TECHNISCHE
UNIVERSITAT
MUNCHEN

Fakultat fir Elektrotechnik und Informationstechnik
Lehrstuhl fiir Entwurfsautomatisierung
Univ. Prof. Dr.-Ing. UIf Schlichtmann

PhD-Thesis

Formalization and Model-Driven Support
of Functional Safety Analysis

Moomen Chaari

Lehrstuhl fiir Entwurfsautomatisierung
der Technischen Universitat Munchen

Formalization and Model-Driven Support
of Functional Safety Analysis

Moomen Chaari

Vollstandiger Abdruck der von der Fakultat fiir Elektrotechnik und
Informationstechnik der Technischen Universitat Miinchen zur FErlangung des
akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Gerhard Rigoll

Priifer der Dissertation:

1. Hon.-Prof. Dr.-Ing. Wolfgang Fcker
2. Prof. Dr.-Ing. Georg Sigl

Die Dissertation wurde am 05.03.2019 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultat fiir Elektrotechnik und Informationstechnik am
25.11.2019 angenommen.

PhD-Thesis

Institute of Electronic Design Automation

Univ. Prof. Dr. -Ing. Ulf Schlichtmann

Department of Electrical and Computer Engineering
Technische Universitat Miinchen

in Cooperation with

o _.
(Infineon
Infineon Technologies AG
IFAG DES DMF SVT SLM
Dr.-Ing. Matthias Bauer

Dipl.-Inf. Thomas Kruse
Prof. Dr.-Ing. Wolfgang Ecker

Author: Moomen Chaari

Abstract

Functional safety is a crucial aspect of system design and manufacturing, particu-
larly when human life is at stake. During the last two decades, evaluating systems
with respect to their safety integrity level has become a major topic among the re-
search community and within the industry. However, several challenges still persist
in the two essential contexts of functional safety evaluation, namely analysis on the
one hand and simulation on the other hand.

The focus of this thesis is functional safety analysis. It is addressed from three dif-
ferent perspectives: formalization, model-driven automation, and link to simulation.

First, to tackle informality and disorganization issues, traditional functional
safety analysis procedures such as Failure Modes, Effects, and Diagnostic Analysis
(FMEDA) and Fault Tree Analysis (FTA) are extensively studied and consequently
formalized through so-called metamodels. These metamodels are structured descrip-
tions of the analysis artefacts and the relationships between them.

Then, practical inconveniences encountered in the context of functional safety anal-
ysis are addressed. In fact, analysis data size is increasing in correlation with system
complexity. Subsequently, many analysis tasks, which are traditionally performed
manually by functional safety engineers, are becoming significantly cumbersome, so
that related human mistakes are occurring more and more frequently. With this re-
spect, metamodel-based formalization of safety analysis methods represents a robust
foundation to develop proper platforms and tools enhancing the automation, inter-
operability, and reuse levels. That is why, a manifold environment for model-driven
support of functional safety analysis is conceived, implemented, and applied as the
second pillar of this work.

Finally, reducing the gap between safety analysis on the one hand and fault injec-
tion and simulation on the other hand is the third central topic in this thesis. The
divergence between those two safety evaluation contexts is a major difficulty in the
safety lifecycle, as it prevents developers from ensuring data consistency and trace-
ability in a systematic and simple manner. To overcome this divergence, equivalences
and/or correspondences between data artefacts of both contexts are investigated in
this work. The perceptions and outcomes of this investigation are then used to de-
velop a semi-automated data mapping tool dealing with the syntactic and semantic
discrepancies between analysis and simulation.

Zusammenfassung

Funktionale Sicherheit ist ein entscheidender Aspekt beim Systementwurf, vor
allem, wenn das menschliche Leben beeintrachtigt werden kann. In den letzten zwei
Jahrzehnten ist die Auswertung von Systemen in Bezug auf ihre Sicherheitsintegritat
zu einem Hauptthema in der Forschungsgemeinschaft und der Industrie geworden.
Trotz der vielfaltigen Bemiihungen innerhalb dieses langen Zeitraums, gibt es
weiterhin Herausforderungen in den zwei wesentlichen Kontexten der funktionalen
Sicherheitsbewertung, namlich der Analyse auf der einen Seite und der Simulation
auf der anderen Seite.

Der Schwerpunkt dieser Arbeit ist die Analyse funktionaler Sicherheit. Sie wird aus
drei verschiedenen Perspektiven adressiert: die Formalisierung, die modellgetriebene
Automatisierung und ihre Verkniipfung zur Simulation.

Zuerst wurden im Rahmen dieser Arbeit traditionelle Methoden der
Sicherheitsanalyse, wie zum Beispiel “Failure Modes, Effects, and Diagnostic
Analysis” (FMEDA) und “Fault Tree Analysis” (FTA), umfassend untersucht. Um
die vorhandenen Formalisierungs- und Strukturierungsprobleme bei der Analyse zu
beseitigen, wurden diese Methoden durch so genannte Metamodelle beschrieben.
Diese Metamodelle dienen zur formalen Strukturierung der Analyseartefakte und
der Beziehungen zwischen ihnen.

Als zweites wurden technische Einschrankungen im Zusammenhang mit
funktionaler Sicherheitsanalyse untersucht. In der Praxis steigt die Analyse-
Datengrofle in Korrelation mit der Systemkomplexitdt. Dadurch werden viele
Analyseaufgaben, die in der Regel von Safety-Ingenieuren manuell durchgefiihrt
werden, wesentlich aufwandiger, so dass menschliche Fehler immer haufiger
auftreten. In dieser Hinsicht stellt die metamodellbasierte Formalisierung von
Sicherheitsanalysemethoden eine robuste Grundlage dar, um geeignete Plattformen
und Werkzeuge zu entwickeln, die die Automatisierung, die Interoperabilitdat und die
Wiederverwendung verbessern. Deswegen wurde eine umfangreiche Umgebung fiir
die modellgetriebene Unterstiitzung funktionaler Sicherheitsanalysen konzipiert und
umgesetzt.

Schliefflich ist die Verringerung der Liicke zwischen Sicherheitsanalyse einerseits
und Fehlereffektsimulation andererseits das dritte zentrale Thema in dieser Arbeit.
Die Divergenz zwischen diesen beiden Aspekten ist eine bedeutende Problematik

viil

im Sicherheitslebenszyklus, da sie die Systementwickler daran hindert, die
Datenkonsistenz und -riickverfolgbarkeit systematisch und einfach zu gewéhrleisten.
Um diese Divergenz zu iiberwinden, wurden in dieser Arbeit Aquivalenzen und
Beziehungen zwischen Datenartefakten beider Kontexte untersucht. Die Ergebnisse
dieser Untersuchung wurden dann verwendet, um ein halb-automatisches Werkzeug
zur Datenabbildung zu entwickeln, das sich mit den syntaktischen und semantischen
Diskrepanzen zwischen Analyse und Simulation beschéftigt.

X

Acknowledgment

I would like to thank, first and foremost, Prof. Dr.-Ing. Ulf Schlichtmann and
Prof. Dr.-Ing. Wolfgang Ecker for giving me the opportunity to accomplish my PhD
thesis at the Institute for Electronic Design Automation at the Technical University
of Munich in cooperation with the R&D department of Infineon Technologies AG in
Munich.

I owe my deepest gratitude to Prof. Dr.-Ing. Wolfgang Ecker for his continuous
support and his valuable guidance. This thesis would not have been possible without
his encouragement, assistance, and feedback throughout the last five years.

I also thank Prof. Dr.-Ing. Georg Sigl for being the second examiner and providing
me with valuable feedback about the thesis.

Furthermore, I am indebted to Thomas Kruse, Bogdan-Andrei Tabacaru, Cristiano
Novello, Leily Zafari, Michael Velten, Adalbert Perbandt, Christian Liick, Christian
Wiechert, Daniel Miiller-Gritschneder, and Matthias Bauer for their highly appre-
ciated support. Their hints and suggestions considerably helped me to fulfill the
purposes of my work.

My thanks are extended to all colleagues of the research project EffektiV from
whom I learned a lot about functional safety and with whom I shared an enjoyable
time.

Finally, I dedicate this thesis to all members of my family, especially to my dear
parents Abdelmajid and Mounira, to my beloved wife Amal, to my precious son
Adam, and to my cherished sisters Manel and Maissa.

Moomen Chaari
Munich, February 10, 2020

Contents

1

Introduction 1
1.1 Our Life in the Age of Electronics 2
1.2 Shifting from Functionality to Dependability 2
1.3 Functional Safety in the Automotive Context 4
1.3.1 General Overview of ISO 26262 5
1.3.2 Safety-Related Activities 6
1.3.3 Safety Analysis Approaches 8
1.3.4 Fault Injection Techniques 9
1.3.5 Correlations with Functional Verification 10

1.4 Motivation and Main Objectives 11
1.4.1 Motivation L 11
1.4.1.1 Informality and Subjectivity in Safety Analysis . . . 12

1.4.1.2 Costly Manual Tasks in Safety Analysis 12

1.4.1.3 Gap Between Safety Analysis and Fault Injection . . 13

1.4.2 Main Objectives 15
1.4.2.1 Formalization and Generalization 15

1.4.2.2 Tool-Based Support and Automation Enhancements 15

1.4.2.3 Link Between Safety Analysis and Fault Injection . . 16

1.5 Outline. 16
State of the Art 19
2.1 Functional Safety: A General Overview 19
2.1.1 Basic Concepts and Terms — IEC 61508 22
2.1.2 Application Areas and Related Standards 27

2.2 Automotive Functional Safety: ISO 26262 29
2.2.1 Overall Safety Lifecycle. 30
2.2.2 Hazard Analysis and Risk Assessment 33
2.2.3 ASIL: Automotive Safety Integrity Level 35
224 Safety Goals 36
2.2.5 Safety Concept and Safety Requirements 38
2.2.5.1 Functional Safety Concept 38

2.2.5.2 Functional Safety Requirements 39

2.2.5.3 Technical Safety Concept 40

2.2.5.4 Technical Safety Requirements 40

xiil

Contents

3

Xiv

2.2.6 Safety Validation
2.2.7 Safety-Oriented Analyses
2271 Goals
2.2.7.2 Application Scope
2.2.7.3 Classification Criteria
2.2.7.4 HAZOP: Hazard and Operability Study
2.2.7.5 FMEA: Failure Modes and Effects Analysis
2.2.7.6 FTA: Fault Tree Analysis
2.2.7.7 DFA: Dependent Failure Analysis
2.2.7.8 Other Analysis Approaches
2.2.8 Fault Injection and Simulation

Related Work
3.1 Formalization Approaches for Dependability and Safety
3.1.1 Proposals for Generic Dependability Modeling
3.1.2 FLM: Failure Logic Modeling
3.1.2.1 Failure Propagation and Transformation Notation . .
3.1.2.2 Failure Propagation and Transformation Calculus . .
3.1.2.3 Hierarchically Performed Hazard Origin and Propa-
gation Studies L.
3.1.3 Other Contributions
3.2 Safety Analysis Automation
3.2.1 Fault Tree Synthesis
3.2.2 FMEA Automation
3.3 Linking Analysis and Simulation for Safety Evaluation Purposes . . .
3.3.1 Assisting Fault Insertion with FMEA
3.3.2 Yogitech’s Approach

Overall Requirements and Solution Fundamentals

4.1 Overall Requirements L
4.1.1 Structure and Formalism
4.1.2 Flexibility and Extendability
4.1.3 Automation Support
4.1.4 Interoperability and Data Exchange
4.1.5 Enhanced Usability

4.2 Solution Fundamentals L.
4.2.1 Model-Driven Development
4.2.2 Metamodeling and Code Generation
4.2.3 Metasynthesiso
4.2.4 Data Transformation and Mapping

53
93
54
95
56
56

o7
o7
58
58
99
61
62
62

Contents

5 Metamodeling-Based Formalization of Functional Safety Analysis

5.1 Introductiono
5.1.1 Main Objectives
5.1.2 Technical Enablers
5.1.3 General Organization

5.2 MetaFPA: Metamodeling-Based Failure Propagation Analysis
5.2.1 Methodology Overview
5.2.2 Failure Logic Modeling Extensions
5.2.3 Metamodel for Failure Propagation Analysis

5.2.3.1 System Modeling Aspects
5.2.3.2 Failure Modeling Aspects
5.2.3.3 Further Metamodel Details

5.3 Metamodels for Functional Safety Analysis
5.3.1 Metamodel-Based FMEDA Formalization

5.3.1.1 Traditional FMEDA Flow
5.3.1.2 Traditional FMEDA Documentation
5.3.1.3 FMEDA Metamodel
5.3.2 Metamodel-Based FTA Formalization
5.3.2.1 Traditional FTA Flow and Documentation
5.3.2.2 FTA Metamodel
5.3.3 Metamodel-Based DFA Formalization
5.3.3.1 Traditional DFA Flow and Documentation
5.3.3.2 DFA Metamodel

Model-Driven Support of Functional Safety Evaluation
6.1 Introduction
6.1.1 Main Objectives.
6.1.2 Underlying Environment
6.1.3 General Organization
6.2 MetaFPA Framework for Failure Propagation Analysis
6.2.1 General Setting
6.2.2 MetaFPA GUIL
6.2.3 Failure Propagation Graphs Generator
6.2.3.1 Output Format
6.2.3.2 Generation Algorithm
6.2.4 Synergies with FMEDA and FTA
6.3 Safety Analysis Metalibs
6.3.1 FMEDA Metallib
6.3.1.1 General Setting
6.3.1.2 Failure Modes Database
6.3.2 FTA Metalib
6.3.2.1 General Setting

XV

Contents

6.3.2.2 Transition from MetaFPA to Fault Trees 138

6.3.2.3 Fault Tree Synthesis 139

6.4 SaVer: Safety Verification Framework 143
6.4.1 General Setting Lo 144

6.4.2 SaVer GUL. 147

6.4.3 Mapping between Safety Analysis and Fault Injection 148

6.4.3.1 Mapping Flow 149

6.4.3.2 Matching Algorithms 151

7 Application 155
7.1 OVErVIEW o o o e 155
7.2 Fault Tree Synthesis at System Level 156
7.2.1 Case Study: Electric Power Steering 157

7.2.1.1 Introduction: Electric Power Steering (EPS) Systems 157

7.2.1.2 EPS Failure Analysis: Literature Review 159

7.2.1.3 Considered EPS Subsystem Structure 161

7.2.2 Application Flow 162

7.2.2.1 Structure Model of EPS in MetaFPA 163

7.2.2.2 Failure Logic Model of EPS in MetaFPA 163

7.2.2.3 Applying the Synthesis Algorithm 164

7.3 Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes165
7.3.1 Case Study: Microprocessor with MIPS Architecture 166

7.3.1.1 Introduction: MIPS Architecture 167

7.3.1.2 Considered NanoMIPS CPU Model 169

7.3.1.3 Microprocessor Failure Modes: Literature Review . . 170

7.3.2 Application Stepso 173

7.3.2.1 Data Mapping from FMEDA to Fault Injection . . . 174

7.3.2.2 Fault Library Generation 175

7.3.2.3 Back-Annotation 175

8 Summary and Outlook 177
Bibliography 183
9 Glossary 197
10 Acronyms 211

Xvi

List of Tables

2.1
2.2
2.3
24
2.5

2.6
2.7
2.8
2.9

2.10
2.11

5.1
5.2
2.3
5.4

6.1

7.1

Selected Definitions of IEC 61508 — Safety terms [1] 24
Selected Definitions of IEC 61508 — Equipment and devices [1] 24
Selected Definitions of IEC 61508 — Systems (general aspects) [1] . . . 24
Selected Definitions of IEC 61508 — Systems (safety-related aspects) [1] 25

Selected Definitions of TEC 61508 — Safety functions and safety in-

tegrity [1]o 25
Selected Definitions of IEC 61508 — Fault, failure, and error [1] 25
Selected Definitions of IEC 61508 — Lifecycle activities [1] 26
Selected Definitions of IEC 61508 — Confirmation of safety measures [1] 26

Classes of Severity, Classes of Probability of Exposure, and Classes of

Controllability in ISO 26262 [2] 34
ASIL Determination Table in ISO 26262 [2] 36
Classification of Safety Analysis Methods [3] 45
Typical ISO 26262 Metrics Derived as FMEDA Results [2] 99
Example of FMEDA Table [3] 100
Overview of Logic Gatesin FTA 104
Example of a DFA Table 111
Mapping Between Safety Analysis Artefacts and Relevant System El-

ements for Fault Injection and Simulation 151
Failure Mode Examples of Microprocessor Components 173

xXvil

List of Figures

1.1
1.2

1.3

2.1
2.2
2.3
24

4.1
4.2
4.3

5.1

2.2
2.3
0.4
2.5
5.6
5.7
2.8
2.9

5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2
6.3

General Overview of ISO 26262 [2] 6
Overview of Safety-Related Activities in ISO 26262: Concept, System,

Hardware, and Software Levels [2] 7
The Gap Between the Different Perspectives of Safety Evaluation . . 14
The Overall Safety Lifecycle in IEC 61508 [1,4] 23
Overview of Functional Safety Standards 27
Safety Lifecycle in ISO 26262 [2] 31
Overview of Safety Requirements in ISO 26262 [2] 39
Model-Driven Architecture Overview [5, 6, 7] 72
Object Management Group Metamodeling Layers [5, 8,9] 74
Template-Based Code Generation using Metamodeling [5, 10] 76
Failure Logic Modeling as a Bridge between Classical Safety Analysis

and Fault Injection and Simulation 85
Basic Idea of the MetaFPA Approach [11] 86
Overview of the MetaFPA Methodology [11] 88
Example of Generated Failure Propagation Graph using MetaFPA . . 89
Simplified Metamodel for Failure Propagation Analysis 91
Overview of Functional Safety Analysis in the Automotive Context . 95
Flowchart of Basic FMEDA Steps [3] 98
Simplified FMEDA Metamodel for ISO 26262 Safety Analysis [3] . . . 101
Correspondence between the FMEDA Metamodel and the Traditional

FMEDA Flow and Documentation 102
Example of a Fault Tree Extract [2] 103
Flowchart of Basic FTA Steps 105
Simplified FTA Metamodel [12] 107
Flowchart of DFA Steps 109
Differences between Cascading Failures and Common-Cause Failures [2] 110
Simplified DFA Metamodel 112
Basic Metagen Framework [5] 116
Role of the Mako Template Engine in the Metagen Framework [5] . . 117

Overview of the MetaFPA Framework for Failure Propagation Analysis 119

Xix

List of Figures

XX

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18
6.19
6.20
6.21

6.22
6.23

7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9

Snapshot of the Graphical User Interface of the MetaFPA Framework 122

Overall Architecture of the WBS and of the Contained BSCU [13] . . 123
MetaFPA Structure Model of the Braking System Control Unit (BSCU)124
Examples of Braking System Control Unit Failures 125

Example of Generated Failure Propagation Graph (BSCU Use Case) 127

Linking Top-Down & Bottom-Up Safety Analysis through MetaFPA [12]130
Approach Overview of Model-Based FMEDA [3] 132
Framework for Model-Based FMEDA Automation [3] 134
Metamodel-Based Structure of Failure Modes Database 135
SQL Management of Failure Modes Database 136
Overview of the FTA MetaLib and its Link to the MetaFPA Framework137
Transition from MetaFPA to FTA — Basic Concepts 138
Snapshot of the Graphical User Interface in the FTA Metalib 142
Simplified Extract of Generated XML File in Compliance with the

XML Schema of Isograph’s Reliability Workbench 142
Safety Evaluation Basic Element Groups 144
Overview of the Safety Verification Framework SaVer [14] 145
Basic Qt Graphical User Interface for the SaVer Framework 146
Snapshot of the Eclipse Graphical User Interface for the SaVer Frame-

WOTK . . . e 148
Simplified Metamodel of System Architecture 150
General Mapping Approach 152
Application of Infineon Magnetic Position Sensors in EPS Systems [15] 158

Potential Faults of a 3-Phase Voltage Source Inverter Used in an EPS

System [16] 160
Electric Power Steering (EPS) Subsystem Diagram [17] 162
Simplified EPS Subsystem Structure 163
Synthesized Fault Subtree for EPS Self-Steering 165
Simplified Diagram of Pipelined MIPS Architecture [18] 168
Highly Abstracted Block Diagram of NanoMIPS Architecture 170
Block Diagram of NanoMIPS Architecture [19] 171
Application Example: Link Between Safety Analysis and Fault Simu-

lation of NanoMIPS CPU Model [14] 174

1 Introduction

“Whenever the reliability of a product affects human life, the reliability problem be-
comes part of a larger issue called safety’ [20]. This statement has already been made
in the late 1970s. However, even today, it still summarizes the difference between re-
liability and safety in a very concise way.

Reliability is a non-functional property qualifying the continuity and stability of
the correct service for a certain product. Along with availability, security, safety,
and other properties, reliability is one of the so-called dependability attributes. In
a nutshell, products are considered dependable if the services they deliver can be
justifiably trusted [21].

It goes without saying that almost no customer would buy a product if the required
service is prone to undesired interruptions, or worse if it is expected to become com-
pletely dysfunctional after a short usage time. Nevertheless, it is obviously unaccept-
able that the product continues to deliver its intended service when the user(s) or
the environment may be endangered. In such cases, functional safety has priority. In
other words, interrupting the primary product functionality and/or transitioning to
a safe state for all those affected is mandatory.

The question whether and to which extent a product needs to be qualified as func-
tionally safe depends closely on the application areas where it is deployed. Several
domains, where human life is significantly exposed, such as medical electronics, avion-
ics, and automotive are considered safety-critical. For such domains, stringent norms
and standards prescribe the guidelines which must be followed to ensure functional
safety. It is actually required to conduct a range of assessment, analysis, and verifica-
tion procedures throughout the production stages, from the early conceptual design
to the late physical testing.

In this work, functional safety of electrical /electronic systems is considered. Thus,
the remainder of this introductory chapter is organized as follows. First, the om-
nipresence of electronics in everyday life is emphasized in Section 1.1. Then, a brief
introduction into dependability terms and concepts with respect to E/E systems is
given in Section 1.2, with a clear focus on safety aspects. Although the theoretical
basis of this thesis is not limited to a specific application domain, many of the exam-
inations, perceptions, and approaches it contains are motivated by the deployment
of E/E systems in automotive applications. Therefore, Section 1.3 provides a general

1 Introduction

overview of functional safety topics in the automotive context. In Section 1.4, the
motivation behind this work as well as its main objectives are elaborated. Finally,
the organization of the thesis is given in Section 1.5.

1.1 Our Life in the Age of Electronics

Nowadays, our daily life is marked by the omnipresence of electrical /electronic devices
and systems. We need them to access information, communicate with others, and
conveniently perform ordinary household chores. We can also use them to make
easier payments, flexibly check our health status, or simply occupy our free time with
new forms of entertainment. Moreover, mobility is a key aspect which is considerably
affected by electronics. Modern cars, trains, planes, etc., rely to a large extent on E/E
systems. Hence, it is undeniable that electronics changed our lifestyle and simplified
it in multiple ways.

However, this ubiquity of electronics raises many questions about potential negative
effects they might have. Can we really trust such devices and to which extent should
we allow ourselves to rely on them? How may they affect our health conditions, our
safety, and our security?

Such concerns have been extensively addressed in the past, but they still represent
a persistent preoccupation for designers and manufacturers of E/E systems. In fact,
on top of traditional issues related to functionality, efficiency, and convenience, extra
properties must be guaranteed. These are mostly referred to a as dependability or
robustness properties.

1.2 Shifting from Functionality to Dependability

As already briefly mentioned above, proving that a system is operational, in the sense
that it delivers the service which is expected from it, is not enough anymore. In fact,
the delivered service, which is commonly defined as the “system behavior as it is
perceived by other systems, the user, or the environment” [21], must be trustworthy
with respect to continuous correctness over time (reliability), absence of catastrophic
hazards (safety), ability to resist external attacks (security), etc. This set of non-
functional system properties (availability, reliability, safety, security, etc.) is referred
to in the literature and also within the industry as system dependability [21].

Dependability topics have been gaining more importance in the academia since the
1990s, particularly in research fields related to E/E (electrical/electronic) systems.
They also became progressively a major concern for the multiple industries relying

1.2 Shifting from Functionality to Dependability

on E/E systems such as telecommunications, robotics, avionics, and automotive. The
semi-conductor industry, being a key supplier for these industries, is subsequently en-
countering dependability-related challenges and investigating the most appropriate
approaches to overcome them. Such challenges are even bigger, when the manu-
factured chip is part of a safety-critical product, where failures have an imminent
harmful effect on human lives: a scenario becoming more and more frequent. In fact,
it is nowadays hard to find a safety-critical product which does not include integrated
circuits. Cars, planes, surgical robots, and countless other sorts of products rely on
the functionality of the chips they contain.

Beyond the widespread deployment of integrated circuits in consumer products,
the evolution of chip technologies over the years and their new physical properties
bring dependability issues into focus too.

Due to the increasing integration density of modern chips, a miniaturization trend
of electronic components has been witnessed throughout the last decades. As a result,
electronic-based products became smaller and subsequently much more accessible and
affordable for a large customer range. Obviously, these technology trends represent
considerable benefits for chip manufacturers in terms of market opportunities, rev-
enue, and profit margins. Nevertheless, several issues emerged as a result of the
miniaturization trend.

In fact, smaller technology nodes bring considerable challenges with them. Con-
quering the increasing complexity while keeping development and implementation
costs at a low level is a difficult dilemma for which appropriate trade-offs must be
identified. Furthermore, there are undeniable physical drawbacks of higher integra-
tion densities. A small electronic device consumes certainly less power. However,
the exponential growth of device count per mm? leads to a drastic increase of power
density and subsequently to rising temperatures [22]. A common mitigation mea-
sure for this issue is the usage of reduced voltages, which leads though to another
problem from a robustness perspective. Indeed, voltage scaling is correlated with
the susceptibility to radiation, which has an impact on circuit integrity, along with
other degradation effects such as negative-bias temperature instability (NBTI) and
hot-carrier induced degradation (HCID) [22].

Hence, chip manufacturers are nowadays confronted with the evident fact that
highly-integrated circuits suffer from an increasing vulnerability to faults which might
be induced by the surrounding environment or by aging effects. So it is necessary to
thoroughly analyze the occurrence of such faults, assess their impact on the overall
system dependability, and develop the appropriate counter-measures to detect and/or
correct them.

To summarize, technology advancements and diversified applications of integrated
circuits forced manufacturers to shift from focusing only on traditional concerns such

1 Introduction

as functionality and cost to a more comprehensive mindset which includes (i) iden-
tifying dependability properties that need to be fulfilled, (ii) understanding depend-
ability threats and reasons behind them, and (iii) applying necessary activities to
ensure and/or prove dependability.

The dependability scope is obviously too large to be covered by a single work, that
is why the primary focus of this thesis is one specific dependability attribute, namely
safety. Moreover, automotive is one of the largely affected application domains by the
importance of safety evaluation, therefore, a brief introduction of functional safety
topics in the automotive context is given in Section 1.3.

1.3 Functional Safety in the Automotive Context

Section 1.2 gave an overview about dependability and emphasized its importance
with respect to E/E systems in a generic way. The major concrete reflections of
dependability concerns in the automotive context are related to one specific depend-
ability attribute: safety, commonly defined as “the absence of harmful failures for
the human users and the environment of a product”. Safety shall not be confounded
with security which is rather the “absence of unauthorized access and/or handling of
data” [21]. There is in fact a simple way to distinguish between both aspects. On
the one hand, safety deals with protecting the environment from the system, more
precisely from the system failures. On the other hand, security deals with protecting
the system from the environment, more concretely from the malicious attacks coming
from the outside.

So, how to create an E/E system which is trustworthy with respect to safety? In
other words, how to create a product which is considered functionally safe? Prob-
ably, the first answer that comes to mind is: “through hardening the system with
safety measures”. This is however just one aspect of the solution. Perceptions from
the industrial practice lead to a much more generic answer: “through tailoring and
enhancing the complete manufacturing flow”.

In fact, system manufacturers, as well as all relevant suppliers, are responsible for
including state-of-the-art safety-related activities into the conception, design, devel-
opment, and production flow, applying them to a sufficient extent in compliance with
the relevant standards, and providing adequate evidence about that. Furthermore,
the outcomes of safety-related activities must be documented in order to demon-
strate whether and /or how the product meets all safety requirements and ensures the
intended safety level. Only then, the system can be qualified as safety compliant.

In the automotive context, ISO 26262 (“Road vehicles - Functional safety”) [2]
is the dedicated standard which (i) describes the safety lifecycle of an automotive

1.3 Functional Safety in the Automotive Context

system, (ii) prescribes the set of activities and guidelines that shall be followed to
ensure safety compliance, and (iii) addresses analytical and experimental approaches
to evaluate safety integrity levels and provide evidence to substantiate them.

The remainder of this section is organized as follows. First, Subsection 1.3.1 gives
a general overview of the ISO 26262 standard. Then, the different safety-related ac-
tivities, which are prescribed by the standard, are enumerated in Subsection 1.3.2.
As this thesis focuses essentially on functional safety analysis, Subsection 1.3.3 pro-
vides a brief presentation of the different analysis approaches that the ISO 26262
standard addresses. Subsection 1.3.4 gives a general insight about fault injection,
another important aspect of safety evaluation that is addressed by the standard and
also relevant for this work. Finally, Subsection 1.3.5 explains the correlations between
safety analysis, fault injection, and traditional functional verification with respect to
the ISO 26262 standard.

1.3.1 General Overview of ISO 26262

ISO 26262 is an international functional safety standard addressing electrical and/or
electronic (E/E) systems which are contained in production vehicles. It is defined
by the International Organization for Standardization (ISO). The first edition of ISO
26262 has been published in 2011 and its second edition in 2018.

The complete lifecycle of automotive E/E systems is covered by ISO 26262 across
the ten parts it contains. The composition of the standard is illustrated in Figure 1.1.

ISO 26262 comprises a number of rather generic parts, namely:
e Part 1 (“Vocabulary”) defining the terminology used across the standard,

e Part 2 (“Management of functional safety”) giving guidelines on how to manage
safety-related activities during the product lifecycle,

e Part 8 (“Supporting processes”) addressing specific tasks such as documentation
and tool qualification,

e Part 9 (“ASIL-oriented and safety-oriented analyses) explaining Safety Integrity
Levels (ASILs) ranging from A to D and describing common safety analysis
techniques such as Failure Modes and Effects Analysis (FMEA) and Fault Tree
Analysis (FTA), and

e Part 10 (“Guideline on ISO 26262”) including some illustration examples on
the different procedures.

On top of the generic parts mentioned above, ISO 26262 addresses (i) the “Concept
phase” in Part 3 where the safety requirements are elicited and the safety lifecycle is

1 Introduction

| 1. Vocabulary |

2. Management of functional safety
‘ ’ 2-6 Safety management during the concept phase and the ‘ ’ 2-7 Safety management after the item’s release for ‘

’ 2-5 Overall safety management

product development production
3. Concept phase 4. Product development at the system level 7. Production and operation
I 3-5 Item definition 4-5 Initiation of product development at I 4-11 Release for production I 7-5 Production I
the system level

[3-6 Initiation of the safety lifecycle 7-5 Operation, service (maintenance and

repair), and decommissioning ‘

4-6 Specification of the technical safety

3-7 Hazard analysis and risk it —
I lazard analysis and risk assessmen e ‘ I 49 Safety validation

J]
] [4-10 Functional safety]
l |
')

[3-8 Functional safety concept
[4-7 System design] [4-8 Item integration an testing
5. Product development at the | 6. Product development at the
hardware level software level

5-5 Initiation of productdevelopment at the 6-5 Initiation of product development at the
hardware level software level
5-6 Specification of hardware safety 646'Specification of software safety
requirements) requitements
5-7 Hardware design / (67 Soﬁ\qare architectural design
5-8 Evaluation of the hardware archif 6-8 Software unit design and implementation
metrics 6-9 Software unit testing
5-9 Evaluation of the safety goal violations 6-10 Software integration an testing
due to random hardware failures 6-11 Verification of software safety
5-10 Hardware integration and testing requirements

8. Supporting processes

8-5 Interfaces within distributed developments 8-10 Documentation

8-6 Specification and management of safety requirements 8-11 Confidence in the use of software tools
8-7 Configuration management 8-12 Qualification of software components
8-8 Change management 8-13 Qualification of hardware components
8-9 Verification 8-14 Proven in use argument

9. ASIL-oriented and safety-oriented analyses

I 9-5 Requirements decomposition with respect to ASIL tailoring I I 9-7 Analysis of dependent failures I
[9-6 Criteria for coexistence of elements | | 9-8 Safety analyses |

10. Guideline on 1SO 26262

Figure 1.1: General Overview of ISO 26262 2]

initiated, (ii) the “Product development” in Parts 4, 5, and 6, and (iii) the “Produc-
tion and operation” phase in Part 7 including service and decommissioning too.

Most emphasis in the ISO 26262 is on the product development phases, first at
system-level in Part 4, then at hardware level in Part 5, and finally at software level
in Part 6. It should be noted that the standard uses a V-model as reference for product
development and that this model does not only apply to the complete system level
in a holistic way but also separately for the hardware and software levels [2, 23].

1.3.2 Safety-Related Activities

The primary purpose of safety-related activities throughout the product lifecycle is
to ensure the “absence of unreasonable risk”, where a risk is the combination of (i)
the occurrence probability of a physical injury or damage to human health, referred

1.3 Functional Safety in the Automotive Context

to as harm, with (ii) the severity of that risk [2]. In other words, the residual risk
that the final product would endanger human life must be sufficiently negligible.

Figure 1.2 gives an overview of some safety-related activities described in the ISO
26262 standard and particularly relevant for the scope of this thesis. Figure 1.2 also
illustrates the distribution of safety-related activities over the requirements, design,
and test phases of the product lifecycle and the interconnections between them.

Requirements phases Design phases Test phases

}

3-7 Safety goals = 1 3-5 Item definition ‘I 4-9 System safety validation J

i Functional . L
. System 3-8 Functional safety 3-8 Preliminary - . .
i :fn?e, " safety requirements / architectural assumptions 4-8 Vehicle integration testing
H P requirements 7

1 Technical gaoicciicalatEty 4-7 System design : 4-8 System integration testing
H

1 safety requirements .
| concept —H—’ /7 u I : p

5-6 Hardware safety 5-10 Hardware integration

requirements /1 5-7 Hardware design testing

7
6-6 S_oftware safety 6-7 Software _6-10 So_ftware 6-11 Software
requirements at architectural desion integration safety

% / - ﬁ_gry testing verification
6-6 Software safety re
requirements at unit 6-8 Software unit design 6-9 Software unit testing
level p
L 7

@ Requirements and design flow Requirements, design and test interaction

Figure 1.2: Overview of Safety-Related Activities in ISO 26262: Concept, System,
Hardware, and Software Levels [2]

The starting point is a so-called hazard analysis and risk assessment procedure
which identifies hazards and hazardous events that need to be prevented, mitigated,
or controlled (more details in Subsection 2.2.2). For each hazardous event, a safety
goal is formulated and assigned an Automotive Safety Integrity Level (ASIL) based
on specific criteria (see Subsections 2.2.3 and 2.2.4 for more details).

After that, the functional safety concept, which allocates functional safety require-
ments to preliminary architectural assumptions, is derived as a statement of the
safety functionality needed and/or expected to achieve the safety goals (see Sub-
section 2.2.5.1).

Then, the technical safety concept, which maps technical safety requirements to
system design elements, evolves during the product development phase as a statement

1 Introduction

of how the safety functionality is implemented on the system level by hardware and
software (see Subsection 2.2.5.3).

Similar activities are performed later on at hardware and software levels to state
the specific hardware and software safety requirements which will be concretely im-
plemented within the hardware parts or the software units.

Defining safety requirements and ensuring that they are concretely implemented
within the product is necessary but not sufficient. Similarly to traditional design
flows where functionality features must be verified, the safety lifecycle prescribed by
the ISO 26262 standard includes several dedicated activities to assess, verify, and test
the fulfillment of safety requirements.

Within the design phases at system, hardware, and software levels, a set of safety
evaluation activities shall be applied. In the context of this thesis, safety evaluation is
the generic term used to denote both analysis-based activities (see Subsection 1.3.3)
and simulation-based activities (see Subsection 1.3.4) which are commonly applied in
the industry to provide evidence about the safety level of a certain product.

In the ISO 26262 context, additional safety-related activities are applied during
the test phases. Once the integration and testing tasks are completely performed
at hardware, software, and system levels, the final vehicle integration and testing is
executed. Before moving forwards with the mass-series production, an extra activity
called safety validation must be conducted to prove the correctness and sufficiency of
the safety requirements and of the safety measures that have been implemented at
the underlying levels (more details in Subsection 2.2.6).

1.3.3 Safety Analysis Approaches

As already mentioned above in Subsection 1.3.2, safety analysis represents one of
two key aspects of safety evaluation activities, which are applied during the product
development phases and more precisely at design stages.

Safety analysis is an extensive procedure which starts by listing all potential risks,
whose causes and effects are subsequently identified. Evaluating the severity of all
failure effects with respect to the overall safety level is also part of the analysis.

Depending on the stage at which the analysis is performed, counter-measures to
the identified dangerous failure effects might be completely absent (e.g., at early
concept level). In this case, the primary responsibility of the analyst is to raise a flag
about the necessity of undertaking action by the designers. If the analyst disposes
over sufficient design knowledge, he or she can potentially identify appropriate safety
measures and give a recommendation to include them in the design.

1.3 Functional Safety in the Automotive Context

When the analysis is performed at a late stage of the safety lifecycle, then it is
expected that adequate safety measures are already in place. The analysis has then a
quantitative character in the sense that safety metrics (overall failure rate, diagnostic
coverage values, safeness, etc.) are derived as an outcome of the procedure.

There are different analysis methods and techniques which are classified in the
standard according to multiple criteria. For example, it is commonly differentiated
between deductive and inductive approaches. A deductive analysis is performed top-
down starting from problematic situations on system-level, and looking for the cor-
responding causes in the components. On the contrary, inductive analyses start
bottom-up from local component malfunctions moving towards the corresponding
effects on the complete system.

Many methodologies are addressed by the standard, for example Failure Modes and
Effects Analysis (FMEA), Fault Tree Analysis (FTA), Reliability Block Diagrams
(RBDs), and Dependent Failure Analysis (DFA).

Being the core topic of the thesis, safety analysis and its state of the art are exten-
sively studied in a separate Subsection (2.2.7).

1.3.4 Fault Injection Techniques

Subsection 1.3.3 introduced safety analysis methodologies, where incorrect behaviors
and undesired malfunctions and failures are inspected and analyzed based on more
or less abstract representations of the considered system without any alterations. In
addition to safety analysis, safety evaluation activities have a second key aspect at
design levels. It is simulation-based and consists in the so-called fault injection.

Fault injection, an approach that has been widely applied during the last decades,
is commonly defined as the deliberate insertion of faults into a system. The system
in question is then monitored to determine its behavior in response to the intro-
duced faults. In the ISO 26262 context, it is highly recommended for the two upper
Automotive Safety Integrity Levels ASIL C and D to perform fault injection.

Technically, fault injection requires the (i) determination of appropriate injection
spots in so-called sensitivity zones, where deficiencies are likely to have an impact
on system safety, (ii) the specification of corresponding observation and diagnostic
points, and (iii) the deployment of appropriate workloads.

Simulating system models which have been altered through fault injection cam-
paigns makes it possible to experimentally provide evidence with respect to the safety
level. In fact, system reactions are monitored through the observation points to iden-
tify the effects of the respectively injected faults on the overall safety and consequently
confirm or refute analysis assumptions about their severity. Furthermore, faults de-

1 Introduction

tection and /or correction mechanisms are evaluated by measuring the diagnostic cov-
erage values, which correspond to the percentage of captured faults at the diagnostic
points out of all injected faults. The measured values are then either a validation of
analysis assumptions or a trigger for necessary design hardening measures.

More details about fault injection and the different techniques that are applied to
perform it are given in Subsection 2.2.8.

1.3.5 Correlations with Functional Verification

Subsections 1.3.3 and 1.3.4 respectively introduced the two major aspects of functional
safety evaluation in the ISO 26262 context, namely safety analysis on the one hand
and fault injection and simulation on the other hand.

Certainly, the ISO 26262 standard addresses these activities within the safety lifecy-
cle and defines the work products which are expected from them quite independently
from other activities. However, it does not prescribe their separation from the tra-
ditional development activities. On the contrary, it is common to find references to
well-known development work products such as the design specification, the testing
plan, or the wverification report.

That is why, this subsection, investigates potential relationships of functional safety
evaluation to functional verification.

It is necessary to acknowledge that there is no clear agreement within the ISO
26262 community and across the affected industries on whether those safety evalua-
tion activities (analysis-based and simulation-based) can be aligned with traditional
functional verification activities and/or integrated with them. This is actually the
reason to use the term “evaluation” rather than “verification” when referring to the
combination of both aspects.

Traditional functional verification is used to ensure that requirements have been
met [24]. This holds obviously for functional safety evaluation too, as it is used
to qualify the fulfillment of safety requirements. Nevertheless, when it comes to
safety, the requirements that must be fulfilled go beyond the basic functionality of
the considered system. They include the ability to monitor and control safety hazards,
so that the safety measures implemented on top of the nominal functionality must be
verified. Furthermore, while functional verification deals with inspecting functionality
features within the normal conditions and constraints for which the system has been
developed, functional safety evaluation requires to consider abnormal and off-nominal
conditions too. Hence, the process of traditional functional verification is not sufficient
to cover safety requirements and needs several enhancements to be so.

When it comes to safety analysis outcomes, a potential assimilation to functional

10

1.4 Motivation and Main Objectives

verification plans might seem reasonable. In fact, to create a verification plan, knowl-
edge about the functionality requirements and the design specification is needed.
Based on this knowledge, appropriate regression data is created in order to be used
during the verification itself. This regression data is a set of input values and corre-
sponding reference output values reflecting the intended functionality.

Certainly, similar knowledge about requirements and design is expected from the
safety analyst. However, it must be extended with an understanding of safety threats,
underlying physical root causes, and appropriate counter-measures. Moreover, the set
of data that the analyst creates, putting together potential failure modes, resulting
failure effects, and accordingly assigned safety measures is just an intermediate step
to a work product that can be later on assimilated to the regression data of the
functional verification plan, namely a fault list to be injected into the design.

Thus, although the safety evaluation and the functional verification contexts are
intrinsically related, it is not easy to mix them from a procedural perspective. It
might however be beneficial to progressively bring safety evaluation activities into the
traditionally used platforms for functional verification. This will certainly simplify the
data exchange and reuse across both contexts. Some Electronic Design Automation
(EDA) vendors are already working on such an approach, such as Cadence whose
tool called “IFSS: Incisive Functional Safety Simulator” is aimed to enable the usage
of sophisticated test benches to control the fault injection campaigns, support the
debug process, and tackle efficiency challenges caused by using a modified Device
Under Test (DUT) or a different simulation engine [25].

1.4 Motivation and Main Objectives

1.4.1 Motivation

As already mentioned in the previous subsections, the focus of this thesis is functional
safety of E/E systems. Its particular significance in industrial applications, including
automotive, is one of the key motivations of this work. Automotive suppliers, such
as system and chip manufacturers, are also concerned by functional safety topics and
play an important role in ensuring the targeted safety level.

In Subsections 1.3.2, 1.3.3, and 1.3.4, the two major functional safety evaluation
aspects in the automotive context are explained. On the one hand, safety analy-
sis is always required. On the other hand, fault injection and simulation is highly
recommended for the most stringent safety integrity levels.

Appropriate procedures for functional safety evaluation are already in use across the
development flow in compliance with the ISO 26262 standard guidelines. However,

11

1 Introduction

practical experience shows that there are still opportunities for further enhancements
with respect to the efficiency of those procedures. Investigating those opportunities,
especially with respect to the analytical aspect of the evaluation, is a key motivation
point for this work.

Indeed, three essential challenges related to safety analysis are addressed in this
thesis. First, analysis procedures and documentation structures are described in an
informal way, making their understanding and deployment rather difficult (see Subsec-
tion 1.4.1.1). Then, several manual tasks are still required for safety analysis resulting
in high costly and time-consuming efforts (more details in Subsection 1.4.1.2). Finally,
an organizational and procedural gap persists between safety analysis on the one hand
and fault injection and simulation on the other hand (see Subsection 1.4.1.3).

1.4.1.1 Informality and Subjectivity in Safety Analysis

One of the key issues in safety analysis is the frequently used informal description style
for process steps, involved data artefacts, and underlying documentation structure.
Such inconveniences make the analysis tedious and error-prone.

In fact, despite the considerable amount of research papers, practice reports, and
even industry standards dealing with safety analysis, there is no concise and bind-
ing formal description of its scope, flow, and documentation structure. There is of
course a common understanding about how the analysis shall be conducted and which
data it must include. But the details remain open for interpretation resulting into
the fact that safety analysis is often considered as a subjective human assessment.
Consequently, safety analysts are tempted, even among the same organization, to
adopt different analysis styles and data management schemes, as long as they remain
compliant with the overall guidelines.

As a result, safety analysis work flows and products suffer from serious deficien-
cies with respect to structure, formality, and clearness. Moreover, systematic data
exchange and reuse in the context of safety analysis remains limited because of the
overhead efforts of transferring knowledge and understanding from one analyst or
organization to another. In addition to that, the lack of formalization represents
a major obstacle to implementing dedicated software tools for safety analysis with
automation and systematic data processing capabilities. Thus, the costly manual
character of the analysis procedure persists.

1.4.1.2 Costly Manual Tasks in Safety Analysis

Safety analysis is certainly a complex procedure which requires (i) comprehensive
prior knowledge about the field, the design practices, and the application scenarios,

12

1.4 Motivation and Main Objectives

(ii) extensive brainstorming to identify safety threats, predict their impact, and assess
their severity, as well as (iii) accurate calculation of safety-related metrics.

Traditionally, all safety analysis tasks are performed manually, leading to high
effort and time costs. With the increasing complexity of the systems to be analyzed,
the lengthy process becomes very inefficient and might lead to delivery and tape out
delays. In today’s industrial applications, fault trees consist of hundreds of nodes and
failure modes and effects tables extend over thousands of lines. Such data sizes make

the creation, exploration, and maintenance of safety analysis artefacts particularly
hard.

The manual character of safety analysis has another negative aspect with respect
to the data consistency and accuracy. Despite the careful and intensive work of safety
engineers and analysts, mistakes cannot be excluded. Until now, a mandatory review
has been the mitigation for such risks. However, because of the already mentioned
complexity levels, the review is another delay factor and still cannot definitely guar-
antee the correctness and consistency of the outcome.

1.4.1.3 Gap Between Safety Analysis and Fault Injection

Safety analysis and fault injection are both required for functional safety evaluation
of E/E systems whose safety integrity levels are expected to be particularly high.
Nevertheless, there is still no established technique for systematic data exchange
between them.

The differences between safety analysis and fault injection in terms of requirements,
work styles, and purposes are the root causes of the diagnosed gap.

On the one hand, safety analysis aims at gathering safety evidence at different
abstraction levels and design stages. Such safety evidence is achieved by (i) inspect-
ing more or less detailed system descriptions with respect to their vulnerability to
safety threats, (ii) compiling application-related data, (iii) assessing the fulfillment of
safety requirements, and (iv) performing statistical calculations. The gathered safety
evidence is then documented, commonly in form of graphical or tabular data repre-
sentations, and subsequently provided to all relevant parties involved in the safety
lifecycle (e.g., designers and /or managers within the same organization, qualification
responsible, customers, etc.).

On the other hand, fault injection aims at validating system models and/or im-
plementations with respect to safety at rather late design stages. This validation is
achieved by (i) extending nominal design models/implementations with faulty con-
figurations, (ii) observing their effects through simulation and monitoring, and (iii)
finding out whether and/or to which extent the system is protected against those
effects through safety measures. Hence, the outcome of fault injection and simulation

13

1 Introduction

Safety Evaluation of E/E Systems

System Modeling and
Simulation

A

Generic,
reusable basics

Failure Sources (standards, —u
Catalogue old projects...)

Fault simulation platform

|

|
|

I
|

1
|

|
|

1
: 1

| : 1 Formalisms for fault modeling and

I 1 fault effect simulation
. Relations g

I
|

1
|

|
|

1
|

1
|

I
|
I 1

|

FMEDA Reliability Block
Spreadsheets Diagrams Use cases, Executable Fault
applications Models injection
| FTATrees || DFATables | J

Figure 1.3: The Gap Between the Different Perspectives of Safety Evaluation

represents an indication to the developers about the design readiness with respect to
safety and/or to the functional safety engineers about the accuracy and consistency
of their analysis.

Figure 1.3, which gives an overview about both safety evaluation perspectives,
differentiates between reusable generic basics and application-dependent use cases
for each aspect. On the one hand, safety analysis in the industry relies on a so-called
failure catalogue representing a database for all known failure modes, failure rates,
and other data derived from relevant reliability handbooks or older projects. Fully
constructed fault trees and filled FMEDA spreadsheets figure among the tangible
reflections of the failure catalogue. On the other hand, fault injection and simulation
relies on system modeling guidelines, extended through formalisms for fault modeling
and fault effect simulation. These formalisms are applied on appropriate simulation
platforms through fault injection campaigns affecting executable models.

The procedural divergence between safety analysis and fault injection as described
above results often into an organizational separation between the respectively respon-
sible teams. And as there is no seamless linking mechanism between both contexts,
several challenges emerge with respect to data traceability, exchange, and transfor-
mation leading to long and error-prone safety evaluation cycles.

14

1.4 Motivation and Main Objectives

1.4.2 Main Objectives

The goals of this thesis consist essentially in tackling the challenges explained in
Subsection 1.4.1. They consist in (i) developing a formalization and generaliza-
tion approach for functional safety analysis (Subsection 1.4.2.1), (ii) offering tool-
based support with enhanced automation capabilities in the analysis context (Sub-
section 1.4.2.2), and (iii) establishing a link between safety analysis and fault injection
(Subsection 1.4.2.3).

1.4.2.1 Formalization and Generalization

To overcome the informality and subjectivity issues of safety analysis (see Subsec-
tion 1.4.1.1), formalization approaches are investigated in the context of this thesis.

Starting by a state of the art study of the main safety analysis techniques applied
in the industry, an iterative approach is developed to formally describe respective
procedures, involved data artefacts, and documentation structures.

The main objective of this approach is to instate a general, clear, and well-
structured description of functional safety analysis, which serves as a valuable asset
for organizing, handling, and re-using large amounts of safety-related data.

A key milestone in the intended approach is to substitute the traditionally used
analysis formats (tables, spreadsheets, fault trees, etc.) by more robust and inter-
changeable assets. Nevertheless, the conventional inputs, outputs, and intermediate
steps of the safety analysis procedure shall remain unchanged.

More detailed requirements for the formalization approach are elicited in Subsec-
tions 4.1.1 and 4.1.2. The adopted solution concepts to develop the approach are
then investigated in Section 4.2.

1.4.2.2 Tool-Based Support and Automation Enhancements

To mitigate the drawbacks caused by the manual character of safety analysis, as
described in 1.4.1.2, the feasibility and applicability of supporting tools are addressed
in the context of this thesis.

Taking the formalization outcomes (see Subsection 1.4.2.1) as a starting point,
software-based frameworks and tools are to be either programmed or generated.

Automated data extraction, processing, and generation are the main features that
must be supported through these frameworks and tools. Thereby, cumbersome man-
ual tasks are reduced and the quality and consistency of the resulting outcomes are
improved.

15

1 Introduction

More details about the requirements for the tool-based support of safety analysis
activities are given in Subsections 4.1.3 and 4.1.5. The adopted solution concepts to
achieve the targeted support features are investigated in Section 4.2.

1.4.2.3 Link Between Safety Analysis and Fault Injection

To address the problematic divergence between safety analysis and fault injection (see
Subsection 1.4.1.3), syntactic and semantic similarities between them are investigated
in this thesis. Based on those similarities, a systematic linking approach is developed.

The ultimate goal of the intended approach is to establish a balanced mixture of
both scopes which takes advantage of the benefits and minimizes the drawbacks of
each one of them.

The approach shall be oriented towards seamless data transfer, mapping, and/or
transformation from safety analysis platforms to fault injection and simulation envi-
ronments, as well as in the other way around. Bridging the gap is not only convenient,
but also necessary to ensure a more reliable double-sided assessment of safety require-
ments satisfaction.

More detailed requirements for the linking approach are elicited in Subsection 4.1.4.
The appropriate solution concepts for the approach development are addressed in
Section 4.2.

1.5 Outline

The remainder of this thesis comprises seven chapters which are organized as follows.

Chapter 2 studies the state of the art of functional safety, first generically and then
particularly in the automotive context.

Chapter 3 gives an overview of related academic and industrial contributions in the
areas of safety analysis formalization, automation, and linking to fault injection and
simulation.

Chapter 4 contains an elicitation of the overall requirements for the intended ap-
proaches of this thesis as well as a presentation of the solution concepts which are
adopted to achieve them.

Chapter 5 is dedicated to the formalization approach which is developed in this
work to address functional safety analysis.

Chapter 6 highlights the different frameworks which are developed in the context
of this thesis to support functional safety analysis and link it to fault injection and

16

1.5 Outline

simulation.

To illustrate the relevance of the developed approaches and frameworks, Chapter 7
presents the different case studies conducted during this work.

Finally, the contribution of the thesis is summarized in Chapter 8 which also gives
an outlook on potential directions for future work.

17

2 State of the Art

This chapter presents the state of the art of safety evaluation. First, a general
overview of related concepts, terms, application areas, and relevant standards is given
in Section 2.1. Afterwards, detailed functional safety guidelines for automotive, the
prevailing application domain of this thesis, are addressed in Section 2.2. They range
from early risk assessment and requirements definition to elaborated safety analysis,
verification, and validation procedures.

2.1 Functional Safety: A General Overview

A system is characterized as safe if it does not endanger human life or cause harm to
the surrounding environment. Safety is often defined in the literature as the “freedom
of system operation from the occurrence of catastrophic failures” [26].

In [27], three different aspects of system safety are identified: (i) ‘primary safety’,
(ii) ‘functional safety’, and (iii) ‘indirect safety’. First, primary safety is related
to risks that hardware operation might directly cause such as electric shocks and
burns. Second, functional safety covers the safe operation of equipment under control.
It depends on the risk-reduction measures and to what extent they correctly and
efficiently behave. Finally, indirect safety concerns the consequences that an incorrect
system operation could possibly have such as inducing poor medical judgment by an
erroneously operated medical database [27, 28, 26].

Over the last three decades, functional safety has become a major topic in many
industrial domains. Though, studying the early history of the topic shows that it
initially emerged within the chemical process industry of the 1970s. In fact, the disas-
trous chemical plant explosion of June 1974 in Flixborough, UK is one of the initiating
events for the constantly rising importance of functional safety. This explosion caused
28 deaths and 36 serious injuries. Furthermore, the sad incident which happened on
July 10th, 1976 in Seveso, northern Italy brought the functional safety topic into fo-
cus again. The Seveso accident resulted in releasing 2 kg of the highly acid and toxic
TCDD dioxin (complete chemical name: 2,3,7,8-Tetrachlorodibenzo-p-dioxin) causing
serious skin diseases, the death of about 70,000 animals, and serious environmental
damage. The reason of the accident was an overheating reaction which caused the

19

2 State of the Art

destruction of a safeguard by excessive pressure. The absence of automated cooling
equipments, warning systems, and alarms made the incident particularly harmful.

