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Abstract: A minimax duality for a Gaussian mutual information expression was introduced by Yu.
An interesting observation is the relationship between cost constraints on the transmit covariances
and noise covariances in the dual problem via Lagrangian multipliers. We introduce a minimax
duality for general MIMO interference networks, where noise and transmit covariances are
optimized subject to linear conic constraints. We observe a fully symmetric relationship between the
solutions of both networks, where the roles of the optimization variables and Lagrangian multipliers
are inverted. The least favorable noise covariance itself provides a Lagrangian multiplier for the
linear conic constraint on the transmit covariance in the dual network, while the transmit covariance
provides a Lagrangian multiplier for the constraint on the interference plus noise covariance in
the dual network. The degrees of freedom available for optimization are constituted by linear
subspaces, where the orthogonal subspaces induce the constraints in the dual network. For the
proof of our duality we make use of the existing polite water-filling network duality and as a
by-product we are able to show that maximization problems in MIMO interference networks have
a zero-duality gap for a special formulation of the dual function. Our minimax duality unifies and
extends several results, including the original minimax duality and other known network dualities.
New results and applications are MIMO transmission strategies that manage and handle uncertainty
due to unknown inter-cell interference and information theoretic proofs concerning cooperation in
networks and optimality of proper signaling.
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1. Introduction

From the literature, we know network dualities of the following three types:
signal-to-interference-and-noise-ratio (SINR) dualities [1–4], mean-square-error (MSE) dualities [5–7],
and rate dualities [4,8–12]. The dualities show that the region of achievable SINRs, MSEs, and rates,
respectively, are the same for two networks. The most prominent and important application of
network dualities is the duality of the broadcast channel (BC) and the multiple access channel (MAC)
with interference (pre-)subtraction, where the dualities show that SINR, MSE, and achievable rate
region are identical for Gaussian signalling. The main benefit for converting the BC problem
(downlink) into the MAC (uplink) domain is that for the optimal decoding order of the users, the
problem formulation obtained for the uplink can be reformulated as a convex optimization problem.

The network dualities for the BC-MAC scenario with interference (pre-)subtraction and a
sum-power constraint have been extended along several directions. A more general BC-MAC
duality, which also holds for linear signal processing, i.e., without non-linear interference cancellation,
is introduced in [11]. In [12,13], dualities for general interference networks are considered.
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Furthermore, the solutions are characterized by polite-waterfilling, a result we use in the proof of
our duality. While most network dualities only hold for a sum-power constraint, there are some
network dualities that extended to more general constraints. Dualities for scenarios with multiple
linear constraints, or per antenna power constraint as a special case, can be found in [13–16].
In [10], a worst-case noise optimization is considered by a minimax duality and the connection
of network duality and Lagrangian duality is revealed. Worst-case noise optimization for MIMO
communications is also considered in [17,18]. Minimax expressions also appear when considering the
compound capacity of a MIMO channel [19,20], where the uncertainty is in the channel knowledge
instead of the noise.

SINR dualities and conic optimization, for example, semidefinite programming and second
order cone programming, are frequently used in the context of power minimization problems under
SINR constraints, or the related max-min SINR optimization [1,21,22]. Usually, transmit filters are
reparameterized as rank-one matrices and relaxation of the rank-one constraint reveals a convex
reformulation of the problem, where the SINR constraints become conic constraints. Note that
this is very different to the linear conic constraints we use. Our result generalizes the original
minimax duality by Yu [10] to a larger class of constraints and to interference networks, which contain
broadcast and multiple access channels (with and without non-linear interference cancellation) as
special cases.

Yu [10] introduced a minimax duality for the MIMO channel. For a channel matrix H, noise
symbol covariance R, and transmit symbol covariance Q, he considers a saddle point problem of the
mutual information W(R, Q) under linear constraints:

min
R�0

{
max
Q�0
{W(R, Q) : tr(QΩ?) ≤ λΩ} : tr(RΣ?) ≤ λΣ

}
(1)

The dual saddle point problem with flipped channel matrix HH, noise symbol covariance Ω, and
transmit symbol covariance Σ is given by

min
Ω�0

{
max
Σ�0
{W(Ω, Σ) : tr(ΣR?) ≤ λR} : tr(ΩQ?) ≤ λQ

}
(2)

where the constraint matrices Q?, R? are a solution of Equation (1) with λQ, λR as Lagrangian
multipliers. The other way round, the constraint matrices Σ?, Ω? of Equation (1) are solution for
Equation (2) with Lagrangian multipliers λΣ = λR, λΩ = λQ. By Lagrangian duality, Yu reveals
the relationship between the cost constraints in one problem, the optimization variables in the dual
problem, and the Lagrangian multipliers.

We consider a minimax optimization of a weighted sum of the mutual informations of the
links in a network, where the minimization is over the noise covariances and the maximization
is with respect to the transmit covariances. The feasible sets of the covariances are modeled by
linear conic constraints, i.e., the covariance matrix has to be smaller than a constraint matrix in
the sense of positive-semidefiniteness. The use of the linear conic constraints is not motivated by
a specific application, instead we will see that they are general enough to model a large class of
constraints, including sum-power constraints, per antenna power constraints, or shaping constraints.
Shaping constraints for the optimization of transmit covariances in MIMO systems are for example
considered in [23–27].

The contributions of this paper are as follows. We introduce the downlink and uplink minimax
problems under linear conic constraints and show that they not only exhibit an equal optimal
value, but share a fully symmetric system of optimality conditions with inverted roles of the
optimization variables and Lagrangian multipliers. The least favorable noise covariance itself
provides a Lagrangian multiplier for the linear conic constraint on the transmit covariance in the
dual network, while the transmit covariance provides a Lagrangian multiplier for the constraint on
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the interference plus noise covariance in the dual network (The idea to include the interference plus
noise covariances as an optimization variable, which then appears in the optimality conditions, was
independently developed in [28]. Unfortunately, the current version of [28] available at arXiv contains
several flaws, the most significant one being the following: The authors claim that max-min equals
min-max for problem Equations (7)–(9) and the solution is a saddle point. This is wrong—here is a
counter example: Consider a interference network with square channels that are full rank. For the
min-max version, the outer minimization over Ω results in Ωl = I ∀l which leads to Σl = 0 and a
shut-down of the network. This is certainly not the result of the max-min optimization). Further, we
reveal the connection of noise covariance constraint in one problem and transmit covariance in the
other via linear subspaces and their orthogonal complements. Unlike existing work, we directly
include scenarios where the noise covariance is non-invertible by using the rather general Lagrangian
Multiplier Rule to formulate the optimality conditions. Computing the full subdifferential of the utility
allows us to parameterize the complete solution set. The direct connection of downlink and uplink
solutions via the optimality conditions renders explicit transformation rules, as discussed in [9,11],
obsolete. The novel minimax duality unifies and extends several existing results, for example the least
favorable noise capacity [17,18] and optimization of the transmit covariances under a per antenna
power constraint [14,16].

Our work extends the traditional BC-MAC duality in two dimensions: from the BC-MAC
scenario to arbitrary interference networks and from simple linear power constraints to a more
general type of constraints. Many optimization problems in interference networks are proven to
be NP-hard, so our duality can not help to solve those efficiently. Usually, efficient solvability is tied
to the BC-MAC. By modelling this scenario as a specially structured interference network we are
able to state conditions for efficient solvability by the network structure and the constraints imposed.
This enables future use for other scenarios, for example relay channels where interference is removed
by other means or cooperative transmission of multiple transmitters (with individual constraints),
single frequency broadcast networks, or network MIMO. Concerning practical applications, there
are several applications and problems that are intractable without our duality for example
MIMO transmission strategies that manage and handle uncertainty by inter-cell interference.
Numerically computing the worst-case noise covariances was previously not possible for more
general networks. The worst-case noise approach can be used to handle the otherwise complicated
coupling of interference networks, for example in cognitive radio networks [29] or device-to-device
networks [30]. Optimizing the BC channel for shaping constraints was not possible without the
extension to the more general constraints by our duality. The shaping constraints reduce the
uncertainty in interference networks. In [31] the duality is extended to multiple linear constraints
and practical algorithms for numerical computation are presented in [32]. Combining the worst case
noise approach and the shaping constraints facilitates a very general cognitive radio concept that also
holds for receivers with multiple receive antennas and enables efficient solvability of the underlying
problems, see [29] for details. Further, our duality enables information theoretic proofs concerning
cooperation in networks [33] and optimality of proper signaling [26,34].

The paper is organized as follows. In Section 2, we discuss our system model and introduce
our idea of linear conic constraints. In Section 3, we present our main contribution: the minimax
duality with linear conic constraints is stated in Theorem 1. Applications of the minimax duality
are discussed in Section 4. In Section 4.1, we relate our work to existing results and show how they
can be reproduced by reformulating them for our minimax duality, and in Section 4.2 we discuss
novel results enabled by our minimax duality. In Section 5, we discuss conditions for existence of a
solution to the minimax problem, we state and investigate the optimality conditions, and prove the
minimax duality.

The following notations are used. Vectors are denoted by lower case bold and matrices by
upper case bold letters. Additionally, we use upper case bold letters for tuples of matrices, such as
A = (A1, . . . , AK). The operator ·H stands for Hermitian transpose, tr(·) is the trace of a matrix,
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and |·| is the determinant of a matrix. The order relationships � and � are understood in the
positive-semidefinite sense for matrices. For matrix tuples, A � B means Ak � Bk ∀k and A � B
means Ak � Bk ∀k. We use I for the identity matrix, or a tuple of identity matrices, and 0 for the all
zero matrix, or a tuple of all zero matrices. The dimensions of I and 0 are either clear form the context
or explicitly mentioned. We denote sets by upper case calligraphic letters. The linear subspace of
N × N Hermitian matrices is denoted as SN×N and the subspace of tuples of Hermitian matrices,
where the k−th element is Nk × Nk, is denoted as ∏k∈K SNk×Nk . For linear subspaces, the operator
⊕ denotes the direct sum. Given S, let T , T⊥ such that [T T⊥] unitary and full rank, THST � 0, and
T⊥HST⊥ = 0, then we say that T , T⊥ provide a full unitary basis for the fundamental subspaces of S.
By this we can parameterize S as

S =
[

T T⊥
][THST 0

0 0

][
T T⊥

]H

and the pseudo inverse, denoted as S+, is given by S+ = T(THST)−1TH.

2. System Model

We consider a MIMO interference network with a set of data links K, with K = |K|.
The transmitter of the link k has Nk antennas and the receiver has Mk receive antennas. The fixed
and flat-fading channel between the transmitter of link i and the receiver of link k is Hki ∈ CMk×Ni .
The zero-mean proper Gaussian input symbol of link k is yk ∈ CNk with covariance Qk = E

[
ykyH

k
]
,

and the output symbol is xk ∈ CMk . The input and output of a link k are related by

xk = Hkkyk + ∑
i∈K\k

Hkiyi + nk (3)

where nk ∈ CMk is additive noise that is zero mean circularly symmetric Gaussian with covariance
Rk = E

[
nknH

k
]
. Assuming all transmit and noise signals to be independent, the interference plus

noise covariance at the receiver of link k is

Sk = Rk + ∑
i∈K\k

HkiQi H
H
ki (4)

The dual network has the same set of links with roles of receiver and transmitter inverted and
flipped channels, meaning the channel between the uplink transmitter of link i and the uplink receiver
of link k is HH

ik ∈ CNk×Mi . We refer to the original problem as the downlink and the dual network
as the uplink. In the uplink, the zero-mean proper Gaussian input symbol of link k is ξk ∈ CMk with
covariance Σk = E

[
ξkξH

k

]
and the output symbol is ρk ∈ CNk . The input and output of a link k are

related by
ρk = HH

kkξk + ∑
i∈K\k

HH
ik ξi + ηk (5)

where ηk ∈ CNk is additive noise with covariance Ωk = E
[
ηkηH

k
]
. The interference plus noise

covariance at the receiver of link k is

Ψk = Ωk + ∑
i∈K\k

HH
ik Σi H ik (6)

Choosing the channel matrices accordingly, this model is general enough to cover various
forms of interference networks including interfering broadcast and multiple access channels as
well as mixtures thereof, see [12] for details. In Section 4.1.5, we discuss in more detail how
to model a broadcast channel and the corresponding multiple access channel with non-linear
interference cancellation.
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For the downlink, the mutual information between xk and yk, denoted as Ik(xk; yk), can be
expressed as a function of the noise covariance Rk and the transmit covariances Q = (Q1, . . . , QK).
For the uplink, the mutual information between ρk and ξk, denoted as Ik(ρk; ξk), can be expressed as a
function of the noise covariance Ωk and the transmit covariances Σ = (Σ1, . . . , ΣK). For the considered
network optimization problems the utilities are weighted sums of the mutual informations of
the links:

W(R, Q) = ∑
k∈K

wk Ik(xk; yk) (7)

W(Ω, Σ) = ∑
k∈K

wk Ik(ρk; ξk) (8)

where w1, . . . , wK are non-negative weights, which can be used to prioritize links or to explore
boundary points of the achievable rate region. We assume that interference is treated as
additional noise, which allows us to express the utility by the interference plus noise covariances
S = (S1, . . . , SK) and Ω = (Ω1, . . . , ΩK) defined by Equations (4) and (6):

W(R, Q) =
{

U(S, Q) : Sk = Rk + ∑
i∈K\k

HkiQi H
H
ki ∀k ∈ K

}
(9)

W(Ω, Σ) =
{

U(Ψ, Σ) : Ψk = Ωk + ∑
i∈K\k

HH
ik Σi H ik ∀k ∈ K

}
(10)

where in case the mutual information is finite

U(S, Q) = ∑
k∈K

wk log
∣∣∣I + S+

k HkkQk HH
kk

∣∣∣ (11)

U(Ψ, Σ) = ∑
k∈K

wk log
∣∣∣I + Ψ+

k HH
kkΣk Hkk

∣∣∣ (12)

The conditions for finite mutual information and a derivation of Equations (11) and (12) can be
found in Appendix A.

2.1. Linear Conic Constraints

The transmit and noise covariances are constrained by linear conic constraints:

Q � C + Z, Z ∈ Z (13)

R � B + Y⊥, Y⊥ ∈ Y⊥ (14)

Σ � B + Y , Y ∈ Y (15)

Ω � C + Z⊥, Z⊥ ∈ Z⊥ (16)

where B = (B1, . . . , BK) and C = (C1, . . . , CK) are fixed, and the degrees of freedom available for
optimization of Z = (Z1, . . . , ZK), Z⊥ = (Z⊥1 , . . . , Z⊥K ), Y = (Y1, . . . , YK), and Y⊥ = (Y⊥1 , . . . , Y⊥K )
are given by Z ,Z⊥,Y ,Y⊥, which are linear subspaces of tuples of appropriately sized Hermitian
matrices, in particular Z ⊆ ∏k∈K SNk×Nk , Z⊥ ⊆ ∏k∈K SNk×Nk , Y ⊆ ∏k∈K SMk×Mk , Y⊥ ⊆
∏k∈K SMk×Mk .

