
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Wirtschaftsinformatik (I 17)

Prof. Dr. Helmut Krcmar

Memory-aware Multi-Objective
Optimization of Deployment
Topologies for Distributed

Applications

Felix Markus Willnecker

ii

TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Wirtschaftsinformatik (I 17)

Prof. Dr. Helmut Krcmar

Memory-aware Multi-Objective
Optimization of Deployment
Topologies for Distributed

Applications

Felix Markus Willnecker

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Alexander Pretschner
Prüfer der Dissertation: 1. Prof. Dr. Helmut Krcmar

2. Prof. Dr. Ralf H. Reussner
Karlsruhe Institute of Technology (KIT)

Die Dissertation wurde am 13.10.2017 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Informatik am 18.01.2018 angenommen.

Acknowledgements

”
Es ist ein lobenswerter Brauch: Wer was Gutes bekommt, der bedankt sich auch“ -

Wilhelm Busch (1832-1908)

During the last four years of my research at fortiss I received a lot. A lot of good ideas,
a lot of help, a lot of resources for my research. Now is the time to say thank you to the
ones that contributed to this thesis, who supported and encouraged me.

First I want to thank Prof. Dr. Helmut Krcmar for the opportunity to work in his group
and for supervising this interesting and challenging research topic. I enjoyed the freedom
of research you granted me, as well as the guidance you offered. During this time I had
some great experiences and got the chance to evolve not only as a scientist, but also
personally.

My thanks also goes to my former and current colleagues Christian Vögele, Andreas
Brunnert, Johannes Kroß, and Alexandru Danciu of the Performance Management Group
at the fortiss institute for their valuable advices, ground work they created, suggestions
and fruitful discussions around the topic of my dissertation. This work would have taken
a lot longer and achieved less without this group. I also like to say thank you to the
former FB 3 colleagues at fortiss.

Several colleagues of other institutions collaborated with me throughout the years and I
am very grateful for their support. First of all, Dr. Andrè van Hoorn from the University
of Stuttgart, who worked with me in the SPEC DevOps Performance Working Group.
Prof. Dr. Samuel Kounev, Dr. Simon Spinner and Jürgen Walter from the University
of Würzburg, whose tools and techniques contributed significantly to the results of my
work. Last but not least, Prof. Dr. Ralf Reussner and Prof. Dr. Steffen Becker, whose
work on the Palladio Component Model lay the foundation of my research.

This work was supported by many dedicated and ambitious students. I would like to
thank Johannes Leimhofer, Julia Kindelsberger, Bernhard Koch-Kemper, Carmen Carlan,
Thomas Zwickl, and Sören Gunia for their excellent work, their ideas, and clever thoughts.

Finally, my biggest thank goes to my wonderful wife Eva. You constantly supported
me during these years. Thank for enduring long working hours at night, at Christmas,
during our vacations. Whenever a paper deadline called you were patiently waiting for
me. Without you, I could not have done it.

Munich, Germany, October 2017 Felix Willnecker

iv

Abstract

Problem Distributed applications are composed of components and distributed through-
out multiple container, Virtual Machines (VMs) or bare-metal server. These applications
often utilize corresponding resources far below available capacity. Especially in managed
environments, such as cloud Infrastructure as a Service (IaaS) environments, this induces
unnecessary costs. Changing the deployment topology in order to increase resource uti-
lization demands several tests on environments comparable to the production system. The
effort to test a certain topology can be reduced by using performance models. Such models
can be used to landscape system architectures and to simulate changes in the deployment
topology or resource environment without utilizing actual resource environments. There-
fore, this work aims on generating performance models for distributed applications to
generate models of such applications and to optimize their deployment topologies. Fur-
thermore, memory is typically disregarded performance meta-models leading to inaccurate
performance models of distributed applications. Therefore, our approach adds a memory
model to architecture-level performance models to optimize deployment topologies.

Research Method The research goals were achieved by following the design-science
paradigm. During the work on this thesis, several artifacts were designed, implemented,
and evaluated such as the deployment topology optimizer and an automatic memory
management model and corresponding simulation methods. Our research is based on
previous results in the area of application performance management and software per-
formance engineering such as application monitoring solutions and performance model
generators (PMGs). Our artifacts utilize and extend this previous research that was
identified in multiple literature reviews. We used prototyping and simulation, as well as
controlled experiments to implement, test, and evaluate our artifacts.

Results This work presents an memory-aware deployment topology optimizer for dis-
tributed applications. The key results are a scalable simulation cluster, an automatic
memory management performance model, and a deployment topology optimization. The
cluster is designed to be integrated it into other tool-chain. In this work, the cluster
enables us to simulate multiple design variants such as different deployment topologies in
parallel. With the use of the automatic memory management performance model, perfor-
mance engineers and researchers are enabled to consider memory and garbage collection
as an important factor of their applications and runtimes. Furthermore, our deployment
topology optimizer can select good topologies by the use of evolutionary algorithms to
conduct multi-objective optimization. The corresponding process presented in this work
uses small test environments to generate holistic performance models and to predict the
effects in target environments. In addition, we present a flexible cost-model that allows

v

to consider runtime costs in on-premise, cloud, and hybrid environments. The results of
this cost-model are regarded in the topology optimization.

Research Implications This work combined two separated research fields: archi-
tecture optimization and performance model generation/extraction. This combinations
allows researchers to use real world applications and connect those to academic research
regarding architecture optimization. Furthermore, academic research benefits from the
meta-model approaches presented in this work. Especially, the probabilistic memory
model allows to research in memory intensive areas such as in-memory databases. With
the contributions of this work, automatic, and dynamic memory management is inte-
grated in architecture-level performance models. Additionally, large simulation-based
experiments with a huge amount of variants become possible with the simulation service
proposed in this work.

Practical Implications This work contributes to practice by providing a holistic tool
that can derive performance models and optimize their deployment topology. Especially
for cloud environments, this allows companies to save operation costs by providing similar
quality of service. Unused resources are utilized by the application operator instead of the
IaaS provider. The memory management model provides an easy to understand heuristic
for profiling memory behavior of an application. Developers and architects can use this
as metrics to understand, monitor, and improve the memory footprint of their distributed
applications. The improvements of PMGs presented in this work lead to more accurate
performance models. These models cover more aspects of the runtime environment and
of the application itself. This comprises memory and garbage collection behavior and
the use of resource demand measurements and estimations. The latter increases the
supported technologies for PMG the number of potential monitoring solutions is higher
when combining both approaches. Tools for capacity planning and in continuous delivery
pipelines that use PMG benefit from these improvements.

Limitations The presented methods, models, and techniques have certain limitations.
The PMG approach, requires a transaction ID that is unique through the complete system.
If such an ID is not available and not injectable, our approach is blind at the boundaries
of the system. In our case, this allows us to consider databases as blackboxes and derive
their resource demands using estimation techniques. However, our model generation is
blind if any further cascades occur, like a secondary database system, a replication, or a
shard.

Even though, we use a combination of recombination and mutation for our deployment
optimizer, it is still possible that not the best solution is found. The optimal solution
might never be found as the search space can be huge. We try to conduct a broad search,
by using recombinations in every generation. This might not lead to the best solution, but
usually to a deployment topology that makes use of underutilized resources in contrast to
naive deployments.

Zusammenfassung

Problem Verteilte Anwendungen bestehen aus Komponenten die über verschiedenste
Container, virtuelle Maschinen oder Hardware Server verteilt betrieben werden. Diese
Applikationen nutzen die zur Verfügung stehenden Ressourcen üblicherweise nicht aus.
Insbesondere in gemanagten Umgebungen, wie IaaS Cloud Umgebungen, führt dies zu
unnötigen Kosten. Die Topologie anzupassen, um die zur Verfügung stehenden Ressour-
cen besser auszunutzen, erfordert eine Reihe von Tests auf produktionsnahen Systemen.
Der Aufwand der dabei entsteht kann durch Performance Modelle reduziert werden. Solche
Modelle können genutzt werden, um die Systemarchitektur und ihre Topologie abzubilden
und Änderungen mit Hilfe von Simulationen zu bewerten. Diese Arbeit benutzt Perfor-
mance Model Generierung für verteilte Unternehmensanwendungen zur Erstellung solcher
Modelle, um anschließend die Topologie dieser Anwendungen zu optimieren. Darüber hin-
aus führen wir ein Model für die Simulation des Arbeitsspeichers ein, da dies in aktuellen
Performance Modellen typischerweise vernachlässigt wird, dennoch großen Einfluss auf
die Performance der Applikation hat.

Forschungsmethode Zur Erreichung der Forschungsziele wurde das Design-Science
Paradigma verwenden. Während der Arbeit an dieser Dissertation sind verschiedene Ar-
tefakte designed, implementiert und evaluiert worden, wie beispielsweise ein Optimie-
rer für die Topologie von verteilen Applikation oder ein Model für die Simulation von
automatischen Memory Management. Diese Arbeit fußt auf Arbeiten aus dem Bereich
des Application Performance Management und Software Performance Engineering, wie
beispielsweise Application Monitoring oder Performance Model Generatoren. Unsere Ar-
tefakte bauen auf diese vorherigen Arbeiten auf und erweitern diese durch zusätzliche
Komponenten. Zur Identifikation relevanter Vorarbeiten wurden mehrere systematische
Reviews der wissenschaftlichen Literatur durchgeführt. Zur Evaluierung unsere Artefakte
kommen Methoden wie Prototyping, Simulation und Experimente zum Einsatz. Dadurch
wurden unsere Artefakte in mehrere Iterationen getestet, auf Basis der Ergebnisse ver-
bessert und erneut evaluiert.

Ergebnisse Diese Arbeit enthält einen Topologie Optimierer für verteile Applikatio-
nen der die Arbeitsspeicher Ressource berücksichtigt. Die wichtigsten Ergebnisse und
Artefakte sind ein skalierbarer Simulationscluster, ein Performance Meta-model für au-
tomatisches Memory Management, sowie der genannten Topologie Optimierer. Mit Hilfe
des Simulationsclusters können unterschiedliche Modelinstanzen gleichzeitigt verteilt si-
muliert werden. Der Cluster ist für die Integration in andere Tools mit Hilfe einer REST
API designed. Wir nutzen den Cluster um eine großen Anzahl von Topologien parallel
zu simulieren. Durch die Einführung eines Models für automatisches Memory Manage-
ment, kann die Arbeitsspeicher Ressource unter Berücksichtigen von Garbage Collecti-
on als wichtiger Faktor für die Peformance von verteilen Anwendungen in Performance
Modellen genutzt werden. Der Optimierer erlaubt die automatische Auswahl von guten

vii

Topologien für verteile Applikationen mit Hilfe von evolutionären Algorithmen und durch
mehrdimensionale Optimierung. Der in dieser Arbeit vorgeschlagene Prozess sieht vor,
dass ganzheitliche Performance Modelle in kleinen Testumgebungen erstellt werden und
von da aus die Performance Metriken in der Zielumgebung simuliert und optimiert wer-
den. Darüber hinaus führen wir ein flexibles Kostenmodel ein, welches die Laufzeitkosten
in On-premise, Cloud und hybriden Umgebungen berücksichtigt und in die Optimierung
mit einfließt.

Beitrag zur Forschung Diese Arbeit kombiniert zwei Forschungsfelder: Architektu-
roptimierung und Performance Model Generierung oder Extraktion. Die Kombination
dieser beiden Felder erlaubt Forschern die Nutzung von Modellen echter verteilter Appli-
kationen zur Evaluierung und Weiterentwicklung ihrer Forschungsergebnisse, insbesondere
im Bereich der Architekturoptimierung. Weiterhin profitiert die akademische Forschung
durch die eingeführten Erweiterungen für Performance Modelle hinsichtlich der Arbeits-
speicher Ressource. Das eingeführte Model basiert auf Wahrscheinlichkeit und ist dadurch
flexible einsetzbar. Denkbar wäre beispielsweise der Einsatz zur Untersuchung von In-
memory Datenbanken. Darüber hinaus, große Simulationsexperiment mit einer großen
Anzahl und Varianten können mit Hilfe des eingeführten Simulationsclusters schneller,
parallel durchgeführt werden.

Beitrag zur Praxis Durch die Einführung einer ganzheitlichen Toolkette zur Erstel-
lung von Performance Modellen und Optimierung der Topologie von verteilen Anwendun-
gen bietet eine Reihe von Vorteilen für die Praxis. Diese Arbeit zeigt, dass insbesondere
in Cloud Umgebungen Einsparpotential besteht und Unternehmen die Kosten für den
Betrieb von Anwendungen bei ähnlicher Servicequalität reduzieren können. Eingekaufte
Ressourcen können dadurch vom Betreiber einer Applikation besser ausgenutzt werden,
anstatt durch den IaaS Anbieter überprovisioniert zu werden. Das Memory Management
Model erlaubt die Bewertung der Speichereffizienz einer Applikation auf Basis von einfa-
chen Metriken. Dadurch können Entwickler und Architekten den Speicherbedarf leichter
abschätzen, bewerten, und überwachen. Darüber hinaus sind akkuratere Vorhersagemo-
delle für die Performance einer Applikation möglich, da diese nun die wichtigsten Aspekte
der Laufzeit der Applikation umfassen. Weiterhin konnten wir durch den kombinierten
Einsatz von Ressource Demand Messungen und Abschätzmethoden, die Anzahl der Mo-
nitoringlösungen für die Performance Model Generierung erhöhen und dadurch eine brei-
tere Anzahl an Technologien für die Generierung nutzen. Dies hilft Anwendungsszenarien
wie Kapazitätsplanung und die automatische Performance Überwachung in Contiuous
Delivery Pipelines zu verbessern.

Limitationen Die eingeführten Methoden, Modelle und Techniken unterliegen einigen
Limitationen. Zur Erstellung von Performance Modellen ist eine einheitliche Transaktions-
ID über die komplette Anwendung notwendig. Ohne diese ID ist die Erkennung und
Zuordnung einer Transaktion über mehrere Systeme hinweg nicht möglich und dadurch
auch die Erstellung entsprechender Performancemodelle. In unserem Fall betrifft dies die
Datenbank. Wir betrachten die Datenbank als Blackbox am Ende einer Transaktion und
konnten mit Hilfe von Ressource Demand Abschätzungen dennoch akkurate Performance
Modelle erstellen. Entstehen allerdings weitere Aufrufkaskaden, durch beispielsweise eine
zweite Datenbank oder Replikate, wird eine bessere Monitoringlösung benötigt, die eine
Transaktions-ID für diese Art von Transaktionen einführt.

viii

Obwohl wir eine große Anzahl von Topologien mit Hilfe von Rekombinationen und Muta-
tionen testen, ist es dennoch möglich, dass der Optimierer nicht die beste mögliche Lösung
findet. Je nach Komplexität der Applikation ist der Suchraum dafür einfach zu groß. Wir
versuchen lokale Optima zu vermeiden, indem wir häufige Rekombinationen einsetzen.
Häufig fanden wir aber eine deutlich bessere Lösung gegenüber einem naiven Deploy-
ment und konnten dadurch eine Optimierung erzielen und die Topologie einer verteilen
Applikation verbessern.

Contents

Acknowledgement . iii
Abstract . iv
Zusammenfassung . vi
Contents . ix
List of Figures . xii
List of Tables . xiv
List of Abbreviations and Acronyms . xvi

Part A 1

1 Introduction 2
1.1 Problem Statement and Motivation . 3
1.2 Research Goal and Research Questions . 3
1.3 Thesis Structure . 6

2 Conceptual Background 8
2.1 Performance Metrics . 8
2.2 Application Performance Management . 10
2.3 Model-based Performance Evaluation . 12

2.3.1 Queuing Networks . 13
2.3.2 Layered Queuing Networks . 14
2.3.3 Palladio Component Model . 16

2.4 Automatic Architecture Optimization . 21
2.4.1 Multi-objective Optimization Problems 22
2.4.2 Basic Concepts of Evolutionary Optimization 23

2.5 Memory Management . 25

3 Research Methodology 28
3.1 Research Design . 28
3.2 Research Methods . 29
3.3 Publications . 32

Part B 36

4 Using Dynatrace Monitoring Data for Generating Performance Models
of Java EE Applications 37
4.1 Introduction . 38
4.2 Automatic Performance Model Generation Framework 38
4.3 Conclusion & Future Work . 40

ix

CONTENTS x

5 Comparing the Accuracy of Resource Demand Measurement and Esti-
mation Techniques 41
5.1 Introduction . 42
5.2 Extracting Resource Demands . 43

5.2.1 Performance Management Work - Tools Monitoring 45
5.2.2 Dynatrace Application Monitoring 45
5.2.3 Library for Resource Demand Estimation 45

5.2.3.1 Demand estimation approaches 45
5.2.3.2 Estimation approach selection 46

5.3 Evaluation . 47
5.3.1 Standalone evaluation . 48
5.3.2 Distributed Setup . 50

5.4 Related Work . 54
5.5 Conclusion and Future Work . 55

6 Full-Stack Performance Model Evaluation using Probabilistic Garbage
Collection Simulation 56
6.1 Introduction . 57
6.2 Garbage Collection Model . 57
6.3 Evaluation . 58
6.4 Conclusions . 61

7 Model-based Prediction of Automatic Memory Management and Garbage
Collection Behavior 62
7.1 Related Work . 65

7.1.1 Memory management . 65
7.1.2 Performance Model Generation . 66
7.1.3 Performance Management . 67

7.2 Use Cases . 67
7.3 Research Method . 68

7.3.1 Memory Management and Garbage Collection 70
7.3.2 Memory Meta-Model . 73
7.3.3 Observing memory demands and Garbage Collection (GC) 78
7.3.4 Memory model generation . 81
7.3.5 Limitations . 87

7.4 Evaluation . 88
7.4.1 Experimental Setup . 88
7.4.2 Evaluation process . 90
7.4.3 Evaluation Results . 92
7.4.4 Discussion . 99

7.5 Conclusion . 99

8 Optimization of Deployment Topologies for Distributed Enterprise Ap-
plications 101
8.1 Introduction . 102
8.2 Related Work . 104
8.3 Enterprise application components . 105
8.4 Deployment Topology Optimization Process 107

CONTENTS xi

8.5 Performance Model Generator . 108
8.5.1 Monitoring . 109
8.5.2 Aggregation . 110
8.5.3 Model Generation . 110

8.6 Architecture Optimizer . 113
8.7 Evaluation . 116
8.8 Conclusion . 118

9 SiaaS: Simulation as a Service 121
9.1 Introduction . 122
9.2 Related Work . 122
9.3 Simulation Service . 123
9.4 Evaluation . 125
9.5 Conclusions . 126

10 Multi-Objective Optimization of Deployment Topologies for Distributed
Applications 127
10.1 Introduction . 128
10.2 Related Work . 130
10.3 Distributed application components . 132
10.4 Deployment Topology Optimization Process 134
10.5 Performance Model Generator . 135

10.5.1 Monitoring . 135
10.5.2 Aggregation . 137
10.5.3 Model Generation . 138
10.5.4 Cost model . 140

10.6 Architecture Optimizer . 141
10.7 Evaluation . 144

10.7.1 Evaluation System . 144
10.7.2 Evaluation Approach . 145
10.7.3 On-premise Evaluation . 146
10.7.4 Cloud Environment Evaluation . 149

10.8 Conclusion . 151

Part C 153

11 Discussion 154
11.1 Summary . 154
11.2 Limitations . 156
11.3 Contribution to Research . 158
11.4 Contribution to Practice . 159
11.5 Future Research . 159

References 160

List of Figures

1.1 Structure of this dissertation . 7

2.1 Resources and state causing the response time of a certain operation.
(Adapted from Koch-Kemper (2015)) . 10

2.2 Example of a simple queuing network. (Adapted from Balsamo (2007);
Koch-Kemper (2015)) . 13

2.3 Example of a layered queuing network. (Adapted from Cortellessa/Di Mar-
co/Inverardi (2011)) . 15

2.4 Components of Palladio Component Model (PCM). (Adapted from Beck-
er/Koziolek/Reussner (2009)) . 16

2.5 Repository model graph and example Resource Demanding Service Effect
Specifications (RDSEFF). (Adapted from Brunnert/Vögele/Krcmar (2013)) 17

2.6 System model graph (Adapted from Koch-Kemper (2015)) 18
2.7 Resource environment model example . 19
2.8 Usage model example . 20
2.9 Software Architecture Optimization Approaches Taxonomy Aleti et al. (2013) 22
2.10 Exemplary multi-objective optimization problem with two objective func-

tions that should be minimized (Adapted from Coello/Lamont/Van Veld-
huisen (2007)) . 23

2.11 Memory space organization in Java adapted from Honk (2014) 26
2.12 Memory trace of a system using Dynamic Memory Management 26
2.13 Memory trace of a system using Automatic Memory Management 27

3.1 Memory trace of a system using Dynamic Memory Management 31

4.1 PMWT Performance Model Generation Framework 39

5.1 Performance model generator framework (adapted from Brunnert/Neu-
big/Krcmar (2014); Willnecker/Brunnert et al. (2015a)) 44

5.2 Measured and simulated response times on system entry point level 49
5.3 Measured and simulated response times on component operation level . . . 51
5.4 Measured and simulated response times . 53

6.1 SPECjEnterpriseNEXT deployment . 59

7.1 Research method and evaluation process 69
7.2 Memory space organization in Java adapted from Honk (2014) 71
7.3 Memory trace of a system using Dynamic Memory Management 72
7.4 Memory trace of a system using Automatic Memory Management 73

xii

LIST OF FIGURES xiii

7.5 Software Engineering concepts of a distributed application,PCM elements,
and equivalent Java components adapted from Willnecker/Krcmar (2016) . 74

7.6 PCM extension for memory resources . 76
7.7 PCM extension accessing the newly introduced memory resource 78
7.8 Example of growing committed memory using automatic memory manage-

ment . 80
7.9 Performance model generation process adapted from Willnecker/Krcmar (2016);

Brunnert/Krcmar (2017) . 81
7.10 Example of an automatic generated Resource Environment model for the

SPECjEnterpriseNEXT Enterprise Application (EA) 84
7.11 PCM RDSEFF representation of memory demands 86
7.12 SPECjEnterprise2010 Orders Domain as an example EA 88
7.13 SPECjEnterpriseNEXT Insurance Domain as example EA 89
7.14 Experiment design to evaluate memory model accuracy 90
7.15 Response times SPECjEnterprise2010 Experiment 1 (Replay) & 2 (Cloud) 93
7.16 Response times SPECjEnterprise2010 Experiment 3 (G1) & 4 (Alternate

Workload) . 94
7.17 Response times SPECjEnterpriseNEXT Experiment 5 (Replay) 95
7.18 Response times SPECjEnterpriseNEXT Experiment 6 (Cloud) 96
7.19 Response times SPECjEnterpriseNEXT Experiment 7 (G1) 97
7.20 Response times SPECjEnterpriseNEXT Experiment 8 (Alternative Work-

load) . 98

8.1 Enterprise application components (adapted from Becker/Koziolek/Reuss-
ner (2009); Brunnert/Krcmar (2017)). 106

8.2 Deployment topology optimization process. 107
8.3 Performance model generator framework (adapted from Willnecker/Dlugi

et al. (2015c)). 109
8.4 PCM extension for memory resources. 111
8.5 Deployment Unit Optimizer. 114
8.6 SPECjEnterpriseNEXT test deployment. 117
8.7 Response time evaluation. 120

9.1 Simulation cluster architecture . 123
9.2 Simulation cluster in kubernetes instance 125

10.1 Distributed application structure adapted from (Becker/Koziolek/Reuss-
ner, 2009; Brunnert/Krcmar, 2017) . 132

10.2 Deployment topology optimization process. 134
10.3 Core subsystem of deployment topology optimization 136
10.4 PCM extension for memory resources. 138
10.5 Cost model extension . 140
10.6 Response time evaluation - On-premise environment 146
10.7 Pareto-fronts along optimal deployments in both environments. X-Axis:

costs, Y-Axis: average response times, Z-Axis: average resource utiliza-
tion. Dots represent actual measurements, blue plane represents calculated
Pareto-front) . 148

10.8 Response time evaluation - Cloud environment 149

List of Tables

2.1 Resource utilization definition . 9

3.1 Publications embedded in this thesis . 32
3.2 Further publications during the work on this dissertation 34

4.1 Bibliographic details for P1 . 37

5.1 Bibliographic details for P2 . 41
5.2 Measured and simulated Central Processing Unit (CPU) utilization for

system entry point level . 49
5.3 Measured and simulated CPU utilization for component operation level . . 50
5.4 Software and hardware configuration of the system under test (SUT) . . . 52
5.5 Measured and simulated CPU utilization using Performance Management

Work (PMW)-Tools monitoring . 53
5.6 Measured and simulated CPU utilization using Dynatrace AM 53

6.1 Bibliographic details for P3 . 56
6.2 Measurement and simulation results . 60

7.1 Bibliographic details for P4 . 62
7.2 GC measurement data collection . 83
7.3 Software and hardware configuration for model generation 91
7.4 List of all conducted experiments . 91
7.5 Measurement and simulation results for SPECjEnterprise2010 accessed by

200 concurrent users . 92
7.6 Measurement and simulation results for SPECjEnterpriseNEXT in an on-

premise environment accessed by 140 concurrent users 95
7.7 Measurement and simulation results for SPECjEnterpriseNEXT in a cloud

environment accessed by 140 concurrent users 96
7.8 Measurement and simulation results for SPECjEnterpriseNEXT using the

G1 GC accessed by 140 concurrent users 97
7.9 Measurement and simulation results for SPECjEnterpriseNEXT using an

alternated workload accessed by 140 concurrent users 98

8.1 Bibliographic details for P5 . 101
8.2 Software and hardware configuration of the deployment 116
8.3 Measurement and simulation results . 118

9.1 Bibliographic details for P6 . 121

xiv

LIST OF TABLES xv

10.1 Bibliographic details for P7 . 127
10.2 Software and hardware configuration for model generation 145
10.3 Measurement and simulation results for a selected topology on-premise

accessed by 500 users . 147
10.4 Measurement and simulation results for a selected cloud topology accessed

by 500 users users . 150

11.1 Key results of embedded publications . 157

List of Abbreviations and Acronyms

AM Application Monitoring . 137

API Application Programming Interface . 158

APM Application Performance Management. .154

AS Application Server . 142

AWS Amazon Web Services . 156

CDI Contexts and Dependency Injection . 123

CLS Command Line Simulator . 156

CPU Central Processing Unit . 157

CPUPE CPU utilization prediction error . 49

DA distributed application . 156

DB database . 155

DBMS Database Management System. .144

DML Decartes Modeling Language . 13

DUO Deployment Unit Optimizer . 156

EA Enterprise Application . 155

EC2 Elastic Compute Cloud . 156

EE Enterprise Edition . 133

EJB Enterprise JavaBean . 45

GB Gigabyte . 141

GBit/s Gigabit-per-second . 145

GC Garbage Collection . 155

GHz Gigahertz . 145

HDD Hard Disk Drive. .157

HTTP Hypertext Transfer Protocol . 89

IaaS Infrastructure as a Service . 159

kB kilobyte .21

LQN layered queueing network . 130

LTS Load Test Selector . 156

IQR Interquartile range . 92

JAX-RS Java API for RESTful Web Services . 123

xvi xvii

JDBC Java Database Connectivity . 145

JSP JavaServer Page . 48

JMX Java Management Extensions . 137

JPA Java Persistence API . 145

JVM Java Virtual Machine . 158

LibReDE Library for Resource Demand Estimation . 154

MMCPU measured mean CPU utilization. .49

MRT measured response time . 117

PCM Palladio Component Model .155

PET Performance Evaluation Tool. .70

PMG performance model generator. .154

PMW Performance Management Work . 156

PMWT Performance Management Work Tools . 135

RAM Random Access Memory . 48

RDSEFF Resource Demanding Service Effect Specifications . xii

REST Representational State Transfer. .145

SaaS Software as a Service . 156

SAR System Activity Reporter . 137

SMCPU simulated mean CPU utilization . 49

SPE Software Performance Engineering . 67

SPEC Standard Performance Evaluation Corp. 43

SRT simulated response time. .117

SUT system under test . 69

OS operating system . 132

UML Unified Modeling Language . 17

UI User Interface. .155

VM Virtual Machine . 128

WS Web Service . 155

Part A

Chapter 1

Introduction

Enterprise Applications (EAs) are typically implemented as distributed systems com-
posed of components and distributed throughout multiple Virtual Machines (VMs) or
hosts. These systems often utilize corresponding resources far below available capacity.
Especially in managed environments, such as cloud Infrastructure as a Service (IaaS)
environments, this induces unnecessary costs. Changing the deployment topology in or-
der to increase resource utilization demands several tests on environments comparable to
the production system. The effort to test a certain topology can be reduced by using
performance models.

Such models can be used to landscape system architectures and to simulate changes in
the deployment topology or resource environment without utilizing actual resource envi-
ronments. Therefore, this work aims on generating performance models for distributed
applications (DAs) focusing on EAs. One of the main challenges is to consider all ma-
jor resource types regarding the performance of an DA: Central Processing Unit (CPU),
Hard Disk Drive (HDD), network, and memory. Especially automatic memory manage-
ment has been disregarded by modern architecture-level performance models. However,
leaving out one major resource leaves unrepresentative models and inaccurate simulation
results. Therefore, we further introduce an automatic memory management model and
a corresponding performance model generator (PMG) which creates holistic performance
models.

