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Zusammenfassung

Die bestehende Praxis in der So wareentwicklung für Serviceroboter ist vergleichbar mit der
Kunst des Handwerks: Sie erfordert viel Erfahrung, großes Systemwissen und Ein�uss auf al-
le Schichten des Systems und seiner Teile. Die Teile bestehender Systeme können nur schwer
herausgelöst und durch Dritte als Baustein wiederverwendet werden, da die ursprünglich ge-
tro�enen Annahmen und Eigenscha en in der neuenUmgebung nicht mehr zutre�en. Für ihre
Wiederverwendung müssen sie angepasst oder neu entwickelt werden. Die entstehenden Auf-
wände und Kosten stehen jedoch im Widerspruch zu kundenspezi�schen Systemen wie sie in
der Servicerobotik notwendig sind. Als interdisziplinäres Fachgebiet ist es für die Servicerobotik
deshalb unverzichtbar, So warebausteine von Dritten ohne Aufwand �exibel zusammensetzen
zu können, um so die e�ektive Interaktion verschiedener Experten zu ermöglichen.

Ziel dieser Arbeit ist es, die So wareentwicklung in der Servicerobotik zu verbessern, indem
der Schritt von der manuellen Integration hin zum systematischen Konstruieren von So ware
durch Zusammensetzen erzielt wird (engl. “System Composition”). Das Zusammensetzen er-
möglicht die Zusammenarbeit und die Interaktion von Experten in einem So ware-Ökosystem
für die Robotik. Dieses Ziel wird durch drei Beiträge erreicht. Erstens verbessert diese Arbeit
die Zusammensetzbarkeit von So warekomponenten, damit diese als Bausteine genutzt werden
können. Dazuwerden relevante syntaktische und semantische Informationen systematischmo-
delliert. Bisher sind diese Informationenmeist innerhalb der Bausteine versteckt.Zweitens führt
die Arbeit einen zugehörigen Entwicklungsprozess ein. Er erlaubt es, Strukturen zu modellieren
und in Bausteinen zu nutzen, damit die Teilnehmer des Ökosystems Bausteine austauschen und
�exibel zu neuen Systemen kombinieren können. Dies wird durch eine strikte Rollentrennung
erreicht, um die Übergänge zwischen den Beteiligten zu organisieren. Drittens unterstützt der
Ansatzmit einer integrierten Entwicklungsumgebung die Beteiligten des Ökosystems in der Um-
setzung der Strukturen und leitet sie durch die Entwicklungsschritte. Die Arbeit beschreibt die
Organisation eines So ware-Ökosystems in drei Ebenen. Sie führt dazu eine modellgetriebene
Meta-Struktur ein, um mittels Service-De�nitionen domänenspezi�sche Strukturen basierend
auf serviceorientierten So warekomponenten zu beschreiben. Diese ermöglichen die Bereit-
stellung, die Auswahl und das �exible Zusammensetzen von So warekomponenten zu Syste-
men.

Der vorgestellte Ansatz wurde in einer Nutzerstudie ausgewertet und in diversen Projekten
mit einem breiten Anwendungsspektrum eingesetzt. Erkenntnisse dieser Arbeit trugen zur EU
Horizont 2020 Innovationsmaßnahme “RobMoSys” bei, welche an einer europäischen digitalen
Industrieplattform für die Robotik arbeitet.
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Abstract

In recent years, many service robotics applications have emerged. However, the way they are
being built resembles the art of cra ing. It requires a high level of system knowledge, control,
and in�uence on all parts and all levels of the system. ¿e parts of these existing systems are hard
to separate and to use in another system—particularly by third parties. Assumptions are made
for the original system that are not expressed and that do not hold true when used in a di�erent
environment. As a result, the development of service robots requires high e�ort in modifying
and adopting reused parts—or even rebuilding from scratch. ¿e resulting high e�ort and costs
are in contradiction with the high demand for small batch sizes of custom service robots. ¿e
reuse of third party so ware and e�ective collaboration among specialized players is therefore
a must for service robotics due to its interdisciplinary nature.

¿is thesis improves so ware development for service robotics. Its aim is to advance from
handmade cra ing and integration of so ware to systematic engineering of so ware based on
system composition in order to enable collaboration among di�erent experts in a service robo-
tics so ware business ecosystem. ¿is is addressed by three contributions. First, the approach
improves the composability of so ware components as building blocks. ¿e approach allows to
explicate and use syntactic and semantic knowledge that is relevant for composability but that
is typically hidden within building blocks. Second, the approach introduces a composition work-
�ow for establishing and using structures that manage the supply and use of building blocks.
It introduces the organization of an ecosystem in three composition tiers. ¿e work�ow ap-
plies separation of roles via freedom from choice to manage the interfaces between the involved
ecosystem participants. ¿ird, the approach provides an integrated development environment
(IDE) that supports and guides users in adhering to the proposed structures and work�ow. ¿e
approach introduces amodel-drivenmeta-structure based on service-oriented so ware compo-
nents to establish domain-speci�c structures. ¿ey are based on “service de�nitions” that enable
supplying, selecting, and using so ware components for system composition in an ecosystem.

¿e approachwas successfully applied in several projects and activities to develop real-world
service robotics applications. It was evaluated in a user study as well. Insights of this thesis
contributed to the RobMoSys EuropeanHorizon 2020 project that works towards an EUDigital
Industrial Platform for Robotics.
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1
Introduction

Intelligent technology is becoming a part of our lives. ¿e border between amechatronic device
and an intelligent service robot is vanishing. A service robot1 is an autonomous system that
performs useful tasks for humans [Int12] in a shared environment. We can soon expectmore and
more service robots to enter our lives—for example, as co-workers or as household assistants,
as well as farming, delivery, and logistics robots.

So far, research in service robotics is a relatively young discipline that is focused primarily
on solving particular technical challenges or problems. ¿ese are related to the basic func-
tionalities of a robot, such as solving Simultaneous Localization and Mapping (SLAM), motion
control, object recognition, and object manipulation, among others. Only as �rst solutions to
basic functionalities began to emerge, the focus recently began to shi to demonstrating com-
plete systems such as robots playing pool [NKH11] or fetching drinks [Boh+11]. ¿ese robots
were no longer demonstrating a basic functionality; rather, they were demonstrating a relevant
robot application in the real world. ¿ey were, however, still prototypes for technology demon-
stration.

As the focus shi s from individual technology demonstrations to the demonstration of com-
plete robot applications, this comes with a shi from individual technologies to a combination
of many di�erent technologies in a full robot. Given the interdisciplinary nature of robotics,
robotics is a science of integration (see [euR16]). One of the main e�orts in building a robot is
so ware development [HBK11, p. 339]. So, the combination and integration of individual tech-
nological contributions must be addressed particularly at the so ware level. ¿is is necessary in
order to developmethods and tools that push robotics to the next level via a step change [euR16].
Until recently, so ware development in robotics was considered a means to an end: It was car-
ried out as a sideline piece of work while focusing attention and e�ort on solving the technical

1“Robotics” and “robot” in this thesis generally refer to “service robotics” and “service robot”.

1



Chapter 1 I N T R O D U C T I O N

challenges of robot capabilities.
As a result, current practice in so ware development in service robotics resembles cra -

ing (Fig. 1.1). When cra ing robotics applications, the application is broken down into parts.
¿ese parts are solved individually at a lower level of complexity. ¿ere are implicit and explicit
agreements between the parts, as well as between the parts and the whole to which they belong.
¿ere is high control and in�uence on the individual parts of the developed so ware, which
allows managing these agreements. Reuse with existing so ware, such as past in-house or third
party developments, is made possible by shaping and modifying the so ware to integrate into
the system—for example, thanks to open source so ware. ¿is is illustrated in Fig. 1.1. ¿ere is
an analogy with the jigsaw puzzle (see also section 3.1.1): Sawing the wooden plate apart pro-
duces many pieces where only two of them will �t together (e.g. A and B, Fig. 1.1). To build a
jigsaw puzzle, one literally �rst requires the overall picture to be painted on the wooden plate.
Only then can it be sawed apart. Connecting two arbitrary pieces would require modi�cation
or adaptation (e.g. connecting X with C and B, Fig. 1.1).

A

C

B

D Y

X

?

?
!

€€€€€

A

C

B

effort required!

Figure 1.1: Current practice in software development in service robotics resembles crafting. A puz-
zle is an adequate analogy.

Handmade cra ing has been su�cient so far for prototypes and technology demonstrations
of a basic functionality. However, it is not su�cient in the long term, where more and more
robotics applications shall be available as commercial products. At present, even slight changes
in the application’s requirements lead to huge development e�orts when developing a robo-
tics application (Fig. 1.2). ¿is is because the parts are carefully woven together. Ripping the
so ware apart for reuse in another robotics application—or even exchanging parts in the exist-
ing application when requirements change—results in extraordinarily high integration e�orts
since standardized interfaces are missing and agreements that were taken for granted no longer
hold in the new environment. Furthermore, when exchanging pieces of the robot application,
it is not clear what is a potential replacement (e.g. Fig. 1.1: choose X or Y as a replacement for
D?). More e�ective and cost-e�cient ways to build and modify the so ware of service robots
are needed in order to lower the huge costs of service robots, which are sold in low quanti-
ties. Especially Small and Medium-Sized Enterprises (SMEs), which have a high potential for
innovations, would bene�t from that.

Exchange, collaboration, and the use of the knowledge and development results of others are
mandatory for robotics as an interdisciplinary �eld. However, even robotics experts �nd it hard
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Figure 1.2: The relation of changes to development e�orts. Even slight changes in the application’s
requirements lead to huge development e�orts (red curve). However, the e�orts and
cost should be in relation to changes. It is even desirable to reduce the overall e�ort by
composing from existing building blocks.

to select third party so ware such that it suits their needs and such that it integrates into the
application without breaking system consistency. Given this situation, how should companies
from non-robotics domains with promising robotics use-cases access and make use of robotics
technology? Robotics would bene�t from new domains that make use of robotics technology
[euR13]. ¿e limited access to robotics so ware solutions hinders the �exible combination of
existing solutions. But being able to combine is an enabler for new innovations. Advancing
from �xed value-chains to �exible value-networks— as is common in other domains—remains
an unused potential for service robotics.

To cope with the complexity, the interdisciplinarity, the e�orts and costs, the lack of access
to robotics so ware, and the lack ofmeans for collaboration, robotics has tomake the step change
from handmade cra ing and integration to a systematic engineering approach based on compo-
sition. A compositional approach in the context of a so ware ecosystem allows a much better
separation of roles and separation of concerns to address these issues.

In a composition-oriented approach (Fig. 1.3, right), so ware building blocks can be used
in an “as-is” manner. ¿ey can be combined and re-combined to form new applications with
low e�ort depending on the application’s needs. ¿is should be as easy as building with plastic
Lego blocks for children. Any two pieces can be put upon each other at much simpler com-
plexity: �exibly combining, re-combining, and exchanging the pieces as needed. Composition
is a �exible approach for building applications from existing parts. ¿ese existing parts adhere
to superordinate structures (e.g. standardized interfaces) and means for con�guration from the
outside but without modifying the building block itself.

An ecosystem is a collaboration model [BB10; IL04] that describes the many ways and ad-
vantages in which experts from various �elds or companies can collaborate around a domain or
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Figure 1.3: The thesis addresses the step change from integration by handmade crafting to system-
atic engineering of software based on system composition in an ecosystem.

product (Fig. 1.4). In an ecosystem, several participants collaborate, compete, and share e�orts
and costs by sharing building blocks (supplying and using building blocks, Fig. 1.4). ¿e “col-
laboration” of participants in an ecosystem refers to complementing each other, and to sharing
independent and self-contained development artifacts. Collaboration is not meant in the sense
of close collaboration as in working in a team and collaborative editing.

¿ere is no need for the participants of the ecosystem to know each other in order to nego-
tiate technical agreements. ¿ere should also be no need for an ecosystem-wide so ware devel-
opment process to manage these agreements. Instead of managing the collaboration through
so ware development processes, the interfaces between the involved participants and artifacts
should be managed by structures to which the contributions of the participants adhere. In-
troducing and adhering to such superordinate structures for system composition immediately
makes accessible all parts (own or from a third party) that adhere to the same structure. ¿e
collaboration between participants does not require strong bilateral interaction: ¿ey can work
in a distributed manner in time and space to supply or use a building block (Fig. 1.4). Such
structures are still missing for robotics. ¿e thesis contributes to this end.

¿e systematic engineering of so ware based on system composition in an ecosystem brings
several bene�ts (Fig. 1.5):

• Composition reduces e�ort and costs for new applications or when changing existing
applications. Components are instantly available and one can rely on parts that were de-
veloped by experts. ¿ese have a potentially better quality than components developed
in-house [Frö02].

• Composition allows one to access and bene�t from existing solutions. Knowledge of these
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Figure 1.4: A robotics business ecosystem and the collaboration of its main participants. Suppliers
provide building blocks for users to build robotics applications. The participants must
not know one another but must still be able to collaborate—i.e. they must complement
each other and share independent and self-contained development artifacts.

solutions immediately becomes available to others, opening up the possibilities to address
new applications that companies otherwise would be unable to address on their own due
to the lack of expertise. ¿is is a basis for robotics to open up for new domains. Further,
it forms the basis for advancing from a technology push to a use-case-driven technology
pull which can make robotics advance in the relevant domains and applications.

• Composition allows moving from value-chains to value-networks in which participants
can cooperate and collaborate �exibly. ¿is is of special interest to SMEs since it creates
the potential for specialization to �ll up niches in the market (see [Jan12]).

• Since composition simpli�es the combination of existing solutions and accessing them, it
provides a setting for new innovations: One of the drivers of innovation is the combina-
tion of existing technologies [Dör13; Wit12; euR13] in new ways or to form new applica-
tions.

• Improving the so ware development of service robots lowers costs and thus the price
of the end-product. Improving the way in which robots are built will also improve the
quality and the capabilities of the robot itself [euR13, p. 70].

¿is thesis proposes an approach to contribute to a step change in robotics so ware engi-
neering from integration and handmade cra ing of so ware to systematic engineering of so -
ware for service robotics. ¿is will enable the composition of building blocks to systems (thus
“system composition”) in a robotics business ecosystem. ¿is is achieved (i) by addressing com-
posability as the ability to �exibly combine and recombine a building block, (ii) by addressing
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Figure 1.5: The current situation in robotics (left) triggers the need for system composition as the
next step in software development for robotics (right) and the bene�ts of this step
change.

the composition work�ow to organize the activity of composition, and (iii) by providing sup-
port to users via model-driven tools which give access to the approach and which guide the
user through the approach (Fig. 1.6). ¿e thesis provides a Service De�nition Language (SDL)
(an Interface De�nition Language (IDL) for services) to standardize the services of so ware
components and to explicate information that is relevant for composition but usually remains
hidden or implicit. It provides means for component selection and introduces a model-driven
work�ow for system composition based on the principles of Service-Oriented Architectures
(SOAs) and Component-Based So ware Engineering (CBSE). It is illustrated by the example
of the SmartSo framework [Sch04a]. An outcome are contributions to the integrated Smart-
MDSD Toolchain that provides support for users and guides them through the composition
work�ow. ¿e toolchain has been applied in several research projects and activities, and was
used to develop the demonstrators that are presented in this thesis. ¿e demonstrators show
that it is possible to e�ectively build robotics applications in just a few hours. ¿is is possi-
ble thanks to the composition of existing building blocks from di�erent roles in an ecosystem
approach.

Insights from this thesis contributed to the RobMoSys European Horizon 2020 project that
is working towards an EU Digital Industrial Platform for Robotics. ¿e funding of RobMoSys
on EU-level underlines the relevance of a model-driven and composition-oriented approach
that is addressed by this thesis.

¿e remaining parts of this chapter describe the research questions that build the foundation
for this thesis. ¿e chapter then summarizes the approach and the contributions, and provides
the thesis outline. ¿e chapter closes with a list of (own) related publications.
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Figure 1.6: The research questions and approach of this thesis. Systematic engineering of software
for service robotics based on composition in an ecosystem is achieved by addressing
composability, a composition work�ow, and support for the separated roles.

1.1 Research Questions

¿e overall research question of this thesis is provided below:

How can so ware development for service robotics be improved in order to advance
from handmade integration and cra ing to systematic engineering of so ware based
on system composition in a so ware ecosystem?

In the overall vision of a so ware ecosystem for service robotics, various experts can collab-
orate and compete to exchange building blocks. Separation of roles is amandatory principle that
supports �nding adequate structures for system composition in an ecosystem (Fig. 1.6). Sepa-
ration of roles enables experts to work independently (separation in time and space). Applying
freedom from choice over freedom of choice provides support for realizing separation of roles:
freedom from choice positively limits the set of available options to gain composable structures
that allow bringing together (compose) the parts that are contributed by di�erent roles.

Performing the step change from cra ing and integration to system composition requires
addressing composability as the ability to �exibly combine and recombine a building block (so -
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ware component), to establish a composition work�ow to organize the activity of composition,
and to provide support to users via tools. ¿e overall research question is re�ned for each of
these three topics (Fig. 1.6):

1. How to improve the composability of building blocks (so ware components) such
that they not only �t together technically, but also work together in a meaningful way
in the overall application?

Composability is the ability to combine and recombine building blocks into di�erent systems
for di�erent purposes [PW03]. From the building block’s perspective, it is the property that
makes a “part” become a “building block”. ¿us, both the parts and the system that is formed
by these parts need to be addressed as basic prerequisites for system composition. Aspects of
composability exist among each of the components in a system. Aspects of composability also
exist among the application’s needs and the components meeting these needs. Composability
comprises syntactic aspects to put parts together at all (e.g. data types) as well as semantic
aspects (e.g. send or send–reply interactions) to put the parts together in a meaningful way (see
[PW03]). Both must be considered on the technical level (e.g. interface for localization) and
on the application-level (e.g. quality of localization). All these aspects need to be considered to
ensure that systems composed from individual components work as intended. Further, system
builders must be supported to identify the component from the market that �ts their needs.

2. How to organize the building blocks (so ware components) in an overall composi-
tion work�ow that decouples and manages both the stakeholders and the parts that
they supply or use to collaborate in an ecosystem?

Composition is the activity of putting together building blocks. ¿is cannot happen by co-
incidence; rather, it must be carefully designed (cf. [Szy03]). Composability cannot be viewed
as a self-contained property in isolation. It must be considered as a cross-cutting concern. Col-
laboration in an ecosystem brings special needs for composability. ¿us, composability must
be considered through the overall composition work�ow. ¿is requires developing a suitable
structure that decouples the development of parts from the composition of parts and the ac-
cording stakeholders (separation of roles). ¿e parts must still maintain composability without
the need to organize them in an overall development process2, which is not possible [Bos09] in
an ecosystem approach. Such a structure needs careful consideration of the necessary elements
and suitable abstractions.

3. How to design an integrated tool that supports users in modeling and composi-
tion of models and corresponding so ware artifacts through the work�ow for system
composition?

Support for users is not just a means to an end that simpli�es development. It is an essen-
tial aspect for enabling composability and system composition. ¿e stakeholders that develop

2A development process or methodology such as waterfall, Rational Uni�ed Process, etc.

8



A P P R O A C H A N D C O N T R I B U T I O N S 1.2

and compose components to systems needmethods, structures, and implementations in frame-
works. ¿ey also require supporting tools that make these methods and structures accessible in
a consistent way. ¿is enables the stakeholders to gain from the bene�ts of compositional ap-
proaches. ¿e stakeholders must not be outrun by the e�ort and costs that result from applying
a certain approach. Tools support users by guiding them through the composition work�ow.
¿ey ensure consistent structures to maintain composability. ¿ere are several tasks and roles
along the composition work�ow that each require di�erent languages, tools, or views. All of
them need adequate interfaces to come together in an integrated tooling. An integrated tooling
must enable structures, languages, and views towork together. ¿ismeans that individual struc-
tures must be balanced and proper connections must exist. It goes beyond merely overcoming
the isolation of dedicated tools.

1.2 Approach and Contributions

To address the research questions, the approach presented in this thesis can be summarized as
follows:

¿e approach (Fig. 1.7) presented in this thesis provides a meta-structure (Tier 1,
Fig. 1.7) for system composition based on Component-Based So ware Engineering
(CBSE) and Service-Oriented Architecture (SOA). It applies Model-Driven So ware
Development (MDSD) to allow domain experts to create domain-speci�c structures
(Tier 2, Fig. 1.7). ¿ese structures support ecosystem users in supplying, selecting, and
using so ware components to build robotics applications (Tier 3, Fig. 1.7). ¿e ap-
proach allows to explicate knowledge that is relevant for composition but that usually
remains hidden. ¿e approach manages the knowledge in an overall composition
work�ow. An integrated toolchain supports the users in applying the approach to
gain from its bene�ts.

¿e approach uses the service-oriented component-based so ware framework SmartSo 
[Sch04a] as a basis. ¿anks to its service orientation and component-based nature, SmartSo 
provides the basic technical prerequisites for system composition. ¿is thesis applies Model-
Driven So ware Development (MDSD) on top of the SmartSo framework to enable system
composition. ¿e thesis improves so ware development of service robots in the following as-
pects:

Composability. ¿e approach improves composability by modeling information that is rele-
vant for composability. ¿is information is o en not expressed or remains hidden within
building blocks. Expressing information covers syntactic information as well as semantic
properties of services of a so ware component. Explicating and using such information
throughout the work�ow ensures that the pieces not only �t together but also work to-
gether as intended.

Composition Work�ow. ¿e approach introduces a work�ow and meta-structure to establish
and use domain structures. ¿ese align the contributions from di�erent ecosystem parti-
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Figure 1.7: The organization of an ecosystem in three composition tiers. The approach provides a
meta-structure for system composition in such a way that domain experts can create
domain-speci�c and composable structures. The structures support ecosystem users in
selecting and using software components to build robotics applications through com-
position.

cipants for system composition. ¿e work�ow uses strict separation of roles and enables
using freedom from choice over freedom of choice to manage the involved stakeholders
and the handover of artifacts throughout the composition work�ow.

Support. To support users, the thesis provides an integrated development environment that
provides graphical and textual modeling to create and use the domain structures.

Composability, a composition work�ow, and support for users in�uence each other. Solu-
tions covering all these aspects might even contradict each other. ¿erefore, it is necessary to
address them in a holistic way to �nd the right balance between these topics in order to improve
the systematic engineering of so ware in service robotics based on system composition in an
ecosystem. ¿is thesis carefully weighs the topics and contributes the following outcomes:

Service De�nitions. Service de�nitions form the meta-structure for system composition and
aremodeled using a ServiceDe�nition Language (SDL) (an InterfaceDe�nition Language
(IDL) for services) to de�ne standardized services of so ware components. Service def-
initions are reusable elements in the composition work�ow and are considered the basic
architectural entities for decoupling component development from system composition.
¿ey are used and re�ned by all roles throughout the work�ow to supply so ware com-
ponents or use them for composition while ensuring composability. Service de�nitions
are re�ned to describe the o�er or need of so ware components. Service de�nitions thus
improve the composability of so ware components and the collaboration of stakeholders
within a composition work�ow in an ecosystem.

Service Properties. Service properties are used within service de�nitions. ¿ey allow express-
ing the semantics of a service on the application-level, which otherwise may remain hid-
den within an implementation or within the documentation. Service properties improve
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the composability of so ware components, improve component selection, and ensure a
valid composition by using constraints on properties.

Meta-Models andWork�ow. ¿e thesis provides meta-models that support a composition
work�ow to organize the ecosystem into three composition tiers. ¿e work�ow is based
on service de�nitions. ¿e meta-models allow the modeling of domain structures, the
modeling of components, the composition of components, and deployment to the ro-
bot. ¿ey manage the handover between work�ow steps and roles to make the structures
accessible for tooling. Graphical and textual Domain-Speci�c Languages (DSLs) are pro-
vided to users so that they can create and use the models.

SmartMDSD Toolchain. ¿is thesis contributes to the SmartMDSD Toolchain, an Integrated
Development Environment (IDE) for engineering so ware for service robotics. ¿e tool-
chain implements the meta-structure for system composition. It supports users in apply-
ing the compositionwork�ow, startingwithmodeling of the domain structures, including
the development of components, the selection and composition of components to appli-
cations, and their deployment to the robot. Matchmaking for component selection applies
signature matching [Bac+02] of services and constraints evaluation to �nd a component
that matches the needs of the application. ¿e toolchain provides seamless integration of
several DSLs to model the di�erent elements by the di�erent roles in the work�ow.

Bene�ts of the Approach

¿eoutcomes of this thesis achieve systematic engineering of so ware for service robotics based
on system composition. ¿e bene�ts of applying the outcomes are as listed below:

• ¿ey improve the quality, e�ciency, and consistency of the so ware development process
for service robotics.

• ¿ey simplify the reuse of existing solutions in new applications. ¿us, they lower the
e�ort for changing existing systems and developing new ones by composition.

• ¿ey improve the collaboration of participants in an ecosystem by improving the separa-
tion of roles and the separation of concerns.

• ¿eyease access to the service robotics domain by structuring and simplifying component
selection thanks to standardized services and expressed properties.

• ¿ey raise the level of abstraction in so ware development for service robotics from a
code-driven or document-driven approach to a model-driven approach. ¿is supports
the transition from handmade cra ing to systematic engineering.

• ¿ey reduce the cognitive load on the developer. ¿e developer is supported to maintain
an overview on the application thanks to checks for system consistency.

11
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• ¿ey support in mastering the complexity of the overall system thanks to the improved
collaboration of roles: better separation of roles and managing the interfaces to handover
artifacts between roles.

• ¿ey improve the robustness and quality of the robot itself since improving the method
of construction improves the performance of the outcome (“How a robot system is con-
structed determines how well it functions” [euR13, p. 70]).

¿e results of this research have been applied in research projects and other collaborations.
¿ey were used to develop functional demonstrators that showcase the capacity and bene�ts
of the approach for system composition in an ecosystem. ¿e approach is implemented in
the SmartMDSD Toolchain, which is available under an open source license at http://www.
servicerobotik-ulm.de.

1.3 Thesis Outline

Figure 1.8 illustrates the outline of this thesis, beginning with chapter 2.
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Figure 1.8: The thesis outline beginning with chapter 2.

12

http://www.servicerobotik-ulm.de
http://www.servicerobotik-ulm.de


P U B L I C A T I O N S 1.4

Chapter 2 describes selected existing methods and approaches that are related to so ware de-
velopment and system composition in a robotics so ware business ecosystem.

Chapter 3 describes the vision of composition and the vision of a robotics so ware business
ecosystem. It will identify the need for structures in order to realize this for robotics. ¿e
chapter describes the consequences to such a structure and discusses the considerations
to address them.

Chapter 4 outlines the main contributions of this thesis to provide the structures that enable
system composition in a robotics so ware business ecosystem. It provides the overall
setting and introduces the overall ecosystem organization in three composition tiers.

Chapter 5 contributes the meta-models and other necessary details that enable the vision of
this thesis.

Chapter 6 presents the implementation of the approach and the contributions to the Smart-
MDSD Toolchain, an IDE for so ware development in service robotics.

Chapter 7 presents concrete robot systems and the initiatives that have built them. It presents
a user study and evaluates the bene�t of applying the thesis’ contributions to systematic
engineering of so ware based on system composition.

Chapter 8 concludes the thesis. It summarizes the contributions, and explains their applica-
bility and relevance. ¿e thesis ends with an outlook on future work.

Glossary describes the terms used in this thesis.

1.4 Publications

¿e following publications are related to this thesis and contain parts that are presented within
this thesis.

Journal Publications

• Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “¿e SmartMDSD
Toolchain: An Integrated MDSD Work�ow and Integrated Development Environment
(IDE) for Robotics So ware”. In: Journal of So ware Engineering for Robotics (JOSER):
Special Issue on Domain-Speci�c Languages and Models in Robotics (DSLRob) 7.1 (July
2016). ISSN 2035-3928, pp. 3–19.
URL: https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path[]=
91.

• Christian Schlegel, Alex Lotz, Matthias Lutz, Dennis Stampfer, Juan F. Inglés-Romero,
and Cristina Vicente-Chicote. “Model-driven so ware systems engineering in robotics:
Covering the complete life-cycle of a robot”. In: Journal IT — Information Technology:
Methods and Applications of Informatics and Information Technology 57.2 (Mar. 2015).
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2
Related Work

¿is chapter describes selected existing methods and approaches that are related to so ware
development and system composition in a robotics so ware business ecosystem. We will come
back to some of them in later chapters and consider them for the approach.

2.1 Software Business Ecosystems

¿e probably earliest description of a “business ecosystem” (“ecosystem” in short) was intro-
duced by Moore [Moo93]. He describes it as the behavior of a network of tech-companies
that cross a variety of industries where they co-evolve capabilities around new innovations by
working cooperatively and competitively. A business ecosystem is o en referred to as a col-
laboration model (cf. [BB10; IL04]), which describes the many ways and advantages in which
experts in various �elds or companies collaborate around a domain or product. Ecosystems
can be based on a keystone-player [IL04] (e.g. the Apple ecosystem) or a complete domain or
community [Jan12] (e.g. the Debian Operating SystemCommunity). ¿e research of Bosch and
Jansen describe an ecosystem approach as the next step of a so ware platform to open up and
to extend [BB10; Jan12]. Peltoniemi and Vuori [PV05] merged and re�ned various de�nitions
of an ecosystem. A generally applicable de�nition is:

A business ecosystem is “a dynamic structure which consists of an interconnected pop-
ulation of organisations. (...) A business ecosystem develops through self-organisation,
emergence and co-evolution, which help it to acquire adaptability. In a business ecosys-
tem, there is both competition and cooperation present simultaneously.” [PV05]

¿e work of Bosch [BB10; Bos09; Cap+14] addresses both the so ware engineering and
the business perspective of ecosystems. He introduces the close relation between ecosystems
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and composition. So ware engineering shi s from tightly coupled to loosely coupled inter-
action; Bosch argues in a similar way for so ware ecosystems and motivates loosely coupled
and decentralized approaches for so ware engineering. Ecosystems support in shi ing from an
integration-centric to a composition-oriented approach [BB10]. An ecosystem, thus, provides
the collaboration model that is needed when shi ing from traditional value-chains to modern
networks [MH13]. Bosch argues that an ecosystem approach is the next logical step a er es-
tablishing a So ware Product Line (SPL) [Bos09]. Oster and Wade [OW13] analyze so ware
ecosystems with respect to composability in the context of the US defense industry in compari-
son to other domains such as electronics, computer, and automotive. ¿ey distinguish two kinds
of ecosystems. Organic ecosystems are driven by market pressure and are guided by very loose
rules. Planned ecosystems are carefully organized, their evolution is managed by some organi-
zation (e.g. Microso , Apple, Facebook). Iansiti and Levien [IL04] describe platform aspects of
ecosystems around one driving player (“keystone-player”). Peltoniemi and Vuori [PV05] pro-
vide an overview and summary of business ecosystems research in the biological, industrial,
economical, digital business and social �elds. Manikas and Hansen [MH13] give a more recent
overview on ecosystems from a so ware engineering perspective.

¿is thesis envisions the composition of building blocks that are shared and exchanged be-
tween participants in a robotics so ware business ecosystem. ¿e kind of loosely coupled in-
teraction as introduced by Bosch is the fundamental way of collaboration in an ecosystem. ¿is
kind of collaboration is not yet established or feasible in robotics: Robotics lacks the underlying
structures that enable this kind of collaboration. ¿is thesis proposes structures for service-
based composition of so ware components. It thereby contributes in proposing such structures
to close the gap between the vision of ecosystems and the state of practice in robotics. ¿e re-
mainder of this section describes the typical aspects of an ecosystem by the examples Eclipse,
Debian GNU/Linux, and the Smartphone ecosystems for iOS and Android. Chapter 3 describes
the vision and the needs of an ecosystem for robotics.

A well-known example of an ecosystem is the Eclipse ecosystem. ¿ere is, for example, a
big community that gathers around the Eclipse Integrated Development Environment (IDE). It
provides technical structures, for example the powerful pluginmechanism. ¿ese structures or-
ganize and enable the independent contributions and collaboration from di�erent people, orga-
nizations, and domains. Most of the contributions in the Eclipse ecosystem use the Eclipse plat-
form to build their own domain-speci�c solutions that then become part of the Eclipse ecosys-
tem. For example, the Eclipse CDT for C++ development, Papyrus UML for modeling, and a
whole collection of MDSD tooling in the Eclipse modeling project. ¿e structures that enable
such a huge ecosystem are yet missing in robotics. ¿e basic organization of an ecosystem that
is proposed in this thesis (composition tiers, Fig. 1.7 and section 4.1.1) can also bemapped to the
Eclipse ecosystem. ¿ere is a core that develops andmaintains the core structures of the Eclipse
ecosystem composition Tier 1 (e.g. the Eclipse IDE). Based on this, there is a larger group of
people and organizations that build upon these structures and develop tools and applications
for speci�c purposes or domains at composition Tier 2. Finally, there is a huge group of “users”
at composition Tier 3. ¿ey use the tools for their purpose and exchange development artifacts
with others. In the end, ecosystem participants have di�erent motivations to use or contribute,
but all can bene�t from the ecosystem. ¿is also holds true for making business. Eclipse is
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a successful example which shows that open source, ecosystem, and community are not to be
equated with hobbyists. Eclipse calls itself business-friendly and open source since there is an
open platform that provides the core structures for ecosystem collaboration. ¿ey enable com-
petition on products and services. Commercial examples, for example, are the SymTA/S tooling
for timing analysis and the WindRiver VxWorks tooling suite.

Organizations compete and collaborate in an
open source ecosystem.

Products Added Value

Compete on
products and
services

Build this in and with
open source, even if
that means working
with your direct
competitors.

Platform

Figure 2.1: The eclipse ecosystem: The platform provides structures that enable collaboration but
also competition at the level of products and services (from [Eclf]).

¿eecosystemaround the open source operating systemDebianGNU/Linux is another good
example of a successful ecosystem. Debian provides technical structures (and infrastructure) for
package maintenance and organization. Hundreds of maintainers care for third party so ware
packages, integrate them to the Debian packaging structure and keep them aligned. Debian
is a good example of how a set of stable structures enable the loosely coupled collaboration of
thousands of developers. ¿e latter not only holds true for Debian, but also for all the other
OS distributions that forked from Debian. Apart from technical structures, Debian is a good
example of how an ecosystem may be run with respect to organizational structures. Debian is
driven by a community (community-driven ecosystem, see [Jan12]), but uses clear organiza-
tional structures. ¿ere are elected persons in key-roles and committees, there are democratic
ways of taking major decisions. Debian provides technical core structures and technical infras-
tructure that participants in the ecosystem use to contribute to and to bene�t from. Debian’s
technical structures are open to use but with clear and democratic processes that decide how
they evolve.

¿e smartphone domain probably runs the largest and most successful so ware ecosystems.
Apple and Google as the two big keystone-player drive their technical and business platforms
around their “market places” OS App Store and Google Play/Android Market. ¿ese mar-
kets contain self-standing and usable applications that mostly target for the end-user/consumer.
Technical platforms and their structures for the smartphone domains are well established and
supported, but are driven and controlled by its vendors (including the vendor lock-in). Robotics
can learn from the smartphone ecosystems as an interesting example of a business model be-
hind a platform and collaboration in an ecosystemwith a bene�t for all participants. Compared
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to the smartphone domain, the complexity to develop robotics systems is much higher because
robots operate in the real world. ¿e contributions made in this thesis with respect to system
composition were also demonstrated in the smartphone domain within the FIONA research
project [Fiona]. It showed that the concepts required for robotics system composition are also
applicable and of bene�t for the smartphone domain.

2.2 Software Engineering and Integration Approaches

2.2.1 Software Development Processes and Collaborative Development

So ware development processes structure the collaboration of stakeholders that are involved in
designing and implementing so ware. A whole range of approaches have already been devel-
oped. For example, sequential approaches such as thewaterfall- orV-model, iterative approaches
such as the Uni�ed Process and its variants, and agile approaches such as Scrum. ¿ere are
also activities that consider the applicability of so ware development processes to robotics (e.g.
[Sal+17]).

So ware development processes can be considered “management approaches” since they
manage how so ware is being built. In line with Bosch [Bos09], this thesis argues that man-
agement approaches do not scale towards an ecosystem. Collaboration by structure is required
rather than collaboration by management (section 3.2). ¿is thesis proposes such a structure
for robotics based on service-level composition of so ware components.

In the context of this thesis, so ware development processes can be usedwheremanagement
is possible. For example, by the individual roles or within the steps of the compositionwork�ow:
by the component supplier or system builder. However, there is a need to organize the handover
between these roles by a superordinate structure such that two developers covering that role do
not need to negotiate bilaterally. ¿is is detailed in this thesis.

Tools for collaborative so ware development and also cloud-technologies for the same pur-
pose have been o�ered and applied widely in the recent years. For example, revision control
(e.g. Subversion and Git), (bug-)trackers (e.g. Trac and Bugzilla) and Dropbox. ¿ere is even
collaborative code-editing available in the “Google-Docs-Way” [CodeCloud] and collaborative
modeling in the Eclipse CDO Model Repository [Ecla]. A web-based integration platform for
collaborative and distributed development of robotics systems with an according so ware de-
velopment process is presented by Reiser [Rei14]. ROSMOD is a model-driven tool for ROS
development that also supports collaborative “team” code development and collaborative mo-
del editing among developers for a particular robot system [Kum+16]. Both address the support
of individual roles in a joint “team” development process for robotic systems. ¿ey contribute
to separation of roles within a team of developers. For example, it enhances collaboration from
di�erent locations to support the integration of a robot systemwhich is only physically available
in one location.

Approaches for collaborative development enhance the collaboration and productivity in
joint, team-based developments with close interaction of developers. However, such approaches
must be applied in ecosystems with caution as it may contradict with the need for separation
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of roles (see section 3.3.2). Roles not only work in distributed in space (di�erent locations),
but also work distributed with respect to time. Structures that organize the interaction and
separation of roles via managing the interfaces between roles are mandatory to be established in
collaborative so ware development. Only then are they ready to be applied for ecosystem users.
Once the clear separation of roles is established, these approaches will contribute to ecosystem
collaboration. For example, via cloud-based IDEs where every ecosystem participant can use
the same up-to-date version and easily share models or workspaces thanks to cloud-storage
without version-con�icts (e.g. Eclipse Che [Eclb]).

2.2.2 Software Product Lines

So ware Product Lines (SPLs) [Nor08; BCK12] are an approach for systematic reuse and man-
agement of similar products in a product family. ¿ey are extensively used in automotive indus-
try [OW13], but are adopted by almost any other domain [Nor08]. A so ware product line is the
collection of similar products that share a common and managed set of features [Nor08]. ¿ey
are used to manage possible variants of product families. ¿ey are an approach for systematic
reuse within the SPL [Nor08]. All products share a common (reference) architecture [BHA12;
NOB11; Nor08]. Commonalities are typically managed and modeled by feature models (typi-
cally trees). Feature models capture the possible variants and valid combinations of a product.
All valid variants must be designed into the SPL in advance. SPLs are not suitable for open-
ended product variants [Voe13]: they are not �exible.

SPLs focus on intra-organizational reuse of components [HHJ08; RMM08; BB10] and they
yetmust evolve to the inter-organizational level as recognized in the ITEARoadmap for So ware-
Intensive Systems and Services [ITE09]. Even though a SPL may span over organizations, the
speci�c SPL must be established with the involvement of the organizations over which the SPL
spans. An ecosystem approach is di�erent, since it de�nes the core structures that enable in-
teraction and collaboration without additional management and negotiation of the SPL. When
spanning a SPL over organizations or applying it within an organization, reuse then is still made
within the established SPL [HHJ08]. ¿e products are thus limited to the SPL’s speci�c archi-
tecture or feature structure. ¿e characterizing features and the variability of a SPL depends on
the product scope and intended variants which might be totally di�erent for someone else. A
SPL can be compared to con�guration: A SPL is not as �exible and not as free in combination
as is a compositional approach. Compositional approaches are the next step a er establishing a
SPL [Jan12; Bos09].

Most SPLs focus on functional features and model a set of alternatives that can be chosen
(e.g. localization can be laser-based or visual); more advanced research also proposes to use
non-functional properties in context of a SPL [BTR05] to cover measurable properties with
attributes (e.g. the maximum speed that a robot is capable to drive).

¿e decision onwhich features are in or out of a product ismade at design-time. ¿atmeans,
the feature selection cannot change once the so ware is deployed. Dynamic So ware Product
Lines (DSPLs) extend SPLs and defer the decision on features to run-time [Cap+14; BHA12].
¿is is useful to “dynamically” react and adopt the product to the current context at run-time.
¿is means that a (sub)family of a product must be deployed—parts of the SPL infrastructure
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must be deployed as well. While there is a focus on run-time adaptation, DSPLs are, generally
spoken, a way to cope with adaptation of products that originate from third party (e.g. from a
component market place). For example, a component that was provided by someone else might
be downloaded, composed into a robot system and con�gured via a DSPL.

A SPL is not in contrast to Component-Based So ware Engineering (CBSE) or a Service-
Oriented Architecture (SOA), as both are approaches to realize systems that are modeled in
a SPL [Nor08; Cap+14; Omm02; HHJ08]. An overview on applying SOA in the context of a
SPL is provided in [Cap+14], further examples can be found in [SA08] for SOAs and [Omm02]
for CBSE. Model-driven techniques are quite useful to manage SPLs [BHA12; Nor08; GB14],
for example to use Domain-Speci�c Languages (DSLs) to model feature models [Voe13]. An
example of a model-driven approach for a SPL for robotics is presented in [GB11; GB14] for
architecture modeling and in [Bau+13] for modeling of manipulation and grasping.

SPLs can be applied in the context of this work in the same way as any other development
process, as long as the SPL remains limited for a particular role or step in the composition work-
�ow. Component suppliers, for example, can apply a SPL to manage variants of components,
thereby reducing their e�ort to come up with a bunch of components with individual features
that are all build upon the same baseline. System builders can use a SPL to manage variants
of the robot systems they build. For the envisioned ecosystem, it is not possible to span a SPL
over all roles and the whole work�ow as the SPL bases on a concrete architecture and on ex-
plicated product variants. It is not possible to foresee and de�ne the variants of robot systems
that are supposed to be built in an ecosystem. ¿is is only possible within a narrow scope of an
ecosystem; an ecosystem participant that covers a certain role is such a narrow scope.

Wewill come back to SPLs in section 3.4.1 when considering them for collaboration by struc-
ture and in section 3.4.5 when considering them for con�guration of a building block.

2.2.3 Component-Based Software Engineering

Component-Based So ware Engineering (CBSE) is an approach to structure so ware systems
[Szy02; Bro+98; CSS11; Frö02]. It applies separation of concerns and identi�es dedicated func-
tional blocks with speci�ed interfaces in order to achieve encapsulation between components.
It enables �exible, o�-the-shelf reuse of so ware components. In CBSE, components shape the
architecture of a system [HKF08]. In this thesis, the main bene�t of components is seen in
them being suitable as units of composition and exchange in the ecosystem where components
come with SOA services. ¿e granularity of a component (e.g. a component with three services
vs. three components with one service each) is not the factor that shapes the architecture, but
the services are. Service-oriented components enable service-based composition of so ware
components (see section 3.4.1).

A so ware component is de�ned through a component model as a generalization of con-
cepts of a component. A component model that provides suitable abstractions in a stable struc-
ture is mandatory to apply Model-Driven So ware Development (MDSD). Several general-
purpose component approaches exist such as Enterprise JavaBeans (EJB) and as the component
model of the Common Object Request Broker Architecture (CORBA). Since they base on freedom
of choice, they are well suited for robotics application development, but cannot serve as a struc-
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ture for system composition. ¿eUni�ed Component Model (UCM) [OMG13] is an initiative by
the Object Management Group (OMG) to build a next-generation and state of the art compo-
nent model for distributed, real-time and embedded systems. Since freedom from choice seems
to be the design principle, the developments behind UCM are worth considering for robotics,
once it is more advanced. It mentions SmartSo [Sch04a] (section 2.8) as one of the potential
approaches thatmay shape theUCM; this underlines the relevance of SmartSo as a component
model not only tied to the SmartSo framework.

CBSE can be considered as state of the art in robotics so ware development. An overview
is given by Brugali and Scandurra [BS09] and Brugali and Shakhimardanov [BS10]. Even if
so ware is developed in form of components, it is o en developed without an explicit compo-
nent model (e.g. ROS). While there are robotics-speci�c component models (e.g. Rock [JA11],
RTC [OMG12a], RobotML [Dho+12]), they are either shaped towards their single target frame-
work or they are the result of reducing the component model to the least common denomi-
nator of the target frameworks. ¿e latter then results in losing coverage of relevant aspects
(e.g. BCM [Bru+13]). Providing a component model is mandatory for system composition. ¿e
existing robotics component models, however, improve the development within the particu-
lar supporting frameworks. ¿ey do not address the overall ecosystem vision in terms of the
work�ow. Instead of focusing on a particular framework and making models its base, the focus
should be put on the way how robots should be built in such an overall ecosystem in general.
¿e result will be structures that then, expressed as (meta-)models, can serve as basis to come
up with transformations into the speci�c robotics frameworks. ¿is thesis contributes such a
model-driven structure and work�ow for service-based composition of so ware components.
It realizes the mappings to the SmartSo Framework.

2.2.4 Service-Oriented Architecture

A Service-Oriented Architecture (SOA) [Erl08; SW04] is o en seen as a synonym for technical
realizations of remote so ware (e.g. WSDL, SOAP, REST) [Man09], but it is much more than
that. It is a way of thinking about architectures, loose coupling, abstractions, and reuse. A
de�nition is given by Sprott and Wilkes [SW04]:

A service-oriented architecture is “the policies, practices, frameworks that enable ap-
plication functionality to be provided and consumed as sets of services published at
a granularity relevant to the service consumer. Services can be invoked, published
and discovered, and are abstracted away from the implementation using a single,
standards-based form of interface.” [SW04]

SOAs are about entities that provide or require activities or data through services. ¿ese
services have a certain value to the consumer at a granularity and abstraction that is adequate
and reusable for someone else. Services should be self-contained, loosely coupled and usable
as black-boxes with known interfaces that is more than an Application Programming Interface
(API).

A SOA puts a focus on the �exible combination of a multitude of services to provide the ex-
pected functionality of an application. A service-oriented approach is consideredmandatory for
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system composition as is also argued in the ITEA Roadmap for So ware-Intensive Systems and
Services [ITE09]. Service-oriented thinking helps to come up with structures for composition
supporting separation of roles for robotics.

An example realization of SOA is Representational State Transfer (REST), a style to transfer
messages via HTTP using various formats (e.g. JSON, XML). Simple Object Access Protocol
(SOAP) [W3C07a] is a standard and technical realization of SOA for exchange of structured
messages via HTTP.

An important element for the technical realization of SOAs is the de�nition of a service and
publishing this information. ¿e Web Services Description Language (WSDL) [W3C07b] is a
well-known Interface De�nition Language (IDL) for web services to describe how clients inter-
act with a (remote) service. It focuses on the syntactic expression of an interface and does not
consider its semantics and (non-functional) properties. ¿is is addressed by theWeb Ontology
Language for Web Services (OWL-S) [Mar+04], an ontology-approach for web services. It en-
ables the semantic description of web services. In the context of this thesis, ontologies can be
used to describe the semantic relations between individual models of the composition work-
�ow, e.g. service descriptions, to enhance composability (see section 2.3.2). ¿us, OWL-S may
be suitable to organize the domain structures.

¿e Service Oriented Architecture Modeling Language (SoaML) [OMG12b] is an extension
(pro�le) to the Uni�ed Modeling Language (UML) to design service-oriented architectures. It
focuses on the reusable modeling of services. Like interfaces in UML, it models a �ne-grained
API-style de�nition and use of interfaces. In extension to UML interfaces, SoaML allows to de-
scribe the collaboration of services through “protocols” to de�ne how multiple operations are
used within a service interface [Ams12]. Service “contracts” describe the interaction of mul-
tiple services independent of a particular provider or consumer. SoaML is targeted at holistic
modeling (one big model captures everything) that is di�erent from distributed modeling and
composition supporting separation of roles as addressed in this thesis.

Most robotics approaches apply SOA as technical realization of remote so ware, i.e. by us-
ing SOA implementations formessage exchange. For example, making use of existing (external)
web services for robotics [Bru+14; MBF11], i.e. to connect robots to the web. Koubaa [Kou15]
implements web services for ROS to “expose ROS resources as SOAP and REST Web services”.
¿ey do not consider SOA as a philosophy and principle to enhance the development and archi-
tecture of a robot system. SmartSo is one of the outstanding examples that does so. SmartSo 
(section 2.8) uses service-oriented so ware components for so ware development in robotics.
¿is thesis widens its scope to apply it in an ecosystem for system composition by introducing
structures that are required therefore. ¿e need of SOA and CBSE in relation to this thesis is
described in more detail in section 3.4.1.
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2.3 System Design andModeling

2.3.1 General-Purpose Modeling Languages

¿e Uni�ed Modeling Language (UML) [OMG15b] is a well-known general-purpose model-
ing language in computer science and so ware development. ¿anks to pro�ling, it allows
for domain-speci�c extensions and adaptations. ¿ere are, for example, pro�les to UML for
modeling service-oriented architectures: ¿e Service Oriented Architecture Modeling Language
(SoaML) [OMG12b] focuses on service modeling. ¿e work of Wada et al. [WSO06] mod-
els non-functional properties for SOA communication. Other notable pro�les with relation to
this work are the Systems Modeling Language (SysML) [OMG15a] to provide a general-purpose
language for systems engineering and RobotML [Dho+12] to provide a modeling language for
robotics. Papyrus [Papyrus] is one of the most advanced open source graphical modelers that
also supports UML in the Eclipse Project. ¿is thesis utilizes UML pro�les and Papyrus to
implement the SmartMDSD Toolchain (see chapter 6). ¿e composition structures, however,
are independent of any speci�c implementation. For a discussion to use UML for composition
structures, see section 3.4.1.