The prototype for the linear conic constraints Equations (13)–(16) is

W � A + X, X ∈ X (17)

The choices for X ∈ X that allow for positive semidefinite W are given by A + X � 0. If A and
X are matrices (instead of tuples of matrices), this is a linear matrix inequality (LMI), the intersection
of a affine subspace with the cone of positive semidefinite matrices. The constant nullspace of a LMI
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is the set of vectors λ for which λH(A + X)λ = 0 ∀X ∈ X where A + X � 0, see [35] for details.
In this work, we additionally regard tuples of matrices, where the positive semidefinite constraint
has to hold for every element of the tuple, while the subspace is defined for the tuple. Hence, we
define a set that is similar to the constant null-space, but is defined in the matrix tuple space instead
of the vector tuple space:

N (A,X ) =
{(

Λ1ΛH
1 , . . . , ΛKΛH

K

)
: ΛH

k (Ak + Xk)Λk = 0, ∀k, ∀X ∈ X where A + X � 0
}

(18)

Additionally, we define a set that contains all the directions where all elements of the tuple are
positive semidefinite:

P(X ) = {X ∈ X : X � 0} (19)

Lemma 1. Let A = {λA : λ ∈ R} and X⊥ the orthogonal complement of A⊕X with respect to the
appropriately sized Hermitian matrices, then P(X⊥) ⊆ N (A,X ).

Proof. See Appendix B.

Note that in general N (A,X ) 6⊆ P(X⊥) (Take the following example: A =

[
1 0
0 0

]
,X ={

λ

[
0 0
0 1

]
: λ ∈ R

}
,X⊥ =

{
λ

[
0 1
1 0

]
: λ ∈ R

}
where

[
0 1
1 0

]
∈ N (A,X ), but

[
0 1
1 0

]
/∈ P(X⊥) ={[

0 0
0 0

]}
). If A � 0 then N (A,X ) = P(X⊥) = {0}.

2.1.1. Relationship to Linear Constraints

There exist several network dualities, where the transmit covariances are constrained by one
or multiple linear constraints [13–16]. So how do the linear conic constraints relate to the linear
constraints? As known from semidefinite programming, a LMI can always be expressed in primal
form with a finite set of linear constraints and one positive-semidefinite constraint. In principle,
this can be done for Equation (17), but this does not result in linear constraints on the covariance.
The following Lemma states a condition under which Equation (17) can be replaced by multiple
linear constraints on W , which then can be handled by the existing dualities [13–16].

Lemma 2. Let A = {λA : λ ∈ R} and X⊥ be two subspaces such that A ⊕ X⊥ is the orthogonal
complement of X . If the set E =

{
E : E � 0, E ∈ A⊕X⊥

}
is polyhedral, then the linear conic

constraint W � A + X, X ∈ X , can be formulated by a finite number of linear constraints on W , i.e.,

∑
k∈K

tr((W k − Ak)Ee
k) ≤ 0 ∀e ∈ {1, . . . , E} (20)

where E1, . . . , EE are the extreme directions of E .

Proof. See Appendix C.

For the inverse direction: a single linear constraint can always be replaced by a linear conic
constraint, see for example Section 2.1.2. So multiple linear constraints can be transformed to
multiple conic constraints, a case which is not regarded in this work but suggested as an extension
a future work in Section 6. For special cases, such as in Section 2.1.2, multiple linear constraints
can be represented by a single conic constraint. Linear conic constraints allow to model a variety
of constraints on the covariances such as sum power constraints, per-antenna power constraints, or
shaping constraints. The constraints can be joint constraints on all links, groups of links, or individual
constraints per link. In the following, we present some examples how several relevant constraints can
be modeled by linear conic constraint.
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2.1.2. Examples

Network Sum-Power Constraint

Consider a constraint on the downlink transmit covariances that constrains the sum-power
output of the network by

∑
k∈K

tr(AkQk) ≤ P (21)

By Lemma 2, we identify the linear conic version of the constraint as

C =
P

∑k∈K tr(Ak Ak)
A,Z =

{
Z : ∑

k∈K
tr(AkZk) = 0

}
,Z⊥ = {0} (22)

Per Link Sum-Power Constraint

If the power per link is constrained individually, i.e.,

∑
k∈K

tr(Qk) ≤ Pk ∀k ∈ K (23)

then by Lemma 2 we identify the linear conic version of the constraint as

C =

(
P1

N1
I, . . . ,

PK
NK

I
)

(24)

Z = {Z : tr(Zk) = 0 ∀k ∈ K} (25)

Z⊥ =

{
Z⊥ : Z⊥ = (λ1 I, . . . , λK I), ∑

k∈K
Pkλk = 0

}
(26)

Shaping Constraint

A shaping constraint, that is Q � C, is already given in the form of a linear conic constraint
where, Z = {0} and Z⊥ =

{
Z⊥ : ∑k∈K tr(CkZk) = 0

}
. A shaping constraint cannot be formulated

by a finite number of linear constraints, as the set E is the cone of positive semidefinite matrices, or
the tuple version thereof, which is not polyhedral and has infinitely many extreme directions.

3. Minimax Duality with Linear Conic Constraints

Theorem 1. Given is a MIMO interference network (downlink) with data linksK and the dual network
(uplink) with the same set of data links but roles of receiver and transmitter inverted and flipped
channels. Consider minimax problems with a weighted-sum of the links’ mutual information as
utility and linear conic constraints on the transmit and noise covariance matrices:

CD = inf
R�0,Y⊥

{
sup

Q�0,Z
{W(R, Q) : Q � C + Z, Z ∈ Z} : R � B + Y⊥, Y⊥ ∈ Y⊥

}

CU = inf
Ω�0,Z⊥

{
sup

Σ�0,Y
{W(Σ, Ω) : Σ � B + Y , Y ∈ Y} : Ω � C + Z⊥, Z⊥ ∈ Z⊥

}

The subspaces that define the constraint sets are B = {λB : λ ∈ R},Y ,Y⊥ and C = {λC :
λ ∈ R},Z ,Z⊥, where ∑k∈K tr(BkBk) = ∑k∈K tr(CkCk). The subspace triples B,Y ,Y⊥ and C,Z ,Z⊥,
respectively, are mutually orthogonal and their direct sum is the space of all K-tuples ∏k∈K SMk×Mk

and ∏k∈K SNk×Nk , respectively. If

(C1) HkkΛk = 0 ∀k ∈ K, ∀Λ ∈ N (C,Z)
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(C2) HkkΛk = 0 ∀k ∈ K, ∀Λ ∈ N (C,Z⊥)
(C3) Λ′k Hkk = 0 ∀k ∈ K, ∀Λ′ ∈ N (B,Y)
(C4) Λ′k Hkk = 0 ∀k ∈ K, ∀Λ′ ∈ N (B,Y⊥),

both problems have a solution and it holds CD = CU.
Furthermore, there exists a solution of the downlink problem(

(Ř = B + Y̌⊥, Q̌ = C + Ž − Ň, Š), (Ω̌ = γ̌C + Ž⊥, Σ̌ = γ̌B + Y̌ − Ľ, Ψ̌, Ǩ)
)

that is connected to a solution for the uplink problem(
(Ω̂ = C + Ẑ⊥, Σ̂ = B + Ŷ − L̂, Ψ̂), (R̂ = γ̂B + Ŷ⊥, Q̂ = γ̂C + Ẑ− N̂, Ŝ, M̂)

)
by inverting the roles of the optimization variables and Lagrangian multipliers, that is(

Ř, Š, Q̌, Ž , Y̌⊥, Ň
)
= 1

γ

(
R̂, Ŝ, Q̂, Ẑ , Ŷ⊥, N̂

)
and(

Ω̌, Ψ̌, Σ̌, Y̌ , Ž⊥, Ľ
)
= γ

(
Ω̂, Ψ̂, Σ̂, Ŷ , Ẑ⊥, L̂

)
where γ = γ̌ = γ̂ (We introduce additional optimization variables Š and Ψ̂, which are defined by
Equations (4) and (6). The connection of Lagrangian multipliers to the constraints can be found in
Table 1).

Table 1. Uplink and Downlink Optimality Conditions.

Downlink Uplink
Lagrangian Constraint Lagrangian Constraint
multiplier multiplier
Σk Sk = Rk + ∑

i∈K\k
HkiQi H

H
ki ∀k (27) Qk Ψk = Ωk + ∑

i∈K\k
HH

ik Σi H ik ∀k (45)

Ω Q � αC + Z (28) R Σ � βB + Y (46)
νC + Z⊥ Z ∈ Z (29) σB + Y⊥ Y ∈ Y (47)
K Q � 0 (30) M Σ � 0 (48)
X R = αB + Y⊥ (31) W Ω = βC + Z⊥ (49)
µB + Y Y⊥ ∈ Y⊥ (32) τC + Z Z⊥ ∈ Z⊥ (50)
L R � 0 (33) N Ω � 0 (51)

Subsitutions and constraints on dual variables
Ω � 0, K � 0, L � 0 (34) R � 0, M � 0, N � 0 (52)
Z⊥ ∈ Z⊥, Y ∈ Y (35) Y⊥ ∈ Y⊥, Z ∈ Z (53)
Ψk = Ωk + ∑

i∈K\k
HH

ik Σi H ik ∀k (36) Sk = Rk + ∑
i∈K\k

HkiQi H
H
ki ∀k (54)

Complimentary slackness
tr(Ωk(Qk − αCk − Zk)) = 0 ∀k (37)

tr(KkQk) = 0 ∀k (38)

tr(LkRk) = 0 ∀k (39)

tr(Rk(Σk − βBk − Yk)) = 0 ∀k (55)

tr(MkΣk) = 0 ∀k (56)

tr(NkΩk) = 0 ∀k (57)
Stationarity

Ω = νC + Z⊥ (40)

X = µB + Y (41)

Σ = X − L (42)

Ψk = wk HH
kk(Sk + HkkQk HH

kk)
+Hkk + Kk∀k (43)

Σk ∈
{

Σk : Σk = −wk(Sk + HkkQk HH
kk)

++

+ wkS+
k + wkΣ∆

k , Σ∆
k ∈ E

∆
k

}
∀k (44)

R = σB + Y⊥ (58)

W = τC + Z (59)

Q = W − N (60)

Sk = wk Hkk(Ψk + HH
kkΣk Hkk)

+HH
kk + Mk∀k (61)

Qk ∈
{

Qk : Qk = −wk(Ψk + HH
kkΣk Hkk)

++

+ wkΨ+
k + wkQ∆

k , Q∆
k ∈ Q

∆
k

}
∀k (62)
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Remark 1. The Theorem holds for arbitrary channel matrix sizes and there are no assumptions on the
rank of the channel matrices. Whether the minimax problems have a solution does not solely depend
on the channel matrices, instead we need to jointly consider the constraints and channel matrices.
In general, this can not be done by analyzing individual links as the tuple subspaces can couple all
links of the network. The derivation of the joint conditions on channels and constraints for existence
of a solution (C1)–(C4) can be found in Section 5.1.

Remark 2. The mutual information of a link is independent of the noise covariances of the other links
and the utility is non-increasing in the noise covariance, thus we can always find a solution where the
noise covariance constraint holds with equality.

Remark 3. If the feasible set for the downlink covariances is given by{
R : ∑

k∈K
tr(BkRk) = P, R ∈ B ⊕ Y⊥

}
(63)

this is mathematically equivalent to{
R : R = B + Y⊥, Y⊥ ∈ Y⊥

}
(64)

if ∑k∈K tr(BkBk) = P. This formulation was used in work based on earlier versions of the duality, see
for example [36].

The Theorem requires ∑k∈K tr(BkBk) = ∑k∈K tr(CkCk), which is not always the case for the
problems considered in the following. By scaling of the channel matrices and optimization variables
we can artificially enforce the condition for the downlink. By reverting this scaling of the channel in
the uplink we obtain an asymmetric version of the minimax duality, which is formally stated by the
following lemma:

Lemma 3. Let b = ∑k∈K tr(BkBk) and c = ∑k∈K tr(CkCk), if p and n such that p
n = c

b then

inf
R�0,Y⊥

{
sup

Q�0,Z
{W(R, Q) : Q � C + Z, Z ∈ Z} : R � B + Y⊥, Y⊥ ∈ Y⊥

}
(65)

= inf
Ω�0,Z⊥

{
sup

Σ�0,Y
{W(Σ, Ω) : Σ � pB + Y , Y ∈ Y} : Ω � nC + Z⊥, Z⊥ ∈ Z⊥

}
(66)

Proof. See Appendix D.

4. Applications

We directly proceed with applications of the minimax duality and present the rather technical
proof in Section 5.

4.1. Relationship to Existing Work

4.1.1. Original Minimax Duality

As our result is an extension and generalization of the result in [10], we are able to reestablish the
original minimax duality as a special case. Specifically, we reproduce the proof of the Sato bound to
be tight for the sum-rate in the broadcast with non-linear interference presubtraction. The Sato upper
bound on the sum-capacity of the multi-user downlink is established by assuming full cooperation of
the receivers [37], which makes the scenario equivalent to the optimization of a point-to-point link,
where the minimization is with respect to the joint noise covariance, where the user noise covariances
are fixed blocks on the diagonal and the off-diagonal blocks can be freely chosen.
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The set of users is U , with U = |U |, where Mu is the number of receive antennas of user u.
The transmitter has N transmit antennas and M = ∑u∈U Mu the number of total receive antennas.
The channel of user u is Hu ∈ CN×Mu and the composite channel of the point-to-point channel
where all receivers cooperate is H = [HT

1 , . . . , HT
U ]

T ∈ CN×M. The receive symbol covariance in
the downlink, and therefore the transmit symbol covariance in the uplink, is block partitioned such
that block i, j is the covariance of the symbols received by user i and j and the k-th block on the
diagonal is the marginal covariance of user k. We assume the downlink noise to be the identity matrix
scaled by σ2 for every user. The appropriate model for subspaces B,Y ,Y⊥, which are subspaces of
SM×M, is B = σ2 I. Y⊥ is the subspace of Hermitian matrices that have all zero matrices as blocks
on the diagonal and allow for an arbitrary choice of the other blocks, which implies Y is the set of all
blockdiagonal matrices with trace equal to zero. Let the structure of ∗ and ∗⊥ be as follows

∗ =


∗1,1 0 . . . 0

0 ∗2,2
. . .

...
...

. . . . . . 0
0 . . . 0 ∗M,M

,∗⊥ =


0 ∗1,2 . . . ∗1,M

∗2,1 0
. . .

...
...

. . . . . . ∗M−1,M
∗M,1 . . . ∗M,M−1 0

 (67)

then

B =

σ2 I . . . 0
...

. . .
...