Based on these models, we propose an architecture optimizer that searches for optimal
deployment topologies by conducting a large amount of simulations. These simulations
are executed in parallel using a distributed simulation service. We evaluate the prediction
accuracy compared to actual deployments and the quality of the selected topologies in
terms of resource utilization, response times, and costs. This allows architects to evaluate
component changes and topology variations without replicas of the production system.

2

1.1. PROBLEM STATEMENT AND MOTIVATION 3

1.1 Problem Statement and Motivation

Distributed system architectures are state of the art in large scale EAs (Brunnert/Wischer/
Krcmar, 2014). These systems are composed of components that can be moved and repli-
cated running on multiple instances assigned by deployment management software (Woolf,
2009). Deployment topologies based on different allocations of multiple components and
their relationship form a distributed system architecture. Selecting the right topology is
a complicated task that today is merely assisted by logical topology recommendations
(Woolf, 2009; Koziolek/Koziolek/Reussner, 2011).

Logical topologies often utilize the hardware below their possible capacity as the aver-
age processing load of data centers today is less then 20% (Pawlish/Varde/Robila, 2012).
Virtualized server environments already reduce this over-provisioning, thus increasing
the hardware utilization (Speitkamp/Bichler, 2010). However, virtualized server envi-
ronments limit the optimization opportunities to the granularity level of single virtual
machines. Furthermore, the benefits of virtualization are today used by IaaS providers
to load their servers to capacity. Application operators in their very own interest should
increase the load per VM they rent, in order to get the best value for the cost of run-
ning server instances. Distributed systems, especially ones using the Microservice pattern
rely on fine-grained deployment units, allowing operation engineers and architects to uti-
lize unused capacity more efficiently (Fowler/Lewis, 2014). Planning and testing such
changes in productive environments comprises risks for the stability. In addition, produc-
tive alike test environments and productive systems have comparable prices. Furthermore,
such environments are usually used to capacity by several projects executing load tests.
Therefore, we propose to use a purely software-based solution for planning, optimizing,
and evaluating deployment topologies using performance models.

Performance models can be used to optimize resource utilization, response times, and costs
by evaluating alternative deployment topologies using simulations (Koziolek/Koziolek/
Reussner, 2011; Brunnert/Vögele/Krcmar, 2013). Even for small businesses and their
DA the potential savings in IaaS environments can exceeds millions of annual payments
(Roussel/Branson, 2017). This thesis aims on automatically generating performance mod-
els for DAs in order to optimize their deployment topologies and to analyze the impact
of changing or introducing new components.

1.2 Research Goal and Research Questions

This section provides an overview of the main research questions (RQ) and how this
dissertation tries to answer them.

RQ1: Which model generation techniques and monitoring approaches are
necessary to generate full-stack performance models of DAs
Automatic performance model generator technologies and resource estimation approaches
have been proposed to the scientific community (Brunnert/Krcmar, 2017; Spinner et al.,

1.2. RESEARCH GOAL AND RESEARCH QUESTIONS 4

2015). The proposed approaches focus on single systems and partly ignore the distribution
aspect of modern EAs. The available model generators disregard the topology aspect and
mainly focus on application servers, their resource demands, and relationships. Research
on full-stack distributed systems including the deployment topology of their components
was barely conducted.

This change of scope requires reconsidering the level of granularity feasible for the per-
formance model generation. Currently available approaches generate fine-grained per-
formance models (Brunnert/Krcmar, 2017). Computing power and a processable com-
plexity level limit the granularity of larger performance models. The granularity decision
also depends on the entailed monitoring solutions. Industry as well as scientific solutions
are available to monitor full-stack distributed systems (van Hoorn/Waller/Hasselbring,
2012; Greifeneder, 2011).

Selecting an appropriate monitoring solution, choosing the right level of granularity for
the performance models, as well as adapting and extending available performance model
generators are the main challenges for this research question. This work will identify,
evaluate, and synthesize available monitoring solutions and model generators. We select
applicable monitoring solutions and conduct a series of controlled experiments using SPEC
benchmarks (Henning, 2006). These experiments identify the combination of monitoring
and model generator solutions that are best suited for full-stack DA models.

RQ2: Which modeling and simulation techniques can represent automatic
memory management of DAs without excessive computational requirements?

Memory resources have been widely disregarded in current performance models and corre-
sponding generators (Brunnert/Krcmar, 2017; Brosig/Huber/Kounev, 2014; Walter et al.,
2017). If memory resources are applied, only simple dynamic memory management fea-
tures are available (Brunnert/Krcmar, 2017). Modern runtimes like the Java Virtual
Machine (JVM) or .NET and scripting environments rely heavily on automatic memory
management (Libič et al., 2014; Schildt, 2014). Especially the clean-up of memory, so
called Garbage Collection (GC) is barely represented in performance models (Libič et al.,
2014). Available solutions representing memory resources, automatic memory manage-
ment, and GC are more complex than executing the application itself (Libič et al., 2014).

This research questions aims on designing, implementing, and evaluating a memory re-
source representation that allows simulations with accurate prediction quality while re-
quiring less computational resources than executing the actual system. We extend estab-
lished performance models with a memory resource representation that allows to simulate
dynamic and automatic memory management. Furthermore, we provide a monitoring
and model generation solution that can detect GC behavior and generate model instances
simulating the observed behavior. Therefore, we can predict how changes to the system,
the workload, or the resource environment change the GC behavior and the influence of
these changes on the performance metrics.

RQ3: Which deployment optimization approaches can be adapted for archi-
tecture-level performance models for DA and how accurate are these opti-

1.2. RESEARCH GOAL AND RESEARCH QUESTIONS 5

mizations compared to the actual system?

This research question is settled between the research domains of architecture optimization
and performance model generation and tries to adapt and extend available optimization
algorithms to optimize the deployment topologies of a productive DA (Koziolek/Koziolek/
Reussner, 2011; Salehie/Tahvildari, 2009; Huber/Brosig et al., 2016).

Architecture optimizations have been proposed to improve logical component topolo-
gies and support architecture decisions during design time (Koziolek/Koziolek/Reussner,
2011). Especially deployment topology decisions are a complex and time consuming ac-
tivity (Koziolek/Koziolek/Reussner, 2011). Unfortunately, during design time resource
demands and the infrastructure hosting the system can only be estimated. The accuracy
of the model as well as the optimization recommendations depend on these assumptions.

Optimization of running systems is also covered in the domain of self-adaptive software
systems. Such system require the existence of accurate (performance) models of real sys-
tems (Salehie/Tahvildari, 2009; Huber/Brosig et al., 2016). Such models in regard to
performance are generated by PMGs (Brosig/Huber/Kounev, 2014; Brunnert/Krcmar,
2017; Walter et al., 2017). As of today, several approaches for automatic PMGs including
resource demand estimations exist (Brunnert/Krcmar, 2017; Brosig/Kounev/Krogmann,
2009; Spinner/Casale et al., 2014; Walter et al., 2017). This work adapts and extends ex-
isting automatic PMG approaches to work with distributed EAs. The generated models
are used to optimize deployment topologies. These systems act automatically to a certain
degree and can react within a limited set of rules. These rules can include increasing the
number of available servers to compensate an unusually high amount of user requests or
detecting security breaches and close certain system accesses (Salehie/Tahvildari, 2009).
To detect the need of action self-adaptive software monitors performance data like hard-
ware utilization and network throughput (Huber/Brosig et al., 2016). This research ques-
tion aims on selecting a suitable optimization algorithm that is applied on the generated
performance models of RQ1 and RQ2.

Evaluating the selected and extended model generator and optimization algorithm re-
quires three steps: Validating the accuracy of the generated architecture-level performance
models, the change prediction capabilities, and the selected optimization algorithm.

The evaluation of the performance model is conducted by a series of controlled experi-
ments. Hence, we generate such models from real DAs. These generated models are used
to simulate different load intensity and usage scenarios. The same scenarios are processed
on real systems. When processing such test runs, performance metrics like throughput,
response times, or utilization are measured and compared with the simulation results.
The accuracy of the model is assessed based on the error among simulation results and
measurements of the real system.

The last step is the evaluation of the optimization algorithm. The algorithm calculates al-
ternative deployment topologies by predicting deployment topology changes. The topolo-
gies are optimized in terms of response times, resource utilization, and/or costs. The
optimization algorithm presents alternative topologies that improve the architecture of

the evaluated DA based on the optimization goal(s). The results help to understand the
optimization potential of running systems, the dependencies of distributed components
in terms of performance, and suggests optimization of currently applied topologies.

1.3 Thesis Structure

The structure of this dissertation is shown in Figure 1.1. The thesis is partitioned in three
major parts (Part A, Part B, and Part C)

Part A contains the introduction, the conceptual background, and a description of the
used research methodology. The introduction (chapter 1) is structured into the problem
statement, the motivation, and the derived research questions of this dissertation. The
next chapter covers the conceptual background (chapter 2) and contains preliminaries
about performance metrics, application performance management, model-based perfor-
mance engineering, automatic architecture optimization, and memory management tech-
niques. Furthermore, we elaborate on the research methodology (chapter 3) introduce the
research design, the research methods, and present a list of the embedded publications.

Part B contains the seven embedded publications P1 to P7 (chapter 4 - chapter 10).
These publications resulted from research done by the author as part of this dissertation.
A short summary of the content of these publications is presented in Section 3.3.

Part C concludes this dissertation with a discussion (chapter 11). First, the findings of
the publications are summarized. Afterwards, limitations and the contribution to research
and practice are explained. This dissertation concludes with future research opportunities
and open questions.

1.3. THESIS STRUCTURE 7

RQ2

RQ3

RQ1

PART A

1. Introduction

1.1. Problem Statement and
Motivation

1.2. Research Goal and
Research Questions

1.3. Thesis Structure

2. Conceptual Background

2.2. Application
Preformance Monitoring

2.3. Model-based
Performance Evaluation

2.4. Automatic Architecture
Optimization

3. Research Methodology

3.1. Research Design 3.2. Research Methods 3.3. Publications

PART B

5. Comparing the Accuracy of Resource Demand Measurement and Estimation Techniques

4. Using Dynatrace Monitoring Data for Generating Performance Models of Java EE Applications

6. Full-Stack Performance Model Evaluation using Prohabilistic Garbage Collection Simulation

8. Optimization of Deployment Topologies for Distributed Enterprise Applications

9. SiaaS: Simulation as a Service

7. Model-based Prediction of Automatic Memory Management and Garbage Collection Behavior

PART C

10. Discussion

10.1. Summary 10.2. Limitations 10.3. Contribution to Research

10.4. Contribution to Practice 10.5. Future Research

2.5. Memory Management

10. Multi-objective Optimization of Deployment Topologies for Distributed Applications

2.1. Performance Metrics

Figure 1.1: Structure of this dissertation

Chapter 2

Conceptual Background

This work is based on research in the field of application performance management, model-
based performance evaluation, and architecture optimization, and memory management
approaches. In this chapter the basic principles and the relations between these are
presented, which are required to understand the concepts and contributions of this dis-
sertation.

2.1 Performance Metrics

This work focuses on the utilization of four major resources of a typical EA, the through-
put, and the response times of business transactions. We consider the following major
resource type in our research:

(i) CPU as the major processing unit for EA executing all calculations and usually the
resource with the major portion in origination response times.

(ii) Network in terms of bandwidth and latency, which play an important role in the
communication between client and server but also between services in a distributed
architecture.

(iii) Memory in terms of Random Access Memory (RAM) holding application data and
program code for the EA. We consider application data or the heap space as this is
the variable part of memory that needs to be considered for capacity planning and
the part than leads to application crashes if not managed properly.

(iv) HDD as storage resource for larger datasets, files, and images used and provided by
EAs.

We consider the utilization regarding the above mentioned resource types. Depending on
the type the utilization is calculated differently as depicted in Table 2.1. The utilization
of these resources are measured, simulated, and compared in multiple evaluations of this
work.

8

2.1. PERFORMANCE METRICS 9

Resource Utilization calculation

CPU Numberofcyclesnecessarytoexecuteanoperation
Numveroftotallyavailablecycles

Network Sendandreceivedblocks(bytes)

Totalbandwidth(Bytes
Time

Memory Meanallocatedmemory(bytes)
Meancommittedmemory(bytes)

HDD Read Readblocks(bytes)

Maxreadrate(Bytes
Time

)

HDD Write Writtenblocks(bytes)

Maxwriterate(Bytes
Time

)

Table 2.1: Resource utilization definition

As a second important metric beside resource utilization, we consider response times.
The response time of a certain operation or (business) transaction means the length of
time take for the system to react. In EA this usually means a full round trip from a user
action to a visible response on the client or the complete length of time from starting till
completing a certain (business) transaction. The response time is usually influence by
the computation time, resource contention in shared environments, availability of HDD
and memory, as well as network bandwidth and latency. Furthermore, the availability of
application specific pools, mutual exclusion flags (e.g., mutex), and GC runs can delay the
execution and thus increase the response time of an operation or transaction (Forouzan,
2013).

Figure 2.1 shows an example of an operation and how different components lead to a
certain response time. Service time, meaning execution in terms of CPU, as well as waiting
times caused by resource contention lead to the overall response time here. Furthermore,
a certain amount of memory is allocated for processing the operation. This does not
necessarily increase the response times, nevertheless the number of parallel executions
is limited by the amount of memory currently available. Faster operation cycles release
memory earlier, allowing to process more transactions.

Furthermore, we consider throughput as another important performance metric that is
evaluated in this work. We observe throughput as the amount of bytes send or received
through network in a certain time, but also the amount of users and/or transactions pro-
cesses in a certain time frame. We calculate throughput using Equation 2.1. For example,
after executing a 10 minute load test, we divide the number of processes transactions by
the total time in seconds and receive the mean amount of transactions processed per sec-
ond. Besides measuring and calculating the throughput this approach is also applied to
calculate the inter arrival time between two transactions. We use the inter arrival time
to define and configure the workload of certain business transactions in our research.

throughput =
TotalNumberOfItemsProcessed

T ime
(2.1)

2.2. APPLICATION PERFORMANCE MANAGEMENT 10

CPU

Start

HDD
read

Network

Memory

End

Service time Waiting time Allocation

t

t

t

t

Figure 2.1: Resources and state causing the response time of a certain operation.
(Adapted from Koch-Kemper (2015))

2.2 Application Performance Management

Multiple definitions for the term Application Performance Management (APM) exist.
Mendel (2013) defines Application Performance Management (APM) als a tool or set of
tools to monitor and manage the performance and availability of a software application.
A more complex classification is provided by Haight/De Silva (2016), who define five core
functionalities of APM:

(i) Tracing (in real-time) of algorithm invocations that compound the monitored appli-
cation.

(ii) Measurements and presentation of hard- and software resources, which where used
to execute these algorithms.

(iii) Analysis and determination of successful (depending on the applications purpose)
execution of its transactions.

(iv) Recording of latencies and response times caused by the sequences of the algorithms
of the monitored application.

(v) Root-cause analysis and determination of errors, resource allocation, and laten-
cies/response times.

2.2. APPLICATION PERFORMANCE MANAGEMENT 11

The abbreviation APM is sometime used in the context of Application Performance Mon-
itoring, which is a subset of Application Performance Management. Monitoring is an
important part, but only deliver a large number of data points, which are worthless with-
out the right presentation. APM solutions in the sense of this work, provide a larger set
of tools that go beyond monitoring and support the analyst in managing (monitoring,
maintaining, improving) the performance and availability of complex distributed EA.

We distinguish between two major categories of monitoring data in our work. Coarse-
grained system monitoring and fine-grained application monitoring (Spinner et al., 2015).
Coarse-grained monitoring data has long been standard in performance and availability
monitoring and management. System or infrastructure monitoring solutions like Nagios1

and Hyperic2 use such coarse-grained data to manage the health of hosts. Standard linux
system tools like System Activity Reporter (SAR), TOP3, or procfs4 provide resource
metrics on system and process level. Other sources might be application or server spe-
cific logs like the Apache HTTP server5 access logs. However, the main disadvantage of
this approach is that the performance management is limited to the process level of an
application and does not provide information about the transaction flow, the algorithms,
their resource usage, and their latency.

Modern commercial APM solutions like Dynatrace6 or AppDynamics7 and open-source
APM suites like Kieker8 or InspectIT9 provide detailed application and transaction spe-
cific monitoring data (van Hoorn/Waller/Hasselbring, 2012; Okanović et al., 2016). This
allows to detect, analyze, and resolve performance issues on the component or opera-
tion level, whilst classical coarse-grained APM solutions required secondary information
sources like application logs to improve performance and availability of applications. The
main disadvantages compared to coarse-grained system monitoring is the amount of data
to be managed and the instrumentation overhead that is usually higher compared to
system monitoring.

Even though all the above mentioned APM solutions provide details about the application
that is monitored, the instrumentation technique collection the data might be different
depending on the selected solution. Solutions like Dynatrace use Byte Code instrumenta-
tion and actually detect performance metrics at the boundaries of instrumented operations
and components (Angel et al., 2001). This provides very accurate instrumentation data
but requires to alter the actual deployed system as the byte code is altered in order to
measure and collect data about resource utilization and the current transaction. Other
solutions like AppDynamics use distribution techniques based on frequent samples col-
lected on system and application level. Information about the active transactions and
the current resource utilization of the monitored processes are collected. Afterwards, the
monitoring solution distributes the resource utilization amongst the active transactions.

1https://www.nagios.org/
2https://github.com/hyperic
3https://linux.die.net/man/1/top
4https://www.kernel.org/doc/Documentation/filesystems/proc.txt
5https://httpd.apache.org/
6https://www.dynatrace.com/
7https://www.appdynamics.com/
8http://kieker-monitoring.net/
9http://www.inspectit.rocks/

https://www.nagios.org/
https://github.com/hyperic
https://linux.die.net/man/1/top
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://httpd.apache.org/
https://www.dynatrace.com/
https://www.appdynamics.com/
http://kieker-monitoring.net/
http://www.inspectit.rocks/

2.3. MODEL-BASED PERFORMANCE EVALUATION 12

This provide a blurry view on the actual resource consumption compared to byte code
instrumentation, but requires usually less resources than byte code instrumentation (Spin-
ner et al., 2015). A third way of collecting this fine-grained monitoring data is to intercept
calls using application or framework specific Application Programming Interfaces (APIs).
The Performance Management Work Tools (PMWT) Java Enterprise Edition (EE) agent
and the RETIT10 Java EE agent use this technique based on interception APIs of Java
EE (Brunnert/Vögele/Krcmar, 2013). This instrumentation technique can be seen as a
compromise. It does not require to alter the code of the complete application but only
to add certain interceptors, but requires APIs that allow to hook into the transaction
process.

In this work all above mentioned approaches are used in different contexts. We use
fine-grained monitoring data to generate performance models using leading APM solu-
tions like Dynatrace, custom solutions like PMWT and RETIT Java EE agent, but also
coarse-grained monitoring data in certain contexts (Brunnert/Vögele/Krcmar, 2013; Will-
necker/Brunnert et al., 2015a; Spinner et al., 2015). In general fine-grained monitoring
data is necessary for the model generation, but we developed and integrated techniques
to use coarse-grained monitoring data to generate models representing database access
(Willnecker/Brunnert et al., 2015a). Coarse-grained monitoring data plays an important
role in our evaluation approaches. We compare simulation runs with total resource uti-
lization, throughput, and response times in order to show the accuracy of our models and
their prediction quality.

2.3 Model-based Performance Evaluation

Model-based performance evaluation is a technique that is usually applied to predict the
performance of software systems, often at design time (Brunnert et al., 2015). Recent
research generates such models based on APM or coarse-grained monitoring in order to
create and use accurate models (Brunnert/Krcmar, 2017; Brosig/Huber/Kounev, 2014;
Walter et al., 2017). Our research uses software performance models in all stages and in an
integrative way. This means, we do not create such models at design-time manually, as this
often outweighs their benefits (Kounev/Brosig/Huber, 2014). We generate performance
models out of APM data, alter certain model parts, and predict the performance metrics
resource utilization, response times, and throughput.

Performance models represent application systems in an abstract way. The model uses
parameters and abstract control-flow blocks to specify the behavior of an application. The
level of detail is usually limited to the parts that have influence on the performance of the
system. Other parts are usually not specified in a performance model. This still comprises
a lot of hard- and software components like the resource environment, operations and their
resource consumption, or the usage model.

Simulation engines or solvers allow to predict performance metrics of such performance
models. This allows to for instance predict the resource utilization under a certain work-

10http://retit.de/

http://retit.de/

2.3. MODEL-BASED PERFORMANCE EVALUATION 13

Source
Node

Queued Center Queued Center

Delay
Node

Sink
Node

p

1-p

Figure 2.2: Example of a simple queuing network. (Adapted from Balsamo (2007);
Koch-Kemper (2015))

load. The accuracy of these predictions relies on the quality of the performance model
and its parameters, mainly its resource demands and resource capabilities. Solver predict
these metrics usually faster, but are limited in terms of the model complexity. Simula-
tion engines are in general slower, but allow to simulate much more complex and realistic
models.

Tools or workbenches to create, maintain, change, and simulate or solve such models
exist. Several such models are based on already established model notations such as
(Layered) Queuing Networks or Petri Nets (Cortellessa/Di Marco/Inverardi, 2011). This
allows to reuse already established solver and simulation techniques (Koch-Kemper, 2015).
However, newly developed architecture-level performance models such as Palladio Compo-
nent Model (PCM) and Decartes Modeling Language (DML) exist, which do not rely on
such classical meta-model techniques (Becker/Koziolek/Reussner, 2009; Reussner et al.,
2016; Kounev/Brosig/Huber, 2014). They are still compatible to some extend to layered
queueing networks (LQNs). In our work we use and extend LQNs and PCM. Therefore,
we only present these model techniques in the following.

2.3.1 Queuing Networks

A certain amount of resource consumption is necessary every time an operation of an
application is invoked (e.g., HTTP request triggered by a button click in an EA). These
resources are limited, leading to a certain wait time if the resource (e.g., CPU or HDD) is
not available yet. Queuing Networks model and represent this as so-called Queued Center
(Cortellessa/Di Marco/Inverardi, 2011).

Figure 2.2 shows such Queued Center that consists of a resource server (typically modeled
as a circle) and a waiting queue in front of it. The server represents the resource itself
(e.g., the CPU), which is utilized by Tasks or Jobs. Waiting queues develop and are

2.3. MODEL-BASED PERFORMANCE EVALUATION 14

filled as usually multiple Tasks access the same resource at the same time. As soon as
the resource completes a Tasks the scheduling strategy (e.g, “First-Come First-Served“ or
“Last-Come First-Served“) select the next Job from the waiting queue which again blocks
the resources. In that manner Jobs travel through a directed graph from one center to
another. Annotated branches contain the probability of selecting one of the branches.
This allows to model control-flows and a certain non determinism. Furthermore, Delay
Nodes allows to model waiting times, which can represent network latency, to delay the
execution of a Job in the model.

Two types of Queuing Network exist regarding the job creation: Open and closed Queuing
Network. An open Queuing network contains source and sink nodes marking start end
end points of a transaction. Figure 2.2 shows an open Queuing Network. New Jobs arrive
at the source node and are processed until they leave the network using the sink node.
Closed Queuing Networks contain so-called Terminal Nodes. When a Job arrives at a
Terminal Node, it is stored until a certain time period passes. This represents the think
time of a user. After this time passed, a new Job with the same properties is created
and begins to travel through the network starting at the Terminal Node (Koch-Kemper,
2015).

The presented techniques allow to model a basic application, its resources, and simple
control-flows. We need parameters in order to predict performance metrics using Queuing
Network. Multiple approaches exist to realize this (Cortellessa/Di Marco/Inverardi, 2011).
In standard Queuing Networks the Job size is always the same. To represent different
resource consumption each Job can contain a length representing the required resource
service time to process. Furthermore, Delay Nodes need a waiting queue to represent the
bandwidth of a network and not just the latency.

2.3.2 Layered Queuing Networks

Classical Queuing Networks represent EAs as a number of connected Queued Center,
multiple job classes, and workload specifications. This model language is often to simple
to represent modern complex component-based software (Cortellessa/Di Marco/Inverardi,
2011). Therefore LQNs were introduced as an extension to Queuing Networks. LQNs
represent component-based software in form of layers that allow a flexible mapping to the
consumed resources (Rolia/Sevcik, 1995; Franks et al., 1995).

LQNs consists of Processors typically represented as circles and Tasks that are represented
as parallelograms. These parallelograms contain one or multiple entries. Processors rep-
resent a hardware resources, while Tasks represent the logic of a software or database
system. The arrangement is hierarchical, so that elements that are depicted above other
elements can access only lower elements. Therefore, the lowest element is always the
hardware resource (Cortellessa/Di Marco/Inverardi, 2011; Rolia/Sevcik, 1995). In the
example depicted in Figure 2.3 we chose a CPU as hardware resource of which access is
modeled in the LQN. In LQNs Processors and Tasks have their own waiting queue with
a specified length and scheduling strategy.

2.3. MODEL-BASED PERFORMANCE EVALUATION 15

Client
[Z = 10s]

Entry 1
{s=4,s=2]

Entry 2
{s=2,s=1]

Entry 4
{s=2,s=2]

Entry 3
{s=1,s=2]

Entry 5
{s=3]

Client
[m=500]

CPU
[m=4]

Act. 1 [s=1]

Act. 2 [s=1] Act. 3 [s=1]

Act. 4 [s=2]

Act. 5 [s=0]

+

&

Figure 2.3: Example of a layered queuing network. (Adapted from Cortellessa/
Di Marco/Inverardi (2011))

The number of parallel available processing slots is defined by the multiplicity m. For
a Processor this could mean the number of CPU cores while for Tasks these slots can
represent a thread pool. The operations are modeled as entries which can consist of
multiple phases. These phases are depicted as comma-separated lists of Service Times s
below the entry name in Figure 2.3. In our example Entry 1 consists of two phases. The
first phase requires 4 and the second 2 service times of the Processors CPU. T

Activity Graphs are another model element that allow to represent complex control-flow
including parallel executions (Cortellessa/Di Marco/Inverardi, 2011). In our example
Task 4 uses this Activity Graphs. The “+“ and “&“ elements represent forks and joins.
This allows to model parallel execution and synchronization. In our example Ac, 2 and
3/4 are executed in parallel until they are joined again before ending with the last Activity
in this Task.

As a final element of this modeling language Reference Tasks are the top level Task. They
represent access from users as they cannot be accessed from other Tasks. They contain a
Think Time Z Instead of Service Time S. The only resource used by these types of Tasks
are Client-Pools. The represent the number of users accessing the system. Therefore, the
workload here is defined by the number of users and the think time on the top level of
the LQN (Koch-Kemper, 2015).

2.3. MODEL-BASED PERFORMANCE EVALUATION 16

References

Resource Environment ModelAllocation Model

Usage ModelRepository Model

System Model

Figure 2.4: Components of PCM. (Adapted from Becker/Koziolek/Reussner (2009))

2.3.3 Palladio Component Model

Even though LQNs allow for much more complex component-based systems, the multiple
layers, distributed systems, and an abstraction of the hardware is hard to accomplish. One
major problem of the above mentioned approaches is the level of abstraction. Instead of
modeling and describing the system as it is, queuing networks require a certain abstraction
and mapping to the actual system. Another approach that does not require this level of
abstraction but allows for modeling the systems as it is are architecture-level performance
models. Amongst these model types PCM is one of the most prominent representatives
(Becker/Koziolek/Reussner, 2009; Reussner et al., 2016).

PCM was created to represent component-based software systems in an expressive model
that can be used to represent complex distributed applications. The meta-model defines
five sub-mobels as shown in Figure 2.4 that are referenced by each other reflecting several
aspects of a software system. Furthermore, Becker/Koziolek/Reussner (2009) defines
several roles each responsible for different sub-models:

(i) Component Developer specify and implement the software components and thus
create the Repository Model of the PCM.

(ii) Software Architects create and assemble several software components to a consistent
complete system. In PCM this is represented in System Model.

2.3. MODEL-BASED PERFORMANCE EVALUATION 17

 20

werden fünf Teilmodelle definiert, die sich untereinander referenzieren (Palladio 2015). Zum

Erstellen der Teilmodelle (vgl. Abbildung 9) definieren Becker/Koziolek/Reussner (2009)

verschiedene Rollen, die sich um die Erstellung der Teilartefakte kümmern:

- Component Developer spezifizieren und implementieren die Software-

Komponenten und sind deshalb für die Erstellung des Repository Models zustän-

dig.

- Software Architects erstellen aus den einzelnen Software-Komponenten das Ge-

samtsystem. Dies wird im System Model repräsentiert.

- System Deployers kümmern sich um die Bereitstellung der für den Betrieb des

Systems notwendigen Ressourcen und die Allokation der Komponenten auf diese.

Im Ressource Environment Model und im Allocation Model wird dies abgebildet.

- Business Domain Experts sind vertraut mit dem Nutzungsverhalten des Systems

und definieren dieses im Usage Model.