¿e Object Constraint Language (OCL) [OMG14] is included in UML [OMG15b] to spec-
ify expressions and conditions on UML models to ensure their consistency more as it can be
expressed in UML. It enables to describe constraints about the models which cannot be done
by UML. It is not intended for structural modeling and expressing or constraining relations as
this is covered by UML. It addresses functional aspects and is not intended for architectural use.
In context of the presented work, OCL may be applied within dedicated models, in a commu-
nication data structure or parameter set to ensure their consistency (for possible uses of OCL
therein, see sections 3.4.3, 5.2.2 and 5.2.5).

Capella is an Eclipse-based and model-based engineering tooling for graphical modeling
to support architecture design with a focus on architecture viewpoints. It is of interest to this
thesis because of two similarities. (i)¿eCapella-approach is inspired byUML/SysML [Bon+16]
and (ii) the position of the Capella-approach with respect to building tooling via pro�ling is
very similar. As within this thesis, the Capella-approach does not strictly rely on the general-
purpose modeling standard, but uses it where appropriate. ¿e authors argue [Bon+16] that
applying UML/SysML structures are hard to use for domain-speci�c modeling by users that
do not have UML/SysML background and that tooling based on pro�les alone o en becomes
unnecessarily complex. Capella directly adopts the structures and elements from UML/SysML
that are suitable, extends the ones that are reasonably close, leaves the ones out that are not
adequate, and creates new ones where they are missing.

¿eArchitecture Analysis andDesign Language (AADL) [FGH06] is amodeling language for
hardware and so ware architectures of safety-critical embedded and real-time systems. AADL
is used to model systems in a holistic and single, “all-in-one” model at a rather low level of
abstraction and very close to the later implementation (see also [Del+08]). It exposes all parts
of the system with no guiding structures: ¿ey support freedom of choice. While this level
of modeling is adequate to do in-depth analysis (e.g. timing, network-latency) as needed in
AADL’s safety-critical domain, this hinders reuse, separation of roles and composition. Many
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community-driven or commercial tools are available for textual and graphical modeling, as well
as analysis and code-generation forAADL. For example, themodel-driven toolOsate. It is based
on Eclipse and Xtext.

¿e above modeling languages are suitable to model and develop custom robotics appli-
cations. To apply them for system composition in an ecosystem, they provide way too less
guidance as they o�er freedom of choice (section 3.3.1). If using these general-purpose lan-
guages for ecosystem collaboration, it requires additional structures such as presented in this
thesis. ¿e above modeling languages can be used to model systems that support separation of
roles during development, but this depends on discipline and is not enforced by structure in
the modeling language itself. It can be done rather by policies that the users follow while us-
ing it. Even the robotics-speci�c approaches such as RobotML foster the all-in-one model, not
supporting separation of roles to enable composition of building blocks that were supplied by
di�erent participants in an ecosystem. ¿ey do not base on service-level granularity as required
for system composition. RobotML and BRICS contributed component models, but component
models alone are not su�cient to address system composition in an ecosystem. Modeling ser-
vices, for example via SoaML alone is not su�cient, too. It needs careful considerations of com-
ponent models, services, and other aspects with respect to the overall work�ow and involved
roles. ¿ese considerations in�uence the superordinate structures. ¿e structures must include
a service-oriented componentmodel and particular aspects of thementioned approachesmight
be worth to be included as long as they contribute to the overall vision of composition.

2.3.2 Ontologies

According to Gruber [Gru09], “an ontology de�nes (speci�es) the concepts, relationships, and
other distinctions that are relevant for modeling a domain. ¿e speci�cation takes the form of
the de�nitions of representational vocabulary (classes, relations, and so forth), which provide
meanings for the vocabulary and formal constraints on its coherent use” [Gru09]. Ontologies
express the knowledge of a domain and can be queried. Based on an ontology, new knowledge
that was not explicitly expressed, can be reasoned [Gru09]. With the use of ontologies, one
can build common de�nitions and use them in a distributed manner: ¿e semantic web, to
name one prominent example, uses the Web Ontology Language (OWL) [W3C12] to describe
and process the information that is provided by websites. ¿eWeb Ontology Language for Web
Services (OWL-S) [Mar+04] is a DSL on OWL [W3C12] to describe web services.

In the context of the approach that is presented in this thesis, ontologies can be considered
for use in three directions. Ontologies can be considered for (i)modeling the composition struc-
tures at composition Tier 1 (section 3.4.1) as an improvement of meta-modeling since ontologies
support integrated semantics and consistency checks. Ontologies can be considered to (ii) im-
prove composability, for example to manage the interfaces between components as expressed
in domain structures at composition Tier 2 (see section 3.4.1). Since ontologies are descriptive
in their nature [AZ06], they can express relations between domain structures and eventually
describe the di�erences. Finally, ontologies (iii) can enhance the matchmaking mechanisms for
component selection that is needed at composition Tier 3 thanks to classi�cation and reasoning
(see section 3.4.4). ¿e remaining section �rst reports on the use of ontologies for so ware de-
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velopment in general and then reports on the use of ontologies in robotics. We will come back
to ontologies to address each of the above considerations in sections 3.4.1 and 3.4.4.

Ontologies can be used for modeling in so ware development in general. ¿e European
FP7 projectMOST (Marrying Ontology and So ware Technology) has shown how to use syner-
gies between ontologies and so ware development and researched the integration of ontology
technologies and meta-modeling/Model-Driven So ware Development (MDSD) as Ontology-
Driven So ware Development. ¿e TwoUse Toolkit [Sta+10] is a general-purpose Eclipse-based
implementation that bridges between UML, OWL, and Ecore. Aßmann and Zschaler [AZ06]
describe the bene�t of “ontology-aware meta-modeling”.

Ontologies are descriptive models, while meta-modeling enables prescriptive/speci�cation
models [AZ06]. Both provide complementary expressiveness to meta-modeling and combin-
ing them improves so ware modeling [Sil+10; AZ06]. Semantics and constraints, for example,
are not part of meta-models and only exist implicitly in tools or natural language descriptions.
Using ontologies, one can express semantic restrictions and constraints in the same language in
one place [Sta+10; Mik+13]. Ontologies can simplify consistency checks of models that cannot
be covered bymeta-models. While this can partially be addressed by theObject Constraint Lan-
guage (OCL) [OMG14], the use of ontology technology allows to use more advanced features
such as expressing semantic constraints, classi�cation, and reasoning abilities.

Most use of ontologies in robotics is made at run-time to represent, share, and interpret
knowledge for decision making [ZAF16]. ¿e Knowledge Processing for Autonomous Personal
Robots (KnowRob) initiative and related EU research projects RoboEarth and RoboHow are
good examples. ¿ey collect knowledge of household objects and everyday manipulation tasks
to share them among robots [TB09]. An overview on the use of ontologies in robotics was given
by the IEEERASOntologies for Robotics andAutomationWorkingGroup [Pau+12]; amore recent
survey for knowledge representation in robotics can be found in [ZAF16].

¿ere are few use-cases for ontologies at design-time for engineering of robotics so ware.
One notable approach is the ReApp project (see section 2.6.3). It applies ontologies for MDSD
in robotics to simplify the reuse of Robot Operating System (ROS) components and means to
discover them [Zan+15]. ¿e ReAppWorkbench interfaces betweenOWL ontologies and Ecore
models [Wen+16]. ReApp uses the classi�cationmechanismof ontologies to search components
that provide a certain functionality or capability. ¿is supports system integrators in �nding a
component with a certain capability. However, providing a certain capability does not yet mean
that the component that provides this capability is composable with others. As a result, adapters
and integration might be required.
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2.4 Model-Driven Software Development

Model-Driven So ware Development (MDSD) is an approach to so ware development that puts
a focus on modeling certain aspects of so ware to gain an abstract representation. ¿at is,
models follow a speci�c purpose and capture the relevant details of so warewhich are important
for this purpose. ¿anks to the explication and accessibility of these relevant details, MDSD
supports in lowering the complexity of the system being developed [BCW12]. ¿e purpose and
value of usingMDSDhas long been seen in consistent documentation and in lowering the e�ort
through code-generation. But MDSD is much more than that.

MDSD is becoming a matured technology and is seen as the next evolutional step in so -
ware engineering [Bar16]. MDSD has been identi�ed as a key technique for robotics “in order
to achieve a separation of roles in the robotics domain while also improving composability,
system integration and addressing non-functional properties” as stated in the “Robotics 2020
Multi-Annual Roadmap (MAR)” [euR16]. It is also seen as “challenge to be addressed in future
so ware engineering” [ITE09, p. 279] in general as stated in the “ITEA Roadmap for So ware-
Intensive Systems and Services”.

MDSD brings many bene�ts for providing an approach for system composition and for us-
ing it. Its bene�ts in relation to this thesis are:

• MDSD signi�cantly increases productivity, quality and lowers development e�orts, thus
saves time and money [Völ11]. For example, thanks to processible models for model-
checking, model transformation and expert knowledge encoded in code-generators.

• MDSD brings explicated structure into the approach. Designing meta-models to apply
MDSD means to think about the elements and properties that are necessary to be rep-
resented. Using the meta-models then means using only these elements for modeling,
enablingwell-thought and explicated freedom from choice (instead of freedomof choice).

• MDSD makes the solutions that are covered by meta-models accessible to the user. ¿e
meta-models abstract away deep technical details and do not require the user to under-
stand their full details. ¿ey are thus simpler to understand [Völ11]. As a result, they raise
the discussion about models for composition to an appropriate structural level, keeping
it away from unnecessary low-level details: discuss with others only what is relevant to
others. ¿is helps in collaboration of roles.

• Meta-model abstractions allow for creating speci�c views or models that separate the
overall problem into parts of speci�c concerns for speci�c roles. MDSD therefore helps to
support separation of roles and separation of concerns for system composition [euR16].
MDSD allows to separate the domain knowledge (the structure and architecture) from
its implementation. For example, the structure of the solution is modeled independently
from the particular technical implementation of these structures. MDSD allows for sep-
aration of the di�erent steps and roles in the work�ow (e.g. supplying and using a com-
ponent) and between stakeholders (e.g. component developer A and B) to manage their
contributions to bring them together consistently to an application.
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¿e concept of a Domain-Speci�c Language (DSL) is of particular importance to realize
MDSD tooling. A DSL is “a computer programming language of limited expressiveness fo-
cused on a particular domain” [Fow11]. Compared to MDSD as a general approach, a DSL is a
“speci�c” way to describe and use a model that is motivated by a certain problem or domain;
it is tailored towards the user who is using it [Voe13, p. 31f.]. ¿e use of DSLs simpli�es pro-
viding adequate graphical or textual modeling to support ecosystem participants. Using a DSL
provides a way of modeling that is tailored to the role or problem in a task or domain. In con-
trast, using general-purposemodeling tools such as UML, is not always the best choice for every
modeling-task (see [SG99; BS02; Bon+16]). General-purpose modeling is o en too heavy and
too general to use, allowing too much freedom of choice.

By using MDSD, users can directly gain advantage from expert knowledge that is encoded
in generators. ¿anks to DSLs, the way to create and work with models can be adjusted to the
task at hand. ¿is can include, for example, vocabularies or representations that are typically
used in the target domain and thus help to understand and work with the model. ¿ere is no
cryptic syntax that is usually introduced when using general-purpose programming languages.

¿ere are powerful environments available to apply MDSD and to develop DSLs. Very well-
known is the tool collection of the EclipseModeling Project [Eclc] with Ecore [Ste+08] and Ecore-
Tools [Ecle] for meta-modeling, Sirius [Eclg] for graphical modeling, Papyrus [Papyrus] for
UML and general graphical modeling, Xtext [Ecli] for DSL engineering, and Xtend [Eclh] for
code-generation. ¿e JetBrains Meta Programming System (MPS) [Jet16] and MontiCore Lan-
guage Workbench [Sof] are other notable approaches for MDSD-suites. ¿e existing MDSD-
suites are nowmatured enough to apply them to build productive tools and to realize the struc-
tures presented in this thesis.

Several industry-grade domain-speci�c model-driven tools exist. For example the Yakindu
State Chart Tool (SCT) [ite] for modeling and implementing state-chart-based applications. ¿e
MPS-powered mbeddr [Voe+13] is an example for a collection of integrated languages and is
used for embedded systems development.
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2.5 Domain-Speci�c Approaches

Eachdomain has di�erent requirements andmanydomains have established speci�c approaches
to so ware development, for example, the automotive, avionics, and smartphone domains. Be-
fore going into detail on so ware development in robotics, we brie�y strive so ware develop-
ment in the automotive, smartphone, and industry 4.0 domains.

2.5.1 Automotive Industry

¿e automotive industry is an interesting domain for system composition. It has a high demand
in so ware development and it has established an ecosystem with its suppliers. ¿e Automotive
Open System Architecture (AUTOSAR) [Autosar] is one example for so ware engineering from
the automotive domain. AUTOSAR is an established and structured engineering approach in
a worldwide e�ort of car manufacturers, suppliers, and other companies in the electronics and
so ware industry. AUTOSAR uses a model-driven approach and aims at commercial o�-the-
shelf components. Heinecke, Rudorfer, Hoser, et al. [Hei+08] present an Eclipse-basedMDSD-
tooling for AUTOSAR.

AUTOSAR builds on standards that include a formal component model. Even though the
standard is large, it does not de�ne all relevant aspects and leaves room for interpretation. ¿is
ends up in components that are not composable due to inconsistencies, even though they follow
the standard (e.g. “complex drivers” as universal tool, no standardized message exchange). On
the other hand, AUTOSAR standardizes an architecture that tends to be restrictive when people
want to apply another architecture. AUTOSAR on one hand underlines the need for structures
as basis for collaboration. On the other hand, it is a negative example that underlines the need
for carefully balancing these structures such that they neither restrict too much nor provide
too much freedom. Even though there is a need in automotive for composition of components
to keep pace with technology development and market expectations, �exible composition is
not possible. In turn, there is a need for deep knowledge and for mechanisms to manage non-
functional properties that enable safety analysis and predictability. ¿anks to “all-in” models
with access to all levels of detail, automotive is very advanced in these areas. ¿e price to pay is
low support for separation of roles and composability.

2.5.2 Smartphone Domain

¿e smartphone domain is of interest to this thesis because of its successful ecosystems and
market places (see section 2.1). ¿e complexity of applications for smartphones is rather low in
comparison to robotics so ware systems. Many important issues are covered by the platform
providers (e.g. Apple and Google) which then only expose limited complexity to app develop-
ers, for example with respect to hardware and platform. ¿e number of available hardware in
the smartphone domain is huge, but it is still rather low compared to the variety of hardware
(and also so ware) in robotics: All smartphones have a touchscreen, microphone, GPS, and
wireless on board whereas the variety of di�erent sensors and actuators is much higher among
robots. ¿ere are no component models in widespread use and tool support focuses on rapid
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GUI development and on abstraction between platforms to overcome vendor lock-in (write
once, deploy to Android, iOS, etc.). Reuse in the smartphone domain is made on the library-
and code-level (e.g. Xamarin component store [Xama]). An overview on open source frame-
works for app development is given in [Wyl12]. When looking at the success of smartphones and
the number of available apps, the way of dealing with complexity with libraries seems su�cient.
¿is kind of source-level and library-level collaboration, however, will not scale for a robotics
ecosystem. ¿e smartphone domain can bene�t from a composition-oriented approach, as has
been demonstrated in the FIONA research project [Fiona] (see sections 7.3.2 and 7.5).

2.5.3 Industrial Automation and Industry 4.0

¿e challenges in industrial automation are raising with today’s needs for �exible adaptation
of the production �ow, intra-logistics, human-robot collaboration, and robot co-workers. Tra-
ditional industrial automation is on the move to Industry 4.0. ¿e OPC Uni�ed Architecture
(OPC-UA) [MLD09] is a promising approach for these domains as there is huge commitment
and drive of machine and device suppliers towards being conformant to OPC-UA. OPC-UA
is a communication infrastructure for machine-to-machine communication. OPC-UA works
in an object oriented fashion and each machine or device grants access to speci�c variables in
the OPC-UA “address space”. Clients can access these data via prede�ned services (read/write,
subscribe, method calls).

OPC-UA aims at integration and interoperability. In comparison to other approaches that
addressed this in the past (e.g. CORBA), OPC-UA foresees the concept of companion speci�-
cations. Companion speci�cations de�ne information models (variables/data types, methods,
events) as a standard for a particular domain. In the context of the composition tiers for ecosys-
tem organization in this thesis, the general OPC-UA standard would be on Tier 1, individual
companion speci�cations on Tier 2 and concrete OPC-UA servers and clients on Tier 3. Since
OPC-UA has means to apply freedom from choice via companion speci�cations, it comes with
the basic structures that are necessary for use within an ecosystem.

OPC-UA eases device integration thanks to an overall methodology (Tier 1) and domain-
speci�c standards (composition Tier 2). Device suppliers now can adopt the Tier 2 standards
and gain compatibility with users that expect these standards. OPC-UA, however, does not
speci�cally aim for composition and is, in fact, less suitable for composition of so ware compo-
nents. It misses adequate abstractions: Even though it claims to be service-oriented, it is still too
much focused on object-orientation. Using OPC-UA soon leads to �ne-grained interfaces and
method calls as known from object-orientation. Integrating such systems results in spaghetti
systems, breaking composability. It de�nes the information models and data access indepen-
dently. When a data structure or variable is o�ered, the client is free to choose the way to access
it. ¿is separation hinders composability. Adding structures to OPC-UA to express data struc-
tures and ways to access them as a stable pair, would enhance composability via OPC-UA.¿is
is the approach that is applied in this thesis via “service de�nitions”.
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2.6 Software Development in Robotics

Robotics is di�erent from many other domains with respect to the broad diversity of systems
that combinemore heterogeneous �elds than systems do in other domains. ¿e need to interact
with the unknown, open, and dynamic physical world and with humans brings additional com-
plexity. ¿is complexity exists in a way that is not present in other domains. But the solutions
that address this complexity in robotics are very valuable to these domains. ¿is does not allow
to directly apply approaches established in other domains. It requires their adaptation or even
establishment of new approaches that are speci�c to robotics.

2.6.1 Robotics Libraries

¿e OpenCV library [Its] and the Point Cloud Library (PCL) [RC11] for (depth-)image process-
ing,OpenRave [Dia10] andMoveIt [SC] formanipulation planning andmore general theMobile
Robot Programming Toolkit (MRPT) [Bla] are very successful robotics programming libraries
that simplify applying established robotics algorithms for speci�c purposes. ¿eir existence,
active maintenance and support is a great boost in advancing robotics technology without re-
inventing the wheel. ¿ese and other libraries enhance reuse at the code-level and library-level,
but system integration is still a challenge in robotics [euR13]. ¿e named libraries are great can-
didates to easy functional development by integrating libraries in components by component
suppliers. ¿ese developments then become composable when following the approach that is
described in this thesis. To bene�t from the power of composition on the functional level within
component implementations, however, it again requires superordinate structures. ¿ese struc-
tures are the challenge that still needs to be addressed.

2.6.2 Robotics Frameworks

Player [GVH03] was aimed at supporting the implementation of device drivers. It turned out
to be a very successful robotics framework since it allowed to reuse third party so ware for
robotics; and because of the popular simulator Stage. Orca [Bro+07] is one of the early CBSE
approaches to robotics that pushed the awareness and need for reuse for robotics, supporting
API-style interface de�nition based on CORBA IDL and a graphical tool to wire components.
¿eOrocos Real-Time Toolkit (Orocos-RTT) [OroRTT] is a framework supporting real-time ca-
pabilities for industrial robots and manipulation. It collects a basic set of typically used robo-
tics applications in the Orocos Component Library. ¿ere is no dedicated IDE for Orocos, but
some activities provide mappings and code-generation for Orocos, e.g. BRIDE [BRIa], oroGen
(Rock [JA11]) and RobotML [Dho+12]. Yet Another Robot Platform (YARP) is a roboticsmiddle-
ware “for plumbing for robot so ware” [MFN06]. It is targeted for research and academia and
mostly used with humanoid robots requiring fast and reactive control loops. Fawkes [Nie+10]
is a component-based approach for robotics so ware development around a Lua-based engine
for robotics behavior. It supports blackboard messaging components in a monolithic plugin
architecture. Rock [JA11] is a more recent framework for component-based so ware develop-
ment for robotics. It focuses on error detection and error handling for long-living systems.
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Rock comes with the oroGen component development tool and its internal component model
is based on Orocos-RTT. Rock o�ers drivers and modules in a library. SmartSo [SW99b] in
its original form is a framework to support modularized implementation of robotics systems.
It uses components and introduced the concept of communication mechanisms (“communica-
tion patterns”). Even before Orca was introduced, it applied CBSE and the idea of what today
is called Service-Oriented Architecture (SOA). SmartSo nowadays is a holistic approach to
so ware development in robotics: the “SmartSo World” (section 2.8).

A still relevant overview on robotics frameworks and middlewares can be found in [ES12].

2.6.3 Development Approaches and Robotics Software Infrastructures

Robot Technology Component

Robot Technology Component (RTC) [OMG12a] is a standard by the OMG. Its CORBA-based
reference implementation OpenRTM-aist / RT-Middleware [And+05] comes with an Eclipse
IDE. RTC was one of the early initiatives to specify a component model in robotics and thereby
pushed the awareness and need for structures in robotics. It only provides data-�ow communi-
cation and does not clearly separate between the reference implementation and the component
model. While RTC is suitable forMDSD, its Eclipse-based tooling is not state of the art anymore
in MDSD technology. RTC in general is out of date compared to more recent approaches such
as BRICS, RobotML, and SmartSo for robotics or UCM in general.

Robot Modelling Language

¿e Robot Modelling Language (RobotML) [Dho+12] is an outcome of the French PROTEUS
activity to provide a common platform for collaboration in robotics research and development
in France. RobotML is a Domain-Speci�c Language (DSL) for robotics modeling and a pro�le
to UML. It can be seen as abstraction of common ground of the ROS and Orocos platforms. It
does not strictly separate between robotics modeling and its robotics target platforms. It thus
uses and directlymaps to the terminology and elements provided by these platforms. ¿is direct
mapping is a close coupling that hinders composition in the way it is envisioned in this thesis.
PROTEUS foresees an online platform to exchange elements of modeling, for example, models
at di�erent abstraction levels and granularities but also algorithms or libraries. ¿e distinction
between providers and users is a very basic separation of roles in terms of exchange through a
platform. It is not comparable to the separation of roles in this thesis, which is in terms of ded-
icated modeling perspectives and enabling experts to work loosely coupled. ¿e model-driven
tooling of RobotML uses Papyrus [Papyrus] and Eclipse [Eclc]. ¿e overall approach is like
the SmartSo World and the SmartSo MDSD Toolchain. ¿e consortium of the ongoing EU
H2020 RobMoSys [RobMoSys] Innovation Action includes developers of the SmartSo World
and RobotML. It is expected that both concepts, among others, join in an approach for an EU
Digital Industrial Platform for Robotics (see section 2.7).
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Robot Operating System

¿e Robot Operating System (ROS) [Qui+09] is, on one hand, a communication framework and
a set of guidelines to implement robotics so ware, and on the other hand, a huge set of so ware
libraries, tools, and downloadable so ware components (nodes). ROS is the most widely used
robotics so ware platform to date and the availability of ROS de�nitely pushed robotics thanks
to its “content” (availability of downloadable so ware packages and infrastructure to run them).

ROS lacks separation of concerns at several levels and it lacks structures to apply separation
of roles. For example, there is no support for freedom from choice and design and implemen-
tation decisions are in the responsibility of the developer and integrator. ¿e existing freedom
and availability of modi�able source code is well appreciated by the community (e.g. [Del14])
but results in assumptions of components that only hold true for a certain environment. ¿ese
assumptions must be understood—hopefully with good component documentation—before
using the component in a new environment (see [Cou+10]). ¿ere is no explicit component
(meta-)model for ROS which makes it hard to apply model-driven approaches. While ROS is
very successful and in widespread use, these shortcomings hinder system composition. ¿ere
is no dedicated IDE for ROS.

While ROS is mainly used by research for service robots, ROS-industrial [RosInd] aims
to apply ROS in factory automation and manufacturing. In this context, the ongoing H2020
ROSIN project [Rosin] aims to improve the quality of existing ROS-Industrial components and
tools using model-driven approaches, testing and code-checking to make it better and more
business-friendly. ¿e contributions of this thesis could be applied to ROS to improve so ware
development and enabling system composition using ROS.

Robot Operating SystemModel-Driven Development

¿eRobotOperating SystemModel-driven development tool suite (ROSMOD) [Kum+16; Kum+15]
is a relatively young approach. It provides a graphical model-driven component-based devel-
opment tool to support rapid prototyping for ROS.

ROSMOD comes with its own component model that also addresses the support of analysis
and veri�cation [Kum+15]. In this respect, there is a high focus on task/thread level modeling
in the component model. ROSMOD is an adequate solution to provide structure and tools for
ROS. ROSMODdoes not address composability and themodeled deployments and components
are highly interweaved. ¿is makes it hard to use it for separation of roles as required for a
composition work�ow in an ecosystem. Its web-based development tool and service-oriented
design [Kum+16] of the tooling infrastructure enables collaborative “team” code development
and collaborative model editing among developers for a particular robot system. Collaborative
development easily gets in con�ict with separation of roles (see section 2.2.1).
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Best Practice in Robotics

Best Practice in Robotics (BRICS)was a European FP7 research project for component-based de-
velopment of robotics so ware. It aimed at usingMDSD tomake existing robotics best practices
usable. BRICS fostered separation of concerns for robotics.

¿emain outcomewas theBRICSComponentModel (BCM) [Bru+13], a robotics component
model. ¿e BCM aimed at providing an abstraction for common robotics frameworks. ¿is led
to a simpli�ed component model that covers only the common structures. ¿us, it does not
allow modeling some of the import structures. ¿e communication between components, for
example, cannot be de�ned at the level of a component. In consequence, the communication can
be modi�ed at component implementation time, thus making it hard to reuse the component
or use it for composition.

BRICS developed the Integrated Development Environment (BRIDE) [BRIa] as a model-
driven tool for component creation applying the BCM.¿e BRICS Open Code Repository (BRO-
CRE) [BRIb] is an online platform to search and install so ware. It is basically a convenient
way to access and retrieve so ware. At the level of libraries and source code, it supports with
package management and versioning. ¿e method of choice to use the libraries seems “inte-
gration” rather than composition (see integration vs. composition, section 3.1.1) which makes it
extremely hard to predict the behavior of components and to compose them.

ReApp

¿e recently completed ReApp project [ReApp] is a notable example of a complete environment
for enhancing the reuse in robotics so ware development. ReApp and the approach presented in
this work can complement each other. ReApp ontologies can be used to semantically describe
and relate domain structures at composition Tier 2. ¿e contributions of this thesis provide
adequate structures to realize the underlying work�ow that enables composability.

ReApp uses ontology technology at design-time for model-driven engineering to enhance
reusability and discoverability of components (called “Apps”) for the Robot Operating System
(ROS). It basically enriches ROS with meta-data and tooling [Zan+15] and is an important ben-
e�t for the ROSworld to give it more structure. ReApp providesmeans for semantic description
of components via capabilities that describe the intended purpose of the so ware component
(e.g. “image_processing”). Capabilities are modeled as enumerations [Awa+16]. ¿e approach
comeswith the ReAppWorkbench [Awa+16;Wen+16] and the ReApp Store [Bas+14]. Its under-
lying component model corresponds to the BRICS ComponentModel (BCM) [Bru+13]. ReApp
models capabilities that are associated with interfaces and thus de�nes a collection of “compo-
nent templates”. Component suppliers model components by searching for and then selecting
capabilities. ¿is is supported by an ontology. ¿e interfaces that are associated to the capabil-
ity, i.e. the interfaces that the selected capability is expected to have, are automatically added
to the component model (see [Zan+15]). System builders can discover components via a rough
description of what the component will be used for. ¿e ReApp Store will use the ontology
and capabilities to propose adequate components that �t the criteria. ¿e ontology classi�ca-
tionmechanism allows to infere the capabilities of components based on their interfaces in case
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capabilities are not explicitly modeled. ¿is is a typical ontology-based approach in contrast
to a class-based modeling in which the capabilities of a component would be expressed explic-
itly. ReApp o�ers a very basic interface modeling, basically by referencing ROS .msg-�les. ¿e
ReApp Workbench is so far described as a prototype for demonstrational purposes [Awa+16],
no productive use has been reported.

ReApp is one notable example of a development suite for robotics to support the com-
plete work�ow from componentmodeling, over discovery, and system assembly to deployment.
ReApp is a reasonable contribution to re-using, structuring, and classifying so ware in the ro-
botics domain for new and non-expert users.

ReApp supports system integrators in �nding a component with a certain capability. How-
ever, �nding a certain capability (e.g. object recognition) does not yet mean that the found
component is composable with other components that require/provide this capability. As a
result, adapters and integration might be required. ¿e semantic description of components,
thanks to the descriptive nature of ontologies, is a strong part in ReApp and may be adopted
on top of the approach presented in this thesis. It would help to semantically relate and orga-
nize domain-speci�c structures (see sections 2.3.2 and 3.4.1). But before doing so, one needs
adequate underlying structures.

¿e underlying structures of ReApp are not su�ciently rich to be applied for system com-
position. For example, ReApp internally uses the BCM. It misses adequate structures in its
component model as it is a generalization of too many frameworks (see section 2.6.3). ReApp
builds on ROS and thus is structured in the ROS-way. Due to the freedom of choice philosophy,
it misses clear structures that can be mapped to other approaches. Freedom of choice is needed
for composability.

¿e parts describing components semantically are closely connected to the underlying com-
ponent structures. Speaking in terms of composition tiers as presented in this thesis (Fig. 1.7 and
section 4.1.1), Tiers 1 and Tiers 2 are combined. ¿is leads to low �exibility of domain structures
since they are part of the main composition structures. It also limits the eventual co-existence
of domain structures that can contribute to �nding a de-facto standard. ReApp builds on a tight
coupling between capabilities and interfaces that explicitly de�ne the input and output inter-
faces. ¿is supports new users in �nding adequate interfaces, but it ties the capability to the
de�ned interfaces and requires foreseeing all possible combinations. As a result, this may lead
to �ne-grained capabilities and �ne-grainedmodeling instead of hitting the sweet spot between
freedom from choice and freedom of choice. ¿is is a typical e�ect that o en can be observed
in ontologies. Providing a kind of templating mechanism and to assign a pair of interfaces to
components also indirectly speci�es parts of the architecture. It pre-de�nes the granularity of
components and makes components the architectural unit. Speaking in terms of the composi-
tion tiers in this thesis, in ReApp this architectural de�nition of components happens at a high
level and is thus too restrictive. An architecture should not be shaped by components, but by ser-
vices that are provided/required (by components). Service de�nitions as the entities that shape
the architecture, as presented in this thesis, do not restrict the architecture around them. Not
restricting the architecture is important for composition, as the architecture cannot be foreseen
when structuring a domain (composition Tier 2) or providing a building block (composition
Tier 3).
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¿e developers of SmartSo and ReApp are partners in the SeRoNet [Bun17] activity and it
is expected that SeRoNet reuses contributions from both approaches in a joint approach. ¿is
underlines that both approaches can complement each other.

SmartSoft

SmartSo is a component-based and service-oriented approach for robotics so ware develop-
ment [SW99b; Sch04a]. It early applied freedom from choice via providing only a small but
su�cient set of communication patterns. ¿e “SmartSo Framework” originally was a set of
concepts and guidelines to implement component-based systems that were supported by a ref-
erence implementation. ¿e “SmartSo World” nowadays provides a complete set of develop-
ment methods, concepts, implementations and model-driven tools. ¿is thesis builds on the
“SmartSo Framework” and contributes to the “SmartSo World”. Both is described in more
detail in section 2.8.

2.6.4 Tooling in Robotics

¿is section focuses on tooling that supports the development of robot applications with respect
to the overall work�ow.

Most tooling dedicated to robotics probably exists in the context of ROS. Even though,
there is no dedicated IDE for ROS that supports the design, development and integration of
ROS nodes. ¿e development environment mainly consists of dedicated tools for speci�c pur-
poses (e.g. dedicated tools for visualization and a set of CMake- and shell-script based tools,
cf. [Kum+16]). Using general-purpose IDEs (e.g. QtCreator) [RosIde] seems to be adequate for
the ROS community, since the community is familiar with programming environments. ¿ere
are some user-driven initiatives to come up with development environments for ROS. For ex-
ample, RIDE [Ride] simpli�es connecting and launching of ROS nodes. rxDeveloper [MHB12]
is a graphical environment for parameterization of running ROS nodes. Other larger scale ac-
tivities also contributed to tooling for ROS. ¿e BRICS Integrated Development Environment
(BRIDE) [BRIa] is a model-driven tool for component creation applying the BCM. BRICS heav-
ily builds on ROS; BRIDE therefore mainly allows to develop ROS packages, nodes, and asso-
ciated launch �les. It also provided mappings to Orocos. As such, BRIDE contributes to the
systems integration challenge for ROS. ¿e Hyper�ex Toolchain [GB11; GB14] is an extension
of BRIDE that applies MDSD and the concept of SPLs to robotics and supports building and
managing reference architectures using feature models. ReApp comes with the ReApp Work-
bench [Awa+16; Wen+16] (see also: section 2.6.3). It uses the OWL for ontologies and compo-
nent modeling [Zan+15]. ¿e underlying component model corresponds to the BRICS Compo-
nent Model (BCM) [Bru+13] and the BRIDE [BRIa] environment is used for code-generation
[Awa+16]. Component assembly and deployment is modeled in the solution editor; it uses
Ecore for modeling and Xpand for code-generation [Wen+16]. Robot Technology Component
(RTC) [OMG12a] comes with an Eclipse-based IDE, and also RobotML uses Papyrus [Papyrus]
and Eclipse for modeling with an UML pro�le. ¿e Robot Operating SystemModel-driven de-
velopment tool suite (ROSMOD) [Kum+16; Kum+15] is a relatively young approach. It provides
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a graphical model-driven component-based development tool to support rapid prototyping for
ROS and comes with its own component model.

While there is a lot of tooling around, it is typically dedicated for one purpose, i.e. one task
that may be covered by a DSL (see section 2.6.5). It, however, is required to hand over the output
of one work�ow step to the next that must be supported by tools: Tools are not integrated with
respect to an overall work�ow (no need to “leave” one IDE) and not integrated with respect to
superordinate structures as it is necessary for composition. Tooling is very o en tied to one tar-
get system and each environment comes with its own set of tooling and/or component model.
¿e contributions of this thesis to the SmartMDSD Toolchain realize the proposed composition
structures in a single Integrated Development Environment (IDE).¿e structures and the tool-
chain enable the collaboration of the di�erent roles in the composition work�ow such that they
can complement each other. In other words: ¿e toolchain guides the involved roles to apply
and bene�t from the composition structures. ¿e composition structure is independent of the
used target framework.

2.6.5 MDSD and DSLs in Robotics

¿e need for domain-speci�c research on MDSD for robotics has been identi�ed by the Robo-
tics 2020 Multi-Annual Roadmap (MAR) [euR16]. It is being addressed by the robotics commu-
nity, for example in the Domain-Speci�c Languages and Models for Robotic Systems (DSLRob)
workshop series [DSLRob] which speci�cally focuses on the development of DSLs for robo-
tics. MDSD topics are more frequently being featured in speci�c journals, e.g. Journal of So -
ware Engineering for Robotics (JOSER) [Joser]. ¿e European Horizon 2020 Innovation Action
Composable Models and So ware for Robotics Systems (RobMoSys) [RobMoSys] speci�cally ad-
dresses the combination of existing modeling approaches for robotics. Notable model-driven
approaches in robotics are RTC, RobotML, ROSMOD, BRICS, and ReApp. ¿ey are described
in more detail in section 2.6.3. An overview on MDSD in robotics can be found in [Bru15] and
[RMT14].

Most activities inMDSDon robotics are focused on providingDSLs. For example, in [SS11b]
and [KB12] for task coordination, in [Hoc+13] for modeling and code-generation for deploy-
ment of ROS nodes, in [Bau+13] for modeling manipulation and grasping using a So ware
Product Line (SPL), and in [GB11] to model reference architectures using a SPL. An extensive
overview on the state of the art on DSLs in robotics can be found in [Nor+16]. ¿ese DSLs have
in common that they are dedicated for one purpose, as would one expect, but are isolated tools
with respect to overall system design or work�ow. In contrast to that, this thesis proposes a
harmonic / balanced structure and integrates several dedicated DSLs into a consistent approach
and development environment.
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2.7 Related Initiatives and Ongoing Projects

Most of the activities in robotics aim at advancing in technical challenges. ¿is can be observed
via the two top robotics conferences IEEE ICRA and IEEE/RSJ IROS. ¿e need for systematic
so ware engineering in robotics has been recognized lately and it started getting the attention
it deserves. However, there is still a long way to go in comparison with other domains such as
so ware engineering in automotive.

A rather small community is active in developing and promoting means for (model-driven)
so ware engineering for robotics. For example, the Domain-Speci�c Languages and Models for
Robotic Systems (DSLRob) workshop series [DSLRob] and the Journal of So ware Engineering
for Robotics (JOSER) [Joser] advance on so ware engineering for robotics. Initiatives such as the
RAS Technical Committee on So ware Engineering for Robotics and Automation (TC-SOFT) [Tc-
So ] and most important the euRobotics AISBL topic group on So ware Engineering, System
Integration, Systems Engineering [euR] promote the relevance of so ware engineering for ro-
botics and the need for domain-speci�c adaptation of so ware engineering both towards the
general robotics community and to funding activities in Europe.

Two ongoing Innovation Actions in the European Horizon 2020 research and innovation
programme are of interest to this thesis. ROSIN (ROS-Industrial quality-assured robot so ware
components) [Rosin] aims at enhancing the quality of ROS-Industrial, both the framework and
its content, via continuous integration and code-testing in order to push robotics by broad avail-
ability of high-quality so ware. RobMoSys (ComposableModels and So ware for Robotics) [Rob-
MoSys] focuses on amodel-driven and composition-oriented approach to system integration to
establish a European robotics so ware ecosystem. ROSIN aims to enhance the quality of exist-
ing so ware through so ware quality assurance. RobMoSys addresses better quality of robotics
so ware right from the beginning via providing adequate and sound structures as a fundament
that improve the quality and composability of building blocks.

¿e RobMoSys Horizon 2020 project is part of the European e�orts to create an EU Digital
Industrial Platform for Robotics. Its funding on EU-level underlines the relevance of a model-
driven and composition-oriented approach. ¿is thesis is closely related to RobMoSys and the
research in this thesis therefore also contributes to these highly relevant topics. Many insights
of this thesis contributed to the overall vision of RobMoSys and contributions of this thesis are
part of the RobMoSys composition structures.

On a German national level, the BMWi PAiCE project SeRoNet (Plattform zur arbeitsteili-
gen Entwicklung von Serviceroboter-Lösungen) [Bun17] has a similar aim as RobMoSys and it is
expected that this project will reuse structures from this thesis as part of the SmartSo World
and ReApp.
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2.8 The SmartSoft World

¿eterm“SmartSo ”was originally introducedwith the SmartSo Framework [SW99b; Sch04a].
It addresses the complexity of so ware development for mobile robots. SmartSo nowadays is
used as an umbrella term for concepts, principles, tools, and content that are developed at the
Service Robotics Research Center (Service Robotics Ulm, [Ser]) to extend and carry on the
core motivation of the SmartSo Framework. ¿e “SmartSo World” includes, amongst oth-
ers, two main reference implementations of the SmartSo Framework (based on the ACE and
CORBAmiddlewares), model-driven concepts implemented in the Eclipse-based SmartMDSD
Toolchain, concepts and implementations for task sequencing, and a set of reusable so ware
components. ¿e results of this thesis are part of the SmartSo World. Methods, concepts or
implementations in relation to the SmartSo World are o en pre�xed with “Smart” for identi-
�cation.

2.8.1 A Brief Review of the SmartSoft Framework

¿e SmartSo Framework [SW99b; Sch04a] applies a component-based and service-oriented
approach. Loosely coupled components provide execution containers for the implementation
of algorithms that communicate with other components through services. ¿e only exchange
of information between any two components is through services. ¿ere is a clear separation
between the outside viewof a component and its inside view. A service (Fig. 2.2) in the SmartSo 
Framework is formed by a communication pattern (communication semantics) and by a set of
communication objects (data structures)

Figure 2.2: Components in SmartSoft communicate through services. A service is a combination of
a communication object and a communication pattern.

¿eSmartSo Framework de�nes “a small but su�cient set of carefully chosen communica-
tion patterns for component interaction” [Sch04a]. ¿ey support maintaining a stable interface
towards the user implementation inside the component and a stable interface towards other
components. Communication patterns limit the set of possible interaction mechanisms for the
sake of composability. ¿ey provide a �xed set of few but su�cient communication mecha-
nisms for robotics such as one-way “send”, two-way “request-response”, and “publish/subscribe”
mechanisms on a timely basis (push timed) or based on the most recent update (push newest).
¿e patterns also contain coordination patterns [Lut+14] to orchestrate a robot’s components
for task sequencing, e.g. discrete event noti�cation, run-time parameterization and lifecycle
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management in the state-pattern (see section 2.9).
Communication objects [Sch04a; Lut+14] de�ne the data structure that a service uses to ex-

change information. Communication objects are C++-like objects that implement framework
internal access methods and can implement additional usermethods (getter and setter) for con-
venient data access. Communication objects are always transmitted by value for decoupling. It
is a best-practice that communication objects are self-contained entities [Lut+14]: Communi-
cation objects include all information that is needed to process them; no additional information
retrieval should be necessary to interpret or use it. For example, a laser scan is tagged with the
position where it was recorded.

2.8.2 The SmartSoft Framework in the Context of this Work

¿eclear separation of the SmartSo Framework between the component internal and the com-
ponent external view enhances component composability via communication patterns. ¿is
separation provides basic means that enable a model-driven approach, separation of roles and
system composition. While these are basic structures that also enable composition, it requires
structures that consider them in context of the overall composition work�ow and the involved
roles. Such structures are not provided by the SmartSo Framework.

¿e approach presented in this thesis uses the concept of SmartSo services (communica-
tion patterns and the concept of communication objects). ¿is thesis formalizes themas “service
de�nitions” to enable creating and using a domain structure in a composition work�ow. ¿e
work�ow is realized in a model-driven Integrated Development Environment (IDE) that sup-
ports users in applying the approach. Service de�nitions increase the separation of roles and
the composability of components. Service de�nitions introduce a structure that components
adhere to and can rely on. ¿is prevents the manual organization by policies and replaces the
communication between roles in an ecosystem. In SmartSo , there is too few guidance and yet
freedomof choicewith respect tomanaging communication objects and services of components
and their component alternatives. As a result, this limits composability and system composi-
tion with SmartSo can only be achieved via following documented policies and guidelines.
Service de�nitions, as presented in this thesis, contribute at this end to explicate the necessary
information and manages them in the overall model-driven composition work�ow.

¿e communication patterns and the communication objects are an important contribu-
tion of the SmartSo Framework to structure systems and to come up with composable com-
ponents. To achieve system composition with separation of roles in an ecosystem, semantics
on the application-level also must be considered. Service properties address this aspect and
support communication patterns and communication objects in service de�nitions in order to
improve composability and separation of roles.

¿e approach presented in this thesis provides a structure to address the activity of putting
together building blocks in a holistic model-driven composition work�ow. It enables using
SmartSo in an ecosystem. It introduces service de�nitions with explicit properties to orga-
nize interfaces between components, component modeling, component (instance) parameter-
ization, component selection, composition of component, and deployment. ¿e thesis realizes
this in a model-driven structure and applies model-driven tooling to raise SmartSo from the
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code-level to the model-level.

2.9 The 3T Architecture in Robotics

Bass, Clements, and Kazman [BCK12] de�ne a so ware architecture as “the structure or struc-
tures of the system, which comprise so ware elements, the externally visible properties of those
elements, and the relationships among them”. A high-level system architecture that is in wide-
spread use in service robotics is the 3T architecture[Bon+97; Fir89] which introduces “three
interacting layers or tiers” [Bon+97]. “Tier” as in the “3T / three tier architecture” is not to be
mixed with “tier” in this thesis’ “composition tiers” to structure the ecosystem. ¿e 3T archi-
tecture was re�ned and put in context of SmartSo in [Sch04a; SW99a]; more recent views
and descriptions in relation to SmartSo are covered in [Lut+14; SS14b]. ¿e work presented
in this thesis is based on the three tier robot architecture. ¿e architecture is divided in a skill,
sequencing, and deliberative tier (Fig. 2.3).

A skill is a basic and encapsulated capability or function of a robot. ¿e skill tier is a reactive
tier with lots of data communication. Communication in this tier is on a subsymbolic level.
¿ere are components running low-level algorithms, continuous control loops such as collision
free driving. For example, a skill can realize speech input, speech output, or object recognition.
¿e skill tier also runs components providing hardware access, for example a laser ranger or
RGB camera. ¿is thesis uses the term skill for all components that are coordinated by the
sequencer. In the context of SmartSo robotics behavior, a “skill” is de�ned in a more narrow
scope; skill here refers to the link between robotics behavior tasks (or task plots) and services of
components.

¿e sequencing tier works on a symbolic level and consists of a single and central sequencer
component. It is responsible for coordinating and orchestrating the skill components. ¿e in-
teraction between sequencer and the components it coordinates is event-driven on a symbolic
level. ¿e sequencer is in control of the whole system and executes an action plot (e.g. make
co�ee, modeled as state chart [SS14b] or task tree [SS10]) by coordinating the skill components
in a certain sequence as encoded in the action plot (e.g. recognize objects, grasp cup, place cup,
etc. to make co�ee). ¿e sequencing tier thus covers both the knowledge about the task (how to
make co�ee) and execution of that task by orchestrating the single components (object recog-
nition to recognize the co�ee machine). ¿e sequencer triggers actions on the component and
receives discrete event noti�cations; both by using the SmartSo coordination patterns parame-
ter, state and event. All problems encountered in the skill that cannot be handled or recovered by
the skill itself must be reported [Nor90]; the sequencer then can resolve the problem as encoded
in the action plot.

A knowledge base is used to store persistent data to build and use a world model (e.g. lo-
cations of persons and objects, names of persons). ¿e deliberative tier runs advisors for the
sequencer. For example, an expert component for topological path planning through a building
or �nding the optimal sequence of stacking cups and plates.
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Figure 2.3: The 3T architecture that is commonly applied in service robotics. (Figure adopted
from [SW99a])
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3
Towards System Composition

¿is thesis envisions the composition of building blocks that are shared and exchanged among
the participants of a robotics so ware business ecosystem (Fig. 3.1).

¿is chapter describes the vision of composition and the vision of an ecosystem (section 3.1).
It shows that structures are required to realize such an approach for robotics (section 3.2). ¿e
chapter then describes the consequences to such a structure and such an approach (section 3.3).
It also looks at the considerations to address these consequences (section 3.4).

As the core contribution of this thesis, the following chapters explain the approach that re-
alizes the technical structures for system composition in an ecosystem for robotics.

System
Composition

Ecosystem

Robotics

Structures are needed
to be applied in robotics

Vision and Goal
Sec. 3.1

Need for Structures
Sec. 3.2

Consequences and
Considerations
Sec. 3.3 / 3.4

Structures for System Composition
in an Ecosystem for Robotics

Chapter 4/5

Figure 3.1: Structures are necessary to enable system composition in a software business ecosys-
tem for robotics. This thesis identi�es the necessary technical structures for building
blocks to support system composition in an ecosystem for robotics.
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3.1 Vision and Goal

To describe the vision and goals of this thesis, the de�nition and meaning of “system compo-
sition” is discussed to distinguish it from an integration approach. A er describing a robotics
business ecosystem, �ve inter-related use-cases are presented to form the overall picture.

3.1.1 System Composition

System composition is considered the activity of bringing parts together. “Integration” is widely
used in so ware engineering and describes the process of combining or assembling components
into an overall/whole system [ISO15; ISO10]. Composition and integration, however, are not
synonyms (see [SW02]).

System Integration

Most applications in service robotics are “created” from scratch, e.g. by “blank-sheet design”
through only breaking down requirements (cf. [OW13]), then meeting the requirements, and
�nally bringing together the parts in the end. Bosch and Bosch-Sijtsema [BB10] call this an
integration-centric approach where “signi�cant e�ort is placed on the last stage of so ware de-
velopment, where independently developedparts aremanually integrated and validated” [BB10].
It is the approach that is applied in most companies [BB10].

