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Abstract

Crystallization is an important step in many industries, used for purification and product recovery. The

finally obtained crystalline product passes a set of steps such as filtration or tableting, where crystal

size, shape and degree of agglomeration play an important role. Furthermore, aggregation leads to

liquid inclusion which decreases product purity. This motivates the need for characterization methods

capable of characterizing the crystal shape and measuring the degree of agglomeration. In particular,

the ability to fully describe the shape, orientation and position of each primary particle in a crystal aggre-

gate can lead to better understanding of the aggregation mechanism, which would facilitate designing

a product with specific properties.

Recently, significant amount of work has been dedicated to designing image-based methods for

crystal characterization, including both aggregate recognition and detailed shape measurement of sin-

gle crystals. Two-dimensional (2D) imaging techniques can be implemented in-line or on-line, thus

providing a large amount of data and reducing the issues regarding sampling. However, they rarely

provide the complete geometric information available with the off-line three-dimensional (3D) images.

In this work, both approaches were investigated regarding their capabilities to characterize certain as-

pects of a sample of crystals.

Microcomputed tomography (µCT) provides 3D images and is used for full shape characterization

of each particle in a sample. A method for identifying the shape of single crystals from such images is

developed and further extended to finding the shape, position and orientation of each primary particle in

a crystal aggregate. In cooperation with the Chair of Process Systems Engineering, Otto-von-Guericke-

University of Magdeburg, this method was applied to measure the orientation between primary particles

in potash alum aggregates. In the conducted experiments it was observed that primary particles tend

to have the same orientation significantly more often than expected when random collision is assumed.

In contrast to this detailed characterization of individual particles, 2D imaging can be adopted for

measuring the agglomeration degree. Agglomeration degree is a property of a sample of crystals and

requires simpler processing of a large number of individual particles. The method involves automatic

classification of the imaged objects based on a computed set of image descriptors. This study was

conducted in cooperation with the Laboratory of Plant and Process Design, TU Dortmund University.

The accuracy of the artificial neural network classifier with respect to the selection of image descriptors

and the training set composition was investigated.
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Kurzzusammenfassung

Kristallisation stellt in vielen Branchen einen wichtigen Prozessschritt dar und wird im Bereich der Pro-

duktaufreinigung und Produktrückgewinnung eingesetzt. Die erzeugten Kristalle durchlaufen weitere

Prozessschritte wie Filtration oder Tablettierung, wobei Größe, Form und Agglomerationsgrad der

Kristalle eine wichtige Rolle spielen. Des Weiteren kann Aggregation zum Flüssigkeitseinschluss

führen und dadurch die Produktreinheit verringern. Dies dient als Motivation für die Entwicklung neuer

Messverfahren zur Charakterisierung von Kristallform und Agglomerationsgrad des Produktes. Beson-

ders die Möglichkeit, sowohl Form als auch Orientierung und Position jedes einzelnen Primärpartikels

im Kristallaggregat beschreiben zu können, ist dabei wichtig. Dadurch können die Aggregationsmech-

anismen genauer untersucht werden, was die Entwicklung von Produkten mit gewünschten Eigen-

schaften ermöglicht.

In den letzten Jahren wurde intensiv an der Entwicklung von bildbasierten Methoden zur Chara-

kterisierung von Kristallen gearbeitet. Dies beinhaltete sowohl die Erkennung von Aggregaten als auch

die detaillierte Formcharakterisierung der einzelnen Kristalle. Zweidimensionale (2D) bildgebende Ver-

fahren können dabei sowohl in-line als auch on-line in den Prozess implementiert werden. Dadurch

können zwar die Schwierigkeiten einer Probennahme reduziert und eine große Menge an Daten gener-

iert werden. Eine komplette geometrische Information, wie sie durch off-line erstellte dreidimensionale

(3D) Bilder vorhanden ist, ermöglichen diese Verfahren jedoch kaum. In dieser Arbeit wurden beide

Ansätze hinsichtlich ihrer Möglichkeiten zur Charakterisierung bestimmter Kristalleigenschaften unter-

sucht.

Mikrocomputertomographie (µCT) erzeugt 3D Bilder und ermöglicht eine detaillierte Struk-

turaufklärung jedes einzelnen Kristalls einer Probe. Basierend auf diesen Bildern wurde ein Verfahren

zur Bestimmung der Form der Einzelkristalle entwickelt und so erweitert, dass die Form, Orientierung

und Position jedes einzelnen Primärpartikels im Aggregat beschrieben werden kann. In einer Ko-

operation mit dem Lehrstuhl für Systemverfahrenstechnik der Otto-von-Guerricke-Universität Magde-

burg wurde dieses Verfahren für die Messung der relativen Orientierungen zwischen Primärpartikeln in

Kalialaun Aggregaten angewandt. Die durchgeführten Versuche zeigen, dass die Primärpartikel deut-

lich häufiger die gleiche Orientierung besitzen, als durch eine Annahme zufälliger Kollision zu erwarten

wäre.

Im Gegensatz zu dieser detaillierten Charakterisierung der individuellen Partikel, können 2D

bildgebende Verfahren zur Bestimmung des Agglomerationsgrades eingesetzt werden. Der Agglo-
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merationsgrad stellt eine Eigenschaft einer Kristallprobe dar und kann durch einfachere Verarbeitung

einer größeren Anzahl an Partikeln erfasst werden. Das entwickelte Verfahren beinhaltet eine automa-

tische Klassifizierung der abgebildeten Objekte auf der Basis von Bilddeskriptoren. Diese Studie wurde

in Kooperation mit dem Lehrstuhl für Anlagen- und Prozesstechnik der TU Dortmund durchgeführt. Die

Genauigkeit der Klassifizierung mittels künstlicher neuronaler Netze wurde in Zusammenhang mit den

gewählten Bilddeskriptoren und der Zusammensetzung des Training Sets untersucht.
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Chapter 1

Introduction

1.1 Motivation

Crystallization, a process of crystal formation and growth, is an important step in pharmaceutical, chem-

ical and food industry. Crystals represent highly ordered solid structures of compound-specific atoms,

ions or molecules where the incorporation of impurities is unlikely. Therefore, crystallization can be used

to separate the desired chemical compound from a mixture or to increase the purity of the compound.

The importance of crystallization is exemplified by the fact that most small-molecule pharmaceuticals

are delivered to patients in crystalline form [5]. In food industry, crystals are used to improve the food

texture, so that an ice-cream without ice crystals would taste chalky, whereas cocoa butter crystals

provide snap upon breaking chocolate [6]. Particle size has traditionally been considered as one of

the most important characteristics of the crystalline product. A well-known everyday example again

involves ice cream, where ice crystals larger than 50 µm created during storage lead to unpleasant

coarse texture [7][8, p. 321-323], [9, p. 264-267]. Particle size furthermore influences the ease and

efficiency with which the crystallized particles are processed in order to obtain the final product, such

as a drug tablet or a bar of chocolate. In pharmaceutical industry, small crystals can be advantageous

due to their better solubility and bioavailability properties, while being more difficult to process [5, 10].

A wide particle size distribution (PSD) containing a large amount of fine particles can cause clogging of

filters and pneumatic conveyors or reduce the porosity of the filter cake, leading to long filtration times

[11]. Apart from particle size, the impact of particle shape on both the final product and downstream

processing has been gaining attention with the advancements in measurement technologies based on

image processing [12]. Particle shape influences powder flowability and tableting behavior, so that the

related properties are better for plate-like ibuprofen crystals than for needle-like ones [13]. Similarly,

needle-like particles are more difficult to filter than equant particles [5]. Particle shape can be indirectly

related to several other particle properties, such as product purity. Purity may be reduced through

aggregation, a process where individual crystals stick together to form larger particles, by allowing in-

clusions of the impure mother liquor [14] or antisolvent [10]. Physico-chemical properties of crystals

are further influenced by polymorphism. Polymorphs are crystals of the same chemical compound that

1



2 1.1. Motivation

have different molecular structure, thus leading to a different shape. Polymorphs can have different

solubility and bioavailability, so that transitioning between polymorphs or sudden crystallization of the

undesired polymorph can lead to withdrawal of the drug and the need for reformulation [5, 15].

Previous examples served to motivate the importance of particle size and shape in different indus-

tries. Gaining control over these properties can lead to the manufacturing of the desired product at

reduced costs. Achieving this goal requires knowledge that can be divided into four basic categories.

First, mechanistic understanding of the fundamentals of both crystallization and post-processing steps

must be gained. This involves investigating the influence of controllable parameters, such as the so-

lution composition, temperature and the hydrodynamic conditions, on the properties of the obtained

product. The second step is the measurement of kinetics, involving nucleation, growth, aggregation

and breakage rates. The third category involves developing models and modeling strategies that en-

able further study of the influencing parameters. Finally, methods for process optimization and control

based on the knowledge from the previous three stages should be applied to find the path towards

the desired product. The first two categories rely on the ability to characterize different aspects of the

process. Studying the fundamentals of crystallization typically requires detailed characterization of the

size, shape and surface of single particles. Kinetic measurements, on the other hand, are often con-

ducted for the whole crystal population, so that less detailed characterization of these properties on

the single particle scale is often sufficient. The size and shape information must be complemented by

the measurements of other relevant properties, such as the solution concentration, or the polymorphic

state of the particles. A large amount of effort has been invested in the recent years in the develop-

ment of such characterization methods, known as process analytical technologies (PAT)s [16]. Special

importance regarding particle shape is attributed to the methods based on image analysis, enabling

direct shape observation. There is a wide range of available image acquisition technologies, enabling

both off-line imaging of particle samples [17, 18, 19, 20] as well as in-situ imaging [20, 21, 22, 23]

of the particles inside the crystallizer vessel, where intermediate solutions involving sampling loops

[24, 25, 26, 27] are also possible. The vast majority of the developed methods is based on two-

dimensional (2D) images, leading to loss of information regarding three-dimensional particles. The

alternative are three-dimensional (3D) imaging techniques which have recently become available [19].

These methods provide detailed, otherwise unattainable information, especially in the case of complex

structures such as aggregates containing several primary particles. However, they can only be used

off-line and require particle sampling. Therefore, a trade-off is sought between the richness of the par-

ticle shape information and the ability to obtain it fast, without introducing any impurities or inaccuracies

through sampling. This work presents methods for extracting particle shape information on both scales.

Microcomputed tomography (µCT) is used to obtain the full 3D crystal polytope, both in case of single

crystals and crystal aggregates, where each of the primary particles is thus described. On the popu-

lation scale, a method for extracting the agglomeration degree of the product from an in-situ imaging

system is investigated.

The following sections of this chapter give a brief introduction regarding the milestones in the quest

for particle size and shape control. Special focus is given to crystal aggregation, as the methods



Chapter 1. Introduction 3

presented in this work enable further insights into aggregate formation, as illustrated in the final case

study. A detailed literature review regarding imaging methods is given in chapter 2.

1.2 Crystallization Fundamentals

Crystallization literature typically considers nano- to centimeter-sized crystal particles, while natural

crystals can grow up to several meters in length [28]. Internally, crystal structure is a rigid lattice, in-

corporating the constituting entities, namely atoms, ions or molecules, in an order manner [29, p. 1].

Macroscopically, ideal single crystals are convex polytopes exhibiting one or more groups of symmet-

rical faces, also called crystal forms [29, p. 11], discussed in more detail in section 2.1. Crystallization

involves four basic mechanisms. Nucleation is the process of crystal formation. A prerequisite is either

supersaturation, meaning that an excess amount of solute is dissolved in the solvent, or supercool-

ing, where the solution is cooled under the freezing temperature. Nucleation can be subdivided into

primary and secondary [29, p. 172] as illustrated in Figure 1.1. In case of primary nucleation, no crys-

tal particles are present in the solution prior to the nucleation event. The excess constituting entities

will assemble together upon collision and re-dissolve, until some critical size of the obtained particle

is reached, known as the nucleus [29, p. 173-175]. This is known as homogeneous nucleation and is

extremely rare in a technical environment as some amount of foreign particles, such as dust, is always

present in the solution. These particles act as nucleation centers leading to the phenomenon known

as heterogeneous nucleation [29, p. 182]. Heterogeneous nucleation can also be induced by introduc-

ing gas bubbles into the system, which is known as gassing crystallization [30]. Secondary nucleation

involves nuclei formation through abrasion of existing crystal particles by fluid shear or collision with

other particles, vessel walls or stirrer. It can therefore occur at a smaller level of supersaturation than

primary nucleation [29, p. 185-187].

Upon nucleation, newly formed crystals continue to grow in the supersaturated solution. This is the

second and most studied mechanism occurring during crystallization. Crystals grow by incorporating

the constituting elements into the crystal lattice. During growth, the crystal shape changes, where the

Nucleation

Primary
Secondary

(induced by crystals)

Homogeneous

(spontaneous)

Heterogeneous

(induced by foreign

particles)

Figure 1.1: Different types of nucleation, adapted from [29, p. 172].
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fastest growing crystal faces may eventually disappear [29, p. 203]. Several mechanistic explanations

have been suggested in the literature and confirmed by experimental observation. They differ in the

explanation of the sites where the new atom, ion or molecule is integrated into the lattice, as well as

in variables that influence this incorporation. The resulting kinetic models can be either mechanistic

or purely empirical. An often used model is the supersaturation (σ) dependent growth rate G = kgσg,

where kg may further incorporate temperature dependence through the Arrhenius law [31, p. 129]. The

growth rate can be defined using different particle size measures so that determining the growth rate

relies on techniques for measuring particle size. Values kg and g are fit parameters, whereas the value

of g suggest whether the growth rate is limited by the diffusion of the constituting entities to the crystal

surface or by their integration into the crystal lattice [31, p. 129]. The growth rate may further depend

on crystal size [29, p. 237-238]. In order to obtain a narrow PSD, thus achieving favorable behavior

during processing, crystallization is often seeded by adding crystals into the prepared solution at the

beginning of the crystallization run. The crystallization conditions are then kept within the metastable

zone, defining the zone of supersaturation where nucleation is improbable [29, p. 117].

The third crystallization phenomenon is crystal breakage, occurring upon collision of a crystal with

other crystals or equipment parts. The amount of breakage depends on the material parameters and

the hydrodynamic and mechanical conditions. It alters the particle size and shape, which can be desir-

able in case of needle-like particles as it reduces their aspect ratio. Crystal breakage need not be done

in a crystallizer and is often achieved after crystallization by milling or sonication in order to achieve

particles with smaller aspect ratio and the target PSD [5]. Attrition can be considered as a type of

crystal breakage, leading to rounded particles [32].

The fourth crystallization phenomenon is aggregation, also known as agglomeration, where two or

more particles join together to form a larger particle. This phenomenon is given special focus in this

work. Aggregation can be divided into primary and secondary [31, p. 156], as illustrated in Figure 1.2.

The typically used terms aggregation and agglomeration refer to the secondary phenomenon, where

an aggregate is formed upon collision of two particles. Secondary aggregation is further subdivided into

orthokinetic and perikinetic, the former referring to particles larger than 1 µm moving due to fluid shear

Aggregation

Primary Secondary

Orthokinetic Perikinetic TwinningParallel growthDendrite growth

Figure 1.2: Different types of aggregation, according to [31].
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and the latter to smaller particles in Brownian motion [31, p. 160]. Crystallization therefore typically

considers orthokinetic aggregation. The ability of a pair of particles to form an aggregate depends on

whether they can be cemented together fast enough to withstand the disruptive hydrodynamic forces

[33, 34, 35]. This depends on the material parameters and hydrodynamic conditions as well as on

the size, shape and orientation between the colliding particles [34, 36]. Pratola et al. [37] measured

the strength of aggregates grown under varying supersaturation conditions and found that the strength

increases with increasing supersaturation. Furthermore, aggregation behavior changes with a change

of solvent composition [38, 39, 40]. In contrast to the secondary mechanism, primary aggregation is

caused by mal-growth where the final crystal appears to consist of more than one primary particle [31,

p. 157]. Three types of primary aggregation can be differentiated according to Jones [31, p. 157-160]

and are briefly introduced here. Some crystals exhibit dendrite growth, where several levels of needle-

like particle branches are visible. A typical example are snow flakes. Parallel growth is a term given

to structures where several crystals are inter-grown on top of each other so that their faces and edges

are parallel. The phenomenon was observed for alums and it is possible for two different substances

to form such structures together. The final type of primary aggregation are twin crystals, where two or

three particles are joined together in a symmetrical, ordered manner. Particles may also grow through

each other, creating the so-called penetration twins. The formation of such twins can be encouraged by

the presence of certain impurities [41]. Twinning can be confirmed by looking at the interface between

the primary particles by a transmission electron microscope (TEM) and studying the TEM diffraction

patterns [34, 42]. It is often not possible to differentiate between the primary and secondary aggregation

based on simple observation [31, p. 157]. Collier et al. [34] investigated the orientations between

primary particles during precipitation and found alignment tendencies for experiments conducted at

lower ionic strength, where twinning could be excluded as a mechanism in some of the cases.

Crystal size can be controlled by adjusting the parameters that influence the supersaturation, such

as the temperature profile, solution composition or the PSD and the amount of the seed crystals. In

case of crystals exhibiting more than one face group, these parameters can also be used to control

crystal shape. A common approach involves a temperature profile that leads to cycles of growth and

dissolution, which was shown to broaden the domain of achievable crystal shapes [28, 43]. Shape can

be further influenced by the choice of solvent [39] or through additives and impurities [24].

The strategies for controlling crystal size and shape can be divided into open-loop and closed-

loop. In open-loop approaches, the optimal variables, such as the temperature profile, are computed

beforehand. In closed-loop control, the target and the current state are periodically compared and the

process variables are manipulated to stir the process in the desired direction. These variables are either

the temperature profile or the amount of some compound such as the solvent, antisovlent or additive

[44]. The new values for the process variables can be computed either using classical proportional-

integral (PI) controller [24], not requiring any information on the crystallization kinetics, or a controller

based on the underlying process model [43]. Therefore, both open- and closed-loop control may rely

on crystallization modeling.

The goal of crystallization modeling is often to describe the change of particle size- and/or shape
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distribution (PSSD) over time. This is achieved with a population balance model. In case of a perfectly

mixed batch reactor, this is described by [45]:

∂n(t,L)
∂ t

+
N∑

i=0

∂Gin(t,L)
∂Li

= B(t,n)−D(t,n), (1.1)

followed by an appropriate set of initial and boundary conditions, as well as a mass balance. Similar

equations for continuous crystallization or spatial-dependent scenarios can be derived. Here, n is the

PSD/PSSD, defined over the chosen set of N particle size measures Li, t is the time and Gi are the

growth rates. B and D are the birth and death terms, describing the creation and loss of particles

through nucleation, aggregation and breakage. The latter two involve integrals and thus complicate the

numerical solution. The equation can be simplified by ignoring certain terms, so that a simulation of

particle growth can be obtained by setting B and D to 0. Models of different complexity are obtained

depending on the dimensionality of n and the underlying kinetic models. High-dimensional models

are obtained when considering crystal growth in face directions, thus providing a full description of the

shape of single crystals [46, 47]. Faces that grow out and thus disappear from the crystal surface may

pose further challenges in this case [47]. In aggregation models, aggregation rate is defined using an

aggregation kernel that models the frequency of collision between particles, scaled by the efficiency

of these collisions, representing the probability that the aggregate survives the collision [33, 35, 36,

48, 49, 50]. Aggregation kernels typically consider spherical particles and an aggregation efficiency

based on an appropriate bridge geometry [33, 35, 48, 50] and hydrodynamics. While the orientation of

the particles towards the shear field can be taken into account [33, 35, 50], the actual particle shape

and the orientation between primary particles are ignored. Notable exceptions include the work of

Ochsenbein et al. [36], where a shape-dependent kernel is proposed and the work of Briesen [49, 51],

modeling particle geometry upon aggregation using a Monte Carlo simulation. However, neither allows

for a full consideration of particle geometry and mutual particle orientation after collision along with the

implications concerning the mass balance.

1.3 Focus and Outline

The previous sections motivated the need for detailed characterization of particle size and shape. In the

recent years, significant development in this field was achieved, as will be reviewed in Chapter 2. The

available methods focus on the characterization of single crystals based on 2D imaging techniques. As

introduced above, crystallization processes often result in aggregated particles. Aggregation is often

undesired as it reduces the product purity through liquid inclusions [10, 14] but it can also be deliber-

ately used to obtain larger particles with favorable downstream processing [10]. Characterizing crystal

aggregates based on 2D imaging is difficult due to inherent loss of 3D information through projection.

Newly emerging 3D imaging techniques provide the full 3D shape information that can enable analyzing

particle shape in detail in case of both single crystals and crystal aggregates. The drawback of these
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techniques is the long time needed for preparation and measurement, so that on-line particle character-

ization is not possible. Therefore, the choice of suitable method depends on the required level of detail

on the one side and, on the other side, the necessity to extract less-detailed information regarding a

large number of particles without the need for withdrawing them from the solution.

In this thesis, both approaches are investigated. The detailed 3D particle characterization is based

on µCT measurements, conducted in cooperation with the group of Prof. Pfeiffer (Technical University

of Munich). Chapter 3 presents a method for extracting the full 3D crystal polytope from the obtained

3D images. The method is extended towards the analysis of crystal aggregates in Chapter 4. In Chap-

ter 5, this method is applied to analyze the orientations between primary particles in aggregates of

potash alum crystals, based on experiments conducted in cooperation with the group of Prof. Sund-

macher (Otto-von-Guericke-University Magdeburg). Chapter 6 investigates a method for measuring

the agglomeration degree of a product based on a less-detailed processing of a large amount of 2D

images. The method uses artificial neural network (ANN)-based particle classification. The underly-

ing crystallization experiments using L-alanine and adipic acid were conducted by the group of Prof.

Schembecker (Technical University of Dortmund), and a comparison with another classification method

investigated by their group is performed. Finally, Chapter 7 concludes the work.

1.4 Notes on Terminology

In the following, the terminology that is used in this work is presented. We consider the crystal shape,

or morphology, to refer to the relative combination of its face distances. Knowing the full crystal shape

and size is equivalent to having the full information about the crystal polytope. The crystal polytope can

be described either as a set of vertices, which is called V -representation, as it will be introduced in the

following chapter, or a set of face directions and their distances from a chosen origin, which is known as

the H-representation. The term face group describes faces that grow symmetrically and is equivalent to

the term crystallographic form used in the literature [29, p. 11]. Aggregate is used to describe a group

of touching or overlapping primary particles, where agglomerate refers to an aggregate where primary

particles have grown into each other. The opposite of an aggregate is a single crystal, while crystal

can refer to both types of particles. The term agglomeration degree is used to describe the relative

amount of aggregates in a crystalline product, in order to remain consistent with the term used in the

prior publication [4] and the literature.

In discussions on particle imaging and classification, the term "image descriptor" refers both to

shape descriptors and size measures.

In equations, bold symbols are used for vectors and matrices. Italic symbols in indices refer to num-

bers, so that di is the i-th variable of type d or the i-th element of vector d. Non-italic symbols represent

simple names. Unless stated otherwise, vectors are considered to be column vectors. Dimensions of a

matrix with a rows and b columns are denoted by a×b, and may be indicated in the index of the matrix

symbol, such as Aa×b.
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Chapter 2

Methods for Crystal Size and Shape
Characterization

2.1 Crystal Size and Shape

Single crystals can be modeled as convex polytopes. Thus, having the full 3D information about the

crystal size and shape is equivalent to knowing the parameters of the corresponding polytope. The pa-

rameters depend on the used crystal representation. Here, we consider three crystal representations,

described in detail by Reinhold et al. [52]. A V -representation is the set of points defining the convex

hull of the polytope. Given that a crystal is convex, it consists of the vertices vi of the polytope, gath-

ered in a matrix VNV×3 =
[
vT

i
]
, where NV is the number of vertices. An H-representation is obtained by

noting that a crystal consists of all points p fulfilling:

Ap≤ h, (2.1)

where ANH×3 =
[
aT

i
]

is a matrix containing NH face normals ai, ||ai = 1||, and h is a vector containing

the corresponding face distances hi. The H-representation is therefore defined by A and h. Note that,

as in the case of V -representation, the same crystal shape is obtained by translating the crystal for

some vector x0 [52, 53]:

h′ = h+Ax0. (2.2)

The third crystal representation is based on crystal symmetry. We assume that the crystal is positioned

so that its center of mass is in the origin of the coordinate system. In this case, face distances of all

crystal faces in the same face group are identical due to symmetry. The vector h can therefore be

reduced in dimension by considering only one face distance for each of the C face groups, yielding the

NC-dimensional vector hC [52, 53]:

h = MhC→hhC. (2.3)

9
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Here, MhC→h is a mapping matrix of size NH×NC, containing values 1 where face distances from hC

should be copied to h and zeros otherwise. The HC-representation is then defined by A, MhC→h and

hC.

In order to facilitate computation, it is often necessary to convert between different crystal repre-

sentations. This functionality is enabled in the MATLAB framework of Reinhold [52], which is used as

the basis for this work. This framework uses the concepts of convex geometry and the Cddlib library

[54]. The framework considers the H- and V -representations, whereas the HC-representation can be

obtained by translation and applying the appropriate group mapping matrix. Among others, it enables

conversion between the two representations, measure computation for the two representations and the

reduction of the H-representation to a set of non-redundant inequalities.

During growth, crystal faces may disappear or new faces may appear. This creates challenges

in both crystallization modeling and experimental characterization. The chosen crystal model should

cover all crystal faces that may arise during the considered experiment. This can be of special impor-

tance in the case where the number of different achievable shapes is large, as illustrated in Figure 2.1.

Crystals that change shape in terms of changing the set of visible edges can cause problems in mea-

sure computation if it is based on an assumed crystal shape [47]. Furthermore, when modeling crystal

growth, crystal faces that grow out may lead to an invalid set of face distances. This is demonstrated

in Figure 2.1c, where the green and orange face groups are grown out and their distance is such that

the faces do not touch the crystal polytope. These face distances must be reduced so that the faces

touch the polytope at vertices and edges, which may additionally require adapting the growth rate of

these faces in simulation studies [47]. The morphology domain describing possible h-values can be

decomposed into regions where different edge combinations occur [53, 55].

In case of experimental characterization, the chosen method should be able to find the subset

of faces that appear in the observed crystal. Furthermore, validity of the obtained shape should be

ensured in order to obtain correct measures and use the the information for crystallization modeling.

Most size and shape measurement techniques are incapable of measuring the crystal polytope and

provide some other size and shape information instead. In the following section, an overview of the

available measurement techniques and measurable properties is presented.

2.2 Size Measurement Techniques

If all particles in the considered population have the same shape, the population can be completely

described by a particle size distribution (PSD). The PSD can be expressed over some suitable char-

acteristic length, such as the particle diameter in case of perfect spheres or the side length in case

of cubes. The choice of the characteristic length depends on the particle shape as well as on the

underlying measurement principle.

A commonly used approach is to represent particles by the diameter of a sphere with an equivalent

volume. This is especially suitable for techniques that measure a quantity that directly depends on the

particle volume. One such technique is the Coulter counter, used for sizing particles between 0.6 µm
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(a) (b) (c)

Figure 2.1: Examples of three different shapes of potash alum crystals, using the model that defines
26 possible faces, divided into three face groups represented by different colors. In Figure 2.1c, a case
where the green and orange face groups are grown out, is presented. Their face distances are marked
by dots. In this case, the shape is invalid and the face distances of orange and green faces must be
re-scaled to coincide with the vertices and edges of the polytope.

and 1200 µm [56, p. 186]. Particles are suspended in an electrolyte liquid and pass through an orifice

between two electrodes. The change of the impedance between the electrodes is proportional to the

particle volume [56, p. 186]. The suspension must be dilute enough to minimize the probability of two

particles passing through the orifice simultaneously and thus being counted as one.

A popular in-line measurement technique used for monitoring crystallization processes is laser re-

flectance, typically involving the Focused Beam Reflectance Measurement (FBRM) probe from Mettler

Toledo. The probe sends a beam of light that scans particles in a circle whose diameter is assumed

to be significantly larger than the particle length [57]. The light reflected off a particle is captured by

a sensor. The resulting measure is called the chord length and corresponds to the length of the light

beam segment that was intersected by the particle. It therefore depends both on the particle orientation

and its location towards the beam, so that different chord lengths can be observed for the same particle

[58]. Chord length distribution can be obtained from PSD by adopting either an empirical approach

[59, 60] or a model based on particle geometry and further assumption regarding the measurement

system [57, 61, 62]. The inverse problem of estimating the PSD from the measured chord length distri-

bution is ill-posed [57]. The quality of the estimation depends both on the chosen approach regarding

the forward-problem [62], as well as on the chosen numerical procedure [59].

Laser diffraction methods are based on the fact that the intensity of the light diffracted by a particle

is related to the particle size. The methods use either Mie or Fraunhofer light scattering theory, both

assuming spherical particles [63, p. 97]. Fraunhofer theory represents an approximation applicable for

particles larger than several micrometers and does not require information about the refraction index,

while Mie theory enables the measurement of particles as small as 0.1 µm [63, p. 92-100]. Particle

size distribution can be obtained numerically from the measured intensity distribution of diffracted light

by solving an inverse problem [58]. The measurement is performed in a dilute suspension and is fast

enough to be performed on-line [56, p. 182]. The particle size distribution is expressed in the equivalent

sphere diameter and is affected both by the fact that the particles are not spherical as well as by their
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orientation at the time of measurement [58].

Ultrasound attenuation spectroscopy technique correlates particle size to the ultrasound attenuation

coefficient measured at different frequencies. Similarly to optical techniques described above, particle

size distribution is obtained by numerically solving an inverse problem [64]. The advantage of the

method is its applicability on a broad size range (10 nm to 3 mm) in highly concentrated suspensions

[56, p. 190]. However, in order to perform the measurements, several mechanical, thermodynamic

and transport parameters must be known, rendering the method more difficult to apply for monitoring

dynamic systems with changing parameters such as crystallization processes [64].

Sieving is another commonly used technique where particles are allowed to pass through a stack

of sieves with different mesh sizes. In order to facilitate passage through the sieves, vibrations can be

employed or the particles can be suspended in a liquid [56, p. 162]. The particle size is characterized by

the equivalent sieve aperture diameter, representing the diameter of the largest sphere that would pass

through a sieve [29, p. 63]. The used sieve mesh widths are between 5 µm and 125 mm [56, p. 162].

The technique is better suited for equant particles than for elongated or plate-like ones [56, p. 163]. In

crystallization sieving is typically used to obtain a narrow size distribution of the seed particles, which

are then characterized by the sieve mesh width, as for example seen in [25, 65].

Sedimentation techniques are based on the fact that the settling velocity of spherical particles in

a fluid depends on the fluid properties and the particle density and diameter [56]. Therefore, under

certain conditions, for known fluid properties and particle density, the diameters of the particle can be

computed from the settling velocity measurements. If the particle is not spherical, the obtained value is

called the Stokes diameter and is the diameter of an equivalent sphere that would sink with the same

velocity [56, p. 166]. Particle size measurements that use this principle monitor the amount of settled

particles over time, using different types of forces to control the settling behavior.

Even in case of an accurate measurement of the equivalent sphere diameter, such as using the

Coulter counter, care must be taken when measuring growth rate parameters based on one size mea-

surement only. This was shown by simulation for needle-like particles [58]. The change of shape during

growth leads to a broadening or shrinking of the PSD, which may be misinterpreted as evidence of

agglomeration, breakage, growth-rate dispersion or size-dependent growth [58]. Additionally, as dis-

cussed above, many measurement techniques are ill-suited for particles that deviate strongly from a

spherical shape.

Specialized techniques have been developed for nanometer-sized particles. A popular method is

dynamic light scattering. It is based on the fact that suspended nanoparticles exhibit Brownian motion.

As small particles move faster than the large ones, particle size can be correlated to the fluctuations of

scattered laser light intensity signal [56, p. 189]. Obtaining the particle size distribution involves solving

an inverse problem and is problematic in case of multi-modal and wide distributions [56, p. 189]. The

method assumes that particles are spherical and the obtained measure is an equivalent hydrodynamic

radius [66]. Furthermore, sample parameters such as temperature, solvent viscosity and refractive

index must be known in order to perform the calculations, while the sample must be dilute [66].

The size of micrometer- and millimeter-sized particles can also be determined by analyzing images
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of particles if the imaging is performed in a controlled manner and the size of the pixel is known.

However, such techniques are often used to extract not only size, but also shape information, which is

why they are discussed in detail in the following section.

2.3 Image-based Size and Shape Measurement Techniques

Imaging represents a direct measurement technique as size and shape are directly observed. The pro-

cess of obtaining the information about particle shape can be viewed as involving four steps, namely

image acquisition, image processing, image analysis and statistical evaluation, even though the dis-

tinction between these steps may be fuzzy. As illustrated in Figure 2.2, the process can be ended at

each stage, depending on the required information. Image acquisition is sufficient in cases where a hu-

man operator observes the images and reaches conclusions about the process. An example involves

observing the effect of the preparation procedure on the seed crystals and studying its impact on the

PSD and quality of the final product [67]. The image processing step involves converting the image

to grayscale or binary, detecting individual particles and finding significant features within the image

such as corners, lines or planes. While this is typically not the case, the procedure could be ended

at this stage by, for example, discarding all images taken by an in-line microscope that do not contain

any particles. Thus, the goal of image processing is to provide input for the analysis that follows. The

image analysis step can be viewed as the process of obtaining the final information about each imaged

particle. This could be the chosen particle size measures, such length and width, a set of shape factors

or descriptors [68, 69], the fully reconstructed 3D shape [1, 19] or the size and shape of each primary

particle in an aggregate [2]. The procedure ends here when the detailed information about one imaged

particle is needed, such as the full 3D shape of a newly crystallized compound or the polymorph of an

exemplary crystal. The last step compiles the information obtained from a population of particles and

may correlate it to other measured or simulated quantities, such as the solution concentration. This can

involve simply gathering the chosen measures into a distribution [17, 26], determining the growth rate

[25, 45], computing the agglomeration degree [68] or detecting the polymorph based on the images of

other particles [70]. Depending on the type of information that is to be extracted, this step can require

parameter optimization [25, 45] or the use of statistical and pattern recognition tools [68, 69]. The four

steps presented in Figure 2.2 and the resulting methods are reviewed below in more details.

2.3.1 Image Acquisition

The available imaging methods can be divided into two-dimensional (2D) and three-dimensional (3D),

depending on the type of image that is finally obtained. In certain cases, however, it is possible to

reconstruct full 3D shape information from a single 2D image [25, 71]. Stereoscopic methods use two

images taken from different positions in order to obtain depth information. For the sake of simplicity,

these methods are here discussed together with the 2D methods.
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Image Acquisition

Image Processing

Statistical Evaluation

Image Analysis
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Binarized images,

detected particles and 

corners, lines or planes…
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shape factors, shape fit…

PSD, PSSD, 
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Figure 2.2: "Work-flow" for obtaining size and shape information from imaging methods.