Im Folgenden werden die fünf Teilmodelle näher beschrieben:

Die für die Anwendung definierten Komponenten und deren Abhängigkeiten werden im

Repository Model spezifiziert. Komponenten können Schnittstellen (Interfaces) nach außen

anbieten und zudem auch auf Schnittstellen, die von anderer Komponenten angeboten wer-

den, zugreifen. In Abbildung 10 sind links zwei Komponenten („ComponentA“ und „Compo-

nentB“) abgebildet. „ComponentA“ stellt das Interface „IComponentA“ zur Verfügung und

greift zudem auch auf das von „ComponentB“ bereitgestellte Interface „IComponentB“ zu.

Dies wird durch Pfeile mit den Annotationen „Provides“ und „Requires“ modelliert.

Interfaces definieren jeweils eine Menge an Operationen, die von den Komponenten, die das

Interface zusammen bereitstellen, implementiert werden soll. Diese Implementierung wird in

den Service Effect Specifications (SEFF) modelliert. Eine speziell für die Modellierung von

Performance- und Zuverlässigkeits-Vorhersage definierte SEFF ist die Resource Demanding

Service Effect Specification (RDSEFF) (Reussner et al. 2007, S. 49). Eine solche RDSEFF ist

für die erste Operation von „ComponentA“ in Abbildung 10 auf der rechten Seite genauer

dargestellt.

Die grafische Notation der RDSEFFs orientiert sich an den aus der Unified Modeling

Abbildung 10: PCM Respository Model und RDSEFF

Quelle: Angelehnt an Brunnert/Vögele/Krcmar (2013)
Figure 2.5: Repository model graph and example RDSEFF. (Adapted from Brun-

nert/Vögele/Krcmar (2013))

(iii) System Deployer account fo the allocation and operation of the resources required
by the software system. This is defined in the Resource Environment Model and the
Allocation Model.

(iv) Business Domain Experts know the users and their behavior regarding the systems.
This workload definition is in PCM configured in the Usage Model.

We will describe the five sub-models in more detail in the following paragraphs:

Repository Model The core sub-model of PCM is the Repository Model. All com-
ponents of the application and their dependencies are defined in this sub-model. Each
component can provide interfaces that are accessible from other components. Figure 2.5
shows two example components on the left side. ComponentA provide an interface called
IComponentA and uses the interface IComponentB which is provided by ComponentB.
The relationships are defined by the graph an its annotations Provides and Requires.

Each interface defines a set of operations, which are provided by all components that im-
plement this interface. This implementations are in PCM defined in so-called RDSEFF.
These RDSEFFs allow to specify the behavior of an operation in similar way as activ-
ity models in Unified Modeling Language (UML) (Rumbaugh/Jacobson/Booch, 2004).
RDSEFFs contain annotations about performance and reliability in order to simulate
the performance and availability behavior of the application (Becker/Koziolek/Reussner,
2009; Reussner/Becker et al., 2009). An example of such an RDSEFF is depicted on the
right side of Figure 2.5.

Control-flows can be modeled using loops, forks, joins, and branches. In our example we
use one BranchAction with two branches. Figure 2.5 shows these two branches annotated
with different probabilities. In 30% of all cases the left branch is executed and with a
likelihood of 70% the right branch. The operation executes different actions depending
on the branch with different resource demands.

The right branch also contains a LoopAction. The number of iterations of this action is de-
fined by a distribution probabilistic function. In our example we use IntPMF which defines
an integer distribution functions. Resource demands are specified within InternalActions.
Resource demands can be specified using constants or again using probabilistic functions.

2.3. MODEL-BASED PERFORMANCE EVALUATION 18

 21

Language (UML) bekannten Aktivitätsdiagrammen (OMG 2015c) und beginnt mit einer

„BranchAction“. Diese ist in Abbildung 10 in zwei Partitionen eingeteilt, an die jeweils eine

Wahrscheinlichkeit (Probability) annotiert ist. Beim Aufruf von „operationA“ wird infolge-

dessen in 30% der Fälle in der linken und mit 70% Wahrscheinlichkeit in der rechten Partition

gestartet. Für den in der Operation dann entstehenden Ressourcenverbrauch und mögliche

Kontrollflüsse stehen weitere Elemente zur Verfügung. Mit „internalActions“ können Service

Times modelliert werden. Dies sind im Beispiel 0,315 CPU-Einheiten. Schleifen werden

durch „LoopAction“ modelliert. „IntPMF“ definiert hierfür eine Ganzzahl-

Wahrscheinlichkeitsverteilung, mit der stochastisch spezifiziert wird, wie oft eine Schleife

iteriert wird. Mit „ExternalCallActions“ kann ferner ein Aufruf einer Operation modelliert

werden, die von einer anderen Komponente über ein Interface zur Verfügung gestellt wird.

Im System Model (vgl. Abbildung 11: PCM System ModelAbbildung 11) wird ein Anwen-

dungssystem aus den im Repository Model definierten Komponenten und Interfaces zusam-

mengestellt. Es wird hier definiert, welche Interfaces von außen (für das Usage Model)

verfügbar sind.

Das Resource Environment Model modelliert die vorhandenen Hardware-Ressourcen. In Ab-

bildung 12 wurden zwei Server (Hardware Container) modelliert, die durch ein Netzwerk

Abbildung 11: PCM System Model

Quelle: Juratoni (2014)

Abbildung 12: PCM Resource Environment

Model

Quelle: Wischer (2014)

Figure 2.6: System model graph (Adapted from Koch-Kemper (2015))

In PCM we use ExternalCallActions in order to call external components, which can be
distributed and deployed on external systems. Where a component is deployed depends
on their packaging, which is defined in the System Model.

System Model The system model defines the deployment units of an application.
Components are packaged in ComponentStructures marking the system boundaries. In-
ternal and external interfaces are defined and linked. In a Java EE environment one
such structure could be a WAR, JAR, or EAR. Our example in Figure 2.6 is very simple
as it only consists of one structure containing both components. ComponentA provides
one external interface. ComponentB is only used internally and cannot be accessed from
components outside of the ComponentStructure. Each structure can be deployed on a
separated server instances. Multiple structures per server are also possible.

Resource Environment Model The hardware resources are specified using the Re-
source EnvironmentModel. This model consist of Resource Containers representing (vir-
tualized) server instances and Linking Resources that represent network links between
different container. Each container is built with a set of resources like CPU and HDD as
depicted in Figure 2.7. These resources have a Scheduling Strategy defining how multiple
parallel tasks should be selected. Furthermore, the Number of Replicas defines the num-
ber of CPU cores while the Processing Rate defines the number of instructions per time
unit (usually seconds but this can be configured) during simulation. In Figure 2.7 this
rate is set to 1000, meaning that a resource demand of 315 as in Figure 2.5 is processed
within 315 milliseconds (assuming that the time unit during simulation is seconds). This
calculation assumes that no scheduling occurs and enough resources are available, other-
wise the processing takes longer depending on the length of the queue waiting to access
the resource.

Network is simulated depending on bandwidth and latency as specified in Figure 2.7.
The latency marks the delay between sending and arrival of a packet between to resource
containers. The bandwidth is only important when the number of bytes transfered through
the link exceeds the available capacity (bandwidth) and thus queuing occurs. This model
allows for simple network simulations. If two component structures are deployed on
two separated servers, which are linked using a Linking Resource, network simulation is
automatically conducted when components of these structures exchange data in form of
ExternalCallActions.

2.3. MODEL-BASED PERFORMANCE EVALUATION 19

Server2-Server3
Latency: 0.0000484426
Throughput: 78350000

Server 1-Server2
Latency: 0.0000502284
Throughput: 79850000

Server 1

CPU

Scheduling: Processor Sharing
Number of Replicas: 8
Processing Rate: 1000

HDD

Scheduling: First-Come-First Serve
Number of Replicas: 1
Processing Rate: 1

Server 2

CPU

Scheduling: Processor Sharing
Number of Replicas: 4
Processing Rate: 1000

HDD

Scheduling: First-Come-First Serve
Number of Replicas: 1
Processing Rate: 1

Server 3

CPU

Scheduling: Processor Sharing
Number of Replicas: 4
Processing Rate: 1000

HDD

Scheduling: First-Come-First Serve
Number of Replicas: 1
Processing Rate: 1

Figure 2.7: Resource environment model example

Allocation Model The deployment topology in the sense that the structures of the
System Model are deployed on instances of the Resource Environment Model is defined
using the Allocation Model. Each structure is linked to one or many server instances. If
many instances are selected round-robin occurs when calling operations that are available
on many server instances.

Usage Model The last sub-model of PCM is the Usage Model. User interaction with
the system is specified creating instances of this sub-model. The meta-model provides two
types of workloads: Open Workloads and Closed Workloads. Closed Workloads consist
of a population (number of concurrent users) and a think time per user between two
interactions. Each virtual user waits the length of time specified as think time between
two interactions with the system. The workload is called closed as no new users access
the system but the same virtual users access the system over and over again until the
simulation ends. Similar specifications are used for load tests so that a workload from a
load test can be easily translated into a workload specification in PCM.

Open Workloads on the other hand are characterized by an arrival rate. This probabilistic
variables specified the mean time between two new users accessing the system. Here
an infinite number of new users arrives until the simulation ends in contrast to Closed
Workloads where the same users access the system again after completing a transaction.
The total population is thus not fixed but depends on the capabilities of the application
responding to the user interactions. The user is discarded and removed after he finished
its transaction.

Our example in Figure 2.8 uses Closed Workload. The actual interaction with the appli-
cation is defined similar to RDSEFF definition in a activity diagram like modeling style
(Rumbaugh/Jacobson/Booch, 2004). Interactions with the system are defined using Sys-
temCallActions, that can access all public available interfaces of the application. Branch
and Loop elements allow for control-flow modeling similar to the elements in RDSEFFs.

Figure 2.8 presents a simple scenario. We use a Closed Workload with a population of
1500 users. The users are either accessing operationA or operationB of our ComponentA,
which are both public. A Branch divides the users on a probabilistic basis. OperationA
is called in 60% of all cases, while OperationB is used in the rest of the cases. After the
system interaction each user waits for 9.7 seconds until a new interaction is started and
either operationA or operationB is accessed by the user.

2.3. MODEL-BASED PERFORMANCE EVALUATION 20

Workload

<<Branch>>

Probability: 0.6 Probability: 0.4

<<SystemCallAction>>
IComponentA.operationA

<<SystemCallAction>>
IComponentA.operationB

<<ClosedWorkload>>
Population: 1.500

Think Time 9,7

Figure 2.8: Usage model example

PCM plays in important role in our research. However, we usually do not create such
models manually but use performance model generators. Our generators represent the
EAs we use in the way they are composed of. This means, a component in PCM is mapped
to a component in Java EE such as an Enterprise JavaBean (EJB). And an operation
is mapped to a method in Java EE. This leads to rather complex models, with complex
and interlaced control-flows. Manual comparison with the actual system is usually not
possible and even graphical representations are hard to understand. Therefore, we use
these models and simulate different workloads, changes to the system, or changes to the
resource environment and compare the simulated performance metrics with actual load
tests of the system in a real environment. The Palladio-bench, the tool set around PCM,
offers several simulation engines and solvers 11. Amongst these we use two simulation
engines SimuCom and EventSim (Becker/Koziolek/Reussner, 2009; Merkle/Henss, 2011).

SimuCom transforms PCM model instances into Java code that is executed. The code
that is here created is the simulation code itself and has dependencies to other parts of the
Palladio-bench like analysis frameworks (Becker/Koziolek/Reussner, 2009). Even though,
SimuCom is still the standard simulation engine, it has certain disadvantages. The model
transformation is an unnecessary intermediate step that needs to be considered each time

11http://www.palladio-simulator.com/science/palladio_component_model/model_solvers/

http://www.palladio-simulator.com/science/palladio_component_model/model_solvers/

2.4. AUTOMATIC ARCHITECTURE OPTIMIZATION 21

the meta-model is extended. Furthermore, the class method size limit of 64 kilobyte (kB)
and the maximum number of methods limited to 65536 in the Oracle JVM prevent very
complex simulations.

EventSim follows an alternative approach and works directly using PCM model in-
stances. Instead of simulating processing it only simulates the time between two events
(Merkle/Henss, 2011). This significantly speeds up the simulation. The direct interaction
with the model reduces the complexity for introducing new meta-model elements. Early
parts of our research are based on SimuCom. Our later work uses EventSim due to the
above mentioned advantages.

2.4 Automatic Architecture Optimization

Software Architecture Optimization has been the topic of many research artifacts. A
comprehensive literature review as provided by Aleti et al. (2013). It structures almost
200 peer-reviewed papers that have been published between 1992 and 2011 in a simple
and sound taxonomy depicted in Figure 2.9 (Aleti et al., 2013).

Software Architecture Optimization can be sorted into three main categories: Prob-
lem to be solved or optimized, the proposed solution, and the validation strategy.
Aleti et al. (2013) found that most works focus on one or a few problems such as op-
timizing quality attributes or focus on a certain problem domain. Furthermore, the pro-
posed solutions can be sorted into five major categories such as solutions that search for
a adequate representation of the architecture or change it within certain degrees of free-
dom. Most validation approaches aim on validating the optimization, some only validate
the approach Aleti et al. (2013). Using this taxonomy we sort our work in the prob-
lem category Quality Attribute, as we want to improve performance, costs, and resource
utilization. Our solution is an Optimization Strategy within the Degrees of Freedom al-
location and hardware/instance replication. We evaluate our approach by applying the
selected Optimization Strategy to real systems.

Most works focus on optimizing or analyzing the architecture itself. Often within cer-
tain degrees of freedom, such as selection of components, instance replication, or service
granularity (Aleti et al., 2013). However, most approaches either provide an approach to
generate or discover a representation of the examined system or optimize an already cre-
ated model (Koziolek/Koziolek/Reussner, 2011). Aleti et al. (2013) discovered the need
for a holistic tool support that creates a model for optimization and validates the opti-
mization on the changed system (Aleti et al., 2013). One of the major goals of our work
is to connect performance model generation and performance model optimization to im-
prove deployment topologies for distributed EAs. Thus, we try to close this research gap
by providing such a holistic tool support.

A work that stands out, as it uses an earlier version of PCM and optimizes performance
metrics and cost is PerOpteryx (Koziolek/Koziolek/Reussner, 2011). This approach was
designed to search within certain degrees of freedom for a set of optimal solutions. It is,

2.4. AUTOMATIC ARCHITECTURE OPTIMIZATION 22

employed to identify the taxonomy categories (see Section 2
for details) and to provide an answer to the first research
question (RQ1). The resulting taxonomy hierarchy is
depicted in Fig. 2.

The first level of the taxonomy hierarchy structures the
existing work according to three fundamental questions
characterizing the approaches. These are:

1. What is the formulation of the optimization problem
being addressed?

2. What techniques are applied to the solution of the
problem?

3. How is the validity of the approach assessed?

We discuss each of these questions in detail, and define
the implied taxonomy scheme. For each of the questions,
we derive the subcategories of the taxonomy related to the
question. Each category has a number of possible values
used to characterize the optimization approaches. For
example, the category Domain has the three values
Embedded Systems (ES), Information Systems (IS), and General.
We only briefly discuss the possible values of categories in
the following, while the complete structured list of all the
values is in Tables 1, 3, and 6, while full details can be
found in the wiki page.1

3.1 The Problem Category

The first category is related to the problem the approaches
aim to solve in the real world. Generally speaking, the
approaches try to achieve a certain optimization goal in a
specific context. For example, an optimization goal is to
minimize the response time of an architecture given costs
constraints. An example context is to consider Embedded
Systems at design time. While the context of the problem is
determined by the subcategories domain (i.e., the type of
targeted systems) and phase (i.e., place in the development
process) of the problem, the subcategories related to the
optimization goal include quality attributes, constraints, and
the dimensionality of the optimization problem, which is

governed by the question if the set of optimized quality
attributes is aggregated into a single mathematical function
(single objective optimization (SOO)) or decoupled into
conflicting objectives (multi-objective optimization (MOO)).

In particular, the domain has three possible values:
Information systems are business-related systems oper-
ated on a general purpose computer that include, for

662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 5, MAY 2013

Fig. 2. The taxonomy for architecture optimization approaches, derived from the reviewed literature.

TABLE 1
Problem Category—Quantitative Summary of the Results

1. https://sdqweb.ipd.kit.edu/wiki/OptimizationSurvey.

Figure 2.9: Software Architecture Optimization Approaches Taxonomy
Aleti et al. (2013)

even model based, not possible to simulate or solve all possible solutions as their numbers
grows exponentially with the number of decisions. Koziolek/Koziolek/Reussner (2011)
use a solver that provides an analytical solution for PCM models for a single user and an
approach based on multi-objective optimization. This optimization searches for Pareto-
optimal solutions withing the search space of possible solutions(Coello/Lamont/Van Veld-
huisen, 2007). These solutions can be local optima, but even than the selected solutions
are usually superior to other not optimized architectures.

2.4.1 Multi-objective Optimization Problems

Evolutionary algorithms allows for single and multi-objective optimizations. In general
such an algorithm tries to maximize or minimize an evaluation function f(p) (Brun-
nert et al., 2015). In our case p is the result of a simulation process for a selected perfor-
mance model. Many such evaluation functions are used for multi-objective optimizations,
such as a function predicting the costs, and another predicting the response times. Both
functions can be the result of a single simulation run.

Coello/Lamont/Van Veldhuisen (2007) describes multi-objective optimization as “a vec-
tor of decision variables which satisfies constraints and optimizes a vector function whose
elements represent the objective functions. These functions form a mathematical descrip-
tion of performance criteria which are usually in conflict with each other. Hence, the term
“optimize“ means finding such a solution which would give the values of all the objective
functions acceptable to the decision maker.“

Therefore, the goal of a multi-objective optimization is to optimize K objective functions
in parallel. Each function can be either minimized or maximized allowing for combinations
depending on the objective-goal. Mathematically speaking multi-objective optimization

2.4. AUTOMATIC ARCHITECTURE OPTIMIZATION 23

Costs

R
es

po
n

se
 T

im
es

min max

m
in

m
a

x
Pareto front

Figure 2.10: Exemplary multi-objective optimization problem with two objective func-
tions that should be minimized (Adapted from Coello/Lamont/Van Veld-
huisen (2007))

tries to maximize a function F (x) consisting of several objective functions as depicted in
Equation 2.2 (Coello/Lamont/Van Veldhuisen, 2007).

F (x) = [f1(c), f2(c), ..., fk(c)] (2.2)

As the resulting solutions are in conflict, not only one solution exists (Coello/Lamont/
Van Veldhuisen, 2007). The theory of Pareto-opimal solutions is applied to derive this set
of solutions (Ehrgott, 2006). This theory defines a solution a Pareto-optimal, if no other
solution exists that is better or equal considering all objective functions. The example in
Figure 2.10 shows a Pareto-front along two objective functions, both with a minimization
goal. The objective function of the y-axis is response times, and the objective function on
the x-axis is costs. The Pareto-front shows the trade-off surface along which a decisions
must be made to favor one optimization goal over another (e.g., minimize response times
but accepting higher costs) or to choose a solution in the middle of the front.

2.4.2 Basic Concepts of Evolutionary Optimization

In order to derive this Pareto-front several optimization techniques exists amongst which
we use evolutionary optimization. Evolutionary optimization can evaluate multiple solu-
tions simultaneously, making it a good match for searching in a large solution space with
many possible solutions.

2.4. AUTOMATIC ARCHITECTURE OPTIMIZATION 24

The idea behind evolutionary optimization is a biological concept. Each solution candidate
corresponds to a biological genotype. This would be a set of performance design options
such as multiple allocation options or hardware replications. Genotypes are decoded
in phenotypes, here a performance model instance conform to PCM. The design space
options are represented as chromosomes of the genotype. In our case this allows us
to define the allowed options of the deployment topology. Concrete options of these
chromosomes are called genes and instance of the genotypes with different sets of genes
are the population.

The process of altering, evaluating, and spawning new solution candidates is called a
generation. In evolutionary optimization one such iteration consists of: reproduction,
competition, and selection. Within such a generation parents (current generation) and
children (follow-up generation) exist. Each generation spawns new solution candidates
(children) out of the earlier evaluated candidates (parents).

Reproduction Phase In a first step new solutions are searched that can fulfill the
objective. New candidates can be spawned either by Recombination or by Mutation:

1. Recombination mixes the genes of selected candidates and creates new ones out
of it. This crossover function derives new solutions and should prevent running into
local optima. This is conducted by mixing the genes of two parent solutions and
creating children for the next generation.

2. Mutation randomly changes certain genes of one parent and creates new children
out of it. This technique is usually used after recombination. If only mutations are
used local optima can be reached instead of searching the whole space of possible
solutions. We use a combination of both techniques in our work.

Afterwards, each candidate is evaluated in the Competition Phase. This means that
the objective functions are executed and the resulting values are compared. In our work
we simulate the performance model and derive performance metrics from this simulation
in this phase.

The final phase of each generation is called the Selection Phase. The genes with the best
fitness values are selected for recombination and mutation in the next phase. This ensures
that the following generations produce equal or better results compared to the current
generation.

This approach enables us to iterate through the design space of possible deployment
topologies. The most time consuming part is the simulation in the Selection Phase.
Therefore, we simulate a whole generation in parallel using a distributed simulation ser-
vice. One generation is than evaluated as soon as the slowest simulation process of a
generation has been conducted instead of after a series of simulations. This parallel
evaluation allows us to use simulations instead of solvers, which enables us to simulate
complex models accessed by multiple concurrent users.

2.5. MEMORY MANAGEMENT 25

2.5 Memory Management

Memory of an application is usually divided into several major sections. One section is
pretty static and contains the (compiled) program code (Forouzan, 2013). This memory
section is relatively small and can be well estimated as the size of the required mem-
ory space is known right after the build process (Forouzan, 2013). Sometimes libraries
are loaded dynamically during runtime, which leads to an increased demand in this sec-
tion, but still this memory section stays easy manageable and can be estimated by the
programmer or architect. In Java this part of the memory is divided into “Permanent
Generation“(<= Java 7) or “MetaSpace“ (>= Java 8), containing classes and methods
loaded in the current JVM, and the “Code Cache“, that contains native code usually com-
piled out of directives that have been executed frequently (Schildt, 2014; Oransa, 2014).
However, both parts contain program code just in different spaces (Schildt, 2014).

The second large section of memory of an application contains the data of the program
(Forouzan, 2013). This section can be huge, depending on the amount of data an appli-
cation uses, the interaction of the user with the system, and caching mechanisms that for
example pre-load certain data from disk (Forouzan, 2013). The capacity of this section
is hard to estimate and manage because of the dependencies on the software code itself,
the workload, the runtime configuration, and the resource environment. This becomes
even more complex in distributed systems as data is than shared, replicated, and synced
amongst several instances. Our research focuses on this dynamic section of memory. In
Java, this section is called Heap and again divided into smaller sub-sections: Eden, Sur-
vivor 1 & 2, and Tenured as depicted in Figure 2.11 (Schildt, 2014). The different sections
correlate to the age of an object. The longer an object lives̈ın Heap, the more likely it
travels to the upper sections (Schildt, 2014).

Depending on the runtime environment, either dynamic memory management or auto-
matic memory management is used. Dynamic memory management requires to explicitly
load and unload objects meaning allocating and releasing memory based on the program
code. Runtime environments for C++ or older versions of the iOS operating system (OS)
use this memory model to manage memory. Mistakes in the program code or unexpected
behavior of the user can lead to memory leaks due to missing object releases. This model
is, good programming assumed, pretty efficient as memory is immediately released after
an object is not needed anymore. Profiling an application using this memory model shows
a lot of small spikes and a waveform as depicted in Figure 2.12.

Automatic memory management in contrast organizes the memory in the runtime. Cre-
ating new objects automatically allocates memory. Frequently checks on the references
of these objects are conducted and the object and the memory it requires are released
when no reference to the object remains. The algorithm class that checks and frees the
memory is called Garbage Collection (Schildt, 2014). Figure 2.13 shows a typical memory
profile of an application using automatic memory management. A typical pattern is the
triangular form. The flank of each spike marks the execution of GC. The real demand is
lower, but as the GC runs only after certain thresholds exceed, we see a delay in freeing
memory compared to dynamic memory management (Schildt, 2014). In Java each GC

2.5. MEMORY MANAGEMENT 26

JVM Total Memory

Heap Memory Non-Heap

P
er

m
G

en
/M

et
aS

p
ac

e

V
ir

tu
a

l o
r

re
se

rv
ed

V
ir

tu
al

 o
r

re
se

rv
ed

Ed
en

Su
rv

iv
o

r
1

Su
rv

iv
o

r
2

Te
n

u
re

d

Young Generation Old Generation Permanent Generation

Figure 2.11: Memory space organization in Java adapted from Honk (2014)

G
B

Dynamic Memory Management

Current Memory Utilization

1
38

0
75

9
11

38
15

17
18

96
22

75
26

54
30

33
34

12
37

91
41

70
45

49
49

28
53

07
56

86
60

65
64

44
68

23
72

02
75

81
79

60
83

39
87

18
90

97
94

76
98

55

0

5

10

15

20

25

Highcharts.comFigure 2.12: Memory trace of a system using Dynamic Memory Management

G
B

Automatic Memory Management

Managed Memory Utilization Current Memory Utilization

1
38

0
75

9
11

38
15

17
18

96
22

75
26

54
30

33
34

12
37

91
41

70
45

49
49

28
53

07
56

86
60

65
64

44
68

23
72

02
75

81
79

60
83

39
87

18
90

97
94

76
98

55

0

5

10

15

20

25

Highcharts.comFigure 2.13: Memory trace of a system using Automatic Memory Management

run can promote objects to higher memory spaces (e.g., Survivor 1 to Survivor 2) (Schildt,
2014).

The more GC runs an object survives, meaning references to this object exists, the higher
the memory space of this object (Schildt, 2014). Different GC check different spaces and
based on different thresholds. Besides freeing memory, a GC run also consumes CPU
when computing which objects are releasable. The number of spaces, the type of GCs,
the thresholds, and the CPU consumption depend on the runtime (e.g, Java vs. .NET),
the runtime version (e.g., Java 7 vs. Java 8), the configuration, and the application itself,
more specific its object structure. We propose a model for simulating automatic memory
management based on an approximation of these parameters. The same model, without
GC behaviors is eligible for simulating dynamic memory management.

Chapter 3

Research Methodology

The following chapter presents the research methodology applied to conduct the research
presented in this work. We present the design approach followed by the methods. After-
wards, we present the publications that build the core of this thesis, as well as related
publications that were not part of the main research questions.

3.1 Research Design

The principal research design concept applied for this thesis is the design-science approach
(Simon, 1996; Hevner et al., 2004). Applied on information systems design-science solves
research problems by creating new and innovative artifacts (Denning, 1997; Hevner et al.,
2004). We use the design-science approach applied on information systems introduced by
Hevner et al. (2004) and Peffers et al. (2007) consisting of the following six steps:

1. Identify problem and motivate: The problem is identified, described, and a
solution proposed. This includes reviewing existing research and identifying and
address a research gap. Section 1.1 shows the result of this motivation process in
our work.

2. Define objectives of the solution: The solution to the identified problem is cut
down into goal(s). We derived three research question addressing individual goals in
order to create a holistic solution address deployment topology optimization. These
questions and corresponding goals are defined in Section 1.2.

3. Design and development: The goal(s) are addressed by designing and implement-
ing artifact(s). These artifact(s) re-use, complement, enhance, or replace existing
theories and knowledge.

4. Demonstration: In order to present the artifact(s) experiments, simulations, case
studies, or similar approaches are applied. In this phase, the applicability of the
research artifact(s) is demonstrated.

28

3.2. RESEARCH METHODS 29

5. Evaluation: Validation of the research objectives is conducted in the evaluation
phase. This requires to observe the artifact(s) and evaluate if they solve the identi-
fied problem. The process from design on till evaluation can be repeated until the
research goal(s) is/are met.

6. Communication: After successful evaluation the artifact(s) and the results of the
evaluation should be presented and made publicly. We present our artifacts and
results in multiple publications outlined in Section 3.3.

3.2 Research Methods

We use the research methods Simulation, Controlled Experiments, and Optimization de-
veloped by Hevner et al. (2004). Furthermore, we added Literature Reviews to address
the first two phases of our research design (Simon, 1996; Webster/Watson, 2002). Finally,
we use Prototyping to design and implement our artifacts (Hevner et al., 2004).

Literature Review A Literature Review enables us to find and review existing research
and begin the design-science process (Peffers et al., 2007; Webster/Watson, 2002). We
conducted multiple of theses reviews systematically by the approach proposed by Webster/
Watson (2002). Using this method, we identified relevant research publications and outlets
as well as authors working in the same or related fields. Our research questions and
methodology were designed based on the derived knowledge of these reviews. These
reviews were conducted multiple times during the creation of our work and publications.
Thus, the identified publications were updated and newest research artifacts were found
on a regular basis. A final review was conducted while writing this thesis.

The found publications of our literature reviews are part of the related work sections in the
publications of Part B and chapter 2. We used keywords that matched the topic of the in-
dividual work and research goals and used scholarly databases to find related publications.
The following keywords were used for this search architecture optimization, deployment
optimization, cloud optimization model-based memory management, garbage collection
simulation performance prediction, performance models, evolutionary algorithms, multi-
objective optimization and various combinations these keywords and modifications (e.g.,
singular/plural). We added forward and backward searches to the process to investigate
work that was used by related work of our approaches and work based on that (Levy/Ellis,
2006). Backward search was conducted by analyzing the references of the initially found
publications. Second and third level backward search was conducted when major publica-
tions related to our work were identified. Forward search was conducted by searching for
publications that cited the analyzed publications. Forward and backward searches were
combined in some cases and identified major publications that were not found just by
keyword search. We rated all identified publications based on their titles, keywords, and
abstracts.

