing Veri�able Proof for the Trustworthiness of Mobile Baseband Stacks Section 6.3

We also send a second attestation value for the baseband and the baseband info (ATTB) from the
mobile device to the Home Network, which is generated based on the hash value of the baseband
binary (hB) and some information BI, for instance, about the version, state, and con�guration of
the baseband. ¿ese values can be used by the home network to further evaluate the baseband
stack and enforce a certain version or con�guration.
As shown in Figure 6.5, we de�ne the following attestation-based access policy: If the response

RES = f2Ki
(RAND) from the USIM matches the expected response XRES and the attestation value

ATT = HMAC(Katt,RAND) also corresponds with the expected valueXATT, themobile device can
fully access the network (steps 8–9). However, if the MME attestation fails, the network only grants
limited access, e.g., to download a signed recovery version to replace the modi�ed baseband stack.
By sending the hash of the baseband hB and the baseband information BI, which are protected by
the second attestation value ATTB (step 7), the Home Network can evaluate the con�guration of
the baseband in detail (steps 10–11). As a consequence, particular services or operations involving
critical network components could be allowed (or denied). ¿e Home Network could even enforce
a certain baseband version by simply evaluating the baseband version in BI and restricting access
for unsupported versions.

USIM
[prover]

MME 
(Service Network)

ME HSS (Home Network)
[verifier]

Auth Info Req. 
(IMSI, SN id)

Authentication Req. 

cf. Fig. 6.4

Figure 6.5: AKA-based Attestation of Baseband/USIM towards the Network (simpli�ed)
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Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

6.4 Informal Security Analysis and Limitations

In this section, we now analyze the security of our proposed attestation protocol according to our
attacker model presented in Section 4.2. Hence, we mainly consider so ware-based remote attacks,
whereas hardware attacks, such as TPM cold boot attacks, are by nature and de�nition out of scope.
In addition, we discuss the security-related limitations and restrictions of our implicit attestation
protocol as presented in this chapter.

As most existing protocols, we start from the premise (for the sake of simplicity) that the platform
con�guration is established during authenticated boot and re�ects the actual state of the baseband
stack at any time. ¿ese two assumptions, which can be considered limitations of our approach,
show that we only deal with load-time integrity at this point and result in the fact that the baseband
binary should be static most of the time to take advantage of our implicit attestation. However, the
second assumption does not mean that the baseband binary cannot be updated, which would be an
unreasonable requirement, but the update mechanism obviously must generate a suitable integrity
key, which is cryptographically bound to the new platform con�guration. A way to create this new
key will be described in Chapter 8, which addresses Scenario 3 (Secure Update and Recovery) and
can be used for updates of the baseband binary as well.

We also assume that it is not possible to forge a trusted platform con�guration, e.g., by exploiting
bugs, such as bu�er over�ows, through code-reuse attacks, or return-oriented programming (ROP),
although that would likely require a CFI protection mechanism as well as either a periodical or
an on-demand measurement architecture, such as IBM’s IMA [Sai04]. As a result, we restrict
the attacker at this point for the sake of simplicity and discuss the use and integration of IMA
into our system architecture in the following chapter, which also shows a way to isolate such a
security-related system component.

In the following paragraphs, we discuss attacks on the adversary’s three main targets: the crypto-
graphic keys, the baseband binary, and the attestation value. By extension, these three attack targets
indirectly also include the network, because a successful attack against one of these targets would
likely be the key aspect for an attack against the mobile network.

Attack 1a: Extraction of Cryptographic Keys

In our �rst attack scenario, the adversary𝒜 attempts to extract the cryptographic keys. However,
that is not possible, because the symmetric keys Ki, Katt, and the authentication data Authwrap are
securely stored inside the USIM.¿e asymmetric keys Kwrap and Kseal are non-migratable, thus
never leave the TPM. As a result, all cryptographic keys are securely handled by a hardware security
module, the TPM or the USIM, at all times and since we trust that the hardware security modules
are implemented correctly and securely, those keys are protected.
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Informal Security Analysis and Limitations Section 6.5

Attack 1b: Replacement of Cryptographic Keys

¿e attacker could also try to replace the sealed or wrapped keys, namely the sealed public signing
key {pkBV

sig}
PBL
pkseal

and the wrapped integrity key {Kint}
PB
pkwrap

. In the �rst case, the sealed key can only
be unsealed while the boot loader BL is executed and PBL is not yet invalidated by PB. Since the boot
loader is stored in ROM and acts as a CRTM, it is always executed �rst and cannot be modi�ed
by so ware. In addition, the platform con�guration PBL is hidden from any attacker, because it is
supposed to be invalided by PB. As a result, the adversary cannot seal a di�erent public key, which
would successfully verify a signature for a manipulated baseband update. In the second case, the
attacker might try to wrap an integrity key to an insecure platform con�guration, e.g., with no PCRs
selected, to manipulate the baseband stack without the attestation protocol noticing. However, this
is not possible, because the authentication data Authwrap is stored inside the USIM.

Attack 2: Manipulation of the Baseband Binary

In the next attack scenario, the adversary actually manipulates the baseband binary to attack the
network. However, since the baseband binary is measured by the boot loader before it is executed,
the manipulation is re�ected in the platform con�guration P′. As a result, the TPM cannot load
the wrapped key, the attestation fails (because of the return code), and the USIM denies access to
attestation key Katt. ¿at mean the attestation value ATT cannot be calculated correctly and the
network only allows fail-safe access to network, which can e�ectively prevent the attack. In the case,
where the attacker manipulates the baseband binary, but replays an old TPM result message in order
to make the USIM believe that loading the integrity key was successful, the USIM simply needs to
check the nonceOdd (Figure 6.3, page 82, step 9). Since this value is random and only known to
the USIM (Figure 6.3, step 2), the attestation fails, because the replayed TPM result message has a
di�erent nonceOdd.

Attack 3: Forging the Attestation Value ATT

In our last attack scenario, the adversary might try to forge the attestation value ATT in order to
access and attack the network with a compromised baseband stack. However, if the attacker is able
to capture the random number RAND, the authentication token AUTN, and the authentication
response RES, it is still not possible to calculate the correct attestation value. ¿e attacker has no
knowledge about the attestation key Katt, which is securely stored in the USIM. Even in the case
where the adversary combines the authentication response RES with an old attestation value ATT′,
the network only grants limited access. Since the attestation value ATT is an HMAC over the
current random number RAND, the pre-calculated attestation value XATT does not match ATT′

(Figure 6.5, page 85, step 9), so the attestation fails. ¿e network only allows fail-safe access and an
attack on the critical network components, such as the HSS, is prevented.
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Chapter 6 Attestation of Mobile Baseband Stacks on Dedicated Baseband Processors

6.5 Summary
With today’s increasing use of mobile communication, which might even rise in the near future,
attacks from a larger number of mobile devices with a compromised baseband stack can be a serious
threat to mobile networks and connected systems. To limit the risk of potentially high damage,
we presented a hardware-based implicit attestation protocol focusing on the baseband processor,
which enables mobile devices with an TPM to prove the trustworthiness of their baseband stack
towards the mobile network.
Furthermore, we have shown that the network is able provide di�erent access levels based on

the result of the attestation. ¿at way it can even enforce, for example, a certain baseband version.
Finally, our security discussion explains how the network can limit exposure to compromised
baseband stacks and reduce the risk of attacks from manipulated devices.
With our attestation protocol, which reports the integrity of the baseband stack, we provide a

mechanism to address the attacks against themobile device, in particular against the baseband stack,
as described in Scenario 1 (Secure Mobile Network Access). We also showed how our attestation
mechanism can enable the mobile network operator to detect compromised devices on network
connect and quarantine those devices using di�erent access and trust levels.
Based on the results of this chapter, which primarily focused on the baseband stack executed

within the baseband processor domain, the research e�orts presented in the following chapters
of this thesis detail implicit attestation protocols focusing on the application processor domain.
As proposed in Chapter 5, we link both domains cryptographically and enable a comprehensive
attestation by sharing the TPM if the embedded system is equipped with a baseband processor,
which then acts as a master. Otherwise the application processor, more precisely, the microkernel-
based system in the MEE or TEE, controls the TPM.

88



A
tt
es
ta
tio

n
of

a
N
iz
za
-in

sp
ire

d
Sy
st
em

an
d

Se
cu

re
Lo

ad
in
g
of

M
ic
ro
ke

rn
el
Ta
sk
s

7
Attestation of a Nizza-inspired System and

Secure Loading of Microkernel Tasks

With this chapter, we shi the focus to the application processor, which executes a robustmicrokernel-
based operating system and also uses the TPM to securely store keys and integrity measurements.
As described in Chapter 2, microkernels can be considered much more resilient compared to mono-
lithic kernels, because they are very small in terms of code size, have a reducedAPI, and only provide
the most basic mechanisms to enable the implementation of an operating system: address space and
thread management, scheduling, and IPC. Unfortunately, microkernel-based systems in practice
o en rely on a static composition and con�guration of their so ware components in order to fully
ensure safety and security. ¿at means dynamic loading of remote binaries is usually not possible
or allowed in safety- or security-critical systems, such as vehicles or smartphones used for secure
communications. However, since the ability to dynamically and securely load remote binaries can
be a desirable property with legitimate bene�ts, e.g., for o�ine banking as described in Scenario 2
(Secure Loading), a system which provides that ability must be able to verify the authenticity and
integrity of the binary to preserve its trustworthiness. A backend, in turn, must be able to verify
that the system is still trustworthy a er the binary is loaded. Hence, this chapter explores implicit
and local attestation for a microkernel-based OS and secure loading of remote microkernel binaries.

Please note that the research conducted for this chapter is joint work with Weiss et al. [Wei14].
Large parts of this work have been presented at TrustCom and are published in the corresponding
peer-reviewed proceedings.
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.1 TPM-based Secure Loading of Microkernel Applications

As described in the previous chapters, one approach to measure, verify, and report the integrity of
so ware binaries relies on a combination of authenticated boot, a hardware security module, such
as a TPM [Tru11], and remote attestation. However, the authenticated boot mechanism only collects
integrity measurements for components in the boot chain and does not prevent the execution of
(potentially malicious) binaries. ¿at means, a er some time those integrity values stored inside
the TPM do no longer represent the actual current platform state, since malicious binaries might
have been able to compromised the system in the meantime.

To overcome this limitation, IMA [Sai04] has been proposed for Linux-based systems, where
integrity values are calculated during runtime whenever a binary is loaded. Unfortunately, IMA
focuses on Linux-based systems and originally cannot prevent loading of remote binaries from an
unknown source, which presents a major threat to the system’s integrity. ¿us, loading such remote
binaries is not acceptable for systems with security-critical applications, e.g., banking applications
on smartphones, not to mention safety-critical applications for in-vehicle systems or airplanes.

In this chapter, we present a microkernel-based system architecture with a TPM-based integrity
veri�cation and attestation service that allows to securely load remote binaries and report the
trustworthiness of the system to a remote party, such as a backend server. ¿e proposed mechanism
provides the means to establish the authenticity of a remote binary, measure its integrity at load-
time, and generate veri�able proof of the system’s integrity for a remote veri�er. By implementing
the integrity veri�cation and secure loading service as native microkernel tasks in the MEE, we can
also separate it from the rest of the system, especially the rich OS in the REE. Hence, compared to
IMA, our mechanism does not rely on the trustworthiness of a rich OS. ¿at way, our approach
not only adopts the main ideas of IMA for Linux-based systems to a microkernel-based system, it
also reduces the TCB for the integrity measurement components. Furthermore, our approach only
depends on unprivileged user-space drivers needed for the TPM, but does not require, for instance,
USB or network card drivers, which are usually built into a rich hypervisor running in privileged
supervisor mode of the processor. In our system architecture, we take advantage of the rich OS to
provide the necessary network stack for communicating with a backend server. As a result, our
embedded system has network connectivity, can provide integrity veri�cation similar to IMA, and
use attestation to report integrity measurements to a veri�er.

¿e rest of this chapter is structured as follows. In Section 7.2, we describe further details of our
microkernel-based system architecture. In Section 7.3, we then present the concept of our integrity
veri�cation, secure loading, and attestation mechanism. Finally, details of our implementation are
provided in Section 7.4, while the results of our evaluation are presented in Section 7.5. Section 7.6
concludes the chapter with a summary.
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Microkernel-based System Architecture with Fiasco.OC Section 7.2

7.2 Microkernel-based System Architecture with Fiasco.OC
Based on our generic system architecture presented in Section 5.2.1, this section details an initial
microkernel-based system architecture with Fiasco.OC. As shown in Figure 7.1, the microkernel
Fiasco.OC runs in privileged mode directly on the application processor. All non-essential system
components, e.g., memory management, I/O services, or �le system drivers, are implemented as
user-space tasks in theMEE and provide services or device access to other tasks (clients) through IPC.
In addition, the L4 kernel interface implementation Fiasco.OC includes an object-capability model,
which is used for securing access to kernel objects [Lac09]. In our concept, we make use of
capabilities, for instance, when we establish communication channels between certain tasks.

7.2.1 REE: L4Linux as Rich OS

As described in Chapter 2, a microkernel like Fiasco.OC usually allows to execute a (modi�ed) rich
OS kernel, e.g., a paravirtualized Linux like L4Linux [Här97], in user space on top of themicrokernel,
which has to strictly separate it from the native microkernel tasks to protect the microkernel
execution environment. In our architecture, that fact enables us to reuse the communication stacks
of the rich OS for external communication, since we assume that the network is untrusted anyway.
As a result, we keep the TCB small, as we do not rely on network drivers and communication stacks,
e.g., for USB, TCP (Transmission Control Protocol), or UDP (User Datagram Protocol), inside the
microkernel execution environment.

SoC with Application Processor

Fiasco.OC Microkernel

Rich OS (L4Linux)

MEE (Trusted Runtime)REE (Untrusted Runtime)

ApplicationApplication
Linux Application

TPM

Un
pr

iv
ile

ge
d

Pr
iv

ile
ge

d

Device Drivers

Protocol Stacks

l4re_kernel

com

ApplicationApplication
Trusted Application
(Microkernel Task)

l4re_kernel

com

Root Task Moe

romfs

Init Process Ned

l4re_kernel

Server

Root Pager 
Sigma0

l4re_kernel

Figure 7.1: Our Initial Microkernel-based Architecture in DomA (based on Figure 5.3)
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.2.2 MEE: L4Re Components as Trusted Microkernel Runtime

¿e so ware runtime environment for the Fiasco.OCmicrokernel, which is known as L4Re [Lac09],
primarily consists ofMoe, Sigma0, Ned, and Io as described in Chapter 2. As the name suggests,
L4Re establishes a microkernel runtime in the MEE, which provides the basis for the execution of
other native microkernel tasks, e.g., a TPM device driver, or a paravirtualized rich OS like L4Linux.

L4 Runtime Environment

In L4Re, the root taskMoe is the �rst user-space task started by the kernel as discussed in Chapter 2.
Moe inherits all resources, which are not required by Fiasco.OC to implement its kernel functionality.
¿e memory management, however, is delegated to Sigma0, which acts as the root pager for the
entire system. ¿at means Sigma0manages those memory regions, which are not claimed by the
microkernel or assigned to other application-speci�c pagers, such as L4Linux, which operates as
memory pager for the Linux applications.
Based on the combination of Fiasco.OC,Moe, and Sigma0, the init process Ned is able to start

other applications by loading a L4Re runtime binary (l4re_kernel) in a new application context,
which is also known as a task. Such a task is represented by a collection of address spaces and
consists of at least a memory address space and an object address space [TUD11a]. From within the
task, the loader code of l4re_kernel is responsible to load the actual application binary, which in
turn means that each new application has the L4Re runtime code for communication and memory
abstractions mapped into its virtual memory. To enable communication with other tasks, Ned
provides the ability to con�gure IPC channels, which includes the creation/transfer of capabilities.

Object-capability Model to Secure the MEE

To provide proper access control to certain kernel objects and IPC channels, our secure loading
concept and the corresponding prototype implementation utilize the object-capability model
implemented in the Fiasco.OC microkernel. In particular, our system grants and protects access to
shared memory (more precisely, L4Re Dataspaces) and establish IPC channels according to our
protocol using capabilities. ¿is security mechanism is discussed in Section 7.4.4 and imperative to
our secure loading concept.

Trusted Microkernel Runtime in Contrast to a Dedicated Hardware TEE

Although the idea and architecture design for a trusted microkernel runtime is based on the high-
level speci�cation for a TEE [Bai11; Glo11], the microkernel runtime is not a TEE with hardware-
based protection mechanisms as described in Section 2.2.4. Instead, the microkernel runtime
de�ned in this chapter is considered an instance of our MEE as shown in Section 5.2.1, which is
mostly so ware-based and relies on a microkernel as separation layer. As a result, sophisticated
attacks like side channel attacksmight be possible (cf. [Wei16]), which is why we use a TPM that
provides elaborate security mechanisms to protect long-term keys on our embedded device.
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Concept of our Secure Loading and Attestation Mechanism Section 7.3

7.3 Concept of our Secure Loading and Attestation Mechanism
In the following sections, we present the concept of our integrity veri�cation, secure loading,
and attestation mechanism. In Section 7.3.1, we �rst de�ne the relevant cryptographic keys and
discuss the necessary steps for the provisioning of our protocols. In Section 7.3.2, we then specify
the relevant components involved in verifying and securely loading remote binaries. Finally, we
describe the measurement and the remote attestation (challenger) protocol, which provides local
attestation abilities inside the microkernel execution environment, in more detail in Section 7.3.3.

7.3.1 Cryptographic Keys and Their Provisioning

Before we describe our secure loading and remote attestation protocol, we de�ne the relevant
cryptographic keys for our protocols in this section. Speci�cally, we de�ne two non-migratable
asymmetric keys for the MEE, a binding keyKbind = (pkbind, skbind) and an attestation identity key
Kaik = (pkaik, skaik)1, and their respective authentication valuesAuthbind andAuthaik, which are only
available to the MEE.
As de�ned in the speci�cation, the TPM 1.2 provides the command TPM_CreateWrapKey to

generate a key such as Kbind, which not only encrypts the new key with a parent key in the TPM,
e.g., the SRK, but can also cryptographically bind the key to a certain platform con�guration P.
In our concept, we specify PMEE comprising of the integrity measurements of Fiasco.OC and its
microkernel runtime including Sigma0,Moe,Ned and others. As a results, our wrapped binding key,
which is encrypted with the SRK and cryptographically bound to PMEE, is denoted as {Kbind}

PMEE
pkSRK

.
To create Kaik, on the other hand, we use TPM_MakeIdentity, which generates an AIK that acts

as a pseudonym for the EK. As a signing key, Kaik is used to create a TPM quote, which mainly
contains a signed composite hash of selected target PCRs, which can be evaluated in an attestation.
For the provisioning of Kbind and Kaik, our system boots into a secure provisioning state, where

only trusted so ware is executed and while the system is still in a secure environment. In the
provisioning state, the TPM service task issues the TPM_CreateWrapKey command with the
trusted platform con�guration PMEE as parameter to create a wrapped binding key Kbind and the
command TPM_MakeIdentity to generate the AIK. A erwards, the public keys pkbind and pkaik

of the corresponding TPM keys are stored in the backend system. If the backend later encrypts data
with pkbind, it is ensured that the data can only be decrypted on the device with that speci�c TPM.
To verify code signatures, we de�ne a certi�cate CertBS = {BS, pkBScert}skCA

sig
for the backend system,

which includes the public portion of its code signing key KBS
sig = (pk

BS
sig, sk

BS
sig). ¿e root certi�cate

CertCA = {CA, pkCA
cert}skCA

sig
, which enables the veri�cation of CertBS, is securely stored in 𝒫 ’s ROM.

We also de�ne a certi�cate CertAIK = {AIK, pkAIK
cert}skCA

sig
for Kaik from the CA.

1 Since it is not recommended/possible to use the TPM’s EK directly in an attestation (because of privacy concerns and
since the EK is an encryption key), the non-migratable AIK acts as alias for the EK as described in Section 2.1.2.3.
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.3.2 Loading External Microkernel Applications

In this section, we describe our concept for securely loading external microkernel application
binaries from a trusted remote system into the microkernel runtime provided by the MEE, which is
depicted in Figure 7.2. ¿e �gure shows our architecture as well as the secure loading protocol, which
is described in more detail in Figure 7.3, including all relevant so ware and hardware components,
which enable measuring and loading an external binary (bin) in its �nal context inside the MEE.

On the le , Figure 7.2 shows a trusted backend system, which provides the new remote binary that
will be securely loaded by themicrokernel runtime of themicrokernel-based execution environment.
¿e part on the right depicts our microkernel-based system with the REE executing our designated
Rich OS (R) and the MEE with the native microkernel tasks. ¿ose tasks includeMoe, Sigma0, Ned,
as well as our secure loading components, e.g., a loader service, a TPM service, and an integrity
service, which are introduced and described in detail in the following paragraphs.

In addition to the backend system and the embedded SoC, which basically represents the DomA
with its applications processor, Figure 7.2 also shows a TPM, which is securely handles the private
portion of the encryption/decryption key skbind and the attestation identity key skaik. Since those
keys are non-migratable, they are cryptographically bound to one particular TPM and device,
which ensures that the new binary is only executed in the MEE of a known system.