2.3.1.1 2D Imaging Methods

In 2D imaging, the image of a particle can be considered to represent a 2D projection of the 3D particle

onto the imaging plane. Therefore, the projection will depend on the orientation of the particle towards

the camera, unless the particle is a perfect sphere, in which case the projection is always a circle. This

is the reason why it is difficult to extract information about the 3D particle shape from 2D images. The

developed imaging methods can either be based on always imaging particles from the same direction,

or imaging particles from different directions and relying on statistics to obtain the 3D information.

Static 2D imaging methods take images of particles that are not moving [56, p. 177]. A typical ex-

ample is the optical microscope, where the particles are fixed on the microscope slide. The advantage

of this technique is that particles settle in a stable position [12]. Needle-like particles will therefore lie on

their longest side, so that the analysis of static images allows one to correctly estimate particle length

[72]. Some particles, such as potash alum, position themselves on the largest face and the symmetry

of the particles allows one to estimate the full 3D shape from these images [71]. The main drawback

of the static image analysis is that it requires a method to separate particles on the microscope slide

so that they do not touch or overlap. Failing to do so can result in erroneously identifying a pair of

touching particles as a single particle and wrongly measuring the size and shape information. Such

dispersion is not easy to achieve and must in some cases be performed manually [17]. Moreover, many

microscopes require an operator to manually move the stage and focus the particles, so that imaging
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a particle distribution becomes a time-consuming process. However, automatic setups which perform

both dispersion and focusing, such as Morphologi G3 of Malvern, are available [23] and enable mea-

surement of a larger number of particles than manually operated microscopy procedures. A further

drawback is that particles must be sampled during the experiment. Sampling can introduce impurities

into the system and result in a non-representative sample of the particle population. The obtained parti-

cles must be prepared for imaging, which typically involves washing and drying. These processes may

change the product properties, such as the amount of aggregates, thus increasing the dispersion chal-

lenge. Patience and Rawlings [24] attempted to overcome this issue in an on-line setup by continuously

pumping the suspension with the particles through a flow-cell during a crystallization experiment. The

flow through the cell was stopped during imaging, allowing the particles to settle on the cell bottom.

Further static imaging methods involve scanning electron microscopy or transmission electron mi-

croscopy. However, due to complicated preparation procedures involved, these techniques are typically

used for visual observation of the product and not for quantitative size and shape analysis.

Contrary to static techniques, dynamic imaging methods take images of moving particles [56,

p. 177]. Particles therefore have varying orientations towards the camera. Camsizer (Retsch) takes

images of falling particles in air and uses a vibratory feeder to disperse the particles. The amount of

vibration of the feed can result in different particle size distributions [73]. If the same convex particle is

imaged from different orientations, the 3D particle area S can be related to the average projection area

Āp by the Law of Cauchy [56, p. 14] as:

S = 4Āp. (2.4)

According to this law, the area-equivalent circle diameter based on Āp is equal to the area-equivalent

diameter of the spherical particle, based on S [56, p. 14]. Similarly, for a given PSSD, it is possible to

derive the probability density function for the projected area under the assumption that all particle ori-

entations are equally likely. Then, the quality of a measurement device can be evaluated by comparing

the predicted to the obtained area distribution [73].

QICPIC (Sympatec) is capable of imaging particles in a wet, additionally to a dry, dispersion. The

slurry is pumped by a peristaltic pump through a measurement cuvette where the images are taken.

The setup requires a low suspension density [74]. It can also be implemented on-line, where an external

sampling loop sends solution samples through the QICPIC cuvette during the crystallization experiment

[25].

Further imaging techniques that can be considered dynamic are those that take in-situ images of the

particles in the crystallizer. These techniques involve either a probe inserted directly into the vessel [61],

or a camera mounted in front of the reactor wall [20, 21, 22]. As the distance of the particles towards

the camera varies, the images may contain rather blurry particles along with the ones that are in focus

[20]. Edges of the particles may be partially badly visible [20]. The background intensity may vary with

the lighting and hydrodynamic conditions in the reactor, rendering segmentation difficult [20, 44]. The

quality of the resulting images is therefore lower than in case of the on-line techniques involving an

external sampling loop [25]. Furthermore, high suspension densities can lead to particles overlapping
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in the image plane, so that it is difficult to detect and measure single crystals [21, 22, 25, 44].

More information about the true 3D size and shape of a particle can be obtained if two images of the

particle are taken from different directions. Such setups are referred to as stereo vision [23, 70, 75, 76,

77] or stereoscopic [26, 27]. Different approaches have been explored in the literature. The group of

Mazzotti used a self-constructed on-line setup that samples the slurry during the experiment and takes

images in a flow-cell. The first setup [26] involved a dilution loop to ensure low suspension density.

A mirror was used to split the light beams so that the particle is illuminated from two perpendicular

directions at the same time. Another mirror ensures both images are conducted to the same imaging

plane where they are simultaneously captured by one camera. The setup was further adapted by

improving the optical properties, removing the dilution loop and using two cameras instead of mirrors

[27]. A stereoscopic setup involving two cameras imaging the particle simultaneously was suggested

by Wang et al. [75]. The setup, using an angle of 22 ◦ between the two cameras, was applied both for

monitoring the growth of a single crystal in a flow-cell [77], as well as for monitoring a crystal population,

where the cameras were placed just outside the reactor wall [23, 76].

2.3.1.2 3D Imaging Methods

Tomographic techniques construct a 3D image of an object by considering a set of 2D slices or pro-

jections. The techniques differ in the types of 2D slices and the underlying physical principles used

to obtain them. Unlike a 2D image, a 3D image provides full geometric information about the object.

However, 3D imaging methods require larger measurement times and elaborate sample preparation,

so that they currently cannot be used on-line or in-situ.

Confocal microscopes enable obtaining a precisely focused image of a certain slice of the specimen,

while the specimen must be coated with fluorescent dye. A 3D image of the specimen can therefore be

obtained by stacking slices obtained on various heights in the imaging (z) direction, where the resolution

in the z-direction is usually lower than that in the xy-plane [78]. Singh et al. [19] used this technique to

image crystals. It enabled computing Miller indices of the faces and determining the crystal polymorph.

Computed tomography (CT), also known as x-ray tomography, uses a set of conventional 2D x-ray

images to reconstruct the full 3D structure of the object [80, p. 1]. An overview is given in the article

by Barigou and Douaire [79] and the book by Stock [80], whereas the basic information is summarized

here. 2D x-ray images, referred to as projections, are obtained from different directions and represent

the attenuated version of the incident radiation.

A set of projections can be obtained either by rotating the imaging setup, as is the case in con-

ventional medical CTs, or by rotating the object which is to be imaged, typically around one fixed axis.

Microcomputed tomography (µCT) is the high-resolution variant of the technique, using voxels whose

length is at least as small as 50-100µm [80, p. 1]. It can thus be used to obtain structural and geo-

metric information in engineering [82], geology [83], biology, materials- [84] or food science [7, 79, 85],

as well as to measure particle size distributions [82, 83, 84]. The attenuation of monochromatic x-rays

after traveling some distance x through a homogeneous object can be described by the Beer-Lambert



Chapter 2. Methods for Crystal Size and Shape Characterization 17

(a) Original image/one direction

-200 -100 0 100 200
Position

0

10

20

30

40

A
bs

or
pt

io
n 

pr
of

ile

(b) Absorption profiles (c) Backprojected profiles

Figure 2.3: Principle of backprojection, adapted from [81, p. 207].

(a) Original image (b) One direction (c) Two directions

(d) Four directions (e) 73 directions, 5◦ apart (f) Filtered version of 2.4e

Figure 2.4: Examples of backprojection for different number of directions. Adapted from [81, p. 207].
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equation:

I = I0e−µx (2.5)

where I0 is the initial intensity and µ is the attenuation coefficient, depending on the material properties

and the x-ray wavelength [80, p. 13][79]. In case of an inhomogeneous object, an integral
∫

µ(x)dx

is considered instead of the constant value µ [79]. This is further complicated by the fact that x-rays

exhibit scattering or refraction [80, p. 14]. Furthermore, conventional µCT systems use polychromatic

radiation, so that the equation 2.5 must be further considered for each wavelength present in the radia-

tion [79]. The goal of the imaging is to retrieve the absorption coefficient µ(p) at each 3D voxel position

p from a set of 2D absorption profiles. This is typically done by the filtered backprojection process [80,

p. 24-31]. A simplified illustration of this principle is given in the books by Stock [80, p. 24-28] and

Gonzalez et al. [81, p. 205-208] and is briefly summarized here. It is considered that the image of a

2D object is to be reconstructed from a set of 1D absorption profiles obtained for different directions.

For each considered direction, the absorption profile is measured along a set of parallel lines that cover

the image, as shown in Figure 2.3. Therefore, for each direction this results in a function depicting the

absorption value for each considered line position. The back-projection principle is based on the image

obtained by projecting this function back to the image plane for each direction. In the resulting image,

high absorption values are depicted by bright pixels. Superimposing such "backprojected" images for

different projection directions results in very bright pixels inside the object and very dark pixels other-

wise, as shown in Figure 2.4. The approximation is improved with the number of used projections [81,

p. 207]. However, some blurring still remains in the image and must be resolved by suitable filtering

[80, p. 24-28]. The quality of the obtained µCT image therefore depends on the number of parameters,

among others the number of projections and the difference in absorption coefficients of the phases that

are to be discriminated in the image.

The advantage of µCT is the ability to obtain full information about the particle size and shape. This

can be used to measure a particle size distribution or compute a shape factor distribution for a sample of

particles [84]. When measuring a population of particles, results depend on the chosen segmentation

algorithm ensuring individual particles are correctly recognized [84]. This source of error also exists in

2D imaging methods and is reduced by an adequate sample preparation such as manual or automatic

dispersion. However, such automatic dispersion techniques cannot be applied to 3D samples.

2.3.2 Image Processing

The goal of image processing, as considered here, is to isolate different particles and prepare them

for size and shape measurement, which will be the task of image analysis. The procedure may start

by filtering in case of a noisy image. This is followed by segmentation, where the objects of interest

are isolated. Finally, the objects may be further processed to prepare them for size and shape mea-

surement. In the following, classical image processing procedures are discussed. Their application to

obtaining information about crystal size and shape is presented in the section 2.3.3 on image analysis.

The presented algorithms can be applied to both 2D and 3D images. For the sake of convenience, the
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smallest element of an image is termed pixel in both cases, whereas voxel is used when 3D images are

discussed specifically.

2.3.2.1 Image Filtering

The simplest filters are linear filters, where a mask, typically of size n× n, where n is odd, is centered

on each image pixel. More information can be found in an image processing textbook, e.g. [81, p. 64-

71]. The value of the current pixel is changed to correspond to the weighted sum of the pixel values

marked by the mask, where the weights are provided by the mask. A mean filter uses equal weights so

that each pixel in the resulting image represents an average value of the masked pixels in the original

image. A Gaussian filter uses weights derived from the Gaussian distribution, so that the pixel itself,

being the center of the mask, has the highest value and the weight values decrease further from the

center. Masks can also be designed to approximate the gradient or the Laplacian of the image [81,

p. 75], which is used in edge detection and image enhancement.

While these filters reduce image noise, a typical artifact of linear filtering is image blurring. A notable

filter which is very effective for salt-and-pepper noise is the median filter [81, p. 80]. The gray value of

each pixel is modified to the median of the gray values marked by the mask. This filter is a non-linear

filter as finding the median is not a linear operation.

2.3.2.2 Image Segmentation

Thresholding Segmentation typically starts by assigning each pixel of the image either to foreground

or background, thus creating a binary image with only two pixel values. Pixels are assigned based on

comparison of their gray values with some threshold t. Thresholding therefore represents the simplest

type of classification problem, where the samples (pixels) are to be classified into two classes (fore-

ground and background) based on one variable (gray value). Classification techniques will further be

discussed in section 2.3.4.3, where they are employed to determine the particle type.

A threshold for the given image can be selected manually by the operator or it may be computed

automatically, based on the gray value histogram of the given image. Several techniques for automatic

thresholding can be found in image processing textbooks [81, 86]. A notable example is the Otsu

threshold which minimizes the within-class variance:

σW (t)2 = w0(t)σ0(t)2 +w1(t)σ1(t)2 (2.6)

and maximizes the between-class variance [87] [86, p. 14-18], [81, p. 516-519]:

σB(t)2 = w0(t)(µI−µ0(t))2 +w1(t)(µI−µ1(t))2. (2.7)

Here, w0 and w1 are the probabilities of classes 0 (background) and 1 (foreground), after applying the

computed threshold t, and µ0, µ1 and µI are the mean gray values of the two classes and the whole

image, respectively, while σ denotes variance of the appropriate class. This means that the obtained
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classes should be narrow, with mean values as far apart as possible [86, p. 14]. The threshold is

obtained by computing σB for all possible gray value levels t as threshold and picking the one producing

the maximal value.

Another popular method is hysteresis thresholding [88, p. 125]. A pixel is set to foreground if its gray

value is higher than or equal to a high threshold tH . Then, pixels with a gray value higher than a low

threshold tL, that are connected to the foreground pixels, are also set to foreground. The advantage of

this method is that connected foreground elements are obtained [88, p. 125]. It is thus less likely that a

relevant object in an image has been split into several segments.

Labeling Upon obtaining a binary image, separate objects, which in the considered case represent

particles, need to be detected. In the simplest case, particles do not touch or overlap and can be sep-

arated by labeling the connected components in the image. A connected component is a set of pixels

where each pixel can be reached from each other pixel of the component by following a path consisting

of adjacent pixels [81, p. 469]. The results therefore depend on the type of adjacency used, where the

adjacency defines the neighbors of a pixel. In 2D images, one can consider a 4-neighborhood, where

the neighbors of a pixel are found above, below, left and right, or the 8-adjacency which additionally

includes the four diagonal neighbors. Similar relationships are defined for 3D images. 6-neighborhood

consists of the six voxels whose centers are at the distance of 1 voxel from the current voxel. 26-

neighborhood comprises all diagonal neighbors as well, so that the possible distances between the

current voxel and the neighbors are 1,
√

2 or
√

3 voxels. The term "labeling" refers to the fact that the

procedure creates a gray value image where all pixels of one connected component are given the same

gray value (label).

Watershed Transform A labeling procedure will identify a group of touching particles as one con-

nected component, which may lead to errors in size and shape computation [23]. In case of grown-in

agglomerated crystals, it is not possible to separate the primary particles by an adequate dispersion

procedure and further techniques must be employed.

Watershed transform is a classical image processing procedure explained in detail in the literature

(a) (b) (c) (d) (e)

Figure 2.5: Separating touching objects by a combination of watershed transform and distance trans-
form. (a) Original image. (b) Distance transform of the inverted image. (c) Sign of distance transform
changed. (d) Background set as basin. (e) Watershed transform: obtained regions illustrated by differ-
ent colors, whereas watershed pixels are shown in black. Note that distance transform images were
adapted for illustration purposes.
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[81, p. 542-550][89]. It is performed on a gray value image, where gray values can be thought of as

representing height values in a landscape. An example can be seen in Figure 2.5d. If the landscape is

flooded, several catchment basins, also termed regions, will form and will be separated by the water-

sheds. Watersheds represent landscape points that belong to neither catchment basin as water falling

onto them is equally likely to flow to either of the neighboring basins [81, p. 542]. In this analogy, the

obtained basins can be thought of as separate objects and the watersheds as boundaries between

them. This is illustrated in Figure 2.5e, where watershed pixels are shown in black. Catchment basins

or objects will therefore be created around the local minima [88, p. 143]. Watershed by immersion [89]

is an algorithm that computes the watershed transform by simulating the flooding process. The process

can be illustrated by imagining that the image is "pierced" at the positions of local minima and is then

immersed into a pool of water. As the water flows into the catchment basins the watersheds are built

to separate them. The algorithm [89] therefore starts by assigning basins to the pixels with the lowest

gray value. Pixels that have the next highest gray value are then considered and can either be added

to the existing basin, assigned as new basins or left out of consideration if they belong to a connected

component that contains more than one existing basin. The procedure is iterated up to the highest

gray value level, resulting in a set of labels for different catchment basins and a label with all watershed

pixels corresponding to those that were not assigned to any basin. The concept holds for 2D as well as

n-dimensional images [89].

In order to separate touching or overlapping objects, watershed segmentation can be used together

with the distance transform [81, 88, 89]. One of the possible procedures is illustrated in Figure 2.5.

For each pixel, distance transform gives the shortest distance to a foreground pixel [81, p. 543]. If the

image is inverted beforehand, this method will compute the shortest distance to the background for

each pixel in the foreground. Therefore, the obtained gray value image will often have high values in

the center of each of the touching objects. Changing the sign of these values so that they become

negative will prepare the image for the watershed transform, ensuring minima in the object center. In

order to enforce watershed pixels along the boundary between background and foreground, background

should be assigned the value −∞. If this step is skipped, the obtained regions would extend into the

background. In this case, correct foreground regions can be obtained by masking the watershed image

with the original binary image [84].

A further segmentation technique involves using watershed transform on the image gradient, so

that high gray values are obtained near object edges, thus forcing watersheds pixels at these locations

[81, p. 545].

Watershed transform finds application for separating touching particles [84, 90] or biological cells

and nuclei [91, 92, 93, 94, 95]. A common problem is over-segmentation where the desired object

is split into several parts [81, 84, 88]. Under-segmentation may also occur when splitting overlapping

objects [94]. Over-segmentation can be resolved by pre-processing the image, modifying the watershed

transform algorithm or merging the obtained regions [88, p. 144].

Pre-processing involves modifying the image before applying the watershed segmentation. An ex-

ample is the H-minima transform [84, 88, p. 111] which attempts to resolve the issue of too many local



22 2.3. Image-based Size and Shape Measurement Techniques

minima. The H-minima technique is an iterative procedure, introduced here based on [81, p. 472,484-

485] and [88, p. 111]. In each iteration, the pixel value is replaced by the maximal value in its neighbor-

hood, where the neighborhood is defined by the connectivity. This is also known as grayscale dilation

and is described in section 2.3.2.3. The obtained image is then compared with a mask image and the

minimum of the pixel values in two images at each location is taken. The mask image is obtained by

increasing the gray values of the original image by a parameter h, called the "dynamic" [88, p. 111]. The

procedure ends if there is no change of the image in successive iterations. The effect of the operation

is that some local minima are deleted as several local minima may be joined into a common valley. An

analogous operation on local maxima is known as the H-maxima transform [96, p. 63]. Another pre-

processing approach [90] consists of considering a sphere around each local minimum with a radius

equal to the distance of that local minimum to the background. Any other local minima within such a

sphere are deleted. This method was designed for splitting touching spherical particles [90].

A further pre-processing technique for eliminating over-segmentation involves using watershed

markers or seeds in form of a mask image that contains foreground pixels at the locations that are

known to belong to the watershed basins or to the background [81, p. 547]. The mask image can be

used to enforce minima on these desired locations in the image on which the watershed transform is

performed, such as the gradient or the distance transform image [81, p. 549]. Various methods can

be used to obtain watershed markers and are often designed with the specific application in mind.

Zhang et al. [94] defined markers as local minima in a special distance transform image obtained after

performing a procedure that shrinks the overlapping objects near the points where they overlap.

Finally, over-segmentation may be resolved by merging watershed basins. Umesh Adiga and

Chaudhuri [91] merged small with large watershed regions whereas Long et al. [93], apart from size,

also considered the gray values and the convexity of the watershed region obtained upon merging.

Edge Detection In the here discussed 2D applications, it is typically sufficient to find the outer bound-

ary of the particle. This problem statement is known as edge detection. The algorithms are based on

the fact that gray values exhibit a strong change at the edges so that the gradient image will have high

gray values at these locations. However, using a simple filter that computes the image gradient and

thresholding the resulting image usually does not provide satisfactory results [86, p. 103]. A popular

algorithm is the Canny edge detector, explained in detail in [86, p. 103-105] and summarized here. The

original gray value image is first filtered with a Gaussian filter whose standard deviation is some chosen

value σ . The gradient of this smoothed image, as well as the gradient magnitude, are computed. The

algorithm then finds pixels that represent local maxima in the gradient magnitude image along the direc-

tions specified by the gradient. Edges are formed in the final step by performing hysteresis thresholding

on the image consisting of these local maxima. The Canny edge detector algorithm therefore has three

parameters, σ and two thresholds for the hysteresis operation [81, p. 500]. Calderon De Anda et al.

[20] used a two-scale method combining the edges detected by two Canny operations with different

σ parameters. This edge detection operation was the basis for segmenting in-situ images of crystals

taken by a camera positioned near the reactor wall. The method used by other researchers segmenting
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in-situ images of crystals [61, 71, 97] and was integrated into the StereovisionNI software which is used

to process images obtained by a stereoscopic setup [23].

2.3.2.3 Morphological Operations

The segmented objects often need to be processed further before size and shape measurements can

be undertaken. Classical tools for this task are morphological operations, described in detail in [81].

The two basic operations are morphological erosion and dilation. The operations can be applied both

on binary [81, p. 444-447, 451-454] and grayscale [81, p. 475-478] images. In both operations, a

mask, also called structuring element, is centered at each pixel of the image. In case of binary erosion,

the foreground pixel is kept only if all pixels marked by the structuring element are foreground pixels.

Grayscale erosion, in the simplest case, sets the pixel value to the minimum of the pixel values in

the mask, so that binary erosion represents its special case. Similarly, grayscale dilation changes the

pixel value to the maximum of the values seen in the mask, where the mask is reflected around the

origin beforehand. Binary dilation is a special case where the pixel is set to foreground if at least one

foreground pixel is covered by the structuring element. Therefore, binary erosion shrinks the object

whereas binary dilation expands it. In order to change the object size as little as possible, combinations

can be applied [81, p. 454-457]. Morphological opening is an erosion followed by a dilation, whereas

a closing is a dilation followed by an erosion. Binary closing is often applied to close discontinuous

edges that may result from uneven illumination or blurring, such as in [20]. Binary opening can be

used to reduce contour roughness or to delete small or thin objects that represent noise, also seen for

example in [20]. Grayscale variants of the operations can be used to filter the image or correct uneven

illumination [81, p. 480-482].

A further morphological operation is hole-filling, where enclosed background pixels are set to fore-

ground [81, p. 474].

2.3.3 Image Analysis

Before starting image analysis, it is assumed that separate particles have been identified. The goal

is now to measure their size or fit and measure the shape. This section provides an overview of

measurable quantities as well as of methods and algorithms.

2.3.3.1 Object Size

The most intuitive size measure for an imaged object is the object area in case of binary 2D images

or the object volume in case of binary 3D images. Area of a 2D object can be determined by counting

the foreground pixels [98, p. 34] and multiplying by the area of each pixel expressed in µm2. Volume

of a 3D object can be computed in a similar manner. Based on these values, one can calculate the

equivalent diameter of a circle with the same area (2D) or a sphere with the same volume (3D). Area is
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the zeroth-order moment, m0,0 of a 2D object, where the moment of order p,q is defined as [98, p. 37]:

mp,q =
∑
(u,v)

upvq, (2.8)

where u and v are the coordinates of foreground pixels. The moments m1,0 and m0,1 represent the

coordinates of the centroid and can be used to compute central moments [98, p. 38]. The object can

then be approximated by an ellipse with the same central moments as the object [98, p. 43]. A similar

idea was used by the group of Mazzotti, who described the imaged particle by the major and minor axis

length of an equivalent ellipse [61, 72, 99, 100]. Similarly, in 3D, long, intermediate and short axis length

of a best-fit ellipsoid can be used [83]. Length and width can further be approximated by the maximal

and minimal Feret diameter [18] or by using morphological operations [17]. In 3D images, length of

a particle can furthermore be defined as the length of the longest straight line connecting points on

the surface [82]. Width and thickness are defined similarly, while being mutually perpendicular and

perpendicular to the length direction [82].

A further commonly used measure of particle size is the perimeter. In order to compute the perime-

ter, one must first find the boundary of the object, defined by the foreground pixels that have background

pixels as neighbors [81, p. 552]. Note that the obtained boundary depends on the choice of connectivity.

In order to calculate the perimeter, therefore, one must determine the length of the line that connects

the boundary pixel centers. The so obtained length can overestimate the real perimeter, even for a well-

chosen connectivity, so that a scaling factor of 0.95 can be used to correct the result [98, p. 33]. Ðuriš et

al. [101] have investigated three different softwares and have shown that different algorithms are used

for perimeter calculation. The difference in the obtained perimeter measures further influencing shape

factors that are computed using the perimeter. Moreover, they show that image resolution has a strong

influence on the calculation of the perimeter.

Imaging with a higher resolution reduces the discretization error. Objects containing very few pixels

should be left out of consideration as they cannot be differentiated from the image noise and the error in

their size measures is large. The resolution and the measurement system should therefore be chosen in

such a way that the discarded particles represent a neglectable portion of the particle size distribution.

A brief discussion on the topic of image resolution can be found in Gamble et al. [12].

2.3.3.2 Shape Descriptors

Shape Factors Shape factors are values derived from the size measures. Classical shape factors are

circularity, defined as 4πA
P2 [98, p. 34], where A and P are the particle area and perimeter, respectively,

or the aspect ratio and elongation, representing the ratio of some chosen length and width measures.

Certain crystal shapes are more desirable than others so one or more shape factors can be used to

monitor [17] or control the crystallization process [24].

A large number of shape factors, combined with other shape descriptors and size measures, can

be used as input for pattern recognition tools that recognize the amount and degree of agglomeration
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or the polymorphic form of crystals. This is discussed in more detail in section 2.3.4.3.

Fourier Descriptors In case of 2D images, particle shape can be described by a curve showing the

distance of contour points from the object centroid. In case of a perfect circle, this curve would be flat,

whereas a curve for a square would show four peaks. The curve can be approximated or smoothed

by using Fourier transform and considering only a chosen number of Fourier coefficients [81, p. 582].

Furthermore, if the curve is appropriately sampled at a constant number of points, this approach can

be used to provide a signature and compare different objects. Considering only the magnitude of the

Fourier coefficients further ensures independence of object rotation, while the coefficients can also be

scaled to discard the information about object size [25].

Borchert et al. [25] created a pre-computed database of Fourier descriptors to describe the shape

of KDP crystals. To obtain the database, they simulated crystals with different orientations and aspect

ratios and projected them onto a plane. The database was used to measure growth rates in an exper-

iment where crystals were imaged by the QICPIC dynamic image acquisition method. Imaging were

taken on-line in a flow-cell through which samples of the suspension were periodically pumped. The

descriptors of imaged crystals are compared with the database. The obtained match, upon re-scaling

the size, provides the full 3D reconstruction of the imaged crystal.

A similar idea, involving comparison with a database of Fourier descriptors obtained from different

orientations of the crystal towards the projection plane had also been pursued by Li et al. [102]. It was

used to discriminate between the two polymorphs of L-glutamic acid in images obtained on-line.

Concavity Descriptors In certain crystallization applications it is necessary to discriminate between

single crystals and agglomerates or recognize primary particles in aggregates. In case of a binary

image, this can be done based on object convexity, as primary particles would appear convex while

aggregates would exhibit concavities. Most concavity descriptors are based on the convex hull concept.

A convex hull of a region is the smallest polygon that is convex and contains all points of that region

[98, p. 35]. Therefore, the convex hull of a set of pixels can be computed exactly by considering each

pixel as a filled square. However, the image itself is a discretized version of the true object area, so

that the convex hull should be discretized as well to yield a so-called convex image. The solidity is then

computed by considering the areas of these two images [81, p. 597]. Another approximation of the

convex hull is obtained by approximating pixels through their center points.

The simplest concavity-based descriptor is the convexity or solidity, defined as the ratio of the ac-

tual object area and the area of its convex hull [69, 103]. Concavity index is defined as the ratio of

the largest concavity segment area and the object area [69]. The largest concavity segment is the

largest connected component in the convex hull image obtained after subtracting the object itself [69].

Concavity-based descriptors can also be defined using morphological operations [104, 105, 106].
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2.3.3.3 Shape Fitting

If the combination of the imaging method and the particle shape permits it, the ultimate goal of the

image analysis procedure is to obtain the parameters of the polytope that best fits the imaged crystal.

In case of 2D imaging, it is sometimes sufficient to fit an appropriate 2D shape on the recognized

particle, whereas for simple shapes a full 3D reconstruction can be achieved. In either case, shape

fitting requires detecting lines and corners, in case of 2D images, or planes, in case of 3D images.

Fitting 2D shapes Shape fitting in case of 2D images typically starts by line detection. There are

several methods in the literature. Hough transform [32, 107] considers a set of directions di in space

and a set of distances ρ j. Each direction-distance pair (di,ρ j) defines one bin. Bins are then filled with

points p that fulfill

ρ j−
∆ρ

2
≤ 〈di,p〉< ρ j +

∆ρ

2
, (2.9)

where ∆ρ = ρ j−ρ j−1 is the step size for the distance discretization. Lines are then found by a suitable

maxima search over the space defined by the bins. Reinhold et al. [32] used Hough transform as a

basis of an algorithm that fits a polytope to each of the 2D images obtained by a stereoscopic setup.

Then, Minkowski-addition principles are adopted in order to fit a rounded shape and find the roundness

of the abraded potash alum particles. An alternative method to Hough transform is the Burns line

finder, used by Larsen et al. [21]. Burns line finder is applied to grayscale images and produces

line segments which are further concatenated into lines. Pairs of parallel lines are then identified and

clustered together. Based on these clusters a rectangle is fitted and used to estimate the particle

length, width and orientation. The approach was applied to in-situ crystal images and allows detected

rectangles to overlap. It was further extended by incorporating a 3D crystal model [22]. Here, the

detected lines are clustered into viewpoint invariant groups (VIGs), meaning that their properties are

kept regardless of the orientation of the particle towards the camera. VIGs are then compared to the

possibilities arising from the crystal model in order to estimate both the model and viewpoint parameters

and finally fit a 3D shape. The success of both methods [21, 22] was found to be dependent on the

solids concentration, which is an inherent problem of the in-situ imaging methods, as discussed above.

Ahmad et al. [97, 108] also fitted rectangles and polygons on overlapping particles in in-situ images.

The method is based on detecting "salient" corners, representing corners where exactly two edges

intersect. Groups of three corners are then formed and symmetry is used to compute the remaining

corners, depending on the assumed polygonal shape. Length and width can then be computed based

on these shapes to yield the particle size distribution [108].

It is furthermore possible to fit an ellipse based on the moments of the object image, as explained

in section 2.3.3.1 and implemented by the group of Mazzotti to measure the object length and width

[61, 72, 99, 100]. Note that in this case, it is not necessary to detect lines in the image, rendering the

computation simple and efficient.
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Fitting 3D shapes As discussed in section 2.3.1.2, 3D crystal shape can reliably be measured by

3D imaging methods. Singh et al. [19] used confocal microscopy to image crystals which were coated

with fluorescent dye. The shape reconstruction algorithm extracts the contours of the 2D slices and

determines the convex hull of the obtained stack of contour points. In order to determine crystal faces,

convex hull points are triangulated. Triangles with similar orientation are grouped together and bound-

ary points close to the triangle groups are assigned to them. Planes are fitted through these points

and the face distances are determined, providing a 3D polytope. In order to determine the crystal

polymorph, angular patterns of the obtained polytope are computed and compared with the theoretical

angular patterns of different polymorphs. Finally, Miller indices are assigned to faces.

Full 3D shape can in some cases also be extracted from 2D images. In section 2.3.3.2, it was stated

that a full 3D shape of a crystal can be obtained by comparing the Fourier descriptors of a particle

with those in a pre-computed database [25]. That approach [25, 102] assumes that the particles are

randomly oriented towards the imaging plane as the imaging is done on-line or in-situ. In case of off-line

imaging, particles settle in a stable position under the influence of gravity, enabling in certain cases a

direct fit of the 3D shape. Ma et al. [71] investigated potash alum crystals grown in a hot-stage reactor.

The morphology of the crystals is such that crystals settle on one of the faces belonging to the largest

face group. The distances of certain line pairs are related to the 3D crystal shape and its projection

on a plane from the assumed angle. Therefore, the 3D shape can be obtained from some geometrical

considerations. It is used to obtain the face-specific growth rates.

Several methods for obtaining the 3D shape from stereoscopic imaging setups have been devel-

oped. Apart from the presented image processing steps, stereoscopic imaging requires a matching

step where the desired features from the images are paired [44]. Upon establishing the matching, fur-

ther image analysis steps can be performed. The group of Mazzotti [26, 27, 100, 109] matched labeled

objects in the two images based on the coordinates of their centroids and bounding boxes. Images were

taken in a flow-cell with a stereo angle of 90◦, where on-line operation is possible by continuously sam-

pling the slurry and returning the samples into the reactor after imaging [26, 27, 109]. Different levels

of detail can then be extracted from these images. In [26, 27], particles were approximated by spheres,

cylinders or cuboids. Particle class was determined based on the curve that describes the distance of

the boundary pixels to the centroid by analyzing the extrema of this curve. The length measures of the

approximated shapes are then obtained from the boundary curve or by analyzing the extreme pixels in

both projections. In their future work [109], a shape model corresponding to a polytope based on the

crystal morphology was adopted. The polytope is measured by solving an optimization problem that

considers possible orientations and shapes of the particle in the imaging setup. In each step, the out-

lines of the particle in the two stereoscopic images are compared to the outlines that would be obtained

when projecting the particle with the currently considered orientation and shape. As each considered

particle type can crystallize into shapes with several different combinations of edges, different regions

of the morphology domain are considered separately. The approach was validated by simulation of

different particle morphologies, showing that method is capable of measuring the crystal polyotpe with

a reasonable accuracy in most cases. A simulation of different stereo angles (12◦−90◦) shows that a
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polytope that matches the given pair of projections is found for the whole range of angles. However,

when comparing the actual simulated size and shape with the result of the optimization procedure,

large errors were found for stereo angles lower than 60◦. Furthermore, the authors see little advantage

with respect to the shape approximation approach [27]. The particles observed in a real experiment

were of too poor a quality, thus not fitting the polytope model perfectly, whereas a simulation study has

shown that the generic particles can also capture the volume and aspect ratio well at a much lower

computational effort.

The stereoscopic setup proposed and investigated by Wang and co-authors [75] can be used to

monitor on-line static particles grown in a flow-cell [77], as well as particles grown in a reactor by placing

the cameras next to the vessel wall [23, 70, 76]. The advantage of the latter setup with respect to that of

the Mazzotti group is that the sampling step is eliminated [23]. A description of the reconstruction steps

can be found in [76]. The matching of crystal pairs in the two images is done based on the centroid

coordinates. Then, corners and edges for each pair of particles are matched. The reconstruction of the

3D coordinates uses the triangulation method. The basic idea of this method is that lines connecting

an imaged point to the camera for the two images will intersect in the point which was imaged, thus

providing its 3D coordinates [110, p. 263]. In [23], the setup was used to measure the 3D length of

needle-like particles and estimate the growth rate in length direction. The length measurement was

validated by comparison to the result of a static off-line imaging setup. The applicability to other crystal

morphologies and to face-specific growth rate measurement was shown in [76]. The setup was further

applied [77] to measure the face-specific growth rates of static crystals in a flow-cell and investigate the

influence of supersaturation, solution velocity and seed size.