The most important online scholarly databases that were considered during this thesis
are:

3.2. RESEARCH METHODS 30

1. ACM1

2. IEEE2

3. Springer3

4. Google Scholar4

The main focus of the literature review are publications in the field that are published in
the following workshops, conference, and journals:

1. International Conference on Software Engineering (ICSE)

2. Journal of Systems and Software (JSS)

3. ACM Transactions on Internet Technology (ACM TOIT)

4. IEEE Transactions on Software Engineering (IEEE TSE)

5. International Journal on Software and Systems Modeling (SoSyM)

6. International Conference on Performance Engineering (ICPE)

7. ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (FSE)

8. IEEE International Conference on Software Architecture (ICSA)

9. International Conference on the Quality of Software Architecture (QoSA)

10. International Conference on Autonomic Computing (ICAC)

11. European Performance Engineering Workshop (EPEW)

12. International Conference on Performance Evaluation Methodologies and Tools (Val-
ueTools)

13. Business & Information Systems Engineering (BISE)

14. Performance Evaluation Journal

15. International Symposium on Modeling, Analysis, and Simulation On Computer and
Telecommunication Systems (MASCOTS)

16. Symposium on Software Performance (SSP)

17. International Conference on Simulation Tools and Techniques (SIMUTOOLS)

1http://dl.acm.org/
2http://ieeexplore.ieee.org/Xplore/
3http://www.springer.com/de/
4https://scholar.google.de/

http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/
http://www.springer.com/de/
https://scholar.google.de/

3.2. RESEARCH METHODS 31

Memory Management Model
and Simulation Technique

Deployment Topology
Optimizer

Which model generation techniques and monitoring
approaches are necessary to generate full-stack
performance models?

RQ1

RQ2

RQ3

Which modeling and simulation techniques can
represent automatic memory management of
distributed EA without excessive computational
requirements?

Which deployment optimization approaches can be
adapted for architecture-level performance models
for distributed EA and how accurate are these
optimizations compared to the actual system?

Enhanced Performance
Model Generator for

Distributed Enterprise
Applications

Research Question Method Result

L
it
e

ra
tu

re
 R

e
v
ie

w

S
o

ft
w

a
re

 P
ro

to
ty

p
in

g

S
im

u
la

ti
o
n

C
o

n
tr

o
lle

d
 E

x
p

e
ri
m

e
n

t

O
p

ti
m

iz
a

ti
o

n

Figure 3.1: Memory trace of a system using Dynamic Memory Management

Prototyping We developed multiple prototypes during this dissertation and our major
artifacts are the result of applying this popular method (Alavi, 1984). This method
allows to rapidly develop, adjust, and refine software artifacts and to experiment with and
learn from these prototypes (Alavi, 1984). We created prototypes iteratively, evaluated
intermediate results, refined, and adjusted them until our research goals were fulfilled.

Simulation Simulation is an experimental evaluation method that we use to validate
our models (Hevner et al., 2004). The models are result of our prototypes and are validated
by comparing the simulation results with observations from the real system. Furthermore,
we test our models on robustness and scalability by adapting the model and conducting
further simulations again validated by real system observations.

Controlled Experiments The developed prototypes were mainly evaluated using con-
trolled experiments. They are “randomized experiments or quasi-experiments in which
individuals or teams (the experimental units) conduct one or more software engineering
tasks for the sake of comparing different populations, processes, methods, techniques,
languages, or tools (the treatments)“ (Sjoeberg et al., 2005). Our experiments were con-
ducted in a reproducible setup using industry standard benchmarks in a lab and public
cloud environment.

Optimization Optimization is another evaluation method designed to “demonstrate
optimal properties of an artifact or to provide optimally bounds on artifact behavior“
(Hevner et al., 2004). We optimize our models and demonstrate their validity using con-
trolled experiments and simulations.

The research questions, applied methods, and the resulting artifacts of our research are
depicted in Figure 3.1. The research results are based on each other and work as input
for the following research questions. We structured the remainder of this thesis in the
same order in Part B of this thesis.

3.3. PUBLICATIONS 32

No. Authors Title Outlet

P1 Willnecker, Brunnert,
Gottesheim, Krcmar

Using Dynatrace Monitoring Data for
Generating Performance Models of
Java EE Applications

6th ACM/SPEC Inter-
national Conference on
Performance Engineer-
ing (ICPE) 2015

P2 Willnecker, Dlugi,
Brunnert, Spinner,
Kounev, Gottesheim,
Krcmar

Comparing the Accuracy of Resource
Demand Measurement and Estimation
Techniques

European Workshop on
Performance Engineer-
ing (EPEW) 2015

P3 Willnecker, Brunnert,
Koch-Kemper, Krcmar

Full-Stack Performance Model Evalua-
tion using Probabilistic Garbage Col-
lection Simulation

Symposium on Soft-
ware Performance
(SSP) 2015

P4 Willnecker, Krcmar Model-based Prediction of Automatic
Memory Management and Garbage
Collection Behavior

Simulation Modelling
Practice and Theory
(submitted)5

P5 Willnecker, Krcmar Optimization of Deployment Topolo-
gies for Distributed Enterprise Appli-
cations

12th International
ACM SIGSOFT Con-
ference on Quality of
Software Architectures
(QoSA) 2016

P6 Willnecker, Vögele,
Krcmar

SiaaS: Simulation as a Service Symposium on Soft-
ware Performance
(SSP) 2016

P7 Willnecker, Krcmar Multi-Objective Optimization of De-
ployment Topologies for Distributed
Applications

ACM Transactions on
Internet Technology
(TOIT) 18.26

Table 3.1: Publications embedded in this thesis

3.3 Publications

Part B, the core of this thesis is composed of seven publications of the author (Table 3.1).
Further publications that have been (co-)authored during the research are given in Ta-
ble 3.2. Both tables include a publication number, the authors, the title and the outlet
of each publication. Publications listed in Table 3.1 (P1-P7) are included in Part B with
permission of the corresponding publishers.

In the following a brief summary for each embedded publication is given:

P1 introduces an abstraction to a performance model generation approach that allows
for embedding industry standard APM solutions. This work provides a solid interface
for attaching further monitoring solutions. This work addresses core parts of the first
research questions, which targets on enabling a performance model generation approach
for distributed EAs. The example of Dynatrace was used in this work, as it provides
monitoring solutions for a broad set of technologies and thus EAs.

5Impact factor, 2 years: 1.954, 5 years: 2.063
6Impact factor, 2 years: 0,705, 5 years: 1.118

3.3. PUBLICATIONS 33

P2 compares resource demand measurements and resource demand estimations. Even
though, a broad technological spectrum was enabled to produce models for distributed
EAs by applying the results of P1, certain technologies do not provide a sound monitoring
interface. Among those technologies, databases are the ones with the most vital part in EA
architectures. We combined two approaches (measurements and estimations) to enable
performance model generations even if no detailed monitoring interface is available. The
results of these first two applications allowed us to answer research question 1 and to
generate performance models for distributed EAs.

P3 and P4 address a gap in current performance evaluation research: automatic memory
management. Performance model concentrated on CPU, HDD, and network resources.
However, memory can have severe effects on (enterprise) applications if not managed and
sized correctly. This can lead to application faults, high CPU utilization, long response
times, and even terminations. The results of these two publications allows a PMG to
provide holistic performance models that address all four major resource types. The
accuracy of such models and especially of the memory management model and simula-
tion are demonstrated in this work. These two publications answer the second research
question.

P5 provides a first deployment topology optimizer. This optimizer can search for good
deployment topologies to either optimize response times or to increase resource utilization,
which usually implies less costs in a cloud provisioning scenario. The optimizer consid-
ers all four major resources and demonstrates the optimization of an industry standard
benchmark using the microservice paradigm and including its databases.

P6 introduces a simulation service for the Palladio Component Model. This service can
simulate multiple models in parallel and scale-out to many instances. This allows this
service to speed up the optimization approach presented in P5 and provides room for
extension in order to use other simulation engines or performance meta-models.

P7 shows an enhancement of P5 and provides a multi-objective deployment topology
optimizer. This optimizer searches for the Pareto-front along the optimization goals min-
imum response times, minimize cost, and optimal resource utilization. Furthermore, this
work introduces a flexible cost model that covers on-premise, cloud, and hybrid deploy-
ment scenarios. The publication finalizes the answer to research question 3 and provides
an approach to select and optimize the deployment topology of distributed EAs by using
full-stack performance models.

Additionally to the embedded publications, the author contributes as (co-)author to sev-
eral further publications (P8-P17) related to the topic of this dissertation. A complete
list is provided in Table 3.2.

P8 presents a distributed performance evaluation and comparison framework. The re-
sults of this work allow to easily collect, aggregate, compare, and present measurements
and performance simulation data. The framework consist of collector interfaces, a con-

3.3. PUBLICATIONS 34

No. Authors Title Outlet

P8 Kroß, Willnecker,
Zwickl, Krcmar

PET: continuous performance evalua-
tion tool

2nd International
Workshop on Quality-
Aware DevOps (QU-
DOS) 2016

P9 Willnecker Optimization of Component Alloca-
tions in Middleware Platforms using
Performance Models

Software Engineering &
Management 2015

P10 Brunnert, van Hoorn,
Willnecker, Danciu,
Hasselbring, Heger,
Herbst, Jamshidi, Jung,
von Kistowski, Koziolek,
Kroß, Spinner, Vögele,
Walter, Wert

Performance-oriented DevOps: A Re-
search Agenda

Technical Report,
SPEC Research Group
– DevOps Performance
Working Group 2015

P11 Willnecker, Krcmar Towards Predicting Performance of
GPU-dependent Applications on the
Example of Machine Learning in En-
terprise Applications

Symposium on Soft-
ware Performance
(SSP) 2017

P12 Düllmann, Heinrich, van
Hoorn, Pitakra, Walter,
Willnecker

CASPA: A Platform for Comparability
of Architecture-based Software Perfor-
mance Engineering Approaches

2017 IEEE Interna-
tional Conference on
Software Architecture
(ICSA 2017)

P13 Willnecker, Brunnert,
Krcmar

Model-based Energy Consumption
Prediction for Mobile Applications

EnviroInfo 2014

P14 Willnecker, Brunnert,
Krcmar

Predicting Energy Consumption by
Extending the Palladio Component
Model

Symposium on Software
Performance (SOSP)
2014

P15 Kindelsberger.
Willnecker, Krcmar

Long-Term Power Demand Recording
of Running Mobile Applications

IEEE 10th Interna-
tional Conference on
Global Software En-
gineering Workshops
(ICGSEW) 2015

P16 Danciu, Kroß, Brunnert,
Willnecker, Vögele,
Kapadia, Krcmar

Landscaping Performance Research at
the ICPE and its Predecessors: A Sys-
tematic Literature Review

International Confer-
ence on Performance
Engineering (ICPE)
2015

P17 Ardagna, Casale, van
Hoorn, Willnecker

Proceedings of the 2nd International
Workshop on Quality-Aware DevOps

2nd International
Workshop on Quality-
Aware DevOps (QU-
DOS) 2016

P18 Di Nitto, Leitner,
Ardagna, Casale, van
Hoorn, Willnecker

Proceedings of the 3rd International
Workshop on Quality-Aware DevOps

3rd International Work-
shop on Quality-Aware
DevOps (QUDOS) 2017

Table 3.2: Further publications during the work on this dissertation

3.3. PUBLICATIONS 35

trol interface for measurement collectors, and provides and integration for load testing
frameworks such as Faban7.

P9 introduced the general idea of this thesis. The work is an early proposal for this
dissertation and was discussed with researchers at the Software Engineering Conference
2015.

P10 outlines existing performance management activities and challenges to apply it in
DevOps scenarios. The work presents current research in this area as well as future
opportunities. The work concentrates on activities that require or enable DevOps, by
means of integrated development (Dev) and operations (Ops) teams.

P11 introduces an approach to integrate graphics processing for EAs into performance
research, specifically into performance models and corresponding simulation engines.

P12 presents an inter-operable platform for performance research. This platform allows
researcher to use and integrate several APM and Software Performance Engineering (SPE)
tools. The communication is based on open standard like OPEN.xtrace and uses container
and container orchestrator to run experiments (Okanović et al., 2016). The platform aims
on creating an performance-aware DevOps tool chain for researchers and practitioners in
a second step.

In P13 and P14 introduce an approach to use model-based performance evaluation to
predict the power consumption of mobile-phones. Established performance simulation
techniques were adapted and enhanced to specify energy demands. P16 enhances this
model to provide long-term predictions and evaluates this approach using multiple sport
tracker applications.

P16 is a systematic literature review of papers published in the proceedings of the ICPE
and its predecessors (Danciu et al., 2015). The work focuses on one of the main conference
in the area of performance evaluation. This work analyzes topics, evaluation methods, and
types of systems that are presented at this conference over time and presents relationships
to geographical and organizational information.

P17 and P18 represents the proceedings of the QUDOS Workshop 2016 and 2017 co-
organized by the author that addresses the challenge of integrating quality assurance
techniques, like performance, into DevOps scenarios8.

7http://faban.org/
8http://qudos2017.fortiss.org

http://faban.org/
http://qudos2017.fortiss.org

Part B

Chapter 4

Using Dynatrace Monitoring Data
for Generating Performance Models
of Java EE Applications

Authors Willnecker, Felix1 (willnecker@fortiss.org)
Brunnert, Andreas1 (brunnert@fortiss.org)
Gottesheim, Wolfgang2 (wolfgang.gottesheim@dynatrace.com)
Krcmar, Helmut3 (krcmar@in.tum.de)

1fortiss GmbH, Guerickestraße 25, 80805 München, Germany
2Compuware Austria GmbH, Freistädter Str. 313, 4040 Linz,
Austria
3Technical University of Munich (TUM), Boltzmannstraße 3,

85748 Garching, Germany

Outlet Proceedings of the 6th ACM/SPEC International Conference on

Performance Engineering (ICPE) 2015

Status Accepted

Keywords Load Testing; Performance Evaluation; Application Performance

Management

Individual Contribution Problem and scope definition, construction of the conceptual ap-
proach, prototype development, experiment design, execution and

result analysis, paper writing, paper editing

Table 4.1: Bibliographic details for P1

Abstract Performance models assist capacity management and planning for large-scale
enterprise applications by predicting their performance for different workloads and hard-
ware environments. Manually creating these models often outweighs their benefits. Auto-
matic performance model generators have been introduced to facilitate the model creation.
These generators often use custom monitoring solutions to generate the required input
data for the model creation. In contrast, standardized application performance manage-
ment (APM) solutions are used in industry to control performance metrics for productive
systems. This work presents the integration of industry standard APM solutions with a
performance model generation framework. We apply the integration concepts using the

37

4.1. INTRODUCTION 38

APM solution Dynatrace and a performance model generation framework for Palladio
Component Models (PCM).

4.1 Introduction

Performance of large-scale enterprise applications (EA) is a critical quality requirement
(Brunnert/Vögele et al, 2014). Application providers and data center operators tend to
over-provision capacity to ensure that performance goals are met (Pawlish/Varde/Robila,
2012). This is due to a lack of tool support for predicting the required capacity of a
software system for expected workloads (Brunnert/Wischer/Krcmar, 2014). Performance
models and corresponding model solvers or simulation engines can enhance current ca-
pacity estimations and therefore increase the utilization of hardware and reduce costs for
application operations (Brosig/Kounev/Krogmann, 2009; Grinshpan, 2012).

The effort of manually creating such performance models often outweighs their benefits
(Kounev, 2005). Automatic model generators have been introduced to reduce this effort
(Brunnert/Vögele/Krcmar, 2013; Brosig/Kounev/Krogmann, 2009). These approaches
rely on monitoring data from running systems to extract the performance models. Such
generated models can be used as input for a simulation engine or an analytical solver to
predict the resource utilization, throughput and response time for different workloads and
hardware environments.

Monitoring data for the generation of performance models is gathered by either custom
solutions or tools from the scientific community (Brunnert/Vögele/Krcmar, 2013; van
Hoorn/Waller/Hasselbring, 2012). On the other hand, monitoring of large-scale EAs
are state of the art technology in practice (Kowall/Cappelli, 2012). Companies use the
gathered monitoring data to detect and resolve performance problems in productive en-
vironments (Koziolek, 2010). This work presents an extension of our existing perfor-
mance model generation framework to work with industry standard Application Perfor-
mance Management (APM) solutions. We extend the Performance Management Work
Tools (PMWT1) model generator to create Palladio Component Models (PCM) based on
data collected by the Dynatrace2 APM solution (Becker/Koziolek/Reussner, 2009; Reuss-
ner/Becker et al., 2009; Greifeneder, 2011; Brunnert/Vögele/Krcmar, 2013).

4.2 Automatic Performance Model Generation Frame-

work

In order to use the Dynatrace APM solution we extend the model generation framework
presented in (Brunnert/Vögele/Krcmar, 2013) and shown in figure 4.1. This framework
uses a custom agent that collects the monitoring data from a running Java EE application.

1http://pmw.fortiss.org/
2http://www.dynatrace.com/

4.2. AUTOMATIC PERFORMANCE MODEL GENERATION FRAMEWORK 39

Dynatrace
Agent

CSV

MBeans

PMWT
Agent CSV

CSV

Performance
Model

Dynatrace
Server

PMWT
Connector

Dynatrace
Connector

P
erform

ance M
od

el G
en

erato
r

Ja
va EE A

pp
lica

tion

Dynatrace
Performance
Warehouse

Monitoring
Database

Session
Store

M
o

nito
rin

g D
ata

 Pe
rsisten

ce

Service

Figure 4.1: PMWT Performance Model Generation Framework

The monitoring data is then processed and aggregated either as comma-separated value
(CSV) files and imported into a database or as Managed Beans (MBeans). The aggregated
data is input for the model generation. The result is a performance model compliant
with the PCM meta-model. The extension proposed in this work allows to use data
extracted by standard monitoring frameworks exemplified by a Dynatrace agent for the
purpose of performance model generation. This agent is attached using runtime options
without changes to the instrumented application system’s source code. The agent forwards
collected data to the Dynatrace server, where detailed traces about method calls and error
states are stored in session files for further analysis. Performance metrics derived from
these traces are stored in a performance warehouse, and these metrics are typically used
by operation engineers as data provider for monitoring dashboards. We extract data from
both sources using an extension to our model generation framework called Dynatrace
connector.

The Dynatrace connector leverages the representational state transfer (REST) interface of
the Dynatrace server to extract detailed monitoring data. This REST interfaces provides,
among others, call traces for instrumented operations including their resource demands.
The Dynatrace connector is an extension of the monitoring data persistence service that
is used by the model generator to access data from different sources. The model generator
creates a performance model conforming to the PCM meta-model based on the traces and
their average resource demands. The resulting models can then be used for the existing
simulation engines and analytical solvers that exist for PCM models (Reussner/Becker et
al., 2009).

4.3 Conclusion & Future Work

This work proposed an integration of an industry APM solution with a performance model
generation framework. Different input formats and levels of granularity can be processed.
The extension shows that the generator and its interface are generally applicable and
other APM solutions as generator input are possible. As the Dynatrace solution is in
widespread use, the monitoring technology is tested more intensive than custom solutions
and in varied operation environments. The generated model can be used to simulate
different workloads and therefore enhance the Dynatrace solution with capacity planning
capabilities.

As a next step we will further extend an existing prototype for the integration and evaluate
it in a case study comparing the results using our PMWT agent and the Dynatrace agent.
For the evaluation, we will extract models from a running SPECjEnterprise2010 instance
using the two existing data collection approaches. Afterwards, the resulting models are
used to predict the utilization, throughput and response time for an increased number of
users. The prediction results are compared with measurement for similar workloads on
the SPECjEnterprise2010 instance.

Chapter 5

Comparing the Accuracy of
Resource Demand Measurement and
Estimation Techniques

Authors Willnecker, Felix1 (willnecker@fortiss.org)
Dlugi, Markus1 (dlugi@fortiss.org)
Brunnert, Andreas1 (brunnert@fortiss.org)
Spinner, Simon2 (simon.spinner@uni-wuerzburg.de)
Kounev, Samuel2 (samuel.kounev@uni-wuerzburg.de)
Gottesheim, Wolfgang3 (wolfgang.gottesheim@dynatrace.com)
Krcmar, Helmut4 (krcmar@in.tum.de)

1fortiss GmbH, Guerickestraße 25, 80805 München, Germany
2Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
3Dynatrace Austria GmbH, Freistädter Str. 13, 4040 Linz,
Austria
4Technical University of Munich (TUM), Boltzmannstraße 3,

85748 Garching, Germany

Outlet Proceedings of the European Workshop on Performance Engineer-

ing (EPEW) 2015

Status Accepted

Keywords Performance Model Generation, Resource Demand Measurements,

Resource Demand Estimations

Individual Contribution Problem and scope definition, construction of the conceptual ap-

proach, prototype development, paper writing, paper editing

Table 5.1: Bibliographic details for P2

Abstract Resource demands are a core aspect of performance models. They describe how
an operation utilizes a resource and therefore influence the systems performance metrics:
response time, resource utilization and throughput. Such demands can be determined
by two extraction classes: direct measurement or demand estimation. Selecting the best
suited technique depends on available tools, acceptable measurement overhead and the
level of granularity necessary for the performance model. This work compares two direct
measurement techniques and an adaptive estimation technique based on multiple statis-

41

5.1. INTRODUCTION 42

tical approaches to evaluate strengths and weaknesses of each technique. We conduct a
series of experiments using the SPECjEnterprise2010 industry benchmark and an auto-
matic performance model generator for architecture-level performance models based on
the Palladio Component Model. To compare the techniques we conduct two experiments
with different levels of granularity on a standalone system, followed by one experiment
using a distributed SPECjEnterprise2010 deployment combining both extraction classes
for generating a full-stack performance model.

5.1 Introduction

Performance models can be used to predict the performance of application systems. Re-
source demands are an important parameter of such performance models. They describe
how an operation utilizes the available resources. A busy resource increases the time an
operation needs to execute, therefore increasing the response time of the operation and
ultimately the time for the user accessing the system. When performance models are
applied for capacity management, such information is essential as the available hardware
must be sized according to the demand of the operations for a certain workload. Demands
can be extracted from different sources. Expert guesses are used, especially when no run-
ning application artifact is available, to forecast the application’s performance behavior. If
running artifacts are available (e.g., in a test environment), measurement and estimation
techniques can be applied. This work compares two direct measurement techniques and
an adaptive estimation technique based on multiple statistical approaches and compares
strengths and weaknesses of each technique.

Manually creating performance models often outweighs their benefits (Brunnert/Vögele/Kr-
cmar, 2013). Therefore, automatic performance model generator (PMG) frameworks for
running applications have been introduced in the scientific community (Brosig/Kounev/
Krogmann, 2009; Brunnert/Vögele/Krcmar, 2013). Such PMGs create performance mod-
els, which include the software architecture, control flow and the resource demand of the
application. These PMGs use either direct measurements by instrumenting the opera-
tions that are executed or resource demand estimations calculated from coarse-grained
measurement data like total resource utilization and response time per transaction invo-
cation.

Applying direct measurements requires to alter the installation of the system that is in-
strumented by applying an agent that intercepts invocations. This allows for extracting
the software architecture and control flow, but causes overhead on the system running
for every instrumented operation that is invoked (Brunnert/Neubig/Krcmar, 2014). Fur-
thermore, such measurements require that for each instrumented technology and resource
type, a dedicated measurement approach must be available. A number of industry solu-
tions for direct measurements are already available and have been integrated into such a
PMG previously (Willnecker/Brunnert et al., 2015a).

As an alternative to direct measurements, resource demand estimation techniques can
approximate the demand of a resource from coarse-grained monitoring data like Central

5.2. EXTRACTING RESOURCE DEMANDS 43

Processing Unit (CPU) utilization of a system and response time of a transaction. Such
data can be collected for a wide range of systems and technologies and requires no in-depth
measurement of the application’s technology stack. This coarse-grained monitoring data
causes less overhead, produces less data to collect, and to process. However extracting
the control flow of an application is not possible with such an approach.

The Library for Resource Demand Estimation (LibReDE)1 provides different resource de-
mand estimation approaches (Spinner/Casale et al., 2014). In order to do the estimations,
LibReDE requires information about the resource utilization as well as about the response
times of an operation or transaction during the same time frame. This work integrates
LibReDE with the PMG introduced by Brunnert et al. (Brunnert/Vögele/Krcmar, 2013)
in order to be able to generate models based on direct resource demand measurements or
estimations. This integration allows to compare the direct measurement and estimation
approaches and to determine strengths and weaknesses for extracting resource demands
using the SPECjEnterprise20102 industry benchmark as representative enterprise appli-
cation for the evaluation.

We compare these two extraction classes for resource demands in a series of experiments
evaluating the accuracy of automatically generated performance models in terms of CPU
utilization and response times. Therefore, the main contributions of this work are as
follows:

(i) An integration of resource demand estimation in a PMG.
(ii) A comparison of the accuracy of two direct measurement techniques with the most

common resource demand estimation approaches used in practice.
(iii) An evaluation of an integrated PMG, utilizing the benefits of direct measurement

and estimation techniques.

This work begins with an introduction to the performance model generation workflow
followed by introducing measurement technologies. We continue with an introduction to
LibReDE and the approaches used to estimate resource demands including the selection of
the most accurate estimation approach for meaningful resource demands. The experiment
for comparing all three approaches is described and evaluated, followed by a hybrid setup
where a combination of direct measurements and resource demand estimations is used.
The work closes with related work, followed by the conclusion and future work section.

5.2 Extracting Resource Demands

In order to support resource demand measurement and estimation approaches, we ex-
tend the previously introduced Performance Management Work (PMW)-Tools’ automatic

1http://se.informatik.uni-wuerzburg.de/tools/librede/
2SPECjEnterprise is a trademark of the SStandard Performance Evaluation Corp. (SPEC). The

SPECjEnterprise2010 results or findings in this publication have not been reviewed or accepted by SPEC,
therefore no comparison nor performance inference can be made against any published SPEC result. The
official web site for SPECjEnterprise2010 is located at http://www.spec.org/osg/Enterprise2010.

5.2. EXTRACTING RESOURCE DEMANDS 44

PMW-Tools
Aggregator

Performance
Model

Jav
a E

E A
p

p
licatio

n

SAR/JMX CPU
Utili zation

Logger

1. Monitoring 3. Model Generation

P
M

W
-T

oo
ls C

o
n

n
e

cto
r

P
erform

a
n

ce M
o

d
e

l G
e

ne
ra

to
r

LibReDE

Monitoring
Database

PMW-Tools
Monitoring

Dynatrace
Aggregator

Dynatrace AM

2. Aggregation

Figure 5.1: Performance model generator framework (adapted from Brunnert/Neu-
big/Krcmar (2014); Willnecker/Brunnert et al. (2015a))

PMG with LibReDE (Brunnert/Vögele/Krcmar, 2013), (Spinner/Casale et al., 2014).
Generating a performance model is divided into three separate steps depicted in Fig-
ure 5.1. First monitoring data is gathered. This monitoring data is, in a second step,
aggregated per operation and stored in a monitoring database (DB). The last step is the
actual model generation, which uses the aggregated data and generates an architecture-
level performance model based on the Palladio Component Model (PCM) (Becker/Kozi-
olek/Reussner, 2009).

The PMG supports data from different data sources:

(i) PMW-Tools monitoring, a monitoring solution for Java Enterprise Edition (EE) ap-
plications to measure CPU, memory, and network demands and response times of
Java EE components and its operations (Brunnert/Krcmar, 2017; Brunnert/Vögele/Kr-
cmar, 2013).

(ii) Dynatrace3 Application Monitoring (AM), an industry monitoring solution for Java,
.NET, PHP and other technologies (Willnecker/Brunnert et al., 2015a).

(iii) System Activity Reporter (SAR), an Unix/Linux based tool to display various sys-
tem loads like CPU utilization.

(iv) Java Management Extensions (JMX) Logger, a command line tool that reads CPU
utilization values from Java Virtual Machines (JVMs) using the JMX interface.

The first two data sources are able to collect direct measurement data, but also response
times for estimation techniques. The demand estimation is realized using LibReDE (Spin-
ner/Casale et al., 2014). This library uses response times of an operation or transaction
and utilization of a resource, collected by one of the last two data sources, to estimate
the resource demands of an operation (Spinner/Casale et al., 2014).

3http://www.dynatrace.com

5.2. EXTRACTING RESOURCE DEMANDS 45

5.2.1 Performance Management Work - Tools Monitoring

PMW-Tools monitoring provides a Servlet Filter, an Enterprise JavaBean (EJB) Inter-
ceptor, a SOAP-Handler and a Java Database Connectivity (JDBC)-Wrapper for Java EE
applications (Brunnert/Krcmar, 2017; Brunnert/Vögele/Krcmar, 2013). The aforemen-
tioned technologies allow to collect CPU time, heap allocation and network demand on the
level of single operation invocations (Brunnert/Krcmar, 2017; Brunnert/Neubig/Krcmar,
2014; Brunnert/Vögele/Krcmar, 2013). Furthermore, the PMW-Tools monitoring allows
to collect information about the transaction control flow and about an application archi-
tecture on the level of components and their operations. All public operations within the
instrumented system are extracted and combined to one transaction. The PMW-Tools
monitoring agent is able to measure the response time of an operation. The start and
end time of each operation invocation is measured. Subinvocations are removed from this
time interval, so the actual response time of one operation invocation is calculated.