SoC with Application Processor

Fiasco.OC Microkernel

Rich OS (R)

MEEREE

ApplicationApplicationLinux 
Application

TPM

Trusted Application (TA)
(Microkernel Task)

Moe

Ned Integrity 
Server
(IS)

Sigma0

l4re_kernel with Loader (L)

Un
pr

iv
ile

ge
d

Pr
iv

ile
ge

d

Hardware

Backend System

ebin[0]
ebin[1]

Operating System

pkbind

binnonceLS

Kenc

ebin

Loader 
Client
(LC)
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Server 
(LS)

TPM
Server
(TS)
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nonceLS

{bin, sigBS}

Kenc

(sym.)
decrypt

verify
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(asym.)
encrypt
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Measurement 
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=?

Figure 7.2: Secure Loading of a Remote Binary Into our MEE
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Concept of our Secure Loading and Attestation Mechanism Section 7.3

Software Components for our Secure Loading Procedure

Before we discuss our secure loading procedure in detail, we give an overview of the so ware
components involved in our protocol (in order of the protocol �ow shown in Figure 7.2):

Backend System (BS): ¿e backend system BS is a server, which acts as the remote veri�er 𝒱 and
provides an external binary to our microkernel-based system via an untrusted network, such
as the Internet. For a secure deployment, BS signs the binary bin (and a nonce) with its private
key skBSsig and encrypts it with the MEE’s public key pkbind using a hybrid encryption. More
precisely, the binary is encrypted with an ephemeral symmetric encryption key Kenc while
that key (and a nonceBS), in turn, is encrypted with pkbind using asymmetric cryptography.
Please note that the corresponding private key skbind is only accessible to the MEE, which
controls and protects Authbind, and never leaves the TPM, because Kbind is non-migratable.

Loader Client (LC): ¿e loader client LC is part of R, the rich OS in the REE. LC acts as a relay
between the backend system BS and the MEE and basically forwards the encrypted remote
binary, which it requests from the backend system, to the microkernel runtime through a
de�ned interface, which we describe in the following sections.

Loader Server (LS): ¿e loader server LS handles requests from LC and is responsible for starting
new applications. For that purpose, it copies the runtime binary l4re_kernel into a new
application context and grants access to the encrypted binary. Please note that LS is also
responsible for generating the MEE’s nonceLS to later enable freshness veri�cation.

Loader (L): ¿e loader L is the part of the l4re_kernel, which is executed by LS in the context of the
new application. L �rst decrypts the symmetric encryption key Kenc using the TPM’s unbind
mechanism. With the decrypted key Kenc, the loader is then able to decrypt the second part
encrypted binary (ebin), which contains the actual binary bin. A er a successful signature
veri�cation of bin and the nonceLS from LS using the backend’s public key pkBS

sig, the loader L
measures the new application binary bin by computing a hash value hbin .

Trusted Application (TA): ¿e trusted application TA is a microkernel task [cf. TUD11a] and the
�nal context where the measured binary bin is loaded and executed. It includes the loader L.

TPM Server (TS): ¿e TPM server TS is responsible to handle the hardware TPM by providing a
high-level interface to other clients, e.g., the loader L. If it is required or otherwise necessary
to grant untrusted REE access to TS, the TPM server must restrict access to and usage of
critical resources stored inside the hardware TPM, e.g., skbind (cf. Section 7.3.1).

Integrity Server (IS): ¿e integrity server IS primarily maintains ameasurement list (ML), which
contains hash values for each binary once it has been started. For that purpose, it handles
requests by the loader L, which calculates hashes of new binaries during the loading procedure.
To extend the measurements into a PCR of the TPM, the integrity server relies on TS.

95



A
tt
es
ta
tio

n
of

a
N
iz
za
-in

sp
ire

d
Sy
st
em

an
d

Se
cu

re
Lo

ad
in
g
of

M
ic
ro
ke

rn
el
Ta
sk
s

Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

Main Idea of our Secure Loading Procedure

Our loader concept is inspired by a two-step loading procedure for native microkernel applications,
which is based on the loading mechanism provided by L4Re. As described above, instead of directly
loading the actual binary, the L4Re init process Ned �rst loads a runtime binary into a newly
created microkernel task. ¿is runtime binary, in turn, loads the new binary into its own context.
Within the context of the new task, the loader can decrypt the binary using the TPM server and
device-speci�c keys, which ensures that the binary can only be executed in the microkernel runtime
of a particular system. In addition, strong isolation with respect to other microkernel applications
is ensured by the microkernel and its capability-based security features. As a result, the plaintext of
every new binary is only available in its own context.
Our concept also allows us to include a veri�cation component, also referred to as challenger (C),

in bin, which can verify attestation results locally—a bene�t over traditional remote attestation as
speci�ed by the TCG. A er a single remote attestation, the challenger e�ectively represents the
remote veri�er on the local system and can verify attestation results on behalf of the veri�er as
proposed in [Sch12]. As a result, the e�ects of the TOCTOU problem are signi�cantly reduced.
Furthermore, to protect the MEE from being compromised by random binaries generated by an
attacker, e.g., a er compromising the untrusted rich OS execution in the REE, a signature can
be applied before the encryption by the backend system. Finally, to prevent replay attacks, the
microkernel runtime generates a nonce, which is included in the request to the backend and speci�c
to a particular binary.

Secure Loading Protocol

Based on the main idea of our concept, a formal protocol representation of our secure loading
procedure is depicted in Figure 7.3. First, the rich OS R requests a nonceLS, ideally generated by the
TPM’s RNG, from LS in step 1. R forwards the nonceLS to the backend system in step 2 together
with the request for the new binary bin, which will be provided in encrypted form, i.e., as ebin.
In step 3, the backend system assembles the encryption key Kenc, which is used to encrypt the

binary bin, and a nonceBS, which is later used for an implicit attestation of our microkernel-based
system in the MEE (cf. step 13). Before the encryption with pkbind, the binary and the nonceLS are
combined and signed with BS’s private signing key skBS

sig, which creates the signature sigBS in step 3b.
Finally, to generate the encrypted binary ebin, the backend system BS encrypts the key Kenc and
nonceBS with public binding key pkbind of the embedded system in step 3c, which creates ebin[0],
and the data structure {bin, nonceLS } with Kenc in step 3d, which results in ebin[1].
In step 4, the encrypted binary ebin is then transferred to the rich operating system R via network

and handed over to the loader client LC in step 5 LC, in turn, sends ebin to the loader service LS
in step 6, which starts the loader L insider the new task TA in step 7. In step 8, L requests the
encrypted binary ebin from the LS.
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Concept of our Secure Loading and Attestation Mechanism Section 7.3

Using the TPM service TS (step 9), L can decrypt the �rst part of the encrypted binary, i.e.,
ebin[0], which contains the encryption key Kenc (and nonceBS). To be able to decrypt ebin[0], the
TPM server loads the wrapped binding key {Kbind}

PMEE
pkSRK

in step 10 verifying the current platform
con�guration P′MEE. Using skbind, TS decrypts ebin[0] in step 11 resulting in {Kenc, nonce′BS }, which
is returned to L in step 12. By returning nonce′BS to BS in step 13, which veri�es that nonceBS equals
nonce′BS, the system can prove the trustworthiness of the platform, because loading the wrapped
binding key and decrypting the nonce is only possible if the system is still trustworthy. With Kenc,
L can decrypt ebin[1] in step 14a, which contains both binary bin and its signature sigBS. In step 14b,
the loader veri�es the code signature sigBS of the binary bin using BS’s public signing key pk

BS
sig.

Finally, Lmeasures bin, extends the hash into the TPM using IS in step 14c and runs bin in step 14d.

1. R↔ LS : request nonceLS // by TPM’s RNG

2. R→ BS : nonceLS, request for ebin
3. BS : assemble ebin

a) generate Kenc and nonceBS
b) sigBS = sign(sk

BS
sig, {bin, nonceLS })

c) ebin[0] = encrypt(pkbind, {Kenc, nonceBS }) // asymmetric

d) ebin[1] = enc(Kenc, {bin, sigBS}) // symmetric

4. BS→ R : ebin // untrusted network

5. R→ LC : ebin // REE

6. LC→ LS : ebin // MEE

7. LS : start L
8. L↔ LS : request ebin
9. L→ TS : ebin[0]
10. TS↔ TPM : [skbind ] = loadKey(skSRK, {Kbind}

PMEE
pkSRK

, P′MEE) // TPM veri�es P′MEE

11. TS↔ TPM : {Kenc, nonce′BS } = decrypt(skbind, {ebin[0]})
12. TS→ L : {Kenc, nonce′BS }

13. L→ BS : nonce′BS (via R) // BS: nonce′BS
?= nonceBS

14. L : verify and securely load binary bin
a) {bin, sigBS} = dec(Kenc, {ebin[1]})
b) verify(pkBS

sig, {bin, nonceLS }, sigBS)
c) run measurement protocol with IS
d) execute bin

Figure 7.3: Secure Loading Procedure
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.3.3 Measuring a Microkernel Application and Attesting Integrity

Inspired by the IMA approach [Sai04], the calculation of integrity measurements is conducted
before a microkernel application loaded and executed. Our integrity measurement concept hashes
all microkernel applications executed on the on the system, except for the measurement component,
which are measured during authenticated boot.

Measuring the Integrity of Binaries

Figure 7.4 shows the measurement protocol for a binary bink, where index k speci�es a certain
binary. For k=1, the measurement is calculated and extended into a PCR of the TPM as follows:

1. Before the binary bin1 is started, the loader L calculates an integrity measurement hash as
hbin1

∶= H(bin1) = SHA-1(bin1) over the binary �le bin1, which is suitable for the TPM 1.2.
Note: For a TPM 2.0, H( ) could be SHA-256, for example, if the PCR banks support SHA-256.

2. hbin1
is sent to the integrity server IS.

3. IS appends the measurement hbin1
to its measurement listML using append.

4. IS then uses the TPM server TS to aggregate hbin1
into a PCR(︀i⌋︀ using extend, where the

index i is 10 according to IMA. ¿e new PCR value is securely calculated inside the TPM as
PCR(︀i⌋︀ ← H(PCR(︀i⌋︀ ⋃︀⋃︀ hbin1

), where H( ) is SHA-1( ) in case of a TPM 1.2.

Similarly, the measurement protocol is also executed for any new binary bink with k > 1 ≥ n.
As a consequence, the PCR contains an aggregated value of all measured binaries bin1 . . .binn,
which e�ectively represents the most recent element of a hash chain. Since the measurement
protocol is executed before the application is started and the design of TPM prevents so ware
to (re)set PCRs to arbitrary values (except for the debug PCR(︀16⌋︀), the measured binary has no
in�uence on its measurement process. In particular, the application cannot change its integrity
measurement, which has already been extended into the PCR of the TPM once the application
runs. However, if the measurement components itself are compromised, an attacker can extend
arbitrary values. Fortunately, this attack e�ectively prevents the attacker from loading Kbind and
can be easily detected by examining the chain of integrity measurements, e.g., using attestation.

1. L : hbink ∶= H(bink) = SHA-1(bink)
2. L→ IS : hbink
3. IS : append(ML, hbink)
4. IS↔ TS : extend(hbink , PCR(︀i⌋︀)

Figure 7.4: TPM-based Measurement Protocol
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Concept of our Secure Loading and Attestation Mechanism Section 7.3

Attesting Integrity

Since the collection of integritymeasurement values for loaded applications alone does not guarantee
a trustworthy system, we rely on TPM-based attestation to create proof of the trustworthiness. In a
traditional remote attestation as speci�ed by the TCG, the prover’s TPM signs PCR values, which
are transferred to the remote veri�er together with the SML. However, as a result of our secure
loading concept, which can ensure that the binary is executed in the microkernel runtime, we can
use implicit attestation to prove that our base system in the MEE is still trustworthy. By embedding
a nonce in the encrypted binary, which can only be decrypted by the target system if the current
platform con�guration P′MEE matches PMEE speci�ed for Kbind, the backend can implicitly verify the
system, which is only considered trustworthy if the correct nonceBS is returned to BS.

Furthermore, the backend system can also embed a local veri�er, also known as challenger C,
into the application, which then acts as a local representation of the veri�er 𝒱 and can hence verify
the prover’s system state directly. For this purpose, a whitelistWL with entries for acceptable tasks
and their integrity measurement is embedded in the application binary. ¿e corresponding integrity
challenge protocol, which is inspired by IMA [Sai04] and adapted to ourmicrokernel-based runtime
environment to enable local and remote attestation, is detailed in Figure 7.5.

1. C : generate non-predictable 160-bit nonceC
2. C→ IS : request for a quote {targetPCR, nonceC },

where targetPCR speci�es the selection of the quoted PCRs
3. IS→ TS : {targetPCR, nonceC }
4. TS↔ TPM : load protected [skaik ] = loadKey(skSRK, {Kaik}pkSRK

) into the TPM

5. TS↔ TPM : retrieve Quote = {pcrData, sigaik},

where the TPM calculates Quote = quote(skaik, nonceC , targetPCR)
6. TS→ IS : Quote
7. IS→ C : Quote,ML
8. C : verify Quote, nonceC , andML

a) pkaik = verifyCert(CertAIK, {CertCA })

b) verify(pkaik, Quote )
?= SHA-1({“QUOT”, pcrData, nonceC })

c) calculate aggregate A =
n
⊎
k=1

SHA-1(ML[k].hash)

d) check A ?= pcrData.hash and if A ∈WL

Figure 7.5: Integrity Challenge and Attestation Protocol
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

As depicted in Figure 7.5, the integrity challenge and attestation protocol requires the following
steps:

1. ¿e challenger C generates a non-predictable 160-bit nonceC . ¿is random number prevents
replay attackers, where an attacker tries to convince the challenger that the system is still
trustworthy by simply returning old or previously signed integrity measurements.

2. ¿e challenger C requests the current measurement list from the integrity server IS, which
will indirectly trigger the generation of a TPM-signed quote of the current PCRs. ¿e request
includes the nonceC and an indication of the PCR numbers (targetPCR) to be used.

3. IS forwards {targetPCR, nonceC } to the TPM server TS.

4. ¿e TPM server loads the (encrypted) attestation identity key {Kaik}pkSRK
into the TPM to

be able to use the private portion skaik.

5. TS invokes the TPM_Quote command specifying the targetPCR as well as the nonceC . ¿e
TPM, as a result, signs the PCRs involved during boot and the PCR used for protecting the
measurement listMLwith skaik. ¿e TPM returns the PCR contents, which is part of pcrData,
as well as the signature sigaik to TS.

6. TS returns the Quote to IS.

7. ¿e integrity server transfers the Quote andML to the challenger.

8. C veri�es Quote, nonceC , andML

a) C checks if the TPM’s pkaik is valid. For this purpose, it traverses the certi�cate chain
until it can validate the public key. In Figure 7.5, the certi�cate veri�cation is indicated
by the function verifyCert().

b) If the preceding step succeeds, C uses pkaik to verify if the signature �ts to the signed
quote data structure, in particular the PCR contents and the nonce.

c) In the case of a successful signature veri�cation, the challenger calculates the aggregate
A based onML. For this purpose, it iterates over the hash values contained inML and
freshly calculates A← SHA-1(A ⋃︀⋃︀ ML[k].hash) for each entry k in the measurement
list. Please note that the challenger has to aggregate the measurements in the same
order as the IS calculated and extended them into the TPM during the measurement
protocol, since hashing with SHA-1 is not commutative.

d) At this point, the aggregate A should equal the value in pcrData.hash returned by the
integrity server. If the hash values match and the aggregate is in the whitelistWL, the
challenger considers the system trustworthy. Otherwise the challenger will not trust the
system and might terminate execution in the local case or report back to the backend
system.
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Proof of Concept Implementation Section 7.4

7.4 Proof of Concept Implementation
As a proof of concept, we have implemented our secure loading and integrity veri�cation concept
on the L4 kernel interface implementation Fiasco.OC, which acts as a separation kernel, and L4Re
providing the trusted microkernel runtime for native tasks. As hardware platform, we decided
to use a PandaBoard [Pan10], since it represented modern, widely used, low-cost and mid-range
smartphone hardware suitable for our scenario at the time of development. ¿e PandaBoard is
based a Texas Instruments (TI) OMAP4, which features an ARM Cortex-A9-based dual core SoC
with 1 GHz and 1 GiB RAM. As shown Figure 7.6, the TPM chip, an In�neon SLB 9635 TT 1.2, is
connected over the Inter-Integrated Circuit (I2C) bus to our development board.
In the remainder of this section, we describe our proof of concept implementation. In Section 7.4.1,

we describe the integration of the TPM into theMEE. In Section 7.4.2, we discuss the IPCAbstraction
in L4Re. In Section 7.4.3, the secure loading and veri�cation of binaries within L4Re is discussed,
while Section 7.4.4 discusses the access control via capabilities. Finally, Section 7.4.5 describes
details about our integrity measurement and attestation protocols.

Figure 7.6: Hardware Platform for our Proof of Concept (PandaBoard with TPM)
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.4.1 Integration of the Hardware TPM

In this section, we describe the integration of a hardware TPM based on our near-minimum TPM
so ware stack, which is signi�cantly smaller than other libraries like TrouSerS [Tro05].

TPM Software Stack

For the TPM server, we implemented a small and simple C library, which still contains all necessary
TPM commands for our concept described in Section 7.3.2. ¿is library is designed to be tiny and
run standalone, but due to performance reasons, we made one exception. We use an external crypto
library for host-side SHA-1 computations instead of our TPM-based SHA-1 implementation since
the In�neon SLB 9635 TPM only provides a rather slow so ware I2C implementation. In case of
the boot loader, this ismbed TLS [ARM17] and for L4Re we use the libcrypto package.
For our TSS, we implemented the following commands: TPM_Unseal, TPM_MakeIdentity,

TPM_LoadKey2, TPM_Quote, TPM_Extend. ¿ose commands, in turn, depend on other com-
mands, e.g., for initializing the TPM and handling OSAP sessions which provides low-level bus
encryption. We implemented those commands according to the TPMMain Speci�cation [Tru11].
Whenever possible, command parameters are hard-coded for our speci�c application scenario. ¿is
keeps the function signature as simple as possible and makes our TPM API less error-prone. For
instance, our TPM_MakeIdentity function only takes pointers for output bu�er and size of the
resulting key structure. ¿e key parameters for the AIK are directly speci�ed in the function, which
reduces errors as wrong key types or encryption and signature schemes cannot be set accidentally.

TPM Integration

To protect the boot chain, we integrated our TPM library in U-Boot, which is the boot loader of our
prototype board. Further, we implemented the necessary driver to access the TPM inside the boot
loader. ¿is implementation is partly based on joint work with Lorenz [Lor12], which describes
and implements a TCG-inspired mechanism for secure boot on ARM-based embedded systems.
For the low-level connection to the TPM, we ported the minimal necessary parts of the Linux 3.0
driver for OMAP boards and the tpm_tis driver, needed for the In�neon TPM chip to U-Boot.
In L4Re, we completely reuse the TPM library as well as the low-level I2C device driver of the

U-Boot implementation. However, we are not able to directly access the memory-mapped I2C
device with the physical addresses used in the boot loader code. Fortunately, L4Re provides the Io
server, which can be used to forward a physical memory region to several user space device servers.
Hence, we con�gured the memory region of the fourth I2C bus where the TPM is connected for Io:

1 i2c4 => new Device() {

2 .hid = "I2C";

3 new-res Mmio(0x48350000 .. 0x48350fff); // 4th i2c bus on OMAP4

4 }

Listing 7.1: Con�guration of the TPMmemory region for Io
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Proof of Concept Implementation Section 7.4

¿e Io Server can also be con�gured for handling and redistribution of interrupt requests (IRQs).
Unfortunately, the In�neon SLB 9635 TPM does not provide interrupt support for asynchronous
noti�cations, but instead requires polling a status registers to determine the completion of a
command. As a consequence, it is su�cient to map the corresponding memory region of the I2C
bus into user space without mapping any interrupts.
Lastly, our implementation for L4Re comprises of a TPM server TS with a dual role. On the

one hand, TS is a client to the Io server handling low level I2C communication. On the other
hand, it provides high level TPM functionality as server for other applications. In our system
architecture, these so ware components mainly include the integrity server IS and the loader L
inside the runtime binary l4re_kernel. As shown in Figure 7.2, the IS uses TS to extend integrity
measurements into the TPM, whereas L relies on TS to decrypt the �rst part of the encrypted binary
with the binding key securely stored in the TPM.
¿e TPM server interface is rather simple and only maps calls to the high-level commands

CreateWrapKey, Extend, LoadKey2, MakeIdentity, and Quote, which have opcodes de�ned
in a header �le, which can be included by the clients to easily call those functions through IPC.
For TPM commands with small payload, such as Extend or Quote, the payload can directly be
transferred over the IPC IOStream, which is described in detail in the following section. However,
for key generation commands like CreateWrapKey or MakeIdentity, we cannot transfer the
payload through IPC due to size limitations. Instead, we use a shared memory page and write the
encrypted key structure on a previously created shared memory page in the TPM server’s context.