System Composition

Composition is “the action of putting things together” [Oxf, “composition”]. In context of this
thesis, it is thus the action or activity of putting together a service robotics application from
existing building blocks (here: so ware components) as is, in a meaningful way, �exibly com-
bining and re-combining them depending on the application’s needs. Composition-oriented
approaches [BB10] follow the idea of a building blocks approach. Instead of a problem break-
down, they create something new from something existing. In such an approach, systems are
built by combining andputting together parts in a �exibleway [Jan12, Part IV]. ¿is is in contrast
to building each part mostly from scratch again and again. It is di�erent from the substantial
e�ort to write glue-code and adapters to integrate existing so ware.
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System Integration vs. System Composition

¿e word “integration” stresses the need to enable parts to work together. It implies that the
parts are di�erent in some way (i.e. not compatible), that it requires e�ort to overcome this by
modi�cations. ¿is is supported by Petty and Weisel [PW03], who report on integration in the
context of computer science being the e�ort tomodify components tomake them interoperable
and to work with others (see also [Erl08, p. 92�]). Sta�ord andWallnau [SW02] even go further
and compare integration to “themechanical task of ’wiring’ components together” [SW02]while
modifying their interfaces tomatch. Writing glue-code and adapters is a typical activity tomake
parts and their interfaces compatible to integrate. For example, integrating functions of a library
into an existing so ware project. Integration of parts o en does not come with the intention to
use the component beyond that particular purpose [PW03].

In contrast to integration, composition puts a focus on the new whole that is created from
existing parts rather than on enabling parts to work together just by gluing them together: ¿e
resulting whole still consists of its parts [SW02], they are still visible and are still isolated as
entities and are thus still exchangeable. In contrast to composition, a part that is integrated
amalgamates into the whole: i.e. becomes one part; or mixes, as red and green water will mix.
It is thus hard to separate the parts again or to exchange individual parts1. Even if that part is
removed, new adapters are required. Integration is ine�cient and expensive.

Due to the required in-depth knowledge, integration creates a tight coupling between the
parts of the system, making it hard to manage parts, reuse parts, distribute work or even out-
source work [BB10]. ¿e reason is that the parts of the system each come with assumptions
about the environment they were developed for and in which they are supposed to be used
in: they are shaped by their requirements [GAO95]. ¿us, integration requires knowledge and
access to all parts of the system on all abstraction levels.

System composition is about adhering to a composition structure. It is about putting in ef-
fort once to comply to the composition structure and gain immediate composability with other
building blocks. In contrast, integration is about building individual adapters between mutual
parts or evenmodifying the part itself. High e�ort comes through the in�nite number of combi-
nations between building blocks that each require a new adapter each time they are integrated.
So ware components that are subject to composition can be taken “as-is”, only being con�gured
within modeled boundaries without requiring adapters. ¿ey thus must be built with this in-
tention right from the beginning. ¿e context in which they will later be composed is unknown,
which puts special requirements on their composability and on the overall work�ow.

In so ware engineering in general, “integration” is the process or step of combining or as-
sembling components into an overall/whole system [ISO15; ISO10]. In this sense, the e�ort for
system integration is lowered by applying a compositional approach.

1“Integration” is very closely connected to “to incorporate”, which means “to take in or contain something as a
whole; to include” [Ame11]
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An Analogy: Jigsaw Puzzle and Lego Building Blocks

¿ere is an analogy between integration and a jigsaw puzzle (see also: Fig. 1.3): Sawing a wooden
plate apart produces many pieces where only two of them will �t together. To build a jigsaw
puzzle, one literally �rst requires the overall picture to be painted on the wooden plate. Only
then can it be sawed apart. It is not possible to produce the jigsaw puzzle in the reverse order.
One cannot saw apart the wooden plate, then mix the puzzle parts and start painting them.
Once the puzzle is produced, one has a very hard time to put together the pieces by their shape
alone without knowing the picture of the puzzle. Connecting two arbitrary pieces a er the
wooden plate is sawn apart will require modi�cation or adapters to make them �t. ¿is will
most probably also modify the overall appearance.

¿e jigsaw puzzle is in contrast to composition of (classic) Lego plastic building blocks for
kidswhich can serve as an analogy for composition. Any two pieces can be built upon each other
because all adhere to a certain structure. Pieces can be exchanged according to the needs (e.g.
uniform color of all blocks) and known constraints (one 4x4 piece can be replaced by another
4x4 or by two 1x2). Lego pieces can be put together in a much more �exible way compared to
puzzle pieces. Lego pieces can be combined and re-combined as required. When exchanging
one Lego block in an existing composition, enough information is available about the missing
block to �nd an alternative: the size and dimension as well as the color. With a jigsaw puzzle,
one must �nd the one that �ts, most likely through trial and error. In case the puzzle piece got
lost, one must produce a new piece that exactly �ts.

The Need for System Composition

Integration-centric approaches are suitable for robotic prototypes that demonstrate a single abil-
ity in a laboratory or for development of a single robot application. So ware development for
service robotics have to overcome the limitations of integration-centric approaches, and need
to move to composition-oriented approaches because (i) it is not possible or not desirable to
address each part of the system in all depth during third party reuse and/or to come up with
adapters, (ii) because of the complex and interdisciplinary nature of robotics, and (iii) because
this will hinder the emergence of a robotics business ecosystem with component suppliers and
users. ¿e need for composability and composition of so ware has also been identi�ed in the
“ITEA Roadmap for So ware-Intensive Systems and Services” for so ware engineering in gen-
eral [ITE09] and in the “Robotics 2020 Multi-Annual Roadmap (MAR)” [euR16] for robotics.

A composition-oriented approach bringsmany bene�ts. It helps tomanage the overall com-
plexity, since the overall system consists of parts and these parts are solved individually (cf.
divide-and-conquer approaches). ¿eproblemcomplexity of such a part is lower than that of the
overall system and it can be addressed by an expert person or an expert company to distribute
and decouple work. Reuse of already developed parts can be made on a much better suited
level of granularity both within a company and externally. ¿e building blocks for composi-
tion ideally exist in-house within the institution or from third party suppliers. ¿e huge bene�t
of composition, however, is that it supports the emergence of a so ware ecosystem [Bos09] in
which organizations contribute to and take parts from to collaborate and compete. Ecosystem
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participants collaborate based on stable structures and supply building blocks (as in Lego, see
section 3.1.1). ¿ey do not need to work together as a big team in the sense of collaboratively
developing the whole system (as in a jigsaw puzzle, see section 3.1.1).

System composition in this thesis focuses on composing so ware components at a certain
level of abstraction which is of interest to the robot (system) and which is in close relation to its
abilities (section 3.2.3). ¿e granularity of system composition is therefore driven by the needs
of the application (e.g. object recognition), while the building block that o�ers such an ability
itself is technically-driven or problem-driven as it solves a particular problem (e.g. the fusion of
several algorithms for the purpose of object recognition). ¿e “service” that the building block
provides is therefore of interest to the application along with additional properties, for example
the quality with respect to service execution. ¿e details of how that service is realized (e.g.
algorithms, implementations, and methods) might not be of �rst interest to the application.

¿e goal is to build the so ware of a service robot by composing so ware components as
building blocks. To build a co�ee delivery robot, for example, onewould compose so ware com-
ponents that provide needed basic abilities that are needed such as object recognition, speech
input, speech output, collision avoidance, path planning, mapping, etc.

Building Blocks Alternatives

SystemComposition is the activity of putting together an application from building blocks such
that they meet the application’s needs. Since there might be di�erent needs in di�erent appli-
cations, this requires not only one building block that satis�es a need but several alternatives
to choose from. Without alternatives, system composition would resemble a jigsaw puzzle (see
section 3.1.1) with exactly one combination.

An “alternative” to a building block is another building block that satis�es the same need.
From the consumer point of view, it provides an equivalent service. For example, a histogram-
based object recognition and a feature-based object recognition building block are alternatives
since both provide object recognition. Alternatives can di�er in quality, implementation stan-
dards, maturity level, performance, or functionality. We call this diversity of performance.

For service robotics, we envision a system composition approach that allows for the iden-
ti�cation of alternatives and expressing their diversity. It comes with the need for systematic
support for the developers to select the one that matches the needs of the application best.

3.1.2 A Software Business Ecosystem for Robotics

¿is thesis envisions a robotics business ecosystem in which various stakeholders can network
and collaborate (Fig. 3.2). An ecosystem is a collaboration model (cf. [BB10; IL04]), which de-
scribes the many ways and advantages in which stakeholders (e.g. experts in various �elds,
organizations) network, collaborate, share e�orts and costs around a domain or product [IL04;
IL04; Moo93; PV05; ITE09]. System Composition assumes the existence of building blocks.
¿ese building blocks can be built and shared in such an ecosystem by the ecosystem’s partici-
pants.

¿ere are several key points that form an ecosystem [PV05] (see section 2.1) which we can
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put in relation to this thesis. ¿ey will shape the robotics business ecosystem as envisioned in
this thesis:

Population; interconnected; cooperation. ¿ere are several stakeholders (organizations, part-
ners, persons) working in such an ecosystem. Each stakeholder contributes expertise or
products or bene�ts from such. ¿erefore, there is a need to manage this cooperation,
giving each stakeholder su�cient freedom to work. Separation of these roles must at the
same time ensure that their contributions, that were built in isolation, can come together
in the end without the extra e�ort of integration and adapters. ¿e participants of the
ecosystemmight be cooperating in the sense of working closely together (“team work” or
“custom development”) or might not know each other at all (supplier does not know the
individual customer in a retail store).

Competition. Competition is about �nding the best one in terms of my needs from a set of
parties. In relation to this work, this can be the competition to �nd the one from several
building block alternatives that matches the needs of the application.

Structure; technological platform. From a technological point of view, such an ecosystem
needs a proper structure that makes all contributions �t together. Such a structure must
draw boundaries between the individual contributions. ¿ere must be the appropriate
tools to work with this structure and to provide a platform to actually “meet” each other,
thus �nding and delivering outcomes/products.

Considering an ecosystem perspective will contribute to push forward so ware develop-
ment in the interdisciplinary domain of service robotics. Establishing an ecosystem for robotics
brings many bene�ts. It allows to outsource parts of development or use components that are
already available [ITE09, p. 36]. It allows to share existing solutions or adapt them for newmar-
kets [ITE09, p. 36]. According to [Bos09], applying an ecosystem increases the value of existing
products since they can be o�ered to new users, accelerates innovation through opening up a
complete domain and shares the cost of innovation with partners.

As robotics is a diverse �eld, most contributors will have dedicated experience and expertise.
¿ey should be able to contribute so ware building blocks re�ecting their focus and expertise.
¿is expertise is made available to others who can bene�t from this expertise just by using the
provided so ware building blocks, applying system composition methods to combine them to
new applications. “Collaboration” of participants in an ecosystem refers to complementing each
other and sharing independent and self-contained development artifacts. Collaboration is not
meant in the sense of close collaboration as in working in a team and collaborative editing (see
section 2.2.1). ¿is thesis identi�es the necessary technical structures for building blocks (so -
ware components as unit of composition and unit of exchange) to support the concept of an
ecosystem for robotics.
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Figure 3.2: A robotics business ecosystem and the collaboration of its main participants. Suppliers
provide building blocks for users to build robotic applications. The participants must
not know one-another but still must be able to collaborate, i.e. complementing each
other and sharing independent and self-contained development artifacts.

¿ere are several ways to scale a robotics business ecosystem. One can think of a global
ecosystem with high standards which manage the collaboration between companies or even
complete branches of sub-domains in robotics. On a smaller scale, one can think of establish-
ing such an ecosystem within a company, thus collaborating with several departments of that
company, collecting a set of building blocks and using them for composing di�erent applications
according to projects with the customer.

An ecosystem for service robotics needs to be decentralized (see [Jan12]), i.e. not in control
of a single company only. ¿is would be too narrow and would limit the evolution that is nec-
essary to �nd the right structures which needs to be done in collaboration with developers and
community (see [BB10])—especially in a young �eld as service robotics. An ecosystem for ro-
botics must thus be driven and shaped by the community or representatives of the community
itself.

Establishing an ecosystem will establish one or more places to exchange building blocks.
We call the market of components the technical “meeting-platform” to collect and exchange
building blocks. ¿e success of such amarket depends on components to be used “as-is” [SW02].
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3.1.3 Use-Cases

Consider a small tech-company with knowledge in the �eld of human machine interaction and
in human behavior. ¿e company plans to build a robot to support people in navigating through
unknown buildings. ¿e robot shall greet people at the entrance and shall guide them to their
meeting point. ¿is can be useful, for example in public administration buildings. ¿e company
does not have deep robotics knowledge and therefore, must concentrate on theirmain expertise.

¿e envisioned robot application has special requirements towards path planning: ¿ere is
a human that shall follow the robot, but typical available path planning components are made
for robots. ¿ese do not take into account the way humans typically move through buildings.

The Company Perspective

Based on the previously described setting, we can describe the use-cases that the company will
facewhile developing andmaintaining the robot application. Wewill look at it from the perspec-
tive of the company �rst (Fig. 3.3), before taking an ecosystem-perspective in the next section.

!
Concept / Idea Robot A Robot B

In-House
Development

Ecosystem

U2

Initial Robot Development Reconfiguration Maintenance

U3

U1

U4 U5

Figure 3.3: Use-cases while developing and maintaining a service robot application from the per-
spective of a single “example-company” that is part of the ecosystem.

U1 Use Existing Building Blocks. Because of its limited expertise in robotics, the company
wants to rely as much as possible on already existing third party building blocks. ¿ese
shall already provide a certain level of granularity and functionality that is of use for the
company. For example, they have no insights into Simultaneous Localization and Map-
ping (SLAM). ¿us, they want to use a complete localization solution instead of just a
SLAM library or even only a robotics toolkit which would require them to build SLAM
on their own.

Motivation: Lack of robotics knowledge; reduce development time and time to market;
increase quality (since existing solutions come from experts) and thus robustness of the
robot; participate in the ecosystem (here: use existing solutions for everything that is not
within your own expertise and thus focus on your own core expertise).
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Challenges: How to express the needs of the application and how to identify and select
existing and composable solutions that match these needs? How to ensure that the build-
ing blocks will work with others?

U2 Develop Custom Solution. Because of its high expertise in the use-case, the company
wants to develop a custom solution for a particular sub-problem of the application: e.g.
a component that makes the robot follow other people or a path planning component
that considers special requirements in navigating people. ¿e company wants to use this
in-house development as an “existing solution” when developing new applications in the
future as described in U1 .

Motivation: Noor no satisfying and composable solution exists for a given problem; reuse
in other applications within the company, the custom solution is becoming an “existing
solution” for the company; eventually call for someone developing a custom solution de-
�ned by its needs (call for tenders).

Challenges: How to develop an own solution to a certain problem such that it is compos-
able in the robot application?

U3 Supply Custom Solution. A er the company has �nished developing the custom compo-
nent, they plan to supply and sell it to others. ¿is use-case is the counterpart of U1 , thus
acts as its enabler in the perspective of third parties.

Motivation: Fill market niche; revenue by multiple users to make money even when
higher development e�orts; unique selling point / feature in development of the custom
solution; participate in the ecosystem (here: supply/sell component for use by others).

Challenges: How to build the component such that it is composable by other, third party
users? How to express what the component provides? How to express its needs towards
other components that it requires to function?

U4 Recon�guration. As the product is very successful, the company wants to extend market
share. It wants to provide a new variant of the product with less performance at much
lower costs. ¿e company thus wants to recon�gure the existing system and, for example,
exchange hardware with less expensive hardware, accepting lower performance. ¿is use-
case can also be applied to custom applications towards adapting to new requirements or
a low number of units down to batch size one. Slight changes in the application’s require-
ments should not lead to huge development e�orts.

¿is use-case is closely related to U1 , but focuses on bringing a new product or variant
to the market by modifying an existing product (possibly with third party so ware as in
U1 ) rather than building it anew.

Motivation: Design-time recon�guration; reduction of development e�ort and costs; re-
con�guration necessary through changed requirements (quality, cost target).

Challenges:Managing the consequences that come through the exchange of components:
How to identify and select existing and composable solutions that match the new needs of
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the application? How to detect whether the new component still maintains system con-
sistency or breaks it, for example because the components of the application have needs
that are not satis�ed by the new one—or the new component has certain assumptions that
no longer hold true in its new environment?

U5 Maintenance. When the application broke down and needs maintenance, it should be
brought back into operation as soon as possible even though identical spare parts might
not be available. Alternative replacements must be considered.

¿is use-case is closely related to U4 , but focuses on �xing a broken system a er it has
been set into operation in contrast to building a new variant at design-time. While U4

wants to recon�gure the system to cover the need of the new application as close as possi-
ble while reducing costs, this use-case aims at getting the system back into operation with
a performance that is the same as the original one.

Motivation: Reduction of maintenance e�ort and costs; maintenance-time recon�gura-
tion.

Challenges: Same as U4 .

The Ecosystem Perspective

¿e company is a participant in the ecosystem (Fig. 3.4). While the development seems to be
linear from the company’s point of view, there is no order in which participants in the ecosystem
interact: they are separated in time and space, working in parallel.

Use-Case
Company

Building Block
User A

Building Block
Supplier C

U4

U2 U1

U1

U5

U1
U3

U3

U3

U3

U4

Building Block
Supplier B

Building Block
Supplier A

U1
U3

etc.

Workflow relation

Figure 3.4: The ecosystem perspective on the use-cases. It includes the company and other ecosys-
tem participants. This �gure is a detailed version of Fig. 1.3 (right-hand side) and Fig. 1.4.
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¿ere is no direct communication between building blocks suppliers and system builders as
it would be the case in a value-chain. Any two participants do not interact in a bilateral way.
¿ey do not negotiate technical interfaces and other agreements. Building blocks just must �t
and work. All participants form a network of collaborations: produce once, sell many times.

A participant in the ecosystem is not limited to a single role. For example, the company acts
as a building blocks user in use-case U1 and as a building blocks supplier in U3 . Use-cases U1

and U3 may be considered the same use-case, but their di�erent point of view makes them two
individual use-cases. ¿ey are important for the overall vision of composition in an ecosystem,
since both perspectives need to be consideredwhen designing appropriate ecosystem structures.

3.2 The Need for Structures

Today’s service robotic applications are designed and developed with access and in�uence on
all levels of a system. All details and properties that build upon each other across the whole
application are carefully designed, agreed, and built such that they work.

¿ese agreements are managed in project management and so ware development method-
ologies between the involved people and companies along the value chain. In an ecosystem,
however, the separation of roles is natural. ¿e stakeholders that want to collaborate act inde-
pendently. ¿ey are distributed and are separated in time and location. ¿ey do not necessarily
know each other. In an ecosystem, there is no way to manage the overall development in terms
of management and so ware processes [Bos09]. Agreements cannot and should not rely on
such a process. Management processes do not scale with ecosystems. ¿e natural separation of
stakeholders and thus the lack of common coordination is a central challenge when pursuing
an ecosystem and the strength of a compositional approach [Bos09].

A compositional approach in an ecosystem with naturally separated roles thus needs to or-
ganize agreements and collaborate by structure rather than by management (Fig. 3.5). ¿is does
not mean that there is no management and that there are no processes anymore. ¿ese pro-
cesses still exist within each single participant or step. ¿e process of a single participant might
be di�erent to the process of another participant. ¿is particularly holds true for distributed
organizations. It is where traditional approaches for collaborative development fall short. ¿e
approaches that are applied must address the way in which participants shall collaborate. ¿ey
collaborate in a loosely coupled way and, thus, the approach applied must support loosely cou-
pled collaboration of participants. Composition and composability is about agreements to ful-
�ll. Composition in an ecosystem requires to �nd and hold on agreements without negotiating
them bilaterally between the participants. Participants must adhere to an overall structure once
to gain composability of their building blocks with all other participants (see section 3.1.1).
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Figure 3.5: Collaboration by management is not possible within an ecosystem approach: system
composition needs collaboration by structure.

A composition structure de�nes a set of reference elements that can be taken over by users
of the structure. It serves as a framework to organize and structure parts that then will be part
of a composition. It provides means to explicate information that is necessary for composability
in a structured and processible way (in contrast to a free structure) such that the parts can be
managed and handed over between stakeholders that supply or use them.

¿e agreements and negotiations are no longer between two partners, thus gaining only
compatibility of these two. ¿ey are towards a global structure, thus gaining immediate access
to all parts that adhere to the same structure: All parts that follow the structure are composable
(Fig. 3.6). As a result, there is no need for ecosystem-wide management processes.

defining the structure

using the structure

Structure

Building BlocksBuilding BlocksBuilding Blocks

supplying content

using content

use

rely on

rely on

requires:
composability,

component selection,
separation of roles,

Application

Figure 3.6: Superordinate structures for system composition. The de�nition of structures in an
ecosystemmakes contributions composable.
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3.2.1 Bene�ts of Structure

Pursuing system composition within a structure brings many bene�ts:

• Direct interaction between two stakeholders is no longer necessary. ¿is is covered by
the structure; both can rely on their common elements in that structure. Conformity to
the structure brings immediate access to all others that conform to the same structure.
¿is supports the transition from value-chains with tight bilateral agreements to value-
networks that align to the given structure to collaborate.

• De�ning a structure means limiting the number of options in a positive way to only rel-
evant options (freedom from choice). ¿is minimizes the number of di�erent interfaces
for the same purpose and thus increases the number of replacable building blocks one
can choose from. Structure thus is required for composability.

• ¿e de�nition of structures can support the transition from technology push to market
pull. Structures that represent what is really needed will be taken up by participants that
will provide contributions according to these structures, thusmeeting exactly these needs.

• De�ning and adhering to structures also eases access to the domain. Elements of the
structure can be compared to a vocabulary of that domain. In the best case, such structure
will converge towards a (de-facto) standard.

3.2.2 The Need for a Meta-Structure (Composition Structure)

Structures need stability to work [Moo93] but they will also undergo evolution [BB10] to keep
upwith technology changes. ¿ere is, thus, no �nal structure. An adequate structure for ecosys-
tem collaboration cannot be provided by a single activity or organization (or even this thesis) to
cover the broad range of domains within robotics. Instead, the goal should be to provide a su-
perordinate structure (a “meta-structure”) that enables composition per-se and that allows the
de�nition of structures for the particular domains in robotics. Such a “composition structure”
should only organize the basic composition, collaboration, and technical framework for the in-
dividual robotics (sub)domains to �ll in details. For example, it should organize the exchange
at component and service level. ¿e de�nition of individual services and data representations
(what is a laser scan?) should be up to organizations within particular domains in order to
ensure that domain needs are being matched. Of course, this must not happen in complete iso-
lation. In case several domain structures for the same purpose co-exist, these structures can
evolve, and ultimately, the “right” structure can evolve to a standard: Addressing system com-
position in an ecosystem is not necessarily about �nding the best structure, but about �nding
an accepted structure that works well.
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3.2.3 Service-Level Composition in Robotics Software Architectures

¿e three tier architecture is a common architecture for building robots (section 2.9). In this
control architecture, a sequencer coordinates the execution of so ware components (called
“skill” in context of this architecture) according to a task plot. ¿e sequencer is responsible for
the high-level task execution (e.g. �rst “recognize objects on table”, then “grasp the cup”) while
the so ware components on the skill layer encapsulate the functionality for these tasks (e.g.
object recognition, motion planning). ¿e skill layer is thus a major concern in this robotics
architecture and it is desirable to assemble this layer using an e�ective compositional approach.
At the same time, components and their interfaces on this layer require a certain level of gran-
ularity and abstraction such that they bring an immediate bene�t to the robot application in
which they are composed. ¿us, this thesis focuses on composition at the level of services using
components as the unit of composition and unit exchange in an ecosystem.

A
b
st

ra
ct

io
n

Too abstract:
Need for Task Sequencing

Too fine-grained:
Low level reuse, e.g. libraries;

tight coupling of functions
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Figure 3.7: The granularity of components. The granularity and abstraction of components must
neither be too speci�c nor too generic but must be of immediate use to the application.

Skills in robotics are particularly complex. Tight coupling of �ne-grained operations and
control loops that are required to provide them should not be exposed to thewhole system: Fine-
grained interfaces (that tend to be Application Programming Interfaces (APIs), e.g. at the func-
tional level such as in MRPT [Bla], OpenCV [Its]) should stay within components and should
stay hidden behind component interfaces. Exchanging components with too �ne-grained com-
ponents in an ecosystem will lead to component interweaving (see [Sch04a]) hindering system
composition and separation of roles. An approach for system composition in robotics thus re-
quires skills to provide high level interfaces on the service-level (Fig. 3.7).

¿ere is no clear boundary of what is the right granularity. Asking the question “Will this
component and its interface bring an immediate use to an application?” will help to evaluate (see
[SW04]). A skill component, for example, that provides a low level of abstraction and provides
certain functions (e.g. a blob-detector) will bring no immediate use when being composed for a
delivery robot application. An object recognition capability, however, will bring immediate use
to the delivery robot application since it is at the service-level (Fig. 3.7).

Very abstract capabilities that require task knowledge or sequencing of sub-tasks (e.g. make
co�ee) should not be provided as components, but should be covered by dedicated technolo-
gies making use of components and services (e.g. services for navigation, object recognition
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and manipulation). For example, SmartTCL [SS11b] and Dynamic State Charts [SS14b] are ap-
proaches to encode task knowledge andmanage its execution; they are in line with the approach
presented in this thesis.

¿e demand for composition is the highest at the level of services, since this level touches
manyheterogeneous domains: ¿e skill level of an application requires services formanyhetero-
geneous technologies (for example object recognition, manipulation, navigation) which each
require deep expert knowledge.

3.3 Consequences on the Approach

System composition in an ecosystem requires structures. ¿is section explains the requirements
on such a structure for service robotics from three perspectives (Fig. 3.8): composability as the
ability of building blocks to be combined and recombined into di�erent compositions. Since
composability is a cross-cutting concern, it needs consideration through the whole composi-
tion work�ow that involves all steps, stakeholders and elements. Finally, the work�ow must be
applied by stakeholders who need proper support via tooling.

Structure for
System Composition

Support

Composition
Workflow

Composability

Figure 3.8: A structure for system composition has requirements originating from composability,
composition work�ow, and support via tooling.

3.3.1 Composability

¿is section de�nes composability in context of this thesis and discusses its aspects to consider.

De�nition of Composability

Composability is the ability behind system composition that enables to put together parts in a
meaningful way. It comes with composability as the property of parts that makes them become
“building blocks”. Composability puts a focus on the new whole (system) that is created from
existing parts. It is not just about making the individual parts work together just by amalga-
mating and uniting pieces that then become inseparable (see “system integration”, section 3.1.1).
Petty andWeisel [PW03] provide amerged de�nition of “composability”. Even though their def-
inition is targeted for simulation, it is still applicable in a broader context and taken as a basis
for the de�nition in this thesis:

“Composability is the capability to select and assemble simulation components in
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various combinations into valid simulation systems to satisfy speci�c user require-
ments.” [PW03]

Further, Petty and Weisel [PW03] state that components are readily available to combine
and recombine “as-is” from a repository or library to di�erent applications that meet di�erent
needs. Open source components are white-boxes, giving full access to modi�cations and not
requiring to accept them as they are. ¿is is o en seen as an advantage of open source [Del14;
Frö02; BA99], since they can be adapted or can be �tted. But the additional e�ort, the required
knowledge, and the eventually decreasing quality of the component require better approaches.
Modi�cation of source code is no synonym for composability.

Composability does not happen by coincidence, but must be carefully designed right from
the beginning [Szy03]. From Service-Oriented Architectures (SOAs), we know that compos-
ability relies on collective and balanced application of several principles such as loose coupling,
abstraction, reusability, autonomy, statelessness, discoverability, and contracts [Erl08].

Occurrence of Composability

With respect to system composition, composability must be addressed on three axes from two
perspectives (Fig. 3.9): between di�erent components A , between alternatives of components B

(section 3.3.2) and between components and the application needs C . ¿e relations on all three
axes need to be satis�edwith respect to (i) syntax and semantic plus (ii) application and technical
level perspectives to enable composability for system composition.
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Figure 3.9: Occurrence of composability: Composability for system composition must satisfy the
relations between di�erent components A , between alternatives of components B and
between components and the application needs C .

Two components that are part of an application (component composability, Fig. 3.9) are
not composable when they cannot interact meaningfully—for example when their interfaces
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mismatch or have di�erent assumptions about their environment. To qualify for a component
alternative (see lateral component composability, Fig. 3.9), neither the new component nor the
systemmust needmodi�cation. ¿e relation between components and application (application
composability, Fig. 3.9) considers the needs of the application versus what the components pro-
vide: ¿e application will not perform as intended if the components are not suitable for the
application. ¿is, for example, is the case when the component’s quality or performance, e.g.
localization quality, does not match what is needed by the application.

Syntactic and Semantic Composability

Composability can be viewed from a syntactic and a semantic perspective (cf. [PW03]). Syn-
tactic composability refers to the ability that components can be connected and exchange data.
As semantics refers to the meaning of something, semantic composability also refers to com-
ponents that are composed meaningfully. For example, two components can be connected and
exchange velocities via an integer over a speci�ed protocol that both understand. ¿is compo-
sition, however, might not be meaningful if both components have di�erent assumptions about
the velocity (e.g. speed in mm/s or m/s). Composability might look valid during design time
at �rst, but issues might become visible during run-time as Sta�ort and Wallau [SW02] distin-
guish: ¿ey call it componentmismatchwhen interfaces do notmatch and behavioralmismatch
when the components plug together, but do not work as expected. Semantic composability also
comprises the communication semantics as argued by Schlegel [Sch06], which is one additional
important aspect in system composition.

Composability on the Technical Level and Application-Level

Technical composability is located at the level of components. It is about their interaction and
making them communicate. ¿is gives access to functionality as is partitioned by components.
Most importantly, it includes the speci�cation of interfaces. ¿ere are interaction mechanisms
between building blocks such as send or push and blackboard-based or message-based. ¿ere
is data that is exchanged between components and care must be taken of endianness and data
types. ¿ere are agreements that go further, for example one building block involved in naviga-
tion might use cartesian coordinates in x/y/z versus another one using GPS WGS84.

System composition shi s the focus from parts to the whole that is being composed: the
application. Composing systems thus happens at the level of applications. It is about providing
support for component selection via matching the application’s needs with the components that
are available. It is not only about restricting the set of available components only to the com-
ponents that perfectly match the application’s needs, but also about knowing the implications
that the other “non-matching” components might have to the system. Here, the system builder
needs support in weighing the options and eventuallymodify the application’s needs. It typically
pays o� to lower application’s needs instead of developing a custom solution. With the overall
robot system / application in mind, composition is thus application-driven rather than being
only restricted to the technical level or to particular technical details (Fig. 3.9). An application
is composed with needs that break down to particular needs of each component. ¿is intro-
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duces new composability properties on an application-level to express the application’s needs.
Application-related composability is important between components and application, but also
between components. It covers composability attributes that make components work meaning-
fully as intended by the application.

Application-related composability attributes are, for example, semantical, non-technicalw.r.t.
interaction of components, and non-functional properties. ¿ey add a meaning to an interface
on top of technical composability. ¿ey include, for example, qualities (localization accuracy,
object recognition probability, etc.) and other properties (image resolution, language of speech
interaction) of a component.

¿e more application-related the composability properties are, the more domain-speci�c
and the less generic they become. For example, composability properties on the technical level
(e.g. communication semantics, data types, latencies, communication Quality of Service) are
generic and can be applied in any domain (e.g. object recognition, manipulation, localization).
Application-related properties such as the accuracy of a location or recognition probability can
only be used in speci�c domains (e.g. recognition probability can be used in object recognition
domain, but not in manipulation and not in localization).

Considering application-related properties for composability is important for system com-
position since components might be suitable on a technical level but not with respect to the
application-level. De�ning and thus agreeing on the meaning of such properties is as essential
as using these properties through the complete work�ow.

Freedom from Choice

Providing means to apply freedom from choice [Lee10] rather than freedom of choice within
a structure improves the composability of solutions built with that structure. Freedom from
choice is a principle that supports in realizing the separation of roles and in gaining compos-
ability (section 3.3.2).

Freedom of choice is o en favored over freedom from choice. Freedom of choice o�ers
all available options, leaving the user to decide whatever suits the needs. It does not limit the
decision space, thus leaving the whole variety of options to use at high �exibility to build a so-
lution. ¿ere is, however, a high price to pay for this �exibility, since there is no guidance for
roles towards composability and system level conformance: ¿ere are many options on how to
implement, for example, a simple communication. ¿ese many options might result in non-
composable behaviors when not everyone follows agreed and documented principles by disci-
pline. Freedom of choice is an approach that is typically favored by academia.

Freedom of choice works well in case one can oversee the whole problem and solution. It
works well when there is access to every element and level of detail to understand the system
(“have it all in your head”) and to in�uence the system by modifying each part when necessary.
¿ere are several situations where this is not possible or desirable, for example when taking
another role’s perspective or when new people join a project. What typically happens is that one
starts to build around the existing parts that are not understood to �x issues or re-implement
it, thereby messing up system consistency. ¿is is a situation that will not scale to an ecosystem
level and freedom of choice is the wrong way to go for an ecosystem.
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Freedom from choice [Lee10] is a principle that positively limits the number of available
options in order to provide guidance via selected structures, thereby removing unnecessary de-
grees of freedom (see [Voe13]). Selecting the appropriate structures comes with a high responsi-
bility to identify where guidance is needed and how it can be accomplished without limiting the
use of the structures for system design. Limiting structures might be perceived as a disadvan-
tage, but is in fact a positive aspect in the overall scope. It provides guidance, gains composabil-
ity and ensures system level conformance. A good structure is one that hits the right balance
between as much freedom as necessary but still providing or enforcing the needed guidance.
¿us, the separation of roles and composition in an ecosystem are the guiding principles to
�nd this right balance and evaluate it; supporting freedom from choice is mandatory for system
composition in an ecosystem (see [euR16]).

CORBA and UML in general and ROS in speci�c for robotics are examples of freedom of
choice. ¿ey do not enforce any decisions with the consequence and the risk of coming up
with con�icts with respect to composition due to taking di�erent implementations or assump-
tions. For example, ROS provides the “maximum �exibility, with nothing prescribed or pro-
scribed” [Ger15]. Even though ROS is robotics-speci�c, there are only very few structures that
enable the exchange of so ware and structures for important aspects are missing. CORBA as a
general-purpose “swiss army knife” for communication in any distributed system on the other
hand, cannot address individual needs of each of the domains in which it is applied. CORBA
is a perfect toolkit for communication middlewares for experts in distributed systems, but it is
not suitable for robotics experts that do not want to—or should not need to—deal with these
kind of details.

3.3.2 Composition Work�ow

¿e composition work�ow is the activity of putting together building blocks. ¿e work�ow de-
�nes the steps and order to bring together all participants. It has to address their individual
needs for system composition (Fig. 3.10). Stakeholders supply and use artifacts, e.g. provide or
use components for composition. ¿is requires prior alignment of what is provided and what
is expected: functional boundaries, interfaces, and other necessary information. Collaboration
within the work�ow includes handover of these artifacts between stakeholders and work�ow
steps while ensuring, managing, andmaintaining composability (section 3.3.1) during the work-
�ow.

Participants:

- Stakeholders
- Artifacts

Needs:

- Supply & use content
- Handover content
- Ensure and 
  manage composability

Composition
Workflow

Comp

Comp

Comp

MM

✔
Figure 3.10: The composition work�ow brings together all participants and their needs for system

composition.

65



Chapter 3 T O WA R D S S Y S T E M C O M P O S I T I O N

As previously argued, collaboration and composition in an ecosystem must be addressed
by structure rather than by management. ¿e objective of the work�ow is to allow to create
and to use a structure for system composition. ¿e work�ow de�nes the roles and artifacts
and the according steps for composition. Individual so ware development processes (such as
e.g. Scrum, Uni�ed Process) or other methodologies (e.g. So ware Product Line (SPL)) can be
applied within these steps to, for example, develop building blocks (see sections 2.2.1 and 3.2).

Stakeholders in an Ecosystem

Finding a work�ow that de�nes and uses a structure requires to understand its stakeholders.
¿e two main stakeholders in the ecosystem (Fig. 3.11) are content suppliers that provide build-
ing blocks and system builders that use them to compose applications. Even though there is a
connection between them, they do not necessarily work together as a team or even know each
other.
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Supplier 1
structure
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t ...

System
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Structural
Drivers

structure

needs
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structure
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content
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Figure 3.11: Stakeholders collaborating and interacting in an ecosystem.

¿edecentralized distribution of participants in an ecosystem is a special challenge [Bos09],
since they need some way of coordination. ¿is coordination is typically covered by develop-
ment processes that they apply and communicate with. An overall development process, how-
ever, is not possible in an ecosystem (see section 3.2). In a compositional approach, coordination
and agreements must be introduced via structures to which all the participants adhere to. Be-
sides content suppliers and system builders, this brings a third stakeholder: the structural or
ecosystem driver, which shapes a basis for collaboration, giving suppliers and users a common
ground to build upon.

Content Suppliers develop building blocks for robot abilities as a solution for particular prob-
lems to provide them to others. ¿ey eventually reuse other building blocks. Suppliers
have deep expert knowledge in a speci�c (sub-)domain and for example want to provide
solutions for object recognition, speech synthesis or mobile manipulation.
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¿ey want to rely on the given structure so that their contributions can be used as-is
by others. ¿ey want to be free within this structure to address the solution their way.
Suppliers want to know what is needed by system builders (technology push vs. market
pull). ¿ey have an interest in describing what they provide and how this distinguishes
from the contribution of others.

Content supplierswill later be represented by the component developer role (section 4.1.2).

System Builders are the main “users” of the ecosystem. ¿ey build new service robotics ap-
plications from building blocks. ¿ey have knowledge of a certain application or of a
complete domain of applications in which a robot shall operate. For example, knowledge
in a service robot that assists in a house-hold or executes fetch-and-carry tasks for hospital
logistics.

System builders do not have the knowledge in each particular robot ability or do not want
to spend the e�ort to develop each part of the application on their own. ¿ey do not want
to look inside building blocks to understand them or evenmodify them but still use them.
¿ey know the abilities and their qualities that are needed for the application. ¿eymight
be overwhelmed and even lost by all the available building blocks and want guidance in
�nding a suitable one (see also: the tyranny of choice in psychology [Sch04b]). ¿ey want
to know if their intended composition will work, prior to running it.

System builders will later be represented by the system compositor role (section 4.1.2).

Structural Drivers shape or de�ne the structure of the ecosystem. ¿ey provide guidance for
the contribution of content. Within such a framework, all suppliers and system builders
can rely on stable structures. ¿ey can work within clear boundaries and their building
blocks can connect through the de�ned interfaces.

¿ey must �nd the structure such that it meets the “sweet spot” between being open to
allow freedom for the supplier to �ll in content and constituting a �xed and reliable frame
setting the basis for technical collaboration. ¿is structure might change as ecosystems
will evolve [OW13] to adapt to new technology, so it must remain �exible, or must allow
for creating alternative structures that might then be adopted.

¿e structural drivers close the gap between suppliers and system builders. ¿ey need
broad knowledge of the (sub-)domain. ¿ey also require an understanding of the required
abilities and the technical landscape that covers them. ¿e drivers thus cannot be a single
organization (cf. [IL04]). It must be a union of organizations to ensure to �nd the right
structures for robotics.

Structural drivers will later be represented by the service designer role (section 4.1.2).

¿e position of the stakeholders is not static (cf. [IL04]) andmight change. System builders,
for example, might also supply whole applications or parts to the ecosystem for use by others,
thereby becoming suppliers. Even further, one might create an own platform with own sub-
suppliers, for example for object recognition where others can contribute concrete algorithms
to detect objects in order to fuse the results.
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Following Oster and Wade [OW13], system builders should or will be closer to ecosystem
drivers. ¿ey argue that systembuilders are in close contact with the robot “end-user”. ¿ey pro-
vide the overall solutions and thus know the requirements and the needs for new technologies
best. ¿ey can thus form a technology pull.

Separation of Roles and Concerns

Separation of concerns [Dij82; Erl08] is a principle from computer science. Its aim is to identify
di�erent problem areas and to divide them into distinct parts such that one can look at them and
solve them independently at a lower complexity level. It is an important principle for so ware
development (cf. [ITE09]). Separation of roles [euR16] is closely related and achieves such a
separation between the involved stakeholders. It is about identifying the roles and their task,
setting their responsibilities (positively de�ning the freedom but also the limits) to ensure that
they can collaborate, i.e. to organize the handover of parts and to ensure that the individual
parts they contribute will �nally not only �t together but also will work together.

Separation of concerns is focused on the individual problem (e.g. communication, data
structure, business logic) of a design or implementation. Separation of roles is focused on how
the stakeholders in�uence and contribute to the problem or design. Identifying and de�ning
roles and taking their point of view helps to identify and separate the concerns.

Considering separation of roles and separation of concerns throughout the complete work-
�ow is an important aspect to help designing the approach in such a way that all involved stake-
holders can �nd their place of contribution. With separation of roles and separation of concerns,
there is no need for a stakeholder to be an expert in every �eld. He can just focus on his role
and his �eld of expertise to contribute with maximum e�ciency, lower e�ort and thus lower
cost. ¿e role-perspective helps to answer what information or views are necessary where and
helps to �nd the right abstractions and level of detail or information. Separation of roles and
concerns is one of the key properties for robotics so ware development (cf. [euR16]).

Horizontal and Vertical Separation of Roles in the Work�ow

¿e stakeholders in the ecosystem take over particular functions in the work�ow, thus “play”
or “cover” particular roles. Roles have to be separated such that they can work independently
but still organize the information and artifacts that are exchanged to �nally form a composition.
¿ismust be achieved by de�ning andmanaging the handover between the roles. ¿e separation
of roles must be organized on a horizontal, vertical, and lateral axis (Fig. 3.12).

Horizontal. ¿e horizontal axis describes roles that contribute within the same work�ow step.
¿e computer vision andnavigation communities, for example, each drive their particular
domain in the ecosystem and consist of vision experts and navigation experts that supply
components.

Vertical. ¿e vertical axis describes the roles that work on the di�erent steps in the work�ow:
for example, the de�nition of the structure by domain representatives, the contribution of
components that follow these structures and using these and other components to build
an application.
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Figure 3.12: Horizontal, vertical, and lateral separation of roles is needed for system composition.

Lateral. A lateral axis can be drawn for the suppliers. ¿e work�ow needs to separate and or-
ganize the contributions of expert organizations that work on alternative solutions (e.g.
localization solution A and B). ¿ese need to be identi�ed as alternatives and need expli-
cated distinctions (e.g. accuracy) such that system builders can choose from the existing
building blocks. ¿e lateral axis also needs to organize components that need each other
to work (collision avoidance shall work with motion execution).

Assisted Component Selection andManagement of Component Alternatives

Component selection is the identi�cation of components among the set of all or all available
components that suit a given need for the application under development. A structure for sys-
tem composition must support stakeholders in selecting components. In context of this thesis,
component selection is considered a manual step by the system builder who needs assistance
and support by according tools and mechanisms. It is not intended and not considered feasible
to automatically select—and even assemble—the whole system based on the explicated needs
only.

For component selection, it requires that relevant information is available which can be used
as a basis to decide whether a certain component matches or does not match the needs: What is
the purpose of a building block, i.e. what service does the building block provide? ¿is comes
back to the de�nition of the interface and its description. What level of service, properties, or
performance does the building block provide? ¿is refers to application-level information (see
section 3.3.1) and is of special interest to “component alternatives” (see section 3.1.1).

An alternative building block in general is something that suits the same purpose as an-
other building block. Alternatives thus have a common ground to make them stand out as
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exchangeable building blocks in a set of more elements. On the other hand, alternatives have
distinguishing properties that make them relevant alternatives; i.e. not all alternatives are the
same. For example, two components might provide localization. ¿is is their common ground
and same purpose for which they are used. ¿is makes them alternatives. But they might di�er
in the way they perform based on their internal solution, implementation or used technology.
For example, high versus low localization accuracy. ¿is “diversity of performance” makes one
alternative more suitable than the other based on the needs of a particular application.

For system composition, a work�ow must support the stakeholders in the creation of com-
ponent alternatives and explication of their diversi�cation attributes. It must support system
builders to de�ne their needs so that they can identify and choose the component from the set
of alternatives that suits their needs as expressed in the work�ow. For example, to select the lo-
calization solution that provides a su�cient localization accuracy. Without support in choosing
the right component, system builders will end up with incomposable components or will end
up with components that do not match the application’s needs in an adequate way, e.g. in terms
of quality, resources, and performance.

Work�ow Dimensions

¿e best case for system composition is to build the application 100% out of existing building
blocks. ¿is, however, will rarelywork in practice since every applicationwill have speci�c needs
that were not addressed before or some building blocks do not yet exist. ¿e latter is the case
especially while ramping up a platform or ecosystem. Typically, general-purpose parts of the
system can be reused while speci�c parts need speci�c solutions (cf. [Frö02]). Speci�c solutions
o en are not reusable in other applications because they are not required in other applications.
Two directions or dimensions can be identi�ed for which the work�ow should be suitable:

• Building a system by developing all building blocks from scratch: from system-level, top
down to the speci�cation of building blocks (decomposition).

• Building a system by only composing existing building blocks: from building blocks, bot-
tom up to the complete system.

Both dimensions are extremes. For both dimensions, it is important to know where to stop
in terms of granularity: In the ideal case, only as far as another role is concerned since all further
details are in one’s own responsibility. Coming up with building blocks is necessary to build and
establish both the structure as well as the content (building blocks) for an ecosystem such that it
enables the composition of existing parts, allowing to get fromparts to systems. In practice,most
activities will �nd themselves in between the two extremes. ¿us, both need to be supported
for successful system composition.
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3.3.3 Support via Tooling

Support can have many forms. Adequate support in terms of tools for participants is critical
towards system composition in an ecosystem (cf. [OW13]) as illustrated in Fig. 3.13.

Needs:

- role-specific support
- workflow support

Benefits:

- Access and use structures
- Automation
- Consistency

Tool
Support

Composition
Structure

Figure 3.13: Adequate support via tooling for participants is critical towards system composition in
an ecosystem.

Tools support in accessing and using the ecosystemby ensuring that parts adhere to its struc-
ture. Tools will realize the underlying structures of the approach and utilize them to prevent
errors and provide automation, thus speeding up the development. Without adequate support
by tools, participants of the ecosystem have a hard time “accessing” the methods and concepts.
¿ese concepts thus remain unused or are used in the wrong way, causing less acceptance and
even leading to decreasing consistency (cf. [BB10]) and assets that cannot be composed. Tools
play an important role in applying freedom from choice. Tools lower the e�ort, realize the han-
dover, and realize the link between the di�erent steps and participating roles of the composition
work�ow.

To realize separation of roles, tools must provide role-speci�c support for the stakeholders
to use it in the way as de�ned by the overall composition work�ow:

Work�ow Support. Tooling must organize the steps that are necessary for composing a sys-
tem. It must realize a smooth handover of the development artifacts between these steps.
Awork�owmay be de�ned in “best-practice documents”, but tool-guidance supports and
ensures that the work�ow is applied in the way it is intended by the structure to ensure
composability.

Role-Speci�c Support. Tooling must establishes adequate representations and views that are
necessary to support each participant in ful�lling a certain role. Viewsmust be shaped for
the task or activity and its required abstraction, for examplemodeling a component versus
using a component. Views and abstractions should only present necessary information,
allowing only changes within the role’s function or concerns.

Building adequate tools needs proper foundations. An approach for system composition
must provide a stable structure in a conceptual model that can be implemented in tools. Work-

71



Chapter 3 T O WA R D S S Y S T E M C O M P O S I T I O N

ing with machine-readable models allows support for participants in the ecosystem by partial
automation, e.g. by checking themodels for consistency, providing code-generators or realizing
support for selection of a suitable component for composition.

So ware development in robotics so far uses a wide variety of tools: standard tools such
as editors and compilers, and collections of tools that are tailored to the domain of robotics
as for example reported in the “Journal of So ware Engineering for Robotics (JOSER)” [Joser]
and “Domain-Speci�c Languages and Models for Robotic Systems (DSLRob)” workshop se-
ries [DSLRob]. Dedicated tools support in addressing particular problems, but cannot address
the overall systems engineering challenge with system composition because of the missing link
and the missing handover between the involved steps but also because of the cross-cutting na-
ture of composability. Especially towards an ecosystem and system composition, not only the
existence of one or more tools, but an integrated approach is mandatory for its success. “Inte-
grated tooling”means the seamless interaction between steps, views, models, and roles. It might
even mean seamless interaction between di�erent tools on the basis of models for the purpose
of model handover. With respect to a composition approach, the tool and thus the composition
structure that it realizes must be balanced, to work well and to work “hand in hand” through
the work�ow. For the integration aspect of the tool, this means that the parts of the underlying
structure must be designed such that the parts of the tool(s) can interface via a clear intercon-
nection [Völ11].

Consequences to Structure: Modeling Point of View

¿ere is a close link between structures for system composition and Model-Driven So ware
Development (MDSD). On one hand, MDSD is the key enabler [euR16] that can express and
thus realize these structures viameta-models. ¿is sectiondescribes consequences on structures
for system composition from a modeling point of view.