The immediate governmental reaction was to revise the laws addressing the safety
of such sites containing large amounts of hazardous substances. As a consequence,
the so-called Seveso Directive EC was established in 1982 [29, 30]. Later on during
the 1980s and 1990s, multiple related laws and regulations were successively adopted
such as the CIMAH (Control of Industrial Major Accident Hazards) regulations in
1984, the EU Machinery Directive in 1989, and the Process safety management of
highly hazardous chemicals regulation by the US Occupational Safety and Health
Administration in 1992. Even though these regulations reflected the importance of
functional safety in the industrial areas they addressed, they did not provide any
specific requirements or formal guidelines for the assessment.

Nevertheless, progressive advancements with respect to the safety evaluation proce-
dures were then achieved, mainly through the EN 1050 (Principles of risk assessment)
which was released in 1996 and the machinery control EN 954-1 (safety-related parts
of control system) in 1997. These norms provided basic guidance on risk assessment
processes and gave some generic advice for risk reduction, but they were still very
limited and insufficient with respect to the rising complexity levels.

Real-time and control systems were also increasingly relying on software and pro-
grammable electronic systems emerged within safety-related applications. Therefore,
the need for a more formalized and detailed approach considering both hardware and
software failure rates was acknowledged. Subsequently, appropriate activities took
place during the 1990s within the IEC: International Electrotechnical Commission
leading to the IEC 61508 standard for Functional Safety of Electrical, Electronic, and
Programmable Electronic Safety-related Systems [1], whose first version was published
in 1997. Even if the standard had a voluntary character at the beginning, its usage
became more and more widespread during the last two decades, so that its applica-
tion is nowadays considered as common practice and state of the art in the industry,
especially after the publication of its second version in 2010 [30, 4].

The scope of functional safety in IEC 61508 includes a big range of equipment
types. It covers for example industrial control systems, automotive systems, and
medical equipment. A more detailed description of the IEC 61508 application areas
as well as the corresponding standard derivatives is given in 2.1.2. But in general,
every hardwired or programmable system whose failure is correlated, either singly or
in combination with other failures, with a potential harm to human life (death or
injury) or to the surrounding environment falls within the scope of TEC 61508 and
is considered safety-related, safety-relevant, or safety-critical. It might be confusing
that these three terms are frequently used within the research and industrial com-
munity without paying attention to the fine distinctions between them. However, it
is common to use the safety-critical denomination for equipments whose failure alone

20

2.1 Functional Safety: A General Overview

endangers exposed persons, while safety-related and safety-relevant refer more gener-
ically to equipments whose failures increase the overall risk only when they concur
with other failures affecting different items [1, 30, 26].

Concretely, the two major tasks of safety evaluation in the IEC 61508 context are
(i) the identification of specific hazards which have serious consequences on human
life and environment integrity and (ii) the assessment of the occurrence frequencies of
the different potential equipment failures which may lead to those hazards. These fre-
quencies must be within specific intervals, so that the related risk does not exceed the
maximum tolerable level. In other words, it is not enough to say that the considered
safety-related system contains dedicated protection measures to minimize potential
risk. Beyond that merely informal statement, a formal assessment is required to show
evidence of the capability of those measures to efficiently reduce the overall risk and
reliably offer an adequate protection level [30].

Certainly, the ideal system, that every engineer aspires to create, would be pro-
tected against all possible risks, so that it would be qualified as a “zero risk” product.
Nevertheless, in reality, there is always a residual risk that must be taken into ac-
count. A hardware component might be robust enough to avoid most malfunctions or
recover from them in time before causing a critical failure with potential harm. How-
ever, it remains vulnerable to a subset of malfunctions so that the according failure
rate is still greater than zero. Similarly, a piece of software can not predict all possible
scenarios or contain handling routines for every erroneous situation that may occur
during system lifetime. Furthermore, human mistakes can not be completely avoided
during system conception, implementation, and verification because of the numerous
tasks that are still performed manually. Therefore, instead of targeting that infeasi-
ble zero risk, safety evaluation is more about defining the tolerable or acceptable risk
for the different system activities and providing evidence of the system capability to
remain within the reasonable limits of that risk throughout the complete lifetime.

Perceiving a risk as acceptable depends on multiple factors, such as the deployment
area, the number of persons that may be involved in the case of a hazardous event,
and the severity or seriousness of the potential consequences. It should be noted
here that risk categorization based on tolerability is correlated with a certain level
of subjectivity. In fact, a risk deemed tolerable by an individual might be definitely
unacceptable for another. The same also holds for different societies having dissimilar
economic standards or divergent sets of ethical and moral values. Such differences
are reflected in the legislation and regulation systems of the respective countries. For
example, there are tangible divergences in laws related to the automotive, railway,
and space sectors between Europe, the United States, and China [30, 28, 31].

In Subsection 2.1.1, an overview of the main concepts and terms used in the func-
tional safety context with focus on the IEC 61508 is given. The application areas and
the corresponding IEC 61508 derivatives are then presented in Subsection 2.1.2.

21

2 State of the Art

2.1.1 Basic Concepts and Terms — IEC 61508

The international standard IEC 61508 provides generic guidelines for the specification,
design, and operation of safety-related E/E/PE systems. The standard is qualified
as performance-based in the sense that it defines particular objectives and outcomes
to be achieved with respect to safety evaluation. It is also a risk-based standard, i.e.,
it defines preventive requirements to reduce the risk of failure and keep it within a
tolerable range. It should be noted that IEC 61508 has been developed in a compre-
hensive way: it defines general requirements and procedures and serves as basis for
developing derived standards for different industry sectors [4].

Among the key characteristics of IEC 61508, the safety lifecycle approach provides
a sequence of safety management stages during the system lifetime and forms the
structuring basis for the standard itself. Furthermore, the dedicated safety lifecy-
cle ensures addressing safety evaluation apart from classic functional assessment to
avoid the assumption that a correct system functionality systematically means that
the system is safe. In fact, unlike the traditional functionality requirements which
address the “good-case”, i.e., the operating mode of the system, the additional safety
requirements are separately defined, and verified with respect to the “bad-cases”, i.e.,
the failure conditions of the system. Though, safety evaluation activities are not com-
pletely disconnected from the classic design and manufacturing tasks producing an
operational system. It is actually crucial to integrate all activities, including those re-
lated to safety evaluation, in a comprehensive development flow with globally defined
rules, strategies, and perspectives [28].

The standard introduces a total of 16 phases in the overall safety lifecycle (see Fig-
ure 2.1). They range from the early concept (phase 1) and scope definition (phase 2)
where a basic understanding of the Equipment Under Control (EUC) and its bound-
aries within its environment is aimed to the final decommissioning or disposal (phase
16). Among the intermediate phases, the overall safety requirements specification
and allocation are particularly important, as they define adequate safety functions
and appropriately assign them to specific parts of the designated E/E/PE system.
During these phases, the targeted safety integrity levels are also defined and allocated
to the specified safety functions. The safety lifecycle also addresses the realization
of the specified safety requirements, i.e., the concrete implementation of the targeted
safety functionalities (e.g., phase 10). Safety validation. i.e., assess whether the im-
plemented E/E systems effectively meet the safety requirements within the targeted
safety integrity levels is covered by phase 13. Moreover, operation, maintenance,
repair, and modification activities are addressed by phases 14 and 15.

In [4], the IEC 61508 safety lifecycle phases are split into five main stages: (i) Risk
assessment, (ii) Planning, (iii) Design and construction, (iv) Operation and mainte-
nance, and (v) Disposal. The stage of each phase is marked in Figure 2.1.

22

2.1 Functional Safety: A General Overview

Concept ‘

Overall scope definition ‘
Hazard and risk analysis ‘

Overall safety requirements

Overall safety requirements

allocation
—
- E/E/PE system safety
Overall planning requirements specification
Overall Overall Overall Specification and realization
operationand | safety installation and JNRg of external risk reduction
maintenance validation commissioning o measures
planning planning planning 10 Realization of safety-related
E/E/PE systems
Overall installation and
commissioning

!

K} Overall safety validation ‘

Back to appropriate
safety lifecycle phase

Overall operation, Overall modification and
maintenance, and repair retrofit

Decommissioning or
disposal

= =
o

Legend
\:| Phase of safety lifecycle belonging to the stage: Risk assessment
\:| Phase of safety lifecycle belonging to the stage: Planning
\:| Phase of safety lifecycle belonging to the stage: Design and construction
\:| Phase of safety lifecycle belonging to the stage: Operation and maintenance

E Phase of safety lifecycle belonging to the stage: Disposal

Figure 2.1: The Overall Safety Lifecycle in IEC 61508 [1, 4]

Among the seven parts of the IEC 61508 standard [1], Part 1 to Part 4 are norma-
tive while the three remaining parts are informative. Part 1 (General requirements)
defines the overall safety lifecycle. Part 2 (Requirements for electrical/electronic/pro-
grammable electronic safety-related systems) defines the development objectives for
functionally safe E/E/PE systems with respect to hardware as well as software, which
is further on addressed in Part 3 (Software requirements). A recapitulation of all terms
used in the context of safety evaluation in the standard is given in Part 4 (Definitions
and abbreviations).

23

2 State of the Art

The definitions are grouped under eight general headings in Part 4: 1) Safety
terms, 2) Equipment and devices, 3) Systems — general aspects, 4) Systems — safety-
related aspects, 5) Safety functions and safety integrity, 6) Fault, failure, and error,
7) Lifecycle activities, and 8) Confirmation of safety measures. Selections of the most
important terms related to those groups are respectively given in Tables 2.1 to 2.8
along with their definitions as given by the IEC 61508. A more extensive list of terms
is given in the Glossary (see Chapter 9).

Harm damage to human health, to property, or to the environment

Hazard | potential source of harm

Risk combined occurrence probability of harm with its severity

Safety |freedom of unacceptable risk

Safe State |state of the equipment under control when safety is achieved

Table 2.1: Selected Definitions of IEC 61508 — Safety terms [1]

equipment, machinery, apparatus or plant used for
manufacturing, process, transportation, medical
activities, etc.

entity of hardware or software, or both, which is
capable to accomplish a specified purpose

Application task related to the EUC

Equipment Under
Control (EUC)

Functional Unit

Table 2.2: Selected Definitions of IEC 61508 — Equipment and devices [1]

Electrical / Electronic / | system for control, protection or monitoring
Programmable based on one or more E/E/PE devices. It includes
Electronic System power supplies, sensors, communication paths,
(E/E/PE System) and actuators

Architecture configuration of HW/SW elements in a system

Table 2.3: Selected Definitions of IEC 61508 — Systems (general aspects) [1]

The three informative parts of the IEC 61508 give general guidelines about the
procedures and methodologies to be followed in order to satisfy the requirements of
the normative parts. For example, Part 5 (Ezamples of Methods for the Determination
of safety integrity levels) provides examples of risk analysis techniques and illustrates
how to allocate SILs (safety integrity levels).

24

2.1 Functional Safety: A General Overview

designated system that both (i) implements the required
safety functions necessary to achieve or maintain a safe

Safety-related state for the EUC and (ii) is intended to achieve, on its own

System or with other E/E/PE safety-related systems, the necessary
safety integrity for the required safety functions
art of a system comprising one or more components that
Element P y prising P

perform one or more safety functions

Table 2.4: Selected Definitions of IEC 61508 — Systems (safety-related aspects) [1]

function to be implemented by an E/E/PE safety-related

FSafit_y system that is intended to achieve or maintain a safe state for
unction e EUC, in respect of a specific hazardous event
probability that an E/E/PE safety-related system satisfactorily
Safety = i
Integrity performs the specified safety functions under all the stated

conditions within a stated period of time
Safety |discrete level (one out of four), corresponding to a range of
Integrity |safety integrity values, where safety integrity level 4 is the
Level (SIL) | highest and 1 is the lowest

Table 2.5: Selected Definitions of IEC 61508 — Safety functions and safety integrity [1]

abnormal condition that may reduce or stop the capability of a
functional unit to perform a required function
discrepancy between a computed, observed or measured value
Error or condition and the true, specified or theoretically correct
value or condition
termination of the ability of a functional unit to provide a
required function

Random |failure, occurring at a random time, which results from one or
HW Failure | more of the possible degradation mechanisms in the hardware
failure, related in a deterministic way to a certain cause, which

Fault

Failure

Sy:;?lrgf;'c can only be eliminated by a modification of the design or of
the manufacturing process, operational procedures, etc.
erroneous changes to data content but no changes to the

Soft Error

physical circuit itself

Table 2.6: Selected Definitions of IEC 61508 — Fault, failure, and error [1]

25

2 State of the Art

To summarize, the IEC 61508 standard is a basic guide for designers and manu-
facturers dealing with safety-related systems. It outlines the overall workflow that
should be fulfilled to claim acceptable safety integrity levels for the intended use cases.
The risk-based approach provided by the IEC 61508 in the late 1990s represented an
alternative to the state of the art design methodology back then, which basically con-
sisted in investing all efforts in optimizing the system design to the maximum extent
possible and assuming that it would be then automatically safe. Instead of that, IEC
61508 calls for acknowledging that inevitable risks are still likely to happen, mainly
because of random failures affecting hardware or systematic failures caused by poor
design choices or imperfect software behavior. By studying and understanding these
risks, appropriate safety requirements are specified. The fulfillment of these require-
ments is subsequently verified and validated throughout the safety lifecycle and a
functional safety assessment is conducted to prove the targeted risk reduction.

necessary activities involved in the implementation of
Safety safety-related systems, starting at the concept phase of a

Lifecycle | project and finishing when all E/E/PE safety-related

systems are no longer available for use

discipline of identifying the components of an evolving

system to control changes and maintain continuity and

traceability throughout the lifecycle

Configuration
Management

Table 2.7: Selected Definitions of IEC 61508 — Lifecycle activities [1]

confirmation by examination and provision of objective
evidence that the requirements have been fulfilled
confirmation by examination and provision of objective
Validation | evidence that the particular requirements for a specific
intended use are fulfilled

Functional |investigation, based on evidence, to judge the functional

Safety safety achieved by one or more E/E/PE safety-related

Assessment | systems and/or other risk reduction measures

Diagnostic | fraction of dangerous failures detected by automatic on-
Coverage (DC) | line diagnostic tests

Verification

Table 2.8: Selected Definitions of IEC 61508 — Confirmation of safety measures [1]

Considering functional safety as a central concept which is applicable to all industry
sectors, IEC 61508 has been developed in a generic way, so that it represented the
basis to create multiple sector-specific standards. An overview of these IEC 61508
derivatives is given in the following Subsection 2.1.2.

26

2.1 Functional Safety: A General Overview

2.1.2 Application Areas and Related Standards

In compliance to the generic functional safety guidelines given by the TEC 61508,
several sector-specific standards have been drafted during the last two decades. They
are tailored to the respective industry sectors and take specific technical conventions
and customs into account. Figure 2.2 gives an overview of functional safety standards
related to IEC 61508 and applied in different industry sectors.

Medical
IEC 62304

Automotive Process industry

1SO 26262 IEC 61511

Transportation

Nuclear Industrial

IEC 60880, IEC Automation EN 50126, EN
60987, IEC 61226, IEC 61508 50128, EN 50129,
IEC 62425

IEC 61513

Systems
of machinery
IEC 62061

Agriculture
1SO 25119

Furnaces
IEC 50156

Figure 2.2: Overview of Functional Safety Standards

First, the IEC 61508 principles are reflected in the IEC 61511 standard: Functional
Safety — Safety instrumented systems in the process industry sector (2003) which
addresses so-called safety-instrumented systems, including sensors, logic solvers, and
actuator elements, applied in multiple kinds of manufacturing processes, such as
chemical, oil, and gas industries.

Second, for systems of machinery, IEC 62061: Safety of machinery — Functional
safety of safety-related electrical, electronic and programmable electronic control sys-
tems (2005) is derived from IEC 61508 and is harmonized with ISO 13849 — Safety of
machinery — safety-related parts of control system (2006), also dealing with E/E/PE
based control systems in machinery [4].

27

2 State of the Art

For the nuclear industry, IEC 61513: Nuclear power plants — Instrumentation and
control important to safety (2005) addresses so-called instrumentation and control
I&C systems. These are based on E/E/PE equipment and ensure critical service
and monitoring functions to the operation of the nuclear power plant.

Then, for railway transportation, there are IEC 61508 related standards such as
IEC 62278 (EN 50126): Railway applications - The specification and demonstration of
reliability, availability, maintainability and safety (1999) and IEC 62425 (EN 50129):
Railway applications — Communication, signalling and processing systems — Safety
related electronic systems for signalling. Although these two standards are not di-
rectly derived from IEC 61508, their application is considered as a sufficient measure
to fulfilling IEC 61508 requirements [4].

In the agricultural sector, ISO 25119: Tractors and machinery for agriculture and
forestry — safety-related parts of control systems (2010) is applicable to E/E/PE sys-
tems used in the field. Through a prescriptive risk-based mitigation approach, the
standard specifically addresses agriculture and off-road systems, such as industry
transport and mining [32].

Furthermore, for the medical sector, IEC 62304: Medical device software - Software
life cycle processes (2006) addresses lifecycle requirements for the development of
medical software and software within medical devices and is also concerned with
functional safety issues. For example, IEC 62304 defines three classes of medical
software safety: (i) Class A: No injury or damage to health is possible, (ii) Class B:
Non-serious injury is possible, and (iii) Class C: Death or serious injury is possible.

Finally, the sector-specific interpretation of the IEC 61508 for road vehicles is
the ISO 26262 standard: Road vehicles — Functional safety (2011). The standard
addresses series production passenger cars up to 3 500 kilograms and represents the
state of art guide to avoid systematic and/or random failures in automotive E/E/PE
equipment by deriving appropriate requirements and conducting adequate processes.

Divergent types of target systems is one of the key differences between IEC 61508
and ISO 26262. In fact, IEC 61508 rather targets systems produced in low volumes
while ISO 26262 deals with the high-volume mass-market automotive industry. In
the context of IEC 61508, the safety-related system is built, tested, installed on the
plant, then validated with respect to functional safety. However, in compliance to
ISO 26262, safety validation must be performed before series production because of
the high volume. Furthermore, instead of the Safety Integrity Level (SIL 1 — SIL 4)
defined by the IEC 61508 standard as a measure for the goodness of implemented
safety functions, ISO 26262 introduces Automotive Safety Integrity Level (ASIL A
— ASIL D) with respect to safety goals and their respective violations [33, 34]. It
should be noted that SIL 1 is commonly mapped to ASIL A, SIL 2 to ASIL B or
C, and SIL 3 and 4 to ASIL D. In this thesis, the focus is mainly on the ISO 26262

28

2.2 Automotive Functional Safety: I1SO 26262

standard and its relevance for the automotive industry and its suppliers, including
system and semiconductor manufacturers. Therefore, a detailed study of the standard
is conducted in Section 2.2.

2.2 Automotive Functional Safety: 1SO 26262

The ISO 26262 standard is the adaptation of IEC 61508 for the specific needs of the
automotive industry. Its first version has been in use since 2011 and its revised second
edition is available since the end of 2018. In the standard, all activities introduced
in the safety lifecycle of IEC 61508 (see Subsection 2.1.1) are addressed with more
automotive-specific technical details and an appropriately adapted nomenclature. In-
deed, in comparison to IEC 61508 where the focus is on safety functions and their
safety integrity levels, ISO 26262 focuses on potential violations of safety goals and
how they might harm car passengers. In terms of organization and vocabulary, ISO
26262 is tailored to fit the automotive sector and build upon the applied state-of-
the-art development flow within the car manufacturing industry and its numerous
supplier industries. For example, the terms item, system, element, component, hard-
ware part, and software unit are used in the ISO 26262 scope to depict the several
levels of composition that an automotive product has and to accordingly organize
and distribute the required safety-related activities across all involved parties.

The framework provided by ISO 26262 is most importantly concerned with func-
tional safety of E/E/PE systems, even if it can be further on applied for safety-related
systems based on other technologies [2]. It defines the automotive safety lifecycle in-
cluding the (i) management, (ii) development, (iii) production, (iv) operation, (v)
service, and (vi) decommissioning phases with the ultimate purpose of determining
integrity levels and demonstrating the elimination of unreasonable residual risk.

The standard contains ten parts covering all required activities to ensure func-
tional safety in the automotive sector. In Part 1: Vocabulary, the terminology of
the standard is provided. Many terms have the same definitions as in IEC 61508
(see Subsection 2.1.1), but there is also a considerable amount of new sector-specific
definitions (e.g., safety goal, functional/technical safety concept, functional/technical
safety requirement, etc.). Part 2: Management of functional safety gives the require-
ments that must be fulfilled from a management perspective. These requirements are
classified in project-independent requirements concerning the organizations involved
and project-specific requirements addressing the concrete management activities dur-
ing the safety lifecycle. Part 3: Concept phase specifies the activities to be performed
during the concept phase such as the item definition, the Hazard Analysis and Risk
Assessment (HARA), and the functional safety concept. Parts 4, 5, and 6 deal with
the development phases. In Part 4: Product development at the system level, the

29

2 State of the Art

specification of technical safety requirements at system level, as well as the system
design, integration and testing, and safety validation are thoroughly described. It
should be noted here that a system consists of at least one sensor, one controller, and
one actuator according to the ISO 26262 terminology [2]. Part 5: Product develop-
ment at the hardware level and Part 6: Product development at the software level go
further on in detail respectively for hardware and software elements of the system. In
Part 7: Production and operation, service and decommissioning are also considered
in addition to production and operation as the part name already insinuates. Among
the activities addressed by Part 8: Supporting processes, configuration management,
verification, documentation, and qualification are mentioned. Part 9: Automotive
safety integrity level (ASIL)-oriented and safety-oriented analyses is concerned with
issues like ASIL decomposition and tailoring, failure dependencies, and recommended
techniques for safety analysis. Finally, Part 10: Guideline on ISO 26262 provides a
summarizing overview of the standard, gives additional explanations, and enhances
the understanding of the principles stated by the other parts through a set of exam-
ples.

2.2.1 Overall Safety Lifecycle

The ISO 26262 standard prescribes the safety lifecycle represented in Figure 2.3.
The key safety activities required during the complete lifecycle of a safety-related
automotive product, ranging from concept to decommissioning, are illustrated in
Figure 2.3. In general, the safety lifecycle can be divided in three stages: (i) concept
phase, (ii) product development, and (iii) after the release for production. It also
indirectly reflects the three key parts of the overall functional safety flow (see 1.3.2),:
(i) requirements specification (e.g., functional safety concept), (ii) design (e.g., item
definition), and (iii) test (e.g., safety validation).

It should be noted that safety management tasks are distributed through all lifecy-
cle stages. These tasks are repetitively emphasized in the standard because of their
central role in planning, coordinating, tracking, and documenting all functional safety
activities [2].

Another important concept in the ISO 26262 with respect to the safety lifecycle is
safety culture. Defined in Part 1 as the “policy and strategy used within an organiza-
tion to support the development, production and operation of safety-related systems”,
safety culture is one of the basic requirements that must be fulfilled by organiza-
tions involved in the safety lifecycle in order to claim compliance with ISO 26262.
Concretely, appropriate trainings, rules, processes, and reporting mechanisms must
be established to affectively support the functional safety achievement and efficiently
communicate any potential anomalies or deficiencies to the responsible persons [2].

30

2.2 Automotive Functional Safety: I1SO 26262

‘ 2-5t0 2-7 ‘ Management of functional safety
3-5 Item definition @
&
3-6 Initiation of the safety lifecycle .g
o=
o
1 8
| 3-7 I Hazard analysis and risk assessment I S
l (@]
| 3-8 I Functional safety concept }—
4 Product development
at system level @
&
- . 5 | Hardware 6 | Hardware Allocation s
‘ 76 ‘ Operation ‘ 75 ‘ Production level level toother | | Controllabiliy | | FX°al | =
planning planning technologies g
Q.
o
4-9 I Safety validation [
l 3
°
4-10 I Functional safety assessment 3
2
o
4-11 I Release for production
&
4'| 7-5 I Production S5
When modifications o=
I are required, back to ; S
the appropriate s g
| 7.6 Operation, service, and lifecycle phase T S
| decommissioning £s

Figure 2.3: Safety Lifecycle in ISO 26262 [2]

Here are selected lifecycle phases which are particularly relevant for this thesis:

Item definition: Initiates the safety lifecycle, it is mandatory to define the
item. An item description including its functionality, interfaces, environmental
conditions, and known hazards is required.

Hazard Analysis and Risk Assessment (HARA): hazards and hazardous
events that must be prevented, mitigated, or controlled are identified in this
phase (more details in 2.2.2). Appropriate Automotive Safety Integrity Levels
(ASILs) are assigned to the identified hazards, depending on their probabilities
of exposure, their controllability, and their severity (see 2.2.3). Additionally,
associated safety goals (to be detailed in 2.2.4) are formulated and characterized
through the adequate ASILs.

Functional safety concept: It is based on the identified safety goals. Con-
sidering so-called preliminary architectural assumptions, the functional safety
concept is created as a statement of the required functionality to achieve the
safety goal(s) (see 2.2.5.1). It contains the functional safety requirements and

31

2 State of the Art

their allocation to the item elements (more details in 2.2.5.2).

e Product development at system level: Once the functional safety concept

is available, the item development from at system level is performed follow-
ing a V-model. On the left branch, technical safety requirements (explained
in 2.2.5.4), a general system architecture, a technical safety concept (see 2.2.5.1)
including the allocation of technical safety requirements to the system architec-
ture elements, and the system design specification and implementation are con-
secutively performed. On the right branch, integration, verification, validation
(see 2.2.6), and functional safety assessment tasks are required.

Product development at hardware level: Hardware parts are also devel-
oped in a V-model process, using the system design specification resulting from
the previous phase. This includes the specification of hardware safety require-
ments as well as the hardware design and implementation on the left hand
branch. On the right hand branch, the hardware integration and testing are
performed.

Product development at software level: Similarly to hardware, software
units are developed following a V-model process. This includes the specifica-
tion of software safety requirements as well as the software architectural design
and implementation on the left hand branch. On the right hand branch, soft-
ware integration and testing as well as verification of software requirements are
performed.

Safety validation: This concept is defined in the standard as the “assurance,
based on examination and tests, that the safety goals are sufficient and have
been achieved” [2]. More details are given in 2.2.6.

Functional safety evaluation is addressed by the ISO 26262 standard throughout

the different parts and during the several stages of the safety lifecycle. Multiple
techniques for safety analysis, verification, and assessment are recommended by the
standard. Therefore, two subsections are dedicated in this chapter to:

32

1. safety-oriented analyses which examine and estimate the extent of functional

safety achievement either qualitatively or quantitatively at different phases of
the product development (system level, hardware level, and software level)
(see 2.2.7), and to

2. fault injection and stimulation which represent recognized approaches to qualify

the fulfillment of safety requirements using executable system models or even
hardware prototypes (more details in 2.2.8).

2.2 Automotive Functional Safety: I1SO 26262

2.2.2 Hazard Analysis and Risk Assessment

According to the ISO 26262 standard, Hazard Analysis and Risk Assessment (HARA)
is an important activity which is performed during the concept phase of the safety
lifecycle. It is defined as a “method to identify and categorize hazardous events of
items and to specify safety goals and ASILs related to the prevention or mitigation of
the associated hazards in order to avoid unreasonable risk” [2].

In other words, the HARA is aimed to identify and classify the hazards that can
be triggered by item malfunctions. All potential hazardous events are determined
and appropriately rated using the three so-called impact factors: (i) severity, (ii)
probability of exposure, and (iii) controllability. Therefore, in addition to the item
definition, an impact analysis may also be used as a further supporting input to
perform the HARA. It should be noted that the item must be considered without any
internal safety mechanisms for the HARA. Intended or already implemented safety
mechanisms must be ignored at this point of the safety lifecycle in order to accurately
evaluate the possible dangerous situations that might happen during the product
lifetime and to efficiently specify and implement the appropriate safety mechanisms
later on during the development stages.

From a procedural point of view, the HARA starts with a situation analysis where
the operational situations and operating modes of the item are described. It should
be noted that unreasonable driving behaviors (e.g., traveling cross-country at high
speed) are not within the limits of those operational situations in which guaranteeing
functional safety of the item is mandatory [2].

After situation analysis, hazard identification is required. Many techniques such as
checklists, field studies, and quality history examinations are applied to determine the
hazards and clearly describe them in terms of misbehaviors at the vehicle level. The
root, causes behind those hazards are not within the scope of the HARA as they will
be evaluated in later steps using other analysis techniques. Relevant combinations of
operational situations and hazards represent the hazardous events mentioned earlier.
The consequences of such events must be identified and as long as they are within
the scope of the ISO 226262 standard (related to E/E/PE equipment), they have to
be classified regarding the impact factors. This is precisely the risk assessment part
of the activity which focuses on potential harm to all involved persons who may be at
risk at a given situation (driver, vehicle passenger, pedestrians, persons driving other
vehicles, etc.).

Each hazard is assigned a severity class ranging between SO (no injuries) and S3
(life-threatening or fatal injuries). Example of SO hazards are bumps with roadside
infrastructure, light collisions, and leaving the road without collision or rollover, while
a side collision with a passenger car with medium speed is classified as S3 because
more than 10% of such accidents lead to critical or extremely critical (including fatal)

33

2 State of the Art

injuries [2]. The list of all classes of severity and their respective descriptions is given
in Table 2.9.

Class Description
SO No injuries
S1 Light and moderate injuries
Severity
S2 Severe and life-threatening injuries (survival probable)
S3 Life-threatening injuries (survival uncertain), fatal injuries
EO Incredible
Probability of E1l Very low probability
exposure with —
operational E3 Medium probability
situations
E4 High probability
Cco Controllable in general
C1 Simply controllable
Controllability
C2 Normally controllable
C3 Difficult to control or uncontrollable

Table 2.9: Classes of Severity, Classes of Probability of Exposure, and Classes of
Controllability in ISO 26262 [2]

A similar categorization is required for operational situations based on the proba-
bility of exposure. The standard distinguishes five classes of probability of exposure
(E0 — E4). For example, extremely unusual situations are categorized as EO: in-
credible (e.g., facing an obstacle in the highway lane or driving downhill with engine
off), while situations that are very likely to happen to any car and for any driver
are categorized as E4: high probability (e.g., acceleration, deceleration, steering, lane
changing, etc.,) [2]. Table 2.9 gives the complete list of exposure classes.

The third impact factor, which is controllability, is used to categorize the hazardous
event and assign one of the classes C0, C1, C2, and C3 (see Table 2.9). It should
be noted that a hazardous event is deemed controllable only if the driver or another
person potentially at risk are able to sufficiently gain control of the event, so that
the harm is avoided [2]. An example of CO hazardous event would be an unexpected
increase of the radio volume or a warning message about the gas level. Such events
are actually generally controllable by almost every driver. C3 hazardous events are
those which are very difficult to control (i.e., less than 90% of drivers or other people

34

2.2 Automotive Functional Safety: I1SO 26262

at risk are able to avoid the potential harm). Examples are: a failure of the brakes,
an incorrect steering angle at high speed, and faulty airbag releases.

After these classifications, the ASIL level of each hazardous event is determined
(see 2.2.3) and the associated safety goals are formulated (see 2.2.4). The standard
also prescribes a verification step within the HARA, which is concretely a review check
with respect to several requirements including (i) the completeness of situations and
hazards, (ii) the compliance with the item definition, and (iii) the consistency of the
ASIL assignments. Different person(s) from another department or organization than
the item developers must perform the review to obtain a trustworthy confirmation or
rejection of the HARA outcomes.

2.2.3 ASIL: Automotive Safety Integrity Level

For hazardous events determined by the Hazard Analysis and Risk Assessment
(HARA) presented in 2.2.2, respective ASILs are determined using the parameters
severity, probability of exposure, and controllability. ASIL stands for “Automotive
Safety Integrity Level” and is defined by the standard as “one of four levels (A —
D) to specify the item’s or element’s necessary requirements of 1SO 26262 and safety
measures to apply for avoiding an unreasonable residual risk, with D representing the
most stringent and A the least stringent level” [2].

The classes of severity, probability of exposure, and controllability (see Table 2.9)
are considered for ASIL assignment according to Table 2.10. For SO hazards, EO
operational situations, and C0O hazardous events, no ASIL assignment is required by
ISO 26262, as no serious harm can be caused. Moreover, certain combinations lead
to the categorization of a given hazardous event as QM (quality management). For
such events, no further action is required by the ISO 26262 safety guidelines and
subsequently no safety mechanisms are expected. The avoidance of these situations
is actually addressed by traditional quality measures.

The ASIL assigned to a hazardous event is also a characteristic of the associated
safety goal. For the derived functional safety requirements, and later on the technical,
hardware, and software safety requirements, the ASIL is accordingly inherited.

Another ASIL-related concept, which is worth mentioning here, is the so-called
ASIL decomposition (also referred to as ASIL tailoring). Defined in the standard
as the “apportioning of safety requirements redundantly to sufficiently independent
elements, with the objective of reducing the ASIL of the redundant safety requirements
that are allocated to the corresponding elements” [2], ASIL decomposition is aimed at
a trade-off between redundancy and safety integrity level stringency and is inherently
related to the allocation of safety requirements to architectural elements.

35

2 State of the Art

. - Controllability class
Severity class Probability class
C1 Cc2 C3
El QM QM QM
E2 QM QM QM
S1
E3 QM QM
E4 QM A
El QM QM QM
E2 QM QM A
S2
E3 QM A B
E4 A B C
El QM QM A
E2 QM A B
S3
E3 A C
E4 B C D

Table 2.10: ASIL Determination Table in ISO 26262 [2]

In fact, with respect to the hierarchy of safety requirements, the ASIL is first, as
already mentioned, an attribute of the safety goal. Then, it is inherited by the subse-
quent safety requirements which are allocated to architectural elements ranging from
preliminary architectural assumptions at the initial steps of the product development
at system level to the final hardware and software elements considered at later de-
sign and implementation stages. During this allocation and in the cases of sufficient
independences between architectural elements, ASIL decomposition can be applied
by redundantly implementing the considered safety requirements by the associated
independent elements and subsequently assigning a potentially lower ASIL to the de-
composed safety requirements. The precise conditions of decomposition applicability
and the corresponding decomposition schemes are detailed in Part 9 of the ISO 26262
standard [2]. To give an example, two redundant ASIL-C CPUs form together an
ASIL-D computer platform.

2.2.4 Safety Goals

The exact definition is given by the ISO 26262 standard as follows: a safety goal is a
“top-level safety requirement as a result of the Hazard Analysis and Risk Assessment
(HARA)”. In other words, the list of safety goals complies to the item and is a
work product of the HARA performed at the concept phase (see 2.2.2). It should be
noted that the relationship between safety goals and hazards is one to many in both
directions, i.e., one specific safety goal can be associated with multiple hazards and
multiple safety goals can be related to one specific hazard.

The determination procedure of safety goals relies first of all on the list of identified

36

2.2 Automotive Functional Safety: I1SO 26262

hazardous events. For each hazardous event which has been assigned an ASIL from
A to D (QM-rated events are not considered any more — see 2.2.3), an appropriate
safety goal is formulated. When inherently similar safety goals are defined for different
hazardous events, they are appropriately combined into a single safety goal, which will
be assigned the highest ASIL amongst the related events. The expression of safety
goals should not depend on technological solutions or design details, but rather on
functional objectives of the item under consideration.

In addition to the Automotive Safety Integrity Level (ASIL), a given safety goal
has several properties, such as:

e Safe state: If the safety goal is achieved through transitioning to or maintaining
one or more safe states, then a corresponding specification of this or these
safe state(s) is required. It should be noted that a safe state is defined as
an “operating mode of an item without an unreasonable level of risk” (e.g.,
the normal operating mode, a degraded but non-harmfully degraded operating
mode, the stationary vehicle state, and the switch-off mode) [2].

e Fault tolerant time interval: Defined as the “time-span in which a fault or
faults can be present in a system before a hazardous event occurs”, the fault
tolerant time interval depicts the responsiveness time of the system to the root
cause of a specific hazard. This time is proportional to the potential harm
of the hazardous event which may occur if no sufficient counter-measures are
undertaken. So, by making it an attribute of the safety goal, it will be later
on passed through to the derived functional, technical, and eventually hard-
ware or software safety requirements. Consequently, the implementation of the
safety mechanisms related to those requirements will take the fault tolerant
time interval into account and ensure a timely transition to the safe state.

e Physical properties: These are physical characteristics such as the maximum
level of unwanted acceleration or steering torque that could still be tolerated.

Throughout the safety lifecycle, and particularly in the development stages at sys-
tem, hardware, and software levels, the so-called safety goal violations are evaluated.
For example, in Part 5 (Product development at hardware level), a clause is dedicated
to the evaluation of the safety goal violations due to random hardware failures. 1t ad-
dresses the quantification of random hardware failures and gives recommendations
to provide a rationale about the sufficiently low rates of the related residual risks
that are claimed to hold the targeted safety integrity levels. FMEDA (see 2.2.7.5)
is one the most established techniques used in the industry to perform the required
evaluation of the safety goal violations due to random hardware failures.

37

2 State of the Art

2.2.5 Safety Concept and Safety Requirements

Safety requirements play a central role in the ISO 26262 standard and have as primary
purpose to ensure the targeted ASILs. In the different phases and sub-phases of the
safety lifecycle, requirements addressing functional safety and its fulfillment by the
system are specified, refined, and verified. The association of such requirements with
the system elements is mostly referred to as safety concept.

Safety requirements comply with a hierarchical structure prescribed by ISO 26262.
In fact, the standard distinguishes between (i) functional safety requirements which
are derived from the safety goals (see 2.2.4) and allocated within the functional safety
concept at the item level, (ii) technical safety requirements which are more concrete
requirements defined at the system level and allocated in the technical safety concept
to the architectural elements of the system design, and (iii) hardware/software safety
requirements which are the most detailed and implementation-specific requirements
to be fulfilled by hardware parts or software units. Figure 2.4 gives an overview of
safety requirements in the ISO 26262 standard.

Safety requirements are so important in ISO 26262 such that Part 8 (Supporting
processes) dedicates a separate clause for their specification and management. Be-
yond the hierarchical organization, several characteristics must be valid for safety
requirements to claim compliance with ISO 26262, such as completeness, unambigu-
ity, atomicity, feasibility, and verifiability.

2.2.5.1 Functional Safety Concept

Defined in ISO 26262 as the “specification of the functional safety requirements, with
associated information, their allocation to architectural elements, and their interac-
tion necessary to achieve the safety goals” [2], the functional safety concept focuses
on the safety measures to be provided by the item but can also include references
to external measures and interfaces to other technologies outside the scope of the
item. It should be noted here that these safety measures are described in a functional
and implementation-independent way. The realization details of the measures and
their transformation into safety mechanisms will be covered by later technical and/or
hardware/software safety requirements.

During the development of the functional safety concept, several aspects are taken
into account, such as:

e Fault detection: Dedicated mechanisms for the diagnosis of malfunctions
within the item and the production of appropriate warning messages to the
driver are required in order to reduce the risk exposure.

e Fault tolerance: The number of faults leading directly to a safety goal vi-

38

2.2 Automotive Functional Safety: I1SO 26262

3-7 Hazard analysis and
risk assessment

Hazard analysis and risk assessment

3-7 Hazard analysis and
risk assessment

Specification of safety goals

|

3-8 Functional safety concept

Concept phase

Specification of functional safety
requirements
|
]
4-6 Specification of technical safety
requirements

&
|

8-6 Specification and management of safety requirements
Specification and management of safety requirements

Specification of technical safety
requirements

[
|]

Product development phase

5-6 Specification of hardware safety 6-6 Specification of software safety
requirements requirements
Hardware safety requirements Software safety requirements

Figure 2.4: Overview of Safety Requirements in ISO 26262 [2]

olation can be reduced. For example, redundancy of architectural elements
increases the overall resiliency against random hardware failures.

e Transitioning to safe state: Once a fault is detected, and there is no sufficient
correction or tolerance mechanisms to ensure the normal operation any longer,
an immediate switching to a safe state is required to mitigate the imminent
failure and prevent the harm associated with it.

2.2.5.2 Functional Safety Requirements

An important step in the development of the functional safety concept (see 2.2.5.1)
is the derivation of the functional safety requirements, which are defined as the
“specification of implementation-independent safety behavior, or implementation-
independent safety measure, including its safety-related attributes” [2].

The functional safety requirements are derived from the safety goals taking into
account the targeted safe states and the preliminary architectural assumptions. It
should be noted (i) that for each safety goal (see 2.2.4), one or more functional safety
requirements are specified and (ii) that a given functional safety requirement can be
associated with many safety goals.

39

2 State of the Art

Potential attributes of a functional safety requirement are e.g.,:
e the operating modes for which it is valid,
e the fault tolerant time intervals inherited from the associated safety goals,
e the safe state to which the system has to switch, and

e the functional redundancies ensuring fault tolerance.

2.2.5.3 Technical Safety Concept

Once the functional safety concept (2.2.5.1) including all functional safety require-
ments (2.2.5.2) is available, product development at system level is initiated. An
essential prerequisite for the system design is the specification of the technical safety
requirements (see 2.2.5.4).

During the initial steps of the system design phase, the architecture of the system
including hardware parts, software units, and the interfaces between them is speci-
fied. For this, the technical safety requirements are taken into account and they are
appropriately allocated to the system design architectural elements leading to a fur-
ther work product called technical safety concept. The exact definition given by the
ISO 26262 standard is: “specification of the technical safety requirements and their
allocation to system elements for implementation by the system design” [2].

So, it is necessary to have a look at the explanation of technical safety requirements
(see 2.2.5.4) in order to understand what the technical safety concept is exactly meant
for. However, it can be generally understood as a statement of how the intended safety
functionality is implemented on system level by hardware and software.

2.2.5.4 Technical Safety Requirements

Defined very generically in the vocabulary part of the ISO 26262 as “requirement(s)
derived for implementation of associated functional safety requirements” [2], technical
safety requirements are derived using the functional safety concept and the prelimi-
nary architectural assumptions as inputs. The primary objective is then to refine the
item-level safety functionality resulting from the concept phase and start closing the
gap towards the final implementation.

Several system properties are considered during the specification of the technical
safety requirements. For example, external interfaces such as communication with
other systems and user interactions. These interfaces give valuable hints about how
a safety functionality could be efficiently realized with respect to the system environ-
ment and the perception of the system state by the driver or other persons potentially

40

2.2 Automotive Functional Safety: I1SO 26262

at risk in failure cases. In addition to that, the system configuration and the usage
constraints originating from the system functionality itself or from the environmental
conditions are also relevant for the technical safety requirements.

It should be noted (i) that the technical safety requirements also address safety-
related dependencies between system elements or between the system and its envi-
ronment and (ii) that a thorough verification of the technical safety requirements
with respect to their compliance and consistency with the functional safety require-
ments (2.2.5.2) and with the preliminary architectural assumptions of the system [2]
is mandatory.

After the specification of the technical safety requirements (2.2.5.4), the specifica-
tion of the system design architecture, and the creation of the corresponding technical
safety concept (2.2.5.3), the product development at hardware and software levels is
started. During those phases, detailed hardware and software safety requirements
are derived and the final hardware parts and software units are designed and imple-
mented. It should be noted that the fulfillment of the safety requirements is evaluated
and verified at different levels using so-called safety-oriented analyses (more details
in 2.2.7). Afterwards, integration and testing tasks are performed at hardware and
software level. Eventually, the final item integration and testing at system level is
executed. It would be now expected that the production can be initiated, similarly
to the IEC 61508 safety lifecycle (see 2.1.1 and 2.1.2). In fact, for the singular or
low volume systems aimed by IEC 61508, it is common to build the system, test
it, install it on the plant, and only then the safety validation is performed. This is
however not suited to road vehicles representing mass-market systems, because of
the considerable financial loss associated with potential functional safety deficiencies
detected after system deployment. That is why, before releasing the system for se-
ries production, ISO 26262 prescribes a safety validation (detailed in 2.2.6) and a
functional safety assessment phase. Thereby, several management tasks related to the
gathering and reviewing of safety documents and audits are performed. Furthermore,
the functional safety assessment phase includes the compilation and/or refinement of
the safety case defined as an “argument that the safety requirements for an item are
complete and satisfied by evidence compiled from work products of the safety activities
during development” [2].

2.2.6 Safety Validation

Defined as the “assurance, based on examination and tests, that the safety goals are
sufficient and have been achieved” [2|, safety validation is a separate phase of the
product development at system level. It has two primary objectives:

1. to provide evidence about the appropriateness of the functional safety concept

41

2 State of the Art

and about its compliance with the safety goals, and

2. to demonstrate the safety goals themselves are correct, complete, and fully
achieved at the vehicle level.

In other words, based on examination and tests, safety validation confirms or rejects
the claim that the intended safety measures are adequate for the targeted vehicles,
that the safety goals are sufficient to avoid harm, and that they are achieved by the
safety measures with a high assurance level.

It should be noted that the safety validation step has to be properly planned from
the beginning of the product development at system level. In fact, the wvalidation
plan is a work product of the very first initiation step (see Figure 1.1) and it gets ac-
cordingly refined during the specification of the technical safety requirements, so that
the validation criteria are not only dependent on the functional safety requirements
(2.2.5.2) but also on the technical safety requirements (2.2.5.4).

The key outcome of the safety validation phase is the validation report which pro-
vides an evaluation of:

e the controllability assumptions made during the Hazard Analysis and Risk As-
sessment (HARA) (see 2.2.2),

e the effectiveness of the safety measures to control systematic failures
e the effectiveness of the safety measures to control random hardware failures

e the effectiveness of external measures or other technologies outside the scope of
the item.

It should be noted that the effectiveness grading with respect to systematic failures
is substantiated through analysis results (e.g., FTA or FMEA results) which have
been gathered during the system design phase, and that the effectiveness grading
with respect to random hardware failures is substantiated through analysis results
(e.g., FMEDA results) which have been gathered during the hardware and software
design phases (see 2.2.7.5).

2.2.7 Safety-Oriented Analyses

Functional safety analysis is a key activity in the safety lifecycle prescribed by ISO
26262. Although it is not a separate phase or sub-phase of the production flow, it
is reiterated from different perspectives, at several stages of the cycle, and at many
levels of detail to evaluate the fulfillment of safety requirements. The importance
of the so-called safety-oriented analyses (also simply referred to as safety analyses)
is reflected by the dedication of a separate clause in Part 9 of the standard (ASIL-

42

2.2 Automotive Functional Safety: I1SO 26262

oriented and safety-oriented analyses) to the requirements which shall be met during
safety analysis and to the recommended guidelines to fulfill them.

2.2.7.1 Goals

Generally, safety analyses are aimed at the examination of fault and failure conse-
quences (i) on the system design, (ii) on the functions of the different hardware or
software elements, and (iii) on the overall behavior from the item perspective.

At system level, safety analysis is used to identify the causes of systematic failures
which are defined as “failure(s) related in a deterministic way to a certain cause, that
can only be eliminated by a change of the design or of the manufacturing process,
operational procedures, documentation or other relevant factors” [2]. In other words,
the analysis is concerned with design mistakes that can be committed at this level.
Therefore it is considered as an assistance to system designers and it is mostly per-
formed qualitatively without getting into the quantitative assessment of the failure
probabilities for example. In order to enable the detection and the exclusion of sys-
tematic faults (i.e., the root causes of systematic failures) or at least the mitigation
of their effects, the ISO 26262 recommends either a deductive analysis (e.g., Fault
Tree Analysis (FTA) — 2.2.7.6 and Reliability Block Diagram (RBD) — 2.2.7.8) or an
inductive analysis (e.g., Failure Modes and Effects Analysis (FMEA) — 2.2.7.5 and
Event Tree Analysis (ETA) — 2.2.7.8). Furthermore, the standard recommends the
application of so-called well-trusted automotive systems design principles, including
re-use and standardization, to reduce the likelihood of systematic failures [2].

At hardware and software levels, detailed safety analysis is performed focusing on
random hardware failures and on dependencies and interferences in software.

On the one hand, for all safety-related hardware parts, safety analysis is prescribed
to classify faults into safe faults, single-point faults, residual faults, multiple-point
faults, and latent faults. Safety mechanisms shall be evaluated with respect to their
diagnostic coverage values in order to determine the exact portion of residual faults,
used later on for the calculation of dedicated safety metrics at the element or system
level. The rationale of the analysis at hardware level is structured using an FTA
(2.2.7.6) or more commonly an FMEDA (2.2.7.5) where further hardware architec-
tural metrics regarding area and technology as well as failure rates are taken into
account.

On the other hand, safety analysis is required for the software architectural level.
The three major objectives are the (i) identifying all safety-related software units,
(ii) supporting the specification of the appropriate safety mechanisms, and (iii) veri-
fying the efficiency of those mechanisms. When specific software safety requirements
address the freedom of interference or more generically the sufficient independence

43

2 State of the Art

between software components, then an appropriate Dependent Failure Analysis (DFA)
is required (see 2.2.7.7).

All the previously mentioned safety analyses at system, hardware, and software
levels enable indirectly the evaluation of safety goal violations at item level. They
actually help the designers and the safety analysts to identify human mistakes, design
vulnerabilities, and other conditions possibly leading to a violation of a safety require-
ment and/or eventually of a safety goal. Furthermore, during such analyses, it is also
possible to identify new functional or non-functional hazards that have not been con-
sidered during the Hazard Analysis and Risk Assessment (HARA) (see 2.2.2) [2].
That is why it is also recommended to support the derivation of functional safety
requirements (2.2.5.2) out of the safety goals (2.2.4) with qualitative safety analyses
(e.g., FMEA, qualitative FTA, and HAZOP) to increase effectiveness and complete-
ness.

2.2.7.2 Application Scope

According to the ISO 26262 standard and from the detailed explanation of the mul-
tiple purposes of the analysis at the different levels of concept and development, the
scope of safety analyses can be summarized as follows:

e verification and validation of safety concepts and of safety requirements (in-
cluding safety goals)

e identification of conditions and causes (including systematic design faults, ran-
dom hardware failures, and dependent failures in software) which potentially
affect the correct implementation of a hardware, software, technical, or func-
tional safety requirement and eventually lead to a safety goal violation

e identification of additional requirements for fault detection and/or failure miti-
gation, i.e., proposal of refinements for available safety mechanisms in deficiency
cases or definition of new mechanisms in case of absence or complete inadequacy

e identification and/or qualification of responses (actions and/or measures) to
detected faults and/or failures

2.2.7.3 Classification Criteria

As already mentioned in 2.2.7.2, safety analyses are performed at different levels of
abstraction during the concept and product development phases. The ISO 26262
standard provides a big range of analyses and recommends their application respec-
tively at the different levels. Many of those analyses, such as FMEA (see 2.2.7.5)
and FTA (see 2.2.7.6) appear in the concept phase as well as in the development

44

2.2 Automotive Functional Safety: I1SO 26262

phases (system and hardware levels). Their application methodology depends how-
ever on the artifacts to be analyzed (functional safety concept of the item, system
architecture, hardware design, etc.,) and on the purpose of the analysis (identification
or refinement of safety requirements, assessment of systematic failures, evaluation of
safety goal violations due to random hardware failures, etc.,). Despite the consider-
able number of safety analysis techniques recommended by the standard and their
different application cases, they can still be classified according to two major classifi-
cation criteria: (i) the direction of the cause-to-effect exploration during the analysis
(see 2.2.7.3.1) and (ii) its level of detail (see 2.2.7.3.2).

2.2.7.3.1 Cause-to-Effect Exploration The cause-to-effect exploration direction
characterizes the way safety analyses are conducted. Based on it, safety analyses
are classified into deductive and inductive approaches.

On the one hand, deductive safety analysis is performed top-down starting from
problematic situations (i.e., failures) and aiming at the determination of the corre-
sponding causes. Fault Tree Analysis (FTA) (2.2.7.6) and Reliability Block Diagram
(RBD) (2.2.7.8) represent popular deductive safety analysis techniques.

On the other hand, inductive analysis methods are bottom-up methods that start
from given causes or conditions and accordingly forecast potential effects. In other
words, they identify local malfunctions and subsequently determine the corresponding
effects on the whole element, system, or item. Failure Modes and Effects Analysis
(FMEA) (2.2.7.5), HAZard and OPerability study (HAZOP) (2.2.7.4), Event Tree
Analysis (ETA) (2.2.7.8), and Markov models (2.2.7.8) are inductive analysis methods
which are commonly used both academically and industrially.

Safety Analysis Method Qualitative Quantitative Inductive Deductive
FailuArﬁal:/;ziefFa&dEif)fects v v v X
Fault T(r[;e_er :)nalysns v v X v
Hazard an(?_I C}ipzegg; lity Study ‘/ X ‘/ X
Event 1(';? :;nalysm v v v X
Markov Models X v v X
Reliability Block Diagrams X ‘/ X \/

(RBD)

Table 2.11: Classification of Safety Analysis Methods [3]

45

2 State of the Art

2.2.7.3.2 Level of Detail With respect to the level of detail, safety analysis ap-
proaches are commonly categorized in qualitative and quantitative techniques. At
certain levels (e.g., concept and system development), qualitative analysis is suffi-
cient. Nevertheless, it must be complemented at other levels (mostly in hardware
development) by a more detailed quantitative analysis.

In fact, qualitative safety analysis is limited to the identification, classification,
and ranking of the different conditions which potentially lead to system failures.
Beyond those tasks, quantitative safety analysis also determines the extent of safety
requirements satisfaction in terms of probabilities using several measures such as the
failure rate (A\) and the diagnostic coverage values of the safety mechanisms. That is
why, quantitative analysis is most suited to hardware, in the sense that it allows the
verification of the hardware design safety using additional knowledge about the failure
rates of the hardware parts and taking defined targets for hardware architectural and
safety metrics into account. It should be noted that quantitative analysis methods are
not required for the evaluation of systematic failures in I[SO 26262 and that software
safety analysis is also mostly qualitative in the scope of the standard.

Certain analysis methods such as FMEA, FTA, and ETA are used both qualita-
tively and quantitatively. That is why, it is commonly distinguished between qualita-
tive FMEA (at system, design, or process level) and quantitative FMEA (at hardware
level — commonly referred to in the industry as FMEDA). A similar classification holds
for FTA and ETA (qualitative FTA/ETA versus quantitative FTA/ETA). HAZOP
is used as a qualitative approach while Markov models and reliability block diagrams
(RBDs) are applied for quantitative assessment in ISO 26262.

A recapitulating overview of classified safety analysis approaches is given in Ta-
ble 2.11.

2.2.7.4 HAZOP: Hazard and Operability Study

HAZard and OPerability study (HAZOP) is a technique for hazards identification
which emerged in the process industry during the 1970s after the Flixborough disaster
(already mentioned in Section 2.1). Since then, it has been widely used for the
design of new plants or the extension of existing ones and also found its way to
other industries such as nuclear power plants and recently automotive applications.
Indeed, in the context of the ISO 26262, HAZOP is used as a qualitative safety-
oriented analysis method assisting the derivation of functional safety requirement
(2.2.5.2) during the development of the functional safety concept (2.2.5.1).