7.4.2 IPC Abstraction with L4Re IOStreams

For IPC between applications, L4Re provides a C++ abstraction framework based on IOStreams.
We utilize this framework for communications between our components, e.g., to directly transfer
TPM commands with small payloads to the TPM server TS. To establish connections between
applications, the init process Ned creates new communication channels, which have to be speci�ed
in its Lua-based con�guration script. Since Ned also sets up the application’s initial capabilities,
it can grant access to those channels using capabilities. Consequently, servers and clients have to
request a capability to particular channels, which creates a reference that allows access to a channel.
However, since this mechanism is usually only available during the initial startup of the system,

we have to provide other means to establish the communication between the initial L4Re services
and the external binary, which is started at a later time. In our proof of concept implementation,
we use a global namespace and provide the capability to access this namespace via Ned. ¿e server
needs to registers its server object to that namespace instead of the communication channel created
by Ned’s Lua script. Apart from that, the communication between client and server over IOStream
works the same as if the connections had been accomplished with the Lua-based mechanism.
Additional details of this approach are described in the following two sections.
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.4.3 Implementation of our Secure Loading Procedure

In our proof-of-concept implementation, we extended the L4Re init process Ned with our loader
server LS, which is realized as a thread inside Ned. While the original version of Ned only provides
the ability to load local binaries, which need to be known at the startup and must be stored in the
ROM �le system, our LS-extended version of Ned enables a dynamic loading of remote binaries.
For the sake of simplicity, the corresponding loader client LC is realized as an L4Re application.
However, LC can also be wrapped in a very simple L4Linux kernel module as depicted in Figure 7.7.
In our implementation, the loader client copies the binary from the global ROM �le system to
a temporary L4Re Dataspace, which is referred to as binfile and shared between LS and LC.
Access to that shared data space (and IPC between LC and Ned) is con�gured by Ned using a global
namespace, which is discussed in detail in the following Section 7.4.4. In addition, an IPC channel
for noti�cations between LC and LS is set up during boot using Ned’s standard Luamechanism.

When LC signals that the binary has been copied to the shared data space, LS starts l4re_kernel
in the new task TA by executing a second Lua �le. ¿is internal default Lua �le con�gures the
command line arguments and capabilities of the binary, especially access to the global namespace
including the shared data space. Before the Lua interpreter for the second Lua �le is started, the
capability of the data space is registered to the global namespace, which TA is granted access to.
Finally, the loader L, which is part of l4re_kernel, decrypts, measures, and starts the binary in its new
task context. Here, one important security issue is the fact that the binary must not be measured and
loaded directly from the shared data space, because the untrusted loader client LC has immediate
write access. We discuss this aspect in our security evaluation presented in Section 7.5.2.
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Figure 7.7: Implementation of Secure Loading of an External Binary into the MEE
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Proof of Concept Implementation Section 7.4

7.4.4 Capability Transfer and Access Control

To transfer the capabilities required for IPC communication and grant access to shared memory,
we utilize two global L4Re Namespaces, ldrs and ims, as depicted in Figure 7.8. We initially create
these namespaces in the root taskMoe, where they can be registered to the global L4Re Environment.
As the loader client LC is part of the untrusted REE, our main objective is to control access

to resources that are part of our integrity and attestation framework in the MEE. As a result, we
provide the ldrs namespace for communication between LS and LC (and the ims namespace for
inter-component communication inside the MEE). Access to both namespaces is con�gured by
Ned, which grants the loader client read-only (ro) access to the ldrs namespace and, thereby
prevents LC, which prevents the untrusted runtime in the REE, from creating new objects, e.g.,
additional unspeci�ed communication channels with the microkernel runtime, inside the ldrs
namespace. However, it is important to note thatNed can register objects inside the ldrsnamespace
as writable. ¿us, the loader server LS is able to registers the binfile object with read-write
(rw) permissions and the ldr-obj for IPC communication to the ldrs namespace.
Furthermore, Ned grants the integrity server IS read-write (rw) access to the ims namespace,

since IS needs to be able to register the im-obj for the loader. ¿e loader L, which is part of
l4re_kernel, uses im-obj to send IPC calls to perform the measurement and attestation protocols.
In addition, Ned registers the binfile object to that namespace, too, and grants L read-only (ro)
access, so that L can access it for decryption and loading.
As a result, Ned basically acts as �rewall between the untrusted REE and microkernel runtime in

the MEE. Please note that since the communication between TS and IS uses local IPC channels
con�gured by Ned, it does not require shared memory, but relies directly on the microkernel.

Kernel Object
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Figure 7.8: Access to Global Namespaces and Capabilities to Server Objects for IPC and Data Exchange
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.4.5 Integrity and Attestation

We implemented IS as L4Re server, which provides a public interface for the measurement and the
attestation protocol. At startup, IS registers the im-obj in the global ims namespace to export two
functions, one for the measurement and one for the attestation protocol, over the C++ IOStream
abstraction for IPC. ¿e client side of the measurement protocol is handled in L inside l4re_kernel.
We have a simple Tpm class inside of IS, which provides the client-side implementation of the
TPM server interface described above. ¿is class mainly hides the IOStream and shared memory
communication for a simpler implementation of the attestation and measurement protocol.

Integrity Protocol

We now describe some details about the implementation of the integrity protocol (Figure 7.4).
¿e loader L inside of the l4re_kernel registers the ims namespace and queries for the im-obj
to establish the connection to the integrity server. L copies the received binary from the shared
data space into a new local data space, decrypts, veri�es, and computes a SHA-1 hash of the binary.
¿en, L calls the integrity measurement routine via IPC and sends the SHA-1 hash and �lename of
the measured binary via IOStream to IS. Our integrity server, in turn, uses the Tpm class method
extend() to send the SHA-1 hash of the binary via TS to the TPM. IS also creates a new entry for
the measurement list containing the �lename and hash value, which is appended toML.

Attestation Protocol

Compared to the integrity measurement protocol, the implementation of the attestation protocol
described in Figure 7.5 is more complex. From the client/challenger perspective, the main protocol
is mostly hidden and initiated in only one call over IPC, which includes the nonceLS for freshness.
¿e results of the attestation, in turn, is delivered in a single data structure containing the AIK
public key as well as the raw signature returned by TPM_Quote and the measurement list ML.
¿e TPM server returns pkaik in the TPM_Key12 format. ¿e Tpm class abstraction transparently
converts the TPM_Key12 data to the raw 2048-bit RSA key for the signature veri�cation. In our
implementation, we also generate a new AIK key pair with TPM_MakeIdentity when IS requests
the pkaik on behalf of the challenger C due to the lack of persistent storage in our MEE. At the end
of the protocol, when the IPC returns, C needs to do the veri�cation item step 8 of the protocol in
Figure 7.5. ¿e necessary information is read and parsed from the shared memory. For this purpose
we have implemented the tpm_extend() function in so ware which computes the aggregate A
over all hash values contained inML. To verify the signature from TPM_Quote, which is an RSA
encrypted hash over a TPM_QUOTE_INFO data structure, C needs to recreate this structure with its
locally computed values for the aggregate and nonceLS and also compute a fresh hash value over
this structure. If the comparison of this hash and the decrypted hash match andWL contains the
hash of the aggregate A, the system is trustworthy and the program execution can continue.
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Evaluation Section 7.5

7.5 Evaluation
In this section, we evaluate our concept and prototype implementation regarding TCB, security,
and performance. As described in Section 7.4, our hardware platform consists of a PandaBoard,
which we have equipped with an In�neon SLB 9635 TPM 1.2 featuring an I2C interface.

7.5.1 Evaluation of the Reduced Trusted Computing Base

First, we discuss the TCB and show that our approach has a much smaller and simpler TCB
compared to other approaches, which o en rely on a very complex rich OS kernel like Linux and a
large so ware stack for measuring the integrity of so ware components.

Microkernel Runtime including Integrity Measurement Components

¿e trusted microkernel runtime in our MEE allows individual consideration of the TCB for each
user level task. For instance, the TPM server uses the Io server for mapping the right memory to
the TPM chip. Hence, the Io server is part of the TCB for the TPM server. Further, Sigma0 as root
pager,Moe as the root task, and Ned are also part of the TCB for every other task, which results in
the following per-application TCB:

Sigma0: Fiasco.OC, Sigma0
Moe: Fiasco.OC, Sigma0,Moe
L4Re runtime (l4re): Fiasco.OC, Sigma0, Moe, l4re
Ned: Fiasco.OC, Sigma0, Moe, l4re, Ned
Io: Fiasco.OC, Sigma0, Moe, l4re, Ned, Io
TS: Fiasco.OC, Sigma0, Moe, l4re, Ned, IO, TS
IS: Fiasco.OC, Sigma0, Moe, l4re, Ned, IO, TS, IS

All these applications together form the TCB of our secure loading procedure for external binaries.
As a consequence, our implementation depends on the trustworthiness of these components,
which are therefore measured by the authenticated boot mechanism in U-Boot establishing the
current PMEE. To estimate the size of the TCB, we used the tool cloc [Dan16] to count the lines
of source code for all these components in the L4Re source tree and the libraries on which they
depend. For the rich OS kernel as well as the microkernel, we striped out the architecture dependent
code for other architectures and only count the ARM-speci�c code to the TCB. As a result, we
counted around 9.5 million lines of code (MLOC) for L4Linux, the rich OS in our implementation,
which includes the IMA code. An Android version (L4Android) with additional vendor drivers
for modern smartphones would even have more lines of code. In comparison to the monolithic
L4Linux kernel, we measured about 95 thousand lines of code (KLOC) for Fiasco.OC. ¿is also
includes the in-kernel debugger jdb with about 20 KLOC. For the microkernel runtime including
all libraries needed for our integrity measurement and loader service we measured ≈750 KLOC.
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

Code Size of our Addition to L4Re

In this section, we calculate the additional code that we introduce to L4Re through ourmeasurement
and attestation setup. ¿e relevant L4Re components comprise ofMoe, the loader server LS, the
loader L, the TPM server TS, and the integrity server IS. ¿e results are summarized in Table 7.1.

To register the ims and ldrs namespaces inMoe’s root namespace, we only had to add 3 lines
for each namespace, i.e., 6 lines in total. ¿e loader server LS adds 215 lines of code (LOC) to the
original init taskNed of L4Re. Additionally, to integrate themeasurement code for L into l4re_kernel,
we added 206 LOC to the original loader.cc. Our integrity server IS is very small with 703 lines
of code, which includes our implementation of the integrity measurement and challenge protocol.

Lastly, the TPM server has 3,308 lines of code. However, since the TPM server shares the TPM
library and the I2C driver with the U-Boot code, we can subtract those components, because they
already counted towards the TCB. As a result, the addition to the TCB is merely 251 LOC. Further,
compared to a full TSS implementation like TrouSerS [Tro05] with about 75 KLOC in version 0.3.14,
our TPM library signi�cantly reduces the TCB by approximately 70 KLOC. As a result, we only
added 1,381 LOC in total to L4Re as shown in Section 7.5.3.

Moe Ned/LS l4re_kernel/L IS TS Total
LOC 6 215 206 703 251 1,381

TrouSerS TS (w/o libs) TPM library TPM driver I2C driver Total
LOC ≈75,000 251 1,908 398 751 3,308

Table 7.1: Code Additions to L4Re with a Comparison to TrouSerS [Tro05]

Total TCB Code Size

If we compare our solution, i.e., Fiasco.OC plus L4Re including our additions, to other approaches
like L4Linux, which relies on a monolithic kernel (Linux), the di�erence in terms of code size is
approximately 845 KLOC versus 9.5 MLOC or around one order of magnitude as shown in Table 7.2.
Since the boot loader code is required for both implementations, we can ignore it in our comparison.
For our approximation, we subtracted the architecture-dependent code for other architectures
except arm from the Linux kernel arch directory and from the Fiasco.OC kern directory.

L4Linux L4Re Fiasco.OC Total
KLOC ≈9,500 ≈750 ≈95 ≈845

Table 7.2: Di�erence in Code Size between L4Linux (REE) and Fiasco.OC with L4Re (MEE)
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7.5.2 Informal Security Analysis

In this section, we analyze the security of our integrity measurement and attestation concept for
microkernel-based systems, which enables secure loading of remote binaries. In Section 7.5.2.1, we
�rst discuss our attestation mechanisms. A er that, we describe how our attestation and loading
concept can prevent various attacks scenarios, e.g., arbitrary code execution, in Section 7.5.2.2.

7.5.2.1 Security Discussion of the Attestation Mechanisms

To realize our secure loading concept, we rely on the fact that the microkernel runtime of the prover
is trustworthy before new remote binaries are loaded and executed. At the same time, measuring
the integrity of the binaries and extending their integrity measurement value into a PCR of the
TPM does not guarantee the system’s trustworthiness a er a binary has been executed. Hence, we
also require proof for the system’s trustworthiness a er the binaries have been loaded.
As a result, our integrity measurement and secure loading concept for microkernel-based systems

incorporates two attestation mechanisms: an implicit attestation towards the backend system before
the trusted remote binary is loaded and a local attestation in combination with a challenger at a later
point in time. We discuss the security of those attestation mechanisms in the following paragraphs.

Implicit Attestation towards the Backend System

For our secure loading concept, we have de�ned a wrapped binding key {Kbind}
PMEE
pkSRK

, which is
encrypted with the SRK and cryptographically bound to the trusted platform con�guration PMEE,
which represents the load-time integrity measurements of the so ware components in the MEE.
Since the microkernel runtime needs to load the wrapped binding key to be able to decrypt the
nonceBS and the encryption key Kenc, which is subsequently used to decrypt remote binary, the
integrity measurements of the MEE, in particular the components of our integrity measurement
framework, are implicitly veri�ed. Only if the veri�cation of the current platform con�gurationP′MEE

is successful, i.e., matches the speci�ed con�guration PMEE, the system is able to decrypt the nonceBS
generated by BS and return it, which implicitly communicates the current system state to the
backend system. If the nonce returned by the prover is not equal to the nonce initially generated by
BS, the backend system has to assume that the components in the MEE have been modi�ed.

Local Attestation in Combination with a Challenger

Although the attestation based on a local challenger is basically identical to a traditional remote
attestation as speci�ed by the TCG, one major advantage is the reduction of the time gap between
the generation of the attestation result and its evaluation by the veri�er. As described in [Sch12], this
approach reduces the attack surface for an adversary to exploit the time gap and compromise the
system directly a er an attestation. In combination with a microkernel, which has a very small TCB
and strictly separates the challenger from the rest of the system, this mechanism also allows for local
integrity veri�cations that even work o�ine and enable scenarios, e.g., secure o�ine payments.
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7.5.2.2 Attack Prevention and Security of the Secure Loading Mechanism

In this section, we discuss three attacks scenarios: arbitrary code execution in the MEE, illicit
execution of the trusted remote binary in the REE, and the compromise of the integrity services
and communications. Speci�cally, we show how our attestation and secure loading mechanism
prevents those attacks.

Arbitrary Code Execution

For the �rst attacker scenario, we de�ne two potential attacks, which are based on our attackermodel
speci�ed in Section 4.2 and common for integrity veri�cation and remote attestation scenarios: First,
a remote attackermight try to run arbitrary code in theMEEwith themain objective to compromise
the system without being detected by the integrity veri�cation and attestation mechanism.

In the second potential attack, the adversary tries to execute a binary in the MEE and allows
for a detection at a later time, e.g., through attestation. ¿at means in the second attack the
adversary accepts that a compromise results in a detection, but aims to exploit the time gap between
compromise and detection in order to ful�ll its attack objective.

Arbitrary Code Execution in the Microkernel Runtime without Detection

To prevent an attacker from running arbitrary code without detection, we have tomake sure that our
measurement code is called before the binary is executed and that the correct binary is measured.
For that purpose, the measurement code is implemented as part of the l4re_kernel, which is always
loaded before the actual binary. To guarantee that the correct binary is measured, it is essential to
take care of access rights for the shared data spaces, i.e., ldrs and ims.

Further, it is necessary to copy the binary to a private context inside the microkernel runtime.
Usually, one would might give the loader client direct access to the data space shared between
Ned and l4re_kernel for transferring the binary. However, the loader client requires write access
to that data space to place the binary into this memory location. ¿is write access is permanently
granted to LC. In this case, the problem arises that the signature check and measuring of the binary
is not atomic. If the binary was loaded directly out of that shared data space, the attacker could
wait for the right moment where the signature veri�cation and integrity measurement has �nished
successfully and then replace the binary with arbitrary code.

On the other hand, if the binary is copied to another memory region not accessible by LC before
it is measured and the code signature of BS is veri�ed, the process appears to be atomic for the REE,
in particular the loader client LC. In our concept and proof-of-concept implementation, that is
accomplished by a decryption process, which stores the plain text to a private bu�er in the context
of the trusted application TA. ¿is memory region is only accessible by TA and separated by the
isolation mechanism implemented by the microkernel.
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Arbitrary Code Execution in the Microkernel Runtime regardless of Detection

In contrast to the previous attack, where a challenger or remote veri�er can later detect the untrusted
system state, which includes the measurement of the compromised binary, the attack is de�ned
successful if a binary controlled by the adversary is executed at all.

In our secure loading concept, we prevent this potential attack by signing the code with the
private key skBS

sig of the backend system and verifying the resulting signature sigBS. ¿e signature sigBS
is checked before execution and only authentic code from a trusted backend system is executed.

However, to verify the authenticity of the code, we rely on the authenticity and integrity of the
backend public key pkBS

sig. In our concept, we therefore need the ability to verify the certi�cate of the
backend system, which is ensured through pre-provisioned certi�cates as described in Section 7.3.1.

Execution of the Trusted Remote Binary in the REE

To prevent an attacker from executing a trusted remote binary in the untrusted rich OS, which is
much more likely to be compromised, the binary is encrypted with an ephemeral encryption key
Kenc. Since the private key skbind, which is needed for a decryption of the encryption key Kenc, is
only available from inside the microkernel runtime environment, linked to a particular TPM, and
bound to a trusted platform con�guration PMEE, it is not possible to decrypt the binary without
the TPM. Additionally, the wrapped binding key {Kbind}

PMEE
pkSRK

is stored in a memory region of the
microkernel runtime and access to the TPM is restricted to the microkernel runtime only. As a
result, an untrusted rich OS such as L4Linux is unable to use both the encryption key and the
wrapped key. If the encrypted key was accessible from inside L4Linux, for instance through the
ROM �le system, which is part of every L4 task started by Ned, the untrusted rich OS could load
the private key into the TPM assuming access to the TPM was available to the rich OS. In our
prototype, we therefore restrict the TPM access and only grant access to the microkernel runtime.

Compromise of the Integrity Services and Communications

Communications between our user space components are �re-walled by Moe and Ned, which
includes the loader server LS, using separate namespaces. Hence, the main interfaces where an
attacker can compromise the microkernel runtime are the ones exported by those components,
especially LS. ¿ese interfaces, however, are strictly controlled and protected by the capability
system of the microkernel described in Section 7.4.4. Furthermore, the microkernel protects the
boundaries of the shared data space ldrs, which is allocated and con�gured by LS.

As described above, the execution of untrusted code, which might compromise our integrity
measurement and attestation framework in the MEE, is successfully prevented, e.g., using data
encryption and code signing. Similarly, attacks on the communication between the backend and
the microkernel runtime are prevented by the cryptographic mechanisms of our secure loading
procedure, which ensure con�dentiality, authenticity, and integrity of the remote binary bin.
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

7.5.3 Performance Evaluation

To assess the performance of our integrity measurement and secure loading concept, we evaluated
our implementation on the OMAP4-based PandaBoard for various common binary sizes ranging
from 200 kB up to 9 MB. ¿e results are depicted in Figure 7.9.
On the PandaBoard, we measured a 13.7 MB/s throughput for AES-256 and around 595 verify

operations per second for RSA-2048 (results of the built-in OpenSSL [Ope06] speed benchmark).
¿ese timings are labeled decrypt for AES and verify for RSA, which appear as a single line, because
the veri�cation takes almost no time, is independent of the binary size and, hence, can be neglected.
¿rough our evaluation, we ascertained that the TPM_Unbind command used for the decryption

of the ephemeral encryption key Kenc takes up a constant, but relatively large amount of time.
On average, we measured round 700 ms for this command to complete on our implementation
as indicated by unbind in Figure 7.9. ¿e actual calculation of the integrity measurement, which
includes the SHA-1 computation and the extension in a PCR of the TPM, is represented by the line
denoted as loader and takes less then 300 ms for binaries up to 1 MB. ¿e plot also shows that the
duration of the measurement protocol increases linear with the binary size, which is mainly caused
by the SHA-1 calculation, as TPM_Extend and the measurement list maintenance operations are
independent of the binary size. ¿e external loading of the binary is represented by the line denoted
as loader server, which only has a very limited e�ect on the overall loading time.
In total, we can see a linear increase based on the binary size and that the TPM is a potential

bottleneck, especially for small binaries. ¿e main reason is probably that our TPM driver only
uses polling, which is not optimal because of we have to use rather conservative timing settings. In
addition, TPMs are not designed to be high-performance cryptographic accelerators, but rather
optimize cost while still providing a secure execution environment for cryptographic operations.