Bujak and Bottlinger [111] designed a method for reconstructing the 3D shape of irregular particles

based on three orthogonal projection images taken during particle fall. As no shape model for the

irregular particles can be adopted, the reconstruction is done purely based on the contours extracted

from the projection images. Two of the three contours are taken to form a simple wire-frame, while

the third contour is approximated by a polygon. Then, the wire-frame is intersected by planes parallel

to the third contour. Each plane intersects the wire-frame in four points that define a rectangle. The

approximated polygon is then scaled within this rectangle in order to provide one slice of the particle.

The reconstructed shape consists of a stack of such slices and approximates the particle volume well.

Chakraborty et al. [112] presented a method for reconstructing the 3D shape of a single crystal

from several images taken from different angles. The crystal was imaged by an ordinary digital camera

coupled with a light source. The idea is based on the fact that regular light reflection occurs from

exactly one crystal face if the crystal is imaged from a certain angle, allowing the shape of that face

to be easily extracted by suitable image processing steps. The 3D reconstruction is then performed

by subsequently attaching reconstructed faces using the information about the angular orientation of

the face and its adjacency to other faces over edges. The technique is not easily applicable for crystal

populations. It is time consuming as the camera must be re-positioned to take images from different

angles and the information about camera movement and face adjacency must be noted and specified

for reconstruction.
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2.3.4 Statistical Evaluation

The image analysis step results in the chosen size or shape measures for each imaged particle. In

certain cases, the result is a full 3D reconstruction of the imaged particle, so that any size or shape

measure can be computed. The task of the statistical evaluation step is to process this data for a large

amount of particles to obtain the final information of interest. To this end, size and shape data is often

correlated to other measured quantities or simulation results. This section presents a brief overview of

the possibilities in this area.

2.3.4.1 Measurement of Particle Size and Shape Distribution

We here consider particle size distribution (PSD) to be a one-dimensional distribution determining the

amount of particles for a given size measure. A particle size and shape distribution (PSSD) is a multi-

dimensional distribution over more than one size measure. In the ideal case, a PSSD has as many

dimensions as there are face groups for the considered crystal and it is defined over the face distances

hi. As these values are rarely experimentally measurable, PSSD can be reported in terms of length and

width [17, 27, 58, 69], or one length measure and two aspect ratios [100].

In the simplest case, the PSD/PSSD is obtained by gathering the measured quantities into a his-

togram and scaling them appropriately. Puel et al. [17] thus obtained a 2D distribution over length and

width, where these quantities were measured by static image analysis. Measuring length of needle-

shaped particles by dynamic image analysis, however, results in smaller values due to particles’ random

orientation towards the camera [23]. Particle width is affected similarly. Therefore, even though one can

create a distribution of so obtained length and width values, they do not correspond to the true PSD.

This issue can be overcome by modeling the imaging process, as shown by the group of Mazzotti

[61, 72, 99, 100]. They chose to fit ellipses to images of particles taken in a flow-cell setup, yielding ma-

jor and minor axis length measures. A relationship between the obtained axis length distribution (ALD)

and the true PSD was then established. A Monte Carlo approach was adopted to compute the ALD of

a single particle and weighing was employed to find the ALD of the entire distribution [61]. The inverse

problem of extracting the PSD from the observed ALD is solved by optimization [72]. The approach

was also applied to the stereoscopic setup, where a 4D ALD was related to a 3D PSD [100]. This idea

is similar to extracting the PSD from the chord length distribution [57, 59, 113], as discussed above.

2.3.4.2 Kinetics Measurement

Measuring the kinetics of a certain process is often a first step towards its optimization. In crystalliza-

tion, a lot of effort is invested in measuring the growth and nucleation kinetics. Studying the nucleation

kinetics typically requires the measurement of the induction time and therefore the detection of very

small particles. While this can be done by detecting the particles through FBRM [114] or optical mi-

croscopy in case of small volumes [115], it typically involves measuring some macroscopic property of

the whole slurry, such as for example the turbidity [65, 115]. Therefore, the focus of this section is on
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the growth rate measurement. Dissolution rate measurements can be obtained similarly, as they can

be considered to represent negative growth rates.

Growth rate measurement is based on tracking the change of crystal size over time. Different size

measures can be used, ranging from the sphere equivalent diameter to face distances from the crystal

origin, corresponding to the H-representation [25, 71]. Underlying kinetic models also differ, ranging

from a linear equation describing the change of mean particle length over time, as for example used

in [23], to models that incorporate the dependence on the supersaturation. The latter methods, there-

fore, require a concentration measurement and usually employ on-line infrared spectroscopy probes.

Furthermore, the methods can be employed both to study a single crystal and the whole population.

The growth rate estimation can involve either a deterministic curve-fitting of the desired parameters,

or numerically solving an optimization problem. The first case is employed when the underlying equa-

tions are simple enough that an explicit solution for the growth parameters can be derived by setting

the gradient of the objective function to zero. The latter approach is non-deterministic and the solution

depends on the chosen starting point as the typically-used gradient-based algorithms are only capable

of finding a local minimum of the objective function. The objective function relates the measured crystal

size to the crystal size obtained under the chosen set of growth parameters. It can thus be defined

using the mean of the measured distributions or by using the entire distribution. Therefore, there is no

single approach for the growth rate measurement and the chosen approach depends on many different

factors. In the following, three examples are presented, based on different information about crystal

size and shape extracted from the imaging and image analysis procedures described above.

Ma et al. [71] conducted hot-stage experiments where a small amount of crystals nucleated and

were then allowed to grow. As discussed above, it was possible to extract the full 3D shape from the

obtained microscopy images as the orientation of the crystals towards the camera is known. The con-

centration, and thus supersaturation, are determined by measuring the volume of the crystals through

image analysis. A second order polynomial was fitted to the curve describing average face distances

of different face groups over time, so that a linear growth rate can be computed as its derivative. These

growth rates can now be correlated with the supersaturation σ which changes over time to obtain

equations of type

Gi = kg,iσ
gi , (2.10)

where i denotes different face groups, whereas kg,i and gi are fit parameters.

Borchert et al. [25] obtained the full 3D crystal shapes from the 2D on-line imaging setup by compar-

ison of the Fourier descriptors of the measured particle with a pre-computed database. They conducted

seeded cooling crystallization experiments with two different constant cooling rates, yielding two differ-

ent supersaturation profiles. A PSSD was estimated from the 3D reconstructions of the particles and

the mean shape could be computed at different points in time. The growth rate law from equation 2.10

was assumed for each of the two face groups i. The parameters kg,i and gi were found by solving the

optimization problem with two least-squares objective functions summing the errors of the average face

distance hi for each face group at different times. This work was further extended by Eisenschmidt et
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al. [116], who incorporating the dependence on temperature, considered the effect of impurities and

also measured dissolution rates.

Ochsenbein et al. [45] monitored the seeded batch desupersaturation experiments using the stereo-

scopic setup of the Mazzotti group [27] to obtain the 2D PSSD. The needle-like particles were approx-

imated as cylinders where the length and diameter were measured. Several growth rate expressions

were investigated, with and without size dependence, both mechanistic and purely empirical. The

objective function for the optimization problem is defined over the concentration and moments of the

PSSD. A population balance equation is solved in order to get the concentration and moments for each

chosen set of parameters. The method was validated by simulating the imaging process where parti-

cles are described as true 3D polytopes as well as by additional experiments. A discussion of different

growth expressions and potential causes of the observed PSSD broadening were also provided.

Alternatively to using image analysis, growth rate measurement can be done by model identification

where an optimization problem is solved to obtain the growth parameters. The optimization function

can compare the initial and final particle sizes, but it can also be written over quantities other than

the crystal size. For example, Kim and Yang [65] assumed that the nucleation will occur at the same

supersaturation level for a certain cooling rate. The objective function used to optimize the growth rate

parameter for different face directions was therefore based on the difference between the metastable

zone width and the supersaturation at the point of nucleation, measured for different seed amounts.

2.3.4.3 Particle Classification

Particle images can be used to classify particles according to criteria such as shape [24, 117], poly-

morphic form [70, 118], whether the particle is an aggregate [68, 69] or the complexity of an aggregate

regarding the number of underlying primary particles [105, 106]. Based on this classification, other

properties of the particulate product can be computed, such as the agglomeration degree or the amount

of different polymorphs. In the following, necessary tools for particle classification are presented and

their properties are discussed before giving particle classification examples from literature.

Classification is a classical problem in the field of pattern recognition. It considers a set of objects,

Variable 1

Variable 2

Figure 2.6: The task of classification is to determine the class (here, triangle or square) of an object
based on the value of the considered variables. In this case, classes are linearly separable, as depicted
by the line.
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each characterized by some variables, as illustrated in Figure 2.6. In case of particle imaging, the

objects are the imaged particles, whereas the variables are typically the computed size and shape

descriptors, together termed image descriptors. The goal of classification is to sort each object into

one of the classes based on the measured variables. The classes are typically pre-defined by a human

operator, so that in case of particle imaging, the operator may define the classes as single crystals and

aggregates [69] or circular, square and rectangular and irregular shapes [117]. A set of mathematical

operations that result in a decision regarding the class of a given object is called a classifier. It is inferred

from a training set containing objects that were manually classified by a human expert. The accuracy

of the classifier can be determined using another set of manually classified objects known as the test

set. Finally, the classifier can be applied to new objects for which the underlying class is unknown. The

described approach is known as supervised learning [119, p. 3] in the pattern recognition literature. In

the case of unsupervised learning, no manual classification is performed and the underlying classes

are unknown. The resulting procedure is called clustering as the algorithm searches for clusters of

similar objects [119, p. 3].

In case of particle imaging, determining whether a particle is an aggregate by thresholding its

solidity value can be considered as a trivial classification problem with one variable. In case of two

variables, a simple classifier can be visualized as a curve that splits the 2D variable space into two

parts belonging to the two classes. A generalization to n dimensions and N classes is obtained by

considering a set of surfaces that partition the n-dimensional space into at least N parts. The goal

of the classification procedure, therefore, is to fit such curves or surfaces. If lines or hyperplanes are

obtained, the classifier is called linear, otherwise it is known as non-linear. Classifiers can furthermore

be considered as parametric or non-parametric, depending on whether they fit the parameters of some

assumed probability distributions that describe different classes.

Discriminant factorial analysis (DFA) is an algorithm for obtaining a linear discriminant function,

which is a linear parametric classifier. It is assumed that each class is normally distributed over the

variable space, where the classes have different means but the same covariance matrices. The clas-

sifier finds the parameters of these normal distributions [120, p. 343] and classifies each new object

in a class where the probability of misclassification is minimized. This is equivalent to maximizing the

posterior probability [120, p. 336, 394]. It is furthermore possible to form a quadratic classifier by relax-

ing the assumption that the covariance matrix of the two classes is the same, leading to the quadratic

discriminant function [120, p. 340]. However, such classifiers are less stable and often more sensitive

to the size of the training set [120, p. 347].

Artificial neural network (ANN) represents a non-linear, non-parametric method. A feed-forward

neural network, also known as multilayer perceptron, consists of interconnected processing nodes,

also called neurons, typically divided into three or more layers. More information about multilayer

perceptrons can be found in the book by Bishop [119, p. 225-261], while the most important aspects are

introduced here. An illustration of such a neural network is given in Figure 2.7. The input layer contains

one node for each of the considered variables. Each node in each of the hidden layers performs a

non-linear, typically sigmoidal, function over the weighted sum of the outputs of the nodes from the
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Input Layer Hidden Layers Output Layer

Figure 2.7: An illustration of a neural network with an input layer, several hidden layer and an output
layer.

previous layer. Each node in the output layer corresponds to one class and the object is sorted into the

class corresponding to the output node with the highest value. The training process consists of finding

the weights that minimize an objective function describing the difference between the obtained and the

desired output values for the objects in the training set. Therefore, training an artificial neural network

is an optimization problem that can be solved by classical optimization techniques such as steepest

descent and other gradient-based methods. These methods modify the value of each parameter, in

this case each weight within the network, in the direction of the negative derivative of the objective

function with respect to that parameter. The objective function, however, depends directly only on the

weights that connect the last output layer to the hidden layer. Its derivative with respect to other weights

can be derived mathematically and contains an expression for the output error of the upcoming layer.

Therefore, in order to modify the weights of inner layers, the error is propagated back from the output

layer towards the input layer. This is known as the backpropagation principle and was derived for the

least-square objective function by Rumelhart et al. [121].

The classification accuracy depends on the chosen pattern recognition tool, such as DFA or ANN,

whereas the ANN introduces further degrees of freedom in terms of the network structure, such as the

number of neurons and hidden layers as well as the implementation of the optimization procedure [122,

123]. The quality of the obtained classifier furthermore depends on the training set and therefore on the

amount of objects it contains [105, 122, 124], the relative amounts of objects from different classes [124]

and the chosen variables [68, 105, 123]. Increasing the amount of objects in the training set improves

the classification accuracy but also increases the costs for creating the classifier as it implies more

measurements and more time invested in manual object classification. If the measurements are costly,

one can attempt to compensate for a small amount of objects in the training set by simultaneously

measuring a large amount of variables. In case of particle classification by image processing this can

easily be achieved by using as variables a large number of Fourier descriptors or all image descriptors

computed by the used image processing software. However, this strategy does not always give the

desired results and can lead to the so-called peaking phenomenon. Peaking phenomenon is viewed

as the decrease of classification accuracy with an increasing number of considered variables [122,
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125]. The explanation is based on the fact that certain variables contribute more information to the

classification than others as different classes exhibit different values for these variables. Therefore,

a large amount of useless variables can introduce unnecessary noise into the classification process

[126]. Hamamoto et al. [126] showed that ANN classifiers are more robust to peaking phenomenon

than some other investigated classifiers in case where the number of used variables increases linearly

with the number of training samples. This is explained by the capability of ANN to ignore useless

variables. However, ANN can still exhibit peaking behavior [122]. In case of particle classification

with DFA [68], it was observed that quality of the obtained classification depends on the chosen set

of image descriptors, where a larger set does not necessarily lead to better results. In such cases, a

significant amount of effort is invested in selecting an appropriate subset of variables that leads to the

best classification accuracy.

Automatic particle classification has been implemented by many research groups. A wide variety

of image acquisition setups, classification methods, classes and variables were considered. Image

acquisition can be done off-line statically [68, 105, 117, 127] or dynamically in suspension [74], as

well as on-line using a flow-cell setup [69, 106]. An overview over the investigated particle properties,

variables and classification methods is given in Table 2.1. Particles can be classified either into single

crystals and aggregates [69], additionally including waste particles [68, 74], or into several complexity

classes based on the appearance and the amount of primary particles in an aggregate [39, 40, 105,

106]. Further possible classifications are done based on shape [24, 117] where the different shapes can

also represent different polymorphic forms [70]. The used variables most often involved a set of size-

independent image descriptors [39, 69, 105, 106, 123], typically involving classical shape descriptors

and concavity descriptors. Terdenge et al. [68, 74] additionally used size measures. Some researchers

employed Fourier descriptors, defined in multiple manners [117, 127, 128], where Fourier descriptors

were shown to be slightly inferior to shape and concavity ones [117]. The most popular classification

methods are DFA [68, 74, 105, 106, 127] and ANN [117, 123, 128]. Ochsenbein et al. [69] and Huo et

al. [70] employed a non-linear classifier called support vector machine (SVM). Some of the discussed

approaches first performed a dimension reduction on the selected variables [39, 40, 70, 118, 123]. A

popular tool is principal component analysis (PCA). In [39], a function of principal components that

is correlated to the number of primary particles was derived through the visual observation of the

PCA score plot for the training set. This represents a scatter plot of the image descriptor values in

the principal component space. A correlation function was fitted and used to estimate the number of

primary particles for the data in a test set as well as the unseen data. An even simpler classification

procedure was designed by Patience and Rawlings [24]. They considered two variables, plotted the

particles in this variable space and fitted two non-intersecting ellipses to clusters of the two classes,

representing tetrahedral and cubic particles. Particles that fall outside of these ellipses were later

discarded. Apart from the mentioned supervised learning approaches, Zhang et al. [118] used an

unsupervised clustering method to detect crystal polymorphs.

Finally, the designed classifiers can be used to extract the information about the crystal product

or the underlying crystallization process. The amount of agglomerates [68, 69, 74] can be used to
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characterize the product after washing and drying steps [74] or extract information necessary to model

agglomeration [36, 69]. An agglomeration degree on the particle-level, describing the amount of primary

particles an aggregate consists of, can be used to study the effect of different impurities on particle

morphology [105, 106]. Finally, the classifications of particle shape can be used to design process

control strategies with the goal of obtaining the desired particle shape [24].

2.4 Orientation Measurement

In the previous section, methods for extracting particle size and shape were discussed, with a focus on

imaging techniques. The general approach was divided into four steps presented in Figure 2.2, involving

image acquisition, processing, analysis and statistical evaluation. These methods enable a detailed

study of single crystals, as their full size and shape information can be obtained. However, there

are still limitations with respect to crystal aggregates and their structure. Information about the primary

particles that form the crystal aggregates are contained in crystal images, but are difficult to extract. The

statistical methods discussed in section 2.3.4.3 enable classifying aggregates based on their complexity

[105, 106, 127] and estimating the amount of primary particles [39, 40], the obtained values are only an

estimate and no information about primary particle orientation is gained. Any procedure for measuring

orientation between primary particles requires segmenting an aggregate into the constituting particles,

which is not a trivial task. Furthermore, primary particles overlap and are not completely visible in

the image which can cause ambiguities in the shape reconstruction. In case of static 2D imaging, no

assumptions about the most stable position under the influence of gravity can be made as this depends

on the structure of primary particles. In case of dynamic 2D imaging, even if resolving overlapping

particles is in some cases possible [21, 97, 108], one would have to distinguish between separate

single crystals that overlap in the projection image only and true aggregates. 3D imaging methods

presented in this work [1, 2], as well as stereoscopic techniques [69] enable this distinction and may

represent promising tools to study these phenomena.

The only currently used method for studying particle orientation based on imaging, excluding the

work presented in this thesis and the related publications [1, 2, 3], involves visual observation. Col-

lier and co-authors [34, 42] studied calcite particles using scanning electron microscopy (SEM) and

transmission electron microscopy (TEM). Visual observation of the produced SEM and TEM aggre-

gate images showed that primary particles tend to be aligned, but no quantitative information could be

obtained. TEM is furthermore capable of producing diffraction patterns of the imaged particles. Elec-

trons diffracted off different parts of the crystal lattice form characteristic interference patterns. These

patterns can be indexed to identify crystal planes and the direction of the incident electron beam with

respect to the crystal. Quantitative information about the orientation between primary particles can

be obtained by performing such computations for each primary particle. Collier et al. [34] used TEM

diffraction patterns to study the orientation of particles in calcite aggregates formed in an experiment at

low ionic strength. Aggregates were classified according to the alignment of their primary particles into

those with "perfect", "almost perfect", "partial", and "no alignment". It was found that 40% of the aggre-
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Single particle or
agglomerated

Particle
complexity

Particle shape Polymorphic form

Size-
independent
descriptors

DFA [105],
SVM [69],
ANN [123]

DFA [105, 106],
PCA-fit [39, 40]

DFA [105, 117] unsupervised
learning [118]

Including size-
dependent
descriptors

DFA [68, 74]

Fourier
descriptors

DFA [127] DFA/ANN [117],
ANN [128]

unsupervised
learning [118]

Image and
Fourier
descriptors

SVM [70]

Table 2.1: An overview of investigated particle properties, variables and classification methods in case
of automatic particle classification.

gates had either "perfect" or "almost perfect" alignment. Crystals produced at high ionic strength were

visually observed by SEM and no sign of preferential orientation was found. This lead Collier et al. [34]

to conclude that aggregates grown at low ionic strength probably have time to re-align themselves into

an energetically more favorable state upon collision, forming aligned aggregates. This was explained

by a thicker electrical double layer in case of low ionic strength, slowing the approach of the crystals.

An alternative explanation stated that this layer holds crystals further apart so that only those aligned

in a favorable position can grow a bridge strong enough to withstand the hydrodynamic forces.

Orientation between crystallites is often studied in material science as it influences the final proper-

ties of polycrystalline material [129, p. 1]. It is of special interest in bio- and nanomaterials where the

observed structures cannot be explained by traditional crystallization models [130]. The orientations

are measured using either electron (TEM)[34, 42] or x-ray [130] diffraction data. Mathematical ex-

pressions for expected orientation-related probability distribution functions can be computed in certain

cases [131, 132]. Similar ideas can be applied to study a population of individual crystal aggregates,

as shown by Collier et al. [34, 42], and further exploited in this work.

2.5 Goals and Open Questions

This chapter reviewed the established methods for particle size and shape measurement, with a focus

on methods based on particle imaging. In crystallization, these methods represent tools for obtaining

both kinetic information and a deeper, more fundamental understanding of the underlying mechanisms

in order to achieve control of the PSD, purity, and other properties of the final product. Depending on the

requirements, different imaging techniques can be employed to achieve this goal. Simple 2D methods

can provide one-dimensional PSD, shape factors and the agglomeration degree of the product, which

are sufficient for many practical applications. A more detailed investigation of the crystallization pro-
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cesses requires more sophisticated measurement techniques. Face-specific growth rates of crystals

that exhibit more than one face group can only be obtained from a 3D reconstruction of the particle

shape. While this can be achieved using classical 2D imaging in case of simple morphologies, it in

general requires more sophisticated tools such as stereoscopic methods using two 2D images, or 3D

tomographic techniques. The complexity of the methods further increases with the complexity of the

imaged particles. Apart from growth, crystals can also exhibit aggregation upon collision, leading two

or more particles to assemble into a new particle and further grow together. This phenomenon can lead

to the deviation from the required product properties. However, detailed study of aggregation has so

far been difficult given that 2D imaging methods cannot provide the information about the size, shape

and orientation of each involved primary particle. This type of information is necessary in order to un-

derstand which experimental and geometric conditions would lead to a formation of a stable aggregate

when two crystals collide.

As it was shown in this chapter, little attention has been given so far to the development of char-

acterization methods based on 3D imaging. These methods have a great potential in providing the

necessary level of detail as no information about the particle shapes is lost through projection. In this

work, methods of extracting the full 3D particle shape from µCT images are developed and investigated

on the example of potash alum crystals. They enable the measurement of the full 3D polytope in case

of both single crystals and primary particles in crystal aggregates. Furthermore, it is shown how the

orientation between primary particles can be measured, thus opening the possibility for detailed study

of parameters that lead to aggregate formation without the need to resort to the study of TEM diffrac-

tion patterns. While the 3D imaging methods are unique in their ability to provide shape information,

their drawback lies in the associated time efforts and cost, as well as in the need for particle sampling

and preparation. 2D methods are still sufficient for practical applications, even in case of aggregation.

While they may not facilitate fundamental understanding of aggregation, these methods can be used

to compute the amount of aggregates in the product and thus find crystallization and post-processing

conditions that lead to least aggregation. Thus, classifying 2D-imaged objects into single crystals and

aggregates is also investigated in this work.

The experimental information, regarding both single crystals and aggregates, could be coupled with

simulations to further study crystallization phenomena. Some of the required simulation and modeling

techniques are already available, exemplified by multi-dimensional population balance solvers for crys-

tal growth, reviewed in the work of Reinhold and Briesen [47]. The ability of the modeling techniques

to predict crystal behavior can only be evaluated through comparison with experiments, leading back

to the methods for sophisticated particle characterization and providing further motivation for methods

studied in this work.
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Chapter 3

Shape Identification of Single Crystals

3.1 Algorithm

This chapter presents a procedure for extracting the full 3D polytope from a 3D image of the crystal

and is based on the corresponding publication [1] 1. The considered images are obtained by µCT or by

simulation, although the method is generally applicable to images acquired using similar tomographic

techniques. It is assumed that each particle is stored in a separate image and that each particle repre-

sents a single crystal. Furthermore, the procedure is based on a comparison with a given crystal model,

defining the directions of face normals that could potentially be found on the crystal surface. The finally

obtained polytope consists of a subset of faces defined by the model. It is therefore possible that some

of the model faces disappeared from the crystal surface, thus allowing different crystal morphologies

of the modeled compound. The obtained polytope is symmetrical, using the symmetry defined by the

crystal model. This step may be left out in order to better match the realistic experimental data, as it

will be discussed in Chapter 5.

The procedure consists of three basic steps and is illustrated in a flow-diagram given in Figure 3.1.

First, the directions of face normals in the crystal image are identified using Hough transform. Then, a

correspondence between the identified face normals and the face normals given in the crystal model

is established. Apart from deciding which identified faces are indeed present in the model and which

model faces are visible on the imaged crystal, this step also involves finding the rotation matrix. Finally,

the algorithm identifies the distance of each rotated model face from the particle center and applies

symmetry conditions in order to obtain the final crystal shape. These steps are described in more detail

in the following.

3.1.1 Identifying Face Normals

Hough transform is a classical tool for identifying lines in 2D images [107] [98] and has been discussed

in the section 2.3.3.3 on shape fitting. The idea can be extended to finding planes in 3D point clouds,

1In the previous publication, x- and y-axis of the crystals were permuted, which is corrected here. Further small bugs were
fixed.
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Identify Face Normals

Correspondence between

identified and model face

normals

Identify Face Distances

Figure 3.1: Procedure for identifying the shape of single crystals.

as presented by Borrmann et al. [133]. In the 3D case, this is achieved by discretizing the 3D space

into a set of bins, where each bin defines a plane with a specified normal direction and a specific

distance from the chosen middle point. Each bin is filled with points from the surface point cloud that

are in the vicinity of the plane defined by that bin. Finally, bins with the highest number of contained

points are detected, resulting in a set of planes that appear in the point cloud. The success of this

procedure depends on the implementation details [133]. The procedure adopted in this work is given in

the following.

The point cloud is given by the coordinates pk of foreground voxels on the crystal surface. These

are foreground voxels that are connected to at least one background voxel using the 6-connectivity.

Face normal directions ni are described by the polar angle φi and the azimuthal angle θi:

ni(φi,θi) = [cos(θi)sin(φi) sin(θi)sin(φi) cos(φi)]. (3.1)

We furthermore consider a set of distances ρ j from the chosen crystal middle point and define bins

b(φi,θi,ρ j) that fully discretize the 3D space. Each so created bin represents the space between two

planes with normals ni and distances ρ j− ∆ρ

2 and ρ j +
∆ρ

2 , where ∆ρ is the discretization step for the

distances ρ j. Each bin is then filled with surface points pk that occupy this space.

To fully parametrize the face identification, the discretized face directions ni and face distances

ρ j are necessary. This is a non-trivial matter and is therefore discussed below in detail. As each

considered object is a convex polytope, face distances measured from the polytope center of mass

are always positive. Furthermore, distances are bounded by the smallest and largest distance of the

surface points from the center. Thus, to simplify the computations, the point cloud is translated for

the vector −xmean, where xmean is the arithmetic mean of the coordinates of the surface points. The
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resulting translated surface points are denoted by p̃k, and their mean point coincides with the origin of

the coordinate system.

The face distances ρ j are discretized in the interval (ρmin,ρmax) with a distance ∆ρ , so that the

first discretization point is ρ1 = ρmin +
∆ρ

2 , the i-th point is given by ρi = ρi−1 +∆ρ , whereas the last

discretization point is ρNρ
= ρmax− ∆ρ

2 . 2 This ensures that the lower and upper bound of the considered

bins lie inside the given interval. The bounds of the interval are given by

ρmin = cmin min
k

dk, ρmax = cmax max
k

dk, (3.2)

where dk are distances of points p̃k from the origin. The values cmin and cmax are equal to 1 in the case

where both the normal directions and the surface points are infinitely finely discretized. However, the

discretized face normal directions may not coincide with the actual face normals perfectly, so that the

constants cmin and cmax may be set to values slightly smaller and larger than 1, respectively in order

to compensate for this [52, p. 100]. The discretization step ∆ρ can be chosen in two manners. The

first option is to fix the ∆ρ to some value, such as ∆ρ = 1, so that it is equal to the voxel length, as the

computation is done in voxel coordinates. In this case the discretization step does not depend of the

size of the crystal and the imaging resolution, so that the same value ∆ρ is obtained for both small and

large crystals. The second option is to define ∆ρ as

∆ρ =
ρmax−ρmin

Nρ

, (3.3)

where Nρ is the given number of discretization points. The accuracy of the face distance computation is

given by ∆ρ , so that in this case the accuracy would be relative to the crystal size, instead of constant.

Furthermore, ∆ρ depends on the crystal shape, as min
k

dk and max
k

dk differ very little for spherical

particles and differ strongly for long crystals.

The discretized directions ni can be visualized as points on a unit sphere. An intuitive approach

would be to sample the angles φ and θ uniformly. However, as discussed by Borrmann et al. [133], this

would lead to the same number of points at the poles as on the equator, so that the pole is oversampled

and the equator undersampled. We instead choose the HEALPix approach of Gorski et al. [134], where

the sphere is divided into fields of equal area, each represented by one point which defines a direction

ni in the 3D space. The obtained discretization is illustrated in Figure 3.2. The sphere is divided into 12

fields, each of which is further split into N2
side equally-sized sub-fields, finally resulting in 12 ·N2

side points

[134].

The Hough transform consists of traversing surface points and bins and incrementing the number

of points b(φi,θi,ρ j) in the bin i by 1 for each surface point p̃k that fulfills

ρ j−
∆ρ

2
≤ 〈ni(φi,θi), p̃k〉< ρ j +

∆ρ

2
. (3.4)

2If ∆ρ is such that the value cannot be exactly satisfied, the closest point satisfying ρi = ρi−1 +∆ρ ≤ ρmax− ∆ρ

2 is chosen
as ρNρ . This can occur if ∆ρ is specified directly, instead of specifying Nρ , see the discussion on choosing ∆ρ .
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(a) Nside = 4 (b) Nside = 20

Figure 3.2: HEALPix discretization of a sphere into elements of equal area [134]. The 12 principal
fields are presented as bold lines. Each principal field is divided into N2

side sub-fields drawn by thin
lines, leading to a total of 12 ·N2

side points. Borders of the HEALPix discretization were drawn using the
HEALPix library for MATLAB by Y. Naruse [135]. In the right figure, points marked by blue represent
the spherical cap centered at the orange point, where αcap = 15.87◦ .

As the considered crystals are convex, there will be only one face in each considered face direction.

Therefore, a new, reduced Hough space b̃(φi,θi) is defined by considering only the bin with the maximal

number of points in each face normal direction:

b̃(φi,θi) = max
ρ j

b(φi,θi,ρ j). (3.5)

Finally, face normals represent the locations of maxima in this newly defined bin space. This can be

viewed as finding maxima on a spherical grid defined by the HEALPix discretization and is done using

the principle of non-maximum suppression [98, p. 59]. At the beginning, each grid point is considered

to contain a maximum. A spherical cap is placed at each grid point, covering points that make an angle

less or equal than αcap with it. This is illustrated in Figure 3.2b. A grid point can only keep containing a

maximum if its bin value is the maximal bin value when considering all points covered by the cap. This

procedure ensures that two points within the spherical cap cannot simultaneously be maxima, unless

the corresponding bins contain the exact same amount of points, which is unlikely to occur. Therefore,

the angle between two identified face normals is larger than 2αcap. The value αcap is chosen as

αcap = 0.45min
i

αi, (3.6)

where αi are all possible angles between pairs of different face normals in the considered crystal model.

Figure 3.3 illustrates an example of the reduced Hough space b̃(φi,θi), obtained using a simulated

and a real potash alum crystal. The crystals are octahedral and the crystal model considered 26

possible faces, as illustrated in Figure 2.1a. It can be seen that using a fixed ∆ρ = 1 results in more

points in Hough-transform bins.
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Figure 3.3: An illustration of the reduced Hough transform space b̃(φi,θi) for a simulated and a real
crystal, given in the bottom row. Peaks corresponding to identified face normals are marked by red
dots. Crystals are octahedral, whereas the considered shape model contains 26 crystal faces, resulting
in αcap = 15.87◦ and a spherical cap illustrated in Figure 3.2b. The figure was obtained by interpolating
the angle values to a uniform grid.
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(a) Crystal model (b) Real crystal

Figure 3.4: An illustration of the matching process. Crystal model containing 26 face normals that
belong to three face groups is shown on the left. A real crystal is shown on the right, where the identified
face normals are marked by arrows. All identified face normals belong to the "blue" face group; other
face groups from the model crystal have not been identified on the surface of the real crystal. Reprinted
with permission from [2]. Copyright (2016) American Chemical Society.

3.1.2 Establishing a Correspondence Between Measured and Modeled Faces

The procedure from the previous section results in a set of NF identified face normals, gathered in

the matrix AF. The task of this algorithm step is to match the identified face normals to the NH face

normals defined by the crystal model and represented by the matrix A. Furthermore, the model crystal

has some nominal orientation so that a rotation matrix R, rotating the normals of the model crystal to

coincide with the observed ones, is necessary. Often, fewer face normals are identified than what is

expected according to the model, so that NF < NH. This is illustrated in Figure 3.4 for potash alum

crystals modeled by 26 faces. Some faces, such as the green and orange model faces in Figure 3.4a

may have grown out and are not visible on the surface of the observed crystal, presented in Figure

3.4b. It is also possible that the faces are present in the observed crystal, but are too small to lead to

significant peaks in the Hough transform and were thus not identified. Similarly, the matrix of identified

face normals AF may contain extra normals that do not correspond to those in the model crystal. This

can happen in case of breakage, aggregation or attachment of small particles. Therefore, it is necessary

to establish a correspondence between the NH model normals in A and NF identified normals in AF.

The matching process consists of three components explained in more detail below: a matching matrix

SM, a filter matrix SD and a rotation matrix R. The goal is to find these matrices and fulfill the following

equation [1]:

SD ·AF ≈ (SM ·A) ·RT . (3.7)

The matching matrix SM defines a match in AF for each model face normal in A. This matrix has a

size of ÑF×NH, where ÑF is the number of identified face normals that have a match among the model

normals. Each row i in SM contains the value 1 at the position j corresponding to the match a j for the

identified face normal aF,i. The filter matrix SD removes identified face normals from AF that have no

match among the model normals in A. Therefore, this matrix has a size of ÑF×NF. Its j-th row has

a value 1 in the j-th position if the j-th identified face normal aF, j has a match among model normals.
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All other values are equal to 0. Finally, the rotation matrix R rotates the model face normals into the

identified ones.

The equation 3.7 defines the goal of this algorithm step. However, the approximation sign still leaves

some ambiguity regarding the three sought matrices. We can define an objective function, searching

for a rotation matrix that gives the smallest error in the least-square sense:

L(R) =
1

2ÑF

ÑF∑
i=1

∥∥[SD ·AF
]

i−
[
(SM ·A)RT ]

i

∥∥2
. (3.8)

This corresponds to the so-called Wahba problem [136, 137], where the task is to find a rotation matrix

R that rotates N 3D unit column vectors ri into the unit column vectors bi:

L(R) =
1
2

N∑
i=1

ωi ‖bi−Rri‖2 . (3.9)

Here, ωi are normalized weights, and are set to 1
ÑF

in the normal-matching problem defined in equation

3.8. Markley [137] gave a solution to this problem, based on singular value decomposition. It involves

creating a matrix B:

B =

N∑
i=1

ωibirT
i , (3.10)

and performing singular value decomposition into orthogonal matrices U, V and a diagonal matrix S:

B = USVT . (3.11)

The rotation matrix minimizing the equation 3.9 is obtained as [137]

R = U
[
diag(1,1,d)

]
VT , (3.12)

where

d = det(U) ·det(V). (3.13)

According to Markley [137], at least two linearly independent vectors are necessary to obtain a unique

solution.