The HAZOP approach consists basically in a systematic walk-through of the process
or operation to be designed or modified. It aims at determining all possible devia-
tions, i.e., hazards or operating problems, which may arise. The study is performed

46

2.2 Automotive Functional Safety: I1SO 26262

by a multi-disciplinary team with sufficient experience to provide a trustworthy eval-
uation and a rational expert judgment. For the identified hazardous deviations which
are classified as unacceptable, appropriate changes are proposed and reinforced by a
justification with respect to risk reduction and cost benefit argumentation. Associ-
ated actions are subsequently defined, followed with respect to implementation and
efficiency, and properly reported to the responsible persons [35].

Because of its strong subjective character and the lack of quantification capabilities,
HAZOP remains a limited approach and it is not suitable for detailed safety analysis
at hardware level.

2.2.7.5 FMEA: Failure Modes and Effects Analysis

Failure Modes and Effects Analysis (FMEA) is a bottom-up (inductive) approach
starting from local malfunctions and aiming at the determination of corresponding
effects on the overall behavior. It focuses on the individual parts of the system,
their potential failure modes and the impact of these failures on the system. The
term failure mode characterizes the way in which a system can fail and can also be
defined as the physical or functional manifestation of a failure such as slow operation,
incorrect outputs or complete execution termination [21, 2.

The approach is referred to as Failure Modes, Effects, and Criticality Analysis
(FMECA) when it is enhanced by a criticality analysis which consists in ranking
the failures with respect to their likeliness and severity. FMECA is performed either
during the design, development, or use phases and it usually requires knowledge about
the functional structure of the complete system [36, 37].

Furthermore, two additional aspects can be considered in the FMEA process: (i)
quantitative failure data consisting in failure rates and the distribution of failure
modes and (ii) the capability of a (sub)system to use automatic on-line diagnostics
to detect internal failures. In this case, the process is referred to as Failure Modes,
Effects, and Diagnostic Analysis (FMEDA) [38].

FMEDA, which has been developed in the 1990s within a company called Ex-
ida [39, 40], is nowadays widely used in the industry as a quantitative safety analysis
approach. With respect to ISO 26262, FMEDA is applied for the evaluation of
hardware functional safety. It should be noted that the term FMEDA does not ex-
plicitly appear in the ISO 26262 standard, which only mentions quantitative FMEA.
However, FMEDA is the frequently used denomination within the functional safety
community. In compliance to ISO 26262, Part 5 (Product development at hardware
level), FMEDA is a comprehensive procedure which addresses (i) the hardware safety
analyses (5-7.4.3) of the hardware design sub-phase (5-7), (ii) the evaluation of the
hardware architectural metrics analysis (5-8), and (iii) the evaluation of safety goal

47

2 State of the Art

violations due to random hardware failures (5-9).

In this thesis, formalization and model-driven support for FMEDA are addressed.
That is why, the FMEDA flow is covered later in more details in Subsection 5.3.1.

2.2.7.6 FTA: Fault Tree Analysis

Fault Tree Analysis (FTA) is a top-down (deductive) approach starting from prob-
lematic situations and aiming at the determination of the corresponding causes. It
addresses unwanted events at system level, considers the related potential failures,
and subsequently analyzes the possible causes behind them.

The basis of the FTA is the fault tree which is an acyclic graphical representation
using gates and logical connectors to structure successive levels of events. The tree
root is the top-level event depicting the uppermost system failure. It represents the
starting point of the analysis which is performed through a systematic backward-
stepping process leading eventually to so-called elementary events [41, 42, 43].

The predominant combinatorial aspect of FTA, which makes it inappropriate to
advanced system descriptions including timing and sequencing, has been extended
by different approaches such as Temporal Fault Trees (TFTs) [44] and Dynamic
Fault Trees (DFTs) [45]. The TFT approach allows capturing of timing dependencies
between faults and events [44]. Furthermore, in the DFT methodology, the FTA
syntax is extended with additional fault tree gates (e.g., functional dependency and
priority AND) to model dynamic behavior of fault-tolerant systems such as sequence-
dependent failures and fault-and-error recovery [45].

Further details about the FTA procedure are given in Subsection 5.3.2 along with its
metamodel-based formalization used as basis for model-driven support and automated
fault tree synthesis.

2.2.7.7 DFA: Dependent Failure Analysis

In ISO 26262, dependent failures are defined as “failures whose probability of simul-
taneous or successive occurrence cannot be expressed as the simple product of the
unconditional probabilities of each of them” [2]. They are classified in common cause
failures and cascading failures [2].

Part 8 of the standard (ASIL-oriented and safety-oriented analyses) dedicates a sep-
arate clause to Dependent Failure Analysis (DFA) where independence and freedom
of interference are considered. In fact, the invalidation of one of these two character-
istics may result in the violation of a safety requirement or a safety goal. That is why,
the events causing such invalidation must be identified through performing the DFA.

48

2.2 Automotive Functional Safety: I1SO 26262

It should be noted that according to the ISO 26262 definitions, both common cause
failures and cascading failures threaten the independence feature. However, freedom
of interference may only be affected by cascading failures .

Several architectural features are taken into account during the DFA, such as el-
ement redundancies, the physical placement of hardware elements, and shared re-
sources. Potentially dependent failures, which may be either systematic or random
failures, are determined within the scope of the DFA by taking outcomes of deduc-
tive and inductive analyses into consideration. Indeed, the failure logic represented
by fault trees (see 2.2.7.6) and failure mode similarities in the FMEA (see 2.2.7.5)
provide useful hints about potential for dependent failures.

Further details about the DFA procedure are given in Subsection 5.3.3 along with
its metamodel-based formalization.

2.2.7.8 Other Analysis Approaches

e Event Tree Analysis (ETA): Being an inductive (bottom-up) technique for
logical modeling of the system behavior in both success and failure cases, ETA
has been first used in risk assessment for nuclear power plants. Nowadays, it is
used in several industries (e.g., process, oil and gas, transportation, etc.,) [46].
The event-tree is constructed in a forward-stepping way, so that starting from
a given initiating event, the different possible paths are built leading either to a
functionally correct outcome or to a hazardous situation at system level. Qual-
itative ETA assesses the probability of such hazards and subsequently triggers
necessary refinement or change actions for the underlying design [46].

e Markov models: These stochastic models, which are represented as state
diagrams, are used to model changing systems over time under the assumption
that the future state only depends on the current state. The sequence of the
previous states is not relevant for the determination of the new state. In the
context of functional safety analysis, Markov models address failure states and
their occurrence probabilities, dependencies, diagnostic coverage, repair times
(or the time needed to reach a safe state), etc., [47].

e Reliability Block Diagrams (RBDs): depicting graphical representations
of the system’s components and the connections between them, RBDs are a fur-
ther mean to analyze functional safety. The components can be interconnected
either in series or in parallel and the arrangement logic of the diagram shows
the combinations of component failures which lead to system failures. Assum-
ing that the connectors do not fail and that every component is considered as
a switch which is closed in the case of correctly operational state and open
in failure condition, a successful operational system necessitates at least one

49

2 State of the Art

complete path between system input and system output [48, 49, 50]. Through
inspection of the RBD, the failure sets resulting into a system failure can be
identified. Using Boolean logic, the so-called minimal cut sets, causing system
failure with the smallest numbers of component failures, can be determined.

2.2.8 Fault Injection and Simulation

In Subsection 2.2.7, different safety analysis methodologies have been described.
Thereby, incorrect behaviors and undesired malfunctions are inspected based on more
or less abstract representations of the considered system without any alterations. Be-
yond those analyses and with respect to executable system models, a further approach
has been widely applied during the last decades for safety evaluation: fault injection.
In this subsection, the fundamental concepts of fault injection, as well as its most
relevant application features and patterns are presented.

In the context of the ISO 26262 standard, fault injection and simulation are rec-
ommended during the development at hardware level in order to verify the imple-
mentation of safety mechanisms with respect to completeness, and correctness, and
fulfillment of hardware safety requirements [2].

In general, fault injection consists in the deliberate insertion of faults into a system
which is afterwards monitored to determine its behavior in response to the introduced
faults. Several fault injection techniques have already been introduced and experi-
mented in the past. Some of them deal with system prototypes, while others address
system models. Most fault injection techniques can be classified into the following
categories [51, 52, 53]:

e Hardware-based fault injection: This injection technique is accomplished at the
physical level using extra components which affect the original hardware by
(i) disturbing the hardware with environment parameters (heavy ion radiation,
electromagnetic interferences...), (ii) modifying the value of the circuit pins, and
(iii) disturbing the power supply (power rails manipulation with voltage sags).

e Software-based fault injection: This injection approach is applied to reproduce
at the software level the errors that would have been caused by faults occurring
in hardware. Software-based fault injection does not require any additional ex-
pensive hardware and enables fault introduction into applications or operating
systems. It addresses implementation details, program state, communications,
and interactions. Related methods are categorized based on the phase during
which the fault injection is performed. On the one hand, compile-time injec-
tion requires the modification of the program instructions before the according
loading and execution. So, instead of physically inducing faults in the hardware
of the target system, the corresponding errors are injected into the source or

20

2.2 Automotive Functional Safety: I1SO 26262

assembly code. On the other hand, runtime injection requires the usage of an
appropriate triggering mechanism such as (i) a time-out which generates an
interrupt invoking the fault injection after a certain time, or (ii) an exception or
trap which invokes the fault injection when specific events or conditions occur.

Stmulation-based fault injection: This injection approach is aimed at the early
system evaluation by introducing faults in high-level models such as RTL mod-
els. For this purpose, faults are introduced into the model and subsequently,
the effects are observed. Two major categories of the simulation-based fault
injection are distinguished. First, in code modification, the original target sys-
tem description is modified by adding so-called saboteurs, which are only active
when a fault is being injected altering the value or the timing characteristics
of specified signals, or by applying so-called mutants, which depict altered ver-
sions replacing given system components and causing a non-compliant behavior
with the system specification. Second, using simulator built-in commands, the
original simulation tools are modified to support the injection of faults and the
monitoring of the resulting impact (i.e., errors and failures) on the simulated
system. In the context of VHDL simulation-based fault injection, signal manip-
ulation through forcing and variable manipulation during dedicated simulation
runs are the most relevant altering mechanisms accomplished using simulator
built-in commands.

Emulation-based fault injection: In this context, hardware prototyping with
Field-Programmable Gate Arrays (FPGAs) is used to improve the effectiveness
in comparison to simulation-based fault injection campaigns with respect to
time and efforts overhead.

Hybrid fault injection: To achieve more speed and efficiency, different techniques
may be combined in the context of the hybrid fault injection. For example, the
flexibility and the versatility of software-based fault injection can be joined with
the monitoring accuracy of hardware-based fault injection.

51

3 Related Work

This chapter studies the related work with respect to the major thesis topics. First,
existing formalization approaches for dependability and safety are presented in Sec-
tion 3.1. Then, Section 3.2 gives an overview of relevant contributions towards the
model-based support of safety analysis. Finally, known academic and industrial alter-
natives for linking the safety analysis context on the one hand to the fault injection
and simulation context on the other hand are depicted in Section 3.3.

3.1 Formalization Approaches for Dependability and
Safety

As already introduced in Section 1.2, dependability denotes the ability of a system to
deliver a trustworthy service. It covers multiple aspects including safety, which is the
focus of this thesis. During the last two decades, dependability and safety assessment
have been extensively addressed in the literature, particularly with respect to the
major formality, reuse, and interoperability challenges presented in Section 1.4.

To tackle the significant challenges of ensuring the robustness of increasingly com-
plex devices, many academic contributions addressed the so-called cross-layer de-
pendability topic, particularly for System-on-Chips (SoCs). By developing a model-
ing concept for faults, errors, and failures which can be applied at different levels
of abstraction such as the Resilience Articulation Point (RAP) [54, 55, 56], a re-
lationship between lower technology levels and higher system implementation levels
is established and thereby considerable analysis efforts and design hardening costs
are saved. Indeed, through the comprehensive Resilience Articulation Point (RAP)
framework which enables probabilistic fault abstraction and error propagation across
all hardware and software layers of the SoC [55], a trade-off between the effectiveness
and the cost of system resilience is achieved.

Furthermore, several approaches have been proposed aiming at a unified concep-
tualization of dependability and safety analysis. A brief summary of these proposals
is given in Subsection 3.1.1. Furthermore, Subsection 3.1.2 addresses a set of model-
driven methodologies for dependability and safety assessment which are generally

93

3 Related Work

denoted as failure logic modeling techniques. These methods represent a first step
towards the automation support of safety analysis covered in Section 3.2.

3.1.1 Proposals for Generic Dependability Modeling

As a part of this thesis, existing methodologies for generic dependability modeling
have been comprehensively reviewed. The major perceptions of this review, which
have been published in [57], are summarized below.

In [58], the Unified Model of Dependability (UMD) is introduced with the primary
purpose of creating a common framework for dependability definitions and measure-
ments. By combining invariant concepts across all applications on the one hand and
customizable concepts correlated with the usage context on the other hand, UMD
provides a common dependability ontology, contributes to a generalized conceptu-
alization, and makes it easier to build customized dependability models which are
tailored to the specificities of different systems [59]. However, UMD has many lim-
itations. Indeed, it does not offer a methodology for the systematic derivation of
context-related dependability models. Moreover, the integration of UMD in more
comprehensive model-driven frameworks is limited, so that the automation opportu-
nities of the dependability evaluation remain restricted.

A further proposal for generic dependability modeling is given in [60] relying on
UML!. Through an extension of the traditional UML usage, which consists in the the
specification and the automated checking of functional system properties, a new pro-
file is provided to cover non-functional properties including dependability attributes.
Thereby, new elements are added to enable (i) the description of faults and fault
effects, (ii) the mapping of correspondingly constructed system models to a mathe-
matical analysis domain, and (iii) the subsequent automated derivation of transfor-
mation rules used later for the translation of abstract representations into concrete
views. This UML-based dependability modeling allows an earlier initiation of require-
ments verification in the development cycle and leads consequently to an enhanced
design exploration and to a considerable cost reduction [61]. However, the approach
in [60] does not address the cross-domain aspect, so that the tool-interoperability and
standard-conformity problems in the dependability context remain unsolved.

In [62], a fault and failure metamodel is proposed as a part of an approach called
SynDia addressing the synthesis of online diagnostic techniques for embedded sys-
tems. The metamodel is IEC 61508 compliant and it is based on an abstract superclass
which characterizes the component faulty behavior in hardware architectures whose
functional safety is assessed according to the guidelines of the IEC 61508 standard.
Specific subclasses are then derived for the multiple component types. This meta-

I UML: Unified Modeling Language

o4

3.1 Formalization Approaches for Dependability and Safety

model helps to generate diagnostic techniques when a further metamodel describing
dependability requirements is taken into consideration [62]. Nevertheless, it remains
restricted to scope of the IEC 61508 standard, so that considerable extensions or
changes are required before reusing it in other contexts.

SafetyMet [63] is a unified metamodel for safety standards which has been developed
in the context of the OPENCOSS? project aiming to establish a common safety cer-
tification framework for automotive, avionics, and railway. A primary characteristic
of SafetyMet is the separation between standard-specific and project-specific aspects
with respect to safety analysis tasks and artefacts. Thereby, it enables the reuse of
safety models and assets originating either from old or current projects. Though,
among the limitations of SafetyMet which are stated in [63], most important to men-
tion are the certification risks that may remain even when the metamodel is applied,
the persistence of several human aspects of the safety compliance, and the question-
able feasibility of safety models generation from very large textual specification files.

In summary, the contributions described above support the generalization of de-
pendability concepts and the integration of model-driven development techniques in
the analysis methodology to a certain extent. Nevertheless, many challenges per-
sist. In [57], a generic approach is developed to overcome such issues. It covers
different dependability attributes and can be adapted to several domains through a
customization workflow.

The model-driven generalization and formalization approach presented in [57] relies
on applying metamodeling and code generation techniques (see Subsection 4.2.2). A
generic metamodel is constructed as a formalism to describe dependability terms and
to capture syntactic and semantic relationships between various domains. Domain-
specific dependability metamodels are derived from this generic metamodel using an
XMI3-based customization tool.

The approach presented in [57] accelerates the construction and configuration of de-
pendability analysis platforms. It offers a model-driven framework to support depend-
ability analysts and engineers by enabling the creation of customizable and reusable
domain and project-specific assessment tools.

3.1.2 FLM: Failure Logic Modeling

Failure logic modeling (FLM) is a concept introduced in [64] to depict a group of
model-driven dependability analysis techniques based on a compositional modeling
of failure behavior across the different design stages. These techniques address two
major problems encountered in classical dependability assessment approaches: (i) the

2 OPENCOSS: Open Platform for EvolutioNary Certification of Safety-critical Systems 3 XMI:
XML Metadata Interchange

95

3 Related Work

extensive knowledge of the whole system’s architecture and behavior needed by the
analysts and (ii) the limited reuse opportunities caused by the lack of modularization.
Through particular notations, the design specification of the individual components
of the system architecture is extended with the corresponding failure behavior to
enhance the manageability of the complete system’s dependability assessment [64, 65].
One important aspect of FLM is the automated extraction of classical evaluation
artefacts (e.g., FMEA table segments or fault trees) from the constructed models,
which leads to considerable time and effort savings [66].

The common points of all FLM techniques (e.g., Failure Propagation and Transfor-
mation Notation (FPTN)— 3.1.2.1, Failure Propagation and Transformation Calcu-
lus (FPTC) — 3.1.2.2, and Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS) — 3.1.2.3) are (i) the component-oriented system description on
which the analysis is based, (ii) the specification of the failures affecting every com-
ponent either on the inputs, on the internal elements, or on the outputs, and (iii) the
definition of the cause-to-effect relationships between those failures.

3.1.2.1 Failure Propagation and Transformation Notation

The Failure Propagation and Transformation Notation (FPTN) was the first mod-
ular and semi-graphical approach for failure behavior specification of architectural
elements. It represented a strong driving factor for the development of later mod-

els [67, 64, 65].

In FPTN, system components, which are referred to as modules, can either be
elementary or decomposable in further modules, and are represented graphically as
blocks with certain numbers of input failure modes, internal failure modes, and output
failure modes. In addition to some standard attributes (e.g., name), each module is
characterized by a set of failure propagation and transformation equations where
every output failure mode is specified through at most one Boolean formula over
input failures [67, 64]. Connections between outgoing (output) failure modes of a
given module with incoming (input) failure modes of further blocks is also supported
by FPTN as well as hierarchical module nesting. Beyond the logical description of
the failure behavior of a given system, FPTN is considered as a more concise and
abstract representation of complex fault trees and/or FMEA tables. Thus, it can be
used as assistance during the identification of safety threats and hazards [68].

3.1.2.2 Failure Propagation and Transformation Calculus

Failure Propagation and Transformation Calculus (FPTC) [69] is a more recent fail-
ure logic method which is closely related to FPTN. Among the extensions offered

o6

3.1 Formalization Approaches for Dependability and Safety

by FPTC, a more sophisticated syntax to specify propagation equations in a more
concise way is noteworthy [69, 66]. Most importantly, FPTC addresses the cyclic de-
pendencies issue in failure logic models. In fact, handling closed feedback loops and
similar cyclic flows in the system architecture, which is not supported by FPTN, is
possible through fixed-point evaluation techniques in FPTC [69]. The practicability
and the concrete application of FPTC in the industry is however limited [65].

3.1.2.3 Hierarchically Performed Hazard Origin and Propagation Studies

A more publicized and experimented failure logic modeling approach is the Hierar-
chically Performed Hazard Origin and Propagation Studies (HiP-HOPS) methodol-
ogy [70, 71, 72, 73]. The major syntactical particularity of HiIP-HOPS is the use of
the Tabular Failure Annotation (TFA) format to specify the failure behavior of the
different components instead of the graphical representation of FPTN. The specifica-
tion is done in commercial tool environments such as Matlab-Simulink using a new
FMEA variant called Interface Focused-FMEA (IF-FMEA) [72]. Offering fault tree
generation and minimal-cut set analysis facilities [71, 73], HIP-HOPS found its way to
industrial applications, e.g., at Daimler Chrysler for the assessment of a brake-by-wire
system prototype [72].

3.1.3 Other Contributions

In [61], a thorough survey study of dependability modeling and analysis approaches
is performed. It addresses software systems whose specification is based on UML and
which must be assessed with respect to specific dependability attributes. The survey
shows that reliability and safety are more considered in the academic research than the
other dependability attributes such as availability and maintainability. Another per-
ception of the study is related to the application timing of these modeling approaches
during the development cycle. In fact, the provided support is mainly limited to the
early lifecycle phases (e.g., requirements definition, high-level design, etc.,) while the
later phases of the dependability evaluation and testing remain uncovered. Most sur-
veyed methodologies support a transformation of the formally captured aspects in the
enhanced UML models into the dependability analysis domain. Nevertheless, only
few approaches take the necessity of a feedback loop into account. In other words, the
back-annotation of the dependability analysis results into the original UML model are
neglected by most of the surveyed approaches. Finally, the authors of [61] highlight
the high potential for automation support in the UML-based dependability modeling
approaches that they considered in the survey. However, they emphasize the urgent
need for a common platform for UML-based dependability modeling and analysis
and for an improved tool implementation and validation flow in this context. Indeed,

o7

3 Related Work

most of the contributions are evaluated with respect to feasibility and practicability
through a few use cases. Several approaches are studied in [61], such as the methodol-
ogy introduced in [74] focusing on failure severity evaluation from UML specifications,
the one of [75] addressing the design of safety-critical distributed embedded real-time
systems along with the automated code derivation from UML models, and the ap-
proach in [76] defining a UML profile to specify safety concepts of aerospace software
systems and correspondingly generate certification-related information.

3.2 Safety Analysis Automation

To overcome the largely manual state-of-practice in safety analysis, first works and ex-
periences towards Model-Based Safety Analysis (MBSA) have been presented in [77],
[78], and [79], based on a tight integration of system and safety engineering procedures
by using the same central formal model to describe the correct system configuration
as well as its dysfunctional behavior in the presence of faults. The approach is able
to automate parts of the classical safety analysis through fault tree generation or
automated search for failure scenarios leading to hazardous events. However, it has
different limitations such as the questionable scalability of the used tools to indus-
trial applications and the additional difficulties caused by “cluttering” the nominal
and the faulty system behaviors in the same model [78]. In fact, the supplementary
information related to the safety threats makes the exploration and the refinement of
the initial system functionality more challenging and more costly for design engineers.
In [79], the authors suggest to specify fault models separately from the nominal com-
ponent behaviors and defining the interactions between them. The clear separation
of the nominal model from the fault model and alternative extension and merging
capabilities have also been addressed in the context of the ESACS/ISAAC methodol-
ogy [80] which provides a tool for automated fault tree generation based on symbolic
model checking with NuSMV models [81]. However, only basic component failure
modes can be specified and injected into the nominal system model. Furthermore,
important aspects such as failure multiplicity and propagation are not covered.

In correlation to the safety formalization and modeling strategies presented in Sec-
tion 3.1, especially to FLM techniques (see 3.1.2), several automation approaches
have been proposed in the literature. The following Subsections 3.2.1 and 3.2.2 focus
respectively on automation techniques for FTA (2.2.7.6) and for FMEA (2.2.7.5).

3.2.1 Fault Tree Synthesis

Since the 1980s, several strategies have been investigated to automate the FTA pro-
cedure and systematically synthesize fault trees. In general, the initial step towards

o8

3.2 Safety Analysis Automation

the automated fault tree synthesis is the construction of proper formal models for the
systems to be analyzed. These models are used later within algorithmic processes in
order to build the intended fault trees. Therefore, they must fulfill certain require-
ments, such as being machine-readable, containing the necessary details about the
system architecture and operation, and enabling easy extensions and changes [82].

Several approaches are commonly used for fault tree synthesis [82], such as:

e Digraphs: in [83] and [84], the usage of directed graphs (graphical representa-
tions used to trace the local and global causality of disturbances and equipment
failures) for fault tree synthesis is described. It relies on an algorithm for the
traversal of the digraph, the subsequent derivation of the fault trees depicting
the logic of the safety goal violations, and the calculation of the minimal cut-sets
of those generated trees.

e Decision tables: after creating a tabular model representing the failure behav-
ior of the system, an analysis tool or script is executed to extract the necessary
information to construct the corresponding fault tree [85].

e State diagrams: based on finite state machines, called either state diagrams
or mode automata, the system failure behavior is graphically described in a
formal way and provided as input to dedicated tools transforming it into fault
trees [86, 87] decomposition.

e Matlab-Simulink models: in association with the HIP-HOPS methodology
(see 3.1.2.3), Papadopoulos et al. applied Matlab-Simulink models for model-
based synthesis of fault trees [73, 88].

3.2.2 FMEA Automation

FMEA (2.2.7.5) efficiency is limited by several organizational and operational con-
straints facing safety engineers while performing the analysis. Getting all involved
participants together, gathering all required information for the analysis, and linking
the results with corrective procedures are examples of those constraints [89]. To han-
dle these challenges, several projects focused on the conception and development of
appropriate frameworks to manage FMEA complexity through software tools.

In [72], Papadopoulos et al. proposed a methodology for synthesizing FMEA parts.
This approach is based on augmented compositional system diagrams with special
characterizations of failure logic for each component. These characterizations are
referred to as failure annotations. The theoretical background for this approach is
the HiP-HOPS safety analysis methodology [70] which aims at performing different
safety studies on a consistent hierarchical system model (see 3.1.2.3).

99

3 Related Work

In [90], an integration of formal and informal aspects is suggested to support FMEA
automation. Based on high-level graphical notations called behavioral trees, formal
model checking is applied to find out whether initially specified safety properties
are satisfied. The proposed method requires the preliminary construction of the
behavioral trees and the formalization of the normal and the failure states as linear
temporal logic formulas. The key benefit of this contribution is the facilitated building
of relationships between component malfunctions and failures on the system-level.

Another automation approach for FMEA is presented in [91]. It promotes incre-
mental FMEA of component-based HW and SW systems. The approach focuses on
deriving component and system FMEA tables in a progressive way using so-called
safety interfaces [92]. The consistency of the FMEA artefacts with the design model
is an important feature which enables the automatic identification of critical effects
in the case of design extensions. Although this approach reduces the manual work of
the safety engineers and allows reuse of partial analysis results when components are
integrated in different systems, it remains a qualitative method [91] which has to be
extended with quantitative capabilities to be suitable for industrial contexts.

In [93], a framework for preliminary safety assessment in the software domain is
introduced. A comprehensive safety flow is described from the early requirements def-
inition to the final evaluation of the safety integrity level, offering different capabilities
such as a safety modeling language, model transformations, as well as generation and
automation tools. Among these tools, an UML-based FMECA model creation tool
is implemented to transform the software architectural model extended with safety-
related information (e.g., as the failure modes, their corresponding failure rates, and
the associated severity levels) into an FMECA model which can be further on dis-
played in tabular form. The details of the transformation rules are given in [93]. This
approach has several benefits such as (i) the early engagement of the safety engineers
in the architecture design cycle resulting into quality and cost gains, (ii) the enhanced
consistency and availability of safety-related data due to the model-based support,
and (iii) the process speed-up achieved through automation. However, the applica-
tion of the methodology is limited to the software domain, its practicability has only
been evaluated for air navigation systems, and there is no link between the analysis
context and the fault simulation context.

In this thesis, the limitations of the automation strategies for safety analysis men-
tioned above are addressed. The key objective is to develop a more comprehensive
methodology, create a more reusable framework, and evaluate the practicability in the
automotive context with respect to functional safety guidelines in compliance with
the ISO 26262 standard.

60

3.3 Linking Analysis and Simulation for Safety Evaluation Purposes

3.3 Linking Analysis and Simulation for Safety
Evaluation Purposes

As already mentioned in Subsection 2.2.8, the ISO 26262 standard prescribes the
application of fault injection and simulation during the development at hardware
level in addition to safety analysis when the targeted Safety Integrity Level (SIL) for
the considered system is particularly high. The objective is to verify the completeness
and correctness of safety mechanisms, as well as the fulfillment of the associated safety
requirements.

One of the major challenges facing the industry in this context consists in the gap
between the safety analysis environment on the one hand and the fault injection and
simulation environment on the other hand. The tasks are respectively performed by
different teams with dissimilar work styles and strategies (see Subsection 1.4.1.3).

For many years, both the academy and the industry seemed satisfied with the
procedural separation between analysis and simulation. The data exchange between
both contexts has been very limited (e.g., reporting and/or informal communication
between the teams), if not completely absent. But recently, because of the increasing
complexity of the considered systems and the raising importance of functional safety,
linking both aspects of safety evaluation, i.e., analysis and simulation, has become a
challenging research topic within the functional safety community.

Among the research works addressing the link between safety analysis and fault
injection, an approach to assist fault definition and insertion with FMEA is described
in [94] (more details in 3.3.1). In the industry, there is no standard solution to this
problem. However, Yogitech [95] has proposed a method to bring the two contexts
together through a software tool-chain (a brief overview of Yogitech’s apprach is given
in Subsection 3.3.2).

Furthermore, in [96, 97|, the authors explore how beneficial safety analysis results
can be for the experimental system validation. They investigate the integration of
fault injection in early design stages and introduce the concept of pre-implementation
fault injection, which is very similar to the concept of fault injection in virtual pro-
totypes. By establishing an analogy between this pre-implementation fault injection
and the traditional safety analyses (FMEA, FMECA, FTA, etc.,), some capabili-
ties with respect to systematic data exchange and transformation are achieved. The
proposal mentions the possibility of guiding fault injection experiments at later de-
velopment phases, but does not address an important aspect for the industry, namely
the quantitative assessment of diagnostic coverage values of safety mechanisms. A
feedback loop from the fault injection to the safety analysis is not considered. These
limitations are addressed in this thesis with respect to the link between analysis and
simulation for functional safety evaluation purposes.

61

3 Related Work

3.3.1 Assisting Fault Insertion with FMEA

In [94], the FMEA process is reviewed from three different perspectives. First, the
correlation of FMEA with the requirements definition and with the initial architec-
tural design of the system is emphasized. Second, a set of requirements is given with
respect to the definition of the failure mode taxonomy and the execution of the anal-
ysis itself. For example, the flexibility of the FMEA data and its understandability
by the customer are highlighted. Third, the usage of the FMEA outcome to assist
the fault insertion testing is described.

Thereby, the failure modes taxonomy defined in the FMEA is used as a starting
point to verify the system behavior through simulation. Moreover, the results ob-
tained by the fault insertion testing are helpful to validate the FMEA, especially
with respect to the assumed failure effects.

In general, the approach proposed in [94] represents an initial step towards the
linking between safety analysis and fault injection. It is however limited to qualitative
FMEA. Other analysis techniques that are relevant for automotive functional safety,
such as FTA (2.2.7.6) and DFA (2.2.7.7) are not addressed. In addition to that, the
safety mechanisms, their diagnostic coverage values, and the ISO 26262 metrics are
completely beyond the scope of the methodology in [94]. That is why, the idea has to
be thoroughly refined and extended in this thesis to achieve the intended objectives.

3.3.2 Yogitech’s Approach

Since 2006, Yogitech [95] has been working on a platform-based solution for safety
verification at System-on-Chip (SoC) level, first according to the IEC 61508 standard
and later in compliance with the ISO 26262 automotive standard. The so-called
fRMethodology, which is documented in several papers [98, 99, 100] and patents [101,
102, 103], relies on a heterogeneous safety evaluation environment, including the
FMEA on the one hand and the fault injection and simulation on the other hand.

The first key point of the methodology is the derivation of the sensible zones, ob-
servation points, and diagnostic points in the design out of the FMEA. These derived
elements are then used as potential locations for fault injection, effect monitoring,
and diagnostic mechanisms evaluation. The second key point of the methodology is
the possible back-annotation of fault injection results into the FMEA for comparison
and verification goals.

The Yogitech methodology covers many aspects of the link between safety analysis
and fault injection, which represents a key topic in this work. The approach followed
in this thesis has multiple intersection points with Yogitech’s fRMethodology such
as (i) the concept of data exchange between safety analysis and fault injection, the

62

3.3 Linking Analysis and Simulation for Safety Evaluation Purposes

classification of design elements in sensible zones, observation points, and diagnostic
points, and (iii) the feedback loop from simulation to analysis through data back-
annotation. These concepts are not claimed to be a new perception in this thesis.
However, there are many differences. First, the scope of the thesis is not limited to
FMEA, but also covers FMEDA, FTA, and DFA. So, Yogitech’s tool-chain does not
implement the link between FTA/DFA and fault injection yet. Second, the solution
methodology in this thesis is based on metamodeling, code generation, and meta-
synthesis (see Section 4.2), which offers more flexibility in comparison to Yogitech’s
methodology.

Finally, this work addresses conceptual and technical limitations that still persist
in the available tool-chains ensuring a linking between analysis and simulation for
safety evaluation purposes. For example, the data mapping concept between both
contexts, which remains manual in Yogitech’s tool-chain for example, is further on in-
vestigated in this thesis to have a semi-automated support and subsequently improve
the consistency and reduce the efforts. In addition to that, the compatibility with
already used formats and styles for safety analysis, particularly FMEDA is targeted
in this work through the flexibility and interoperability aspects of metamodeling and
metasynthesis. Furthermore, there are more capabilities in the solution developed in
the context of this thesis with respect to extendability and reuse, so that a translation
to new domains and standards is feasible.

63

4 QOverall Requirements and Solution
Fundamentals

To tackle the challenges around functional safety evaluation which have been sum-
marized in the State of the Art Chapter 2 and in the Related Work Chapter 3,
comprehensive formalization and model-driven automation approaches for functional
safety analysis are conceived and implemented in this context of this thesis.

In Section 4.1, the overall requirements to be satisfied by these approaches are
presented. Then, in Section 4.2, the general solution fundamentals which are applied
in this thesis to develop the intended approaches are outlined.

4.1 Overall Requirements

In Section 1.4, the different problems and challenges which are addressed in this thesis
have been presented. Basically, they consist in:

e the informality and subjectivity issue in the context of functional safety analysis
(see Subsection 1.4.1.1),

e the manual character of safety analysis tasks (See Subsection 1.4.1.2), and

e the gap between safety analysis on the one hand and fault injection and simu-
lation on the other hand (see Subsection 1.4.1.3).

To overcome these issues, dedicated approaches, methods, and frameworks are de-
veloped in this thesis. The first step in the development process is to define clear and
concise requirements which have to be accordingly achieved by the provided solutions.
Five different categories of requirements are considered in this section: (i) structure
and formalism (Subsection 4.1.1), (ii) flexibility and extendability (Subsection 4.1.2),
(i) automation support (Subsection 4.1.3), (iv) interoperability and data exchange
(Subsection 4.1.4), and (v) enhanced usability (Subsection 4.1.5). Furthermore, all
requirements are assigned a unique ID (e.g., REQ 1) to simplify further references.

65

4 Overall Requirements and Solution Fundamentals

4.1.1 Structure and Formalism

REQ 1 : Structured flows

The procedures of the considered safety analysis approaches, particularly
FMEDA (2.2.7.5), FTA (2.2.7.6), and DFA (2.2.7.7) shall be covered and or-
ganized in structured flows depicting the multiple steps and the connections
between them. Dedicated flowcharts shall be created to illustrate them.

REQ 2 : Formal description of safety analysis artefacts

The data elements which are relevant to the functional safety analysis and the
relationships between them shall be formally described. The description must
be easily understood by safety engineers, analysts, and other actors involved in
the safety evaluation flow. Moreover, it has to be machine-readable to enable
an associated automation support.

REQ 3 : Suitability of representation formats

The representation formats of the structured flows already mentioned in REQ 1
and of the formalized data addressed in REQ 2 shall be clear, concise, and
portable. On the one hand, the steps and the interactions within the analysis
flows (REQ 1) and on the other hand, the attributes of the data elements
and their interdependencies (REQ 2) must fulfill these requirements. Hence,
they can be easily and consistently handled within the already existing safety
evaluation environments or by the new frameworks and/or tools developed in
the context of this work.

REQ 4 : Compliance with safety evaluation frameworks

The structured flows (REQ 1) and the formalized safety analysis artefacts
(REQ 2) shall be reflected in the already existing or in the new developed
frameworks for safety evaluation. All flow steps must be accordingly supported
and a compliant implementation for automation support based on the formal-
ized artefacts must be integrated in a comprehensive environment for safety
evaluation including already existing solutions and the additional frameworks
and /or tools resulting from this thesis.

4.1.2 Flexibility and Extendability

REQ 5 : Feasibility of modifications and extensions

66

4.1 Overall Requirements

The safety analysis flows (REQ 1) and the formalized safety analysis data
(REQ 2) shall be easily modifiable and extendable. Specific details in the work
flow may differ from one team to another and/or from one project to another.
Therefore, it must be possible to easily customize the flow of a certain safety
analysis, without altering the core logic of the analysis procedure itself. The
same applies for the safety analysis data artefacts. In fact, some specificities
may change with respect to the documentation style or the data storage format.
That is why, it is necessary to have a mechanism to enable a certain flexibility
of the formalized artefacts without losing the generic and standardized core
offered by the formalization itself. The potential changes and/or extensions
with respect to structure, attributes, and/or relationships must be supported
in the form of dedicated versions in compliance with REQ 6 and REQ 7.

REQ 6 : Traceability of modifications and extensions

The modifiability and extendability features addressed in REQ 5 shall be cor-
related with an appropriate tracing mechanism to keep track of the deviations
of the core solution and to simplify the comparison and the evaluation of differ-
ent working styles across teams, projects, or completely different organizations.
Thereby, all changes and additions made in the safety flows (REQ 1) or in the
safety data formalization (REQ 2) must be uniquely identified, appropriately
justified, and conveniently documented.

REQ 7 : Appropriate framework updates

In some cases, the supported modifications or extensions (see REQ 5) might
induce inconsistencies or malfunctions in the underlying safety evaluation envi-
ronment. To avoid this, the capabilities of the environment must be improved,
either by enhancing the functionality of an existing framework/tool or by de-
veloping a new one to support the potentially missing feature. In all cases,
a centralized environment per organization shall be targeted, where different
tool versions, packages, and/or plugins corresponding to the different team or
project requirements are gathered and maintained. An appropriate tracing
and versioning mechanism (similarly to REQ 6) is required for the framework
changes and/or extensions.

4.1.3 Automation Support

REQ 8 : Automated data extraction

To overcome the manual character of traditional safety analysis methods, appro-
priate mechanisms for data capture and handling shall be developed in compli-
ance with REQ 1 and REQ 2. The manual tasks commonly used for entering

67

4 Overall Requirements and Solution Fundamentals

the relevant data for functional safety evaluation into the analysis tools (e.g.,
FMEDA Excel spreadsheet, graphical fault tree editor, etc.,) must be substi-
tuted (as far as possible) by dedicated tools for automated extraction from
input documents and databases. It should be noted that some information may
be directly entered by the safety analyst or engineer without any supporting
documents. Thereby, he or she relies on experience, rational thinking, and ex-
pert judgment. An example for this is the definition of expected failure effects
for specific failure modes depending on a given system configuration during the
FMEDA. Such manual step cannot be fully automated by the tool. It can how-
ever be assisted when the analysis is linked to a fault injection and simulation
platform, where failure effects can be monitored after inserting the faults which
correspond to the considered failure modes into the design model.

REQ 9 : Automated tool synthesis

As mentioned in REQ 5 and REQ 7, the safety analysis flows and/or the
formats of the associated data may change over time, so that the accordingly
developed frameworks and tools must be updated. To reduce the efforts of such
updates, standard tools for data import/export, handling, and visualization
shall be automatically synthesized instead of being manually implemented. It
should be noted that in some cases, the synthesized tools are not completely
adequate, so that further manual optimizations are required. Nevertheless, the
effort reduction through the synthesis of the tool basis remains significant.

REQ 10 : Semi-automated link between analysis and simulation

To address the problematic divergence between the safety analysis context on
the one hand and the fault injection and simulation context on the other hand,
it is required to develop a mechanism for the semi-automated data mapping
between different data sets involved in both aspects. The equivalences and/or
correspondences of the data artefacts used in safety analyses (FMEDA, FTA,
and DFA) to those used in fault injection and simulation shall be investigated.
Subsequently, a data mapping and/or transformation tool must be developed.
The degree of automation that can be achieved depends on how far the syntactic
and semantic discrepancies between both contexts can be mitigated.

REQ 11 : Dynamic data updates

68

To enable more reuse and to take advantage of previous experiences, dynamic
updates and corrections in input documents and databases for safety analysis
shall be supported. For example, for the FMEDA, a failure modes database
is commonly used. In addition to the automated data extraction from the

4.1 Overall Requirements

database addressed in REQ 8, extending it by newly considered failure modes
for novel technologies or design methodologies must be supported.

REQ 12 : Generation of safety evaluation views and documents

In compliance with REQ 1 and REQ 2, generation capabilities must be inves-
tigated for diverse safety evaluation views such as failure propagation graphs,
segments of FMEDA table, fault trees, and fault libraries serving as starting
point for fault injection and simulation.

4.1.4 Interoperability and Data Exchange

REQ 13 : Exchange and reuse of safety evaluation artefacts

In compliance with the requirements stated in 4.1.1, 4.1.2, and 4.1.3, the ex-
change of safety evaluation artefacts shall be supported. For this, links between
the different frameworks, and tools applied for safety evaluation must be es-
tablished. Thereby, data exchange and/or transformation are enabled within
the same team or between different teams working on the same project. For
example, the communication between the analysis team and the fault injection
team must be enhanced through a systematic data transfer and/or reporting.
Furthermore, the reuse of safety evaluation data must be supported for related
projects addressing different derivatives of the same products for example.

REQ 14 : Cross-domain migration of dependability data

To deal with changes in development environments, technical infrastructures,
and/or domain-specific standards for safety and more generically for dependabil-
ity, data migration capabilities must be investigated. A first use case example
for this requirement is the translation of concepts, methods, and tools developed
for functional safety in the automotive domain into the railway and/or aerospace
domains. A second example is the migration of functional safety data into a
new platform developed according to the same approach for security evaluation
purposes. It should be noted that this requirement is only partly addressed in
the scope of this thesis.

4.1.5 Enhanced Usability

REQ 15 : Convenient Graphical User Interface(s)

For the frameworks and tools developed in accordance with the requirements in
4.1.1 and 4.1.2, convenient and customizable Graphical User Interfaces (GUIs)

69

4 Overall Requirements and Solution Fundamentals

shall be created. The potential features of these GUIs include (i) data visual-
1zation and handling: the safety evaluation data can be visualized and modified
or extended by the user through the GUI across the safety lifecycle stages, (ii)
facilitated tool usage: tools and scripts can be graphically invoked through the
GUI, (iii) dynamic data responsiveness: changing the value of a specific data
element leads to the update of all dependent data elements, and (iv) plausibility
checks: if the user input violates data consistency, an error message shall be
issued. It should be noted that this requirement is only partly addressed in the
scope of this thesis.

4.2 Solution Fundamentals

This section gives an overview of the solution concepts used in this thesis to achieve
the requirements defined in Section 4.1 and to overcome the challenges described in
Section 1.4. As already mentioned, the major objectives of the thesis are the for-
malization and the automation of functional safety analysis as well as its linking to
fault injection and simulation. To realize these objectives, a comprehensive approach
is developed relying on Model Driven Development (MDD) [104, 105] whose basics
are outlined in Section 4.2.1. Two related aspects are also particularly relevant for
the approach development and implementation, namely (i) metamodeling and code
generation (see Subsection 4.2.2) and (ii) metasynthesis (see Subsection 4.2.3). Fur-
thermore, the technicalities of data transformation and mapping, which are applied
in this thesis, are briefly presented in Subsection 4.2.4, specially in relation to MDD.

4.2.1 Model-Driven Development

The Model Driven Development (MDD) concept originates from the software engi-
neering domain. It emerged as an alternative organization for the software production
cycle and has been increasingly applied in the last two decades to tackle the long last-
ing complexity, standardization, and efficiency challenges in the software development
field. By managing different abstraction layers and separating between multiple sys-
tem aspects, MDD marks significantly the today’s state of the art software implemen-
tation flows, helps designers to face competitiveness and time-to-market challenges,
and promotes the accelerated production of larger amounts of operational code with
improved consistency and expressiveness [5].

From a conceptual point of view, MDD consists in the elevation of the abstraction
level at which software is developed by using models and model technologies [104].
Instead of considering all possible details, which depend on the design configuration
and the surrounding environment, software developers focus on the functionality and

70

4.2 Solution Fundamentals

the general architecture of the intended applications and build appropriate models
depicting them. Indeed, at least considerable parts of these applications are not
implemented per hand anymore, but systematically and automatically derived from
the corresponding models. For this purpose, several computer-based technologies are
applied to enable the transformation of models into running implementations [8, 106].

Representing the fundamental element in MDD, a model is defined as a “coher-
ent set of formal elements describing something [...] built for some purpose that is
amenable to a particular form of analysis” [105]. In other words, a model is an ab-
stract description of a certain system aspect, which is both human-understandable
and machine-readable. Consequently it can be either further on refined by the de-
velopers or provided as input to a dedicated software tool. Thereby, a systematic
analysis of the model results into an additional representation at a lower level of
abstraction or produces the targeted implementation [5].

There are several frameworks implementing the MDD concept. However, the most
popular and frequently used MDD framework is the Model Driven Architecture
(MDA) [6]. Defined by the Object Management Group (OMG) (an international
industrial organization concerned with software interoperability in many domains
such as telecommunications and manufacturing [105]), MDA relies particularly on
the Unified Modeling Language (UML) language to create system models at different
abstraction levels and to develop appropriate tools for automation and generation
support [105, 7].

MDA divides the software system into a platform independent specification (core
business logic) and a platform dependent implementation technology (configuration
characteristics of development environment such as hardware and operating sys-
tem) [7, 6, 107]. Hence, two types of models are differentiated in the MDA context:

e Platform Independent Model (PIM): It is an abstract description of system func-
tionality and behavior. All details related to the implementation technology and
development platform are discarded in the PIM. That is why, it can be used
on many platforms related to the same domain. The PIM developer is con-
cerned only with the general problem. Thus, he or she analyzes the appropriate
approaches to solve it without taking hardware characteristics, programming
language semantics, and other details into account [104, 107, 6].

e Platform Specific Model (PSM): Combining the system specification (PIM) and
the characteristics of the underlying hardware and software platform, the PSM is
the representation of the detailed system implementation containing all relevant
information about the concrete behavior in a certain environment [104, 107, 6].

Hence, to apply the Model Driven Architecture, a PIM is first created. It specifies
the functionality of the target system and remains the same throughout all possi-
ble technological changes. Then, one or more PSMs are derived from the PIM in

71

4 Overall Requirements and Solution Fundamentals

compliance with the supported platform(s), the technology characteristics, and the
implementation preferences of the software developer [5].
wews depicting the lowest level of abstraction and having the highest level of detail
(e.g. system code, test bench, verification files, documentation, etc.,) are generated
from the PSM [104, 108]. In Figure 4.1, an MDA overview is illustrated along with

the relationship between the PIM and the PSM.

efi

e _______
Model
Transformation
6 _______

%
1

Generation >

Platform . |

Finally, different system

Independent Analysis Level

Model ' |

Transformation
Specification

Platform |

Specific | Implementation Level |

Model |

Generation
Pattern

System View Output Level

Figure 4.1: Model-Driven Architecture Overview [5, 6, 7]

As already mentioned earlier, MDD has progressively become an established
methodology within the software development community because of its several ben-
It also started to gain popularity within other domains, such as

ts listed in [5].

hardware engineering and functional safety evaluation [109, 110].

72

e Productivity: Through abstraction, MDD offers a significant reduction of the
technical details that must be manually manipulated by the developers. They
can henceforth focus on the overall logic, functionality, and architecture of the
targeted applications instead of considering minor implementation details. Sub-
sequently, the time-to-market is considerably reduced, especially in the case of

multi-platform deployment [107].

e [Interoperability and Reusability: The PIM/PSM separation makes it possible to

4.2 Solution Fundamentals

export multiple domain-specific solutions on different platforms. Thereby, the
reuse factor is improved and drastic time and effort savings are achieved [8, 107].

o Automation Level: By automatically generating system views from PSMs, con-
sistency, quality, and expressiveness levels are improved. In fact, syntactic errors
are minimized, a well-defined coding style is systematically followed, and extra
finalization items such as comments can be conveniently created [6, 107].

4.2.2 Metamodeling and Code Generation

Beyond models, which are the basis of Model Driven Development (4.2.1), meta-
models offer an additional abstraction depicting model properties, describing the re-
lationships between their elements, and defining the constraints they must comply
with [111, 112]. Meta is a Greek prefix which means “after” or “beyond”. It appears
in the terms metadata and metamodel denoting “data about data” and “model for
model” [113, 114]. For example, when a given set of objects is considered to be a
model, then the corresponding metamodel is the group of classes whose instances are
the model objects. Similarly, programming language grammars may be considered as
metamodels and the respectively created programs as models [111].

Metamodeling is commonly used in software development to describe so-called Do-
main Specific Languages DSLs and define their syntax and semantics. The level of
abstraction of DSLs makes them valid for different development environments and
platforms associated with the same domain, subsequently leading to more interop-
erability and reuse [5]. In other words, metamodeling allows a translation of the
developer’s focus from the solution domain to the problem domain. It also enhances
the design tasks ranging from the early specification to the final verification through
concise meta-information and well-structured representation formats [115, 116].

A concrete reflection of the metamodeling concept in association with MDD is
given within the Model Driven Architecture defined by OMG and already introduced
earlier. In fact, MDD relies on a standard metamodeling infrastructure including four
modeling levels called metalayers, which are hierarchically organized and connected
by “instance-of” relationships. This hierarchy of metalayers [8, 117] is illustrated in
Figure 4.2 and commented below.

e MO Level: This level addresses the concrete user data describing the observed
system (e.g., data objects to be handled by software applications).

e M1 Level: A this level, a model of the MO user data is built. It contains a struc-
tural and/or behavioral description of the system. M1 models are constructed
using domain-specific concepts and are frequently stored and/or visualized as
UML object diagrams.

73

4 Overall Requirements and Solution Fundamentals

e M2 Level: Here, models of the M1 models are constructed and commonly de-
noted as metamodels. Such metamodels represent the domain-specific modeling
language expressing the structure and the semantics of the appropriately de-
fined meta-data. In many cases, UML class diagrams are used to create and/or
display metamodels.

e)3 Level: At this level, a model of the M2 metamodel is built. It consists in
a self-describing (metacircular) meta-metamodel which is capable of specifying
DSLs. This level is also referred to as Meta Object Facility (MOF) [105].

M3 meta-metamodel
(MOF: Meta-Object Facility)
instance of t

metamodel
M2 (model of M1 model)
- e.g., UML class diagram
model
M1 (representation of MO user data)
-> e.g., UML object diagram

instance of t
MO "real world" system
(concrete user data) > e.g., system code

Figure 4.2: Object Management Group Metamodeling Layers [5, 8, 9]

In the last decade, in addition to its frequent usage in software development, meta-
modeling has also been increasingly applied in hardware design, particularly to enable
reuse of Intellectual Property (IP) in System-on-Chip (SoC) design [5]. In this con-
text, the IP-XACT standard [118] has been introduced by the SPIRIT consortium.
It provides a generic metamodel for the description of IP-modules and their unified
specification through a well-structured meta-data pattern. With IP-XACT, the au-
tomation level of IP creation, configuration, and integration is enhanced. Moreover,
productivity improvement and time-to-market reduction are reached thanks to the

exchange and reuse factors promoted by vendor-neutral IP descriptions in compliance
with IP-XACT [118, 119].

Another important solution concept for this thesis is code generation, which is

74

4.2 Solution Fundamentals

inherently related to MDD and metamodeling. In fact, the automated derivation
of complex, detailed, and verbose source code from the correspondingly constructed
simple, abstract, and concise models is a key objective in this work.

Today, the omnipresence of code generation approaches in software and hardware
projects is obvious. It is motivated by the rising concerns about (i) code size, (ii)
memory requirements, and (iii) error monitoring and handling across the develop-
ment stages [5]. Therefore, several generation techniques are applied to consume
less resources and simplify the analysis, verification, and optimization tasks for the
developers. However, the benefits of code generation can only be realized when the
corresponding code generators are carefully implemented, taking into account the re-
quired properties of the intended code with respect to the architecture, the function-
ality, and the behavior. Certainly, fulfilling such requirements necessitates investing
significant efforts in the generator writing task. Nevertheless, these efforts will be
compensated through the boost of performance, effectiveness, and efficiency resulting
from the application of generated code instead of manually-written code [10].

Among the most relevant code generation techniques, three are mentioned below [5,
10]. A more detailed explanation of these and other techniques can be found in [5].

e Template-Based Code Generation: Templates are special files which define the
layout of the intended output. They are either applied to filtered parts of textual
specifications (e.g., XML files) or to metamodel instances which have been
correspondingly filled with the specification data. The concept of template-
based code generation using metamodels is illustrated in Figure 4.3.

e API-Based Code Generation: Using an Application Programming Interface
(API), which relies on the syntax of the programming language of the expected
code, the abstract structure from which the code shall be derived is systemati-
cally traversed and appropriately transformed by the code-generating programs,
which apply the functionalities and features provided by the API.

e [nline Code Generation: By compiling or interpreting manually written pro-
grams, which have been appropriately processed by dedicated pre-compilers,
the expected code is produced.

In the context of this thesis, two of the code generation techniques mentioned above
are applied, namely the template-based and the API-based techniques.

4.2.3 Metasynthesis

In Subsections 4.2.1 and 4.2.2, the critical challenges of automation and flexibility
in software and hardware design have been extensively addressed, as well as the
commonly used methodologies to tackle them, namely Model Driven Development,

)

4 Overall Requirements and Solution Fundamentals

adheres to .
Metamodel -1 Specification
build extract data
instance and fill instance | Code Generation |
r - 7 Definition |
(// —————————————————
| .
| Filled]
aS access
| | Metamodel access | Template | ——p Generated Code
: Instance I
|
[
\ /!

S S S —

Figure 4.3: Template-Based Code Generation using Metamodeling [5, 10]

metamodeling, and code generation. These methodologies rely on building abstract
descriptions (models and/or metamodels) and applying generation techniques to sub-
sequently derive concrete system implementations, views, and applications from them.
However, these capabilities are mainly ensured by software infrastructures (contain-
ing modeling platforms, programming and editing frameworks, synthesis tools, etc.,),
whose implementation (mostly manual) is still a complex and time-consuming pro-
cedure. In [120], a new concept called metasynthesis is introduced to address the
unsupported fields of automation by the Electronic Design Automation (EDA) in-
dustry, especially in the automotive SoC design domain. In the following, the general
concepts and terms of metasynthesis are first presented. Then, a quick overview of
metasynthesis applications is given.

e General Concepts of Metasynthesis:
Beyond the system synthesis concept, which is becoming an intrinsic part of
ESL design and verification, metasynthesis is a flexible technique aiming at the
synthesis of the system synthesis tools themselves. Once automatically syn-
thesized, such tools transform an abstract description (e.g., requirements list,
tabular specification, graphical block diagram) into a concrete implementation
(e.g., C program, RTL code, or netlist). The naming of the methodology reflects
(ii) the idea of having a synthesis tool “beyond” another synthesis tool and also
(ii) the underlying metamodeling technology [120]. It should be noted that the
two-step synthesis approach is correlated with additional efforts resulting (i)
from the development of the metasynthesis infrastructure (reusable platform
implemented only once and then appropriately maintained) and (ii) the cre-
ation of the system synthesis tools (multiple tools depending on the use cases).