2.5

2.0

1.5

1.0

0.5

0.0
1 2 3 4 5 6 7 8 9

Size of the Binary (in MB)

Time
(in s) unbind

decrypt
loader
loader server

verify

Figure 7.9: Loader Performance Results for Binaries with Di�erent Size [Wei14]
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Summary Section 7.6

7.6 Summary

In contrast to most extensible �rmware implementations or popular rich operating systems,
microkernel-based embedded systems are o en statically con�gured to ensure safety and security.
Consequently, dynamic loading of remote binaries might be desirable, but is usually not possible,
because remote binaries can potentially compromise the integrity and trustworthiness of the system,
which is o en not acceptable for safety- and security-critical application scenarios and use cases.
¿at is why we proposed a TPM-based integrity veri�cation and secure loading mechanism for
microkernel-based systems, which enables dynamic loading and isolated execution of remote
binaries in a MEE based on an implicit remote attestation and a local integrity challenge protocol.
¿e implicit attestation, which does not involve digital signatures as required by traditional remote
attestation as speci�ed by the TCG, enables the remote veri�er to quickly evaluate the platform’s
trustworthiness during the secure loading procedure and, hence, requires a network connection.
A er the deployment of the binary, the local integrity challenger can e�ectively represent the veri�er
on the prover’s system and, although relying on traditional remote attestation, enable a timelier
local integrity veri�cation.

For our remote attestation and integrity challenge protocol, we adopted the main ideas of IMA
to a microkernel-based system architecture, which strictly isolates the integrity measurement code.
As a result, our integrity measurement components can securely collect and store the integrity
values of the binaries inside the TPM before the loader executes those binaries in the new context.
Consequently, by implementing the integrity measurement and secure loading components as
isolated microkernel tasks, our approach separates those components from the rest of the system,
signi�cantly reduces the TCB, and, hence, protects them against various attacks, e.g., via the rich OS.
In the evaluation of our concept and implementation, we explicitly showed that common attacks,
which compromise systems by executing malicious remote binaries, can be prevented or at least
detected by verifying and evaluating the attestation response.

As a result, our protocols address the relevant aspects of Scenario 2 (Secure Loading), which
focuses on the secure deployment and loading of remote binaries in a microkernel-based execution
environment. By utilizing the TPM in our microkernel-based system architecture and adopting the
main ideas of IMA, we can provide a way for remote parties, such as banks, to securely deploy their
own security-sensitive application in an isolated execution environment, e.g., on their customers’
cell phone. Using remote attestation, we also enable the remote party to verify that system, which is
a key aspect of the scenario, because the remote party relies on the trustworthiness of the system or
at least the microkernel-based OS. If there is no way to prove the system’s trustworthiness, most
use cases in the scenario, such as secure o�ine banking, are not be possible, since the bank is likely
to require strong isolation of its application, which handles the o�ine transactions, from the rest of
the system.
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Chapter 7 Attestation of a Nizza-inspired System and Secure Loading of Microkernel Tasks

However, as wemainly focused on a secure loadingmechanism for remote binaries in this chapter,
we have yet to explore a suitable method to update and recovery outdated or compromised tasks.
Since microkernel-based systems are designed to enable recovery a er failure or a successful attack
if the base system (in particular the microkernel) is still intact, we will focus on update/recovery
aspects in the following chapter. More precisely, we will discuss an implicit remote attestation
mechanism for selected microkernel tasks with their own cryptographic contexts inside an HSM.
¿is cryptographic context not only stores integrity measurements, but also events collected by an
anomaly detection component, which can be equally used in a lightweight remote attestation that
enables secure code updates and recovery for microkernel-based systems. Hence, we will focus
on a method to combine implicit remote attestation with a mechanism to update and recovery
outdated or compromised tasks in the following Chapter 8.
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8
Implicit Attestation of Microkernel Tasks for a

Lightweight Update and Recovery

While the previous chapter discussed the integrity veri�cation of new microkernel applications
based on traditional remote attestation to enable secure binary loading, we focus on a lightweight
attestation ofmicrokernel tasks with their own cryptographic context inside theHSM in this chapter.
In contrast to an HSM with only one context, such as a TPM 1.2, which, for example, combines
integrity measurements into global PCRs, an HSM with multiple cryptographic contexts enables
native virtualization support through separate key hierarchies and isolated state information for
individual so ware tasks or VMs. However, since traditional remote attestation subsequently be-
comes even more ine�cient with multiple cryptographic contexts (e.g., because of the use of digital
signatures), we propose a lightweight attestation mechanism, which supplements and augments our
secure loading protocol with a code update protocol for Scenario 3 (Secure Update and Recovery),
which accounts for a multi-context HSM and enables recovery of compromised microkernel tasks.

¿e rest of the chapter is structured as follows. In Section 8.1, we motivate the attestation scenario.
Section 8.2 describes the system design for the attestation and code update presented in Section 8.3.
In Section 8.4, we analyze the security of our protocols. Finally, Section 8.5 provides a summary.

Please note that the remote attestation mechanism has already been presented at the Information
Security Conference (ISC) in 2013 and is published in its peer-reviewed proceedings [Wag15].
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.1 Implicit Remote Attestation of Multiple Cryptographic Contexts
As described in the previous chapters, microkernel-based systems provide separation mechanisms
to isolate individual tasks from the rest of the system to increase and ensure safety and security. ¿e
system enforces this strict separation by partitioning resources, e.g., CPU time or physical memory,
and by virtualizing address spaces and devices. In addition, a microkernel such as L4/Fiasco.OC
[Lie96; TUD11b] is very small in terms of code size and less complex compared to monolithic
kernels, hence considered more trustworthy. However, a strong separation of potentially complex
so ware components by a trusted microkernel does not necessarily imply the trustworthiness of
the isolated tasks, which is a desirable property in most security-critical systems.
As we discussed in Chapter 2, a widely used approach to verify the trustworthiness of so ware

components takes advantage of an HSM, such as a TPM. A TPM provides a cryptographic context
and mechanisms to securely store integrity measurements, create (a)symmetric keys, and perform
certain cryptographic operations, such as encryption. For a remote attestation as speci�ed by the
TCG, load-time integrity measurements are signed with a private key inside the TPM and sent to
a remote veri�er together with a SML in order to prove the integrity of a system. However, since
those digital signatures are based on asymmetric cryptography, more precisely RSA (with at least
2048-bit keys), they are quite large and rather expensive1. Even though the TPM includes dedicated
cryptographic engines for signature calculation, the TPM was never intended to be and, in general,
does not act as a cryptographic accelerator. In addition, the TPM was also not designed to handle
run-time integrity values, such as events or behavior scores generated by an anomaly detection,
which thus cannot be used for a remote attestation.
Furthermore, TPMs do not support virtualization natively, since they generally only provide one

cryptographic context for system-wide load-time integrity measurements and keys. ¿at is why
most existing concepts rely on the virtual machine monitor or hypervisor to virtualize the TPM
[Ber06; Eng08; Stu08]. However, as a consequence of the implementation in so ware, cryptographic
secrets, e.g., keys, or integrity measurement are not always handled inside the TPM. As a result,
recent e�orts explored and showed the feasibility to realize and manage multiple TPM contexts in
hardware [Fel11]. With multiple individual cryptographic contexts, a TPM-based HSM can provide
each task with its own security context, which can be used to securely store, for example, keys
and integrity measurements on a per-task basis. Unfortunately, as a consequence of the isolated
contexts, the number of digital signatures (and SMLs) in a remote attestation as speci�ed by the
TCG increases with the number of contexts (i.e., tasks), which makes classical attestation even
more expensive and also ine�cient, especially on resource-constrained devices.

1 ¿at is because of the exponentiation operations used in RSA’s encryption and compared to symmetric cryptography.
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Implicit Remote Attestation of Multiple Cryptographic Contexts Section 8.2

To overcome these challenges, we �rst propose an extension to our microkernel-based system
architecture with an integrity veri�cation and anomaly detection component that is enhanced
with a multi-context HSM. Within the HSM, the load-time integrity values and events collected
by an anomaly detection during run-time (cf. Section 3.1) are stored in distinct contexts, so that
task-speci�c keys, for instance, can be cryptographically bound to these values. As our main contri-
bution, we propose and formally verify a lightweight attestation mechanism, which mainly relies on
symmetric cryptography and, thus, is able to e�ciently verify multiple tasks in a microkernel-based
system. Additionally, our attestation protocol is designed to enable secure code updates based on
the integrity of existing security-critical tasks, which extends and complements our secure loading
protocol while eliminating the need for digital signatures. For our secure code update protocol, we
will show in the following sections how an embedded device with safety- and security-critical tasks,
such as an airplane, can create veri�able proof for the integrity of a certain set of microkernel tasks,
which enables access to trusted resources, such as emails, con�dential documents, or code updates
for business applications.

According to our Scenario 3 (Secure Update and Recovery) described in Section 4.1.3, the
prover 𝒫 , an airplane, runs a microkernel-based system executing tasks with di�erent criticality.
¿ose tasks include security-critical microkernel tasks such as (virtualized) device drivers or
applications like a secure email or VPN client. Simultaneously, other tasks are not necessarily
critical and include, for example, a virtualized rich OS, which only provides regular services and
uncritical applications, e.g., for entertainment. Since the security-critical tasks are required to
access the resources located on a trusted backend system, e.g., in the airline’s network, the integrity
of those tasks as well as the underlying system should be cryptographically proven to the veri�er.
As an attacker might be able to compromise some of the tasks, e.g., by fuzzing the interfaces or
exploiting other unknown vulnerabilities of complex tasks, such as the entertainment applications,
the attestation protocol enables the veri�er to specify which tasks are—in his view—critical and
relevant for the trustworthiness of the system, hence enabling recovery of other tasks.

Based on the result of our lightweight remote attestation, the veri�er can thus grant access to
trusted resources and provide code updates, which are cryptographically linked to a set of critical
microkernel tasks. Since our code update protocol is implemented in the MEE, which can limit
access to the multi-context HSM, and uses HSM-speci�c random numbers, we can ensure that
the code update is only executed inside the MEE of a particular system based on the results of the
previous chapter. To realize this, we can use the integrity key, which we utilize for our implicit
remote attestation, to encrypt the code update for the MEE and a particular HSM on a speci�c
device. Finally, since our secure code update protocol implicitly sets up a new integrity key in the
cryptographic context of the updated/recovered task, the veri�er can directly include that task in
future attestations.
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.2 Microkernel-based Architecture with a Multi-Context HSM
In security-critical systems such as described in the scenario, microkernel-based virtualization
provides the necessarymeans to safely executemultiple tasks with di�erent levels of criticality on the
same hardware. Nevertheless, most critical systems require hardware-based security mechanisms,
since they need to securely store cryptographic secrets, such as private keys, or integrity measure-
ments. ¿at is why those systems are o en equipped with an HSM, which acts as a hardware-based
security anchor and usually provides an internal context for the system-speci�c cryptographic
information. However, most HSMs with a system-wide cryptographic context, such as a TPM, are
not designed to separate and isolate security-sensitive information of individual tasks.
For this purpose, we de�ne a microkernel-based system architecture enhanced with an HSM

that supports virtualization by providing multiple task-speci�c cryptographic contexts, which can
be seen as an intermediate design towards the use of a TPM 2.0 as used in the following Chapter 9.
As depicted in Figure 8.1, which shows the system architecture that we implemented using the
L4-based PikeOS [SYS91], safety- and security-critical processes are realized as native tasks, whereas
other non-critical components might be POSIX (Portable Operating System Interface) tasks or a
virtualized Linux instance. All these individual tasks are isolated by the separation mechanisms of
the kernel. However, the tasks are still able to communicate with other tasks in a controlled way, i.e.,
via kernel-based IPC and individually distinct shared memory pages. ¿e HSM proxy, for instance,
receives commands via IPC and shared memory. It identi�es the origin of the command, forwards
it to the HSM, and receives the result, which in turn is communicated back to the respective source.
Since all channels are isolated by the kernel, other tasks cannot read command or result messages.
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Figure 8.1:Microkernel-based System Architecture with Multi-Context HSM
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Microkernel-based Architecture with a Multi-Context HSM Section 8.2

¿ere is, however, one exception: the security monitor. ¿is component is one of the early tasks,
which can start other tasks and is able tomeasure the integrity of a selection of tasks as indicated
by the dashed box in Figure 8.1. Since the security monitor, which is a critical task and, hence,
realized as a native microkernel task, holds advanced capabilities, e.g., the right to directly access
the memory of other tasks, it can e�ectively monitor their behavior and might detect anomalies.
Please note that because anomaly detection itself and the design of the necessary algorithms are not
within the scope of this thesis, we refer to Section 3.1 for related work regarding anomaly detection.
Nevertheless, the security monitor is conceptually designed to store the integrity values measured
at load-time in the task-speci�c context as well as keep a log of detected anomalies inside the HSM.
¿e design of our multi-context HSM, which is schematically depicted in Figure 8.2, implements

the functionality of a TPM and includes hardware-based security features, such as protected
memory, a true random number generator (TRNG), and cryptographic engines for hash functions,
MACs, and encryption algorithms like RSA or ECC.
Based on the hardware components, the HSM �rmware realizes scheduling,multiplexing, and

prioritizing of separate contexts, which can handle cryptographic keys, store integrity measurements
in shared and individual PCRs, and log atypical run-time events in per-context anomaly detection
records (ADRs). ¿at way each task can have its individual key hierarchy, anomaly detection status,
and its very own set of hardware-based integrity measurement registers. However, the HSM also
allows to (physically) share certain PCRs, e.g., to store common integrity measurements for the
boot loader or the microkernel, in order to make the HSM design more e�cient.

Multi-Context HSM

Context 1 Context 2 Context z

scheduling/multiplexing/prioritizing

Context 3

...
PCRs PCRs PCRs

shared PCRs

PCRs

ADR ADR ADRADR

key hierarchy key hierarchy key hierarchykey hierarchy

shared PCRs shared PCRs shared PCRs

CPU

ROM I/ORAM EEPROM Persistent 
Memory

Volatile 
Memory

Hash 
EngineRNG Crypto 

Engine(s)
MAC 

Engine

TPM/HSM specific hardware componentscomponents of a micro-controller

s physically shared PCRs

Figure 8.2: Design of a Multi-Context HSM
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.3 Integrity Veri�cation of Multiple Microkernel Tasks as Basis for a

Secure Code Update
Based on our extended system architecture, we present our approach to implicitly verify the integrity
of multiple separated microkernel tasks and communicate the result to a remote veri�er without
the need for expensive cryptographic operations. ¿e attestation mechanism enables a secure code
update and recovery of (compromised) tasks based on the integrity of the core system, in particular
the microkernel and other existing tasks.
¿e main idea of our lightweight attestation mechanism is to verify the integrity of a number

of tasks “locally” rather than sending digitally signed integrity values to a remote veri�er, which
then has to check the signatures and evaluate the integrity values. Our attestation protocol instead
veri�es the trustworthiness of tasks by loading task-speci�c keys into the key slots inside the HSM.
¿e load operation is only possible if the speci�ed tasks have not been tampered with, because the
keys have been cryptographically bound to the correct integrity measurements of the tasks and
their typical behavior, which is monitored by the anomaly detection component of the security
task.
We presented a similar concept of implicit attestation for non-virtualized systems with a baseband

stack executed on a dedicated baseband processor in Chapter 6 and also used local attestation (an
integrated challenger) in Chapter 7. In contrast to the attestation mechanism presented in this
chapter, the attestation for mobile baseband stacks focuses on the baseband processor and only
requires one cryptographic context, because the baseband generally does not (yet) use virtualization.
Similarly, the secure loading concept focuses on the attestation of a microkernel-based system,
which is however handled like a monolithic system. In this section, we propose to specify and attest
individual tasks (with separate cryptographic contexts) in addition to the microkernel, which are
can be veri�ed separately by the remote party. As a result, we can limit the remote attestation to
the tasks, which belong to the relevant TCB for a speci�c application or use case. Furthermore,
the remote attestation mechanism present in this chapter has the ability to include results of an
anomaly detection component, which is part of our extended system architecture and provides
measurement events that characterize the current run-time behavior of a task.

¿e rest of the section is structured as follows. First, we revisit our notation in Section 8.3.1,
where we extend some of the designations de�ned in Section 6.3.1. A er that, we specify the
cryptographic keys for our attestation protocol in Section 8.3.2. Based on the extension of the
notation and de�nitions, we describe the attestation scheme in Section 8.3.3, which is the basis for
the secure code update protocol presented in Section 8.3.4.
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Integrity Veri�cation of Multiple Microkernel Tasks as Basis for a Secure Code Update Section 8.3

8.3.1 Notation – Part 2 of 3

In this section, we extend part 1 of our notation, which we presented in Section 6.3.1. First, we
adapt the de�nition of a platform con�guration. then we specify anomalies in form of events and a
threshold for the probability of an attack. Finally, we extend the wrapping functionality to include
the threshold value in a similar way it uses a platform con�guration as a condition for unwrapping
a key.

Platform Con�gurations in Multiple Cryptographic Contexts

For our attestation protocol, we presume that the load-time integrity of a microkernel task can
be adequately described by a set of measurement values, which are securely stored in the PCRs
of our multi-context HSM.¿us, the PCRs values, which cryptographically represent the context
c, are referred to as platform con�guration Pc ∶= (PCRc(︀i1⌋︀, . . . , PCRc(︀ik⌋︀), where i ∈ {0 . . . n−1},
k ≤ n, and n is the number of available PCRs. ¿is is a minor extension to the notation presented
in Section 6.3.1 and only accounts for multiple tasks/contexts c.

Thresholds for Anomaly Detection

In addition to the load-time integrity measurements, the security task also monitors the run-time
behavior of critical tasks. Based on machine learning algorithms [Xia13c; Xia13d], the anomaly
detection component of the security task monitors, for instance, the order of system calls and
assesses the probability for an attack. In case of an anomaly with probability p, an event e = (m, p)
is recorded by the security task, which securely stores a log messagem in the anomaly detection
record of task c (Ac) while increasing the probability for an attack by using appendADR(Ac, e). If the
probability value in Ac exceeds a threshold tc, the task must or should be considered compromised.
In order to compensate for false-positives, the probability decreases over time very slightly, which
might, however, be a security weakness and needs further research. As a consequence, we need to
exclude false positives for now.

Wrapping Keys to Platform Con�gurations and Thresholds

To cryptographically bind (or wrap) a key K to a particular system state, the HSM links the key
to the speci�ed platform con�guration P and encrypts it with a public key pkwrap. We extend
this de�nition by also binding the wrapped key to an anomaly detection probability threshold tc,
that is {K}Pc ,tc

pkwrap
. To load this wrapped key, the security monitor must also verify that the current

probability stored in Ac is below tc, which allows for more dynamic run-time veri�cations. Like
the changes to the notation of a platform con�guration, this extension is also minor compared to
the notation presented in Section 6.3.1 and only includes the threshold value. ¿e threshold and
the platform con�guration, in turn, account for multiple tasks/contexts c.
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.3.2 Cryptographic Keys

Before we describe the remote attestation mechanism and the secure code update protocol, we
de�ne the relevant cryptographic keys in this section. ¿ose keys mainly include a number of
integrity/attestation keys, which are cryptographically bound to a trusted platform con�guration
using a global wrapping key.
For each context c, we thus de�ne an integrity key Kc

int = (pk
c
int, sk

c
int), i.e., an ordinary binding

key in the HSM key hierarchy, which needs to be loaded into the HSM for a successful integrity veri-
�cation and attestation of the corresponding task. As shown in Figure 8.3, the integrity keys Kc

int are
encrypted with the public portion of a shared non-migratable wrapping keyKwrap = (pkwrap, skwrap)
and cryptographically bound to a trusted platform con�guration Pc as well as an anomaly detection
probability threshold tc. ¿e wrapped integrity keys are denoted as {Kc

int}
Pc ,tc
pkwrap

, where c speci�es
the cryptographic context inside the HSM and the task in the MEE. ¿e assignment of tasks to
contexts is enforce by the microkernel, the security monitor, and the HSM proxy.
¿e necessary authentication value Authwrap for loading the wrapping key is only known to

the HSM and the remote veri�er, which initially provisions that wrapping key. ¿e veri�er 𝒱
also has access to certain hash values, which combine a particular wrapped integrity key with a
TPM_LoadKey2 ordinal (TPM_ORD_LoadKey2) according to the TPM 1.2Main Speci�cation [Tru11,
Part 3, Section 10.5 (TPM_LoadKey2), Incoming Operands and Sizes, 1S and 2S]. ¿e resulting hash
is denoted as hc = SHA-1(TPM_ORD_LoadKey2 ⋃︀⋃︀ {Kc

int}
Pc ,tc
pkwrap

) .

Multi-Context HSM

Context 1 Context 2 Context zContext 3

...

ADR ADR ADRADR

identical key (shared)

s physically 
shared PCRs

Figure 8.3: Cryptographic Keys, PCRs, and ADRs for Multiple Separated Contexts
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Integrity Veri�cation of Multiple Microkernel Tasks as Basis for a Secure Code Update Section 8.3

8.3.3 Integrity Veri�cation and Attestation of Multiple Tasks

To verify the integrity of one or more microkernel tasks, a remote veri�er 𝒱 sends an attestation
request (req) to the prover 𝒫 as depicted in Figure 8.4. ¿e attestation request speci�es k out of n
microkernel tasks, which should be included into the attestation procedure, i.e., req = {ci} with
c,i ∈ {1, . . . , n} and ⋃︀ req ⋃︀ = k.
Based on the request, 𝒫 �rst transmits a set of random numbers nonce𝒫c

, which are speci�cally
calculated by the HSM for the selected tasks with context c. ¿e random numbers are required
to generate the authentication values Authcint and prevent replay attacks. 𝒱 calculates the set of
authentication values as

Authcint = HMAC(Authwrap, hc ⋃︀⋃︀nonce𝒫c
⋃︀⋃︀nonce𝒱 ) , (8.1)

where nonce𝒱 is a random number selected by the veri�er (Figure 8.4, step 1). ¿e calculation of
Authcint shown in Equation 8.1 follows the authentication for TPM commands as speci�ed by the
TCG, more precisely for the load command [Tru11, p. 76]. ¿e authentication values Authcint and
nonce𝒱 are then sent to 𝒫 , which is now able to generate the command to load the task-speci�c
integrity keys Kc

int. It is important to note that 𝒫 has neither knowledge about nor access to
authentication value Authwrap, which is only known to 𝒱 and the HSM. As a consequence, 𝒫 is not
able to calculate the authentication HMACs without 𝒱 .

