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Defense of attempted infection depends on the host’s ability to sense invading pathogens and
rapidly activate immune responses. Pathogens, in turn, use a repertoire of evasion strategies
and virulence factors to circumvent the host’s surveillance and defense systems. Lipopolysac-
charide (LPS), a complex glycolipid covering the cell surface of gram-negative bacteria, is a vir-
ulence factor shielding bacteria from adverse host environments and is sensed by animal as
well as plant immune receptors [1,2].

LPS Structure and Function

LPS consists of three functionally distinct domains (Fig 1A) [3]: the lipophilic lipid A (LA), a
di-glucosamine carrying four to seven fatty acids (FAs), is linked to an oligosaccharide core
region that mostly carries an O-polysaccharide (OPS) consisting of a variable number of oligo-
saccharide repeats. OPS composition is highly diverse among bacterial species and strains. The
FA pattern on the LA, as well as phosphorylation and other modifications on the LA, core oli-
gosaccharide, or OPS, can also differ considerably. Thus, LPS structures vary substantially
between bacterial species, likely due to adaptation to different environments and lifestyles, but
also a single bacterial cell envelope comprises a mixture of different LPS variants with remark-
able size and structural heterogeneity (Fig 1A) [2,3]. The primary stability and barrier functions
of LPS are conferred by the rather conserved inner core-LA region [2]. Cross-linking of nega-
tive residues of the inner core and LA backbone through divalent cations (Mg>*/Ca’") facili-
tates tight LPS packing, which is fundamental to bacterial outer membrane (OM) rigidity and
low permeability (Fig 1A) [3]. The OPS chains are involved in adhesion processes and protect
bacteria from hostile environments, e.g., host antibacterial agents, thereby promoting virulence
[3]. Bacteria lacking OPS or negative core charges are generally non-virulent and cannot sur-
vive within animal or plant hosts [2,4].

Perception of Molecular Patterns—A Common Concept of Animal
and Plant Innate Imnmunity

Both animals and plants recognize evolutionary conserved pathogen-associated (PAMPs) and
host-derived damage-associated molecular patterns (DAMPs) through germline-encoded pat-
tern recognition receptors (PRRs) [1,5-9]. Bacterial cell surface components such as LPS, pep-
tidoglycan, and flagellin are typical PAMPs, as they are vital for microbial survival and
common to whole microbial classes [6-8].

In mammals, PAMPs are sensed by different classes of PRRs, e.g., the Toll-like receptors
(TLRs), located on the cell surface, in endosomes, and the cytosol, and trigger inflammatory
responses (Fig 1B) [5-7]. In addition to this innate immune system, vertebrates evolved an
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Fig 1. Scheme of LPS structures of gram-negative bacteria (A) and the currently known LPS sensing
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systems in humans and cruciferous plants (B). A. LPS structure showing a representative core region and LA
from Escherichia coli K12 and Pseudomonas aeruginosa. The typical enterobacterial LA consists of a di-

phosphorylated di-glucosamine with four primary and two secondary FAs (all C12/14) attached in an asymmetric
fashion [3]. Pseudomonas spp. mostly produce penta-acylated and symmetrically hexa-acylated LA with shorter