Finding a structure and models that provides the correct levels of abstractions is essential.
¿e question is: Where to start and where to stop modeling? It is not necessary to cover all
in-depth parts of a system via the composition work�ow in models. While it may be possible to
completely model a system, the advantage of having something represented by a model in the
work�owmust be carefully weighed in relation to the e�ort and additional complexity that may
come with modeling. Trying to cover toomuch or too deep with models will lead to more e�ort
and complexity, �nally overweighing the initial bene�t of MDSD. Structures for composition
should focus on identifying the islands and key elements of the composition work�ow and the
robotics systemwhich are critical to be covered. For example, it is not necessary or even feasible
to cover the implementation of algorithms for robotics in meta-models. It, however, makes per-
fect sense to model the abstraction of the component that includes algorithms. Acting as a kind
of digital data sheet, the models can then be composed on the level of services as services o�er
an adequate level of abstraction and granularity that is relevant to other ecosystem participants
(see section 3.2.3).

MDSD is an enabling technology to realize separation of roles via applying freedom from
choice. ¿e following questions can serve as a guideline to shape and verify adequate structures
for models that support composition in an ecosystem.
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• What are the necessary elements and the information required for the composition of
so ware components? What is their appropriate abstraction and separation for a repre-
sentation in models?

• When in time and where in place will these elements and the related information be pro-
vided or used (during a work�ow)?

• Who in person (role) with what knowledge is able to or is allowed to provide or use these
elements and information?

Separation of roles is not only a key requirement for composition, but it is also a means
to �nd and evaluate adequate composition structures. ¿is is similar to architectural design
where taking a concern-speci�c point of view improves the architecture [BCK12]. In analogy
thereto, considering the work�ow from each role’s point of view supports in �nding a suitable
structure. Models or information that seems to belong together might be separated since the
creation or use of the parts is separated in time and/or space by di�erent roles or steps. For
example, the de�nition of interfaces, their use in components for implementation and again the
use of implementations in compositions happens at di�erent points in time. It is important to
identify which roles will interact. Bringing relevant information too late or not leaving room for
information being �lled in later during the development process may bring unusable applica-
tions (cf. [euR16]). It must be considered who (participant, role) shall provide this information
when (work�ow: when is this information available at all?). For example, variation points can
be speci�ed for a certain class of components and values might be assigned during their devel-
opment. ¿e concrete values of these variation points, however, will only be known when the
component is being composed in a particular system. It is also important to identify which ele-
ment carries what information. For example, it matters whether the interface of a component is
de�ned in the component itself or externally (cf. [Bro+98]). ¿is in�uences the composability
of the component but also the reuse of the interface.

Applying all the guidelines presented in this section will bring structures and models with
additional modeling complexity. ¿is solution complexity, however, lowers the problem com-
plexity as it separates the overall structure into manageable parts. ¿ese parts are tailored to
the speci�c role and/or task at hand. As a result, however, this reduces the problem complexity
for each single participant. ¿is is one of the trade-o�s in applying modeling and MDSD but is
worth the e�ort and it is the only way to address system composition.
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3.3.4 Summary of Consequences

¿is section �rst summarizes the current practice in robotics. It then summarizes the conse-
quences on an approach for systematic engineering of so ware for service robotics based on
system composition in an ecosystem.

Current Practice

In service robotics, reuse and exchange of so ware is being made on the level of libraries and
code, for example as inMRPT [Bla], OpenCV [Its] as toolbox or even complete solutions such as
Gmapping and others [SFG] for SLAM.A huge e�ort is required to integrate and to use these as-
sets in a new robotic application. ¿ere is no systematic structure and modeling for integration
or even composition in use. ¿e dominance of code-centric and integration-centric approaches
is not only the case in robotics—it has been identi�ed quite some time ago for general so -
ware engineering [BB10]. Applications work since they are carefully designed and third party
so ware is carefully integrated. To manage such a system, one requires access to and expertise
of every area of the whole system which leads to tight coupling between involved developers.
¿ere exist assumptions by the individual parts that no longer hold true when reused in new
applications. Pieces are ripped out of their environment, but the assumptions about the “old”
environment still exist (cf. [GAO95; SW02]).

¿e Robot Operating System (ROS) is a representative and prominent example for so ware
development in service robotics since it is the framework that is in most widespread use. Parts
are packaged in nodes, but clear separation from other nodes as required for system composi-
tion is not possible. It is necessary to inspect the sources and wiki documentation to understand
a node, for example its internal behavior and its assumptions with respect to other nodes (see
[Ger15; Del14]). Only then, the node can be integrated into the new application. ¿e lack of
description of structures in meta-models and descriptions of interfaces of nodes independent
of the implementation hinder system composition. ROS was intended for and is most used by
academic institutions and research [Ger14]. ¿is kind of users are technology experts. ¿ey are
familiar with programming andwilling to dig down deep into code. ¿ere is no immediate need
for black-boxes—the advantage is the availability of accessible code that can be modi�ed as re-
quired (see e.g. [Del14]). By purpose, there is “maximum �exibility, with nothing prescribed or
proscribed (e.g., we don’t wrap your main())” [Ger15]. In consequence, there is no support for
separation of roles and composability on the conceptual level through structure. ¿ere is no In-
tegratedDevelopment Environment (IDE) for ROS [ROS11]; any preferred general-purpose IDE
can be used [ROS] (see section 2.6.4). Design and implementation is thus not guided through
tooling either, and it is in the responsibility of the developer to make nodes re-usable.

ROS pushed forward robotics through its widespread use thanks to its �exibility. It en-
abled researchers to exchange not only papers but executable code. It helped to identify that
there is this need to share and exchange so ware. ROS seems adequate enough to build and
demonstrate impressive service robot applications and robot capabilities. If so ware develop-
ment for service robotics, however, does not go beyond the current level, robotics will not make
the step change towards assembling systems from readily available parts as it has successfully
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been demonstrated in other domains, for example by the PC industry. Addressing this step
change requires superordinate structures that enable system composition as addressed in this
thesis.

Consequences on the Approach

¿e consequences on an approach for systematic engineering of so ware for service robotics
based on system composition in an ecosystem can be summarized as follows (Fig. 3.14).
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Figure 3.14: The consequences on an approach for systematic engineering of software for service
robotics based on system composition in an ecosystem. This �gure is a re�nement of
Fig. 3.4. Not all occurrences of consequences are illustrated to simplify the illustration
and to maintain readability.

Collaborate by Structure (C0). ¿e natural separation of roles in an ecosystem and thus the
lack of common coordination for agreements requires to establish agreements by struc-
ture rather than by management. ¿is is a high-level consequence.
Participants of the ecosystem must be able to establish and use structures within their
domains to independently (in time and space) allow for supply and for composition of
building blocks to applications. Such structures might evolve towards a (de-facto) stan-
dard. Providing means for system composition in an ecosystem is about �nding a meta-
structure that supports the ecosystemparticipants through horizontal, vertical, and lateral
separation of roles via applying freedom from choice.
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Manage Interfaces (C1). An “interface” is considered to be the “boundary acrosswhich two in-
dependent entities meet and interact or communicate with each other” [Bac+02]. De�n-
ing, managing, and maintaining interfaces plays an important role in guaranteeing that
components can interact (cf. [GAO95]).

Means must be provided to de�ne standard interfaces for components in service robo-
tics. It is important for the de�nition of components to provide or require interfaces that
rely on stable de�nitions. Speaking in terms of SOA, this is a “service contract”. A meta-
structure for system compositionmust allow to establish domain-speci�c interfaces inde-
pendent of the building blocks that implement or use them. ¿e interfaces that building
blocks o�er and use must be at a certain level of abstraction, the service level. ¿e ser-
vice granularity must be of immediate use to an application that is being composed out
of components, as components are the unit of exchange in the ecosystem.

Express O�ers and Needs (C2 and C3). Component suppliers need away to expresswhat their
components provide (C2). System builders who want to use these components need
means to express the needs of their application (C3). Both is important to serve as input
for later component selection (see C4) and for verifying the composition (C5). Express-
ing an o�er or need is both about expressing (i) what is o�ered/needed (e.g. a localization
service) and (ii) what are their according properties (e.g. qualities). Expressing o�ers and
needs includes explicating syntactic and semantic properties on the technical level but
also on the application-level. Both are relevant to maintain composability. ¿ese o�ers
and needs must be managed through the overall composition work�ow to ensure com-
posability of so ware components.

Matchmaking (C4). System builders need support in choosing the one component from the
potentially overwhelming set of available components in the ecosystem that matches the
needs of their application. An approach for system composition thusmust providemeans
for matchmaking between o�ers (C2) and needs (C3). ¿e system builder requires auto-
mated support in component selection and composition. System builders must be sure to
know which component is suitable for their application. On one hand, this means know-
ing whether a component candidate suits the application’s needs. On the other hand, this
means knowing if the component will be composable to the other parts in the application.

A meta-structure for composition must allow the identi�cation and handling of com-
ponent alternatives (two or more building blocks that suit the same purpose) and their
diversi�cation (express and use distinguishing properties) for component selection.

Verifying the Composition (C5). It is desirable to support system builders in coming up with
systems where it is known that they are most likely to “work” even before testing them:
¿e composition shall be correct by construction. ¿is does not aim at making testing
obsolete. Systems that are made for the real world must be tested in the real world. But
veri�cation shall support the developer to prevent design errors as much as possible.

Veri�cation is the “test of a system to prove that it meets all its speci�ed requirements at a
particular stage of its development” [ISO15]. Boehm [Boe79] considers veri�cation as the
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correspondence between the so ware and its speci�cation. Veri�cation in context of this
thesis is the check whether the system composed from components meets the expressed
application’s needs. ¿e expressed needs must be tracked and must hold true during the
whole development process, e.g. even a er a component was selected during wiring and
con�guring the robotics application.

Con�guration of a Building Block (C6). Building blocks for composition should be used “as-
is”. Each application in which a component might be used, however, is di�erent. Most of-
ten, a component’s standard settings are not suitable for the application in which it might
be used. Component suppliers thus need away to allow for expressing dedicated variation
points of a component to allow modi�cation from the outside of the component without
modifying the component itself. Modi�cation of a component, e.g. modifying an open
source component contrasts with that. Using a variation point is an intentional modi�ca-
tion that does not break the component in any way. A variation point is a variation that is
foreseen already at design-time (see “bounded adaptivity” [Sch07] as cited in [BHA12]).
Modifying the source code of a component for the purpose of con�guration is not inten-
tional (“open adaptivity” [Sch07] as cited in [BHA12]). It should not be foreseen in an
ecosystem approach as these modi�cations are out of control of the component supplier
and thus may trigger unwanted and unknown side e�ects.

Integrated Tooling (C7). An approach for system composition needs proper support for all
participants in the ecosystem to apply it. Besides structures, an integrated tooling is es-
sential for composable building blocks. An integrated toolingmakes the ecosystem struc-
tures, concepts, and content (building blocks) for composition available to ecosystem par-
ticipants. It guides them through the composition work�ow.

An integrated tooling requires a balanced underlying structure that considers system
composition as a cross-cutting concern to provide seamless interaction between steps and
views while maintaining composability. ¿e tooling must manage the creation and use of
a structure and all involved artifacts and roles for system composition (service-level inter-
faces, building blocks, and compositions, including documentation) on the model-level
and using MDSD and Domain-Speci�c Languages (DSLs).

¿e next section addresses the consequencesC0–C6 and considers possible solutions. Con-
sequenceC7 is considered in chapter 6. All consequencesmust be considered in context of com-
posability, the composition work�ow, and support for participants of the ecosystem. It must be
noted, that a particular consequence cannot be solved in isolation as all of them have strong
in�uence on each other and depend on each other. ¿e challenge, thus, is to come up with a
consistent structure that addresses and carefully balances all these consequences.
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3.4 Considerations

¿e consequences on an approach for system composition were described in the previous sec-
tion (see summary in section 3.3.4). ¿e remaining sections of this chapter consider possible
solutions to address each of the consequences C0–C6 (Fig. 3.15). Considerations with respect
to the implementation of the approach within an integrated tooling (C7) will be discussed in
section 6.1.
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Figure 3.15: The consequences on an approach for system composition: The remaining sections of
this chapter consider possible solutions to address each of the consequences C0–C6
(summarized in Fig. 3.15). Figure based on Fig. 3.14
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3.4.1 Collaborate by Structure (C0)

¿e main consequence for system composition in an ecosystem is the need for structure (C0,
Fig. 3.15). ¿is section discusses very general approaches on which such a structure can build
upon.

Service-Oriented Architectures and Component-Based Software Engineering

In Component-Based So ware Engineering (CBSE), components shape the architecture of a
system [HKF08]. In this thesis, the main bene�t of components is seen in them being suitable
as units of composition and exchange in the ecosystem where components come with Service-
OrientedArchitecture (SOA) services: Service-oriented components enable service-based com-
position.

¿e SOA [Erl08] concept introduces services as an appropriate level of communication be-
tween components. Services act as the main architectural elements to shape the architecture.
Service-orientation uses low coupling and raises the abstraction from technical descriptions on
an API-level to service-level agreements (e.g. provide “localization”). CBSE allows for sepa-
ration of functional concerns of an application within components as the unit of composition
(e.g. a speci�c implementation of a localization algorithm). Both SOA and CBSE are consid-
eredmandatory towards system composition as also argued in the ITEARoadmap for So ware-
Intensive Systems and Services [ITE09, p. 278].

CBSE is state of the art in robotics so ware development (see e.g. Brugali and Shakhimar-
danov [BS10]). Among the existing approaches, the SmartSo Framework [Sch04a] (see sec-
tion 2.8) is the most suitable approach for system composition: It applies SOA and CBSE, it
already provides basic support for freedom from choice, it provides basic support for separa-
tion of roles, and it provides a basic structure that can be expressed in meta-models. It is thus
used as a foundation in this thesis. ¿e SmartSo Framework uses communication objects and
communication patterns to separate what (data structure) is communicated inwhichway (com-
munication semantics: e.g. push, query, send) between components. A communication pattern
and a communication object together form the “service” of a component. ¿ese services separate
the communication from the implementation of a component and therefore separate between a
component-internal and component-external view. ¿e clear separation between internal view
and external view allows to consider components as black-boxes which is required for system
composition. ¿e small but adequate set of communication patterns limits the choice of devel-
opers positively, since all will rely on the same set instead of creating endless communication
mechanisms that are all similar but not composable: SmartSo already supports freedom from
choice (see [Sch06]).

¿eSmartSo Framework already provides a suitable baseline for systemcomposition. How-
ever, it requires all developers using it to strictly adhere to policies in building components the
way they are supposed to. ¿is results in tedious manual e�ort and overall management in the
work�ow to cra all parts and agreements of the system. It requires coordination among all in-
volved developers and system-knowledge. Finally, system-knowledge will end up in documents
or even in source code and mismatches will be detected too late, possibly not before runtime.
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¿ethesis builds upon SmartSo (Fig. 3.16). It appliesMDSDand formally expresses policies
for ecosystem-collaboration in meta-models. It introduces a meta-structure for system compo-
sition (the “composition structure”) that enables the organization of an ecosystem in three com-
position tiers (see section 4.1.1). A central part of the ecosystem organization are service de�-
nitions: ¿ey formalize the use of communication patterns and data structures of communica-
tion objects, thus manage the descriptions of services in a reusable way. ¿ey allow for working
with application-related properties to enhance composability. Additional meta-models realize a
composition work�ow that enables handover of building blocks between di�erent collaborating
roles. Adequate tools support the roles in creating and using domain-specifc structures. ¿is
will guide roles through the composition work�ow.

SmartSoft 
Framework

Modeling
and
software
artifacts

Meta-Structure
for
System
Composition
(Tier 1)

Service Definitions (Tier 2)

Technical Infrastructure

Components (Tier 3)

Applications/Robot Systems (Tier 3)

Figure 3.16: The thesis applies the service-oriented and component-based framework SmartSoft
and manages a meta-structure for system composition and artifacts via Model-Driven
Software Development (MDSD).

Even though this work is based on SmartSo communication patterns and the concept of
services, the approach presented in this thesis can also be applied to other robotics frameworks
or robotics development approaches. ¿e SmartSo Framework comes with a speci�c reference
implementation, but the underlying concepts of the “SmartSo Approach” are generic (see sec-
tion 2.8). System composition is a challenge to collaborate in structure with separation of roles
while maintaining composability. Its realization and implementation requires adequate under-
lying structures as a baseline. As argued before, SmartSo is such a suitable baseline. ¿is thesis
can thus also be applied to other robotics frameworks or robotics development approaches that
provide an equivalent baseline or that support the adoption of such a baseline. If such a baseline
does not exist, the target approach is not suitable for system composition in the same way that
Windows in its baseline is not adequate to support real-time capabilities and therefore should
not be used for this purpose.
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Software Product Lines

¿e concept of a So ware Product Line (SPL) is widely adopted in so ware development to
address reuse and to manage the various combinations of a family of related products in a sys-
tematic way (section 2.2.2). For this purpose, SPLs are an adequate structure for collaboration
within an organization [HHJ08; RMM08; BB10]. Ecosystems, however, require approaches on
the inter-organizational level [BB10] and SPLs yet must evolve to this level as also argued in
the “ITEA Roadmap for So ware-Intensive Systems and Services” [ITE09, p. 279]. Composi-
tional approaches can be seen as the next logical step a er establishing a SPL within an organi-
zation [Jan12, Part I][Bos09]. While there is no reason for a SPL to not span across organiza-
tions [Cap+14], SPLs aim at a product family that share a common architecture [BHA12; NOB11;
Nor08]. ¿ere is not going to be a product that is not foreseen at design time [Voe13]. An ap-
proach for system composition should not rely on a speci�c architecture (i.e. be open ended)
and should not need to foresee all possible variants in advance.

Because of this, the SPL is a decompositional approach in its nature [RMM08] and it works
well when the domain is well known since the feature model must be speci�cally designed for
the product family in a top-down fashion to explicate possible variations that cover all intended
variants. ¿is is not the case for composition in an ecosystem, where neither the possible con-
tributions of component suppliers nor the applications that will be built are known beforehand.
Further, management plays a crucial part in applying SPL approaches [Nor08] which is not
feasible in an ecosystem approach (see section 3.2).

SPLs focus on managing the variants of “the whole”. In contrast to that, a compositional
approach focuses on the individual parts of a system. ¿ey must work with others without
being developed together (composability). At development time, it is not known what other
parts there will be in the �nal system.

SPLs are suitable when variants have very similar requirements [Ost14]. ¿is is not the case
for robotics in general. It can, however, be the case for component suppliers to manage variants
of components. It also can be the case for system builders to manage variants of the robots they
build. ¿ese are settings in which SPLs are considered quite useful in the context of this thesis
since the SPL is applied localy within one work�ow step or role.

Ontologies and Meta-Modeling

¿is thesis considers the use of ontologies for modeling the composition structures as an im-
provement of the traditionalMDSD class-basedmeta-modeling. Ontologies are also considered
to improve composability of domain structures. Ontologies will later be considered for match-
making for component selection (section 3.4.4).
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Modeling Composition Structures Meta-modeling and ontologies both capture the knowl-
edge of a domain. Ontologies focus on providing semantics through relations between elements.
Ontologies are of interest to this thesis to consider modeling the composition structures (com-
position Tier 1, section 4.1.1). Meta-modeling enables explicit typing and is thus stricter than
the use of ontologies [Sil+10]. Ontologies are descriptive models, while meta-modeling enables
speci�cation models [AZ06]. Meta-models are mandatory to express composition structures
that follow freedom from choice and that enforce structures. ¿e bene�ts of ontologies and
meta-modeling, however, are complementary [Sil+10; AZ06]. Applying ontologies and meta-
modeling would allow to express semantics of the models explicitly. Semantics would be in-
tegrated with the ontology instead of implicitly encoded in tooling or in natural language de-
scriptions that accompany meta-models (see [Sta+10; Mik+13]). ¿is is a consideration that is
to address for a formal implementation that is performant and consistent. ¿is can enhance the
consistency checking for models. ¿anks to reasoning and classi�cation, ontologies further can
be used to come up with suggested modi�cations in case of invalid models to make them valid
(“repairing” models [Sta+10]).

¿e �rst step to system composition is to come up with adequate structures and their se-
mantics in natural language. ¿eir bene�t must be evaluated in a vertical implementation.
Meta-modeling is suitable to formalize the structures for such a vertical implementation that
demonstrates the bene�t of composition. Applying ontology technology is considered a possible
extension. ¿e bene�t of applying the complimentary concept of ontologies is not mandatory
for this �rst step.

In practice, ontologies are only recently and rarely used for so ware engineering (see sec-
tion 2.3.2). Tooling support for ontologies for domain-speci�c so ware engineering is rather
low in comparison to thematurity, availability, and support of class-basedmetamodeling. Class-
based modeling is much more matured and well supported via tooling, for example within the
Eclipsemodeling project (see section 2.4). From a practical point of view, this is a reason against
ontologies since adequate tooling to realize structures for composition is necessary.

Improving Composability in Domain Structures Ontologies can improve composability of
building blocks since they explicate the relations between elements and allow reasoning on
them. Ontologies are descriptive models and can describe the building blocks. Meta-modeling
enables prescriptive/speci�cation models [AZ06]. ¿e �rst step, however, is to come up with
the necessary concepts and structures that enable system composition through enforcing and
specifying superordinate structures. Meta-modeling is adequate to do so. Only then, the power
of ontologies can be applied to them to describe and organize building blocks.

An ontology per se is the explication of domain-knowledge, that is, concepts and relation-
ships of a domain. ¿e main advantage to apply an ontology in context of composition lies
in organizing robotics domain structures. Domain structures, for example, are de�nitions of
interfaces or de�nitions of data representations/types. In context of this thesis, these are ele-
ments of composition Tier 2 (see Fig. 1.7 and section 4.1.1). Building an ontology would allow
to describe the elements of the domain structures and possible relations between them. ¿at
is, ontologies can link “worlds” and mediate between them. Explicating a relation between two
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elements would enable the identi�cation of elements that are equivalent, are equivalent by trans-
formation, are a subset of each other, are not related at all, etc. Being able to express and use
this knowledge about links of individual structures improves system composition. For example,
components that are not composablewill not be suggested for component selection (matchmak-
ing), inconsistencies can be detected during design time or interfaces that are di�erent in the
�rst place might become composable through transformation of data representations. To give a
very simple example: ¿e representation of a color image and a greyscale image are two di�er-
ent representations. However, both are images. Even if expecting a greyscale image, one might
use a color image with the appropriate conversion.

In order to build an ontology for robotics and system composition, one requires the ab-
stract concepts that enable system composition (a meta-structure), before going into domain
structures and starting to organize them. ¿is thesis presents such a meta-structure for system
composition (“composition structure” in short). It considers the whole composition work�ow
and involved roles. ¿e composition structure enables the de�nition of domain structures, that
ensure composability. On top of them, ontologies can be applied to express relations between
domain structures to gain from the bene�ts as described before. ¿us, this thesis paves the
path towards applying an ontology on top of domain structures to express relations between the
elements as the next logical step to further improve composability.

General-Purpose Modeling Languages

¿e Uni�ed Modeling Language (UML) [OMG15b] is a multiple purpose modeling language
that is very �exible and generic (see section 2.3.1). ¿e �exibility and generality is one reason
for its popularity in communicating and documenting so ware design, but also the main limi-
tation to use it for building systems as it lacks semantics for the available elements. UML and its
extensions (e.g. SysML [OMG15a], SoaML [OMG12b], RobotML [Dho+12]) favor freedom of
choice. ¿ey provide di�erent views, but the di�erent views, models and parts of the system are
not properly linked. ¿ey are thus not adequate to apply separation of roles which is mandatory
for system composition. ¿e proposed structures of UML and its extensions can, however, suit
as inspiration or implementation basis wherever appropriate (see also [Bon+16]). For example,
the system con�guration model as well as the deployment model of the presented approach are
inspired by UML and implemented using UML pro�les.

¿e UML itself and its pro�ling mechanism is not considered a suitable baseline for struc-
tures supporting system composition. However, it is suitable to implement such structures: ¿e
SmartMDSD Toolchain utilizes UML pro�les for graphical modeling, using synergies between
the proposed approach and UML. For more considerations for tooling (C7) and a discussion of
UML pro�ling, refer to section 6.1.
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3.4.2 Manage Interfaces (C1)

An “interface” is considered the “boundary across which two independent entities meet and in-
teract or communicate with each other” [Bac+02]. Organizing interfaces has a long history
in component-based systems. ¿e CORBA Interface De�nition Language (IDL) [HV99] is
a prominent example that describes interfaces in a language- and machine-independent way.
IDLs typically focus on the level of an API with respect to subroutines, function calls, or remote
procedure calls with tight coupling. With the raise of SOAs and loose coupling for �exible and
distributed reuse, Service De�nition Languages (SDLs) were introduced as advanced IDLs for
services. ¿e Web Services Description Language (WSDL) [W3C07b] is the most well-known
IDL for web services. ¿e WSDL is intended for the self-description of services with remote
reuse. It is a machine-readable declaration of the interface to describe the way how clients can
interact with a service and to generate code from this description, even to adapt dynamically
to that service. As such, it is made for machines and not suitable to model services in terms of
a DSL, but may be used as an underlying technological implementation. ¿e WSDL separates
the de�nition of services from the implementation of the communication endpoint (component
port), which is also applied in this thesis. ¿e WSDL focuses on the syntactic expression of an
interface and thereby does not consider its semantics and (non-functional) properties. WSDL
is used to model very �ne-grained operations, comparable with an API while supporting loose
coupling. Composition in robotics requires a higher level of granularity for interfaces way be-
yond the level of APIs. ¿e granularity must be such that services and components are of any
use for a broader set of robotics systems (see section 3.2.3).

¿is thesis proposes a lightweight SDL for robotics system composition and an according
work�ow to manage the interfaces between components on a service level. A de�nition of an
IDL was given by Henning and Vinoski [HV99]. On this basis, this thesis de�nes an SDL as
follows:

• Separate the de�nition of the service from its implementation

• Purely declarative: describe the interface but not the implementation

• Describe a service contract between provider and requestor

• Describe the syntactic and semantic aspects of the service

• Be lightweight and human-readable while at the same time be machine-readable through
MDSD
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3.4.3 Express O�er and Needs (C2 and C3)

Managing interfaces (section 3.4.2) is a �rst important step towards expressing the “technical”
o�er and needs. Interfaces alone are not su�cient as that requires looking up for details in
data sheets, documentation or even testing a component to know about its behavior and as-
sumptions. Such information must be expressed in a uniform way to be accessible by tooling to
support the ecosystem participants.

Expressing o�ers and needs is also addressed by yellow-pages approaches to discover com-
ponents. For example, the use of meta-tags [Zin05] and the use of ontologies [Zan+15]. ¿is is
of great bene�t to enhance accessibility of robotics technology, but does not address compos-
ability as it requires integration and it requires ensuring that the component works as part of
the overall system. ¿e proposed approach thus focuses on composability by explicating prop-
erties and uses these properties to realize a yellow-pages approach for component selection as
side-e�ect.

Matching o�ers and needs to enhance composability can be formulated as constraints on
expressed properties. One of the well-known constraint languages is the Object Constraint
Language (OCL) [OMG14] that is included in the UML. OCL is useful to model �ne-grained
constraints within individualmodels of a holistic top-downmodeling approach. Addressing de-
velopment with one holistic model contrasts with system composition and separation of roles.
OCL is not intended for general architectural use. It is suitable for use in a dedicatedmodel. For
example, OCL can be applied to ensure consistency of values with the de�nition of a service’s
data structure or with the de�nition of a component’s variation point. OCL cannot be applied
for re�nement through composition tiers (see section 4.1.1) as part of de�ning domain-speci�c
structures. ¿e approach presented in this thesis thus proposes a simple form of properties and
their constraints for modeling and re�nement through the composition tiers. ¿is enhances
composability of building blocks.

¿e responsibility of declaring relevant properties and their constraints is put to the mod-
elers of the domain structure. ¿ey have the knowledge to come up with relevant properties.
¿e responsibility also is put to the component supplier to assign useful and realistic values that
are covered by the implementation. It is desirable to have automatic support to ensure that the
properties hold true (e.g. through veri�cation or deriving them from other models). However,
havingmeans to express them in the composition structure and use them through the composi-
tion work�ow is a �rst major step. ¿is �rst step already comes with an immediate bene�t over
the existing practice to not address this kind of information at all.
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3.4.4 Matchmaking (C4)

In the context of SOA, matchmaking answers the question whether a service o�er matches a
service request [YL07] (see [Lud03; ZSK15]). In the context of this thesis, matchmaking answers
the question whether a component—that can be retrieved from a component market as the
unit of composition—o�ers a service that is needed for the robot application. Matchmaking for
component selection in system composition in the end is a binary decision: A component or
service either matches the expressed needs or it does not. Finding a match that is close to what
is needed is not su�cient in terms of composability as there are interfaces that must match.

Kritikos and Plexousakis [KP08] distinguish two approaches for matchmaking: matchmak-
ing based on ontologies andmatchmaking based on constraint solving. Both will be considered
in this section for the approach. It will turn out that a simple constraints-based �lter is su�cient
for component selection to support the system builder.

Use of Ontologies for Matchmaking

¿e classi�cation and reasoning abilities of ontologies can be considered for component selec-
tion to �nd a component in terms of matchmaking for yellow-pages/directory approach. In
robotics so ware development, the ReApp project (see section 2.6.3) has demonstrated this us-
ing ontologies based on a component’s capabilities. In traditional CBSE, ontologies have been
used for component selection as well [HKF08].

Searching and �nding a component (e.g. based on capabilities), however, does not yet mean
that the component is composable and will �t into the system—adapters and integration might
be required. ¿ese adapters might be generated automatically to some extend, if an ontology
was used to relate elements of domain structures (see section 3.4.1). However, ontologies as
descriptive models can prevent selecting a component that will not meet the needs. Since on-
tologies are powerful to come up with hierarchies and relations, they can be used to implement
a “yellow-pages” approach to �nd adequate service de�nition models: Ontologies can support
the component supplier and system builder in �nding service de�nitions to create the compo-
nent model and to model the application’s needs. ¿e approach presented in this thesis would
bene�t from ontologies as an extension to the fundamental structures for system composition.

¿is thesis focuses on establishing a meta-structure that allows to express domain struc-
tures on composition Tier 2. It does not apply an ontology to relate elements found on this tier.
¿e matchmaking is thus based on strictly matching explicated application needs (expressed as
service de�nitions) with components providing the adequate services.
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Constraint Solving for Matchmaking

Constraint solvers provide a solution to a problem that is speci�ed through limitations (con-
straints). A constraint satisfaction problem is expressed by a set of variables, possible values
that they can take, and constraints on variables that must hold true for a valid solution [RN03].
Matchmaking for component selection can be expressed as constraint satisfaction problem as
shown by Hartig, Kost, and Freytag [HKF08]. Following their description, a constraint sat-
isfaction problem for the approach presented in this thesis can be formulated as follows: ¿e
variables are the service de�nitions, the possible values that they can take are the component
candidates, and the constraints are the expressed needs of the application.

Constraint solving is powerful to �nd the one or the few solutions in a huge solution space.
¿e solution space for �nding a component that matches the needs of an application, however,
is small since the number of potential components is manageable. Applying constraint solving
to matchmaking might speed up component selection, but speed is not a number-one concern.

¿e matchmaking problem for component selection is addressed by signature matching
[Bac+02] (syntactic matching of the service de�nition) and constraint-based �ltering [YL07]
on service properties to prune service candidates of components that do not meet the needs of
the user. ¿is is a bene�t to so ware development in robotics since so far there is very weak
support for component selection.

Applying constraint solving for matchmaking is considered an extension for using the com-
position structure. It can, for example, support the system builder with suggestions for modi-
fying an existing composition such that a certain component for selection �ts into. Constraint
solving can be applied to select multiple components at once such that they satisfy the needs
of the application, but also the needs within the selected components. ¿is enables coming up
with a consistent selection. ¿e current challenge in robotics, however, is to provide structures,
means, and tools such that the system compositor is supported at all. Constraint solving for
matchmaking requires structures to express the o�ers and needs in a consistent way. Only then
the information will be accessible by tooling. ¿is thesis provides such structures where more
complex means for matchmaking, e.g. constraint solving, can build upon. ¿e thesis thus uses
the rather simplistic approach of a constraint-based �lter to complete the vertical implemen-
tation. Even though it is rather simple, it already demonstrates a huge bene�t in component
selection.

3.4.5 Con�guration of a Building Block (C6)

Composing components “as-is” triggers the need to adapt, i.e. con�gure, the selected compo-
nent to the given robot system during composition-time. Con�guration through the modi�-
cation of source code is not an option (see section 3.3.4). ¿ere are two kinds of systematic
con�guration of components to be distinguished and will be discussed in the next sections:

Variant selection. Choosing sub-functionality or alternative functionality that is available in-
side a component. For example, select one speci�c algorithm in an object recognition
component that can come with many algorithms2.

2a run-time example that selects algorithms based on the expected objects is presented in [SLS12a]
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Parameterization. Setting attributes in components. For example, to parameterize the compo-
nent by assigning a value to a variable that holds the threshold for an algorithm. Another
example is to modify the string holding the device name for the serial port via which a
laser scanner component accesses the hardware.

Variant Selection through Feature Modeling and Software Product Lines

Selecting among alternative functionalities during reuse is addressed by variant management in
the research �elds of So ware Product Line (SPL) and Dynamic So ware Product Line (DSPL)
(see sections 2.2.2 and 3.4.1). Featuremodels and (D)SPL can be usedwithin a component for the
purpose of con�guration and adaptation. It depends on the granularity of variants and other fac-
tors whether the SPL is to be included into the component to select the variant at composition-
time or whether the SPL is used to produce di�erent variants as separate components for the
market.

Fine-grained variants within a component may be suitable for selecting the �nal variant
during composition-time. An example is selecting the object recognition algorithm during
composition-time based on the expected objects, such as deactivating feature recognition as
the objects come with a solid-colored surface. Higher-level variants may produce an entirely
di�erent “product” and better do not expose the SPL to the components in the market. In this
case, companies might apply the SPL to manage the variants of components. For example, a
companymight want to produce several components for the market that have the same internal
architecture such as the same feature recognition used in visual localization or in object detec-
tion. Other factors that might be involved in deciding on the application scope of (D)SPL are
business factors or licensing considerations. For example, product diversi�cation and a more
expensive pricing of the “all-inclusive component” in comparison to a component that has ex-
actly one feature.

Parameterization via Variation Points

Parameterization has successfully been applied for many years using traditional con�guration-
�les, for example in Linux with various formats (ini, xml, json, etc.) or Windows with more
widespread use of .ini-�les. ¿is can also be used to select variants. In a survey on variant
selection during component reuse, Webber and Gomaa [WG04] conclude that using attributes
and parameterization for variant selection works and is �exible, but remains complicated.

Parameterization addresses both the variant selection scenario and the setting attribute sce-
nario. Setting attributes is a typical task in component reuse. ¿e thesis thus applies parameteri-
zation as means for component con�guration. Applying methods from SPLs for more comfort-
able systematic selection in a component is to be addressed in futurework. Parameterizationwill
be required anyway. Even without supporting comfortable means for variant selection within a
component, variants can still be built by providing separate components for each variant.

Parameterizing all components in a uniform and common way is desirable for system com-
position and should be realized on the model-level. ¿is enables the de�nition and reuse of a
common set of parameters for a speci�c purpose, e.g. a family of exchangeable object recogni-
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tion components adheres to the same set of parameters and thus also becomes composable with
respect to parameterization.

¿is thesis uses groups of typed name–value pairs for con�guration. System composition
must come with proper support for parameterization that well supports separation of roles and
composition. It must be powerful enough to demonstrate a usable vertical structure and imple-
mentation for system composition. ¿is is supported by a yet simple but e�ective name–value
pair parameterization that is established through the complete composition work�ow. By ex-
perience, it already has proven its bene�t for component con�guration (see chapter 7). Later
extensions and more powerful modeling of parameters, means for consistent modeling (by ap-
plying e.g. OCL), or even applying variant selection from SPLs can be built on top without
changing the underlying structure fundamentally. Once having the parameters on the model-
level and being able to manage them through the composition work�ow enables to connect
them with other models: e.g. deriving the laser ranger’s serial port from the hardware model
instead of manually assigning the value “/dev/ttyS0” by the system builder.

3.4.6 Verifying the Composition (C5)

¿is thesis addresses veri�cation (section 3.3.4) by making sure that the expressed needs hold
true with the composed system even during composing and con�guring. ¿is must be guar-
anteed even a er all components were selected. Veri�cation must include the needs that are
expressed for the composition itself as well as the needs that are expressed by each component
towards other components (see section 3.3.1). ¿is rather simplistic approach is already a huge
bene�t to the system builder. It provides support to the system builder:

• In robotics, non-functional properties are not expressed and are hidden in source code:
they are now expressed as application needs and component o�ers. Veri�cation canmake
sure they match.

• ¿e overall needs are distributed as each component brings its own needs: Instead of
requiring the systembuilder tomaintain an overview on all these needs, the toolingmakes
sure that they match or raises the system builders attention to a certain need that is in
con�ict.

• Needs may change during development: A component that was selected based on an out-
dated need may no longer be adequate.

Providing support to these challenges is a huge bene�t in comparison with current develop-
ment practices. ¿ey will ensure the consistency of the composition during design-time.

¿e expressed needs and properties are available on the model-level which opens new op-
portunities for more sophisticated veri�cation methods. For example, the expressed properties
can be used for evaluating the composition’s correctness in terms of timing, performance, or
quality in cause-e�ect-chains as described in [Lot+16]. ¿e approach described there is in line
with the general structures presented in this work and is part of the successor of the Smart-
MDSD Toolchain v2 (the SmartMDSD Toolchain v3 technology preview) that is presented in
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this thesis. ¿e expressed needs can also be used for run-time veri�cation, e.g. to monitor at
run-time wether the current localization accuracy is within the design-time speci�cations.

3.5 Summary

¿is chapter has presented the vision of system composition in a robotics so ware business
ecosystem. It hasmotivated the distinction between system integration and system composition
that can be drawn by the e�ort to modify existing so ware. It has described how collaboration
in an ecosystemworks and has provided practical use-cases. ¿e chapter has identi�ed the need
for structures and their importance in ecosystem collaboration. Such structures do not yet exist
for robotics.

Based on the vision and the need for structure, the consequences of an approach for system
composition in an ecosystemwere derived and elaboratedwithin three categories: (i) improving
the composability as the ability of building blocks to be combined and recombined into di�erent
systems, considering the (ii) compositionwork�ow that involves all steps and stakeholders to do
system composition, and (iii) supporting the ecosystem participants through tooling to apply
the approach and to provide guidance.

¿e chapter concluded by considering possible solutions that address each of the conse-
quences. ¿ese considerations lay the foundation for the next chapter, which describes the or-
ganization of a robotics ecosystem in three tiers and the core elements of a structure for system
composition. ¿e next chapter provides a consistent picture of the contributions of this thesis
to system composition in a robotics so ware business ecosystem.
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4
An Approach for System Composition

¿is chapter outlines themain contributions of this thesis in providing the structures that enable
system composition in a robotics so ware business ecosystem. ¿e purpose of this chapter is
to provide the overall setting and to explain the overall organization of a robotics ecosystem in
three composition tiers. ¿e chapter introduces themain elements of the approach and explains
their interrelations. ¿e next chapter (chapter 5) will go into the details of these structures and
present the meta-models.

¿is chapter is organized as follows. ¿e �rst section introduces into the approach in a
nutshell. ¿e next two sections describe the approach from an architectural perspective and
from a work�ow perspective.

4.1 The Approach in a Nutshell

¿is section describes the approach in a brief but consistent way to provide the overall picture.

4.1.1 Composition Tiers

¿e approach distinguishes three tiers for system composition in an ecosystem (Fig. 4.1).

Tier 1 structures the ecosystem for robotics in general. ¿is tier provides basic structures for
composition that are independent of the robotics domains. It is shaped by the drivers of
the ecosystem that de�ne an overall structure which enables composition and which is to
be �lled by the lower tiers. Tier 1 de�nes general concepts and meta-models for system
composition. For example, the concept of service de�nitions, the concept of components,
and the composition work�ow that is tailored to service robotics. In terms of modeling,
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Figure 4.1: The approach distinguishes three tiers for system composition in an ecosystem. They
are an abstract work�ow for system composition: Tier 1 creates composition structures
in general, Tier 2 structures robotics domains, and within Tier 3 users supply or use con-
tent based on these structures. The width of a tier in the payramid indicates the number
of using/contributing participants.

this is the meta-meta-model level. ¿e challenge within Tier 1 is to come up with super-
ordinate structures such that they guide the domains in Tier 2.

Tier 2 structures the various domains within service robotics. Elements at this tier build a vo-
cabulary and partition the domains. It is shaped by the experts of these domains, for
example experts from object recognition, from manipulation, or from Simultaneous Lo-
calization and Mapping (SLAM). ¿is is a community e�ort which structures each ro-
botics domain by creating domain-models. Experts working at this level de�ne concrete
service de�nitionmodels, for example a service de�nition for robot localization. In terms
of modeling, this is the meta-model level.

Domain-models, for example, are “Service De�nitions” that cover data structures, com-
munication semantics and additional properties for speci�c services such as “robot local-
ization”. To �nd such a service de�nition, domain experts of each domain discuss and
agree how to represent the location/position of a robot and what additional attributes are
required and how they are represented (e.g. how the accuracy is represented).

Tier 3 uses the domain structures to �ll them with content. Ecosystem users supply and use
content, that is, models and the so ware artifacts they represent. ¿is tier is shaped by the
users of the ecosystem, for example component suppliers and system builders. ¿ey use
the domain-models to create models as actual “content” of the ecosystem to be supplied
and used. On this tier, for example, a concrete Gmapping component for SLAM that
provides a localization service is supplied to a system builder to compose a delivery robot.
In terms of modeling, this is the model level.

All consequences on system composition in an ecosystem (section 3.3.4) are cross-cutting
through all tiers. ¿ey need to be addressed on a conceptual level in Tier 1 to make use of
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solutions for C2–C6 in the lower tiers (Fig. 4.2).
¿ere is an analogy that illustrates the composition tiers with the PC domain. In the PC

domain, many suppliers of building blocks can provide them independently of where or how
they are used. ¿is is thanks to (i) superordinate structures with standardized interfaces for
clear separation between the inside and outside structures of building blocks and (ii) an abstract
representation of the building block in a data sheet. For example, at Tier 1, the PC domain
would place generic standards such as USB to connect almost any devices. On Tier 2, the “mass
storage for USB” is de�ned as a domain-speci�c standard in the domain of storage devices. On
Tier 3, a hard drive manufacturer can provide a particular product of a portable hard drive. For
someone needing storage capacity, it does not matter whether the product is internally using
a SSD or spinning disc. SSD or spinning disc, of course, might be a property that he evaluates
while selecting the disc depending on his needs in order to narrow down the alternative choices.

4.1.2 Roles for System Composition

¿is thesis addresses the composition structure on Tier 1 by providing service de�nitions and
an according composition work�ow to enable the organization of the lower tiers. While this
thesis contributes to Tier 1, the content of Tier 1 must be agreed within the overall robotics
community and shaped by adequate representatives and committees. Several roles can exist
within all tiers. ¿is thesis focuses on the following roles as they are considered necessary for
service-level composition of components (Fig. 4.2):

Service Designers (Tier 2) model service de�nitions. ¿ey are, for example, representatives
of the robotics community (Domain Experts). Service designers are part of structural
drivers in the ecosystem (section 3.3.2).

Component Developers (Tier 3) model and implement components. For example, this can be
a Small andMedium-Sized Enterprise (SME) specialized in SLAM.¿ey are the suppliers
of content in the ecosystem (section 3.3.2).

System Compositors (Tier 3) build applications from components. ¿is can be, for example,
a startup which develops a delivery robot1. ¿is role belongs to the system builders in the
ecosystem (section 3.3.2).

1inspired by the profession of a compositorwho used to put together physical types (letters and symbols) towords.
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Figure 4.2: The consequences on system composition and the roles addressed in this thesis in rela-
tion to the tiers.

¿ere are probably more roles involved in developing a robot. ¿ese additional roles would
group within the described roles of ecosystem drivers, suppliers, and system builders (sec-
tion 3.3.2). For example, a role that develops action plots for task sequencing (task or behavior
developer role as in [SS14b]) or the role of a performance expert (modeling the information �ow
through a chain of components to evaluate timing issues as in [Lot+16]) could be considered a
content supplier besides the component developer role as described here.

4.1.3 Service-Based Composition Work�ow

¿e approach presented in this thesis builds on principles of Service-Oriented Architectures
(SOAs) andComponent-Based So ware Engineering (CBSE) (section 3.4.1). Service de�nitions
play the central role as stable architectural elements that de�ne the functional boundaries of
building blocks (components). ¿ey ensure composability for system composition. Component
and application development is based on these service de�nitions. Figure 4.3 shows the overall
work�ow.

• Service de�nitions as a concept (Tier 1) form the meta-structure for system composition
(C0). Concrete service de�nition models are created by domain experts on Tier 2 using
a Service De�nition Language (SDL) to manage the interfaces of building blocks (C1).
Domain experts can form a committee for a domain out of domain experts. For example,
object recognition experts discuss and agree on service de�nitions as a standard for the
domain of object recognition for robotics.

A certain service de�nition model represents a common structure for a class of services
and ensures that components (Tier 3) o�ering or using such a service are composable
and can be used together. Service de�nitions explicate composability information that
is otherwise hidden in documentation or code: communication data structure, commu-
nication semantics, and service properties that a service of a component following this
service de�nition will later o�er.
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Figure 4.3: The approach for system composition based on service de�nitions. The consequences
on the approach as summarized in section 3.3 are annotated in green.

• Component developers (Tier 3) model components as the unit of composition and the
unit of exchange in the ecosystem via repositories and market places. A component pro-
vides functionality through formally de�ned services at a certain level of abstraction (cf.
Szyperski [Szy02]).

Component developers use service de�nition models to create service endpoints that
communicate with service endpoints of other components. Service de�nitions align the
components to the domain structures in Tier 2 to ensure composability (C1). Component
services re�ne their service o�er by using attributes on service properties (C2); they re�ne
their service need towards other services using constraints on service properties (C3).

• System compositors (Tier 3) that build applications use service de�nitions to create a
“wish list”. ¿e wish list expresses the needs of the robot application (C3) by using con-
straints on service de�nitions. For example, needing a “localization” service with a certain
“accuracy”.

• System compositors (Tier 3) have to �nd suitable components from third parties. ¿ey
are supported in selecting components through tooling: Based on the selected services
and speci�ed properties (wish list), a system compositor can select components from the
ecosystem that provide the needed services with according properties. Matchmaking is
made based on o�ered services and on other properties, e.g. on the required accuracy.
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It uses signature matching [Bac+02] and constraint-based �ltering to provide a list of
components that match the needs of the robot application (C4).

• Finally, the system compositor assembles, con�gures, and deploys the robot application.
To ensure correctness by construction, the composition is veri�ed by evaluating the con-
straints in the wish list and by evaluating the constraints that components expressed to-
wards required services (C5). Components (used as they are, without modifying source
code) are con�gured to the application by only adjusting explicitly modeled variation
points (C6).

¿e challenge of a work�ow for system composition is to manage the handover between the
di�erent activities and roles. On one hand, the approach addresses this by the carefully selected
meta-structure for composition in general (composition structure, Tier 1) which is used to cre-
ate domain structures (Tier 2) to which the building blocks adhere to (Tier 3). Secondly, the
interaction and handover of artifacts between activities and roles happens at the model-level
and is supported through the SmartMDSD Toolchain (Fig. 4.3), an Integrated Development
Environment (IDE) for engineering so ware for service robotics, that implements the com-
position structures and the work�ow usingModel-Driven So ware Development (MDSD) and
Domain-Speci�c Languages (DSLs) tomake them accessible and guide users through the work-
�ow (C7).

4.1.4 Service De�nitions to Support Separation of Roles

Service de�nitions act as a link between the roles and activities in the composition work�ow
and thus decouple their interaction (Fig. 4.4).

With service de�nitions, suppliers can identify the needs that emerge from the ecosystem
(technology pull). On the other hand, application builders can identify the available solutions
(technology push). As they can (but do not have to) take multiple roles, both can contribute
and shape the structures to come up with accepted structures in the long term. ¿is might lead
to similar domain structures that co-exist. ¿e approach, however, helps to identify them as
similar which can help to align or merge them towards a (de-facto) standard in the long term.
Such activities on Tier 2 have political impact that are beyond the scope of this work.
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Figure 4.4: Service de�nitions establish the link between component suppliers and system
builders.

4.2 An Architectural View on the Approach

¿is section explains the parts of the approach and their relations: the approach’s architecture.
It is the basis for the meta-models (chapter 5).

4.2.1 The Three Parts of the Approach

¿emeta-structure for system composition on Tier 1 can be categorized in three parts (Fig. 4.5):
structures to create domain-speci�c models (structural building blocks), structures to model
components (functional building blocks) and structures to model robot applications (compo-
sitions). Using this meta-structure for system composition results in the classic schema of de�-
nition, implementation and instantiation.
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Figure 4.5: The meta-structure for system composition (Tier 1) is organized in three parts: struc-
tures to create domain-speci�c models (structural building blocks), structures to model
components (functional building blocks), and structures to model robot applications
(compositions).