It is evident from equation 3.8 that the filter and mapping matrices SM and SD must be known in

order to find the rotation matrix. A potential solution would be to test all possible mapping and filter

matrices that can result from the given set of identified and model face normals. This is computationally

very inefficient, given that the considered crystals tend to have a large number of faces, such as 8 to

26 in case of potash alum crystals, as illustrated in Figure 3.4. The approach adopted instead is to

approximate the rotation matrix using only three most prominent identified face normals and consider

all possible mappings of these three normals. If this leads to a reasonable approximation, a matching of

the remaining normals is attempted and the case leading to the maximal number of matched normals is
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chosen. The final rotation matrix is then computed using all matched normals. Details of this procedure

are explained in the following and summarized in the flow-diagram in Figure 3.5.

First, three most prominent identified face normals are chosen as vectors bi. We denote these

normals by [p,q,r] and the matrix containing them by AF,[p,q,r]. Here, the prominence of a face normal

is measured by the amount of points in the corresponding Hough transform bin. The face normals must

not be colinear. This is achieved by ensuring that the angle between each pair of normals is between

αmin and 180◦−αmin, where

αmin = 0.9min
i

αi. (3.14)

αi are all possible angles between model face normals. The algorithm now considers all possible triplets

[m,n, l] of face normals from the crystal model and assigns them as matches r j for the chosen three

normals. This thus sets three rows of the candidate mapping and filter matrices, SM,cand and SD,cand.

The matrix containing the assigned face normals is denoted as A[m,n,l]. Now, a rotation matrix candidate

Rcand can be computed using the equation 3.12. It minimizes the objective function 3

L(Rcand) =
1
6

3∑
i=1

∥∥[AF,[p,q,r]
]

i−
[
A[m,n,l]RT

cand
]

i

∥∥2
. (3.15)

The rotation matrix candidate is discarded if the error value L(Rcand) is smaller than some threshold

value etol.

A surviving rotation matrix candidate is used to rotate all model face normals. The algorithm pro-

ceeds by searching for a match among the NH model normals for the remaining NF− 3 identified face

normals. Here, the angles between an identified normal aF,i and the model normals rotated by Rcand is

computed. The match is accepted if the minimal such angle is smaller than the tolerance αtol, meaning

that:

min
j

arccos(〈aF,i · (R ·a j)〉)< αtol. (3.16)

This results in one row of the candidate matching- and filter matrices SM,cand and SD,cand. In case

that more than one identified normal was matched to the same model normal, the match is assigned

to the most prominent of those normals. This procedure results in a set of candidate matching and

filter matrices, SM,cand and SD,cand for each surviving candidate rotation matrix Rcand. The candidates

are accepted as SM and SD and the search is stopped if all identified face normals were matched,

meaning that SD is an identity matrix. Otherwise, further triplets of [p,q,r]→ [m,n, l] are tested and the

candidate matrices leading to the largest number of matched normals are finally chosen as SM and SD.

The final rotation matrix is then computed by solving Wahba’s problem using the equation 3.12 for the

obtained mapping and filter matrices, SM and SD. For the sake of clarity, the whole matching procedure

is illustrated in Figure 3.5.

3Note that the vectors taken as rows of matrices A and AF are row-vectors. Wahba’s problem assumes column vectors in
order to derive the solution in equation 3.12. Thus, vectors must be transposed before computing the solution.
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Pick three best identified
face normals [𝑝, 𝑞, 𝑟]

Find 𝐑cand that rotates 

[𝑝, 𝑞, 𝑟] into [𝑚, 𝑛, 𝑙]

Pick three model face
normals [𝑚, 𝑛, 𝑙]

All 𝑚, 𝑛, 𝑙
combinations tested?
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Figure 3.5: The procedure for matching identified to model face normals and finding the rotation matrix
[1].
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3.1.3 Identifying Face Distances

The previous step resulted in a rotation matrix R and a correspondence between the model and the

identified face normals. Therefore, the crystal can now be represented using the rotated version of the

model face normals, ART. It remains to find a face distance for each so defined face direction Rai.

These face distances are measured from the origin (0,0,0) that coincides with the arithmetic mean of

translated surface points p̃i.

If there exists a match among the identified face normals AF for the currently considered rotated

model normal Rai, the face distance is obtained from the Hough transform. The algorithm finds the

closest considered HEALPix normal n j, enclosing the smallest angle with Rai. The face distance h̃i is

set to the value ρk corresponding to the most populated Hough-bin in the direction n j:

ρk = max
k

b(φ j,θ j,ρk). (3.17)

If the considered rotated model normal Rai has no match among AF, it is either very small or not

present on the crystal surface. Thus, the Hough transform bin with the highest number of points will

likely underestimate the face distance, as shown in Figure 3.6. In these cases, the algorithm searches

for the Hough-transform bin with the highest point density r j in the corresponding direction n j

r j = max
k

b(φ j,θ j,ρk)

Aj,k
. (3.18)

Here, all crystal surface points p̃l in the bin b(φ j,θ j,ρk) are projected into the plane defined by the

normal n j. To perform the projection into such a plane, the orthonormal basis of the vector n j is found,

resulting in two vectors d1 and d2 in a plane normal to n j. The 2D coordinates of the projected points

p̃l,proj in the plane spanned by d1,d2 are found by scalar product: p̃l,proj = (〈d1, p̃l〉,〈d2, p̃l〉). The value

Aj,k is the area of the convex hull of the points p̃l,proj from the bin b(φ j,θ j,ρk) when projected to a plane

Figure 3.6: A procedure for finding the face distance in cases where the rotated model normal has
no match among the identified normals. The plane corresponding to the most-populated Hough bin is
presented by black triangles. The plane corresponding to the highest point density is represented by
black squares. It can be seen that while there are more triangles than squares, the most populated
plane would underestimate the true face distance.
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normal to n j. The face distance h̃i is finally set as

h̃i = ρk, (3.19)

using the value ρk that maximized equation 3.18.

Note that it is possible for the obtained face distances h̃i to be such that the face does not touch

the crystal polytope. This corresponds to the problem discussed in Figure 2.1. In this case, the H-

representation contains redundant face normals that do not contribute to the crystal shape. These

redundant normals can be identified and removed using the functionality present in the framework of

Alexander Reinhold [52] and the Cddlib library [54]. The reduced polytope can be converted to the

vertex V -representation, resulting in a set vk of polytope vertices. Face distances h̃ j corresponding to

the redundant face normals can then be scaled to touch the polytope by so that [1]:

hi = max
k
〈vk,Rai〉. (3.20)

This results in a set of valid face distances hi for the rotated model face normals Rai, corresponding

to a valid H-representation. However, face distances for the faces of the same face group may still

be different. If the goal is to obtain a symmetrical, HC representation, symmetry conditions must be

applied.

3.1.3.1 Distance Correction

As shown above, the computed face distances represent Hough planes with either the highest number

of points or the highest point density. Note that a point is assigned into a Hough bin if it fulfills equation

3.4. Each point represents the center of a surface voxel, moved so the mean of all voxel centers lies

in the origin of the coordinate system. Therefore, each identified plane traverses the vicinity of surface

voxel centers and the so obtained polytope is inherently smaller than the underlying crystal. This is

illustrated in 2D in Figure 3.7. Since the computations are done in voxel coordinates, voxels having

a dimensionless length of 1, a correction factor between 1/2 and
√

3/2 should be applied to obtain a

plane that touches the voxel vertices:

h j = h j +hcorr. (3.21)

The exact amount depends on the orientation of the plane, as illustrated in Figure 3.7. However, a

polytope based on the plane that touches the out-most voxel vertices would for certain orientations

overestimate the crystal volume as it would incorporate some space that is not covered by the voxels.

This is illustrated in the right part of the figure for a 2D case. The discussion is furthermore complicated

by the binarization procedure. In case of µCT imaging, the gray value of a voxel can be considered to

give information about the amount of solid material present in the voxel. However, there is a large spread

of the gray values and a binarization procedure is performed, truncating those to either foreground or

background. The best correction factor hcorr would have to be determined from the simulation of the
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(a) (b)

Figure 3.7: Illustration of the distance correction issue in 2D. The object is represented in gray, the pixels
in white and pixel centers as blue points. In the left figure, an infinitely discretized Hough transform
procedure will identify lines through pixel centers, so that the object bounded by orange lines is finally
obtained. The distance of each line from the orange middle point is, therefore, half a pixel smaller than
the true facet distance. In the right figure, the object bounded by orange lines would be too small, as
well. However, if the distance is increased so that the lines touch the outmost pixel boundary points,
the obtained object would be too large, as shown by green lines.

µCT imaging and calibration procedures. For the sake of simplicity, no distance correction is performed

in this work.

3.1.3.2 Symmetrical Crystals

The following equations for obtaining a symmetrical crystal are based on the discussion of fixed position

by Reinhold and Briesen [53]. The current crystal is considered to be centered at (0,0,0), where (0,0,0)

coincides with the arithmetic mean of the coordinates p̃ of translated points on the crystal surface. If

the crystal is symmetrical, then there exists some point x0 in space so that face distances within a

face group are the same when measured from this point. The face distances computed from this point

amount to

h′ = h+Arotx0, (3.22)

where Arot =ART is the rotated matrix of model face normals. Since the crystal with face distances h′ is
symmetrical, it can be converted into the symmetrical HC-representation and back to H-representation

without any loss of information

h+Arotx0 = MhC→hMh→hC (h+Arotx0) . (3.23)

The matrix MhC→h is an NH×NC matrix of zeros and ones, stating which values of the vector hC should

be copied onto which positions into the vector h. The matrix Mh→hC computes the opposite operation

and is obtained as the pseudo-inverse

Mh→hC = M+
hC→h. (3.24)
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The equation 3.23 therefore simplifies to

MC (h+Arotx0) = 0, (3.25)

where

MC =
(

I−MhC→h ·M+
hC→h

)
. (3.26)

In a general case, the crystal given by face distances h is not symmetrical. The equation 3.25 cannot

be exactly fulfilled and a vector x0 that minimizes

‖MC (h+Arotx0)‖ , (3.27)

is sought. It is obtained as 4

x0 =−
(
MCART )+ MCh. (3.28)

due to the properties of pseudo-inverse matrices. The symmetrical crystal is obtained by

hC = M+
hC→hh′, (3.29)

which minimizes ∥∥h′−MhC→hhC
∥∥ . (3.30)

The obtained polytope can be converted to the V -representation using the appropriate functionality

of the Reinhold framework [52]. In order to ensure that the polytope remains valid after the applied

symmetry conditions, invalid face groups are identified and their face distances scaled to touch the

polytope using the approach defined in equation 3.20 for the first face in the group. A mapping from

the HC to H representation and the subsequent conversion to V -representation to get the matrix of

vertices Ṽ completes the shape identification procedure. Note that this symmetrical crystal is inherently

centered at (0,0,0) so that it can be used for population balance modeling. In order to get a polytope

that coincides with the true surface points pi, the translation of both the surface points and the polytope

must be negated. Thus, the vertices vi of the final polytope are obtained using

vi = ṽi +xmean−x0. (3.31)

The crystal is thus centered in the point

xorig = xmean−x0. (3.32)

4Note that the minus sign is missing in the corresponding publication [1]
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3.1.4 Fit Quality Measures

Before using the shapes delivered by the shape identification procedure, the procedure itself as well as

the obtained shapes must be evaluated. The accuracy of the method can be evaluated by simulating

binary 3D images of crystals given by a polytope with a specified size and shape. The polytopes

obtained from the shape identification procedure are then compared to the simulated ones. In case of

experimental data, no such comparison is possible. However, the obtained polytope can be compared

with the voxelized volume to obtain an estimation of the fit quality. Therefore, two sets of fit quality

measures are defined.

3.1.4.1 Simulated Data

In this case, the simulated and the identified polytope are compared, where the details regarding simu-

lation studies are given below. The resulting quality measures are therefore denoted by "s". The error

in volume is computed as

qv,s =
Vs−Vf

Vs
, (3.33)

where Vs and Vf are the volumes of the simulated and fitted polytope, respectively.

For the i-th face group of the crystal, the face distance error can be computed as

qh,s,i =
hs,i−hf,i

hs,i
, (3.34)

where hs,i and hf,i are the face distances of the simulated and fitted polytope, respectively. In this case,

both crystals are centered at the coordinate system origin. If either of the considered crystals does not

contain some face groups, they are added and it is ensured they touch the polytope exactly, so that

they are in fact invisible.

Finally, if all possible symmetry operations of the given crystal model are known, it is possible to

compute the disorientation angle. This is the smallest angle necessary to rotate one of the polytopes

around some axis so that it coincides with the other. A procedure for computing this angle for octahedral

crystals is given in chapter 5 on crystal orientations. In case of crystals with 26 faces, octahedral faces

are used to compute the disorientation angle.

3.1.4.2 Experimental Data

The fit quality evaluation in case of experimental data can only be performed with respect to the vox-

elized volume. These measures are denoted by "r". The number of crystal voxels Nvoxels approximates

the volume of the crystal. A volume-mismatch quality measure is defined as:

qv,r =
Noutside

Nvoxels
+

Vf−Ninside

Vvoxels
. (3.35)
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This value sums the approximated amount of the crystal which is outside the fitted polytope Vf, com-

puted using the number of such voxels Noutside, with the empty amount left inside the crystal, approxi-

mated using the number of voxels inside the polytope, Ninside.

A second quality measure is obtained by projecting each of the Nsurf surface points p j onto the fitted

polytope to obtain the point p j,proj:

qsurf,r =

√
1

Nsurf

Nsurf∑
j=1

∥∥p j−p j,proj
∥∥2

hprinc
. (3.36)

Here, hprinc is the face distance of the main face group, which, in case of potash alum crystals, is the

{111} face group.

Projecting a point onto a polytope is a non-trivial problem and is computed using the steps described

in appendix A.

3.2 Validation

The procedure for identifying the shape of single crystals is validated using both simulation and exper-

iments. We chose potash alum as a model compound. Potash alum can be modeled using three face

groups, the octahedral {111} group, the cubic {100} and the dodecahedral {110} group, presented in

Figure 3.4a. However, the later two faces grow out quickly, so that the experimentally observed crystals

are often pure octahedra. Potash alum crystal model is generated using the functionality available in

the framework of Alexander Reinhold and further information can be found in the corresponding thesis

[52].

3.2.1 Simulated Data

3.2.1.1 Simulation Procedure

The simulation consists of two steps. First, 3D crystal polytopes are generated. Here, one reference H-

representation, regarding the size and shape, is chosen. A population of N such crystals is obtained by

applying N different rotation matrices to the chosen H-representation. A uniform sampling of rotation

matrices is performed by choosing Z −Y − Z Euler angles (α,β ,γ) so that α and γ are uniformly

sampled between [−π,π], whereas β = arccos(t), where t is uniformly sampled between [−1,1] [138].

The final rotation matrix is obtained as

R = Rz(γ)Ry(β )Rz(α), (3.37)



54 3.2. Validation

where the rotations around the z and y axes are given by:

Rz(α) =

cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1

 Ry(β ) =

 cos(β ) 0 sin(β )

0 1 0

−sin(β ) 0 cos(β )

 . (3.38)

The second step concerns simulating binary 3D images of such particles with a chosen voxel length

r. First, an empty 3D image with the length

li =
⌈
(dvi,maxe−bvi,minc)

r

⌉
(3.39)

in dimension i is created. Here vi,max and vi,min are the minimal and maximal coordinates of the polytope

vertices in the i-th dimension. Each voxel, given by its indices (x,y,z) in the empty 3D image matrix

is now set to foreground if the corresponding point px,y,z is within the polytope. Here, the voxel with

indices (x,y,z) first must be translated into the coordinate system of the crystal centered at (0,0,0) to

obtain the point px,y,z [2]:

px,y,z = ((x,y,z)−0.5) · r+
⌊
(vx,min,vy,min,vz,min)

⌋
. (3.40)

Each crystal image is stored in a separate file.

3.2.1.2 Simulated Data Sets

The goal of the simulation study is to evaluate the scheme quality for different crystal shapes, as well

as the influence of algorithm parameters on the scheme quality. We consider three crystal shapes of

potash alum, given in Figure 3.8. For each crystal shape, five data sets were generated. Each data set

contained 100 crystals with different orientations and a specified volume-equivalent sphere diameter,

where the analyzed values were 200 µm, 300 µm, 400 µm, 500 µm and 600 µm. All simulations were

conducted with the same µCT resolution of r = 7.85 µm corresponding to the one used in experiments

for crystal orientation measurement presented in Chapter 5. The study can equivalently be understood

as varying the resolution while keeping the size constant.

Parameters etol , Nside and αtol were kept constant while other parameters were varied. Simulation

cases given in Table 3.1 were investigated, where each case consisted of 500 crystals, as 100 crystals

of each size were simulated. For cases using shapes 1 and 3 simulations were conducted both for a

crystal model with 8 faces and a model with 26 faces. Shape 2 was investigated using a crystal model

containing 26 faces.

3.2.1.3 Results

A simulation and a corresponding shape identification procedure was performed for each case given

in Table 3.1. In each case, crystal symmetry is used, as explained in section 3.1.3.2. The first case,
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Case No. model
faces

Shape Nrho / ∆ρ cmin cmax Voxel length [µm] Nside etol αtol [
◦]

S1-1 8 1 Nrho = 40 1 1 7.85 20 0.02 10
S1-5 8 1 ∆ρ = 1 1 1 7.85 20 0.02 10
S1f-5 26 1 ∆ρ = 1 1 1 7.85 20 0.02 10
S2-1 26 2 Nrho = 40 1 1 7.85 20 0.02 10
S2-5 26 2 ∆ρ = 1 1 1 7.85 20 0.02 10
S2-8 26 2 ∆ρ = 1 0.95 1.05 7.85 20 0.02 10
S3-1 26 3 Nrho = 40 1 1 7.85 20 0.02 10
S3-5 26 3 ∆ρ = 1 1 1 7.85 20 0.02 10
S3e-1 8 3 Nrho = 40 1 1 7.85 20 0.02 10
S3e-5 8 3 ∆ρ = 1 1 1 7.85 20 0.02 10

Table 3.1: Parameters for simulation and shape identification of single crystal data sets where the
shapes are illustrated in Figure 3.8.

(a) Shape 1 (b) Shape 2

1, 1, 0

1, 0, 0

1, 1, 1

(c) Shape 3

Figure 3.8: Potash alum crystal shapes used in the validation of the shape identification procedure.
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S1-1, corresponds to octahedral crystals, where the shape identification procedure uses an octahedral

crystal model. Mean error values regarding the case S1-1 are given in Figure 3.9. Identified shapes

for one crystal orientation and different sizes are given in Figure 3.10. Here, the simulated crystal is

rendered in white based on the simulated 3D image, while the identified shape is presented as a black

polytope. The orientation of the crystal is identified correctly, which can be seen by the small values

of disorientation angle given in Figure 3.9a even for the smallest volume-equivalent sphere diameter of

200 µm. The errors in volume and face distance are large for small crystals and improve as crystal size

increases. The improvement decreases at an equivalent diameter of about 400. However, even for the

largest crystals, there is still a mean error of about 5% in volume and a mean error of about 2% in face

distance. This is caused by setting a crystal face distance based on Hough transform data containing

points that correspond to voxel center coordinates. The resulting crystal will always be slightly too small,

leading to a positive value of qv,s and qh,s,1. This issue was discussed in section 3.1.3.1.

The case S1-5 is obtained by using the fixed value ∆ρ = 1 instead of fixing the number of Hough

bins, as in case S1-1. The results are shown in Figure 3.11. An improvement can be seen in all error

measures.

In order to validate the measurement of faces that have grown-out, the shape identification proce-

dure for octahedral crystals is repeated for a shape model consisting of 26 faces. This corresponds

to the case S1f-5 and the error measures are given in Figure 3.12. In the case of simulated crystals,

distance of the {100} and {110} faces, which were in fact not simulated, was set such that the faces

touch the crystal polytope at its vertices. Mean error in orientation, measured by the disorientation

angle, as well as mean volume error, remained similar as in case S1-5 using the crystal model with

8 faces. The mean face-distance error shows three curves, each corresponding to one face group.

The error regarding face group {111} is similar to the case S1-5, whereas the mean error of the face

group {110} behaves similarly. However, the mean error is significantly larger for the face group {100}.
The issue is further illustrated in one example crystal, shown in Figure 3.13a, where the faces {100}
and {110} are visible in the identified shape, even though the simulated crystal does not contain such
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Figure 3.9: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S1-1, given in Table
3.1.
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(a) D = 200 µm (b) D = 400 µm (c) D = 600 µm

Figure 3.10: Examples of shape identification results for one crystal orientation and different volume-
equivalent sphere diameters D. Simulation and shape identification parameters correspond to case
S1-1, given in Table 3.1. The simulated crystals are rendered in white, while the identified shapes are
presented as black polytopes.
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(c) Error in face distance, qh,s,1

Figure 3.11: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S1-5, given in Table
3.1.
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faces. This is likely caused by the approach for identifying the face distance of a face which was not

matched, defined by equation 3.18. As at least three points are necessary to form the convex hull,

this will necessarily fit a plane slightly under the correct position. An alternative approach would be to

fit the plane at the position corresponding to the last visible point in the given direction. However, this

would be very sensitive to surface roughness in case of experimentally measured crystals. This error

decreases significantly with the increase in crystal size, as illustrated on one example in Figure 3.13d,

where the falsely detected {100} faces are practically invisible.

It is important to note that the change of crystal model also changes the parameter αcap, defined in

equation 3.6, as this value depends on the smallest angle between face normals in the crystal model.

However, the comparison of results for cases S1-5 and S1f-5 shows that the scheme is quite robust

regarding this parameter. Furthermore, the crystal model containing 26 faces was such that the first

eight faces are the {111} faces corresponding to the octahedral crystal model. Therefore, the matching

procedure will first iterate through these faces, leading both to a fast solution and avoiding potential

errors if a match with other face groups is found. Is is thus recommended to order faces in the crystal

model such that faces that are most likely to appear in the crystal are the first ones to consider.

Results regarding shape 2 given in Figures 3.14, 3.15 and 3.16. The Figure 3.14 corresponds to the

case S2-1. The mean error in orientation, measured by the disorientation angle, is significantly higher

than in case of octahedral crystals for volume-equivalent sphere diameter lower than D = 500 µm.

Figure 3.13b illustrates the identified shape for a crystal with D = 200 µm. It can be seen that faces

are small and difficult to identify, resulting in a wrongly oriented identified polytope, while the overall

identified shape is correct. In Figure 3.13e, an example of a large crystal with a correctly identified

orientation is presented, further illustrating that the faces are more easily identifiable with the increase

in crystal size. It is interesting to note that the mean error in volume and face distance is small for all

crystal sizes, where even the mean error regarding the {100} face group is below 5%. Thus, it is not

sufficient to consider only the size-based error measures in order to quantify the fit quality.

The effect of setting a fixed ∆ρ = 1 instead of using 40 Hough bins is shown in Figure 3.15, corre-
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(c) Error in face distance, , qh,s,1

Figure 3.12: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S1f-5, given in
Table 3.1.
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(a) S1f-5, D = 200 µm, Θ = 0.94◦ (b) S2-1, D = 200 µm, Θ = 35.28◦ (c) S3-1, D = 200 µm, Θ = 27.75◦

(d) S1f-5, D = 600 µm, Θ = 0.94◦ (e) S2-1, D = 600 µm, Θ = 0.39◦ (f) S3-1, D = 600 µm, Θ = 0.65◦

Figure 3.13: Examples of shape identification results for one crystal orientation and different volume-
equivalent sphere diameters D. Simulation parameters for the corresponding cases are given in Table
3.1. The simulated crystals are rendered in white, while the identified shapes are presented as black
polytopes.

sponding to the case S2-5. A significant improvement regarding the disorientation angle can be seen.

Additionally changing the values of cmax and cmin results in the case S2-8, shown in Figure 3.16. The

disorientation angle worsens with respect to S2-5. Therefore, it can be concluded that the Hough trans-

form parameters can have a significant influence on the performance of the scheme in case of small

crystals, or alternatively, low resolution realized by a large voxel length.

Similarly like shape 2, shape 3 also contains all 26 faces, with the difference that the {100} and

{110} faces are less prominent than the {111} face, as seen in Figure 3.8c. Results for the case S3-

1 are given in Figure 3.17. The mean disorientation angle is large for the volume-equivalent sphere

diameter of D = 200 µm, but it decreases to under 5◦ for D = 300 µm already. An example for a small
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Figure 3.14: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S2-1, given in Table
3.1.
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(c) Error in face distance, qh,s,1

Figure 3.15: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S2-5, given in Table
3.1.
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Figure 3.16: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S2-8, given in Table
3.1.
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crystal is illustrated in Figure 3.13c. Apart from a wrongly identified orientation, {100} and {110} faces

are identified to be larger than simulated, so that the identified shape resembles shape 2 more than

shape 3. The accuracy improves with the increasing crystal size, so that in case of a large crystal in

Figure 3.13f, both size and orientation are identified correctly. Similarly as in case of shape 2, using

a fixed discretization step of ∆ρ = 1 leads to an improvement in the disorientation angle, as seen in

Figure 3.18.

Finally, the simulated crystals of shape 3 were identified using a shape model with 8 faces in order

to evaluate the error obtained when using a simpler crystal model. The results regarding the case

S3e-1 from the Table 3.1 are presented in Figure 3.19. The values are reported for cases where shape

identification was possible. This was the case for only 40 out of 100 crystals for D = 200 µm, whereas

the value increased to 99 in case of D = 500 µm, and 100 for the largest crystals with D = 600 µm.

The disorientation angle reaches a mean value below 5◦ already for a D = 300 µm, meaning that the

orientation can be identified with an acceptable accuracy for all but the smallest particles. The volume

error indicates that the identified polytope is too large. The face distance of the {111} face is somewhat

smaller than simulated, similarly as in the other cases. The face distances in case of {100} and {110}
faces are too large, which is to be expected as these faces are not visible in the identified polytope that

contains only the eight {111} faces. As in the previous cases, an improvement in the disorientation

angle is obtained by using the fixed distance ∆ρ = 1, corresponding to the case S3-5 and seen in

Figure 3.18. Furthermore, unlike in case S3e-1 where Nρ = 40, shape identification was possible for all

particles of all sizes for the case S3e-5.

Overall, the presented study has shown that the algorithm is capable of identifying the shape of

the crystals in the simulated binarized 3D images. However, the results are sensitive to the algorithm

parameters and the ratio of the crystal size towards the imaging resolution. A poor choice of algorithm

parameters can lead to poorly identified crystal orientation in cases when many small faces are visible

on the crystal surface. However, in case of octahedral crystals that contain eight well-visible faces, all

investigated parameters lead to sufficient accuracy. Therefore, simulation studies should be conducted
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Figure 3.17: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S3-1, given in Table
3.1.
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(c) Error in face distance, qh,s,1

Figure 3.18: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S3-5, given in Table
3.1.
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(b) Error in volume, qv,s
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(c) Error in face distance, qh,s,1

Figure 3.19: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S3e-1, given in
Table 3.1.
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(c) Error in face distance, qh,s,1

Figure 3.20: Mean error measures for simulated 100 potash alum crystals of different sizes. Error bars
represent standard deviation. Simulation and fitting parameters correspond to case S3e-5, given in
Table 3.1.
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before imaging a new type of particle in order to determine the imaging resolution sufficient to eliminate

the parameter sensitivity for the given particle shape and size.

3.2.2 Experimental Data

3.2.2.1 Preparation and Measurement

Potash alum crystals used for the validation study were kindly provided by Stefan Schorsch (group of

Prof. Mazzotti, ETH Zürich) and Alexander Reinhold (TUM, SVT). A 0.65 mL test tube was filled with

styrofoam upon which potash alum particles were added in order to enhance particle separation and

reduce movement. A portion of the test tube was imaged in a custom-made µCT system available at the

department (type: XCT-1600HR, supplier: Matrix Technologies, Feldkirchen, Germany). The relevant

measurement parameters are given in Table 3.2, whereas the parameters for the shape identification

procedure are presented in Table 3.3. The measurement lasted about 1.5 hours. The obtained crystals

are visualized in Figure 3.21.

3.2.2.2 Pre-processing

Crystals were binarized using the Otsu threshold using the software MAVI [96]. As it can be seen in

Figure 3.21, particles touch and a simple labeling procedure would result in more than one particle

per label. MAVI tool "Particle separation by complex morphology" was used to segment individual

particles. According to the MAVI manual [96], this tool uses the H-maxima transform to prevent over-

segmentation in the watershed transform. The algorithm uses the parameter called "dynamics", as

explained in section 2.3.2.2. The value of this parameter was set to 5. Segmented crystals were stored

in separate files using MATLAB. Those whose volume contained fewer than 40000 foreground voxels,

as well as non-convex particles, were ignored. Particle convexity was estimated by

rconv =
Nvoxels

Vconvexhull
, (3.41)

where Nvoxels is the number of foreground voxels, approximating the volume, and Vconvexhull is the volume

of the convex hull computed using voxel centers as point coordinates. A particle was considered convex

Parameter Value

Tube Voltage [kV] 80
Power [W] 3.6

Exposure Time [ms] 2132
Source-to-object distance [mm] 115.36
Source-to-image distance [mm] 415.29

No. projections 2500
Voxel length [µm] 5

Table 3.2: Parameters of the µCT measurement.
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Case No. model
faces

Nrho / ∆ρ cmin cmax Voxel length [µm] Nside etol αtol [
◦]

Exp. data single 26 Nrho = 40 1 1 5 20 0.02 10

Table 3.3: Parameters for shape identification of experimental data: validation of the single crystal
procedure.

Figure 3.21: Experimentally measured potash alum particles used for validating the method for identi-
fying the shape of single crystals. Visualization done by MyVGL [139]. Reprinted with permission from
[1]. Copyright (2014) American Chemical Society.

if rconv > 0.85. This finally resulted in 22 crystals. Time requirements for the pre-processing procedure

are in order of a few minutes.

Note that the separation using H-maxima procedure leads to a loss of a layer of voxels around

particles. These are watershed voxels that are equally likely to belong to all labels surrounding the

voxels, where these labels may represent particles or the background.

3.2.2.3 Results

Shape identification was performed using the parameters from Table 3.3 5. Figure 3.22 exemplary

shows highly regular crystals where the fitting procedure performed well. Quadratic distance deviation

values were up to qsurf,r = 0.06, whereas the amount of mismatched volume was up to qv,r = 0.15. The

scheme is furthermore capable of identifying a crystal shape also in case where small particles are

attached to the large ones, as shown in Figure 3.23. Here, quadratic distance deviations were up to

0.13, whereas the mismatched volume error was up to 19%.

Examples where the scheme did not perform as well are presented in Figure 3.24. Crystals appear

to be broken and cause a quadratic distance deviation up to 0.19 along with a high volume mismatch

error of up to 47%. This could be a result of over-segmentation of the particle separation procedure

or could have occurred during transport from Zürich. The obtained shape can be understood as an

5Note that the parameter Nρ was different in the publication [1]. There is no significant difference when selecting Nρ = 50
as used previously, but the value Nρ = 40 was selected to ensure faster processing. Error measure regarding volume was
re-defined to be scaled by the number of voxels instead of the volume of the fitted shape. The new results include bug fixes
and a correct display of the crystals, which were previously mirrored as the x and y coordinates were inverted.
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approximation of the original particle shape before breakage. Figure 3.25a shows the result of applying

this scheme on a crystal aggregate. As the particle does not fulfill the assumptions of the scheme,

no reasonable shape fit can be expected. Such particles are investigated in the next section and will

lead to the result shown in 3.25b. Note that an algorithm that assumes the crystal may represent an

aggregate is likely to treat particles in Figure 3.23 as aggregates as well. As the two schemes were

integrated, the user can choose to "force" the single crystal procedure if prior knowledge about the

particles is available.

3.2.2.4 Execution Time

The sequential execution time on a desktop computer with 16 GB RAM and Intel Core(TM)i5-3470

CPU @ 3.20 GHz running MATLAB 2015b on a 64-bit Windows 8.1 Enterprise was about eight minutes

for the 22 considered crystals. There is an improvement in the execution time with respect to the old

program version using Nρ = 50 reported in [1], where an older MATLAB version was used.

3.2.3 Conclusion

The results presented in this chapter show that the developed scheme is capable of identifying the

shape of single crystals, even when such crystals contain small particles attached to their surface. The

result depends strongly on the quality of the underlying images, which should ideally show symmetrical,

highly regular single crystals. Whether this requirement is met depends, apart from the quality of the

crystals themselves, on the preparation procedure and the pre-processing steps used to segment the

crystals. Therefore, further chapters will also aim at improving these aspects.

Furthermore, the scheme accuracy depends on the shape of the underlying particles. Particles

containing many crystal faces should be imaged using a higher resolution than particles containing

few faces, as shown in section 3.2.1.3 where the results of the study using simulated particles are

presented.

(a) qv,r = 0.084,qsurf,r = 0.045 (b) qv,r = 0.137,qsurf,r = 0.060 (c) qv,r = 0.143,qsurf,r = 0.060

Figure 3.22: Shape identification in case of single crystals: examples where the procedure performed
well and the crystals were highly regular.
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(a) qv,r = 0.179,qsurf,r = 0.090 (b) qv,r = 0.182,qsurf,r = 0.090 (c) qv,r = 0.152,qsurf,r = 0.130

Figure 3.23: Shape identification in case of single crystals: examples where the procedure performed
well and crystals contained small particles at the surface.

(a) qv,r = 0.446,qsurf,r = 0.167 (b) qv,r = 0.462,qsurf,r = 0.180

(c) qv,r = 0.292,qsurf,r = 0.129 (d) qv,r = 0.309,qsurf,r = 0.130

Figure 3.24: Shape identification in case of single crystals: examples where the underlying crystal did
not correspond to a well-defined single particle.

(a) qv,r = 0.497,qsurf,r = 0.171 (b) qv,r = 0.169,qsurf,r = 0.106

Figure 3.25: Shape identification in case of an aggregate, obtained with the algorithm for single crystals
(left) and with the algorithm for aggregates(right). Error measures regarding the right crystals are
defined in chapter 4 on crystal aggregates.



Chapter 4

Shape Identification of Primary Particles
in Crystal Aggregates

4.1 Algorithm

The previous chapter introduced a method for identifying the size and shape of single crystals from 3D

images. Here, the method is extended towards analyzing crystal aggregates and is based on the cor-

responding publication [2] 1, while the results of the preliminary version of the method were presented

at the ISIC19 conference [140]. The method contains two basic steps. First, an aggregate must be

segmented into primary particles. This is described in section 4.1.2. The second step involves shape

identification of each primary particle and is presented in section 4.1.2.1. The presented method is

fully automatic, similarly as in the case of single crystals, presented in Chapter 3. Due to certain draw-

backs of the obtained automatic result, the method can be further extended by allowing user interaction.