fatty acids (C10/12) [36]. The FAs are embedded in the OM, and the di-glucosamine is linked to the core
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oligosaccharide composed of about ten monosaccharides, which is conceptually subdivided into the rather variable
outer core and the more conserved inner core region that usually contains heptose and the LPS-specific
monosaccharide “Kdo” [3,36]. Often, an OPS consisting of repetitive units composed of several monosaccharides is
attached to the core region. Dotted/grey lines indicate non-stoichiometric substitutions. Structures according to
[36,37]. Abbreviations: Ara4N, 4-amino-4-deoxy-L-arabinose; Cm, carbamoyl; Etn, ethanolamine; Gal, galactose;
GalN, galactosamine; Glc, glucose; GIcN, glucosamine; Hep, L-glycero-D-manno-heptose; Kdo, 3-deoxy-D-manno-
oct-2-ulosonic acid; P, phosphate; Rha, L-rhamnose. B. In humans (left panel), LPS is sensed by differentimmune
cells through different extra- and intracellular receptors [14]. LPS is disaggregated from the bacterial membrane by
the serum protein LBP and transferred to CD14, which occurs as a soluble (sCD14) and membrane-linked (mCD14)
version. Dependent on the cell type, CD14 can trigger LPS signaling itself, such as calcium signaling and activation
of NFAT transcription factors in dendritic cells, or further transfers LPS to the membrane-resident TLR4/MD-2
receptor complex. LA binding to a preformed TLR4/MD-2 hetero-dimer leads to association with another TLR4/MD-
2-dimer and initiates intracellular signaling. Depending on the cellular localization (at the plasma membrane orin
endosomes upon CD14-dependent endocytosis), TLR4/MD-2/LPS complexes activate production of either
interferons or cytokines through distinct signaling adapters (TIRAP/MyD88 or TRIF/TRAM) [14]. Intracellular LPS
leads to oligomerization of caspase-4, activation of the non-canonical inflammasome and pyroptotic cell death [19].
In plants (right panel), the bulb-type lectin S-domain-1 RLK LORE (LipoOligosaccharide-specific Reduced
Elicitation) was identified as the first LPS receptor component in plants and mediates sensitive perception of
Pseudomonas LA [30]. If and how LPS is processed in the apoplast to make the membrane-embedded LA
accessible for receptor binding, if LA directly binds to LORE or to an LPS-binding co-receptor and how the receptor
complex and downstream signaling is activated, is yet unknown. In analogy to other SD-RLKs, LORE presumably
forms dimers and is activated through mutual phosphorylation by the cytosolic kinase domain [38]. Taken together,
both mammals and plants sense LA as pathogen-associated molecular pattern (PAMP) but with distinct epitope
specificities and through different types of receptors.

doi:10.1371/journal.ppat.1005596.9001

adaptive immune system employing highly specific antibodies produced through somatic gene
rearrangements and clonal selection [6]. In plants, sensing of PAMPs and DAMPs by their
respective PRRs induces a common set of signaling and defense responses known as pattern-
triggered immunity (PTI) (Fig 1B) that results in local as well as systemic resistance [8,10,11].
All plant PRRs known to date reside on the cell surface and mostly are receptor-like proteins
(RLPs) or receptor-like kinases (RLKs) [9]. These gene families have greatly expanded in plants
compared to mammals, indicating a greater PAMP sensing capacity, possibly to compensate
for the lack of adaptive immunity [10]. In contrast to mammals, no cytoplasmic microbial
pathogens (except viruses) were observed in plants so far [12].

PAMP sensing is an integral part of animal and plant immunity. Downstream signaling and
defense responses show conceptual similarities and share some molecular modules, but there
are also substantial differences owing to the different organization of animals (specialized
immune cells) and plants (nearly all cells capable of immune responses) [10-13]. Apparently,
PAMP perception evolved independently in both kingdoms, as supported by sensing of distinct
flagellin epitopes through different PRRs in plants and mammals [1,13].

LPS Sensing in Mammals and Plants—Emerging Parallels but
Distinct Specificities

In mammals, all LPS domains contribute to immune recognition (Table 1). OPSs trigger anti-
body production in the adaptive immune system which causes a selective pressure leading to
extensive OPS diversification [2]. The LA domain is recognized in picomolar concentrations as
PAMP by the innate immune system through different extra- and intracellular LPS sensors
and induces inflammation (Fig 1B) [7,14]. Upon LPS binding, the TLR4/MD-2 (myeloid differ-
entiation factor-2) complex triggers expression of pro-inflammatory mediators [14-17]. LPS
binding to TLR4/MD-2 is facilitated by an LPS transfer cascade involving the serum protein
LPS-binding protein (LBP), which extracts LA from the bacterial membrane, and the glycopro-
tein CD14 [18]. CD14 can also trigger LPS signaling independent of TLR4/MD-2 [14]. Cyto-
solic LPS/LA is further sensed through LPS-mediated activation of non-canonical
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Table 1

OPS

Core

region

LA

. Prominent examples of functions of the different LPS domains in mammalian and plant immunity *.