Structural Building Blocks to create domain structures andmodels. ¿ey collect basic el-
ements (models) that are important for composition. ¿ese models are once de�ned and
available for consistent reuse in building blocks, thereby creating a structure for compo-
sition. Structural building blocks include the data structure for communication, service
properties, and parameter sets for component parameterization. Service de�nitions are
themost important element of structural building blocks. Service designers create service
de�nition models using a Service De�nition Language (SDL).

Software Components to Provide Functional Building Blocks. Means tomodel andprovide
content: so ware components that o�er or use services. Components use domain struc-
tures (service de�nitionmodels) to express their o�er to other components—or their need
from other components. ¿ey model variation points to adapt a component to the robot
application. ¿ey provide means for documentation to users.

Compositions to Build Robot Applications. ¿ey provide means to select and put together
components to a robotics application. ¿ey rely on domain structures to ensure compos-
ability.

¿e organization of Tier 1 in three parts (Fig. 4.5) has several advantages with respect to
system composition. Since both the components and the composition are based on service
de�nitions, the composability of components is increased. ¿e separation of the three parts
directly contributes to the separation of roles since every part can be addressed by a speci�c
role (Fig. 4.5). It introduces di�erent levels of abstractions that manage interfaces between roles
and therefore it separates between roles, thus allowing for di�erent views and �nally managing
the roles and contributions in an overall composition work�ow. ¿e distinction between the
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concerns “structure” and “content” allows for handling domain structures (Tier 2, service def-
initions) independent of the content (implementation/components and compositions, Tier 3)
which will enhance the separation of roles. Since composition and implementation are based on
formal service de�nitions, compatible alternative components that follow the same de�nition
can be created. Further, the structural building blocks support in specifying application-related
properties that allow to distinguish alternatives to ensure composability on an application-level.

Each of the three parts (Fig. 4.5) contains severalmeta-models that are provided for reference
here: Figure 4.6 illustrates these meta-models and their relations. ¿e �gure also illustrates how
the elements are linked to the consequences on an approach for system composition as summa-
rized in section 3.3.4 and discussed in section 3.4. ¿e remaining sections in this chapter focus
on describing the meta-models and their relations. ¿e concrete meta-models are presented
and explained in detail in chapter chapter 5. Figure 4.7 illustrates the use and creation of models
by the particular roles in the work�ow.
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Figure 4.6: The main meta-models of the composition structure and how they are related. The
white bubbles annotate their contribution to the consequences on an approach for
system composition (section 3.3.4).
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4.2.2 Structural Building Blocks

Structural building blocks collect all models which structure individual robotics domains. ¿ey
include all elements which are necessary for composition through the overall work�ow. Service
de�nitions are the most important element. ¿ey establish a structure on which content in the
ecosystem can rely on, that is, so ware components as building blocks and the composition of
components rely on service de�nitions.

Service De�nitions

Service de�nitions are stable architectural entities and establish a vocabulary of services in a do-
main. ¿ey group together what is needed to describe a service as a whole. ¿ey bridge between
functional building blocks and system composition. Service de�nitions are reusable formal de-
scriptions for a whole class of services. Service de�nitions leverage the agreements between
components, which o en only exist in documentation or code, to a model-driven level. Service
de�nitions capture the details that are necessary for communication and composition. ¿ey
thus raise component interfaces from a technical perspective to an application perspective. Ser-
vice de�nitions are created using an Interface De�nition Language (IDL) for services: a Service
De�nition Language (SDL).

A service de�nition (Fig. 4.6) includes a meaningful name, the communication semantics
(one selected SmartSo communication pattern [Sch04a]), the data structure of the service and
service properties. ¿ese parts are modeled independently to enable their reuse in other ser-
vice de�nitions. Components will provide or require services and the service de�nition can be
considered the “type” of that service (Fig. 4.8).
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Figure 4.8: Components provide or require services; service de�nitions can be considered the
“type” of such a service.
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By instantiating service de�nitions in components, one can describe what services the com-
ponent provides or requires including application-related and semantic details in service prop-
erties, e.g. provided localization accuracy. When composing components, one can rely on ser-
vice de�nitions and use them to express the need of the applicationwith respect to services. ¿is
enables the selection of components based on the needs of the application. It is no longer re-
quired to manually take care of compatible communication characteristics in components and
speci�c data structures of their communication as these are captured in service de�nitions.

When two components use the same service de�nition to provide e.g. a localization ser-
vice, they become exchangeable. Service de�nitions therefore enable “component alternatives”.
¿ese alternatives might di�er in quality (e.g. localization quality) or other properties (e.g. the
representation of a location). ¿ese distinctions are expressed with service properties.

Service Properties

Service properties allow to express the semantics of a service on the application-level (sec-
tion 3.3.1) to describe what is provided or required by a service. ¿ey provide ameans to express
application-related agreements and information that is important for composability beyond the
technical communication-mechanism. Such agreements are, for example, localization accu-
racy, object recognition probability, recognizable objects, image resolution, language of speech
interaction, or robot motion type.

Service properties allow for de�ning a domain-speci�c vocabulary. ¿is vocabulary is used
within a service de�nition. During component development and at system composition-time,
the property is used to express the agreements from a required and provided perspective, re-
spectively.

Service properties enable to determine the composability of two service endpoints between
two components in the composition on a syntactic and semantic level. ¿ey enable this both
within (i) the vertical axis between component and application and within (ii) the horizontal
axis between components (cf. Fig. 3.9). Service properties are also used for component selection
since properties express the diversity of performance of component alternatives (lateral axis).

Variation Points for Component Con�guration: Parameter Sets

Components for composition should be used “as-is”. ¿ere is, however, the need to con�gure a
component to the concrete robot system in which it is used. For example, to change the setting
of an algorithm, to change the grid size of a mapping component, to change the �lenames of
maps to be loaded, or to change device identi�ers to connect to.

Models of parameter sets are a reusable de�nition of variation points. ¿ey are used by
the component developer to express how the component can be con�gured at composition-
time. During composition-time, the component can only be adapted according to the modeled
variation points. Variation points are de�ned as reusable elements as part of structural building
blocks and domain structures because the same set of variation points might be used within
several components to con�gure them in a uniform structure (e.g. con�guring diverse object
recognition components in the same way).
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4.2.3 Functional Building Blocks: Software Components

“Functionality is the ability of the system to do the work for which it was intended” [BCK12, p.
65]. So ware components provide a container for the implementation of algorithms and serve
as building blocks that “host” and provide functionality to the robot. Based on the de�nition of
Szyperski [Szy02], the term “component” in this thesis is used as the unit of composition and
exchange in the ecosystem. It provides functionality to the system through formally de�ned
services at a certain level of abstraction.

Components can provide (supply) and/or require (use) services to communicate with one
another. ¿ese component services base on service de�nitions which explicate how compo-
nents will interact. Components thereby align themselves to the given domain structures. One
component that requires a service needs another component that o�ers this service. Two com-
ponents are composable if their component services adhere to the same service de�nition. Two
components that either provide or require the same service de�nition, and thus can be ex-
changed, are called “component alternatives” (section 3.3.2).

¿e service properties that come with the service de�nition o�er means to describe the se-
mantics and application-related agreements of the service. When components provide a service,
they use service properties to describe what the service o�ers. When they require a service, they
use service properties to express their needs; what they expect from that (remote) service which
is provided by another component.

Service de�nitions are the central architectural entities that form the structure of the system,
but components are the unit of composition. ¿e services that components provide need to
have an adequate level of abstraction that is of use to the application (see section 3.2.3). Reuse of
components is typically physical [Die02]); the component is a copy or an instance of the original
one for each application in which it is used. ¿is contrasts with logical reuse [Die02], that is
typically applied in SOA and cloud-based approaches, where the service of the same component
is accessible through a network and used by several applications. During system composition,
the component model as well as the source code or binary is retrieved and instantiated.

¿e componentmodel uses parameter sets to select variation points to express how the com-
ponent can be con�gured. ¿ese variation points are bound at composition-time and are acces-
sible from within the component’s implementation at run-time.

4.2.4 Compositions

Modeling a composition is about putting together components. For this purpose, the composi-
tion structures provide the wish list model, system con�guration model and deployment model
(Fig. 4.6).

The service wish list model selects services and instantiates service properties to express the
needs of the application. For example, a mail delivery robot will need, amongst others,
services for localization and motion execution. For both services, certain qualities are
required such as location accuracy or the type of robot locomotion. ¿ewish list provides
the basis for component selection by signature matching of services and constraint-based
�ltering of service properties.
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The system con�guration model provides a so ware view on the system. Component in-
stances are created in this model, the wiring between components is set up, and the com-
ponents are con�gured using variation points. System con�guration also utilizes the wish
list for verifying the assembled system to detect problems already at design-time.

The deployment model creates a hardware view on the system and assigns instances of com-
ponents to execution units. It is the basis to �nally transfer the composed system to the
target platform for execution.

Partitioningmodels for composition inwish list, system con�guration, and deployment sep-
arates the concerns for compositions. ¿is supports roles in focusing on one topic alone andpro-
vides the relevant views to the role: It separates the de�nition and selection of what is needed in
the application (wish list) from con�guration of how these parts work together (instantiating,
wiring and con�guring in system con�guration) from the transfer to the robot (deployment).

While components themselves have a technical view (solving a particular problem), system
composition takes an application view: ¿e goal is to create a system for a particular application
and therefore all its needs are known. Components are viewed from the application view: no
need to know about internal details (black-box) but with knowledge about the outer structure
(services that they realize alongwith their qualities). ¿anks to service de�nitions, one can think
of just “localization” and its quality without needing to know about its internal realization.

4.3 AWork�ow View on the Approach

4.3.1 Work�ow Steps

¿ework�owmaps the overall composition structure to concrete work�ow steps and puts them
in relation. It considers the transitions between the work�ow steps and the roles that stakehold-
ers take when creating or using the approach. Even though “step” implicates a clear temporal
order, service de�nitions decouple the individual steps and the work�ow can thus be applied
separated in time and space (see section 4.1.4).

Figure 4.9 shows themain elements of the work�ow: system design, development, and com-
position. ¿e work�ow starts with modeling service de�nitions as the central elements of the
work�ow that also enable the handover between the steps. ¿e component model is created
by de�ning the component’s hull using service de�nitions. Based on the modeled component
hull, the user can integrate user-logic or libraries. Component alternatives and components that
interact with each other rely on the same service de�nition.

Service de�nitions realize the horizontal, vertical, and lateral composability and enable the
separation of roles through the work�ow steps. ¿ey contribute to applying freedom from
choice. Service de�nitions provide stable interfaces for services and build the foundation of
the composition work�ow for component developers and system compositors. Without sta-
ble services, component developers could design and extend their interfaces as they wish, thus
breaking the composability of components. Changes in service de�nitions have direct impact
on the functional boundaries of components: ¿emodi�cation of a component’s service directly
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Figure 4.9: The main work�ow consists of three steps that are linked via service de�nitions: design,
development and composition. Even though the �gure implicates a clear temporal
order, service de�nitions decouple the individual steps and the work�ow can thus be
applied separated in time and space.

in�uences the system composition and thus may break the system architecture. ¿ere is, thus,
no way for component developers to arbitrarily modify a component’s service: ¿e component
developer can decide which services to o�er, but cannot break a service. Such changes require
the mutual agreement of domain experts at composition Tier 2. ¿ese changes must be made
in the models of the design step and then need to be propagated through component modeling
as illustrated in Fig. 4.9. Service de�nitions also enable matchmaking for component selection:
¿ey are used in the wish list to express the application’s needs and are used in the component
to express the component’s o�er.

¿e described steps in the work�ow do not necessarily map to so ware development meth-
odologies such as the V-Model, Uni�ed Process or Scrum. ¿ese methodologies, however, can
be applied within each step of the work�ow in an ecosystem (e.g. within component develop-
ment). See section 3.2 for more details on the composition work�ow with respect to so ware
development processes and collaborative development tools.
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4.3.2 The Composition Work�ow: Intra-Organizational Perspective

So far, system composition and the work�ow were addressed in an ecosystem perspective. Ap-
plying the approach in a more narrow scope, however, also brings many bene�ts, for example
within a company or research collaboration that develops a whole application from scratch. ¿is
can also serve as a starting point to kick-start an internal ecosystem for system composition. ¿e
work�ow can be applied for this purpose as illustrated in Fig. 4.10. It starts with designing and
modeling the architecture based on service de�nitions to set the functional boundaries of the
parts that will form the system. Subsequently, these parts are developed in parallel and com-
bined in the end. ¿e steps of the work�ow are separated in time and space, thus supporting
development in distributed teams. Since the link between system composition and component
development is based on service de�nitions, it is ensured that at integration timewill be available
what has been designed previously.
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Figure 4.10: The approach applied to a local, non-ecosystem perspective. For example, within a
company or collaboration.

Service de�nitions can be considered an artifact: ¿e service de�nition model is the re-
sult of the design activity. In analogy with architecture design, �nding and discussing service
de�nitions is an even more important process and not only a result (see [Sta15; BCK12]). As
technical artifacts, service de�nition models are used throughout the work�ow. But the pro-
cess to come up with them requires interaction and discussion with the involved persons. It
requires decisions about structural borders and application-related assumptions to model the
service de�nitions. Service de�nitions therefore improve the collaboration of participants in a
project since they enforce this interaction early. Especially in a very heterogeneous project, dis-
cussing service de�nition models identi�es expectations, giving designers a chance to address
eventual misconceptions already early in the process before detecting the problem during im-
plementation or even testing. Since services, and thus service de�nitions, draw the functional
boundary between components, writing them down helps to identify white spots: functionality
and according qualities that are required but are not (yet) provided by anyone—or the other
way around.

Applications are o en developed iteratively, adding more functionality step by step. ¿ere
are situations where changes in services become necessary, for example when additional infor-
mation is required and the data structure of a service needs extension. Such kind of changes
are typically detected at composition-time or later during testing the application and cannot be
made during component development or composition since this would break the system struc-
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ture; it would in�uence others that rely on that structure. ¿us, such changes need to be made
by going back from system composition to design of the service de�nition (Fig. 4.9) with the
mutual agreement of everyone who was involved in coming up with that service de�nition.

4.4 Summary

¿is chapter has described the way in which this thesis organizes a robotics so ware business
ecosystem in three composition tiers: Tier 1 is de�ned by ecosystem drivers that de�ne the over-
all structure, and which thus enable collaboration and composition. ¿e chapter introduced the
core composition structure of Tier 1 andmotivated its architecture. ¿emeta-structure for com-
position (the “composition structure”) on Tier 1 is themain contribution of this thesis. It enables
the de�nition of domain structures on Tier 2 and the collaboration of ecosystem participants
on Tier 3. Tier 2 is shaped by domain experts who de�ne structures that are speci�c to indi-
vidual robotics domains (e.g. object recognition, manipulation). Tier 3 uses domain structures
to provide actual content for use by the ecosystem participants. ¿is includes so ware com-
ponents that are provided by component suppliers and systems that are composed from these
components by system builders.

¿e next chapter provides details of the composition structure at Tier 1 and provides the
concrete underlying meta-models.
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5
AMeta-Structure for System Composition

¿is chapter contributes the detailedmeta-models for the composition structure at composition
Tier 1 (Fig. 5.1). ¿ese are used to model the domain structures on Tier 2 which then build the
essential frame to model so ware components and use them to compose systems on Tier 3.

¿e chapter �rst provides an overview on the meta-models for reference purposes (sec-
tion 5.1); it then presents the Tier 1 meta-models in detail and elaborates on why these structures
are reasonable structures for addressing system composition.
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Figure 5.1: The structure of this chapter: It describes the meta-models of Tier 1 (the “composition
structure”) that are used to model on Tier 2 (domain structures) and Tier 3 (building
blocks/components and robot applications/compositions).
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5.1 Meta-Model Overview: The Composition Structure

¿emeta-models that are presented in this chapter are visualized using the graphical Ecore no-
tation from EcoreTools [Ecle]. Ecore [Ste+08] is in widespread use for meta-modeling. ¿e
notation is a subset of the Uni�ed Modeling Language (UML) class diagram. ¿e notation can
thus be understood without speci�c Ecore knowledge even though it shapes its visual appear-
ance. ¿epresentedmeta-models are generic andnot tied to Ecore: Anymodel-driven approach
can be used to implement them.

Users of the approach create and use models through graphical and textual DSLs imple-
mented in the SmartMDSD Toolchain. ¿e design and syntax/notation is important for the
usability towards the user. From a methodical point of view, the important foundation is the
set of underlying meta-models. ¿e look and feel of the DSLs is thus only brie�y illustrated by
examples in chapter 6.

A high-level view on themeta-models of composition Tier 1 is given in Fig. 5.2. It is provided
here as reference and includes all links between sub-models. ¿e remaining sections of this
chapter describe each part in detail. ¿e main element under description through each of the
following sections is highlighted in green.

Consequences to the composition structure with a focus on modeling have been presented
in section 3.3.3. Most decisions in modeling are motivated by the separation of roles (meta-
model for each role), by the composition work�ow (direct mapping of steps to models), and
by the concerns or views that require dedicated DSLs. Section 4.2 motivated the high-level
architecture of the approach and the motivation and reasons behind the separation of the main
meta-models. ¿e following sections of this chapter underpin the there presented meta-model
separation with concrete meta-models.

¿e core of the approach’s meta-models are ServiceDe�nition, Component, ServiceWishlist-
Model, SysconfModel, andDeploymentModel (Fig. 5.2, highlighted in green). ¿esemeta-models
address the overall considerations for system composition in an ecosystem as presented in sec-
tion 3.4. ¿ey directly realize the structure presented in section 4.2.1 and Fig. 4.6. In addition
to them, the other meta-models that are shown in Fig. 5.2 either provide the infrastructure to
realize the links between the core meta-models or and are necessary to realize the overall com-
position work�ow.
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Figure 5.2: An overview on the meta-models of the composition structure at Tier 1 using the Ecore notation from EcoreTools. This �gure is a
concrete realization of Fig. 4.6. A complete overview is provided here as reference.
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5.2 Structural Building Blocks: Domain Structures

Structural building blocks are located at composition Tier 1 and provide the meta-models for
modeling at composition Tier 2 (Fig. 5.1). ¿e models on composition Tier 2 capture robotics
domain structures. ¿is section presents the according meta-models. ¿e section �rst presents
the service de�nitionmeta-model in general and then all its sub-models and othermeta-models
to model Tier 2 elements.

5.2.1 Service De�nitions

A service de�nition (see section 4.2.2) is the common structure for a class of services in a
reusable and formal description that ensures that components o�ering or using such a service
can be used together; the “type” of a service (see [SW04]).

¿e service de�nition model is described using a Domain-Speci�c Language (DSL) that we
call a ServiceDe�nition Language (SDL) (InterfaceDe�nition Language (IDL) for services). ¿e
service de�nitionmeta-model is illustrated in Fig. 5.3. It includes a meaningful name to identify
the service towards component developer and system compositor. ¿is name is an abstract
description for the roles to describe in one word what the service is about, using terms from the
according domain. A description is used for human-readable documentation in full-text that
gives further explanation and is used for component selection during system composition.

Figure 5.3: The service de�nition meta-model to model services.

Each service de�nition model refers to one communication semantics (type), refers to ser-
vice properties (properties), and refers to one communication data structure (commObject).
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Depending on the communication semantics, another communication object (replyObject) is
needed. Both, the communication object and the service property are de�ned in an external
model and referenced from the service de�nition. From a composition perspective, both are
independent entities since they shall be reusable by multiple-service de�nitions or might be
supplied by di�erent stakeholders.

¿e type of a service de�nes the communication semantics, here: SmartSo communica-
tion patterns [Sch04a]. ¿e communication data structure (CommunicationObject) is attached
to the pattern (commObject relation and replyObject in the derived QueryPattern) to simplify
modeling and enhance consistency, since some communication patterns require more than one
communication data structure (e.g. request/response).

¿e elements of the service de�nition (communication objects, communication pattern and
properties) are not de�ned within the service de�nition model. ¿ey are de�ned separately in
external models based on their concerns and are referenced from the service de�nition. ¿is
separation of concerns enhances the separation of roles: separation of what is being communi-
cated (data structure) from how it is being communicated (communication semantics). Having
the data structure separated from the service de�nition enables to use it as “building block” for
di�erent service de�nitions.

Having all necessary elements (communication objects, communication patterns and prop-
erties) available in a dedicated service de�nition model supports composition and creation of
alternatives as they de�ne a basis for components to build on: Instead of de�ning these ele-
ments within each component, the components state that they provide or require a service that
follows a certain service de�nition. With respect to separation of roles, this allows to separate
stakeholders that de�ne relevant services and the stakeholders that use these services either by
supplying components or by using components to build applications.

With respect to the service wish list in the system composition step, it is necessary that a
certain service exists (e.g. localization) with certain needs (e.g. accuracy) expressed by service
properties. Which component realizes and which component uses that service is not of interest
at the time of creating the service de�nition. With respect to separation of roles and a distributed
composition work�ow, this allows for de�ning a “template” of a service in advance. ¿is de�-
nition is now separated from re�ning its details at time of component development and from
re�ning its details at time of composition.

Selecting the communication semantics and the communication object within the service
de�nition narrows the design space for the component supplier to enhance composability (free-
dom from choice). ¿e component supplier is thus—in a positive way—bound to the commu-
nication semantics and data structure as de�ned in the service de�nition. If the component
supplier were free to decide on the communication data structure and semantics at component
implementation time, this would result in not composable components.

From the implementation point of view, a communication pattern (e.g. query) consists of
two endpoints in a client/server or publisher/subscriber fashion [Sch04a]. When implement-
ing a component, the component developer must choose an endpoint (e.g. queryServer or
queryClient). ¿e same holds true when modeling a component (see section 5.3.1): ¿e com-
ponent developer must decide which “side” of a service to o�er or to require.

A service is at a more abstract level than a service endpoint in a component. ¿is is why
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a service de�nition in this thesis refers to the connection between the components. A ser-
vice de�nition is modeled without specifying the endpoints: ¿ere is no distinction between
a client/server or publisher/subscriber within the service de�nition. ¿is distinction is not nec-
essary at this point in the work�ow since the components that use or provide these endpoints
are not known yet. However, it is necessary to de�ne the data structure that is being communi-
cated together with how it is being communicated in a service de�nition model. ¿e concept of
service de�nitions is about structuring domains on composition Tier 2 and about de�ning a set
of service-level interfaces for use at Tier 3 to supply and use building blocks. To de�ne the set
of communication data structures and to de�ne a set of communication semantics in isolation
is not su�cient for a composition structure. ¿ey have strong implications to the component-
internals. Being able to combine data structure and communication semantics freely via free-
dom of choice at component development time limits the composability due to too many pos-
sible combinations. De�ning the communication data structure alone as a service de�nition
would enable too many implementations of how it can be communicated. De�ning the mech-
anisms of communication alone may lead to too many di�erent data structures for eventually
the same information.

If one were to model the endpoints of a service (e.g. localization) with two distinct service
de�nitions (one for “localizationProvider”, one for “localizationRequestor”), these two service
de�nitions would require amapping to each other to express that they belong to each other. ¿e
name alone is not su�cient to do so.

During the design of a service de�nition, it is assumed that the �nal composition is going to
contain a component that provides this service and a component that requires this service. ¿is
assumption is valid, because if a service is added to the wish list, but no component is requiring
it, it is not needed and can be removed. Vice versa, if a service is required by any component
but there is no component providing it, such a component must be found.

We will come back to service endpoints in the component model, where the endpoint is
created.

5.2.2 Communication Data Structures

¿e concept of communication objects is adopted from Schlegel [Sch04a]. ¿e communica-
tion data structures translate to communication objects via code-generators. Communication
objects and communication data structures are used as synonyms here. Communication ob-
jects de�ne the data structure for communication via services. As building blocks for services,
they are de�ned in a stand-alone model for reuse within di�erent service de�nitions. ¿is con-
tributes to separation of roles such that di�erent participants can contribute communication
objects. ¿e meta-model for communication objects is illustrated in Fig. 5.4.

Communication objects are collected within repositories to give them a namespace. Each
communication object is a group of named elements with a type. ¿ey can be used to de-
�ne attributes using primitive data types (e.g. integer, boolean, double). Communication ob-
jects can be nested and can include other communication objects or simple structs CommOb-
jRef. Code-generators later generate according getter- and setter-methods. ¿e generated code-
infrastructure also includes mappings to the middleware, so that the de�ned meta-model for
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data structures is independent of the chosen middleware.
¿e provided means to model data structures are simple, but many years of experience in

practical application of them showed that they are suitably rich in expressiveness to build com-
plex applications. ¿ey provide a bene�t in applying them in system composition as demon-
strated in chapter 7. Extensions such as adding Object Constraint Language (OCL) constraints
for consistency (e.g. range of values or relations between values), adding support for model-
ing, and managing physical units (as e.g. supported by mbeddr [Voe+13]) are possible within
the proposed structure. ¿ese enhancements will improve consistency, usability, and perfor-
mance on top of the composition structures. Adding these extensions requires to extend the
meta-model of the communication data structures accordingly, but will not require to alter the
overall composition structure.

5.2.3 Communication Semantics

¿e communication semantics is an important aspect of the agreement between two compo-
nents that already must be de�ned for the service de�nition since it serves as the type of the
component’s service endpoints. ¿e communication semantics is de�ned in the meta-model of
the service de�nition and is used in the model by selecting one of the available choices (type
of a service de�nition, Fig. 5.3). ¿e available communication semantics are adopted from the
SmartSo framework that introduces “communication patterns” as a set of prede�ned com-
munication mechanisms to ensure compatibility [Sch04a; Sch06]. Since this thesis focuses on
modeling service de�nitions for the skill layer (see section 3.2.3), the used communication pat-
terns are the relevant ones that focus on communication at the skill layer (see section 3.2.3).

As argued in section 5.2.1, there is no further distinction between the endpoints such as
client/server or publisher/subscriber, since this is not necessary at this time. ¿is information
is relevant for the service endpoints, which are not known at this stage. Deciding on the compo-
nent endpoint, and thus deciding on the “side” of a service (client/server or publisher/subscriber),
is the decision of the component developer.

5.2.4 Service Properties

System composition requires to explicate the semantics of a service on the application-level to
improve composability while supporting separation of roles. If not expressed, the semantics
remains hidden within the implementation or documentation and mismatches will be detected
too late, possibly not before run-time. ¿e proposed composition structure addresses this by
providing means to create and use “service properties” as a part of service de�nitions. ¿ey
enable component suppliers to express the o�ers of their component via properties. ¿ey enable
system builders to express the needs of their application via constraints on these properties.

¿e main challenge with properties for system composition is to come up with adequate
separation of roles and to apply freedom from choice to do so. For this purpose, it is necessary
to establish means on Tier 1 that enable domain experts to establish domain-speci�c properties
on composition Tier 2. ¿e properties then can be used by component suppliers and system
builders independently on Tier 3 while both roles still adhere to the same structures on Tier 2.
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Figure 5.4: The communication object meta-model to model data structures of service de�nitions.
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¿is thesis introduces the concept of service properties on Tier 1 and uses typed name–value
pairs for this purpose. ¿ey are simple, yet demonstrate the bene�t for system composition.
Since these properties are part of the composition structure and overall work�ow, they establish
a continuous work�ow of managing properties. Managing properties already provides a bene-
�t for system composition. ¿e property meta-model provides possible points of extension for
future work: More advanced ways of expressing properties, such as hierarchical properties or
complex data types, applying OCL or managing physical units (e.g. as in mbeddr [Voe+13]),
for example, will enhance modeling, expressiveness, and usability; they can be applied to re�ne
propertymanagement but do not require to alter the proposed composition structure andwork-
�ow in anyway. All changeswill remainwithin the properties-part of the composition structure.
¿e same holds true for constraints on the properties to express needs. ¿ese constraints are
rather simple in expressiveness but demonstrate that using service properties increases com-
posability and enables the selection of composable components.

Service Properties in the Composition Work�ow

Service properties explicate the semantics of a service on the application-level that is otherwise
hidden within implementation or documentation (see section 4.2.2). ¿e concept of service
properties is de�ned at Tier 1 (Fig. 5.1). Concrete service properties are de�ned at composition
Tier 2 by domain experts; they thus contribute to building domain-speci�c vocabularies and
structures. Service properties are re�ned with values on Tier 3 by component suppliers and
system builders.

Constraints on property values on Tier 3 are used to determine the compatibility of services
(see Fig. 4.6). ¿ey are used in components to express needs to other services and in the wish
list to express needs to components for component selection and system veri�cation. ¿e use
of constraints enhances the composability since the constraints allow to check compatibility
on a syntactic level (service signatures match) and semantic level (constraints on properties
match). ¿is is applied both within the vertical axis between component and application. It is
also applied within the horizontal axis between components (cf. Fig. 3.9). Service properties
also enhance component selection (section 5.4.2) since properties allow to distinguish between
component alternatives (section 3.3.2).

A service property is used in three steps as illustrated in Fig. 5.5: de�nition of a property and
de�nition of a constraint, instantiation of a property, and the evaluation of the constraint.

De�nition of a Property and De�nition of a Constraint Evaluation. Service properties aremo-
deled as typed name–value pairs. ¿ey are referenced from the service de�nitionmodel to
express that a certain service property is part of the service de�nition. Since service prop-
erties de�ne a vocabulary that might be of relevance in other service de�nitions as well,
they are modeled as reusable elements and are not de�ned within the service de�nition.

To support separation of roles and freedom from choice, expressions for use in constraints
are also de�ned along with the properties in the same step. Only these expressions are
available for use with constraints, thus limiting the available options to the necessary ones
(applies freedom from choice). As the evaluation uses meaningful names, they can be
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Figure 5.5: Service properties along the composition work�ow.

de�ned using the vocabulary of the domain language which it is intended for (applies
separation of roles). Expressing the needs is thus closer to the user and is easier to read
and understand.

Property Instantiation. Service properties are re�ned when service de�nitions are instanti-
ated, e.g. during component modeling. A value is assigned to the property in case of a
provided service to express what the service o�ers. Its counterpart, a required service,
expresses its needs by expressing a constraint on the property: It consists of a value and a
prede�ned evaluation function that expresses a constraint. When modeling a wish list, a
service property is modeled as a “required” property.

Constraint Evaluation. Service properties are evaluated for component selection by constraints
based �ltering of available components. ¿ey are also used for verifying the composed
application by evaluating the properties of connected components. ¿e selected service
property constraint is evaluated with the values from provided and required services.

Service Properties Meta-Model

¿e service property meta-model is illustrated in Fig. 5.6. Service properties are de�ned as
name–value pairs with a name for a constraint evaluation. A property can be of simple data
types such as a string, an integer, and a boolean. ¿e name of the property provides a human-
readable identi�er of the property and it should be chosen using the vocabulary of the domain in
which this property is used. A detailed prose text description can be attached for documentation
purposes.

Each property can de�ne one or several constraints for selectionwhen the property is instan-
tiated. ¿ere are standard expressions such as =, >= and <= for use as very basic constraints. ¿e
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Figure 5.6: The meta-model for service properties.

most common use-case, however, is to de�ne custom constraints. When modeling a new con-
straint, only the name is of relevance. ¿e constraints will always be referred to by name as the
meaning of a constraint heavily depends on the vocabulary that is used in the domain. When
using the property, referring to the constraint by name immediately provides a meaning and
understanding to the user instead of the need to interpret and understand a cryptic expression.
Currently, the only available class for custom constraints is JavaConstraint that maps to a Java
method implementing the constraint (see also: Fig. 5.7). It would also be possible to add further
constraint classes by extending the meta-model and deriving from PropertyConstraintCustom.

¿e de�nition of properties does not come with assigned values. Values to the individual
properties are assigned later during using and instantiating the properties by the component
developer or system compositor.
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ModelingConsiderations: Fixedvs. Domain-Speci�c Properties Concrete service proper-
ties are not part of the meta-model, i.e. concrete properties are modeled on composition Tier 2
and not on Tier 1. ¿e reason is that service properties are domain-speci�c. ¿e properties
used in one robotics domain might di�er from the ones used in another robotics domain. For
example, the domain of computer vision uses di�erent properties than the mobile manipula-
tion domain. From the meta-model perspective, this is an open set and cannot be de�ned in
advance within a meta-model at Tier 1. ¿erefore, there is a need to provide means within the
meta-model to model and use such properties by domain experts on Tier 2 such that ecosys-
tem users on Tier 3 can use them. In other words, it is about the consistent extension of the
Tier 1 composition structures by domain-speci�c structures on one hand. On the other hand,
it is about not giving full freedom to use them by the ecosystem users but to still apply freedom
from choice via domain-speci�c structures on Tier 2.

While the above paragraph described examples of structures that are speci�c to particular
domains in robotics, some properties exist thatmay be included inTier 1. Communication char-
acteristics, like frequency or latency of communication, are not bound to a particular domain
in robotics (e.g. manipulation, computer vision). ¿ese properties are of use in any domain
and therefore can be included in Tier 1 as part of the component model. Including such general
properties on Tier 1 should be addressed in future work. Another example of concepts that is
general to any robotics domain are the communication patterns, which are for this reason on
Tier 1.

Modeling Considerations: Service Properties vs. Communication Objects Service prop-
erties and attributes of communication objects are closely related, sometimes even identical. A
localization service, for example, holds the accuracy both in the communication object and the
service property. Instead of using one model for service properties and communication object,
they are still separated into two models. ¿is makes sense from a composition point of view
to allow reuse of individual properties, but also practical considerations lead to this separation
since the attributes are of di�erent concerns and might be di�erent in representation. ¿e fol-
lowing two sections elaborate this in detail.

Di�erent Concerns. Communication objects and service properties are di�erent concerns.
¿e communication object is about describing the data structure of communicationwhile
the service property describes the semantics of the service on an application-level to
someone that uses it.
¿e availability of values of service de�nitions and attributes of the communication ob-
ject also di�ers in time. Concrete values of service properties are available and relevant at
design-time—values of communication objects are available at run-time, depend on the
state of the robot and are thus not accessible at design-time. Design-time service proper-
ties could be used at run-time, for example to monitor the required localization quality,
but this is part of future work.
Further, the separation of roles requires di�erent models for communication object and
service properties since both might be provided independently in time and may be con-
tributed by di�erent ecosystem participants.
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Di�erent Representations. Communication objects and service properties might use di�er-
ent representations. Since they are intended for di�erent roles and concerns, they might
vary in abstraction or structure. For example, the accuracy of localization might be rel-
evant for other components and thus be part of the communication object. It might be
represented using a 9x9 covariance matrix with double values to cover the current uncer-
tainty of location and heading of the robot. ¿e service property at design time, however,
shall only consist of an abstract representation in a single value. ¿e value shall represent
the maximum allowed variance as this information is su�cient at that time.

¿e absence of a property also might require di�erent representations. ¿ere are cases in
which values are only needed in the communication object or where they are only needed
as a service property. Communication objects, for example, might contain an identi�er
to identify recognized objects at run-time. ¿is identi�er is not of interest as a service
property at design time.

Evaluation of Custom Constraints

Constraints are de�ned within the service property and consist of a single name that identi�es
the evaluation function on a model-level (Fig. 5.6). ¿e name contributes to the concept of
properties supporting the domain-vocabulary for domain structures at Tier 2. ¿e constraint
evaluation is expressed by implementing an evaluation method to which the constraint name
maps to (Fig. 5.7). ¿emethod is executed each time the according service property is evaluated,
like a comparison operator known from programming languages. ¿e evaluation method is
implemented in a general-purpose programming language: in the implementation of this thesis,
this is Java.

Evaluation
maps to

evaluate(T val_wished,
               T val_provided): String

T: type of property

Constraint ImplementationService Property (Meta-)Model

Figure 5.7: A named constraint of a service property maps to an evaluation method (illustrated by a
UML class template) that implements the constraint.

¿e return value is expected to be an empty string if the constraint holds true, that is, if
the value of the provided property val_provided matches the needs expressed in val_wished.
Otherwise, the method shall return a message providing more details to the user. ¿e input
arguments are taken from instances of service de�nitions as illustrated in Fig. 5.5.

¿e evaluationmethod is calledwhen properties are compared. At this point in time, it is not
further de�ned what happens if the evaluation fails. Its e�ect to the overall composition cannot
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yet be decided. In other words, a negative evaluation of a property does not yet mean that the
composition is invalid. Only when expressing needs of a required service, it is known how a
mismatch e�ects the composition and if it is still valid. Section 5.3.3 will discuss the e�ect of a
failed evaluation to the composition in more detail. It introduces the annotation of a “severity”
when service properties are instantiated.

Using a general-purpose language for expressing the constraint provides �exibility for its
implementation. It allows using tools of the language to build complex expressions, such as
loops, string operations, mapping tables, and other operations. However, this is freedom of
choice instead of applying the freedom from choice philosophy, which is argued as means for
separation of roles. Applying freedom of choice in this case does not break the separation of
roles. Separation of roles is aboutmanaging the handover and interfaces between di�erent roles.
¿e interface between the two involved role is given by the model: ¿e evaluation function is
modeled and implemented by the same role, i.e. freedom of choice only applies to the same role
that models the constraint on Tier 2 as part of the domain structures. Freedom from choice
is still applied to the users of the constraint: Component developers and system builders on
Tier 3 can only use the constraints modeled on Tier 2. ¿e model comes with the constraint
implementation, but the implementation cannot be changed by the users.

Separating the de�nition of the constraint by a name from its implementation supports sep-
aration of concerns as it separates its name from the execution semantics. Introducing a name
for the constraint in the model also supports separation of roles since it allows for building a
domain vocabulary: ¿e user of the constraint can just use the (meaningful) name instead of
the cryptic constraint expression where the meaning of, for example, “equals” or “greater than”
might depend on naming and semantics the property. From a composition point of view, the
constraint can be reused by its name instead of repeating its implementation each time it is used.

An alternative approach is to express the constraint at the model-level. ¿is would require
updating themeta-model such that it can express the constraint directly. It then could be directly
evaluated from the model via tools given from the modeling-world. For example, Xbase [Ecld]
is considered a good choice since it integrates with Xtext [Ecli] (Xtext was used to implement
the approach in the SmartMDSD Toolchain). Further, the constraints expressed in the model
could be transformed to an expression engine or to an interpreted expression language such
as Duktape [Vaa+]. Duktape is a java script engine that allows for evaluating expressions in a
run-time interpreter.

5.2.5 Reusable Variation Points: Parameter Sets

Parameter sets de�ne possible variation points in a reusable model during system design. ¿e
component model later refers to a parameter set to provide these parameters for initial compo-
nent parameterization. At composition-time, the parameter set is then accessible from outside
the component to parameterize the component.

A “parameter set” (ParamSet, Fig. 5.8) consists of individual parameters (Param). Each pa-
rameter is modeled as a typed name–value pair (AttributeDe�nition, Fig. 5.8; see Fig. 5.9). No
values can be assigned when using the meta-model, since only the structure / de�nition of the
domain-vocabulary is of relevance at this stage (composition Tier 2). A value for this attribute
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will be assigned at a later step when this parameter is used at component modeling time (set-
ting the default parameter) or composition-time (con�guration of a component to the robot
application).

Figure 5.8: The parameter set meta-model de�nes a reusable collection of parameters for varia-
tion point modeling. Components use them to express how they can be con�gured at
composition-time.

Grouping of attributes to parameters (Fig. 5.9) is convenient to allow for complex parame-
ters, for example to group attributes for the maximum forward, backward and rotational speed
into a single parameter “speed”. Component suppliers (re)use parameter sets to compose the pa-
rameterization of their component. Since several components use the same parameter set, the
parameterization of these components is standardized and allows for a uni�ed parameterization
of component alternatives.
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Figure 5.9: Illustration of parameter sets: Parameters consist of one or more typed name–value
pairs and are grouped into sets of parameters. These “sets” collect commonly used pa-
rameters.

Aparameter set does not introduce a hierarchy of parameters. Parameter sets group together
the parameters that are typically used together. ¿is group is then consistent. It is a reasonable
unit for composition and for convenient reuse of the group instead of picking each single pa-
rameter at composition-time over and over again. ¿is would be freedom of choice and would
risk inconsistency. ¿e parameter set is not visible at composition-time, but the individual pa-
rameters are (see section 5.4.3).

Leaving multiple parameters in a group to assign values raises potential for con�icts in a
single value itself. Single values might not be supported or there might be parameters in con�ict
with another. For example, a parameter for a mapping algorithm that only supports quadratic
grid cells. It would require the map width and height to be the same. OCL can be used for this
purpose to add local constraints to the parameterization of components, to name one potential
extension.

5.2.6 Documentation

Documentation is a cross-cutting concern in system development and is of particular impor-
tance for separation of roles. Each element in the presented meta-models of structural building
blocks includes aDocumentation element to annotate prose text documentation. An example is
illustrated in Fig. 5.10 for the communication objectmeta-model. ¿is relation is not included in
the presented meta-model diagrams to keep them clean and not to clutter their representation.

Figure 5.10: The documentation of communication objects as an example of annotating documen-
tation to meta-model elements.
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5.3 Functional Building Blocks: Software Components

¿is chapter describes the foundations for supplying so ware components to provide “func-
tional content” that can be used by system builders. ¿e concepts described are de�ned at
composition Tier 1 (Fig. 5.1) for use for modeling by ecosystem users (component suppliers)
at composition Tier 3.

“Functionality is the ability of the system to do the work for which it was intended” [BCK12,
p. 65]. A functional building block is a piece for composition that provides functionality as part
of the system, for example recognizing objects as part of a robot butler. A so ware component
is the unit of composition and the unit of exchange in the ecosystem. It provides functionality
to the system through formally de�ned services at a certain level of abstraction (see Szyperski
[Szy02]). It provides a platform for the implementation of algorithms or integration of functions
that can interface with other components through formally de�ned services only.

5.3.1 Component Meta-Model

¿e component is described through a component model that conforms to a component meta-
model. ¿e component model describes the component hull to the system compositor. ¿e
component model is composed from structural building blocks (section 5.2). ¿e component
model is used to provide (generate source code) the infrastructure and hulls for the user to �ll
with custom algorithms. ¿e component includes variation points that can be used to con�gure
it to the robotics application at composition-time (section 5.4).

Componentmodeling covers the component hull and focuses on services asmost important
elements for composition. System composition at large also requires considering the elements of
the infrastructure beneath the component hull since they in�uence the system or are in�uenced
by the system in general. For example, tasks running the implementations in�uence scheduling
and push-rates of services. ¿ese details are, for example, discussed in the context of SmartSo 
by [Lot+16; Lot+15] and are in line with the approach and component meta-model proposed in
this thesis. ¿us, component-internals are not further considered in this thesis as its focus is on
organizing services for composition.

¿epresented componentmeta-model (Fig. 5.11) is in linewith the SmartMARSmeta-model
[SSS09a; Ser] and extends it for use with service de�nitions. A component consists of one or
several service endpoints, called a “component service” (AbstractComponentService, Fig. 5.11),
that refers to a service de�nition to denote the “type” of the service they realize. One or more
service endpoints are created as part of the componentmodel and refer to a service de�nition by
its name. ¿enameof the service endpoint is used towards the component developer and system
compositor to work with the concrete service endpoint of the particular component. Service
endpoints are used from within the user-implementation of the component to communicate
with other components.
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Figure 5.11: The component meta-model to model the hull of a component with respect to services
and service de�nitions.

A service de�nition describes the service as a whole and does not distinguish between one
end o�ering a service and another end consuming a service (section 5.2.1). ¿e component
model is the model where the developer “selects sides” of an endpoint for a component service.
Selecting the o�ering or consuming part of a service is necessary at this step in the work�ow,
since this information is technically required to generate the source code for the component hull.
Further, the needs that are expressed in service properties within service de�nitions require a
directed relation for comparison. It is about one partner providing an o�er and another partner
expressing a need: ¿e need must be compared with the o�er and not vice versa. ¿is directed
relation is provided by taking the view of sources and sinks.

A service endpoint instantiates a service de�nition either as a service “source” or service
“sink”. A service source is the endpoint fromwhich information is communicated to the service
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sink. Service sinks specify a wish towards a service source which annotates what it provides by
instantiating properties.

Meta-model details on service endpoints will be provided in the remainder of this section.

5.3.2 Service Endpoints

We call service endpoints “source” and “sink” with respect to the �ow of information between
elements: messages are sent from source to sink. ¿e chosen wording puts the focus on the
�ow of information within the system. It is reasonable to understand for system composition
since it shi s the interaction between components from a technical perspective to an applica-
tion perspective. It also applies separation of roles: early de�nition of the service in general
(composition Tier 2, Fig. 5.1) while choosing the “side” during later re�nement (composition
Tier 3, component supplier).

¿e commonly used classic terms “provider”, “requestor”, “consumer”, or “user” are con-
sidered less suitable terms for de�ning the service endpoints since the technical wording is on
the wrong level with respect to the current step in the work�ow which is application-driven.
Further, the wording is ambiguous. Using the classic terms can lead to misunderstandings in
the process of de�ning services to draw functional boundaries between components because
the �ow of information and the direction is relevant for the architecture but is not necessarily
covered by these terms.

When using the classic terms, it is not always clear from the wording who is the service
provider and who is the service user—this depends on the description of the service. Fig-
ure 5.12 provides an example. A collision avoidance component instructs a robot base platform
how to move, e.g. based on inputs of a laser scan. In both illustrated cases, the information
�ow (navigation instructions: speed and steering) is from le to right. However, the expected
provider/requestor relation changes depending on the wording of the service: whether the ser-
vice is described as “motion execution” or “navigation instructions”. Which end the requestor
is and which end the provider is depends on the description of the service and its naming. One
can describe a “service” from both the provider and requestor perspective.

Figure 5.12: Service endpoints on the service level: Who is provider or requestor depends on how
the service is described.
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¿e classic terms are most o en used on a technical level. For example, the consumer/re-
questor part is typically the caller while the providing part is the callee in SOA and in UML (see
[Jos09]). With respect to SmartSo , the technical foundation in this thesis, the service provider
is the server-part of a communication pattern [Sch04a]. Figure 5.13 shows how the scenario
of collision avoidance and robot base can be realized using SmartSo communication patterns
(we neglect the fact that not every pattern is reasonable for every use-case, but the illustrative
example can also be applied to others). When choosing the send or query pattern versus the
push pattern, the provided/required relation changes. Who is who depends on the technical
realization: the chosen pattern.

Figure 5.13: Service endpoints on the technical level: With respect to SmartSoft, who is the provider
or requestor depends on the chosen communication pattern.

¿e best-practice for naming and describing the service de�nition is to take the perspective
of the information �ow. Names of service endpoints in components should be chosen in a
meaningful or “speaking” manner. Names should be of use and “speak” about its purpose to
the component developer or system compositor. ¿is supports the roles in selecting the right
service de�nition or component.
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5.3.3 Instantiation of Service Properties

¿is section describes the meta-model for instantiating service properties in the composition
work�ow (Fig. 5.5). A service de�nition is instantiated in the componentmodel via a component
service. What is le is the instantiation of service properties to express the “needs” that a service
sink has towards the “o�er” of a service source.

Service Sources

¿e le -hand side of Fig. 5.11 shows the service source (ComponentServiceSource) in the com-
ponent meta-model. Properties of a service source are re�ned (PropertyRe�neFul�lment) by
assigning a value to a reference of a service Property (by its name). A service source can only
re�ne properties that come with the corresponding ServiceDe�nition. ¿e value assigned to a
property can be of simple types (double, int, bool, string and enumerations). It must corre-
spond to the types of the referring property (the AbstractPropertyType of the corresponding
service property that is being instantiated from the service property meta-model).

Service Sinks

¿e component meta-model (Fig. 5.11) shows the service sink on the right-hand side (Compo-
nentServiceSink). Properties of a service sink are re�ned (PropertyRe�neFul�lment) by assigning
a value to a reference of a service Property, selecting a constraint (AbstractPropertyConstraint),
and selecting a Severity. Section 5.2.4 describes the service properties in relation to the overall
composition work�ow.

¿e constraint on a property is used to evaluate the o�er of the service source with the need
of the service sink. A service sink can only re�ne properties that are de�ned in the correspond-
ing ServiceDe�nition of that component service. ¿e assigned value can be of a simple type such
as double, int, bool, string, or enumeration. ¿e type must correspond to the type of the Ab-
stractPropertyType as selected in the de�nition of the service property. ¿e selected constraint
must correspond to one of the constraints as de�ned in the referenced service property. ¿e
previous step in the work�ow allowed to de�ne one or more constraints in the service prop-
erty model. ¿e service instantiation in the component model is the right place and step in the
work�ow to select one constraint.

Severity of Service Properties

¿e severity attribute of a property re�nement expresses the e�ect of a failed constraint evalu-
ation. In other words, it expresses how important it is to meet the expressed need (Table 5.1).
¿e severity is used to interpret the return value of the constraint evaluation method (see sec-
tion 5.2.4) during matchmaking for component selection and during veri�cation in the system
composition step. Severities on service properties are used in the service sink endpoint of a
component to describe the needs of the sink. ¿e system compositor also uses them to express
the severity of the application’s needs in the wish list model.
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Severity E�ect of failed constraint evaluation

Info No e�ect at all.
Warning A message will be displayed, the composition is still valid, the compo-

nent still considered suitable.
Error A message will be displayed, the composition is not valid, the compo-

nent is not suitable.