This is presented in the next Chapter, along with the application for measuring the orientation between

primary particles. The here presented, automatic method assumes that each particle is stored in a

separate file. Particles may also represent single crystals, in which case they should result in only one

fitted primary particle.

4.1.1 Pre-processing

Before proceeding with segmentation, the image containing an isolated particle is filtered. The image

may represent a simulated or an experimentally measured particle. The particle is eroded using a

structuring element defined by a matrix of length 3 voxels, with a foreground voxel in the middle and

on positions corresponding to 6-neighbors of the middle voxel. Connected components in the eroded

image are then identified and all but the largest one are deleted. Finally, a dilation with the same struc-

turing element is performed. This procedure is similar to opening and ensures that surface irregularities

are deleted, as shown in Figure 4.1.

1In the previous publication, x- and y-axis of the crystals were permuted, which is corrected here. Further small bugs were
fixed.

67
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(a) (b)

Figure 4.1: A crystal before (a) and after (b) the filtering procedure
.

Upon filtering, the method continues by isolating a volume point cloud, containing the coordinates

of foreground voxels, as well as the surface point cloud, consisting of coordinates of foreground voxels

that have at least one background voxel as a 6-neighbor.

4.1.2 Segmentation into Primary Particles

Segmenting a non-convex object into convex constituting parts is a problem statement often seen when

working with images of biological cells [141, 142] and nuclei [95]. Cells and nuclei tend to cluster and

overlap and often need to be separated before allowing their counting or further processing. Methods

seen in the literature often rely on two basic ideas. The first group of methods is based on identifying

concavity points, representing the points where objects are joined together [78, 142, 143, 144, 145]. In

case of 2D images, objects can then be separated by connecting concavity points, while the approach

can also be generalized to 3D confocal microscopy images by combining processed 2D slices [78]. The

second group of methods relies on watershed transform, with a suitable set of pre- or post-processing

steps [91, 92, 93]. These methods are directly applicable to 3D images. The basics of the watershed

transform have been introduced in section 2.3.2.2. Hybrid approaches can also be seen in the literature,

involving the use of concavity points to extract watershed markers [94, 141]. Separating touching

particles is furthermore necessary when investigating agglomerates of spherical particles and can also

be based on watershed transform [90].

The segmentation method presented in this section uses distance-transform based watershed

transform, while the concavity points are used as indicators of correct segmentation in the subse-

quent merging procedure. It is summarized in Figure 4.2a and illustrated in Figure 4.3 on one example

crystal.

4.1.2.1 Identifying Concavity Points

The concavity point identification procedure is based on the idea that a mask centered at some surface

point will contain more foreground than background voxels if the point is concave. Similar approaches

for the 2D images are seen in the works of Fernandez et al. [141] and Indhumathi et al. [78].
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Find concavity points

Concavity expansion

Marker-based watershed

transform

Aggregate

Watershed regions as

primary particles

Assigning watershed

voxels to watershed

regions

Merging small and large 

watershed regions

Recombining large 

watershed regions

(a) Segmentation

Basic algorithm: shape 

identification of all regions

Delete faulty regions

where shape

identification impossible

Merge overlapping ones

Basic algorithm

Delete faulty regions

Watershed regions as

primary particles

Done

Resize unidentifiable

particles

Merge overlapping ones
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Delete faulty regions

Pair was 

merged?

yes
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(b) Shape Identification

Figure 4.2: Identifying the shapes of primary particles in crystal aggregates [2].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Segmentation of an aggregate into primary particles [2]. (a) Watershed segmentation before
concavity expansion. (b) Concavity expansion. (c) Watershed segmentation after concavity expansion.
(c) Watershed voxels are re-assigned. (d) Small and large watershed regions are merged. (e),(f) Two
iterations of the procedure that recombines large watershed regions. (g) Shape identification. Concavity
points are shown as blue crosses in Figure 4.3a, while the corresponding concavity search masks are
presented as black boxes.

A cubic mask of length 2a+ 1 is centered at each surface point p. A concavity of the point is

computed as [2]:

cp =
Nforegroundmask

Nmask
, (4.1)

where Nmask = (2a+1)3 is the number of voxels in the mask and Nforegroundmask the number of foreground

voxels within the mask. Concavity points are obtained by a peak search over these values. The peak

search uses the sliding-window non-maximum suppression approach, similar to that from section 3.1.1.

The idea of the sliding-window approach is that a point remains a maximum only if it is a maximum inside

of each window that contains it. Here, we use a cubic mask of length 2b+1, where b = ba
2c. The sliding

window checks only the surface points within the mask. Finally, the concavity points obtained from the

sliding-window search are deleted if their concavity value cp is lower than the threshold 1.2ct. The value

ct is obtained for a cubic object perfectly subdivided into voxels so that voxel sides are parallel to the

object sides. A point on this surface, far away from the cube boundary, would have a concavity value

equal to [2]:

ct =
(a+1)(2a+1)2

(2a+1)3 =
a+1
2a+1

. (4.2)

The factor 1.2 imposes a stricter criterion to compensate for boundary roughness. The length of the

mask is determined according to the aggregate size using [2]:

a =
[

3
√

0.0013Nvoxels
]
, (4.3)

where Nvoxels is the total number of foreground voxels describing the aggregate. Obtained concavity
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points are illustrated in Figure 4.3a by blue crosses, while the corresponding search masks are shown

as black cubes.

4.1.2.2 Concavity Expansion

In section 2.3.2.2, the concept of distance-transform based watershed transform was introduced. This

idea can be applied to split overlapping objects. For each foreground voxel, its distance to the back-

ground is computed and the sign of this value is inverted. A non-convex object would thus often have

several local minima, corresponding to overlapping particles. However, this approach is not always

successful and may lead to both under- and over-segmentation.

In order to prevent under-segmentation, concavity expansion is performed on the original image I.

The procedure is illustrated in Figures 4.3b and 4.4. It is a simplified, 3D approach to the idea presented

by Zhang et al. [94] for splitting clustered nuclei. The goal is to ensure that watershed segmentation

results in a separation near concavity points. The concavity expansion procedure therefore removes

foreground voxels near concavity points, in the direction of the concavity. The direction d of the concavity

is defined using the cubic mask of length 2a+1, as for finding concavity points. It is the direction of a

vector which ends at the concavity point pc and starts at the point pb, representing the arithmetic mean

of the coordinates of background points in the mask [2]::

d =
pc−pb

‖pc−pb‖
. (4.4)

The procedure now finds all points p of the volume point cloud which fulfill [2]:

‖p−pb‖ tanα ≤ 1, (4.5)

where α is the angle between p−pb and d. Voxels corresponding to these points are assigned to the

background if they additionally fulfill [2]:

‖p−pb‖ ≤ 0.25 · max
‖p−pb‖ tanα≤1

‖p−pb‖ . (4.6)

This ensures that the concavity expansion procedure does not split the object. The procedure results

in image Iexp with thin holes through the object near concavity points, as illustrated in Figure 4.4b.

4.1.2.3 Marker-based Watershed Transform

A distance-transform based watershed segmentation is performed on the image Iexp resulting from con-

cavity expansion. This procedure was discussed and illustrated in section 2.3.2.2 and is briefly repeated

here. First, Iexp is inverted and the distance transform Idistexp of the resulting image is computed. The

sign of the values in this image are changed to enforce minima instead of maxima in the gray value

landscape. Furthermore, voxels that corresponded to background in Iexp are given the value −∞ in the

distance transform image to ensure that background is another watershed basin. This results in the
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(a) (b)

Figure 4.4: (a) Concavity expansion procedure deletes foreground voxels in the concavity direction,
defined between the concavity point pc (orange) and the middle point of the background part of the
mask pb (blue). The mask is shown in black. The procedure results in a thin hole through the object
near each concavity point (b). Reprinted (adapted) with permission from [2]. Copyright (2016) American
Chemical Society.

image Ĩdistexp. Finally, watershed transform performed on Ĩdistexp results in the image Iwsexp and ends

the distance-transform based watershed segmentation.

The image Iwsexp contains a set of differently-colored labels, each representing a separate region,

as well as a set of watershed voxels that split the regions. However, voxels that were deleted in the

concavity expansion procedure belong to the background region in this image. Thus, the image Iwsexp

is used to define a mask Imask for the distance-transform based watershed segmentation of the original

image I. The mask contains a value 1 at the locations of the obtained foreground regions and a value 0

at all other locations. MATLAB function imimposemin is then used to impose minima in Îdist at locations

given by Imask. The image Îdist is obtained by distance-transforming I and inverting the sign of the

result. The obtained image Idistmin is similar to the distance-transform image but contains minima only

at the locations defined by Imask. In order to ensure that the background is a separate region, voxels

representing background in the original image I are set to −∞ in Idistmin to get Ĩdist. Finally, a watershed

transform of Ĩdist is performed, resulting in the image Iws. In order to ensure no voxels are lost, all

foreground voxels of I that were assigned to background in Iws are set to watershed voxels, and will be

assigned to the nearest region in the following step.

The result can be seen in Figure 4.3c on one example. The image clearly shows over-segmentation

as there are more watershed regions, represented by different colors, than there are primary particles.

However, this image represents an improvement with respect to the distance-transform based water-

shed procedure without using the concavity expansion, shown in Figure 4.3a. In that image, regions

contain parts of several primary particles. Thus, it is not possible to correctly segment a primary particle

by concatenating several regions.

4.1.2.4 Assigning Watershed Voxels to Watershed Regions

Watershed voxels are voxels that belong to neither region and therefore result in holes when only

regions are visualized, as seen in Figure 4.3c. In order to avoid this, they are assigned to the nearest

foreground region in an iterative procedure. The nearest region is simply the first found region that
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contains a voxel on the distance 1 voxel from the watershed voxel. If no such region exists, a region

with the distance
√

2 voxels is searched for, followed by the distance
√

3 voxels if this fails. Finally, if

no neighbor can be found for the current watershed region, it remains to be assigned in one of the next

iterations. The procedure is stopped when no watershed voxels remain and the result is illustrated in

Figure 4.3d.

4.1.2.5 Merging Small and Large Watershed Regions

The concavity expansion resolved the under-segmentation problem. It remains to resolve the over-

segmentation problem visible in Figure 4.3d, showing many regions instead of only four primary parti-

cles. Before proceeding with region merging, neighborhood relationships between regions are defined.

Two regions are considered neighbors if they contain a pair of voxels that are 26-neighbors.

Here, small regions are treated separately and are merged with large regions, as was also done

by Umesh Adiga and Chaudhuri [91]. A region is considered small if it contains fewer than 3% of the

total number of voxels. It is assumed that such regions do not represent full primary particles. In each

iteration, one small region i is considered. It is paired with each of the neighboring regions j and a

concavity value

ci, j =

∣∣∣∣1− Ni +N j

Vi, j

∣∣∣∣ (4.7)

is computed. Here, Ni and N j are the numbers of voxels in the regions i and j, while Vi, j is the volume

of the convex hull obtained when using voxel indices of the two regions as point coordinates. Region j

leading to the smallest concavity value ci, j is chosen, upon which the regions are concatenated and the

neighborhood relationships updated. If during this procedure several small regions are concatenated

so that the resulting region is no longer small, it is deleted from the list of small regions and treated as

a large region. The result of this procedure is shown in Figure 4.3e.

4.1.2.6 Recombining Large Watershed Regions

The final step in the segmentation procedure is merging of large regions based on their concavity,

similarly as in [93]. Before proceeding, neighborhood relationships between regions are redefined. Two

regions are now considered neighbors if they contain a pair of voxels on the aggregate surface that are

6-neighbors. This ensures that neighboring regions indeed touch on the crystal surface. Neighboring

regions are then iteratively merged using the procedure described below.

Each iteration of the procedure starts by updating neighborhood relationships based on concavity

points. Concavity points may nullify certain neighborhood relationships and thus inhibit a pair of regions

from being merged. Each concavity point p has a mask of influence C, covering all voxels inside a cube

of length 2a+1, where a is defined in equation 4.3. If voxels in the mask belong to exactly two regions,

their neighborhood relationship is nullified. In case of more than two regions in the mask, regions are
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considered pairwise. For each region pair (i, j), a concavity value inside the mask is computed by [2]:

cp,i, j =
Nvoxels of i in mask C +Nvoxels of j in mask C

Nmask
, (4.8)

where Nvoxels of i in mask C and Nvoxels of j in mask C are the number of voxels of regions i and j inside the

mask C, containing the total of Nmask = (2a+1)3 voxels. The neighborhood relationship between i and

j is deleted if cp,i, j < ct. Note that in case where only two voxels are present in the concavity mask, the

threshold of 1.2ct is implicitly used, as this is the threshold for concavity point detection. Furthermore,

each pair of regions is considered several times, as there may exist several concavity points in their

vicinity. If the nullification criterion is fulfilled for at least one concavity point, these regions will no longer

be marked as neighbors and their merging will no longer be possible.

Upon establishing neighborhood relationships, all pairs of neighboring regions are investigated and

their concavity is computed according to equation 4.7. The pair leading to the smallest concavity is

merged and the neighborhood relationships are updated so that all neighbors of either region are now

neighbors of the merged region.

Two iterations of the merging procedure are shown in Figures 4.3f and 4.3g. The procedure stops

if there no longer exists a pair of neighbors which can be merged. In the case shown in Figure 4.3, the

second iteration completes the segmentation.

4.1.3 Shape Identification of Primary Particles

The segmentation procedure results in primary particle candidates. It remains to perform a shape

identification for each primary particle. Due to imperfections in the segmentation, the basic shape

identification algorithm is followed by a set of post-processing steps which may further discard and

concatenate regions or re-size the obtained shapes. The whole procedure is summarized in Figure

4.2b, and explained below in more details.

4.1.3.1 Basic Algorithm

The difference between a primary particle in an aggregate and a single crystal is that the primary

particle is often incomplete, as its parts overlap with other particles in the aggregate. Therefore, not all

primary particle faces are visible on the aggregate surface and the algorithm for shape identification of

single crystals presented in chapter 3 must be adapted accordingly.

The algorithm is based on the surface point cloud of a primary particle, containing only aggregate

surface points that belong to that primary particle.2 It follows the scheme in Figure 3.1, with some

modifications to each step, described below.

In the first step, face normals are identified by Hough transform, using the surface point cloud of the

current primary particle. Due to its incompleteness and the imperfections in segmentation, a filtering of

2Similarly as in case of single crystals, points must be translated so that their mean coordinate coincides with the origin
of the coordinate system, (0,0,0), where the translated points are denoted by p̃i. Note that this translation is done for each
primary particle separately, as the translation vector is different for each primary particle.
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the Hough transform peaks is performed. A peak b̃pks,i in the reduced Hough space b̃(φi,θi) is deleted

if

b̃pks,i <

1
Ndir

dir∑
k=1

b̃k

1
Npks

Npks∑
k=1

b̃pks,k

max
j

b̃pks, j. (4.9)

Here, b̃pks, j are the Npks identified peaks and Ndir the number of considered spatial directions, represent-

ing the size of the reduced Hough space b̃. This filtering is the only difference regarding the procedure

for identifying face normals.

In the second step, a matching between identified and model face normals is established and the

rotation matrix R between them is found. The procedure for single crystals, presented in Figure 3.5

is briefly summarized here. It is based on choosing a set of three best identified face normals and

iteratively forming approximations of the rotation matrix by assigning these as correspondents for some

three model face normals. An approximation Rcand is allowed if the error criterion

L(Rcand)< etol (4.10)

is passed, where the objective function L(Rcand) is defined in equation 3.15. The rotation matrix can-

didate is used to rotate the remaining model face normals and match them to the remaining identified

face normals. In the algorithm for single crystals, the matching procedure was stopped if all identified

face normals had a match. Otherwise, the case leading to a maximal number of matched face normals

was chosen and R was computed based on the chosen matching. The problem when applying this

procedure to primary particles in crystal aggregates lies in the stopping criterion. It may happen that

a primary particle is covered by other particles to such an extent that only three face normals were

identified. In this case, the matching corresponding to the first rotation matrix Rcand that passes the

error criterion is accepted as all three identified face normals were matched. Thus, the procedure is

modified as follows. It no longer stops if all identified face normals were matched. Furthermore, if only

three face normals were identified, the matching leading to the smallest L(Rcand) is chosen to obtain

the final rotation matrix. Otherwise, the matching leading to the largest number of matched faces is still

used, as in the procedure for single crystals.

The third step is the computation of face distances for each rotated model face normal Rai. It

is possible that a rotated face normal is not visible on the aggregate surface. Such a face is either

too small, has grown out or is covered by another primary particle. In the first two cases, the face is

considered as "existing" on the aggregate surface and its face distance can be determined. Otherwise,

the face distance cannot be determined and must be obtained using symmetry. Therefore, it is first

determined whether a given rotated model face exists on the aggregate surface. The adopted approach

is tailored for the investigated potash alum crystals which contain three face groups {111},{100} and

{110}, as shown in Figure 2.1. Experimentally observed crystals had pronounced {111} faces, so that

the {111} is the principal face group. In this case, three rules can be derived to determine whether a
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given rotated model face Rai exists on the aggregate surface:

• All faces that have a match among identified faces are considered "existing".

• If a face of type {111} has no match among the identified faces, it is considered as "non-existing".

• Members of other face groups are considered "existing" if all neighboring {111} faces had a

match among identified faces; otherwise, they are considered "non-existing".

In case of matched faces, face distance is determined as in the case of single crystals, which is de-

scribed in section 3.1.3. However, the "non-existing" faces have no distance value and the result-

ing polytope may be open. For this reason, it is also not yet possible to create a non-redundant H-

representation and ensure that faces indeed touch the obtained polytope. First, the remaining distance

values must be obtained from the symmetry conditions. Thus, the existence mapping matrix SE is con-

sidered. This matrix has a size of nE×nH. It contains a row with a value 1 at place i for each "existing"

face i, while all other values are 0. Symmetry conditions are applied to existing faces, similarly as in

the single-crystal case. First, the new origin of the symmetrical crystal is computed as 3:

x0 =−
(
MC,ESEART )+ MC,ESEh, (4.11)

where [2]:

MC,E = I− (SEMhC→h) · (SEMhC→h)
+ . (4.12)

The crystal is then moved using this new origin to obtain a crystal described by the vector SEh′ of face

distances [2]:

SEh′ = SEh+SEART x0. (4.13)

In this crystal, all faces of a face group have the same face distance, but some faces are missing and

the crystal is open. Thus, the face distance of each face group can be obtained by mapping into the hC

space, using only the existent faces:

hC = (SEMhC→h)
+ SEh′. (4.14)

This will result in a value 0 for face groups where no face was identified as "existing". In this case,

the face distance is set to some large value, so that the faces are grown-out, and the corresponding h
vector is identified:

h = MhC→hhC. (4.15)

This crystal is complete and symmetrical, but may contain grown-out faces. The subsequent step iden-

tifies all grown-out faces by forming an H-representation containing only non-redundant face normals.

This reduced H-representation is converted into the V -representation, consisting of vertices vk. Face

3Note that the minus sign is missing in the corresponding publication [2]
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distances for the grown-out face groups are then mapped back so they touch the polytope using:

hi = max
k
〈vk,Rai〉, (4.16)

where i is the first face of the group i. As a valid face distance for each face group is obtained, a

mapping of this HC-representation to the H- and V -representation, containing the vertices ṽi completes

the shape identification procedure. The obtained symmetrical crystal is centered at (0,0,0), so that the

final vertices vi of the polytope are obtained by applying the equation 3.31. This final crystal is centered

at xorig, defined in equation 3.32.

4.1.3.2 Post-processing of Non-ideal Cases

The described shape identification procedure may fail to provide a good shape or may provide a shape

of inadequate size, if only very few face normals could be identified. Furthermore, the segmentation

procedure may still split a crystal into two or more particles, so that additional merging should be done.

Therefore, the basic algorithm defined above is followed by a set of post-processing steps, as shown in

Figure 4.2b. They are explained in more detail below.

4.1.3.3 Deleting Faulty Regions

Faulty regions represent regions where no shape identification was possible. This may occur if fewer

than three adequate face normals were identified to find the rotation matrix. Furthermore, an empty

crystal is returned if the largest number of identified face normals belongs to a face group other than

the principal, {111} group, or the faces of the {111} group are found to be grown-out.

Points belonging to these faulty regions are deleted from both the surface and the volume point

cloud. An example of such a region is shown in Figure 4.5.

4.1.3.4 Merging Overlapping Particles

The automatic segmentation procedure described in section 4.1.2 may still be imperfect and split a pri-

mary particle. In this case, the shape identification procedure should provide almost identical particles.

(a) (b)

Figure 4.5: Faulty region, presented in orange in the left image is identified and deleted, resulting in the
right image. Concavity points are shown in red in the left image.
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Therefore, pairs of highly overlapping polytopes are identified and the corresponding watershed regions

are merged. The merged regions are then processed by the basic shape identification algorithm. The

pair (i, j) of identified particles is considered highly-overlapping if the degree of overlap with respect to

i or j is higher than 0.9. The degree of overlap with respect to particle i is computed as

oi =
Voverlap,i, j

Vi
, (4.17)

where Voverlap,i, j is the volume of the polytope obtained as the intersection of identified polytopes for

particles i and j, while Vi is the volume of the i-th particle polytope. The degree of overlap with j is

computed analogously. The result of this procedure is illustrated in Figure 4.6.

4.1.3.5 Moving and Re-sizing the Identified Shape

In certain cases, the size of the primary particle cannot be identified with certainty, although the shape

can. For example, one can determine the orientation of an octahedron using normals to four faces that

intersect in the common vertex. However, it is not possible to know the size of the faces in that case. A

potash alum particle is declared to have an identifiable size if there exists a matched {111} face whose

adjacent {111} faces were also matched. Faces are considered adjacent if they share an edge. If

the size is not identifiable, the particle polytope is re-sized and the origin is moved, accordingly. The

direction dM of origin movement is defined using the nm,oct matched rotated model {111} faces, Rai

dM =

−
nm,oct∑
i=1

Rai∥∥∥∥nm,oct∑
i=1

Rai

∥∥∥∥ . (4.18)

The sign of this vector is inverted if it is determined that an improvement is obtained when moving the

crystal in the opposite direction.

The best crystal size and the best corresponding origin are found by an iterative procedure. At each

iteration i, the origin of the crystal is moved for the value dM:

xi+1 = xi +dM, (4.19)

where x0 = xorig. Then, the best crystal size is computed using a bisection method. Using the best

obtained crystal size, the projection error value

qp =
1

Nsurf

∥∥pi−pi,proj
∥∥ (4.20)

is computed. Here, the Nsurf points pi, describing the surface point cloud of the considered primary

particle, are projected onto the best-sized crystal to get pi,proj. The search is stopped when qp no

longer reduces.



Chapter 4. Shape Identification of Primary Particles in Crystal Aggregates 79

(a) (b)

(c) (d)

Figure 4.6: The blue and green regions (upper left) belong to the same primary particle, so that the
identified polytopes overlap strongly (upper right). The algorithm detects such situations and merges
the regions (lower left) to obtain only one identified polytope (lower right).

The bisection method for finding the best-sized crystal considers in each iteration a smaller hS and

a larger hL version of the current crystal. For these computations, surface points p and the crystal

must be translated so that the crystal center is in the coordinate system origin. At the beginning, a

smaller version is chosen so that no point of the surface point cloud is inside this crystal. A larger

crystal is chosen so that all surface points are inside it. In each iteration, a new crystal is defined as

hnew = 0.5(hL +hS). If there are more surface points outside than inside of hnew, hnew will be used as

the "smaller" boundary in the next iteration. Otherwise, it becomes the "larger" boundary. The search

is ended when the following is fulfilled:

|hL(1)−hS(1)|< 0.1. (4.21)

In case where crystal size is truly not identifiable, this approach would give one of the sizes that

provide the exact same fit quality. However, experimentally observed crystals often show small faces

or face parts that were not matched but allow one to compute the crystal size. The quality criterion in

equation 4.20 would ensure that the best fit covers these faces.

One result of the procedure for moving and re-sizing of a crystal polytope is given in Figure 4.7.

This procedure can introduce highly overlapping shapes, discussed in the previous section. In such a

case, post-processing steps are repeated, as illustrated in Figure 4.2b. Upon reaching a state where

no primary particles are merged, the shape identification procedure is ended.
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(a) (b)

Figure 4.7: Before (a) and after (b) moving and re-sizing the smaller primary particle shape fit.

4.1.4 Fit Quality Measures

As in the case of single crystals, it is necessary to estimate the quality of fitted shapes when working

with experimental data as well as to evaluate the procedure by comparing the fitted polytopes to the

simulated ones.

4.1.4.1 Simulated Data

Before computing the quality measures for the simulated data, it is necessary to find a match among

identified polytopes for each simulated primary particle in an aggregate. This is done by choosing that

identified polytope whose centroid is closest to the one of the simulated polytope. It is furthermore

ensured that no identified polytope is matched to more than one simulated polytope.

A volume error is defined with respect to the i-th primary particle, similarly as in the case of single

crystals

qv,s,i =
|Vs,i−Vf,i|

Vs,i
. (4.22)

Here, Vs,i and Vf,i are the volumes of the i-th simulated and corresponding identified poyltope, respec-

tively. An overlap error is defined as

qo,s,i = 1− Vo,i

Vs,i
, (4.23)

where Vo,i is the volume of the intersection of the i-th simulated polytope and the corresponding iden-

tified poyltope. Finally, a disorientation angle between the simulated and the corresponding identified

polytope is computed in a manner that will be explained in chapter 5. Disorientation angle represents a

new error measure and was not used in the corresponding publication [2].

An aggregate was considered to have a well-identified shape if the shape identification was possible

for each primary particle, the quality measures qv,s,i and qo,s,i were below 0.15 for each primary particle

and the disorientation angle for each primary particle was below 10◦. If there were fewer identified than

simulated particles, but the given quality criteria were fulfilled for the identified particles, the aggregate

is declared to contain missing primary particles. Finally, if at least one of the three criteria based on

fit quality measures is not fulfilled for some primary particle, the shape identification for that aggregate

is considered unsuccessful. Shape identification is also declared unsuccessful if there were more
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identified than simulated polytopes. Furthermore, if a simulated primary particle is overlapped by 80 %

by another, it is removed from consideration as its shape identification is assumed impossible.

4.1.4.2 Experimental Data

The volume-based quality measure for the experimental data, qv,r retains the same form as in case of

single crystals (eq. 3.35):

qv,r =
Noutside

Nvoxels
+

Vagg−Ninside

Vvoxels
, (4.24)

with the difference that Vagg is now the volume of the whole aggregate. It is computed using:

Vagg =

np∑
i=1

Vi−
np∑

i1,i2>i1

Vi1,i2 + ...+(−1)(np−1)
np∑

i1,...,inp>inp−1

Vi1,...,inp
, (4.25)

where np is the number of identified polytopes and Vi1,...,ik is the intersection of polytopes i1, i2, ..., ik.

The quality measure qsurf,r is also extended to the case of np primary particles [2]:

qsurf,r,all =

√
1

Nsurf

Nsurf∑
j=1

min
i

∥∥p j−p j,proj,i
∥∥2

max
i

hprinc,i
. (4.26)

Here, each point p j of the aggregate surface point cloud is projected to each primary particle i to

get p j,proj,i, where the minimal such distance is finally considered. The scaling value is the largest

obtained octahedral face distance, when considering all primary particles and polytopes centered at

the coordinate system origin.

Cases with faulty regions can lead to high error values. In order to distinguish them from cases

containing badly fitted shapes, a quality measure that only considers the Nsurf,fit surface points that

remain after deleting the faulty regions, is defined similarly [2]:

qsurf,r,fit =

√
1

Nsurf,fit

Nsurf,fit∑
j=1

min
i

∥∥p j−p j,proj,i
∥∥2

max
i

hprinc,i
. (4.27)

The shape identification of an aggregate is considered successful with respect to these quality

measures if qsurf,r,all < 0.15 and qv,r < 0.2. If this is not fulfilled, but qsurf,r,fit < 0.15 and qsurf,r,fit < qsurf,r,all,

the aggregate is considered to contain primary particles where the shape identification was impossible.

Finally, in all other cases, the shape identification is declared unsuccessful.
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4.2 Validation

4.2.1 Simulated Data

4.2.1.1 Simulation Procedure

Similarly as in the case of single crystals, samples of crystal aggregates were simulated. Three samples

were derived from one basic set of 100 aggregates. In the basic set, there are 58 aggregates with

two primary particles, 13 with three, 21 containing four and 8 aggregates with five primary particles.

The sizes of the primary particles are drawn from a normal distribution with a mean of 250 µm and a

standard deviation of 30 µm. An aggregate of two primary particles is obtained by first creating two

primary particles with the desired size which are centered at the origin. One of the primary particles is

then moved in a random direction and a position where it lightly touches the other particle is determined

by bisection. An aggregate of more than two primary particles is obtained by adding primary particles

successively so that they lightly touch the existing aggregate. Primary particle orientations are drawn

according to the uniform sampling approach described in section 3.2.1.1. Three data sets are obtained

by growing each primary particle for 50 µm, 150 µm and 300 µm, respectively. The result of the growth

procedure for one aggregate can be seen in Figure 4.8.

Upon obtaining a set of aggregates, 3D images are simulated. The used resolution, along with the

other parameters, is given in Table 4.1. The procedure for generating 3D images is the generalized

version of the one described for single crystals, using the minimal and maximal coordinates over all

primary particles instead the coordinates of one particle [2]. The obtained aggregates differ from those

in the corresponding publication [2] as the uniform sampling of rotation matrices, explained in section

3.2.1.1 was used here.

4.2.1.2 Surface Roughness

In addition to the perfect crystals described above, images of crystals containing surface roughness

were created in order to investigate its influence on the performance of the algorithm. The amount of

surface roughness is controlled by the parameter proughness which can take a value of 0, 0.2, 0.4 or 0.6,

(a) A1-0 (b) A2-0 (c) A3-0

Figure 4.8: An illustration of the effect of primary particle growth on one aggregate from data sets A1-0,
A2-0 and A3-0, defined in Table 4.1.
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Case No. model
faces

Growth
[µm]

Nrho / ∆ρ cmin cmax Voxel
length
[µm]

Nside etol αtol [
◦]

A1-p 26 50 Nrho = 40 1 1 15 20 0.02 10
A2-p 26 100 Nrho = 40 1 1 20 20 0.02 10
A3-p 26 150 Nrho = 40 1 1 28 20 0.02 10

Table 4.1: Parameters for simulation and shape identification of aggregate data sets. p represents the
surface roughness parameter proughness. There were four different surface roughness levels for each
data set, so that 12 data sets are finally obtained.

where 0 corresponds to the case with no surface roughness described above. In order to add surface

roughness, the face distances h of each primary particle are enlarged by 10 %, resulting in a larger

version of the particle, denoted by hL. They are also reduced by 10 %, resulting in a smaller version

of the particle, hS.4 The voxels in the space between hL and hS can change their value. Voxels in the

"upper" space, covering the space between h and hL, were previously set to background as they are

not inside the original particle h. A voxel in this space, if connected to more than 9 foreground voxels,

can change its value to foreground with the probability given by proughness. Similarly, voxels in the space

between the original particle h and the smaller version hS were originally assigned to the foreground as

they are smaller than the original particle. A voxel in this space, if connected to fewer than 9 foreground

voxels, can change its value to background with the probability proughness. Finally, an opening with an

18-connected structuring element is performed to obtain the final 3D image of the crystal with surface

roughness.

The effect of surface roughness can be seen in Figure 4.9 on the case of one aggregate from data

sets of type A2.

4Note that increasing and decreasing face distances h is performed for the polytope centered at the origin of the coordi-
nate system. The actual polytope, whose center is elsewhere, must be translated to perform these computations and then
translated back to its actual position to obtain hL and hS.

(a) A2-0 (b) A2-02 (c) A2-04 (d) A2-06

Figure 4.9: An illustration of the effect of surface roughness on one crystal from different data sets of
type A2, defined in Table 4.1.
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4.2.1.3 Results

Each identified aggregate was evaluated based on both the fit quality measured for simulated data

and the fit quality measures for experimental data. Both sets of fit quality measures declare the shape

identification of an aggregate either as successful, unsuccessful, or containing particles where the

shape could not be identified, as explained in section 4.1.4. The results regarding both sets of quality

measures are given in Table 4.2. Regarding the comparison with the simulated polytopes, it can be

seen that the shape identification was successful for between 84 % and 95% of aggregates. This is

similar to the result presented in [2], where the primary particles had different orientations. Furthermore,

similar results are obtained when changing the parameter for the discretization of distances in Hough

transform from Nρ = 40 to a fixed ∆ρ = 1.

Examples of successful shape identification are given in Figures 4.8 and 4.9. It can be seen that

small {100} and {110} faces were identified, even though the simulated crystals were perfect octa-

hedra. This an artifact of the algorithm for shape identification and was investigated by simulation of

single crystals in section 3.2.1.3. Similarly as in the previous study [2], the number of successfully fitted

aggregates decreases with the amount of primary particles in an aggregate, as presented in Table 4.3.

The number of successful shape identifications also decreases with the increasing particle overlap,

controlled by the amount of growth of the h-distance. High overlap between particles means that a

smaller portion of the particle is available for shape identification. Contrary to these parameters, sur-

face roughness does not have a large influence of the success of the procedure, while it may influence

the success of the scheme for individual aggregates, as seen in Table 4.2.

Unsuccessful shape identification is often caused by the fact that two regions were wrongly con-

catenated. An example can be seen in Figure 4.10. This may happen if more than two regions are in

vicinity of a concavity point so that some regions may be concatenated. Furthermore, it can occur if

a concavity point is missing. Concavity points are sometimes not identified if two crystals touch lightly

as they will not produce enough concavity voxels in the corresponding search mask, used to define the

concavity value by equation 4.1. In case of experimental data, a procedure for splitting an aggregate

into agglomerates with truly overlapping particles will be introduced in order to resolve this issue. How-

ever, the particle may still overlap to a high degree with other particles, so that the problem persists.

Concavity points may furthermore be absent if highly grown-in particles have a similar orientation, as

seen in Figure 4.11.

A wrong segmentation can also split a primary particle in two regions, as illustrated above in Figure

4.6. An unsuccessful shape identification may result if this problem is not identified, unlike in Figure

4.6. Finally, an unsuccessful shape identification may be achieved even if the segmentation is correct

or almost correct. This is illustrated in Figure 4.12. It is more likely to occur if particles strongly overlap,

as a smaller part of the particle is available for shape identification.

Wrongly concatenating a pair of regions may also cause an aggregate to be declared as containing

a primary particle where no shape identification is possible. In Figure 4.11, all identified shapes agree

well with the simulated polytopes in spite of the wrong segmentation.
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Simulation param. Quality measures - sim. data Quality measures - exp. data

Sim.
case

tab 4.1

Growth
h

dist.