1. calculate 
authentication 

HMACs for 
TPM_LoadKey2

4. verify response
(return code
and nonce)

2. verify integrity 
of prover (task c)

Multi-Context HSM Prover Verifier

per context c:

attestation response (res)

per context c:

per context c:

per context c:

per context c:

attestation request

3. consolidate 
authenticated 

responses 

Figure 8.4: Attestation Protocol for Multiple Separated Tasks
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

To load the keysKc
int into theHSMand, thereby, generate the implicit proof for the trustworthiness

of the corresponding tasks, 𝒫 simply needs to generate a TPM_LoadKey2 command per context as
shown in Figure 8.4. When the HSM receives a command for context c, it veri�es the authentication
valueAuthcint and compares the current platform con�guration P′c with Pc, which has been speci�ed
when the corresponding integrity key Kc

int was wrapped (Figure 8.4, step 2). It also checks the
anomaly detection record for any log entries (more precisely, whether the current probability value
inAc is above the probability threshold tc speci�ed during the wrapping step), which might indicate
that the task was compromised during run-time. If the veri�cation is successful and no anomalies
were detected, the key is decrypted and loaded. However, if the key is already loaded into a key slot,
an e�cient HSM only veri�es the wrapping conditions and omits the decryption.

A er a successful load operation, the HSM generates HMAC-protected result messages and a set
of new random numbers noncenew

𝒫 c
for each task/context c . ¿e result messages mainly include a

return code (rc), which indicates the success of the load operation (e.g., TPM_SUCCESS), the �xed
command ordinal for the TPM_LoadKey2 operation (TPM_ORD_LoadKey2), a new nonce noncenew

𝒫 c
,

and the nonce selected by the veri�er (nonce𝒱 ). ¿ose values are protected by an HMAC, which is
denoted as Authcres and calculated as

Authcres = HMAC(Authwrap, (SHA-1(rc ⋃︀⋃︀TPM_ORD_LoadKey2) ⋃︀⋃︀noncenew
𝒫 ⋃︀⋃︀nonce𝒱 )) . (8.2)

Again, it is important to note that the HMACs Authcres are calculated based on Authwrap, which is
the shared authentication value between the HSM and the veri�er 𝒱 and not known to the prover.

Before the prover 𝒫 sends the new random numbers noncenew
𝒫 c

and the HMACs Authcres, which
carry implicit proof that the attested tasks are still trustworthy, to 𝒱 , the prover 𝒫 can reduce the
size of the attestation response (res) by hashing the HMACs (Figure 8.4, step 3), i.e.,

res = H(Authcres) ∀c ∈ req . (8.3)

As a consequence, the e�ciency of the transmitted attestation result can be increased and does not
lose cryptographic information needed to verify the integrity of the selected tasks if the attestation is
successful. However, in case the attestation fails, the prover should temporarily store the individual
HMACs and send them separately in order to allow for a more �ne-grained diagnosis and possibly
a recovery of compromised tasks. For a recovery, the veri�er only considers the most basic security-
critical tasks, such as the microkernel, the security monitor, and the HSM proxy, and grants access
to a trusted version of the compromised so ware component as a failsafe. ¿is recovery version of
a compromised task can be provided using the secure code update protocol, which is described in
more detail in the next section and extends our secure loading concept presented in the previous
chapter with the implicit setup of an integrity key for the new task.
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Integrity Veri�cation of Multiple Microkernel Tasks as Basis for a Secure Code Update Section 8.3

Finally, in step 4, the veri�er 𝒱 checks the prover’s attestation response res by comparing it with
a freshly generated hash res′ as indicated in Figure 8.4, which is calculated as follows: First, the
veri�er calculates a static hash value

hLoadKey2 = SHA-1((rc = TPM_SUCCESS) ⋃︀⋃︀TPM_ORD_LoadKey2) , (8.4)

where 𝒱 assumes that the TPM_LoadKey2 operation executed by the prover 𝒫 has been successful,
i.e., the return code must be TPM_SUCCESS. In other words, the veri�er expects that the load
operation is successful on a system, which is unmodi�ed and still trustworthy. As a result, the
veri�er can easily calculate the static SHA-1 hash value hLoadKey2, which is independent of a particular
task.

Corresponding with Equation 8.2, the hash value hLoadKey2 de�ned in Equation 8.4 is then
used to freshly calculate the task-speci�c HMACs Authc′res based on the random numbers and the
authentication value Authwrap as

Authc′res = HMAC(Authwrap, (hLoadKey2 ⋃︀⋃︀noncenew
𝒫 ⋃︀⋃︀nonce𝒱 )) . (8.5)

By hashing those HMAC values (cf. Equation 8.3), i.e.,

res′ = H(Authc′res) ∀c ∈ req , (8.6)

and comparing the result res′ to the attestation response res, the veri�er 𝒱 can reason about the
integrity and trustworthiness of the selected tasks.

At this point, it is important to note that the veri�er 𝒱 can trust the individual attestation results
(and the combined hash) to implicitly and reliably communicate proof for the trustworthiness of
the selected tasks, because the results of the TPM_LoadKey2 operation are protected by an HMAC.
¿is HMAC is based on the shared secret, the authentication value Authwrap, which is only known
to the HSM and 𝒱 . As such, it is not available or in any way accessible to other parties like the
prover, which might execute compromised tasks. Hence, this long-term shared secret must be
protected by the HSM as well as the veri�er, which can also use an HSM to prevent extraction by
an attacker.

In addition, the attestation response messages also include random numbers, which protect
against replay attacks by providing veri�able proof that the attestation response message is indeed
fresh. It is important to see that those random numbers are part of the HMAC as de�ned in
Equation 8.2, which means they are incorporated in the attestation response generated by the HSM
and implicitly validated as part of the HMAC veri�cation.
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.3.4 Updating a Task After Verifying the Integrity of Existing Tasks

Based on the attestation protocol for existing microkernel tasks, we now describe our code update
protocol, which allows to update a task, creates veri�able proof, andmaintains the ability to attest
both, the tasks and the system.

¿e main idea of the update protocol is that the prover creates and loads a new integrity key,
which is speci�c to the new task, i.e., wrapped to the integrity values of the code update and
the corresponding request. To ensure that the key is actually wrapped to the correct integrity
measurements, the veri�er provides a speci�c cryptographic authorization value, which only the
veri�er can calculate. When the HSM receives this authorization, it checks whether the new key will
be wrapped to the correct integrity values before creating and wrapping the key. In combination
with an e�cient attestation of the code update, the veri�er can ensure the authenticity of the initial
update request and has veri�able evidence for the transaction. ¿e prover, on the other hand, can
use the new integrity key to create proof of a successful load operation in order to obtain the code
update.

For a code update U, the prover 𝒫 initiates the protocol by sending a update request (reqU ) to the
veri�er 𝒱 as depicted in Figure 8.5 (step 1). Apart from the requested so ware update identi�ed by
IDU , the message includes the cryptographic values to generate the authorization value referred to
as AuthU

pub, which is used to create the new wrapped integrity key KU
int. In more detail, the prover

encrypts the authentication value to use and migrate the new integrity key, which are denoted
as Authusage and Authmigration (or usageAuth andmigrationAuth, respectively, following the TCG
speci�cation [Tru11]). ¿e request also includes a nonce, which we refer to as nonce𝒫 .

When the veri�er receives the request from the prover 𝒫 , we assume that 𝒱 might require to
verify the trustworthiness of existing tasks for safety and security reasons before allowing to update
or install a new so ware component. ¿at is why the veri�er 𝒱 �rst initiates an attestation, which
checks the authenticity and integrity of tasks running on 𝒫 ’s system as described in the previous
section.

A er a successful attestation of the relevant tasks, the veri�er returns the encrypted authorization
HMAC AuthU

pub as well as a hash of the code update, denoted as hU (Figure 8.5, step 2). ¿e HMAC
authorizes the creation of the new integrity key and is calculated as

AuthU
pub = HMAC(Authwrap, (hCreateWrapKey ⋃︀⋃︀nonce𝒫 ⋃︀⋃︀nonce𝒱 1

)) . (8.7)

In this equation the hash value hCreateWrapKey is generated as

hCreateWrapKey = SHA-1(TPM_ORD_CreateWrapKey ⋃︀⋃︀Authusage ⋃︀⋃︀Authmigration ⋃︀⋃︀ keyInfo) , (8.8)

where TPM_ORD_CreateWrapKey is the �xed ordinal for the TPM_CreateWrapKey command.
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Integrity Veri�cation of Multiple Microkernel Tasks as Basis for a Secure Code Update Section 8.3

¿e structure keyInfo de�nes the cryptographic properties of the new key and follows the TCG
speci�cation [Tru11, Part 2, p. 89]. In particular, the structure speci�es the trusted platform
con�guration the key is wrapped to, which includes at least the integrity values of themicrokernel,
the update and the request. Additionally, the structure also speci�es the threshold value tc.
To create the new key, 𝒫 �rst extends the PCRs of context U with the hash of the code update

and the request (Figure 8.5, step 3). A er that, the prover creates the new integrity key KU
int, which

is encrypted with the wrapping key Kwrap and cryptographically bound to the trusted platform
con�guration, which is implicitly encoded into the HMAC AuthU

pub (step 4).
A er a successful generation of the wrapped integrity key, the prover 𝒫 sends a hash of the

key, SHA-1(TPM_ORD_LoadKey2 ⋃︀⋃︀ {KU
int}

PU ,tU
pkwrap

) and a random number nonce𝒫U
to the veri�er,

which initiates an attestation procedure for the code update (cf. Figure 8.5). ¿e veri�er creates the
authentication value AuthU

int and sends it to the prover together with a random number nonce𝒱2
.

𝒫 uses both values to load the new integrity key, which implicitly veri�es the authenticity and
integrity of the code update, more precisely hash hU (Figure 8.5, step 5). ¿e attestation response,
in particular AuthU

res, is then sent to 𝒱 , which can check the result. If the attestation was successful,
the veri�er sends the actual code update to the prover. 𝒫 can check the integrity of the code update
by freshly generating the hash value H(U) and comparing it to the previously received hash hU,
which has already been implicitly veri�ed. If both values match, the code update is trustworthy
and can be installed, which can e�ectively upgrade an existing task or recover a compromised task.

attestation (of existing critical components/tasks)

U6. compare hashes
and install update U

5. load key and verify task u 
(= code update U)

4. create new key
(wrapped to U and          )

2. create authorization

    1. create request

Multi-Context HSM Prover Verifier

3. PCRExtend

attestation

Figure 8.5: Secure Code Update and Recovery Protocol

127



Im
pl
ic
it
A
tt
es
ta
tio

n
of

M
ic
ro
ke

rn
el
Ta
sk
s

fo
ra

Li
gh

tw
ei
gh

tU
pd

at
e
an

d
Re

co
ve

ry

Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.4 Informal Security Analysis and Formal Protocol Veri�cation
In this section, we analyze the security of our two proposed protocols. First, we discuss the
assumptions and security properties of the attestation mechanism in Section 8.4.1 and present the
results of a formal veri�cation in Section 8.4.2. Based on the discussion of the attestation protocol,
we analyze the security of our code update and recovery protocol in Section 8.4.3.

8.4.1 Security Discussion of the Attestation Protocol

We start the analysis of our implicit attestation mechanism from the premise that hardware attacks,
such as the TPM cold boot attack [Hal09] ormanipulations of theHSM communication bus [Win12],
are out of scope, especially if those attacks are based on existing �aws in the platform’s hardware.
For example, the Intel architecture does not provide secure mechanisms to tightly couple an HSM
and in particular TPMs to the platform hardware, which enables attacks on the communication bus,
especially the Low Pin Count (LPC) bus. As a consequence, we mainly focus on so ware attacks as
speci�ed in Section 4.2 and state certain hardware attacks as fundamental limitation.
Furthermore, we assume that the platform con�guration represented by the PCRs correctly

re�ects the load-time integrity of the system at any time. Asmentioned inChapter 6, this assumption
would actually require CFI and periodic or on-demand integrity protections mechanisms, such
as IBM’s IMA [Sai04] or our integrity measurement concept as presented in the previous chapter.
We also assume that the platform con�guration is created during authenticated boot starting
from an immutable CRTM and cannot be easily forged by exploiting so ware vulnerabilities, e.g.,
bu�er over�ows, by code-reuse attacks, or ROP. ¿us, both assumptions show limitations that can,
however, be addressed using complementary integrity veri�cation concepts (cf. Section 3.1).
In addition, we exclude the TOCTOU problem, which might a�ect the validity of the attestation

result at the time of use, even in case of a local challenger as described in the previous chapter.
In contrast to the attestation mechanism based on a local challenger, which veri�es the platform
integrity using traditional remote attestation, i.e., by verifying a TPM-signed quote for the PCRs
based on a measurement list, the mechanism presented in this chapter relies on implicit attestation.
Our implicit attestation mechanism reduces the impact of the TOCTOU problem by eliminating
the need for digital signatures and the veri�cation of measurement entries, which decreases the
veri�cation time of the attestation result. However, similar to the local challenger concept, our
attestation mechanism cannot completely solve the TOCTOU problem, because there is always
a time gap between the veri�cation and the use of the attestation result. As a consequence, we
exclude this speci�c problem and rely on the fact our microkernel-based system is much harder
to compromise than a generic Linux-based system. Given any average time gap, we assume that
the probability of a successful attack on a complex, monolithic system is signi�cantly higher and
takes less time compared to our microkernel-based system architecture. Hence, it is reasonable to
assume that the TOCTOU problem is less relevant to our microkernel-based system architecture.

128



Im
pl
ic
it
A
tt
es
ta
tio

n
of

M
ic
ro
ke

rn
el
Ta
sk
s

fo
ra

Li
gh

tw
ei
gh

tU
pd

at
e
an

d
Re

co
ve

ry

Informal Security Analysis and Formal Protocol Veri�cation Section 8.4

Based on the attacker model described in Section 4.2 and the assumptions detailed above, we
now analyze our attestation protocol. In the �rst attack scenario, the adversary 𝒜 might try to
extract and obtain the authentication values or cryptographic keys in order to compromise the
attestation. However, the wrapping key Kwrap is a non-migratable key as speci�ed in Section 8.3.2,
which means it is always securely stored inside the HSM. In addition, the authentication value for
the wrapping key Authwrap is only known to the veri�er and never made public. Since this fact is
very important for our attestation protocol, we will verify it formally in the next section using an
automated veri�cation tool for cryptographic protocols.
𝒜might also attempt to create andwrap a new integrity key to an insecure platform con�guration,

which does not include, for instance, any PCRs values, and replace the existing wrapped integrity
key {Kc

int}
Pc ,tc
pkwrap

for a task cwith a compromised integrity key. However, this is not possible, because
the non-migratable wrapping key Kwrap is securely stored inside the HSM and the corresponding
authentication value Authwrap is only known to the veri�er (cf. previous attacks scenario). In other
words, the attacker is not able to create a new integrity key underneath the wrapping key Kwrap,
because the authentication value is Authwrap is a secret. Since this is a highly critical aspect, we will
also check in the formal veri�cation that the wrapping key Kwrap does not leave the HSM during
the attestation.
In a di�erent attack scenario, the adversary𝒜might try to compromise the task by manipulating

its binary code. However, since the task is measured before it is executed, the veri�er can easily
detect the manipulation, because the integrity measurements in the PCR would be incorrect, the
key could not be loaded, and an attestation would ultimately fail. ¿e failure is indicated by the
return code in the result message from the HSM. If the attacker compromises the binary and replays
an old result message in order to convince the veri�er that the load operation has been successful,
the veri�er can detect the attack by checking the result, in particular the random number. Since the
original random number is created by the veri�er as nonce𝒱 and the replayed nonce most likely
does not match the expected random number, the replay attack can be easily detected through a
simple comparison by the veri�er.
Finally, the attacker 𝒜 might try to compromise the behavior of a task during run-time. In

this concept, the security task aims to detect the anomaly, e.g., in the number or the order of
certain system calls, by monitoring the behavior of the attacked task. For instance, if a banking
application is usually contacting the bank’s server for online banking directly and only requires
a single connection, attacker might try to change the server’s contact address or open additional
connections to other servers by manipulating the banking task. In that case, the security monitor
adds an event (with a high probability, since it detected an attack) to the ADR, which is securely
stored inside our HSM. So, if the prover tries to load the corresponding integrity key for the
compromised task, the HSM prevents a successful load operation, since the current probability
value is above the threshold tc for any detected attack. As a consequence, the attestation fails.
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.4.2 Formal Veri�cation of the Attestation Protocol

To substantiate our security discussion, we also formally veri�ed relevant security-critical properties
of our attestation mechanism using ProVerif [Bla01], an automated veri�er for security protocols.
For this purpose, we developed a formal model that implements crucial aspects of our attestation
protocol (the secrecy of the symmetric keys), which are also the core of the code update protocol.
¿e model for our remote attestation speci�es a veri�er, a prover, and an HSM, in this case

with two contexts for simplicity (cf. Listing 8.1). To initiate the attestation protocol, the veri�er
�rst creates a request (req of type attestationRequest), sends it to the prover, and receives
the corresponding random numbers (noncePc1 and noncePc2). ¿e veri�er then creates a new
nonceV, which is later used to implicitly verify the freshness of the attestation result, since it is
part of the result values returned by the HSM. Lastly, the veri�er calculates the authentication
values Authc1 and Authc2 (lines 9 and 11) based on the hash of the wrapped integrity keys, i.e.,
hWrappedKint1 and hWrappedKint2, the random numbers noncePc1 and noncePc2 from the
prover as well as nonceV from the veri�er. ¿e key for the both HMACs is AuthWrap, which is
only known to the veri�er and the HSM.¿is critical aspect is modeled using a global symmetric
key AuthWrap, which is declared as private and provided to the veri�er and the HSM only.
¿e prover receives the HMACs and loads the wrapped keys, wrappedKey1 and wrappedKey2

(lines 21 and 23). ¿e HSM veri�es the nonces (lines 34 and 40), compares the current platform
con�guration cpc with the trusted one tpc (lines 35 and 41), and checks if the probability value p
matches T (lines 36 and 42; simpli�ed with T =0, i.e., no anomalies tolerated). Finally, the HSM
generates the result message. ¿e prover forwards the result and the nonces noncePc1New and
noncePc2New to the veri�er.
Once the attestation result (res of type hash) has been received, the veri�er assumes a successful

TPM_LoadKey2 operation (hence, the hardcoded value true in lines 14 and 15), which is a necessary
requirement for a trustworthy system. To verify the attestation result, the veri�er �nally calculates
a fresh SHA-1 hash based on its nonceV using AuthWrap, hashes the individual HMACs, and
compares it to res (line 16). ¿is veri�cation of the attestation result implicitly checks nonceV and
ultimately the trustworthiness of the selected tasks, because the prover’s HSM veri�ed the platform
con�guration when it loaded the integrity keys.
In ProVerif, our formal veri�cation is automated with queries, which check if the authentication

valueAuthWrap (cf. line 1) or thewrapping keyKwrap (cf. line 2) are disclosed during the attestation.
A third query additionally checks if the attestation was successful (cf. line 3), which is indicated
by an event that is gernerated if and only if the attestation response can be successfully veri�ed.
Our results show that ProVerif cannot �nd an attack path for the AuthWrap or Kwrap, because they
are kept secret and are never transferred via network, and that the attestation is successful if all
veri�cation steps are successfully passed.
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Informal Security Analysis and Formal Protocol Veri�cation Section 8.4

1 free AuthWrap:symKey [private]. query attacker (AuthWrap).
2 free Kwrap:sKey [private ]. query attacker (Kwrap).
3 event successfulAttestation . query event( successfulAttestation ) .
4

5 let Veri�er (AuthWrap:symKey, hWrappedKint1:hash, hWrappedKint2:hash) =
6 new req:attestationRequest; out(c2 , req) ;
7 in (c2 , noncePc1:bitstring ) ; in (c2 , noncePc2:bitstring ) ;
8 new nonceV:bitstring;
9 let Authc1= MAC(c(c(h2Bs(hWrappedKint1), noncePc1), nonceV), AuthWrap) in
10 out(c2 , Authc1) ;
11 let Authc2= MAC(c(c(h2Bs(hWrappedKint2), noncePc2), nonceV), AuthWrap) in
12 out(c2 , Authc2) ; out(c2 , nonceV); in (c2 , res :hash);
13 in (c2 , noncePc1New:bitstring) ; in (c2 , noncePc2New:bitstring);
14 let resAuth1 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load) ) ) , noncePc1New), nonceV), AuthWrap) in
15 let resAuth2 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load) ) ) , noncePc2New), nonceV), AuthWrap) in
16 if res = SHA 1( c(MAC2Bs(resAuth1), MAC2Bs(resAuth2))) then event successfulAttestation ; 0.
17