5.2.2 Dynatrace Application Monitoring

The Dynatrace AM solution allows for measurements on different levels of granularity.
This ranges from measuring the response time on the system entry point level, through
fine-grained measurements per operation invocation. Dynatrace AM uses, depending on
the host system, various timers that measure the CPU utilization in different time inter-
vals (Dynatrace, 2015). It furthermore traces a transaction throughout the instrumented
system and can therefore determine the control flow as the PMW-Tools monitoring does
(Willnecker/Brunnert et al., 2015a). The Representational State Transfer (REST) in-
terface of this solution provides, among other metrics, the ability to access CPU time
and response times of the instrumented operations. Thus, this approach, as well as the
PMW-Tools monitoring approach can be used for direct measurements and estimation
techniques.

5.2.3 Library for Resource Demand Estimation

5.2.3.1 Demand estimation approaches

While the monitoring tools described in Section 5.2.1 and Section 5.2.2 are able to di-
rectly measure the CPU time per operation invocation, their usage is infeasible in certain
situations, e.g., when using third-party or legacy applications that cannot provide the
required instrumentation. For other scenarios, the costs for fine-grained instrumentation
can be considered too high. Therefore, different statistical approaches have been proposed
in the literature to estimate resource demands for individual operations based on aggre-
gated measurements such as average response time or CPU utilization. These aggregated
measurements are often collected by default in applications (e.g., in access log files) and
in the operating system (OS). Therefore, resource demand estimation techniques can be
applied in many situations where the usage of direct measurements is prohibitive.

5.2. EXTRACTING RESOURCE DEMANDS 46

LibReDE is a Java library providing different ready-to-use implementations of statistical
approaches for resource demand estimation (Spinner/Casale et al., 2014). The library
currently comes with implementations of six commonly used approaches: response time
approximation (Brosig/Kounev/Krogmann, 2009), service demand law (Brosig/Kounev/
Krogmann, 2009), linear regression (Rolia/Vetland, 1995), two variants of a Kalman fil-
ter (Wang et al., 2012; Zheng/Woodside/Litoiu, 2008) and an optimization-based ap-
proach (Menascé, 2008). Previous work (Spinner, 2011) showed that the accuracy of the
individual techniques strongly depends on the characteristics of the observations and the
modeled system resulting in significant differences in the estimates. In order to evaluate
the accuracy of the estimated resource demands, LibReDE supports the evaluation of the
results using k-fold cross-validation: the input data is randomly partitioned into k equally
large subsets and the estimation is repeated k times, each time using a different one of
the k subsets as validation set and the others as training set. As the actual values of
the resource demands are unknown, the estimation error is evaluated using the observed
utilization Uact and the observed response times Ract,r of operation r. The observed values
are compared to the calculated ones, Ucalc and Rcalc,r, which are obtained using equations
from operational analysis of queuing networks. Using the estimated resource demands,
Ucalc is determined based on the Utilization Law (Harchol-Balter, 2013, Chap. 6):

Ucalc(λ) =
1

p

n∑
r=1

λrDr (5.1) Rr
calc(λ) = Dr(1 +

PQ

1− Ucalc(λ)
). (5.2)

Assuming a M/M/k/PS queue for Equation 5.2 (Harchol-Balter, 2013, Chap. 14): n
is the number of operations, Dr is the estimated resource demand of operation r, λ =
(λ1, . . . , λn) is a vector of arrival rates, p is the number of processor cores and PQ is
the probability that an arrival finds all servers busy (calculated using the Erlang-C for-
mula (Harchol-Balter, 2013, Chap. 14)).

The mean relative errors Eutil for the utilization and Ert,r are then determined on the

validation set V={(λ(i)1 , . . . , λ
(i)
n , R

(i)
act,1, . . . , R

(i)
act,n, U

(i)
act) : i = 1 . . .m}:

eutil =
1

m

m∑
i=1

|U (i)
act − Ucalc(λ

(i))|
U

(i)
act

(5.3) errt =
1

m

m∑
i=1

|R(r,i)
act −Rr

calc(λ
(i))|

R
(r,i)
act

(5.4)

The relative errors are calculated for each of the k validation sets and the result of the
cross-validation is the mean relative error over all validation sets. Based on the relative
errors, the PMG dynamically chooses an approach as described in the next section.

5.2.3.2 Estimation approach selection

Selecting the right estimation approach for LibReDE makes a huge difference (in our
experiments we observed differences in the range of 6% to 6000% relative response time
error). Each approach has strengths and weaknesses depending on the application in
place (Spinner, 2011; Spinner/Casale et al., 2014).

5.3. EVALUATION 47



e
(1)
util
...

e
(i)
util
...

e
(m)
util


+





e
(1,1)
rt . . . e

(1,j)
rt . . . e

(1,n)
rt

...
...

...

e
(i,1)
rt . . . e

(i,j)
rt . . . e

(i,n)
rt

...
...

...

e
(m,1)
rt . . . e

(m,j)
rt . . . e

(m,n)
rt


×


λ(1) . . . 0 . . . 0

...
...

...

0 . . . λ(i) . . . 0
...

...
...

0 . . . 0 . . . λ(n)




×


1
...
1
...
1

 (5.5)

We are looking for the approach that calculates the most accurate resource demands,
therefore we use both validators and select the one with the lowest relative error when
combining both validation results provided by LibReDE. The utilization law validator
provides a vector Eutil, as we only use one resource, with the length of m, where m is
the number of estimation approaches used. Each row in this vector contains the relative
utilization error of one approach. The response time validator provides a m × n matrix
Ert, where m is the number of estimation approaches used and n the number of operations
to estimate resource demands for. Each row i contains all relative response time errors of
one approach and each column j contains the relative response time error of one operation.
Therefore, the value at index i,j is the relative response time error of operation j using
approach i.

Some operations might get a small amount of calls, misleading the approach selection
when just selecting the approach with the smallest relative error. We weight the relative
error of each operation according to the arrival rates of the input data as the number of
values used for the estimation varies due to different workload on each operation. We
therefore multiply the arrival rates matrix λ with the relative response time error matrix
Ert. The result is a weighted matrix that considers the operation call probability. To
select the best suited approach we need to reduce this matrix to a vector, where each
value contains a meaningful relative error for one approach considering all operations.
We calculate the sum over each row of the matrix resulting in a relative response time
error vector. Both vectors, containing either the response times or the CPU utilization
error, are added up as shown in Equation 5.5.

We finally select the approach with the minimum total error in the resulting vector. The
resource demands Dr of this approach are stored in the monitoring DB of the PMG.
The model generation then uses these resource demands for building an architecture-level
performance model.

5.3 Evaluation

In order to evaluate the accuracy of resource demand measurement and estimation ap-
proaches, we used two environments. The first evaluation compares the three presented
approaches (PMW-Tools monitoring, Dynatrace AM and LibReDE) with each other on
two levels of granularity in a virtualized environment. In the second evaluation, we use
a distributed bare-metal installation and combine direct measurement and estimation
approaches.

5.3. EVALUATION 48

For both evaluations, we use the orders domain application of the SPECjEnterprise2010
(Version 1.03) industry standard benchmark as exemplary enterprise application. Since
the benchmark defines a workload and a dataset for the test execution, the results are
reproducible for others. The orders domain application is a Java EE web application
comprised of servlet, JavaServer Pages (JSPs) and EJB components. The application
represents a platform for automobile dealers to sell and order cars; the dealers (henceforth
called users) interact with the platform using the Hypertext Transfer Protocol (HTTP).
There are three basic business transactions which describe how users interact with the
system: Browse, Manage and Purchase.

5.3.1 Standalone evaluation

For the standalone evaluation, we installed the SPECjEnterprise2010 benchmark and
its corresponding load test driver on two Virtual Machines (VMs), each deployed on
separate hosts (IBM System X3755M3) to avoid interferences between the two systems.
The system under test (SUT) VM contains the application server, hosting the orders
domain application. The other VM executes load tests on the SUT using the Faban4

harness driver of the benchmark. Both virtual machines run openSUSE 12.3 64-bit as
OS and have access to 40 gigabytes of Random Access Memory (RAM). The application
server VM uses six CPU cores while the driver VM has access to four CPU cores.

The benchmark is deployed on a JBoss Application Server (AS) 7.1 in the Java EE 7.0 full
profile. The DB on the test system VM is an Apache Derby DB in version 10.9.1.0. The
JBoss AS and the Apache Derby DB are both executed in the same 64-bit Java OpenJDK
VM (JVM version 1.7.0 17).

The first step of the evaluation is to obtain the relevant performance metrics (response
time, utilization and throughput) of the SUT under different workloads by performing
measurement runs. As the network overhead between the Faban harness and the SUT
is not considered in the first step, the response time measurements are conducted by
measuring the system entry point response times with the PMW-Tools monitoring. For
this purpose, a workload of 600, 800, 1000 and 1200 concurrent users is put on the SUT,
resulting in a mean CPU utilization of 39%, 56%, 69% and 79% on the server. Each
measurement run lasts for sixteen minutes while data is only collected between a five
minute ramp-up and a one minute ramp-down phase.

The standalone evaluation is conducted on two levels of granularity. We compare system
entry point level, where only the boundaries of the system are monitored, with a com-
ponent operation level monitoring, where each public operation of each used component
is instrumented. This results in different performance models as resource demands are
only measured or estimated for either servlet invocations (system entry point) or servlet
calls and EJB operation invocations. For both cases we execute a load test with 600
concurrent users and collect monitoring data. Depending on the approach selected, this

4https://java.net/projects/faban/

5.3. EVALUATION 49

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

0

50

100

150

R
es

po
ns

e
T

im
e

[m
ill

is
ec

on
ds

]

600 Users

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

800 Users

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

1000 Users

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

1200 Users

Figure 5.2: Measured and simulated response times on system entry point level

monitoring data contains either fine-grained measurements of CPU demanded time per
operation invocation or only response times and total CPU utilization of the VM.

The performance models generated with this monitoring data are used for simulating the
same and higher amounts of concurrent users (800 - 1200). We compare the simulated
CPU utilization and the response times with actual measurements on the system. For the
utilization we compare the measured mean CPU utilization (MMCPU) with the simulated
mean CPU utilization (SMCPU) and calculate the relative CPU utilization prediction
error (CPUPE).

When examining the CPU utilization prediction results shown in Table 5.2, it is visible
that LibReDEs prediction is very accurate, especially in the replay case with 600 concur-
rent users and the upscaled case with 1200 concurrent users. The two monitoring solu-
tions only measure the CPU time of the actual request thread while LibReDE also takes
the overhead of the application server and CPU time for other processing like Garbage
Collection (GC) into account. Dynatrace AM can use different CPU timers optimized
for specific environments (i.e., VM, Windows OS, etc.) and the here used POSIX Hi-Res
timer produces more accurate results than the PMW-Tools monitoring (Dynatrace, 2015).

Table 5.2: Measured and simulated CPU utilization for system entry point level

System PMW-Tools monitoring Dynatrace AM LibReDE - estimation

Users MMCPU SMCPU CPUPE SMCPU CPUPE SMCPU CPUPE

600 39,33% 36.66% 6.80% 38.73% 1.53% 39.73% 1.01%

800 55,69% 48.68% 12.58% 51.41% 7.68% 52.69% 5.37%

1000 69,28% 60.92% 12.06% 64.02% 7.58% 65.56% 5.36%

1200 79,31% 73.21% 7.69% 77.33% 2.50% 78.66% 0.82%

5.3. EVALUATION 50

Figure 5.2 shows the response times for system entry point level granularity using box
plots. Each box depicts one measurement/simulation series. The figure is divided into four
sections, distinguishing between different user amounts. In each section, three measured
response time (MRT) box plots are shown, one for each business transaction: Browse
(B), Manage (M), Purchase (P). The sections are completed by nine simulation box plots,
one for each of the three business transactions times the three techniques: PMW-Tools
monitoring (PMW), Dynatrace AM (DT) and LibReDE (LRD).

We see that LibReDE tends to overestimate the resource demands, leading to a higher
median and broader Interquartile range (IQR) for the Browse and Manage transaction,
but delivers good results in general. The differences between PMW-Tools monitoring
and Dynatrace AM are minimal in most cases. All approaches have in common that
they cannot predict the lower quartiles. However, this is most likely caused by the fact,
that only mean values for CPU demands are represented in the resource demands of the
generated performance models.

The CPU utilization results and errors are similar for component operation level compared
to system entry point level. Table 5.3 shows that LibReDE again produces the most
accurate resource demands when simulating and comparing the CPU utilization with
actual measurements. Dynatrace again is more accurate than PMW-Tools monitoring
but the differences are smaller compared to the system entry point level.

The response time errors presented in Figure 5.3 are best predicted with direct measure-
ments. The differences between the two monitoring approaches are rather small. LibReDE
overestimates in most of the cases. The upper quartiles are better predicted using esti-
mation than direct measurements, but the median and IQR are worse with estimation
approaches. Again all approaches have in common that they cannot predict the lower
quartile.

5.3.2 Distributed Setup

The previous evaluation showed that resource estimation techniques provide sufficiently
accurate results for most of the evaluated scenarios. However, in order to use these
estimations, it is important to be able to measure control flows and response time on the
level of granularity that needs to be represented in a model. Furthermore, estimations
work only as long as response time and throughput values for all requests are available
for a measurement interval. Therefore, there are a lot of cases in which it is desirable to
mix direct measurements with resource estimation techniques.

Table 5.3: Measured and simulated CPU utilization for component operation level

System PMW-Tools monitoring Dynatrace AM LibReDE - estimation

Users MMCPU SMCPU CPUPE SMCPU CPUPE SMCPU CPUPE

600 39,33% 36.39% 7.49% 37.21% 5.39% 39.61% 0.69%

800 55,69% 48.42% 13.04% 49.83% 10.51% 52.77% 5.24%

1000 69,28% 60.26% 13.01% 61.89% 10.67% 65.71% 5.15%

1200 79,31% 71.78% 9.49% 74.07% 6.60% 79.32% 0.01%

5.3. EVALUATION 51

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

0

50

100

150

R
es

po
ns

e
T

im
e

[m
ill

is
ec

on
ds

]

600 Users

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

800 Users

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

1000 Users

B
 M

R
T

B
 P

M
W

B
 D

T
B

 L
R

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P
 M

R
T

P
 P

M
W

P
 D

T
P

 L
R

D

1200 Users

Figure 5.3: Measured and simulated response times on component operation level

This evaluation validates a distributed deployment scenario for SPECjEnterprise2010 in
which direct measurements and estimations are used in combination. This is necessary to
be able to properly account for the resource demands and times spent on different layers
of the architecture (e.g., what portion is spent in the DB tier). It is important to note
that the following models also account for network resource demands which was not done
for the previous evaluations as the standalone setup was deployed on a single server. The
models for this evaluation are automatically generated using the PMG by providing input
from multiple sources (PMW-Tools monitoring, Dynatrace AM, SAR and LibReDE).

The SPECjEnterprise2010 benchmark is deployed in a multi-tier architecture consisting
of a presentation, application and a data tier. As we do not have an in-depth monitoring
for the data tier, we use estimation here while the presentation and application tier are
instrumented using the PMW-Tools monitoring as well as the Dynatrace AM. The result-
ing resource demands are used to build a performance model based on PCM. In order to
model the data tier, the data collection solution (i.e., PMW-Tools monitoring, Dynatrace
AM) gathers the tier’s response times, CPU utilization on the DB is gathered using SAR.
These values are used as input for a resource demand estimation using LibReDE (Spin-
ner/Casale et al., 2014). The generated performance model is then enriched with the data
tier’s estimated resource demands. Finally, the model is used to perform simulations with
increasing workloads; the results are then compared to measurements of the real system
to gauge the prediction performance of the approach.

To obtain a multi-tier architecture, the standard orders domain application is modified
by converting the EJB components to web services. This allows for the application’s
deployment on two different machines. In addition, the application tier is connected to a
PostgreSQL DB located on a third machine.

5.3. EVALUATION 52

The different tiers of the application are deployed on three different machines which in
the following will be called User Interface (UI) server, Web Service (WS) server and DB
server. Additionally, a benchmark driver is deployed on one VM to generate load on the
whole system by accessing the UI server using the three business transactions. To achieve
a moderate load on each system, the CPU core count of each system has been modified by
disabling some cores. All of the systems’ technical specifications are listed in Table 5.4.

The distributed evaluation also begins with performing similar measurement runs using
minimal instrumentation. Executing the same workload (600 - 1200 users), as in the
previous evaluation results in a maximum CPU utilization of 77%, 59% and 68% on
the UI, WS and DB server, respectively. The benchmark driver has been modified to
collect the response time of the three business transactions for each invocation, instead
of measuring them directly on the SUT as in the previous evaluation.

Afterwards, the UI and WS server are instrumented and another benchmark run with a
workload of 600 concurrent users is performed. The collected data is used to generate a
performance model using the PMG. Simultaneously, the response times per invocation
and aggregated utilization of the DB server are collected. These are automatically used
by the PMG as input for the LibReDE resource demand estimation. The model is further
enhanced by adding latency and throughput values of the network connecting the indi-
vidual servers as shown in (Brunnert/Krcmar, 2017). These values are gathered using the
lmbench5 benchmark suite. Finally, the finished model is used to simulate the SUT with
a workload of 600, 800, 1000 and 1200 concurrent users; the duration and steady state
times correspond to the ones used for the measurements.

When examining the CPU utilization values in Table 5.5 and Table 5.6, we see that the
SMCPU of the DB server is predicted with very high accuracy using Dynatrace AM,
with the highest error being 1.21% at 1000 concurrent users. The PMW monitoring does
not intercept all JDBC calls, leading to an overestimation of CPU demands on the calls
that are intercepted. Furthermore, the accounting of this calls is also missing in the WS
server, leading to an underestimation of the CPU demands in the business tier. The
CPU utilization of the WS server is predicted very well using Dynatrace AM, while the
UI server’s utilization is predicted too low. Dynatrace distributes the processing time

5http://lmbench.sourceforge.net/

Table 5.4: Software and hardware configuration of the SUT

Server UI Server WS Server DB Server

Application SPECjEnterprise2010 (version 1.03) orders domain

AS/DB GlassFish 4.0 (build 89) JBoss AS 7.1.1 PostgreSQL 9.2.7

JVM
64-bit Java HotSpot 64-bit Java OpenJDK
JVM version 1.7.0 71 JVM version 1.7.0 40 -

OS openSUSE 12.2 openSUSE 12.3

CPU Cores 2 x 2.1 GHz 6 x 2.1 GHz 4 x 2.4 GHz

CPU Sockets 4 x AMD Opteron 6172 2 x Intel Xeon E5645

RAM 256 GB 96 GB

Hardware System IBM System X3755M3 IBM System X3550M3

Network 1 Gigabit-per-second (GBit/s)

5.3. EVALUATION 53

Table 5.5: Measured and simulated CPU utilization using PMW-Tools monitoring

UI server WS server DB server

Users MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE

600 39.97% 40.36% 0.96% 30.96% 26.93% 14.96% 34.51% 40.77% 15.35%

800 53.11% 54.05% 1.74% 41.86% 36.11% 15.94% 45.89% 54.54% 15.86%

1000 65.27% 67.37% 3.11% 48.39% 44.99% 7.57% 56.51% 68.02% 16.93%

1200 77.01% 80.52% 4.36% 59.71% 53.81% 10.96% 68.38% 81.42% 16.01%

Table 5.6: Measured and simulated CPU utilization using Dynatrace AM

UI server WS server DB server

Users MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE

600 39.97% 33.29% 20.06% 30.96% 30.54% 1.36% 34.51% 34.25% 0.77%

800 53.11% 44.47% 19.43% 41.86% 40.82% 2.55% 45.89% 45.80% 0.20%

1000 65.27% 55.55% 17.49% 48.39% 51.03% 5.17% 56.51% 57.20% 1.21%

1200 77.01% 66.82% 15.25% 59.71% 61.34% 2.66% 68.38% 68.92% 0.79%

B
 M

R
T

B
 P

M
W

B
 D

T

M
 M

R
T

M
 P

M
W

M
 D

T

P
 M

R
T

P
 P

M
W

P
 D

T

0

50

100

150

200

R
es

po
ns

e
T

im
e

[m
ill

is
ec

on
ds

]

600 Users

B
 M

R
T

B
 P

M
W

B
 D

T

M
 M

R
T

M
 P

M
W

M
 D

T

P
 M

R
T

P
 P

M
W

P
 D

T

800 Users

B
 M

R
T

B
 P

M
W

B
 D

T

M
 M

R
T

M
 P

M
W

M
 D

T

P
 M

R
T

P
 P

M
W

P
 D

T

1000 Users

B
 M

R
T

B
 P

M
W

B
 D

T

M
 M

R
T

M
 P

M
W

M
 D

T

P
 M

R
T

P
 P

M
W

P
 D

T
0

100

200

300

400

1200 Users

Figure 5.4: Measured and simulated response times

to all active operations. We have more running operations on the WS server, leading to
better results for this tier compared to the UI server. The PMW monitoring instruments
the CPU demands of the UI server better, because its servlet interceptor measures each
operation individually. Overall, the results show that the approach is well suited for
predicting the performance of a multi-tier application.

The response time values are illustrated in the box plots in Figure 5.4. The figure is
divided into four sections, one section for each user amount. Each section again contains
three MRT series (Browse, Manage, Purchase) and six simulation box plots. Three plots
for the combination PMW-Tools monitoring and LibReDE (PMW) and three plots for the
combination Dynatrace AM and LibReDE (DT). Note that the last section uses another
scale as the first three sections, as the response times are significantly higher with 1200
concurrent users.

5.4. RELATED WORK 54

The comparison shows that the combination of resource demand measurement and esti-
mation techniques leads to a good representation of the real system. The median of the
simulated response time is close to the actual measurements. The prediction error for the
median response time values is at most 25.02% for the browse transaction at 1200 con-
current users. The IQR prediction using PMW is usually a bit closer to the real system
measurements than DT.

5.4 Related Work

This section presents related work that is concerned with measurement accuracy in dif-
ferent environments or the overhead caused by such measurements.

CPU accounting on VMs can be error prone due to sharing the same physical resource
over multiple machines. Hofer et al. (Hofer/Hörschläger/Mössenböck, 2015) discovered
that malicious accounting, so called steal time, can be detected and calculated in a VM.
If not corrected, CPU utilization measurements produce wrong resource demands. Wrong
CPU utilization accounting decreases the quality of performance models created either
using direct measurement or estimation methods. We avoid this by isolating the SUT
VM on a single host. However, virtualized environments need to correct this steal time
in order to calculate accurate resource demands.

Estimating the overhead of virtualized environments has been described by Brosig et al.
(Brosig et al., 2013) and Huber et al. (Huber/Quast et al., 2011). These approaches
estimate, among others, virtualization overhead based on monitoring data using a queu-
ing network. Such calculations can increase the accuracy of resource demands of such
environments.

Kuperberg compared different timers and measurement approaches for a number of sys-
tems (Kuperberg, 2010). While the Dynatrace AM already offers different timers to select
the most suitable one, the other two approaches rely on either the ThreadMXBean, JMX
monitoring or SAR. The accuracy of these approaches can vary depending on the un-
derlying system monitored and therefore the calculated resource demands accuracy may
vary.

Measurement approaches cause overhead on the SUT. Brunnert et al. (Brunnert/Neu-
big/Krcmar, 2014) measured and discussed this effect for the PMW-Tools monitoring
solution in previous work. This overhead effect turns out to be at around 0.003 ms for
each measurement when only CPU no other resource demands are collected. This over-
head can effect the system at its capacity limits, while an estimation approach can use
coarse-grained monitoring data with less overhead.

5.5 Conclusion and Future Work

This work compared three different techniques for deriving resource demands for perfor-
mance models. We compared a monitoring approach from academia, an industry moni-
toring solution and a library combining six different estimation approaches. These tech-
niques have been integrated into a single automatic PMG. The evaluation compared all
techniques in a standalone and a distributed setup, as well as in a virtualized and a bare-
metal environment for two levels of granularity: system entry point level and component
operation level.

All techniques deliver good results for both granularity levels and in all environments.
Estimation techniques deliver better results for the system entry point level, but fall
short behind direct measurements for the component operation level. Furthermore, di-
rect measurements can extract resource demands on any level of detail, while estimation
techniques must calculate demands for the complete system to distribute the measured
utilization among the components. Estimation techniques can be applied to a broad va-
riety of technologies as the requirements for data collection are lower. We demonstrated
accurate results using a hybrid setup, where measurement approaches are used to extract
resource demands for the UI and WS combined with estimations for the DB.

The evaluation uses a Java EE application. Industry monitoring like Dynatrace AM are
capable of observing other technologies. Demonstrating the applicability of the framework
for other technology stacks as well as extending the monitored resources are interesting
challenges for further research.

Chapter 6

Full-Stack Performance Model
Evaluation using Probabilistic
Garbage Collection Simulation

Authors Willnecker, Felix1 (willnecker@fortiss.org)
Brunnert, Andreas1 (brunnert@fortiss.org)
Koch-Kemper, Bernhard2 (kochkemp@in.tum.de)
Krcmar, Helmut2 (krcmar@in.tum.de)

1fortiss GmbH, Guerickestraße 25, 80805 München, Germany
2Technical University of Munich (TUM), Boltzmannstraße 3,

85748 Garching, Germany

Outlet Proceedings of the Symposium on Software Performance (SSP)

2015

Status Accepted

Keywords Performance Evaluation, Palladio Component Model, Java, En-
terprise Applications, I/O Performance Simulation, Garbage Col-

lection Simulation

Individual Contribution Problem and scope definition, construction of the conceptual ap-
proach, prototype development, experiment design, execution and

result analysis, paper writing, paper editing

Table 6.1: Bibliographic details for P3

Abstract Performance models can represent the performance relevant aspects of an en-
terprise application. Corresponding simulation engines use such models for simulating
performance metrics (e.g., response times, resource utilization, throughput) and allow for
performance evaluations without load testing the actual system. Creating such models
manually often outweighs their benefits. Therefore, recent research created performance
model generators, which can generate such models out of Application Performance Man-
agement software. However, a full-stack evaluation containing all relevant resources of an
enterprise application (Central Processing Unit, memory, network and Hard Disk Drive)
has not been conducted to the best of our knowledge. This work closes this gap using a
pre-release version of the next generation industry benchmark SPECjEnterpriseNEXT of
the Standard Performance Evaluation Corporation as example enterprise application, the

56

6.1. INTRODUCTION 57

Palladio Component Model as performance model and the performance model generator
of the RETIT Capacity Manager. Furthermore, this work extends the generated model
with a probabilistic garbage collection model to simulate memory allocation and releases
more accurately.

6.1 Introduction

Evaluating the performance of an enterprise application (EA) requires either load testing
this application or creating a performance model to simulate the performance metrics
(e.g., response times, resource utilization, throughput) of a system. Simulations are often
less cost intensive as they do not require a full scale deployment environment (Kounev,
2005). Performance models and corresponding simulation engines have been introduced
to the scientific community (Becker/Koziolek/Reussner, 2009). Resource profiles based
on the Palladio Component Model (PCM) have demonstrated to accurately represent the
Central Processing Unit (CPU) and network demand of EAs (Becker/Koziolek/Reussner,
2009; Brunnert/Krcmar, 2017). Resource profiles are generated using a performance
model generator, as a manual creation of such profiles often outweighs their benefits
(Kounev, 2005). These profiles already introduce heap, as the most relevant aspect of
memory in EAs, and contain a Hard Disk Drive (HDD) representation (Brunnert/Krcmar,
2017). However, these concepts have not been evaluated. This work demonstrates the
heap and HDD modeling and simulation capability of resource profiles using the industry
benchmark SPECjEnterpriseNEXT1 as EA and the performance model generator of the
RETIT2 Capacity Manager .

An accurate model needs to take all relevant resources (CPU, network, memory, and
HDD) into account. The generation of such a model requires to monitor a running artifact
using Application Performance Management (APM) software (Willnecker/Brunnert et al.,
2015a). This data can be collected during small scale test runs and scaled to the expected
workload (Brunnert/Krcmar, 2017). In this work we use the RETIT Java EE Monitoring
and extend it with HDD demand measurements for Linux based systems. Furthermore,
the heap model of resource profiles is extended using a young and old generation garbage
collection (GC) model and corresponding simulation to increase the correctness of the
heap simulation.

6.2 Garbage Collection Model

The RETIT performance model generator already contains a heap representation. This
representation is based on a simple memory model where allocated heap is immediately

1SPECjEnterpriseNEXT is a trademark of the Standard Performance Evaluation Corp. (SPEC). The
SPECjEnterpriseNEXT results or findings in this publication have not been reviewed or accepted by
SPEC, therefore no comparison nor performance inference can be made against any published SPEC
result.