Surface
rough.

proughness

[%] Agg.
all well

identified

[%] Agg.
with badly
identified

[%] Agg.
with

missing

[%] Agg.
all well

identified

[%] Agg.
with badly
identified

[%] Agg.
with

missing

A1-0 50 0 91 7 2 93 5 2
A1-0.2 50 0.2 93 6 1 94 6 0
A1-0.4 50 0.4 94 6 0 94 6 0
A1-0.6 50 0.6 95 4 1 95 4 1

A2-0 150 0 92 8 0 95 5 0
A2-0.2 150 0.2 92 5 3 95 5 0
A2-0.4 150 0.4 91 8 1 93 7 0
A2-0.6 150 0.6 92 7 1 96 4 0

A3-0 300 0 86 12 2 94 5 1
A3-0.2 300 0.2 84 12 4 96 4 0
A3-0.4 300 0.4 84 12 4 97 3 0
A3-0.6 300 0.6 85 11 4 95 4 1

Table 4.2: Shape-identification success evaluated for the 12 simulated data sets using the quality mea-
sures for simulated data, defined in Section 4.1.4.1, and the quality measures for experimental data,
defined in Section 4.1.4.2. First three columns show the simulated case and the parameters used in
sample generation. The fourth and seventh columns represent the percentage of aggregates where
the shape of all primary particles was correctly identified. The fifth and eight columns represent the
percentage of aggregates containing at least one badly identified primary particle. The sixth and ninth
columns show the percentage of aggregates where the shape of some primary particles could not be
identified, while it was identified correctly for the remaining particles.

Data sets Number of primary particles
2 3 4 5

A1 99.57 92.31 86.90 65.63
A2 99.57 94.23 80.95 59.38
A3 99.57 96.15 61.90 18.75

Table 4.3: Percentage of successful shape identifications per aggregate class consisting of two to five
primary particles. The values are computed for each group of simulated data sets by considering all
four data sets obtained by varying the surface roughness parameter.
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As seen when comparing the fifth and eight column of Table 4.2, fit quality measures based on

real data underestimate the number of unsuccessful shape identifications, especially for high particle

overlap. The reason is that these measures are defined for the aggregate as a whole instead of for

each primary particle. Thus, disagreements within one primary particle do not increase the overall error

enough, as seen in the quality measures for the aggregate in Figure 4.12. Also, these quality measures

are less likely to identify errors regarding primary particles that contribute little to the overall aggregate

volume. Comparing the sixth and ninth column of Table 4.2 reveals that the number of aggregates

where no shape identification was possible for some primary particles is also underestimated by the

quality measures regarding real data. In cases such as the one illustrated in Figure 4.11, no region

where shape identification failed exists. Therefore, the aggregate will be classified as having either

a successful or unsuccessful shape identification by the quality measures developed for real data.

Contrary, quality measures for simulated data will acknowledge that too few polytopes were identified.

Depending on the agreement of the identified polytopes with the simulated ones, the aggregate will be

considered to have either an unsuccessful shape identification or contain primary particles where no

shape identification was possible.

4.2.2 Experimental Data

4.2.2.1 Preparation and Measurement

Potash alum crystals used for the validation of the aggregate shape identification procedure were pro-

duced by seeded batch cooling crystallization. A set of aggregates was chosen by visual inspection

of the crystals. Particles were manually dispersed over a microscope slide, ensuring no touching be-

tween the particles. The slide was then covered by adhesive tape to obtain the dispersed crystals.

The tape was rolled in and placed in an 0.65ml micro test-tube. The middle part of the tube was im-

aged by a ZEISS X-Radia Versa XRM-500 µCT machine with a tungsten target by Jonathan Schock,

a PhD Candidate at the Chair of Biomedical Physics, TUM. Parameters of the measurement and the

shape identification procedure are given in Tables 4.4 and 4.5. CT reconstruction was performed by a

proprietary software XRM Reconstructor, v. 10.7.3245, at the Chair of Biomedical Physics, TUM. The

(a) (b)

Figure 4.10: Segmentation (left) and shape identification (right) for one aggregate from sample A1-
0. Two green primary particles were wrongly concatenated. The aggregate is considered to have an
unsuccessful shape identification by both sets of quality measures.
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(a) (b)

Figure 4.11: Segmentation (left) and shape identification (right) for one aggregate from sample A3-0.2.
The orange primary particle was wrongly concatenated with the part of another particle. However, the
shape of the orange particle was identified correctly in spite of this segmentation error. The aggregate
is considered to contain primary particles where no shape identification was possible by the quality
measures developed for simulated data. It is considered to have a successful shape identification by
the quality measures for real data.

(a) (b)

Figure 4.12: Segmentation (left) and shape identification (right) for one aggregate from sample A3-0.4.
The segmentation is almost correct, but a part of the orange particle was assigned to the blue one. How-
ever, the shape of the blue particle was identified as too small. The aggregate is considered to have an
unsuccessful shape identification by the quality measures for simulated data. The shape identification
is considered successful by the quality measures for real data, as qv,r = 0.088 and qsurf,r,all = 0.05.
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obtained 3D volume, as well as one vertical slice through it, are shown in Figure 4.13.

Time needed for sample preparation and measurement is in the order of a few hours for this data

set.

4.2.2.2 Isolating Aggregates

As visible in Figure 4.13b, crystals have significantly higher gray values than the adhesive tape struc-

tures. Therefore, a simple thresholding procedure was performed to obtain the foreground crystal

voxels. The threshold was determined manually by observing its influence on different slices using the

software MAVI [96]. Upon binarization, aggregates were isolated by labeling connected components in

MAVI. Aggregates may still contain lightly touching particles, which are assumed to have been created

during transport and the simple preparation procedure. As the identification of concavity points may

encounter problems at the presence of lightly touching aggregates, aggregates must be split into sub-

aggregates that contain highly overlapping particles, or may represent single crystals. This procedure

was performed in MATLAB and is described below.

An image I of each aggregate is first eroded with a cube structuring element whose length is 15

voxels. This will ensure the separation, but also highly shrink the particles. A labeling of connected com-

ponents in the eroded image IE of the aggregate is then performed to get the image IL. If IL consists of

exactly one connected component, the aggregate does not contain any loosely-bound particles and is

stored for further processing. Otherwise, foreground voxels of IL are used to create a mask image and

impose minima for the distance-transform-based watershed-transform of the aggregate image. This

procedure is the same as that described in section 4.1.2.2 regarding concavity expansion. Watershed

procedure will result in a set of regions describing sub-aggregates with overlapping particles, the back-

ground and a set of watershed voxels that are equally likely to belong to either region. Any voxels that

belonged to the crystal foreground but were assigned to background by the watershed transform are

also considered as watershed voxels. Watershed voxels are then re-assigned to the closest foreground

region using the procedure from section 4.1.2.4. Finally, each so obtained sub-aggregate is written

Parameter Value

Tube Voltage [kV] 60
Power [W] 5

Exposure Time [s] 6
Magnification 0.39x

Source-to-sample distance [mm] 50
Detector-to-sample distance [mm] 200

No. projections 1601
Voxel length [µm] 13.6

Detector pixel binning 2 x 2

Table 4.4: Parameters of the µCT measurement for validation of the aggregate shape identification
procedure.
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Case No. model
faces

Nrho / ∆ρ cmin cmax Voxel
length
[µm]

Nside etol αtol [
◦]

Val-A 26 Nrho = 40 1 1 13.6 20 0.02 10

Table 4.5: Parameters for shape identification of experimental data: validation of the aggregate proce-
dure.

(a) (b)

Figure 4.13: 3D volume of the particles used for validating the aggregate shape identification procedure
(a), as well as one slice through it (b). Rendering was performed by Jonathan Schock, at the Chair of
Biomedical Physics, TUM, using AVIZO Fire [146]. Reprinted with permission from [2]. Copyright
(2016) American Chemical Society.
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into a separate file and processed with the procedure presented in this chapter. Crystals containing

fewer than 10000 foreground voxels were ignored. The obtained data set consisted of 85 crystals,

representing highly-overlapping aggregates or single crystals.

Time requirements regarding aggregate isolation are in order of a few minutes for this data set.

4.2.2.3 Results

As no information about the true size and shape of these crystals is available, the quality of the shape

identification procedure was evaluated using the measures and criteria for experimental data, presented

in section 4.1.4.2. There were 65 aggregates with well-identified shape. Some examples are shown

in Figure 4.14. It can be seen that the primary particle pairs can have both the same as well as

different orientations. Furthermore, primary particles may differ in size. The last row shows examples

of aggregates that were judged to have a successful shape identification, even though some issues

are present. The large particle in Figure 4.14j was erroneously split into two primary particles. The

algorithm failed to detect this and concatenate them back into one particle, so that two polytopes for

the same particle were identified. Figure 4.14k shows an undetected small particle on the surface of

the large particle. Even if this particle were to be segmented as such, it would probably not be possible

to identify its shape. Finally, Figure 4.14l contains a primary particle where no shape identification was

possible. However, as this particle is highly grown into one of the other particles, the error measure

qsurf,r,all is small enough to allow the shape identification for the whole aggregate as successful. Note

that in the previous program version, corresponding to the publication [2], the third primary particle was

identified, but its size was over-estimated.

Figure 4.15 shows 6 out of 10 particles where the aggregate is considered to contain particles

where no shape identification was possible. In Figure 4.15e, apart from failing to identify the shape of

some particles, the size of the smaller particle was over-estimated. In Figure 4.15f, the larger particle

was erroneously split into two parts, one of which was small and did not contain enough information

to identify the shape. This, combined with the value qv,r > 0.2, which is assumed to be due to surface

roughness and asymmetry, lead to this aggregate erroneously being classified as containing primary

particles where no shape identification was possible.

Finally, Figure 4.16 shows 6 out of 10 particles where the aggregate shape identification is consid-

ered unsuccessful. In Figure 4.16a it is difficult to decide whether the large particle is an aggregate or

simply asymmetrical. A fit to the symmetrical crystal model in case of an asymmetrical particle would

cause large error measures, thus classifying the shape identification as unsuccessful, which is further

assumed to occur in Figure 4.16c. The aggregate in Figure 4.16b is also difficult to segment into primary

particles so that the large particle is split into two parts, one of which is further concatenated with one of

the smaller particles. The particle in Figure 4.16d was split into several parts due to surface roughness.

It was not possible to identify the shape of the smaller parts. Furthermore, the surface roughness and

the attached segments caused the error measures to exceed the thresholds. The particles in Figure

4.16e were re-concatenated into one particle, thus failing to report a missing shape identification for the
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smaller particle. Errors in segmentation also caused the cubic particle in Figure 4.16f to be identified.

As already noted above, some changes with respect to the previous program version, leading to

results published in [2] were observed, causing some particles to change their final class. However, the

overall results remain the same.

4.2.2.4 Execution Time

The sequential execution time on a desktop computer with 16 GB RAM and Intel Core(TM)i5-3470 CPU

@ 3.20 GHz running MATLAB 2015b on a 64-bit Windows 8.1 Enterprise was about 1.5 hours, leading

to an average execution time of somewhat over one minute per aggregate. It is furthermore possible to

run the computations in parallel using MATLAB parallelization toolbox. In the corresponding publication

[2] using an older version of the program, a total execution time of 33 minutes for a parallel computation

using four cores was reported.

4.2.3 Conclusion

It can be concluded that the presented automatic shape identification procedure for primary particles of

crystal aggregates provides a reasonable shape in most cases. Problems are encountered if there is a

large number of primary particles, primary particles have a very high level of overlap or the crystal is not

symmetrical. Furthermore, lightly touching aggregates were separated into sub-aggregates with highly

overlapping primary particles in order to avoid segmentation issues. Therefore, further improvements

are necessary before the procedure can be applied to measuring the relative orientation between pri-

mary particles. This should involve a better sampling and preparation procedure, ensuring statistical

relevance and a better crystal separation. It is presented in the following chapter.
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(a) qv,r = 0.120,qsurf,r,all = 0.063 (b) qv,r = 0.099,qsurf,r,all = 0.040 (c) qv,r = 0.120,qsurf,r,all = 0.040

(d) qv,r = 0.110,qsurf,r,all = 0.043 (e) qv,r = 0.146,qsurf,r,all = 0.067 (f) qv,r = 0.106,qsurf,r,all = 0.058

(g) qv,r = 0.074,qsurf,r,all = 0.033 (h) qv,r = 0.112,qsurf,r,all = 0.045 (i) qv,r = 0.198,qsurf,r,all = 0.087

(j) qv,r = 0.094,qsurf,r,all = 0.033 (k) qv,r = 0.117,qsurf,r,all = 0.053 (l) qv,r = 0.148,qsurf,r,all = 0.108,
qsurf,r,fit = 0.037

Figure 4.14: Shape identification in case of crystal aggregates: examples where the procedure per-
formed well. Error measure qsurf,r,fit was left out in cases where it was equal to qsurf,r,all.
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(a) qv,r = 0.232,qsurf,r,all = 0.165,
qsurf,r,fit = 0.060

(b) qv,r = 0.274,qsurf,r,all = 0.163,
qsurf,r,fit = 0.077

(c) qv,r = 0.281,qsurf,r,all = 0.205,
qsurf,r,fit = 0.076

(d) qv,r = 0.477,qsurf,r,all = 0.484,
qsurf,r,fit = 0.072

(e) qv,r = 0.237,qsurf,r,all = 0.120,
qsurf,r,fit = 0.088

(f) qv,r = 0.251,qsurf,r,all = 0.108,
qsurf,r,fit = 0.107

Figure 4.15: Shape identification in case of crystal aggregates: examples where the aggregate is
considered to contain primary particles where no shape identification is possible.

(a) qv,r = 0.537,qsurf,r,all = 0.188,
qsurf,r,fit = 0.188

(b) qv,r = 0.229,qsurf,r,all = 0.087,
qsurf,r,fit = 0.087

(c) qv,r = 0.266,qsurf,r,all = 0.105,
qsurf,r,fit = 0.105

(d) qv,r = 0.319,qsurf,r,all = 0.181,
qsurf,r,fit = 0.159

(e) qv,r = 0.211,qsurf,r,all = 0.100,
qsurf,r,fit = 0.100

(f) qv,r = 0.389,qsurf,r,all = 0.044,
qsurf,r,fit = 0.044

Figure 4.16: Shape identification in case of crystal aggregates: examples where the procedure per-
formed badly.
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Chapter 5

Orientation of Primary Particles in Crystal
Aggregates

In the previous chapter, it was shown how µCT imaging can be used to obtain the size, shape, position

and orientation of each primary particle in a crystal aggregate. This information can then be used to

measure the mutual orientation between pairs of primary particles and study the underlying aggregation

mechanism. So far, such investigations were only possible using diffraction pattern studies, such as

in the work of Collier et al. [34, 42]. They have shown that calcite aggregates tend to have aligned

primary particles when grown at low ionic strength. Visual observation of experiments conducted at

high ionic strength did not show such behavior. Therefore, it was concluded that particles grown at low

ionic strength re-orient themselves upon collision into a more favorable position under the influence of

a thicker electrical double-layer [34].

The aim of this chapter is to show the applicability of the developed method based on µCT imag-

ing to studying the orientation between primary particles in aggregates. Potash alum is chosen as a

model compound, given that it easily crystallizes into octahedra. A regular octahedron is a dual body

of the cube and has the same symmetry operations. In case of cubes, a theoretical distribution of the

so-called disorientation angle, describing mutual orientations between crystallites, is known from the

literature [131, 132, 147]. This theoretical distribution also holds for octahedral crystals, serving as a

reference expected in the case that all orientations of each primary particle are equally probable. It can

be assumed that perfectly aligned primary particles have a stronger bond as there is no mis-alignment

of the respective lattices. It is thus possible that aggregates with aligned primary particles would be

more likely to withstand the disruptive hydrodynamic forces. In case of potash alum, Pratola et al.

[37] have shown that agglomerate strength increases with increasing supersaturation. At high super-

saturation, aggregates are more likely to be formed as there is more material available, enabling the

pair of particles to be cemented together. It is possible that aggregates formed at high supersatura-

tion would be more likely to survive the hydrodynamic forces even when the primary particles are not

aligned. Therefore, in cooperation with the group of Prof. Sundmacher, Otto-von-Guericke-University

Magdeburg, we investigated the orientations between primary particles grown at different supersatura-

95
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tion profiles. The obtained results were presented in a joint publication [3] 1, while the results of the first

experiment, processed with a simpler procedure, were presented at the BIWIC conference [148].

5.1 Aggregation and Growth Experiments

The experiments were conducted at the Chair of Process Systems Engineering at the Otto-von--

Guericke-University Magdeburg. Each experiment was a seeded batch cooling crystallization of alu-

minum potassium sulfate dodecahydrate, CAS No. 7784-24-9, also known as potash alum. The pa-

rameters of all experiments are given in Table 5.1. The first experiment, denoted by R, was conducted

using 8 g of seeds purchased from Roth (Art. No. CN78.2). In the second set of experiments, denoted

by M, 10 g of seeds purchased from Merck were used. This set consists of three experiments per-

formed with different cooling rates in order to create different supersaturation profiles. The experiments

M were conducted by Viktoria Wiedmeyer, at the time a PhD candidate at the Chair of Process Systems

Engineering at the Otto-von-Guericke-University. The experiment R was performed together by Viktoria

Wiedmeyer and the author. The experiments R and M further differ in the method of preparation for the

imaging in the µCT, as it will be explained below.

The experiments were performed in a stirred double-jacketed batch vessel with a round bottom and

an inner diameter of 10 cm, shown in Figure 5.1. In order to obtain a narrow seed size distribution,

the Roth and Merck material was sieved for 60 min between 200 µm and 30 µm using a vibratory sieve

shaker (AS 200 control, Retsch). A solution of potash alum in water, saturated at 30 ◦C, according to

the saturation measurements made in Magdeburg, was prepared at the start of each experiment. This

solution was heated above the saturation temperature to ensure dissolution. An automatic cooling with

the cooling rates given in Table 5.1 was started and seeds were added at a temperature slightly lower

than the saturation temperature. Before stopping the experiments at the desired final temperature of

20 ◦C, samples of crystals were taken by a pipette with an inlet diameter between 1mm and 2mm. Each

1In the previous publication, x- and y-axis of the crystals were permuted, which is corrected here. Further small bugs were
fixed.

Parameter R M10 M5 M3

Seed manufacturer Roth Merck Merck Merck
Seed amount [g] 8 10 10 10

Seeding temperature [◦C] 29.9 29.8 29.8 29.8
Cooling rate [K/h] 5 10 5 3

Amount dissolved solid [g] 161.3 161.2 161.3 161.2
Amount of water [g] 1000.4 1000.5 1000.1 1000.1

Sampling temperature [◦C] 20.4 21.3 20.8 20.5
Stirring rate [rpm] 250 250 250 250

Effective voxel length [µm] 6.80 7.85 7.85 7.85
Preparation method Aggregates All All All

Table 5.1: Parameters of the conducted seeded batch cooling crystallization experiments [3].
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sample consisted of the slurry drawn at four different positions in the vessel. The drawn samples were

emptied on a Büchner funnel covered by a filter paper. The excess solution was filtered by a vacuum

pump, the crystals were then washed by a cold 50-50 mixture of ethanol and water and air-dried.

During the experiments, the solution concentration was monitored by an ATR-FTIR probe (Nicolet

iS 10 FT-IR, Thermo Fisher Scientific). The evaluation of the concentration and supersaturation was

performed by Viktoria Wiedmeyer, using the partial least-squares (PLSE) calibration model previously

created at OVGU Magdeburg [3]. There was an offset in the concentration measurement cmeas. It was

corrected by considering the known concentration at the beginning of the experiment, c1(t1) and the

concentration c2(t2) at the end of the experiment. It was assumed that the offset changes linearly with

time t, so that the final concentration is obtained as [3]:

c(t) = cmeas(t)+∆c1 +
∆c2−∆c1

t2− t1
(t− t1), (5.1)

where ∆c1 = c1− cmeas(t1) and ∆c2 = c2− cmeas(t2). The concentration c2 at the end was measured

by taking samples of the solution, filtering them to separate the crystals and allowing the water to

evaporate.

The values of solution concentration c(t) at different times t can be used to compute the supersat-

uration:

S(t) =
c(t)

csat(T (t))
, (5.2)

where csat(T (t)) is the saturation concentration at the temperature T at time t. The saturation concen-

tration was measured in Magdeburg and the resulting equation was provided by Viktora Wiedmeyer

[3]:

csat(T ) = 0.18T 2
K−102.726TK +14760.7. (5.3)

Here, TK is the temperature in Kelvin and the resulting concentration value is in g hydrate
kgfreewater . This satura-

tion concentration agrees well with the measurements made by Mullin et al. [149]. The finally obtained

concentration and supersaturation profiles, as computed by Viktoria Wiedmeyer, are presented in Fig-

ure 5.2.

The experiment was further monitored by a QICPIC (R02, Sympatec) flow-through microscope.

The setup, described in more detail in [116], involves continuously withdrawing the suspension by a

peristaltic pump and pumping it through a measurement cuvette where the images are taken with a rate

of 10 frames/s. An image from the beginning of the experiments R and M3 can be seen in Figure 5.3.

It can be seen that the seeds dissolve slightly upon being introduced into the solution, as the particles

are oval instead of showing sharp edges. This indicates that the saturation concentration measurement

is not completely accurate. Furthermore, small crystals are visible in Figure 5.3b corresponding to

the experiment M3. As the seeds in both experiments are drawn from the same sieve fractions, it is

assumed that, in experiment M3, small crystals were attached to the large seed particles during sieving

and were only detached upon suspension. The same behavior was observed in experiments M10 and

M5 using the seed material from Merck.
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Figure 5.1: Crystallization vessel and the stirrer geometry.
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Figure 5.2: Concentration and supersaturation profiles measured in the experiments, based on the data
computed by Viktoria Wiedmeyer. The time of solution and crystal sampling is marked by black circles
and crosses, respectively. Seeding was performed at time t = 0s for all experiments. Reprinted from
[3] with permission from Elsevier.
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(a) R (b) M3

(c) R (d) M3

Figure 5.3: An image of the crystals taken 37s after adding seeds in the experiment R (a), and 270s
after adding seeds in the experiment M3 (b). The images in the lower row contain particles where the
area-equivalent circle diameter is greater than 200 µm marked in blue. The images in the upper row
are reprinted from [3] with permission from Elsevier.
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5.2 Preparation and Imaging

The crystals obtained after sampling, washing and drying, as described above, were prepared for

imaging in the µCT using two different procedures. In case of the experiment R, the author performed

the preparation procedure denoted as "Aggregates" in Table 5.1. Here, the filter paper with the sampled

crystals was divided into two parts. Each crystal from one half of the filter paper was picked up by

tweezers and observed under the microscope in order to determine whether it was an aggregate or

a single crystal. Crystals that were deemed to potentially represent aggregates were sorted into a

separate dish and were prepared for the imaging in the µCT. Here, an adhesive tape was rolled around

a toothpick and crystals were positioned onto the tape in rows of three, ensuring there is enough space

between the crystals, as illustrated in Figure 5.4a. The tape with the crystals was then rolled around

the toothpick, as shown in Figure 5.4b.

During the described preparation procedure, crystals can be damaged and aggregates may break

into primary particles due to being picked up by tweezers several times. Thus, in case of M experi-

ments, we chose to prepare both single crystals and agglomerates for imaging. Here, no sorting into

single crystals and agglomerates was performed, so that the disintegration damage is less likely. This

preparation procedure is referred to as "All" in Table 5.1 and was performed by the Magdeburg research

group. About a tenth of each M sample was prepared in this manner [3].

µCT imaging was performed by Jonathan Schock, a PhD candidate at the Chair of Biomedical

Physics at the Technical University of Munich, lead by Prof. Franz Pfeiffer. A toothpick with the crystals

was placed in a sample holder clamp and imaged with a ZEISS X-Radia Versa XRM 500 machine. The

parameters used in the measurement are shown in Table 5.2. The CT reconstruction was performed

by the proprietary software XRM Reconstructor and the final volume was cropped.

(a) (b)

Figure 5.4: µCT preparation procedure. Crystals are placed on an adhesive tape so that there is
enough space between separate particles (a). The adhesive tape is then rolled around the toothpick,
ensuring that the crystals remain separated (b). Reprinted from [3] with permission from Elsevier.
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Parameter R M

Tube Voltage [kV] 80 80
Power [W] 6 6

Exposure Time [s] 5 5
Magnification [x] 0.39 0.39

Source-to-sample distance [mm] 25 30
Detector-to-sample distance [mm] 100 100

No. projections 1601 1601

Table 5.2: Parameters of the µCT measurements performed by Jonathan Schock, Chair of Biomedical
Physics, TUM. Reprinted (adapted) from [3] with permission from Elsevier.

5.3 Image Processing

5.3.1 Image Pre-processing

The obtained stack of images was loaded into the software MAVI [96], resulting in a 3D image of the

measured volume. The 3D image was converted from 16 bit into 8 bit format in order to reduce the

memory requirements. Figure 5.5 shows one horizontal slice with a cross-section through some of the

crystals, layers of the adhesive tape and the toothpick. It can be seen that the difference in gray values

between the crystals and the other structures is high, so that the crystals can be easily segmented.

Therefore, the 3D image was binarized. The binarization threshold was chosen using the Otsu method

for all experiments except M10, where the threshold was chosen manually by observing its effect on

different slices. A labeling of connected components, using the 26-8 neighborhood was performed in

order to separate different crystals. This image was stored for further processing with MATLAB [150].

In case of each experiment, each crystal (label) is extracted and stored into a separate file using

MATLAB. Crystals are ignored if they touch the boundary of the original 3D image or if their total

volume, approximated by counting foreground voxels, is smaller than the volume of a sphere of diameter

D = 200 µm. This threshold is chosen to correspond to the pore size of the finer sieve used to obtain

seed crystals. Thus, it ensures the exclusion of crystals that nucleate during the experiment. Note that

the crystals grow during the experiment so that the final size is larger than the sizes obtained through

sieving.

In experiment M10, five crystals whose shape did not correspond to either agglomerated or single

crystals were observed. These particles are excluded from further consideration. Three such particles

are illustrated in Figure 5.6.

5.3.2 Segmentation into Primary Particles

The procedure for segmenting images of crystal aggregates and extracting their size and shape was

presented in Chapter 4 and is summarized in the flow chart given in Figure 4.2a. The validation study

has shown that while a reasonable shape fit can be found in most cases, some issues are still present.
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Figure 5.5: One horizontal slice from experiment M5. The porous structure is the toothpick, the onion-
like layers are the layers of adhesive tape and the white areas are crystals. Reprinted from [3] with
permission from Elsevier.

(a) (b) (c)

Figure 5.6: Examples of particles from experiment M10 that were excluded from the shape identification
procedure as their shape did not correspond to either agglomerated or single crystals [3].
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These problems are encountered in case of a large number of primary particles, high primary particle

overlap and asymmetrical crystals. Thus, two user interaction steps are introduced here to resolve

the segmentation issues. These steps are presented in blue in Figure 5.8a, showing the flow chart of

the new procedure. Furthermore, symmetry conditions are removed in order to comply with the large

amount of experimentally observed asymmetrical crystals, such as the one shown in Figure 5.7.

The first user interaction step concerns finding concavity points. The user is shown a crystal, to-

gether with the automatically detected concavity points, using the approach described in section 4.1.2.1.

The user may delete existing concavity points by clicking on them, as well as add new concavity points

by clicking on points of the surface point cloud. The algorithm then proceeds with the automatic steps

shown in white in Figures 4.2 and 5.8. The result of the automatic segmentation is then presented to

the user. The user sees two images, as exemplified in Figure 5.9. In the left image, primary particles

are rendered in different colors. In the right image, the surface point cloud parts belonging to different

primary particles are presented in different colors. The user can iteratively improve the segmentation.

In each step, he or she can either concatenate regions or add new regions by interacting with the image

on the right hand-side. If the regions are to be concatenated, the user clicks on some point in the right

image for each of the chosen regions, as illustrated in Figure 5.9. When adding new regions, the user

clicks on a point in the right image he or she believes should be in a new region. Here, the algorithm

will find the region this point belonged to after the procedure that assigns watershed voxels to water-

shed regions. This region is re-introduced as a new region. Furthermore, if re-introducing a new region

caused any of the existing regions to be split into more than one connected component, the resulted

connected components are introduced as new regions as well. The user can thus introduce new re-

gions and concatenate regions until the segmentation is satisfactory. At this point, the segmentation

information is stored and the algorithm proceeds with the next crystal.

The user interaction steps may introduce some non-reproducibility into the procedure as both user

interaction steps depend on the surface points chosen by the user. Even though most steps are obvi-

ous, as the one illustrated in Figure 5.9, the procedure is based on the user’s decision regarding the

(a) (b) (c)

Figure 5.7: A symmetrical (a) and an asymmetrical crystal (b,c), both observed in the experiment M3
[3]. In case of (a) and (b), the identified shapes presented in black are obtained using the asymmetrical
crystal model, as explained in section 5.3.3. The shape identification in (c) is performed using the
method based on symmetry from chapter 4. Note that the symmetrical crystal model contained 26
faces, while the asymmetrical model consisted of 8 faces.
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Find concavity points

Concavity expansion

Marker-based watershed 

transform

Aggregate

Assigning watershed 

voxels to watershed 

regions

Merging small and large 

watershed regions

Recombining large 

watershed regions

User interaction: 

add/delete concavity 

points

Watershed regions as 

primary particles

User interaction: 

concatenate/separate 

regions

(a) Segmentation

Asymmetrical algorithm: 

shape identification of all 

regions

Delete faulty regions

where shape

identification impossible

Watershed regions as

primary particles

Delete regions with vol. 

eq. sphere diam. smaller

than threshold

Done

(b) Shape Identification

Figure 5.8: The procedure for identifying the shapes of primary particles in crystal aggregates using
user interaction.
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primary particles of an aggregate. A classical approach to reduce the bias would involve asking several

users to perform the segmentation. Such an approach was chosen by Ochsenbein et al. [69] when

classifying particles into single crystals and aggregates based on two 2D gray value images taken from

perpendicular directions. In that study it was shown that the agreement between experts is reasonably

good but not perfect. However, performing the user-assisted segmentation for the four data sets is a

time-consuming task. Furthermore, even upon completing the shape identification, ambiguities regard-

ing contact type between primary particles remain. We chose to resolve the contact-type bias by using

the approach involving several users. Introducing several versions of primary particle segmentation

would significantly increase the number of possibilities, so that this source of bias is not considered

here and the segmentation performed by the author is used further.

5.3.3 Shape Identification of Primary Particles

The previously developed shape identification procedure, presented in Figure 4.2, used crystal sym-

metry as well as a set of post-processing steps whose aim was to correct faulty segmentation. Here,

faulty segmentation is corrected by user interaction so that these post-processing steps are no longer

needed. Furthermore, these steps were developed for symmetrical crystals and would not be applicable

to the asymmetrical crystals considered here. Therefore, the resulting procedure, presented in Figure

5.8b is simpler than the procedures regarding symmetrical crystals, given in chapters 3 and 4. First,

face normals are identified by Hough transform and matched to the set of model face normals using

the procedure described in 4.1.3.1. It remains to find face distances. Here, the basic case, described

in case of single crystals in section 3.1.3 is applied. The face distance hi corresponds to the Hough

bin with the highest number of points, if the rotated model face normal Rai was matched to one of

the identified face normals. Otherwise, hi corresponds to the Hough bin with the highest point density.

No symmetry conditions are applied and the origin of the crystal is set to coincide with the arithmetic

mean of the coordinates of surface points for the considered primary particle. Note that no distinction

between "existing" and "non-existing" faces on the crystal surface is made, as was the case in chapter

4. In case of "non-existing" faces, the approach chosen here may lead to an incorrect face distance as

the face is deemed to be covered by another primary particle. However, no information is provided to

compute a better approximation if symmetry conditions are not used, so that such face distances are

not modified.

Upon completing the shape identification, the algorithm deletes faulty regions where no shape iden-

tification was possible. Furthermore, regions whose volume-equivalent sphere diameter, computed us-

ing the number of contained voxels to approximate the volume, is smaller than 200 µm are also deleted.

This threshold corresponds to the mesh width of the finer sieve used for sieving seeds and serves to

exclude crystals that cannot be resolved well with the used µCT resolution. Particles smaller than this

threshold can result from nucleation and breakage and are observed later in the experiment. However,

small particles were also observed at the beginning of the M experiments, as discussed in section 5.1.

Note that the region volume is computed using only the visible part of the particle. If primary particles
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(a) Before merging

(b) After merging

Figure 5.9: (a) The result of the segmentation procedure is displayed twice, as rendered crystals (left)
and as a point cloud (right). Different colors are used to ensure sufficient contrast. The user can choose
to concatenate the regions or add new regions. In this case, the user chose to concatenate the green
and orange regions, upon which the segmentation was accepted. The result is shown in (b). Reprinted
from [3] with permission from Elsevier.

overlap, they share some of their volume, but the shared volume cannot be simultaneously assigned to

both particles. It is not possible to determine the size of the overlap volume as no boundary between

the particles is visible. 2

5.3.4 Fit Quality Measures

In order to evaluate the quality of the shape identification, goodness of fit is approximated, similarly as

in the automatic procedure presented in section 4.1.4.2. The volume-based quality measure qv,r is the

same as that defined in equation 4.24. The remaining two surface-based fit measures are modified to

contain the mean face distance hmean,i value for each primary particle i, leading to [3]:

qsurf,r,all =

√
1

Nsurf

Nsurf∑
j=1

min
i

∥∥p j−pproj, j,i
∥∥2

max
i

hmean,i
(5.4)

2The new version of the program corrected the fact that x- and y-axis were erroneously exchanged in [3], as well as
another small issue regarding the sampling of Hough distance normals. While the results regarding single crystals and
the automatic shape identification of aggregates, presented in the previous chapters, could simply be re-evaluated with the
new version, this was not possible here with a reasonable amount of effort as the repetition of user-interaction steps would
have been necessary. Thus, the old segmentation, performed in [3] was employed. The flipping of the x- and y-axis was
performed on the obtained segmented image instead of prior to segmentation. Then, the new program version regarding
the shape identification could be applied. Note that flipping of the x- and y-axis may have an influence on the output of the
watershed segmentation algorithm implemented in MATLAB. Particle classification by users, described in section 5.4.1, was
then re-performed on the newly fitted crystals, according to the stored classification results from [3], yielding almost identical
results.
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and

qsurf,r,fit =

√
1

Nsurf,fit

Nsurf,fit∑
j=1

min
i

∥∥p j−pproj, j,i
∥∥2

max
i

hmean,i
. (5.5)

Similarly as in the case of automatic shape identification in chapter 4, aggregates were automatically

classified into those where shape identification was successful, those that contained primary particles

where no shape identification was possible and those where the shape identification was unsuccessful.

It can be assumed that all primary particles were segmented by user interaction. Thus, an aggregate is

declared to have a successful shape identification if shape identification was possible for each primary

particle, while the fit quality measures fulfill qsurf,r,all < 0.15 and qv,r < 0.2. If shape identification was not

possible for some primary particle, but qsurf,r,fit < 0.15, an aggregate is considered to contain "missing"

primary particles. Otherwise, the aggregate shape identification is considered unsuccessful.