76

4.2 Solution Fundamentals

However, the high automation level of the second step and the input properties
with respect to simplicity and compactness lead to an overall reduction of the
design time [120].

e Metasynthesis Applications:

Metasynthesis is a widely applied approach at Infineon. It has already about
100 use cases and it contributes significantly to the productivity improvement
in automotive SoC design. The effort reduction reaches 70% due to the removal
of repetitive error-prone manual tasks mainly related to data entry and there
are reports that the synthesized tools are able to generate up to 80% of the
overall RTL code of certain chips [120]. Beyond automotive products, metasyn-
thesis addresses other products at Infineon which are related to energy efficiency
and to security for example. With respect to ISO 26262’s safety lifecycle pre-
sented in Subsection 2.2.1, metasynthesis applications covers the majority of
the stages, e.g., the requirements specification, HW design (virtual prototyping
using TLM and RTL design), SW design (more precisely firmware), verifica-
tion, and test [120]. That is why, it is a central solution concept in this thesis,
especially with respect to the requirements stated in Subsection 4.1.3.

4.2.4 Data Transformation and Mapping

With respect to requirements REQ 10, REQ 13, and REQ 14, data exchange,
transformation, and mapping between multiple tools, platforms, and domains related
to functional safety evaluation shall be supported in the context of this thesis. In
the following, the model and data transformation challenge in MDD, which is the
fundamental solution concept for this work, is briefly studied. Then, a brief general
overview of data mapping techniques is given.

e Model and Data Transformation in MDD:
In [106], the major challenges related to model transformation in MDD are
presented. In general, model transformation is a relationship between a source
model and a target model. The transformation mechanism takes the elements of
the source model as input, manipulates them appropriately, and subsequently
produces the elements of the target model. There are different types of trans-
formations, such as:

— model refinement (more details are added to the source model elements),

— model composition (multiple source models are integrated together into
one single target model),

— model abstraction (certain details of the source model are discarded),

— model decomposition (one single source model is segmented in many target

7

4 Overall Requirements and Solution Fundamentals

78

models), and

— model translation (the source code is translated into another language to
produce the target model) [106].

Among the known approaches for data transformation in model-driven devel-
opment, OMG’s Query/View/Transformation (QVT) standard addresses the
description of relations at different levels of abstraction either in a declarative
or in an imperative manner [106].

Many challenges are associated with model transformation [106] such as:

— The consistency maintenance across different views: plausibility checks
and reviews are required.

— The testability of the transformation with respect to its correctness and/or
efficiency: test cases based on target codes are needed.

— The integration of model-to-code transformations with manually-written
code or with legacy code: “glue” code recommended to implement the
missing interfaces.

Data Mapping:

Data mapping is an important aspect in data management and computing. It
consists in creating links between two different data models. These links are
the basis for further data handling activities, such as:

— data transformation addressed above,

— data mediation which is a special type of data transformation where a
third mediating data model is used to establish the connection between
the source and the target,

— data lineage analysis which deals with the provenance of data and the
visualization of its flow of movement from its origin to its destination, and

— data gathering and consolidation with the objective of building a compre-
hensive database without unnecessary redundancies for example.

There are many approaches to perform data mapping. The most relevant are:

— Hand-coded, graphical and/or manual mapping: In this approach, a proce-
dural code is manually written to bring together the elements of the source
model on the one hand and the elements of the target model on the other
hand. Alternatively, a graphical interface is used to create the mapping

links.

— Data-driven mapping: Here, advanced heuristic and statistical techniques
are used to detect similarity patterns between the considered data sets.

4.2 Solution Fundamentals

— Semantic mapping: In this approach, semantic equivalences with respect
to meta-data information are applied through dedicated data mapping
tools to establish the intended links.

In this thesis, both hand-coded, graphical and/or manual mapping and semantic
mapping are applied.

79

5 Metamodeling-Based Formalization
of Functional Safety Analysis

In this chapter, the formalization strategies developed in the context of this work to
address functional safety analysis are presented.

First, a general introduction is given in Section 5.1, highlighting the main objectives
of the intended formalization in relation to the overall requirements explained in
Chapter 4 and displaying the basic techniques enabling such formalization.

Then, Sections 5.2 and 5.3 address the two central formalization approaches imple-
mented during this thesis with respect to their theoretical basics and to their technical
implementation.

5.1 Introduction

In this section, the main objectives of the formalization are briefly recapitulated
(Subsection 5.1.1) as well as the technical enablers which are applied to achieve it
(Subsection 5.1.2). Afterwards, the organization of the chapter remainder is outlined
(Subsection 5.1.3).

5.1.1 Main Objectives

As already addressed in Section 1.4 of the introduction chapter, functional safety
evaluation has become a central topic in the industry over the last decades. Due
to the significant importance and the considerable challenges it represents, it also
has been extensively addressed by the research community to develop appropriate
theories, approaches, and tools, particularly for functional safety analysis. Among
the frequently studied topics, (i) fault and failure modeling, (ii) failure propagation
analysis, and (iii) model-based support for safety analysis techniques have already
been introduced in Sections 3.1 and 3.2 of the related work chapter. Nevertheless,
many issues still persist, such as the informality of the available descriptions for
modeling strategies and analysis techniques. The subjectivity of such descriptions

81

5 Metamodeling-Based Formalization of Functional Safety Analysis

and their lack of structure and standardization make them difficult to understand
and to apply. Furthermore, they limit the opportunities for data exchange and/or
reuse.

Hence, the formalization aspect is addressed in this thesis to tackle such inconve-
niences, reduce the tedious and error-prone characteristics of functional safety anal-
ysis, and create a solid basis for the later development of systematic tools to assist
safety engineers and analysts throughout the safety lifecycle stages, particularly in
automotive applications in compliance with the ISO 26262 standard.

Concretely, the objectives to be achieved through formalization are intrinsically
correlated with the overall requirements defined in Chapter 4, especially those of
Subsections 4.1.1, 4.1.2, and 4.1.4. These objectives are listed below along with
references to the respective requirements.

e Depict the tasks of safety analysis methods in structured flows to simplify their
reflection through formal descriptions (REQ 1).

e Ensure that these flows are easily modifiable and extendable in accordance with
team, application-domain, and/or project specificities (REQ 5).

e Provide a formal description of safety analysis artefacts and interactions be-
tween them which is both understandable by safety engineers and supportable
as input for automated framework synthesis and tool generation (REQ 2).

e Ensure the clarity, the portability, and the flexibility (with respect to changes
and/or additions) of the representation formats used to depict the formal de-
scription related to functional safety (REQ 3 and REQ 5).

e Keep track of all changes and/or extensions performed during the formalization
procedure and enable a comparison mechanism between different versions of the
formalized descriptions (REQ 6).

e Anticipate later exchange and/or reuse of functional safety data through dedi-
cated features in the formalized descriptions of the different analysis techniques,
such as references and mapping patterns (REQ 13 and REQ 14).

5.1.2 Technical Enablers

The achievement of the objectives listed in Subsection 5.1.1 is enabled through three
basic solution concepts that have already been presented and detailed in Section 4.2.
In the context of Model Driven Development (MDD) (see Subsection 4.2.1), mod-
els are used to abstract certain system aspects and to describe them in a formal,
concise, and reusable way. In this thesis, the focus is on functional safety as the
system aspect to be covered through this modeling concept. Thereby, data models

82

5.1 Introduction

are used to substitute large and cumbersome documents addressing system safety at
different levels of abstraction and on different stages of the design and manufactur-
ing cycle. Building such models has been already addressed in the literature and
has also become a concern in the industry because of the increasing relevance and
complexity of safety-related data. However, the structure, properties, and constraints
of these models have been often neglected, although they represent the basis for a
consistent and efficient application and deployment across organizations, domains,
and projects. Therefore, MDD is correlated with two further technical enablers in
this thesis, namely metamodeling and code generation (see Subsection 4.2.2). Ab-
stracting models by providing well-defined and well-structured syntactic and semantic
descriptions for them is the primary function of metamodels (more details are given
in Subsection 4.2.2). Moreover, code generation is applied on top of metamodels
and in compliance with different techniques mainly to support the construction of
associated metamodel instances (i.e., data models) and derive appropriate views out
of them (the details are also given in Subsection 4.2.2). In order to emphasize the
formalization strategy using MDD and metamodeling, the two basic terms model and
metamodel are formally defined below [109, 57].

Def. 1 A metamodel is a tuple # = (M, €, %):

- M is the self-describing meta-metamodel which is capable of specifying all meta-
models, including itself.

- € is a set of classes. FEach class ¢ € € determines syntactical properties of later
instances such as types, multiplicities, and potential attribute initializations.

- X is a set of relationships between classes including associations, references,
and inheritances.

Def. 2 A model is a tuple M = (#,O,R):

- M is the metamodel formalizing the structure of M.

- O s a set of valid class instances referred to as objects. Fach object o € O 1is
an instance of a class ¢ € M€ . It is characterized by a unique identifier, a set
of attributes, and a set of related objects.

- R is a set of object links such as associations, references, and inheritances
(instances of r € M .X).

5.1.3 General Organization
In the remainder of this chapter, the developed formalization approaches for func-

tional safety analysis in the context of this thesis are presented. First, Metamodeling-
based Failure Propagation Analysis (MetaFPA) is addressed in Section 5.2 mainly

83

5 Metamodeling-Based Formalization of Functional Safety Analysis

through (ii) a methodology overview, (ii) an explanation of the new enhancements
of the already publicized Failure Logic Modeling theory (see Subsection 3.1.2), and
(iii) the detailed description of the created metamodel for failure propagation mod-
eling. After that, the metamodeling-based formalization of classical safety analysis
techniques is described in Section 5.3. For the three considered techniques FMEDA
(2.2.7.5), FTA (2.2.7.6), and DFA (2.2.7.7), the respective flows and documentation
formats are depicted. Then, the correspondingly formalized descriptions through
metamodels are presented.

5.2 MetaFPA: Metamodeling-Based Failure
Propagation Analysis

In Chapter 2, the significance of system robustness against faults, errors, and failures
has been emphasized. Multiple robustness aspects are addressed throughout the
system design and manufacturing cycle, but the focus of this work is functional safety,
i.e., the absence of catastrophic consequences on the users and the environment.

Functional safety is particularly important in safety-critical domains where human
lives can be harmed in failure cases. Therefore, it gets evaluated on multiple stages of
the product lifecycle and at different abstraction levels. Functional safety evaluation
starts already during the concept phase. At that early stage, analytical and proba-
bilistic methodologies are applied to perform Hazard Analysis and Risk Assessment
(HARA) either qualitatively or quantitatively. The latest step of functional safety
evaluation is the physical prototype testing where the system hardware and software
get certified with respect to the safety requirements. In between, simulation-oriented
system alterations are carried out through fault injection campaigns.

Several new model-based safety assessment approaches have been proposed during
the last two decades to reduce the gap between the classical safety analysis approaches
on the one hand and the simulation-oriented system alterations on the other hand (see
Figure 5.1). These approaches try to address the limitations of the usual techniques
on both sides. They are referred to in the literature as Failure Logic Modeling (FLM)
techniques [64, 66].

The basis of FLM methods is the compositional description used to evaluate system
safety at an early stage. For this, the failures affecting the system components either
internally or on the interfaces are specified and the cause-to-effect relationships are
defined.

Although these methodologies show potential for early evaluation of system ro-
bustness, they still require further academic research and need examination of their
productive use in the industry. Indeed, this is one of the motivations of this work.

84

5.2 MetaFPA: Metamodeling-Based Failure Propagation Analysis

Classical Analysis
Approaches

* FME(C/D)A: Failure
Modes, Effects (and
Criticality /Diagnostic)
Analysis

* FTA: Fault Tree Analysis

* RBD: Reliability Block
Diagram...

Failure Logic Modeling

Simulation-Oriented
System Alterations

+ Established
methodologies in the
industry

FPTN: Failure Propagation

and Transformation Notation

HiP-HOPS: Hierarchically

Performed Hazard Origin and
Propagation Studies

FPTC: Failure Propagation

and Transformation Calculus

L]

Fault Injection

Hardware-Implemented
Software-Implemented
Simulation-Based

Potential for early
evaluation of system
robustness

+

Can be easily integrated
in verification and
simulation platforms

— Manual character
— High effort and time
costs

— Academic research still

required

— No extensive use in

— Late application in

design cycle

— Detailed system

implementation required

industry yet

Figure 5.1: Failure Logic Modeling as a Bridge between Classical Safety Analysis and
Fault Injection and Simulation

In this section, FLM techniques are addressed from three different perspectives: (i)
formalized definitions and descriptions of failure logic modeling aspects (REQ 2),
(ii) enhanced compatibility with conventional simulation-oriented system modeling
guidelines (REQ 4 and REQ 10), and (iii) enhanced flexibility, reusability, automa-
tion, and maintenance capabilities (REQ 5 and REQ 7). The objective is to use
them for high-level failure propagation analysis in industrial applications.

For this purpose, the MetaFPA approach is introduced [11], offering a comprehen-
sive platform for failure propagation analysis and simulation. The remainder of this
section is organized as follows. First, an overview of the MetaFPA methodology is
given in Subsection 5.2.1. Then, the extensions provided by MetaFPA in comparison
to the Failure Logic Modeling (FLM) theory are explained in Subsection 5.2.2. After-
wards, Subsection 5.2.3 presents the metamodel developed in the MetaFPA context
to formalize failure logic and propagation modeling.

5.2.1 Methodology Overview
As already mentioned, FLM methodologies represent the academic starting point to

reduce the gap between the analytical safety analysis and the simulation-oriented
system alteration consisting in the fault injection. The challenge in this work is to

85

5 Metamodeling-Based Formalization of Functional Safety Analysis

build upon the concepts offered by the FLM theory to develop a formalized technique
for failure propagation analysis which is more compatible with the simulation world
and to create a corresponding platform with extensive and flexible capabilities.

Subsection 3.1.2 gives an overview of the theoretical basics of the most relevant
FLM approaches such as FPTN (3.1.2.1), FPTC (3.1.2.1), and HiP-HOPS (3.1.2.3).
It shows the compositional description of the system structure and the interdependen-
cies between the contained components in failure cases. In fact, FLM methods model
the system as a set of interacting components and specify their relationships in terms
of potential deviations from the initial design intent [66, 11]. In addition to that,
FLM techniques describe the failure flow across the defined structure by defining
the logical relationships between input deviations, internal malfunctions, and output
deviations.

The FLM basics mentioned above remain valid for MetaFPA (see Figure 5.2).
Indeed, the system is modeled as a set of blocks in an abstract description provided
commonly as a block diagram by concept engineers. The potential threats which
might affect the system blocks are then specified. Possible deviations on the input
and the output interfaces of the blocks are considered as well as the malfunctions
which may occur internally inside the block.

Block X
(Internal Malfunctions | Communication € abstract ports
H and connections
i
Input W 1 Output
Deviations PR Deviations
]
L
Block Y
Transformation [Internal Malfunctions]
T
i
Deviations effect € dynamic Input | 1 (_Oqtp.ut
changes in port values Deviations ST Deviations

Figure 5.2: Basic Idea of the MetaFPA Approach [11]

In MetaFPA, the failure logic is taken into account. The relationships between the
different threats inside the blocks and also between the different blocks are covered.
The mapping between input deviations and internal malfunctions on the one hand
and output deviations of a specific block on the other hand is referred to as propaga-
tion. Furthermore, transformation is the term used to denote the connection between
output deviations of one specific block and input deviations of the next blocks in the
system architecture. This information, which is related to the behavior of the system
blocks in failure cases, can theoretically be provided by the user of the MetaFPA

86

5.2 MetaFPA: Metamodeling-Based Failure Propagation Analysis

platform. However, practically, it is derived from already existing safety data which
is available for the different system components, e.g., component FMEDA tables, lo-
cal fault trees, etc. The essential benefit of reusing the available knowledge about the
failure behavior of the system blocks is the evaluation of safety integrity level of the
complete system in a different way from the classical analysis approach [11].

The main difference is actually the new simulation aspect provided by MetaFPA.
This aspect is realized through the usage of ports and connections to dynamically cap-
ture the communication between the blocks. In comparison to the traditional FLM
techniques, where the failure behaviors of the different blocks are statically defined
upfront, MetaFPA enables a dynamic computation of the block state including the
internal malfunctions and the values of the respective ports. This dynamic computa-
tion is based on the propagation and the transformation patterns. In fact, deviation
effects are modeled through changes in the port values. Furthermore, the connections
are activated to capture how the failures spread across the system structure [11].

Based on the general concepts and ideas described above, a comprehensive method-
ology is developed to support the intended model-based and simulation-oriented fail-
ure propagation analysis at higher levels of abstraction and on early concept stages
of the safety lifecycle. In compliance with ISO 26262, MetaFPA is applicable during
the concept phase (Part 3) to assist the specification of the safety integrity levels and
the functional safety requirements. The outcomes of the failure propagation analysis
at this level affect the safety concept and enable a more efficient exploration of the
intended safety mechanisms with respect to their adequacy and effectiveness in cover-
ing the potential threats which may affect the system. An overview of the MetaFPA
methodology is given in Figure 5.3.

The initial step in the development of the MetaFPA methodology is the construc-
tion of the Metamodel for Failure Propagation Analysis which formalizes the abstract
system modeling on the one hand and the failure propagation modeling on the other
hand. Confirming to this metamodel, the MetaFPA platform is created. For this,
the Metasynthesis concept (see Subsection 4.2.3), which is based on synthesizing
tools [120], is used. Within the synthesized MetaFPA platform, generated tools such
as standard readers, parsers, and writers for common data formats like XML and XLS
are used to build, visualize, and manipulate data models, which are actually instances
of the metamodel. In addition to these generated tools, handwritten extensions, plu-
gins, and further generators are developed, always confirming to the terms and to
the structure of the metamodel. As previously mentioned, flexibility is one of the key
requirements in the context of this thesis (REQ 5). The fulfillment of this require-
ment in the MetaFPA context is illustrated in Figure 5.3 by the customization facility
offered at the User Input Interface to change, configure, or extend the metamodel de-
pending on specific needs or requirements either for the system description or for the
failure behavior specification. The user can also implement targeted add-ons for the

87

5 Metamodeling-Based Formalization of Functional Safety Analysis

entry and
update

User Input
Interface

customization
~

Analysis

confirm to

System
Modeling

=)

-

4 Metamodel for Failure Propagation

Failure
Propagation
Modeling

Inputs

System
Specification

MetaFPA Simulation Platform

Failure Behavior

Generated Tools
(GUI, standard
readers, writers...)

behavior)

Executable System Model
(extended with failure

Handwritten
Extensions, Plugins
and Generators

Specification

==

implementation of potential add-ons

Generated Outputs
Analysis m Failure Propagation
Scripts Graphs

Figure 5.3: Overview of the MetaFPA Methodology [11]

Interface

visualization / inspection
of analysis artefacts

N

Feedback Loop

MetaFPA platform at the User OQutput Interface, such as special readers or writers
if a new format of input or output data is used. Further details about the MetaFPA
analysis and simulation platform and its use-case dependent customizations are given
in Section 6.2.

Once the MetaFPA platform is adapted to the special requirements of the use
case, the application starts with the entry of the user inputs consisting of the system
specification confirming to the system modeling part of the metamodel and the failure
behavior specification related to the failure propagation modeling rules. Entry and
update in Figure 5.3 do not necessarily depict manual tasks. They also refer to
the automated extraction of information delivered by concept engineers and safety
analysts in structured formats. The model filled with the extracted data from these
inputs is the basis on which the failure propagation analysis is performed. Python
scripts are generated, covering a big number of faulty configurations of the system.

88

5.2 MetaFPA: Metamodeling-Based Failure Propagation Analysis

Running these scripts produces the analysis results which are displayed in the form of
tree graphs generated in the XML based GraphML format. These graphs document
the runs leading to critical system failures. An example of a generated graph using
MetaFPA is given in Figure 5.4. More details about the structure of the graph and
the use case behind it are given later in Subsection 6.2.3.

Y Y Y Y

{BSCU1} -- output failures: {BSQUBZ} ;(- Ou(t)puf failures:
* FalsePos rakingOmission
* FalsePos

Y

{ValidityMonitor} -- output failures: {Switch} -- output failures: |
* ValidityOutFalsePos * BrakingOmission

Figure 5.4: Example of Generated Failure Propagation Graph using MetaFPA

The analysis results can be observed and inspected by the user. With the knowl-
edge gained from this inspection, it becomes possible to define actions to improve
the system quality with respect to its functional safety. These actions are actually
recommendations to revise the high-level system specification by adding new safety
mechanisms for example. A semi-automation capability in the context of this feed-
back loop is investigated. Thereby, the enabling of systematic extraction of candidates
for proposed mitigation techniques is targeted. The essence of the feedback remains
however a subjective task requiring human intelligence and hence an unavoidable
contribution of the user. However, the offered semi-automation by MetaFPA offloads
the user from simple, repetitive, and error-prone tasks.

5.2.2 Failure Logic Modeling Extensions

In this part of the thesis, the primary challenge is to overcome the limitations of the
failure logic modeling theory. MetaFPA builds upon the traditional FLM techniques
in order to overcome the limitations given in Figure 5.1 consisting in the need for fur-
ther academic research on the one hand and for industrial evaluation and qualification

89

5 Metamodeling-Based Formalization of Functional Safety Analysis

on the other hand. Moreover, MetaFPA addresses different technical weaknesses that
have been witnessed in existing FLM tools and platforms.

In fact, MetaFPA provides alternatives and/or enhancements in comparison to the

already existing FLM approaches with respect to the following three aspects: (i)
dynamic failure description, (ii) flexibility, and (iii) automation level. These three
aspects are detailed below.

90

e Dynamic failure description: In known FLM approaches, failure logic is

described statically. In fact, the specification of the component failures and
most importantly the mapping between the different components is predefined
and manually entered. As an alternative to the static description, MetaFPA
captures the failure behavior of the system in a dynamic way which is more
compatible with the conventional simulation-oriented modeling styles. This is
enabled by the abstract ports and connections described in Subsection 5.2.1.

Automation level: FLM has a limited automation level. Until now, there was
no platform which offers a partial synthesis of the tools used to implement the
failure logic modeling concepts or provides a mechanism to systematically cre-
ate analysis artefacts (such as programs or scripts) to assist the safety engineer
or analyst. The tool support described in the literature requires a considerable
contribution of the user not only in terms of modeling but also in terms of writ-
ing and/or programming the necessary analysis routines. In contrast to that,
MetaFPA offers a high level of automation due to the model-driven support,
the underlying metamodeling and code generation techniques, the application
of the metasynthesis concept to automatically generate extensive parts of the
MetaFPA platform, etc. Moreover, MetaFPA assists the safety engineers not
only in building the underlying model for the failure propagation analysis, but
also in performing the analysis itself and evaluating its results (generation of
analysis scripts and feedback loop already mentioned in Subsection 5.2.1).

Flexibility: Reconfigurability, interoperability, reuse, and other flexibility as-
pects are major issues in the FLM context. The customization capabilities of
the accessible FLM tools are very limited which makes them almost unusable
for other use cases than those they were originally implemented for. Several
MetaFPA features, such as the use-case dependent customization of the meta-
model, the extendability of the platform by user add-ons, and the reuse of
analysis artefacts across projects and teams, help to overcome the flexibility
concerns encountered in the FLM context and offers instead a manifold and
powerful tool-set for failure propagation analysis and simulation which offers
multiple facilities and which can be flexibly rearranged.

5.2 MetaFPA: Metamodeling-Based Failure Propagation Analysis

5.2.3 Metamodel for Failure Propagation Analysis

As already mentioned, the technical enablers for the MetaFPA methodology are
model-driven development, metamodeling, and code generation. The MetaFPA meta-
model for failure propagation analysis is the basis of the methodology. It represents
the core artefact of the approach and the starting point for all modeling, data han-
dling, and evaluation tasks. Illustrated in a simplified form through a UML class
diagram in Figure 5.5, the metamodel contains a formalization of the compositional
system structure used for the analysis and covers the failure logic modeling aspects

addressed in Subsection 5.2.1.

MetaFPA
Name : string [1

1?

System "

Name : string [1] |

" |

nextBlock
*

Block

Name : string [1]

outgoingConnection l *

Connection
0.1 | source Name : string [1] affectedConnection

combinedInputFailure

Doine(l] 0—\ Port et D:int[l] P
Description : string [0..1] * 5 Name : string [1] 0.1 Description : string [0..1] -
(K3 [ID :int [1]
affectedPort | yioction « strin 1 affectedPort
1.* 1.*

-l

InputFailureCombination InputFailure externalCause PropagationMappin:
N - stri 1 « stri
ame : ring [1] * Nam.e < string [1] . Name : string [1]
ID :int[1] ID :int [1] ID:int[1]
« | Description : string [0..1] Description : string [0..1] Co .
. N . . . Conjunction : string [1
Validity : bool [1] Effect : string [0..1] incompatibleWith
Probability : float [1 Probability : float [1 *

«T destination

InternalFailureCombination

L—> Description : string [0..1]
Validity : bool [1]
Probability : float [1]

| combinedI [Failure

—| Description : string [0..1]

- InternalFailure .
Name : string [1] - * internalCause
ID:i Name : string [1] TransformationMapping
int 1] ID :int[1]

Probability : float [1

incompatibleWith (D:intf1] |

Name : string [1]

*

7
- J, origin

OutputFailureCombination Oufpu!Fallure
Name : string [1] i\g“j"‘_e : S‘I““g 1 result
ID:int[1] sint [1]

Description : string [1]
Validity : bool [1]
Probability : float [1

| binedOutputFailure

*

Description : string [0..1]
Effect : string [0..1]
SystemCritical : bool [0..1]

Probability : float [1

=
‘—*T incomp:

atibleWith

Legend
Class

<class_name>

<attribute_name> : <attribute_type> [<attribute_multiplicity>]

Composition

A composition from class <c1> to class <c2> means that each object (instance of <c1>)

has a number N of related objects (instances of<c2>) as child nodes. The number N depends
on the multiplicity which is either implicitly 1 or given as a label of the composition arrow.
Multipllicity * means 0 to infinity.

A reference from class <c1> to class <c2> means that each object (instance of <c1>) is linked

Reference to anumber of data objects (instances of <c2>). The number N depends on the multiplicity

which is either implicitly 1 or given as a label of the reference arrow.

Figure 5.5: Simplified Metamodel for Failure Propagation Analysis

91

5 Metamodeling-Based Formalization of Functional Safety Analysis

In the following, the aspects which are related to the system modeling and which

are covered by the metamodel are recapitulated in 5.2.3.1. Then, an overview of the
failure modeling aspects is given in 5.2.3.2. After that, the remaining syntactic and
semantic details of the metamodel are described in 5.2.3.3.

5.2.3.1 System Modeling Aspects

In accordance with most FLM approaches and taking the extensions and enhance-
ments presented in Subsection 5.2.2 into account, MetaFPA’s metamodel addresses
the following system modeling aspects:

e System compositional structure: Each System contains a set of Blocks.

These blocks are associated with a highly abstracted architecture of the consid-
ered system which evolves during the concept phase.

Block interfaces: Each block has a set of Ports, which can have different
directions (IN, OUT, INOUT). The values of these ports are dynamically up-
dated during the analysis. This is an important prerequisite for supporting
the dynamical flow aspect and facilitating the failure capturing mechanisms
throughout the system structure.

Communication between blocks: The interactions between the different
blocks are ensured through Connections. Each block has a number (zero
or more) outgoing connections, and each connection is optionally associated
(through references) to a source port and a target port.

5.2.3.2 Failure Modeling Aspects

Similarly to almost all FLM approaches, MetaFPA’s failure propagation modeling is
based on the following:

92

e Block failures: The behavior of the blocks in failure cases is covered in the

metamodel through the classes InputFailure and OutputFailure which de-
pict respectively the single deviations that may occur on the inputs or the out-
puts of each block. In addition to that, the possible failures that can internally
affect the block itself are denoted as InternalFailures.

Failure combinations: Combing failures is an aspect which has been ne-
glected by many FLM approaches on the pretext that the probability of mul-
tiple concurrent failures is extremely low. However, a thorough and complete
functional safety assessment, as required by currently relevant safety standards
(e.g., [1] and [2]), does not allow such disregard. Therefore, MetaFPA of-
fers the possibility to analyze the impact of failure combinations (formalized

5.2 MetaFPA: Metamodeling-Based Failure Propagation Analysis

by InputFailureCombination and InternalFailureCombination in Fig-
ure 5.5) which may lead to single output deviations or also to combinations
(OutputFailureCombination). Assuming that a block has n input failures,
the number of the corresponding input failure combinations will be 2" (power
set). However, not all combinations are valid as there may be some contradic-
tory failures in the model specified by the user such as omission and commission
failures. Theoretically, the user can manually specify the valid failure combina-
tions, but MetaFPA offers a feature to facilitate this complex and error-prone
task. Omnce the user has specified the so-called incompatibility references be-
tween failures, an extension in the MetaFPA platform goes over all 2" possible
combinations, discards all irrelevances, and keeps only the valid combinations.

e Failure propagation and transformation: The failure propagation logic
is described through the PropagationMapping class which captures the fail-
ure behavior of each block by linking input failures (externalCauses as they are
caused by other blocks or by the environment), internal failures (internalCauses
as they occur within the block itself), and consequent output failures (results).
MetaFPA enables the user to create instances of the PropagationMapping
classes through manual data input. Though, due to the significant complexity
of this task, especially when all failure combinations must be exhaustively taken
into consideration, an alternative generation method is supported in MetaFPA.
Based on parsing the occurrence conditions of the block output failures, given
by the user as DNFs' of input and internal failures, the appropriate Propa-
gationMapping instances are automatically generated and appended to the
constructed failure propagation model.

5.2.3.3 Further Metamodel Details

Among the additional aspects covered by MetaFPA’s metamodel, and which cannot
be immediately categorized as system modeling aspects or as failure logic modeling
aspects, the following two are worth mentioning:

e Link between system modeling and failure logic modeling: The concrete
impact of the failures on the system is modeled in a dynamic simulation-oriented
fashion. For this, the effect attribute in the classes InputFailure and Out-
putFailure is used in correlation with the affectedPort references (from both
classes to the Port class). The activation of the system model’s connections
induces the update of the ports status. Through an inspection of the ports,
occurring input failures are detected making the TransformationMapping
class obsolete. However, this class ensures the basic FLM feature of defining
manually the primary relationships between output failures (origins) and input

I DNF: Disjunctive Normal Form

93

5 Metamodeling-Based Formalization of Functional Safety Analysis

failures (destinations).

e Criticality: For the blocks of the system structure, certain deviations from the
originally intended functionality are qualified as critical. Such categorization
can be derived for example from the safety goals or from the top-level functional
safety requirements. To enable this through the metamodel, the attribute Sys-
temCritical is added to the OutputFailure class.

e Statistical aspect: Qualifying a system as functionally safe requires the com-
putation of multiple metrics (failure rate, diagnostic coverage, etc.,). When
critical values of these metrics are yielded by the analysis, re-design is pre-
scribed. In MetaFPA, system functional safety, with respect to the very early
and abstract model covered by the approach, is correlated with the number of
analysis runs leading to a system failure. Through the probability attributes in
the failure classes, the statistical distribution of the input and internal threats
can be given by the user for so-called entry blocks (blocks which get their in-
puts from the environment and not as results of previous blocks in the system
structure). Probabilities of output failures can then be computed and propa-
gated to input failures of subsequent blocks. A system failure takes place when
at least one system critical output failure occurs at one or more final blocks of
the system structure with a probability greater than a minimum value speci-
fied by the user (e.g., 107°). Every analysis run leading to a system failure is
documented through the generation of a graph (currently in the XML-based
GraphML format) illustrating the propagation path (see Figure 5.4).

5.3 Metamodels for Functional Safety Analysis

In Chapter 2, the importance of safety evaluation in system design process has been
extensively addressed. Associated activities are performed throughout the design and
manufacturing process at different abstraction levels, including (i) conceptual risk
assessment and safety analysis, consisting mostly in probabilistic, (ii) simulation-
oriented system alterations are carried out through fault injection campaigns, and
(iii) physical prototype testing where the system hardware and software are certified
with respect to the safety requirements.

In the automotive context, the evaluation guidelines are addressed by the ISO
26262 standard for functional safety of road vehicles [2]. As previously presented in
Section 2.2, an extensive analysis and assessment procedure is required to ensure the
targeted safety integrity level of the system (see Figure 5.6). It starts by predicting
potential risks, whose causes and effects are subsequently identified. To mitigate
the failure effects, appropriate countermeasures are deployed. And finally, evaluation
metrics are computed to provide evidence about the system safety integrity level.

94

5.3 Metamodels for Functional Safety Analysis

R
“absence of unreasonable risk” 1ISO 26262

 [Safety Analysis

essential aspect in system design & manufacturing

Tasks Methods & techniques
predict potential risks deductive inductive
identify causes & effects qualitative FTA® L EMEA ®
b DEA®

quantitative FTA® T FMEDA
RBD @
@ Fault Tree Analysis Failure Modes.,)
@ Reliability Block Diagram Effects, and Diagnostic

© Failure Modes and Effects Analysis Analysis
@ Dependent Failure Analysis

compute evaluation

L)
L J
 deploy countermeasures J
{ metrics J

Figure 5.6: Overview of Functional Safety Analysis in the Automotive Context

Safety analysis tasks are performed through different methods and techniques which
are classified in the standard according to multiple criteria. There is a distinction
between deductive and inductive approaches. A deductive analysis is performed top-
down starting from problematic situations on system-level, and looking for the cor-
responding causes in the components. Inductive approaches start bottom-up from
local component malfunctions moving towards the corresponding effects on the com-
plete system. Safety analysis can also be either qualitative or quantitative (more
details in 2.2.7.3). Many analysis techniques are addressed by the ISO 26262 stan-
dard, for example Fault Tree Analysis (FTA) (2.2.7.6), Reliability Block Diagram
(RBD)s (2.2.7.8), Dependent Failure Analysis (DFA) (2.2.7.7), Failure Modes and
Effects Analysis (FMEA) and its quantitative variant, Failure Modes, Effects, and
Diagnostic Analysis (FMEDA) (2.2.7.5).

In this thesis, FMEDA, FTA, and DFA are considered. The interest in these specific
procedures is justified by (i) the quantitative safety assessment they enable, offering
the evidence and the figures needed by the customers, (ii) their compliance with the
ISO 26262 standard, and (iii) their established status in the industry.

Despite these characteristics making FMEDA, FTA, and DFA the state of prac-
tice analysis techniques for the automotive industry and for its suppliers, especially
system and semiconductor manufacturers, their application is still correlated with

95

5 Metamodeling-Based Formalization of Functional Safety Analysis

many problems. Traditionally, the analysis is done manually and it includes compli-
cated tasks leading to high effort and time costs. The created documents such as the
FMEDA spreadsheets and the fault trees are very large and complex for industrial
applications (thousands of lines in the FMEDA spreadsheets for example), which
makes them very hard to explore and to maintain.

These challenges have already been subjects of research in the literature. However,
most of the proposals suggest new data formats for the analysis. This may be possible
for small experimentation examples, but it is difficult to apply in industrial contexts,
where a considerable amount of safety analysis data is already available and shall be
reused. Moreover, the provided toolsets are usually limited to data management and
they do not establish any link to simulation contexts.

In this thesis, the challenges mentioned above are addressed by opting for a for-
malization of available data formats and templates. Thereby, the reuse of already
existing analysis artefacts is enabled. This formalization is also the prerequisite for
an automated support based on model-driven engineering. It is also used later to
bridge the gap between the analytical data and the fault simulation on executable
models through model-to-model transformations and corresponding data mapping.

The remainder of this section is organized as follows. In Subsection 5.3.1, the
metamodel-based FMEDA formalization is described after a brief overview of the
traditional FMEDA flow and documentation style. Similarly, the formalization of
FTA and DFA through metamodels is presented in Subsections 5.3.2 and 5.3.3 re-
spectively.

5.3.1 Metamodel-Based FMEDA Formalization

In Subsection 2.2.7.5, the inductive safety analysis approach referred to as Failure
Modes and Effects Analysis (FMEA) is introduced. FMEA has been applied for
many successive decades since the 1960s in different domains such as the chemical
process and the aerospace industries. Beyond the basic FMEA capabilities consisting
in defining potential component failures and deriving the expected impact at system
level, different additional aspects are taken into consideration in the several method-
ology variants, e.g., criticality, failure rates, and on-line diagnostic mechanisms (more
details in 2.2.7.5). FMEDA is an FMEA extension developed in the 1990s within the
company Exida [39, 40]. In this work, the traditional FMEDA procedure is consid-
ered from three perspectives: (i) a formalized description, (ii) an automated support,
and (iii) a consistent link with fault injection and simulation environments.

96

5.3 Metamodels for Functional Safety Analysis

5.3.1.1 Traditional FMEDA Flow

As already mentioned in 2.2.7.5, the term FMEDA is not mentioned in the ISO 26262
standard, although it is the commonly used denomination for the quantitative FMEA
which is particularly conducted within system and semiconductor companies. The
precise activities where FMEDA is applied in compliance to ISO 26262 are located
in Part 5 (Product development at hardware level). In the context of the hardware
safety analyses (5-7.4.3), a rather generic FMEDA is conducted. In practice, safety
engineering teams refer to this iteration of the FMEDA as a Concept FMEDA, as it
does not take all design details into account and relies on estimated values for the
quantitative derivation of the safety metrics. Once the final design is available, the
activities of the ISO 26262 clauses 5-8: (evaluation of the hardware architectural met-
rics) and 5-9: (evaluation of safety goal violations due to random hardware failures)
are performed. The outcome is the so-called detailed or final FMEDA.

In other words, in the context of ISO 26262 related safety analysis, the detail
level of the FMEDA is variable. It depends on the system representation and on
the respective abstraction layer (conceptual design, detailed development, etc.). Fur-
thermore, for large systems addressed in industrial contexts, FMEDA is performed
recursively. Thus, for the different system components, a separate analysis is carried
out. Complex system components may be again decomposed in subcomponents, for
which further FMEDAs are performed. The obtained results are then inspected and
gathered to conduct an overall analysis for the complete system. That is why, there
is a differentiation between the Component FMEDA and the System FMEDA.

The FMEDA process is represented through a flowchart in Figure 5.7. It should be
noted that the flowchart addresses the overall System FMEDA. However, a similar
procedure is followed to perform the analysis at component or subcomponent level.

Step 2 in Figure 5.7 shows that safety-relevant components of the system (i.e., those
related to the safety requirements) should be identified and, in most cases, classified
according to the considered safety standard (e.g., Table D.1 in ISO 26262-5). As
FMEDA is performed by teams not by individuals, the appropriate members should
be identified (step 3) and the specific role of every team member should be determined:
who is responsible for the analysis and maintenance of which components, who reviews
the outcome, etc., (step 4).

As long as the considered components are functionally independent, their respective
analyses may be done in parallel by different FMEDA team members (starting at
step 5). Step 6 provides an understanding of the functions normally fulfilled by the
component (information about functionality generally provided by design engineers)
which is required to answer the question “How may the component fail?”.

Identifying the component failure modes (step 7) is a crucial part of the FMEDA

97

5 Metamodeling-Based Formalization of Functional Safety Analysis

v

Initiate System -
Select failure®
FMEDA . e
T e mode for analysis
v L4 P I v
Identify system Identify team - -
Determine @ Determine @
components members .
pn L2 4 T © expected effects| [potential causes
L]
T v
Allocate responsibilities: @ - -
{analysis, maintenance, review....} | Evaluate failure mode severity ®|

—>| Select component for analysis © |

| Study component functionality @ |
v

| \dentify failure modes @ | Propose mitigation methods: @®
T {corrections, diagnostic measures...}

More
failure @
modes?

Yes More ® . No
components?

y

System FMEDA
Complete @

Figure 5.7: Flowchart of Basic FMEDA Steps [3]

flow where reliable resources are required. In fact, component failure rates, lists of
associated failure modes, and corresponding probabilistic distributions are commonly
extracted from internal catalogues, old project reports, or recognized databases (SN
29500 [121], IEC 61709 [122], Exida Reliability Handbook [123]).

In steps 8 to 11, each failure mode should be analyzed according to the component
specificities and to the safety requirements. First, the impact of the component failure
mode on the system behavior should be determined by the safety engineer. A failure
mode can have multiple effects depending on many parameters such as location or
timing.

Then, all possible root causes of the failure mode are listed. It should be noted
that the root cause listing is not always performed in FMEDAs.

Finally, the failure modes are ranked according to their impact on the safety. The
so-called severity levels are safety standard-specific, and in ISO 26262, they range
between safe and residual (uncovered by safety mechanisms). The need for action
is determined by the severity ranking. For example, for all safe failure modes, no
recommendations are required. For the rest, measures should be undertaken (step 12).

98

5.3 Metamodels for Functional Safety Analysis

Metric | Unit Comments

N
A [FIT] | Total failure rate: sum of given component failure rates: A\ = 21 Ag;-

i=
Failure rate of safe faults: for safety-related elements, safe faults do not violate the safety
goal, neither directly nor in combination with other independent faults.

As [FIT]

Failure rate of single-point faults: single-point faults are not covered by safety mechanisms

ASPF [FIT] | and lead directly to a violation of the safety goal.

Failure rate of dual-point faults: a dual-point fault leads only in combination with another
ADPF [FIT] | independent fault to a violation of the safety goal. A DPF can be perceived, detected or
latent(l): ADPF:)‘DPF,D"’)‘DPF,L'

Failure rate of multiple-point faults: multiple-point failures with order > 3 are commonly
considered as safe faults, so that only MPFs with order 2 (i.e., dual-point faults) are relevant
for the calculation of the LFM. This assumption can however be omitted by the technical
safety concept.

AMPF [FIT]

Failure rate of residual faults: when a failure mode is addressed by a safety mechanism and
ARF [FIT] the related coverage factor is «, then the remaining uncovered (100 —a)% of the faults related
to that failure mode are residual faults.

Single-Point Fault Metric: this metric reflects the robustness against SPFs and RFs. This
robustness is evaluated with respect to the coverage offered by safety mechanisms and to the
SPFM (%] properties of the design itself enabling a primarily high amount of safe faults. Assuming that
all components of the considered design are safety-critical, equation C.5(2) defining SPFM
in ISO 26262-5 can be simply written as follows: SPFM = 1 — 2SPEEARE

Latent Fault Metric: this metric reflects the robustness against latent faults. This robustness
is evaluated with respect to the coverage offered by safety mechanisms, to the recognition
of faults by the driver before the safety goal violation, and to the properties of the design
LFM (%] itself enabling a primarily high amount of safe faults. Assuming that all components of the
considered design are safety-critical and that all MPFs with order > 3 are considered safe,
equation C.6() defining LFM in ISO 26262-5 can be simply written as follows: LFM =
1_ ADPF,L)

A—ASPF —ARF
Mean Time To Failure: the mean time till the first failure under specified experimental
conditions. MTTF can be calculated as: MTTF = % If only failures with danger-
ous consequences are considered, the Mean Time To Dangerous Failure is determined as:
MTTFp =

MTTF | [yrs]

1
ASPFF+ARF

(DA latent fault is a “multiple-point fault whose presence is not detected by a safety mechanism nor perceived
by the driver within the multiple-point fault detection interval”[2].
3> (Aspr+ARF)

(2)Single-Point, Fault Metric SPFM = 1 — Z2HW > [Equation C.5 in ISO 26262-5]
SR,HW
where >~ A is the sum of A« of the considered safety-critical HW elements for the metric calculation [2].
SR,HW

@) SRXI:{W()‘MPF,Iatent)
3 . _ _ 2, . . _

Latent Fault Metric LFM =1 SRZHWO‘_ASPF_ARF) [Equation C.6 in ISO 26262-5]

where Y. A« is the sum of A« of the considered safety-critical HW elements for the metric calculation [2].

SR,HW

Table 5.1: Typical ISO 26262 Metrics Derived as FMEDA Results [2]

The appropriate mitigation techniques (step 13) can be derived from the considered
safety standard or at least aligned with it. For example, Tables D.2 - D.12 in ISO
26262-5 give lists over safety measures for different element types. The typically
achievable diagnostic coverage by the mechanisms is also qualified in the standard
(low, medium, high). However, within the scope of the FMEDA, approximate (or if
available, more accurate) percentage values should be considered to enable the further
calculation of the safety metrics required by the ISO 26262 standard.

99

5 Metamodeling-Based Formalization of Functional Safety Analysis

The progressive character of the FMEDA flow can be observed in the flowchart
steps 14 and 15 in Figure 5.7. As long as not all failure modes of the currently
considered component are already analyzed, steps 8 to 13 should be repeated. And
as long as not all components of the system are already analyzed, steps 5 to 14 should
be repeated. Once the FMEDA is completed, the standard-specific numerical results
such as the total system failure rate and the specific coverage metrics (e.g., Single-
Point Fault Metric (SPFM) and Latent Fault Metric (LFM) in ISO 26262) should be
derived. An overview of the ISO 26262 metrics, which are commonly calculated as
FMEDA results, is given in Table 5.1.

5.3.1.2 Traditional FMEDA Documentation

FMEDA documentation is done in tabular form, as seen in this simplified extract of
an FMEDA spreadsheet (Table 5.2).

Part
ISO Element
Failure Rate
Function
Failure Mode
Failure
Distribution
Failure Type
Failure Effect
Severity
Safety Measure
Diagnostic
Coverage

FE1® | Negligible - -

FM1®) 25% HE®

Processing Fet, 1 FE2 Dangerous | SM1®) 90%
ALU Units 0.348
(ALU - FIT® FM2 25% HE FE3 Critical SM2 60%
Data Path)

Ft2 | FM3 | 50% SE® | FE4 | Negligible - -

@ Failure In Time (FIT) is the commonly used unit for failure rates. 1 FIT corresponds to 1 failure per 10° operation hours.
@ Examples of ALU functions: multiplication, division, shift operation, etc.

() Examples of ALU failure modes: permanent control signal fault in ALU logic, single event upset in ALU logic, etc.

@) Hard Error (HE) is the designation used in ISO 26262 for permanent errors.

() Examples of ALU failure effects: wrong/delayed program execution, incorrect result of arithmetic/logical operation, etc.
©® Examples of Safety Measures for ALU: detection logic, alarm generation, etc.

(7 Soft Error (SE) is the designation used in ISO 26262 for transient errors.

Table 5.2: Example of FMEDA Table [3]

For each safety-relevant system part, an element type according to the ISO stan-
dard and a failure rate are allocated. The multiple functions of the part can be
affected by different failure modes which are then characterized by their failure dis-
tributions (basically the percentage of their contribution to the failure rate of the
whole part), their failure types (hard errors vs. soft errors), and their failure effects.
These are classified according to their severity. Furthermore, appropriate safety mea-

100

5.3 Metamodels for Functional Safety Analysis

sures, which ensure the mitigation of the identified failure effects, are documented
along with their diagnostic coverage values in the FMEDA table.

5.3.1.3 FMEDA Metamodel

A simplified version of the FMEDA metamodel is represented as a UML class diagram
in Figure 5.8.

FMEDA
Name : string [1]
Description : string [0..1]

Product : string [1..*]
Owner : string [0..1] 1
1 Contributor : string [*] Evaluation
Structure TotalFailureRate : float [1]
Name : string [1] SafetyMeasure FailureRateSafeFaults : float [1]
Description : string [0..1] * s/Name : string [1] FailureRateSinglePointFaults : float [1]
Type : StructureType [1] Description : string [0..1] FailureRateDualPointFaults : float [1]
DiagnosticCoverage : float [0..1] FailureRateMultiplePointFaults : float [1]
FailureRateResidualFaults : float [1]
N mitigate SinglePointFaultMetric : float [1]
n LatentFaultMetric : float [1]
Part MeanTimeToFailure : int [0..1]
Name : string [1] ‘L FailureMode AutomotiveSafetyIntegrityLevel : string [1]
Description : string [0..1] * Name : string [0..1]
FailureRate : float [1] Description : string [0..1] <<enum>>
Type : ISOElement [1] Model : ISOModel [0..1] StructureType

Type : ISOFailureModeType [1]

IR - 19 System : StructureType
Distribution : float [0..1]

Component : StructureType

. affect
Function) * <<enum>>
Name : string [1] Effect ISOFailureModeType
Description : string [0..1] Name : string [0..1] HardError : ISOFailureModeType
Description : string [0..1] SoftError : ISOFailureModeType
Severity : SeverityLevel [1]
<<enum>> <<enum>>
ISOElement ISOModel
Connector : ISOElement <<enum>> DirectCurrent : ISOModel
Sensor : ISOElement SeverityLevel StuckAt : ISOModel
VolatileMemory : ISOElement Negligible : SeverityLevel OpenCircuit : ISOModel
DigitallO : ISOElement Critical : SeverityLevel ShortCircuit : ISOModel
AnaloguelO : ISOElement Catastrophic : SeverityLevel SoftErrorModel : ISOModel
... ISOElement ... : SeverityLevel ... : ISOModel

Figure 5.8: Simplified FMEDA Metamodel for ISO 26262 Safety Analysis [3]

Two basic sources are taken into account for its construction, namely the steps
of the traditional FMEDA flow (Figure 5.7) and the spreadsheet structure used by
safety engineers as exemplified in Table 5.2. Team members and the allocation of their
responsibilities are captured by the root class in the FMEDA metamodel. Parts of

101

5 Metamodeling-Based Formalization of Functional Safety Analysis

the Structure being analyzed (system or component) are characterized through their
types, their failure rates, and their Functions. Failure Modes affecting Functions
are covered along with their failure types and distributions. Failure Effects and
severity levels are also taken into account and Safety Measures used to mitigate
one or more failure modes are addressed along with their diagnostic coverage.

Figure 5.9 illustrates some examples of the correspondences between the con-
structed FMEDA metamodel on the one hand and the traditional FMEDA flow and
documentation on the other hand. Through color coding, the equivalent and/or as-
sociated classes and attributes of the metamodel, tasks in the flowchart excerpt, and
columns in the FMEDA table are appropriately highlighted.

Simplified FMEDA Metamodel Excerpt of FMEDA Flowchart

FMEDA Initiate System
Name : string [1]
Description : string [0..1] FMEDA
Product : string [1..*] T
+ stril L
MeIr string [l? 1] 1 + +
1 < strng [Evaluation |dentif t Identify t
Structure TotalFailureRate : float [1] entity system G UEEIT
Name : string [1] SafetyMeasure FailureRateSafeFaults : float [1] com ponents mem be rs
Description : string [0..1] [* + s/Name : string [1] FailureRateSinglePointFaults : float [1] T T
Type : StructureType [1] De ion : string [0..1] FailureRateDualPointFaults : float [1] *
Di icCoverage : float [0..1] FailureRateMultiplePointFaults : float [1]
Fa float (1] Allocate responsibilities:
mitigate SinglePointFaultMetric : float [1] X . A
" LatentFaultMetric : float [1] {analysis, maintenance, review....}
Part MeanTimeToFailure : int [0..1]
Name : string [1] . FailureMode AutomotiveSafetyIntegrityLevel : string [1
Description : string [0..1] Name : string (0.1]
FailureRate : float [1] Description : string [0..1] <<enum>>
Type : ISOElement [1 Model : ISOModel [0..1] StructureT)
ype
Type : ISOFailureModeType [1] Syt : Stuctoreryps Example of an FMEDA Spreadsheet Extract
D : float [0..1] C : StructureType. o
. affect - o o o o
[c o =
. c -] ° S a < ?)
. c 7] = o
Function I <<enum>> g g = § E- ':, & z. o =
: stri ISOFailureModeT} = = 53 o =] 8 o
Name : string [1] Effect ailureModeType = o o S| 22 [) o s |25
Description : string [0..1] Name : string [0..1] HardError : ISOFailureModeType a w H £ 5 © = 5 = 3 > | @ 2
Description : string [0..1] SoftError : ISOFailureModeType o T—u fire = w5 TT! = A = 238
|severity : SeverityLevel [1] 2 w g (=] & sl b
prr— <<enum>>
ISOElement | ISOModel | FE1 | Negligible
Connector : ISOElement <<enum>> DirectCurrent : ISOModel ! FM1 | 25% HE
Sensor : ISOElement SeverityLevel StuckAt : ISOModel Processing Ft.1
VolatileMemory : ISOElement Negligible : SeverityLevel OpenCircuit : ISOModel ALU | Units (ALU | 0.348 FE2 | Dangerous | SM1 | 90%
DigitallO : ISOElement Critical : SeverityLevel ShortCircuit : ISOModel -Data Path) | FIT
AnaloguelO : ISOElement Catastrophic : SeverityLevel SoftErrorModel : ISOModel FM2 | 25% HE FE3 Critical | SM2 | 60%
|.:ISOElement | |... : SeverityLevel .. : 1SOModel
Ft.2 | FM3 | 50% SE FE4 | Negligible

Figure 5.9: Correspondence between the FMEDA Metamodel and the Traditional
FMEDA Flow and Documentation

5.3.2 Metamodel-Based FTA Formalization

In Subsection 2.2.7.6, the deductive safety analysis approach referred to as Fault Tree
Analysis (FTA) is introduced. FTA has been originally developed in the 1960s and
applied in the aerospace domain. Indeed, the details of the FTA process are given
in aircraft and aviation related standards such as SAE ARP4761: Guidelines and
Methods for Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment [13] and IEC 61025: Fault Tree Analysis (FTA) [124].

102

5.3 Metamodels for Functional Safety Analysis

Qualitative FTA consists in determining undesirable events leading to system fail-
ures and subsequently decomposing them with respect to their potential causes in a
recursive way until reaching the leaf nodes, namely the so-called elementary events
at component level. A quantitative aspect is also addressed in the FTA context.
Thereby, the occurrence probabilities and/or frequencies for events as well as for
their contributing factors are taken into account [124] so that overall failure rates and
safety metrics at system level are accordingly derived. In this thesis, the traditional
FTA procedure is considered from two perspectives: (i) a formalized description and
(ii) an automated fault tree synthesis through a link to failure logic modeling (see
Subsection 3.1.2 and Section 5.2).

5.3.2.1 Traditional FTA Flow and Documentation

As already mentioned in Subsection 2.2.7.6, FTA is a top-down failure analysis
method using Boolean logic to depict the top-level system failures and the differ-
ent levels of hazardous events causing them. All combinations and propagations of
these events are denoted through the acyclic graphic representation called fault tree.

CPU Failure

CPU
Q=1,70785E-06

Register Bank CPU-ALU Failure Load Store Unit Debug Failure
Failure Failure
REGISTER BANK ALU-CPU LOAD STORE DEBUG
Q=4,1886E-07 Q=4,21704E-07 Q=4,21704E-07 Q=2,388E-08
Control logic
> Failure
collapsed tree
branch CONTROL
Q=4,21704E-07
Pipeline Failure Sequencer Stack Failure
Failure
Source: I1SO 26262 o PIPELINE ‘ ‘ SEQ ‘ ‘ STACK ‘
Software: Isograph Reliability Workbench 11 Q=1,40568E-07 | | Q=140568E-07 | | Q=1,40568E-07

Figure 5.10: Example of a Fault Tree Extract [2]

103

5 Metamodeling-Based Formalization of Functional Safety Analysis

In Figure 5.10, an exemplary fault tree extract is shown. It is derived from the ISO
26262 standard and addresses the analysis of a microcontroller, particularly the CPU
failures which can be classified into a register bank failure, an ALU failure, a control
logic failure, etc. Most fault tree editors, such as Isograph Reliability Workbench™
used here to create the example, offer the possibility to collapse tree branches to make
the exploration easier. In the example of Figure 5.10, the control logic failure of the
CPU is further on detailed into pipeline failure, sequencer failure, and stack failure.