2http://www.retit.de/

http://www.retit.de/

6.3. EVALUATION 58

freed when the contained objects are released (Brosig et al., 2013). The PCM entity
Passive Resource is used for this purpose (Becker/Koziolek/Reussner, 2009). Each model
contains one component called Heap that contains one Passive Resource called HeapSpace
with the available memory in the Java Virtual Machine (JVM) heap space. Before and
after each operation invocation an allocation and free operation is called with the number
of bytes allocated or released. The values are derived from monitoring and represent the
mean bytes used in this operation invocation. This implementation has certain disadvan-
tages: (i) each JVM manages its own heap space, therefore each JVM instance in the
performance model needs a separate Heap component (ii) the memory in a JVM is only
cleaned when GC occurs. Only after such a GC run a certain amount of heap is freed.

We change the model in order to address the aforementioned disadvantages. Each JVM
representation uses its own Heap component representing its own heap space. We measure
the mean time between different GC runs and the average number of bytes released. We
distinguish between two types of GC: young and old generation GC (Libič et al., 2015).
Even though GC implementations may vary throughout different JVM versions and types,
these two GC types occur in most of the GC implementations (Libič et al., 2015). For
each GC type we add an Open Workload Scenario that calls the GC operation in the Heap
component. The inter-arrival time between these scenarios is the mean time between two
GC runs of the same type. The operation call has one parameter: the average number of
bytes released per GC run. The operation releases the provided number of bytes in the
HeapSpace. This probabilistic approach converges the generated performance model to
the real memory management in the Java Virtual Machine (JVM).

6.3 Evaluation

The SPECjEnterpriseNEXT industry benchmark is the successor of the SPECjEnter-
prise2010 benchmark. Both are Java Enterprise Edition (EE) applications typically used
to benchmark the performance of different Java EE application servers. We use a pre-
release version3 of the SPECjEnterpriseNEXT as example EA. This application represents
an insurance policy holder that manages car insurances. The application consists of three
different components (Insurance Domain, Vehicle Service, Insurance Agent) as depicted
in Figure 6.1. Each component is deployed as one deployment unit in one application
server running in a virtual machine (VM). Each VM has 4 CPU cores, runs the Java EE
application server Wildfly 8.1.0, the embedded database Derby 10.11.1.1, and has 8 GB
of heap for the JVM. The operation system is OpenSuse 13.2 (x86 64) and a 1 GBit/s
network connection is used for communication between the different VMs.

The Insurance Customer Driver is based on Faban4 and executes five different business
transactions on the Insurance Domain server, which triggers JAX-RS5 REST calls on the
other two servers (Fielding, 2000). We executed a measurement run without the RETIT
Java EE monitoring to minimize instrumentation overhead and use the results to validate

3version from 29.06.2015
4http://faban.org/
5https://jax-rs-spec.java.net/

http://faban.org/
https://jax-rs-spec.java.net/

6.3. EVALUATION 59

VM #6

Vehicle

Database

VM #2

Load

Balancer

VM #1

Insurance

Customer

Driver

AJAX

VM #3

Insurance

Domain
AJAX

VM #5

Vehicle

Service
JAX-RS

VM #4

Insurance

Agent
JAX-RS

VM #7

Vehicle

Database

JPA

JPA

JAX-RS

JAX-RS

Insurance

Database

Figure 6.1: SPECjEnterpriseNEXT deployment

our simulation. The response times of the business transactions were measured on the
driver. CPU and heap utilization were measured using Java Management Extensions
(JMX) and the HDD demand using IOTop6. These measurements have been executed
for 100, 120, 140 and 160 users in a 17 min interval with 5 min ramp up and 2 min ramp
down phase. The model generation is based on a run with 100 users and activated RETIT
Java EE monitoring on system-entry-point level. The monitoring is extended to derive
the resource demand of the HDD. Therefore, the procfs7 system is used, a pseudo file
system containing the read and write bytes per thread.

To calculate the resource capacity of the HDD we use the bonnie++ 1.97 benchmark8.
For calculating the network latency and bandwidth we use LMBench 3.0 (McVoy et al.,
1996). The number of CPU cores is stored in the resource environment replicas setting
for each Resource Container and the available heap is stored in the Passive Resource of
the corresponding heap component for each JVM.

The usage model is based on an Open Workload Scenario. The inter-arrival time per
business transaction IATBT is calculated based on the SteadyStateT ime of 600s, the
total number of calls per business transaction TotalCallsBT and the 100 users of the

6http://guichaz.free.fr/iotop/
7https://www.kernel.org/doc/Documentation/filesystems/proc.txt
8http://www.coker.com.au/bonnie++/

http://guichaz.free.fr/iotop/
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
http://www.coker.com.au/bonnie++/

6.3. EVALUATION 60

Table 6.2: Measurement and simulation results

Resource User Metric Insurance Domain Vehicle Service Insurance Agent

CPU

100
Measured utilization 43.80% 51.57% 46.13%
Simulated utilization 40.48% 48.29% 43.04%
Relative error 7.58% 6.38% 6.70%

160
Measured utilization 70.19% 77.91% 71.73%
Simulated utilization 64.75% 77.25% 68.88%
Relative error 7.75% 0.85% 3.97%

Heap

100
Measured demand 1458.58 MB 1435.41 MB -
Simulated demand 1299.22 MB 1319.41 MB -
Relative error 10.93% 8.08% -

120
Measured demand 1360.19 MB 1304.46 MB -
Simulated demand 1296.29 MB 1317.88 MB -
Relative error 4.70% 1.03% -

HDD

100
Measured demand 0.23% 0% 0%
Simulated demand 0.21% 0% 0%
Relative error 10.72% 0% 0%

160
Measured demand 0.34% 0% 0%
Simulated demand 0.35% 0% 0%
Relative error 0.65% 0% 0%

generation run (UsersGeneration) as depicted in Equation 6.1. The number of users in
the simulation UsersSimulation is up-scaled from 100 to 160 users in steps of 20.

IATBT =
SteadyStateT ime

TotalCallsBT

UsersGeneration
∗ UsersSimulation

(6.1)

The inter-arrival time for the garbage collection IATGC is calculated in a similar way.
Instead of the total number of business transactions we use the number of GC events
TotalEventsGC intercepted during the generation run as shown in Equation 6.2. The
calculation is conducted for each GC type (young and old generation GC). Again, the
number of users UsersSimulation in the simulation is up-scaled from 100 to 160 users in
steps of 20.

IATGC =
SteadyStateT ime

TotalEventsGC

UsersGeneration
∗ UsersSimulation

(6.2)

Table 6.2 shows the results for 100 and 160 users. The complete results are available
online9. The heap simulation has only been conducted for the Insurance Domain and
the Vehicle Service as the heap demand for the Insurance Agent server is almost 0. The
relative error of the heap simulation is between 10.93% and 1.03%. HDD demands only
occur on the Insurance Domain server. Even though, the utilization for the HDD is
relative low the simulation delivers accurate results for this resource. The relative error
here is between 10.72% and 0.65%. The relative CPU utilization error is below 10%.
The utilization in the GC models improves the CPU utilization simulation compared to
previous research (Willnecker/Dlugi et al., 2015c). The response time error based on the
median of simulation and measurements is between 0.16% and 51.65% depending on the
business transaction and user scale.

9http://download.fortiss.org/public/pmwt/SSP2015/FullStack_EvaluationResults.(xlsx/

pdf)

http://download.fortiss.org/public/pmwt/SSP2015/FullStack_EvaluationResults.(xlsx/pdf)
http://download.fortiss.org/public/pmwt/SSP2015/FullStack_EvaluationResults.(xlsx/pdf)

6.4 Conclusions

The improvements and extensions to the model generated by the RETIT performance
model generator prove to be accurate for all resources. Even though the resource utiliza-
tion simulation is accurate, the response time error leaves room for improvement. The
parameter of a request as well as the number of available database and server threads
have impact on the response time simulation. In total the response times of the deploy-
ment are quite high, as the embedded database is not very scalable. A setup with an
dedicated database server appears to be a better solution but requires additional APM
measurement tools or resource demand estimations (Willnecker/Dlugi et al., 2015c). The
probabilistic GC model delivers promising results, however the average number of bytes
could be eliminated as an input parameter for the GC operations. This requires, that the
actual number of bytes ready to be freed is stored in a variable of the model. Further-
more, the current evaluation is based on system-entry-point level. The performance model
generator of the RETIT Capacity Manager provides component-level model generation
which could improve the simulation results presented in this work.

Chapter 7

Model-based Prediction of
Automatic Memory Management
and Garbage Collection Behavior

Authors Willnecker, Felix1 (willnecker@fortiss.org)
Krcmar, Helmut2 (krcmar@in.tum.de)

1fortiss GmbH, Guerickestraße 25, 80805 München, Germany
2Technical University of Munich (TUM), Boltzmannstraße 3,

85748 Garching, Germany

Outlet Simulation Modelling Practice and Theory

Status Submitted

Keywords performance evaluation, capacity planning, Microservices, archi-

tecture design decisions, architecture quality

Individual Contribution Problem and scope definition, construction of the conceptual ap-
proach, prototype development, experiment design, execution and

result analysis, paper writing, paper editing

Table 7.1: Bibliographic details for P4

Abstract Performance models focus on resource consumption and the effects of CPU,
network, or hard-disk utilization. These resources usually have the largest effect on the
response times and throughput of an application. However, deficient memory management
can have severe effects on an application and its runtime, such as overlong response
times or even crashes. As memory management has been disregarded in performance
simulations, we address this gap with an approach based on memory measurements and
derived metrics to predict the behavior of memory management. Although numerous
works exist that analyze memory management and especially garbage collections, accurate
prediction models are rare. We demonstrate the automatic extraction of memory behavior
using an extended performance model generator. Furthermore, the approach is evaluated
using the SPECJEnterprise2010 and the SPECjEnterpriseNEXT industry benchmark,
using different resource environments, garbage collection algorithms, and workloads. This
work demonstrates that a certain set of probabilities allows one to create a memory profile
for an architecture and predict the behavior of the memory management. The results of
such predictions can be used for better capacity planning (on-premise), cost-prediction

62

63

(cloud), architecture evaluation and optimization, or memory profiling. This approach
allows for a continuous evaluation of an enterprise architecture regarding its memory
footprint.

Automatic memory management is part of modern architectures, virtual runtime envi-
ronments (e.g., Java Virtual Machine (JVM), .NET, etc.), and scripting languages (e.g.,
Python, PHP, etc.). Allocating and releasing objects during runtime is the main ob-
jective of automatic memory management. An important feature of automatic memory
management is Garbage Collection (GC) (Jones/Lins, 1996; Jones/Hosking/Moss, 2016).
GC searches for objects that are no longer referenced and are thus no longer used in
order to release the memory space these objects occupy (Libič et al., 2015; Jones/Lins,
1996; Jones/Hosking/Moss, 2016). Most runtime environments contain at least one, of-
ten multiple GC implementations, which again follow a number of strategies depending
on their configuration (Libič et al., 2015; Blaschek/Lengauer, 2015). GC execution runs
are usually triggered when memory reaches a certain level (e.g., 90% full) and require a
certain amount of Central Processing Unit (CPU) resources and execution time. Each of
these GC runs frees up a certain amount of memory, depending on the current state of
the object space. Some GC algorithms can even suspend the application or its runtime
for short period of time to free up memory spaces. Therefore, GC strategies can have a
large impact on the application runtime, its resource utilization, throughput, and response
times.

The impact of different automatic memory management or GC strategies is unveiled
only under some load, as memory spaces have to be filled with a vast amount of objects
until certain thresholds are reached. Small, functional tests usually do not reach these
thresholds. Therefore, predicting the impact of different memory strategies requires a
fully operational test environment including a load test and test drivers. The number of
potential memory strategies and GC implementations is high, so testing and measuring the
impact is very time consuming and costly (Blaschek/Lengauer, 2015). Performance model
simulations can reduce the effort by simulating the effects of software, hardware, runtime
configuration, or workload changes on the application’s performance (Brunnert/Vögele
et al, 2014). This requires a comprehensive performance model, a performance model
generator to reduce the effort for creating such models, and a corresponding simulation
environment (Kounev, 2005; Willnecker et al., 2015b).

Even though automatic memory management and GC can have a huge impact on the per-
formance of applications, memory resources are usually not considered by modern perfor-
mance models (Willnecker/Krcmar, 2016). Most performance models and corresponding
solvers or simulation engines focus on resources like the CPU, Hard Disk Drive (HDD)
or network bandwidth and latency in order to predict performance metrics (e.g., re-
source utilization, throughput, response times) (Brunnert/Krcmar, 2017; Brosig/Huber/
Kounev, 2014). The effects of false or adverse memory management are usually not con-
sidered (Libič et al., 2015). This work closes this gap by introducing a memory model and
corresponding extension for an existing simulation engine that can predict the effects of
memory management including garbage collection.

This model-based approach, integrated into a continuous delivery pipeline, allows archi-
tects and developers to continuously monitor and evaluate the memory footprint of their

64

applications’ architecture. Changes to the architecture caused by new features or re-
factoring become visible. This allows architects to evaluate their design decisions based
on all major resources and to preserve and increase the quality of their applications.

The introduced approach is evaluated by an extension to the Palladio Component Model
(PCM) (Becker/Koziolek/Reussner, 2009; Reussner et al., 2016). This extension consists
of a meta-model for memory resources including different memory spaces, GC behav-
iors, and memory growth and shrinking. This allows one to model automatic memory
management as well as dynamic memory management, and all types of different GC imple-
mentations and configurations. We complement this with a memory and GC monitoring
solution for Java Enterprise Edition (EE) applications and an extension for a performance
model generator (PMG) (Willnecker/Krcmar, 2016). The generator creates performance
models based on monitoring data considering the four major resource types CPU, HDD,
and network in addition to our extension memory.

We provide an evaluation on the accuracy and robustness of this approach using the SPEC-
jEnterprise20101 industry benchmark and the SPECjEnterpriseNEXT industry bench-
mark. Both enterprise applications are evaluated using different GC implementations
and configurations in an on-premise and in an industry cloud environment. The evalua-
tion demonstrates the feasibility of our approach in a monolithic (SPECjEnterprise2010)
and in a distributed microservice architecture (SPECjEnterpriseNEXT).

This paper builds on our previous work (Willnecker/Krcmar, 2016; Willnecker et al.,
2015b) on memory-aware deployment topology optimization and contains the following
major improvements and extensions:

(i) In this work, we introduce memory spaces to simulate object longevity and their
relation to GC runs. This allows to promote and move objects to other memory
spaces.

(ii) We extended our memory resource with a flexible GC implementation that allows
one to separately manage each space and, thus, work for typical managed memory
scenarios (e.g., Java, .NET) (Oransa, 2014; Oracle Cooperation, 2015). Previous
versions of this concept used a fixed implementation. Each GC behavior manages
at least one and up to several memory spaces.

(iii) We added the ability to grow and shrink memory according to the current state of
committed memory. Both mechanisms are triggered by thresholds that are param-
eters of the runtime.

(iv) We evaluate the concept using multiple applications focusing on the accuracy of the
memory predictions. The variables of our experiments are application, workload,
runtime configuration and resource environment.

We present our research in the following way. After this section we present related ap-
proaches that consider performance analysis or simulation of GC behavior (Section 7.1).
We introduce use cases for research and industry applying our approach in Section 7.2,

1SPECjEnterprise2010 and SPECjEnterpriseNEXT are a trademark of the Standard Performance
Evaluation Corp. (SPEC). The SPECjEnterprise2010 and SPECjEnterpriseNEXT results or findings in
this publication have not been reviewed or accepted by SPEC, therefore, no comparison nor performance
inference can be made against any published SPEC result.

7.1. RELATED WORK 65

followed by our methods and a description of our approach in Section 7.3. We present the
setup for our evaluation in Section 7.4. Afterwards, we elaborate on our results, followed
by a discussion. We close with our conclusion and future work in Section 7.5.

7.1 Related Work

This section presents related approaches regarding GC monitoring and/or modeling to ob-
serve or predict the performance of applications and related model generation approaches.

7.1.1 Memory management

GC implementations have been the topic of many research and development projects
(Dijkstra et al., 1978; Boehm/Weiser, 1988; Jones/Lins, 1996; Appel, 1989). Most of these
projects focus on implementing new GC approaches. Predicting the effects, especially on
the performance of applications, was often disregarded. Load tests and profiling, trial and
error approaches, have been the state of the art to optimize GC and memory management
(Blaschek/Lengauer, 2015). However, some approaches already focused on performance
simulation and the prediction of GC and memory management:

The work of Libič et al. (2014) demonstrated an accurate GC simulation (Libič et al.,
2014). Their approach simulates fine-grained object movements in the JVM process
and demonstrated impressive accuracy considering the behavior of the GC (Libič et al.,
2014). Unfortunately, the computation power necessary to achieve this was quite high
(Libič et al., 2014). The simulation costs outweighed the computational costs for execut-
ing the same workload in a real JVM and just observing the behavior (Libič et al., 2014).
Thus, we propose a simpler approach based on probabilities to reduce the computational
costs for predicting memory behavior. Libič et al. (2015) further presented an applica-
tion of their approach in order to estimate the effects of code additions regarding the GC
(Libič et al., 2015).

Blaschek et al. (2015) presented a large set of benchmarks executed with numerous GC
options using the JVM (Blaschek/Lengauer, 2015). They estimated the most relevant GC
options as a decision guidance for finding the best suited options for the current approach
(Blaschek/Lengauer, 2015). A good set of default options for the GC has been identified
as part of their research (Blaschek/Lengauer, 2015). Their research is based on observing
the GC behavior and searching for patterns in the results of these observations (Blaschek/
Lengauer, 2015). The conducted experiments for collecting a significant amount of data
took months of computation. However, applying these options to other applications has
not been researched yet (Blaschek/Lengauer, 2015).

Instead of optimizing the overall GC overhead, Saraswati et al. (2016) try to optimize the
timing of GC runs in a highly distributed systems (Saraswati/Chatterjee/Ramachandra,
2016). They search for optimal moments to trigger GC on one node of a distributed clus-

7.1. RELATED WORK 66

ter (Saraswati/Chatterjee/Ramachandra, 2016). During that GC, run the affected node
slows down, but the rest of the system balances the load of the busy node (Saraswati/
Chatterjee/Ramachandra, 2016). This prohibits a situation in which multiple nodes si-
multaneously execute a GC run leading to a heavy load on the remaining system and
potential crashes (Saraswati/Chatterjee/Ramachandra, 2016).

7.1.2 Performance Model Generation

Our approach is based on performance model generation approaches. Modeling and simu-
lating memory profiles, regarding automatic and dynamic memory management, requires
an existing performance model containing at least CPU resource demands. In addition,
an applicable performance model generator needs to derive transaction workflows of an
application out of monitoring data. Several approaches for generating such models have
been introduced to academia and industry:

We rely on the performance model generation approach described by Brunnert et al.
(2015), which is nowadays available as the RETIT2 Capacity Manager (Brunnert/Krcmar,
2017). This PMG considers CPU, HDD, and network demands based on fine-grained
resource demand measurements (Willnecker/Dlugi et al., 2015c). Furthermore, it already
contains a rudimentary memory model that can simulate dynamic memory management.
We extend this generator as it seems most suited for our purpose. An earlier version of
this model generator has been developed within our research group. Therefore, we are
most familiar with this generator and selected it for our extension.

Similar approaches using Queuing-networks instead of Architecture-level performance
models have been described by Rolia et al. (1995) (Rolia/Vetland, 1995). Although,
Queuing-networks allow to adopt to different resource environment or workload, the adop-
tion is rather complicated due to the missing seperation between software, hardware, and
workload in to seperated models. This makes it hard to predict the effects of software
changes to other environments or other workloads. Architecture-level performance models
have been introduced and use different sub-models to ease model changes (Becker/Kozi-
olek/Reussner, 2009).

Brosig et al. (2014) described a performance model generation approach based on resource
demand estimations (Brosig/Huber/Kounev, 2014). This generator approach also uses
Architecture-level performance models as we do, but only considers CPU and network
demands (Brosig/Huber/Kounev, 2014). The approach presented by Brunnert et al.
(2015) fulfills all requirements for integrating our memory model approach (Brunnert/
Krcmar, 2017). Therefore, this approach was extended in this work.

2https://www.retit.de/

https://www.retit.de/

7.2. USE CASES 67

7.1.3 Performance Management

PMG combine Application Performance Management (APM) and Software Performance
Engineering (SPE) research (Brunnert/Vögele et al, 2014). One of the main problems
with pure APM solutions is the amount of data collected while observing an application.
Millions of data points are collected easily, but the analysis of so much data is challenging
(Brunnert et al., 2015). Silo departments for software engineers and software operations
further increase this problem (Brunnert et al., 2015). The DevOps movement creates
holistic teams of engineerings and operators and brings the responsibility of operating
applications to the team that created this application. This means, regarding memory
management, that the parameters influencing the memory management are now managed
by DevOps teams. Using an APM/SPE combination approach as suggested here allows
these teams to easily integrate memory analysis into their delivery pipeline and adjust
the parameters to the actual workload, changes in the software, or changes in the run-
time environment. Such holistic tools were identified as a major challenge for software
engineering in terms of performance by Brunnert et al. (2014) (Brunnert/Vögele et al,
2014).

7.2 Use Cases

We identified four major use cases that require performance models enhanced with ac-
curate dynamic or automatic memory management: Capacity planning for enterprise
applications, deployment optimization for distributed applications, memory footprints of
complex application architectures, and the prediction of resource requirements for self-
adaptive systems.

Performance models work well for planning the capacity of Enterprise Applications (EAs)
(Brunnert/Krcmar, 2017). Accurate capacity planning is conducted using a performance
model containing the relevant resource calls and capabilities (e.g., CPU, HDD, network,
and memory). In order to size the necessary capacity, we can simulate the expected
workload and evaluate the necessary resource capacity (e.g., number of CPU cores, storage
capacity and speed, or network speed) (Brunnert/Krcmar, 2017). Performance model
generators produce such models. Simulating such generated models provides accurate
results that predict all aspects of an application compared to simple approximations
based on total CPU utilization and response times (Brunnert/Krcmar, 2017). However,
this planning can be misleading if they do not contain all major resources and their
behavior. Our memory and GC behavior model allows us to accurately represent real
memory resources and thus enhance capacity planning based on (generated) performance
models. Our approach contributes to a holistic model and increases the quality on which
capacity planning decisions are based.

Such accurate and holistic models are helpful to conduct architecture optimization (Will-
necker/Krcmar, 2016). Instead of just planning and sizing necessary server capacity, opti-
mization also searches for an optimal deployment (e.g., cheapest, fastest, ...) (Willnecker/
Krcmar, 2016). This is especially useful in distributed applications following the mi-

7.3. RESEARCH METHOD 68

croservice pattern. This allows one to sort CPU-intensive applications to HDD-intensive
services. While one service is waiting on the HDD, the other service can utilize the CPU
for calculations. These optimizations require a holistic model that covers the main re-
source types, otherwise invalid deployment topologies result (Willnecker/Krcmar, 2016).
A topology becomes invalid if, for instance, two services complement each other utilizing
different resources but require more memory than available. The representation of mem-
ory and GC behavior enhance the optimization process by covering all major resource
types. Rouseel and Branson (2017) showed that the potential savings of an optimized de-
ployment easily exceeds 1 million $ annually in public Infrastructure as a Service (IaaS)
environments (Roussel/Branson, 2017).

Evaluating the impact of code changes and architecture re-factoring to the overall memory
footprint of an application can be hard to achieve. The observation over a longer period
that includes multiple garbage collections for all used memory spaces is necessary. Our
approach assists in and simplifies measuring and evaluating the memory footprint of an
application. We first observe the memory consumption of all operations multiple times
and calculate statistical values like quartiles, mean and median. An increased median
denotes an increase in total memory consumption for at least this operation. Further-
more, we measure GC runs, the spaces and amount of bytes they clean, and the memory
consumption of such a run. We use this to calculate thresholds for GC excesses and
their effect on memory and CPU resources. Statistics on these metrics are represented
in our performance model and can be simulated. We can then simulate the effects of
small code changes or changes in the architecture on the overall performance of the sys-
tem even though the deployment topology in a productive environment diverges from
the one in which we conduct our measurements (Willnecker/Krcmar, 2016). Brunnert/
Krcmar (2017) show that such simulations integrated into a continuous delivery pipeline
can automatically detect performance bugs introduced into the code base.

Automatically adapting the runtime of an application is an important feature of au-
tonomous systems. Adaption requires one to predict the necessary resources in the near
future in order to react to these predictions. This can result in spawning new instances,
changing instance types/sizes, or dismissing unused instances to save costs. Herbst et al.
(2014) showed how workload predictions using performance models can help self-adaptive
systems and predict the workload in the near future. Using these forecasts in combina-
tion with the simulation of holistic performance models allows one to predict the required
resources. This work contributes to self-adaptive algorithms by providing an accurate
memory model, therefore allowing one to consider memory resource requirements when
adapting the runtime of an application automatically.

7.3 Research Method

Our research is based on multiple controlled experiments following the design science
approach as depicted in Figure 7.1 (Hevner et al., 2004; Wieringa, 2014). We iterated
multiple evaluation cycles altering our key artifacts: Memory Meta-Model and our Mem-
ory Model Generator. During our experiments we compared a real load test and the

7.3. RESEARCH METHOD 69

Evaluation variables

Resource
Environment

System Under
Test

Workload

System
Under Test

Workload

Resource
Environment

Research method and evaluation feedback loop

Performance
Model

Load Test

Experiment
Evaluation

<<Artifact>>

Model
Generator

<<Artifact>>

Memory
Meta-Model

Feedback and improvement cycle
Runtime
Config
Runtime
Config

Figure 7.1: Research method and evaluation process

simulation of generated performance models containing our automatic memory manage-
ment and GC behavior model. We extended the PCM meta-model with our memory
model in order to simulate memory along with CPU, HDD, and network resources (Beck-
er/Koziolek/Reussner, 2009; Reussner et al., 2016). Furthermore, we extended a previ-
ously created PMG to create an instance of the extended PCM meta-model (Becker/Kozi-
olek/Reussner, 2009; Reussner et al., 2016). We used the RETIT Capacity Manager as
PMG and extended it to generate memory resource and GC instances (Brunnert/Krcmar,
2017).

Our experiments used four different input variables, which we altered throughout our
research: Different workloads, different system under tests (SUTs), different runtime con-
figurations, and different resource environments. We used the Orders Domain of the
SPECjEnterprise2010 benchmark as an example of a monolithic EA and the SPECjEnter-
priseNEXT benchmark as a distributed application following the microservice approach
(Fowler/Lewis, 2014). We executed both benchmarks with multiple workloads in two
different environments: In an on-premise setup and a cloud setup using Amazon Web
Services (AWS) Elastic Compute Cloud (EC2) infrastructure.

In order to evaluate our approach, we compared the simulation results of our gener-
ated model with real executions of the system. Therefore, we executed one load test
while detailed monitoring was activated including traces for each operation, its resource
consumptions, and GC execution listeners. We generated a performance model repre-
senting the SUT out of this data. Afterwards, we conducted load tests on the SUT with
coarse-grained monitoring (e.g., total CPU utilization) activated in order to minimize

7.3. RESEARCH METHOD 70

the monitoring overhead. We simulated the generated model and compared the results
with the load test monitoring using the Performance Evaluation Tool (PET) (Kroß et al.,
2016). PET is service created by our research group for easy comparison and analy-
sis of performance monitoring results and performance simulation results. It provides a
Representational State Transfer (REST) interface and a web interface to support both
automatic and manual analysis by other tools and performance analysts.

The first experiment validated the accuracy of the predicted performance metrics, re-
sponse times, resource utilization, and throughput in a replay scenario. To strengthen the
evidence of our approach, we conducted experiments using other workloads and runtime
configurations, but used the same performance model. We also conducted the adjust-
ments of the load test in the corresponding PCM sub-models. For instance, we altered
the workload in the load test configuration and in the PCM Usage Model. Afterwards, we
again compared the predicted performance metrics with the monitoring of the load test.

Finally, we deployed the SUTs in a different PCM Resource Environment. Our gener-
ation runs were conducted in the on-premise scenario, thus we deployed the SUTs on
the AWS EC2. We needed to calibrate the PCM Resource Environment model, as the
EC2 CPU speed and the network bandwidth and latency diverges from our on-premise
setup. Therefore, we used the SPEC CPU 20063 benchmark in our on-premise setup
and in the EC2 infrastructure. The relative CPU speed was calculated in the Resource
Environment model. To benchmark the network, we used lmbench4, which was executed
on-premise and in the cloud. The resulting bandwidth and latency were also configured in
the PCM Resource Environment model. We conducted load tests in both environments
and compared them with the results of our simulation.

Our memory meta-model, our memory model generation approach, and the measurements
we conducted constantly evolved over the series of experiments. We constantly enhanced
our research artifacts and published intermediate results (Willnecker et al., 2015b; Will-
necker/Krcmar, 2016). For this work, we conducted a complete evaluation with the latest
meta-model, monitoring, and generator. We present the results in Section 7.4.3.