0 . . . σ2 I

,Y⊥ =
{

Y⊥ = ∗⊥
}

,Y = {Y : Y = ∗, tr(Y) = 0} (68)

According to Section 2.1.2, the linear conic version of the sum-power constraint on the downlink
transmit covariances is

C =
P
N

I,Z = {Z : tr(Z) = 0},Z⊥ = {0} (69)

where C,Z ,Z⊥ are subspaces of SN×N . The downlink problem is

min
R�0,∗⊥

{
max

Q�0,Z

{
W(R, Q) : Q � P

N
I + Z, tr(Z) = 0

}
: R � σ2 I + ∗⊥

}
(70)

With B � 0 and C � 0 conditions (C1)–(C4) hold true, and using the asymmetric minimax
duality by Lemma 3 the uplink problem is

min
Ω�0,Z⊥

{
max
Σ�0,Y

{
W(Ω, Σ) : Σ � pσ2 I + Y , Y ∈ Y

}
: Ω � n

P
N

I + Z⊥, Z⊥ ∈ Z⊥
}

(71)

=min
Ω�0

{
max
Σ�0,∗

{
W(Ω, Σ) : Σ � pσ2 I + ∗, tr(∗) = 0

}
: Ω � n

P
N

I
}

(72)

With b = tr(BB) = Mσ4, c = tr(CC) = P2

N , and c
b = P2

NMσ4 we can select p = P
σ2 M and n = σ2 N

P ,

as p
n = P2

NMσ2 = c
b , and we obtain

min
Ω�0

{
max
Σ�0,∗

{
W(Ω, Σ) : Σ � P

M
I + ∗, tr(∗) = 0

}
: Ω � σ2 I

}
(73)

With Z⊥ = {0}, Ω = σ2 I is a solution for the uplink noise, see Remark 2. For the constraint
on the uplink transmit covariance, we observe that B and all elements of Y are blockdiagonal. Thus,
Σ will be blockdiagonal, and the users do not cooperate in the uplink. Furthermore, Σ � P

M I +
∗, tr(∗) = 0 implies a sum-power constraint of P of the uplink transmit covariances. Let Σ1, . . . , ΣU
be the blocks on the blockdiagonal Σ, then the uplink problem is
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max
Σ�0

{
log
∣∣∣∣I + 1

σ2 HHΣH
∣∣∣∣ : tr(Σ) ≤ P, Σ is blockdiagonal

}
(74)

=max
Σ�0

{
log

∣∣∣∣∣I + 1
σ2 ∑

u∈U
HH

u Σu Hu

∣∣∣∣∣ : ∑
u∈U

tr(Σu) ≤ P

}
(75)

We can see that the value of the uplink problem is equal to the sum-capacity of a multiple access
channel with a sum-power constraint. It is well known that for the same sum-power constraint the
same sum-rate can be achieved in the broadcast channel [4,8,9], which proves the Sato bound to be
tight for the sum-rate.

4.1.2. Structure of the Worst Case Noise Covariance

In [9] it is shown that Equation (80) is a solution to the worst case downlink noise covariance
problem Equation (70) if R is non-singular. Further, it is conjectured that it is also a solution for the
singular case, but a proof is missing. By Lemma 4 we restate this result and provide an alternative
proof that also holds for the singular case. The uplink problem Equation (74) can be reformulated as
(For simplicity, but without loss of generality, we set σ2 = 1)

max
D,Σ�0

{
log|D| : D = I + HHΣH, tr(Σ) ≤ P, Σ is blockdiagonal

}
(76)

Let A, λ, F, and M be Lagrangian multipliers for the constraints D = I + HHΣH, tr(Σ) ≤ P, Σ

is blockdiagonal, and Σ � 0.

Lemma 4. Given a solution D′, Σ′ to the uplink problem with Lagrangian multipliers A′, λ′, the
remaining Lagrangian multipliers can be selected as

F ′ = H A′HH −

H1 A′HH
1 . . . 0

...
. . .

...
0 . . . HU A′HH

U

 (77)

M ′ =

λ′ I . . . 0
...

. . .
...

0 . . . λ′ I

−
H1 A′HH

1 . . . 0
...

. . .
...

0 . . . HU A′HH
U

 (78)

and a solution to the worst case downlink noise covariance problem Equation (70) is given by

R = I +
1
λ′

F ′ =
1
λ′

H A′HH +
1
λ′

M ′ (79)

=


I H1 A′HH

2
λ′ . . . H1 A′HH

U
λ′

H2 A′HH
1

λ′ I . . . H2 A′HH
U

λ′
...

...
. . .

...
HU A′HH

1
λ′

HU A′HH
2

λ′ . . . I

 (80)

Proof. See Appendix E.

4.1.3. Worst Case Noise Capacity

The capacity of a point-to-point link with channel H ∈ CM×N under a worst case noise
assumption is given by

max
Q�0

{
min
R�0

{
log
∣∣∣I + R+HQHH

∣∣∣ : tr(R) ≤ σ2
}

: tr(Q) ≤ P
}

(81)
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In [17], it is shown that this worst case noise capacity is equivalent to the capacity without
channel knowledge and white noise.

log
∣∣∣∣I + P

σ2 HHH
∣∣∣∣ (82)

While in [17] this is proven by matrix majorization theory, it can alternatively be reproduced
by the minimax duality. Computation of Equation (81) means to solve a convex-concave game with
individual convex constraint sets, for which max and min can be exchanged and we can instead use

min
R�0

{
max
Q�0

{
log
∣∣∣I + R+HQHH

∣∣∣ : tr(Q) ≤ P
}

: tr(R) ≤ σ2
}

(83)

The sum-power constraints are modelled according to Section 2.1.2:

B =
σ2

M
I,Y⊥ =

{
Y⊥ : tr(Y⊥) = 0

}
,Y = {0} (84)

and
C =

P
N

I,Z = {Z : tr(Z) = 0},Z⊥ = {0} (85)

With B � 0 and C � 0 conditions (C1)–(C4) hold true and using the asymmetric minimax duality
by Lemma 3 the uplink problem is

min
Ω�0

{
max
Σ�0

{
log
∣∣∣I + Ω+HHΣH

∣∣∣ : Σ � p
σ2

M
I
}

: Ω � n
P
N

I
}

(86)

With b = tr(BB) = σ4

M , c = tr(CC) = P2

N , and c
b = MP2

Nσ4 we can select p = MP
σ2 and n = Nσ2

P , as
p
n = MP2

Nσ4 = c
b , and we obtain

min
Ω�0

{
max
Σ�0

{
log
∣∣∣I + Ω+HHΣH

∣∣∣ : Σ � PI
}

: Ω � σ2 I
}

= log
∣∣∣∣I + P

σ2 HHH
∣∣∣∣ (87)

4.1.4. Network Duality under (Generalized) Sum-Power Constraints

Here we regard the special case, where the noise covariances are fixed and appear as a
generalized sum-power constraint in the dual network. Let

SD(R, Ω) = max
Q�0

{
W(R, Q) : ∑

k∈K
tr(ΩkQk) = P

}
(88)

and

SU(Ω, R) = max
Σ�0

{
W(Ω, Σ) : ∑

k∈K
tr(RkΣk) = P

}
(89)

where we assume R, Ω, and the channels such that the maxima exist. This scenario is for example
considered in [12], where by using an SINR duality it is proven that SD(R, Ω) = SU(Ω, R) and the
polite waterfilling result is established. In the following, we show how the network maximization
problems under generalized sum-power constraints, Equations (88) and (89), can be formulated
in our minimax framework. It can be verified that the conditions for existence of the maxima of
Equations (88) and (89) imply conditions (C1)–(C4). For the downlink, the absence of a minimization
over the noise covariance can be modelled, by selecting

B = R, Y⊥ = {0},Y =

{
Y : ∑

k∈K
tr(RkYk) = 0

}
(90)
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which means that R is a solution for the downlink noise covariances, see Remark 2. The conic version
of the generalized sum-power constraint is introduced in Section 2.1.2:

C =
P

∑k∈K tr(ΩkΩk)
Ω, Z =

{
Z : ∑

k∈K
tr(ΩkZk) = 0

}
,Z⊥ = {0} (91)

Using the asymmetric mini-max duality by Lemma 3, the uplink problem is

min
Ω′�0,Z⊥

{
max
Σ�0,Y

{
W(Σ, Ω′) : Σ � pR + Y , Y ∈ Y

}
: Ω′ � n

P
∑k∈K tr(ΩkΩk)

Ω + Z⊥, Z⊥ ∈ Z⊥
}

(92)

With b = ∑k∈K tr(BkBk) = ∑k∈K tr(RkRk), c = ∑k∈K tr(CkCk) = P2

∑k∈K tr(ΩkΩk)
, and c

b =

P2

∑k∈K tr(Rk Rk)∑k∈K tr(ΩkΩk)
we can select p = P

∑k∈K tr(Rk Rk)
and n = ∑k∈K tr(ΩkΩk)

P , as
p
n = P2

∑k∈K tr(Rk Rk)∑k∈K tr(ΩkΩk)
= c

b , and we obtain

min
Ω′�0,Z⊥

{
max
Σ�0,Y

{
W(Σ, Ω′) : Σ � P

∑k∈K tr(RkRk)
R + Y , Y ∈ Y

}
: Ω′ � Ω + Z⊥, Z⊥ ∈ Z⊥

}
(93)

which is the minimax version of Equation (89).

4.1.5. Duality of Broadcast and Multiple Access Channel

As in Section 4.1.1, the set of users is U , with U = |U |, and the channel of user u with Mu

receive antennas is Hu ∈ CN×Mu , where N is the number of antennas at the broadcast transmitter.
Broadcast and multiple access channels are modelled by considering one link per user and first setting
Hu1 = Hu2 = . . . = HuK = Hu ∀u ∈ K and Nk = N ∀k ∈ K. Second, if interference between
a user u and user v is removed by non-linear interference cancellation, we set Hvu = 0 instead.
This leads to the well known connection: given some ordering of the users, removing interference in
the downlink such that a user does not interfere with a user of higher order matches the uplink model
where interference is successively canceled in the inverse order. Thus, our minimax duality provides a
minimax BC-MAC duality for any type of constraints that can be modeled as linear conic constraints.
It holds for linear precoding as well as non-linear interference cancellation in an arbitrary order.

A particularly interesting case is where the decoding order of the uplink is matched to the
weights of the users. If the decoding order is equal to the ascending order of the weights and
additionally the noise covariance is the same for every user in the uplink, then the inner maximization
of the uplink problem can be reformulated as a convex optimization problem. This renders the
uplink problem a convex-concave game, for which efficient algorithms to find a solution are available.
The following lemma describes the structure of the linear conic constraints and the subspaces that
imply an equal uplink noise covariance for all users.

Lemma 5. Let the subspaces C ′ = {λC′ : λ ∈ R},Z ′,Z ′⊥ such that they are mutually orthogonal and
their direct sum is SN×N . If the constraint on the downlink transmit covariances is a constraint that
solely acts on the sum of the transmit covariances, i.e.,

∑
k∈K

Qk � C′ + Z′, Z′ ∈ Z ′ (94)

then the constraint on the uplink noise covariances is

Ωk � C′ + Z′⊥, Z′⊥ ∈ Z ′⊥ ∀k ∈ K (95)

which allows for a solution where all noise covariances are equal.
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Proof. See Appendix F.

Lemma 6. Consider a broadcast problem. If the encoding order is equal to the descending order of
the user weights, the constraint on the downlink transmit covariances solely acts on the sum of the
transmit covariances, and conditions (C1)–(C4) hold true, then every point that fulfills the optimality
conditions is a solution.

Proof. The uplink problem can be reformulated as convex-concave game, where every point that
fulfills the optimality conditions is a solution. By Lemma 11 every point that fulfills the downlink
optimality condition also fulfills the uplink optimality conditions and therefore is a solution.

Thus, for these scenarios we have the freedom to either solve for the uplink or downlink
optimality conditions, whatever is more convenient.

Lemma 7. Consider a broadcast problem. If the encoding order is equal to the descending order of
the user weights, the constraint on the downlink transmit covariances solely acts on the sum of the
transmit covariances, and conditions (C1)–(C4) hold true, then

min
R�0,Y⊥

{
max

Q�0,Z′

{
W(R, Q) : ∑

k∈K
Qk � C′ + Z′, Z′ ∈ Z ′

}
: R � B + Y⊥, Y⊥ ∈ Y⊥

}
(96)

= max
Q�0,Z′

{
min

R�0,Y⊥

{
W(R, Q) : R � B + Y⊥, Y⊥ ∈ Y⊥

}
: ∑

k∈K
Qk � C′ + Z′, Z′ ∈ Z ′

}
(97)

Proof. By Lemma 6 every point that fulfills the optimality conditions of Equation (96) is a solution.
The optimality conditions are the same for Equations (96) and (97) and therefore both problems have
an equal optimal value.

4.2. Novel Results

4.2.1. Interference Robust Multi-User MIMO

Our multi-user minimax duality enables new results concerning robustness to interference in
MIMO networks, where uncertainty in the spatial signature of interfering signals is a major source of
performance degradation. In the companion work [36], two possible techniques to provide robustness
for interfering broadcast channels are discussed. Both decouple the optimization of the network
into individual problems per basestation, one by considering the interference of the other cells by
a worst-case approximation and the other method enforces fixed sum-transmit covariances at each
transmitter, which removes the uncertainty in the interference.

For the worst-case approximation, the minimization of the noise plus other-cell interference
covariance in the downlink is constrained by a noise power constraint for every user individually,
which translates to scaled identity matrices as transmit covariances in the uplink, see Section 2.1.2.
The sum-power constraint on the downlink transmit covariances leads to fixed uplink noise
covariances, see Section 2.1.2. Thus, the uplink problem is a maximization of the scaling coefficients
of the uplink transmit covariances under a constraint on the sum of the coefficients. For details
see Appendix G. This result provides a generalization of the worst-case noise capacity from
point-to-point channels [17] or sum-rate in the broadcast channel [18] to the complete capacity region
of the MIMO broadcast channel.

The second approach constrains the sum of the downlink transmit covariances by a shaping
constraint, which can be fulfilled with equality for some solution (If the shaping constraint is fulfilled
with equality depends on the number of receive antennas and the rank of the channels. Equality can
be artificially enforced by adding a virtual user whose interference to the other users is canceled by
non-linear interference pre-subtraction. Whether the gain by increased robustness outweighs the pain
by additional interference to the other cells depends on the scenario). Assuming the channels to be



Information 2016, 7, 19 15 of 42

static (for some time period) the constant transmit covariances lead to a constant inter-cell interference
covariance at the users, which removes the uncertainty. The fixed noise covariances in the downlink
translate to a sum power constraint on the uplink transmit covariances. The shaping constraint on
the sum of the transmit covariances leads to equal uplink noise covariances for all users in the uplink,
where the minimization is under a noise power constraint, see Section 4.1.5.

Both approaches can be modelled by using our minimax duality, see [36] for details. As for both
approaches the constraints on the downlink transmit covariance are constraints that act solely on
the sum of the transmit covariance, i. e. a sum-power constraint and a sum shaping constraint, the
uplink problem has a convex-concave game reformulation and can be solved efficiently for non-linear
interference (pre-)subtraction.

4.2.2. Information Theoretic Proofs

Cooperation in Wireless Networks

The connection of uplink and downlink via orthogonal subspaces allows to model cooperation
in wireless networks, as for example the cooperation of the receivers to compute the Sato bound.
Reconsider the result of Section 4.1.1: By letting the receivers cooperate, the correlations among
the noise symbols of different users are included into the optimization and can be freely chosen
by allowing all degrees of freedom on the off-diagonal blocks of the joint noise covariance, which
induces a linear subspace. As a result, the joint uplink covariances are in the orthogonal subspace,
which results in a block-diagonal matrix and thus no cooperation of the transmitters. Without this
cooperation, the uplink is equivalent to a multiple access channel and by the BC-MAC duality
translates to a broadcast channel without cooperation. Thus, whenever the additional degrees of
freedom introduced by cooperation can be modeled as a linear subspace, we can use the minimax
duality to transfer the problem into the uplink, which then might reveal whether cooperation
is beneficial. An example can be found in [33], where carrier-cooperation is modelled in our
minimax duality.