The number of aggregates in each of the three categories is given in Table 5.3. Goodness of

fit was measured in order to exclude aggregates where shape identification was unsuccessful from

consideration when computing the angles between primary particles. However, as seen in Table 5.3,

unsuccessful shape identification was only detected in one case in experiment M3, corresponding to a

single crystal.

5.4 Disorientation Angle Distribution Measurement

5.4.1 Classification of Primary Particle Contact

Upon identifying the shape of each primary particle in an aggregate, orientations between pairs of

primary particles can be evaluated. Here, all primary particle pairs in a considered aggregate are ex-

amined as an aggregate can consist of several primary particles with different mutual orientations. A

pair of primary particles in an aggregate does not necessarily have to be in contact. Furthermore,

particles that are in contact can either lightly touch or represent truly grown-in agglomerates. Pairs

of lightly-touching particles could have come into contact during sampling and preparation as well as

during the end phase of the experiment. Particles that are very lightly bound may also move during

Sample/Type

No.
all well

identified

No.
with

missing

No.
with badly
identified

R 46 15 0
M3 101 31 1
M5 104 55 0
M10 101 48 0

Table 5.3: Number of crystals where the shape identification was successful for each primary particle,
no shape identification was possible for some regions ("missing") and the shape identification was
unsuccessful for some primary particles. Reprinted (adapted) from [3] with permission from Elsevier.
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preparation and transport, so that the measurement of their mutual orientation is not reliable. Grown-in

primary particle pairs, however, cannot change their relative orientation without breaking the aggregate.

Only such grown-in, agglomerated primary particle pairs are considered reliable for the forthcoming ori-

entation analysis. Thus, it is necessary to classify the contact type of each primary particle pair as either

"grown-in", "lightly-touching" or "none". Given a small amount of data to be processed, classification

is done by human experts with knowledge of crystallization and/or image processing. Three experts,

including the author, were asked to classify the primary particle pairs and only those pairs that were

classified into the same class by all experts were used for the further analysis. The aim is to reduce

bias and exclude problematic cases where the classification is difficult.

Experts were given the following description of each of the particle classes, as well as the examples

illustrated in Figure 5.10 [3]:

• "‘Lightly-touching’ are all pairs of particles that could have been brought into contact without

growth, so by simply placing them next to each other or onto each other. They can be separated

without harming one of them".

• "‘Grown-in’ are crystals where one is grown strongly into the other and they cannot be separated

without harm".

• "‘None’ are crystals that are not in contact".

In order to perform classification, experts are shown aggregates where only the considered primary

particles are marked by their identified shapes, as illustrated in Figure 5.10. The expert may rotate the

aggregate and change the light settings to get a better impression of the contact type. The number of

pairs belonging to each class, as identified by each expert, is given in Table 5.4 [3].

5.4.2 Disorientation Angle

Upon determining the type of contact between a primary particle pair, it is possible to quantify their

mutual orientation. Here, the shape model used for a primary particle was an octahedron. A regular

3In [3], the numbers of primary particle pairs with contact types "touching" and "none" in the experiment R, as evaluated
by the user T, were erroneously exchanged.

(a) Grown in (b) Lightly touching (c) None

Figure 5.10: Examples of contact classes. Reprinted from [3] with permission from Elsevier.
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R M3 M5 M10

Expert H M T all H M T all H M T all H M T all
grown-in 40 40 40 40 35 33 34 33 30 32 29 28 29 26 26 26
touching 6 7 5 5 40 43 41 40 53 50 53 46 34 35 35 32

none 5 4 6 4 15 14 15 14 31 32 32 27 21 23 23 21

Table 5.4: Number of primary particle pairs from experiments R, M3, M5, and M10 that were classified
as "grown-in", "lightly-touching" and "none" by three different experts, denoted by H, M and T. Also, the
number of pairs that were classified into the same class by all three experts, denoted by "all" [3]. 3

octahedron is a dual body of a cube, so that theoretical considerations regarding orientations between

pairs of cubes [131, 132, 147] can be applied to regular octahedra. Due to the asymmetry of the

primary particles, however, the identified shapes are not regular octahedra as their face distances from

the crystal middle point may differ. However, the directions of face normals for each primary particle

still represent the rotated versions of the directions of face normals for a regular octahedron. This was

ensured by the design of the procedure. Thus, mutual orientations can be determined using the same

approach as in case of regular octahedra and cubes.

An orientation between two bodies of the same size, centered at the same point, can be described

by the rotation operation necessary to rotate one of the bodies into full overlap with the other. This

operation can be expressed as a rotation by some angle Θ around some axis, or, alternatively, as a

rotation matrix R. In case of cubes, i = 24 different symmetry operations can be applied to the rotated

body, without changing the fact that the two bodies now overlap. This results in i = 24 different rotation

operations and a set of different angles of rotation Θi. The disorientation angle is the smallest possible

rotation angle under these symmetry operations [147], so that:

Θ = min
i

Θi. (5.6)

A considered set of primary particle pairs can then be described using the disorientation angle distri-

bution, representing the probability density distribution over disorientation angles.

In order to compute the disorientation angle, the two primary particles A and B are moved so that

their centers are in the coordinate system origin. Furthermore, each particle is given a unit face distance

in each direction so that it now represents a regular octahedron. The obtained primary particles can

be described by the matrices of face normals AA and AB. Note that the order of face normals in these

matrices must be such that they represent a rotated version of the matrix of model face normals Ar.

The matrix of face normals Ar defines the reference octahedron which is presented in Figure 5.11 along

with its dual cube. The 24 symmetry operations Si on this cube, and thus on the reference octahedron,

are [3, 131]:

• Rotation matrix equal to the identity matrix

• Rotations of 90◦, 180◦ and 270◦, around the coordinate system axes x, y and z, resulting in a total

of 9 rotation matrices
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• Rotations of 180◦ around axes parallel to the six face diagonals, resulting in a total of 6 rotation

matrices

• Rotations of 120◦ and 240◦ around axes parallel to the four cube diagonals, resulting in a total of

8 rotation matrices

The disorientation angle is the smallest angle that will rotate the octahedron A into coincidence with

B under the consideration of symmetry operations. A rotation matrix R1 that rotates A into the reference

position Ar is first determined using

R1 =
(
(AA,1:3)

−1 Ar,1:3

)T
. (5.7)

Here, the index 1 : 3 in the subscript denotes that the first three face normals, corresponding to first

three matrix rows, are used to find the rotation matrix. This rotation matrix is then applied to the two

octahedra, resulting in the following matrices of face normals:

ÃA = AART
1 (5.8)

and

ÃB = ABRT
1 , (5.9)

where ÃA now coincides with Ar. Therefore, the relative orientation between the two octahedra A and

B did not change. The octahedron ÃB can be obtained by rotating the reference octahedron Ar by R,

where:

R =
(
(Ar,1:3)

−1 ÃB,1:3

)T
. (5.10)

Now, symmetry operations can be applied to the octahedron given by ÃB. These symmetry operations

are given by rotation matrices S̃i. Note that they are not the same symmetry operations as Si defined

above, as the polytope defined by ÃB is not dual to the reference cube but to the reference cube rotated

by R. Thus, in order to obtain S̃i, the rotation is executed around one of the axes defined above,

rotated by R, while the angle of rotation is kept the same. Rotation angles corresponding to the rotation

Figure 5.11: Reference orientation of cube and regular octahedron. Reprinted from [3] with permission
from Elsevier.
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ÃBS̃T
i = ArRT S̃T

i can be computed by [147]

Θi = arccos
(

tr(S̃iR)−1
2

)
. (5.11)

The disorientation angle is the smallest of the angles Θi, as given by equation 5.6. Here tr is the trace

operator, summing the diagonal elements of a matrix. Examples of disorientation angles for pairs of

experimentally observed primary particles are given in Figure 5.12.

5.4.3 Disorientation Angle Distribution

Mackenzie and Thomson [147] computed the disorientation angle distribution (DAD) for cubes by a

Monte Carlo simulation, while it is assumed that each orientation of the cubes A and B is equally

probable. An analytical solution for the DAD, p(Θ), was derived a year later by both Mackenzie [131]

and Handscomb [132] and is given in the appendix B. According to their computations, the largest

possible disorientation angle is Θmax = arccos
(

1
4

(
2
√

2−1
))
≈ 62.8◦ [132], the probability density is

highest for the angle of Θ = 45◦ [131], whereas the mean value is 42.7◦ [131, 132].

This theoretical DAD can be compared to the experimentally obtained values. Here, the experi-

mental DAD was computed for grown-in primary particle pairs, lightly-touching pairs, as well as for a

combination of both. In all cases, only those pairs where the three experts agreed upon the type of

primary particle contact were used, as explained in section 5.4.1.

5.5 Validation by Simulation

The procedure for computing the disorientation angle using the segmentation and shape identification

methods defined in this chapter is validated on simulated crystals. First, it is necessary to ensure that

the shape identification procedure correctly identifies particle orientation. To this end, simulated single

crystals, cases S1-1 and S1-5 from Table 3.1 were used. In case of single crystals, disorientation

angles are measured between the simulated and the identified polytope, thus giving information on the

accuracy of orientation of the identified polytope. This furthermore represents a validation mechanism

(a) Θ = 2.4◦ (b) Θ = 15.3◦ (c) Θ = 49.7◦ (d) Θ = 52.3◦

Figure 5.12: Examples of disorientation angles for pairs of primary particles observed in the experiment
M10 [3].
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showing that disorientation angles close to zero are identified correctly. The results of case S1-1 are

shown in Figures 5.13. The error in face direction is computed by comparing the simulated face distance

to the mean of the identified ones, while the error in volume is computed as defined in chapter 3. There

is no visible difference to the results regarding symmetrical crystals, presented in Figure 3.9. The

effect is the same in case of the parameters corresponding to S1-5. This is a result of the fact that the

symmetrical shape identification simply averages the asymmetrical face distance and assigns it to all

faces, while the orientation is the same, so that only the volume may change, but the change is very

small.

In order to validate the procedure for measuring disorientation angles between pairs of primary par-

ticles, simulated aggregates, case A1-0 from Table 4.1, are used. Note, however, that an octahedral

potash alum model is used here, in contrast to the potash alum model containing 26 faces presented in

chapter 4. In case of crystal aggregates, two calculations are performed. First, the DAD is calculated

using simulated polytopes. Then, the DAD is measured on the polytopes identified in the simulated 3D

images. The results are shown in Figure 5.14. In case (a) of simulated polytopes, the disorientation

angle is measured only for polytopes that intersect. In case (b) of the shape identification in simulated

images, the results for both "grown-in" and "lightly-touching" primary particle pairs are presented to-

gether, where the classification is performed by the author. The blue line in this Figure represents the

analytical solution [131, 132]. In both cases, the obtained DAD agrees well with the theoretical pre-

diction. Therefore, it can be concluded that the algorithm is capable of estimating the DAD of a given

sample. Some differences in the height of the bar graphs in Figures 5.14a and 5.14b are caused by the

error in estimating the disorientation angle.

5.6 Results

Crystal samples obtained in each of the four experiments presented in Table 5.1, were processed as

described in section 5.3. The information regarding the number of processed crystals of different types

is given in Table 5.5. It can be seen that all samples contained a large number of single crystals.

This is especially prominent in case of M experiments, as expected from the preparation procedure.

According to Table 5.5, both single crystals and aggregates often contained attached small particles.

Note that the segmented parts of small particles may be incomplete, so that the complete particle is

larger than the used threshold of 200 µm. Furthermore, small particles may in certain cases represent

surface roughness and were marked as separate regions by the user in order to improve the likelihood

of successful shape identification.

Upon completing the shape identification, crystals were processed as described in section 5.4 in

order to obtain the DAD of "grown-in" and "lightly-touching" primary particle pairs, as well as of a com-

bination of both contact types. The results are presented in Figure 5.15. In each case, the graphs show

a deviation from the theoretical DAD [131, 132] presented as the blue line, which is expected under

the assumption that all primary particle orientations are equally likely. The most likely configuration

expected from these analytical considerations is 45◦, while low disorientation angles are improbable.
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(a) Disorientation angle

100 200 300 400 500 600 700
Diameter of a volume-equivalent sphere

0.04

0.06

0.08

0.1

0.12

0.14

0.16

V
ol

um
e 

er
ro

r

(b) Error in volume, qv,s
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Figure 5.13: Mean error measures for 100 simulated potash alum crystals of different sizes. Error
bars represent standard deviation. Simulation and fitting parameters correspond to case S1-1, given in
Table 3.1, except that no symmetry conditions are imposed, in accordance to the shape identification
procedure presented in this chapter.
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(a) Simulated polytopes
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(b) Polytopes identified from simulated images

Figure 5.14: DAD computed on the simulated polytopes (a) and DAD computed on the polytopes iden-
tified from the simulated 3D images (b). The blue line is the analytical solution for uniform orientations
of constituting primary particles [131, 132]. The bar graphs contain data on both grown-in and lightly-
touching primary particle pairs. Reprinted (adapted) from [3] with permission from Elsevier.
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However, in all cases, we observed a higher than expected occurrence of low disorientation angles,

indicating particle alignment. This is especially prominent in case of grown-in pairs. These primary

particle pairs could not have been created during sampling and preparation, as it is possible with the

lightly-touching pairs. They are thus considered as more reliable. Lightly-touching primary particle pairs

show a more even distribution of disorientation angles. However, an unexpectedly high number of small

disorientation angles was still observed. It is possible that some of these pairs were created during the

end phase of the experiments, so that not enough time remained for particles to fully grow into each

other. Furthermore, if the considered pairs are created during sampling, the orientations of primary

particles are not random as particles land on the filter paper under the influence of gravity. In these

cases the assumption of the theoretical distribution is not fulfilled, so that the experimentally measured

DAD would likely deviate from the theoretically expected one.

Experiment R resulted in a higher peak at low disorientation angles than the M experiments. This

could have been caused by the different preparation procedure. In case of experiment R, crystals were

sorted into single and aggregated particles, which required moving each particle three times with a

pair of tweezers. Therefore, particles are more likely to break during this procedure. Breakage is more

likely for loosely-bound particles and those where the bond strength is lower, which likely corresponds

to non-aligned particle pairs and may lead to less ambiguity regarding particle contact. Furthermore,

experiment R used less seed obtained from a different manufacturer. The two manufacturers reported

different impurities which might have an influence on the DAD, along with the potential differences in

the initial seed shape.

The results from the three M experiments show a similar DAD, so that an influence of the supersat-

uration profile on the DAD cannot be confirmed. It is possible that such an effect exists, but could not

be observed within the used small sample of crystals. As seen in Table 5.5, the small sample size is

related to the fact that many single crystals were observed in the experiment, as well as many small

particles where no shape identification was possible. Furthermore, a large part of the investigated sam-

ples consisted of less reliable lightly-touching primary particle pairs, as seen in Table 5.4. In order to

further investigate the influence of supersaturation, a larger sample should be collected. This can be

achieved by using more seed crystals and thus promoting agglomeration. Furthermore, experiments

should be conducted at constant supersaturation. Higher differences in supersaturation profiles should

be created, while paying attention to avoid nucleation, as small crystals cannot be resolved by the same

level of µCT resolution.

Figure 5.16 shows the crystal sizes in experiment M5, without segmentation into primary particles,

measured by both µCT and QICPIC. In case of µCT, crystal size represents the volume-equivalent

sphere diameter obtained using the number of voxels as a volume estimate. In case of QICPIC, crystal

size is the diameter of a sphere with an equivalent projected area and it is obtained using videos

towards the experiment end. Both methods exclude crystals smaller than 200 µm in the respective

diameter. QICPIC measurements were provided by Viktoria Wiedmeyer and were obtained using an

image processing program written by their group. It can be seen that, while the peak is at the similar

location for both methods, QICPIC images also contained large crystals that were not present in the
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(a) R, grown in, 40 pairs
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(b) R, touching, 5 pairs
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(c) R, both, 45 pairs
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(d) M10, grown in, 26 pairs
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(e) M10, touching, 32 pairs

0 20 40 60
disorientation angle / °

0

0.05

0.1

0.15

0.2

pr
ob

ab
ili

ty
 d

en
si

ty

sample
expected

(f) M10, both, 58 pairs
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(g) M5, grown in, 28 pairs
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(h) M5, touching, 46 pairs
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(i) M5, both, 74 pairs
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(j) M3, grown in, 33 pairs
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(k) M3, touching, 40 pairs
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(l) M3, both, 73 pairs

Figure 5.15: DAD for the four conducted experiments given in Table 5.1 is presented in orange. The
first column represents grown-in agglomerate pairs, the second are the pairs of lightly-touching crystals,
and the third column is the distribution obtained when considering grown-in agglomerates and lightly-
touching pairs together. The blue line represents the theoretically expected distribution [131, 132]. The
number of primary particle pairs included in the computation can be seen below the graphs. Reprinted
(adapted) from [3] with permission from Elsevier.
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Sample
/

Type

single
all

fitted

single
with
small

single
with

failed

agg.
all

fitted

agg.
with
small

agg.
with

failed

no fit
due to
small

no fit
due to
failed

R 15 6 1 31 5 3 0 0
M3 68 13 3 34 14 1 0 0
M5 75 20 7 29 24 3 0 1
M10 74 24 5 27 13 6 0 0

Table 5.5: Number of different crystal types in each sample. Columns 2-4 show single crystals, single
crystals with attached small particles, and single crystals with particles for which the fitting procedure
failed to produce a result. Columns 5-7 show aggregates for which a fit was possible for all primary par-
ticles, aggregates that also contained small particles, and aggregates that contained primary particles
for which no fit was possible. Columns 8 and 9 show particles for which no shape fit was possible be-
cause each particle was too small and the fitting procedure failed to produce a result. Note that "single"
refers to crystals for which the shape identification was possible for only one particle, whereas in case
of "aggregates" it was possible for multiple particles. Reprinted (adapted) from [3] with permission from
Elsevier.

µCT images. This can be attributed to the inner diameter of the pipette used for sampling, which

was between 1 mm and 2 mm, while the QICPIC cell had the dimensions of 5 mm x 5 mm x 2 mm.

Furthermore, crystals may not be randomly oriented towards the camera in such a cell. Also, crystals

that in reality do not touch may produce projection images which would appear to represent larger

aggregates. Future experiments should use a sampling procedure which ensures that larger crystal

aggregates are captured as well.

The here observed aligned primary particle pairs cannot be distinguished from aggregates pro-

duced by primary aggregation mechanisms such twinning and parallel growth. Potash alum is known

to exhibit parallel growth [31, p. 158-160]. We did not observe parallel growth structures of three or

more primary particles as depicted in literature. However, it is still possible that these mechanisms

are responsible for the structures involving two particles or three primary particles that are not stacked

on top of each other. The method presented here is not capable of differentiating between twinning

and secondary aggregation mechanisms, which is possible using TEM and the TEM diffraction pattern

studies, as shown by Collier et al. [34, 42]. However, the advantage of the here presented method is

a significantly simpler sample preparation and measurement. There is no need for slicing the sample

into thin sections or manually tilting the sample to obtain useful diffraction patterns. Furthermore, larger

samples are feasible by preparing several adhesive tape structures.

5.7 Conclusion

In conclusion, it was demonstrated that the presented method is capable of measuring the disorienta-

tion angle distribution of the chosen model compound. Aligned pairs of primary particles were observed

more often than expected from theoretical considerations which assume that all primary particle orien-

tations are equally likely. No dependence on supersaturation could be confirmed. Assuming that the
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Figure 5.16: Volume-equivalent sphere diameter measured using µCT images (upper row) and a pro-
jected area-equivalent sphere diameter measured using a QICPIC video towards the experiment end
(lower row), both for experiment M5. Number-based histograms are shown to the left, while volume-
based ones are shown to the right. Object areas in pixels, needed to compute the figures in the lower
row, were calculated by Viktoria Wiedmeyer and provided to the author.
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symmetry operations are known, the procedure can be applied to other compounds as well, yielding

information about the tendency of particles to form aligned aggregates and thus shedding light on the

aggregation mechanism. In case that no analytical DAD under the assumption of uniform primary

particle orientation is available in the literature for the considered crystalline compound, Monte Carlo

simulations can be conducted to provide an approximation.



Chapter 6

Classification of Imaged Objects

While 3D imaging techniques deliver the full shape information regarding each primary particle in a crys-

tal aggregate, they cannot be implemented on-line, require sampling of the crystals and are both time-

and cost-intensive. A simpler alternative are 2D imaging techniques that capture only one projection

image of the particle. These techniques can be implemented on-line and provide enough information to

determine the amount of aggregates in the product, which can be considered as the first step towards

characterizing the product in terms of aggregates.

In cooperation with the Laboratory of Plant and Process Design, TU Dortmund University, we in-

vestigated two methods for determining the agglomeration degree, using two chemical systems, L-

alanine/water and adipic acid/water. L-alanine forms equant bipyramidal particles when crystallized

from water whereas the crystals of adipic acid obtained in water are plate-like and more prone to ag-

glomeration than those of L-alanine [4]. In this context, the agglomeration degree is defined as the

amount of crystals that are aggregates. Both methods are based on automatic classification and are

presented in a joint publication with the Dortmund group [4]. The underlying classification procedure

considers three classes, namely single crystals, aggregates, and gas bubbles, which may occur when

dynamically imaging a particle suspension. Variables used for classification are the image descriptors

describing size and shape of the imaged objects. While the research group in Dortmund focused on

the discriminant factorial analysis (DFA), artificial neural networks (ANN) were investigated at the Tech-

nical University of Munich. Properties of the two methods were reviewed in section 2.3.4.3. DFA is a

parameter-based method, estimating the parameters of the underlying normal distribution of each vari-

able and using this information to obtain a linear classifier. ANN can be considered as non-parametric,

using an interconnected network of non-linear functions to provide a non-linear classifier. Both methods

use supervised learning, where a training set containing objects whose class was manually determined

by a human expert are provided as input to the algorithm. In the following, a detailed description of the

procedure and the used data is given.

The goals and hypotheses of this study were defined together with the collaborators at TU Dortmund

University [4]. The first goal is to compare DFA and ANN, where the hypothesis states that ANN would

perform better. The remaining two hypotheses which are of significance to this thesis state that a larger

119
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training set improves the classification accuracy, as well as that the obtained classifiers show poor

transferability to experiments performed under different conditions. The hypotheses were motivated

by the results of the previous study using DFA by the research group in Dortmund [68] performed on

images obtained by an off-line transmitted light scanner. In this thesis, results of the ANN classification

are presented along with the necessary data. Results results regarding the analysis with DFA can be

found in the joint publication [4].

6.1 Crystallization Experiments

The crystallization experiments were performed by the Dortmund research group. Information about

the conducted experiments which is presented here was provided by Stefan Heisel, a PhD candidate in

Dortmund [4]. Three batch cooling crystallization experiments using L-alanine, denoted as Ala1, Ala2

and Ala3, as well as three gassing crystallization experiments with adipic acid, denoted as AA1, AA2

and AA3, were conducted. The crystallization and post-processing parameters are provided in Table

6.1. Relevant aspects of the experimental procedure are presented below, while more details are given

elsewhere [4, 30, 74]. The experimental conditions have an influence on the agglomeration degree Ag,

as determined by a preliminary classifier developed by the Dortmund group and presented in Table 6.2.

Therefore, these experiments can be used to investigate classifier transferability, where a classifier is

transferable if it can be applied to data obtained under different experimental conditions.

In case of L-alanine, all three crystallization experiments were conducted using identical parame-

ters, while the obtained crystals were subjected to different downstream processing. In case of adipic

acid, stirring rate and gassing parameters during the crystallization procedure were varied, as shown in

Table 6.1. Upon reaching the final crystallization temperature, crystals of both chemical systems were

filtered and washed. L-alanine experiments further differ in the applied drying procedure, namely no

drying (Ala1), static drying in an oven (Ala2) and drying in a fluidized bed (Ala3). Adipic acid crystals

were not dried. Upon washing, and, if applicable, drying, crystals were re-suspended in ethanol, in

case of L-alanine, or saturated solution, in case of adipic acid, in order to enable dynamic imaging by

QICPIC. Similarly to the procedure described for the experiments conducted in Magdeburg, the solu-

tion was pumped through the cuvette where the images were taken with 25 frames/s. Note that the

experiments in Magdeburg were monitored on-line by periodically withdrawing the solution, imaging

the crystals by QICPIC and returning the solution to the crystallization vessel. Here, the crystals were

re-suspended at the end of the experiment and the solution was collected in a separate vessel after

imaging in order not to image the same particle twice [74]. On-line measurement or a direct measure-

ment at the end of the experiment was not possible due to the high suspension density of the obtained

slurry [74].

As gas bubbles can be observed in such on-line imaging procedures, an additional experiment

using only water was performed, where bubble formation was encouraged by allowing the air to be

sucked into the measurement setup by slightly opening an appropriate tube [4]. The corresponding

experiment is denoted as "Bubble".
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L-alanine/water Adipic acid/water
Parameter/Chemical system

Ala1 Ala2 Ala3 AA1 AA2 AA3

Saturation temperature [◦ C] 42.38 50
Solubility at saturation temperature [ g

kgwater ] 197.9 80.0
Start temperature [◦C] 60
End temperature [ ◦C] 10

Cooling rate [ K
min ] 0.45 0.3

Stirring rate [rpm] 300 158 158 262
Gas volume flow [L

h ] - 367 833 367
Supersaturation, where gassing is started [ g

kgwater ] - 17.6 2.4 17.6
Duration of gassing process [s] - 33
Temperature of wash liquid [◦C] 25

Number of wash cycles [-] 2 1
Amount of wash liquid [mL] 40 ?/80 ?? 70

Drying temperature [◦C] - 65 † 68 ‡ -
Drying duration - 1 d � 10 min � -

Table 6.1: Parameters of the L-alanine cooling crystallization and adipic acid gassing crystallization
experiments. † Static drying. ‡ Fluidized bed drying. ?Mixture of ethanol/water, volume fraction 4/1.
??Pure ethanol. � Rough estimation (process was performed until sample was completely dry). Data
provided by Stefan Heisel. Reprinted (adapted) from the supplementary material of [4] with permission
from Elsevier.

Chemical system Data set d50 [µm] d90−d10 [µm] Ag [-]

L-alanine/water Ala1 275 218 0.279
L-alanine/water Ala2 285 226 0.474
L-alanine/water Ala3 281 226 0.526

Adipic acid/water AA1 632 623 0.629
Adipic acid/water AA2 602 503 0.548
Adipic acid/water AA3 532 435 0.685

Table 6.2: Product characteristics of the examined samples of the chemical systems L-alanine/water
and adipic acid/water, calculated in Dortmund using image analysis and preliminary DFA classifiers not
presented here. Data provided by Stefan Heisel. Reprinted (adapted) from the supplementary material
of [4] with permission from Elsevier.
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6.2 Image Processing and Analysis

The obtained QICPIC videos were binarized by the QICPIC software and individual frames were ex-

ported using MATLAB. These images were processed in Dortmund by the software ImageJ (version

1.49b). Here, a hole-filling operation was performed and objects that touch the image boundary were

deleted, along with objects whose equivalent diameter was smaller than 80 µm [4]. Examples of objects

are given in Table 6.3.

19 image descriptors were then computed by the Dortmund research group, using either ImageJ or

a MATLAB program. Image descriptor values were provided to the author by Stefan Heisel. A list of

used image descriptors is presented in Table 6.4 [4]. Some of these descriptors were also used in a

previous study by the Dortmund group [68]. Image descriptors describe either particle size, roughness

or proportion, so that they can be divided into these three categories [4], as seen in the right column of

the table. An additional category corresponds to the last image descriptor that describes the percentage

of white projection area [4], here representing the background as this descriptor is computed on an

image where the foreground is black.

Image descriptors computed by MATLAB [4] require additional explanation as they are not standard

descriptors. Two of them are based on the concept of concavity points. Similarly as in the 3D case

discussed in Chapter 4, concavity points represent locations where primary particles are joined together

to form an aggregate. In 2D, concavity points can be detected by measuring the distance between the

points on the crystal boundary and the boundary of the image that represents the convex hull of the

particle, similarly as in [143] and [151]. This is illustrated in Figure 6.1a, where the boundary of the

white object, representing an aggregate, is given in red and the boundary of its convex hull in green.

In order to ensure that the distance is measured in the correct direction, both the crystal boundary and

the boundary of the convex hull are split into paired segments. These segments are bounded by crystal

boundary points that form the convex hull. One such pair of segments is marked by blue and yellow

dots in Figure 6.1b, while green points represents the boundaries of the segments. For each point i in a

boundary segment, the closest point in the corresponding segment of the convex hull boundary is found

Single crystals Agglomerates Bubbles

L-alanine

Adipic acid

Table 6.3: Examples for processed objects (after binarization), imaged by QICPIC. Reprinted (adapted)
from [4] with permission from Elsevier.
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Descriptor Symbol Description Unit Type

Area A Projection area after hole filling mm2

1

Perimeter P Length of the object boundary mm
Major L Major axis length of the best-fit ellipse mm
Minor B Minor axis length of the best-fit ellipse mm
Max Feret Fmax Maximal Feret diameter mm
Min Feret Fmin Minimal Feret diameter mm

Equiv. Diam.? Deq Diameter of a coextensive circle, Deq = 2 ·
√

A
π

mm
Circularity c Similarity with a circle, c = 4·π·A

P2 -

2

Solidity s Ratio of a projection area to convex hull area,
s = A

Aconvex
†

-

Convex box ratio? aLB Ratio between convex hull area and ellipse
axes, aLB = Aconvex

L·B †
-

NSwC? NSwC See ref. [68], NSwC = 2·A·P
Fmax·L·B −

4·A2

π·L3·B -
Num. conc. points?? nconc Number of concavity points, see Figure 6.1 -
Max depth?? dmax Scaled max. concavity depth, see eq. 6.1 -
Aspect ratio ar Aspect ratio, ar =

L
B -

3
Area ratio? fDeq Ratio of max. Feret diam. and equiv. diam.,

fDeq =
Fmax
Deq

-

Elongation? e Particle elongation, e = Fmax
Fmin

-
Roundness r Squared ratio of equiv. diam. and major ellipse

axis, r = (
Deq
L )2

-

Centroid var.?? dcent Centroid distance variation, see eq. 6.3 -
Area fraction a f Percentage of white projection area % 4

Table 6.4: All 19 image descriptors, their definitions and their type: 1. "Size"; 2. "Roughness"; 3.
"Proportion"; 4. Area fraction. † Aconvex is the convex hull area which is used for calculation but not used
as an additional image descriptor. ?Calculations based on values provided by ImageJ. ??Calculated
with MATLAB. Reprinted (adapted) from [4] with permission from Elsevier.
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and the distance di between these points is computed. This distance di represents the concavity depth

of the point i. A peak search over the smoothed distances results in concavity points, while a minimal

depth of two pixels is required. The curve with distances is smoothed using a moving average filter

of length 5. In Figure 6.1b, found concavity points are shown as blue circles, while the corresponding

nearest points at the convex hull boundary are shown as yellow rhomboids. Image descriptor "Num.

conc. points" is the number of so found concavity points for an object. Descriptor "Max Depth" is the

scaled maximal obtained concavity depth, defined as [4]

dmax =
max

i
di

Deq
, (6.1)

where di is the concavity depth, and Deq is the area-equivalent circle diameter, computed by MATLAB.

The third non-standard image descriptor is the centroid variation ("Centroid var.") and is similar to

the "inner distance descriptor" of Huo et al. [70]. For each boundary point with coordinates (xi,yi), a

distance to the object centroid, given by coordinates xC,i, yC,i of the arithmetic mean of all boundary

points, is computed:

dC,i =
√
(xi− xC,i)2 +(yi− yC,i)2. (6.2)

The centroid coordinates are obtained using the MATLAB function regionprops. The centroid variation

dcent is given by [4]:

dcent =
dC,std

d̄C
, (6.3)

where dC,std and d̄C are the standard deviation and mean of the values dC,i. The difference with respect

to the work of Huo et al. [70] is that the value dC,std is used directly, instead of the standard deviation of

dC,i− d̄C.

6.3 Training and Test Set Creation

Previous section described the image descriptor data provided by Stefan Heisel, TU Dortmund Univer-

sity. This data is used in the classification procedure, where the chosen method creates a classifier

based on a given manually labeled training set. The accuracy of the procedure is investigated on man-

ually labeled test sets. In order to create training and test sets, in each of the six crystal data sets, 600

objects were manually labeled as single crystals and 600 objects were labeled as aggregates. Addi-

tionally, 1200 bubbles in the bubble data set were manually labeled, as well as all observed bubbles in

the crystal data sets. Labeling was performed by the Dortmund research group.

In collaboration with the research group from Dortmund, two types of training ("TR") and test ("TE")

sets were created and are presented in Table 6.5 [4]. Sets of type "S" use only one crystal data set

for training. The same 600 single crystals and 600 aggregates are used in the corresponding test set,

along with the bubbles from the considered data set. Sets of type "C" combine data from all three

crystal data sets in each training set. The number of objects was varied in order to test its influence on
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(a) (b)

Figure 6.1: Finding concavity depth and concavity points. (a) Red line: object boundary. Green line:
boundary of the convex hull image. (b) Yellow dotted line: one segment of the convex hull boundary.
Large green circles: ends of the convex hull boundary segment. Light blue dots: one object boundary
segment. Large light blue circles: concavity points. Yellow rhomboids: corresponding nearest points
on the convex hull boundary. Orange dotted lines: correspondences between boundary points and the
nearest convex hull points; their length is the concavity depth. Reprinted from [4] with permission from
Elsevier.

the classification accuracy. In each crystal data set, first N objects of one type are placed in the training

set, where N is varied between 3 and 200. The corresponding test set contains the last 400 objects of

each type in order not to overlap with the training set.

First 600, or the first 3N bubbles from bubble data sets are used in both "S" and "C" training sets,

as not enough bubbles were present in the crystal data sets. Finally, a bubble test set containing only

the second 600 bubbles from the "Bubble" data set is defined. The created two types of training and

test sets enable checking whether classification accuracy improves upon combining data from different

experiments.

Classification accuracy was determined using the same approach as in the literature [68, 105, 106].

