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Abstract—Stochastic electromagnetic (EM) fields can be char-
acterized by auto- and cross correlation spectra. The amount
of data, describing stochastic EM fields can easily become
burdensome. Therefore, techniques for reducing the dimen-
sionality of data characterizing stochastic EM field problems
are important, since correlation matrices describing stochastic
EM field correlations scale quadratically with the number of
observation points. We present a method for order reduction of
stochastic electromagnetic field description, based on principal
component analysis (PCA). Furthermore, we investigate how the
number of principal components (PCs) relates to the number of
independent sources and the transversal coherence as the EM
field is propagated using an auto- and cross correlation based
numerical propagator.

Index Terms—Stochastic electromagnetic fields, electromag-
netic interference, principal component analysis.
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I. INTRODUCTION

Stochastic electromagnetic fields are a key concern in the
assessment of electromagnetic interference (EMI) and signal
integrity (SI). For a large set of problems in electromagnetics,
one cannot specify amplitude and phase values for the EM
fields. This is either due to a lack of knowledge of the field
sources or due to the fact that the investigated electromagnetic
field is of intrinsic stochastic origin. Radiated EMI frequently
originates from non-deterministic stochastic processes.

A stochastic process is determined by a certain probability
density function (PDF) which may vary over time. In the
following we consider stationary Gaussian processes, which
means that the PDF is constant in time and assumes a
Gaussian shape. A Gaussian process is uniquely determined
by specifying the first- and second-order statistical moments
[1], [2]. Assuming Gaussian statistics is justified due to the
central limit theorem if the number of sources is high enough.
However, non-stationary stochastic electromagnetic fields are
also frequently encountered. Radiation from integrated circuits
(ICs), for example, can be considered a stochastic process for
the purpose of EMI investigation, since the bit sequence will
exhibit a stochastic nature. Due to the clocking, mean values
and correlation functions are periodic in time and the process
can be described as a cyclostationary stochastic process. Also
for such processes, characterizations based on auto- and cross
correlations can be given [3], [4], and principal component
analysis (PCA) can be applied to the obtained correlation
matrices.

For stochastic EM fields, PCA can reduce data storage
and handling requirements significantly as discussed in the
following. Furthermore, the number of dominant PCs provides
an estimate for the number of stochastically independent EM
sources involved. PCA as a technique for data reduction and
source identification for stochastic EM fields was already
treated in [5]–[7]. An efficient algorithm for data reduction
based on PCA is presented in [8]. PCA can also be em-
ployed for source localization and imaging of noisy EM
fields [9]–[12]. Evolution of the transverse correlation in noisy
electromagnetic fields has been considered also in [13]. As
we will see in this work, the number of PCs that have to
be retained for accurate EM field characterization, strongly
depends on geometrical considerations of source locations and
field sampling planes.

In the following we investigate how the number of PCs
scales with the propagation distance, as we propagate cor-
relation matrices in space numerically for different frequen-
cies. We consider a simplified problem, consisting of a two-
dimensional array of small dipoles on a source plane. The
radiated field is observed at the same x−y locations on planes
with different distances zi from the source plane.

II. PRINCIPAL COMPONENT ANALYSIS

PCA is a well established technique in statistics. It is used to
identify the directions of greatest variance in multidimensional
data sets, consisting of a very large number of interrelated
variables. PCA, originating in the field of psychology and
education [14], [15], has found wide spread application in
multivariate statistics in recent years. The governing idea
behind PCA is to determine linear functionals 〈ai, •〉, which
maximize the variance of a multivariate random variable X .
Such a functional is given by the first few eigenvectors of the
covariance matrix Ccov of X [16].

III. EVOLUTION OF CORRELATION INFORMATION FOR THE
PROPAGATED FIELD

We consider a setup given by a two-dimensional array
consisting of p = m′ × n′ Hertzian dipoles of length l,
oriented in x-direction. The currents {Ij}pj=1 in the dipoles are
governed by Gaussian random processes with zero mean and



are described by the correlation matrix CI [2]. The location(
x′j , y

′
j

)
of the j-th dipole on the source-plane z′ = 0 is

x′j = x′0 +

⌊
j − 1

m′

⌋
∆x′ , (1)

y′j = y′0 + [(j − 1) mod n′] ∆y′ , (2)

with j ∈ {1, . . . , p}. Here, b·c denotes the floor operation,
i.e. the next smaller integer number, and a mod b is the modulo
division of a and b. In order to investigate the propagation of
stochastic electromagnetic fields, we define a sampling grid,
consisting of q = m×n observations on a plane at a distance
of z = h from the source plane. The spatial location (xj , yj)
of the j-th observation point is analogous to (1) and (2), where
the location of the initial point (x0, y0) and the horizontal and
vertical grid-spacing ∆x and ∆y may differ from the source-
grid parameters.