Table 5.1: Severity of service properties: The severity of a property re�nement expresses the e�ect
of a failed constraint evaluation.

Using a severity at component development time comes with high responsibility with re-
spect to composability. When considering the system as a whole, the severity in a single com-
ponent is a local decision that will a�ect the overall composition. With respect to the work�ow,
this is a early decision at component development time that will have an e�ect at composition-
time. ¿is is something that can break the composability of components. In consequence, the
component developer must only use severities when a failed constraint on a property would
render a component unusable. For example, the service sink may use a property to express that
a service must be connected or that it only is compatible with a certain data representation that
might be encoded in a property. ¿e main use of severities should be in the hand of the sys-
tem compositor when expressing the application’s needs. Only the system compositor has the
required overall knowledge of the system being built. Only the system compositor knows about
the system’s needs. In consequence, only he can decide what to do when these needs are not
met.

A possible extension to the proposed severity is to annotate already in Tier 2 which role
in Tier-3 may use a severity on a certain property at all. ¿e need for a certain service to be
connected may be represented through a distinct attribute in the service sink of the component
meta-model.

5.3.4 Service Endpoint Mapping

¿e SmartMDSD Toolchain generates the source code for the component hull from the com-
ponent model. At this point in the work�ow, all relevant information with respect to services is
available: the communication semantics and the data structure comes with the service de�ni-
tion and the service endpoint comes with the component service. Based on this information, a
mapping table (Table 5.2) is used as input to generate the source code of component services. In
this thesis, this is realized with according code-generation templates for the SmartSo frame-
work. For example, consider a service de�nition that is instantiated in the componentmodel as a
service source. Using the send pattern and the communication object CommLocation in the ser-
vice de�nition would map to the SmartSo class template CHS::SendClient<CommLocation>.
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SmartSo Communication Pattern Source Endpoint Sink Endpoint

Send SendClient SendServer
Query QueryServer QueryClient
Push PushServer PushClient

Table 5.2:Mapping of service endpoints to SmartSoft communication patterns.

5.3.5 Parameterization

Parameters in a component model de�ne the variation points that are used to con�gure a com-
ponent during composition. ¿e component can access these variation points from within the
implementation. ¿e meta-model for component parameters is illustrated in Fig. 5.14.

Figure 5.14: The parameter meta-model to describe the variation points of a component.
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Parameter Sets and Component-Internal Parameters

A component model can instantiate a parameter set from structural building blocks to express
that the component provides these variation points (ParamSetInstance). A component can also
create a new component-internal parameter (InternalParam). In contrast to a parameter set, a
component-internal parameter is only available within the component where it was de�ned; it
cannot be reused in other componentmodels. ¿e parameter set uni�es the parameterization of
several components using the same parameter set. ¿e component-internal parameter is used
to describe speci�c parameters in an individual component only. One might use, for example,
a parameter set to con�gure a class of components for motion execution. One would de�ne a
generic parameter set to con�gure the maximum speed of the robot. ¿e implementation of
a particular component might use additional parameters that are speci�c only for the particu-
lar component, such as parameterization of �lters in the algorithm. ¿ese component-speci�c
parameters are modeled in a component-internal parameter.

Using a Parameter Set

Instances of parameter sets (ParamSetInstance, section 5.2.5 le part) refer to a ParamSet-model
from structural building blocks. It contains several instances of parameters (ParamInstance) to
which a DefaultValue of simple types (integer, bool, string, etc.) is assigned (Fig. 5.15). ¿e
default value will be used for the parameter in case the parameter is not set at time of system
composition. ¿e types of the default values must correspond to the type of the parameter
attribute (AttributeDe�nition::type, Fig. 5.8) within the referenced parameter set.

¿e purpose of instantiating a parameter set is twofold. First, the component chooses one or
more parameter sets from the available ones to express the variation points of the component.
Second, the component developer speci�es default values for the component under develop-
ment. Default parameters are not available whenmodeling the parameter set since, at that stage
in the work�ow, the component and thus the necessary default values are not known.

Using Component-Internal Parameters

¿e meta-model part for the component-internal parameter (section 5.2.5 right part) does not
reference to a parameter set. It models the parameters with typed name–value pairs. A compo-
nent-internal parameter is thus on the same level as parameter in a parameter set (Fig. 5.15).
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Figure 5.15: The structure and usage of component-internal parameters in comparison to parame-
ter sets.

5.3.6 Component Documentation

¿ecomponent documentationmeta-model is a structure to support the annotation of a service
endpoint with a human-readable description. ¿e documentation model is created by the com-
ponent developer who adds a prose text description to a component service. ¿e code-generator
uses the additional information from the component model and from the service de�nitions to
automatically generate a full documentation for the system compositor role. ¿is documenta-
tion is written from the outside perspective on the component. It contains information that is to
be provided to the system compositor role in the system composition view. ¿e documentation
shall describe details such as the used algorithms or methods behind the service endpoint for
possible users of the component to provide the insights they need for selecting and using this
component.

Each structural building block from the previous chapter is documented directly within the
model (section 5.2.6). ¿e documentation of component services, however, is separated from
the component model to separate roles and concerns: ¿e technical concern of component
modeling is separated from the descriptive concern of writing documentation. ¿e documen-
tation might thus be created or revised by a dedicated role, for example by a technical writer.
He can only add documentation to existing elements of the component, but cannot modify the
component model (adding or changing services).
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Figure 5.16: The component documentation meta-model to describe component services.

¿e documentation meta-model is illustrated in Fig. 5.16. ¿e main element Component-
Documentation refers to the component being documented. It links the documentation mo-
del with the component model. ¿e documentation contains a set of attributes to describe
the component itself, e.g. a description, author, contact information, and licensing informa-
tion. Each element of the documentation model (ServiceDocumentation) refers to a component
service endpoint (AbstractComponentService) to describe it in prose text (ServiceDocumenta-
tion::description). ¿e documentation model can only describe service endpoints that are in-
cluded in the component that it describes. Since there are only references, it is ensured that the
component model is only described, but not modi�ed (no change of existing services or adding
new ones).

¿e StateDocumentation is used to describe the state-automaton for the component life-
cycle [SLS11] in relation to service endpoints. ¿ey are relevant in the context of run-time pa-
rameterization which is beyond the scope of this thesis.
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Figure 5.17: Automatic generation of documentation based on the documentation and all refer-
ring models. The documentation model is created by the component developer. He
adds human-readable descriptions to component services. The code-generator uses
additional information from the referenced models to automatically generate a full
documentation for the system compositor role.

With the documentation model and all models that are referenced from there, the com-
ponent hull is complete: the technical models (service endpoints with properties, service de�-
nitions, communication objects, pattern, etc.) and the human-readable documentation as de-
scribed in section 5.2.6. From this information, a complete component documentation can be
generated (Fig. 5.17) to support the system compositor role in component selection and system
composition.

5.4 Building Robot Applications: Compositions

¿is section describes the structures and meta-models at composition Tier 1 (Fig. 5.1) that are
used at Tier 3 to compose robot applications from existing functional building blocks (so ware
components). ¿ese building blocks have been modeled and provided in the previous section
(section 5.3). System composition consists of four steps, each with its own meta-models: (i)
expressing the application’s needs in the service wish list, (ii) component selection and retrieval,
(iii) con�guring the system using the selected components, and (iv) their deployment to the
robot. ¿e next sections describe these steps.

135



Chapter 5 A M E T A - S T R U C T U R E F O R S Y S T E M C O M P O S I T I O N

5.4.1 Service Wish List

¿e system compositor uses a wish list of services to model the needs of the application with
respect to services (Fig. 5.18). Each entry in the wish list instantiates a service de�nition and
re�nes its service properties to express the needs towards that service. An entry of the wish list
is called a “service wish” or “wish”. ¿e wish list serves as input to assist the system compositor
in selecting suitable components. It also serves as input to verify the composed system (see
section 5.4.3).

Market /
Repository

Market /
Repository

Wish List M
Model

wish 2

Service Definition M
Model

Service Definition M
Model

wish 1

System
Configuration

M
Model

Comp.

wish 1

verification

instantiate

instantiate

Market /
Repository

Figure 5.18: The service wish list instantiates service de�nitions to express the needs of the applica-
tion with respect to services.

A wish list entry takes the perspective of a service sink, thus using constraints to express
the needs towards a service source (see section 5.3.3). It is assumed that for every source there
is also a corresponding sink (see section 5.2.1). ¿e wish is thus indirectly expressed towards
the sink as well, since the connection between these two must be valid, too. ¿e existence of a
corresponding source and the valid connection between source and sink is checked as part of
veri�cation during system con�guration (see section 5.4.3).

Service Wish List Meta-Model

¿emeta-model to express a service wish list (Fig. 5.19) consists of several wish list entries (Ser-
viceWish). A wish list entry in the meta-model is like a ComponentServiceSink from the com-
ponent meta-model: It consists of a reference to a ServiceDe�nition and re�nes the properties
(PropertyRe�neWish) of that service de�nition (see section 5.3.3). ¿e wish list entry also holds
a name for its identi�cation and a description for documentation purposes.
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Figure 5.19: The service wish list meta-model. It instantiates service de�nitions and thereby ex-
presses the needs of the application with respect to services.

5.4.2 Component Retrieval

¿is section covers necessary actions for retrieving a component for composition from a me-
thodical and from a modeling point of view. It includes the selection of components based on
the wish list and the management of the retrieved components to maintain consistency with the
wish list.

Component Selection

At this point in the composition work�ow, all information is available to select a component
from a repository. ¿e system compositor has expressed and modeled the application’s needs in
the wish list. Component developers have expressed the service o�ers in the component model.
All components are available in a “component market” or repository. ¿e system compositor
is now supported in component selection: Based on the models, the supporting tool can now
match the expressed needs with the available components in the market. It will present the
components that meet the needs to the system compositor. ¿e system compositor will select
the �nal component and compose it to the application.

Component selection is not fully automated. It is not the goal to assemble the whole ap-
plication fully automated based on the expressed needs alone. ¿ere will always be reasons for
deciding on one component over another that can only be taken by the system compositor when
considering the alternatives. His decision on one component over another may be of technical
or non-technical nature. ¿e goal is to provide adequate support to the system compositor and
only present the few components that match his needs, but distinguishing them from the many
others that do not. He can be supported by trading o� the options based on the needs as ex-
pressed in the wish list. Supporting the system compositor is necessary, since otherwise, he will
get lost in the overwhelming number of available options. He then risks selecting an incompat-
ible or incomposable component but might discover this (too late) at run-time.

Component selection compares an entry of the wish list with the set of available components
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Figure 5.20: Component selection compares an entry of the wish list with the set of available com-
ponents and applies a �lter. The result of the �ltering step is a list of components that
o�er the “wished” service. They are sorted and presented for manual selection by the
system compositor. Figure inspired by [Lud03].

and applies a �lter. ¿e result of the �ltering step is a list of components that o�er the “wished”
service. ¿ese are sorted and presented for selection. ¿e component selection process takes a
singlewish list entry as input (Fig. 5.20). Matchmaking is applied on each service endpoint of the
available components. It uses a two-step syntactic and semantic �lter with signature matching
on the service de�nition and the constraints evaluation on the service property. ¿e match-
making process is described in the next section in detail. From the resulting list, the user can
select the �nal component. A er that, the next step is to create the system con�guration mo-
del to build the application. While doing so, the wishes must be maintained with the selected
components to keep track of ful�lled wishes and of components that yet need to be retrieved.

Matchmaking Matchmaking follows the basic strategy of the F-Match algorithm [YL07]. It
takes the available components, prunes the list of incompatible components and sorts the re-
maining components (Fig. 5.21). F-Match consists of two steps: �ltering and sorting of results.

Filtering. Filtering prunes out incompatible components. Signature matching [Bac+02] is suf-
�cient for service de�nitions at this stage. ¿e signature of the service is the service de�-
nition. It is thus su�cient to return all services whose name equals to name of the service
de�nition that is instantiated in the wish lists.

Sorting. ¿e remaining components are sorted using the following metric: Evaluate all con-
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Figure 5.21: A UML Activity Diagram to illustrate matchmaking. The matchmaking process applies
signature matching and sorts the remaining components based on constraints evalua-
tion (based on [YL07]).

straints (see section 5.2.4) from the wish list entry on service properties. Count the con-
straints that evaluated to true and divide the sum by the total amount of constraints that
were evaluated. ¿ereby, weigh the constraints with severity “info” three times, “warning”
two times, and “error” one time. ¿e severity is described and discussed in section 5.3.3.
Listing the components in descending order will �rst show composable components with
no warnings, followed by incomposable components with warnings, and then compo-
nents with errors. Knowing about the latter gives a chance to carefully consider the appli-
cation’s needs. ¿e compositor may lower the needs to use an existing component instead
of building a new one that fully matches the initial needs.

An alternative to the suggested approach is to prune outmismatching service propertieswith
severity “error” during �ltering, then �lter remaining results as described. Using this method,
however, the compositor could not choose a component that might lower the overall perfor-
mance but that still would be a composable component.
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On Failed Matches An o en discussed problem in matchmaking is how to deal with failed
matches (e.g. [KP08; YL07]). Failedmatches are services that donotmatch the needs. Yau [YL07]
describes hard and so reasons for failed matches. ¿ere is no way to overcome hard failures,
e.g. incompatible interfaces. So failures might be overcome as a service might “closely” match
the needs. From a system compositor point of view, it makes sense to know about so ly failed
matches and not to hide them. ¿e compositor must �nd a match for each wish since otherwise
the composition is incomplete. Presenting also the so failures gives the system compositor the
chance to adopt the needs such that a matching component is found. For example, if it turns
out that no component satis�es the expressed needs, it might make sense to use an existing
component that performs less well instead of facing costs, time, and complexity to develop an
individual and perfectly matching component. In the end, this is a trade-o� between the appli-
cation’s requirements and what is available. Only the system compositor canmake this decision.

A possible extension to the presented structures would be to express ranges or alternatives in
the service properties. For example, the need for accuracy of a localization service could spec-
ify the optimal accuracy, but could also specify the absolute minimum accuracy. ¿is would
so en the problem of failed matches. It provides more support to the system compositor, but
the problem remains: ¿e compositor must select a less suitable component, modify the appli-
cation’s needs, or trigger the development of a customone in case there is no suitable component
available that fullymatches the needs. Supporting the system compositors with suggestions how
to adapt the needs should be one of the next steps in future work.

Extending theWish List: Implicit Services

A newly selected component o en comes with additional service sinks. So, additional compo-
nents are needed that o�er the corresponding sources. We call these additional services “implicit
services”, as they are not expressed as an explicit application need in the wish list. ¿ey come
implicitly with a selected component when ful�lling a wish. Once the selected component is
removed from the application, the implicit services might no longer be required. It is desirable
to support the user in managing implicit wishes and in selecting components that match these
implicit wishes.

All information required to manage implicit services is available via the models. Supporting
the user is thus considered a matter of tooling. ¿e proposed structure can be used to realize
this by maintaining the wish list dynamically: For each mandatory sink of a newly selected
component, the component’s re�ned sink endpoint can be transformed and added to the wish
list as new entry. ¿at is, take “copy” the service sink model to to the wish list. ¿e implicit wish
thus becomes explicit in the wish list. Extending the wish list might be done fully automated or
semi-automated by providing suggestions to the user. Based on the newly added wish, the user
can then select an appropriate component as described. ¿ere must be, however, a distinction
in the meta-model between explicit wishes and implicit wishes to identify and track the implicit
ones when they are no longer required. Extending the wish list keeps all wishes (explicit or
implicit) in one place, enabling the compositor maintaining an overview.

An alternative approach is to use system veri�cation checks during the system con�guration
step (section 5.4.3) to detect dangling (unconnected) service sinks and start component selection
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from there. ¿is approach keeps implicit wishes invisible since it does not explicate them in
the wish list. ¿is can be seen both as positive and negative argument. ¿e second approach
addresses the management of wishes in a later step of system composition in which the concern
is to con�gure and assemble the application rather than selecting components: ¿e wish list is
the �rst step in system composition, while the system con�guration is a later step.

From a system compositor point of view, it is desirable tomaintain an overview of the wishes
andmaintain all wishes in the wish list. Since the wish list represents the needs of the application
with respect to services, it is desirable to have full control there. Since explicating information
is a fundamental principle in this thesis, extending the wish list is considered the most suitable
approach.

Further research into implicit services, their consequences to the application and how to
manage them is required nonetheless. Implicit wishes, for example, might bring additional “im-
plicit implicit wishes”, thus creating a chain of wishes. Along these chains, needs might add up
or build up to unnecessary indirections and eventually even duplications.

Maintaining the Wish List: Service Realization Meta-Model

Once the components have been selected, the wish list still needs maintenance for two reasons:
�rst, as kind of a check list to know which wishes are ful�lled and, second, to keep track which
wish is ful�lled by which component. A er a component was selected based on a wish, the wish
cannot simply be marked as “done”. ¿e wish is only ful�lled when the selected component was
instantiated in the system con�guration (system con�guration, section 5.4.3). If a component
was selected but was not instantiated, it cannot be detected that the wish is no longer ful�lled.
It thus requires a mapping between the elements of the wish list and the services of component
instances during the system con�guration step (section 5.4.3).

We call the mapping between a wish and a service of a component instance the “wish list
realization”. ¿at is, a service of a component instance is said to “realize” or “ful�ll” a wish. ¿e
mapping cannot be derived from the wish list and system con�guration alone (Fig. 5.22).

¿e mapping is trivial in the case that only one wish exists for one instance (Fig. 5.22, top).
But this is not the case in every situation. Suppose there are two wishes for the same service
de�nition. For example, a front laser and a back laser to drive forward and backward, both of
service de�nition “laser” (Fig. 5.22). ¿e service endpoints must exist in component instances
in the system con�guration. By only matching between wish list and system con�guration, it
is not clear which service endpoint in the system con�guration realizes which service wish.
¿e e�ect is even stronger when the components come from di�erent vendors with di�erent
diversity of performance. A similar situation exists when a component comes with a wish that
is already satis�ed by another component. ¿is may be the case in multi-purpose components.
For example, a simulator component that brings a lot of services ofwhichnot every single service
is required.

Even though it is not possible to create the mapping automatically, the e�ort to create and
maintain this information can be lowered and semi-automated via tool-integration. For exam-
ple, by providing auto-completion, model-templates, and other assistants. ¿is can relive from
the burden that is put on the developer to maintain another model with only few but necessary
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Figure 5.22: The mapping between wish and component instance that ful�lls this wish cannot be
derived from the wish list and system con�guration alone, thus it requires modeling of
wish realizations.

information.
¿e service realization model (Fig. 5.23) links service wishes from the wish list with services

of the component instances as modeled in the system con�gurationmodel (see Fig. 5.22). Using
the realization model, the system compositor can express which service wish is “realized” by
which component service of a particular component instance.

A ServiceWishRealization element realizes the link of a service wish with a component ser-
vice. ¿ree elements are necessary (Fig. 5.23): a reference to the wish (ServiceWish), a reference
to the component instance, and a reference to the service endpoint that ful�lls a wish (Com-
ponentInstance and AbstractComponentService). Referring a component alone is not su�cient.
Referring a component instance is necessary since a component might be instantiated twice.
Referring the instance alone is not su�cient either. ¿e endpoint must be referenced since the
instancemight have two endpoints of the same service de�nition (e.g. a simulation component).
Which of the two endpoints is used cannot be derived from the instance alone.

5.4.3 System Con�guration

¿e system con�guration step takes a so ware architecture point of view on the application. It
puts the selected components together: It creates instances of components, wires the compo-
nents to set up the �nal architecture, and uses variation points to parameterize the components
for use in the application. ¿e deployment model will later map these component instances to
execution units (section 5.4.4).
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Figure 5.23: The service realization model (Fig. 5.23) links service wishes from the wish list with ser-
vices of component instances in the system con�guration. This expresses that the ser-
vices realize or “ful�ll” the wish.

System Con�guration Meta-Model

¿e system con�guration meta-model (Fig. 5.24) holds the name of the application being mo-
deled. It consists of component instances and connections between their service endpoints.

In analogy to object-oriented programming, a component instance (ComponentInstance)
represents a concrete run-time occurrence of a component. Component instances are created
for two reasons: to use a component more than once (e.g. distinguish between two instances
of a laser scanner: front and back) and to have a new distinctive element to annotate values
for parameterization. ¿e component instance takes a name to identify it in the context of the
application (e.g. distinguish between front and back laser). ¿e instance refers to the com-
ponent it instantiates (ComponentInstance::component). Regarding component parameters, the
instance refers to the parameter model that assigns values to variation points (ComponentIn-
stance::instanceParameter, section 5.4.3).

Connections link (“wire”) the service endpoints of the components: A Connection refers to
two pairs of component instance and service endpoint. One pair for each connection end. ¿at
is, one end references instance0 and endpoint0; the other end references instance1 and endpoint1.
Connections are not directed since the direction is de�ned through the linked service endpoints
(source and sink, section 5.3.2). A connection only links a pair of service source and sink end-
points. Furthermore, it only links the endpoints of components for which instances exist. A
connection can only link endpoints that are contained in the component model of the instance.

A connection must reference both to the instance and to the endpoint of the component
to which the instance references. From referring to the endpoint alone, it is not known which
instance the endpoint belongs to in case there are multiple instances of a component (instance
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Figure 5.24: The system con�guration meta-model consists of component instances and the con-
nections between their service endpoints.

association problem, Fig. 5.25).
A component instance does not refer to or instantiate service endpoints. At this stage of the

presented concept, there is no need for a re�nement of endpoints. ¿is might change when an-
notating additional information to service endpoints becomes necessary at composition-time;
endpoints might then be instantiated within component instances as well.

Composition Parameter Meta-Model

¿e component model expressed the variation points of a component (sections 5.2.5 and 5.3.5).
¿e composition parameter model is used to assign �nal values to the variation points of com-
ponent instances. ¿e according composition parameter meta-model is illustrated in Fig. 5.26.
EachCompositionParameter refers to the component parameter to be re�ned (ParamReference).
It also creates an attribute to assign values (AttributeValue). ¿e reference to the component pa-
rameter either points to an internal parameter (via InternalParamRef ) or to a parameter set (via
InstanceParamRef ). ¿is is necessary since the componentmodel can use both parameter types.
¿e attributes (AttributeValue) consist of name–value pairs that refer to the attribute de�nition
(AttributeDe�nition) and assign a value (AbstractValue).

In structural building blocks, parameter sets were said to group parameters, but the groups
are not visible in the system con�guration when parameterizing a component instance. ¿e
parameters lie �at within the instance. ¿e original intention of grouping parameters is to keep
together a group of commonly used parameters in one unit of composition (section 5.2.5). ¿is
is no longer necessary at this step.
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... ... ... ...

Connection2
:Connection
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Instance2
:ComponentInstance

Instance1
:ComponentInstance

Component1
:Component

Endpoint1
:AbstractComponentService

services

endpoint1 instance1 endpoint1 instance1

componentcomponent

endpoint0endpoint0 instance0instance0

12 1 2

Figure 5.25: A UML Object Diagram to illustrate the instance association problem: A connection
must refer to both the instance itself 1 and to the endpoint of the component that the
instance refers to 2 . From referring to the endpoint alone 2 , it is not known which
instance the endpoint belongs to in case there are multiple instances of a component.

Only the parameters that are used in the component model of the particular instance can
be re�ned. Values can only be assigned to attributes that exist within the referenced parameter.
¿e type of the value must match the type that is de�ned in the corresponding attribute.

Verifying the Composition

In context of this thesis, veri�cation means to check the “ful�llment” of all wishes in the wish
list. Veri�cation checks the composability along the horizontal and vertical composition axes
(see section 3.3.1). Primary input to the veri�cation is the system con�gurationmodel (Fig. 5.27).
Firstly, the composability is checked between the application’s needs and the composed appli-
cation. ¿is means to check the wish list with the system con�guration model to ensure that
each wish is ful�lled. Secondly, the composability is checked between the connected service
endpoints to ensure that instances with service sinks are connected to a suitable suitable service
source. All service endpoints that ful�ll a wish must be connected to a corresponding endpoint;
they cannot be le “dangling”. ¿is ensures that the wish is complete.

¿e veri�cation process (Fig. 5.28) is like the matchmaking for component selection (sec-
tion 5.4.2). For each source–sink pair from the wish list realization model and system con�gu-
ration model (Fig. 5.27), the composition is checked by applying signature matching and by
evaluating the constraints on each service property (see section 5.4.2).

If there is a single mismatch in signature matching, the overall veri�cation process fails. In
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Figure 5.26: The composition parameter meta-model assigns �nal values to variation points that
were expressed in the component model of a component instance.

case the signatures match but the constraints evaluation on service properties fail, it depends on
the severity thatwas assigned to the service property (see section 5.3.3). In case of severity “error”,
the overall veri�cation will also fail. In case of “warning” or “info”, the veri�cation succeeds, but
the message that is returned by the evaluation function is displayed to the user. ¿e severity is
typically assigned by the system compositor in the wish list. Only the system compositor is able
to decide on the actions to take in case a need is not met. ¿e rare cases where a severity may
be assigned by the component developer are described and discussed in section 5.3.3.
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Figure 5.27: Veri�cation of the composition: Composability is checked A between application
needs as expressed in the wish list and the composed application as modeled in the
system con�guration, and B between connected service endpoints within the system
con�guration.
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Figure 5.28: An UML Activity Diagram to illustrate how the composition is veri�ed with respect to
services. For each source–sink pair from the wish list realization and system con�gura-
tion, the composition is checked by applying signature matching and evaluating the
constraints on service properties.
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5.4.4 Deployment

¿e deployment step is the last step before executing the application. It includes creating the
deploymentmodel that maps so ware component instances to the device(s), on which they will
be executed. By a “device” we refer to the computer that will run components. Finally, there is
the transfer of the necessary artifacts to the device to run the application. ¿e transfer is realized
by the tooling based on the deployment model and described in chapter 6. ¿e deployment step
can be considered as the handover from design-time to run-time.

¿e deployment meta-model (Fig. 5.29) is aligned to the deployment structure in UML
[OMG15b]. It contains the basic elements that are required to model how a component instance
maps to a Device. ¿e device element includes additional attributes that are relevant to transfer
the �les. For example, the IP address, the login name, the target directory, and the mode of
transfer. ¿eDeployment is the element that performs the mapping via linking a ComponentIn-
stance to a Device. A particular component instance can only map to one device, but several
component instances might map to the same device.

Figure 5.29: The deployment meta-model is aligned to the deployment in UML [OMG15b]. It con-
tains the basic elements that are required to model how component instances map to
devices (the computer that runs the components).

¿e system con�gurationmodel and step in the work�ow (section 5.4.3) provides a so ware
view on the application. In contrast to that, the deployment provides a hardware view. ¿e pur-
pose of the deployment meta-model in this thesis is to �ll the gap between the fully modeled
system and its execution on the robot. Without this step, the composition work�ow would not
be complete. Additional views might be needed to fully model all deployment and hardware
aspects of a robot. For example, modeling the physical mounting points of sensors or modeling
the network topology between several devices. Modeling the physical mounting points would
allow to use this information in components for the sake of coordinate transformation. Mod-
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eling the network topology would enable to use the knowledge of the proposed deployment
model: use the component–device mappings to detect limitations in the bandwidth between
two devices. ¿e deployment model provides the basis for these extensions.

5.5 Summary

¿is chapter has presented a concretemeta-structure and the accordingmeta-models for system
composition in an ecosystem: the “composition structure”. ¿e composition structure is located
on composition Tier 1. It enables the de�nition of domain structures on Tier 2. Service de�ni-
tions are at the heart of the composition structure. ¿ey enable the separation of roles and the
exchange of building blocks on composition Tier 3. ¿e presented composition structure cov-
ers the complete work�ow, right from designing service de�nitions to modeling components,
to the composition of applications and their deployment to the robot.

¿e meta-models presented in this chapter build the basis to provide tools that support
ecosystem participants in applying the approach. ¿e following chapter describes one concrete
realization of such a tool—the SmartMDSD Toolchain, which is an IDE for robotics so ware
development.
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6
The SmartMDSD Toolchain

¿is chapter presents the implementation of the approach and the contributions to the Smart-
MDSD Toolchain, which is an Integrated Development Environment (IDE) for robotics so -
ware.

¿e chapter is structured as follows. First, initial considerations are examined. ¿e chapter
introduces the realization variants and the �nal overall setting for the implementation. Sec-
ond, the chapter describes and explains how the composition structure maps toward concrete
implementations and the work�ow in the SmartMDSDToolchain to support ecosystem partici-
pants in applying the approach. Finally, the individual steps and theDomain-Speci�c Languages
(DSLs) that are used to create and work with the models are presented to grasp the look and feel
from a user’s point of view.

6.1 Considerations and Overall Setting

Integrated tooling is an important requirement for systemcomposition (consequenceC7, Fig. 6.1;
see section 3.3.4). It makes the composition structures accessible to users and guides them
through the composition work�ow. ¿is section discusses possible alternatives to implement
the composition structures within the SmartMDSD Toolchain.

It should be emphasized that the alternatives and the considerations in this section, as well
as the implementation that is described in the remaining chapter, is only one of the possibly
many ways to realize the approach. ¿e decisions for the realization variant, the used MDSD
frameworks, graphical versus textual modeling, the design of the DSLs themselves (in terms of
language syntax, usability or use of UML elements to represent elements of the meta-models),
and the embedding of models might vary in di�erent implementations. ¿ese decisions in-
�uence the required e�ort and the outcome in terms of stability and usability. ¿e underlying
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composition structures as they were introduced in the previous chapters, however, are indepen-
dent of these decisions.

Use-Case
Company

Building Block
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Building Block
Supplier C

U4

U2 U1

U1
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U3

U3
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C3: Express
Needs

C7:
Integrated Tooling
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Considerations in this chapter

Considerations in chapter 3

C1: Manage 
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Composition

C4:
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Configuration

Figure 6.1: The consequences on an approach for system composition: This chapter discusses a
baseline to implement the approach in the SmartMDSD Toolchain. (See section 3.3.4 for
the summary on consequences)

6.1.1 Extension vs. Direct Realization

¿ere are two main directions in which a realization of the composition structures might be
pursued (Fig. 6.2). Tooling can be realized by extending an existing modeling approach, for
example extend UML via the pro�ling mechanism to meet domain-speci�c needs. One can
also directly implement the composition structures using, for example, Ecore.

UML can be extended and adapted to a domain-speci�c approach using the mechanism of
UML pro�ling (variant 1 in Fig. 6.2). Using UML pro�les, one gains advantage from access to
existing tools. For example, Papyrus [Papyrus] is among the most widespread UML modeling
tools in Eclipse. Utilizing Papyrus enables to use graphicalmodeling editors with no extra e�ort.
Pro�ling is adequate when the elements of the intended extension have a closemapping (graphi-
cal notation and semantics) withUML such that it does not require to alter semantics. Extension
works well when adding new elements based on existing elements. Extending UML also means
to have available all the elements that UML o�ers—even if they might not be relevant or might

152



C O N S I D E R A T I O N S A N D O V E R A L L S E T T I N G 6.1
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Figure 6.2: Two variants to realize tooling to represent the composition structures: extending
UML with the pro�ling mechanism and “direct” implementation of the approach in e.g.
Ecore.

not be used in the target domain for which the pro�le is made for. It is hard to restrict the set
of original elements, i.e. it is hard to remove elements. ¿is must be implemented by tooling.
UML is part of the education in many disciplines. Since a UML pro�le is based on UML, it can
be expected that its use and graphical notation is known to potential users. ¿is, however, also
can be a pitfall. ¿ere is a very biased perception of UML and UML is frequently topic of heated
debates. As users may be familiar with UML, they might expect other behavior and semantics
to extensions or model things in the way they are used to—but in a way that contradicts with
the extension. Additional tooling and semantics are required. ¿is is also discussed by Bonnet,
Voirin, Exertier, et al. [Bon+16].

¿e direct implementation of the composition structures provides more freedom and �ex-
ibility in comparison to extending an existing approach (variant 2 in Fig. 6.2). It comes with
the cost of coming up with tooling to support it. For example, Xtext [Ecli] lowers this hurdle
by providing a framework for the development of textual languages. It is adequate for textual
modeling but does not support graphical modeling. ¿e Eclipse GMF and Sirius [Eclg] provide
a framework for graphical modeling based on Ecore. Nowadays, Sirius can be used to come up
with custom graphical editors with comparatively low e�ort and in comparatively short time. At
the time of introducing the SmartMDSD Toolchain v2, the tool-support to come up with cus-
tom graphical modeling was still very undocumented, unsupported and unstable. Back then,
custom graphical modeling would have resulted in very high e�ort. ¿e decision for graphical
or textual modeling in editors is a matter of coming up with adequate representations. ¿e need
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to come up with new textual representations brings a certain risk to end up in a syntax that
re�ects “programming”. ¿e need to come up with new graphical notations brings the risk of
overloaded and too “fancy” representations. One must carefully consider the target domain.

6.1.2 Technologies used in the SmartMDSD Toolchain

¿e goal of the implementation is to demonstrate the approach in a tool that is usable. It shall
provide a high enough readiness level to reach impact and to allow adequate evaluation. For
this reason, extending UML with pro�les is adequate to provide the framework for the imple-
mentation. Pro�les enable to access existing tooling to implement the approach with low e�ort
but adequate stability. To also address adequate textual modeling (see discussion below), the
SmartMDSD Toolchain actually uses a combination of the two presented realization variants
(Fig. 6.3). It usesUMLpro�ling for graphicalmodeling via Papyrus [Papyrus]. ¿e SmartMDSD
Toolchain uses parts of UML directly while other parts are extended throughUML pro�les. ¿e
toolchain uses “direct realization” in textual modeling using Xtext [Ecli]. It provides DSLs for
both and combines them by embedding or accessing a textual model from within a graphical
model. ¿e lessons learned in realizing and applying the composition structures in this setting
are discussed in section 7.6 (research question 3: “user support”).

represented
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partially
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EcoreUML

via Papyrus

Graphical Modeling Modeling
Tool

Implementation
Technology

via Xtext

Meta-Models
represented

by

Modeling
Foundation

Composition
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conforms touses subset

Xtext DSL

conforms to
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Figure 6.3: SmartMDSD Toolchain implementation technologies. Graphical modeling in the tooling
is realized through extension of UML (pro�ling) where necessary and using a subset of
UML where adequate. Xtext is used for textual modeling. In some parts of the tooling,
textual modeling is embedded in graphical modeling.

An aspect to be considered when deciding for an alternative is textual versus graphical mod-
eling. It is one of the �rst questions to answer when implementing model-driven tools. With
UML, one is more or less tied to graphical modeling. ¿ere is no clear favor for one over the
other in the SmartMDSD Toolchain. It depends on the domain and task at hand for which the
DSL ismade. Instead of having a clear favor, whatever ismore adequate in the particular activity,
role or step, is used. For a DSL, it is more important to be simple, compact and speci�c so that
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the user can focus on the task and model at hand. ¿is is true for simplicity of a textual gram-
mar or look-and-feel of graphical modeling but also holds true for the decision on graphical or
textual modeling. Graphical modeling is typically more appropriate for models that require or
represent graph-like structures (e.g. components and their connections). Linear structures, for
example the data structure for communication with a list of attributes, is typically better repre-
sented by a textual language. Finally, graphical modeling requires more e�ort to implement in
comparison to textual modeling.

¿e EclipseModeling Project [Eclc] (EMP) is themost widely used tooling to realizemodel-
driven approaches and can be considered as the de-facto standard in the model-driven domain.
Because of its active community support, extendable tooling, and gooddocumentation, it is cho-
sen over the existing alternatives in model-driven development suites (see section 2.4). Xtext
[Ecli] for textual modeling and Xtend [Eclh] for code-generation are very e�cient for language
engineering. ¿ey have been chosen as implementation technology (Fig. 6.3) for the approach.
¿ey are well integrated into the Eclipse world and come with a lot of support, documenta-
tion, tooling and rich editors (e.g. syntax checking, proposal provider). ¿eir integration into
the Eclipse IDE provides the necessary �exibility for customization and “glue-code” around the
MDSD tooling. Papyrus [Papyrus] is also well integrated into Eclipse. It helps to signi�cantly re-
duce the e�ort for implementation. Additional glue-logic closes the gap between DSLs, the user
interface, and the Eclipse platform to realize validators, checks and the bridges between models
andwork�ow steps. Code is generated using template-based code-generatorswithXtend [Eclh],
applying the generation-gap pattern [Vli98] to separate user implementation from generated
code.

6.2 The Composition Work�ow in the SmartMDSD Toolchain

¿is section describes how the composition structure maps onto concrete implementations in
work�ow steps, work�ow roles, and toolchain projects of the SmartMDSD Toolchain.

6.2.1 Overview onWork�ow Steps and Projects

¿e approach and its models directly map onto Eclipse projects and the work�ow steps design,
(component) development, and (system) composition. ¿ere is one Eclipse project type for each
step. It collects the corresponding models of the step in one project (Fig. 6.4).

Design: Repository Project. ¿e user creates the structural building blocks in this step, thus
“designing” the way in which components will later interact. ¿ese are service de�nitions,
service properties, communication objects, and parameter sets that are reusable elements
collected in one or more “repository projects”. Structural building blocks are typically
organized per application domain.

Development: Component Project. ¿e development step contributes component models
and implementations as functional parts. Each component is organized in a component
project. It is driven by technical goals since the purpose of a component as the unit of
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Figure 6.4: The work�ow of the SmartMDSD Toolchain. It is organized in three main steps. The
approach and its models map directly onto Eclipse projects and work�ow steps.

composition is to provide a solution for a technical challenge. Component models use
service de�nitions and parameter sets.

Composition: Composition Project. ¿e composition step is driven by the particular appli-
cation. One project per application holds all relevant composition models: ¿e user cre-
ates the wish list model, selects components, instantiates them in system con�guration to
compose the application, and maps them to execution units in the deployment model to
prepare the transfer to the robot.

6.2.2 Modeling Perspective

Each project in the work�ow holds the models that are created in the corresponding work�ow
step using graphical and textual DSLs (Fig. 6.5). Table 6.1 provides a summary on the approach’s
DSLs in the SmartMDSD Toolchain, the models that they correspond to and the implementa-
tion technology.

A service repository project (Fig. 6.5, le ) contains the models for parameters, communi-
cation objects, and service properties. All models, except the parameter model, are used by the
service de�nition model that is also included in this project. ¿e service de�nition model and
the parameter model are used by the component model. ¿e user creates the models using a
textual DSL implemented in Xtext [Ecli].

Most meta-models directly map to their own DSL and model. Some models, however, are
embedded in other models. ¿emainmodel for the component and the mainmodel for system
con�guration are realized in UML and contain embedded Xtext models (Fig. 6.5). Since the
system con�guration model arranges and wires component instances, graphical modeling via
UML is preferred for this visual task. To ease the integration between component and system
con�guration, the main component model is implemented in the same technology (graphical
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Figure 6.5: The Modeling perspective and the relations between models in the SmartMDSD Tool-
chain. Each project in the work�ow holds the models that are created in the corre-
sponding work�ow step using graphical and textual DSLs. Most meta-models directly
map to their own DSL and model. Some models are embedded in other models.

modeling using pro�les and Papyrus [Papyrus]); experience with the toolchain has also proven
that a visual representation of a component is bene�cial to give an overview on the component.
Models for component parameters, component services and composition parameters follow a
linear structure and are implemented as textual Xtext DSL. ¿ey are embedded within their
main models (component model and system con�guration model). Services in the component
model (Fig. 6.5, center) are represented by UML ports. ¿e documentation model is a separate
model and refers to component services for which documentation is added via a Xtext DSL.

¿e composition project (Fig. 6.5, right) contains models for the service wish list, system
con�guration and deployment. ¿e wish list and the wish realization are merged to one single
model that is created using a Xtext DSL; it proved to be extremely useful to have these twomod-
els together. ¿e rather small realization model interacts closely with the wish list. ¿e wish list
uses service de�nition models to instantiate wishes and links them with component instances
from the system composition model to manage the list. Component instances and their wiring
are modeled graphically using a UML pro�le in the system con�guration model. Each compo-
nent instance holds its composition parameter model as an embedded model (Xtext DSL) to
re�ne the parameter sets. ¿e graphical deployment model refers to component instances to
graphically map them to execution units using a UML pro�le.
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DSL Technology Realizes Model, Section

Repository Project:
Parameter Xtext ParameterModel, 5.2.5
CommunicationObject Xtext CommObjRepository, 5.2.2
ServiceDe�nition Xtext ServiceDe�nitionRepository, 5.2.1

Component Project:
Component UML Pro�le Component, 5.3.1
→ ComponentParameter Xtext ComponentPrameterModel, 5.3.5
→ ComponentService Xtext AbstractComponentService, 5.3.1
ComponentDocumentation Xtext ComponentDocumentation, 5.3.6

Composition Project:
WishList Xtext ServiceWishistModel, 5.4.1

and ServiceRealizationModel, 5.4.2
SystemCon�guration UML Pro�le SysconfModel, 5.4.3
→ CompositionParameter Xtext CompositionParameterModel, 5.4.3
Deployment UML Pro�le DeploymentModel, 5.4.4

Table 6.1: The DSLs of the SmartMDSD Toolchain, the models that they correspond to and the im-
plementation technology. Embedded models (→) are listed below their parent.

6.2.3 Code-Generation and Artifacts

Integration of User-Code

Models are the source of structural information. While some models are only used to represent
and organize structure, code is generated frommost of themodels using Xtend [Eclh] (Fig. 6.6).
From most models, infrastructure-code and templates for user-code are generated. User-code
and infrastructure-code are separated using the generation-gap pattern [Vli98]. Based on the
used implementation language (C++, Java, Shell Scripts), the generation-gap pattern is realized
by placing generated code and user code in separate �les and linking them by inheritance (for
C++, Java) or by function calls/script execution (for Shell Scripts).

Infrastructure-code provides the implementations and scripts that are necessary to connect
user-code and to realize the structures or the entity that the model represents. Infrastructure-
code, for example, implements against the SmartSo framework (in case of a component) or
consists of scripts to collect and transfer artifacts to the robot or manages starting and shut-
ting down the components and application on the robot (in case of system con�guration and
deployment).

¿e user implements business logic in skeletons (empty method bodies, scripts, etc.) that
are generated once from the model. ¿ey integrate with / “dock to” the inheritance structure or
function call/script execution structure, so that this relation must not be set up manually by the
user.
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Figure 6.6: Code generation: Infrastructure-code and skeletons for user-code to implement
business logic is generated frommost of the models. They are separated using the
generation-gap pattern [Vli98].

Infrastructure-code is kept in separate �les and directories. It is overwritten when models
change. As a result, models and infrastructure-code are always in sync and changes in user
implementations do not compromise the model.

Artifacts in the Work�ow

¿ere are many artifacts that are generated frommodels or contributed by the users throughout
the work�ow. ¿ey must be handed over along the work�ow towards the robot. Figure 6.7
illustrates the models and the artifacts they represent or the artifacts that are generated from
these models (the relations between the models are illustrated in Fig. 6.5).

From the custom constraints evaluation element in the service properties (section 5.2.4), an
abstract java class is generated. ¿e user derives from this class and implements the custom
constraint function in java (see section 6.3.2). Based on the modeled data structure for com-
munication, the communication object in SmartSo is generated [Lut+14; Sch04a]. It gener-
ates the necessary middleware-bindings. Towards the component developer, getter- and setter-
functions are generated for each element. Optionally, separated by the generation-gap pattern,
more complex access-methods might be implemented by the user, e.g. to set multiple values at
once while ensuring consistency, automatic transformations, etc. as described in [Sch04a].

No code is generated from the parameter or service de�nition model as both so far only
contain structural information. ¿e component hull includes information from these models
and is generated from the component model. ¿e component hull contains infrastructure-code
to implement service endpoints, to read parameters from a con�guration �le, and to access them
from within the component hull and user-code.

¿e start-up infrastructure for component instances is generated from the system con�gura-
tion. It consists of scripts thatmanage starting and stopping of component instances asmodeled
in the system con�guration model. ¿e start-up infrastructure creates component instances by
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Figure 6.7: The correspondence between models and the artifacts they represent. There are many
artifacts that are generated frommodels or contributed by the users throughout the
work�ow. They must be handed over along the work�ow towards the robot.

launching the component under the name of the instance. ¿e information how to wire com-
ponent instances and how to parameterize components are read from the system con�guration
model and generated into con�guration �les. An instance-speci�c con�guration �le is read by
the instance at startup to set the parameter values. ¿e con�guration �le also contains the re-
mote endpoints to which the component shall connect its services to. Several start hooks and
stop hooks (pre-/post- and start-/stop-hooks, inspired by Towns and Hess [TH04]) are avail-
able to customize starting and stopping of components. ¿ese can be used to execute custom
shell commands before and a er starting or stopping an instance, for example, to start and stop
additional servers on the target platform, initialize devices, etc. As part of the startup infras-
tructure, �les can be associated to component instances that may be required for execution. For
example, the SmartCdlServer in the presented use-case (section 6.3.1) uses lookup tables that
are calculated o�ine, i.e. not at run-time. Without associating these �les with the component
instance, one need to copy these �les manually. Another common use-case is object recognition
where one loads the object database from a �le.

¿e deployment infrastructure is generated from the deployment model. It contains scripts
to collect the afore mentioned artifacts on the development computer and to transfer them to
the robot’s execution units as expressed in the deployment model.
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6.3 Using the SmartMDSD Toolchain: A Walkthrough

¿is section describes the individual steps and the DSLs to create and work with the models in
the composition work�ow. It presents the look and feel in the individual view that is presented
to the di�erent roles.

¿e next section introduces a comprehensible example. ¿e subsequent sections use it to
show the necessary steps from the service de�nition on composition Tier 2 to component de-
velopment, system composition, and deployment on composition Tier 3 (see section 4.1.1).

6.3.1 Introduction and Overview

The Navigation Stack Use-Case

¿ewalkthrough is illustrated using the example of a navigation stack formobile robots (Fig. 6.8).
¿e walkthrough focuses on the obstacle avoidance part of the navigation stack. In order to be
compact and comprehensible, it does not go into details with respect to localization, map build-
ing or path planning. It is a typical example of composition as it can be found in any wheeled
robot. ¿e remaining chapter shows the principle of applying the composition structures using
the SmartMDSD Toolchain. To apply these principles in large-scale systems, they just have to
repeated for every service or component.

More complex systems can be found in section 7.3. ¿e navigation stack can be found in
many robotics applications of the Service Robotics Ulm Laboratory and the SmartSo World.
For example, it is used in the “robot butler scenario” and in the “collaborative robot butler scenario”
where robots open cupboards and operate the co�ee machine (section 7.3.1). It is also used in
the “Industry 4.0 Robot Commissioning Fleet in Intra-Logistics scenario” (section 7.3.3).

Laser
Collision

Avoidance
Robot
Baselaser

scan

PlannerMapper
map

next
waypoint

motion commands
(velocities)

Smart-
CdlServer

+

motion
commands
(velocities)

pose

focus of remaining
     chapter:

laser scan

Figure 6.8: The simpli�ed navigation stack. The example shown in the remainder of this chapter
demonstrates development and composition of the simpli�ed navigation stack, but
focuses on the development of the collision avoidance component: the SmartCdlServer.
Arrows denote the �ow of information.

In the simpli�ed navigation stack, the robot perceives its environment using a laser ranger
(Fig. 6.8). Based on the laser scan, an obstacle grid map of the environment is generated and
handed over to the planner to compute a path to the destination. ¿e example shown in the
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remainder of this chapter demonstrates development and composition of the navigation stack,
but focuses on the development of the collision avoidance component SmartCdlServer (avail-
able at [Sma]). ¿e SmartCdlServer implements the Curvature Distance Lookup (CDL) algo-
rithm [Sch98]. ¿e algorithm takes laser scans and the next intermediate waypoint as input. It
calculates for the next cycle the best combination of the translational velocity and the rotational
velocity to generate a robot motion command towards the goal location. It considers the robot
kinematics, dynamics and shape to avoid any obstacles. ¿e example focuses on the output of
the component: the navigation command, expressed as velocities, that is sent to the Robot Base
component that is connected to the robot base platform (red circles, Fig. 6.8).

TheWalkthrough in the Ecosystem-Context

¿ewalkthrough demonstrates a typical situation in a robotics ecosystem. A technology provi-
der wants to supply an obstacle avoidance component such that third parties can use it (provide
and use building blocks at composition Tier 3). Before this can happen at the ecosystem level,
the appropriate domain structures need to be established on composition Tier 2. In the pre-
sented example, this is the de�nition of robot motion commands. ¿ey are discussed, agreed,
and modeled by a consortium in the domain of wheeled robots. In the toolchain, this corre-
sponds to the action of de�ning services by the service designer. ¿is includes the service-level
interface of a robot motion command with a communication pattern.