The symbols used in the fault trees are called logic gates and are very similar in
form and significance to the symbols used in electronic circuit design (see Table 5.3).
In addition to the commonly known AND, OR, and XOR gates, FTA introduces

several special gates [125] such as:

o VotingOR gate: Output event occurs if a predefined number of input events
occur.

e [nhibit gate: Output event occurs only when all input events and an additional
conditioning event occur.

e PriorityAND gate: Output event occurs if all input events occur in a specific

sequence.
. AND /L OR [XOR
VotingOR K\ ou'gput event occurs if a predefined number k
T of input events occur
output event occurs only when all input events
Inhibit and an additional conditioning event occur
Priority AND | output. eyent occurs if all input events occur in
a specific sequence

Table 5.3: Overview of Logic Gates in FTA

FTA is considered as an event-based and status-driven analysis. On the one hand,
each input of a specific logic gate in the tree represents a hazardous event correspond-
ing to an undesired status of a certain part of system and potentially other factors
taken into account for the analysis, such as external events related to the system en-
vironment. On the other hand, the output of a logic gate depicts either the resulting
status of the affected system parts or a failure condition of the whole system.

The basic FTA flow is illustrated in Figure 5.11. Once the analysis is initiated
for a given system, the first step is to collect all required information to perform the

104

5.3 Metamodels for Functional Safety Analysis

FTA. While gathering the available system data, the FTA analyst shall pay atten-
tion to the correctness, completeness, and currentness criteria. These are actually
the prerequisites to perform a consistent analysis whose outcomes are useful for the
assessment of the safety integrity level and of the fulfillment of the safety goals and
requirements [13].

Initiate System
FTA @

| Collect system information @ |

| Determine undesired events © |

Select undesired event
=> Top-level event of fault tree
I

Caused by
combination
of faults?

Primary event reacheD

More
undeveloped faults?

Yes
Add logic gate © |

| Add multiple faults @ |

| Add single fault el

L1 Select newly added fault ® Je————
Yes More No [System FTA
undesired events? "\ Complete

Figure 5.11: Flowchart of Basic FTA Steps

The needed system information is commonly obtained from the documents created
during the first stages of the design cycle such as the concept phase, the requirements
definition phase, and the high-level architectural design phase. In the context of
automotive system design in compliance with the ISO 26262 standard, several work
products such as the (i) specifications of safety goals, (ii) functional and technical
safety concepts, (iii) hardware design specification, etc., are used as sources to de-
rive the dynamically evolving system data during the subsequent development stages
which is required to perform the FTA.

The second step in the FTA flow consists in determining the undesired events at
system level. Such undesired events have a direct harmful impact on the system
user(s) and/or environment. In the ISO 26262 context, safety goal violations repre-
sent undesired events at system level. For example, if a safety goal is “unintended
steering shall be avoided”, then the corresponding safety goal violation (“unintended
steering cannot be avoided” or simply “unintended steering”) is an undesired event at
system level (assuming that the considered system is an EPS (Electric Power Steer-

105

5 Metamodeling-Based Formalization of Functional Safety Analysis

ing) system). For each of the undesired system-level events, a fault tree is constructed
(Step 4). The uppermost node (i.e., root node) of the tree is referred to as the top-level
event or simpler as the top-event.

Starting from the top-level event, the fault tree structure gets progressively con-
structed through a top-down backward stepping process. The first task in this process
is to determine all potential causes of the top-level event.

In the case that there is only one potential cause for the top-level event, a single in-
termediate event is added. It should be noted that intermediate events are frequently
referred to in the literature as faults. Therefore, they are called so in the flowchart
(Figure 5.11). It is also possible, and rather more probable, that the occurrence of
the top-level necessitates that a combination of intermediate events take place (e.g.,
random hardware failure in a certain component AND dysfunction or coverage in-
ability of the dedicated safety measure). In that case, a logic gate shall be added as
well as the multiple intermediate events which are logically connected through it.

Afterwards, each newly added element in the fault tree is treated similarly to the
top-level event, so that the tree structure gets iteratively extended. In certain cases,
no further analysis is required for a certain event, i.e., neither a single intermediate
event nor a logic gate gets attached to it, which makes it a primary event. In other
words, such events are the leaf nodes of the fault tree. When all paths across the tree
from the top-level event to the primary events are completed, the analysis process is
reiterated from Step 4 for the next system-level undesired event. The overall FTA of
the system is completed when the construction of all fault trees corresponding to all
undesired events is done.

5.3.2.2 FTA Metamodel

In accordance to the FTA process flow and to the structure of the fault tree presented
in the previous subsection 5.3.2.1, an FTA metamodel is constructed. It is represented
in a simplified form as UML class diagram in Figure 5.12.

The FTA metamodel addresses three key aspects in the FTA methodology:

1. Owerall structure: The top-down analysis starts at the system failures and
investigates all potential causes in a recursive way. All data related to the FTA
are structured through a tree format containing a number of events which are
interconnected using logical gates. For the multiple undesired events at system level
(multiple safety goal violations in the automotive context), multiple fault trees are
respectively constructed. That is why the root node class of the metamodel named
FTA is related to the Tree class through a composition relationship characterized
by the multiplicity [1..*]. For the sake of modularization and to enable and separate
analysis of different system parts by different team members, the fault tree can be

106

5.3 Metamodels for Functional Safety Analysis

FTA
Name : string [1]

\,/1;0 Description : string [0..1]

SystemName : string [1]

ProductName : string [1..*]
Name : string [1] Owne.r - string [(.)"1] ID : string [1]
o : Contributor : string [*] .
Description : string [0..1] Name : string [1]

T . 2 Description : string [0..1]
1

SubTree *l

Tree

ID : string PrimaryEvent

« * | Type : EventType [1]
Probability : float [0..1]
Index : int [0..1]

IntermediateEvent
ID : string [1]
Name : string [1]
Description : string [0..1]

TopEvent
ID : string [1]
Name : string [1]
Description : string [0..1]

Description : [0..1]

Type : GateType [1]
Index : int [0..1]

Basic : EventType
Undeveloped : EventType
Conditioning : EventType

o Probability : float [0..1] <senum>>
Probability : float [0..1] Index - int [0..1] GateType
And : GateType
Gate Or : GateType
ID : string [1] <<enum>> VotingOr : GateType
Name : string [0..1] EventType Inhibit : GateType

PriorityAnd : GateType
DependencyAnd : GateType
Xor : GateType

External : EventType

Figure 5.12: Simplified FTA Metamodel [12]

optionally decomposed in further sub-trees with the same structure. Therefore the
metamodel class Tree has a self-composition named SubTree. Each tree contains
necessarily one and exactly one top event representing the starting point of the
analysis. The details of all potential causes leading to the top-event are further on
developed in the different fault tree branches.

. Events: In the metamodel, three types of events are differentiated and reflected
through respectively defined classes: (i) the already mentioned TopEvent, (ii)
IntermediateEvent, and (iii) PrimaryEvent. Each event in the fault tree is
identified by its ID, its Name and an optional Description. In addition to these
generic attributes, primary events are also characterized by a Type. The four items
of the enumeration class EventType in the metamodel depict the four different
types that can be assigned to primary events [125]:

a) Basic events: These events require no further development in the fault tree.

b) Undeveloped events: These events are not further on developed in the fault

107

5 Metamodeling-Based Formalization of Functional Safety Analysis

tree because of unavailable information for example.

c) Conditioning events: These events represent specific conditions or restrictions
that may apply to the logic gates.

d) FEzternal events: These are events which are normally expected to occur.

The Probability attribute of the event classes is used when quantitative FTA is
required.

3. Fatlure logic: The construction of the fault tree is based on defining the po-
tential initiators for the top-event and for each intermediate event in compliance
with the Boolean logic rules. This is covered in the FTA metamodel by the Gate
class which is characterized by a mandatory ID, an optional Name, an optional
Description, and a mandatory Type to be selected from the list of items in the enu-
meration class GateType which correspond to the defined logic gates in Table 5.3.
As already explained Subsection 5.3.2.1, the top-event can be initiated either by
one single intermediate (or primary) event or by a combination of intermediate
(and/or primary) events. Similarly, each intermediate event can be initiated ei-
ther by one single event (intermediate or primary) or by a combination of further
events (intermediate or primary). This is covered in the metamodel through the
cross-references between the classes TopEvent, Gate, IntermediateEvent, and
PrimaryEvent as shown in Figure 5.12.

5.3.3 Metamodel-Based DFA Formalization

In Subsection 2.2.7.7, the Dependent Failure Analysis (DFA) approach recommended
by the ISO 26262 standard to evaluate independence and freedom of interference is
introduced.

Beyond being one of the extensively addressed safety analysis techniques in the
ISO 26262 standard, DFA is the state-of-practice technique in several domains and
particularly in the semiconductor industry, when it comes to assessing dependent
failures (characterized by the fact that the probability of simultaneous or successive
occurrence of two given dependent failures cannot be simply expressed as the product
of their respective occurrence probabilities). Indeed, DFA must be conducted in the
following cases:

e Hardware or software parts containing safety-critical diagnostic functions.
e ASIL decomposition (see Subsection 2.2.3).
e Software partitioning, i.e. software allocation to shared hardware resources.

e Temporary execution of software tasks on shared hardware.

108

5.3 Metamodels for Functional Safety Analysis

e Shared resources in hardware (e.g., shared memory).

In this work, the traditional procedure is considered to create a formalized meta-
model covering the analysis aspects and artefacts in the DFA context and subse-
quently enable an associated model-driven support and establish potential synergies
with FMEDA and FTA as well as possible links to the fault simulation context.

5.3.3.1 Traditional DFA Flow and Documentation

The basic DFA steps are derived from the ISO 26262 standard and illustrated in
a flowchart (see Figure 5.13). Once the system DFA is initiated, general system
information covered by the design description for example shall be collected. The
safety requirements related to the independence within hardware and/or software
parts and to the freedom of interference must be extracted from the complete list of
safety requirements in order to perform the DFA properly.

The first major step in the DFA process is to identify so-called vulnerable system
parts which may be affected by dependent failures. Redundant elements and shared
resources are the most common candidates to dependence-related vulnerability. The
second step is to determine and classify the dependencies by which the identified
vulnerable parts are interrelated. Interfacing mechanism, shared supply, and shared
clock are examples of the considered dependency classes in the ISO 26262 context.

Initiate System
DFA ©

l

Collect system information
and capture safety requirements g

v
Identify vulnerable system parts | Select dependent |
(redundant elements, shared resources,...) © failure for analysis Yes
casqadmg I comem—cause
[Determine and classify dependencies @] failure ¢ y failure
¥ Identify root Identify root
Select dependency for analysis ©| cause & coupling cause
mechanism @ [
| Identify related dependent failures @——— L ¥ ' delr\JAe?lrgent

failures?

| Identify expected failure effect ® |
2

Yes .
ore dependencies?

ystem DFA Complete

| Link to appropriate safety measures ®

Figure 5.13: Flowchart of DFA Steps

In the remaining steps of the process flow shown in Figure 5.13, the iterative
character of the DFA is illustrated. In fact, for each identified dependency, all related

109

5 Metamodeling-Based Formalization of Functional Safety Analysis

potential dependent failures must be designated. Afterwards, the defined dependent
failures are progressively analyzed. The differentiation between cascading failures and
common cause failures affects the subsequent flow. In fact, common cause failures
result from a single specific event or root cause, while cascading failures are failures
of a device element causing at least one other element to fail because of coupling
mechanisms in the architecture (see Figure 5.14).

Cascading failures Common-cause failures
root cause
O\\Element A ElementA | coiiure a

Failure A
x——px root cause % _"

.........coupling mechanism

Element B EleeaLs Failure B
y

¥ Failure B A BT
®¥—1 e

»

Figure 5.14: Differences between Cascading Failures and Common-Cause Failures [2]

For cascading failures, potential root causes and the related coupling mechanisms
must be defined. For common cause failures, only the potential root causes (failure
sources) behind them need to be identified. Physical and logical dependent failure
sources are considered. Independently from the type of the dependent failure, the
expected failure effect must be defined. Finally, the DFA analyst shall list the safety
measures and the further action items (e.g., design changes) that must be undertaken
to prevent dependent failures and/or to control their effects. These measures are
qualitatively evaluated in the scope of the DFA.

In the industrial DFA practice, the documentation of analysis data and results is
done in tabular form. An example of a DFA documentation is given in Table 5.4.

5.3.3.2 DFA Metamodel

In accordance to the DFA process flow and to the structure of its tabular docu-
mentation presented in the previous subsection 5.3.3.1, a DFA metamodel is con-
structed. It is represented in a simplified form as UML class diagram in Figure 5.15.
The metamodel covers the DFA artefacts through the different classes such as Re-
dundantElement, DependentFailure, FailureEffect, RootCause, Coupling-
Mechanism, and SafetyMeasure. The composition and reference association in
the metamodel reflect the relationships between the analysis artefacts as previously

110

5.3 Metamodels for Functional Safety Analysis

< < ® @
=) > b xd —_ —_
-) F 5 = 8 oE | & 2 2
= < [N L = c .2 = < <
o [5) - B - < ='c] 5] O O
£ 2 € .2 g O S S P s s¢
[0} DG L= = > 5 = =
= | 8 = 2 S | 38| 2 g |2
a 20 8 o 2| 3 %5 5
8 8 [42] (%]
Logic
element unexpected random de::oéd
Al Shared exXpec hardware ved, ECC for
- modification of common-cause or control
Logic RAM . soft error . RAM
common variables - incorrect
element in RAM result
A2
Logic An error due to a tial | No. ?et |nEutt§
element B time violation in glitch in sequentia delayed rom bo
Shared . operation ! elements .
] clock | one element leads cascading the clock of or in time avoidance
Logic to a malfunction in switch elements incorrect indeendent
element C the other element result P
requests

Table 5.4: Example of a DFA Table

explained. For example, the Structure considered during the analysis, which might
be either a complete System or just a Component, has as child nodes a set of Vulner-
ableElement, Dependency, DependentFailure and SafetyMeasure instances,
and each Dependency class instance has a number of references to the related Vul-
nerableElement class instances.

The formalization offered by the metamodel in Figure 5.15 provides a clear structure
of the traditional DFA process and of the underlying documentation. Beyond this
formalization, the metamodel represents a foundation for a model-driven support of
the analysis. Through tool synthesis, a software framework, called DFA MetalLib
is created in compliance to the metamodel (more details about MetaLibs and the
underlying implementation environment are given in Subsection 6.1.2).

Within the DFA Metaliib, capturing the system structure (elements and dependen-
cies) and the related safety data becomes easier through the application of dedicated
parsers for structured files describing the system architecture and extracting relevant
failure modes and safety mechanisms from the available catalogues. DFA analysts
can also be assisted in performing their traditional manual tasks through a generated
Graphical User Interface (GUI) based on the DFA metamodel. For example, the
identification of the dependent failures, their association with the appropriate safety
measures, and the classification of the dependencies can be considerably simplified.

Furthermore, the metamodel-based DFA formalization is a first step towards linking
the dependent failure analysis to the two other safety analyses addressed in this work:
FMEDA 5.3.1 and FTA 5.3.2. The respective data models are connected together,
and through model-to-model transfer or transformation, already captured data in
one analysis may be reused in another analysis. An example for this is to import the

111

5 Metamodeling-Based Formalization of Functional Safety Analysis

failure modes which have been identified during an FMEDA for a given system into

DFA

i

Structure

Name : string [1]
Description : string [0..1]
Type : StructureType [1]

VulnerableElement

ID : string [1]
Name : string [1]
Description : string [0..1]

Name : string [1]

Owner : string [0..1]
Contributor : string [*]

Description : string [0..1] ID : string [1]
ProductName : string [1..*] * Name : string [1]

Actionltem

Description : string [0..1]
Responsible : string [0..1]

SafetyMeasure

Name : string [1]
Description : string [0..1]
Type : SafetyMeasureType [0..1]

<<enum>>

StructureType

mitigate \L*

System : StructureType
Component : StructureType

DependentFailure

* * *
affect

Dependency

Name : string [1]
Description : string [0..1]
Type : DependencyType [0..1]

ID : string [1]

Name : string [1]

Description : string [0..1]

Type : DependentFailureType [0..1]
Reference : string [0..1]

<<enum>>

SafetyMeasureType

Avoidance : SafetyMeasureType
Control : SafetyMeasureType

<<enum>>

DependencyType

Interface : DependencyType
Supply : DependencyType
Clock : DependencyType

... : DependencyType

RootCause

| FailureEffect
> Name : string [1]

Name : string [1]

e
N

Description : string [0..1]

Description : string [0..1]

CouplingMechanism

<<enum>>

DependentFailureType

0.1 Name : string [1]
Description : string [0..1]

CommonCause : DependentFailureType
Cascading : DependentFailureType

Figure 5.15: Simplified DFA Metamodel

the DFA platform for the same system.

Finally, compositional failure models created using MetaFPA 5.2 can be used to
assist the identification of dependencies between failures in DFA. In fact, the failure
propagation graphs are an indication to the analyst on how certain malfunctions are
coupled within the system structure. A semi-automated extraction of such depen-
dency information from MetaFPA data-models and/or propagation graphs is possible.

However, it has not been investigated in the scope of this thesis.

112

6 Model-Driven Support of
Functional Safety Evaluation

This chapter addresses the model-driven platforms developed during this thesis to ap-
ply the formalization strategies presented in Chapter 5 and enable automated support
of functional safety evaluation.

6.1 Introduction

In this section, the main objectives of model-driven functional safety evaluation are
briefly recapitulated in Subsection 6.1.1. Then, the underlying environment for the
implementation of the model-driven support is presented in Subsection 6.1.2. After-
wards, the organization of the chapter remainder is outlined in Subsection 6.1.3.

6.1.1 Main Objectives

Because of its constantly rising importance in the industry — particularly in the au-
tomotive sector, functional safety evaluation is extensively addressed by the research
community with respect to its efficiency and to the link between its two major as-
pects, namely analysis and simulation. In Chapter 3 (Related Work), Section 3.2
gives a compilation of several methodologies for safety analysis automation found
in the literature and Section 3.3 provides an overview of the known approaches to
connect safety analysis methods to fault injection and simulation techniques. It is
however also shown that many limitations are still to be overcome in the context of
the automated support of functional safety analysis (e.g., the missing quantitative
aspect and the incompatibility with the industrial practices of certain model-based
FMEA automation approaches — see Subsection 3.2.2) and also in the context of
the seamless linking between analysis and simulation (e.g., the limited flexibility and
usability of most commercial FMEDA tools — see Subsection 3.3.2).

Thus, model-driven support of functional safety evaluation is addressed in this
thesis to tackle the inconveniences detected in the existing methodologies. Through
developing appropriate software platforms and tools, safety engineering tasks are

113

6 Model-Driven Support of Functional Safety Evaluation

simplified throughout the ISO 26262 safety lifecycle and the associated automation,
interoperability, and reuse levels are enhanced.

The objectives to be fulfilled through model-driven support are inherently related
to the overall requirements defined in Chapter 4, especially those of Subsections 4.1.3,
4.1.4, and 4.1.5. These objectives are listed below along with references to the re-
spective requirements.

114

Develop model-based software applications in compliance with the metamodels
for failure propagation modeling and functional safety analysis as presented in
Chapter 5. The defined process flows and data structures shall be reflected
and/or supported by the developed tools (REQ 4). When the underlying flows
and/or metamodels are changed and/or extended due to project, team, or orga-
nization specificities, the associated frameworks and tools shall be accordingly
updated. This framework update shall be performed automatically as far as
possible and a consistent report shall be generated to trace back the under-
taken changes (REQ 7).

Ensure automated data extraction from the relevant inputs for the functional
safety evaluation through dedicated tools (REQ 8).

Reduce the implementation efforts of the functional safety evaluation platforms
by generating the rather generic parts which do not necessitate an advanced
customization instead of developing them manually (REQ 9).

Establish a semi-automated link between safety analysis and fault injection/sim-
ulation. It is required to perform an investigation of data equivalences and/or
correspondences between the supported safety analyses (FMEDA, FTA, and
DFA) on the one hand and fault injection and simulation on the other hand.
Based on the outcomes of this investigation, tools for data mapping and/or
transformation shall be developed (REQ 10).

Support dynamic data changes within the inputs and the underlying data mod-
els and/or databases (REQ 11).

Enable the systematic generation of safety evaluation views out of the safety
data models handled within the created platforms, such as failure propagation
graphs, fault trees, and fault libraries to be injected (REQ 12).

Support the exchange and the reuse of safety evaluation artefacts across the
developed platforms and anticipate later migration to different standards or
domains though dedicated tools (REQ 13 and REQ 14).

Enhance the usability of the developed software platforms and tools by provid-
ing user-friendly graphical interfaces for data input, handling, and visualization
(REQ 15).

6.1 Introduction

6.1.2 Underlying Environment

The achievement of the objectives listed in Subsection 6.1.1 relies in the context of this
thesis on the application of the solution concepts presented in Section 4.2. Thereby,
the guidelines of model-driven development (4.2.1) are followed, the template-based
and API-based code generation techniques are applied in correlation with metamod-
eling (4.2.2), and the hand-coded and semantic data mapping approaches are utilized
(4.2.4). Furthermore, the metasynthesis concept denoting the synthesis of synthesis
tools is considered (4.2.3).

Concretely, these concepts are embodied in Metagen, Infineon’s in-house meta-
modeling and code generation environment. Along with few commercial tools used
traditionally in the industrial safety evaluation context such as Excel (for FMEDA
spreadsheets) and Isograph’s Reliability Workbench™ (for creation, edition, and visu-
alization of fault trees), the Metagen environment is the central platform on which
the implementation of all thesis concepts is performed.

Metagen is a software development platform which has been in use at Infineon for
more than 5 years. It offers highly-automated capabilities for data modeling and code
generation using Application Programming Interfaces (APIs) and text templates [5].
Metagen can be defined as a “design building box for a metamodeling infrastructure”.
It enables the automated derivation of expected target code instead of manually
typing it. The basic three-step process flow of Metagen is described as follows [126]:

1. Create a metamodel capturing the structure of the targeted data model.

2. Implement a specification reader to fill the data model (instance of the meta-
model).

3. Write a corresponding code generator referred to as template.

Among the basic features of Metagen, a metamodel-compliant API gets automat-
ically generated. It contains a set of object classes and functions enabling to fill,
manipulate, and access the correspondingly created data model. Besides, Metagen
provides tools for generating GUIs (Graphical User Interfaces) as well as generic data
parsers and writers to simplify the construction and the handling of data models.
A plug-in mechanism is supported within Metagen to glue all the different pieces
together. Furthermore, it is possible in Metagen to combine different data models
and establish mapping, transition, and transformation relationships between them
through a linking mechanism relying on internal and external references [126].

The key advantage of Metagen is the tool-based automation it provides as well
as the considerable flexibility allowed by its dedicated extension mechanism. Be-
yond the systematic, highly consistent, and efficient production of countless types
of model views (RTL and/or C code, verification test-benches, documentation files,

115

6 Model-Driven Support of Functional Safety Evaluation

data graphs, etc.,) the solutions promoted by Metagen are easily expendable to cover
new domains of design, verification, and testing. This is enabled by creating so-called
MetaLibs correspondingly for those new domains. In the context of this thesis, the
ability of Metagen to contribute to the ISO 26262 safety lifecycle by assisting related
safety engineering tasks is demonstrated

Metamodel
25

Python API

Data Model]) I
> View | View

Generator
(Python)

Specification II

Figure 6.1: Basic Metagen Framework [5]

Figure 6.1 illustrates the basic Metagen setting and shows the relations between
the different levels of abstraction for a given system. The metamodel is defined at the
highest abstraction level as the structural organization of the model. In Metagen, the
metamodel is stored either as a UML class diagram or as an equivalent textual file
written for example in the XMI (XML Metadata Interchange) format. In compliance
with the metamodel, Metagen generates the corresponding API in Python, using a
precoded generator. The data model is located at one abstraction level below. It is
constructed by the API using the information extracted from the specification through
the reader. At the lowest abstraction level, the output system view, e.g., VHDL code,
SystemC code, documentation file etc., is generated through a view generator which
is granted data model access by the API [127, 5].

In Metagen, the view generator is an object-oriented program which is produced
from a hand-written template through a template engine, instead of being typed man-
ually. The template engine used per default in Metagen is Mako, a library developed in
Python. The Mako language is considered an embedded Python language and is char-
acterized by a compact template syntax and a rich template rendering API [5, 128].
Mako supports the three basic features of template rendering [129, 130, 131, 5]:

1. Value substitution: replacement of placeholders with corresponding data by
evaluating the contained expressions, pulling the appropriate piece of informa-
tion from the model and writing it into the output view.

2. Template logic: logic and control-flow statements such as If conditionals, For
loops, and recursive macros.

116

6.1 Introduction

3. Embedded code: using unrestricted Python code to raise template capabilities.

Figure 6.2 illustrates the role of the Mako template engine in the generation process
within Metagen. It should be noted that the view generator is not implemented
manually, but generated from a template through the Mako template engine. In fact,
writing the corresponding template is much easier for the user, because of the higher
abstraction level and the simpler syntax.

—

Generation Framework

Metamodel
=
Python API A4
‘ Mako _
Specification II = Reader C Data Model Templat&e Engine

View Generator
‘[> (Python) '::> 1ew

Figure 6.2: Role of the Mako Template Engine in the Metagen Framework [5]

6.1.3 General Organization

In the remainder of this chapter, the model-driven platforms and tools developed in
the context of this thesis are presented.

First, Section 6.2 describes the MetaFPA framework which is developed to real-
ize the enhanced failure propagation analysis introduced in Section 5.2. The section
contains mainly (ii) a general overview of the MetaFPA framework, (ii) a brief pre-
sentation of the associated GUI, and (iii) an explanation of the functionality of the
generation tool for failure propagation graphs.

In Section 6.3, the so-called safety analysis MetaLibs created in accordance to the
FMEDA (5.3.1) and FTA (5.3.2) metamodels are presented. Beyond the general set-
ting of each MetalLib, special tools for automation support and/or safety documents
generation are addressed.

Finally, Section 6.4 introduces SaVer, a safety verification framework developed to
establish the targeted link between safety analysis on the one hand and fault injection
and simulation on the other hand.

117

6 Model-Driven Support of Functional Safety Evaluation

6.2 MetaFPA Framework for Failure Propagation
Analysis

In this section, the implementation of the MetaFPA framework for failure propagation
modeling and analysis in accordance with the theoretical foundation presented in
Section 5.2 is addressed. First, in Subsection 6.2.1, the general structure and setting
of the MetaFPA framework is presented. Then, a quick overview on the MetaFPA
user interface is provided in Subsection 6.2.2. After that, the tool-based generation of
failure propagation graphs within MetaFPA is explained in Subsection 6.2.3. Finally,
the interactions of MetaFPA with other model-driven safety frameworks developed
in the context of this thesis, particularly for FMEDA and FTA support, are outlined
in Subsection 6.2.4.

6.2.1 General Setting

As already explained in Subsection 5.2.1, MetaFPA is a model-based and simulation-
oriented approach for failure propagation analysis, which connects concepts from
the failure logic modeling theory with ideas and techniques used in fault injection
to simulate system alterations. The purpose of MetaFPA is to explore the failure
behavior of a given system at a high abstraction level during the early concept stages
of the ISO 26262 safety lifecycle. The outcomes of the MetaFPA analysis are used
to refine the safety concept, especially with respect to the adequacy and effectiveness
properties of the intended safety mechanisms.

In the following, the basic artefacts of the MetaFPA methodology (see Figure 5.3)
are listed along with their reflection on the MetaFPA framework which is implemented
within the Metagen environment (see Subsection 6.1.2) and illustrated in Figure 6.3:

e Metamodel for Failure Propagation Analysis: The metamodel (see Fig-
ure 5.5 in Subsection 5.2.3) is the foundation of the MetaFPA framework. It
complies with the basics of the Failure Logic Modeling theory (see Subsec-
tion 3.1.2) and incorporates the enhancements related to dynamic failure de-
scriptions, automated analysis, and flexible deployment (more details in Sub-
section 5.2.2). The metamodel is created within the Metagen environment as a
UML class diagram. Based on it, the initial setting of the MetaFPA simulation
platform is synthesized. A1l in Figure 6.3 corresponds to the metamodel for
failure propagation analysis.

e MetaFPA Simulation Platform: The platform for simulation-oriented fail-
ure propagation analysis is depicted in Figure 6.3 as A2. It contains the ap-
plication programing interface (Python API — A3) generated by Metagen in

118

6.2 MetaFPA Framework for Failure Propagation Analysis

o 4 Metamodel for Failure
customization Propagation Analysis

confirm to @ ﬁ

@ MetaFPA Simulation Platform
| A5

entry and
update

User Input

Graphical User Interface

XML Application Programming A3 XML Writer
Reader Interface
Inputs i Gen. of
System » XLS @ Analysis @XB)
Specification | Reader Model Scripts
L
Failure Behavior VP %
Specification Parser Generator

Plugin1 | | Plugin 2GS
(Valid Failure (Propagation
Combinations) Mappings)

Generated Outputs

visualization / inspection |
of analysis artefacts Analysis Failure Propagation II
Feedback Loop A14 Scripts Graphs

Figure 6.3: Overview of the MetaFPA Framework for Failure Propagation Analysis

accordance to the metamodel A1l. On this platform, the corresponding data
model is constructed, handled, and visualized through several tools which are
either systematically generated or hand-written.

— Executable System Model (extended with failure behavior):
MetaFPA’s data model (depicted in Figure 6.3 as A4) is a filled instance
of the metamodel A1l. It is an executable model of the system being an-
alyzed where the nominal description is extended with the abstract failure
behavior as defined in the metamodel A1 (more details in Subsection 5.2.3).

— Generated Tools:

x GUI Metagen generates a basic Qt GUI based on the metamodel. The
GUI (artefact A5 in Figure 6.3) corresponds to the input and output
user interfaces previously mentioned in 5.2.1 and illustrated in Figure 5.3.

119

6 Model-Driven Support of Functional Safety Evaluation

120

More details about the MetaFFPA GUI are addressed in Subsection 6.2.2.

x Standard readers: The default format for data storage in Metagen is

XML. Therefore, a standard XML reader (artefact A6 in Figure 6.3)
gets systematically generated.

« Standard writers: Similarly, a standard XML writer (artefact A7 in

Figure 6.3) is systematically generated.

— Handwritten Extensions, Plugins, and Generators:

x Input extensions for capturing the system architecture: In addition to

the manual data input supported through the GUI, it is possible in
the MetaFPA framework to automatically extract information about the
early system architecture at concept level either from a tabular specifica-
tion provided in Excel through the XLS reader (A8 in Figure 6.3) or from
a virtual prototype (VP) developed in SystemC for example through the
VP parser (A9).

Plugin for determination of wvalid failure combinations: In contrast to
other failure logic modeling techniques, MetaFPA considers combina-
tions of multiple failures occurring either inside specific system blocks
or on their respective interfaces. There are however contradictory fail-
ures which cannot occur simultaneously (e.g., omission and commission
failures). Such incompatibilities are specified as references in the meta-
model A1l. Once these references are instantiated in the data model
A4 to specify failure incompatibilities, the valid failure combinations are
determined systematically by the plugin depicted as A10 in Figure 6.3.

Plugin for derivation of failure propagation mappings: In MetaFPA,
there is the possibility of defining the failure logic of a certain block either
manually through the GUI or to derive it automatically using Boolean
expressions. In fact the failure logic which links the input deviations
and internal malfunctions on the one hand with the output deviations
on other hand can be captured through Boolean expressions denoting
the occurrence condition of output deviations depending on the input
deviations and the internal malfunctions of the considered block. The
plugin depicted as A11 in Figure 6.3 takes these occurrence conditions as
input and subsequently generates the corresponding failure propagation
mappings in the data model A4.

Generator for failure propagation analysis scripts: Once the MetaFPA
data model A4 is fully constructed (system structure and failure behav-
ior), the template-based script generator A12 is used to generate special
Python programs whose execution runs correspond to the multiple failure

6.2 MetaFPA Framework for Failure Propagation Analysis

configurations of the system. The impact of these failure configurations
on the overall system behavior is monitored while executing the scripts.
In other words, the purpose of this script-based failure propagation anal-
ysis is to detect those configurations leading to a critical system failure
by monitoring the system outputs throughout the runs.

x Generator for failure propagation analysis graphs: The outcomes of the
script-based analysis are used for the generation of so-called failure prop-
gation graphs. The corresponding generation tool, depicted in Figure 6.3
as A13, is addressed in details in Subsection 6.2.3.

e Feedback Loop: The MetaFPA framework provides assistance to concept and
safety engineers at an early design stage. Through the feedback loop embodied
in the MetaFPA framework (artefact A14 in Figure 6.3), early system explo-
ration with respect to safety goals is supported. The results of the failure prop-
agation analysis represent valuable indications for potential deficiencies in the
system architecture, particularly in the safety measures it contains. Through
an investigation and/or a walk-through of the generated failure propagation
graphs, the safety engineer identifies problematic locations in the system ar-
chitecture, where a hardening is required. In such vulnerable locations, the
system design shall be changed. Thereby, the back-tracing from the failure
propagation to the system specification through the MetaFPA data model is
particularly convenient.

6.2.2 MetaFPA GUI

Based on the metamodel for failure propagation analysis, a Qt graphical user interface
is generated. It should be noted that Qt is a C++ library originally published in
1995. It has been since then most frequently used for the development of software
applications with graphical user interfaces.

In the context of this thesis, the MetaFPA GUI is applied for:

1. Data entry: The GUI enables the specification of the abstract system structure
(blocks, ports, and connections) and of the basic failure behavior (input/inter-
nal/output failures).

2. Data visualization: Through the GUI, already existing data models can be
explored in a user-friendly way.

3. Data model editing and handling: Manual extensions and/or changes can be
performed on existing data models, such as specifying incompatible failures as well
as defining failure propagation mappings.

121

6 Model-Driven Support of Functional Safety Evaluation

4. Tool invocation: Data readers and writers, extensions, and plugins created
within the MetaFPA framework can be invoked from the GUI to (i) extract data
and accordingly fill an empty metamodel instance, (ii) to process an existing data
model and systematically extend or change it, or (iii) to generate a special view
out of a data model.

o]
¥

File Edit Views

METAGEN GRAPHICAL USER INTERFACE - [metafpa[2]]

Options Help

2V E a9 e 8O B

Tree View

v MetaFPA()
w System (BrakingSystemControlUnit)
» Block (BSCU1)
» Block (BSCU2)
» Block (ValidityMonitor)
w Block (Switch)

I

InputFailure (CMD1BrakingOmission)
InputFailure (CMD1BrakingCommissi...
InputFailure (CMD2BrakingOmission)
InputFailure (CMD2BrakingCommissi...
InputFailure (AS1AntiSkidOmission)
InputFailure (AS1AntiSkidCommission)
InputFailure (AS2AntiSkidOmission)
InputFailure (AS2AntiSkidCommission)
InputFailure (FalsePos)

InputFailure (FalseNeg)

QutputFailure (BrakingOmission)
OutputFailure (BrakingCommission)

OutputFailure (AntiSkidOmission)

OutputFailure (AntiSkidCommission)

Port (cmd1)

Port (antiSkid1)

Port (cmd2)

Port (antiSkid2)

Port (validityl)

Port (cmd)

Port (antiSkid)
Connection (PWR1_BSCU1)
Connection (PWR2_BSCU1)
Connection (PEDAL1_BSCU1)

Py

C

Parameter Configuration

@]
@]
(01 el

"Attributes | affectedPortsRefs | incompatibleWithRefs | Meta Info |
Attributes of "OutputFailure"
Name: \AntiSkidOmission v\ Defa ¢+ AntiSkidOmission
ID: |74 v| |Dec 3 74
Description: \ASlAntiSkidOmission and AS v\ Defa + | AS1AntiSkidOmission ...
Effect: | absent v| |Defa % |absent
SystemCritical: | True v| True
Probability : | 0.0 v| |Dec : 0.0

Console Log

7

Metagen Log

Figure 6.4: Snapshot of the Graphical User Interface of the MetaFPA Framework

The utility of the MetaFPA GUI (see snapshot in Figure 6.4) is illustrated through
a simple use case addressing the Wheel Braking System (WBS) described in [13].
This hydraulic braking system is applied in the avionics domain to “provide primary
stopping force” by applying hydraulic pressure to the brake assemblies of the main
landing gear wheels [13, 132].

The WBS contains a physical part and a control part. The physical part which
consists of hydraulic pumps, circuits, and brakes is controlled either mechanically by
the pilot through the pedals’ positions or electrically through the control part denoted

122

6.2 MetaFPA Framework for Failure Propagation Analysis

as Braking System Control Unit (BSCU) [13, 132].

There are different operation modes of the WBS. As illustrated in Figure 6.5, the
normal mode of the WBS relies on the output of the BSCU to control the meter
valves, more specifically the combined brake and anti skid command. It should be
noted that the brake command is derived from the pilot pedal position while the anti
skid command is derived from the sensor inputs indicating mainly the wheel and the
ground speeds. In the alternate mode of the WBS, the meter valves are controlled
by the associated pedal positions. The switching between the two modes is ensured
by the selector valve and is triggered by pressure fluctuations [13, 132].

Pos. 1 Pos. 2 Pump Pump

T [eoIlli®]

- Shut Off
’,/” BSCU Selector Isolation
-7 Valve [Valve
H] i
Power pedal power | | peda Pt A
1 Position 1 2 Position 2 Pt Brake System N ;
- Annunciation ; £
BSCU A R
A N
L A
(BSCU1l (BSCU2 Selector T
Valve 3
| 2wl ‘ ‘
AS
vave Anti Skid Valve []
id »
H]
Validity CMD/ Iy
Monitor Anti Skid I_] Melter
Command Command LT Valve]Mech. Pedal Position =~
1 2 e Meter I:
7 Valve
.
- J - J
P e 2 Wheel
Anti skid (AS) 7
L e
T
o R Source: Society of Automotive Engineers (SAE), Guidelines and Methods for Conducting
- skids I, i
Switch o7 the Safety Assessment Process on Civil Airborne Systems and Equipment (ARP4761).

Figure 6.5: Overall Architecture of the WBS and of the Contained BSCU [13]

The focus of the failure modeling in this use case is the BSCU which is the only
digital component of the complete wheel braking system. Therefore, its structure is
illustrated in Figure 6.5 (on the left). The BSCU consists of two redundant Monitor
and Command units. Each pair of them forms a subsystem (BSCU! and BSCU2)
and is independently powered by the power supplies illustrated in Figure 6.5. In
addition to the power sources, the BSCU receives two redundant “Pedal Position”
signals from the cockpit. The primary output of the BSCU is the combined control
signal CMD/Anti Skid which controls the meter valves at the higher level of the
WBS in normal mode. Furthermore, the BSCU produces the pure Anti Skid (AS)
signal which is needed for the alternate mode of the WBS and the Shut Off Selector
Valve signal which is necessary to prevent hazardous hydraulic flow if the outputs
of the control unit are considered untrustworthy. The BSCU outputs are considered
untrustworthy if an internal malfunction is detected or if a discrepancy between the

123

6 Model-Driven Support of Functional Safety Evaluation

pedal inputs is diagnosed. That is why, the Shut Off Selector Valve signal is produced
by the so-called Validity Monitor within the BSCU [133, 66, 132].

Using the generated GUI, a MetaFPA structure model for the BSCU is created
according to Figure 6.6.

PWR1_BSCU1

-

5 | e—
PWR2_BSCU1
— VALIDITY1_MON
p—] 5
PEDAL1_BSCU1 BSCUl 6 —
——— 3 o ge
Valid Ity VALIDITY_OUT
PEDAL2_BSCU1 7 — . 7 | —
— Monitor
VALIDITY2
16
COMMAND1
18
PWR1_BSCU2 COMMAND
—— 3 ANTISKID1 23 | e——
12— 19
_PWRZ'Bscuz VALIDITY1_SW
—— () i
PEDAL1_BSCU2 BSCU2 13 Switch
—— 1) | COMMAND2
21 ANTISKID
PEDAL2_BSCU2 12 20—
22
port 1: pwrl_port {BSCU1} 8: pwrl_port {BSCU2} 15: validity1_port {ValidityMonitor} 18: cmd1_port {Switch}
2: pwr2_port {BSCU1} 9: pwr2_port {BSCU2} 16: validity2_port {ValidityMonitor} 19: antiskid1_port {Switch}
i 3: pedall_port {BSCU1} 10: pedall_port {BSCU2} 17: validityOut_port {ValidityMonitor} 20: validity1_port {Switch}
= Connection 4. hedal2_port {BSCU1} 11: pedal2_port {BSCU2} 21: cmd2_port {Switch}
S: validity_port {BSCU1} 12: validity_port {BSCU2} 22: antiSkid_port {Switch}
6: cmd_port {BSCU1} 13: cmd_port {BSCU2} 23: cmq_port {Switch}
7: antiSkid_port {BSCU1} 14: antiSkid_port {BSCU2} 24: antiSkid_port {Switch}

Figure 6.6: MetaFPA Structure Model of the Braking System Control Unit (BSCU)

In this use case, four types of failures are considered:

e Omission: In this use case, omission refers to the absence of an expected entry
and to low value failures (entry is present but its value is below the valid range).

e Commission: In this use case, commission refers to the occurrence of an inad-
vertent or unexpected entry and to high value failures (expected entry is present
but its value is beyond the valid range).

e False Negative: A test or diagnostic is false negative if it results in a so-called
rejection failure. In reality, the test/diagnostic results are problematic and must
be rejected, however the rejection does not happen and the results are accepted.

e False Positive: A test or diagnostic is false positive if it results in a so-called
incorrect rejection. In reality, the test/diagnostic results are correct and must

124

6.2 MetaFPA Framework for Failure Propagation Analysis

be accepted, however they get rejected. This situation is equivalent to a false
alarm.

In Figure 6.7, the considered input deviations, internal malfunctions, and output
deviations for BSCUI are listed along with the ports they potentially affect in the
structure model.

Input Failures

PowerOmission | affected ports: 1,2
PedallOmission| affected ports: 3

M 1 f VALIDIT“ MVION PedallCommission | affected ports: 3
5 | — Pedal20mission| affected ports: 4

VALIDITY1_SW

M 2 S— Pedal2Commission | affected ports: 4
COMMAND1

PEDAL1_BSCU1 BSCU]. 6 | —— "

— 3 Internal Failures
ANTISKID1 ASStuckOn / ASStuckOff

PEDAL2_BSCU1

—— 4 7 CMDStuckOn / CMDStuckOff

StuckPos / StuckNeg

1: pwrl_port {BSCU1}

2: pwr2_port {BSCU1}

3: pedall_port {BSCU1}

4: pedal2_port {BSCU1}

5: validity_port {BSCU1}
6: cmd_port {BSCU1}

7: antiSkid_port {BSCU1}

port Output Failures

\ BSCU1
|/

BrakingOmission| affected ports: 6
BrakingCommission | affected ports: 6
AntiSkidOmission| affected ports: 7
AntiSkidCommission | affected ports: 7
FalseNeg| affected ports: 5
FalsePos| affected ports: 5

=== CONNection

Figure 6.7: Examples of Braking System Control Unit Failures

The usage of the MetaFPA GUI to perform such failure logic modeling ranges
from specifying the system composition (contained blocks, their respective ports,
connections between them) to defining the failure behavior of the different blocks (in-
put/output failures and their respective affected ports, internal malfunctions, etc.,).
Furthermore, the GUI can be used to display probabilities of system output failures
which are calculated during the failure propagation analysis runs. A snapshot of the
GUI is given in Figure 6.4. It shows the structure of the tree view and how the
attributes of each object of the data model are displayed.

6.2.3 Failure Propagation Graphs Generator

Among the handwritten tools applied within the MetaFPA framework, the failure
propagation graphs generator (artefact A13 in Figure 6.3) transforms the outcomes of
the script-based failure propagation analysis into graphical representations depicting
the propagation paths leading to critical system failures.

The generation of the propagation graphs relies on the numerous analysis runs per-

125

6 Model-Driven Support of Functional Safety Evaluation

formed through the generated scripts. In fact, for every possible combination of input
deviations and internal malfunctions of the starting (entry) blocks, the resulting out-
put deviations are determined based on the propagation mappings and consequently
deployed on the output ports. Afterwards, the outgoing connections are activated
to propagate the result on the target ports. Then, the rest of the architecture is re-
cursively analyzed (detection of propagated input deviations, deployment of internal
malfunctions, identification of output deviations, propagation through connections,
etc.,). When an analysis run results in a critical system failure already specified by
the user in the MetaFPA data model, a GraphML diagram is generated to visualize
the propagation flow which leaded to that system failure. In Subsection 6.2.3.1, the
output format of the generation, which is GraphML, is briefly described and illus-
trated through an example. The details of the failure propagation analysis and the
generation algorithm are addressed in Subsection 6.2.3.2.

6.2.3.1 Output Format

In MetaFPA, the failure propagation graphs are generated in the XML-based format
GraphML, which is a comprehensive and user-friendly file format to create and store
graphs [134]. Consisting of a language core describing structural graph properties and
an extension mechanism to flexibly add application-specific data, GraphML supports
the creation of (i) directed, undirected, and mixed graphs, (ii) hypergraphs, and (iii)
hierarchical graphs [134]. The motivation to use GraphML is that instead of having
a custom syntax like other graph file formats, it relies on XML. Subsequently it is
easily applicable for generating, archiving, and/or processing graphs [134]. Figure 6.8
depicts an example of a generated graph for the Braking System Control Unit (BSCU)
introduced in Subsection 6.2.2 and illustrated in Figure 6.5.

The critical system failure of the BSCU which is addressed by the graph in Fig-
ure 6.8 is the combination of the output deviation “ValidityOutFalsePos” of the Va-
lidityMonitor and the output deviation “BrakingOmission” of the Switch (see Fig-
ure 6.6). In other words, the validity signal indicates erroneously that the COM-
MANDT1 output of the BSCU1 block is invalid and cannot be trusted because of an
internal failure called “StuckPos” in BSCU1. Therefore, the COMMAND?2 signal of
the BSCU2 block will be used to produce the COMMAND output of the switch. But
the COMMAND?2 signal itself is erroneous (“CMD2BrakingOmission”) because of an
internal failure in the BSCU2 block. That is why, the braking command expected
at the output of the BSCU is not correctly generated and the overall wheel braking
system is affected: a lack of braking occurs.

126

6.2 MetaFPA Framework for Failure Propagation Analysis

Y Y Y Y
_ " X {BSCU2} -- output failures:
(BSCUQ F;:g;xct’sfallures. * BrakingOmission
* FalsePos

e

Y
{ValidityMonitor} -- output failures: {Switch} -- output failures: |
* ValidityOutFalsePos * BrakingOmission

Figure 6.8: Example of Generated Failure Propagation Graph (BSCU Use Case)

6.2.3.2 Generation Algorithm

In the MetaFPA context, a system S is specified by a set of blocks B and a set
of connections C: S = (B,C) with B = {B;}; i = 1.Ng and C = {C;}; i =
1...N¢ (Np and N¢ are respectively the numbers of blocks and connections in .S).
Each block B; is characterized by a set of input ports P/ = {p}}, a set of output
ports PY = {p9}, a set of input deviations D! = {d}, }, a set of output deviations
DY = {d9}, and a set of internal malfunctions M; = {my.}. Thus, a block is
denoted as follows: B; = (P, PP, DI, D M;). A propagation mapping function
P; : P(D!) x P(M;) — P(D?) defines the relations between the power-sets of input
deviations, internal malfunctions, and output deviations. Furthermore, the failure
propagation analysis is based on the dynamic evaluation of each block’s state at a
given simulation iteration x. This block state denoted as S*)(B;) is given by the
port values and the occurring internal malfunctions at simulation iteration x. The
detected port values allow the determination of currently occurring input and/or
output deviations.

Performing a failure propagation analysis in the MetaFPA framework requires a
number of preprocessing steps to be executed and a multitude of conditions to be met.
First, so-called entry (first) and exit (final) blocks are either defined by the user or
automatically detected. On the one hand, an entry block is a block with at least one
incoming connection with no source reference. On the other hand, an exit block has
at least one outgoing connection with no target reference. Then, the back-couplings
in the system are detected and classified according to the involved blocks and to the

127

6 Model-Driven Support of Functional Safety Evaluation

Algorithm 1 Failure Propagation Simulation Flow

1: procedure SIMULATE(B;, z;"™")

2 READY < TRUFE

3 for pl, € P! do

4 READY + READYAND O(pl,)
5: end for

6 if READY = TRUFE then

7 X xf ormer 1

8

9

(5{ @) ¢+ set of occurring input deviations

: ugr) < set of occurring internal malfunctions
10: §20 Py)y
11 S@(By) « (6,7, w?, 67)
12: if z > 1 AND S®(B;) = S¢=1(B;) then > fix-point reached
13: return
14: end if
15: Update output ports set of B; (PP)
16: Activate outgoing connections set of B;
17: for each next block B; do
18: SIMULATE(B;, xf”m”)
19: end for
20: former o g
21: else
22: return
23: end if

24: end procedure

connection path loops.

Back-couplings in the system composition are addressed in the MetaFPA context
through a fix-point approach, where the simulation iterations for a specific block are
terminated when its state gets stabilized, i.e., when the set of occurring deviations
remains unchanged. Infinite loops are avoided through a forced termination with
error logging after a certain number of iterations.

Furthermore, the criticality characteristics of system failures to be detected and
documented through the analysis are captured. In general, these characteristics con-
sist in the output deviations of the exit blocks which are considered as critical for the
system safety. The maximum tolerable probability of occurrence is also specified; if
it is reached or exceeded, then the corresponding system configuration consisting of
the different block states has to be documented.

The concrete simulation flow on the MetaFPA platform is started by the deploy-

128

6.2 MetaFPA Framework for Failure Propagation Analysis

ment of a valid combination of input deviations for every entry block. The particular-
ity of entry blocks is precisely the possibility to force input deviations by manipulating
input port values. For all other blocks, the input port values are obtained through
the propagation across the connections. A block is considered “READY” to be sim-
ulated if all its input ports have specific values which are either forced to them (for
entry blocks) or obtained through previous simulation iterations. This information
is stored for each input port within the considered block through the Boolean vari-
able ©(pl,) which is set to True once the port is assigned a specific value. The rest
of the simulation steps are the same for all blocks. These steps are summarized in
Algorithm 1.

6.2.4 Synergies with FMEDA and FTA

The MetaFPA framework is an extended and enhanced adaptation of the Failure
Logic Modeling (FLM) theory which is traditionally applied to reduce the gap be-
tween safety analysis and fault injection. In the context of this thesis, MetaFPA is
used as a model-based and simulation-oriented platform for failure propagation anal-
ysis. It offers a wide range of capabilities to evaluate the system safety at a high
level of abstraction and early in the design cycle and to generate graphs depicting
the propagation paths leading to critical system failures. Furthermore, the utility
of MetaFPA to offer improvements within the traditional safety analysis context is
investigated. Indeed, MetaFPA is applied to achieve a combination of inductive and
deductive failure analysis approaches, more precisely FMEDA and FTA [12].

Within the comprehensive safety evaluation environment represented in Figure 6.9,
synergies between inductive and deductive failure analysis are realized by associating
corresponding tools and working flows. MetaFPA, which is used in this environment
as a bridge between top-down and bottom-up safety analyses, simplifies the data
exchange between FMEDA Excel spreadsheets on the one hand and fault trees created
and/or edited within Isograph’s Reliability Workbench™ (RWB) on the other hand.
Dedicated tools are created to support data exchange and automation as follows [12]:

e Capture input/output deviations by inspecting and classifying fault tree events.
e Generate FMEDA table segments out of data models created within MetaFPA.

e Extract information about internal failure behavior as specified in component
FMEDA sheets and fill it into MetaFPA’s models.

e Synthesize fault trees out of those models to be visualized and potentially refined
and maintained in RWB (more details in Subsection 6.3.2.3).

129

6 Model-Driven Support of Functional Safety Evaluation

Top-Down Safety Analysis
,,111”',7 ; FTA:
h‘f’ijﬂ pilit Fault Tree
1\’{"1 :—If b £,,,,f/’ Analysis
we
Capture IN/OUT Failure Logic Modeling

deviations

.
MetaFPA Platform Synthesis

& I
FMEDA Table g Extract internal
Generation failure behavior

Bottom-Up Safety Analysis

FMEDA:

Failure Modes, E_,fcé’!
Effects and shee!
Diagnostic

Analysis

Figure 6.9: Linking Top-Down & Bottom-Up Safety Analysis through MetaFPA [12]

6.3 Safety Analysis MetalLibs

Section 5.3 introduced formalization approaches for the three major analysis tech-
niques in the context of automotive functional safety in compliance with the ISO
26262 standard, namely FMEDA (Subsection 5.3.1), FTA (Subsection 5.3.2), and
DFA (Subsection 5.3.3). By structuring available data formats and templates in
formal and concise metamodels, reuse of already existing analysis artefacts and auto-
mated support based on model-driven engineering are enabled. In accordance with the
developed metamodels for FMEDA, FTA, and DFA, dedicated frameworks, referred
to as MetaLibs, are created within the Metagen environment (see Subsection 6.1.2)
by applying the metasynthesis concept (see Subsection 4.2.3). A MetaLib is basically
a package of tools and utilities which are generated or manually implemented around
a constructed metamodel (e.g., UML class diagram). For instance, it includes an

130

6.3 Safety Analysis MetaLibs

application programming interface (API), an optional graphical user interface (GUI),
a set of data readers and parsers, and an extension/plug-in mechanism to allow more
functionalities. In this section, the Metaliibs developed respectively for FMEDA and
FTA are described with respect to their general setting, to the specific tools they con-
tain or are linked to, and to their potential relations with other frameworks developed
in the context of this thesis such as the MetaFPA platform for failure propagation
analysis (see Section 6.2).

6.3.1 FMEDA Metalib

To overcome the challenges encountered by safety engineers in the traditional FMEDA
procedure, a model-based and simulation-assisted FMEDA approach is developed and
implemented. The resulting framework is called FMEDA MetaLib. In the following,
the general setting of the FMEDA MetaLib is presented in Subsection 6.3.1.1. After
that, the failure modes database used in the context of the FMEDA automation is
described in Subsection 6.3.1.2.

6.3.1.1 General Setting

The overview of the model-based and simulation-assisted FMEDA approach [3] is
illustrated in Figure 6.10.