Optimality of Proper Signaling

Results from information theory show that improper signals are beneficial for some
communication scenarios. Recent results use our minimax duality to proof the optimality of proper
signaling for the MIMO broadcast channel under a shaping constraint [26] and for the MIMO relay
channel with partial decode-and-forward [34]. A key ingredient for the proof is the observation that in
a composite real representation a covariance matrix can be partitioned in a power shaping component
and an impropriety component, such that the components are elements of linear subspaces that are
orthogonal complements. Using such a formulation in our minimax duality, the problem can be
transfered to an uplink problem, where the worst case noise is proper. For the considered scenarios, it
can be shown that there exist solutions for the uplink with proper transmit symbols. The translation
back into a downlink solution preserves this property.

5. Proof of the Theorem

5.1. Conditions for Existence of a Solution

To derive conditions (C1)–(C4), we use the generalization of the constant nullspace Equation (18),
and the positive semidefinite directions of a subspace Equation (19). For the downlink, the following
conditions ensure that those directions where noise or transmit covariance can become arbitrarily
large have no influence on the utility
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HkkΛk = 0 ∀k ∈ K, ∀Λ ∈ P(Z) (98)

Λk Hkk = 0 ∀k ∈ K, ∀Λ ∈ P(Y⊥) (99)

The constraints on the transmit covariance can be used to prohibit certain spatial directions of
the transmit signal, resulting in a non-trivial constant nullspace N (C,Z) 6= {0}. By a projection of
the channel matrix we can artificially enforce

HkkΛk = 0 ∀k ∈ K, ∀Λ ∈ N (C,Z) (100)

without changing the solutions. By imposing this condition we are able to formulate the conditions
for the inner optimization to have a finite value as a condition on the channels and independent of
the constraints on the transmit covariance:

Λk Hkk = 0 ∀k ∈ K, ∀Λ ∈ N (B,Y⊥) (101)

Assume the condition does not hold, then there exists a Λ ∈ N (B,Y⊥) with Λk = λkλH
k ∀k

and λH
k′Hk′k′ 6= 0 for some k′. Condition Equation (100) implies that for any λk′ where λH

k′Hkk 6= 0
there exists a feasible Q′ where λH

k′Hk′k′Q
′
k′H

H
k′k′λk′ > 0. The inequality of the transmit covariance

constraint allows us to remove any interference to k′ by setting all other transmit covariances to zero
and we have Sk′ = Rk′ . As λH

k′Rkλk′ = 0 for all feasible Rk′ we can use λH
k′ as a receive filter to obtain

a noise free communication channel, and the inner optimization does not have a finite value. For the
uplink, the equivalent conditions are

Λk Hkk = 0 ∀k ∈ K, ∀Λ ∈ P(Y) (102)

HkkΛk = 0 ∀k ∈ K, ∀Λ ∈ P(Z⊥) (103)

Λk Hkk = 0 ∀k ∈ K, ∀Λ ∈ N (B,Y) (104)

HkkΛk = 0 ∀k ∈ K, ∀Λ ∈ N (C,Z⊥) (105)

Combining the conditions for downlink Equations (98)–(101) with the conditions for the uplink
Equations (102)–(105) we can see that by Lemma 1 the conditions Equations (98), (99), (102) and (103)
are superfluous. The remaining are conditions (C1)–(C4) stated in the Theorem. For B � 0 and C � 0
we have P(Y) = N (B,Y) = {0} and P(Z⊥) = N (C,Z⊥) = {0} and the conditions (C1)–(C4) hold
true. Throughout the paper we assume (C1)–(C4) to hold true.

5.2. Properties of the Solutions – Optimality Conditions

Before we present the proof of the Theorem 1 in Section 5.4, we investigate some properties of
the solutions and necessary optimality conditions of the minimax problems. A good candidate for
optimality conditions are the KKT conditions, but as the utility fails to be differentiable everywhere
we use the more general Lagrange Multiplier Rule, see for example [38, Th. 6.1.1]. The conditions are
necessary, but not sufficient, for optimality.

By Remark 2, there is always a solution for the noise covariances where the linear conic constraint
holds with equality. This allows us to actively enforce equality, which may reduce the set of solutions
but does not affect the optimal value. For the proof, we will introduce N � 0 and L � 0 as slack
variables for the constraints Q � C + Z and Σ � B+Y , such that N = C + Z−Q and L = B+Y −Σ.
Additionally, we will use scaled versions of the optimization problems, and we explicitly include the
interference plus noise covariances into the optimization:
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C̃D(α) = min
R�0

Y⊥∈Y⊥

max
S

Q�0
Z∈Z

U(S, Q) : Sk = Rk + ∑
i∈K\k

HkiQi H
H
ki ∀k, Q � αC + Z

 : R = αB + Y⊥

 (106)

C̃U(β) = min
Ω�0

Z⊥∈Z⊥

max
Ψ

Σ�0
Y∈Y

U(Ψ, Σ) : Ψk = Ωk + ∑
i∈K\k

HH
ik Σi H ik ∀k, Σ � βB + Y

 : Ω = βC + Z⊥

 (107)

Apart from the obvious equalities CD = C̃D(α)

∣∣∣∣
α=1

and CU = C̃U(β)

∣∣∣∣
β=1

, the relationship

between the original problem and the scaled problem is expressed by the following lemma:

Lemma 8.

(a) Given α > 0 and a point which fulfills the optimality conditions for C̃D(α), a point with
equal utility, which fulfills the optimality conditions for α = 1, can be found by scaling the
optimization variables by 1

α and the Lagrangian multipliers by α.
(b) Given β > 0 and a point which fulfills the optimality conditions for C̃U(β), a point with

equal utility, which fulfills the optimality conditions for β = 1, can be found by scaling the
optimization variables by 1

β and the Lagrangian multipliers by β.

Proof. We introduce Lagrangian multipliers as shown in Table 1. The Lagrangian multiplier for
a subspace constraint is element of the orthogonal complement of the subspace. Therefore, the
Lagrangian multiplier for Z ∈ Z is element of C ⊕Z⊥, which we parameterize by νC + Z⊥, Z⊥ ∈ Z⊥
in order to explicitly highlight the component in the direction of C. The same explanation holds for
the Lagrangian multiplier µB + Y , Y ∈ Z⊥ for the constraint Y ∈ Y⊥. The Lagrangian function for
C̃D(α) can be written as

LD = ∑
k∈K

wk log
∣∣∣I + S+

k HkkQk HH
kk

∣∣∣+ ∑
k∈K

tr
(

Σk(Sk − Rk −∑
i∈K\k

HkiQi H
H
ki)
)
−

− ∑
k∈K

tr(Ωk(Qk − αCk − Zk))− ∑
k∈K

tr((νCk + Z⊥k )Zk) + ∑
k∈K

tr(KkQk)+

+ ∑
k∈K

tr(Xk(Rk − αBk − Y⊥k )) + ∑
k∈K

tr((µBk + Yk)Y
⊥
k )− ∑

k∈K
tr(LkRk) (108)

where the signs are selected such that Ω, K, L are positive semi-definite. As

tr
(

Σk HkiQi H
H
ki

)
= tr

(
HH

ki Σk HkiQi

)
(109)

and by introducing the auxiliary variable Ψ, where

Ψk = Ωk + ∑
i∈K\k

HH
ik Σi H ik, ∀k ∈ K (110)

the Lagrangian function can be written as

LD = ∑
k∈K

wk log
∣∣∣I + S+

k HkkQk HH
kk

∣∣∣+
+ ∑

k∈K
tr(ΣkSk) + ∑

k∈K
tr((Kk −Ψk)Qk)+

+ ∑
k∈K

tr
((

Ωk − νCk − Z⊥k
)

Zk

)
− ∑

k∈K
tr
(
(Xk − µBk − Yk)Y

⊥
k

)
− ∑

k∈K
tr((Σk + Lk − Xk)Rk)+

+ ∑
k∈K

tr(ΩkαCk)− ∑
k∈K

tr(XkαBk)

(111)
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The optimality conditions for C̃D(α) are shown in Table 1. Equations (27)–(33) are the constraints
on the optimization variables, Equations (34) and (35) are the properties of the Lagrangian multipliers
due to the chosen parameterization, Equation (36) is the substitution introduced by Equation (110),
Equations (37)–(39) are the complimentary slackness conditions for the inequality constraints, and
Equations (40)–(44) are the stationarity conditions. The Lagrangian function is differentiable with
respect to Z, Y⊥, R, Q, which in this order gives us Equations (40)–(43). The utility is not differentiable
with respect to S at a point where S is not invertible and we have to compute and parameterize
the complete subdifferential to obtain Equation (44). This can be done by using [38, Th. 2.5.1], see
Appendix H for details and the definition of the set E∆

k . As a remark, E∆
k = {0} if Sk invertible.

Let (
(R = αB + Y⊥, Q = αC + Z − N, S), (Ω = νC + Z⊥, Σ = µB + Y − L, Ψ, K)

)
(112)

be a solution of the scaled downlink, and substitute (R, Y⊥, Q, Z, N, S) by α(Ř, Y̌⊥, Q̌, Ž, Ň, Š) and
(Σ, Ω, ν, Z⊥, K, X, µ, Y , L, Ψ) by 1

α (Σ̌, Ω̌, ν̌, Ž⊥, Ǩ, X̌, µ̌, Y̌ , Ľ, Ψ̌). Thus, the scaling factor α cancels out
everywhere and(

(Ř = B + Y̌⊥, Q̌ = C + Ž − Ň, Š), (Ω̌ = ν̌C + Ž⊥, Σ̌ = µ̌B + Y̌ − Ľ, Ψ̌, Ǩ)
)

(113)

provides a point that fulfills the optimality conditions of the unscaled problem, where α = 1.
The utility Equation (11) is not changed by an equal scaling of interference-plus-noise covariance
and transmit covariance. This proves (a).

The conversion between scaled and unscaled problem is(
1
α
(R = αB + Y⊥, Q = αC + Z − N, S), α(Ω = νC + Z⊥, Σ = µB + Y − L, Ψ, K)

)
=
(
(Ř = B + Y̌⊥, Q̌ = C + Ž − Ň, Š), (Ω̌ = ν̌C + Ž⊥, Σ̌ = µ̌B + Y̌ − Ľ, Ψ̌, Ǩ)

)
(114)

For the uplink, we use the substitution

Sk = Rk + ∑
i∈K\k

HkiQk HH
ki ∀k ∈ K (115)

and the Lagrangian function can be written as

LU = ∑
k∈K

wk log
∣∣∣I + Ψ+

k HH
kkΣk Hkk

∣∣∣+
+ ∑

k∈K
tr(QkΨk) + ∑

k∈K
tr((Mk − Sk)Σk)+

+ ∑
k∈K

tr
((

Rk − σBk − Y⊥k
)

Yk

)
− ∑

k∈K
tr
(
(W k − τCk − Zk)Z⊥k

)
− ∑

k∈K
tr((Qk + Nk −W k)Ωk)+

+ ∑
k∈K

tr(RkβBk)− ∑
k∈K

tr(W kβCk)

(116)
The explanation of the optimality conditions of the uplink, the definition ofQ∆

k , and the proof of
(b) follows by symmetry. The conversion between scaled and unscaled problem is(

1
β
(Ω = βC + Z⊥, Σ = βB + Y − L, Ψ), β(R = σB + Y⊥, Q = τC + Z− N, S, M)

)
=
(
(Ω̂ = C + Ẑ⊥, Σ̂ = B + Ŷ − L̂, Ψ̂), (R̂ = σ̂B+ ⊥ Y⊥, Q̂ = τ̂C + Ẑ− N̂, Ŝ, M̂)

)
(117)
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The characterization of the solutions to optimization problems for MIMO interference networks
by polite waterfilling is introduced in [12]. The next lemma states the polite waterfilling result for the
special case of an isolated point-to-point link. Although a proof can be found in the original work [12],
we decided to include an alternative proof that especially highlights scenarios with non-invertible
noise covariances and the conditions for which these have a solution. Further, we present the proof
in a way that is directly connected to our problem, which allows us to introduce an additional result
as a corollary to the proof.

Lemma 9. Consider a MIMO link with channel matrix H and non-zero noise covariance S and a link
with flipped channel HH and non-zero noise covariance Ψ. The matrices T , T⊥ and Φ, Φ⊥ provide a
full unitary basis for the fundamental subspaces of S and Ψ respectively.

If HΦ⊥ = 0 and T⊥HH = 0, then the mutual information of both links is finite, the problems

sup
Q�0

{
w log

∣∣∣I + S+HQHH
∣∣∣− tr(ΨQ)

}
(118)

and
sup
Σ�0

{
w log

∣∣∣I + Ψ+HHΣH
∣∣∣− tr(SΣ)

}
(119)

have a solution, and the following equalities hold for any pair of solutions:

(a) ΦHHHS+HQΦ = ΦHHHΣHΨ+Φ

(b) THS+HQHHT = THΣHΨ+HHT
(c) Σ ∈ {Σ : Σ = −w

(
S + HQHH

)+
+ wS+ − Σ∆, Σ∆ ∈ E∆}

(d) Q ∈ {Q : Q = −w
(

Ψ + HHΣH
)+

+ wΨ+ −Q∆, Q∆ ∈ Q∆}

(e) log
∣∣∣I + S+HQHH

∣∣∣ = log
∣∣∣I + Ψ+HHΣH

∣∣∣
(f) tr(ΨQ) = tr(SΣ)

where the definition of E∆ and Q∆ is in Lemma 12, presented in Appendix H.
We say that Q, Σ, S, Ψ are connected by polite waterfilling if they fulfill the equalities of

the Lemma.

Proof. The condition for the downlink mutual information to be finite is T⊥HH = 0, see Lemma 12
in Appendix A. If HΦ⊥ 6= 0, there exists a q with Hq 6= 0 and tr(ΦqqH) = 0 and for Q = αqqH the
utility becomes arbitrarily large for increasing α. So, if HΦ⊥ 6= 0, then Equation (118) does not have a
solution. Conversely, HΦ⊥ = 0 implies tr(ΨQ) > 0 whenever HQ 6= 0, and as the logarithm grows
slower than any linear function, the supremum is finite. By symmetry, the condition for a finite uplink
mutual information is HΦ⊥ = 0 and the condition for Equation (119) to have a solution is T⊥HH = 0.

Assume the conditions of the lemma hold true and consider the problem

max
S′=S

{
max
Q�0

{
w log

∣∣∣I + S′+HQHH
∣∣∣− tr(ΨQ)

}}
(120)

which has the same solutions as Equation (118).
As the utility fails to be differentiable everywhere, the popular KKT conditions cannot be

applied, and we use the more general Lagrange Multiplier Rule, see for example [38, Th. 6.1.1]. Let Σ

and K be the Lagrangian multipliers for S′ = S and Q � 0, the optimality conditions are

Σ ∈ {Σ : Σ = −w
(

S + HQHH
)+

+ wS+ + wΣ∆, Σ∆ ∈ E∆} (121)

Ψ = wHH
(

S + HQHH
)+

H + K (122)

tr(KQ) = 0, K � 0, Q � 0 (123)
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where E∆ is given by Lemma 13 in Appendix H. Furthermore, consider the following problem

max
Ψ′=Ψ

{
max
Σ�0

{
w log

∣∣∣I + Ψ′+HHΣH
∣∣∣− tr(SΣ)

}}
(124)

which has the same solutions as Equation (119). Let Q and M be the Lagrangian multipliers for
Ψ′ = Ψ and Σ � 0. The optimality conditions are

Q ∈ {Q : Q = −w
(

Ψ + HHΣH
)+

+ wΨ+ + wQ∆, Q∆ ∈ Q∆} (125)

S = wH
(

Ψ + HHΣH
)+

HH + M (126)

tr(MΣ) = 0, M � 0, Σ � 0 (127)

where Q∆ is defined analogously to E∆ given by Lemma 13 in Appendix H. By standard calculus, it
can be shown that every solution to Equations (121)–(123) is a solution to Equations (125)–(127) and
vice versa, and that these solutions fulfil the equalities of the Lemma. See Appendix I for details.