18 let Prover(wrappedKint1:wKey, wrappedKint2:wKey, noncePc1:bitstring, noncePc2:bitstring ) =
19 in (c2 , req :attestationRequest) ; out(c2 , noncePc1); out(c2 , noncePc2);
20 in (c2 , Authc1:mac); in (c2 , Authc2:mac); in (c2 , nonceV:bitstring ) ;
21 let cmd1 = createLoadKeyCmd(wrappedKint1, Authc1, noncePc1, nonceV) in
22 out(c1 , cmd1);
23 let cmd2 = createLoadKeyCmd(wrappedKint2, Authc2, noncePc2, nonceV) in
24 out(c1 , cmd2);
25 in ( c1 , res :hash);
26 in ( c1 , noncePc1New:bitstring) ; in ( c1 , noncePc2New:bitstring);
27 out(c2 , res ) ; out(c2 , noncePc1New); out(c2, noncePc2New); 0.
28

29 let HSM(AuthWrap:symKey, noncePc1:bitstring, noncePc2:bitstring, cpc1 :PConf, p1 :ADR, cpc2:PConf, p2:ADR) =
30 new noncePc1New:bitstring; new noncePc2New:bitstring;
31 in ( c1 , cmd1:LoadKeyCommand); in(c1, cmd2:LoadKeyCommand);
32 if getAuthc(cmd1) = MAC(c(c(h2Bs(SHA1(c(load, wKey2Bs(getWrappedKey(cmd1))))), noncePc1),
33 getNonceV(cmd1)), AuthWrap) then
34 if noncePc1 = getNoncePc(cmd1) then (* comment: check noncePc1 *)
35 if cpc1 = pc(getWrappedKey(cmd1)) then (* comment: check P_1 *)
36 if p1 = ard(getWrappedKey(cmd1)) then (* comment: check ADR_1 *)
37 let resAuth1 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load) ) ) , noncePc1New), getNonceV(cmd1)), AuthWrap) in
38 if getAuthc(cmd2) = MAC(c(c(h2Bs(SHA1(c(load, wKey2Bs(getWrappedKey(cmd2))))), noncePc2),
39 getNonceV(cmd2)), AuthWrap) then
40 if noncePc2 = getNoncePc(cmd2) then (* comment: check noncePc1 *)
41 if cpc2 = pc(getWrappedKey(cmd2)) then (* comment: check P_2 *)
42 if p2 = ard(getWrappedKey(cmd2)) then (* comment: check ADR_2 *)
43 let resAuth2 = MAC(c(c(h2Bs(SHA1(cBoolBs(true , load) ) ) , noncePc2New),getNonceV(cmd2)), AuthWrap) in
44 let res = SHA 1( c(MAC2Bs(resAuth1), MAC2Bs(resAuth2))) in
45 out(c1 , res ) ; out(c1 , noncePc1New); out(c1 , noncePc2New); 0.
46

47 process
48 new noncePc1:bitstring ; new noncePc2:bitstring ;
49 new Kint1 : intKey ; new Kint2:intKey ;
50 let wKint1 = wrapKey(Kint1, pk(Kwrap), tpc1 , T1 ) in (* cf . Sect . 8.3.1 *)
51 let wKint2 = wrapKey(Kint2, pk(Kwrap), tpc2 , T2) in (* cf . Sect . 8.3.1 *)
52 (! Veri�er (AuthWrap, SHA1(c( load, wKey2Bs(wKint1))) , SHA 1( c( load, wKey2Bs(wKint2)))) ) |
53 (! Prover(wKint1 , wKint2, noncePc1, noncePc2)) | (! HSM(AuthWrap, noncePc1, noncePc2, tpc1, T1 , tpc2 , T2) )

Listing 8.1: ProVerif Code for the Attestation Mechanism (excerpt)
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Chapter 8 Implicit Attestation of Microkernel Tasks for a Lightweight Update and Recovery

8.4.3 Security Discussion of the Code Update Protocol

To evaluate the security of our code update protocol, we now discuss di�erent attack scenarios,
where an adversary might either try to compromise the authenticity and integrity of a code update.
Please note that the security discussion focuses on integrity and authenticity, because we assume
that the con�dentiality of the code update is adequately protected with a symmetric encryption key
as described in the previous chapter. ¿at means, we assume that our microkernel-based system
can use the integrity keys KU

int as binding keys to decrypt an ephemeral encryption key as detailed
in Chapter 7. As a consequence, we concentrate on attacks against the integrity and authenticity of
the code update, which are directly related to our implicit attestation mechanism.
For the �rst attack, we presume that the adversary𝒜 tries to compromise the integrity of the

code update by replacing it with a manipulated version, e.g., during transfer from the veri�er 𝒱 to
the prover 𝒫 . However, this attack can be easily detected, since 𝒫 generates a new integrity key,
which 𝒱 wraps to the integrity measurement of untampered code update, i.e., hU, by specifying the
platform con�guration that includes the integrity measurement of the code update. To receive the
actual code update, 𝒫 needs to successfully load the new integrity key in order to be able to send
the correct attestation result to 𝒱 . To verify the integrity of the code update, 𝒫 compares a fresh
hash of the code update with the previously received hash hU, which must have been part of the
wrapped key and the trusted platform con�guration. 𝒫 also implicitly veri�es the authenticity of
the code update, because only 𝒱 knows the authentication value Authwrap for wrapping key Kwrap.
As a result, only 𝒱 is able to generate the correct authorization value AuthU

pub for creating the new
wrapped integrity key.
In a second attack, the adversary𝒜might try to compromise the code update request (req) sent

by the prover 𝒫 . To ensure the authenticity of the code update request, the veri�er 𝒱 authorizes
the creation of a new integrity key KU

int, which is cryptographically bound not only to the trusted
platform con�guration of the system and the task, but also the code update request req. ¿at way,
the prover has to extend the hash of the code update request to the PCRs of the task in order to
be able to load the newly created integrity key during the attestation procedure. If an adversary
manipulates the code update request during transfer to the veri�er, 𝒱 creates an authorization
value AuthU

pub for a modi�ed/compromised request. As a result, the prover cannot load the key,
because 𝒫 extended a di�erent hash and the attestation fails. As a consequence, the veri�er does
not provide the actual code update in the �nal step of the protocol. In contrast to the secure loading
protocol presented in Chapter 7, this motivates the prover to cooperate and deters an adversary
from attacking the attestation protocol.
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Summary Section 8.5

8.5 Summary
In this chapter, we have presented a mechanism for attesting the trustworthiness of multiple
microkernel tasks with their own cryptographic context inside a multi-context HSM and a protocol,
which utilizes that mechanism for secure code updates and the recovery of compromised tasks.
In the code update and recovery protocol, the veri�er is able to select a subset of tasks, which
constitute the trusted base system, and provide a update/recovery binary for a compromised task
if the base system is still trustworthy according to the attestation result. As a result, the protocol
provides a mechanism to solve the challenges of Scenario 3 (Secure Update and Recovery), which
focuses on the need to enable updates and the recovery of compromised tasks. Incidentally, this
mechanism can also be used to update the baseband stack on the baseband processor, even though
it is not necessarily a microkernel-based OS.
Compared to most existing attestation schemes, which mostly rely on expensive cryptographic

operations, we showed that our lightweight attestation mechanism can implicitly verify the integrity
ofmultiple isolatedmicrokernel tasks while eliminating the need for digital signatures. Furthermore,
our lightweight attestation enables secure code updates and recovery of compromised tasks for
microkernel-based systems, which are designed to be highly resilient against failures and attacks,
particularly by implementing and separating tasks in user space.
In comparison to existing attestation protocols, in particular traditional remote attestation as

speci�ed by the TCG, we showed that our cryptographic integrity proof, basically a hash value, is
more than ten times smaller than a digital signature, because our protocolmostly relies on symmetric
cryptographic operations. When attestingmore than one taskwith their own cryptographic contexts,
the di�erence is signi�cant, especially in environments where lightweight protocols are required.
Without even considering SMLs, we can say that our cryptographic integrity proof only needs a
constant size, whereas the number of digital signatures used in classical remote attestation increase
with the number of tasks. If we also include SMLs, which store a list of all characteristics or objects
that were measured and, thus, can be very large, the di�erence might be even more signi�cant.
Finally, because of the bene�ts of separating the tasks in a microkernel-based system, we also

proposed to separate the “monolithic” cryptographic context within most HSMs. As a result, multi-
context HSM not only provides each task with its own isolated context, e.g., for cryptographic
keys and integrity measurements, but also helps to improve the current level of native support for
virtualization in general. By implementing separate platform con�guration registers and anomaly
detection records in each context, systems utilizing virtualization can transparently use the multi-
context HSM for virtual machines, because the HSM supports virtualization natively by providing
those multiple contexts. Since virtualization, especially hardware-assisted virtualization, and other
hardware separation technologies, e.g., ARM TrustZone, are available for embedded systems, too,
we will focus on an implicit attestation mechanism for such systems in the following Chapter 9.
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9
Policy-based Implicit Attestation and

Data Integrity Protection

Based on the implicit/local attestation protocols presented for baseband stacks (Chapter 6) and
Nizza-inspiredmicrokernel systems with a TPM 1.2 (Chapter 7) or amulti-context HSM (Chapter 8),
we explore the use of a TPM 2.0 and a TEE in this chapter. As a TPM 2.0 provides advanced
authentication and authorization mechanisms (cf. Section 2.1.2.5, Enhanced Authorization), we
focus on integrating those features into our implicit attestation in order to enable use cases in
Scenario 4 (Secure Data Access). ¿e main objective is a TPM 2.0-based implicit attestation to
prove the trustworthiness of a data producer, which provides integrity-protected data to a veri�er.
In combination with a full, hardware-based TEE, our comprehensive system architecture further
increases security in DomA through hardware isolation with a minimal interface and, thereby,
enables a policy-based attestation mechanism, which bene�ts the veri�er as well as the prover.
¿e rest of the chapter is structured as follows. In Section 9.1, we motivate the attestation scenario.

In Section 9.2, we outline the details of our TEE-enhanced system architecture. We then present
our main contribution, the integrity protection and policy-based attestation protocol, in Section 9.3,
while reserving details about the prototype implementation for Section 9.4. Finally, we discuss the
security of our protocol in Section 9.5 and conclude with a summary in Section 9.6.

Please note that the remote attestation mechanism presented in this chapter has already been
presented at the Information Security Conference (ISC) in 2016 and is published in its peer-reviewed
proceedings [Wag16a].
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

9.1 Policy-based Implicit Attestation for Secure Data Access

With hardware-based virtualization technologies, such as Intel VT [Nei06] or ARM’s Virtualization
Extensions [ARM12; ARM10], isolating rich operating systems like Linux from each other and the
rest of the system is a very e�ective way to ensure overall system security. ¿is level of security
can be even further increased if a microkernel, such as L4/Fiasco.OC [Lie96; TUD11b], serves
as the basis for an “unprivileged” hypervisor. Since microkernels implement all non-essential
system components as user-space tasks, strictly separate those tasks, and have a very small code
size, a microkernel-based hypervisor in user space reduces the system’s attack surface signi�cantly.
As a result, suchmicrokernel-based virtualized systems are suited even for the most security-critical
applications. However, since the virtualized rich operating systems usually still require some degree
of access to physical hardware, they cannot be completely isolated and a VMM must provide
mechanisms to make selected hardware components available to the virtualized systems.

One mechanism to give a virtualized system access to a physical hardware component, such
as a display or camera, directly maps the component’s physical memory address to the address
space of a virtualized system, which is then able to exclusively use this component. However, not
all components can be directly assigned to a speci�c virtualized system, because some hardware
components, such as the physical network interface, a mobile broadband modem, or sensors, are
shared. In addition, this simple and naive mechanism does not allow for inspecting, dynamically
restricting, and multiplexing the access to a component. ¿at is why hardware components are
usually virtualized, which means that access requests, i.e., read and write operations, have to go
through the virtual machine monitor and to device drivers, which support virtualization.

On the other hand, virtualizing a hardware component, such as a sensor, also presents a number
of challenges. For example, a virtualized system cannot be sure that the access to a component was
handled as requested, because it is not able to directly access that component and make the request
itself. Using device emulation techniques, a hypervisor could simulate a hardware component,
particularly a sensor, and modify, for example, the result of a read operation before it is returned to
the virtualized system. ¿at is why a (remote) user or system, which interacts with the virtualized
rich operating system, needs to be able to verify the integrity of the underlying system to be able to
trust the data from a hardware component, such as a sensor.

Unfortunately, most existing mechanisms to (remotely) verify the integrity of a system, such as
IBM’s IMA [Sai04] in combination with a TPM, are not able to attest a microkernel-based system
acting as hypervisor. In Chapters 7 and 8, we have shown protocols and designs for microkernel-
based systems that enable a veri�cation, but they focus on systems without hardware-assisted
virtualization and without a hardware TEE, which is rooted in the SoC, such as ARM TrustZone.
Since those technologies implement additional (higher) privilege level(s), they must be considered
as well, because a microkernel alone might not be able to enforce separation on those systems.
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Policy-based Implicit Attestation for Secure Data Access Section 9.2

To overcome these challenges and limitations, we �rst present an extended and enhanced version
of our microkernel-based system architecture, which uses ARM’s Virtualization Extensions to
run multiple rich operating systems and a TPM 2.0 [Tru16] together with ARM TrustZone to
securely handle critical operations and store sensitive information, like keys. While hardware-
assisted virtualization primarily enables the execution of an unmodi�ed rich OS, it also extends the
application processor in DomA with an additional privilege level that can host the hypervisor. As a
hypervisor, our system takes advantage of the microkernel design, which implements the virtual
machine monitor in user space and only handles critical operations, such as mode transitions in
and from the VMs. As hardware security module, our enhanced system architecture, which is
described in the following section, utilizes the TPM 2.0, which enforces critical aspects of our
implicit attestation protocol in cooperation with the ARM TrustZone, which provides the basis for
our TEE.

Based on the TPM 2.0 and the TrustZone-based TEE, our main contribution presented in this
chapter is a security protocol, which leverages our system design to protect the integrity of data as
described in Scenario 4 (Secure Data Access) while implicitly verifying the trustworthiness of the
system. Since the design is based on our previously described idea of e�cient implicit attestation,
the proposed protocol also uses symmetric cryptographic operations, such as hashing and HMACs,
and only optionally utilizes asymmetric cryptographic operations during the setup phase. ¿e
details of this attestation mechanism and protocol are presented in the following sections. With
regard to the scenario, we highlight the dual use of the attestation protocol to protect the access to
data, e.g., generated by sensors on the prover’s system, which is described as an industrial control
system in Scenario 4. ¿emain bene�t for the scenario is the ability to verify the integrity of the data,
which simultaneously enables the remote veri�er to reason about the origin and trustworthiness of
the data. ¿is is especially important on systems, which use virtualization, because of the additional
layer of indirection, which allows for device emulation as mentioned above.

Our third contribution, which is details in this chapter, is a proof-of-concept implementation of
our enhanced microkernel-based system architecture and our proposed attestation protocol based
on modern ARM-based hardware. Due to the lack of a dedicated hardware TPM 2.0 at the time of
development, however, the prototype features a fully functional so ware simulator, which we have
extracted from the public PDF version of the TPM 2.0 Library Speci�cation [Tru14; Tru16] using a
Python script [Wag16b] that we have made open source. ¿e description of the proof-of-concept
implementation, which focuses on complexity, code size, and information security (because we
deal with a very small microkernel-based system with tightly controlled IPC), is complemented
with a security discussion, which analyzes critical aspects of our protocol, e.g., the protection of
keys and the prevention of various potential attacks against the protocol.
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

9.2 Microkernel-based System Architecture with TPM 2.0 and TEE

In this section, we describe the enhanced design of our microkernel-based system architecture,
which speci�cally includes a TPM 2.0 and makes use of the hardware-based virtualization and
security mechanisms of modern ARM SoCs. ¿e complete architecture, the relevant so ware
components for DomA, and the �ow of executions (black arrows) are shown in Figure 9.1, in
particular, the two microkernel-based systems.

¿e design of our TEE-enhanced system architecture separates a secure environment (right side)
from a non-secure environment (le side) as shown in Figure 9.1. In contrast to the previous chapters,
this classi�cation into secure and non-secure is based on hardware separation mechanism, e.g.,
provided by the ARM TrustZone technology. Hence, the classi�cation extends the previous notion
of so ware-based trusted microkernel runtime in the MEE (in comparison to the untrusted rich
OS in the REE) with a trusted microkernel runtime protected by hardware isolation mechanisms
and executed in a TEE rooted in hardware. Both runtime environments, the secure and the non-
secure environment, accommodate a microkernel-based system, which consists of at least a kernel
component referred to as core in privileged levels PL1+ and a user-space component init (which is
similar toMoe/Ned in L4Re) in the unprivileged level PL0.

In detail, the DomA consists of a TEE with a microkernel-based system in the Secure World
as well as several subdomains, Dom0...n, in the Non-secure World. As depicted in Figure 9.1, the
MEE basically establishes a Dom0, whereas the rich operating systems of the REE are executed in
subdomain 1 to n (Dom1...n). As a result, our DomA is divided into a hardware-based TEE on the
one hand and several so ware-based subdomains in the Non-secure World on the other hand.

¿e separation into two isolated execution environments can be realized, for example, through
the ARMTrustZone mechanism, which basically assigns system components, devices, and memory
to either Secure World or Non-secure World. In the Secure World, the microkernel-based system
or, more precisely, its TrustZone VMM (tzvmm), handles all request to security-critical tasks and
devices, such as the TPM 2.0. In comparison to our Fiasco.OC-based system, the TPM server,
which is referred to as TS in Chapter 7 and responsible for the TPM 1.2 communication, is called
tpm2 in this chapter and provides a native interface and device driver for the TPM 2.0.

In the Non-secure World, a second virtual machine monitor (vmm) similarly handles calls (and
traps) to the hypervisor, in this case however, with the goal to virtualize rich operating systems like
Linux. Since we do not restrict or otherwise limit the structure of the microkernel-based system in
the MEE, it could basically be the same system as described in Chapter 7, i.e., Fiasco.OC with L4Re.
As long as the underlying hardware supports a technology like ARM TrustZone, our concept can
be applied to any monolithic or microkernel-based system running in the Normal word. However,
without loss of generality, we will use the same microkernel-based systems for the Secure and the
Non-secure World in our design and proof-of-concept implementation for the sake of simplicity.
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Microkernel-based System Architecture with TPM 2.0 and TEE Section 9.2

¿e virtualized rich operating system in the REE, which can be a conventional Linux or Android,
provides the usual services for a user to interact with the system. ¿at means a (remote) user can
access the rich operating system and, for example, read data from a hardware device, e.g., a sensor.
If the hardware device is virtualized, access is trapped to the virtual machine monitor. ¿e VMM,
in turn, either forwards the request to a device driver, which also resides in the Non-secure World,
or it uses a hardware-based interface, a so-called SMC, to access a device driver implemented in
Secure World as depicted in Figure 9.1. If the request is handled by the virtual machine monitor in
the TrustZone, tzvmm forwards it to the corresponding device driver that is also located in the TEE.
¿at way, a security-critical device like a TPM 2.0 can be accessed and shared between multiple
rich operating systems, while the VMM in the TEE is able to monitor, restrict, and deny access if
necessary.
At this point it is very important to note that the minimal hardware-based TrustZone interface,

the SMC, which is even less complex than the small set of system calls used by microkernels, is
also the reason for having two microkernels in our system architecture. ¿at way, there is a strong
possibility that the system can still function and actively recover, even if the Non-secure World was
compromised. Assuming the system architecture was implemented correctly, an adversary needs
to successfully attack the core component in the Secure World (while using mainly SMC calls or
traps) in order to fully compromise the system.

SoC with Application Processor

PL 1
Modes

TEE

PL 1
Modes

PL 0
Modes

PL 2
Modes

MEE (Dom0)REE (Dom1…n)

TPM 
2.0

Monitor Mode

init

device driver

tpm2

init

vmm

rich kernel

device client

tpm0dev0
/dev

Microkernel (core)

tzvmm

Microkernel  (core)

Secure WorldNon-secure World

World Switch

Figure 9.1:Microkernel-based System Architecture with TPM 2.0 on a TrustZone-enhanced ARM SoC
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

However, even with a separation of resources, such as memory or devices, though hardware-
based virtualization and security mechanisms like TrustZone, the design of our system architecture
also includes a TPM 2.0, which is connected to the TEE and used to securely create and store
sensitive information, particularly cryptographic keys. As a reminder, a TPM in contrast to the
ARM’s TrustZone is a dedicated non-programmable hardware security module, which not only
implements cryptographic engines in hardware, but also establishes trust, precisely because it
provides assurances that its �rmware cannot be easily modi�ed by any user or remote attacker.
In addition to acting as a trust anchor, a TPM 2.0 provides mechanisms to store cryptographic

integrity measurements as described in Chapter 2. ¿osemeasurements are usually collected during
authenticated boot, extended into one of the PCRs (cf. Section 2.1.3.1), and digitally signed with an
asymmetric key to create proof about the trustworthiness of the system for a remote attestation.
Since the PCRs are only reset when the system is reset and can only be updated or, more precisely,
extended with new measurements, an attacker is not able to modify a boot component without
detection. On top of that, PCRs can also be used to cryptographically bind a key to speci�c values,
whichmeans that the key can only be used if the current values in the PCRsmatch the ones speci�ed
when the key has been created.
With the TPM 2.0, the TCG generalized this idea of “usage” policies and developed the concept

referred to as Enhanced Authorization, which we described in detail in Section 2.1.2.5. With
EA, the TPM 2.0 allows the use of a cryptographic key (or other protected assets, such as NV
memory) if the user can recreate and, hence, satisfy a speci�ed policy. ¿at is why we use TPM 2.0
policies as the basis for our implicit attestation, because Scenario 4 (Secure Data Access) focuses
on trustworthiness, integrity protection, and access control, which o en relies on policies as well.
In summary, the main features of our most advanced system architecture are listed in Table 9.1.