For large systems addressed in industrial contexts, FMEDA is performed recur-
sively. Indeed, for the different system components, a separate analysis is carried out
using the flow already presented in Subsection 5.3.1.1. Complex system components
may be again decomposed in subcomponents, for which further Component-FMEDASs
(abbreviated as C-FMEDAs) are performed. The obtained results are then manu-
ally inspected and gathered to conduct an overall analysis for the complete system
(System-FMEDA abbreviated as S-FMEDA). The model-driven alternative proposed
in this thesis relies on the FMEDA metamodel (Subsection 5.3.1). Through parsing
and data extraction, confirming data models are built to substitute huge amounts of
tabular data and to simplify exploration, maintenance, and reuse. Here, the term
data model refers to a set of associated objects which can be visualized as an object
diagram and which can be handled using a common object-oriented language, such
as Python or C++. Most importantly, these data models enable a link to the simu-
lation environment and provide a connection between analytical data and executable
system models (e.g., SystemC, SystemVerilog, and VHDL).

Another key point of the model-based FMEDA methodology is to derive an S-

FMEDA model by automatically assembling a set of related C-FMEDA models. The
prerequisites of this automated assembly consist in (i) a system architecture provided

131

6 Model-Driven Support of Functional Safety Evaluation

[
[
Component Manual
EMEDAS “ System |,
(C-FMEDAS) FMEDA

-- procedure results)

a FMEDA 5
Component Metamodel <
FMEDA Models | 7 7 | 1. System FMEDA
i E Model (€ manual Cross-

checking
report

confirms to i

\/ V Adapter :
Pattern S SN
v

2. System FMEDA

Model (€ automated
assembly of C-FMEDASs)

-d R

@ Manual inspection and data gathering

Interface
Adapter

System
Architecture

UML class diagram

}Parsing and data extraction UML object diagram

o 28
Configuration of adapters with connectivity data

®) g P Y l:l FMEDA table or spreadsheet

@ Linkage of C-FMEDAs through adapters

@ Mapping of linkage results to System FMEDA model Executable model

o
o Template-based generation Block diagram

Figure 6.10: Approach Overview of Model-Based FMEDA [3]

as an architectural block diagram and (ii) a set of interface adapters organized in
an adapter pattern to depict interrelations between components in failure cases. The
interface adapter is derived based on the connectivity information between the dif-
ferent blocks as depicted in the system architecture. Linking the C-FMEDA models

132

6.3 Safety Analysis MetaLibs

through the interface adapters leads eventually to the S-FMEDA model correspond-
ing to the safety evaluation of the complete system [3]. As the obtained S-FMEDA
model confirms syntactically to the FMEDA Metamodel, a generator can be used to
transform it into an S-FMEDA table.

The proposed FMEDA methodology has also a simulation-assisted aspect. In fact,
a simulation platform supporting nominal and failure-modified system models, such
as the MetaFPA simulation platform (see Subsection 6.2), is considered. By apply-
ing model-to-model transformation algorithms on Component-FMEDA data models,
compositional failure specifications are created. Nominal system models are accord-
ingly extended or annotated with these compositional failure descriptions. The out-
come of the subsequently performed failure propagation simulation is mapped into an
S-FMEDA data model which corresponds also to the safety evaluation of the complete
system and which can be transformed into an FMEDA table [3].

Furthermore, the methodology supports a verification capability for the manually
performed analysis. By comparing the two metamodel instances: (i) the one derived
from the results of the manual analysis procedure and (ii) the one generated through
automated assembly as described above, a cross-checking report highlighting detected
inconsistencies and providing corrective recommendations is produced.

The structure of the model-based framework for FMEDA support and automation
(i.e., the FMEDA Metalib) is illustrated in Figure 6.11. As already mentioned above,
the MetaLib is based on the FMEDA metamodel and consists of an Application Pro-
gramming Interface and a set of tools including data readers and parsers, writers, and
other plugins used for the construction, visualization, and modification of FMEDA
models.

On the input side of the framework, a failure modes database (see Subsec-
tion 6.3.1.2) and a set of block diagrams capturing the hierarchical structure of
components or systems are considered. When the target of the analysis is a large
system, manually created tables for FMEDA components or subcomponents are also
taken into account. In some cases, the purpose of applying the FMEDA MetaLib
is to verify the consistency of an FMEDA which has already been conducted using
the traditional manual procedure. In this case, the FMEDA table documenting the
outcomes of the manual analysis is a further input [3].

To achieve the automated FMEDA assembly, the extracted data from the inputs
mentioned above is used to fill Component-FMEDA data models. A set of scripts
are then applied to process those C-FMEDA models and correspondingly derive the
overall System-FMEDA model.

On the output side, the table generator produces the final model view which is
precisely the conventional FMEDA table documenting the overall system analysis.

133

6 Model-Driven Support of Functional Safety Evaluation

: v P ted [FMEDA J Generated
e | Metamodel FMEDA Table
FMEDA Tables
& ﬂ il

Failure
Modes = =
Database Readers FMEDA
and Table
Parsers Generator

Block
Diagrams

Figure 6.11: Framework for Model-Based FMEDA Automation [3]

6.3.1.2 Failure Modes Database

An essential element of the model-based and simulation-assisted FMEDA framework
is the failure modes database containing the information derived from different reli-
ability and safety sources, mainly the internal failure catalogue and the field return
data of older projects. It also takes into account the tables D.1 to D.14 in Annex D of
Part 5 of the ISO 26262 standard, where common fault models, safety mechanisms,
and typical diagnostic coverage values are listed. The structure of the failure modes
database is covered by the metamodel illustrated in Figure 6.12.

The failure modes database also includes the base failure rates for the components
which are derived for example from the Siemens Norm SN 29500 [121] or from the
Exida Reliability Handbook [123].

In compliance with the metamodel illustrated in Figure 6.12 and using the avail-
able information sources, a correspondingly filled data model is constructed and used
as starting point for the data extraction within the FMEDA MetaLib when it comes
to (i) common fault models and/or failure modes for specific component types, (ii)
potential candidates of appropriate safety mechanisms for failure mitigation, and (iii)
base failure rate values for specific component types, configuration, and implementa-
tion technologies. To simplify management, visualization, and data queries within the
failure modes database, an SQL (Structured Query Language) interface is correspond-
ingly generated. In Figure 6.13, extracts of the SQL database and their relationships
to the classes of the metamodel are illustrated.

In the failure modes database, three directories, corresponding to the three men-

134

6.3 Safety Analysis MetaLibs

FailureModesDatabase

Name : string [1]

rootNode

- ? Configuration
\I/ Name : string [1]
Directory Description : string [0..1]
Name : string [1] Temperature : float [0..1]
Scope : string [0..1] ComplexityRange : string [0..1]
Confidentiality : string [0..1] GatesNumber : string [0..1]
FormalRelease : string [0..1] * TransistorsNumber : string [0..1]
Location : string [0..1] ReferenceVoltage : string [0..1]
Applicability : string [0..1] RateVoltage : string [0..1]
Use : string [0..1] VoltageRatio : string [0..1]
FailureRate : string [0..1]
. L 2
Component
- FailureMode
Name : string [1] -
Domain Description : string [0..1] Name.: §trlng [1,]
Name : string [1] Type : string [0..1] DeSCFIptIC.)I"I : string [0..1]
Description : string [0..1] ‘? Function : string [0..1] :Q-l? T%’p‘? : st.rlng [0'21]
Location : string [0..1] Source : string [0..1] Dlst-nbut!on : strlng [0..1]
Comment : string [0..1] Rationality : string [0..1]

Special : string [0..1]
Status : string [0..1]

Figure 6.12: Metamodel-Based Structure of Failure Modes Database

tioned sources (i.e., internal failure catalogue at Infineon, tables of ISO 26262 - Part 5
(Annex D), and the Siemens Norm SN 29500) are included. In each directory, multiple
domains are taken into account, for example, the processing units and communica-
tion domains in the ISO 26262 standard. A set of components, or more precisely
component types, are related to every domain and each component is then subject
to a group of failure modes, characterized for example by the distribution and the
rationale behind it. The component failure rates, which are mainly derived from the
Siemens Norm, depend on the technology and operation parameters. This is cov-
ered in the database metamodel through the Configuration class. For instance, for
a common CMOS logic component, two configurations are given depending on the
complexity and showing two different base failure rates (see Figure 6.13).

135

6 Model-Driven Support of Functional Safety Evaluation

Int_Class_ID failuremodedb_id

Name

|IFX_Failure_Catalog

Scope

I50_26262 _Catalog

Confidentiality
[infineon Failure Catalog...| Confidential 16 |2
Collection of failure m... Standard 17 |2

Int Class ID directory_id Name

|Btectrical-elements

Processing-units

3 |1 |SN755007Catalog |Co||ection of compone... IStandard
19 |2 |communication
20 E] |Memory-Bipolar
FailureModesDatabase L E [Memory-Mos-cMos-BIchOs
Name : string [1] = rr—
50 |18 |ALU - Data Path

N
rootNode

|General—semlconductﬂr—elements

|18

|Registers (general purpose registers bank, DMA transfer registers), internal RAM

Address calculation {Load/Store Unit, DMA addressing logic, memory and bus interfaces)

J/‘—T c 63 |18 |nterrupt handling
Name : string [1] 164 |18 |Control Logic (Sequencer, coding and execution logic including flag registers and stack cont..
Directory Description : string [0..1]
Name : string [1] Temperature : float [0..1] Int ClassID component id Name
Scope : string [0..1] ComplexityRange : string [0..1
Confidentiality : string [0..1] - ;gsmng [0?1[] ! 684 |162 |Stuck—at
FormalRelease : string [0..1] TransistorsNumber : string [0..1] 685 |162 |Stuck—at at gate level
Localtion‘:.slringA[OA] ReferenceVoltage : string [0..1] 686 162 Soft error model (for sequential parts)
Applicabilty : string [0..1] RESEED R [l 687 162 [D.C. fault model including no, wrong or muttiple addressing
Use : string [0..1] VoltageRatio : string [0..1]
FailureRate : string [0.] 688 [163 |Omission of interrupts
{ 689 163 | Continuous interupts
C : Int Class 1D componentid Neme FailurcRate
Name : string [1] = 67 |us2 |TTLALS-AL)S-F Bus Interface con...[55 J1-100 |5-500 |50
Domain Dy ion : string [0..1] sl 68 |1se |TTLS Logic + Bus Interface config 1 [80 J1-200 |s-s00 |100
v fyioes Description : string [0..1] - - -
Name : string [1] o Type : string [0..1] ‘J—> T 69 |ues |ECL 10k config 1 les J1-200 s-s00 |00
Description : string [0..1] ¥ 7| Function : string [0..1] * Dypleb Sl_""g_ [|'Z] 0.1 70 186 |ECL 100k config 1 s J1-200 |s-500 |150
Location : string [0..1] Source : string [0..1] R's{" “If°"_' t f'"gf) y ! 7 187 ECLI0WVEL) / 10AVEWLP)_con.. |60 [1-100 [5-500 150
Comment : string [0..1] ationalty : string [0.1] 72 |18 |Busdriver/-receiver Rs422, Rs423, R... [70 J1-100 s-s00 |50
Special : string [0..1] 3 (IS |Busdriver/-receiver RS232, RS644/89..[85 J1-200 5500 |50
Status : string [0..1] 7 |20 |cMOs Logic_config 1 Jas J1-100 5-s00 |20

CMOS Logic_config 2
|HCMOS, CMOS B, ACMOS Analog ... [45

l1-100 5-500 Is0

Figure 6.13: SQL Management of Failure Modes Database

6.3.2 FTA Metalib

In comparison to FMEDA, FTA is considered as a less cumbersome analysis method,
especially because of (i) its top-down exploration of the system failure behavior, (ii)
its reliance on Boolean logic to capture the interconnections between failures, and
(iii) its graphical documentation format (trees). It should however be noted that the
results of the FTA are in certain cases insufficient with respect to quantitative safety
assessment. Even though FTA can be conducted in a quantitative way to provide
numerical results of the overall system failure rate for example, there is no compu-
tation support within common FTA tools of the advanced safety metrics prescribed
by the ISO 26262 such as the SPFM (Single Point Fault Metric) and LEM (Latent
Fault Metrics) like in the FMEDA (see Subsection 5.3.1.1).

FTA is therefore considered to be more manageable than FMEDA. Nevertheless,
the significant volume and complexity of fault trees in industrial applications address-
ing highly complex systems still represent a challenge for safety engineers as well as
for quality analysts and managers. That is why, the formalization of FTA has been
addressed in the context of this thesis (see Subsection 5.3.2) as well. In accordance to
that formalization, a model-based framework is developed to address data handling,
visualization, and generation issues within FTA. This framework, namely the FTA
MetaLib, is described in Subsection 6.3.2.1 with respect to its general setting. In

136

6.3 Safety Analysis MetaLibs

this thesis, the transition from compositional failure propagation models developed
within the MetaFPA framework (see Subsection 6.2.1) to FTA is addressed with the
objective of simplifying the creation of fault trees. After presenting the basics of this
transition in Subsection 6.3.2.2, the associated fault tree synthesis aspect relying on
algorithmic model-to-model transformation is explained in Subsection 6.3.2.3.

6.3.2.1 General Setting

The overview of the FTA Metalib within its primary usage context in this thesis,
namely its association with MetaFPA for the purpose of systematically generating
fault trees [12], is illustrated in Figure 6.14.

MetaFPA Framework [FTA] Isograph
e (_ Metamodel) Reliability
Failure Propagation @ Workbench ™
Model ﬁ
Application Programming Interface
Fault Tree
(XML)
M Fault Tree
AV Model
Model-to-Model .
Transformation Tool View
Generator
~ —

Figure 6.14: Overview of the FTA Metaliib and its Link to the MetaFPA Framework

The development of the FTA Metal.ib is based on the FTA metamodel presented in
Subsection 5.3.2 which covers the four fundamental features of the fault tree: (i) the
modularization aspect denoting that a fault tree can be decomposed in further sub-
trees, (ii) the failure logic covered through dedicated gate classes (traditional gates as
well as FTA specific gates such as VotingOR, and Priority AND), (iii) classified events
(top, intermediate, and primary events), and (iv) the quantitative aspect addressed by
the probability attributes in the event classes. In compliance to the FTA metamodel,
the metasynthesis concept (see Subsection 4.2.3) is applied in the Metagen environ-
ment (see Subsection 6.1.2), so that major parts of the MetaLib are automatically
generated, such as the Application Programming Interface — API (see Figure 6.14)
and a basic Graphical User Interface — GUI (not shown in Figure 6.14). Within the
FTA MetaLib, structured and concise substitutes of graphical fault trees are created,
visualized, and handled. These substitutes are the fault tree models which are either

137

6 Model-Driven Support of Functional Safety Evaluation

constructed by user input through the GUI or systematically derived from MetaFPA’s
failure propagation models through a dedicated model-to-model transformation tool
also shown in Figure 6.14. On the output side, a view generator produces XML files
depicting fault trees in a format which is compatible with the commercial tool Iso-
grah Reliability Workbench™ (RWB) [135]. The generated XML file is then imported
into RWB so that further inspection, refinement, and edition steps can be manually
performed by the safety engineering team.

6.3.2.2 Transition from MetaFPA to Fault Trees

In this subsection, the focus is on the model-to-model transformation tool which is
shown in Figure 6.14 and which implements the transition between failure propagation
models created in MetaFPA and the fault tree models. From a conceptual perspective,
the transition from MetaFPA to FTA is illustrated in Figure 6.15 in a simplified way.

Block A

| Safety ' Top-level
Internal Malfunctions Goal event

U e ————— Output Violation
Deviations Deviations
Propagation |
1
1
. Block B ——
Transformation : Internal Malfunctions Primary | —
events
LU F——— b - Output
Deviations Deviations
Propagation

Figure 6.15: Transition from MetaFPA to FTA — Basic Concepts

The starting point is a fully constructed failure propagation model in MetaFPA
(see Section 6.2). The target is a fully constructed fault tree model in compliance to
the FTA metamodel (see Subsection 5.3.2). As already mentioned, the overall fault
tree is in practice a set of sub-trees due to the modularization feature. Each sub-tree
is characterized by a unique top-level event which is equivalent in our context to a
so-called safety goal violation. Safety goals (see Subsection 2.2.4) are actually the top-
level safety requirements of the system according to the ISO 26262 standard. They
are specified in the safety concept (see Subsection 2.2.5.1). Hence, they represent a
prerequisite to perform the safety analysis [12].

In relation to MetaFPA, safety goal violations are mapped to system output de-
viations, i.e., output failures occurring at the final blocks of the system architecture
located at its interface with the surrounding environment (other systems, users, etc.).
After this mapping, the fault sub-tree logic is constructed progressively by travers-
ing the failure propagation model created in MetaFPA and by adding intermediate

138

6.3 Safety Analysis MetaLibs

and /or primary events in correlation to input deviations and/or internal malfunctions
in the respective blocks [12].

In the simple example depicted in Figure 6.15, internal malfunctions occurring
in block B are reflected by the primary events which are appended to the top-level
event. Assuming that there is an input deviation of block B, which is actually a
transformed output deviation of block A, an intermediate event is added to the fault
tree. Consequently, the primary events corresponding to the internal malfunctions of
block A are accordingly appended. The collapsed branches (blue triangular symbols)
are used in the figure as a generalization of the possible alternatives of how the sub-
tree structure may be extended. Indeed, potential further tree events are correlated
with the input deviations of block A and the construction depends on whether there
are other blocks upfront in the system architecture. It should be noted that for the
sake of simplification in Figure 6.15, only OR gates are considered. However, the
actual synthesis algorithm takes the exact occurrence conditions of the deviations
into account and properly generates the according logic gates in the fault tree.

In the next subsection 6.3.2.3, the algorithm of the fault tree synthesis is detailed.

6.3.2.3 Fault Tree Synthesis

As already stated in Subsection 6.2.3.2, a system S, is specified in MetaFPA by a
set of blocks and a set of connections: S, = (B,C). In addition to the sets of input
and output ports characterizing each block B;, the sets D! of input deviations, DY
of output deviations, and M, of internal malfunctions are particularly important for
the description of the failure propagation and subsequently for its transformation into
the fault tree structure.

Another prerequisite for the transition from MetaFPA to the fault tree analysis is
the consideration of safety goal violations. For this, ¥ = {0;} depicts the set of such
violations and is a further characteristic of the system ([is the iterating index ranging
between one and L, which is the total number of safety goal violations derived from
the safety concept).

The fault tree is denoted as I' and contains a set of gates v and a set of events €.
Thus, the system definition is correspondingly extended to S = (B,C, %, T).

As already mentioned above, the fault tree I' is a group of several sub-trees. Each
of them corresponds to a safety goal violation o; in 3.

Each safety goal violation o; is caused by a combination of output deviations across
the different blocks located at the system output interface (so-called exit blocks in
MetaFPA). The set of all these output deviations is denoted as DY{. The set of
combinations which are taken into account as potential causes of safety goal violations

139

6 Model-Driven Support of Functional Safety Evaluation

Algorithm 2 Synthesis Flow of a Fault Sub-Tree

1: function SYNTHESIZESUBTREE(S, I, y)
2 A, 0
3 for each block B; € B do
4 for each output deviation d$, € DY do
5: if d9 causes o, then
6 A, A, U{dS
7 end if
8 end for
9: end for
10: if A, # 0 then
11: if |A,,| > 1 then
12: add new OR gate v, to fault tree I'
13: append 7,, to I'’s top-event
14: else
15: Yo, < I'’s top event
16: end if
17: for each 6 € A,, do
18: add new OR gate 5 to I’
19: append 75 to 7y,
20: for each internal malfunction leading to ¢ do
21: add new primary event ¢ to I'
22: append € to s
23: end for
24: for each input deviation 1 leading to 0 do
25: CREATEBRANCH(S, T', 9, 7s)
26: end for
27: end for
28: end if

29: return I'
30: end function

is the subset of non-empty combinations within the power-set P(D%).

Each output deviation d), for a given block B; is induced by a valid non-empty
combination of input deviations and internal malfunctions of the considered block B;.
For this, the propagation modeling function denoted for B; as P; : P(DY) x P(M;) —
P(DP) is taken into account. Through this function, all failure combinations are
considered, except those removed from the sets of permissible inputs and outputs by
invalid combination cross-references captured in MetaFPA’s metamodel 5.3.2.2.

For a given safety goal violation o;, the synthesis of the corresponding fault sub-

140

6.3 Safety Analysis MetaLibs

tree starts by detecting relevant combinations of output deviations within P(D$) and
grouping them in a set A,,. The detection relies on the comparison of specified port

values for safety goal violations on the one hand and for output deviations on the
other hand [11, 12].

The root node of the sub-tree which is related to o; is an OR disjunction -y,, of
the corresponding combinations of output deviations which have been identified in
A,,. Intermediate events are added as inputs of +,, for single deviations causing the
safety goal violation (singletons in A,,). For the remaining combinations in A,,, AND
conjunctions are appended to 7,,.

The reflection of each output deviation 0 that has been added in the sub-tree is
either an OR or an AND gate depending on the propagation modeling function of
the corresponding block. The appended inputs are either (i) primary events depicting
single internal malfunctions which might cause ¢ or (ii) further logic segments which
are iteratively built through a recursive CREATEBRANCH function. In this function,
output deviations of other blocks which are logically connected to a certain input
deviation ¢ are identified. Their occurrence logic, which is accordingly derived from
the MetaFPA failure propagation model, is reflected into the fault tree.

Algorithm 2 shows a simplified version of the general flow for sub-tree synthesis
to make it clearer and more understandable. In this simplified version, the following
two assumptions are made:

o Assumption A: Each safety goal violation o; is caused by single output devia-
tions of components at the system output interface.

e Assumption B: Each output deviation d$, for a given block B; is induced either
by exactly one input deviation or exactly one internal malfunction.

Assumptions A and B are irrelevant for the full algorithm which is actually imple-
mented. In fact, safety goal violations which are caused by combinations of output
deviations are considered along with those caused by single output deviations. Fur-
thermore, the synthesis algorithm takes into account all possible combinations causing
a given output deviation according to the propagation modeling function.

All functions for the fault tree synthesis are implemented in Python and are gath-
ered in the model-to-model transformation tool illustrated in Figure 6.14. The syn-
thesized fault tree model can be visualized and further on refined and/or extended
within the FTA MetaLib (see Figure 6.14) through the GUI which is illustrated by
the snapshot in Figure 6.16.

Applying the view generator on the fault tree model creates an XML file (see extract
example in Figure 6.17) which can be later on imported in the Reliability Workbench™
(RWB) tool thanks to its compliance to the XML schema supported by RWB. There,
the safety engineers obtain the traditional graphical tree they are used to, such that

141

6 Model-Driven Support of Functional Safety Evaluation

5N METAGEN GRAPHICAL USER INTERFACE - [metafta[1]]
[

(@)
g -
& ~

File Edit Views Options Help
VU EdJde BE O
(Tree View :

¥ metafta (Example) B
» QuantitativeAnalysis (MCUAnalysis)

Attributes | Meta Info |

Attributes of "Internt |

¥ FTA (ExampleFTA)
¥ Tree (ExampleFTATree) ID: ‘ IE-002

TopEvent (Self-steering)
IntermediateEvent (GateDrive_Wrong) Name: ‘ PWM_Wrong

I
IntermediateEvent (SENT_Wrong) Description: | Wrong PWM
IntermediateEvent (TorqueSensorSup... .
IntermediateEvent (RotorPosition_Wro... Probability : ‘
IntermediateEvent (AngleSensorsuppl... Index - ‘ 1
IntermediateEvent (MicrocontrollerSu... || .
PrimaryEvent (monitering_error) TopEventRef : ‘ Select TopEvent Ref
PrimaryEvent (unintended_two_FETs _f...
PrimaryEvent (wrong_current_amplific... IntermediateEventRef : ‘ Select IntermediateEvent Ref
PrimaryEvent (monitoring_error)
PrimaryEvent (wrong_computation) GateRef : ‘ Gate [ExampleFTATree / PWM_Wrong] : Internal ID =98
PrimaryEvent (clock_error)
PrimaryEvent (supply menitoring_error) PrimaryEventRef : ‘ Select PrimaryEvent Ref
PrimaryEvent (wrong_protocol) =
PrimaryEvent (protocol_timing_violati...] (4] ‘ DN

Figure 6.16: Snapshot of the Graphical User Interface in the FTA MetalLib

- <Gatelnputs>
<Gate>IEG-001</Gate>
<0ObjectType>Primary event</0ObjectType>
<SubIndex=1</Sublndex=>
<0Objectindex>3</0bjectIndex>
</Gatelnputs>

- <PrimaryEvents>
<Id>PE-003</Id>
<DependentGates>IEG-001</DependentGates>
<Description>wrong current amplification in ThreePhaseDriverIC</Description>
<EventType>Basic</EventType>

</PrimaryEvents>

Figure 6.17: Simplified Extract of Generated XML File in Compliance with the XML
Schema of Isograph’s Reliability Workbench

they can review the generation outcome and potentially refine or extend it. The major
benefit of applying the FTA Metalib is that the safety engineering team does not
start from scratch when it comes to FTA. It is no longer necessary to construct the
whole graphical fault tree manually because most of it is systematically generated.
The prerequisite however is to provide the according system architecture along with
its abstracted failure behavior in accordance to the MetaFPA methodology.

142

6.4 SaVer: Safety Verification Framework

6.4 SaVer: Safety Verification Framework

SaVer is a heterogeneous safety verification framework developed at Infineon in the
context of the EffektiV project [136] to establish a link between safety analysis on
the one hand and fault injection and simulation on the other hand [137, 14, 138]. As
already mentioned in 6.1.1, one of the major objectives of the model-driven support
of functional safety evaluation is to use data equivalences and/or correspondences
between the supported safety analyses (FMEDA, FTA, and DFA) and the supported
fault injection and simulation techniques, e.g., simulation-based system alteration
at virtual prototype level, to correspondingly enable data mapping and/or transfor-
mation. The importance of linking analysis and simulation in the functional safety
evaluation context is summarized in two major aspects. First, by conveniently using
safety analysis outcomes as guidance for fault injection and simulation, the efficiency
is enhanced by reducing the fault space and the related injection scenarios. Second,
the results of the fault injection campaigns and the associated simulation runs provide
accurate information about the safety integrity level of the system, e.g., percentage of
safe faults and diagnostic coverage values, which can be used to verify the consistency
of safety analysis outcomes.

The development of the SaVer framework starts by investigating correspondences
and/or equivalences between analysis and simulation with respect to the involved
data artefacts. For this, the elements used to perform safety evaluation from the two
perspectives are compiled, examined, and compared. On the one hand, during safety
analysis, system parts, failure modes that may occur and the failure effects they may
lead to, potential undesired events, and safety measures are among the most relevant
data elements. On the other hand, fault injection and simulation consider sensitivity
zones, related injection points, observation points, diagnostic points, etc.

The investigation shows that independently from the evaluation perspective and
from the underlying methodology, data elements can be allocated to on the following
three Safety Evaluation Basic Element Groups:

e Targets: System elements or functions that must be protected to ensure the
safe operation of the system.

e Threats: Malfunctions, discrepancies, and failures against which the targets
must be protected (these are basically all risks that may affect the targets)

e Counter-measures: Mechanisms and measures used to protect the targets
and mitigate the threats (actions that must be undertaken as response to the
threats).

In Figure 6.18, the basic element groups of safety evaluation are illustrated. Ex-
emplary allocations of common elements are also shown in the figure. For instance,

143

6 Model-Driven Support of Functional Safety Evaluation

system elements or functions
that must be protected to ensurethe
safe operation of the system

i
Failure I Safety Evaluation
modes

i Basic Element Groups
Failure ™ | L
effects I

|
|
|
|
|
| CUndesired events > L..ii | Targets ©
|
I
|
|

ON
|

Safety measures [_
|

probabilistic safety analysis

malfunctions, discrepancies,
And failures against which
the targets must be protected

1
|
I
|
|
|
I
I
|
|
I
1
I
4
YYVY

Threats

sensitivity zones

1
I H
2l . °0
oints
P : Counter-
|
|

mechanisms and measures
used to protect the targets
and mitigate the threats

L fault injection and simulation

measures

Figure 6.18: Safety Evaluation Basic Element Groups

system parts and sensitivity zones are potential targets. Furthermore, threats include
failure modes, failure effects, and undesired events on the analysis side and they are
related to injection points and observation points on the fault injection and simula-
tion side. It should be noted here that terms like “fault”, “error”, “failure” could
have been used as elements in the fault injection domain and correspondingly classi-
fied as threats. However, it is more convenient to consider the concrete elements in
the executable system where faults, errors, and failures are implicitly embodied: for
example (i) a signal where a fault might be inserted is an injection point and (ii) an
output port where the resulting error (or failure in the case of a system output) can be
monitored is an observation point. Finally, safety measures are counter-measures on
the analysis level. Corresponding diagnostic points, such as signals for the detection
of value discrepancies or extra blocks for error correction, are the respective reflection
of counter-measures in the fault injection and simulation context.

6.4.1 General Setting

The general overview of the SaVer framework is illustrated in Figure 6.19 [14]. The
key added value of the SaVer framework is the established link between the safety
analysis platform and the fault simulation platform. In fact, the FMEDA and FTA
MetaLibs described in Subsection 6.3 are integrated along with the DFA MetaLib (see
Subsection 5.3.3.2) into the comprehensive SaVer framework. Thereby, data models
are built as instances of the corresponding metamodels to substitute the traditionally

144

6.4 SaVer: Safety Verification Framework

used analysis formats (FMEDA spreadsheets, FTA trees, and DFA tables). Such data
models enable the transition between the analysis context on the one hand and the
simulation context on the other hand.

Design Safety Analysis Fault Simulation Platform

ificati DFA
Specification N~ Platform FA Metamodel

confirm to FTA Metamodel
- ~ el | v wvmmm—— .| Fault Automated
; Library fault injection
Area Information |~
Generation of concrete
faults to be injected

\

=
=}
=
Q
&
£ 5
B 8
R —— = 2
© g -
3 2z =>\ Nominal
Safety Requirements | 8 g A —T>\ System
S : —+>\ Model
- £ DFA Model
< FTA Model ;
Mappin
. FMEDA Model pping
Failure Modes Analysis: Calculations:
Database =Failure Modes =Failure Rates back-
(Failure Catalogue + *Failure Effects '?ag"‘mic < annotate Measured Diagnostic run
bt =Diagnostic overage Coverage Values
gelizbiityData) Mechanisms Metrics g simulations

Figure 6.19: Overview of the Safety Verification Framework SaVer [14]

It should be noted that the SaVer framework is developed as an alternative to the
traditional environment used in the semiconductor industry to perform functional
safety evaluation. Therefore, the conventional inputs of the safety analysis remain
unchanged in comparison to the traditional flow. These inputs consist mainly in
the design specification, area information, application-dependent safety requirements,
and failure modes database combining the information of the failure catalogue and
other reliability data derived from different standards, norms, and handbooks. The
main difference to the traditional flow is that the traditionally applied manual data
entry is replaced by automated data extraction using the parsers and readers con-
tained in the respective safety analysis MetalLibs (see Section 6.3).

The resulting safety analysis data models, which are subsequently constructed in
syntactical and semantical accordance with the FMEDA, FTA, and DFA metamod-
els, cover the different analysis artefacts, such as the failure modes and effects, the
dependent failures, the hazardous events, the failure rates, and diagnostic coverage
metrics. Furthermore, they ensure the link to the simulation context. Indeed, model-
to-model mapping mechanisms are applied to associate specific elements of the safety
analysis data models to the corresponding system elements contained in the nominal
model to be simulated. In Subsection 6.4.3, the mapping procedure is detailed. The
resulting outcome enables the generation of a fault library, which is basically a list of
all the faults to be inserted into the system model [14].

Another central capability of the SaVer framework is the comparison between fault
simulation results and safety analysis outcomes. This comparison, illustrated in Fig-
ure 6.19 through the feedback loop labeled “back-annotate”, allows a consistency

145

6 Model-Driven Support of Functional Safety Evaluation

check of the expert judgment on which the analysis is based. For instance, a special
plugin implements the back-annotation of the measured diagnostic coverage values
throughout the simulation runs into the FMEDA data model. If a mismatch is de-
tected, then the assumptions made during the analysis shall be reviewed and poten-
tially corrected. Appropriate refinements in the system architecture and/or in the
associated safety concept must be undertaken when the target safety integrity level
is not reached according to the simulation measurements [14].

In summary, the SaVer framework combines the safety analysis Metal.ibs developed
in the context of this thesis to support model-driven support of FMEDA, FTA, and
DFA (Section 6.3 and Subsection 5.3.3.2) with the fault simulation platform developed
in the context of the EffektiV project [139, 140, 141, 142]. It should be noted that
the FMEDA, FTA, and DFA MetaLibs can also be used standalone as already shown
in Section 6.3 and in Subsection 5.3.3.2). However, their integration into the SaVer
framework makes them more beneficial in the overall safety evaluation flow with
respect to the (i) seamless data mapping of safety data models to executable system
models, (ii) the increased efficiency of fault injection and simulation through the
analysis-directed generation of the fault library, and (iii) the consistency checking of
the analysis results through the feedback loop from the simulation.

The SaVer framework is implemented in Metagen (see Subsection 6.1.2) and con-
tains subsequently a Qt GUI supporting basic data entry and visualization features
(see Figure 6.20).

‘!ﬂ METAGEN GRAPHICAL USER INTERFACE - [saver[1]] - ox
[File Edit Views Options Help BEE
20 EaJde 0EO
TreeView ———— —
¥ | Saver (CUNDEF>) Attributes | FailureEffect | IntemalDiagnosticSolution | ExternalDiagnosticSolution | HECalculation | €[]
¥ FMEDA (<UNDEF>) Attributes of "Fail Nod

Team (<UNDEF>)
UseCasesOverview (<UNDEF>) Name: v ‘ DefaL &
ICData (<UNDEF>)
Arealnformation (<UNDEF>) Description: | —- - ‘ DefaL $ | -

¥ Structure (<UNDEF=>) -
¥ Block (<UNDEF>) Type: | Click to Select =

| ./ FailureMode (<UNDEF=>) o —

FailureEffect (<UNDEF=>) Distribution : | 0.0 v ‘ Dec 5|00
InternalDiagnosticSolution (<UNDEF=>) o -
e TR RE e Origin: | IFX-FC v| |Defa 3| IFxFC
Diagpostlcs (<UNDEF>) Reason: | — v ‘ DefaL 3 | -
MetricCalculation (<UNDEF>)
¥ Architecture (<UNDEF>) RelevanceToLatentAnalysis: | False - ‘ False

¥ Module (<UNDEF>)

¥ SubModule (<UNDEF>) Classification: | Click to Select H
Member (<UNDEF>)
Console Log 4 Metagen Log

Figure 6.20: Basic Qt Graphical User Interface for the SaVer Framework

Nevertheless, the application of the SaVer framework in a productive context ne-

146

6.4 SaVer: Safety Verification Framework

cessitates an enhanced user interface. Therefore, an extensive graphical user interface
is developed within the Eclipse Modeling Framework (EMF) to offer a user-friendly
cockpit for heterogeneous safety evaluation processes combining analyses and simu-
lations. The technical details and features of the SaVer GUI are given in the next
Subsection 6.4.2.

6.4.2 SaVer GUI

Eclipse is the most widely used Java IDE (Integrated Development Environment)
in computer programming. The basic Eclipse workspace is enhanced through an
advanced plug-in system which can be extended to customize the development envi-
ronment and subsequently enable the creation of diversified applications.

Among the popular Eclipse development platforms, EMF is a modeling frame-
work with code generation facilities. Complying with the model-driven development
concepts introduced in Section 4.2.1, EMF enables developers to build tools and
applications with reduced efforts by considering structured data models [143].

In this work, EMF and particularly EMF Forms (an Eclipse facility to develop
form /layout-based user interfaces [144]), are applied to create a graphical user inter-

face for the safety verification framework SaVer. In Figure 6.21, a snapshot of the
Eclipse SaVer GUI is shown.

The most important features supported by the Eclipse SaVer GUI are the following:

e Undo/redo, copy/paste, and search features: The user is able to modify and
explore data within the SaVer framework in a more sophisticated way than
with the basic Qt GUI generated by Metagen.

e Dynamic data responsiveness: Changing a value leads to the update of all
dependent elements in the data model. In other words, the user interface is able
to invoke plug-ins and tools running on the background to immediately perform
real-time computations when required and accordingly update the data model.

o Plausibility checks: 1f the user input violates data consistency, an error message
is issued.

e Customized formatting: Using EMF forms, the layout of the GUI is refined and
enhanced based on the requests of the safety engineering team.

e Import and export buttons: The user interface features dedicated buttons to
invoke the responsible tools for data import and/or export to other components
of the safety evaluation environment such as Excel Spreadsheets for FMEDA
and Isograph’s Reliability Workbench™ for FTA.

147

6 Model-Driven Support of Functional Safety Evaluation

File Edit Mavigate Search Project SaVerEditor ClearCase Run File Window Help
D-HE SHEESGXIECBF ySIMQ-F- LG m oD
Quick Access | [| ([Resouree)

P 22 = B |® *modelSaversvr i3 | @ = 8
= = .
? = -] SaVer Editor o
1+ = saverexam
4 % SaVer _ G 1 Inf. ti A"
#y Architecture
4 % FMEDA MName* BlockExample
4 % ICDats Description Description
<4 SE Base Fai
4 % Structure Domain Domain
Block Bl
»» % Block Bloc Type Type
HE Raw FIT Rate™ 0
SE Raw FIT Rate® 0
Functions ES
Function 3
Validation .. Name Description =
DummyFuncticn
«[m |
0z = 8
An outline is not
available.

FailureModes

Failure Mode

Validation .. MName Descr.. Type D.. Origin Reason Relev.. Classi..

F— FML HE 0 false Safe
R T r e P P Z
&= Tasks &2 ¥ = 8
0 items
= H Description Resource Path Location Type
< | 1l | r

Figure 6.21: Snapshot of the Eclipse Graphical User Interface for the SaVer Frame-
work

6.4.3 Mapping between Safety Analysis and Fault Injection
The integration of the FMEDA, FTA, and DFA MetaLibs in the comprehensive SaVer

framework is the first step in the transition from safety analysis to fault injection.
The accordingly constructed safety analysis data models as a substitution for huge

148

6.4 SaVer: Safety Verification Framework

amounts of tabularly and/or graphically organized data do not only simplify explo-
ration, maintenance, and reuse. They are also the starting point of the second step
of the transition, namely the mapping towards fault injection and simulation [14].

On the one hand, the safety analysis data models considered in the SaVer frame-
work consist in sets of associated objects which are handled using a common object-
oriented programming language such as Python or C+4. On the other hand, the
nominal system models, which are used as targets for fault injection, are executable
models that are generally developed in SystemC, SystemVerilog, VHDL, etc. They
can subsequently be considered also as sets of associated objects. Therefore, the
transition from the analysis context to the simulation context is established through
the application of model-driven techniques and systematic matching algorithms to
identify appropriate mapping points [14]. The details of the mapping flow are given
in the next subsection 6.4.3.1.

6.4.3.1 Mapping Flow

The data mapping procedure which links safety analysis to fault injection and sim-
ulation in the context of the SaVer framework is based on the following four major
tasks [14]:

1. Capture system model: Fault injection and simulation are performed on nom-
inal system models with variable levels of complexity and abstraction. Indeed,
the system architecture can be considered either at the concept or at the imple-
mentation level. TLM (Transaction Level Modeling) and RTL (Register Transfer
Level) are among the considered abstraction layers for fault injection and simu-
lation in the EffektiV project [136]. SystemVerilog, VHDL, and SystemC are the
most relevant modeling languages in the semiconductor industry, so that they are
taken into account for data mapping in the SaVer framework. In the context of
Infineon’s activities within the EffektiV project, SystemC is used as the default
modeling language for virtual prototypes. The motivation for applying SystemC
is that it has been extensively addressed in the literature for fault injection, error
simulation, and dependability evaluation purposes (e.g., [145, 146, 141, 147]).

Despite the significant diversity in abstraction layers and modeling languages, the
basic system structure remains the same. In fact, the overall system structure
can be depicted in a simplified way as a set of interconnected elements forming
an architectural hierarchy, independently from all syntactical and semantic dif-
ferences caused by detail levels and modeling language specificities. Relying on
these perceptions, an abstract metamodel is created to depict the general sys-
tem architecture. The simplified version shown in Figure 6.22, focuses on virtual
prototyping using SystemC. Therefore, the architecture is decomposed in a set of

149

6 Model-Driven Support of Functional Safety Evaluation

Architecture

Name : string [1]
Description : string [0..1] = ---

Type : ArchitectureType [0..1]
Level : AbstractionLevel [0..1]
Language : ModelingLanguage [0..1]

<<enum>>
ElementType

sc_module : ElementType
sc_in : ElementType

sc_out : ElementType

Module

Member [

Element

.7

SubModule

Name : string [1]
I—{) Type : ElementType [0..1]

<<enum>>
AbstractionLevel

Path : string [0..1]

RTL : AbstractionLevel
TLM : AbstractionLevel
... . AbstractionLevel

<<enum>>
ArchitectureType

Conceptual : ArchitectureType
Implementation : ArchitectureType

sc_inout : ElementType
sc_signal : ElementType
... : ElementType

<<enum>>
ModelingLanguage

VHDL : ModelingLanguage
Verilog : ModelingLanguage
SystemC : ModelingLanguage
... - ModelingLanguage

Figure 6.22: Simplified Metamodel of System Architecture

Modules that can be further on decomposed in SubModules. Each (sub)module
has a number of Members (e.g., input and output ports, signals). Capturing the
system model is performed by parsers which read the system code and extract the
required information to build a data model which syntactically confirms to the
architecture metamodel in Figure 6.22.

2. Map analysis artefacts to the system model: During this step, all artefacts
identified in the context of the safety analysis procedures (e.g., safety-relevant
system parts, failure modes and effects, undesired events, safety measures) are
mapped to the appropriate elements of the executable system model. The asso-
ciation between objects of FMEDA /FTA /DFA data models on the one hand and
objects of system architecture models created as instances of the metamodel in
Figure 6.22) on the other hand is ensured through dedicated references. Table 6.1
gives an overview of the correspondences between safety analysis artefacts and
system model elements in accordance with the Safety Evaluation Basic Element
Groups introduced in Subsection 6.4.1 and illustrated in Figure 6.18.

So-called matching algorithms are used to technically enable the data mapping.
The application of these algorithms leads to the identification of all potential
mapping candidates, i.e., system model elements that may be assigned to a given
safety analysis artefact. The matching algorithms are addressed in more details in
Subsection 6.4.3.2.

3. Configure fault injection: After the accomplishment of the mapping between
analysis artefacts and system model elements, additional details required for the
fault injection are captured. The information that can be derived from the safety
analysis for the purpose of the fault injection consists only in (i) locations for

150

6.4 SaVer: Safety Verification Framework

Safety Analysis Fault Injection
Taraets Parts, Functions (FMEDA), Modules, Submodules, Entities,
g Vulnerable elements (DFA) Components. ..

E:”:;ZQ??;SSE\:FDDF':‘))’ Injection points (signals, ports,
P ' variables, sockets, processes...)

Failure Effects (FMEDA, DFA), Observation points (signals,

Events (FTA) ports...)
Diagnostic and correction

Counter- Safety measures (FMEDA, pointsg(modules submodules

measures DFA) signalsy) '

Table 6.1: Mapping Between Safety Analysis Artefacts and Relevant System Elements

for Fault Injection and Simulation

fault insertion, (ii) locations for fault-effect observation, and (iii) locations for
safety-measure monitoring during simulation. Nevertheless, inserting faults into
the executable model in a simulation-based way necessitates more input. There-
fore, this configuration step allows to specify exact values to be forced into the
system model, precise bit positions in signals to be modified, and accurate start
and stop times of the injection. The configuration can be given by the user through
the SaVer GUI or derived from an operational profile of the system, i.e., from a
quantitative characterization of the way a system is used [148].

. Generate fault library: The transition from safety analysis to fault injection
and simulation is finalized by the generation of the fault library. In this last step,
the concrete faults to be inserted into the system are compiled into a single file.
Template-based generation techniques are applied on top of the safety analysis
data model which has been accordingly extended with all information gathered
during the mapping and configuration steps. Within the fault simulation platform
included in the SaVer framework, a post-processing tool takes the generated textual
file as inputs and subsequently invokes the responsible tools which initiate the
automated fault injection.

6.4.3.2 Matching Algorithms

In the context of the SaVer framework, matching algorithms are applied to systemat-
ically identify relevant mapping candidates. The candidates in question are elements
of the considered executable system models for fault injection. Their equivalence or
at least correspondence to specific elements of the safety analysis data models make
them particularly suitable to perform fault injection and simulation.

151

6 Model-Driven Support of Functional Safety Evaluation

Two alternatives are considered in SaVer to ensure data matching (see Figure 6.23):

e ID-based matching: When the consistency between the structure used for

safety analysis and the one used for system modeling and simulation is guaran-
teed, then ID-based matching can be used for the identification of the mapping
candidates. The consistency between safety analysis models and corresponding
system models is given, only when IDs of safety artefacts are available prior
to the system modeling. In this case, the IDs which are assigned to system
elements shall be derived from the IDs of the associated safety artefacts. For
example, when the designer gets the information from the safety concept that
an ECC (error code correction) safety mechanism with ID “SM_ECC_Part_a”
shall be implemented in “Part_a”, he or she shall assign an ID containing
“SM_ECC_Part_a” to the related diagnostic signals in the system implementa-
tion. Such full consistency based on IDs would be the ideal scenario for the
data mapping. However, in practice, lack of communication between different
development groups, delays in deliveries, and different identification styles for
objects and artefacts make such ID-based matching capabilities rather limited.
That is why, a more flexible matching approach is used.

1. Detect potential mapping candidates: systematic exploration of the data models (2 alternatives)

—

Safety analysis model ¢ g FMEDA data model e.g,, SystemC model Nominal System Model

1 ID-based data matching
(condition: full model consistency)

Object in system

Object in safety model

analysis model

[———— Name-based data matching

occur’

Description: ------------ [expressive
| segments |

2. Select the most suitable from the mapping candidates: GUI assisted manual step

152

Figure 6.23: General Mapping Approach

e Name-based matching: If no ID consistency is ensured, specific attributes of

the objects contained in safety analysis data models (e.g., Name, Description)
are preprocessed to identify so-called “expressive segments” before launching
the matching algorithm. Expressive segments are all parts of the considered
string attributes which are not articles, prepositions, or commonly used words
in the naming of failure modes such as wrong, corrupt, incorrect, etc. This list
of expressive segments represents then the basis for data matching. In fact, the
list items are queried in the considered system model. More precisely, if one or
more expressive segments are found in the name or description attribute of a

6.4 SaVer: Safety Verification Framework

specific object in the system model, then it gets marked as a potential candidate
for the mapping.

It should be noted that the mapping procedure is semi-automated. First, the
matching algorithms may return multiple mapping candidates. In that case, the
user must select the most appropriate candidate for the fault injection. Second,
the matching algorithms may terminate without detecting any potential candidate.
In such a scenario, the user is asked to manually define a relevant mapping point.
The name-based data matching approach described above and as illustrated in Fig-
ure 6.23, which is applied to systematically identify relevant mapping candidates, is
summarized in Algorithm 3.

Algorithm 3 Data Matching Flow for Safety Evaluation Purposes
1: function FINDMAPPINGCANDIDATES(V,)
2 T is an empty dictionary
3 for each relevant object 0y € ¥ do
4 add Oy as a key of the dictionary T
5: assign an initially empty list vy, as the associated value with Ay in T
6
7
8
9

Oy, < list of expressive segments in 6y ’s Name and Description attributes
for each relevant object 0 € €2 do
for each expressive segment x in ®y, do
if k occurs in 0g’s Name or Description attributes then

10: Vg, < Vgy U {GQ}
11: end if

12: end for

13: end for

14: end for

15: return T

16: end function

The FINDMAPPINGCANDIDATES function, which is presented in Algorithm 3, has
two inputs, namely the safety analysis model ¥ and the system model 2. Both inputs
are sets of associated objects characterized each by a set of attributes. Data objects
of the safety analysis model which are relevant for the data matching algorithm are
referred to as fy. These include failure modes, failure effects, safety mechanisms, etc.
Corresponding data objects in the system model, which are considered as potential
mapping candidates (e.g., modules, signals, ports, etc.,), are denoted as 6g. The
output of the function is a data structure, which is a Python dictionary T in the
actual implementation. This dictionary links all relevant objects of the safety model
to the lists of respectively found objects of the system model as potential mapping
candidates. The user can then explore the data matching results to select the most
suitable candidate in each case.

153

{ Application

This chapter presents the case studies that have been conducted in the context of
this thesis. Through these case studies, the developed approaches are evaluated
with respect to their usability and practicability in the industrial safety lifecycle.
Indeed, the studies demonstrate the application of (i) the formalization methodologies
adopted for functional safety analysis techniques, (ii) the associated frameworks for
model-based automation support, and (iii) the systematic linking between analysis
and simulation for safety evaluation purposes.

7.1 Overview

Throughout this thesis, functional safety evaluation has been addressed from three
major perspectives. First, the traditional safety analysis techniques, mainly FMEDA,
FTA, and DFA, have been extensively studied and correspondingly formalized using
the metamodeling concept. Second, based on the created safety analysis metamod-
els, corresponding model-driven frameworks and platforms have been developed to
enhance automation, efficiency, reuse in the context of safety analysis. Finally, a
seamless linking has been established between safety analysis on the one hand and
fault injection and simulation on the other hand through dedicated model-to-model
mapping tools and data matching algorithms.

The overall requirements which are satisfied by the developed methodologies and
tools throughout this thesis have been listed in Section 4.1. They are related to
five main aspects: (i) structure and formalism with respect to the descriptions of
safety analysis techniques (Subsection 4.1.1), (ii) flexibility and extendability of such
descriptions (Subsection 4.1.2), (iii) automation support through accordingly devel-
oped frameworks and tools (Subsection 4.1.3), (iv) interoperability and data exchange
(Subsection 4.1.4), and (v) enhanced usability of the complete flow through conve-
nient user interfaces (Subsection 4.1.5).

To achieve the defined objectives of the thesis, multiple solution concepts have
been applied, mainly (i) model-driven development (Subsection 4.2.1) and its related
techniques metamodeling and code generation (Subsection 4.2.2), (ii) the metasyn-
thesis methodology addressing synthesis of generation tools (Subsection 4.2.3), and

155

7 Application

(iii) data transformation and mapping methods (Subsection 4.2.4).

Semiconductor and system manufacturing, particularly for automotive products,
is the primary domain of application for the developed methodologies and tools in
the context of this thesis. Therefore, the IEC 61508 and most importantly the ISO
26262 standard (especially Parts 4, 5, and 6) have been taken into account from the
conception to the application of all solutions in this thesis. The guidelines of safety
evaluation and the several steps of the safety lifecycle have been considered to allow
an easy integration of the developed solutions in the comprehensive safety evaluation
environment used within the industry.

To demonstrate the results of the thesis, two application examples are given in this
chapter. They are organized as follows.

First, in Section 7.2, the fault tree synthesis described in Subsection 6.3.2.3 is
illustrated through the fault tree generation of an Electric Power Steering (EPS)
subsystem. The fault tree synthesis application is based on the failure propagation
models created in MetaFPA (see Sections 5.2 and 6.2) and the data model transfor-
mation concept described in Subsection 6.3.2.2 to establish the transition between
MetaFPA and the FTA MetaLib (see Subsection 6.3.2.1).

Then, in Section 7.3, the major capability of the SaVer framework (see Section 6.4)
consisting in linking safety analysis outcomes with fault injection campaigns and fault
simulation results is exemplified through the mapping of an FMEDA conducted for
a CPU model to the fault injection and simulation performed on the corresponding
SystemC virtual prototype.

7.2 Fault Tree Synthesis at System Level

The MetaFPA (Metamodeling-based Failure Propagation Analysis) methodology (see
Section 5.2) has been developed in the context of this thesis to enhance the Failure
Logic Modeling (FLM) theory (see Subsection 3.1.2) with a dynamic failure descrip-
tion and to make it more compatible with conventional simulation concepts. The
correspondingly developed MetaFPA framework (Subsection 6.2) has several features
with respect to the visualization and handling of failure propagation models and offers
high levels of automation and reuse in comparison to other FLM platforms previously
created in the context of related academic works.

In addition to the MetaFPA methodology, traditional safety analysis techniques
have been addressed from a formalization perspective to subsequently enable model-
driven automation support. Among those techniques, Fault Tree Analysis (FTA),
which is an ISO 26262-recommended deductive (top-down) analysis method, relies
on backward stepping from top-events to primary events and Boolean logic gates

156

7.2 Fault 'Tree Synthesis at System Level

to describe the failure behavior and document it in a tree structure (more details
in Subsection 5.3.2.1). The FTA flow and the underlying structuring fundamentals
for FTA data are formalized in the FTA metamodel (see Subsection 5.3.2.2) and
supported by the associated FTA MetaLib (see Subsection 6.3.2) created in Infineon’s
Metagen environment (see Subsection 6.1.2).

One of the most relevant features implemented in this thesis with respect to the ISO
26262 safety evaluation flow is the transition between the MetaFPA framework and
the FTA MetaLib. The associated model-to-model transformation tool implements
the fault tree synthesis algorithm (Subsection 6.3.2.3) whose application is illustrated
in this Section through the following case study addressing an EPS subsystem.

7.2.1 Case Study: Electric Power Steering

Similarly to braking, steering is an ASIL-D automotive application. Related failures
may lead to out-of-control vehicles and potentially cause critical accidents. Hence,
satisfying safety requirements of steering systems is a major task for automotive
manufacturers, as well as for their suppliers. Therefore, an Electric Power Steering
subsystem composed of Infineon components is addressed as an application example
for the fault tree synthesis. After a general introduction of EPS systems in Sub-
section 7.2.1.1 and a brief literature review of EPS failures in Subsection 7.2.1.2,
the structure of the EPS subsystem which is concretely used for the case study is
presented in Subsection 7.2.1.3.

7.2.1.1 Introduction: Electric Power Steering (EPS) Systems

There are two major reasons behind the establishment of power steering in the auto-
motive industry: (i) the increasing front axle loads and (ii) the raising need for higher
agility and flexibility of the steering properties [149]. Hence, the trend towards direct
transmission steering systems has been progressively confirmed [150, 149].

The basic functionality of power steering systems consists of (i) measuring the
steering torque applied by the driver by a dedicated mechanism in the input shaft
region of the steering gear or in the steering tube and (ii) accordingly introducing
additional forces or moments into the system in order to reduce the steering boost
and subsequently achieve a better road contact at high speeds [149].

The traditionally used power steering systems are hydraulic. They rely on using
oil under pressure to boost the servo [149].

In this case study, a more recent type of power steering systems is addressed,
namely EPS (Electric Power Steering) [150] which has become particularly popular

157

7 Application

in comparison to traditional hydraulic steering systems due to its improved power
efficiency. Being only active during the actual steering process, EPS systems consume
between 0.3 and 0.5 liter less fuel per 100 km which makes them more economical and
environmentally-friendly [151]. In addition to this improved fuel efficiency estimated
to reach up to 3%, EPS offers a compact design due to less space requirements and
leads subsequently to reduced mounting costs [17].