Corollary 1. For both C̃D(α) and C̃U(β), if a point fulfills the optimality conditions, then for every link
k ∈ K, Qk, Σk, Sk, Ψk are connected by polite waterfilling.

Proof. Consider the downlink and notice that Equations (121)–(123) are fulfilled by
Equations (30), (34), (38), (43), and (44), meaning that Qk, Σk, Sk, Ψk are connected by polite
waterfilling if the conditions for the Lemma, these are HkkΦ⊥k = 0 and T⊥k Hkk = 0, hold. Consider
the downlink. By conditions (C1)–(C4) we know that unless T⊥k Hkk = 0 the mutual information is
infinite, and this point does not fulfill the optimality conditions. By multiplying Equation (43) with
Φ⊥H

k from the left and Φ⊥k from the right we obtain

0 = Φ⊥H
k HH

kk(Sk + HkkQk HH
kk)

+HkkΦ⊥k + Φ⊥H
k KkΦ⊥k (128)

= Φ⊥H
k HH

kkTk(T
H
k SkTk + TH

k HkkQk HH
kkTk)

−1TH
k HkkΦ⊥k + Φ⊥H

k KkΦ⊥k (129)

As both summands are positive-semidefinite matrices, they must both be equal to 0, and with
(TH

kkSkkTkk + TH
kk HkkQkk HH

kkTkk)
−1 � 0 we must have TH

k HkkΦ⊥k = 0. As T⊥k Hkk = 0 and [TkT⊥k ]
full rank, we have [TkT⊥k ]

HHkkΦ⊥k = 0, and HkkΦ⊥k = 0 follows. The proof for the uplink follows
by symmetry.

Lemma 10. Independent of the scaling factors α and β, the following holds:

(a) for every point that fulfills the downlink optimality conditions, we have

µ ∑
k∈K

tr(BkBk) = ν ∑
k∈K

tr(CkCk) (130)

(b) for every point that fulfills the uplink optimality conditions, we have

σ ∑
k∈K

tr(BkBk) = τ ∑
k∈K

tr(CkCk) (131)

Proof. The mutual orthogonality of the linear subspace triples B,Y ,Y⊥ and C,Z ,Z⊥,
respectively, implies

∑
k∈K

tr(BkYk) = ∑
k∈K

tr(BkY⊥k ) = ∑
k∈K

tr(YkY⊥k ) = 0 (132)

and

∑
k∈K

tr(CkZk) = ∑
k∈K

tr(CkZ⊥k ) = ∑
k∈K

tr(Z⊥k Ck) = 0 (133)
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respectively. Consider the downlink. By combining Equations (37) and (40), we have

∑
k∈K

tr(ΩkQk) = α ∑
k∈K

tr(ΩkCk) (134)

⇔ ∑
k∈K

tr(ΩkQk) = α ∑
k∈K

tr((νCk + Z⊥k )Ck) (135)

⇔ ∑
k∈K

tr(ΩkQk) = αν ∑
k∈K

tr(CkCk) (136)

Multiplying Equation (31) with B from the right, applying the trace operator on both sides, and
summing over all links, we obtain

∑
k∈K

tr(RkBk) = α ∑
k∈K

tr(BkBk) + ∑
k∈K

tr(Y⊥k Bk) (137)

= α ∑
k∈K

tr(BkBk) (138)

Further, combining Equations (41) and (42) we have Σ = µB + Y − L and multiplying with R
from the left, applying the trace operator operator on both sides, and summing over all links gives us

∑
k∈K

tr(RkΣk) = µ ∑
k∈K

tr(RkBk) + ∑
k∈K

tr(RkY⊥k )− ∑
k∈K

tr(RkLk) (139)

= µ ∑
k∈K

tr(RkBk) (140)

where we used tr(RkLk) = 0 from Equation (39). By combining Equations (140) and (138) it holds:

∑
k∈K

tr(RkΣk) = αµ ∑
k∈K

tr(BkBk) (141)

Multiplying Equation (27) by Σk from the right and Equation (43) by Qk from the right, applying
the trace operator on both sides, and summing over all links gives us

∑
k∈K

tr(SkΣk) = ∑
k∈K

tr(RkΣk) + ∑
k∈K

∑
i∈K\k

tr
(

HkiQi H
H
ki Σk

)
(142)

∑
k∈K

tr(ΨkQk) = ∑
k∈K

tr(ΩkQk) + ∑
k∈K

∑
i∈K\k

tr
(

HH
ik Σi H ikQk

)
(143)

With the trace property Equation (109) and the equivalence of the penalty terms from the polite
waterfilling property Lemma 9 Equation (9), we obtain

∑
k∈K

tr(RkΣk) = ∑
k∈K

tr(ΩkQk) (144)

Combining this with Equations (136) and (141), we have

αµ ∑
k∈K

tr(BkBk) = αν ∑
k∈K

tr(CkCk) (145)

The proof for the uplink follows by symmetry.
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Lemma 11. If ∑k∈K tr(BkBk) = ∑k∈K tr(CkCk), then downlink and uplink problem share the following
optimality conditions:

Sk = Rk + ∑
i∈K\k

HkiQi H
H
ki ∀k (146)

Ψk = Ωk + ∑
i∈K\k

HH
ik Σi H ik ∀k (147)

Q = αC + Z− N (148)

Σ = βB + Y − L (149)

R = αB + Y⊥ (150)

Ω = βC + Z⊥ (151)

tr(KkQk) = 0 ∀k (152)

tr(LkRk) = 0 ∀k (153)

tr(MkΣk) = 0 ∀k (154)

tr(NkΩk) = 0 ∀k (155)

Sk = wk Hkk

(
Ψk + HH

kkΣk Hkk

)+
HH

kk + Mk ∀k (156)

Ψk = wk HH
kk

(
Sk + HkkQk HH

kk

)+
Hkk + Kk ∀k (157)

Qk ∈ {Qk : Qk = −wk

(
Ψk + HH

kkΣk Hkk

)+
+ wkΨ+

k − wkQ∆
k , Q∆

k ∈ Q
∆
k } ∀k (158)

Σk ∈ {Σk : Σk = −wk

(
Sk + HkkQk HH

kk

)+
+ wkS+

k − wkΣ∆
k , Σ∆

k ∈ E
∆
k } ∀k (159)

R � 0, Ω � 0, Q � 0, Σ � 0, S � 0, Ψ � 0, K � 0, M � 0, L � 0, N � 0 (160)

Z ∈ Z , Y ∈ Y , Y⊥ ∈ Y⊥, Z⊥ ∈ Z⊥ (161)

where Tk, T⊥k and Φk, Φ⊥k provide a full unitary basis for the fundamental subspaces of Sk and Ψk,
respectively. Specifically, the following relationships hold:

(a) given α > 0, β > 0, and a point that fulfills the shared conditions, this point fulfills
Equations (27)–(44) for ν = µ = β, and Equations (45)–(62) for τ = σ = α.

(b) given a scaling factor α > 0 any point that fulfils the downlink optimality conditions
Equations (27)–(44) also fulfills the shared conditions with β = ν = µ,

(c) given a scaling factor β > 0, any point that fulfils the uplink optimality conditions
Equations (45)–(62) also fulfills the shared conditions with α = τ = σ.

Proof. First, note that if ∑k∈K tr(BkBk) = ∑k∈K tr(CkCk), then Lemma 10 implies µ = ν and σ = τ.
To prove (a) for the downlink, we show that all conditions in Equations (27)–(44) that are not explicitly
stated in the shared conditions hold for any point that fulfills the shared conditions. For the downlink
this is condition Equation (37), which holds by combining Equations (148) and (155), and conditions
Equations (41) and (42), which are equivalent to Equation (149) by eliminating the superfluous
variable X. The proof for the uplink follows by symmetry.

To prove (b), we show that all shared conditions that are not explicitly stated in
Equations (27)–(44) hold for any point that fulfills Equations (27)–(44). Conditions Equations (148)
and (155) hold by Equation (37) and N = αC + Z −Q as N is the slack variable for Equation (148).
N � 0 in Equation (160) is by definition of N. The conditions Equations (154), (156), and (158), hold
true by the polite waterfilling connection due to Corollary 1. The proof for (c) follows from the proof
for (b) by symmetry.
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5.3. Proof of the Network Duality for Fixed Noise and (Generalized) Sum-Power Constraint

Before we prove CD = CU for the general minimax problems, we discuss the special case
where the noise covariances are fixed and appear as a generalized sum-power constraint in the dual
network. This is the scenario from [12] introduced in Section 4.1.4, where the functions SD(R, Ω)

and SU(Ω, R) are defined by Equations (88) and (89) respectively. As we have used the polite
waterfilling result from [12] to prove Lemma 11, it is not surprising that we can in turn use Lemma 11
to prove SD(R, Ω) = SU(Ω, R). To do so, we have to reformulate SD(R, Ω) and SU(Ω, R) in the
minimax framework, see Section 4.1.4 for details. By Lemma 11 combined with Corollary 1, every
solution to Equation (88) provides a point with equal utility that fulfills the optimality conditions
of Equation (89) and vice versa. Assume there is a solution to Equation (88) and the point is not a
solution to Equation (89), then there exists a point with higher utility in Equation (89). As this point
needs to fulfill the optimality conditions, there must be a point with equal utility in Equation (88),
this contradicts with the original point being a solution, and therefore SD(R, Ω) = SU(Ω, R).

5.4. Proof of the Minimax Duality

Unfortunately, the argumentation of the previous section cannot be extended to minimax
problems, which might have multiple points fulfilling the optimality conditions with different
utilities. In addition to the solutions, there might exist points which fulfill the optimality conditions
with higher or lower utility than the optimal value. To prove CD = CU for general minimax problems,
we first show that both problems share an upper bound, and second, we show that this upper bound
is tight. Consider a reformulation of the downlink problem as

CD = min
R�0,Y⊥

{
max

Q�0,Z
{W(R, Q) : Q � C + Z, Z ∈ Z} : R � B + Y⊥, Y⊥ ∈ Y⊥

}
(162)

= min
R�0,Y⊥

{
FD(R) : R � B + Y⊥, Y⊥ ∈ Y⊥

}
(163)

where
FD(R) = max

Q�0,Z∈Z
{W(R, Q) : Q � C + Z} (164)

We upper bound the inner, potentially non-convex, maximization from above with a Lagrangian
dual problem:

FD(R) ≤ inf
Ω�0

sup
Q�0,Z∈Z

{
W(R, Q)− ∑

k∈K
tr(Ωk(Qk − Ck − Zk))

}
(165)

where we assumed R such that the maximum of Equation (164) exists.
The infimum does not change if we remove those Ω where the inner problem does not have

a solution. As Z is only constrained by Z ∈ Z , the inner problem of Equation (165) does not
have a solution unless Ω is in the orthogonal complement of Z , which we can parameterize by
Ω = νC + Z⊥, Z⊥ ∈ Z⊥.

Thus, we can formulate the upper bound as

FD(R) ≤ inf
ν,Ω�0,Z⊥

{
sup
Q�0

{
W(R, Q)− ∑

k∈K
tr(ΩkQk) + ∑

k∈K
tr(ΩkCk)

}
: Ω = νC + Z⊥, Z⊥ ∈ Z⊥

}
(166)

Furthermore, by Corollary 1, we know there exists a solution to CD where optimization variables
and Lagrangian multipliers are connected by polite waterfilling. Using such a solution for Ω to
evaluate the inner problem of Equation (166), Ω and ∑k∈K tr(ΩkCk) are constants for the inner
problem. As we assumed that R is such that the mutual information of all links is finite for finite
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transmit symbols, the inner problem has a solution. This implies that the infimum and supremum of
Equation (166) are attained.

For every minimizing dual variable, the following conditions can be obtained from the
complementary slackness conditions:

∑
k∈K

tr(Ωk(Qk − Ck − Zk)) = 0 (167)

⇔ ∑
k∈K

tr(ΩkQk) = ∑
k∈K

tr(ΩkCk) (168)

since ∑k∈K tr(νCk + Z⊥k )Zk) = 0. The upper bound can be reformulated as

FD(R) ≤ min
Ω�0,Z⊥

{
max
Q�0

{
W(R, Q) : ∑

k∈K
tr(ΩkQk) = ∑

k∈K
tr(ΩkCk)

}
: Ω = νC + Z⊥, Z⊥ ∈ Z⊥

}
(169)

The value of the inner problem is the same if Ω is scaled (leading to an inverse scaling of the
optimization variables). This allows us to fix the scaling by picking a P with

P = ∑
k∈K

tr(CkCk) (170)

and scale Ω such that

∑
k∈K

tr(ΩkQk) = ∑
k∈K

tr(ΩkCk) = P (171)

Combining Equations (170), (171), and Ω = νC + Z⊥, Z⊥ ∈ Z⊥, we obtain ν = 1, and the upper
bound is

FD(R) ≤ min
Ω�0,Z⊥

{
max
Q�0

{
W(R, Q) : ∑

k∈K
tr(ΩkQk) = P

}
: Ω = C + Z⊥, Z⊥ ∈ Z⊥

}
(172)

= min
Ω�0,Z⊥

{
SD(R, Ω) : Ω = C + Z⊥, Z⊥ ∈ Z⊥

}
(173)

where SD(R, Ω) is defined by Equation (88). Thus, we can formulate an upper bound on CD by

CD ≤ min
R�0,Y⊥

{
min

Ω�0,Z⊥

{
SD(R, Ω) : Ω = C + Z⊥, Z⊥ ∈ Z⊥

}
: R = B + Y⊥, Y⊥ ∈ Y⊥

}
(174)

= min
R�0,Y⊥ ,Ω�0,Z⊥

{
SD(R, Ω) : Ω = C + Z⊥, Z⊥ ∈ Z⊥, R = B + Y⊥, Y⊥ ∈ Y⊥

}
(175)

Now consider the uplink problem. By using R = τB + Y⊥, Y⊥ ∈ Y⊥ as Lagrangian multiplier
to relax the constraint on the uplink transmit covariances and selecting

P = ∑
k∈K

tr(BkBk) = ∑
k∈K

tr(RkΣk) = ∑
k∈K

tr(RkBk) (176)

we can formulate an upper bound for the uplink as

CU ≤ min
R�0,Y⊥ ,Ω�0,Z⊥

{
SU(Ω, R) : Ω = C + Z⊥, Z⊥ ∈ Z⊥, R = B + Y⊥, Y⊥ ∈ Y⊥

}
(177)

where SU(Ω, R) is defined by Equation (89). We have P = ∑k∈K tr(BkBk) = ∑k∈K tr(CkCk) and as
SD(R, Ω) = SU(Ω, R), see Section 5.3, the bounds Equations (175) and (177) have the same value,
and the problems CD and CU share an upper bound.
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We can prove CD = CU by showing that the upper bound is tight. The bound by the
Lagrangian dual problem on the inner problem of the downlink can be reformulated as an uplink
minimax problem:

FD(R) = max
Q�0,Z∈Z

{W(R, Q) : Q � C + Z} (178)

≤ min
Ω�0,Z⊥

{
SD(R, Ω) : Ω = C + Z⊥, Z⊥ ∈ Z⊥

}
(179)

= min
Ω�0,Z⊥

{
SU(Ω, R) : Ω = C + Z⊥, Z⊥ ∈ Z⊥

}
(180)

= min
Ω�0,Z⊥

{
max
Σ̄�0

{
W(Ω, Σ̄) : ∑

k∈K
tr(RkΣ̄k) = P

}
: Ω = C + Z⊥, Z⊥ ∈ Z⊥

}
(181)

= min
Ω�0,Z⊥

{
max
Σ̄�0,Ȳ

{
W(Ω, Σ̄) : Σ̄ � B̄ + Ȳ , Ȳ ∈ Ȳ

}
: Ω � C + Z⊥, Z⊥ ∈ Z⊥

}
(182)

= min
Ω�0,Z⊥

{
max
Σ̄�0,Ȳ

{
W(Ω, Σ̄) : Σ̄ � β̄B̄ + Ȳ , Ȳ ∈ Ȳ

}
: Ω � β̄C + Z⊥, Z⊥ ∈ Z⊥

}
(183)

where we used SD(R, Ω) = SU(Ω, R) and replaced the generalized sum-power constraint
∑k∈K tr(RkΣk) by a conic constraint with

B̄ =
P

∑k∈K tr(RkRk)
R (184)

and
Ȳ = {Y : tr(B̄kYk) = 0} (185)

which implies Ȳ⊥ = {0}, see Section 2.1.2 for an explanation. Equivalence of Equations (182) and
(183) is given by Lemma 8.