Mammals Plants

Strongly antigenic in adaptive immunity; classification of bacterial Synthetic oligo-rhamnans (50-100 pg/ml) and Burkholderia OPS (50—
strains according to serotypes [2,36]. Important for survival within 100 pg/ml) induce defense gene expression in Arabidopsis [24,28].

the host and virulence [2,3,21].

Important for survival in plant tissue and virulence [4,29].

P. aeruginosa LPS is specifically internalized through its outer core  Xanthomonas core oligosaccharides (20-50 pg/ml) induce defense

oligosaccharide by cystic fibrosis transmembrane conductance responses in Arabidopsis and tobacco [25,26,29].

regulator [39].

Typical enterobacterial LA is sensed as PAMP via TLR4/MD-2, Pseudomonas/Xanthomonas LPS/LA (0.5-25 pg/ml) is sensed as
CD14, and non-canonical inflammatory caspases and triggers PAMP via LORE in cruciferous plants and induces pattern-triggered
inflammation [14,17,19]. Other LA structures (depending on the immunity (PTI) [30]. LPS/LA (20—100 pg/ml) from diverse bacterial
acylation and phosphorylation pattern and other modifications) are species (including Pseudomonas, Xanthomonas, E. coli and

only weak agonists or even antagonists of TLR4/MD-2 signaling Burkholderia cepacia) induce defense responses in Arabidopsis,
[3,17,20,33]. tobacco, and rice [22,23,26—29,31]. By contrast, [25] do not observe

defense responses to Xanthomonas LA in tobacco.

*A comprehensive literature overview about plant LPS responses is available in [4,29]

doi:10.1371/journal.ppat.1005596.t001

inflammatory caspases (Fig 1B) [19]. Ultimately, LPS induces an array of defense responses
such as activation of phagocytes and production of pro-inflammatory cytokines and interfer-
ones and antimicrobial peptides [6,7,14]. An exaggerated immune reaction to LA, also termed
endotoxin, can result in sepsis and life-threatening septic shock [3,14]. In humans, enterobacte-
rial LPS is the most potent activator of the TLR4/MD-2 and the caspase pathway, whereas
Pseudomonas LPS is only a weak agonist because of structural differences within the LA (Fig
1A) [19-21].

LPS from different bacterial species also induces defense responses in various plant species,
possibly through sensing of distinct epitopes by different perception systems (Table 1) [4,22-
29]. The model plant Arabidopsis thaliana, for instance, responds with nitric oxide production,
defense gene expression, and induced resistance to LPS from different bacteria, including Bur-
kholderia cepacia, Xanthomonas campestris, Pseudomonas spp., and Escherichia coli
[22,26,28,29]. Studies on plant LPS responses are difficult to compare (Table 1) [4,29], as differ-
ent LPS preparations were used in different concentrations on diverse plant species. LPS can-
not be synthesized but is extracted from complex bacterial cultures. This raised concerns about
possible highly active contaminations in LPS preparations [1]. Isolated LPS might also cause
unspecific stress to plants with increasing concentrations because of its amphiphilic nature. As
LPS-sensing systems in plants remained genetically unidentified, these issues could not be
undoubtedly resolved. Recently, however, it was found that the RLK LORE (LipoOligosacchar-
ide-specific Reduced Elicitation), which belongs to the plant-specific class of bulb-type lectin S-
domain-1 kinases (SD-RLKs), mediates sensitive perception of Pseudomonas and Xanthomo-
nas LPS as PAMP in the model plant A. thaliana and other crucifers triggering typical PTI
responses [30]. LORE loss-of-function mutant plants are insensitive to Pseudomonas and
Xanthomonas LPS and hypersusceptible to P. syringae infection. Transient expression of LORE
in LPS-insensitive tobacco plants confers LPS sensitivity, demonstrating a key function for
LORE in sensing LPS. Chemical isolation of LA from P. aeruginosa LPS further proved that LA
alone is sufficient to induce LORE-dependent PTI [30]. If LA directly binds to LORE, however,
remains yet to be shown. Perception of the membrane-embedded LA might further require dis-
aggregation from the bacterial membrane through unidentified LPS-binding plant proteins
similar to those in mammals.