7.3.1 Memory Management and Garbage Collection

Memory of an application is usually divided into several sections. One section is pretty
static and contains the (compiled) program code (Forouzan, 2013). This memory section
is relatively small and can be well estimated as the size of the required memory space
is known right after the build process (Forouzan, 2013). Sometimes libraries are loaded
dynamically during runtime, which leads to an increased demand in this section, but still
this memory section stays easy manageable and can be estimated by the programmer or
architect. In Java, this part of the memory is divided into “Permanent Generation“(<=
Java 7) or “MetaSpace“ (>= Java 8), containing classes and methods loaded in the
current JVM, and the “Code Cache“, which contains native code usually compiled out

3http://www.spec.org/cpu2006/
4http://lmbench.sourceforge.net/

http://www.spec.org/cpu2006/
http://lmbench.sourceforge.net/

7.3. RESEARCH METHOD 71

JVM Total Memory

Heap Memory Non-Heap

P
er

m
G

en
/M

et
aS

p
ac

e

V
ir

tu
a

l o
r

re
se

rv
ed

V
ir

tu
al

 o
r

re
se

rv
ed

Ed
en

Su
rv

iv
o

r
1

Su
rv

iv
o

r
2

Te
n

u
re

d

Young Generation Old Generation Permanent Generation

Figure 7.2: Memory space organization in Java adapted from Honk (2014)

of directives that have been executed frequently (Schildt, 2014; Oransa, 2014). However,
both parts contain program code, just in different spaces (Schildt, 2014).

The second section of the memory of an application contains the data of the program
(Forouzan, 2013). This section can be huge, depending on the amount of data an applica-
tion uses, the interaction of the user with the system, and caching mechanisms, that for
example, pre-load certain data from a disk (Forouzan, 2013). The capacity of this section
is hard to estimate and manage because of the dependencies on the software code itself,
the workload, the runtime configuration, and the resource environment. This becomes
even more complex in distributed systems, as data is then shared, replicated, and synced
amongst several instances. Our research focuses on this dynamic section of memory. In
Java, this section is called Heap and again divided into smaller sub-sections: Eden, Sur-
vivor 1 & 2, and Tenured as depicted in Figure 7.2 (Schildt, 2014). The different sections
correlate to the age of an object. The longer an object lives̈ın Heap, the more likely it
travels to the upper sections (Schildt, 2014).

Depending on the runtime environment, either dynamic memory management or auto-
matic memory management is used. Dynamic memory management requires one to ex-
plicitly load and unload objects, which means allocating and releasing memory based on
the program code. Runtime environments like C++ or older versions of the iOS operating
system (OS) use this memory model to manage memory. Furthermore, modern runtimes
like the JVM5 allow to directly allocate memory even though the default mechanisms is
automatic memory management. Mistakes in the program code or unexpected behavior
of the user can lead to memory leaks due to missing object releases. This model is, good

5https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html

https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html

7.3. RESEARCH METHOD 72

G
B

Dynamic Memory Management

Current Memory Utilization

1
38

0
75

9
11

38
15

17
18

96
22

75
26

54
30

33
34

12
37

91
41

70
45

49
49

28
53

07
56

86
60

65
64

44
68

23
72

02
75

81
79

60
83

39
87

18
90

97
94

76
98

55

0

5

10

15

20

25

Highcharts.comFigure 7.3: Memory trace of a system using Dynamic Memory Management

programming assumed, pretty efficient regarding the memory footprint, as memory is im-
mediately released after an object is not needed anymore. Profiling an application using
this memory model shows a lot of small spikes and a waveform, as depicted in Figure 7.3.

Automatic memory management in contrast organizes the memory in the runtime. Cre-
ating new objects automatically allocates memory. Frequently checks on the references
of these objects are conducted and the object and the memory it occupies is released
when no reference to the object remains. The algorithm class that checks and frees the
memory automatically is called Garbage Collection (Schildt, 2014). Figure 7.4 shows a
typical memory profile of an application using automatic memory management. A typ-
ical pattern is the triangular form. The flank of each spike marks the execution of GC.
The real demand is lower, but as the GC runs only after certain thresholds are exceeded,
we see a delay in freeing memory compared to dynamic memory management (Schildt,
2014). In Java, each GC run can promote objects to superior memory spaces (e.g., Eden
to Survivor 1) (Schildt, 2014).

The more GC runs an object survives, meaning references to this object exist, the rarer
the memory space of this object is checked (Schildt, 2014). Different GCs check different
spaces and based on different thresholds. Besides freeing memory, a GC run also consumes
CPU when computing which objects are releasable. The number of spaces, the type of
GCs, the thresholds, and the CPU consumption depend on the runtime (e.g, Java vs.
.NET), the runtime version (e.g., Java 7 vs. Java 8), the configuration, and the application
itself, more specifically, its object structure. We propose a model for simulating automatic
memory management based on an approximation of these parameters. The same model
without GC behaviors is eligible for simulating dynamic memory management.

7.3. RESEARCH METHOD 73

G
B

Automatic Memory Management

Managed Memory Utilization Current Memory Utilization

1
38

0
75

9
11

38
15

17
18

96
22

75
26

54
30

33
34

12
37

91
41

70
45

49
49

28
53

07
56

86
60

65
64

44
68

23
72

02
75

81
79

60
83

39
87

18
90

97
94

76
98

55

0

5

10

15

20

25

Highcharts.comFigure 7.4: Memory trace of a system using Automatic Memory Management

7.3.2 Memory Meta-Model

Memory demands and simulations are more complex due to automatic memory manage-
ment (Libič et al., 2015). We chose an approach based on probabilities, as previously in-
troduced techniques were too computationally intensive (Libič et al., 2015). Furthermore,
our approach allows one to discover and approximate automatic and dynamic memory
management based on measurements and observations. Technically, our approach extends
the PCM, which already supports a number of resources (CPU, HDD, network), and has
an expressive workload and software architecture description (Becker/Koziolek/Reussner,
2009; Reussner et al., 2016). We generate and simulate complete applications in order to
demonstrate our memory management simulation approach. This means we consider all
four major resources (CPU, HDD, network, and memory) and map the different compo-
nents of real applications to PCM elements. Figure 7.5 shows the different elements of
PCM and examples of this representation in Java (EE) applications.

Our approach is based on the state of different memory spaces of the so-called Heap.
We consider the following variables describing the current state of memory: used heap,
committed heap, maximum heap size, minimum/initial heap size. The maximum and the
minimum/initial heap threshold are configuration parameters of the containing runtime.
They are defined during startup of the runtime and may only be changed when restart-
ing the runtime (Blaschek/Lengauer, 2015). The committed heap size is the amount of
memory between maximum and minimum that is currently available for object allocation
unless the maximum capacity is reached. The value of this size is constantly changing
depending on certain thresholds of the runtime but never exceeds maximum and never
falls below the minimum size. The used memory is the amount of memory that is actually

7.3. RESEARCH METHOD 74

Deployment

Topology

Resource

Profile

Workload

Palladio Component

Model

Number of Users

and

User Behavior

Real Users or

Virtual Users

JavaSoftware Engineering

Concept

Classes, EJBs, JSPs
Components and

Operations

Deployment Units

Resource Container,

Resources and

Network Conn.

Deployment Unit to

Resource Container

Relationship

Usage Model

Repository Model

System Model JARs/EARs/WARs

Installation on

Application Server

Allocation Model

Resource Env. Container/Virtual

Machine/Host

Figure 7.5: Software Engineering concepts of a distributed application,PCM elements,
and equivalent Java components adapted from Willnecker/Krcmar (2016)

7.3. RESEARCH METHOD 75

occupied by objects. We observe the state of all Heap spaces in order to calculate the
currently used memory as depicted in Equation 7.1. The sum of the filling level of each
memory space results in the totally used memory.

usedMemory =
∑
i=1

OccputationMemorySpacei
SizeMemorySpacei

(7.1)

We constantly simulate the used memory per space and thus the complete used memory.
Our model allows one to detect individual thresholds per space but also reacts to global
thresholds defined for the complete heap space, like the grow and shrink thresholds. The
simulation reacts to these thresholds based on the currently used memory and increases
the committed memory to always provide sufficient headroom for object allocations. All
the above-mentioned variables are part of our memory model.

We extend two sub-models of PCM in order to model and simulate memory and GC be-
havior: The Resource Environment and the Repository Model. The Resource Environment
contains all information about the server and network infrastructure of an application.
We extend theis PCM meta-model in order to add a memory resource representation,
as depicted in Figure 7.6. This resource supports dynamic and automatic memory man-
agement scenarios including GCs. GCs delay the release of memory, leading to a larger
memory utilization during runtime, as depicted in Figure 7.4. Thus, memory is more
likely to become a bottleneck. We extended PCM to simulate this effect (Becker/Kozi-
olek/Reussner, 2009; Reussner et al., 2016; Willnecker/Krcmar, 2016). We added two
classes to the meta-model to support this behavior:

(i) MemoryResourceSpecification to specify the attributes of a memory resource.
(ii) GarbageCollectionBehaviour to define the behavior of automatic memory manage-

ment. No behavior is specified in dynamic memory management scenarios.

Furthermore, we abstract the ProcessingResourceSpecifcation to an abstract Resource-
Specification from which ProcessingResourceSpecifcation and MemoryResourceSpecifica-
tion are derived. This allows the model to simply add more resource types, by just de-
riving from the abstract base class, which also shares common attributes like the number
of replicas of a resource.

In order to place demands on this newly introduced memory resource, we extend PCM
ResourceCalls. We add two calls, one for allocating and one for releasing memory. These
calls contain the number of bytes allocated or released by this call and an optional tar-
get name. The latter allows for distinguishing between different processes in the same
application, which again have their own memory spaces.

Each runtime processing memory is defined by one MemoryResourceSpecification. At least
one specification is necessary to specify memory demands in the PCM Repository Model.
The separation of different memory spaces is defined by creating multiple GarbageCollec-
tionBehaviour instances.

7.3. RESEARCH METHOD 76

ResourceContainer

- entityName : String

ProcessingResourceSpecification

- processingRate : PCMRandomVariable

MemoryResourceSpecification

- capacity : long

- name : String

ResourceEnvironment

- entityName : String

GarbageCollectionBehavior

- threshold : PCMRandomVariable

- freeRatio : PCMRandomVariable

- cpuDemand : PCMRandomVariable
- initialCommittedMemory : long

- growCommittedThreshold : PCMRandomVariable

- shrinkCommittedThreshold : PCMRandomVariable

superiorGarbageCollection

- moveRatio : PCMRandomVariable

- capacityRatio : Double

- occupied : Long

ex
ec

u
ti

n
g
P

ro
c
es

so
r

ResourceSpecification

- numberOfReplicas : int

Figure 7.6: PCM extension for memory resources

Each memory occupying process (e.g., a JVM process) is defined by a MemoryResource-
Specification. This specification contains a capacity defining the total size of this memory
resource. The memory specification is named so that it can be addressed individually
from the Repository Model if multiple processes are simulated in parallel. We also define
the initialCommittedMemory. This parameter defines the amount of committed memory
at the beginning of the simulation. The maximum amount is defined by the capacity. The
different memory spaces can be connected to promote a certain amount of objects from
one memory space to another, which is typical for automatically managed memory run-
times like the JVM. We use the SuperiorGarbageCollection relationship between multiple
GarbageCollectionBehavior objects to model these object movements. The moveRate de-
fines which amount of memory is transfered from the lower heap space to the superior
one each time a GC run is conducted.

We constantly track the usedMemory as defined in Equation 7.1. The growCommit-
tedThreshold and shrinkCommittedThreshold variables are checked frequently and the
committed memory is adjusted accordingly during simulation. These values are expressed
as a percentage (default 40% and 70%). The filling level of the total heap is calculated
by Equation 7.2. If the resulting value is below the shrink threshold or above the grow
threshold, the committed memory is adjusted until the threshold is met again.

committedF illingLevel =
usedMemory

committedMemory
(7.2)

A typical GC collects and stores released objects in different memory spaces (Libič et al.,
2015). The spaces are cleaned in different intervals. For instance, the JVM executes two
types of GCs (minor and major) to clean different spaces or promote objects to another
space (Libič et al., 2015). A memory simulation containing GC requires the monitoring of
GC events and the generation of instances of the memory resource and the GC behavior
in PCM.

We define a GarbageCollectionBehaviour using five properties and one variable. The
properties are specified before a simulation run and are thus part of the meta-model. The

7.3. RESEARCH METHOD 77

variable is part of the simulation and changes constantly based on the actions conducted
during a simulation run.

(i) The threshold property defines the filling level of the current memory space that
triggers a GC run.

(ii) The freeRatio property marks the percentage of used memory in the current memory
space that is released during a GC run.

(iii) The cpuDemand property sets the resource demand per released byte placed on the
related CPU resource. The relationship is defined by the parent MemoryResource-
Specification of the current GarbageCollectionBehaviour.

(iv) The moveRatio property configures the percentage of used memory that is promoted
to the superior memory space. Superior GC and thus memory spaces are defined by
the superiorGarbageCollection relationship.

(v) The capacityRatio property defines the amount of one memory space that is man-
aged by this GarbageCollectionBehaviour instance. The total amount of all these
properties of a MemoryResourceSpecification must add up to 100%.

(vi) The occupied variable is used during simulation to track the currently allocated bytes
in the memory space managed by this GarbageCollectionBehaviour.

We use the following Equation 7.3 to track the current filling level of a memory space. The
filling level is frequently compared to the threshold property during simulation. The GC
run is executed as soon as the filling level exceeds the defined threshold of the GarbageCol-
lectionBehaviour.

memorySpaceF illingLevel =
occupied

capacityRatio ∗ parentSpecification.capacity
(7.3)

The meta-model instance properties are not constant throughout each runtime instance
but depend on the application, its runtime, and its workload. Thus, our approach re-
lies on observing these parameters automatically by conducting load tests. Afterwards,
prediction for other workloads, deployment scenarios, and alternative resource environ-
ments (e.g., cloud vs. on-premise) are possible by adjusting model parameters. However,
changes to the application requires one to observe and adjust certain sub-models (e.g.,
Resource Environment).

In order to access the newly introduced memory resource, we use ResourceCalls in PCM,
as depicted in Figure 7.7. We added two ResourceInterfaces to execute allocation and
release calls on the memory resource. In PCM, ResourceCalls use these interfaces to dis-
tinguish between multiple access methods of a resource (e.g., HDD read and HDD write).
Our two new signatures are designed to access the MemoryResourceSpecification. The
amount of bytes that is either released or allocated is defined by the PCMRandomVari-
able attached to the ResourceCall instance. This variable allows one to define constants
but also functions like Gaussian distribution or probabilistic distribution functions. These
ResourceCalls are attached to InternalActions defining the steps an operation executes.
Each operation in the performance model can now use the MemoryResourceSpecification
by using the AllocSignature to allocate and the ReleaseSignature to release memory again.

7.3. RESEARCH METHOD 78

ResourceDemandingSEFF

InternalAction AllocSignature

<<Interface>>

ResourceInterface

ReleaseSignature

ParametricResourceDemand

ResourceCall

PCMRandomVariable

expression : String

Identifier

id : String

name : String

Figure 7.7: PCM extension accessing the newly introduced memory resource

In dynamic memory scenarios, this signature is called on each time memory is released.
The amount of available memory is immediately increased by the value specified in the re-
lated PCMRandomVariable. Models using automatic memory management should never
use the ReleaseSignature, as this is handled by the GarbageCollectionBehavior.

7.3.3 Observing memory demands and GC

In order to observe memory demands we use agent-based instrumentation on our SUT.
The instrumentation measures the memory consumption of an operation or a service, de-
pending on the granularity of the instrumentation. Several tools and techniques exist in
academia and practice to extract this data from APM. We successfully demonstrated the
use of the industry APM tool Dynatrace, the RETIT Java EE Agent, and the Performance
Management Work Tools (PMWT) Java EE agent in previous research (Willnecker/Brun-
nert et al., 2015a; Willnecker/Krcmar, 2016; Kroß et al., 2016). This previous work showed
that this instrumentation on operation level provides accurate data for performance model
generation and has low impact on the runtime (Brunnert/Krcmar, 2017). The observer
effects, altering the applications behavior by instrumenting, are very limited. Further-
more, the approach of the PMWT workbench measures the memory demand before and
after an operation for a certain thread (Brunnert/Vögele/Krcmar, 2013). This allows us
to detect the memory demand of a method. Negative demands lead to releasing memory
in that case. For our research, we use an enhanced version of the RETIT Java EE agent
(Brunnert/Krcmar, 2017), which contains our memory detection algorithm. These mea-
surements result in a large number of observations as we get data for each invocation.
Thus, we aggregate the measurements by calculating the mean memory demand of each
operation.

Detecting memory demand of an operation is enough to simulate dynamic memory man-
agement behavior. With this detection algorithm, we can model memory allocations and
releases and thus simulate such behavior. However, in automatic memory management

7.3. RESEARCH METHOD 79

runtimes, no release of objects can be detected with this method. Releases are only
conducted, when a GC run occurs (Libič et al., 2015).

GC runs occur when certain thresholds of the memory spaces are exceed (Libič et al.,
2015; Willnecker/Krcmar, 2016). This happens when too many objects or large objects
occupy a certain memory space. The runtime frequently checks whether the conditions for
executing a GC run are met and conducts the GC run afterwards. The timing of a GC run
varies, depending on the runtime, the applied GC algorithm, the resource environment,
and the application, or more specifically, its object structure. Our approach does not
cover the specifics of a certain GC implementation, but observes and reasons a set of
generic probabilities instead to detect the conditions of a GC run.

In order to conduct an accurate memory simulation, we measure the memory state of a
runtime twice, right before and directly after a GC run. We collect the following metrics
while the application is running and a load test is executed.

(i) The type of garbage collection that is executed. For Java (EE) this is either a minor
GC or a major GC. Other GC implementations or technologies can have different
GC types.

(ii) Size of total memory available in the JVM.
(iii) Size of allocated memory for each memory space before and after the GC execu-

tion. This is a simplification of the actual mechanism, as we do not simulate object
movements in the fine-grained GC spaces. Complex and fine-grained approaches
have proven to be too computationally intensive (Libič et al., 2014). Our approach
based on probabilities enables automatic memory management simulation with low
overhead compared to complex object movement simulations (Libič et al., 2015; Will-
necker/Krcmar, 2016).

(iv) CPU execution time necessary to execute the GC.

In Java (EE), we monitor the GC events of the running application using the GarbageCol-
lectorMXBean6 via Java Management Extensions (JMX) and the PerfInstrumentation7.
We use the MXBean to intercept GC events and the amount of memory affected by such
a run and the PerfInstrumentation to collect the amount of CPU ticks necessary to do so.
Furthermore, as our approach is time based we have to convert the ticks to ms using the
Clock class of java.time. Other runtimes provide similar detection mechanisms. It is also
possible to just monitor the complete runtime and detect the timing of a GC run based
on memory time series. A GC run must have occurred each time memory is released, as
shown in Figure 7.4. However, this method can not distinguish reliably between different
GC types unless each memory space can be observed individually.

The result of these measurements is a series of memory states before and after a GC run.
We aggregate these measurements and calculate the probability distribution based on this
data. We sort the size of each memory space before the GC run and build 5 quartiles
with equal probability. This probabilistic approach approximates the actual thresholds of
the runtime and also considers differences of the object space for each GC run. The five

6http://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/

management/GarbageCollectorMXBean.html
7https://github.com/frohoff/jdk8u-jdk

http://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/management/GarbageCollectorMXBean.html
http://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/management/GarbageCollectorMXBean.html

7.3. RESEARCH METHOD 80

m
ax

H
ea

p

S
iz

e
m

in
H

ea
p

S
iz

e

u
se

d
H

ea
p

(4
0

%
)

co
m

m
it

te
d

H
ea

p

u
se

d
H

ea
p

(8
0

%
)

co
m

m
it

te
d

H
ea

p

u
se

d
H

ea
p

(4
0

%
)

co
m

m
it

te
d

H
ea

p

h
ea

p
S

ta
tu

s

Time

Figure 7.8: Example of growing committed memory using automatic memory manage-
ment

quartiles are translated into a distribution function in PCM as a value for a GC threshold.
The same procedure is conducted for each memory space in order to get the individual
thresholds for each space and each GC behavior.

Furthermore, certain memory spaces (e.g., Tenured as depicted in Figure 7.2) are filled
during a GC run. Long living objects move up the memory hierarchy when it is not
possible to release the memory they occupy. For the JVM, this means that the memory
spaces managed by the major GC are filled during a minor GC run. As we measure the
type of a GC run and the state of the spaces before and after this run, we can detect such
relationships. If a memory space that is not part of the current GC is filled during a GC
run, we reason that the objects are moving from one lower memory space to a superior
one. We sort the amount of bytes transfered from one space to another and calculate the
probability distribution similar to the GC thresholds. Afterwards, we build a distribution
function and store this function in the relationship between the two GC behaviors. This
allows us to simulate object movements between multiple memory spaces.

Certain runtimes like the JVM allow one to grow and shrink the committed memory be-
tween a minimum and maximum value. The process of the runtime occupies either the
maximum value or at least the committed memory. Starting such a runtime requires four
parameters: minHeapSize, maxHeapSize, shrinkThreshold, growThreshold. The minHeap-
Size configures the heap size, when the runtime starts (e.g., -Xms1G sets the heap size
to 1 Gigabyte (GB), when a JVM is started). The maximum size to which the heap can
grow is set using the maxHeapSize parameter (e.g., -Xmx4g sets the maximum heap size
4 GB). The runtime cannot grow the committed memory to a larger amount. If more
memory is required and the GC cannot clear enough memory, the runtime crashes.

The committed memory is initially set to the minHeapSize but might grow until the max-
HeapSize is reached. The committed memory grows when the growThreshold is reached.

7.3. RESEARCH METHOD 81

Aggregator Perfor-

mance

Model

System

Performance

Monitoring

1. Monitoring 3. Model Generation

R
E

T
IT

 P
e
rf

o
rm

a
n
c
e

M
o
d
e
l

G
e
n
e
ra

to
r

LibReDE

Monitoring

Database

Application

Performance

Monitoring

2. Aggregation

Garbage

Collection

Listener

Figure 7.9: Performance model generation process adapted from Willnecker/
Krcmar (2016); Brunnert/Krcmar (2017)

The committed memory grows until this threshold is met again. This threshold is usually
a parameter of the runtime (e.g., -XX:MaxHeapFreeRatio sets this threshold in the JVM).
The committed memory can also shrink when the used memory is below the shrinkThresh-
old. The committed memory is then reduced again until this threshold is met again. Simi-
lar to the growThreshold, this is a parameter of the runtime (e.g., -XX:MinHeapFreeRatio
configures this threshold in the JVM). Figure 7.8 depicts an example of growing memory
in a scenario with automatic memory management. It is sometimes recommended to set
the minimum and maximum committed heap size to equal values, so that no growing or
shrinking occurs. Our simulation reacts accordingly and does not conduct any growing
or shrinking simulations in that case.

7.3.4 Memory model generation

The amount of data points, even when only conducting a short load test of about 10-15
minutes, usually exceeds 108 records. The amount of data is hard to process manually. We
also consider CPU, HDD, and network demands, further increasing the amount of records
that must be processed to transfer the observed application behavior into a consistent
performance model (Willnecker et al., 2015b). Furthermore, creating performance models
manually often outweighs the benefits of its capabilities, like predicting an application’s
behavior (Kounev, 2005). Therefore, we reuse and extend a performance model generator
called RETIT Capacity Manager, which processes the monitoring data automatically
(Brunnert/Krcmar, 2017).

We cannot conduct memory simulations without a complete performance model consisting
of a Resource Environment model, a workload model, and a model of the application itself.

7.3. RESEARCH METHOD 82

The PMG used here creates a so-called Resource Profile. This intermediate model covers
resource demands, focusing on CPU demands but also considering network, memory, and
HDD, by aggregating APM measurement data. We inject our approach by adding GC
measurements and the corresponding model generation to this PMG.

Model generation consists of three steps: (i) monitoring, (ii), aggregation, and (iii) model
generation, as depicted in Figure 7.9.

The monitoring step collects operation invocations of the instrumented EA. We dis-
tinguish between resource demand measurement and resource demand estimation (Spin-
ner et al., 2015; Willnecker/Krcmar, 2016). Resource demand measurement uses fine-
grained monitoring data per operation invocation to measure the exact demand an op-
eration places on a resource. These measurements can be collected with standard APM
software like Dynatrace8 Application Monitoring (AM), RETIT Java EE, or the PMWT
Java EE agent (Willnecker/Krcmar, 2016). Resource demand estimation uses coarse-
grained monitoring data like total resource utilization and response time series per op-
eration and distributes the utilization throughout the operations (Spinner et al., 2015).
Such coarse-grained resource utilization data can be collected using standard system mon-
itors like System Activity Reporter (SAR), or monitoring and control interfaces of virtual
machines like JMX. Load drivers like jMeter9 or access logs of web servers provide re-
sponse time series of operations invoked at the system-entry level. For more detailed
(e.g., component-level) response time series, custom filters or loggers are necessary. Out
of response times and total utilization we can estimate the resource demand using the
Library for Resource Demand Estimation (LibReDE) (Spinner et al., 2015).

The PMG supports data from different data sources, as depicted in Figure 7.9:

(i) Application Performance Monitoring for fine-grained application data. We use the
RETIT Java EE Monitoring solution in this work. Previous work demonstrated the
applicability of industry standard solutions like Dynatrace AM (Willnecker/Krcmar,
2016).

(ii) System Performance Monitoring for coarse-grained application data. Standard sys-
tem tools or custom host agents are possible. We used Apache Webserver10 ac-
cess logs, RETIT Host Monitoring and JMX in this and previous works (Willneck-
er/Brunnert et al., 2015a; Willnecker/Krcmar, 2016).

(iii) Garbage Collection Listener is an extension created to capture GC runs or continu-
ously monitor process memory to approximate GC runs. We use the JMX interface
to capture GC events for Java (EE). Some APM solutions already support GC
monitoring (e.g., Dynatrace). No separate listener is necessary in such cases.

The collected data is stored continuously in a monitoring database (DB) based on the
Apache Cassandra11 project including the extensions and base schema of the RETIT APM
server. The large amount of data requires a scalable, yet simple DB structure. The main
table of this DB covers the operation invocations and its resource demands. Each row in

8http://www.dynatrace.com/
9http://jmeter.apache.org/

10http://httpd.apache.org/
11http://cassandra.apache.org/

http://www.dynatrace.com/
http://jmeter.apache.org/
http://httpd.apache.org/
http://cassandra.apache.org/

7.3. RESEARCH METHOD 83

Table 7.2: GC measurement data collection

Agentname Timestamp RunID Type MemorySpace BeforeRun AfterRun CPUTime

AWS InsuranceProvider 1488133189679 33bc35e1-3...8 Minor Eden 22347776 2752504 567

AWS InsuranceProvider 1488133189679 33bc35e1-3...8 Minor Survivor 1 11605168 3801088 567

AWS InsuranceProvider 1488133189679 33bc35e1-3...8 Minor Survivor 2 12314760 1650712 567

AWS InsuranceProvider 1488132392158 f510b830-4...4 Major Tenured 42834896 3801088 708

this table corresponds to an operation invocation or a measurement record from system
monitoring. We add another table to collect GC monitoring data. Each GC run results
in one record containing the state of the memory spaces before and after the GC run as
well as the total CPU demand of the GC run. The next phase uses this monitoring DB
as a single source of input.

Table 7.2 illustrates two GC runs clearing 4 different memory spaces. Each GC run has
an individual RunID generated when a GC run is detected and the timestamp of the
beginning of this execution. The example in Table 7.2 was collected running a Java EE
server using the Parallel Collector 12 GC (Cooperation, 2016). This GC implementation
executes minor and major GCs, while the minor cleans three memory spaces (Eden,
Survivor 1 & 2) and the major only one (Tenured). We can distinguish between the
different GC runs by the Type column and which space is effected by the MemorySpace
column. We measure the state of each space before and after the GC run, depending on
how much time of the CPU was consumed and the total time the GC run took.

General information about the host and the processes are stored in another table in order
to generate a Resource Environment model out of this. Information like the number of
CPU cores and total memory capacity are monitored on each host and stored in this
meta-table.

After the collection of APM data by executing a short load test (10-15 minutes), the
collected measurement data is aggregated and processed for performance model genera-
tion, as depicted in Figure 7.9. The generator creates three sub-models: (i) the Resource
Environment, (ii) the workload model, and (iii) the repository model. Furthermore, the
PMG creates a system model and an allocation model to connect these three sub-models.
The result of the generation process is an PCM instance that is ready for simulation using
the Palladio-Bench with our extensions (Becker/Koziolek/Reussner, 2009; Reussner et al.,
2016). The PMG uses a sub-model generator for each of the above-mentioned sub-models.
We extend the generator for the resource environment and the repository model in order
to integrate our memory model.

We extend the Resource Environment model generator to create at least one MemoryRe-
sourceSpecification instance per resource container. Multiple specification instances are
possible if multiple processes on one host were monitored. This newly introduced resource
sets properties for the initial and the maximum available memory. Furthermore, the grow
and shrink threshold are created if the current runtime supports growing and shrinking
committed memory.