By Lemma 11, every solution of Equation (183) fulfills the conditions Equations (45)–(62) and
provides Lagrangian multipliers S̄, R̄, Q̄, Z̄, N̄, τ̄ with

Q̄ = τ̄C + Z̄− N̄, Z̄ ∈ Z , Q̄ � 0, N̄ � 0 (186)

⇒ Q̄ � τ̄C + Z̄, Z̄ ∈ Z , Q̄ � 0 (187)

and as Ȳ⊥ = {0}, we have

S̄k = R̄k + ∑
i∈K\k

HkiQ̄i H
H
ki ∀k (188)

R̄ = σ̄B̄ (189)

Lemma 10 holds true even if ∑k∈K tr(B̄kB̄k) 6= ∑k∈K tr(CkCk), and by Equation (131), we have

σ̄ = τ̄ ∑
k∈K

tr(CkCk)
1

∑k∈K tr(B̄kB̄k)
(190)

= τ̄P ∑k∈K tr(RkRk)

P2 (191)

= τ̄
∑k∈K tr(RkRk)

P
(192)

where we used ∑k∈K tr(B̄kB̄k) = P2

∑k∈K tr(Rk Rk)
, which can be derived from Equation (184).

Combined with Equation (189), we obtain
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R̄ = σ̄
P

∑k∈K tr(RkRk)
R = τ̄R. (193)

By Lemma 8(b), τ̄ scales inversely with β̄ without affecting the utility, so we are free to pick β̄

such that τ̄ = 1. Given such a solution to Equation (183), the Lagrangian multipliers S̄, Q̄, Z̄ fulfill
Equations (187) and (188). By using τ̄ = 1 and R̄ = R, Equations (187) and (188) can be written as

Q̄ � C + Z̄, Z̄ ∈ Z , Q̄ � 0 (194)

S̄k = Rk + ∑
i∈K\k

HkiQ̄i H
H
ki ∀k (195)

Directly including the explicit parameterization of the interference plus noise covariance in
Equation (178), we have

FD(R) = max
Q�0,S,Z∈Z

U(S, Q) : Sk = Rk + ∑
i∈K\k

HkiQi H
H
ki ∀k ∈ K, Q � C + Z

 (196)

and we can see that Q̄, Z̄ are a feasible solution to Equation (178) and have the same utility by the
polite waterfilling connection, Lemma 9(e). Thus, Equation (165) holds with equality and the upper
bound Equation (175) is tight for the downlink. Tightness of the upper bound for the uplink follows
by symmetry and we have proven CD = CU.

By Lemma 10, we have σ̂ = τ̂, and by introducing γ̂ = σ̂ = τ̂, a solution to the unscaled uplink
problem can be stated as(

(Ω̂ = C + Ẑ⊥, Σ̂ = B + Ŷ − L̂, Ψ̂), (R̂ = γ̂B + Ŷ⊥, Q̂ = γ̂C + Ẑ− N̂, Ŝ)
)

(197)

For any β and the conversion rule Equation (117), introduced with Lemma 8, a solution to CU(β)

is given by (
β(Ω̂ = C + Ẑ⊥, Σ̂ = B + Ŷ − L̂, Ψ̂),

1
β
(R̂ = γ̂B + Ŷ⊥, Q̂ = γ̂C + Ẑ− N̂, Ŝ)

)
(198)

Inverting the roles of Lagrangian multipliers and optimization variables we obtain a solution to
CD(α) for some α as(

1
β
(R̂ = γ̂B + Ŷ⊥, Q̂ = γ̂C + Ẑ− N̂, Ŝ), β(Ω̂ = C + Ẑ⊥, Σ̂ = B + Ŷ − L̂, Ψ̂)

)
(199)

By the conversion rules Equation (114) a solution to the unscaled downlink problem is given by(
1

αβ
(R̂ = σ̂B + Ŷ⊥, Q̂ = γ̂C + Ẑ− N̂, Ŝ), αβ(Ω̂ = C + Ẑ⊥, Σ̂ = B + Ŷ − L̂, Ψ̂)

)
(200)

Introducing γ̌ = ν̌ = µ̌ and comparing the solution obtained from the uplink problem to the
prototype of the downlink solution(

(Ř = B + Y̌⊥, Q̌ = C + Ž − Ň, Š), (Ω̌ = γ̌C + Ž⊥, Σ̌ = γ̌B + Y̌ − Ľ, Ψ̌, Ǩ)
)

(201)

we identify γ̂
αβ = 1 and αβ = γ̌. Introducing γ = γ̂ = γ̌ = αβ, we can see that uplink and downlink

solution are connected by inverting the roles optimization variables and Lagrangian multipliers and
a scaling by γ, respectively 1

γ , which proves the last part of the Theorem.



Information 2016, 7, 19 27 of 42

5.5. Zero Duality Gap

The upper bound Equation (165) by a Lagrangian dual problem was shown to be tight.
Therefore, maximization problems in interference networks with linear conic constraints have a
zero-duality gap for this special choice of the dual function. The zero duality gap result does not
hold in general. For example it does not hold if the dual function is selected as optimization of the
Lagrangian function given by Equation (108). Although we have LD = CD for every solution, the
duality gap does not disappear as

sup
Sk

{
wk log

∣∣∣I + S+
k HkkQk HH

kk

∣∣∣+ tr(ΣkSk)
}
= ∞ (202)

Here, the linear penalty term is not powerful enough to prevent the exponential growth of the
utility for decreasing Sk.

A Zero-Duality gap can be observed for the optimization of linear precoders for power
minimization under SINR constraints [14,22], which allows to transfer the apparently non-convex
problem into a convex problem that can be solved efficiently. For our scenario, the dual problem is
always convex in the dual variables, but evaluating the dual function SD(R, Ω) still requires to solve
a non-convex problem Equation (88). So, the zero duality gap is a property worth mentioning, but it
is completely useless for the design of efficient algorithms.

5.6. Uplink-Downlink Transformation Rules

Several network dualities include some transformation rule for the solution of one network to
the dual network. In our approach, the complete characterization of the uplink-downlink duality
by a shared system of optimality condition reveals such a transformation as a connection between
optimization variables and Lagrangian multipliers. For example, the transformation of the transmit
covariances from one problem to the other is given by Equations (44) and (62). If the noise covariance
of a user k has full rank, the only valid choice for Q∆

k , respectively Σ∆
k , is the zero matrix and the

transformations are identical to those in [12]. Otherwise, Q∆
k and Σ∆

k , describe the additional degrees
of freedom: this is where the conic constraint is not binding but the choice of has no influence on the
utility. To describe the full dependencies, we start by the slack variables L, N being the Lagrangian
multipliers for the positive semi-definiteness constraint of the noise covariances. So L and N indicate
if and how the interference plus noise can be rank deficient, which sets the degrees of freedom for Q∆

k
and Σ∆ and therefore the degrees of freedom in the linear conic constraint on Q and Σ, implying the
set of possible slack variables.

5.7. Possible Extensions

Another direction for future work is to investigate if other types of constraints can be included
in the duality. This is straight forward for the noise covariance. Let R be an arbitrary constraint set
for the noise covariance R. We restate the downlink problem as

inf
R′�0,R′∈R

{
sup

Q�0,Z

{
W(R′, Q) : Q � C + Z, Z ∈ Z

}}
(203)

= inf
R′�0

inf
R�0

{
sup

Q�0,Z
{W(R, Q) : Q � C + Z, Z ∈ Z} : R = R′

}
(204)

= inf
R′�0,R∈R

inf
R�0,Y⊥

{
sup

Q�0,Z
{W(R, Q) : Q � C + Z, Z ∈ Z} : R = B + Y⊥, Y⊥ ∈ Y⊥

}
(205)
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where B = R′ and Y⊥ = {0}. Now, we can apply the minimax duality to the inner problem
and obtain

inf
R′�0,R′∈R

inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W(Ω, Σ) : ∑

k∈K
tr(ΣkR′) ≤ P

}
: Ω � C + Z⊥, Z⊥ ∈ Z⊥

}
(206)

= inf
R′�0,R′∈R

inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W(Ω, Σ) : ∑

k∈K
tr(ΣkR′) ≤ P

}
: Ω � C + Z⊥, Z⊥ ∈ Z⊥

}
(207)

where the formulation by the network sum-power constraint is explained in Section 2.1.2. Concerning
the generalization of constraints on the transmit covariances, we suggest to first extend the duality
to multiple conic constraints for each link. Furthermore, an especially interesting direction is to
include more general (convex) constraints on the transmit covariance into our duality. In [16] convex
constraints are handled by replacing them with a single linear constraint, where the parameter needs
to be found algorithmically. If the multiple linear constraints can be combined into a single linear
conic constraint this is inherently done by our model. The general case is an open issue and suggested
as future work.

6. Conclusions and Future Work

We presented a minimax duality for MIMO interference networks, where noise and transmit
covariances are optimized subject to linear conic constraints. We illustrated how they are general
enough to not only model typically used constraints such as the network sum-power constraint,
the per link sum-power constraint, and shaping constraints, but also constraints on cooperation
within the network or the propriety of signals. The interconnection of the downlink and uplink
problems is by the flipped channel matrices, the common constraint matrices, and orthogonal
subspaces. We showed that every solution has a polite water-filling structure and the downlink
and uplink problem share a system of optimality conditions, where the solutions are connected by
inverting the roles of the optimization variables and Lagrangian multipliers. We proof our minimax
duality by using an upper bound from Lagrangian duality, which can be shown to be tight, thus
revealing a zero-duality gap of maximization problems in MIMO interference networks under linear
conic constraints.

Especially interesting is the BC-MAC duality, which can also be modeled in our framework.
We were able to extend the existing BC-MAC dualities in two directions. First, we allow for more
general constraints (for example shaping constraints) on the downlink transmit covariance and
investigate the conditions under which the uplink problem has a convex-concave game structure.
Second, we extended the worst case noise capacity from the sum-rate to the complete capacity
region of the MIMO broadcast with non-linear interference pre-subtraction. New applications that
are enabled by our duality are discussed in Section 4.2. These are the design of interference robust
multi-user MIMO transmission strategies for interfering broadcast channels and information theoretic
proofs concerning cooperation in networks and optimality of proper signals.

Concerning the generalization of constraints on the transmit covariances, we suggest to first
extend the duality to multiple conic constraints for each link. Furthermore, an especially interesting
direction is to include more general (convex) constraints on the transmit covariance into our duality.
In [16], convex constraints are handled by replacing them with a single linear constraint, where the
parameter needs to be found algorithmically. Furthermore, we believe that our result can serve as
the theoretical basis for further research in the fields of robust transmission strategies, cognitive radio
networks, and secrecy capacity, where conic constraints and minimax problems appear naturally in
the proofs and numerical computations.

Author Contributions: Andreas Dotzler discovered the Min-Max Duality; Maximillian Riemensberger assisted
with the proof; Wolfgang Utschick contributed his expertise in interference networks and network dualities.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A Mutual Information For Non-Invertible Noise Covariances

Lemma 12. Consider a MIMO link with channel matrix H and noise covariance S. The transmit
covariance Q is constrained by Q ∈ Q, but can be freely chosen into all directions of the channel.
Let T , T⊥ provide a full unitary basis for the fundamental subspaces of S. If T⊥HH = 0, then the
mutual information is finite and is given by

max
Q∈Q

log
∣∣∣I + S+HQHH

∣∣∣ (A1)

Proof. The mutual information is infinite unless we have T⊥HH = 0, as otherwise there exists a Q
for which we obtain a noise free communication channel by using T⊥H as a receive filter. For finite
mutual information, we can compute the mutual information for any Q by taking a limit:

lim
ε→0

log
∣∣∣I + (S + εTT⊥H)−1HQHH

∣∣∣ (A2)

= lim
ε→0

log

∣∣∣∣∣I + [TT⊥
][(THST)−1 0

0 ε−1 I

][
TT⊥

]H
HQHH

∣∣∣∣∣ (A3)

= lim
ε→0

log

∣∣∣∣∣I + HH
[

TT⊥
][(THST)−1 0

0 ε−1 I

][
TT⊥

]H
HQ

∣∣∣∣∣ (A4)

= lim
ε→0

log

∣∣∣∣∣I + [HHT 0
][(THST)−1 0

0 ε−1 I

][
THH

0

]
Q

∣∣∣∣∣ (A5)

= log
∣∣∣I + HHT(THST)−1THHQ

∣∣∣ (A6)

= log
∣∣∣I + S+HQHH

∣∣∣ (A7)

Appendix B Proof of Lemma 1

For every Λ̃ ∈ P(X⊥), we have Λ̃ � 0, which implies every element of the tuple is Hermitian.
If A + X � 0, then tr(Λ̃k(Ak + Xk)) ≥ 0 ∀k ∈ K. Further, by the orthogonal subspaces we have

∑
k∈K

tr(Λ̃k(Ak + Xk)) = 0 ∀X ∈ X (B1)

and therefore
tr(Λ̃k(Ak + Xk)) = 0 ∀k ∈ K, ∀X ∈ X , A + X � 0 (B2)

For Λ̃k ∈ CNk×Nk let Λ̃k = ∑Nk
i=1 γkiλkiλ

H
ki such that γki ≥ 0, ∀k, i. Then it follows ∀k ∈ K, ∀X ∈ X ,

A + X � 0.

tr(Λ̃k(Ak + Xk)) = 0 (B3)

⇔
Nk

∑
i=1

tr(
√

γkiλ
H
ki(Ak + Xk)λki

√
γki) = 0 (B4)

⇔
Nk

∑
i=1

√
γkiλ

H
ki(Ak + Xk)λki

√
γki = 0 (B5)

⇔ ΛH
k (Ak + Xk)Λk = 0 (B6)

and it follows that for Λ̃k = ΛkΛH
k ∀k ∈ K we have Λ̃ ∈ N (A,X ).
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Appendix C Proof of Lemma 2

W � 0 fulfills the linear conic constraint if

∃X ∈ X : W � A + X (C1)

⇔ ∃X ∈ X : tr(Ek(W k − Ak − Xk)) ≤ 0, ∀E � 0, ∀k ∈ K (C2)

⇔ ∃X ∈ X : ∑
k∈K

tr(Ek(W k − Ak − Xk)) ≤ 0, ∀E � 0 (C3)

⇔ ∃X ∈ X : ∑
k∈K

tr(Ek(W k − Ak − Xk)) ≤ 0, ∀E ∈ E (C4)

⇔ ∑
k∈K

tr(Ek(W k − Ak)) ≤ 0, ∀E ∈ E (C5)

Equivalence of Equations (C1) and (C2) is clear by Equations (B3)–(B5). By summing over all
links, Equation (C3) follows from Equation (C2). For the inverse direction, as Equation (C3) holds for
any E we can select an arbitrary Ek and set all other elements of the tuple to the all zero matrix and
Equation (C2) follows. As Equation (C3) holds for all E it obviously holds for those where E ∈ E , this
is Equation (C4). For the inverse direction, if E /∈ E then ∑k∈K tr(EkXk) 6= 0 and as X can be scaled
arbitrarily and there exists a X, that fulfills the inequality. Equivalence of Equations (C4) and (C5)
holds as ∑k∈K tr(EkXk) = 0 for any X ∈ X , E ∈ E by definition. If E is polyhedral, every point can
be expressed by a positive combination of the finite extreme points and Equation (C5) is equivalent
to Equation (20).