LORE specifically senses Pseudomonas and Xanthomonas but not the typical enterobacterial
LPS, e.g., of E. coli [30]. Thus, both mammals and plants evolved to sense LPS via its LA
domain, but, apparently, the detected epitopes are structurally distinct. Future studies will
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reveal which structural LA features determine the specificity of LORE-mediated LPS sensing in
plants. Current data hint to an important role of the LA acylation pattern and phosphorylation
[26,30,31]. As LORE does not detect enterobacterial or B. cepacia LPS, previously observed
responses of A. thaliana to LPS from these species [22,28,29] cannot be mediated via LORE. It
will be interesting to see, in the future, if other plant LPS immune sensors also target LA or
other LPS epitopes and if they show a similar LPS recognition specificity as LORE.

Interestingly, plants possess several of the canonical LPS biosynthesis genes and produce LPS
precursors resembling enterobacterial LPS, but their function is yet elusive [32]. Nevertheless,
this might indicate a necessity for plants to evolve perception of a different, truly microbe-spe-
cific, LPS substructure to avoid auto-immunity against endogenous LPS-like compounds. Despite
conceptual analogies, LA sensing with distinct epitope specificities in animals and plants through
structurally unrelated receptors [14,17,19,30] further substantiates that plant and animal PAMP
sensing evolved independently but might converge on predestined PAMP targets.

LPS Remodeling in Host Adaptation—A Common Bacterial
Virulence Strategy?

Many bacterial pathogens employ LPS structure alterations, either constitutive or through
dynamic modifications, to adapt to changing environments and to avoid immune recognition
[33]. According to different lifestyles, LPS modifications vary greatly between bacterial species
but mostly affect the LA and inner core [33]. Negative LA/core charges are crucial for OM stabil-
ity and LPS-TLR4/MD-2 interactions. They are targeted by host-derived cationic antimicrobial
peptides (CAMPs), an ancient defense mechanism of vertebrates and plants, to interfere with
LPS cross-linking [3,20,33]. Bacteria can mask negative LA/core charges by attaching cationic
moieties resulting in increased CAMP resistance and impaired TLR4/MD-2 immune sensing
[33]. Thus, plant-pathogenic bacteria may also deploy LPS modifications as a virulence strategy
to enhance resistance to antibacterial host compounds and to interfere with immune detection.
The common sensing of PAMPs such as flagellin or LPS by plants and animals allows pathogens
to deploy similar virulence strategies to colonize animal as well as plant hosts [12,34].

Conclusion

LPS has important functions in host-bacteria interactions, from shielding bacteria against
adverse environments to host immune sensing [1,2], which are exerted by specific LPS part
structures that can additionally be modified for adaptation to changing environments encoun-
tered during host colonization [20,33]. Studies on LPS structures and functions in plants, as
well as the underlying genetic repertoire of plant-associated bacteria, will shed light on the evo-
lutionary forces driving the recognition of the LA domain with distinct structural preferences
as PAMP in animals and plants. On the practical side, understanding LPS immune sensing and
LPS virulence functions of economically important plant pathogens, e.g., Pseudomonas,
Xanthomonas, Erwinia, Ralstonia, or Xylella [35], will help to develop antibacterial tools and to
improve disease resistance in crop plants in the future.
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