Based on the security features of our system architecture, i.e., the hardware-assisted virtualization,
the TEE, and the TPM 2.0, the table shows the relevant architectural features and their locations.

Feature of the System Architecture Location Comment

Virtualized rich operating systems in isolated VMs SoC→ DomA→ REE

Microkernel SoC→ DomA→MEE
VMM for VMs with the rich OS SoC→ DomA→MEE user space

Microkernel SoC→ DomA→ TEE
VMM for the Non-secure World SoC→ DomA→ TEE user space
Secure device drivers (e.g., for sensors) SoC→ DomA→ TEE user space
TPM 2.0 driver / so ware stack SoC→ DomA→ TEE user space

Policy enforcement TPM 2.0→ �rmware non-programmable
Longterm key storage (for the attestation) TPM 2.0→ shielded locations

Table 9.1: Division of the Main Architectural Features
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Data Integrity Protection with Implicit Attestation Section 9.3

9.3 Data Integrity Protection with Implicit Attestation

In this section, we present our data integrity protection and attestation protocol. ¿e attestation
mechanism enables the secure data access as described in our Scenario 4, where the veri�er 𝒱
requests integrity-protected data from an embedded system with multiple data generators and a
network connection, such as an industrial control system, which acts as the prover 𝒫 .
In contrast to a traditional remote attestation as speci�ed by the TCG, our protocol uses e�cient

symmetric operation instead of relying on expensive asymmetric cryptographic operations to create
veri�able proof of the system’s integrity. As the main contribution, however, our implicit attestation
protocol makes use of the Enhanced Authorization mechanism provided by the TPM 2.0, which
allows for a �exible de�nition of authorization and attestation policies.

¿e main idea of our proposed protocol is based on the fact that both parties, the prover 𝒫
and the veri�er 𝒱 , each control a cryptographic key with separate TPM 2.0 policies. ¿e prover
controls a key in its TPM storage hierarchy, which serves as a parent key for the veri�er’s key, which
is initially created in the veri�er’s own TPM and migrated to the prover’s TPM. For a successful
policy-based implicit attestation, both parties have to cooperate to enable the prover to load both
keys, which is ultimately necessary to protect data requested by the veri�er.

In other words, 𝒫 has to satisfy the veri�er’s policy in order to be able to load 𝒱 ’s key, when 𝒱
requests integrity-protected data. Since the veri�er expects the data to be protected with its own
integrity key and only accepts data a er a successful veri�cation, the prover has to be able to use
𝒱 ’s key to protect the integrity of the requested data. 𝒱 ’s policy, thus, may include trusted PCR
values for the prover’s system, which means the key can only be loaded if 𝒫 ’s system is still in a
trustworthy state. In turn, 𝒱 must act according to the prover’s policy, which convinces 𝒫 to load
the integrity key on behalf of 𝒱 and create integrity-protected data. Hence, 𝒫 ’s policy could, for
example, specify that 𝒱 may only access a virtualized hardware resource if the device is enabled
and the access pattern meets certain criteria.

As a result, each policy must be satis�ed by the other party for a successful implicit attestation
when requesting integrity-protected data from a virtualized device. E�ectively, the prover and the
veri�er have to cooperate to provide secure access to trusted resources, protect the integrity of data,
e.g., generated by sensors, and be able to verify the trustworthiness of the data origin. Similar to
most other hardware-based attestation protocols, the TPM acts as a trusted hardware component.
In contrast, however, the TPM not only ensures the protection of integrity measurements and keys,
but also enforces the policies set by the veri�er as well as the prover.

In the following sections, we �rst de�ne the notations and the cryptographic keys in Section 9.3.1
and Section 9.3.2. A er that, we specify the setup phase in Section 9.3.3 and then focus on the
integrity protection and attestation mechanism in Section 9.3.4.
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

9.3.1 Notation – Part 3 of 3

In this section, we extend the �rst two parts of our notation, which we already presented in
Section 6.3.1 and Section 8.3.1, with a speci�c platform con�guration for the TEE and policies.

Trusted Platform Con�guration for the TEE

We de�ne a trusted platform con�guration Ptrusted for our microkernel-based system, i.e., core, init,
tzvmm, etc., in the TEE. As before, we assume that the load-time integrity of a microkernel-based
system can be adequately described by a set of measurement values, which are securely stored in the
PCRs of a TPM. For the sake of simplicity, we assume that the PCR values of our microkernel-based
system in the TEE, which compose Ptrusted, are public and, hence, known to a veri�er in advance.

Policies

Similar to integrity measurements, a policy Pol is represented as a cryptographic hash, which
can be used to authorize TPM operations. For example, to use a key K for signing, the initial
empty policy hash Pol0 is extended with the command code for signing (TPM2_CC_Sign), i.e.,
Pol ′Sign = H(Pol0 ⋃︀⋃︀ TPM_PolicyCommandCode ⋃︀⋃︀ TPM2_CC_Sign).
If the TPM can verify that the resulting policy hash Pol ′Sign matches the policy hash PolSign

assigned to a key K, this key can be used according to that speci�c policy. Since multiple policies
can also be combined, e.g., with TPM2_PolicyOR, it is possible to create larger, more complex, yet
�exible policies.

9.3.2 Cryptographic Keys

For our integrity protection and attestation protocol, we assume that a primary storage key KPSK,
which is created from a TPM Primary Seed, as well as a storage key KSK already exist in the prover’s
TPM. As shown in Figure 9.2, we only require for the sake of simplicity that KSK can be loaded with
a policy, i.e., PolKSK

= H(Pol0 ⋃︀⋃︀TPM_CC_PolicyCommandCode ⋃︀⋃︀TPM2_CC_Load).
In addition to the storage key KSK, the prover needs a second key parent key Kp, which acts as a

intermediate parent key for the integrity key Kint. ¿e key allows for a policy-based import of child
keys, which is encoded by specifying the command code TPM2_Import as shown in Figure 9.2.
Like KSK, this key is bound to the prover’s TPM as well as its dedicated parent, which is enforced
by the TPM though the key attributes fixedTPM and fixedParent. ¿e second policy attached
to Kp is used in our protocol to control access to hardware devices, such as sensors, by binding
the content of NV memory areas to the load command. More precisely, if a bit in NVaccess is set,
the hardware component assigned to this bit is enabled, which is a requirement to access it. In
NVgranularity, a minimum threshold, e.g., for the number of sensor values used in a average function
or a anomaly detection score, can be stored. ¿at way, the administrator of the prover’s system can
restrict access to a device if the number of access requests stored in NVgranularity do not match the
speci�ed threshold of the policy or the pattern indicates malicious behavior.
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Data Integrity Protection with Implicit Attestation Section 9.3

Finally, we specify a keyed hash key Kint, which is used to symmetrically sign data with a HMAC
to protect the integrity on behalf of the veri�er. ¿is key is initially created by the veri�er’s TPM
and migrated to prover’s system during the setup phase of our protocol. Consequently, the veri�er
alone is able to de�ne the policies that have to be satis�ed in order to be able to use the key as
indicated in Figure 9.2. For our protocol, we at least require that the key allows for the calculation
of a HMAC if the current PCRs values, which must include the microkernel-based system, i.e.,
core, init, tzvmm, etc., match the speci�ed ones of a Ptrusted. For the sake of simplicity, we also
specify a policy-based authorization for a duplication, which is the TPM 2.0 term for migration,
from the veri�er’s TPM to the prover’s TPM. Since we encrypt Kint during the duplication, we
optionally de�ne a decryption key Kdec = (pkdec, skdec). ¿e public portion of this key, pkdec, is
used to encrypt the AES key Kaes, denoted as {Kaes}pkdec

, while the secret key skdec is used by the
TPM to decrypt {Kaes}pkdec

in order to obtain Kaes. However, please note that this encryption and
decryption step is only required once during the setup phase.

authValue

authValueLoad: authValue

Policy PolicyCC: 
TPM2_Load

fixedTPM
fixedParent

authValue

Load: Policy

Policy: Policy

authValue

Policy: 
PolicyOR

PolicyCC: 
TPM2_Import

PolicyCC: 
TPM2_Load

PolicyNV:
NV1: (A&B)=B

Policy: 
PolicyOR

fixedTPM
fixedParentLoad: Policy

fixedTPM
fixedParent

authValue

Policy: 
PolicyOR

PolicyCC: 
TPM2_Load

PolicyCC: 
TPM2_Decrypt

PolicyCC: 
TPM2_HMAC_Start

controlled by the verifier

controlled by the prover

controlled by the prover’s administrator

PolicyCC: 
TPM2_Duplicate

PolicyNV:
NV2: A>=B

PolicyPCR

Primary Storage 
Key (            )

Storage Key (          )

Parent Key 
(       )

Integrity Key
(         )

Decryption Key

AES key             for 
Duplication of

Primary Seed 
(PS)

Figure 9.2: Cryptographic Key Hierarchy for our Policy-based Implicit Attestation Protocol
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

9.3.3 Phase 1: Setup

In the setup phase of our protocol, the administrator of the prover’s system �rst creates two non-
volatile memory areas, NVaccess and NVgranularity, inside the TPM using TPM2_NV_DefineSpace.
For our Scenario 4 (Secure Data Access), the �rst NV location is used to enable access to a device,
whereas the second one allows for a �ne-grained access control to data produced by the device(s).
With the help of those NV locations, which can be cryptographically linked to scenario-speci�c
policies, the TPM 2.0 can e�ectively act as a gatekeeper for devices and their data or, more precisely,
for the keys used to protected the integrity of the data generated by those devices. As a consequence,
bothNV areas, which enable the access and usage control, can only bemodi�ed by the administrator
of the prover’s system, but can be read with a policy PolNV_Read and used with TPM_CC_PolicyNV
by the TEE without manual authorization.
In NVaccess, for example, the administrator of the prover’s system can set certain bits to enable

the corresponding hardware components. For instance, if bit 0 of NVaccess is assigned to a device
with an index 0, the administrator can set this bit to 1 in order to enable access to the device.
Additionally, the administrator can use NVgranularity in a policy to specify a minimum granularity
or threshold. For example, if we assume the device is a sensor as described in our scenario and the
veri�er should only be able to read the average value of at least n sensor values, the current value in
NVgranularity could be compared to the reference value n speci�ed in the policy.
NVgranularity could also be used to store the result of an anomaly detection algorithm as described

in Chapter 8, which needs to be below a certain threshold t de�ned in a policy to be able to load and
use the key Kint. As a matter of fact, NVgranularity implements exactly one of the ADRs as described
in the previous chapter. ¿e corresponding policy furthermore enables the speci�cation of the
threshold t , which was used to bind one integrity key in Chapter 8. To fully implement multiple
ADRs as described in the previous chapter, the administrator of the prover’s TPM only has to create
multiple NV locations, i.e., NVc

granularity, where c is the context or index of the tasks. For the sake of
simplicity, however, we focus on only one of these NV locations.
A er setting up the non-volatile memory locations, which are used as part of the policies for Kp,

the storage key KSK is loaded using the policy of KPSK. ¿en, Kp is created with the policy described
in the previous section, which is

PolKp
= H(PolBase ⋃︀⋃︀TPM_CC_PolicyOR ⋃︀⋃︀PolImport ⋃︀⋃︀PolLoad_NVs) , (9.1)

where

PolImport = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyCommandCode ⋃︀⋃︀TPM_CC_Import) ,

PolLoad_NVs = H(PolNVs ⋃︀⋃︀TPM_CC_PolicyCommandCode ⋃︀⋃︀TPM_CC_Load) , (9.2)

and PolBase is either PolImport or PolLoad_NVs.

144



Po
lic
y-
ba

se
d
Im

pl
ic
it
A
tt
es
ta
tio

n
an

d
D
at
a

In
te
gr
it
y
Pr
ot
ec
tio

n

Data Integrity Protection with Implicit Attestation Section 9.3

¿e value PolNVs, in turn, is calculated based on the following equations, which use a crypto-
graphic hash value generated during the initialization of the NV indices as the respective name of
NVaccess and NVgranularity:

PolNV_Access = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyNV ⋃︀⋃︀ args ⋃︀⋃︀nvIndex→Name) (9.3)

PolNVs = H(PolNV_Access ⋃︀⋃︀TPM_CC_PolicyNV ⋃︀⋃︀ args ⋃︀⋃︀nvIndex→Name) (9.4)

with

args = H(operandB.bu�er ⋃︀⋃︀ o�set ⋃︀⋃︀ operation)

where operandB is the value used for the comparison, o�set is the start value of the NV data, and
operation is the type of comparison. For NVaccess, the operation is (A&B) = B, which checks that
all bits in B are set in A, while the operation for NVgranularity is A ≥ B, which enables the prover to
specify a minimum value.
Once the policy PolKp

is successfully generated, the key Kp is created with TPM2_Create, which
calculates a new ordinary key (cf. Section 2.1.2.3). For this command, a public template speci�es the
properties of the key to be generated by the TPM, e.g., the type of key and the associated policy. ¿e
command returns the public and encrypted private key as well as data about the creation, which
can be certi�ed.
When the intermediate parent key Kp was created, an asymmetric decryption key pair Kdec can

be optionally generated using TPM2_Create as described in Section 9.3.2 while the storage key KSK

is still loaded. Like Kp, this key is also attached with a combined policy, which allows for loading
and decryption:

PolKdec
= H(PolBase ⋃︀⋃︀TPM_CC_PolicyOR ⋃︀⋃︀PolLoad ⋃︀⋃︀PolDecrypt) , (9.5)

where

PolLoad = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyCommandCode ⋃︀⋃︀TPM_CC_Load) ,

PolDecrypt = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyCommandCode ⋃︀⋃︀TPM_CC_Decrypt) ,

and PolBase is either PolLoad or PolDecrypt.
As described in the previous section, this asymmetric key is only used to securely transfer an AES

key, which is used to encrypt 𝒱 ’s integrity key Kint, from the veri�er to the prover. ¿is optional
step of transferring the AES key is only executed once and, hence, has no signi�cant impact on
our protocol. Alternatively, Kint can be pre-provisioned by the veri�er, which can be handled in a
secure environment, e.g., during production, and makes duplication process unnecessary. A secure
duplication mechanism, however, enables updates of Kint in the �eld at a later time.

145



Po
lic
y-
ba

se
d
Im

pl
ic
it
A
tt
es
ta
tio

n
an

d
D
at
a

In
te
gr
it
y
Pr
ot
ec
tio

n

Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

On the veri�er’s system, 𝒱 generates the keyed hash key Kint as part of the setup process. ¿is
key is a symmetric signing key, which can be migrated to a new TPM (fixedTPM is CLEAR) and is
cryptographically bound to the integrity measurements of the prover’s microkernel-based system.
As a result, it can only be loaded if the current values of the PCRs match the ones speci�ed by the
veri�er. ¿e policy for this key, which—for the sake of simplicity—allows for a duplication without
a strong authentication, is calculated as

PolKint
= H(PolBase ⋃︀⋃︀TPM_CC_PolicyOR ⋃︀⋃︀PolDup ⋃︀⋃︀PolPCR_HMAC) , (9.6)

with

PolDup = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyCommandCode ⋃︀⋃︀TPM_CC_Duplicate)

and PolBase is either PolDup or PolPCR_HMAC. In turn, PolPCR_HMAC is calculated by the TPM as

PolPCR = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyPCR ⋃︀⋃︀ pcrs ⋃︀⋃︀digestTPM)

PolPCR_HMAC = H(PolPCR ⋃︀⋃︀TPM_CC_PolicyCC ⋃︀⋃︀TPM_CC_HMAC_Start)

where pcrs is a structure specifying the bits corresponding to the PCRs and digestTPM is the digest
of the selected PCRs provided by the veri�er using a so-called trial session. ¿is type of session
allows for specifying the expected PCR values, whereas in a non-trial session the TPM would use
the internal PCR values to calculate the digest.
Once the policy PolKint

is successfully generated, the key Kint can be created using the command
TPM2_Create. Again, the policy and key type (keyed hash key) can be speci�ed in the public
template, which is used by the TPM to create a key accordingly. To duplicate or migrate the keyed
hash key Kint to the prover, the TPM cryptographically binds the key to its new parent key Kp,
whose integrity and authenticity can be veri�ed using the certi�ed creation data produced by the
prover’s TPM, when Kp was created. For the actual duplication of Kint to the prover’s system, the
veri�er runs TPM2_Duplicate with an optional AES encryption key and the public portion of the
storage key Kp as input. Note that this implicitly also restricts the duplication to the prover’s TPM,
since the attribute fixedTPM is SET for Kp. ¿e result of TPM2_Duplicate is an AES-encrypted
key structure, which includes all necessary information to import the key into the target TPM. To
complete the migration of Kint, the AES key Kaes is encrypted with the public portion of Kdec and
sent to the prover together with the encrypted Kint.
On the prover’s system, the AES key is decrypted using the private portion of Kdec and, in turn,

used to decrypt Kint while it is imported to its new parent Kp. Please note that since all of those
commands, TPM2_Duplicate, TPM2_Decrypt, and TPM2_Import, are part of the policy of their
respective keys, this process does not require any interactive authorization by an administrator.

146



Po
lic
y-
ba

se
d
Im

pl
ic
it
A
tt
es
ta
tio

n
an

d
D
at
a

In
te
gr
it
y
Pr
ot
ec
tio

n

Data Integrity Protection with Implicit Attestation Section 9.3

9.3.4 Phase 2: Data Integrity Protection with Implicit Attestation

In this section, we describe our data integrity protection and attestation protocol, which implicitly
creates veri�able proof that 𝒫 ’s system is still in a trustworthy state while protecting the integrity of
data from a virtualized device for 𝒱 .
To read data from a device, such as a sensor, which is virtualized by themicrokernel-based system,

the veri�er𝒱 �rst con�gures the device through amechanism provided by the rich operating system,
e.g., ioctl. ¿is con�guration includes the setting of the granularity g and a nonce𝒱 . However,
since the prover 𝒫 does not allow the kernel or device drivers of the rich OS to con�gure the device
directly, the operation is trapped to the hypervisor in the Non-secure World as shown in the top
half of Figure 9.3 above the dashed line. ¿e hypervisor, in turn, evaluates the con�guration—in
particular, the value of the granularity g—which is used, for example, in an average function or
simply to limit access to the hardware device. If the con�guration is valid and matches the criteria
set by the prover’s administrator, the hypervisor forwards the request to the secure device driver
implemented in the Secure World, which is able to con�gure the physical hardware device. In
parallel, the VMM in TrustZone stores the granularity g in NVgranularity, which is a critical step for
using Kp and part of a correct behavior of tzvmm that is assumed to be re�ected in the PCRs.
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Figure 9.3: Data Access with Policy-based Implicit Attestation
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

A er the con�guration, the client application in the rich operating system can read data from
the device, which is, again, trapped and forwarded to the secure device driver in the Secure World.
For a sensor, the device driver in the Secure World then reads the necessary sensor values based
on the granularity g and, for example, calculates average. To protect the integrity of the result, the
TrustZone VMM then requests the TPM to calculate a HMACmac as

mac = HMAC(Kint, (nonce𝒱 ⋃︀⋃︀data)) . (9.7)

¿is is only possible if the keyed hash key Kint is loaded and the PCRs of the microkernel-based
systems, i.e., core, init, tzvmm, vmm, etc., match the speci�ed values. Kint, however, can only be
loaded under the parent key Kp, if the device is enabled in NVaccess and the granularity g stored in
NVgranularity is above the threshold speci�ed by the prover’s administrator in the policy PolNV_Access,
PolNVs, and PolKp

.
Consequently, the prover needs to re-create the policy PolKp

(Equation 9.1) in a policy session
inside the TPM to be able to load the key Kint on behalf of the veri�er. More precisely, 𝒫 has to
calculate PolLoad_NVs (cf. Equation 9.2), which is only possible if the values in the NV indices satisfy
the respective policies that are calculated as follows:

Pol ′NV_Access = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyNV ⋃︀⋃︀ args ⋃︀⋃︀nvIndex→Name)

with args = H(operandB.bu�er ⋃︀⋃︀ o�set ⋃︀⋃︀ operation) ,

where operandB is the value in NVaccess, o�set is the start value (0), and operation is the type of
comparison, i.e., (A&B) = B forNVaccess in our example. ¿is speci�c policy veri�es that the device
is enabled and accessible, which is entirely controlled by the prover. If the comparison returns true,
Pol ′NV_Access equals PolNV_Access, which means the device is enabled. ¿e policy Pol ′NVs can then be
calculated as

Pol ′NVs = H(Pol ′NV_Access ⋃︀⋃︀TPM_CC_PolicyNV ⋃︀⋃︀ args ⋃︀⋃︀nvIndex→Name)

with args = H(operandB.bu�er ⋃︀⋃︀ o�set ⋃︀⋃︀ operation) ,

where operandB is the value g in NVgranularity, o�set is the start value (0), and operation is a com-
parison of A ≥ B, that is g ≥ gPolNVs

. ¿is policy checks that the granularity g is above the value
speci�ed in the policy PolNVs. Again, if the comparison returns true, Pol ′NVs equals PolNVs and the
device access pattern is accepted. Based on the freshly generated Pol ′NVs, the policy Pol ′Load_NVs can
be calculated as

Pol ′Load_NVs = H(Pol ′NVs ⋃︀⋃︀TPM_CC_PolicyCommandCode ⋃︀⋃︀TPM_CC_Load) .
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Data Integrity Protection with Implicit Attestation Section 9.4

If Pol ′Load_NVs equals PolLoad_NVs, this policy can satisfy the OR-policy PolKp
as speci�ed in Equa-

tion 9.1, which enables the prover to load Kint. ¿e prover only has to combine Pol ′Load_NVs with
the pre-calculated value of PolImport using TPM2_PolicyOR to generate PolKp

. By specifying the
session with the freshly generated policy PolKp

, which should be equal to PolKp
, the prover is able to

load the key Kint on behalf of the veri�er.