Appendix D Proof of Lemma 3

Consider the downlink. By a scaling of the constraint matrices and channels by scaling factors θ

and η such that

H̄ki =

√
η
√

θ
Hki, B̄ =

1
θ

B, C̄ =
1
η

C (D1)

and substituting

(R̄, S̄, Q̄, Z̄, Ȳ⊥) =
(

1
θ

R,
1
θ

S,
1
η

Q,
1
η

Z,
1
θ

Y⊥
)

(D2)

we obtain the following equivalences:

inf
R̄�0

Ȳ⊥∈Y⊥

sup
S̄

Q̄�0
Z̄∈Z

{
∑

k∈K
wk log

∣∣∣I + S̄+H̄kkQ̄k H̄H
kk

∣∣∣ :

S̄k = R̄k + ∑
i∈K\k

H̄kiQ̄i H̄
H
ki ∀k, Q̄ � C̄ + Z̄

 : R̄ = B̄ + Ȳ⊥
 (D3)
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= inf
R̄�0

Ȳ⊥∈Y⊥

sup
S̄

Q̄�0
Z̄∈Z

{
∑

k∈K
wk log

∣∣∣I + S̄+H̄kkQ̄k H̄H
kk

∣∣∣ :

S̄k = R̄k + ∑
i∈K\k

H̄kiQ̄i H̄
H
ki ∀k, ηQ̄ � ηC̄ + ηZ̄

 : θR̄ = θB̄ + θȲ⊥
 (D4)

= inf
R�0

Y⊥∈Y⊥

sup
S

Q�0
Z∈Z

{
∑

k∈K
wk log

∣∣∣∣∣I +
(

1
θ

S
)+

H̄kk
1
η

Qk H̄H
kk

∣∣∣∣∣ :

1
θ

Sk =
1
θ

Rk + ∑
i∈K\k

H̄ki
1
η

Qi H̄
H
ki ∀k, Q � ηC̄ + Z} : R = θB̄ + Y⊥

}
(D5)

= inf
R�0

Y⊥∈Y⊥

sup
S

Q�0
Z∈Z

{
∑

k∈K
wk log

∣∣∣∣I + S+
√

θH̄kk
1
√

η
Qk

1
√

η
H̄H

kk
√

θ

∣∣∣∣ :

Sk = Rk + ∑
i∈K\k

√
θH̄ki

1
√

η
Qi

1
√

η
H̄H

ki
√

θ ∀k, Q � ηC̄ + Z} : R = θB̄ + Y⊥
}

(D6)

= inf
R�0

Y⊥∈Y⊥

sup
S

Q�0
Z∈Z

{
∑

k∈K
wk log

∣∣∣I + S+HkkQk HH
kk

∣∣∣ :

Sk = Rk + ∑
i∈K\k

HkiQi H
H
ki ∀k, Q � C + Z

 : R = B + Y⊥.

 (D7)

Let the functions W(R, Q; s) and W(Ω, Σ; s) follow the definition of W(R, Q) and W(Ω, Σ)

respectively, these are Equations (9) and (10), but all channels are scaled by s. Let Bn = 1√
b

B and

Cn = 1√
c C, where b = ∑k∈K tr(BkBk) and c = ∑k∈K tr(CkCk), then

inf
R�0,Y⊥

{
sup

Q�0,Z
{W(R, Q) : Q � C + Z, Z ∈ Z} : R � B + Y⊥, Y⊥ ∈ Y⊥

}
(D8)

= inf
R�0,Y⊥

{
sup

Q�0,Z

{
W

(
R, Q;

√√
c√√
b

)
: Q � 1√

c
C + Z, Z ∈ Z

}
: R � 1√

b
B + Y⊥, Y⊥ ∈ Y⊥

}
(D9)

= inf
R�0,Y⊥

{
sup

Q�0,Z

{
W

(
R, Q;

√√
c√√
b

)
: Q � Cn + Z, Z ∈ Z

}
: R � Bn + Y⊥, Y⊥ ∈ Y⊥

}
(D10)

For the uplink, we have

inf
Ω�0,Z⊥

{
sup

Σ�0,Y
{W(Σ, Ω) : Σ � B + Y , Y ∈ Y} : Ω � C + Z⊥, Z⊥ ∈ Z⊥

}
(D11)

= inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W

(
Σ, Ω;

√√
b√√
c

)
: Σ � 1√

b
B + Y , Y ∈ Y

}
: Ω � 1√

c
C + Z⊥, Z⊥ ∈ Z⊥

}
(D12)

= inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W

(
Σ, Ω;

√√
b√√
c

)
: Σ � Bn + Y , Y ∈ Y

}
: Ω � Cn + Z⊥, Z⊥ ∈ Z⊥

}
(D13)
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Combining the reformulations, we can prove the asymmetric minimax duality:

inf
R�0,Y⊥

{
sup

Q�0,Z
{W(R, Q) : Q � C + Z, Z ∈ Z} : R � B + Y⊥, Y⊥ ∈ Y⊥

}
(D14)

= inf
R�0,Y⊥

{
sup

Q�0,Z

{
W

(
R, Q;

√√
c√√
b

)
: Q � Cn + Z, Z ∈ Z

}
: R � Bn + Y⊥, Y⊥ ∈ Y⊥

}
(D15)

= inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W

(
Σ, Ω;

√√
c√√
b

)
: Σ � Bn + Y , Y ∈ Y

}
: Ω � Cn + Z⊥, Z⊥ ∈ Z⊥

}
(D16)

= inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W(Σ, Ω) : Σ �

√
cBn + Y , Y ∈ Y

}
: Ω �

√
bCn + Z⊥, Z⊥ ∈ Z⊥

}
(D17)

= inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W(Σ, Ω) : Σ �

√
c√
b

B + Y , Y ∈ Y
}

: Ω �
√

b√
c

C + Z⊥, Z⊥ ∈ Z⊥
}

(D18)

= inf
Ω�0,Z⊥

{
sup

Σ�0,Y

{
W(Σ, Ω) : Σ � β

√
c√
b

B + Y , Y ∈ Y
}

: Ω � β

√
b√
c

C + Z⊥, Z⊥ ∈ Z⊥
}

(D19)

From Equations (D14) to Equation (D15) is by the equivalence of Equations (D8) and (D10).
With ∑k∈K tr(BnkBnk) = ∑k∈K tr(CnkCnk) = 1, we can apply the minimax duality by Theorem 1
to show the equivalence of Equations (D15) and (D16). We obtain Equation (D17) by inverting
Equation (D11) to Equation (D12). For Equation (D18) we applied the definition of Bn and Cn and
equivalence of Equations (D18) and (D19) is by Lemma 8. Let p = β

√
c√
b

and n = β
√

b√
c . By choosing β,

we can select any p and n as long as p
n = β

√
c√
b

1
β

√
c√
b
= c

b .

Appendix E Proof of Lemma 4

The optimality conditions of Equation (76) are

D−1 = A (E1)

λ′ I + F ′ = H A′HH + M ′ (E2)

F ′ =

0 . . . ∗
...

. . .
...

∗ . . . 0

 (E3)

Σ′ =

Σ′1 . . . 0
...

. . .
...

0 . . . Σ′U

 (E4)

M ′ � 0 (E5)

tr(M ′Σ′) = 0 (E6)

tr(Σ′) = P (E7)

Σ′ � 0 (E8)

First, we show that Equations (77) and (78) provide valid Lagrangian multipliers, by showing
they fulfill Equations (E2), (E3), (E5), and (E6). It is straight-forward to verify condition Equations (E2)
and (E3). Condition (E2) combined with Equation (E3) implies

λ′ I � Hu A′HH
u ∀u (E9)
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as otherwise there would be no M ′ such that M ′ � 0. Comparing Equation (E9) to definition of M ′

implies M ′ � 0, this is Equation (E5). From Equations (E3) and (E4) follows tr(F ′Σ′) = 0 and from
Equation (E2) we obtain

λ′ tr(Σ′) + tr(F ′Σ′) = tr(H A′HHΣ′) + tr(M ′Σ′) (E10)

⇒ λ′P = tr(H A′HHΣ′) (E11)

where we used Equations (E6) and (E7). Finally, we combine Equations (78) and (E6). As the
offdiagonal blocks do not contribute to the trace we have

tr(M ′Σ′) = λ′ tr(Σ′)− tr(H A′HHΣ′) (E12)

and by Equations (E7) and (E11) we have tr(M ′Σ′) = 0, which is Equation (E6). Second, we show
that Equation (80) fulfills the optimality conditions of Equation (70). Introducing Σ as a Lagrangian
multiplier for the structure of R and R � 0, which implies Σ is blockdiagonal and Σ � 0, and µ for
tr(Q) ≤ P and K for Q � 0, these optimality conditions are

Σ = −
(

R + HQHH
)+

+ R+ + Σ∆ (E13)

µI = HH
(

R + HQHH
)+

H + K (E14)

tr(KQ) = 0, K � 0, Q � 0 (E15)

We now introduce Ψ′ = I and

Q′ = (Φ′ + HHΣ′H)+ + Ψ′ (E16)

= (I + HHΣ′H)−1 + I (E17)

S′ = H(Ψ′ + HHΣ′H)+HH + M ′ (E18)

= H A′HH + M ′ (E19)

By the proof of Lemma 9 in Appendix I, we know that Equations (E16), (E18), (E5), (E6), and (E8),
imply there exist Σ∆′, K′ that fulfill the following set of equations:

Σ′ = −
(

S′ + HQ′HH
)+

+ S′+ + Σ∆′ (E20)

I = HH
(

S′ + HQ′HH
)+

H + K′ (E21)

tr(K′Q′) = 0, K′ � 0, Q′ � 0 (E22)

Comparing Equations (E20)–(E22) to Equations (E13)–(E15), we can see that µ = λ′,
R = 1

λ′ S
′, Q = 1

λ′Q
′, Σ = λ′Σ′, K = λ′K′ fulfill the optimality conditions for the downlink problem.

As R = 1
λ′ S
′ matches Equation (80) the proof is complete.

Appendix F BC-MAC Duality – Conditions for a Convex Reformulation of the MAC Problem

Let C = (C′, . . . , C′) ∈ ∏k∈K SN×N and Z⊥ ⊆ ∏k∈K SN×N with C′ ∈ SN×N and

Z⊥ =
{

Z⊥ : Z⊥k = Z′⊥∀k ∈ K, Z′⊥ ∈ Z ′⊥
}

(F1)

where Z ′⊥ is a subspace of SN×N that is orthogonal to C ′ = {λC′ : λ ∈ R}. Then the uplink noise
constraint is

Ωk �
1
K

C′ + Z′⊥, Z′⊥ ∈ Z ′⊥ ∀k ∈ K (F2)
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and there exists an uplink solution where all noise covariances are equal, see Remark 2 in Section 3.
For this special choice, the subspace Z is given by

Z =

{
Z : ∑

k∈K
tr(C′Zk) = 0, ∑

k∈K
tr(Z′⊥Zk) = 0 ∀ Z′⊥ ∈ Z ′⊥

}
(F3)

In the following, we show that Equation (94) can be expressed by this model. The constraint on
the downlink transmit covariance is

Qk �
1
K

C′ + Zk, Z ∈ Z ∀k ∈ K (F4)

which implies

∑
k∈K

Qk �
1
K ∑

k∈K
C′ + ∑

k∈K
Zk (F5)

⇔ Q′ � C′ + Z′ (F6)

where Q′ = ∑k∈K Qk and Z′ = ∑k∈K Zk. In the following, we show that not only Equation (F4)
implies Equation (F6), but both are equivalent. We do so by showing that if given Q = (Q1, . . . , QK),
Q′ = ∑k∈K Qk and Z′ that fulfill Equation (F6) we can construct a Z = (Z1, . . . , ZK) with ∑k∈K Zk =

Z′ such that Equation (F4) holds. For the first K − 1 users, we select Zk as Zk = Qk − 1
K C′, so that

Equation (F4) is fulfilled for k = 1, . . . , K− 1, and we have

∑
k∈K\{K}

Qk = (K− 1)
1
K

C′ + ∑
k∈K\{K}

Zk (F7)

By subtracting Equation (F7) from Equation (F6), we obtain

Q′ − ∑
k∈K\K

Qk �
1
K

C′ + Z′ − ∑
k∈K\K

Zk (F8)

⇒ QK �
1
K

C′ + ZK (F9)

By Equation (F3) we have

∑
k∈K

tr(C′Zk) = 0 ⇒ tr(C′Z′) = 0 (F10)

and

∑
k∈K

tr(Z′⊥Zk) = 0 ⇒ tr(Z′⊥Z′) = 0 (F11)

and therefore Z′ ∈ Z ′, where Z ′ is the orthogonal complement to C ′ ⊕ Z ′⊥. Thus, if the constraint
on the downlink transmit covariance is a constraint that solely acts on the sum of the transmit
covariances, i.e.,

∑
k∈K

Qk � C′ + Z′, Z′ ∈ Z ′ (F12)

then the uplink has a solution where all noise covariances are equal.