After choosing a finite set of source and observation points,
the method of moments (MoM) can be applied to transfer
the field problem to a network problem [17]. The mapping
information obtained in form of the moment matrix also
provides the information how to transform the correlation
information describing stationary stochastic EM fields. For our
considerations, we use the free-space dyadic Green’s function,
also accounting for the near-field contributions, together with
point-matching to obtain a generalized impedance matrix
Z (ω) relating the vector of generalized source currents IT (ω)
to a vector of generalized voltages VT (ω) on the observation
plane [2]. The subscript T denotes the time windowed signal
for which a spectrum can be defined. The (m,n)-th element
Zmn of the generalized impedance matrix Z, relating the n-th
source-current to the m-th observation, is given by

Zmn (h, k) =
lZ0

4πk
e−jk
√

(xm−x′
n)

2+(ym−y′n)2+h2

×
[
g1 (xm − x′n, ym − y′n, h, k) (xm − x′n)

2

+ g2 (xm − x′n, ym − y′n, h, k)
]
, (3)

where Z0 is the free space wave impedance and k = 2πf/c0
is the wave number, c0 is the speed of light in vacuum. In (3),
we use g1 and g2 given by

g1 (x, y, z, k) = − 3j

|x|5
− 3k

|x|4
+
jk2

|x|3
, (4)

g2 (x, y, z, k) = −jk
2

|x|
+

k

|x|2
+

j

|x|3
, (5)

with |x| =
√
x2 + y2 + z2. In the following, let us consider

uncorrelated currents at a single frequency with unit variance.
Using the generalized impedance matrix Z assembled from
(3), we can propagate the electric field generated by the source
dipole currents to observation-planes at different heights hi.
The observations are related to the sources by

V hi

T (ω) = Z (hi, ω/c0) IT (ω) . (6)

The subscript T denotes the spectrum of time-windowed
signal. Figure 1 shows the amplitudes of the propagated

electric field at different heights hi for a single realization of
the stochastic source currents IT . To compute the stochastic
field an ensemble average of the propagation of different
realizations of IT has to be formed.

Fig. 1. |E|/|Emax| of the propagated EM field for a single realization of IT ,
normalized within each observation plane, at heights h0 = 0 mm, h1 = 10
mm, h2 = 30 mm, and h3 = 55 mm.

Since stochastic EM fields with Gaussian probability dis-
tribution can be described by second-order statistics, applying
auto- and cross correlation spectra, we use a MoM based prop-
agation scheme for correlation matrices using the deterministic
impedance matrix assembled from (3). Correlation matrices
for generalized voltages VT and generalized currents IT , as
defined in [2], can be obtained by the ensemble averages

CI (ω) = lim
T→∞

1

2T

〈〈
IT (ω) I†T (ω)

〉〉
, (7)

CV (ω) = lim
T→∞

1

2T

〈〈
VT (ω)V †T (ω)

〉〉
, (8)

where 〈〈·〉〉 denotes the ensemble average. Using (6), (7)
and (8), we obtain a propagation rule for the correlation
matrices [2], given by

Chi

V = Z (hi, ω/c0)CI (ω)Z† (hi, ω/c0) . (9)

For CI (ω) is equal to unity, which is the case for completely
uncorrelated source currents Im, we get

Chi

V = Z (hi, ω/c0)Z† (hi, ω/c0) . (10)

Using (3), the elements of the correlation matrix Chi

V (ω) can
be calculated by

Chi

V,mn (ω) =

N∑
ν=1

Zmν (hi, ω/c0)Z∗νn (hi, ω/c0) . (11)

A. Required PCs and Energy Considerations

We specify an array of source points, modeled by Hertzian
dipoles oriented in x-direction, on an m′ = 8 by n′ = 8
grid with a grid point spacing of ∆x′ = ∆y′ = 1 cm.
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Fig. 2. Number of dominant PCs vs. height of observation plane obtained
numerical propagation of the field-field correlations on a constant sized
observation grid, by estimation of field energy within the observation window,
and by far-field estimate based on transverse mode counting.

With all source dipole currents chosen to be uncorrelated,
the correlation matrix describing these sources is a 64 × 64
matrix of full rank. Hence, we require 64 PCs to account for
100% of the variance. We consider sampling grids at various
heights hi above the source plane where sample the Ex-field.
Figure 2 shows the estimated numbers of PCs to retain in
order to explain 99% of total variance for each height for
source excitations at 1 GHz and 10 GHz. To perform this
estimate on the number of PCs, we consider the total EM
field energy in each observation plane at z = hi. For this
estimation, we numerically propagate the field correlations
of the noisy sources and use a finely resolved grid on the
observation plane which considerably exceeds the 7× 7 cm2

area used for the sources at z = h0, such that effectively
all energy radiated into the observation plane at hi is also
sampled. The spectral energy density (SED) is closely related
to the autocorrelation spectrum for each field sampling point
on the observation plane. The EM field energy obtained by
integrating the energy density over the 7 × 7 cm2 area of
interest at z = hi is compared to the total energy on the
observation plane z = hi. This ratio between energy on the
7 × 7 cm2 area to total energy in the plane, gives a proper
estimate for the number of PCs to retain, in order to account
for 99% of total variation for each height hi.