A typical problem inwheeled robot navigation is given by the di�erent types of robotmotion
primitives such as di�erential drive, omnidirectional drive, ackermann drive, and synchronous
drive. While there can be service-level interfaces for collision avoidance to support all of these,
the speci�c motion type plays a particular role in composing the components. Not all compo-
nents support all variants of motion types. Composing two components with an incompatible
motion type results in an invalid composition. Such motion types can be expressed via ser-
vice properties as part of service de�nitions in composition Tier 2. All components that follow
the service de�nition for collision avoidance are considered “component alternatives”. ¿ey use
the service property to distinguish themselves by the supported robot motion type towards the
system compositor.

Using the domain structures fromTier 2 is a typical task of the component supplier onTier 3.
He has su�cient freedom to implement the internals of his component. For example, he may
implement special selling points that are not considered at Tier 2 andmakes them accessible and
parameterizable via variation points. A typical task of the system builder is to �nd a component
that supports the motion type of the robot base platform.

All steps are described from the viewpoint of the according role (Fig. 6.9). ¿e viewpoint
thus will change through the linear structure of the remaining chapter and the corresponding
role is explicitly marked in each example or screenshot. ¿is is to visualize the separation of
roles. Depending on the scope of how the approach is applied, only a subset of these steps might
be necessary. ¿e order in which the steps are applied may vary as well (see also section 4.3.2).
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Figure 6.9: An overview on the individual steps taken during the complete composition work�ow
as supported by the SmartMDSD Toolchain. This �gure includes a list of the models that
are created in each step and are listed here for reference and overview.

6.3.2 System Design Step

¿emain building blocks for reuse in components and compositions are de�ned in the system
design step. In this step, the user models communication objects, service properties, service
de�nitions, and parameters using textual DSLs.

Communication Objects

Figure 6.10 shows a typical view of the SmartMDSD Toolchain while creating a communication
object to de�ne the data structure that is communicated between service endpoints (CommNav-
igationVelocity). Communication objects are used in service de�nitions. Optional documenta-
tion might be annotated (@doc) to include prose text in the generated documentation.

CommNavigationVelocity holds the data structure to communicate motion commands of
wheeled robots: the attributes vX and vY represent the velocity in x- and y-direction; omega
represents the rotational velocity.
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Models for parameter, service 
properties and service definition

Communication Object Model

Role:
  Service Designer
Task:
  Modeling a 
  communication object.

Figure 6.10: An example of using the communication object DSL during system design to de�ne
the data structure that is communicated between service endpoints. The service de�-
nition is later composed from communication objects, among others.

Service Properties

Service properties aremodeled using the service propertyDSL (Fig. 6.11). ¿ey provide building
blocks for reuse in service de�nitions to express the semantics of a service on the application-
level. No values are assigned yet. Values are assigned during service instantiation in components
(service endpoints) and composition (wish list) when values are relevant to specify the need and
o�er of service endpoints. A prose text description provides information on the use and on the
semantics of this element.

For example, the RobotMotionType (Fig. 6.11) will be used to distinguish between motion
types of wheeled robots later. ¿e service property thus de�nes possible robot motion types:
di�erential drive, omnidirectional drive, ackermann and synchronous drive (see section 6.3.1).
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Role:
  Service Designer
Task:
  Modeling a 
  service property.

Figure 6.11: An example of using the service property DSL during system design to model building
blocks that express the semantics of a service on the application-level. Service de�ni-
tions are later composed from service properties, among others.

Custom Constraints Evaluation Custom evaluation functions to extend the available ones
can be de�ned in the service property model. Figure 6.12 shows the hand-made equivalent of
the equals evaluation. From the property de�nition, an abstract java class is generated for im-
plementation by the user. ¿e evaluation function returns an empty string in case the constraint
evaluation succeeded; a string containing an additional message otherwise.

Evaluation imple-
mented in Java

Service Property Model

Role:
  Service Designer
Task:
  Implementing a
  constraint evaluation.

Role:
  Service Designer
Task:
  Modeling a 
  service property.

Figure 6.12:Modeling and implementing custom evaluation functions. Custom evaluation func-
tions to extend the available ones can be de�ned in the service property model. It gen-
erates to a java class that is implemented by the user.

165



Chapter 6 T H E S M A R T M D S D T O O L C H A I N

Service De�nition

¿e service de�nition DSL (Fig. 6.13) during system design is a textual language that composes
building blocks to describe a service: the communication data structure (communication ob-
ject), the communication semantics (communication pattern), and the service properties to
express the service’s semantics on the application-level. Service de�nitions are created once for
reuse in components to model the component hull and wish lists to express the needs of the
application.

Figure 6.13 shows the service de�nitionWheeledRobotMotion for later use in the SmartCdl-
Server and alternatives. It is used to command a wheeled robot to move around. It uses the send
pattern in combination with the communication object model CommNavigationVelocity.

¿e service de�nition so far is generic for motion commands. However, not all components
that provide or require this service are going to support all motion types. ¿e property Robot-
MotionTypewill later be used to explicate with which robot motion type this service can be used
with (see section 6.3.1 and paragraph on “Service Properties”, page 164).

Role:
  Service Designer
Task:
  Modeling a 
  service definition.

Figure 6.13: An example of using the service de�nition DSL to put together all building blocks to
describe a service.

Parameter

¿e parameter DSL is a textual language to model variation points for reuse in components.
Figure 6.14 shows the parameter DSL during system design while modeling the parameter set
WheeledRobotMotionParam. It groups typical parameters that are used for wheeled robots, for
example the parameters for translational and rotational velocityTRANSVEL andROTVEL. Each
of these parameters consists of two name–type attributes. ¿ey hold the minimum and maxi-
mum velocities supported by the robot.
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Role:
  Service Designer
Task:
  Modeling a 
  parameter set.

Figure 6.14: An example of using the parameter DSL, a textual language to model variation points
for reuse in components.

6.3.3 Component Development Step

Component development �rst models the component by reusing the structural building blocks
from system design: communication objects, service properties, service de�nitions, and pa-
rameters. Once the component model exists, code skeletons are generated for adding user-
implementations. Finally, the component is documented using the documentation DSL.

Component Model

Figure 6.15 shows a typical view of the SmartMDSD Toolchain while modeling a component
graphically based on UML pro�les in Papyrus. Stereotyped UML Ports represent service end-
points in components. A stereotyped UML comment within the component holds the param-
eter model that is created using the component parameter DSL. ¿e component service DSL
re�nes the component’s service endpoints.

¿e component model in Fig. 6.15 shows the SmartCdlServer component for the navigation
use-case. It shows the extensions of the SmartMARS meta-model [SSS09a; Ser] that are rele-
vant for component modeling using service de�nitions. ¿e modeled CdlTask task represents a
SmartSo SmartTask [Sch04a]. It is used to implement the business logic of the component.
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  Component Developer
Task:
  Modeling the
  component.

Figure 6.15: A typical view of the SmartMDSD Toolchain while modeling a component graphically
based on UML pro�les using Papyrus.

Component Service ¿e component service DSL re�nes service endpoints that were mo-
deled as ports in the component model (Fig. 6.16). ¿e DSL instantiates service de�nitions and
re�nes their service properties (see previous section). ¿e re�nement ofCDLmotionCommand-
Src instantiates the service de�nitionWheeledRobotMotion and assigns values to properties: the
component implementation at hand can only work with di�erential drives. An example for a
counterpart of this component service endpoint is shown in Fig. 6.17. A service endpoint of the
SmartPioneerBaseServer component [Sma] instantiates the same service de�nition as service
sink and assigns one of the existing evaluation functions. In this case, it must support a di�er-
ential drive since the Pioneer P3DX, for which the SmartPioneerBaseServer was developed, is
powered by a di�erential drive.
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Component Model

Service Definition Model

Role:
  Component Developer
Task:
  Modeling a component
  and component service.

Role:
  Service Designer
Task:
  Modeling the
  service definition.

Figure 6.16: An example of using the component service DSL to re�ne services of the SmartCdl-
Server component model (large screenshot in the background). Each modeled service
refers to graphical ports (representing a component service in the component model,
top of �gure) to instantiate a service de�nition model (bottom right).

Role:
  Component Developer
Task:
  Modeling a
  component service.

Figure 6.17: An example counterpart of the component service illustrated in Fig. 6.16: An example
from SmartPioneerBaseServer.

Component Parameter Figure 6.18 illustrates the component parameter DSL while model-
ing the variation points for the SmartCdlServer component. By instantiating the parameter set
WheeledRobotMotionParam, the component selects the variation points it can deal with during
later system composition; it also sets their default values. In addition to reusing the parame-
ter sets, the component may de�ne custom component-internal parameters that are speci�c to
the component or implementation of the SmartCdlServer. For example, the CDL implementa-
tion uses o�ine-generated look-up �les to lower calculation e�ort at run-time. ¿e component
model thus de�nes variation points for these �les and settings. Other components that also
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use a WheeledRobotMotion service source might not use these �les and might need di�erent
component-speci�c parameters.

Role:
  Component Developer
Task:
  Modeling a
  component parameter.

Figure 6.18: The component parameter DSL is used to model the component parameters of the
SmartCdlServer component. The component parameter instantiates parameter sets as
de�ned by the service designer (Fig. 6.14).

Component Implementation

From the component model, the toolchain generates skeletons to implement the business logic
using the Eclipse CDT plugin for C++ development. ¿e component developer adds own algo-
rithms or writes glue-code for libraries.

¿e developer can access component parameters, communication objects and service end-
points from within the user-code (Fig. 6.19). ¿e method in this example is executed in cycles
while the SmartCdlServer component is running. In the example, a threshold is applied to the
calculated translational and rotational speed of the robot as speci�ed by the component param-
eters. Values of these variation points will be assigned later during system con�guration. In
case they are not, the default values as speci�ed in the component model will be used. Param-
eters are accessed via the component infrastructure COMP->getGlobalState(); from there, the
nested accessors (getters) follow the hierarchy of the initial parameter de�nition (the parameter
set, section 6.3.2 or component-internal parameter, section 6.3.3). Figure 6.19 also illustrates
accessing attributes of communication objects and using the service endpoint as provided by
the SmartSo framework.
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Role:
  Component Developer
Task:
  Implementing a task,
  using services.

Figure 6.19: Implementing a component: accessing parameters, communication objects, and ser-
vice endpoints from the component implementation source code.

Component Documentation

¿e documentation DSL (Fig. 6.20) is used to annotate elements of the graphical component
model with prose text descriptions. ¿e purpose is to provide details from the outside view
on the component during the system composition step. ¿e full component documentation is
generated from the documentation model, the component model, and all models referenced
from there. ¿e documentation is thus always up-to-date.
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Figure 6.20: The documentation DSL is used to annotate prose text to elements of the graphical component model. The full component docu-
mentation is generated by using the documentation model but also by collecting information from all referenced models.
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6.3.4 System Composition Step

System composition is the main step to put together components to applications. ¿e system
compositor uses service de�nitions to create the wish list model. Components are then selected
and imported to the composition project based on the wish list. System con�guration includes
wiring and parameterizing the components. ¿e deployment is modeled in the last step.

Wish List and Component Selection

¿e textual wish list model references the service de�nitions and instantiates properties. Fig-
ure 6.21 shows a service wish 1 forWheeledRobotMotion. ¿e example uses a Pioneer P3DX
robot base with a di�erential drive. ¿erefore, the wish forWheeledRobotMotion uses service
properties to express the needs for a service o�eringmotion commands supporting a di�erential
drive.

Imported Component
Project

Component Selection Dialog

1

2

3

Role:
  System Compositor
Task:
  Selecting a component to
  fullfill a wishlist entry.

Figure 6.21: Component selection in the SmartMDSD Toolchain: Based on the service wish list 1 ,
the component selection dialog 2 , lists components for selection by the user. The
selected component is then retrieved and imported to the workspace 3 .

To this point, there is no wish realization for this service, so the user can use the component
selection dialog ( 2 , Fig. 6.21) to �nd a suitable component. For each component, the com-
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ponent repository holds the component service model of the component and an archive �le
(Fig. 6.22). ¿e full Eclipse component project (including the component model and all source
�les) is stored in a .zip archive. As a separate �le, the component service model holds the com-
ponent services as de�ned in the component model (see Fig. 6.16, in the background). ¿ey are
stored in a .service �le to allow accessing them via the toolchain during component selection
without downloading the full component archive. ¿e .service �le acts as kind of a digital data
sheet and is used as input for matchmaking. ¿e toolchain applies the matchmaking algorithm
and lists the results. ¿e toolchain also lists components with failed matches to report the rea-
sons to the system compositor. Eventually, he may adapt the application’s needs (section 5.4.2).
¿e user then chooses one of the components to retrieve it. ¿e toolchain then downloads the
archive from the component market and automatically imports it to the toolchain workspace
(Figs. 6.21 and 6.22). ¿e component is then available for system con�guration and parameter-
ization ( 3 , Fig. 6.21).

Matchmaking

(manual)
Selection

Components in the Market     (Exchange Platform)

Comp. Service Model:
the component service

model is stored in a 
.service file

Component Archive:
the exported component

project is stored in an 
archive containing the 
full model and sources

M
Model

exporting the
component

Composition
Project

archive down-
loaded and 
imported to 
workspace

Wish List
M

Model

input for
matchmaking

.zip

1

2

3

Component
Project

System
Compositor

Component
Developer

Figure 6.22: A technical view on component retrieval. Components are exported and kept in a .ser-
vice �le representing the software artifacts that are stored in a .zip archive. The num-
bers indicate the sequence. (See also: Fig. 5.20)
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System Con�guration and Parametrization

¿e user instantiates components and creates the initial wiring between their service endpoints
in the system con�guration model. ¿e system con�guration model and the according view
presents the outside view of components. It shows only the component hull and the service
endpoints. ¿e user can only instantiate components and work with these instances, but cannot
modify the component or componentmodel itself. System con�guration ismodeled graphically
using Papyrus and UML pro�les (Fig. 6.23). For this purpose, a Papyrus “composite structure
diagram” is used. Instances are modeled as UML Properties and are contained in a stereotyped
class that represents the application (ComposNavigationExample, Fig. 6.23). ¿e UML Property
type refers to the component model, the property name is used to assign a name to the instance.
Clicking an element of the component hull brings up its documentation (Fig. 6.23, lower le ).

¿e textual composition parameter DSL is used to parameterize the component and to as-
sign values to variation points as speci�ed in the componentmodel. ¿e composition parameter
model is stored in stereotyped UML comments. ¿ey are accessible within an editor by clicking
on the comment element (Fig. 6.23). Figure 6.23 (bottom) shows an excerpt of the re�nement
of composition parameters. ¿e �rst parameter assigns values to attributes of the parameter set
ROTVEL. ¿e second parameter assigns values to attributes of the component-internal param-
eter cdl.

For each instance, a unique directory is created (“<instance-name>_data”) to store addi-
tional �les that the component might need for execution, for example static maps or object
databases. Files in the data directories will be deployed with the component instance. In the
given example, the data directory holds the o�ine CDL look-up-table (Fig. 6.23, top le ). ¿e
code-generator also creates skeletons to hook commands into the startup procedure of the ap-
plication that launches all instances. Additional commands can be executed before/a er start-
ing/stopping each component instance (Fig. 6.24).

¿e user models service wish realizations using the wish list DSL. A wish realization links
a service wish with the concrete service endpoint of a component instance. ¿e example in
Fig. 6.25 shows the wish realization of robotMotion that is realized by the component instance of
SmartCdlServer and its service endpoint CDLmotionCommandSrc. ¿e service wish’s property
was temporarily modi�ed fromDIFFERENTIAL to ACKERMANN, to provoke an error during
veri�cation of the composition: the error is then triggered since the SmartCdlServer no longer
ful�lls the wish. ¿e toolchain supports with other checks during system composition, e.g.
incompatible services, di�erent service de�nitions, properties do not match, src–src or sink–
sink connected services, dangling (unconnected) service endpoints, etc.
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Component
documentation
(provided by
component
developer

Component Instance
Parameter

System Configuration Model

Additional Files

Role:
  System Compositor
Task:
  Configuring the system,
  setting comp. parameters.

Figure 6.23: The system con�guration model while editing parameters of a component instance
and viewing the component documentation.
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Role:
  System Compositor
Task:
  Optionally editing start-up
  infrastructure.

Figure 6.24: Editing hooks of the start-up infrastructure (optional). A generated shell script pro-
vides a skeleton to hook into the application start-up infrastructure for customization,
e.g. to execute commands before/after starting/stopping instances.

Role:
  System Compositor
Task:
  Editing the service
  wish list.

Figure 6.25: The realization of a service wish using the wish list DSL. The service’s wish was tem-
porarily modi�ed to provoke an error during veri�cation.
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Deployment

¿e deployment model maps component instances to execution units to prepare transfer and
execution of the application. It is modeled graphically using a Papyrus UML “deployment di-
agram”. Devices map to stereotyped UML Devices with additional attributes to cover the ele-
ments of the deployment meta-model. Stereotyped UML Artifacts are used as helper-elements
to represent and refer to component instances to link them to devices using UML Deployment
connectors (Fig. 6.26). During deployment modeling, the user can only use instances but can-
not further modify them. In the given example, all instances that are created in the system
con�guration model map to a single device in the deployment model (Fig. 6.26).

Device attributes

Artifacts refer to
component instances

System Configuration Model

Role:
  System Compositor
Task:
  Creating the system
  deployment model.

Figure 6.26: The deployment is modeled using Papyrus and maps component instances to execu-
tion units to prepare transfer and execution of the application.

Transfer to the Robot and Starting the Application

Creating the deploymentmodel is the last step in the work�ow. Based on the deploymentmodel
and the system con�gurationmodel, the toolchain collects all artifacts and transfers them to the
target devices. ¿e application is then ready to start.
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6.4 Summary

¿is chapter discussed considerations and alternatives to implement the meta-structure for sys-
tem composition in tooling. It has described one possible mapping of the composition struc-
tures to tooling. It has presented the concrete implementation as a contribution to the Eclipse-
based SmartMDSDToolchain, an IntegratedDevelopment Environment (IDE) for robotics so -
ware. ¿e SmartMDSDToolchain supports ecosystem participants in applying the composition
work�ow. It can be used by domain experts on composition Tier 2 to create domain structures.
It can be used by participants of the ecosystem on Tier 3 to provide and use actual content in
the ecosystem—that is, so ware components that are developed and provided by component
developers and systems that are composed from these components by system compositors. ¿e
chapter has described the full user perspective of the compositionwork�owvia the SmartMDSD
Toolchain, starting from a service de�nition model (domain experts, Tier 2), moving on to the
development of components (Tier 3), and completing with the system composition and �nally
the deployment of the system to the robot (Tier 3).

¿e chapter described a use-case to present the look and feel from an ecosystem partici-
pant’s point of view. ¿e next chapter evaluates the approach to system composition and the
SmartMDSD Toolchain using real-world robotics systems that were built in several activities.
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7
Demos, Application, and Evaluation

¿is chapter presents concrete robot systems (“demonstrators”) and the initiatives that have
built them. It describes the bene�t of using the contributions of the thesis to the SmartMDSD
Toolchain for systematic engineering of so ware based on system composition. A user study
was conducted to access the bene�t and experience of the SmartMDSD Toolchain from a user’s
point of view. ¿e chapter closes with a discussion to re�ect the presented approach in relation
to the overall research goal and questions.

7.1 Application Fields

When considering all demonstrators and projects that have applied the approach in this thesis,
the �eld of application covers a broad spectrum as illustrated in Fig. 7.1. It ranges from custom
developments to establishing a project-internal ecosystem, from users with no robotics exper-
tise to highly skilled robotics experts, from systems in simulation to real-world state of the art
systems, and even from service robotics to the smartphone domain. Section 7.3 will elaborate
the demonstrators and associated projects in detail. Section 7.5 will evaluate them in the context
of a conducted user study.

In all the demonstrators and in all the activities described in this chapter, the SmartMDSD
Toolchain was used to develop building blocks and to compose them to applications.
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Ease of Composition

Flexibly composing building blocks
to new applications

Flexibly composing building blocks
to modify existing applications

Building a repository of building blocks 
("market place")

Application Domains

Service Robotics

Intralogistics and i4.0

Smartphone domain

EducationPlatform &
Hardware Variety

Pioneer P3dx, Segway RMP, Robotino3

Standard-PC, iPad, RaspberryPi

Standard Industry-Devices and 
custom built hardware

User Diversity

Academia and industry

System integrators and component suppliers

Technology providers and end-users

System Complexity

State-of-the-art systems

Single systems and robot fleet

Real-world and simulation

Ecosystem Collaboration

Projects with ecosystem
participants distributed in 

time and location

Relevant expertise from technology 
provider to skilled robotics expert

Academia and industry

Field of application
covers a broad spectrum

Industry 4.0

Mobile robots and handheld Devices

Figure 7.1: The �elds of application of the SmartMDSD Toolchain and the approach cover a broad
spectrum.

7.2 Maturity of the SmartMDSD Toolchain

¿e SmartMDSDToolchain has beenmade available in 20 public releases under an open source
license comprising three major generations in the last six years. About 64 so ware components
developed with the SmartMDSD Toolchain are available for immediate composition. About 36
components are publicly available [Ser]. ¿e toolchain was used in several projects and collab-
orations and thus “has been demonstrated in operational environments”, which corresponds to
technology readiness level (TRL) 6 according to [euR16] (acknowledged in [Fio15]).¿e overall
implementation of the publicly available SmartMDSD Toolchain is a joint e�ort of the Service
Robotics Research Center at the Ulm University of Applied Sciences (Hochschule Ulm). ¿e
underlying structures and toolchain architecture of the “SmartMDSD Toolchain v2” were con-
tributed by this thesis. ¿ey are described in the next sections.

¿e service de�nitions, service properties and wish lists are so far available in non-public
demo releases only, they are planned to be publicly released with the next generation of the
SmartMDSDToolchain “v3”. ¿ese partswere not yet in productive use by the presented projects,
since these were in critical or �nal phases when demo releases were available. ¿e demo releases
were not taken up by the projects for productive use to not interfere with the existing models
and implementations for stability and timely reasons. All other parts that are described in this
thesis are included in the public releases and were used as described in this chapter.

Even though service de�nitions, service properties and wish lists were not part of the pro-
ductive releases used in the projects, their concept still was applied. Especiallywithin the FIONA
research project (section 7.3.2). FIONA applied the exact work�ow with service de�nitions as
presented in this thesis. However, the service de�nitions were only partially modeled in the
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SmartMDSD Toolchain. ¿e communication objects were modeled in the toolchain, but the
overall service de�nitions were “modeled” in documents. ¿e roles followed the work�ow as
if the service de�nitions were modeled in the toolchain: ¿e roles directly referenced commu-
nication objects and communication patterns from their components, thus adhering to service
properties by policy as documented.

Applying the concept of service de�nitions in the project even without the underlying tool
support brought immediate bene�tswhendiscussing service de�nitions andwriting themdown.
Service de�nitions structured the project collaboration and enabled the variety of demonstra-
tors and provided a real testbed for system composition, separation of roles and establishing a
project-internal ecosystem. ¿is, however, also underlined the need to have them available in
models and tooling for consistency, automation, etc. ¿e “modeling” of service de�nitions in
documents is now no longer necessary as it is covered by tooling as presented in chapter 6.

7.3 Demonstrators and Activities

¿is section describes demonstrations of robotic systems and the activities that developed them
by applying the SmartMDSD Toolchain and the approach in this thesis. Together, the demon-
strators and activities cover a very broad range of applications as illustrated in Fig. 7.1.

7.3.1 The (Collaborative) Robot Butlers

¿e Robot Butler Scenario and the Collaborative Butler Scenario with the robots Kate and Larry
(Fig. 7.2) are an outcome of the research project ZAFH Servicerobotik (Collaborative Center for
Applied Research on Service Robotics) [ZAFH]. ¿e ZAFH Servicerobotik developedmethodol-
ogies for building service robots that act in everyday life environments. Its major approach was
to extend and to merge separated technologies while aiming for suitability for use in everyday
life environments.

¿e ZAFH Servicerobotik has shown how the structures that this thesis formalizes as meta-
models enhance the development of a service robot. It has shown the positive e�ect of separa-
tion of roles and freedom from choice to reducing system complexity in a—at that time—state
of the art service robot application. Especially the components for (active) object recognition
show the �exible composition of component alternatives based on the special needs of the ap-
plication for object recognition. ¿e project has shown how to kickstart a collection of so ware
components and the SmartSo ecosystem. Many components are still in use today to compose
new applications, e.g. the intralogistics scenario (section 7.3.3).

¿e ZAFH Servicerobotik consisted of three partners from academia. All were working at
di�erent locations and were acting as component suppliers. One partner additionally took the
role of a system builder to build Kate and Larry. ¿e project is an example for straight-forward
so ware development with the aim to build the robot Kate.

¿e robots and components were developed with the �rst version of the SmartMDSD Tool-
chain. ¿is �rst version by Steck, Stampfer, and Schlegel [SSS09a] established the foundation
for the toolchain series and evaluated the structures that can be found in today’s productive
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Service Robot "Kate"

- Pioneer P3dx
  robot base
- Sick LMS 200
  laser ranger
- Katana manipulator
- Eye-in-hand camera 
  on manipulator
- Pan-tilt unit
- Kinect RGBD camera
- Microphone+speakers
- x86, dual core P8800,
  4GB RAM
- iPad2

Service Robot "Larry"

- Segway RMP50
  robot base
- Sick LMS100
  laser ranger
- Universal Robots UR5 
  manipulator
- Schuk gripper
- Eye-in-hand camera 
  on manipulator
- Pan-Tilt unit
- Kinect RGBD camera
- Microphone+Speakers
- x86, Dual Core P8800, 
  4GB RAM

Figure 7.2: The service robots Kate (left) and Larry (right) operating in an everyday life environment.

release (“v2”, see section 7.2). Parts of the structures presented in this thesis were only applied
by policy as documented and “modeled on paper”. During building the robots Kate and Larry,
many requirements and best-practices for building a state of the art complex robot system were
identi�ed. ¿ese are now formalized in the composition structures and supported with tooling
by this thesis.

¿e Robot Butler Scenario is a 30-minute scenario in which the service robot “Kate” works
as Butler in a household-like environment (Fig. 7.3a, video at [Heg+12]). Users can order drinks
through spoken language that the robot then fetches. Kate prepares co�ee by fetching cups and
operating an ordinary co�eemachine (Fig. 7.3b). ¿e service robotKate runs a total of 21 compo-
nents on two computers (Table 7.1). A second robot “Larry” was later introduced to share work
with Kate in the Collaborative Butler Scenario (Fig. 7.3a, video at [Lut+13]). Larry is equipped
with amore capable manipulator to performmore complexmanipulation tasks such as opening
a cupboard. An overview on the components that run onboard of Kate and Larry is given in
Fig. 7.3b.

Larry was put into operation by composing the components from the ecosystem that was
kick-started with the development of Kate. Larry is one example of modifying an existing sys-
tem to match new needs with low e�ort: ¿e component architecture of Kate was transferred to
Larry by exchanging three components. ¿ese three components were selected from “compo-
nent alternatives” tomatch Larry’s hardware (robot base, laser ranger, andmanipulator). Larry’s
full system con�guration diagram is shown in Fig. 7.4 (see Schlegel, Lotz, Lutz, et al. [Sch+15]).

¿e butler and collaborative robot butler scenarios feature algorithms that are suitable for
use in everyday life environments (“Alltagstauglichkeit”). ¿e robots featured the integration
of a whole range of capabilities that were state of the art: mobile manipulation (fetching cups,
pressing buttons of the co�eemachine), object recognition (recognizing cups, juices, co�eema-
chine), person recognition (to deliver orders correctly), speech recognition, task sequencing,
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localization, path planning, obstacle avoidance, etc. A system that integrates such a variety of
capabilities can only be developed andmaintained with an appropriate development methodol-
ogy and supporting tool that supports in managing system complexity. ¿e SmartMDSD Tool-
chain and its structures proved to do so, even at this early stage in 2012/2013.

(a) The service robots Larry (left) and Kate (right). Larry grasps an object after opening the door of
the cupboard. Kate operates the co�ee machine.

(b) Kate operating the co�ee machine. (c) Active object recognition.

Figure 7.3: Excerpts of the (collaborative) butler scenario in a household-environment. Video at
[Lut+13]
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Component Purpose Description Kate Larry

SmartTCL Task Coordination Task sequencer using SmartTCL x x
SmartSymbolicPlanner Task Coordination Planning object handling and stacking using metric-FF x x
SmartTTSLoquendeo HMI Speech synthesis using Loquendo library x x
SmartSTTLoquendo HMI Speech recognition using Loquendo library x x
SmartFaceRecognition HMI Face recognition based on Verilook library x x
SmartWebInterface HMI Interface to tablet PC for the user x x
SmartGMapping Localization SLAM x x
SmartAmcl Localization Localization in a map x x
SmartSchunkGripperServer Mobile Manipulation Operating the gripper x
SmartOpenRave Mobile Manipulation Manipulation planning using OpenRave x x
SmartURServer Mobile Manipulation Universal Robots Manipulator x
SmartKatanaServer Mobile Manipulation Katana Manipulator x
SmartCdlServer Navigation Collision Avoidance x x
SmartLaserLMS1xxServer Navigation Laser Ranger x x
SmartLaserLMS200Server Navigation Laser Ranger x
SmartRMPBaseServer Navigation Base platform of the robot x
SmartPioneerServer Navigation Base platform of the robot x
SmartPlannerBreadthFirstSearch Navigation Path planning for navigation x x
SmartMapperGridMap Navigation Obstacle grid map for navigation x x
SmartActiveObjectRecognition Object Recognition Very reliable object recognition with object inspection x x
SmartIDSuEyeImageServer Object Recognition Camera on manipulator to inspect objects x x
SmartLaserSimpleObjectDetector Object Recognition Simple detection of objects on the �oor x x
SmartObjectRecognition Object Recognition Object recognition utilizing a bunch of algorithms and

OpenCV, MRPT, ABBY OCR, Tesseract OCR, ZBAR,
PCL, MOPED

x x

SmartKinectServer Object Recognition Color-Image and depth camera x x
SmartPTUServer Object Recognition Pan-Tilt-Unit for camera x x

Table 7.1: The 25 software components that are composed in Kate (21) and Larry (23). A “x” for each component instance.
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Figure 7.4: The system con�guration view of robot “Larry” from the collaborative butler scenario
(�gure from [Sch+13]). While composing the robot Larry, most of the component archi-
tecture stays the same: Only the components in blue boxes are di�erent from Kate. All
others have been composed as-is. This is a screenshot of the SmartMDSD Toolchain. The
red boxes, the blue boxes, and the logos have been added for clari�cation.
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¿e scenarios were iteratively developed, modi�ed, and enhanced by adding and remov-
ing components. One example is the object recognition that demonstrates the composability of
components and also the selection of component alternatives based on the needs of the appli-
cation (Fig. 7.5). An object recognition service may be provided by di�erent components that
each implement special algorithms for speci�c objects (e.g. color-based, feature-based, shape-
based) as shown in Fig. 7.5 (“traditional way”). ¿e system builder would choose the component
based on the application’s needs. A second variant is one powerful component that uses several
algorithms to probabilistically fuse their results for more reliability (Fig. 7.5, “multimodal object
recognition”). ¿is has been demonstrated asmultimodal object recognition in [Lut+12; LSS13].
¿e reliability of object recognition can even be improved in a third variant with an active ap-
proach as demonstrated in [SLS12a; SLS12b] (video at [LS12]; Fig. 7.5, bottom). Active object
recognition is an example for the �exible composition of components for the dedicated pur-
pose of object recognition. It is an example for separation of roles and dedicated expertise: ¿e
object recognition expert can focus on his expertise while the manipulation components were
composed from existing ones.

In active object recognition, an object is not recognized based on an image from a single
view alone. ¿e object is actively inspected from di�erent viewpoints. ¿e approach uses an
“eye-in-hand camera” that ismounted on themanipulator (Fig. 7.3c, bottom). Based on an initial
recognition and initial guess about the object, the robot calculates the next-best-view, places the
camera and recognizes the object again. ¿e result of the new observation is probabilistically
fused and the process is repeated until the necessary reliability is reached. ¿e approach was
demonstrated to reliably recognize even almost identical objects and is suitable for tasks that
require high reliability, such as recognizing medicine. Giving this set of components for object
recognition, the service de�nitions make them composable. ¿e service properties enable the
selection of the one that matches the needs of the application as expressed by the system builder.
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Traditional way:
Individual components.

Multimodal Object Recognition:
Probabilistic fusion of algorithm's
results.

Active Object Recognition:
Compose manipulation
stack for object inspection
with eye-in-hand camera.

Obj.Rec.
Comp.1

Obj. Rec.
Algorithm

Obj.Rec.
Comp.1

Obj. Rec.
Algorithm

Obj.Rec.
Comp.1

Obj. Rec.
Algorithm

Multi Modal
Object Recogn.

Probabilistic
Fusion

Obj. Rec.
Algorithm

Obj. Rec.
Algorithm

Obj. Rec.
Algorithm

Multi Modal
Object Recogn.

Manipulation Stack

Comp1

Comp3

Comp2

Best Next View
Planning

Camera
Manipulation

Object
Recognition

Probabilistic
Fusion

O

O

O

O A service endpoint
following the service 
definition for object 
recognition

Figure 7.5: Flexible combination of object recognition by composition. A variant of multimodal ob-
ject recognition might only include the fusion in a dedicated component and get the
results from the individual components (components as in “traditional way”). Multi-
modal object recognition was demonstrated in [Lut+12; LSS13], active object recognition
was demonstrated in [SLS12a; SLS12b].
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7.3.2 Personal Mobile Navigation

¿e goal of the research project FIONA (Framework for Indoor and Outdoor Navigation Assis-
tance) [Fiona; Bür+16] was to establish methods and domain-speci�c structures that support
the development of services for indoor and outdoor localization and navigation for sighted and
visually impaired people. FIONA aimed at supporting the development of new applications
based on these services. FIONA is an example of a consortium that developed domain-speci�c
structures at composition Tier 2. ¿e domain of FIONA is not the service robotics domain and
therefore shows the suitability and bene�t of the approach even beyond service robotics.

¿e FIONA project can be considered a perfect test-bed for collaboration in an ecosystem.
¿e project consortium consisted of ten partners: Eight partners from industry versus two part-
ners from academia. FIONA was an activity of high interest by industry looking for new ap-
proaches to system development. FIONA is a perfect example for a project with participants
distributed in time and location. ¿e partners were distributed across �ve countries in Europe
and even new partners joined the project during its run-time. ¿e partners covered relevant
expertise from technology providers to skilled experts in the domains of smartphones and the
domain of visually impaired people. ¿e project also included end-users for evaluation.

¿e FIONA project impressively shows the �exibility and ease of system composition. It
established a project-internal ecosystem of 29 components that were used during the project
run-time to �exibly compose demonstrators or �exibly modify existing ones through compo-
sition (see [Bür+16] and Table 7.2). ¿e project composed components to 18 demonstrators
in total. ¿e project was fully based on the composition work�ow and was supported by the
SmartMDSD Toolchain as presented in this thesis. Section 7.5.3 will get back to composition in
FIONAwhen evaluating the approach and provide more details on the number of components,
demonstrator variants, and e�ort in composing them.

¿e FIONA demonstrators also illustrate a broad variety of hardware and platforms used.
It includes standard x86 laptops but components were also deployed to iPad and RaspberryPi
systems. FIONA used o�-the-shelf commercial products (e.g. cameras, iBeacons) but also cus-
tom developments and industry prototypes (e.g. inertial measurement unit (IMU) prototypes).
¿e demonstrators consisted of smartphones, handheld devices, and body-mounted devices.

Several mobile navigation systems were built to demonstrate the �exible composition of
so ware components to a variety of applications. All demonstrators guide walking persons to
a desired destination. ¿e use-case is like a navigation system as known from cars or Google
Maps, but focuses on pedestrian navigation based on open structures on Tier 2 (no vendor lock-
in) for sighted and visually impaired people.

¿emost advanceddemonstrator in this collection is the “PersonalMobileNavigationDemon-
strator” (Fig. 7.6, video at [SF16]). It runs on a handheld Raspberry Pi with a touch screen. ¿e
demonstrator shows the seamless transition between indoor and outdoor navigation. ¿is is
an example for �exible composition of two di�erent components (indoor and outdoor localiza-
tion) for the same purpose (localization) that adds a bene�t over using only one of them. Indoor
localization uses iBeacons. Outdoor navigation is based on GPS. ¿e demonstrator was set up
to work in the closer area of Ulm University of Applied Sciences based on map data from Open
Street Map (OSM). ¿e OSM-components and the handover between indoor and outdoor was
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contributed by a master’s thesis [Fra15]. ¿is is an example of composable components from a
technology provider. ¿e master’s thesis acted as a technology provider / component supplier.
It is also an example of how separation of roles supports the collaboration of di�erent levels
of expertise. Components were contributed by a student with no initial expertise in localiza-
tion, but she was able to compose a full demonstrator using also other existing components.
Figure 7.7 shows the system con�guration view during composition of this demonstrator. ¿e
demonstrator was tested in navigating from the train station to the Ulm University of Applied
Sciences. ¿e path was approximately 600m in length. A video can be found at [SF16].

¿ree earlier variants of the demonstrator have been developed (in reverse order of develop-
ment). ¿ey all demonstrate the composition of di�erent components to come up with a variety
of demonstrators at low e�ort (more variants of the personal mobile navigation demonstrator
are summarized in Table 7.2).

• Seamless Indoor and Outdoor Navigation (using GPS for outdoor-localization) [FS15]

• Indoor Mobile Navigation (iBeacons for indoor localization) [Sta+14a]

• Simulator-based Mobile Navigation (using the robotics simulator “MORSE”) [Sta+14b]

+

Figure 7.6: The Personal Mobile Navigation Demonstrator: the handheld device (left) and its graph-
ical user interface (right). Video at [SF16].
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Figure 7.7: Screenshot of the SmartMDSD Toolchain showing the system con�guration view of the Personal Mobile Navigation Demonstrator.
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¿e baseline and so ware components of these demonstrators were picked up and com-
posed to a total of 18 demonstrators by the FIONA project in the domain of location-based ser-
vices and mobile navigation for sighted and visually impaired people [Bür+16] (see section 7.5.3
and Table 7.2). One of them is the “Visual Localization Demonstrator” using feature-based vi-
sual localization for personal navigation in an o�ce-space at Comland d.o.o in Slovenia (Fig. 7.8,
video at [SFC15]). It is an example of separation of roles as the role contributing the localization
component is a commercial technology provider for visual localization for visually impaired
people. ¿e demonstrator can be seen as an example for modifying an existing system: It was
�rst set up using a simulator, then composing the application such that it works in a real o�ce
environment. It utilizes a di�erent set of hardware than the previously described demonstrator.
It uses a laptop in a backpack to run high-demand visual localization algorithms and an iPad to
provide the �nal look and feel using a handheld device (Fig. 7.8). Fig. 7.9 is a screenshot from the
SmartMDSD Toolchain showing the composition of components in the system con�guration
view. Figure 7.10 shows the mapping of component instances to the target device in the deploy-
ment view. Section 7.5.3 explains and evaluates the e�orts in composing this demonstrator.

Laptop in backpack running 

SmartSoft components 

iPad / Smartphone 

WEB-GUI via WLAN 

Camera connected to 

laptop via USB, 

pointing in 

walking direction 

Figure 7.8: The “Visual Localization Demonstrator” for personal navigation in an o�ce space. Video
at [SFC15].
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Figure 7.9: A screenshot from the SmartMDSD Toolchain showing the system con�guration view of
the “Visual Localization Demonstrator”.

Figure 7.10: A screenshot from the SmartMDSD Toolchain showing the system deployment view of
the “Visual Localization Demonstrator”.
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7.3.3 Industry 4.0 Robot Commissioning Fleet in Intra-Logistics

¿e SmartMDSD Toolchain was used to develop a testbed for industry 4.0 and intra-logistics
by the BMBF SME innovation project LogiRob (“Multi-Robot-Transportsystem immit Menschen
geteilten Arbeitsraum”) [Bun]. ¿e Industry 4.0 Robot Commissioning Fleet in Intra-Logistics
scenario (Fig. 7.11, video at [Lut+17]) demonstrates the e�ectiveness of system composition by
using existing components. It was composed out of existing building blocks, con�gured, and
tested by only one person within only two working days. ¿e scenario demonstrates the use of
the SmartMDSDToolchain in a state of the art and industry-relevant use-case. ¿e scenario was
built by composing building blocks supplied by academia and industry, but also by composing
existing components from the SmartSo ecosystem.

Figure 7.11: The “Industry 4.0 Robot Commissioning Fleet in Intra-Logistics” scenario. Three robots
feature: navigation in a robot �eet, mobile manipulation for order picking, and han-
dling of boxes. Video at [Lut+17].

In the scenario, a �eet of FESTO Robotino3 [REC16] robots and the UR3 equipped service
robot “Larry” collaboratively execute commissioning of placed orders (Fig. 7.11). ¿e scenario
shows localization, manipulation for order picking, machine-to-machine communication, and
handling of boxes (human-involved pickup and automatic delivery). A highlight in this sce-
nario is the corridor-based navigation that organizes the robot’s movements in a space shared
with humans and avoids blocking situations between robots even in very narrow space1 [LVS16].
¿e robots communicate directly (machine-to-machine communication). Only dispatching of
orders and maintaining the reservation of navigation corridors is managed by a central compo-
nent. It itself runs onboard of one of the Robotino robots with which the �eet communicates.
¿e scenario was tested in a real logistics warehouse.

1¿e complete scenario is run in a 5x5m environment including additional shelves and a kitchen counter.
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7.3.4 Transportation Tasks in a Hospital

¿e research project iserveU (Intelligente modulare Serviceroboter-Funktionalitäten im mensch-
lichen Umfeld am Beispiel von Krankenhäusern) [Gin+16] developed an intelligent service robot
for transportation tasks in a hospital (Fig. 7.12). ¿e motivation in this project is to assist hos-
pital sta� with transportation tasks. ¿e system was tested in a public part of a hospital during
normal operation hours.

iserveUdemonstrates that the approach also can be applied in a local perspective for straight-
forward development of a single robot or establishing a closed / intra-organizational ecosystem
(see section 4.3.2). ¿e composition work�ow that is proposed by this thesis also structures the
development in this kind of activities. Here, the separation of roles contributes to the robot
development. ¿e project used the SmartMDSD Toolchain for “straight-forward” system de-
velopment, i.e. “team collaboration” (see section 3.1.1). ¿e project started to de�ne the overall
system architecture by de�ning services. It was then implemented using the toolchain. ¿e part-
ner’s contributions in 14 so ware components (Fig. 7.13) were integrated to the demonstrator in
several iterations (Fig. 7.12).

Figure 7.12: The iserveU hospital transports robot (�gure from [Gin+16]).

¿e iserveU robot is based on a FESTO Robotino [REC16] platform. ¿e robot showcases
industry-grade radar-based localization technology and navigation in human environments.
iserveU is an example of a collaboration with three partners from industry, four partners from
academia, and also one end-user (the hospital). ¿e consortium used the SmartMDSD Tool-
chain tomodel and implement themodular service-oriented and component-based architecture
of the robot.
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Figure 7.13: The system con�guration model of the iserveU hospital transports robot (screenshot
from the SmartMDSD Toolchain; system compositor role). An example of a system with
components composed from di�erent suppliers (note the organization logos). Figure
from [Gin+16].

7.3.5 Application in Education

¿e SmartMDSD Toolchain and a set of components were used in the lecture “autonomous
mobile robots” at Ulm University of Applied Sciences (bachelor’s course). ¿e complexity of
a moving robot is already high for students with no robotics expertise at all. ¿e SmartMDSD
Toolchain allowed them to gain advantage as system builder (via system compositor role) from
composing existing building blocks. ¿e students re-used path planning, mapping, device com-
ponents (laser and robot platform), and obstacle avoidance. ¿ey developed small parts of the
system as component supplier, e.g. to detect and approach objects. ¿e SmartMDSD Toolchain
allowed them to focus on only one component to implement their algorithms while re-using
the other components. ¿e component was tested in a deployment for the simulator �rst, be-
fore the component then was deployed to the real robot. ¿is lecture is one example where the
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model-driven approach reduces complexity such that even students with no robotics expertise
at all can build and manage a robotics system with non-neglectable complexity. Separation of
roles and the need to reduce system complexity was applied in a very realistic manner: ¿ere
is no chance for the students to understand the details of the existing components—they just
must rely on and use the building blocks that other roles provided.

¿e toolchain was used in several generations of student projects [SmartBots] (master’s
course) in the RoboCup team of the Ulm University of Applied Sciences. ¿ey started in the
RoboCup@Home league with the service robots Kate, and later Larry (section 7.3.1). ¿e robots
had to interact with humans, perform robust navigation, recognize andmanipulate objects. ¿e
team recently moved to the RoboCup FESTO logistics league using FESTO Robotino3 [REC16]
robots. ¿e focus in this league is on �eet coordination and interaction with machines in a pro-
duction �ow. ¿ese scenarios already bring the full system complexity of service robots that
includes path planning, localization, obstacle avoidance, human–machine interaction, object
recognition, mobile manipulation, and error handling in the real world. ¿e students formed
teams for only one year during their studies with very limited capacity in time. Each year, the
competition rulebook changed and required modi�cations of the scenario that was taken over
from the previous team. Modi�cation mostly included adding new robot capabilities in new
so ware components, thus extending the existing service architecture and modifying the over-
all task sequencing (robotics behavior). ¿ere was no handover in terms of overlapping time
or overlapping persons between two consecutive teams. ¿e students, being no robotics ex-
perts, of course, had no chance to understand and dig into every component. ¿us, they had
a practical need for separation of roles and to re-use building blocks ’as-is’ and to rely on their
composability. ¿e composition of components—thanks to the toolchain and the underlying
structures—were the key in this long-term project to enable the students to modify the sys-
tem �exibly according to the needs of the updated rulebook and to migrate from Kate to Larry.
¿anks to the toolchain, they were able to focus on their contributions and to handover the
newly built components to the next team.

7.4 User Study

A user study was conducted to evaluate the perceived bene�ts and user’s experience in applying
the approach and the SmartMDSD Toolchain. It was published in [Sta+16]. ¿is section brie�y
introduces the study and summarizes its results before the next section then uses the results to
evaluate the approach in a project context.

¿e study was conducted with partners of active research collaborations. ¿ere were 18 re-
sponses to the survey. ¿ese responses are of high quality since they cover a wide range of roles
with representative quali�cations and level of expertise. Responses came from industry (45%)
and academia (55%) including technology providers, system integrators and experts fromdi�er-
ent domains. ¿ey were all professionals with backgrounds in embedded systems, automotive,
robotics, arti�cial intelligence, computer vision, localization, and general sensors and control.
¿e participants and number of responses thus provides a representative and high quality con-
tribution to the survey.
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¿e anonymous questionnaire included 44 questions and it took 20–30minutes to complete
it. Most of the answers were formulated using �ve-level Likert items [Lik32] from “strongly
agree” over “neutral” to “strongly disagree”.

Within their company or institution, the participants are using a very heterogeneous set of
development tools and integration methods. From the free-text answers, it can be concluded
that an integrated IDE, such as the SmartMDSDToolchain, is not a standardwithin these groups
and that they apply a class-based integration and reuse philosophy.

Even though the SmartMDSD Toolchain is not a �nal product but a research development,
82% of the participants say that they can work productively using it. Almost all participants
(94%) saw a fundamental contribution to system composition out of so ware building blocks
to build up new applications.

Even though the service de�nitionswere not included in the productive release of the Smart-
MDSD Toolchain at the time of conducting the study, they were part of the overall process that
the users applied, most explicit in FIONA (see section 7.2). ¿e results of the study in this con-
text are thus considered valid for evaluation since the users were able to perceive their bene�ts
even without an implementation.

So ware metrics are an approach for determining the quality of a product or process. Using
so ware metrics to compare the bene�t of development tools or processes can be cumbersome
with high e�ort as shown by Basili [BBM96]. It requires multiple applications to develop, multi-
ple teams with comparable skills, the same de�nitions of goals, and evaluation with and without
the approach. Furthermore, it requires meaningful metrics—which itself is subject to debates
and active research since the introduction ofmetrics. Conducting a user study based on a survey
is, thus, considered more reasonable to evaluate the approach. In contrast to so ware metrics,
this is a subjective evaluation by the participants that is also in�uenced by the fact that they know
the purpose of �lling out the survey (cf. Hawthorne e�ect [ER03, p. 232]). But it is an evaluation
with users of the target audience under real conditions in practice. ¿e participants used the
toolchain and the approach over an adequate period of time (1 year). When using a shorter pe-
riod of time, the users will not get beyond the period of training and familiarization and, thus,
will not see the bene�t in reducing the problem complexity—they might instead perceive the
solution complexity only.

7.5 Evaluation in Project-Context

¿is section highlights the experience and perceived bene�ts of using the approach and the
SmartMDSD Toolchain in context of the presented demonstrators and projects. ¿e results of
the user study support the arguments. ¿e numbers given relate to the overall study, unless
mentioned otherwise (in few cases the numbers only relate to a speci�c project). ¿e evaluation
focuses on the FIONA project and is divided in three categories:

Project Collaboration describes the work and interaction within the project: how the ap-
proach helped to organize and structure the collaboration towards functional demon-
strators.
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Software Development describes the user-view: how the approach supported the individual
project, partner or user during development.