Appendix G Details of the Worst Case Noise Approximation in the Broadcast

The optimization under a worst-case noise approximation is given by

sup
Q�0

{
inf
R�0

{
W(R, Q) : tr(Rk) ≤ σ2

k ∀k
}

: ∑
k∈K

tr(Qk) ≤ P

}
(G1)
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According to Section 2.1.2, the conic versions of the downlink constraint sets are

B =

(
σ2

1
M1

I, . . . ,
σ2

K
MK

I

)
(G2)

Y⊥ = {Y⊥ : tr(Y⊥k ) = 0 ∀k} (G3)

Y =

{
Y = (λ1 I, . . . , λK I), ∑

k∈K
λkσ2

k = 0

}
(G4)

C =
P

KN
I (G5)

Z =

{
Z : ∑

k∈K
tr(Zk) = 0

}
(G6)

Z⊥ = {0} (G7)

Assuming the optimal encoding order and considering that the constraint on the downlink
transmit covariance is a constraint on the sum covariance Lemma 7, allows us to exchange infimum
and supremum. The asymmetric mini-max duality by Lemma 3 translates the downlink problem to
the following uplink constraints

Σ � p

(
σ2

1
M1

I, . . . ,
σ2

K
MK

I

)
+ (λ1 I, . . . , λK I), ∑

k∈K
λkσ2

k = 0 (G8)

Ω � n
P

KN
I (G9)

By substituting

Pk

σ2
k
= p

σ2
k

Mk
+ λk (G10)

⇔ λk =
Pk

σ2
k
− p

σ2
k

Mk
(G11)

We have

∑
k∈K

λkσ2
k = 0 (G12)

⇔ ∑
k∈K

(
Pk

σ2
k
− p

σ2
k

Mk

)
σ2

k = 0 (G13)

⇔ ∑
k∈K

Pk = p ∑
k∈K

σ4
k

Mk
(G14)

With b = ∑k∈K tr(BkBk) = ∑k∈K
σ4

k
Mk

, c = ∑k∈K tr(CkCk) =
P2

KN and c
b = p

n , selecting p = P

∑k∈K
σ4

k
Mk

implies n = KN
P . The uplink problem becomes

inf
Ω�0

 sup
Σ�0

P1,...,PK

{
W(Σ, Ω) : Σk �

Pk

σ2
k

I ∀k, ∑
k∈K

Pk = P

}
: Ω � I

 (G15)

= sup
Σ�0

P1,...,PK

{
W(Σ, I) : Σk �

Pk

σ2
k

I ∀k, ∑
k∈K

Pk = P

}
(G16)
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Assuming users sorted matched to the encoding order we introduce αk = wk − wk+1,
∀k = 1, . . . , K− 1 and αK = wK, and the uplink problem can be rewritten as

sup
Σ�0

P1,...,PK

{
∑

k∈K
αk log

∣∣∣∣∣I + ∑
j≤k

HH
jj ΣjH jj

∣∣∣∣∣ : Σk �
Pk

σ2
k

I ∀k, ∑
k∈K

Pk = P

}
(G17)

= sup
P1,...,PK

{
∑

k∈K
αk log

∣∣∣∣∣I + ∑
j≤k

Pj

σ2
j

HH
jj H jj

∣∣∣∣∣ : ∑
k∈K

Pk = P

}
(G18)

where we have used that the reformulated utility is non-decreasing in the transmit covariances and
therefore Σk =

Pk
σ2

k
I.

Appendix H Subdifferential of the Mutual Information at Points where the Noise Covariances
are not Invertible

Lemma 13. Consider a MIMO channel H with given noise covariance S and transmit covariance Q,
such that the mutual information is finite and given by

f (S) = log
∣∣∣I + S+HQHH

∣∣∣ (H1)

Let T , T⊥ provide a full unitary basis for the fundamental subspaces of S. The subdifferential of
f at S is given by

∂ f (S)
∂S

=

{
Σ : Σ = −

(
S + HQHH

)+
+ S+ + Σ∆, Σ∆ ∈ E∆

}
(H2)

where

E∆ =

conv
J

({
Σ∆ : Σ∆ = LT JT⊥H − T⊥ JHTHL + T⊥ JHTHLT JT⊥H, L =

(
S + HQHH

)+
+ S+

})
(H3)

and THΣ∆T = 0 ∀Σ∆ ∈ E∆.

Proof. According to [38, Th. 2.5.1], the subdifferential of a function f at x is the convex hull of the
limit points of the sequence ∂ f (xi)

∂xi
where the limit xi → x exists and xi avoids points where f is not

differentiable. We introduce

S̃ =
[

T T⊥
][THST 0

0 0

][
T T⊥

]H
+ ε
[

T T⊥
][ A B

BH C

][
T T⊥

]H
(H4)

where C � 0 and
∆ = A− BC−1BH � 0 (H5)

We use S̃ to parameterize Si by the choice of ε and Si → S for ε → 0. As S̃ � 0 for every ε > 0,
we have

f (S̃) = log
∣∣∣I + S̃−1HQHH

∣∣∣ (H6)

= log
∣∣∣S̃ + HQHH

∣∣∣− log
∣∣S̃∣∣ (H7)
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and

∂ f (S̃)
S̃

= (S̃ + HQHH)−1 − S̃−1 (H8)

Using T⊥HH = 0 and substituting

X = THST + THHQHHT (H9)

We obtain

[T T⊥]H
∂ f (S̃)

S̃
[T T⊥] (H10)

=

[
X + εA εB

εBH εC

]−1

−
[

THST + εA εB
εBH εC

]−1

(H11)

=

[
(X + ε∆)−1 −(X + ε∆)−1BC−1

−C−1BH(X + ε∆)−1 1
ε C−1 + C−1BH(X + ε∆)−1BC−1

]
− (H12)

−
[

(THST + ε∆)−1 −(THST + ε∆)−1BC−1

−C−1BH(THST + ε∆)−1 1
ε C−1 − C−1BH(THST + ε∆)−1BC−1

]
(H13)

=

[
(X + ε∆)−1 − (THST + ε∆)−1 −

[
(X + ε∆)−1 − (THST − ε∆)−1]BC−1

−C−1BH[(X + ε∆)−1 − (THST + ε∆)−1] +C−1BH[(X + ε∆)−1 − (THST + ε∆)−1]BC−1

]
(H14)

and

lim
ε→0

∂ f (S̃)
S̃

= [T T⊥]

 X−1 − (THST)−1 −
[

X−1 − (THST)−1
]

BC−1

−C−1BH
[

X−1 − (THST)−1
]

C−1BH
[

X−1 − (THST)−1
]

BC−1

[T T⊥]H

(H15)

= T
[

X−1 − (THST)−1
]

TH−

− T
[

X−1 − (THST)−1
]

BC−1T⊥H−

− T⊥C−1BH
[

X−1 − (THST)−1
]

TH+

+ T⊥C−1BH
[

X−1 − (THST)−1
]

BC−1T⊥H (H16)

= T
[
(THST + THHQHHT)−1 − (THST)−1

]
TH−

− T
[
(THST + THHQHHT)−1 − (THST)−1

]
THTBC−1T⊥H−

− T⊥C−1BHTHT
[
(THST + THHQHHT)−1 − (THST)−1

]
TH+

+ T⊥C−1BHTHT
[
(THST + THHQHHT)−1 − (THST)−1

]
THTBC−1T⊥H (H17)

=
(

S + HQHH
)+
− S+−

−
[(

S + HQHH
)+
− S+

]
TBC−1T⊥H−

− T⊥C−1BHTH
[(

S + HQHH
)+
− S+

]
+

+ T⊥C−1BHTH
[(

S + HQHH
)+
− S+

]
TBC−1T⊥H (H18)
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We observe that the limit is independent of A, and when considering all possible choices for limit
points, we can freely select B, C � 0 as we can always select A such that S̃ � 0. If C is not strictly
positive, S̃ is not strictly positive and f is not differentiable. Therefore, the limit point of this sequence
is not relevant. We conclude that Equation (H4) allows to parameterize all relevant limit points.

We introduce the following substitutions

Σ∆ = L− LT JT⊥H − T⊥ JHTHL + T⊥ JHTHLT JT⊥H (H19)

L =

[(
S + HQHH

)+
− S+

]
(H20)

J = BC−1 (H21)

As C � 0, B can have arbitrary values, J can take any value, and we can parameterize the
subdifferential, given by the convex hull of the limit points, as

∂ f (S)
∂S

=

conv
J

({
L− LT JT⊥H − T⊥ JHTHL + T⊥ JHTHLT JT⊥H, L =

(
S + HQHH

)+
− S+

})
(H22)

=

{
Σ : Σ = −

(
S + HQHH

)+
+ S+ − Σ∆, Σ∆ ∈ E∆

}
(H23)

where

E∆ =

conv
J

({
Σ∆ : Σ∆ = LT JT⊥H − T⊥ JHTHL + T⊥ JHTHLT JT⊥H, L =

(
S + HQHH

)+
− S+

})
(H24)

With THT⊥ = 0 we have THΣ∆T = 0 ∀Σ∆ ∈ E∆.

Appendix I Details of the Proof for the Polite Waterfilling Lemma 9

In the following, we show that every solution to Equations (121)–(123) is a solution to
Equation (125)–(127) and vice versa and that these solutions fullfil the equalities of Lemma 9.
There are several implications of the conditions of the lemma that we use in the following:

[TT⊥] unitary and full rank ⇒ THT = I (I1)

[ΦΦ⊥] unitary and full rank ⇒ ΦHΦ = I (I2)

THST � 0, T⊥HST⊥ = 0⇒ S+ = T(THST)−1TH and S = TTHSTTH (I3)

ΦHΨΦ � 0, Φ⊥HΨΦ⊥ = 0⇒ Ψ+ = Φ(ΦHΨΦ)−1Φ and Ψ = ΦΦHΨΦΦH (I4)

HΦ⊥ = 0⇒ H = HΦΦH (I5)

T⊥H = 0⇒ H = TTHH (I6)

HΦ⊥ = 0, ΦHQ∆Φ = 0⇒ HQ∆ HH = 0 (I7)

T⊥H = 0, THΣ∆T = 0⇒ HHΣ∆H = 0 (I8)

With HHΣ∆H = 0 and Equation (121), we have

HHΣH = −wHH(S + HQHH)+H + wHHS+H (I9)
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and by adding it to Equation (122), we obtain

Ψ + HHΣH = wHHS+H + K (I10)

Furthermore, tr(KQ) = 0, K � 0, Q � 0 implies KQ = 0. Multiplying Equation (122) with Φ⊥H

from the left and Φ⊥ from the right and using HΦ⊥ = 0 and Φ⊥HΨΦ⊥ = 0 yields Φ⊥HKΦ⊥ = 0,
which implies K = ΦΦHKΦΦH. Combined with KQ = 0 and ΦHΦ = I we have ΦHKΦΦHQ = 0.

Now we are prepared to show that any solution of Equations (121)–(123) also fulfills
Equation (125). As Q∆ is only constrained by ΦHQ∆Φ = 0 and can be freely chosen otherwise,
as long as Q � 0, it is sufficient to verify

ΦHQΦ = −wΦH(Ψ + HHΣH)+Φ + w(ΦHΨ+Φ) (I11)

⇔ ΦHQΦ = −w(ΦH(Ψ + HHΣH)Φ)−1 + w(ΦHΨΦ)−1 (I12)

⇔ ΦH(Ψ + HHΣH)ΦΦHQΦΦHΨΦ = −wΦHΨΦ + wΦH(Ψ + HHΣH)Φ (I13)

⇔ ΦH(wHHS+H + K)ΦΦHQΦΦHΨΦ = wΦHHHΣHΦ (I14)

⇔ ΦH(HHS+H)ΦΦHQΦΦHΨΦ = ΦHHHΣHΦ (I15)

where we used Equation (122) and ΦHKΦΦHQ = 0. The left side of Equation (I15) is

ΦH(HHS+H)ΦΦHQΦΦHΨΦ

= ΦH(HHS+H)ΦΦHQΦΦH(wHH(S + HQHH)+H + K)Φ (I16)

= wΦH(HHS+H)ΦΦHQΦΦHHH(S + HQHH)+HΦ (I17)

= wΦHHHT(THST)−1THHΦΦHQΦΦHHHT(THST + THHΦΦHQΦΦHHHT)−1THHΦ

(I18)

= wH̄HS̄−1H̄Q̄H̄H
(

S̄ + H̄Q̄H̄H
)−1

H̄ (I19)

where we substituted H̄ = THHΦ, S̄ = THST , and Q̄ = ΦHQΦ. By Equation (I9), the right side of
Equation (I15) can be reformulated as

ΦHHHΣHΦ

= −wΦHHH(S + HQHH)+HΦ + wΦHHHS+HΦ (I20)

= −wΦHHHT(THST + THHΦΦHQΦΦHHHT)−1THHΦ + wΦHHHT(THST)−1THHΦ (I21)

= −wH̄H(S̄ + H̄Q̄H̄H)−1H̄ + wH̄HS̄−1H̄ (I22)

Now, combining Equations (I16) and (I20) we can rewrite Equation (I15) as

H̄HS̄−1H̄Q̄H̄H
(

S̄ + H̄Q̄H̄H
)−1

H̄ = −H̄H(S̄ + H̄Q̄H̄H)−1H̄ + H̄HS̄−1H̄ (I23)

⇔ (H̄HS̄−1H̄Q̄ + I)H̄H
(

S̄ + H̄Q̄H̄H
)−1

H̄ = H̄HS̄−1H̄ (I24)

⇔ H̄H
(

S̄ + H̄Q̄H̄H
)−1

H̄ = (H̄HS̄−1H̄Q̄ + I)−1H̄HS̄−1H̄ (I25)

which holds true by the matrix inversion lemma.
Any solution of Equations (121)–(123) will satisfy Equation (126) by selecting M as

M = S− wH
(

Ψ + HHΣH
)+

HH (I26)

which leaves us to show that this choice is consistent with Equation (127).
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By HQ∆HH = 0 and multiplying Equation (125) with H from the left and with HH from the
right, we have

− wH
(

Ψ + HHΣH
)+

HH = HQHH − wHΨ+HH (I27)

and combined with Equation (I26), we have

M = S + HQHH − wHΨ+HH (I28)

⇒ ΣM = ΣS + ΣHQHH − wΣHΨ+HH (I29)

⇒ tr(ΣM) = tr(ΣS) + tr(ΣHQHH)− w tr(ΣHΨ+HH) (I30)

From Equation (121) we have

THΣT = −w(THST + THHQHHT)−1 + w(THST)−1 (I31)

⇔ THSTTHΣT + THHQHHTTHΣT = wTHHQHHT(THST)−1 (I32)

⇒ tr(THSTTHΣT) + tr(THHQHHTTHΣT) = w tr(THHQHHT(THST)−1) (I33)

⇔ tr(TTHSTTHΣ) + tr(TTHHQHHTTHΣ) = w tr(HQHHT(THST)−1TH) (I34)

⇔ tr(SΣ) + tr(HQHHΣ) = w tr(HQHHS+) (I35)

Combining Equations (I30) and (I35) we have

tr(ΣM) = w tr(S+HQHH)− w tr(ΣHΨ+HH) (I36)

Thus, tr(ΣM) = 0 holds if

ΦHHHS+HQΦ = ΦHHHΣHΨ+Φ (I37)

and
Φ⊥HHHS+HQΦ⊥ = Φ⊥HHHΣHΨ+Φ⊥ (I38)

As Φ⊥HH = 0 and Ψ+Φ⊥ = 0, it is sufficient to verify

ΦHHHS+HQΦ = ΦHHHΣHΨ+Φ (I39)

⇔ ΦHHHS+HQΦ = ΦHHHΣHΦ(ΦHΨΦ)−1 (I40)

⇔ ΦHHHS+HΦΦHQΦΦHΨΦ = ΦHHHΣHΦ (I41)

which is Equation (I15) and was shown to hold true.
We have shown that every solution to Equations (121)–(123) is a solution to Equations (125)–(127)

and the inverse direction follows by symmetry. It remains to show that Equations (121)–(123) and
(125)–(127) imply the equalities of the Lemma. Equality (a) is Equation (I37) and a proof for (b) follows
by symmetry. Equalities (c) and (d) are Equations (121) and (125). Equality (e) follows from (a) or (b).
By symmetry, the same way we derived Equation (I35) we derive

tr(ΨQ) + tr(HHΣHQ) = w tr(HHΣHΨ+) (I42)

and combining this with Equation (I35) and (a) implies (f).
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