To use Kint to protect the integrity of the device data and implicitly verify the integrity of the
system, the prover simply has to re-create the policy PolKint

. By creating a new policy session inside
the TPM and using TPM2_PolicyPCR, the prover �rst creates PolPCR as

Pol ′PCR = H(Pol0 ⋃︀⋃︀TPM_CC_PolicyPCR ⋃︀⋃︀ pcrs ⋃︀⋃︀digestTPM) .

For this policy, the PCRs of the microkernel-based system, which are usually stored in one of
the lower PCRs, must be speci�ed. We assume that the prover and the veri�er agree on the
selection of PCRs, since both aim for a successful attestation. ¿e policy Pol ′PCR is then used in
TPM2_PolicyCommandCode to calculate Pol ′PCR_HMAC, which is combined with the pre-calculated
value PolDup to generate Pol ′Kint

:

Pol ′PCR_HMAC = H(P′PCR ⋃︀⋃︀TPM_CC_PolicyCC ⋃︀⋃︀TPM_CC_HMAC_Start)

Pol ′Kint
= H(Pol ′PCR_HMAC ⋃︀⋃︀TPM_CC_PolicyOR ⋃︀⋃︀PolDup ⋃︀⋃︀Pol ′PCR_HMAC) .

If Pol ′Kint
equals PolKint

, the policy can �nally be used to create the HMAC mac over data and
nonce𝒱 , which is used to prove freshness, as described in Equation 9.7.

¿e data and the HMAC mac are then returned to the rich operating system. ¿e HMAC-
protected data can then be transferred to the veri�er’s system, where a fresh HMACmac’ can be
generated with the veri�er’s Kint as

mac’ = HMAC(Kint, (nonce𝒱 ⋃︀⋃︀data)) . (9.8)

If the freshly generated HMACmac’ matches the HMACmac from the prover and nonce𝒱 is the
expected nonce, the veri�er does not only know that the data has not been modi�ed, but also that
the prover’s system is still trustworthy. More precisely, 𝒱 is able to reason about the trustworthiness
of the prover’s system, because the 𝒫 has been able to use the veri�er’s key to protect the data,
which requires the prover to satisfy the policies speci�ed by the veri�er, especially the compliance
with a trusted platform con�guration.
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

9.4 Implementation
In this section, we present details about our proof-of-concept implementation, which we realized
on an Arndale board. ¿is development board, which is a so-called single-board computer, features
an Exynos 5250 SoC with a Cortex-A15 MPCore [ARM11] that includes both ARM’s Virtualization
and Security Extensions.
¿e main components of our prototype comprise a microkernel-based system in TrustZone,

which includes a TPM 2.0 simulator (tpm2sim) as native microkernel tasks, and a similar system in
the Non-secure World, which acts as a hypervisor and virtualizes rich operating systems.
As our microkernel-based system, we employ the bare-metal kernel of the Genode [Gen17]

base-hw project, which combines Genode’s core component with a small kernel library, only has a
size of about 17 KLOC and supports TrustZone as well as virtualization. On top of the microkernel,
we use regular Genode user-space components, such as init, which is about 3 KLOC, and the virtual
machine monitors, vmm in the Non-secure World and tzvmm in the Secure World. For our protocol,
we mainly adapted the trapping and theWorld Switchmechanism to be able to transfer data to and
from the virtual machine monitors in Non-secure World and in TrustZone.

Figure 9.4: Arndale Board as Basis for our Proof-of-Concept Implementation
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Implementation Section 9.4

In the Secure World, we have extended the virtual machine monitor tzvmm to handle requests
from the Non-secure World and also be able to execute the appropriate TPM commands. Since we
did not have a hardware TPM 2.0 when we started the implementation, we created a Python script
to extract a working simulator from the public PDF version of the TPM 2.0 Library Speci�cation,
which we have made open source [Wag16b]. By integrating the simulator into the Secure World,
our TEE architecture is similar to the one discussed by ContainerX/Microso researchers [Raj16],
who show an implementation of a �rmware TPM on devices with ARM TrustZone and published
their work at the 25th USENIX Security Symposium (USENIX Security 16) around the same time.
In our case, however, we had to port the code to Genode to be able to run the simulator as a
native microkernel task, since the code of the TPM speci�cation is primarily written for Windows.
¿is included modi�cations to the random number generation, the NV memory subsystem, and
the communication, which was socket-based and uses IPC with a shared memory area for the
commands and responses in our Genode port.
For our rich OS, which is a conventional unmodi�ed Linux 4.0 with a small BusyBox [And16],

we created a device client application and a kernel module to implement the device driver for a
hardware component. In our prototype, this device driver, which would normally con�gure and
access that hardware component directly, is trapped to the hypervisor of the Non-secure World.
To be able to transfer data from the rich operating system to the hypervisor, we added a memory
trap to the hypervisor con�guration and additionally implemented an smc-basedWorld Switch,
which uses shared memory locations to transfer data to and from the TrustZone.
To put our prototype implementation in perspective, the modi�cations to the existing Genode

components, such as core, tzvmm, or vmm, only amount to a few hundred lines of code per
component as shown in Table 9.2. ¿e reason for that is the fact that most of the protocol is handled
by the TPM 2.0 simulator, which we extracted from the speci�cation and has about 40 KLOC, and
the VMMs in the Secure and Non-secure World. ¿e rest of the system uses mechanisms, such as
IPC and shared memory, which are part of the microkernel-based system provided by Genode.

Component Original Size Di�erence Total

core (Secure World) 17572 + 215 + 1,2% 17787

tzvmm 651 + 956 + 146,9% 1607

tpm2sim 0 + 40469 + 100,0% 40469

↰tpm2sim_server 0 + 305 305

↰tpm2sim_libplatform.lib.so 0 + 448 448

↰tpm2sim_libCryptoEngine.lib.so 0 + 5501 5501

↰tpm2sim_libTPM.lib.so 0 + 22258 22258

↰include and tpm/include 0 + 11957 11957

core (Non-Secure World) 17572 + 154 + 0,9% 17726

vmm 1132 + 698 + 61,7% 1830

Table 9.2: Code size of relevant native components (calculated with cloc [Dan16])
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

9.5 Informal Security Analysis
In this security analysis, we discuss the key security aspects of our protocol. Since our proposed
protocol combines data access and integrity protection with an implicit attestation, we �rst focus
on the integrity of the data, which is transmitted from the prover to the veri�er. A er that, we
discuss the security of our policy-based implicit attestation mechanism in detail.

9.5.1 Security of the Data Access and Integrity Protection

In our protocol, the access to the devices is protected by the prover’s TEE and the TPM, which
provides the NV index NVaccess to enable access to speci�c devices. Without setting the bit in
NVaccess, the corresponding device is considered disabled and the TPM prevents the prover from
loading the veri�er’s integrity key Kint. In addition, NVgranularity prevents access that is too detailed.
To protect the integrity, the prover’s TPM calculates a message authentication code over the data,

e.g., from a sensor, using the shared HMAC key Kint. ¿is key, which is created and controlled
by the veri�er, is encrypted and migrated from the veri�er’s TPM to the prover’s TPM during the
setup phase and can only be used inside those respective TPMs. ¿at way, an attacker is not able
to easily forge a correct HMAC for data with unauthorized modi�cation, because it is not able to
intercept the HMAC key, decrypt it, and use it in an arbitrary TPM. As a result, the attacker cannot
modify the data without detection, since the calculation of a valid HMAC requires access to the
integrity keys and the attacker is not able to create a convincible forgery without that key according
to our attacker model presented in Section 4.2.
In addition, please note that the identity of the prover is implicitly included in the HMAC if

the veri�er creates a distinct key for each prover. More precisely, since the HMAC key, which has
been created for a particular prover, is duplicated specifying the public key of that prover’s Kp,
the HMAC key is cryptographically bound to the identity of that prover and its TPM. Similarly,
the AES encryption key, which is used during duplication, is also cryptographically bound to the
prover’s Kdec, which is �xed to the 𝒫 ’s TPM and, thus, cannot be migrated to an arbitrary TPM.
Furthermore, our protocol includes a nonce for freshness, which has to be checked by the veri�er

to make sure that the HMAC has been generated for the most recent request. For an adversary, the
veri�cation of the nonce eliminates the possibility to replay old data, which has been protected with
a correct HMAC, but for data that is potentially no longer valid. ¿is is particularly relevant for
devices, such as a heartbeat sensor, where the veri�er must be able to detect a replay attack, where
an attacker (or even the prover) might try to convince the veri�er that the system still functions
without any downtime or anomalies. Another example of such devices are �re detectors, which
most of the time create very similar data that o en include the current temperature, or rotation
sensors, which track the current speed of centrifuges or turbines. If an attacker was able to replay
old data, a compromised system might be able to pretend that is functions as speci�ed, which
enables the attacker to hide from detection.
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Informal Security Analysis Section 9.6

9.5.2 Security of the Policy-based Implicit Attestation Mechanism

For a successful policy-based implicit attestation, the prover must create a valid HMAC for the data
produced by a hardware device and a nonce provided by the veri�er. To create a correct HMAC,
the prover needs to load the HMAC key Kint into the TPM 2.0, which veri�es the attached policies
and implicitly creates veri�able cryptographic proof for the trustworthiness of the prover’s system.
As a consequence, the HMAC not only enables the veri�er to evaluate the integrity of the data and
detect unauthorized modi�cations, but also to reason about the prover’s system state, because the
veri�er can trust in the fact that the TPM enforces the speci�ed policies, in particular for Kint.

Control of the Integrity Key Kint used for the Implicit Attestation

In our attestation protocol, the veri�er creates and controls the integrity key Kint, which means the
veri�er is the only one that is able to de�ne the policies, which have to be satis�ed by the prover.
¿at allows the veri�er to specify, for example, the exact PCR values, which we assume re�ect a
known/trusted platform con�guration, particularly the microkernel-based systems in Secure World.
Since the authentication value Authint for the key Kint is only known to the veri�er, which controls
the key and its policies, the prover (or an attacker) cannot change the policy at a later point in
time. However, the prover is able to de�ne policies for the parent key Kp, which enables the prover
to restrict access to certain data sources as described in the previous section. Furthermore, the
policies for Kp can indirectly a�ect the capability to load the integrity key Kint, which is by design
and enables the prover to limit the access to devices and extract integrity protected data using
policies enforced by the TPM 2.0 and the microkernel-based system in the hardware TEE.

Evaluation of the Policies for the Attestation

During the attestation, the prover’s policies are evaluated �rst. If the policies cannot be satis�ed, the
veri�er does not get access to a device, which e�ectively allows the prover to limit access to devices.
However, if the prover’s policies can be met, the policies de�ned by the veri�er, which include at
least a trusted set of PCR values, are evaluated before the HMAC for the device data is calculated.
At this point, it is important to note that the policies are not veri�ed by the operating system, as it
is usually the case in policy-based authorization schemes. In our protocol, the policies are instead
veri�ed by the TPM, which also moves the point of enforcement inside the TPM. Consequently, a
successful attestation is only possible if the TPM ensure that policies are satis�ed, which means, for
example, that the prover’s system is in a trustworthy state as re�ected by the PCRs. If the prover or
any attacker has modi�ed the system, the �nal policy of the veri�er cannot be met and the prover is
not able to load the HMAC key Kint on behalf of the veri�er. As a result, the prover cannot protect
the integrity of the data and the attestation eventually fails, because the veri�er does not receive a
fresh and valid HMAC.
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Chapter 9 Policy-based Implicit Attestation and Data Integrity Protection

9.6 Summary
In this chapter, we extended our implicit attestation mechanism, which mainly relies on symmetric
cryptographic operations rather than digital signatures, and presented a policy-based implicit
attestation for microkernel-based systems, which feature virtualization, a TPM 2.0, and a TEE.
By combining the TPM 2.0 with a microkernel-based system in the TEE, our implicit attestation
mechanism allows for the integration and veri�cation of policies that are enforced by the TPM.
In addition, since the prover and veri�er have to cooperate for our proposed attestation protocol,
our mechanism enables a secure data access scenario, where the prover (as the data provider) can
specify its own usage policy for data sources, such as sensors.
In detail, our policy-based approach enables the veri�er to create a key, which is used for

integrity protection, and cryptographically bind a policy, which speci�es the characteristics of a
trustworthy system, to that key. For a successful attestation, the prover is expected to use that key
to protect the integrity of the requested data from a virtualized hardware component, such as a
sensor. Consequently, the veri�er can implicitly evaluate the trustworthiness of the prover’s system,
whenever it accesses a virtualized device and the requested data is protected with the key, which
has been bound to an attestation policy.
As a result, our approach enables the veri�er to not only ensure that the data requested from a

virtualized device has not been modi�ed, but also to implicitly verify the integrity and trustworthi-
ness of the prover’s system. In addition, our attestation mechanism enables the prover to specify
policies, which have to be satis�ed by the veri�er. Consequently, the prover and the veri�er have
to cooperate, which allows for the enforcement of access control rules by the prover as well as the
remote attestation constraints by the veri�er. In combination, this mechanism enables secure data
access as described in Scenario 4 (Secure Data Access).
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10
Conclusion

Based on existing research, concepts, and technologies, such as Trusted Computing, which aim
to improve security, we explored in this thesis if there exist lightweight mechanisms to attest the
trustworthiness of resource-constraint embedded devices, which do not rely on digital signatures
and extensive measurement logs. In contrast to traditional remote attestation as speci�ed by the
Trusted Computing Group, we researched and developed a novel implicit attestation mechanism
that mainly uses e�cient symmetric cryptographic operations instead of asymmetric cryptography.
As a result, our lightweight attestation method relies on hash-based message authentication codes,
which e�ectively embody the cryptographic evidence for the trustworthiness of a remote system
and ideally reduce the size of the attestation result by an order of magnitude.

To explore possible applications, we focused our research on the question how to integrate our
implicit attestation mechanism into existing authentication protocols and improve the security of
typical secure access scenarios. First, we discussed the remote attestation of mobile baseband stacks,
which are an interesting attack target, because they are usually privileged so ware components
running on the baseband processor of a mobile device and interact via the baseband hardware with
the mobile network. In this secure network access scenario, we showed that our implicit attestation
mechanism can be used to attest the trustworthiness of the baseband stack towards the USIM,
which can integrate the attestation result into the authentication protocol of the mobile network.
As a result, our research provides a lightweight mechanism for attesting a mobile baseband stack,
which enables the mobile network to grant access based on the attestation result and to protect the
network against coordinated attacks, such as DDoS attacks, by compromised mobile devices.
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Chapter 10 Conclusion

By shi ing the focus of our research to the application processor domain, we then explored the
possible use of the implicit attestation mechanism in our microkernel-based system architecture,
which evolved during the course of this thesis. For our secure loading scenario, we started by
adopting the main ideas and concepts of IMA, which is only available for Linux, to a microkernel.
Microkernels are less complex than monolithic kernels, hence reduce the TCB, and strictly separate
microkernel tasks, such as the integrity measurement components, from the rest of the system. For
the microkernel-based system, we proposed a secure loading protocol, which integrates a version
of our implicit attestation and enables local attestation through an integrity challenge protocol.
Based to those results, we further discussed the secure update and recovery of compromised

microkernel tasks based our implicit attestation mechanism. More precisely, we show how our
mechanism can be used to attest multiple separated microkernel tasks with their own cryptographic
context in a multi-context HSM. By providing separate cryptographic contexts, which can store
integrity measurements and events generated by an anomaly detection component, for each mi-
crokernel task, we demonstrate the bene�ts of our hash-based implicit attestation mechanisms in
comparison to traditional remote attestation, which relies on digital signatures.
Finally, for the secure data access scenario, we extended the design of our system architecture

with a hardware TEE. In the resulting architecture, we were able to integrate our implicit attestation
mechanism into a second trusted microkernel-based system in the TEE equipped with a TPM 2.0.
As a result, we demonstrated that our implicit attestation mechanism can bene�t the veri�er as well
as the prover, because both parties can specify policies which are enforced the TPM 2.0.

Conclusions Drawn

In short, the following conclusions can be drawn from the research conducted for this thesis:

• Remote attestation as speci�ed by the TCG is not always suitable for resource-constraint
embedded devices, because it relies on digital signatures and extensive measurement logs.

• With a TPM, symmetric cryptography can be used to implicitly attest the trustworthiness of
the prover’s system towards a veri�er.

• As a lightweight attestation mechanism, implicit attestation can ideally reduce the size of
cryptographic proof by an order of magnitude in comparison to TCG-based attestation.

• Implicit attestation can be used to attest mobile baseband stacks running on the baseband
processor towards the USIM and the mobile network by integrating the attestation result
into the authentication protocol.

• Since microkernels are less complex, reduce the TCB, strictly separate integrity veri�cation
components, and can also acts as very small hypervisors, e.g., for rich operating systems,
microkernel-based systems are ideally suited for implicit attestation, in particular because of
their stable con�guration.
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Outlook and Future Research Possibilities
As embedded systems, especially mobile and IoT devices, become ubiquitous and continue to gain
new hardware and so ware features, the complexity and code base of such systems are likely to grow,
which in turn increases their attack surface and, consequently, the probability of a successful attack.
¿erefore, it is going to be critical and imperative to more e�ectively harness existing security
concepts, components, and mechanisms, such as a resilient system architecture based on a robust
microkernel, a security module like a TPM, and cryptographic protocols like remote attestation.
Furthermore, there is a tremendous research opportunity to more intrinsically combine those strict
security technologies and “unambiguous” cryptographic mechanisms with more “fuzzy” concepts
likemachine learning, especially anomaly detection.
One of the many possible research questions could be how to handle classi�cation errors by

an imperfect model and translate the fuzzy results of anomaly detection algorithms to conclusive
cryptographic protocols. In terms of security, future research might also focus on the question how
a model of an anomaly detection component can be protected against potential attacks by using
a hardware security module. While there exists a wide range of related work on protecting the
accuracy and validity of a model, security researchers could explore hardware-based mechanisms
to verify the integrity of a model, which might then in turn be reported using remote attestation
protocols.
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AES AES, the Advanced Encryption Standard, is a speci�cation for the crypto-
graphic encryption of data established by the National Institute of Stan-
dards and Technology (NIST) in 2001. . . . . . . . . . . . . . . . . . . . . . . . . . 165

API An Application Programming Interface is a speci�ed set of functions that
a so ware program can use to access services and resources provided by
another so ware that implements that API . . . . . . . . . . . . . . . . . . . . . . 37

Fiasco.OC Fiasco.OC is a 3rd-generation µ-kernel (microkernel) that implements
the object-capability (OC) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Genode Genode is a novel OS architecture that is able to master complexity by
applying a strict organizational structure to all so ware components in-
cluding device drivers, system services, and applications. ¿e Genode
OS framework is the e�ort to advance the Genode OS architecture as a
community-driven open-source project [Gen17] . . . . . . . . . . . . . . . . . 37

HYP ¿e additional privileged CPU mode provided by ARM’s Virtualization
Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

KDFa ¿e TPM 2.0 uses a hash-based function, KDFa(), to generate keys for
multiple purposes. With the exception of Elliptic Curve Di�e-Hellman
(ECDH), KDFa() is used in all cases where a KDF is required. KDFa()
uses Counter mode from SP800-108 [Che09], with HMAC as the pseudo-
random function (PRF) [Tru16, Part 1, Section 11.4.9]. . . . . . . . . . . . . 19

KLOC Unit denoting thousands of lines of code – A metric used to measure the
size of a computer program by counting the number of lines in the source
code of a so ware program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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L4Android ¿e (para-)virtualized Android for L4/Fiasco.OC. . . . . . . . . . . . . . . . 107
L4Linux ¿e (para-)virtualized Linux for L4/Fiasco.OC. . . . . . . . . . . . . . . . . . . 42

MLOC Unit denotingmillions of lines of code – A metric used to measure the size
of a computer program by counting the number of lines in the source
code of a so ware program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ProVerif ProVerif is an automatic cryptographic protocol veri�er, in the formal
model (so called Dolev-Yao model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

SHA-1 SHA-1 is a cryptographic hash function published in 1993 by the NIST
under the title Secure Hash Standard (FIPS PUB 180) . . . . . . . . . . . . . 14

SHA-2 SHA-2 is a cryptographic hash function published in 2001 by the NIST
under the title Secure Hash Standard (FIPS PUB 180-4) . . . . . . . . . . . 15
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