The performance index PIAll measures the amount of correctly classified objects [4, 68, 105, 106]:

PIAll =
Ncorrectlyclassifiedobjects

Nobjects
. (6.4)

Performance can also be measured with respect to one of the three considered classes. Thus, accuracy

with respect to bubbles can be defined using either bubbles from the crystal data sets or bubbles from

the bubble test set. The latter is defined as [4]:

PIBubbles−bubbledataset =
Ncorrectlyclassifiedbubbles frombubble test set

Nbubbles inbubble test set
. (6.5)

An average amount of correctly classified bubbles from crystal data sets is similarly defined and denoted
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Data set Ala1 Ala2 Ala3 Bubble
Name s a b s a b s a b b

C-Ala-N-TR N N 0 N N 0 N N 0 3N
C-Ala1-TE 400 400 22 0 0 0 0 0 0 0
C-Ala2-TE 0 0 0 400 400 7 0 0 0 0
C-Ala3-TE 0 0 0 0 0 0 400 400 3 0

S-Ala1-TR 600 600 0 0 0 0 0 0 0 600
S-Ala2-TR 0 0 0 600 600 0 0 0 0 600
S-Ala3-TR 0 0 0 0 0 0 600 600 0 600
S-Ala1-TE 600 600 22 0 0 0 0 0 0 0
S-Ala2-TE 0 0 0 600 600 7 0 0 0 0
S-Ala3-TE 0 0 0 0 0 0 600 600 3 0

Data set AA1 AA2 AA3 Bubble
C-AA-N-TR N N 0 N N 0 N N 0 3N
C-AA1-TE 400 400 0 0 0 0 0 0 0 0
C-AA2-TE 0 0 0 400 400 0 0 0 0 0
C-AA3-TE 0 0 0 0 0 0 400 400 10 0

S-AA1-TR 600 600 0 0 0 0 0 0 0 600
S-AA2-TR 0 0 0 600 600 0 0 0 0 600
S-AA3-TR 0 0 0 0 0 0 600 600 0 600
S-AA1-TE 600 600 0 0 0 0 0 0 0 0
S-AA2-TE 0 0 0 600 600 0 0 0 0 0
S-AA3-TE 0 0 0 0 0 0 600 600 10 0

Bubble-TE 0 0 0 0 0 0 0 0 0 600

Table 6.5: "Combined" ("C") and "separate" ("S") training ("TR") and test ("TE") set configurations for
L-alanine ("Ala") and adipic acid ("AA"). "s" refers to single crystals, "a" to aggregates, "b" refers to
bubbles, and N is the number of objects in the set (N varies between 3 and 200). Reprinted (adapted)
from [4] with permission from Elsevier.
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by PIBubbles−crystaldatasets.

The aim of the classification procedure is to measure the agglomeration degree, defined as [4, 68]:

Ag =
Naggregates

Naggregates +Nsinglecrystals
. (6.6)

Note that Ag = 0.5 for all training and test sets defined in this study, in order to avoid bias towards either

single crystals or aggregates. The error in the measurement of the agglomeration degree is defined as

[4, 68]:

δAg =
|Agcalculated−Agmanual|

Agmanual
, (6.7)

where Agmanual is the agglomeration degree obtained using manual classification, while Agcalculated is

obtained using the created automatic classifier. A classification result can be considered good if PI is

close to one and δAg close to zero.

6.4 Image Descriptor Ranking

In section 2.3.4.3, the problem of choosing a subset of image descriptors in order to avoid the peaking

phenomenon was introduced. Peaking phenomenon describes a decline in classification accuracy with

an increase in the number of used variables, in this case image descriptors. Therefore, as discussed

in the review chapter 2, a significant amount of effort can be invested in selecting a suitable variable

subset. The research group in Dortmund chose the statistical measure called proportional similarity to

quantify the quality of image descriptors [4]. Proportional similarity PS gives a value for the similarity

of two discrete distributions computed over the same variable. A detailed description can be found in

the work of Vegelius et al. [152]. In order to quantify the quality of an image descriptor, distributions

over that image descriptor are compared pairwise, using different data. This is briefly explained in the

following and given in more details in the joint publication [4]. Image descriptors must be scaled to a

range [0,1] beforehand. Values PSsa are obtained when comparing the distributions for single crystals

and crystal aggregates, with 600 objects per class. Values PScb are computed by comparing distribu-

tions for crystals, comprising both aggregates and single particles, to distributions of gas bubbles, so

that there are 1200 objects per class. Both PSsa and PScb are computed for every crystal data set and

averaged over different data sets for each chemical system, which is denoted by the bar over the PS

value. Finally, values PSsa and PScb are averaged to obtain the values PSmn, capturing both the single

crystal/aggregate and the crystal/bubble differences.

For each chemical system, a ranking of the image descriptors can be performed based on the given

PSsa, PScb and PSmn values. The rankings were provided by the research group from Dortmund and are

given in Table 6.6 [4]. Here, image descriptor with the rank 1 is supposed to have the highest influence

on the classification accuracy as the underlying distributions differ the most, while the descriptor with

rank 19 is thought to have the lowest influence. Classification is then performed by selecting the first

Ndesc image descriptors from the chosen ranking type, where Ndesc is varied to study the influence of the
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number of image descriptors on the fit quality.

6.5 ANN

A feedforward artificial neural network consists of interconnected nodes, divided into layers. The net-

work is trained by estimating the node-connecting weights and biases so that the desired output on

the training set is matched as closely as possible. Biases can be understood as weights that are only

connected to one node. Networks were created by the MATLAB function patternnet and trained by

the function train, where more details about these functions can be found in MATLAB documentation

[153]. Here, each network contained three layers: an input layer, a hidden layer and an output layer, as

depicted in Figure 6.2. The input layer contains as many neurons Ndesc as there are image descriptors

and receives the input data, where the input data is automatically scaled to the interval [−1,1]. The

hidden layer can contain a variable number of nodes, where 10 was finally chosen in this study, as it

will be discussed in section 6.6. Each node j in the hidden layer obtains as an input h j the weighted

sum of the scaled image descriptor values xi:

h j =

Ndesc∑
i=1

wIi, j xi +bH, j, (6.8)

where wIi, j are the weights connecting the i-th input to the j-th hidden neuron and bH, j are the bias

values. The hidden neuron j computes a non-linear "tansig" function of these inputs to produce the

output yh
j [153]:

yh
j = tansig(h j) =

2
1+ e−2h j

−1. (6.9)

Finally, the output neuron k obtains a weighted sum sk of values yh
j as input:

sk =

Nhidden∑
j=1

wH j,k y
h
j +bO,k, (6.10)

where wH j,k are the weights connecting the hidden layer neurons to the output neurons and bO,k are the

corresponding biases. There are three output neurons, one for each of the three considered classes.

The output neuron k computes a "softmax" function of the values sk [153][119, p. 236]:

yo
j = softmax(sk) =

esk

Noutput∑
k=1

esk

. (6.11)

This ensures that the sum of the output values is 1. These output values indicate the probability that

some object is in the class j, so that the object is finally classified into the class j with the highest yo
j .

The training process consists of finding the weight and bias values that minimize the mean cross-
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No. Ala-"sa" Ala-"cb" Ala-"mn" AA-"sa" AA-"cb" AA-"mn"

1 dmax fDeq c nconc fDeq c
2 nconc dcent dcent dmax dcent nconc

3 c r nconc Fmin r r
4 aLB c r P c Fmax

5 s e dmax B e dmax

6 NSwC a f fDeq NSwC ar e
7 dcent ar ar Fmax a f P
8 r Fmax e Deq Fmax L
9 ar L a f A L ar

10 fDeq P s s P Deq

11 P nconc aLB c A A
12 L Deq NSwC L Deq dcent

13 Fmin A Fmax aLB s fDeq

14 Fmax Fmin L e nconc Fmin

15 Deq B P r dmax s
16 e dmax Deq ar Fmin B
17 B s Fmin a f B NSwC
18 a f NSwC A dcent NSwC a f

19 A aLB B fDeq aLB aLB

Table 6.6: Different PS ranking orders for L-alanine (Ala) and adipic acid (AA) crystals, based on data
provided by Stefan Heisel [4]. "sa" and "cb" refer to the PSsa and PScb values obtained from discrimina-
tion of single crystals/agglomerates and crystals/bubbles, respectively. "mn" is the arithmetic mean of
"sa" and "cb". The ranking is from best to worst.
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Figure 6.2: Artificial neural network used in this study, containing one input, one hidden and one output
layer.
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entropy objective function [119, p. 235], computed for each object by [153]:

LE =
1

Noutput

Noutput∑
j=1

−t j · ln(yo
j). (6.12)

Here, t j are the target outputs of the training set, containing a value 1 for the output neuron j cor-

responding to the correct class, and values 0 otherwise. This optimization problem is solved by the

scaled conjugate gradient algorithm and uses the principle of backpropagation [121]. In order to pre-

vent over-fitting, MATLAB splits the obtained training set internally into a training, test, and validation

sets containing 70%, 15%, and 15% of the original training set size. The error obtained on the valida-

tion set is monitored so that the training process can be stopped before overfitting occurs [153][119,

p. 259-261], while the test set is used to evaluate the classification quality. The output of this test set is

ignored and the test sets defined in Table 6.5 are used to enable comparison with the classification by

DFA, performed in Dortmund. The output of the training process depends on the initial position in the

parameter space when performing parameter optimization. In order to introduce reproducibility, training

is repeated 10 times for different random number seeds.

6.6 Results

6.6.1 ANN Size

The used ANN structure with one hidden layer is validated by varying the number of neurons in the

hidden layer between 1 and 10 [4]. All 19 image descriptors and the training set "C-Ala-200-TR" are

chosen for the analysis. The computation is repeated 10 times using 10 different random number

seeds, ensuring different starting points for each of the 10 optimization procedures. The results are

shown in Figure 6.3. The error bars represent the standard deviation obtained when repeating the

training 10 times. The worst classification is obtained with one hidden neuron. A setup with one

hidden neuron results in a linear classifier. The large error bars suggests that even in this case, a

good classification accuracy can be obtained for some starting points. This is consistent with the

satisfactory results using DFA [4], which is also a linear classifier. It can be seen that the improvement

in accuracy stops when using more than three hidden neurons. Small error bars for more than three

hidden neurons further indicate that the result does not depend strongly on the chosen random starting

point. We conclude that no significant difference in accuracy is expected when using between four

and ten neurons. Ten is chosen for the further studies as no significant increase in computation cost

was observed. Furthermore, the results indicate that no improvement is to be expected when further

increasing the number of neurons in the hidden layer.

In the following, results for one chosen random number seed are shown for each considered training

scenario. However, if the ANN is to be used to evaluate newly obtained data sets, it is recommended

to choose a specific scenario and repeat the training several times. The ANN leading to the highest
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accuracy for the chosen training scenario should then be selected for evaluating newly obtained data

sets [4].

6.6.2 Combined Data Sets

The research group in Dortmund developed a criterion for finding the best ranking order and the best

number of image descriptors [4], explained in the following. Training sets C-Ala-200-TR an C-AA-

200-TR were chosen for the analysis as these were the largest training sets of type "C". For each

ranking order and each chemical system, Ndesc best-ranked descriptors were used, where Ndesc was

successively increased from 1 to 19. Classification was considered satisfactory if PIAll ≥ 0.9, where the

bar over the value indicates that the values were averaged over the considered test sets. The results,

obtained for one chosen random number seed, are presented in Figures 6.5 and 6.6 for L-alanine and

adipic acid, respectively. The finally chosen best number of image descriptors Ndesc is the smallest Ndesc

for which the following is fulfilled, namely PIAll(Ndesc)≥ 0.9 and

|PIAll(Ndesc +1)−PIAll(Ndesc)|
PIAll(Ndesc)

< 0.02, (6.13)

meaning that PIAll did not change for more than 2% when an additional image descriptor was intro-

duced. The chosen Ndesc is presented in Table 6.7, along with the values regarding DFA, as computed

by the Dortmund research group and presented in the joint publication [4].

It can be seen that PIAll ≥ 0.9 is achieved rather quickly for all image descriptor rankings, where

three to six image descriptors are needed to fulfill the final criterion. The best image descriptor ranking

is "sa", in case of L-alanine, and "mn", in case of adipic acid. In both cases, the first three image

descriptors lead to the desired results. Interestingly, these are the best ranking orders in case of DFA,

as well [4]. The worst image descriptor ranking is "cb", obtained by comparing crystals to bubbles.

Here, four or six image descriptors are needed. The best-ranked image descriptors in case of "cb"

give less information regarding whether a particle is an aggregate in comparison to image descriptor

DFA ANN

Ala
sa: 10 sa: 3
cb: 18 cb: 6
mn: 11 mn: 5

AA
sa: 13 sa: 4
cb: 10 cb: 4
mn: 8 mn: 3

Table 6.7: Lowest number of image descriptors Ndesc needed so that PIAll ≥ 0.9 and PIAll does not
change for more than 2 % upon adding an additional image descriptor. Results are presented for
different image descriptor ranking orders. Computations regarding DFA are provided by Stefan Heisel.
Ranking orders leading to the smallest number of needed descriptors are presented with bold letters.
Reprinted (adapted) from [4] with permission from Elsevier.
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Figure 6.3: Average classification accuracy obtained for different numbers of neurons in the hidden
layer. Error bars represent standard deviation obtained upon repeating the training process 10 times
for each number of hidden neurons. Classification was performed using the training set "C-Ala-200-TR"
and the corresponding test sets of type "C". All 19 image descriptors were employed. Reprinted from
[4] with permission from Elsevier.

rankings "sa" and "mn". For each ranking, the finally chosen Ndesc is significantly smaller in case of ANN

than when using DFA. This confirms the hypothesis that ANN outperforms DFA in terms of classification

accuracy.

Figure 6.5 shows a significantly lower accuracy in case of bubbles from crystal data sets in com-

parison to the accuracy for all objects or bubbles from the bubble test set. This can be explained by

observing the objects that were labeled as bubbles [4]. Bubbles from crystal data sets, exemplified in

Figure 6.4 often differ to the bubbles from the "Bubble" data set, shown in Table 6.3. Note that the

training set contained objects from the "Bubble" data set. In crystal data sets, bubbles are often oval or

may be attached to crystals, while those from the "Bubble" data set are typically round. Furthermore,

bubbles in the "Bubble" data set were typically completely black, as shown in Table 6.3, while bubbles

from the crystal data sets occasionally contained white parts in the middle, causing a different value in

the image descriptor "Area fraction" [4]. This issue regarding lower accuracy was not observed in case

of adipic acid, as seen in Figure 6.6. Adipic acid data sets contained a much smaller number of bub-

bles which, furthermore, did not show the discussed defects. In case of L-alanine, ranking order "sa",

(a) (b)

Figure 6.4: Bubbles from data set Ala1 that were correctly (a) and wrongly (b) classified using DFA, as
observed by the Dortmund research group [4]. Reprinted from [4] with permission from Elsevier.
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PIBubbles−crystaldatasets decreases for more than five image descriptors used. This can be understood as

evidence of overfitting and was also observed for all ranking orders in case of DFA [4].

There is some oscillation in the performance index values for an increasing number of image de-

scriptors. The values PIBubbles−bubble test set and PIBubbles−crystaldatasets, in case of ranking order "sa", drop

significantly when using two or three image descriptors, only to increase again for a larger number of

descriptors. This behavior could be understood as evidence that a combination of individually good

image descriptors may not necessarily provide an overall improvement in classification accuracy. How-

ever, it is important to note that the ranking order "sa" by design ensures a good classification of single

crystals/aggregates and not of bubbles.

Upon agreeing on the best ranking, presented in bold in Table 6.7, a study regarding the training

set size was performed for the varying number of image descriptors. This further enabled validating

the quality criterion for image descriptor rankings developed at TU Dortmund University and explained

above. Here, the number of objects N per class in the training set was varied. A training set is con-

sidered to be sufficiently large if δAg < 0.1 and PIAll ≥ 0.9 [4]. The results are presented in Figures

6.7 and 6.8, in case of L-alanine and adipic acid, respectively. Here, the gray bar indicates the chosen

best number of image descriptors, as provided in Table 6.7. It can be seen that the accuracy improves

with the increasing number of objects in the training set. In case of L-alanine, the criterion PIAll ≥ 0.9

and δAg < 0.1 is fulfilled for 90 objects in the training set already. However, as this is not fulfilled for

Ntotal = 180 objects, it is considered that at least 360 objects are needed to achieve this accuracy. No

significant improvement in accuracy is observed upon further increasing the training set size. Results

regarding adipic acid show that the criteria is fulfilled already for Ntotal = 180, as well as all larger training

sets. In case of only 27 objects in a training set, peaking phenomenon is evident in case of adipic acid

where PIAll decreased and ∆Ag increased with the increasing number of image descriptors. There-

fore, the hypothesis stating that a larger training set improves the classification accuracy is confirmed.

Similar results are obtained in case of DFA [4].

6.6.3 Separate Data Sets

The study using training sets of type "C", provided in the previous section, has shown that the con-

structed ANNs are capable of accurately classifying imaged objects even for a small number of image

descriptors and a small number of objects in the training set. However, these training sets combined

objects from data sets obtained under different experimental conditions. The aim of the following study

is to evaluate whether a classifier created using only one data set can be transferred to data obtained

under different experimental conditions. This is achieved using the training and test sets of type "S".

Image descriptor ranking and the number of image descriptors were chosen according to Table 6.7,

while the training sets contained 1800 objects, as given in Table 6.5. The results are shown in Figures

6.9 in case of L-alanine and Figure 6.10 in case of adipic acid. It can be seen that a satisfactory accu-

racy is achieved in each case. No trend showing improvement in accuracy when training and test set

data is derived from the same experiment is observed. Therefore, it is possible to transfer a classifier
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0 5 10 15 20
Number of image descriptors

0

0.2

0.4

0.6

0.8

1

__
   

 
P

I [
-]

All
Bubbles - crystal data set
Bubbles - waste data set

(c) "mn" ranking order

Figure 6.5: ANN results based on the training set C-Ala-200-TR using different numbers of image
descriptors. Image descriptors are ranked according to "sa" (a), "cb" (b) as well as "mn" (c). The error
bars represent the standard deviation of the values for different test sets. The target value PI = 0.9 is
visualized by a horizontal line. Reprinted from the supplementary material of [4] with permission from
Elsevier.
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Figure 6.6: ANN results based on the training set C-AA-200-TR using different numbers of image
descriptors. Image descriptors are ranked according to "sa" (a), "cb" (b) as well as "mn" (c). The error
bars represent the standard deviation of the values for different test sets. The target value PI = 0.9 is
visualized by a horizontal line. Reprinted from the supplementary material of [4] with permission from
Elsevier.

0 5 10 15 20
Number of image descriptors

0

0.2

0.4

0.6

0.8

1

__
   

   
 

P
I A

ll [-
]

  27   90  180  360 1800

(a)

0 5 10 15 20
Number of image descriptors

0

0.2

0.4

0.6

0.8

1

__
__

   
 

δ
 A

g 
[-

]

  27   90  180  360 1800

(b)

Figure 6.7: ANN results based on the training set C-Ala-N-TR using different training set sizes (Ntotal =
9N = 27, 90, 180, 360, 1800) and numbers of image descriptors; for better visualization, the image
descriptor subset selected ("sa" ranking order) is highlighted with a gray bar. The error bars represent
the standard deviation of the values for different test sets. The target values PIAll = 0.9 and δAg = 0.1
are visualized by solid horizontal lines. Reprinted from [4] with permission from Elsevier.
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Figure 6.8: ANN results based on the training set C-AA-n-TR using different training set sizes (Ntotal =
9N = 27, 90, 180, 360, 1800) and numbers of image descriptors; for better visualization, the image
descriptor subset selected ("mn" ranking order) is highlighted with a gray bar. The error bars represent
the standard deviation of the values for different test sets. The target values PIAll = 0.9 and δAg = 0.1
are visualized by solid horizontal lines. Reprinted from [4] with permission from Elsevier.

to data obtained under different experimental conditions, at least regarding the experimental conditions

used in this study. The same conclusion is reached using DFA [4]. This contradicts the last hypothesis

stated at the beginning of this chapter.

6.7 Conclusion

The results presented in the previous section show that it is possible to create an ANN classifier which

automatically sorts the QICPIC-imaged objects into single crystals, aggregates and bubbles based on

the computed set of image descriptors. The classification accuracy depends on the chosen image

descriptors and the method for ranking image descriptors developed in Dortmund was validated for

the ANN classifier. Using this ranking, it was shown that as few as three image descriptors can lead

to a satisfactory accuracy with PI ≥ 0.9 and δAg < 0.1. The classification accuracy improves with a

larger training set, where at least 360 objects are necessary to achieve this criterion. It was further

shown that the classifier created using data obtained under one set of experimental conditions can be

transferred to data obtained under a different set of experimental conditions. It should be noted that

both the training and test sets contained the same number of single crystals and aggregates, so that

different agglomeration degrees of these data sets did not influence the ability of the classifier to learn

a certain class. The varied experimental conditions concerned post-processing, in case of L-alanine,

and crystallization parameters, in case of adipic acid.

Similar findings were achieved in case of DFA, as discussed further in the joint publication [4] with

the Dortmund research group, while ANN classifiers outperform DFA. This is best illustrated by con-

sidering the number of image descriptors necessary to achieve PI ≥ 0.9 and δAg < 0.1. While only

three descriptors are needed in case of ANN, eight or ten descriptors must be used in case of DFA. It

is assumed that this behavior is caused by the fact that the data is not linearly separable. This cannot
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Figure 6.9: ANN results based on the "separate training and test sets" for L-alanine, denoted by "S"
in Table 6.5. First three image descriptors from the ranking order "sa" were selected for the analysis.
Reprinted from [4] with permission from Elsevier.
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Figure 6.10: ANN results based on the "separate training and test sets" for adipic acid, denoted by "S"
in Table 6.5. First three image descriptors from the ranking order "mn" were selected for the analysis.
Reprinted from [4] with permission from Elsevier.
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be verified by simple visualization, due to the high dimensionality of the problem, represented by the

number of image descriptors. Comparison of ANN and DFA [4] further yields the conclusion that the

behavior for an increasing training set size is similar, where DFA shows less oscillation in the measures

of classification accuracy, thus making the analysis easier. Furthermore, the comparison has shown

no significant increase in computational costs is obtained when using ANN [4]. DFA is advantageous

in terms of implementation as no parameters regarding the classifier structure are necessary, where in

case of ANN, the number of layers and neurons must be determined. However, default parameters sug-

gested by MATLAB, consisting of one hidden layer with 10 neurons, have already given a satisfactory

accuracy in the considered case. In case of ANN, the result also depends on the chosen optimiza-

tion starting point, typically affected by a random number seed, so that it is recommended to repeat

the computations several times to ensure no significant improvement can be achieved for a different

starting point.



Chapter 7

Conclusion and Outlook

This work presented methods for characterizing the shape of both single crystals and crystal aggre-

gates using 3D microcomputed tomography (µCT) imaging and dynamic 2D imaging by QICPIC. The

3D imaging method provides full 3D shape information and allows the identification of the full crystal

polytope, as presented in chapter 3 and published in [1]. The algorithm identifies crystal faces using

Hough transform and matches the faces to those in a crystal model. Finally, symmetry conditions may

be applied to yield the best possible fit regarding the assumed shape model. The method was validated

on a set of simulated and experimentally measured potash alum crystals. It was shown that the success

of the method depends on the shape of the crystals, as well as on the chosen algorithm parameters.

In chapter 4, the procedure was extended to primary particles in crystal aggregates. The proce-

dure was published in [2]. In a first step, the aggregate was segmented into primary particles. This

is based on a watershed transform, where the obtained watershed regions are concatenated under

consideration of concavity points. Shape identification of each primary particle followed, where the

method from chapter 3 was adapted to cases where parts of the particle are not visible. Finally, a set

of post-processing steps attempted to resolve issues regarding non-ideal cases. The validation study

using simulated crystal aggregates has shown that the method is capable of identifying the shape of

each primary particle with sufficient accuracy in 84% to 95% of aggregates. A further validation study

has shown that the scheme is capable of identifying the shape of primary particles in experimentally

obtained crystals in most cases, as well. Overall, the accuracy of the method decreases with increasing

particle overlap and an increasing number of primary particles, while issues can further be caused by

crystal asymmetry and lightly touching aggregates.

In chapter 5, this method was extended and used to measure the orientation between primary par-

ticles in potash alum aggregates. Samples of crystals were taken from four batch cooling crystallization

experiments, performed in cooperation with the group of Prof. Sundmacher, OVGU Magdeburg. Cool-

ing rate was varied in order to obtain different supersaturation profiles. Supersaturation was assumed

to have an influence on the orientation between primary particles as it influences the ability of the par-

ticles to grow together and form a stable aggregate upon collision in the reactor. Segmentation issues

were resolved by allowing the user to manipulate concavity points and region concatenation if not sat-
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isfied with the result of the automatic procedure. Furthermore, shape identification was adapted to the

asymmetrical crystals viewed in these experiments. The orientation between a pair of primary particles

was described by a disorientation angle. This is the smallest angle of rotation that leads to an overlap

between two particles of the same size and the same center. In order to exclude aggregates that could

have occurred during sampling and preparation, primary particle pairs were classified according to their

contact type into: "grown-in", "lightly-touching" and "none", the latter meaning that particles are not in

contact. Crystal samples were described by disorientation angle distributions and the results were com-

pared to a theoretical distribution from the literature [131, 132, 147], obtained assuming that primary

particles have a random orientation. According to this distribution, the amount of primary particles with

the same orientation should be very small. A larger than expected amount of similarly oriented primary

particles was observed both for "grown-in" and "lightly-touching" pairs, as well as for their combination,

where the behavior was most prominent for the "grown-in" pairs. However, no influence of the supersat-

uration profile could be confirmed. While it was shown that the developed method enables measuring

these distributions, more experiments using larger samples, better sampling and constant supersat-

uration should be conducted in order to further examine this phenomenon. The presented method

represents an alternative to the TEM diffraction pattern measurements [34, 42]. Its advantage lies in a

simpler preparation and measurement procedure. However, unlike the approach based on diffraction

patterns, it is not possible to differentiate between primary and secondary aggregation mechanisms us-

ing 3D imaging. The results of the conducted experiments, along with the methodology, were published

together with the Magdeburg group [3].

Chapters 3 to 5 have shown that detailed information regarding the shape of crystals can be ob-

tained using 3D imaging techniques. However, such techniques cannot be applied on-line and require

sampling of the crystals which may disturb the system, while the measurements may take several hours.

In certain cases, it is sufficient to characterize the crystalline product in terms of the agglomeration de-

gree, defined as the relative amount of single crystals and aggregates. Thus, 2D imaging techniques

can be applied as the detailed description of each primary particle is not necessary. These techniques

enable imaging a much larger amount of particles due to a simpler procedure and can be implemented

on-line or in-line. In order to evaluate the agglomeration degree, imaged objects must be classified

into single crystals, aggregates and, in case of dynamic image analysis in suspension, gas bubbles. In

cooperation with the group of Prof. Schembecker, TU Dortmund University, two methods for automatic

classification of imaged objects were investigated and presented in a joint publication [4]. While the

Dortmund group focused on the experiments and the linear classification using discriminant factorial

analysis (DFA), nonlinear classification using artificial neural networks (ANN) was investigated by our

group. Both methods use a training set containing objects manually classified by a human exert, where

a set of image descriptors was computed for each object. It was shown that ANN outperforms DFA

as fewer image descriptors are needed to achieve the target classification accuracy. Further param-

eters, including the training set size, number of neurons and the selection of image descriptors were

discussed.

This work has shown that it is possible to characterize the shape of both single crystals and crystal
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aggregates with different amount of detail depending on the choice of the imaging method. Both imag-

ing methods have advantages and disadvantages, so that an appropriate method should be chosen

according to the desired information which is to be obtained. The developed strategy for measuring the

agglomeration degree, based on 2D images, should further be extended towards varying crystal size

and different chemical systems, which is the focus of the Dortmund research group [4]. This can enable

a detailed study of the influence of different crystallization parameters on the agglomeration degree and

thus provide some of the information necessary in order to gain control over the PSD and purity of the

final product.

In contrast to the discussed 2D techniques, 3D imaging methods provide full geometric information

about both single crystals and primary particles that form crystal aggregates. In the future, these

techniques can be employed to gain a more fundamental understanding of the mechanisms occurring

in crystallization. Potential contributions of the techniques can be considered as twofold. First, they can

enable the experimental study of parameters that influence growth and aggregation mechanisms, such

as supersaturation, mixing and crystal size. As an example, apart from primary particle orientation, the

point of primary particle contact should be investigated and correlated with aggregate strength. This

could yield more information about the ability of an aggregate to survive the hydrodynamic forces in

a reactor and the subsequent downstream processing steps. The second potential benefit from the

3D imaging techniques lies in the validation of simulation studies. Simulations can be employed to

decouple effects which otherwise cannot be studied separately or to gain control over parameters that

are experimentally inaccessible. On single crystal scale, it has recently become feasible to simulate

crystal growth in face directions using multi-dimensional population balance models. Validation of such

simulations is difficult due to the challenges in measurement of the 3D crystal polytope and the face-

specific growth rates using 2D imaging techniques. Regarding simulation of crystal aggregates, a

Monte Carlo approach can be adopted in order to consider full geometric complexity of the particles

and thus correctly close the mass balance occurring under supersaturation-dependent growth [154].

In such simulations, a small subset of particles in a considered reactor setup are individually tracked

and allowed to grow and form geometrically realistic aggregates where primary particles overlap [154].

Such simulations are currently too computationally expensive to enable a useful study of the influencing

parameters and are thus still in their infancy. However, it is reasonable to expect the computational times

to improve in the future. The problem regarding the validation of such simulations could be resolved by

employing the here proposed 3D imaging methods that provide he necessary geometric information.

It must be noted, however, that the discussed experimental and validation studies regarding both

single crystals and aggregates would be based on off-line measurements of crystal samples and would

thus suffer from all sampling-related drawbacks regarding the ability to truly represent the underlying

crystal population and the disturbance of the system through impurities. Thus, the best information

would be obtained by further coupling the obtained results with 2D imaging techniques that enable

in-line or on-line observation of the particles.
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Appendix A

Projecting a Point onto a Polytope

In order to measure the quality of the shapes identified by image processing, points on the crystal sur-

face are projected to the identified polytope, as explained in [1] 1. Before performing the projections, an

H-representation of the polytope containing only the non-redundant face directions must be obtained.

This polytope is considered to be centered at the origin of the coordinate system. Thus, the points

pi must be moved so that they are in the coordinate system whose origin coincides with the polytope

center. The resulting points are denoted as p̂i = pi−xorig.

A point p̂i inside the polytope is projected onto the face with the normal a j towards which it has the

smallest distance d:

d = min
j∈[1,NH]

(h j−〈a j, p̂i〉), (A.1)

where h j are face distances of the NH polytope faces. The projection is then obtained as

p̂i,proj = p̂i−〈(p̂i−h ja j) ,a j〉 ·a j (A.2)

The point p̂i outside the polytope can be projected either on a face, an edge or a vertex. Each

face, edge and vertex defines an unbounded influence region in space containing points that should be

projected onto it. This is illustrated in Figure A.1, where the influence regions are presented in different

colors. Each influence region is defined by a set of normals bk to region faces, presented as arrows in

Figure A.1, as well as a set of corresponding points bp,k on region faces. This can be used to check

whether a point p̂i is in the region j. Region faces are parts of planes that divide the space in two and

a point is inside the region if it is on the correct side of each face. Thus, it is in the region if the following

is fulfilled for each pair (bk,bp,k):

〈bk,
(
p̂i−bp,k

)
〉> 0. (A.3)

A point is projected onto a face j if it is in the influence region of the face j, as shown in the left of

Figure A.1. This influence region is bounded by the face j as well as by planes that contain edges of

1Note that there are corrections with respect to the corresponding publication [1] regarding the projection onto an edge.
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Figure A.1: A point can be projected onto a face (left), edge (middle) or vertex (right), depending on
its location. The influence region of a face, edge and vertex is illustrated in blue, green and orange,
respectively. Influence regions are defined by their face normals, illustrated as arrows with different
colors, as well as corresponding points on each region face, illustrated with the same colors as the
normals. An example of a point being projected onto a face and edge is presented using white stars.
Any point in the vertex influence region is projected to that vertex, so that no examples are illustrated
for that case.

the face j and are perpendicular to j. The corresponding normals b therefore contain the face normal

a j, while the corresponding point bp is the arithmetic mean of the vertices of the face j. Normals b are

furthermore obtained using the cross product of a j and the edges of the face j. The corresponding

points bp are the middle points of edges of the face j. In the left part of Figure A.1, normals b and the

corresponding points bp are illustrated with the same color. The projection is computed using equation

A.2. An example regarding this type of projection is illustrated by white stars in the left of Figure A.1.

A point is projected onto the edge e j if it is in the influence region of this edge, as shown in the

middle part of Figure A.1. This edge is an intersection of faces k and l and connects vertices vm and

vn. The influence region contains two types of boundaries. Two normals b are normals to planes

which are perpendicular to the edge e j and contain its vertices. Thus, these normals b are defined

by the edge direction. The corresponding points bp are the vertices of the edge. These (b,bp) pairs

are illustrated in blue and orange in the middle part of Figure A.1. The other boundary type consists

of planes that are perpendicular to crystal faces k and l and contain the edge e j. Normals b to these

planes are obtained using a cross product of the edge and the corresponding crystal face normal. The

corresponding points bp represent the middle point of the edge and are the same for both faces. These

(b,bp) pairs are illustrated in black in the middle part of Figure A.1. Finally, the projection for a point p̂i

in the influence region of edge e j is obtained by

p̂i,proj = vm +
〈(p̂i−vm) ,e j〉∥∥e j

∥∥2 · e j. (A.4)

An example regarding projection to an edge is illustrated by white stars in the middle part of Figure A.1.

A point is projected onto the vertex v j if it is in the influence region of the vertex, as illustrated in the
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right of Figure A.1. The influence region consists of planes that contain the vertex v j and are normal to

the edges that intersect in the vertex v j. As already explained in case of projection onto an edge, the

normals b in such a case are defined by the edge direction. The corresponding points bp are identical

and equal to the vertex v j. Thus, the (b,bp) pairs are illustrated in black in the right of Figure A.1. A

point in the influence region of a vertex is always projected onto the vertex itself.

Note that the error measures in chapters 3, 4 and 5 are defined using surface points pi before

translation and their projections. The coordinates of the projection of such a point can be obtained from

p̂i,proj by appropriate translation. However, the distance between the original and the projected point

does not change upon translation, so that computing the distance between p̂i and p̂i,proj is sufficient for

computing error measures.



Appendix B

Disorientation Angle Distribution

The DAD p(Θ) for cubes, under the assumption that all orientations of each cube are equally probable,

was derived by Handscomb [132] and Mackenzie [131] and is presented below [132]. For an angle

Θ≤ 45◦:

p(Θ) =
2
15

(1− cos(Θ)).

For 45◦ < Θ≤ 60◦:

p(Θ) =
2
15

(1− cos(Θ))

(
3(
√

2−1)cot
(

1
2

Θ

)
−2
)
.

For 60◦ < Θ≤ 60.6◦:

p(Θ) =
2
15

({
3
(√

2−1
)
+

4√
3

}
sin(Θ)−6(1− cos(Θ)

)
.

For 60.6◦ < Θ≤Θmax, where Θmax = arccos
(

1
4

(
2
√

2−1
))
≈ 62.8◦:

p(Θ) =
2
15

[{
3
(√

2−1
)
+

4√
3

}
sin(Θ)−6(1− cos(Θ))

]

+
8

5π
(1− cos(Θ))

{
arccos

(
cot2

( 1
2 Θ
)

3+2
√

2− cot2
( 1

2 Θ
))

+
1
2

arccos

(
cot2

( 1
2 Θ
)
−2
√

2

3− cot2
( 1

2 Θ
) )}

− 8
5π

sin(Θ)

{
2
(√

2−1
)

arccos


(√

2−1
)

cot
(1

2 Θ
)

(
1−
(√

2−1
)2

cot2
(1

2 Θ
)) 1

2



+
1√
3

arccos


(√

(2)−1
)2

cot
( 1

2 Θ
)

(
3− cot2

(1
2 Θ
)) 1

2

}.
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