Fig. 2 also shows the actual number of PCs which need to be
retained in order to account for 99% of the variance, and hence
also for 99% of the SED of the stochastic EM field, obtained
by performing PCA on the matrices Chi

V , given by (10). Here,
we consider sampling grids of the same size and resolution as
the source grid. For terminating the PCA algorithm after a
certain percentage of total variation we use the cumulative
percentage of total variance (CPTV) criterion from [18].

B. Transverse Coherence

With increasing distance from the source plane, which can
be considered an aperture, the number of PCs required to

explain the variance on a sampling grid of constant size
decreases, while at the same time the spatial angle observed,
and hence, the number of transverse modes to be resolved,
decreases as well. To estimate the number of PCs required for
explaining 99.9% of the variance at sampling grids at a height
z = hi and at height z = h0, we give an estimate on how
many transverse modes we can resolve on the given sampling
point grid. The EM field is originating from an aperture As.
This is a worst case estimate, i.e. indicating how many PCs
we will need at most to give an accurate description of the
correlation matrix. The estimate will be good in the far field
and we assume the transverse component of the propagation
vector k to be small in magnitude compared to its overall wave
number k0. The space angle containing one emitted mode is
given by Ωc = λ20/As, where λ0 = 2π/k0 and, for our case,
As = 7× 7 cm2. The number of transverse modes Ntr which
can be resolved in a distance r from the aperture on an area
As will be

Ntr =
A2
s

r2λ20
. (12)

For our numerical example, where only the Ex-field is sam-
pled, the number of transverse modes to be detected is Ntr/2.
Hence, at a distance r, the number of PCs required for a full
description of our correlation matrix is given by Ntr/2 while
at the same time the number of PCs in our estimate cannot
exceed the maximum rank of the correlation matrix, which is
in our example 64. The function

min(Ntr/2, 64) , (13)

plotted in Fig. 2, shows that it also provides a qualitative good
estimate for the maximum number of PCs required, however,
with some discrepancy which is not yet explained. At lower
frequencies, when the far-field assumption is less justified, the
number of PCs required may exceed the number from this
estimate based on counting transverse modes.

IV. EFFICIENT APPROXIMATION OF MEASURED DATA

The amount of data describing stochastic electromagnetic
fields obtained either by simulation or by measurement can be-
come burdensome. Besides estimating the number of indepen-
dent sources, PCA can be used for reducing the amount of data
significantly by only storing the most dominant eigenvectors
of a given set of correlation matrices. This must be done for
each frequency, which makes the PCA itself costly in terms of
computation time. Efficient PCA algorithms in terms of power
iterations exist [8]. We present results from an actual measure-
ment, obtained by two-probe scanning of a small FPGA board.
The tangential magnetic field components were measured on a
grid of 19×13 points with two probes simultaneously in time-
domain. Determining all correlations requires measurement
at about 30,000 point pairs. Subsequently, we calculated all
possible auto- and cross correlation functions and obtained
the correlation spectra by Fourier transform. Figure 3 shows
the cumulative spectral energy density of the field scanned
directly above the FPGA board, together with the number
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of PCs accounting for a certain percentage of total variance.
One can see, that for certain frequencies the first PC already
accounts for more than 80% of the total variation. By setting
a certain threshold for a percentage of variance to be retained,
we can adaptively reduce the amount of data to be stored, with
full control of the approximation error.

The savings in memory become significant, when we plot
the cumulative file-size over frequency, as shown Fig. 4.
The total file size was reduced from roughly 120 GB to
approximately 20 GB while preserving at least 90% of total
energy. The amount of data can be further reduced, allowing
for a greater error as a trade off. Thus, the total file size for
80% of total variation is about 11.8 GB and for 70% of total
variation we can compress down to 8.5 GB.

V. CONCLUSION

We investigated how the number of principal components
scales for different distances and frequencies. The number of
independent sources, that can be resolved at some distance

strongly depends on the size of the chosen observation grid.
Assuming a constant grid spacing for different distances, the
decrease in the number of resolvable stochastic sources can
be estimated by the ratio of the energy collected by the
observation grid to the total radiated energy. In addition, we
used PCA for reducing the complexity of a data set obtained
by two-probe scanning of a micro controller board and could
achieve substantial data storage savings.
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