System Composition describes the combination of both on a higher level: how the approach
supported to put the pieces together and compose demonstrators.

7.5.1 Bene�ts for Project Collaboration

From a non-ecosystem perspective, the work�ow based on service de�nitions structured the
collaboration between project partners. At a very early stage in the project, the partners had to
think about the technical details of provided or needed functionality. Explicitly writing down
service de�nitions triggered the need to think and agree on data structures, communication
semantics and assumptions, i.e. service properties. ¿is supported in identifying white spots
(e.g. a component service is needed by someone, but not provided by anyone) and sort out
mismatching assumptions at an early project stage. ¿e bene�t of service de�nitions is not
only visible in the result but also in the process of �nding them, because questions are asked
and options are evaluated. ¿e very same bene�t is also visible in architectural design [Sta15;
BCK12]. In iserveU and FIONA, for example, the project phase of de�ning services was a key
activity towards the successful project demonstrators. Especially in FIONA service de�nitions
fundamentally shaped the project collaboration and set the basis for �exible composition of
demonstrators. ¿e result of this activity are the domain structures on composition Tier 2 and
those were one of the project goals in FIONA.

¿e study showed that the bene�t of structuring the project collaboration is also perceived
by the participants: All (93%) agreed that the overall development work�ow, the service de�ni-
tions and the SmartMDSD Toolchain structured the project collaboration towards functional
demonstrators (31% said it was a great help, 62% said it helped). ¿e bene�t of explicit service
de�nitions in system design was seen by the participants (94%). Most participants (65%) agreed
that writing down service de�nitions improved the early identi�cation of gaps in the overall
functionality and enhanced the agreements between components.

FIONAwas a realistic testbed for an ecosystem approach. Due to di�erent funding schemes
and schedules even within one project, the project consortium was very dynamic. Planned
partners did not get funding and never started working. New partners joined very late during
project runtime. ¿anks to composition Tier 2 and service de�nitions, the late joining partners
followed the domain structures and contributed components on Tier 3. ¿is made up a project-
internal ecosystem. ¿eir contributions were “component alternatives” with various levels of
performances (e.g. for use in other environments, better quality). Having a set of component
alternatives to choose from immediately allowed to build up demonstrators with increasing per-
formance (localization accuracy) or for use in new environments (indoor iBeacons vs. indoor
feature-based localization vs. outdoorGPS).¿is demonstrates the need for assisted component
selection based on the explicated application needs.
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7.5.2 Bene�ts for Software Development

¿e SmartMDSD Toolchain makes the underlying concepts of the SmartSo World accessible
to its users, so they can immediately bene�t from the advantages. ¿is was bene�cial to the
mentioned activities. None of the users could spend time and e�ort to dive into the deep con-
cepts and code-structures of component development. But still, this would be required to use
them in order to come up with integrated results. All bene�ts of the approach are immediately
available through the SmartMDSD Toolchain. Domain-speci�c structures were immediately
accessible and component suppliers were able to start implementing business logic into gen-
erated skeletons. ¿e SmartMDSD Toolchain provided the necessary work�ow-support and
guided through the steps of the composition work�ow. Most participants (81% of the replies)
shared this perception (Fig. 7.14a).

Service de�nitions decouple and separate the roles between component developers as well
as between component developer and system compositor. ¿is was a key factor in FIONA,
where partners were distributed over countries, working on separate contributions with their
own schedule. Component developers followed service de�nitions to ensure integration of their
component in the demonstrators and to describe the needs of their component towards others.
¿ey were able to focus on their contribution and technical challenge without worrying about
how it integrates into the overall demonstrators. All responses of the user study con�rm that
service de�nitions supported the distributed development both in time and space (Fig. 7.14b).
Most participants (88%) experienced that they were able to focus on their role of expertise and
contribution only, that is: separation of roles (Fig. 7.14c).

Changes in service de�nitions at component development or composition time trigger the
need for mutual agreement between all involved stakeholders. ¿e participants reported, that
it was immediately clear to them who is a�ected in case mutual agreements were needed (sup-
ported by 94% of the replies).

Using the SmartMDSD Toolchain, the users can gain immediate advantage of code-genera-
tors. Users can immediately gain advantage from expert knowledge expressed in code-genera-
tors. Without using the SmartMDSD Toolchain, experience shows that components are set up
very di�erently (e.g. organization of �les, pattern instantiation, communication object access
methods, internal component structure). Using the toolchain, the structure and content of user-
�les becomes uniform through the described integration of user-code with skeletons. ¿ey are
thus easier to understand and navigate. ¿is signi�cantly improvesmaintenance of components
and shared component development within di�erent persons in one role.
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(a) The SmartMDSD Toolchain
provides the necessary
work�ow-support and
guides users through the
overall development process.

(b) Service De�nitions sup-
ported the separation of
development in time and
space.

(c) I was able to focus on my
�eld of expertise and contri-
bution to the project (separa-
tion of roles).

Figure 7.14: An excerpt of the user study as published in [Sta+16].

7.5.3 Bene�ts for System Composition

FIONA has come up with 29 components that were composed to a total of 18 applications (Ta-
ble 7.2). ¿is demonstrates the capability of the approach to system composition. Even partners
that developed only a small component could immediately build own demonstrators by com-
posing and reusing other components from the project-internal ecosystem.

Most of the participants of the user study perceived a bene�t of using the toolchain for sys-
tem composition (56% with high bene�t, 45% with bene�t). Almost all (94%) see a fundamental
contribution to system composition out of so ware building blocks to e�ectively build new ap-
plications.

Approximately 960 variants of the main project demonstrator might be composed, when
considering all component alternatives based on service de�nitions (Table 7.2). ¿ese variants,
however, distinguish in their performance (diversity of performance). ¿ere are, for example,
�ve components that provide localization services. But each comes with di�erent localization
quality as they use di�erent localization technologies or work indoors (using iBeacons), out-
doors (GPS) or both (using MORSE simulator). Expressing this information and aligning it
with the application’s needs will identify the subset of the variants that can be considered for
composition in a certain demonstrator. ¿is is an example in which expressing and using prop-
erties supports the user: Otherwise, one would have to look for the documentation, even source
code or testing and might recognize a mismatch late.
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7.5
Component supplier HSU/Bosch Integration Authentication

Number of re-uses HSU indoor/outdoor navigation Full Demonstrator
Indoor simulation, native iPad GUI GUI and Security Security Door Demonstrator

HSU iBeacon Indoor Navigation Bosch Beacon, ESK Fusion Czech IMU Demonstrator
HSU iBeacon Museum Example Visual Localization Integr. Concatel

Indoor navigation (Morse simulator) Belt Simulator HVS Multifloor
HSU/Comland Havelsan Nav. Simulation

SmartBluetoothLocalization HSU 4 x x x x
SmartBluetoothLocalization Bosch 5 x x x x x
SmartGpsdServer HSU 1 x
SmartMorseLocalization HSU 7 x x x x x x x
SmartVisualLocalization COM 2 x x
SmartTTS HSU 4 x x x x
SmartTTSLoquendo HSU 0
SmartTTSMary HSU 0
SmartRBXsensOrientation Bosch 0
SmartSensorDataFusionESK ESK 4 x x x x
SmartXsensIMUMTiServer HSU 1 x
SmatIMUComponentCZ CZ 1 x
SmartFionaNavigation HSU 12 x x x x x x x x x x x x
SmartPathPlanning HVL 2 x x
SmartSecurity (software) HSU 2 x x
SmartSecurity (hardware TPM) Infineon 5 x x x x x
SmartBluetoothBeaconServer HSU 7 x x x x x x x
SmartRBBluetoothBeaconServer Bosch 3 x x x
SmartWebInterface HSU 16 x x x x x x x x x x x x x x x x
SmartiPadNativeGui HSU 1 x
SmartHapticBelt Bosch 6 x x x x x x
SmartContextProvider CCTL 1 x
SmartIndoorOutdoorHandover HSU 1 x
SmartMapProvider HVL 2 x x
SmartProfileProvider HVL 2 x x
SmartSecureDoor Infineon 1 x
SmartSymbolicPlanner HSU 12 x x x x x x x x x x x x
SmartUnicapImageServer HSU 1 x
SmartWgs84ToCartesianConverter HSU 1 x

Components used: 1 4 4 4 4 5 7 2 5 1 4 4 2 7 8 7 7 5

Co-Existence of component alternatives: 5x Localization 3x Speech 4x Pose Inform. 2x Path Planning
Tot. variants: 960 2x Credentials 2x Beacon 2x GUI

18 Demonstrators (functional Implementation)

29 Components
(functional implementation)

Table 7.2: A total of 18 demonstrators was composed from 29 components from a FIONA project-internal ecosystem. Colors indicate groups
of component alternatives. Multiplying the number of alternatives in each group results in 960 possible variants of the project
demonstrator—each with di�erent performance (diversity of performance).
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Service de�nitions reduce the pressure towards a “big bang integration” in late project stages.
¿ey provide the foundation for building early prototypes in which components can continu-
ously be extended and improved, as it was applied in FIONA: For example, a basic implemen-
tation of a localization component with moderate localization quality based on iBeacons was
used in early demonstrators. Later, a new component with a more advanced localization imple-
mentation was provided by a di�erent partner. It o�ered much better localization quality and
enabled scenarios that need more accuracy, e.g. for personal navigation for visually impaired
people. A similar use-case can be found in the navigation-context of FIONA: A complete sub-
architecture was exchanged by new components when a late-joining partner provided more
powerful path planning and guidance solutions. A third example was already described with
the butler scenario: exchanging object recognition by active object recognition.

Service de�nitions and properties supported to �nd and identify the service structure very
early in the project, thus prevented problems at a later stage. In FIONA, for example, partners
were asked to provide details of inputs and outputs of their components: many of them had the
same purpose but di�erent interfaces, both in syntax and semantic. If it were implemented this
way, there would have been big integration e�ort in the end. Agreeing and expressing service
de�nitions helped to overcome these di�erences. ¿is is the purpose of composition Tier 2.

Perceived Composition E�ort at Integration Workshops

To grasp the e�ort of system composition, three examples of integration workshops in FIONA
are given.

Workshop 1 In an early integrationworkshop, the “Visual LocalizationDemonstrator” for per-
sonal navigation in an o�ce space (section 7.3.2) was put in operation in one day by two peo-
ple. Five of six components were taken from the project-internal ecosystem. One component
for visual localization was developed prior to the workshop by one project partner. It adhered
to the domain structures from composition Tier 2. ¿e component was put into the project-
internal ecosystem a erwards and was used for composition in other demonstrators. Besides
setting up hardware, maps and testing, integration and composition itself was the work of few
hours (approximately 6 hours for two persons): “Wewere able to integrate di�erent components
with an ease and in the matter of hours,” as the chief technology o�cer of Comland d.o.o re-
ported [SFC15] (Fig. 7.15). ¿e “Visual Localization Demonstrator” is one example of successful
system composition with low e�ort in context of the FIONA project.
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Visual Localization
Demonstrator

2 persons / 5 hours
for composition, setup + testing

Image

Navigator

Path
Planner

Text2Speech

GUI

A set of existing
software components

Visual
Localization

Project Ecosystem

Custom development
for demonstrator

After development, the component was taken over to the project ecosystem
and was available for composition in further demonstrators.

Figure 7.15: The Visual Localization Demonstrator was put in operation by composition of �ve ex-
isting components. One component for visual localization was developed prior to the
workshop by one project partner. It adhered to the domain structures from composi-
tion Tier 2. The component was put into the project-internal ecosystem afterwards and
was used for composition in other demonstrators.

Workshop 2 During a midterm integration workshop, ten participants built up �ve demon-
strators in three days. ¿e total e�ort for system composition from the project-internal ecosys-
tem using the SmartMDSD Toolchain was very low and took about three hours. ¿is is con-
�rmed by the user study that was conducted shortly a er the workshop: Considering only the
replies fromFIONA, the participants (71%) perceived the composition e�ort “low” or “very low”
in comparison to other activities of the integration workshop (Fig. 7.16). ¿anks to the low ef-
fort for composition of so ware components, the participants were able to focus (separation of
roles, taking the role of the system builder) on the actual and time-consuming tasks during such
workshops: setting up custom hardware with the integrated demonstrator platform, con�gura-
tion of components to the new environment (e.g. creatingmaps and waypoints), and testing the
demonstrator.

Most of the scenario con�guration was done using the component parameters of the Smart-
MDSD Toolchain and most of the participants (57%) perceived a low e�ort during the work-
shop. When explicitly being asked for parameterization in the overall study, the participants
rated the parameterizationmechanism as adequate (94%). Some components unfortunately did
not follow the service de�nitions as de�ned in documents (see section 7.2), thus adjustments to
components were necessary (Fig. 7.16, component development). Having service de�nitions
fully supported in the toolchain would have prevented this, but even without them, the users
perceived the necessary changes as low e�ort, thanks to the model-driven toolchain.
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43%

14% 14%

29%

14%

very high

high

neutral
low
verylow

Comparatively low effort
for system composition ...

... allows to focus on the real purpose of the
workshop: hardware setup and testing. This
was the first time, the hardware was put to-
gether in one demonstrator.

Infrastructure Setup
Custom Hardware Setup

Component Dev.
System Composition

Scenario Adaptation
Demonstrator Testing

0% 0%

0%0% 0% 0% 0% 0%

Figure 7.16: The e�orts for system composition during a FIONA workshop as perceived by the par-
ticipants. The categories show: Infrastructure Setup (e.g. networking, version control,
OS, libraries), Custom Hardware Setup (e.g. bluetooth setup, serial drivers), Component
Development (e.g. bug �xing, extending functionality), System Composition, Scenario
Con�guration (parameterization, creating maps, waypoints), and Demonstrator Test-
ing. There are many neutral answers because the partners had individual responsibili-
ties and were not active in all tasks.

Workshop 3 One workshop took place at a late stage in the project where the project-internal
ecosystem has been established. At this workshop, two new versions of the existing project
demonstrator for personal navigation have been composed within an hour to integrate contri-
butions of two partners in the demonstrator: ¿e demonstrator was extended by a more pow-
erful navigation solution.

7.6 Discussion

¿is section re�ects and discusses the presented approach in relation to the overall research goal
and questions (see section 1.1).

How can so ware development for service robotics be improved in order to advance
from handmade integration and cra ing to systematic engineering of so ware based
on system composition in a so ware ecosystem?

¿epresented approach contributes to system composition by introducing ameta-structure
and according work�ow to create and use domain-speci�c structures based on service de�ni-
tions. It builds on the concept of services of the service-oriented component-based SmartSo 
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framework. ¿is raises the starting point of this thesis to an adequate conceptual level. ¿e
concepts behind the SmartSo framework already provide basic means for system composition
(e.g. a set of communication patterns and service orientation) and, thus, the presented approach
also bene�ts from these. Successful robotics applications might be built without the approach
presented in this thesis (asking developers to write clean code, use frameworks, best-practices
and guidelines as documented). It is, however, argued that the level of composability in this
case can only be realized with much more e�ort and more errors underway. At some point
in time, this is not manageable anymore. ¿is thesis provides means to structure domains in
composition Tier 2 to overcome this.

¿e results showed the applicability of the approach for system composition to build new
applications from existing building blocks. Composing a complete application (100%) from
existing parts, admittedly, is theory. As Fröberg [Frö02] concludes, it is more practical to com-
pose generic components and to develop custom solutions. Transferred to robotics, this means
that basic skills can be composed and application-speci�c solutions are subject to custom de-
velopment. Regarding robotics, several basic skills (navigation, localization, object recognition,
speech, etc.) can be identi�ed and it can, thus, be considered realistic to compose these basics
according to the needs and develop others to solve custom skills. ¿is is a huge step forward
in the overall vision of an ecosystem for robotics since technology immediately becomes acces-
sible. To address system composition at large, other areas of composition besides components
and services need to be addressed as well. ¿is includes both composing other kinds of build-
ing blocks (e.g. task sequencing and action plots as motivated in [SS14b], hardwaremodels) and
other aspects of composition and composability of building blocks (e.g. timing).

1. How to improve the composability of building blocks (so ware components) such
that they not only �t together technically, but also work together in a meaningful way
in the overall application?

Service de�nitions are a key in the proposed meta-structure and work�ow. ¿eir de�nition
on composition Tier 2 improves the composability of services o�ered by so ware components
towards system composition (Tier 3). ¿ey include service properties that allow to express and
use the semantics of services on the application-level, which otherwise remain hidden within
code and documentation or must be managed manually. ¿anks to constraints, properties can
be used to express the needs and o�er between the component’s service endpoints and set the
basis for assisted component selection.

Restricting the use of properties and constraints to single property attributes only might not
suit all use-cases. Enabling constraints to consider multiple properties might thus be consid-
ered. ¿is would bring an advantage when relations between properties exist or a certain set
of properties usually occurs in combination. ¿e approach does not realize this so far, but the
service de�nition as an existingmodel provides the foundation to do so, for example by de�ning
the constraints on the level of the service de�nition.

¿e list of properties that are available when instantiating a service de�nition is a �xed set;
only the properties that are included in the service de�nition can be used. ¿is might be per-
ceived as restricting, and users might wish to extend the set of properties. However, this goes
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back to weighing freedom from choice versus freedom of choice. It would be possible not to
be bound to a �xed set of properties in the service de�nition, but the properties must be mo-
deled externally for reuse in service de�nitions. Modeling properties during instantiation of the
service de�nition will remove their grounding and hinder their evaluation. Limiting the list of
properties in the service de�nition, however, also provides guidance. ¿e user knows that these
properties are available as opposed to an open and rather in�nite set of properties that he does
not know about.

¿e expressiveness of static service properties with respect to their use for qualities is rather
limited as the quality might depend on factors beyond the service. It might depend on the qual-
ity of an input-service or even on runtime-factors (the current situation of the robot or the envi-
ronment). Extending service properties to more dynamic and interlinked properties is thus one
of themajor directions to be addressed in future research. Expressing static properties, however,
contributed a necessary step in this direction as the properties are now accessible and integrated
in the structure and work�ow—it is now amatter of where their values originate from. Express-
ing qualities with static properties improves composability and assist in component selection,
as static properties allow for expressing qualities that can be achieved in principle.

2. How to organize the building blocks (so ware components) in an overall composi-
tion work�ow that decouples and manages both the stakeholders and the parts that
they supply or use to collaborate in an ecosystem?

An overall composition work�owwas presented. It is based on service de�nitions as the key
model to decouple between component development and system composition. Several meta-
models have been presented to cover the work�ow.

Service de�nitions contribute to the separation of roles in the overall work�ow since they
decouple between component development and system composition. ¿e user study con�rms
that the involved roles can focus on their task only. One of the reasons behind successful sepa-
ration of roles in the approach lies in the separation of the models which proved to be e�ective.
As soon as di�erent people contribute, the separation of roles cannot be realized with separated
views (problem-speci�c views) or designated working areas (restricting access, user and rights
management) within a single model only. Separation of roles can be improved through these.
¿ey are, however, not su�cient for the separation of roles for system composition towards an
ecosystem. Organizing the models in separate, harmonizing but well-linked elements separates
them physically and provides the necessary distance. Regarding the roles in a work�ow for sys-
tem composition, there are more roles involved than are presented in the approach. ¿ese roles,
the corresponding models and views must be integrated in the work�ow. Depending on the
particular case, this might in�uence the presented models since this cannot be done in isola-
tion. Integrating roles for task sequencing, for example, in�uences the component development
step and the step of building the application where the overall action plot of the application is
modeled.

¿e key for separation of roles is tomanage the handover and connection between them. ¿e
approach provides service de�nitions to realize this handover with respect to services between
the work�ow steps. ¿e service de�nition model thus is an element that is integrated in the
work�ow and can be extended towards new requirements with respect to services.
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¿e approach was applied in the FIONA research project and several demonstrators showed
its suitability for system composition. Flexible system composition as shown is possible thanks
to the meta-structure that organizes the ecosystem in three composition tiers. ¿e domain
structures on Tier 2, and the service de�nitions therein, cannot be modi�ed by component sup-
pliers and system builders. However, the missing �exibility when using service de�nitions was
not perceived as a disadvantage: Most participants of the study (88.3%) recognized the bene�t
in identi�cation of service de�nitions and in the agreement on service de�nitions. ¿ey felt that
the stability that was introduced at the cost of �exibility was a good deal.

¿e proposed work�ow covers all steps up to deployment and running the application. ¿e
deployment model covers enough information for the work�ow to be complete to demonstrate
the full picture for system composition. It needs, however, extension of important information
that is necessary to fully model the execution of so ware components, e.g. CPU architecture of
the device or networking between devices.

Oster and Wade [OW13] argue that the discovery of building blocks is a major hurdle to-
wards establishing a successful ecosystem. Service de�nitions support in expressing the needs
of the application and to select suitable so ware components. How these service de�nitions are
discovered in the �rst place, however, needs to be addressed as well. Components can be found
based on their services, but �nding the service de�nitions to express the needs might happen
more freely. Eventually, the user is not yet looking for a speci�c service de�nition because he has
not yet decided what service he is going to implement for the custom component. An approach
to discover service de�nitions might, thus, be realized through simple searches, e.g. based on
tags and free-text search or utilizing ontologies to categorize service de�nitions.

If any structure becomes established to serve an ecosystem also depends on aspects beyond
the technical suitability. It also depends on its acceptance, widespread dissemination and even
political aspects. ¿e proposed meta-structure therefore does not provide a single �xed struc-
ture but a tool to de�ne custom structures. Structures thus might co-evolve, might converge to
de-facto standards and thus achieve high-impact. ¿is, however, is beyond technical aspects. It
needs dissemination and even political activities.

3. How to design an integrated tool that supports users in modeling and composi-
tion of models and corresponding so ware artifacts through the work�ow for system
composition?

¿e Eclipse-based SmartMDSD Toolchain applies model-driven techniques and provides
DSLs for graphical and textual modeling in an IDE to support users in creating and using the
meta-structure for system composition. ¿e toolchain was used in research projects and the
study showed that it signi�cantly improves system development.

¿e study con�rmed that tool-support is a necessary part for successful system composition
and that the SmartMDSDToolchain can be used productively for this purpose. ¿emixture be-
tween graphical and textual models in the SmartMDSD Toolchain is adequate according to the
study. ¿e realization of graphical modeling in Uni�edModeling Language (UML) was consid-
ered reasonable for a toolchain for productive use thanks to low e�ort through existing graphical
tools and notations that are familiar to users. Drawbacks, however, were experienced in using
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UML for this purpose. UML pro�les are suitable when the semantic and notation of the origi-
nal UML elements are reasonable for and compatible with the elements that are modeled for the
approach. ¿ere is, however, a high modeling e�ort when the elements of UML do not directly
map to elements of the approach. ¿ere is even the danger of modifying the original semantics
of UML. It was observed, that users follow their own knowledge when modeling in UML. ¿e
result sometimes does conform to and sometimes does not conform to theUML standard. Since
UML is very open, this leads to models that represent what the user thinks, but these models
might not correspond to the described approach. ¿ere is, thus, a high e�ort for a tool-provider
to restrict the usage to match the approach to get valid models. Interestingly, the SmartMDSD
Toolchain was more familiar in its use for users that only have few or no UML knowledge. Ini-
tially, using a known modeling approach was thought to be an advantage. Notably, Bonnet,
Voirin, Exertier, et al. [Bon+16] come to the same overall conclusion and lessons learned in
UML pro�ling with the Capella tool that is inspired by UML and SysML (see section 2.3.1). It is,
�nally, about the structure that sets the basis for and is independent of the implementation in
any technology. ¿e use of UML pro�les in the SmartMDSD Toolchain for graphical modeling
together with Xtext for textual modeling was low e�ort due to existing tooling. It was reasonable
for a research toolchain to come up with tooling that actually can be used to build systems. It
showed its bene�t despite these drawbacks. ¿ey can be addressed when turning the toolchain
into a commercial product.

Component selection and matchmaking eases the access to a component market. Examples
of component selection have been shown, but there is room for more user support in tooling.
For example, the component selection process only considers one service wish against one com-
ponent service: ¿e selection mechanism will not suggest a component that might provide two
wished services over another that only provides one. Furthermore, component selection should
not only consider match and mismatch as Kritikos and Plexousakis [KP08] argue. In case the
application’s needs are very tough and no component meets the needs, is desirable to assist the
user in suggesting which application needs shall be relaxed such that a suitable component can
be found. ¿is is not about “overwriting” the needs, but about knowing what will happen when
a component is selected which does not meet the needs. Relaxing the needs might be an option
over developing an in-house component from scratch.

7.7 Summary

¿is chapter described several real-world robotics systems that were built using the approach.
¿ey demonstrate the bene�t of the approach to address system complexity and �exibility in
composition. Several research projects and collaborations were involved in building these real-
world robots. ¿e chapter evaluated the positive in�uence of system composition, separation of
roles, and ecosystem collaboration on these projects. A user study was presented that evaluates
the perceived bene�ts as well as the user’s experience in applying the approach and the Smart-
MDSD Toolchain. ¿e chapter closed with a discussion of the contributions of the thesis in the
context of the research questions.

¿e next chapter concludes the thesis and provides an outlook for future work.
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8
Conclusion

¿is chapter concludes the thesis. It summarizes the contributions and explains their applica-
bility and relevance. ¿e thesis �nally ends with an outlook on future work.

Current practice in so ware development for service robotics resembles cra ing anduses in-
tegration-centric development approaches: A robotics application is designed and then broken
down into smaller pieces that are solved individually at a lower level of complexity. What follows
is the integration of these pieces to a system using adapters. While this approach is adequate
to reduce the complexity of a single robotics application, it hinders the reuse of parts in other
applications. It also hinders the collaboration of experts in speci�c domains. In particular, such
collaboration is essential in an interdisciplinary domain such as robotics. It also hinders the
�exible reuse of existing (third party) building blocks to come up with new applications in an
e�cient way.

¿e approach presented in this thesis achieves the step change from handmade cra ing and
integration of so ware to a systematic engineering approach based on system composition in
the context of a so ware business ecosystem for robotics. ¿e approach organizes an ecosystem
for robotics so ware in three composition tiers: a tier for general structures that enables compo-
sition1, a tier for domain-speci�c structures, and a last tier for building blocks and their use. ¿e
approach applies separation of roles to manage the interaction and collaboration as a key fac-
tor to support the transition from �xed value-chains to �exible value-networks. ¿e approach
utilizes model-driven techniques to overcome cra ing and to enable a composition-oriented
approach that lowers e�ort, cost, and the time to market.

Structures are needed to enable system composition in an ecosystem. ¿is thesis has pre-
sented a meta-structure that provides the necessary framework for enabling composition in ac-
cordance with the needs of service robotics. ¿e meta-structure is based on Component-Based

1A meta-structure for composition, also called the “composition structure” in short
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So ware Engineering (CBSE) and Service-Oriented Architecture (SOA). It allows explicating
and using knowledge which is relevant for composition but which usually remains hidden. Us-
ing the meta-structure and the presented composition work�ow (composition Tier 1), domain
experts can express (model) recurring concepts (structures) of their domain to set the frame-
work for composition (composition Tier 2). Component suppliers and system builders (com-
position Tier 3) adhere to these concepts to supply and compose building blocks independently.
¿e composition structures ease the development of composable so ware components.

¿e composition work�ow is based on service de�nitions that are modeled using a Service
De�nition Language (SDL) on composition Tier 2. Service de�nitions provide basic reusable el-
ements in the work�ow to realize separation of roles as they form a bridge between component
supply and system composition. ¿ey increase the composability of services. Service properties
were presented to express the semantics of a service on the application-level. Expressing con-
straints on service properties ensures the composability of components that provide or require
services. ¿e system builder is supported in selecting adequate components according to the
application’s needs.

In addition to the core meta-models for service de�nitions, service properties, and compo-
nents, several other meta-models have been introduced to cover the necessary infrastructure to
complete the composition work�ow. Overall, the following meta-models have been presented:

• the service de�nition meta-model and its building blocks: the meta-model for modeling
communication data structures and the meta-model for service properties

• the parametermeta-models to de�ne, instantiate, anduse variation points for components

• an extension of the SmartMARS componentmeta-model to use it with service de�nitions

• the wish list meta-model to express the needs of an application based on service de�ni-
tions

• the system con�guration meta-model to compose an application from existing compo-
nents

• the deployment meta-model to map instances of so ware components to execution units

¿e approach is implemented in the model-driven SmartMDSD Toolchain. It provides an
Integrated Development Environment (IDE) for so ware development in service robotics to
support users in applying the composition work�ow. ¿e toolchain plays a key role in provid-
ing access to the structures and in providing guidance for successful ecosystem collaboration.
¿e toolchain covers the design of services on composition Tier 2, the development of compo-
nents on composition Tier 3, and the composition of components to systems and �nally their
deployment. Several Domain-Speci�c Languages (DSLs) have been developed that allow to
seamlessly create and use the necessary models between the involved roles in the composition
work�ow. Based on the needs of the application under development, the SmartMDSD Tool-
chain provides support in selecting components from the envisioned component market in the
so ware ecosystem.
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¿eresults and evaluation of the approach show that the proposed organization of an ecosys-
tem in three composition tiers, the composition structure, and the implementation within the
SmartMDSD Toolchain contribute to the composition of new applications by using existing
building blocks (system composition). A user study was conducted to evaluate the bene�t and
experience as perceived by users of the SmartMDSD Toolchain. ¿e study con�rmed that the
concept of service de�nitions contributes to the separation of roles by structuring their collab-
oration, and allowing them to focus on their contribution and expertise. ¿e approach was
applied to build a number of systems in a broad �eld of domains and projects. ¿is ranges from
custom developments to establishing a project-internal ecosystem, from users with no robotics
expertise to highly skilled robotics experts, from systems in simulation to real-world systems,
and from service robotics to the smartphone domain. ¿e approachwas used in various projects
and activities ranging from the goal of developing a speci�c robot application from scratch up
to using the approach in an ecosystem. ¿e ecosystem approach was speci�cally applied and
evaluated in the European research project FIONA (Framework for Indoor and Outdoor Nav-
igation Assistance) [Fiona]. FIONA established a project-internal ecosystem with 29 so ware
components that were composed to form 18 di�erent project demonstrators. ¿anks to the ser-
vice de�nitions and several component alternatives, the ecosystem enables the composition of
960 demonstrator variants. ¿e integration workshops in FIONA and the user study conducted
for this thesis showed that the approach enables ecosystem collaborationwith separation of roles
and reduces the e�ort required to compose new applications to just a few hours.

8.1 Applicability and Relevance

¿e approach is implemented in the SmartMDSD Toolchain. ¿e toolchain and the proposed
work�ow were used in practice in several research activities to develop and compose many
applications in the domain of service robotics, intralogistics, and also in domains unrelated to
service robotics—that is, in personal navigation for indoor and outdoor environments. ¿is
demonstrates the practicability of system composition and demonstrates the contributions of
the thesis: ¿e demonstrators show that the approach is suitable and that it has been used to
build a number of systems. ¿e range of applications shows that the approach is neither limited
to a single application nor to a single domain. ¿is thesis contributed to:

• system composition in general

• applying Model-Driven So ware Development (MDSD) in robotics

• organization of a robotics so ware ecosystem using three composition tiers

• structures for robotics to enhance the separation of roles and handover as required for
ecosystem collaboration

• raising the composability of building blocks and supporting component suppliers to pro-
vide them for reuse by others
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• the e�ective composition of new applications from existing building blocks, thus devel-
oping new innovation potential through combination, especially for Small and Medium-
Sized Enterprises (SMEs)

¿e contributions listed above are in line with the current challenges and needs of robotics
as identi�ed by the European SPARC Robotics initiative within the Strategic Research Agenda
(SRA) [euR13] and theMulti-Annual Roadmap (MAR) [euR16]. Furthermore, the contributions
are in line with the current challenges in so ware engineering in general—for example, as iden-
ti�ed by the ITEA Roadmap for So ware-Intensive Systems and Services [ITE09]. ¿is shows the
importance and relevance of the topics to which this thesis contributes.

¿e overall motivation of this thesis has been and is being addressed in recent (e.g. FIONA
[Fiona] and ReApp [ReApp]) and ongoing (RobMoSys EU Horizon 2020 [RobMoSys] until
December 2020 and German BMWi PAiCE SeRoNet [Bun17] until February 2021) initiatives.
¿is thesis has contributed to the vision of the RobMoSys project, which is now funded by the
EuropeanHorizon 2020 research and innovation programme. Its funding on a European level un-
derlines the relevance of a model-driven and composition-oriented approach that is addressed
by this thesis. RobMoSys is a part of the e�ort towards establishing an EUDigital Industrial Plat-
form for Robotics with a focus on sound modeling structures. ¿e service-based composition
approach and ecosystem organization in three composition tiers, as presented in this thesis, is
currently being adopted by the RobMoSys project. ¿e SeRoNet project, whose major focus is
on establishing a brokerage and market platform, addresses similar goals as RobMoSys but on
a German national level. It too was in�uenced by this thesis during preparation. ¿us, the top-
ics addressed in this thesis and the contributions made by this thesis are considered a relevant
contribution to systematic engineering of so ware for service robots.

8.2 Future Work

¿e approach contributed to the systematic engineering of so ware for robots. ¿e presented
structures provide a basis for promising future work.

¿emodeling in this thesis addressed an important but narrow area of robotics applications.
Applying modeling to other areas of the system is necessary—for example, in safety validation,
in certi�cation, in managing qualities, and in managing additional non-functional properties.
Linking the models of these areas with the models proposed in this approach is promising to
enable a consistent interplay between these models. For example, other models might inject
values for the so far �xed values in service properties. ¿e accuracy of a laser scan might be
retrieved from the hardware model or data sheet, from the component instance parameteri-
zation, or from other service properties to make them depend on input data and on chains of
input data. At the same time, information expressed in service properties might be propagated
to other models. For example, accessing them from the component implementation would en-
able the alignment of certain algorithmic settings. Accessing them from action plots (task plots
for task sequencing) would allow reacting to them at run-time.

Another promising extension of design-time usage involves extending the concept of ex-
pressing o�ers and needs to other models, and even other areas of system composition. ¿is
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would further improve the separation of roles, the composability, and the selection process in
an ecosystem. For example, to select and compose existing action plots or composite compo-
nents.

Since service de�nitions express compatible service endpoints, they can be used to identify
mappings to di�erent service de�nitions in order to make them compatible, thus further in-
creasing the composability of these components. ¿is would require de�ning a mapping and
transformation between the service de�nitions and automating this through code-generation.
Ontologies can help to structure the service de�nitions. So far, connecting two incompatible
services requires an additional (manually implemented) gateway component (an adapter) that
covers this transformation. It is plausible to transform one data structure into another, assum-
ing that all the information is available to do so. More research is required with respect to the
communication and service semantics.

Introducing run-time usage of the approach would allow using the information explicated
in the models beyond design-time. Design-time focuses on building a consistent application
where, for example, service properties provide information about qualities in principle. Robots,
however, work in highly dynamic environments and many properties cannot be foreseen at
design-time until the current situation of the robot is known at run-time. Using the information
modeled in service de�nitions at run-time would ensure that the system adheres to the expli-
cated qualities or semantics—or notice that they are not met. Using design-time information at
run-time would allow for more robust applications and may even contribute to using resources
adequately. For example, algorithms might no longer run at best e�ort but only with the re-
quired e�ort to match the needed quality. Monitoring at run-time, for example, is an important
issue. Information from service de�nitions can be used to feed monitoring approaches in or-
der to observe them. Active approaches, such as active perception or active localization, might
use the information expressed in service de�nitions in order to actively acquire the expressed
needs at run-time. Components can adjust their usual maximum performance to an adequate
performance based on what is needed and expressed in the service de�nitions in order to save
resources.
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Domain-Speci�c Language (DSL)
A “modeling language dedicated to a particular problem domain that o�ers speci�c no-
tations and abstractions, which, at the same time, decrease the coding complexity and
increase programmer productivity within that domain” [SSS16].

DSLs provide a way of modeling that is tailored to and adequate to the role or problem in
focus. ¿ey can be textual or graphical.

application
See: robot application

architecture (so ware architecture)
“¿e structure or structures of the system, which comprise so ware elements, the exter-
nally visible properties of those elements, and the relationships among them.” [BCK12]

collaboration (ecosystem collaboration)
“Collaboration” of participants in an ecosystem refers to complementing each other and
sharing independent and self-contained development artifacts.

Collaboration is not meant in the sense of close collaboration as in working in a team or
collaborative editing of documents. See also: ecosystem

communication object
A self-contained entity to hold and access information that is being exchanged between
components in SmartSo .

Communication objects are C++-like objects that de�ne the data structure and imple-
ment framework internal access methods and optional user methods (getter and setter)
for convenient access. See also: service

communication pattern
A set of few but su�cient means that de�ne the way in which components exchange in-
formation over services in the SmartSo framework.
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SmartSo provides communication patterns for the sake of composability, for example
one-way “send”, two-way “request-response”, andpublish/subscribemechanisms on a time-
ly basis or based on availability of new data. See also: service

component (so ware component)
¿e unit of composition and unit of exchange in the ecosystem that provides function-
ality to the system through formally de�ned services at a certain level of abstraction (cf.
Szyperski [Szy02]).

A so ware component is de�ned through a component model. A component can realize
one or more services and interacts with others through services only. When speaking of
components, this thesis refers to explicit so ware components as in the SmartSo World:
a service-oriented component. In contrast to that, the general term “component” is a
synonym for an arbitrary piece or element of something.

component alternative
A building block (so ware component) that satis�es the same needs as another one.

For example, a histogram-based object recognition and a feature-based object recognition
building block can be alternatives if they both provide a service for object recognition. Al-
ternatives might di�er in quality, implementation standards, maturity level, performance,
or functionality (diversity of performance). Composition requires to choose from alter-
natives according to the needs of the application. See also: component (so ware compo-
nent)

composability
¿e ability to �exibly combine and recombine building blocks (so ware components)
[PW03] “as-is” into di�erent systems for di�erent purposes in a meaningful way. It comes
with composability as the property of parts that makes them become “building blocks”.

It is the basic prerequisite for system composition. Composability has aspects both be-
tween components and between application and components. It comprises syntactic and
semantic aspects. ¿e thesis improves composability of so ware components by expli-
cating (modeling) syntactic and semantic information, that otherwise remains hidden
within building blocks. ¿e approach manages this information through the composi-
tion work�ow. See also: system composition, system integration

composition
See: system composition

composition work�ow
¿e order and connection of steps, the involved roles, and necessary models to build new
applications from existing building blocks.
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Usually, “process” refers to “work�ow” on the conceptual level; “work�ow” refers to a
more concrete and technical level, for example as realized in a tool. However, as the work-
�ow of the SmartMDSD Toolchain is very close to the conceptual process, the terms are
used as synonyms.

diversity of performance
A distinguishing property of a component alternative.

For example: quality, implementation standard, performance, or maturity level. See also:
component alternative

ecosystem
A collaboration model (cf. [BB10; IL04]), which describes the many ways and advantages
in which stakeholders (e.g. experts in various �elds or companies) network, collaborate,
share e�orts and costs around a domain or product.

¿is thesis envisions a robotics so ware business ecosystem: Robotics is a diverse and in-
terdisciplinary �eld, and contributors will have dedicated experience and can contribute
so ware building blocks using their expertise for use by others. Participants in an ecosys-
tem do not necessarily know each other. ¿e challenge is to organize the contributions
without bilateral negotiation of agreements between participants: An ecosystem approach
must enable collaboration by structure rather than collaboration bymanagement. Ecosys-
temand so ware business ecosystemare used as synonyms. See also: collaboration (ecosys-
tem collaboration)

freedom from choice (versus freedom of choice)
Freedom from choice is a principle that positively limits the number of available options to
provide guidance via selected structures, thereby removing unnecessary degrees of free-
dom.

Freedom from choice supports separation of roles and is a mandatory prerequisite for
system composition. Selecting the appropriate structures comeswith a high responsibility
to identify where guidance is needed and how it can be accomplished without limiting the
use of the structures for system design. In contrast, freedom of choice does not limit the
design space, thus, leaving the whole variety of options open for use (one problem can be
solved in numerous ways); gaining �exibility at the cost of guidance, composability, and
system level conformance.

integration
See: system integration

interface
¿e “boundary across which two independent entities meet and interact or communicate
with each other” [Bac+02].
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“Interface” is used as a very broad term, not to be confused with the narrow interpreta-
tion of “interface” as in application programming interface (API). ¿e interface between
components is realized on a service level. See also: service

parameter, parameter set
See: variation point

participant (in an ecosystem)
Synonym for stakeholder. See also: role

robot
Synonym for service robot. See also: service robot

robot application
Application as in “so ware application”: ¿e so ware for the service robot that is being
developed.

Building blocks (so ware components) are put together (composed) to applications. Ro-
bot application is used as a synonym for the “system” that is being developed. Systems can
be used as a building block for other systems.

role
A certain task or activity with associated responsibilities that someone (individual, group,
or organization) covers in the composition work�ow, for example the component devel-
oper role or the system compositor role.

Someone that covers a particular role typically is an expert in a particular �eld (e.g. object
recognition). A role takes a particular perspective or view on the overall work�ow or
application. It is associated with certain tasks, duties, rights, and permissions which do
not overlap with other roles. All participants of the ecosystem cover a particular role. See
also: stakeholder, separation of roles

separation of concerns
A principle in computer science and so ware engineering: It identi�es and decouples
di�erent problem areas into distinct parts such that one can look at them and solve them
independently resulting in a lower complexity.

Separation of concerns is the basis for separation of roles. It is a necessary prerequisite for
system composition in a robotics business ecosystem. See also: separation of roles

separation of roles
Aprinciple that enables and supports di�erent groups of stakeholders in playing their role
in an overall composition work�ow without being required to become an expert in every
�eld (in what other roles cover).
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Separation of roles is closely related to separation of concerns. It is a necessary prerequisite
for system composition in a robotics business ecosystem. See also: role, separation of
concerns

service
A system-level entity that shapes the architecture and via which components exchange
information at a proper level of abstraction.

Services follow a service contract. A service separates the internal and external view of
a component. ¿ey describe the functional boundary between components. Services are
described via service de�nitions. A service in the system consists of at least two service
endpoints associated with components (providing part / requiring part). Components
create a service endpoint by instantiating a service de�nition. See also: service endpoint,
service de�nition

service de�nition
¿ecommon structure for a class of services in a reusable and formal description to ensure
that components o�ering or using such a service can be used together; a service de�nition
can be considered the “type de�nition” of a service, i.e. the formal de�nition of a service
on composition Tier 2.

¿e service de�nition is the main element in the composition structure. Component
models instantiate service de�nitions to create a service endpoint. Service de�nitions
explicate information that is important for composition: data structure, communication
semantics and service properties. Service de�nitions are reusable elements in the com-
position work�ow and are considered the entities that enable separation of roles, e.g. to
decouple component development from system composition. Service de�nitions describe
the service as a whole and do not distinguish between service endpoints (providing part
or requiring part). See also: service, service endpoint

service endpoint
¿e part of the component that realizes the service: the only access point of a component,
i.e. the entry point of a component to communicate with others through a service.

When modeling a component, the component developer models a service endpoint by
instantiating a service de�nition (the “type” of the service endpoint). ¿e component
developer also decides whether the endpoint is the requiring part or the providing part
of the service (“source” or “sink” with respect to the �ow of information via the service).
¿e graphical notation corresponds to the UML port. See also: service, service de�nition

service property
A reusable name–value pair to explicate the semantics of a service on the application-level
that is otherwise hidden within an implementation or only included in documentation.

Service properties contribute to building a domain-speci�c vocabulary on composition
Tier 2. ¿ey are used by service de�nitions and improve the composability of so ware
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components and component selection. Component developers assign values to service
properties to express what their service provides or requires. Using constraints, the prop-
erty’s value is used to support component selection and to validate the composition.

service robot
An autonomous system that performs useful tasks for humans [Int12] in a shared environ-
ment, e.g. co-workers at work, household assistants, delivery robots and farming robots.

“Robotics” and “robot” in this thesis generally refer to “service robotics” and “service ro-
bot”.

service wish list
A collection of services to express the needs of an application.

An entry of the wish list is referred to as a “service wish” or “wish”. It instantiates a service
de�nition and re�nes the service properties to express the needs towards that service.
¿e wish list is input and basis to assist in selecting suitable components from a market
or repository of components. ¿e wish list serves as input to verify the composed system.

skill (of a robot)
A basic capability or function of a robot.

A collection of skills is required for the robot to do a certain task. For example, a butler ro-
bot requires skills for localization, object recognition, mobilemanipulation, speech input,
speech output, etc. A component o en implements a certain skill, but skills might also be
realized by multiple components. Following the three tier architecture [Bon+97; Fir89],
this thesis uses the term skill for components that are coordinated by the sequencer. In
the context of SmartSo and its use of robotics behavior, “skill” is de�ned in a narrower
context and refers to the link between robotics behavior tasks (or task plots) and services
of components.

SmartSo (SmartSo World)
An umbrella term for concepts, principles, tools, and content that are developed at the
Service Robotics Research Center Ulm (Service Robotics Ulm).

¿e SmartSo World extends and carries on the coremotivation of the “SmartSo Frame-
work” [SW99b]: A framework that applies a component-based approach for robotics so -
ware development. ¿is thesis contributes to the SmartSo World.

stakeholder
An individual, a group of individuals, or organizations that share a particular interest in
the robotics business ecosystem and collaborate therein. Synonym for participant in an
ecosystem.

¿e term “stakeholder” is a rather general term used in the context of the ecosystem and
its participants (e.g. structural drivers, suppliers, and system builders). In contrast to that,
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a “role” is a more narrow and technical term in the context of the composition work�ow.
Each stakeholder covers one or several roles. See also: role, participant (in an ecosystem)

system composition
¿eactivity of putting together a service robotics application fromexisting building blocks
(here: so ware components) in a meaningful way, that is, �exibly combining and re-
combining them depending on the application’s needs.

System composition puts a focus on the new whole that is created from existing parts
rather than on making parts work together only by gluing them together: ¿e whole still
consists of its parts, the parts are still visible and isolated as entities and they are thus still
exchangeable. ¿ey can be split again. So ware components that are subject to compo-
sition shall be taken “as-is”, only being adapted within modeled boundaries. ¿ey thus
must be built with this intention right from the beginning. ¿e context in which they will
later be composed is unknown, which puts special requirements on their composability
and the overall work�ow.

System composition is about adhering to a composition structure. It is about putting in
e�ort once to comply with the composition structure and gain immediate composability
with other building blocks. In contrast, integration is about building individual adapters
betweenmutual parts or evenmodifying the parts themselves. High e�ort comes through
the high number of combinations between building blocks that each require a new adapter
each time they are integrated.

See also: system integration

system con�guration
A step in the work�ow and according (meta-)model to wire (connect), parameterize, and
assemble component instances.

system integration
¿e activity and e�ort of combining components, requiring modi�cation or additional
action to make them work with others. System integration is the opposite of system com-
position.

A distinction between integration and composition can be drawn by the e�ort [PW03]:
¿e ability to readily combine and recombine composable components distinguishes them
from integrated components. ¿e latter are modi�ed with high e�ort to make them work
with others, essentially by writing adapters. ¿e integrated part amalgamates into the
whole (i.e. becomes one part; mixes, as red and green water will mix), thus making it
hard to be removed or exchanged—and if they are removed, it requires new adapters.
In so ware engineering in general, “integration” is the process or step of combining or
assembling components into an overall/whole system [ISO15; ISO10].

See also: system composition
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variation point
An explicated variable of a component that is subject to modi�cation from outside of the
component for parameterization/con�guration.

System composition aims at using components “as-is” but components might need con-
�guration via variation points to match the current application or context. Modi�cation
of a component, e.g. modifying an open-source component, contrasts with that. Using
a variation point is a modi�cation that is intended by the component supplier. It does
not break the component in any way. Modifying the source code for the purpose of con-
�guration is not intended by the component supplier and may trigger side e�ects that are
unwanted and unknown.

veri�cation
¿e check whether the system composed from components meets the expressed applica-
tion’s needs.

Veri�cation is the “test of a system to prove that it meets all its speci�ed requirements at a
particular stage of its development” [ISO15]. Boehm [Boe79] considers veri�cation as the
correspondence between the so ware and its speci�cation. In context of this thesis, this
means to check the “ful�llment” of all wishes in the wish list.

wish list
See: service wish list

work�ow
See: composition work�ow
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List of abbreviations that are used in more than one paragraph.

API Application Programming Interface

BCM BRICS Component Model

CBSE Component-Based So ware Engineering

DSL Domain-Speci�c Language

DSPL Dynamic So ware Product Line

GUI Graphical User Interface

IDE Integrated Development Environment

IDL Interface De�nition Language

MDSD Model-Driven So ware Development

OCL Object Constraint Language

OMG Object Management Group

OPC-UA OPC Uni�ed Architecture

OWL Web Ontology Language

OWL-S Web Ontology Language for Web Services

ROS Robot Operating System

SDL Service De�nition Language

SLAM Simultaneous Localization and Mapping

SME Small and Medium-Sized Enterprise

SOA Service-Oriented Architecture

SoaML Service Oriented Architecture Modeling Language
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SPL So ware Product Line

SysML Systems Modeling Language

UML Uni�ed Modeling Language

WSDL Web Services Description Language
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