Currently used EPS systems are designed to capture the driver’s steering requests
and accordingly provide steering assistance by generating a part of the steering force
through an electric motor whose torque is transmitted to the steering column or
gear. This force superposition mechanism reduces the steering efforts of the driver,
offers higher steering quality, and subsequently enhances the functional safety and
has a positive effect on the overall driving experience and comfort [151, 17]. EPS has
become an almost standard feature in modern cars, as it is the steering technology
on which several advanced driver assistance systems such as (i) lane assist/keeping,
(ii) side-wind compensation, and (ii) parking assistance systems are based [17].

Steering Torque . .
Sensing @ Steering Angle Sensing

TLE499x - Linear Hall TLE5014/TLE5012B - Angle Sensor
Sensor Series TLE5009 - Angle Sensor

*. EPS Motor =

?; Position Sensing
\ J TLE5x09D - Dual-Sensor Angle
x TLE5012BD - Dual-Sensor Angle

E] Linear Hall Angle Sensors Steering Torque @ BLDC Motor

Figure 7.1: Application of Infineon Magnetic Position Sensors in EPS Systems [15]

In Figure 7.1, the basic functionality of EPS systems is illustrated in a simplified
way. In addition to the electric motor which is used for the generation of a part of
the steering torque, the EPS system relies on multiple position sensors measuring (i)
the input steering torque applied by the driver, (ii) the position of the EPS motor
moving the steering rack, and (iii) the absolute position of the steering wheel [15].

158

7.2 Fault 'Tree Synthesis at System Level

7.2.1.2 EPS Failure Analysis: Literature Review

During the last decades, several mechanical actuators traditionally used in the au-
tomotive industry have been progressively replaced by electric drives to increase the
efficiency and enhance the dynamic performance [152]. Nowadays, it has become
common to have electrically assisted braking and steering in mass-production vehi-
cles. It is obvious that failures of such key functionalities have a direct impact on
passenger safety. In fact, an electrical incident affecting a traction motor and more
generically any fault in an electric drive used for propulsion in the vehicle may lead
to an uncontrolled output torque and subsequently have an adverse effect on the ve-
hicle stability. Therefore, it is considered as a critical threat for the overall functional
safety [153, 152, 16].

In [153], a general investigation of failures occurring in traction systems within
modern vehicles, where electric motors produce the complete or at least a part of
the propulsion power, shows that the major cause for motor drive failures consists in
inverter faults. Actually, such malfunctions may lead to an asymmetrical distribution
of the traction force. This asymmetry is highly hazardous as it may lead to a high yaw-
torque making the driver unable to control the vehicle [153]. Another severe failure
scenario originating from electric drive malfunctions is the so-called wheel-locking
issue consisting either in (i) the lockup of the rear tires causing the loss of directional
stability or (ii) the lockup of the front tires leading to steering instability [153].

In [153], the authors propose the following categorization of motor drive faults:

e Mechanical malfunctions such as phase disconnections and magnet break-
downs [153].

e Electrical malfunctions including mainly short and open circuits occurring
in the 3-phase inverter bridges and which are commonly caused either by (i)
over-temperature, (ii) over-voltage, or (iii) over-current [153].

e Control malfunctions such as sensor defects and software deficiencies [153]

In [16], the focus of the investigation is on the potential failure modes of EPS
systems with Permanent Magnet Synchronous Motors (PMSM). Beyond the analysis
of local faults occurring in the different components contained in EPS systems such
as in [154, 155, 156], the study documented in [16] addresses in particular the system-
level failure behaviors of the EPS.

In [16], the failure modes investigation is based on a simplified block diagram of
the EPS system, including:

e a sensing mechanism to get the steering input and subsequently forward the
position current and the torque

159

7 Application

e an electric controller
e an inverter stage

e a Permanent Magnet Synchronous Motor (PMSM)

The failure causes identified using this basic structure of the EPS system are clas-
sified as follows [16]:

e Malfunctions of the motor position sensor: Using an encoder with a cer-
tain number of pulses per revolution (PPR), the motor position and speed are
commonly estimated through a pulse counting mechanism implemented by a
motor position sensor in the EPS system [153]. Among the possible failure
modes of such a sensor, the delivered number of counted pulses can be wrong.
The resulting motor position and speed values are subsequently incorrect and
may affect the consistency of the assistance torque which gets later on generated
by the EPS system. In [153], the authors mention so-called missing teeth and
additional teeth to depict the deviations from the normal behavior. In correla-
tion with the missed pulses or the erroneously counted pulses, the respectively
estimated position gets decreased or increased.

T
) L &HH} %}

\ a Permanent
/ Magnet

Synchronous
Motor

+0

'\
AY
J1

o

Cs

i

Figure 7.2: Potential Faults of a 3-Phase Voltage Source Inverter Used in an EPS
System [16]

e Malfunctions in the inverter stage: Based on an easy representation (see
Figure 7.2) of the Voltage Source Inverter (VSI) contained in the EPS system,
[153] identifies the following four faults which are also annotated on Figure 7.2:

— Short circuit at the DC link capacitor (F1)

160

7.2 Fault 'Tree Synthesis at System Level

— Open-switch (F2)
— Short-switch (F3)
— Open-gate (F4)

e Malfunctions of the PMSM: In [153], the addressed faulty configuration of
the PMSM is referred to as turn-to-turn short affecting the a-phase winding. A
turn-to-turn fault is commonly induced by mechanical contact which is either
the result of mechanical forces in the transformer or of a severe insulation deteri-
oration caused by excessive overloading [157]. To put it simply, the turn-to-turn
short fault of the PMSM leads to a faulty winding with a smaller number of
turns, and subsequently to severe deviations from the normal behavior of the
PMSM with a direct impact on the applied steering torque and consequently
on the stability of the vehicle.

7.2.1.3 Considered EPS Subsystem Structure

The system definition in the ISO 26262 terminology implies that it must contain at
least one sensor, one controller, and one actuator.

Therefore, the structure considered in this case study and which is depicted in
Figure 7.3 is an EPS subsystem as it does not contain any actuator. In fact, the
electric motor is not an Infineon product and that is why it is not considered in the
qualification process of the EPS subsystem regarding its compliance with the ISO
26262 standard. The EPS solution at Infineon relies on diverse sensor types and
on low-loss MOSFETs. It can be adapted via software such that it can be flexibly
deployed in different car models and used in diverse driving modes.

From a structural perspective, the EPS subsystem addressed in this case study
includes [17, 12]:

e a torque sensor (Linear Hall Sensor, e.g., TLE4498) to capture the driver steer-
ing torque and the front-wheels aligning torque,

e an angle sensor (a Giant Magnetoresistance GMR-based sensor, e.g.,
TLE5012B) to sense the rotor position,

e an MCU: Microcontroller Unit (e.g., Infineon’s AURIX™) to process the in-
formation acquired from the sensors such as Single Edge Nibble Transmission
(SENT) signals and to generate Power Width Modulation (PWM) signals for
motor operation,

e a supply device to feed the MCU and the sensors (e.g, the safety system power
supply TLF35584 containing a safety watchdog),

161

7 Application

+12V from battery

———————

|
Safety system

Electric
Power Steering
(EPS)

power supply
TLF35584

32-bit MCU

Multicore/
Lockstep
AURIX™

Steering
torque

Torque sensor
TLE4997
TLE4998
TLE4906

o)
SIL]

«an®

AUTCESSAR

CAN

) FlexRa
transceiver Y

TLE9250SJ
TLE9251VSJ

transceiver
TLE9221SX

3-phase
driver IC

TLE9180
TLE7183
TLE7185
TLE7189
AUIRS20302S

8x MOSFET
IPLU300N04S4-R8
AUIRFS8408-7P

Rotor position
iGMR sensor

TLE5009

TLE5012B

Rotor position / current sense

I FlexRay I HS-CAN
I 4 1

14 A} 14

'S

Figure 7.3: Electric Power Steering (EPS) Subsystem Diagram [17]

e a 3-phase Driver IC providing a gate-drive to level-shift PWM signals, and

e an inverter power stage featuring H-bridge arranged low-loss MOSFETS to pro-
vide phase signals to operate the motor.

7.2.2 Application Flow

The EPS subsystem structure described above is used as an example to apply the
developed methodology of algorithmically transforming failure propagation models
created in MetaFPA into fault trees. In this Subsection, the application flow is
illustrated. It consists of the following steps:

e building the compositional model of the EPS subsystem in MetaFPA (Subsec-
tion 7.2.2.1),

e creating the failure logic model of EPS in MetaFPA (Subsection 7.2.2.2), and
e correspondingly applying the fault tree synthesis algorithm (Subsection 7.2.2.3).

162

7.2 Fault 'Tree Synthesis at System Level

7.2.2.1 Structure Model of EPS in MetaFPA

The simplified subsystem structure shown in Figure 7.4 is constructed in compliance
with the system modeling part of the metamodel for failure propagation analysis (see
Subsection 5.2.3). In accordance with the system modeling aspects in MetaFPA (see
Subsection 5.2.3.1), the EPS model is created as a composition of blocks (supply
device, torque sensor, angle sensor, microcontroller unit (MCU), 3-phase driver IC,
and inverter power stage), featuring each a set of ports and interconnected through
a number of labeled connections. The simplified compositional structure of the EPS
subsystem is derived through abstraction from the block diagram of Infineon’s EPS
solution (see Figure 7.3).

battery_voltage

!

1

Supply Device

angle_sensor_supply 6 7 8

S
torque_sensor_supply
mcu_supply

11/ 15

—*2 Torque |SENT

—_—
9% 5l sensor | = 2
Microcontroller | pwm 3-phase gate_drive Inverter | motor_drive
UNIT 14 ' 16 Dri?/er Ic 17 > 19 Power 20—
(MCU) Stage
: Angle 10— 13
angle Sensor rotor_

position

Figure 7.4: Simplified EPS Subsystem Structure

7.2.2.2 Failure Logic Model of EPS in MetaFPA

On top of the compositional structure of the EPS subsystem, the failure behavior
is described in MetaFPA in compliance with the failure logic modeling part of the
metamodel for failure propagation analysis (see Subsection 5.2.3). In accordance with
the failure modeling aspects in MetaFPA (see Subsection 5.2.3.2), the block failures
of the EPS system components are specified. The interface deviations occurring
either at the input ports or at the output ports of each block, as well as the internal
malfunctions taking place inside the blocks are captured in the failure logic model.

In this case study, the two capabilities offered by the MetaFPA framework for speci-
fying block failures are demonstrated. First, manual entry through the MetaFPA GUI
(see Subsection 6.2.2) is used for the definition of internal malfunctions. Internal doc-
uments, such as the product architecture and the safety concept which were already
available for the EPS subsystem at the beginning of the case study, have been used as

163

7 Application

a source of information to identify all know internal malfunctions and consequently
enter them into the MetaFPA data model.

The MetaFPA framework has also the capability of systematically deriving a set
of generic block deviations based on the ports of the respective blocks. In the EPS
example, deviations like “wrong rotor position” on the microcontroller input and
“wrong PWM?” on its output are examples of such generic interface failures which are
automatically generated and added to the failure logic model.

Based on the defined single failures of the EPS blocks and the correspondingly
specified incompatibility references (see Subsection 5.2.3.2), valid failure combinations
are derived and subsequently used for the creation of the PropagationMapping and
TransformationMapping class instances.

7.2.2.3 Applying the Synthesis Algorithm

By applying the model-driven approach described in Subsection 6.3.2.3, an appropri-
ate fault tree is synthesized for the EPS subsystem.

In this case study, two potential safety goal violations of the EPS subsystem are
addressed. First, self-steering is taken into consideration. It depicts the case where
an unintended steering assistance is applied in contradiction with the driver requests.
Second, blocked-steering is considered. It corresponds to the lockup of the assistance
torque at a specific value.

As already described in Subsection 6.3.2.3, each safety goal violation is addressed
by a separate fault subtree which gets progressively constructed through Algorithm 2.

The synthesized subtree for the first safety goal violation oy = self-steering is
represented graphically in Figure 7.5.

o7 is the result of a single output deviation, namely 6 = “wrong motor drive” at the
inverter power stage (|A,,| = 1). The upper OR gate in Figure 7.5 corresponds to s
(see Algorithm 2) and is appended to the top-event of the complete EPS subsystem
fault tree [12].

0 = “wrong motor drive” is caused either by one of the internal malfunctions of
the inverter power stage or by the input deviation ¥ = “wrong gate drive”. For 9,
the CREATEBRANCH function is used to complete the fault subtree. The triangles
labeled TEG-003, IEG-007, and TEG-011 depict collapsed branches [12].

164

7.3 Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes

Self-steering
due to wrong
motor-drive

monitoring error in [
InverterPowerStage unintendeq two
FETs fLom different Wrong Wrong gate drive
phase in PowerStageSupply
InverterPowerStage on

‘ InverterPowerStage
NN
|

' ' | PE-017 | IEG-001 |

wrong current l ﬂ

amplification in e - Wron
i f¢] Gzl i Wrong PWM) 9
ThreePhaseDriverlC e Eh e e 9 MicrocontrollerSupply

N N A
[PEons | [EGo02 |

=

wrong clock error in supply Wrong SENT Wrong rotor
computation in Microcontroller monitoring error position
Microcontroller in Microcontroller
| PE-005 | | PE-006 | | PE-007 | | IEG-003 | | IEG-007 |

NN N O N SN

Figure 7.5: Synthesized Fault Subtree for EPS Self-Steering

7.3 Linking FMEDA to Fault Injection and Simulation
in Virtual Prototypes

The gap between safety analysis on the one hand and fault injection and simulation
on the other hand (see Subsection 1.4.1.3) is one of the key challenges that have been
addressed in this thesis. From a theoretical point of view, the adopted methodol-
ogy to overcome this issue consists in three major steps. First, formal metamodels
have been created to describe safety analysis artefacts and the relationships between

165

7 Application

them. Then, the correspondences and/or equivalences between analysis and simula-
tion with respect to the involved data elements have been investigated. Finally, the
data mapping patterns between the two contexts have been identified.

Among the tangible embodiments of this methodology, the FMEDA MetaLib (see
Subsection 6.3.1) and the SaVer Framework (see Section 6.4) have been implemented.

The most important benefits of the link between safety analysis and fault simulation
which is achieved by the FMEDA Metaliib and the SaVer Framework are:

e Enhanced efficiency of fault injection and simulation: Through convenient usage
of safety analysis outcomes as guidance for fault injection and simulation, the
size of the fault space as well as the number of the related injection scenarios
are reduced.

e Increased confidence in the safety analysis outcomes: The results of the fault
injection campaigns and the associated simulation runs provide accurate infor-
mation about the safety integrity level of the system (e.g., percentage of safe
faults and diagnostic coverage values) which can be used to verify the correct-
ness and consistency of the safety analysis outcomes.

7.3.1 Case Study: Microprocessor with MIPS Architecture

In this thesis, a microprocessor model with MIPS (Microprocessor without Inter-
locked Pipeline Stages) architecture is used as a test vehicle to evaluate the SaVer
framework with respect to its linking feature between FMEDA and fault injection.
The considered microprocessor model is called “NanoMIPS” because it supports a
reduced instruction set in comparison to commercial MIPS processors and because it
does not contain a floating point unit.

In this case study, both aspects of safety evaluation are considered: namely analysis
and simulation. On the one hand, FMEDA is the adopted technique to perform
a quantitative safety analysis of the microprocessor model. On the other hand, a
SystemC virtual prototype of NanoMIPS is used for fault injection and simulation.

The work flow of the case study is structured as follows:

1. Construction of the safety analysis model (FMEDA model) using the FMEDA
MetaLib (see Subsection 6.3.1).

2. Construction of the nominal system model on which the fault injection and
simulation will be performed. This step consists in building an abstract ar-
chitectural model of the NanoMIPS based on its SystemC implementation as
a virtual prototype. This system model contains modules, sub-modules, and
members.

166

7.3 Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes

3. Mapping of analysis artefacts, i.e., FMEDA data elements such as parts, failure
modes, and safety measures to system model elements such as (sub)-modules,
and members. This mapping step, which is supported by the SaVer framework,
is semi-automated. It relies on detecting potential candidates for mapping by
applying the implemented matching algorithms (see subsection 6.4.3).

4. Configuration of fault injection. This configuration step consists for example in
defining exact bit positions within signals where faults must be injected as well
as the accurate start and potentially stop times of the fault insertions. It is also
supported by the SaVer framework, more precisely through the SaVer GUI (see
Subsection 6.4.2).

5. Generation of the fault library for the NanoMIPS microprocessor. This gener-
ation step, supported by the SaVer framework, is template-based and delivers
a text file including all concrete faults to be introduced in the system and cor-
responding injection details (locations, timing parameters, etc).

6. Fault injection and simulation. In this case study, an in-house SystemC-based
fault simulation platform is applied [140, 141]. On this platform, the generated
fault library is accordingly processed to initiate the automated fault injection.

7. Back-annotation of measured fault injection and simulation results (mainly di-
agnostic coverage values of safety mechanisms) into the FMEDA model. This
step is automatically supported within the SaVer framework and serves as a
consistency check to the estimated values of the analysis.

The remainder of this subsection contains a general description of the MIPS archi-
tecture in 7.3.1.1, the details of the NanoMIPS implementation in 7.3.1.2, and a brief
literature review of commonly known CPU failure modes in 7.3.1.3.

7.3.1.1 Introduction: MIPS Architecture

MIPS [158] has been first designed in the 1980s at Stanford University as a Re-
duced Instruction Set Computer (RISC) processor [18]. It is a widely used micro-
processor architecture, especially in embedded designs because of its reliability and
cost-effectiveness [159]. There are multiple possible implementations of the MIPS ar-
chitecture, mainly depending on the supported Instruction Set Architecture and the
pipeline depth. Nevertheless, MIPS has an important characteristic which remains
valid for all those implementations. In fact, locks and stalls do not slow down the
execution in cases of inter-dependencies between instructions within the MIPS archi-
tecture. By re-ordering the instructions, such dependencies can be resolved. Insertion
of empty operations (NOPs) as well as data forwarding are also used as solutions for
dependency-caused conflicts [18].

167

7 Application

The MIPS architecture consists of five pipeline stages (see simplified diagram in
Figure 7.6):

e Instruction Fetch (IF): This stage serves to load the next instruction to
be performed from the memory. It includes a program counter (PC) register
which holds the actual address pointing to the exact instruction to be read
from the memory and to be passed to the next stage. If there is no jump or
branch address which overwrites the program counter, then it gets accordingly
incremented in order to point to the next instruction in the memory. Therefore,
the IF stage contains an adder to increment the PC and a multiplexer to handle
branches and jumps.

e Instruction Decode (ID): In the ID stage, the fetched instruction from the
memory gets decoded in such a way that it can be executed by the subsequent
stages. First of all, the opcode segment of the instruction is determined and
translated into an internal ALU vector, called AluOp for instance. Then, the
operands are fetched from the register file and forwarded to the execution stage.
For instructions of type Immediate, the immediate value is extracted from the
instruction itself (16 lower bits) and sign-extended to 32 bits. Furthermore,
the ID stage contains a control logic which generates several control signals
such as the write enable signals and the multiplexer signals which facilitate the
instruction execution later on.

IF/ID ID/EX EX/MEM MEM/WB

Branch

Zero? | taken
IRs..10 L
M
IR
Instruction 11..15 . :
memory — uEmwelR |Redisters
M Data
N Ny memory || M
[\ v
X
extend

. n 1

Figure 7.6: Simplified Diagram of Pipelined MIPS Architecture [18]

e Execution (EX): This is the part of the MIPS pipeline where the actual data
processing is performed. Therefore, it contains several calculation components

168

7.3 Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes

(e.g., ALU, adder, shifter, multiplier/divider, etc.). In general, each of these
components requires two input operands. One of them is always a register and
the other is either a second register or an immediate value (directly derived
from the considered instruction). At this stage, jump and branch addresses
are calculated. Furthermore, arithmetic operations are performed by the ALU
(addition and subtraction, logical operations, and comparisons for conditional
branches). In addition to that, shifting operations are performed by the bar-
rel shifter. Multiplication, division, and modulo operations are covered by the
multiplier unit. The EX stage contains also a number of multiplexers to corre-
spondingly dispatch the calculation results either to the register file or to the
external memory.

e Memory Access (MEM): This is the pipeline stage where the memory is
accessed depending on the calculated result in the Execution phase. If a LOAD
or STORE instruction is considered and the calculated result during the execu-
tion is consequently a memory address, then the appropriate data is read from
or written to the addressed memory location. For other instruction types, the
MEM stage forwards the execution result to the next stage, which is the Write
Back (WB) stage. This differentiation is handled by a dedicated multiplexer in
the MEM stage.

e Write Back (WB): In this final pipeline stage, either the computed result at
the Execution phase or the addressed memory content at the Memory Access
stage is written into the destination register.

In addition to the pipeline stages mentioned above, the MIPS architecture also
includes a set of register banks in between them to shorten the combinational paths,
allow higher clock frequencies, and increase the processor throughput. Furthermore, a
register file, which does not belong to any specific pipeline stage, enables simultaneous
reading of input registers and writing of output registers. In fact, the register file has
three 5-bit address inputs and one 32-bit data output.

7.3.1.2 Considered NanoMIPS CPU Model

As already mentioned above, the considered CPU model in this case study, called
NanoMIPS, conforms to the MIPS architecture. It has been progressively imple-
mented and refined at Infineon in the context of student internships and theses
(e.g., [160] and [19]) and as part of the funded research project EffektiV [136]. The
primary implementation guideline of the NanoMIPS has been the education book
“Computer Organization and Design” from Patterson and Hennessy [18].

NanoMIPS (see abstracted block diagram in Figure 7.7) supports about 60 instruc-
tions including different arithmetic operations such as multiplication and division,

169

7 Application

shift and logical operations, load and store functions, as well as comparison tests.
However, it does not contain a floating point unit as usual in embedded applications.

’% program_counter
1

opcode mem_write
. 25 28
Instruction f
. Control Unit mem_to_re
Fetch Unit _to_reg
26, 29
2 15 23
instruction alu_control
3 register_write

immediate

»|2) mem_addr
- Data Q‘
s Memory
Instruction Ed—) —read_reg 1 data - Arithmetic
1 . .
Deco_de - read_reg_ — o} >z Logic Unit
Unit] > E . .
read_reg_2 Register File
8 13,
write_reg = read_reg_2_data p =E
9 14

mem_write_data

write_back_data

Figure 7.7: Highly Abstracted Block Diagram of NanoMIPS Architecture

One of the major concerns that have been addressed while implementing NanoMIPS
is power management and efficiency. Therefore, the most power-consuming compo-
nents (e.g., memory related elements, switching parts, etc) have been identified and
appropriate design refinements have been made to reduce power consumption, for
example by reducing the number of registers and removing all those which are un-
necessary.

The detailed block diagram of the NanoMIPS architecture which has been consid-
ered in this case study is illustrated in Figure 7.8. The details of the implementation
are available in [19].

7.3.1.3 Microprocessor Failure Modes: Literature Review

Microprocessors are widely used in safety-critical applications (automotive, railways,
avionics, health-care, etc.). Therefore, it is frequently addressed in academic research
topics such as (i) dependability assessment of computer systems, (ii) safety analysis
methodologies and applications, and (iii) fault injection and simulation techniques.

In this subsection, a literature review about microprocessor failure modes is con-
ducted. Several examples are extracted from the literature references and accordingly

170

7.3 Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes

jump / branch control signal

branch adder
jump / branch|tiarget

IPCtrl, InstCtrl

[rs]
Hazard 1

Detection

stall flush

PC+4

ool Result / MemAddress
t RIrs] |—] i 4L\b
o > WriteMem
ext_imm D/ ;
—> EX /
EX Data MEM/
Rrt]) —1 —
— g W[rtl MEM BE Memory wmempat{ WB
Data »
&) Instruction imra |26 sign 32 RIrs] U
Memory S0 Rirt] O WriteData
* | St | write A =5
luResult
! rd : o Fora } j
H _R(rd) T
EX_MEM_AluResult I
o =S 7
RegWrite é Forwarding ! EX_MEM_R[rd]
T ID_EX_RIrsT! Unit_EX
ID_EX_RIrt) l\ _1 MEM_WB_RIrd)
Register
— ; -
rs, 7 File rs| data,|rt_data
WriteData
;MEM,ws,wmeDara
branch
control
P EeClCEsSs ID_EX_R[rs]
| Forwarding o IP-EXRIt] EX_MEM_R[rd]
Unit_ID] MEM_WB_R[rd]

Figure 7.8: Block Diagram of NanoMIPS Architecture [19]

reported below. Subsequently a summarizing table gives an overview of the most com-
mon failure modes of the different components of a microprocessor (See Table 7.1).

In Chapter 6 of [18], several examples of CPU faults, errors, and failures are given.
Their definition and explanation complies to the dependability taxonomy by La-
prie [161] which is addressed in Section 1.2. [18] addresses a wide range of fault types
including hardware faults, design faults, operation faults and environmental faults.
However, in this case study, the focus is on random hardware faults which are the
major concern of the FMEDA. Different examples of CPU failure modes are given
in [18] as “exceptions that may occur in the MIPS pipeline”. In the following, some of
those exceptions are mentioned for the four first stages of the MIPS pipeline described
above [18]:

e Instruction Fetch (IF): memory protection violation, misaligned memory
access, page fault! on instruction fetch

1A page fault occurs when a memory page that is not currently mapped by the memory manage-
ment unit into the virtual address space is accessed

171

7 Application

e Instruction Decode (ID): undefined opcode, illegal opcode

e Execution (EX): arithmetic exception (e.g., integer arithmetic overflow or
underflow, floating point arithmetic anomaly)

e Memory access (MEM): memory protection violation, misaligned memory
access, page fault on data fetch
In [162], the following summary of classified failure mode examples at micropro-

cessor level is given:

e Erroneous operation for data acquisition: incorrect value and/or incorrect
validity, missing value, missing validity information

e Erroneous operation for logic processing: e.g., actuation failure

In [163], following failure modes are considered for different CPU components
and/or functions:

e Register, internal RAM: Stuck-at, stuck-open, open or high impedance out-
puts, short circuits between signal lines for data and addresses, dynamic cross-
over for memory cells, no addressing, wrong addressing, multiple addressing

e Program counter, stack pointer: Stuck-at, stuck-open, open or high
impedance outputs, short circuits between signal lines

In [164], the criticality of failure modes affecting memory elements in safety-relevant
systems is emphasized, especially when memory failures make the CPU read and/or
execute an incorrect instruction. For the CPU itself, [164] presents this list of func-
tional failure modes which is adapted from [165]:

e Incorrect result of arithmetic or logical operation (error in ALU)

e Incorrect address leading to incorrect memory contents (error in instruction
decoder /pointer)

e Alteration of correct data or address (error in register file)

e Alteration of data and/or instruction to be read from memory or written into
it (error in memory data interface)

e Alteration of pointed memory address (error in memory address interface)

Based on the above literature review and on further industry data, a summarizing
overview of failure modes occurring in the different components of a microprocessor
is given in Table 7.1.

172

7.3 Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes

Component Failure Mode Examples

Instruction Fetch Unit wrong program counter, corrupt program counter, pro-
gram counter out of sync, etc.

Instruction Decode Unit no instruction opcode, corrupt or illegal instruction op-
code, wrong or undefined instruction opcode, etc.

Control Unit corrupt or wrong control signals, wrong instruction se-
quence, wrong processor timing, etc.

Register File corrupt or wrong data, incorrect write address, etc.

Arithmetic Logic Unit no program execution, wrong program execution, de-
layed program execution, incorrect result of arithmetic
or logical operation, arithmetic exception, etc.

Data / Instruction Memory | no addressing, wrong addressing, dynamic cross-over for
memory cells; etc.

Table 7.1: Failure Mode Examples of Microprocessor Components

7.3.2 Application Steps

In Figure 7.9, the application of the linking approach between FMEDA and fault
injection, which has been described above, is illustrated through an example in the
context of the NanoMIPS use case.

In this example, the instruction fetch unit of the NanoMIPS is considered. To
demonstrate the functionality within the SaVer framework, the effects of faults af-
fecting the program counter (PC) are examined. It should be noted that a diagnostic
mechanism addressing the program counter is implemented in NanoMIPS. It is based
on the duplication of the PC and the usage of a watchdog timer. In fact, the re-
dundant PC values are compared whenever a new instruction is fetched. If the two
values are inconsistent, then further execution is prevented for a predefined period
of time. In the case of recovery during that time period, the normal simulation is
re-established and the fetched instruction is further on executed. Otherwise, a reset
of the NanoMIPS is performed.

In the following subsection, the three remaining application steps of the use case
are detailed, namely (i) the mapping of the safety analysis model elements to the

173

7 Application

Safety Analysis Model (e.g., FMEDA model) Fault Injection and Simulation Model Legend:
Tree View Tree View 4 Target
» Analysis (NanoMIPS_FMEDA) ﬁ » Architecture (NanoMIPS) ﬁ ¢ Failure MOde}Threats
w Structure v Module (nanomips_uut) & Failure Effect
v Part (instr_fetch) ¢ < » v SubModule (instr_fetch_comp) < 5\6 IC(.Junt-ermea_s ure
w FailureMode (Wrong PC value) 6 < ; » » Member (pcl_s) njection _pomt .
» FailureEffect (Wrong instruction) < <« R » » Member (pc2_s) VO 2 possible P gpservat_lon ppmt
» SafetyMeasure (pc_redundancy) % <1-- » Member (...) ”ggf:t‘s’” El Mlagnpstlc ?omt
b FailureMode (...) o° ; > » Member (instr_0) 2 apping reterence

b Part(...) —— S » » Member (pc_error_0) [Generated NanoMIPS
> duplication of the program counter » Module () - - fault library
, in the instruction fetch unit , D Measured diagnostic
coverage values
generation stimulation

#,tc001,instr_fetch,Wrong PC value,pcl_s,sc_dt::sc_uint<32>,0,20,0 ns,-1,pc_error_o,instr_o
#,tc002,instr_fetch,Wrong PC value,pcl_s,sc_dt::sc_uint<32>,0,30,0 ns,-1,pc_error_o,instr_o

measurement

instr_fetch, Wrong PC value (stuck at 0), 0.65625
instr_fetch, Wrong PC value (stuck at 1), 0.484375

Figure 7.9: Application Example: Link Between Safety Analysis and Fault Simulation
of NanoMIPS CPU Model [14]

nominal system model elements, (ii) the generation of the fault library, and (iii) the
back-annotation of the simulation results.

7.3.2.1 Data Mapping from FMEDA to Fault Injection

The prerequisites of the data mapping are the safety analysis model on the one hand
and the fault injection and simulation model on the other hand. The left hand
side of Figure 7.9 contains a part of the FMEDA model which is constructed using
the FMEDA Metal.ib based on the highly abstracted NanoMIPS block diagram (see
Figure 7.7). Furthermore, the overall composition of the SystemC model of the
NanoMIPS which is used for fault injection and simulation is illustrated on the right
hand side of Figure 7.9.

According to the previously introduced terminology in Subsection 6.4.3.1 (see Ta~
ble 6.1), the targets which might be affected, the threats, and the counter-measures
represent the data artefacts to be mapped between both contexts (analysis and simula-
tion). In Figure 7.9, multiple examples of those data artefacts are marked and labeled
correspondingly to their respective categories (e.g., the Part “instr_fetch” is a target
element in the safety analysis model which is reflected by the “instr_fetch_comp”
sub-module in the executable system model, the Failure Mode “Wrong PC value”
is a threat reflected by faults affecting the PC signals, and “pc_redundancy” is a
counter-measure whose concrete reflection in the system model is the observation
signal “pc_error_0”).

The connections which can be observed between the data model objects from both
sides in Figure 7.9 represent the mapping references between both models. Such

174

7.3 Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes

references are identified through the application of the matching algorithms (see Sub-
section 6.4.3.2). In this use case, the name-based matching algorithm is applied.
For instance, the failure mode “Wrong PC value” is mapped to 2 potential injection
points: the “pcl_s” and “pc2_s” signals which are members of the “instr_fetch_comp”
sub-module.

7.3.2.2 Fault Library Generation

The links which have been established during the mapping step are the first prereq-
uisite for generating the fault library. They are however not sufficient to perform the
required fault injection campaigns. Extra information is required to accurately define
the concrete bit positions that must be altered during the injection of the considered
faults, the simulation time at which the fault must be inserted, and potentially the
duration of the fault occurrence (for transient faults only). This extra information is
not derived from the safety analysis data. Therefore, it must be manually entered by
the user in the appropriate fields of the SaVer GUIL.

A small excerpt of the generated fault library for NanoMIPS is illustrated in Fig-
ure 7.9). Proper tools and mechanisms are applied within the fault injection and
simulation platform to accordingly stimulate the system model and monitor its re-
sponse to the inserted faults.

7.3.2.3 Back-Annotation

During the fault injection campaign triggered in accordance to the generated fault
library, simulation results are progressively gathered, sorted out, and stored into a
dedicated logging file. This file contains mainly the measured diagnostic-coverage
values. In the considered NanoMIPS example, different ways to inject the “Wrong
PC value” failure mode are possible such as a single-bit stuck at 0, a single-bit stuck at
1, a soft error, etc. In this case, the measured diagnostic-coverage value corresponds
to the percentage of simulations where the faulty PC value is captured by the safety
measure, independently from the injection variant.

The logging file created during the fault simulation is subsequently parsed within
the SaVer framework so that its contents are appropriately used to extend the exist-
ing FMEDA data model. This back-annotation procedure is intended to make the
simulation results a part of the FMEDA data model which can be visualized by the
user and used to check the analysis assumptions.

The results of this use case show that the model-based support for safety analysis,
which is enabled through the FMEDA metamodel and the correspondingly developed
FMEDA MetaLib offers an effort saving reaching up to 60% in comparison to the

175

7 Application

manual procedure. Furthermore, mapping the FMEDA model to the SystemC model
enables the generation of the fault injection, observation, and diagnostic points. The
fault list generation offers significant effort and time savings for safety verification
engineers. Indeed, about 80% of the manual tasks traditionally required to inspect
the safety analysis outcome and derive fault injection lists out of them are fully
substituted by systematic generation mechanisms. The remaining 20% consist in the
configuration tasks mentioned in Subsection 6.4.3.1, where extra information such as
injection time frames are manually entered by the user. In addition to that, the fault
list generation allows traceability between the analyzed failure modes and effects on
one side and the correspondingly simulated faults and responses on the other side.
Moreover, the back-annotation of the simulation results into the FMEDA data enables
cross-checking and potential refinements of the analysis assumptions and estimations.

176

8 Summary and Outlook

Dependability, which has been the primary topic of interest during this thesis, is a
major concern in modern system development and manufacturing. In fact, on-top of
system functionality, so-called dependability attributes such as reliability, safety, and
security must be fulfilled.

To address the significance of the dependability topic and overcome the persisting
challenges related to it, dependability fundamentals and approaches have been com-
prehensively studied in this work. Building upon the already existing methodologies
to generalize dependability terms and to integrate model-driven development tech-
niques in the dependability context, a metamodel-based approach for cross-domain
and multi-level dependability analysis has been developed [57]. Through a generic
dependability metamodel and a corresponding customization mechanism, the flexi-
ble creation of adapted dependability assessment tools is enabled to better fit the
particularities of specific application-domains and/or abstraction-levels [57].

Being one of the major dependability attributes, safety has been particularly in
the focus of this thesis. In fact, in the context of this work, functional safety of
E/E systems has been explored from different perspectives. In particular, functional
safety analysis has been addressed, along with its relationship to fault injection and
simulation.

To overcome informality and subjectivity issues which are still persisting in the
industrial practice of functional safety analysis, a metamodeling-based formalization
approach has been developed in this thesis [166, 3, 137, 14, 12, 138]. This formal-
ization approach provides concise, well-structured, and convenient descriptions of
(i) safety analysis procedures, (ii) involved data artefacts and relationships between
them, and (iii) underlying documentation structures.

Tackling real-life challenges encountered by functional safety engineers and analysts
in E/E system manufacturing industries was a central concern throughout this thesis.
Several model-driven frameworks have been conceived, developed, and implemented
in the context of this work as alternatives to traditional safety analysis work flows
which rely on cumbersome, effort-demanding, and time-consuming manual tasks.

First, a metamodeling-based failure propagation analysis framework, called
MetaFPA has been developed [11]. MetaFPA addresses the limitations of the already

177

8 Summary and Outlook

existing Failure Logic Modeling (FLM) methodologies and provides enhancements
with respect to the failure description, the automation level, and the flexibility in
the FLM context. In fact, alternatively to the static failure description commonly
supported by FLM platforms, MetaFPA enables a dynamic capturing of the failure
behavior in a more compatible way with conventional simulation-oriented modeling
guidelines. Furthermore, MetaFPA offers a significant level of automation and flexi-
bility due to model-driven support and to the application of metamodeling and code
generation techniques. Supporting the failure behavior exploration of a given system
at a high level of abstraction, MetaFPA is suitable for an early application during the
safety lifecycle. It delivers graphical representations of failure propagation paths by
executing simulation-oriented analysis scripts, which are themselves generated from
compositional system models including failure scenarios in addition to the nominal
system functionality. Hence, MetaFPA outcomes are used particularly to identify
critical failure scenarios at an early development stage and consequently improve the
safety concept quality with respect to the adequacy and effectiveness of the safety
measures which are contained in the design.

MetaFPA has also been applied in the context of this thesis to establish a link
between inductive and deductive failure analyses [12]. In fact, dedicated frameworks
are created for safety analysis techniques, particularly for Failure Modes, Effects, and
Diagnostic Analysis (FMEDA) and Fault Tree Analysis (FTA). These frameworks
rely, similarly to MetaFPA, on metamodeling and code generation techniques and
are referred to as Safety Analysis MetaLibs. By incorporating these MetaLibs with
MetaFPA in a comprehensive safety analysis environment, and by applying appro-
priate model-driven techniques, bi-directional data transfer between fault trees and
FMEDA tables through MetaFPA data models is enabled. In addition, convenient
tools are developed to support systematic generation of FMEDA table segments and

of fault tree branches out of compositional failure models constructed within the
MetaFPA platform.

The previously mentioned Safety Analysis MetaLibs have been created in Infineon’s
metamodeling and code generation environment, called Metagen, to support the most
relevant functional safety analysis techniques in the industry, namely FMEDA and
FTA. These MetaLibs help safety analysts to achieve their activities within the safety
lifecycle in reduced time frames and with improved consistency and accuracy levels.
Furthermore, the developed MetaLibs address completeness and flexibility issues of
already published model-based automation approaches for FMEA and FTA, such as
the disregard of the quantitative aspect of the analysis and the usage of special data
formats which are not compatible with industrial practices.

The approach behind the first Metalib, which addresses model-driven and
simulation-assisted FMEDA, has been published at the Design Automation Con-
ference in 2015 [3]. It relies on an compliant metamodel with the traditional FMEDA

178

flow and its common documentation structure. The substitution of classical FMEDA
tables by object-oriented data models, created as instances of the FMEDA meta-
model, enables high automation and reuse levels. Manual data entry is replaced by
systematic data extraction, processing, and exploration. Transformations are simpli-
fied through utility tools within the model-driven FMEDA framework and the overall
quality of the analysis outcome is improved thanks to convenient consistency checks
and user-assisting features. When applied in correlation to a simulation-oriented fail-
ure analysis platform at a higher abstraction-level, such as MetaFPA, the FMEDA
MetaLib supports the hierarchical construction of a System-FMEDA based on the
assembly of associated Component-FMEDAs and a set of interface adapters between
them. Such adapters are derived from the connectivity information between system
components and capture the interactions within the system in failure cases. Further-
more, the FMEDA MetaLib offers a verification capability for manually performed
analyses. In fact, through appropriate data readers and parsers, an already exit-
ing System-FMEDA table can be transformed into a data model. This data model
is then compared to the respectively generated System-FMEDA data model through
automated assembly of Component-FMEDAs. All detected data mismatches are doc-
umented in a cross-checking report and represent valuable indications to the safety
analyst about potential inconsistencies in the manual analysis.

Applied as part of feasibility studies at first and then within pilot projects, the
FMEDA MetaLib showed a significant speed-up of the complete procedure by re-
ducing about 60% of the repetitive manual data entry tasks, simplifying the review
process, and offering advanced data handling capabilities.

The second MetaLib addresses the Fault Tree Analysis (FTA) technique. It is based
on a data transformation approach from compositional failure propagation models,
created with the MetaFPA framework, into fault trees. The FTA MetaLib has been
developed to overcome data processing, visualization, and creation issues in the FTA
context and to support concept engineers and functional safety analysts at early stages
of the safety lifecycle. The underlying data transformation approach, published at the
industrial track of the International Conference on Dependable Systems and Networks
in 2016 [12], relies on a fault tree synthesis algorithm which enables a systematic and
progressive construction of the fault tree logic through traversing the failure propaga-
tion model and adding appropriate intermediate and /or primary events in correlation
to input deviations and/or internal malfunctions. In practice, the fault tree synthesis
algorithm is implemented within the FTA MetaLib by a dedicated model-to-model
transformation tool. The MetaLib, which complies to a formalized FTA metamodel,
contains also a special view generator which produces XML files depicting fault trees,
following the schema of Isograph Reliability Workbench™, a widely used commercial
tool for fault tree creation.

Furthermore, several perceptions, proof-of-concepts, and early prototypes derived

179

8 Summary and Outlook

from this work have contributed to the development of a comprehensive safety eval-
uation framework called SaVer [137, 14, 138]. By combining the FMEDA and FTA
Metal.ibs on the one hand with fault injection and simulation platforms on the other
hand, SaVer establishes a seamless link between analysis and simulation. In ad-
dition to the publications mentioned above, the basis of the SaVer framework and
its relevance for multi-level safety analysis has been addressed in a talk at the De-
sign, Automation & Test in Europe Conference & Exhibition (DATE) in 2016 [167].
The talk emphasized the fact that safety analysis is a multi-domain and multi-skills
task which has become an intricate part of the process. Furthermore, it showed
the linking approach between safety analysis and fault-effect-analysis, particularly at
transaction level. It should be noted that the SaVer framework contains a fault injec-
tion and simulation platform relying on virtual prototypes, where gate-level-accurate
transaction-level (TL) models with all gate-level matching points are used. Such
models are obtained through a systematic abstraction of gate-level netlists and en-
able a particularly accurate fault-effect-analysis which is simultaneously significantly
fast [141, 140, 147, 168, 110, 169].

Due to the considerable benefits it offers with respect to data traceability, exchange,
and reuse, SaVer has been further on enhanced and adopted in productive safety-
related projects at Infineon.

Beyond the theoretical contributions of this thesis and their respective practical
embodiments and applications within industrial projects, several aspects of future
work are worth mentioning.

With respect to the automotive safety lifecycle, analysis-based evaluation is
performed at concept, system-development, hardware-development, and software-
development levels. The developed approaches and tools in the context of this thesis
are particularly suitable for concept, system, and hardware levels. Further enhance-
ments and customizations are necessary in order to cover the software level. De-
pendent Failure Analysis (DFA), which is particularly suited for assessing software
failures, has been considered in this thesis and a dedicated metamodel has been con-
structed to formalize it. This DFA metamodel represents the basis for the DFA
MetaLib which is implemented to provide support and automation capabilities in the
analysis context. This DFA MetaLib should be experimented in productive contexts,
particularly in the firmware development context. Moreover, it can be further on
extended to offer more automation capabilities and to support a systematic linking
to compositional failure models created using the MetaFPA framework and to fault
injection and simulation contexts. In addition, the proof-of-concept created in this
thesis about synergies between DFA, FTA, and FMEDA should be evaluated with
respect to its practicality and effectiveness in real use-cases.

The link to requirements engineering has been a tangential concern in this work.
The increasing importance of safety requirements in the development lifecycle is

180

though a motivation to investigate potential systematic links to the safety evalua-
tion flows and outcomes. The fulfillment of safety requirements is still assessed based
on a tedious manual inspection of the analysis or simulation results. To overcome
this inconvenience, formalization approaches for safety requirements and according
tool-based traceability and assessment methodologies should be investigated.

Finally, in addition to functional safety, the semiconductor industry is increas-
ingly confronted with another challenging dependability aspect, namely security. In
the era of the Internet-of-Things (IoT), protecting electronic devices from malicious
attacks becomes particularly necessary, when those devices contain highly sensitive
and confidential data. The perceptions made in this thesis about the disorganization
and formality of safety analysis procedures hold true for the assessment of security
threats too. Therefore, the formalization and model-driven support approaches which
have been developed in the context of this work to overcome persisting issues in the
functional safety domain have a considerable potential of being extrapolated to the
security area.

181

Bibliography

1]

International Electrotechnical Commission and others, “Functional safety of
electrical /electronic/programmable electronic safety related systems,” IEC
61508, 2000.

International Organization for Standardization, “ISO 26262, Road vehicles—
Functional safety,” International Standard ISO/FDIS, vol. 26262, 2011.

M. Chaari, W. Ecker, C. Novello, B.-A. Tabacaru, and T. Kruse, “A Model-
Based and Simulation-Assisted FMEDA Approach for Safety-Relevant E/E

Systems,” in Proceedings of the 52nd Annual Design Automation Conference.
ACM, 2015, pp. 1-6.

M. Rausand, Reliability of safety-critical systems: theory and applications. Sec-
ond edition, John Wiley & Sons. Online ISBN:9781118776353, 2014.

M. Chaari, “Implementation of a Template Rendering Mechanism based on
Model-driven C++ Code Generation,” Master’s Thesis, Chair of Electronic
Design Automation - Technische Universitdt Miinchen, 2013.

J. Miller, J. Mukeriji, et al., “MDA Guide Version 1.0.1,” Object Management
Group - Document Number: omg/2003-06-01, vol. 234, p. 51, 2003.

A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained, the model driven
architecture: Practice and promise. Addison-Wesley Professional, ISBN:
032119442X, 2003.

C. Atkinson and T. Kuhne, “Model-driven development: a metamodeling foun-
dation,” Software, IEEFE, vol. 20, no. 5, pp. 36—41, 2003.

X. Thirioux, B. Combemale, X. Crégut, P.-L. Garoche, et al., “A Framework
to formalise the MDE Foundations,” Report for Towers’ 07, pp. 14-30, 2007.

M. Voelter, “A Catalog of Patterns for Program Generation,” in Eighth Fu-
ropean Conference on Pattern Languages of Programs (EuroPLoP), 2003, pp.
285-320.

M. Chaari, W. Ecker, T. Kruse, and B.-A. Tabacaru, “Automation of
failure propagation analysis through metamodeling and code generation.”

183

Bibliography

[12]

[16]

[21]

[22]

[23]

184

ITG/GI/GMM-Workshop Testmethoden und Zuverléssigkeit von Schaltungen
und Systemen (TuZ), 2015.

M. Chaari, W. Ecker, T. Kruse, C. Novello, and B.-A. Tabacaru, “Transfor-
mation of failure propagation models into fault trees for safety evaluation pur-
poses,” in 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Industrial Track. TEEE, 2016, pp. 226-229.

SAE International, “ARP4761 - Guidelines and methods for conducting the
safety assessment process on civil airborne systems and equipment,” SAE In-
ternational, December, 1996.

M. Chaari, W. Ecker, B.-A. Tabacaru, C. Novello, and T. Kruse, “Linking
Model-Based Safety Analysis to Fault Injection and Simulation in Virtual Pro-
totypes.” Electronic Design Automation Workshop (edaWorkshop 16), 2016.

(2017, May) Infineon Technologies AG - Sensor Solutions for Automotive,
Industrial and Consumer Applications. [Online]. Available: http://www.
infineon.com/dgdl/Infineon-Sensor_Solutions_for_Automotive_Industrial_and+
Customer_Appl_BR-2015.pdf?fileld=5546d4614937379a01495212845c039f

C. Choi, W. Lee, J. Kim, and S. Kim, “Failure modes investigation and anal-
ysis of electric power steering system with PMSM drives,” SAFE International
Journal of Passenger Cars-FElectronic and Electrical Systems, vol. 2, no. 2009-
01-0296, pp. 103-108, 2009.

(2017, May) Infineon Technologies AG - Electric power steering (EPS). [Online].
Available: www.infineon.com/cms/en/applications/automotive/safety/eps/

J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

F. Waheed, “Automated generation of an embedded CPU from ISA with Power
Management,” Master’s Thesis, Institute for Real-Time Computer Systems,
Technische Universitat Miinchen, 2014.

J. Belzer, A. G. Holzman, and A. Kent, Encyclopedia of Computer Science and
Technology: Volume 9-Generative Epistemology of Problem Solving to Laplace
and Geometric Transforms. CRC Press, 1978, vol. 9.

J.-C. Laprie, “Dependability: Basic Concepts and Terminology, volume 5 of
Dependable Computing and Fault-Tolerant Systems,” Springer-Verlag, 1992.

A. Vega, P. Bose, and A. Buyuktosunoglu, Rugged Embedded Systems: Com-
puting in Harsh Environments. Morgan Kaufmann, 2016.

D. Heffernan, C. MacNamee, and P. Fogarty, “Runtime verification monitoring
for automotive embedded systems using the ISO 26262 functional safety stan-

http://www.infineon.com/dgdl/Infineon-Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_BR-2015.pdf?fileId=5546d4614937379a01495212845c039f
http://www.infineon.com/dgdl/Infineon-Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_BR-2015.pdf?fileId=5546d4614937379a01495212845c039f
http://www.infineon.com/dgdl/Infineon-Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_BR-2015.pdf?fileId=5546d4614937379a01495212845c039f
www.infineon.com/cms/en/applications/automotive/safety/eps/

Bibliography

[24]

[25]

[20]

[27]

28]

[29]

[32]

[33]

[34]

[35]

[36]

dard as a guide for the definition of the monitored properties,” Software, IET,
vol. 8, no. 5, pp. 193203, 2014.

N. Aecronautics and S. Administration. (2016, Feb.) Software Safety
Criticality Assessment. [Online]. Available: http://www.hq.nasa.gov/office/
codeq/doctree/NS871913C.docx

Cadence. (2016, Feb.) Incisive Functional Safety Simulator. [Online]. Avail-
able: http://www.europractice.stfc.ac.uk/vendors/cadence_incisive_functional
safety_simulator_ds.pdf

M. Bozzano and A. Villafiorita, Design and safety assessment of critical sys-
tems. CRC press, 2010.

N. R. Storey, Safety critical computer systems. Addison-Wesley Longman
Publishing Co., Inc., 1996.

MTL Instruments Group plc, “An introduction to functional safety and TEC
61508, Application Note: AN9025-3, 2002.

A. Fritsch, “Functional Safety and Explosion Protection,” Fundamentals of
Functional Safety in Accordance with IEC, vol. 61508, 2005.

D. J. Smith and K. G. Simpson, Functional Safety: A Straightforward Guide to
Applying IEC 61508 and Related Standards. Routledge, 2004.

P. Baufreton, J. Derrien, B. Ricque, J. Blanquart, J. Boulanger, H. Delseny,
J. Gassino, G. Ladier, E. Ledinot, M. Leeman, et al., “Multi-domain comparison
of safety standards,” 2011.

C. Ebert, “Implementing functional safety,” IEEFE Software, no. 5, pp. 84-89,
2015.

M. Schmidt, M. Rau, E. Helmig, and B. Bauer, “Functional Safety—Dealing
with Independency, Legal Framework Conditions and Liability Issues,” Official
Journal of the European Union dated, vol. 50, no. 200/1, 2009.

B. J. Czerny, J. DAmbrosio, and R. Debouk, “ISO 26262 Functional safety draft
international standard for road vehicles: Background, Status, and Overview,”
Origins, vol. 9, no. 1.2004, p. 2003, 2002.

T. A. Kletz, Hazop and Hazan: Identifying and Assessing Process Industry
Hazards. 1ChemE, 1999.

B. C. Wei, “A unified approach to failure mode, effects and criticality analysis
(FMECA),” in Reliability and Maintainability Symposium, 1991. Proceedings.,
Annual. TEEE, 1991, pp. 260-271.

185

http://www.hq.nasa.gov/office/codeq/doctree/NS871913C.docx
http://www.hq.nasa.gov/office/codeq/doctree/NS871913C.docx
http://www.europractice.stfc.ac.uk/vendors/cadence_incisive_functional_safety_simulator_ds.pdf
http://www.europractice.stfc.ac.uk/vendors/cadence_incisive_functional_safety_simulator_ds.pdf

Bibliography

[37]

[38]

[39]

[50]

186

D. Lawson, “Failure mode, effect and criticality analysis,” in Electronic Systems
Effectiveness and Life Cycle Costing. Springer, 1983, pp. 55-74.

J. C. Grebe and W. M. Goble, “FMEDA-accurate product failure metrics,”
exida, Sellersville, PA, vol. 18960, 2007.

W. M. Goble and A. Brombacher, “Using a failure modes, effects and diagnostic
analysis (FMEDA) to measure diagnostic coverage in programmable electronic
systems,” Reliability engineering € system safety, vol. 66, no. 2, pp. 145-148,
1999.

W. M. Goble, Control systems safety evaluation and reliability. International
Society of Automation, 2010.

H. Czichos, “Scope of technical diagnostics,” in Handbook of Technical Diag-
nostics. Springer, 2013, pp. 3-9.

C. A. Ericson and C. L1, “Fault tree analysis,” Hazard analysis techniques for
system safety, pp. 183-221, 2000.

A. Kumar, R. K. Gupta, and A. Kumar, “Fault tree analysis of different sys-
tems,” School of mathematics and computer applications. Thapar University,
Patiala (Punjab), 2009.

G. K. Palshikar, “Temporal fault trees,” Information and Software Technology,
vol. 44, no. 3, pp. 137-150, 2002.

J. Bechta Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic fault-tree models for
fault-tolerant computer systems,” Reliability, IEEE Transactions on, vol. 41,
no. 3, pp. 363-377, 1992.

J. D. Andrews and S. J. Dunnett, “Event-tree analysis using binary decision
diagrams,” Reliability, IEEE Transactions on, vol. 49, no. 2, pp. 230-238, 2000.

J. V. Bukowski and W. M. Goble, “Using Markov models for safety analysis of
programmable electronic systems,” ISA Transactions, vol. 34, no. 2, pp. 193—
198, 1995.

W. Wang, J. M. Loman, R. G. Arno, P. Vassiliou, E. R. Furlong, and D. Ogden,
“Reliability block diagram simulation techniques applied to the IEEE std. 493
standard network,” Industry Applications, IEEE Transactions on, vol. 40, no. 3,
pp. 887-895, 2004.

S. Distefano and A. Puliafito, “Dependability evaluation with dynamic reliabil-
ity block diagrams and dynamic fault trees,” Dependable and Secure Computing,
IEEFE Transactions on, vol. 6, no. 1, pp. 4-17, 2009.

S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability analysis tech-

Bibliography

[51]

[52]

[53]

[54]

[56]

[60]

[61]

niques,” in Model-Driven Dependability Assessment of Software Systems.
Springer, 2013, pp. 73-90.

M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,”
Computer, vol. 30, no. 4, pp. 75-82, 1997.

A. Benso and P. Prinetto, Fault injection techniques and tools for embedded
systems reliability evaluation. Springer, 2003, vol. 23.

H. Ziade, R. A. Ayoubi, R. Velazco, et al., “A survey on fault injection tech-
niques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171-186, 2004.

A. Herkersdorf, M. Engel, M. Gla8}, J. Henkel, V. B. Kleeberger, M. Kochte,
J. M. Kiithn, S. R. Nassif, H. Rauchfuss, W. Rosenstiel, et al., “Cross-layer

dependability modeling and abstraction in system on chip,” in Workshop on
Silicon Errors in Logic-System Effects (SELSE), 2013.

A. Herkersdorf, H. Aliee, M. Engel, M. Gla}, C. Gimmler-Dumont, J. Henkel,
V. B. Kleeberger, M. A. Kochte, J. M. Kiihn, D. Mueller-Gritschneder,
et al., “Resilience articulation point (rap): Cross-layer dependability modeling

for nanometer system-on-chip resilience,” Microelectronics Reliability, vol. 54,
no. 6, pp. 1066-1074, 2014.

U. Schlichtmann, V. B. Kleeberger, J. A. Abraham, A. Evans, C. Gimmler-
Dumont, M. Gla3, A. Herkersdorf, S. R. Nassif, and N. Wehn, “Connecting
different worlds: Technology abstraction for reliability-aware design and test,”
in Proceedings of the conference on Design, Automation & Test in Furope.
European Design and Automation Association, 2014, p. 252.

M. Chaari, W. Ecker, and B.-A. Tabacaru, “Towards Cross-Domain and Multi-
Level Dependability Analysis Through Metamodeling and Code Generation.”
Electronic Design Automation Workshop (edaWorkshop 16), 2016.

V. Basili, P. Donzelli, and S. Asgari, “A unified model of dependability: Cap-
turing dependability in context,” Software, IEFEFE, vol. 21, no. 6, pp. 19-25,
2004.

G. Dobson and P. Sawyer, “Revisiting ontology-based requirements engineering
in the age of the semantic web,” in Proceedings of the International Seminar
on Dependable Requirements Engineering of Computerised Systems at NPPs,
2006.

A. Pataricza and F. Gyor, “Towards Unified Dependability Modeling and Anal-
ysis,” in ARCS Workshops, 2004, pp. 113-122.

S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability modeling and

187

Bibliography

[62]

[63]

[64]

[65]

[71]

[72]

188

analysis of software systems specified with UML,” ACM Computing Surveys
(CSUR), vol. 45, no. 1, p. 2, 2012.

D. Sojer, Synthesis of Online Diagnostic Techniques for Embedded Systems.
Verlag Dr. Hut, 2013.

J. L. de la Vara and R. K. Panesar-Walawege, “SafetyMet: A metamodel
for safety standards,” in Model-Driven Engineering Languages and Systems.
Springer, 2013, pp. 69-86.

O. Lisagor, J. McDermid, and D. Pumfrey, “Towards a practicable process
for automated safety analysis,” in 2/th International system safety conference.
Citeseer, 2006, pp. 596-607.

L. Grunske and J. Han, “A comparative study into architecture-based safety
evaluation methodologies using AADL’s Error Annex and failure propagation
models,” in High Assurance Systems FEngineering Symposium, 2008. HASE
2008. 11th IEEE. 1EEE, 2008, pp. 283-292.

O. Lisagor, “Failure logic modelling: A pragmatic approach,” Ph.D. disserta-
tion, University of York, 2010.

P. Fenelon and J. A. McDermid, “An integrated tool set for software safety
analysis,” Journal of Systems and Software, vol. 21, no. 3, pp. 279-290, 1993.

P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey, “Towards inte-
grated safety analysis and design,” ACM SIGAPP Applied Computing Review,
vol. 2, no. 1, pp. 21-32, 1994.

M. Wallace, “Modular architectural representation and analysis of fault propa-
gation and transformation,” Electronic Notes in Theoretical Computer Science,
vol. 141, no. 3, pp. 53—71, 2005.

Y. Papadopoulos and J. A. McDermid, “Hierarchically performed hazard ori-
gin and propagation studies,” in Computer Safety, Reliability and Security.
Springer, 1999, pp. 139-152.

Y. Papadopoulos and J. McDermid, “Safety-directed system monitoring using
safety cases,” Ph.D. dissertation, University of York, 2000.

Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner, “Analysis and synthe-
sis of the behaviour of complex programmable electronic systems in conditions
of failure,” Reliability Engineering € System Safety, vol. 71, no. 3, pp. 229-247,
2001.

Y. Papadopoulos and M. Maruhn, “Model-based synthesis of fault trees from
Matlab-simulink models,” in Dependable Systems and Networks, 2001. DSN
2001. International Conference on. 1EEE, 2001, pp. 77-82.

Bibliography

[74]

[80]

[81]

[82]

[83]

[84]

[85]

A. Hassan, K. Goseva-Popstojanova, and H. Ammar, “UML based severity
analysis methodology,” in Reliability and Maintainability Symposium, 2005.
Proceedings. Annual. TEEE, 2005, pp. 158-164.

S. Luand W. A. Halang, “A UML profile to model safety-critical embedded real-
time control systems,” in Contributions to Ubiquitous Computing. Springer,
2007, pp. 197-218.

G. Zoughbi, L. Briand, and Y. Labiche, A UML profile for developing
airworthiness-compliant (RTCA DO-178B), safety-critical software. Springer,
2007.

A. Joshi, S. P. Miller, M. Whalen, and M. P. Heimdahl, “A proposal for model-
based safety analysis,” in Digital Avionics Systems Conference, 2005. DASC
2005. The 24th, vol. 2. IEEE, 2005, pp. 13-pp.

A. Joshi and M. P. Heimdahl, “Model-based safety analysis of Simulink models
using SCADE design verifier,” in Computer Safety, Reliability, and Security.
Springer, 2005, pp. 122-135.

A. Joshi and M. P. E. Heimdahl, “Behavioral fault modeling for model-based
safety analysis,” in High Assurance Systems Engineering Symposium, 2007.
HASE’07. 10th IEEE. 1EEE, 2007, pp. 199-208.

M. Bozzano, A. Villafiorita, P. Bieber, C. Bougnol, M. Bretschneider, A. Cav-
allo, C. Castel, M. Cifaldi, et al., “ESACS: an integrated methodology for design
and safety analysis of complex systems,” 2003.

M. Bozzano and A. Villafiorita, “Improving system reliability via model check-
ing: The FSAP/NuSMV-SA safety analysis platform,” in Computer Safety,
Reliability, and Security. Springer, 2003, pp. 49-62.

A. Majdara and T. Wakabayashi, “Component-based modeling of systems for
automated fault tree generation,” Reliability Engineering € System Safety,
vol. 94, no. 6, pp. 1076-1086, 2009.

N. H. Ulerich and G. J. Powers, “On-line hazard aversion and fault diagno-
sis in chemical processes: the digraph+ fault-tree method,” Reliability, IEEE
Transactions on, vol. 37, no. 2, pp. 171-177, 1988.

Y. Wang, T. Teague, H. West, and S. Mannan, “A new algorithm for computer-
aided fault tree synthesis,” Journal of Loss Prevention in the Process Industries,
vol. 15, no. 4, pp. 265-277, 2002.

J. D. Andrews and J. Henry, “A computerized fault tree construction method-
ology,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal
of Process Mechanical Engineering, vol. 211, no. 3, pp. 171-183, 1997.

189

Bibliography

[36]

[90]

[91]

[92]

[93]

190

P. Liggesmeyer and M. Rothfelder, “Improving system reliability with auto-
matic fault tree generation,” in Fault-Tolerant Computing, 1998. Digest of Pa-
pers. Twenty-Fighth Annual International Symposium on. IEEE, 1998, pp.
90-99.

A. Rauzy, “Mode automata and their compilation into fault trees,” Reliability
Engineering € System Safety, vol. 78, no. 1, pp. 1-12, 2002.

Y. Papadopoulos, J. McDermid, A. Mavrides, C. Scheidler, and M. Maruhn,
“Model-based semiautomatic safety analysis of programmable systems in au-
tomotive applications,” in Advanced Driver Assistance Systems, 2001. ADAS.
International Conference on (IEE Conf. Publ. No. 483). 1ET, 2001, pp. 53-57.

P. David, V. Idasiak, F. Kratz, et al., “Towards a better interaction between
design and dependability analysis: FMEA derived from UML/SysML models,”
in Proceedings of ESREL 2008 and 17th SRA-EUROPE annual conference,
2008.

L. Grunske, P. Lindsay, N. Yatapanage, and K. Winter, “An automated failure
mode and effect analysis based on high-level design specification with behavior
trees,” in Integrated Formal Methods. Springer, 2005, pp. 129-149.

J. Elmqvist and S. Nadjm-Tehrani, “Tool support for incremental failure mode
and effects analysis of component-based systems,” in Proceedings of the confer-
ence on Design, automation and test in Europe. ACM, 2008, pp. 921-927.

J. Elmqvist, S. Nadjm-Tehrani, and M. Minea, “Safety interfaces for
component-based systems,” in Computer Safety, Reliability, and Security.
Springer, 2005, pp. 246-260.

M. A. de Miguel, J. F. Briones, J. P. Silva, and A. Alonso, “Integration of safety
analysis in model-driven software development,” Software, IET, vol. 2, no. 3,
pp. 260-280, 2008.

N. Bidokhti, “FMEA is not enough,” in Reliability and Maintainability Sympo-
sium (RAMS), 2009. TEEE, 2009, pp. 333-337.

(2015, Mar.) YOGITECH S.p.A. Official website. [Online]. Available:
http://www.yogitech.com /en

L. Pintard, J.-C. Fabre, M. Leeman, K. Kanoun, and M. Roy, “From safety
analyses to experimental validation of automotive embedded systems,” in De-
pendable Computing (PRDC), 2014 IEEE 20th Pacific Rim International Sym-
posium on. 1EEE, 2014, pp. 125-134.

L. Pintard, “From safety analysis to experimental validation by fault injection-
case of automotive embedded systems,” Ph.D. dissertation, INP Toulouse, 2015.

http://www.yogitech.com/en

Bibliography

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108

[109]

[110]

R. Mariani, P. Fuhrmann, and B. Vittorelli, “Fault-robust microcontrollers for
automotive applications,” in On-Line Testing Symposium, 2006. IOLTS 2006.
12th IEEE International. IEEE, 2006, pp. 6-pp.

R. Mariani, G. Boschi, and F. Colucci, “Using an innovative SoC-level FMEA
methodology to design in compliance with TEC61508,” in Proceedings of the
conference on Design, automation and test in Furope. EDA Consortium, 2007,
pp. 492-497.

R. Mariani and G. Boschi, “A systematic approach for failure modes and effects
analysis of system-on-chips,” in On-Line Testing Symposium, 2007. IOLTS 07.
13th IEEE International. TEEE, 2007, pp. 187-188.

R. Mariani, S. Motto, and M. Chiavacci, “Dependable microcontroller, method
for designing a dependable microcontroller and computer program product
therefor,” Dec. 30 2008, US Patent 7,472,051.

R. Mariani, “Method for performing failure mode and effects analysis of an
integrated circuit and computer program product therefor,” May 3 2011, uS
Patent 7,937,679.

K. F. Greb, A. Arora, and R. Mariani, “Tool for automation of functional safety
metric calculation and prototyping of functional safety systems,” Sept. 7 2013,
US Patent App. 14/020,802.

B. Hailpern and P. Tarr, “Model-driven development: The good, the bad, and
the ugly,” IBM systems journal, vol. 45, no. 3, pp. 451-461, 2006.

S. J. Mellor, A. N. Clark, and T. Futagami, “Model-driven development,” I[FEFE
software, pp. 14-18, 2003.

R. France and B. Rumpe, “Model-driven development of complex software: A
research roadmap,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 37-54.

A. MacDonald, D. Russell, and B. Atchison, “Model-driven development within
a legacy system: an industry experience report,” in Software Engineering Con-
ference, 2005. Proceedings. 2005 Australian. ITEEE, 2005, pp. 14-22.

J. E. Fernandes and R. J. Machado, “Model-driven software development for
pervasive information systems implementation,” in Quality of Information and
Communications Technology, 2007. QUATIC 2007. 6th International Confer-
ence on the. TEEE, 2007, pp. 218-222.

W. Ecker, W. Miiller, and R. Domer, “Hardware-dependent software,” in
Hardware-dependent Software. Springer, 2009, pp. 1-13.

B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C. Novello, “Gate-level-

191

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

192

accurate fault-effect analysis at virtual-prototype speed,” in International Con-
ference on Computer Safety, Reliability, and Security. Springer, 2016, pp.
144-156.

S. Shukla, “Metamodeling: What is it good for?” Design & Test of Computers,
IEEFE, vol. 26, no. 3, pp. 96-96, 2009.

S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of
model-driven software development,” IEEFE software, vol. 20, no. 5, pp. 42-45,
2003.

D. Becker, W. McMullen, and K. Hetherington-Young, “A flexible and generic
data quality metamodel,” in ICIQ), 2007, pp. 50-64.

D. A. Tamburri and P. Lago, “Supporting communication and cooperation in
global software development with agile service networks,” in Software Architec-
ture. Springer, 2011, pp. 236—243.

J. Tolvanen and S. Kelly, “Domain-Specific Modeling Languages for Embedded
System Development,” in ESWeek Workshop, 2012, p. 11.

A. Sangiovanni-Vincentelli, G. Yang, S. K. Shukla, D. A. Mathaikutty, and
J. Sztipanovits, “Metamodeling: An emerging representation paradigm for

system-level design,” Design & Test of Computers, IEEFE, vol. 26, no. 3, pp.
54-69, 2009.

M. J. Emerson, J. Sztipanovits, and T. Bapty, “A MOF-Based Metamodeling
Environment,” J. UCS, vol. 10, no. 10, pp. 1357-1382, 2004.

SPIRIT, “IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows,” IEEE Std 1685-2009, pp. C1—
360, 2010.

M. Zy$, E. Vaumorin, and 1. Sobanski, “Straightforward IP Integration with IP-
XACT RTL-TLM Switching,” in Design Automation Conference (DAC), USA,
2008.

W. Ecker, M. Velten, L. Zafari, and A. Goyal, “Metasynthesis for Designing
Automotive SoCs,” in Proceedings of The 51st Annual Design Automation Con-
ference on Design Automation Conference. ACM, 2014, pp. 1-6.

S. SIEMENS AG, “Reliability and quality specifications failure rates of compo-
nents,” 2005.

“Electric components - Reliability - Reference conditions for failure rates and
stress models for conversion (IEC 61709),” 2011.

Bibliography

[123]

[124]

[125]

[126]

[127]

[128]
[129]
[130]
[131]

[132]

[133]

[134]

[135]

[136]

[137]

“Electrical & Mechanical Component Reliability Handbook, exida, Sellersville,
PA,” 2006.

International Electrotechnical Commission and others, “IEC 61025 Fault Tree
Analysis,” 1990.

W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, “Fault tree
handbook,” DTIC Document, Tech. Rep., 1981.

W. Ecker, M. Velten, L. Zafari, and A. Goyal, “Metamodeling and code gen-
eration - The Infineon approach,” in ESWeek Workshop MeCoES, 2012, pp.
1-4.

A. Burger, W. Ecker, O. Bringmann, and W. Rosenstiel, “Meta constraints for
consistency checks of embedded system specifications,” in ESWeek Workshop
MeCoFES, 2012, pp. 5866.

Mako. (2013, Aug.) Mako 0.9.0 Documentation. [Online]. Available:
http://docs.makotemplates.org/en/latest /

Python. (2013, Aug.) Templating in Python. [Online]. Available: http:
//wiki.python.org/moin/Templating

M. Van den Brand and A. Serebrenik, Code generation with templates.
Springer, 2012, vol. 1.

R. Koebler. (2013, Aug.) Template Engines. [Online]. Available: http:
//www.simple-is-better.org/template/

M. Bozzano, A. Cimatti, A. F. Pires, D. Jones, G. Kimberly, T. Petri, R. Robin-
son, and S. Tonetta, “Formal design and safety analysis of air6110 wheel
brake system,” in International Conference on Computer Aided Verification.
Springer, 2015, pp. 518-535.

A. Joshi, M. P. Heimdahl, S. P. Miller, and M. W. Whalen, “Model-based
safety analysis,” Department of Computer Science and Engineering, University
of Minnesota, 2006.

GraphML. (2015, Feb.) http://graphml.graphdrawing.org/. [Online]. Available:
http://graphml.graphdrawing.org/

Isograph. (2015, Aug.) . [Online]. Available: http://www.isograph.com/
software/reliability-workbench /

edacentrum. (2016, Oct.) Research Project EffektiV. [Online]. Available:
https://www.edacentrum.de/effektiv/

M. Chaari, B.-A. Tabacaru, W. Ecker, C. Novello, and T. Kruse, “Bridging
the gap between probabilistic safety analysis and fault injection in virtual pro-

193

http://docs.makotemplates.org/en/latest/
http://wiki.python.org/moin/Templating
http://wiki.python.org/moin/Templating
http://www.simple-is-better.org/template/
http://www.simple-is-better.org/template/
http://graphml.graphdrawing.org/
http://www.isograph.com/software/reliability-workbench/
http://www.isograph.com/software/reliability-workbench/
https://www.edacentrum.de/effektiv/

Bibliography

138

[139]

[140]

[141]

[142]

[143]

144]

[145]

[146]

[147]

[148]

194

totypes,” in 1st International Workshop on Resiliency in Embedded Electronic
Systems, Amsterdam, The Netherlands, 2015, pp. 34-35.

M. Chaari, W. Ecker, T. Kruse, C. Novello, and B.-A. Tabacaru, “Efficient
exploration of safety-relevant systems through a link between analysis and sim-

ulation,” in Design and Verification Conference & Ezhibition DVCon Europe,
2016.

J.-H. Oetjens, N. Bannow, M. Becker, O. Bringmann, A. Burger, M. Chaari,
S. Chakraborty, R. Drechsler, W. Ecker, K. Griittner, et al., “Safety eval-
uation of automotive electronics using virtual prototypes: State of the art
and research challenges,” in Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE. 1EEE, 2014, pp. 1-6.

B.-A. Tabacaru, M. Chaari, W. Ecker, and T. Kruse, “A meta-modeling-based
approach for automatic generation of fault-injection processes,” DVCon Europe,
pp- 1-7, 2014.

——, “Runtime fault-injection tool for executable SystemC models,” DVCon
India, 2014.

S. Reiter, M. Becker, O. Bringmann, A. Burger, M. Chaari, R. Drechsler,
W. Ecker, T. Kruse, C. Kuznik, J. Laufenberg, et al., “Fehlereffektsimulation
mittels virtueller prototypen,” 2015.

Eclipse Modeling Framework. (2015, Feb.) EMEF. [Online|]. Available:
https://eclipse.org/modeling/emf/

Eclipse. (2015, Feb.) EMF Forms. [Online]. Available: http://www.eclipse.
org/ecp/emfforms/

C. Bolchini, A. Miele, and D. Sciuto, “Fault models and injection strategies in
SystemC specifications,” in Digital System Design Architectures, Methods and
Tools, 2008. DSD’08. 11th EUROMICRO Conference on. IEEE, 2008, pp.
88-95.

G. Beltrame, C. Bolchini, and A. Miele, “Multi-level fault modeling for
transaction-level specifications,” in Proceedings of the 19th ACM Great Lakes
symposium on VLS. ACM, 2009, pp. 87-92.

B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, K. Liu, N. Hatami, C. Novello,
H. Post, and A. von Schwerin, “Fault-Injection Techniques for TLM-Based

Virtual Prototypes,” in Forum on Specification and Design Languages (FDL)
— Work in Progress (WiP), 2015, pp. 1-4.

J. D. Musa, “The operational profile in software reliability engineering: an

https://eclipse.org/modeling/emf/
http://www.eclipse.org/ecp/emfforms/
http://www.eclipse.org/ecp/emfforms/

Bibliography

[149]

[150]

[151]

152]

[153]

154]

[155]

[156]

[157]

158

[159]

[160]

overview,” in Software Reliability Engineering, 1992. Proceedings., Third Inter-
national Symposium on. TEEE, 1992 pp. 140-154.

J. Reimpell, H. Stoll, and J. Betzler, The automotive chassis: engineering prin-
ciples. Elsevier, 2001.

S. Oshita, T. Mouri, and Y. Uemura, “Electric power steering system,” May 12
1987, US Patent 4,664,211.

M. Wiirges, “New electrical power steering systems,” Encyclopedia of Automo-
tive Engineering, pp. 1-17, 2014.

O. Wallmark, L. Harnefors, and O. Carlson, “Control algorithms for a fault-
tolerant pmsm drive,” in 31st Annual Conference of IEEE Industrial Electronics
Society, 2005. IECON 2005. 1EEE, 2005, pp. 7-pp.

Z. Rahman, M. Ehsani, and K. Butler, “Effect of motor short circuit on EV
and HEV traction systems,” SAE Technical Paper, Tech. Rep., 2000.

A. El-Antably, X. Luo, and R. Martin, “System simulation of fault conditions
in the components of the electric drive system of an electric vehicle or an in-
dustrial drive,” in Industrial Electronics, Control, and Instrumentation, 1993.
Proceedings of the IECON’93., International Conference on. ITEEE, 1993, pp.
1146-1150.

N. Bianchi, S. Bolognani, and M. Zigliotto, “Analysis of PM synchronous motor
drive failures during flux weakening operation,” in Power Electronics Specialists
Conference, 1996. PESC’96 Record., 27th Annual IEEFE, vol. 2. 1EEE, 1996,
pp. 1542-1548.

B. Cui, “Simulation of inverter with switch open faults based on switching
function,” in 2007 IEEFE International Conference on Automation and Logistics.
IEEE, 2007, pp. 2774-2778.

G. D. Gonzalez, J. G.-A. Fernandez, and P. A. Arboleya, “Diagnosis of a turn-
to-turn short circuit in power transformers by means of zero sequence current
analysis,” Flectric Power Systems Research, vol. 69, no. 2, pp. 321-329, 2004.

(2017) MIPS Technologies Inc., Mountain View, CA, USA. [Online|. Available:
http://www.mips.com

D. De Andrés, J.-C. Ruiz, D. Gil, and P. Gil, “Towards dependability bench-
marking of hardware cores for embedded systems,” in Workshop on Resilience
Assessment and Dependability Benchmarking at International Conference on
Dependable Systems and Networks. Citeseer, pp. 24-27.

B. Backs, “Power Aware Generation of an Embedded CPU,” Master’s Thesis,

195

http://www.mips.com

Bibliography

[161]

[162]

[163)]

[164]

[165]

[166]

167]

168

[169)]

[170]

196

Institute for Real-Time Computer Systems, Technische Universitat Miinchen,
2014.

A. Avizienis, J.-C. Laprie, B. Randell, et al., Fundamental concepts of depend-
ability. University of Newcastle upon Tyne, Computing Science, 2001.

T.-L. Chu, M. Yue, and W. Postma, “A summary of taxonomies of digital
system failure modes provided by the digrel task group,” Brookhaven National
Laboratory (BNL), Tech. Rep., 2012.

T. Malm and M. Kivipuro, Safety validation of complex components: Validation
by analysis. V'TT Technical Research Centre of Finland, 2000.

K. Korsah, M. Muhlheim, and D. Holcomb, “Industry Survey of Digital 1&C
Failures,” Citeseer, 2007.

W. R. Dunn, “Practical design of safety-critical computer systems,” Reliability
Press, 2002.

M. Chaari, W. Ecker, T. Kruse, and B.-A. Tabacaru, “Automation of
failure propagation analysis through metamodeling and code generation.”
ITG/GI/GMM-Workshop Testmethoden und Zuverladssigkeit von Schaltungen
und Systemen (TuZ), 2015.

B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C. Novello, “Safety Anal-
ysis on Multiple Abstraction Levels.” Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016.

——, “Fault-effect analysis on system-level hardware modeling using virtual
prototypes,” in Specification and Design Languages (FDL), 2016 Forum on.
IEEE, 2016, pp. 1-7.

——, “Speeding up safety verification by fault abstraction and simulation
to transaction level,” in Very Large Scale Integration (VLSI-SoC), 2016
IFIP/IEEFE International Conference on. 1EEE, 2016, pp. 1-6.

G. G. Wang, “Definition and review of virtual prototyping,” J. Comput. Inf.
Sci. Eng., vol. 2, no. 3, pp. 232-236, 2002.

9 Glossary

ASIL decomposition

redundant apportioning of safety requirements to different elements which are
sufficiently independent, aiming at the reduction of the ASIL of the redundant
safety requirements allocated to the independent elements [2] (35, 36, 197)

ASIL tailoring

modification of assigned ASILs to safety requirements through ASIL decompo-
sition [2] (35)

availability
dependability of a system with respect to the readiness for correct service [21]
(1, 2, 57)

cascading failure

type of dependent failure depicting a failure of an item element which causes
the failure one or more other element of the same item [2] (48, 49, 110, 200)

common cause failure

type of dependent failure depicting a failure of two or more elements of an item
which results from a single specific event or root cause [2] (48, 49, 110)

component

non-system level element which can be logically and/or technically separated
from other elements and which includes one or more hardware parts or one or
more software units [2] (29, 203)

configuration management
discipline of identifying the components of an evolving system to control changes
and maintain continuity and traceability throughout the lifecycle [1] (30)
deductive analysis

safety analysis performed top-down starting from problematic situations on
system-level and looking for the corresponding causes in the components (9,

197

Glossary

45, 48, 49, 95, 102, 178)
dependability

the ability of a computing system to deliver a service that can be justifiably
trusted [21] (1-4, 53-57, 149, 170, 171, 177, 181, 197, 203, 204, 207)

dependent failure

dependent failures are failures whose probability of simultaneous or successive
occurrence cannot be simply expressed as the product of the independent oc-
currence probabilities of each of them [2] (44, 48, 49, 108-111, 145, 197)

diagnostic coverage

proportion of the failure rate of a hardware element which is detected or con-
trolled by the implemented safety mechanisms, in other words fraction of dan-
gerous failures detected by automatic diagnostic tests [1, 2] (9, 10, 43, 46, 49,
61, 62, 94, 99, 101, 102, 134, 143, 145, 146, 166, 167)

diagnostic point

location in a hardware part or in a software unit where the response of an
already implemented safety measure can be monitored (9, 10)

dual-point fault

single fault which in combination with another independent fault leads to a
so-called dual-point failure resulting directly into a safety goal violation [2] (99,
211)

E/E system

system consisting of Electrical and/or (potentially programmable) Electronic
elements [2] (1-5, 11, 13, 22, 177, 200, 205, 206)

E/E/PE system

system for control, protection or monitoring based on one or more Electrical /
Electronic / Programmable Electronic devices, including power supplies, sen-
sors, communication paths, and actuators [1] (22, 23, 27-29, 33, 200, 205-207)

element

system or part of a system including hardware parts as well as software units
and performing one or more safety functions [1, 2| (29, 45, 197-199, 201, 203,
204, 206, 207, 209)

198

Glossary

Equipment Under Control

equipment, machinery, apparatus or plant used for manufacturing, process,
transportation, medical activities, etc. [1] (22, 205, 212)

error

discrepancy between a computed, observed or measured value or condition and
the true, specified, or theoretically correct value or condition [1, 2] (24, 48, 50,
51, 53, 84, 144, 149, 171, 172)

failure

non-compliance of a system’s delivered service with its specified service [21], in
other words the inability of an given element or system to perform its required
function [2] (3, 4, 9, 19-22, 24, 26, 28, 30, 35, 39, 41, 43-51, 53-60, 69, 81,
84-94, 96, 99, 100, 103, 104, 106, 110, 112, 144, 156, 157, 159, 160, 162-164,
171, 172, 177-180, 197, 198, 202, 203, 206-208)

failure catalogue

artefact or document where all known failure modes of a certain technology,
of an element or system family, or within an organization are compiled and
classified in a structured way (e.g., database) (14, 134, 135, 145)

failure effect

consequence of a the occurrence of a failure mode within an element (8, 62, 68,
94, 100, 101, 143, 144, 153)

failure mode

way in which an element, a system, or an item fails [21, 2] (14, 47, 49, 56, 58,
60, 62, 68, 69, 97-100, 102, 111, 112, 131, 133-135, 143-145, 150, 152, 153, 159,
160, 167, 170-172, 174-176, 199, 200, 204)

failure rate

frequency of element or system failure, expressed in failures per unit of time
(FIT) and commonly denoted by the Greek letter A (9, 14, 20, 43, 46, 47, 60,
94, 96, 98-100, 102, 103, 134-136, 145, 198, 203, 204)

fault

abnormal condition, such as defect in a hardware part (e.g., short circuit, broken
wire, etc.), that might lead to an element or item failure [2] (3, 9-11, 24, 37-39,
43, 44, 48, 50, 51, 53, 54, 58, 60, 61, 68, 69, 81, 84, 99, 106, 144, 145, 151,
159-161, 164, 166, 167, 171-176, 198, 200, 203, 204, 206, 208)

199

Glossary

fault effect simulation

simulation-based safety evaluation technique applied in correlation with fault
injection to monitor the effects of faults on systems (14)

fault injection

deliberate introduction of faults into a target system [52], and execution of
controlled experiments where the system’s behavior is observed in presence of
those faults (vii, 5, 9-16, 32, 50, 51, 53, 61-63, 65, 68-70, 84, 85, 94, 96, 113,
114, 117, 118, 129, 143, 144, 146, 148-151, 153, 155, 156, 165-167, 170, 173-175,
177, 180, 200, 203, 204, 207-209)

fault modeling

representation of failure modes resulting from faults which is generally based
on field experience or on reliability handbooks [2] (14)

fault tolerant time interval

time-frame in which the presence of one or more faults in a system can be
tolerated before the occurrence of a hazardous event [2] (37, 40)

fault tree

acyclic graphical representation used in the Fault Tree Analysis (FTA) scope
including gates and logical connectors to structure successive levels of events [41,
42, 43] (48, 49, 56-59, 68, 69, 87, 96, 103, 104, 106-108, 114, 115, 129, 136-142,
156, 157, 162, 164, 178, 179)

freedom of interference

absence of cascading failures between two or more elements which have the
potential to violate a safety requirement [2] (48, 49)

functional safety

part of the overall safety that depends on a system or equipment operating
correctly in response to its inputs, more precisely absence of unreasonable risk
due to hazards caused by malfunctioning behavior of E/E system [1, 2] (vii, 1,
2,4, 5, 11, 16, 19-21, 26-30, 32, 33, 38, 41, 47, 49, 54, 60-62, 69, 82, 84, 89,
92, 94, 155, 158, 159, 177, 179, 181, 200)

functional safety assessment

investigation based on evidence to judge the functional safety achieved by one or
more safety-related E/E/PE systems and/or other risk reduction measures [1]
(26, 32, 41)

200

Glossary

functional safety concept

set of functional safety requirements along with their associated information,

their allocation to architectural elements, and their necessary interactions to
fulfill the safety goals [2] (7, 29, 31, 32, 38-41, 44-46, 87, 105, 118, 138, 139,
146, 152, 163, 178)

functional safety requirement

implementation-independent specification of a safety behavior or a safety mea-
sure derived from the analysis of the safety goals and including all relevant
safety-related attributes such as the corresponding ASIL [2] (7, 29, 31, 35, 37—
42,44, 46, 87, 94, 201, 207, 209)

functional verification

procedure applied to determine whether a given design conforms to its specifi-
cation and fulfills all its functional requirements (5, 10, 11)

hard error
permanent change to the physical circuit [1] (100)
hardware part

piece of hardware that cannot be sub-divided [2] (8, 29, 32, 40, 41, 43, 46, 197,
198, 203, 207, 208)

harm

physical injury or damage to human health [2] (7, 19-21, 29, 33-35, 37, 39, 42,
201, 204, 208, 209)

hazard

possible source of harm resulting from a malfunctioning behavior of an item [2]
(2,7, 10, 20, 21, 31, 33, 35-37, 44, 46, 49, 56, 123, 201, 205, 208)

Hazard Analysis and Risk Assessment

method to identify and categorize hazardous events of items and to specify
safety goals and ASILs related to the prevention or mitigation of the associated
hazards in order to avoid unreasonable risk [2] (29, 31, 33, 35, 36, 42, 44, 84,
205, 213)

hazardous event

hazard combined with an operational situation that might occur during the
product (e.g., vehicle) lifetime (e.g., parking, driving, maintenance, etc.) [2] (7,
21, 31, 33-35, 37, 47, 58, 103, 145, 200, 201, 205)

201

Glossary

inductive analysis

safety analysis performed bottom-up starting from local component malfunc-
tions and moving towards the corresponding effects on the complete system (9,
45, 47, 49, 95, 96, 178)

item

system or group of systems that implements a function at the vehicle level, to
which ISO 26262 is applied [2] (21, 29-33, 35-38, 40-45, 197, 199, 201-206)

latent fault

multiple-point fault whose presence is not detected by a safety mechanism nor
perceived by the driver (within a certain time interval) [2] (43, 99, 202)

latent fault metric

metric reflecting a system’s robustness against latent faults, which is evaluated
with respect to the coverage offered by safety mechanisms, to the recognition
of faults by the driver before the safety goal violation, and to the properties of
the design itself enabling a primarily high amount of safe faults (99, 100, 206,
213)

maintainability

ability of a system under stated usage conditions, to be retained and/or restored
to a state where it can deliver its required service (57)

malfunctioning behavior
failure or unintended behavior of an item [2] (200, 201)
Markov model

stochastic models, which are represented as state diagrams, and used to model
changing systems over time under the assumption that the future state only
depends on the current state (i.e., the sequence of previous states is not relevant
for the determination of the new state) [47] (45, 49)

metamodel

abstraction of a given model depicting its properties, describing the relationships
between its elements, and defining the constraints they must comply to (vii, 54,
55, 63, 70, 73-76, 83-85, 87, 88, 90-94, 96, 101, 102, 106-111, 114-122, 130, 131,
133-135, 137, 138, 140, 144, 145, 149, 150, 155, 157, 163, 165, 175, 177-180)

202

Glossary

multiple-point fault

fault which, in combination with other independent faults, leads to a multiple-
point failure which results in the violation of a safety goal [2] (43, 99, 202,
214)

mutant
altered version of a system component used in the fault injection scope to cause
a non-compliant behavior with the system specification [51, 52, 53] (51)

New Symbolic Model Verifier

symbolic model checker which supports state-of-the art verification techniques,
such as those based on Binary Decision Diagrams (BDD) or on Boolean Satis-

fiability (SAT) [81] (214)
observation point

location in a hardware part or in a software unit where the effect of an injected
fault can be monitored (9)

operating mode

functional state that can be perceived on a specific item or element (e.g., system
active, system off, degraded operation, etc.) [2] (22, 33, 37, 40, 204)

operational
a system is considered operational when it correctly delivers the service which
is expected from it (2, 22, 33-35, 49)

preliminary architectural assumption

supporting data in the context of the ISO 26262 which is derived from external
sources (e.g., customer requests) and which provides information about the
intended system architecture at an early development stage [2] (7, 31, 36, 39—
41)

random hardware failure

failure unpredictably occurring during the hardware lifetime and following a
probability distribution that can be estimated through hardware failure rates [2]
(26, 28, 37, 39, 42-45, 48, 49, 97, 106, 206)

reliability

dependability of a system with respect to the continuity of its service deliv-
ery [21] (1, 2, 14, 57, 134, 145, 167, 177, 200)

203

Glossary

residual fault

portion of faults related to a failure mode with potential to violate a safety goal
which is not covered by the safety mechanism implemented to mitigate that
failure mode [2] (43, 98, 99, 208, 215)

residual risk

remaining risk after safety measures are deployed [2] (7, 21, 29, 35, 37)

risk
probability of occurrence of harm combined with the severity of that specific
harm [2] (6-8, 19-22, 24, 26, 28, 33-35, 37, 38, 41, 47, 49, 200, 204, 206, 207,
209)

robustness
ability of a system to function correctly even in the presence of invalid inputs
and/or stressful environmental conditions and to provide safe behavior at its
boundaries [2] (2, 3, 53, 84, 99)

saboteur
additional piece of hardware or software used in the fault injection scope which
gets activated only when a fault is being injected in order to alter the correct
values of specified signals or to modify certain timing characteristics [51, 52, 53]
(51)

safe fault
fault whose occurrence does not significantly increase the probability of violation
of a safety goal [2] (43, 98, 99, 143, 166, 202, 208)

safe state
an operating mode of an item without an unreasonable level of risk ! [2] (1, 37,
39, 40, 49, 205-207)

safeness
proportion of the failure rate of a hardware element which does not contribute
to the violation of the safety goals [2] (9)

safety

dependability of a system with respect to the absence of harmful failures with
catastrophic consequences on its human user(s) and its surrounding environ-

1 A safe state must not necessarily implement the intended functionality of the item. Therefore
modes like switched off or modes with degraded functionality can be considered as safe states.

204

Glossary

ment [21], in other words: freedom of system operation from the occurrence of
catastrophic failures [26] (1, 2, 4, 9, 10, 13, 14, 19, 20, 53, 55-60, 66—69, 77,
8284, 87, 88, 90, 92, 95, 97-99, 101, 111, 177, 179, 200, 206)

safety analysis

branch of safety engineering dealing with analyzing safety threats, defining their
potential effects and assessing their severity, identifying appropriate safety mea-
sures, and providing qualitative and quantitative evidence about the achieve-
ment of safety integrity levels (vii, 5, 8-16, 19, 30, 32, 42-47, 49, 50, 53-55,
58-63, 65-68, 70, 81-85, 94-97, 102, 108, 111, 113, 114, 117, 129, 138, 143-146,
148-153, 155, 156, 165, 166, 170, 174, 175, 177, 178, 180, 181)

safety case

evidence-based argumentation about the completeness and the effective ful-
fillment of safety requirements for an item which is compiled from the work
products of the different safety activities of the safety lifecycle [2] (41)

safety compliance

state of being in accordance with established safety standards and regulations,
such as IEC 61508 [1] and ISO 26262 [2] for E/E systems (4, 5, 205)

safety culture

policies and strategies applied within an organization to enable and support
developing, producing and operating safety-related systems, such as establishing
dedicated rules, offering appropriate trainings, and deploying safety compliant
processes and reporting mechanisms [2] (30)

safety evaluation

generic term used to denote both analysis-based activities and simulation-based
activities which are commonly applied in the industry to provide evidence about
the safety level of a certain product (vii, 4, 5, 811, 13, 14, 19-23, 32, 50, 61-63,
65-70, 72, 77, 81, 84, 94, 113-115, 129, 133, 143, 145-147, 155-157, 166, 180,
181, 200)

safety function

function to be implemented by a safety-related E/E/PE system that is intended
to achieve or maintain a safe state for the Equipment Under Control (EUC), in
respect of a specific hazardous event [1] (22, 24, 28, 29, 40, 198, 206, 207)

safety goal

top-level safety requirement derived as a result of the Hazard Analysis and Risk
Assessment (HARA) and which can be related to multiple hazards [2] (7, 28,

205

Glossary

29, 31-33, 3542, 44, 45, 47, 48, 39, 94, 97, 99, 105, 106, 121, 138-141, 164,
198, 201-204, 207, 208)

safety integrity

probability that a safety-related E/E/PE system satisfactorily performs the
specified safety functions under all the stated conditions within a stated period
of time [1] (24, 206)

safety integrity level

extent of safety integrity corresponding to a provided or targeted level of risk
reduction by a specific safety function or safety measure, ranging from the least
to the most stringent level from SIL 1 to SIL 4 in IEC 61508 and from ASIL A
to ASIL D in ISO 26262 [1, 2| (vii, 8, 9, 11, 13, 22, 24, 26, 28-31, 35, 37, 60,
61, 87, 94, 105, 143, 146, 166, 205-207, 209, 211, 215)

safety lifecycle

sum of stages that an item goes through from concept until decommissioning,
i.e., all necessary activities involved in the implementation of the involved safety-
related systems, starting at the concept phase of a project and finishing when
they are no longer available for use [1, 2] (vii, 4, 5, 810, 13, 22, 23, 26, 29-33,
37, 38, 41, 42, 70, 82, 87, 114, 116, 118, 155, 156, 178-180, 205, 207, 209)

safety measure

activity or technical solution to avoid and/or control systematic failures, to
detect and/or control random hardware failures, and to mitigate their harmful
effects [2] (4, 8-11, 13, 24, 35, 38, 39, 42, 99, 100, 106, 110, 111, 121, 143, 144,
150, 167, 175, 178, 198, 201, 204-207)

safety mechanism

technical reflection of safety measure which is implemented by E/E functions
or elements or by a different technology and which aims at maintaining the safe
state by detecting faults and/or controlling failures [2] (33, 35, 37, 38, 43, 44,
46, 50, 61, 62, 87, 89, 98, 99, 111, 118, 134, 152, 153, 167, 198, 202, 204, 208)

safety metric

metric used to assess the design effectiveness with respect to safety (e.g., Single-
Point Fault Metric (SPFM) and Latent Fault Metric (LFM) [2]) (9, 13, 43, 46,
97, 99, 103)

safety requirement

requirement which is defined with respect to the safety of a system and in
correlation with the intended safety integrity level and which can be classified

206

Glossary

for example as a safety goal, as a functional safety requirement, as a technical
safety requirement, as a hardware safety requirement, or as a software safety
requirement ? [2] (4, 5, 8, 10, 13, 16, 22, 26, 32, 35-38, 41-46, 48, 50, 61, 84,
94, 97, 98, 109, 138, 145, 157, 180, 181, 197, 200, 205)

safety validation

safety activity prescribed in the ISO 26262 context and performed through
examinations and tests to ensure the sufficiency and the achievement of the
defined safety goals [2] (8, 19, 22, 28, 30, 32, 41, 42, 44)

safety verification

branch of safety engineering dealing with verifying the effectiveness of safety
measures through simulation-based techniques such as fault injection (19, 32,
62, 117, 143, 147)

safety-critical

a safety-critical system is a system whose malfunction or failure may potentially
lead to a serious human injury or to loss of life (1, 3, 20, 58, 84, 99, 108, 170)

safety-related

(i) character of an element or a system whose failures increase the overall
risk when they concur with other failures affecting different elements or a sys-
tems [1, 30, 26]

(ii) character of a system which implements the required safety functions nec-
essary to achieve or maintain a safe state for the EUC and which is intended to
achieve the necessary safety integrity level for those safety functions either on
its own or with other safety-related E/E/PE systems [1]

(iii) character of activity performed during the safety lifecycle which is not com-
monly performed in safety-independent development cycles

(4-8, 13, 15, 2024, 26-30, 41, 43, 60, 83, 99, 200, 205-207)

safety-relevant

character of an element or a system whose failures increase the overall risk when
they concur with other failures affecting different elements or a systems [1, 30,
26] (20, 21, 97, 100, 172)

security

dependability of a system with respect to its ability to prevent unauthorized
data access and/or handling [21] (1, 2, 4, 177, 181)

2 Hardware and software safety requirements are the most detailed and implementation-specific
requirements to be fulfilled by hardware parts or software units

207

Glossary

sensitivity zone

zone in a hardware part or in a software unit which is vulnerable to the occur-
rence of certain faults and which is consequently suitable for the according fault
injection (9)

service

system behavior as it is perceived by another special system(s) interacting with
the considered system: its user(s) [21] (1, 2, 53, 197-199, 202, 203)

severity

estimation of the harm extent which might affect one or more persons in hazard
situations [2] (7-9, 13, 21, 31, 33-35, 47, 58, 60, 98, 100, 102, 204, 205)

single-point fault

fault in an element that is not covered by a safety mechanism and that leads
directly to the violation of a safety goal [2] (43, 99, 208, 215)

single-point fault metric

metric reflecting a system’s robustness against single-point faults and residual
faults, which is evaluated with respect to the coverage offered by safety mecha-
nisms and to the properties of the design itself enabling a primarily high amount
of safe faults (99, 100, 206, 215)

soft error

erroneous change to data content but no change to the physical circuit itself [1]

(100, 175)
software unit

atomic piece of the software architecture which can be tested standalone [2] (8,
29, 32, 40, 41, 43, 197, 198, 203, 207, 208)

system

entity that contains different interacting components (relating at least one sen-
sor, one controller and one actuator in the ISO 26262 context [2]) and that is
able to interact with other similar entities [21] (29, 30, 45, 197-200, 202-205,
207-209)

systematic failure

failure which is deterministically correlated with a specific cause and which
can only be avoided through design or manufacturing changes, documentation
refinements, modifications in the operational procedures, or similar factors [2]
(26, 28, 42-45, 49, 206)

208

Glossary

technical safety concept

set of technical safety requirements along with their associated information,

their allocation to system elements, and their implementation by the system
design [2] (7, 29, 32, 38, 40, 41, 99, 105)

technical safety requirement

implementation-specific requirement derived from associated functional safety
requirements [2] (7, 29, 30, 32, 35, 37, 38, 40-42, 44, 207, 209)

threat

potential violation of the safety integrity level resulting in immediate harm (13,
56, 58, 144, 205)

unreasonable risk

unacceptable risk in a specific context according as judged by valid societal
moral concepts [2] (33, 200, 201)

verification

confirmation by examination and provision of objective evidence that the re-
quirements of a safety lifecycle phase are complete, correctly specified, and
effectively fulfilled [1, 2] (30, 32, 35, 41, 44)

verification plan

artefact or document describing how a given element or system is verified, listing
all verification activities along with their nature and timing, and including a
series of directed test cases used to exercise the device in order to assess the
fulfillment of its functional requirements (10, 11)

virtual prototype

an abstracted representation of a physical product which can be displayed,
analyzed, and tested with respect to different life-cycle aspects such as design,
manufacturing, and service similarly to a real physical model [170] (61, 77, 120,
143, 149, 156, 166)

workload

suitable test case data for fault injection (9)

209

10 Acronyms

API
Application Programming Interface (75, 115, 116, 118, 131, 137)
ASIL

Automotive Safety Integrity Level (4, 5, 7, 9, 28, 30, 31, 33, 35-38, 42, 48, 197,
201, 206)

BSCU
Braking System Control Unit (123-126)

CPU
Central Processing Unit (156, 167, 169, 171, 172)

DFA

Dependent Failure Analysis (9, 44, 48, 49, 62, 63, 66, 68, 84, 95, 96, 108-112,
114, 130, 143-146, 148, 150, 155, 180)

DFT

Dynamic Fault Tree (48)
DNF

Disjunctive Normal Form (93)
DPF

Dual-Point Fault (99)
DSL

Domain Specific Language (73, 74)
DUT

Device Under Test (11)

211

Acronyms

EDA

Electronic Design Automation (11, 76)
EMF

Eclipse Modeling Framework (147)
EPS

Electric Power Steering (156-164)
ESACS

Enhanced Safety Assessment for Complex Systems (58)
ESL

Electronic System Level (76)
ETA

Event Tree Analysis (43, 45, 46, 49)
EUC

Equipment Under Control (22, 205, 207)

FIT

Failure In Time (99, 199)
FLM

Failure Logic Modeling (55, 56, 58, 84-87, 89, 90, 92, 93, 129, 156, 178)
FMEA

Failure Modes and Effects Analysis (5, 9, 42-47, 49, 56-63, 95-97, 113, 213)
FMECA

Failure Modes, Effects, and Criticality Analysis (47, 60, 61)
FMEDA

Failure Modes, Effects, and Diagnostic Analysis (vii, viii, 14, 37, 42, 43, 4648,
63, 66, 68, 69, 84, 87, 95-102, 109, 111-115, 117, 118, 129-134, 136, 143-148,
150, 155, 156, 166, 167, 171, 173-176, 178-180)

FPGA
Field-Programmable Gate Array (51)

212

Acronyms

FPTC

Failure Propagation and Transformation Calculus (56, 57, 86)
FPTN

Failure Propagation and Transformation Notation (56, 57, 86)
FTA

Fault Tree Analysis (vii, viii, 5, 9, 42-46, 48, 58, 61-63, 66, 68, 84, 95, 96, 102
106, 108, 109, 111, 114, 117, 118, 120-131, 136-138, 141-148, 150, 155-157,
178-180, 200)

GUI

Graphical User Interface (69, 70, 115, 117, 119-122, 124, 125, 131, 137, 138,
141, 146, 147, 151, 163, 167, 175)

HARA
Hazard Analysis and Risk Assessment (7, 29, 31, 33, 35, 36, 42, 44, 84, 205)
HAZOP
HAZard and OPerability study (44-47)
HCID
Hot-Carrier Induced Degradation (3)
HiP-HOPS
Hierarchically Performed Hazard Origin and Propagation Studies (56, 57, 59,
86)
IF-FMEA
Interface Focused-FMEA (57)
IP
Intellectual Property (74)
ISAAC

Improvement of Safety Activities for Aeronautical Complex systems (58)

LFM
Latent Fault Metric (99, 100, 206)

213

Acronyms

MBSA
Model-Based Safety Analysis (58)
MCU
Microcontroller Unit (161, 163)
MDA
Model Driven Architecture (71-73)
MDD
Model Driven Development (70-73, 75, 77, 82, 83)
MetaFPA

Metamodeling-based Failure Propagation Analysis (83, 85-94, 112, 117-122,
124-129, 131, 133, 137-142, 156, 157, 162-164, 177-180)

MIPS

Microprocessor without Interlocked Pipeline Stages (166171, 173-175)
MOF

Meta Object Facility (74)
MPF

Multiple-Point Fault (99)

NBTI

Negative-Bias Temperature Instability (3)
NuSMV

New Symbolic Model Verifier (58)

OMG
Object Management Group (71, 73, 78)

PIM
Platform Independent Model (71, 72)
PMSM
Permanent Magnet Synchronous Motor (159-161)

214

Acronyms

PSM
Platform Specific Model (71-73)
PWM
Power Width Modulation (161, 162, 164)

QVT
Query/View/Transformation (78)

RBD
Reliability Block Diagram (9, 43, 45, 46, 49, 50, 95)

RF

Residual Fault (99)
RTL

Register Transfer Level (51, 76, 77, 115, 149)
RWB

Reliability Work Bench (129, 138, 141)
SENT

Single Edge Nibble Transmission (161)
SIL

Safety Integrity Level (24, 28, 61, 206)
SoC

System-on-Chip (53, 62, 74, 76, 77)
SPF

Single-Point Fault (99)
SPFM

Single-Point Fault Metric (99, 100, 206)
SQL

Structured Query Language (134)

215

Acronyms

TFA

Tabular Failure Annotation (57)
TFT

Temporal Fault Tree (48)
TLM

Transaction Level Modeling (77)

UMD
Unified Model of Dependability (54)
UML
Unified Modeling Language (54, 57, 58, 60, 71, 73, 74, 91, 101, 106, 110, 116,
118, 130)
VHDL
VHSIC Hardware Description Language (51, 116, 131, 149)
VHSIC
Very High Speed Integrated Circuit (216)

WBS
Wheel Braking System (122, 123)

XMI
XML Metadata Interchange (116)
XML
Extensible Markup Language (75, 87, 89, 94, 116, 120, 126, 138, 141, 179, 216)

216

	Introduction
	Our Life in the Age of Electronics
	Shifting from Functionality to Dependability
	Functional Safety in the Automotive Context
	General Overview of ISO 26262
	Safety-Related Activities
	Safety Analysis Approaches
	Fault Injection Techniques
	Correlations with Functional Verification

	Motivation and Main Objectives
	Motivation
	Informality and Subjectivity in Safety Analysis
	Costly Manual Tasks in Safety Analysis
	Gap Between Safety Analysis and Fault Injection

	Main Objectives
	Formalization and Generalization
	Tool-Based Support and Automation Enhancements
	Link Between Safety Analysis and Fault Injection

	Outline

	State of the Art
	Functional Safety: A General Overview
	Basic Concepts and Terms – IEC 61508
	Application Areas and Related Standards

	Automotive Functional Safety: ISO 26262
	Overall Safety Lifecycle
	Hazard Analysis and Risk Assessment
	ASIL: Automotive Safety Integrity Level
	Safety Goals
	Safety Concept and Safety Requirements
	Functional Safety Concept
	Functional Safety Requirements
	Technical Safety Concept
	Technical Safety Requirements

	Safety Validation
	Safety-Oriented Analyses
	Goals
	Application Scope
	Classification Criteria
	HAZOP: Hazard and Operability Study
	FMEA: Failure Modes and Effects Analysis
	FTA: Fault Tree Analysis
	DFA: Dependent Failure Analysis
	Other Analysis Approaches

	Fault Injection and Simulation

	Related Work
	Formalization Approaches for Dependability and Safety
	Proposals for Generic Dependability Modeling
	FLM: Failure Logic Modeling
	Failure Propagation and Transformation Notation
	Failure Propagation and Transformation Calculus
	Hierarchically Performed Hazard Origin and Propagation Studies

	Other Contributions

	Safety Analysis Automation
	Fault Tree Synthesis
	FMEA Automation

	Linking Analysis and Simulation for Safety Evaluation Purposes
	Assisting Fault Insertion with FMEA
	Yogitech's Approach

	Overall Requirements and Solution Fundamentals
	Overall Requirements
	Structure and Formalism
	Flexibility and Extendability
	Automation Support
	Interoperability and Data Exchange
	Enhanced Usability

	Solution Fundamentals
	Model-Driven Development
	Metamodeling and Code Generation
	Metasynthesis
	Data Transformation and Mapping

	Metamodeling-Based Formalization of Functional Safety Analysis
	Introduction
	Main Objectives
	Technical Enablers
	General Organization

	MetaFPA: Metamodeling-Based Failure Propagation Analysis
	Methodology Overview
	Failure Logic Modeling Extensions
	Metamodel for Failure Propagation Analysis
	System Modeling Aspects
	Failure Modeling Aspects
	Further Metamodel Details

	Metamodels for Functional Safety Analysis
	Metamodel-Based FMEDA Formalization
	Traditional FMEDA Flow
	Traditional FMEDA Documentation
	FMEDA Metamodel

	Metamodel-Based FTA Formalization
	Traditional FTA Flow and Documentation
	FTA Metamodel

	Metamodel-Based DFA Formalization
	Traditional DFA Flow and Documentation
	DFA Metamodel

	Model-Driven Support of Functional Safety Evaluation
	Introduction
	Main Objectives
	Underlying Environment
	General Organization

	MetaFPA Framework for Failure Propagation Analysis
	General Setting
	MetaFPA GUI
	Failure Propagation Graphs Generator
	Output Format
	Generation Algorithm

	Synergies with FMEDA and FTA

	Safety Analysis MetaLibs
	FMEDA MetaLib
	General Setting
	Failure Modes Database

	FTA MetaLib
	General Setting
	Transition from MetaFPA to Fault Trees
	Fault Tree Synthesis

	SaVer: Safety Verification Framework
	General Setting
	SaVer GUI
	Mapping between Safety Analysis and Fault Injection
	Mapping Flow
	Matching Algorithms

	Application
	Overview
	Fault Tree Synthesis at System Level
	Case Study: Electric Power Steering
	Introduction: Electric Power Steering (EPS) Systems
	EPS Failure Analysis: Literature Review
	Considered EPS Subsystem Structure

	Application Flow
	Structure Model of EPS in MetaFPA
	Failure Logic Model of EPS in MetaFPA
	Applying the Synthesis Algorithm

	Linking FMEDA to Fault Injection and Simulation in Virtual Prototypes
	Case Study: Microprocessor with MIPS Architecture
	Introduction: MIPS Architecture
	Considered NanoMIPS CPU Model
	Microprocessor Failure Modes: Literature Review

	Application Steps
	Data Mapping from FMEDA to Fault Injection
	Fault Library Generation
	Back-Annotation

	Summary and Outlook
	Bibliography
	Glossary
	Acronyms