12https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html

7.3. RESEARCH METHOD 84

InsuranceProvider

CPU

Scheduling: Processor Sharing
Number of Replicas: 8
Processing Rate: 1000

HDD

Scheduling: First-Come-First Serve
Number of Replicas: 1
Processing Rate: 1

Memory

Capacity: 8589934592
Name: default
Initial Committed: 2147483648
Grow Threshold: 70
Shrink Treshold: 40

GarbageCollection

Name: MinorGC
Threshold: 89.352
Free ratio: 45.216
CPU demand: 0.0000415
Move Ratio: 23.139
Capacity Ratio: 76.43

GarbageCollection

Name: MajorGC
Threshold: 56.133
Free ratio: 78.932
CPU demand: 0.000319
Move Ratio: 0
Capacity Ratio: 23.56

Insurance

CPU

Scheduling: Processor Sharing
Number of Replicas: 4
Processing Rate: 1000

HDD

Scheduling: First-Come-First Serve
Number of Replicas: 1
Processing Rate: 1

Memory

Capacity: 4294967296
Name: default
Initial Committed: 2147483648
Grow Threshold: 75
Shrink Treshold: 50

GarbageCollection

Name: MinorGC
Threshold: 93.732
Free ratio: 58.326
CPU demand: 0.0000849
Move Ratio: 33.720
Capacity Ratio: 85.52

GarbageCollection

Name: MajorGC
Threshold: 67.943
Free ratio: 66.921
CPU demand: 0.000278
Move Ratio: 0
Capacity Ratio: 14.48

Vehicle

CPU

Scheduling: Processor Sharing
Number of Replicas: 4
Processing Rate: 1000

HDD

Scheduling: First-Come-First Serve
Number of Replicas: 1
Processing Rate: 1

Memory

Capacity: 8589934592
Name: default
Initial Committed: 4294967296
Grow Threshold: 85
Shrink Treshold: 55

GarbageCollection

Name: MinorGC
Threshold: 95.812
Free ratio: 68.945
CPU demand: 0.0000209
Move Ratio: 34.365
Capacity Ratio: 83,12

GarbageCollection

Name: MajorGC
Threshold: 43.751
Free ratio: 73.620
CPU demand: 0.000698
Move Ratio: 0
Capacity Ratio: 16,88

Insurance-Vehicle
Latency: 0.0000484426
Throughput: 78350000

Insurance-
InsuranceProvider

Latency: 0.0000502284
Throughput: 79850000

Figure 7.10: Example of an automatic generated Resource Environment model for the
SPECjEnterpriseNEXT EA

Our generator extension distinguishes between dynamic and automatic memory manage-
ment. For dynamic memory management, no further generation is conducted and the
Resource Environment model is finished. For automatic memory management, we ex-
tract all GC types and create a GarbageCollectionBehavior instance for each GC type.
For simplification, we aggregate the memory spaces managed by one GC and consider this
a single memory space. This reduced the amount of memory spaces in a JVM to two and
in a .NET runtime to three spaces. The generator calculates the total memory space in
proportion to the parent MemoryResourceSpecification and sets this value as capacityRatio
for each GC behavior instance. Furthermore, the generator calculates, for each behavior
instance, the mean CPU demand per byte that has been released during a GC run, the
mean free ratio and the threshold leading to a GC execution. The threshold and free
ratios are calculated in proportion to the committed memory. Therefore, the GC proper-
ties are automatically scaled to the capacity of the parent MemoryResourceSpecification.
The generator finally calculates the moveRatio representing the amount of memory that
is promoted to a superior memory space. This ratio is also calculated in proportion to
the committed memory and is only calculated if a superior GC behavior exists, such as
major, in contrast to minor, GC in the JVM. This model and generation implementation
automatically adapts GarbageCollectionBehavior to other MemoryResourceSpecification
representing larger or smaller runtime instances with less or more available memory.

Figure 7.10 depicts one generated Resource Environment model used for the SPECjEnter-
priseNEXT EA. We use three application servers each running one JVM process and one
deployment unit. The individual resource containers are linked via network. The network

7.3. RESEARCH METHOD 85

components have been benchmarked using lmbech in order to specify throughput and la-
tency. Each resource container has a CPU with a different number of cores, an HDD, and
a memory resource. In this case, the generation of the model has been conducted on the
same machine that is simulated. Therefore, the CPU is set per default to a processing rate
of 1000. Should the model predict the performance metrics on another machine, relative
CPU capabilities must be calculated. In such a case, we use the SPEC CPU 2006. The
memory resource in Figure 7.10 has two GC behaviors. One for minor and one for major
GC in the corresponding runtime. The minor GC moves a certain amount of bytes per
GC run to the major. The memory and GC values are approximated based on the GC
measurements collected during a load test.

The sub-model generator for the PCM repository model requires an extension to support
the newly introduced MemoryResourceSpecification and GarbageCollectionBehavior. Our
model extension reacts to newly introduced signatures for ResourceCalls to allocate or
release memory. The sub-model generator already supported rudimentary memory man-
agement by using PassiveResources (Brunnert/Krcmar, 2017). This approach calculated
the mean amount of memory used per operation. We adapt this approach but use our
newly introduced ResourceCalls signatures and equal distribution function to allocate the
amount of memory. We add InternalAction using a ResourceCall with an AllocSignature
at the beginning of each operation. We calculate n equally distributed quantiles by sorting
all allocation measurements by the number of bytes, thus allocated objects, and selecting
each nth quantile. We add all quantiles with an equal probability to the corresponding
PCMRandomVariable as a distribution function, as depicted in Equation 7.4.

P (1/n)(i) = quantile(i) (7.4)

If dynamic memory management is used, we add another InternalAction representing
release calls using the same approach to calculate the demand. For automatic memory
management, the free calls are handled by the simulated GC runs. Therefore, memory is
only released when a GC run is executed leading to the typical triangular memory profile,
as depicted in Figure 7.4.

During simulation, these demands are evaluated, meaning the distribution functions are
executed and the resulting allocation or release calls are forwarded to an instance of the
MemoryResourceSpecification. Based on the signature, either the amount of available
memory is reduced (allocation) or increased (release). Probes are spawned containing the
current state of the resource for the evaluation framework of the simulation. Addition-
ally, for automatic memory management, a thread per memory resource is started with
the simulation start. This thread monitors the committed memory of the corresponding
resource and checks if it exceeds one of the GC thresholds. If the committed memory
exceeds the GC execution threshold, a GC run is simulated. The memory of this re-
source is released depending on the free ratio of the executed GarbageCollectionBehavior.
Memory is moved from one memory space to another depending on the moveRatio and a
CPU resource demand, depending on the number of bytes releases, and the GC behavior
instance is placed on the CPU resource connected to the current MemoryResourceSpec-
ification instance. Furthermore, the committed memory of each space grows or shrinks
depending on the grow and shrink threshold and the current state of a memory space.

7.3. RESEARCH METHOD 86

<<Branch Action>>
__policyHolderBean_updateAction_

prohabilisticBranches_0
Probability: 0.4

prohabilisticBranches_1
Probability: 0.6

<<InternalAction>>
allocAction

ResourceCall
Signature: Allocate

Value: 4572836

<<InternalAction>>
internalAction

ResourceDemands
5.1035664869 <CPU>

<<InternalAction>>
allocAction

<<InternalAction>>
internalAction

ResourceCall
Signature: Allocate

Value: 374618

ResourceDemands
6.95385485 <CPU>

<<InternalAction>>
releaseAction

ResourceCall
Signature: Release

Value: 4572836

<<InternalAction>>
releaseAction

ResourceCall
Signature: Release

Value: 374618

(a) RDSEFF representation using dynamic
memory management

<<Branch Action>>
__policyHolderBean_updateAction_

prohabilisticBranches_0
Probability: 0.4

prohabilisticBranches_1
Probability: 0.6

<<InternalAction>>
allocAction

ResourceCall
Signature: Allocate

Value: 4572836

<<InternalAction>>
internalAction

ResourceDemands
5.1035664869 <CPU>

<<InternalAction>>
allocAction

<<InternalAction>>
internalAction

ResourceCall
Signature: Allocate

Value: 374618

ResourceDemands
6.95385485 <CPU>

(b) RDSEFF representation using automatic memory
management

Figure 7.11: PCM RDSEFF representation of memory demands

7.3. RESEARCH METHOD 87

Figure 7.11 shows the same operation for dynamic and for automatic memory manage-
ment. The first example Figure 7.11(a) uses dynamic memory management. A certain
amount of bytes is allocated in the beginning of the operation using a ResourceCall and
the Allocate signature. Afterwards, a CPU demand is placed, taking some time for execu-
tion. After the CPU execution, another ResoureCall is used to release the bytes allocated
in the beginning of the operation. We use a simple mean value (calculating a single
percentile using Equation 7.4) to reduce the complexity of the example. The next exam-
ple Figure 7.11(b) shows the same operation using automatic memory management. In
this example, no Release signature for a ResoureCall is added, but the GC behaviors of
Figure 7.10 will release memory after the observed and defined threshold are met.

7.3.5 Limitations

Although we thoroughly conducted multiple experiments, different scenarios, and set-
tings, our probabilistic approach has certain limitations. We use an abstraction based on
measurements and observations of the actual behavior. This means that changes in the
software, the parameters of the runtime, especially of the GC, and the resource environ-
ment influence the accuracy of our prediction.

In order to transfer our model to another resource environment (e.g., from on-premise
to IaaS cloud provider), calibration must be conducted. This means the CPU, HDD,
and network capabilities must be measured for each new resource container (e.g., bare-
metal, Virtual Machine (VM), container) type (Brunnert/Krcmar, 2017). Otherwise, the
performance metrics diverge from the actual behavior, and memory allocations or releases
occur faster or slower (depending on the server) than simulated. However, this limitation
is inherited by the PMG and easily resolved by conducting benchmarks like SPEC CPU
2006. Such a calibration is highly automated and takes only a couple of minutes per
resource container. Once a certain container is calibrated, the data can be reused until
changes to the hardware occur. Furthremore, such calibrations are only applied to the
affected sub-model. In this case the resource environment model.

Our approach assumes that regular GC events occur and are able to release a stable
amount of bytes. If the application contains errors, such as memory leaks, that prevent
the GC from running or releasing objects, we are not able to detect this. Specialized
approaches like HORA deal with the detection of memory leaks and are better suited
for such a use case (Pitakrat et al., 2017). However, our approach is still able to detect
increased memory usage, extensive GC runs, and corresponding CPU usage.

Some GC implementations can stop the complete runtime for a short amount of time
to clean certain memory spaces. In such cases, the complete execution of all threads
is suspended. The runtime can run in such scenarios for the major GC. We did not
include this into our simulation approach, as this usually has little effect on the overall
performance. The runtime tries to avoid this as often as possible and even when it occurs,
it limits the suspension time to an absolute minimum (Libič et al., 2014). Depending on
the measurement approach, it is sometimes not even possible to detect a stop at all
(Libič et al., 2014).

7.4. EVALUATION 88

VM #1 VM #2

Orders

Domain
HTTP Orders

Database
JPA

Application Server

Orders

Customer

Driver

Faban

Figure 7.12: SPECjEnterprise2010 Orders Domain as an example EA

Allocating and releasing memory consumes time just like CPU or HDD operations. The
time taken for such operations is usually very small, which is why we decided to simplify
our approach, therefore simulating these operations is instantly executed without any
delay.

7.4 Evaluation

In this section, we present our evaluation starting with our experimental setup, followed
by the evaluation process and the results. This section concludes with a discussion on
these results.

7.4.1 Experimental Setup

We use two different EAs to evaluate our approach. The so-called Orders domain of
the SPECjEnterprise2010 benchmark and the Insurance-Domain of the SPECjEnter-
priseNEXT benchmark. These benchmarks use most aspects of the Java EE specifi-
cations and are rather complex. Therefore, we use these industry benchmark applications
to evaluate our research.

The Orders Domain of the 2010 benchmark is a classical monolithic application that
allows one to browse and purchase cars. It consists of one deployment unit and one DB,
as depicted in Figure 7.12. The benchmark also provides a load test and corresponding
driver. This benchmark was originally designed to benchmark a Java EE application
server. Our deployment uses an integrated DB based on Apache Derby13 to increase the
amount of processing and memory in the JVM.

The SPECjEnterpriseNEXT industry benchmark is the successor of the SPECjEnter-
prise2010 benchmark. Like the 2010 version, this is a Java EE application typically used

13https://db.apache.org/derby/

https://db.apache.org/derby/

7.4. EVALUATION 89

VM #2

Provider

Database

Insurance

Provider

VM #4

Vehicle

Database

Vehicle

Server

VM #3

Insurance

Database

Insurance

Domain

VM #1

Insurance

Customer

Driver

HTTP

JAX-RS

JAX-RS

JPA

JPA

JPA

Application Server

Application Server

Application Server

Faban

Figure 7.13: SPECjEnterpriseNEXT Insurance Domain as example EA

to benchmark the performance of different Java EE application servers. We use a pre-
release version14 of the SPECjEnterpriseNEXT as an example EA for our evaluation. This
benchmark mimics an insurance policy management system for car insurances. It con-
sists of three different service components (Insurance, Vehicle, and Insurance Service) and
three DBs (Insurance, Vehicle, and Provider DB) as depicted in Figure 7.13. We again
use Apache Derby as an internal DB. This increases the amount of memory necessary for
running the application.

Both benchmarks contain a load driver emulating customers. The Orders Customer Driver
and the Insurance Customer Driver are based on Faban15 and execute different business
transactions. The transactions are conducted by sending Hypertext Transfer Protocol
(HTTP) requests to the Order Domain, respectively, to the Insurance Domain. For the
SPECjEnterpriseNEXT further HTTP calls using JAX-RS16 REST are triggered and sent
to the other two services. The DBs are connected using the Java Persistence API (JPA)
protocol.

14version from 19.02.2016
15http://faban.org/
16http://jax-rs-spec.java.net/

http://faban.org/
http://jax-rs-spec.java.net/

7.4. EVALUATION 90

Experiment #n – Combination

Load Test

Simulation

Comparison

Environment: Cloud

Workload: QuoteGetting

Runtime: JVM using G1

Experiment #1 - Replay

Environment: On-Premise

Load Test

Simulation

Comparison

Experiment #2 – Environment Transfer

Environment: Cloud

Load Test

Simulation

Comparison

...

Experiment Preperation

Load Test

Environment: On-Premise

Model-
Generation

EA: SPECjEnterpriseNEXT

Workload: Standard

Runtime: Default JVM

Figure 7.14: Experiment design to evaluate memory model accuracy

7.4.2 Evaluation process

We evaluate our approach using multiple simulation runs and comparing the results with
actual executions of the applications. Our variables are as follows:

(i) Application: Both applications presented in Section 7.4.1 are used to evaluate
the approach. The SPECjEnterprise2010 is used as a monolithic application and
the SPECjEnterpriseNEXT is used as an EA following the microservice approach
(Fowler/Lewis, 2014).

(ii) Resource Environment: We use different resource environments to show the
feasibility of our approach. We execute the benchmark applications in a lab scenario
on-premise and use AWS EC2 as an industry IaaS cloud provider.

(iii) Workload: We change the workload executed by the load driver. This shows the
robustness of our approach when workload changes occur or the tested/assumed
workload diverges from the real workload.

(iv) JVM parameter: GC is very dependent on the parameters that configure the
runtime. We alter parameters and show that our prediction accuracy does not suffer
from these changes.

We conduct a series of controlled experiments varying these parameters (Hevner et al.,
2004). We prepare the experiments by conducting a load-test in our on-premise lab en-
vironment, as depicted in Figure 7.14. The application server is instrumented using the
RETIT Java EE Agent and hosts either the SPECjEnterprise2010 or the SPECjEnter-
priseNEXT EA. The measurement data is collected and stored for model generation,

7.4. EVALUATION 91

Table 7.3: Software and hardware configuration for model generation

Server Driver Application Server 1 Application Server 2 Application Server 3

Application Server Faban 1.3.0 JBoss Wildfly 8.1.0 Final

Java Virtual Machine Oracle JDK 1.7.0 79 -

Operating System openSUSE Leap 42.1 (x86 64)

CPU Cores 4 vCores (2.1 Gigahertz (GHz)) 8 vCores (2.1 GHz)

Memory 8 GB 16 GB

Host System IBM System X3755M3

Network 1 Gigabit-per-second (GBit/s)

Table 7.4: List of all conducted experiments

Exp. No Application Workload Runtime Environment Description

1 SPECjEnterprise2010 Standard Default JVM On-Premise 2010 Replay

2 SPECjEnterprise2010 Standard Default JVM Cloud 2010 Resource Transfer

3 SPECjEnterprise2010 Standard G1 Cloud 2010 G1 Garbage Collector

4 SPECjEnterprise2010 MultiPurchase G1 Cloud 2010 Alternate Workload

5 SPECjEnterpiseNEXT Standard Default JVM On-Premise NEXT Replay

6 SPECjEnterpiseNEXT Standard Default JVM Cloud NEXT Resource Transfer

7 SPECjEnterpiseNEXT Standard G1 Cloud NEXT G1 Garbage Collector

8 SPECjEnterpiseNEXT QuoteGetting G1 Cloud NEXT Alternate Workload

as described in Section 7.3.4. The model is dependent on the environment, the runtime
parameters, and the workload. The core part of the model is the Repository Model that
depends on the EA. We create one model per EA. The other variables are changed in
the model, e.g., by exchanging the Resource Environment model. To show the robustness
of our approach, we deploy the EA in another environment, exchange the sub-model de-
scribing the resource containers, and execute a load test. The results of the load tests and
of the simulation of the altered model are compared (Kroß et al., 2016). We present the
accuracy of the four major resources CPU, HDD, memory, and network to demonstrate
the accuracy of our approach and the RETIT tools and especially of the memory model
and simulation. The comparison is automated using PET (Kroß et al., 2016).

The first experiment just covers a replay, where all variables conform to the model gen-
eration setup. We do this to validate the model generation. We continue by altering one
variable after another, starting with the Resource Environment model. The last exper-
iment is a full combination of all variables, demonstrating that workload, runtime, and
environment can be exchanged without harming the prediction quality of our model and
simulation. We conduct both experiment runs with both EAs to show that the memory
model only depends on actual software but is robust to other influencing factors, as long
as they are correctly specified in the corresponding sub-model. The environment we used
for model generation is described in Table 7.3. We used up to three identical application
servers for this generation. Only the first one was used for the SPECjEnterprise2010 ap-
plication, as it covers only one component and all three for the SPECjEnterpriseNEXT
benchmark.

In total, we conducted 8 experiments covering all 4 variables and combinations of those.
Table 7.4 presents all experiment configurations. Experiment 1 and 5 are replay scenarios
in which the model generation and the simulation and comparison environment were
equal.

7.4. EVALUATION 92

Table 7.5: Measurement and simulation results for SPECjEnterprise2010 accessed by
200 concurrent users

Resource Metric Replay Cloud G1 Alt. Workload

CPU
Mean measured utilization 73.72% 61.34% 58.23% 63.36%
Mean simulated utilization 69.34% 56.33% 54.21% 56.46%
Relative error 5.94% 8.17% 6.90% 10.89%

Memory
Mean committed memory 3.55 GB 3.63 GB 3.36 GB 3.63 GB
Mean simulated memory 3.79 GB 3.93 GB 3.51 GB 3.92 GB
Relative error 6.91% 8.26% 4.65% 7.96%

HDD
Mean measured demand 1,30% 1.59% 1.19% 2.09%
Mean simulated demand 0.92% 1.09% 0.99% 1.56%
Relative error 29.23% 31.45% 16.81% 25.36%

Throughput
Mean transactions per minute 409.30 431.34 455.87 419.98
Mean simulated transactions per minute 399.19 403.25 421.85 390.98
Relative error 2.47% 6.51% 7.46% 7.14%

7.4.3 Evaluation Results

Experiment 1 - SPECjEnterprise2010 Replay For our first experiment we used
the monolithic SPECjEnterprise2010 in an on-premise scenario. We used 200 concurrent
users for this and the three following scenarios. Previous research demonstrated that up-
scaling (e.g., from 200 to 600 users) is already possible with accurate results (Willnecker/
Krcmar, 2016). Therefore, we concentrated on alternating other factors in the following
experiments.

We collected fine-grained monitoring data for the model generation and afterwards simu-
lated the resulting model. The simulation data was compared to coarse-grained memory
data like CPU utilization to evaluate the accuracy of our model and simulation. We
call this experiment the SPECjEnterprise2010 Replay scenario. The measurements and
comparisons with the simulation results for CPU, HDD, memory, and throughput are
depicted in Table 7.5.

The relative error is usually below 10%. Compared to previous research without any
memory simulation, this is an improvement of at least 5% points or an reduction of the
relative error by 33% (Willnecker/Dlugi et al., 2015c). Furthermore, the models and
the corresponding simulation results are more accurate due to the fact that memory was
evaluated. Only the HDD resource has a large relative error of up to 30%. The EA
used here has practically no HDD usage and thus the total utilization is below 3%. Even
though our prediction error is within 1% range, the relative error is quite high due to the
low utilization.

The response times of this and the following experiment are depicted in Figure 7.15. We
collect the response times per business transaction. SPECjEnterprise2010 has three of
these transactions: Browse, Manage, and Purchase. The box-plots in this figure present
measured and simulated response times next to each other. The left box-plot of each
pair always represents the measured response times. For the replay scenario, the relative
error is between 3.5% (Purchase) and 20.5% (Browse). The Interquartile range (IQR)
in the measured response times is higher, as we work with mean values and distributed
functions that only approximate the real resource demands. However, all predictions are

7.4. EVALUATION 93

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)
Response Time

Measured Response Times Simulated Response Times

Rep_Browse Rep_Manage Rep_Purchase Clo_Browse Clo_Manage Clo_Purchase
20

30

40

50

60
70

80

90

100

110

120

Highcharts.com

Figure 7.15: Response times SPECjEnterprise2010 Experiment 1 (Replay) & 2 (Cloud)

within close range to the actual response times. The simulation of a 15-min time frame
takes less than a minute using EventSim on a laptop using an Intel I7-3520M CPU running
at 2,90 GHz and requires about 2 GB of RAM (Merkle/Henss, 2011).

Experiment 2 - SPECjEnterprise2010 Cloud We modified the Resource Environ-
ment model to predict resource utilization and response times for a cloud deployment and
compared the results of the simulation with a measurement run. Therefore, we installed
the SPECjEnterprise2010 on an AWS EC2 host. We calculated the relative CPU speed
compared to our on-premise deployment and the latency and bandwidth of the network
connection to the EC2 host. The comparison of the resource utilization is presented in
Table 7.5 and the response times are depicted in Figure 7.15. The prediction error for
the resources was always below 10%, with the exception of the HDD with its very low
utilization. The relative prediction error for the response times was at around 20%.

Experiment 3 - SPECjEnterprise2010 G1 We altered the settings of our appli-
cation server of the EC2 host to use the G1 garbage collection algorithm of the JVM
instead of the Parallel Collector, which is currently the default for Java server instances.
We conducted two runs, one for monitoring the GC behavior and one for reasoning the
thresholds of the GC behavior, which moves objects between memory spaces, free ratio per
GC run, and the amount of CPU necessary to process a GC run. Afterwards, we altered
our performance model by applying these variables in our Resource Environment model.
The second run only used coarse-grained monitoring and the results were compared to a
simulation run with the altered performance model.

The results of the resource utilization are depicted in Table 7.5, while the response times
are presented in Figure 7.16. The prediction error for the resources was generally better
than for the previous experiment. We did not conduct a GC monitoring for experiment
#2. The transfer to another host slightly alters the GC behavior and was thus not

7.4. EVALUATION 94

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)
Response Time

Measured Response Times Simulated Response Times

G1_Browse G1_Manage G1_Purchase Alt_Browse Alt_Manage Alt_Purchase
20

30

40

50

60
70

80

90

100

110

120

Highcharts.com

Figure 7.16: Response times SPECjEnterprise2010 Experiment 3 (G1) & 4 (Alternate
Workload)

represented in the model of experiment #2. The response time error was between 10%
and 20%, which is also an improvement compared to the results of experiment #2.

Experiment 4 - SPECjEnterprise2010 Alternative Workload The final experi-
ment using the SPECjEnterprise2010 uses another workload distribution. Usually 50% of
the transactions were Browse transactions, 25% Manage and 25% Purchase transactions.
We changed to 70% Browse, 20% Manage, and 10% Purchase. The Usage Model and the
load driver were altered to reflect these changes. We conducted a monitoring run and a
simulation after applying these changes.

The results of this experiment are presented in Table 7.5 and Figure 7.16. The prediction
error of the CPU utilization increased by 4% compared to the former experiment. The
response time prediction error was between 23% and 28%.

Experiment 5 - SPECjEnterpriseNEXT Replay We continued our experiments
by altering the EA from a monolithic to a distributed application. The SPECjEn-
terpriseNEXT industry benchmark is a distributed EA consisting of three components
amongst which two are services. As with the SPECjEnterprise2010 benchmark, we in-
stalled these components on three application servers in our on-premise environment.
Afterwards, we started a load test and applied a fine-grained monitoring to generate a
performance model of this application. In a first step, we validated our model in a replay
scenario. We applied the same load-test but only collected coarse-grained monitoring data
and compared it with a simulation of the aforementioned generated model. The results
of this comparison are listed in Table 7.6.

The relative prediction error is generally below 10% and often below 5% with just the
exception of the HDD resource. This resource is utilized seldomly, making a small uti-
lization error (<1%) a large relative error (16%-24%). The response time, depicted in

7.4. EVALUATION 95

Table 7.6: Measurement and simulation results for SPECjEnterpriseNEXT in an on-
premise environment accessed by 140 concurrent users

Resource Metric Application Server (AS)
Deployment - Insurance Domain Insurance Provider Vehicle Service

CPU
Mean measured utilization 51.42% 34.54% 29.31%
Mean simulated utilization 48.94% 31.91% 27.46%
Relative error 4.82% 7.61% 6.31%

Memory
Mean committed memory 6.15 GB 1.43 GB 2.39 GB
Mean simulated memory 6.31 GB 1.54 GB 2.59 GB
Relative error 2.73% 7.68% 8.15%

HDD
Mean measured demand 2.79% 1.02% 2.15%
Mean simulated demand 2.32% 1.02% 1.94%
Relative error 16.85% 23.88% 10.23%

Throughput
Mean transactions per minute 313,42% - -
Mean simulated transactions per minute 298,82 - -
Relative error 4.66% - -

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)

Response Time

Measured Response Times Simulated Response Times

Add Vehicle View Vehicle Register Delete
Vehicle

Logout Update User Get Quote Login View User
0

200

400

600

800

1000

1200

1400

1600

Highcharts.com

Figure 7.17: Response times SPECjEnterpriseNEXT Experiment 5 (Replay)

Figure 7.17 are below 20% for most of the 9 transactions. Only Delete Vehicle and Lo-
gout have an error of above 20%. Both transactions are relatively fast, which results in
a median prediction error of between 15 and 30ms and thus still very close to the actual
system behavior.

Experiment 6 - SPECjEnterpriseNEXT Cloud Afterwards, we installed the bench-
mark on AWS EC2 hosts and altered the Resource Environment model according to the
previously conducted calibration. Again, we conducted a load test using coarse-grained
monitoring and compared it to the simulation of the altered performance model. The
results of this experiment are listed in Table 7.7.

The relative error increases by about 5% compared to the replay scenario due to the
transfer and the coarse-grained calibration. The prediction error is below 15% with the
exception of the HDD resource due to the low utilization. The response times in general
went up due to larger latency from our load driver to the EC2 hosts. Also, the prediction
error for the response times increased by about 5%, as shown in Figure 7.18.

7.4. EVALUATION 96

Table 7.7: Measurement and simulation results for SPECjEnterpriseNEXT in a cloud
environment accessed by 140 concurrent users

Resource Metric Application Server (AS)
Deployment - Insurance Domain Insurance Provider Vehicle Service

CPU
Mean measured utilization 45.43% 28.92% 25.04%
Mean simulated utilization 41.24% 24.83% 21.73%
Relative error 9.22% 14.14% 13.22%

Memory
Mean committed memory 6.32 GB 1.64 GB 2.49 GB
Mean simulated memory 6.59 GB 1.41 GB 2.62 GB
Relative error 4.40% 14.06% 5.22%

HDD
Mean measured demand 2.32% 1.19% 2.43%
Mean simulated demand 1.89% 1.19% 2.43%
Relative error 18.53% 29.41% 20.99%

Throughput
Mean transactions per minute 378,39% - -
Mean simulated transactions per minute 330,72 - -
Relative error 12.60% - -

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)

Response Time

Measured Response Times Simulated Response Times

Add Vehicle View Vehicle Register Delete
Vehicle

Logout Update User Get Quote Login View User
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Highcharts.com

Figure 7.18: Response times SPECjEnterpriseNEXT Experiment 6 (Cloud)

7.4. EVALUATION 97

Table 7.8: Measurement and simulation results for SPECjEnterpriseNEXT using the G1
GC accessed by 140 concurrent users

Resource Metric Application Server (AS)
Deployment - Insurance Domain Insurance Provider Vehicle Service

CPU
Mean measured utilization 48.98% 30.62% 31.21%
Mean simulated utilization 42.69% 27.03% 26.32%
Relative error 12.84% 11.72% 15.67%

Memory
Mean committed memory 6.14 GB 1.43 GB 2.49 GB
Mean simulated memory 6.43 GB 1.58 GB 2.64 GB
Relative error 4.67% 10.41% 5.90%

HDD
Mean measured demand 2.48% 1.23% 2.91%
Mean simulated demand 1.82% 0.93% 2.01%
Relative error 26.61% 24.39% 30.93%

Throughput
Mean transactions per minute 354.43% - -
Mean simulated transactions per minute 324.51 - -
Relative error 8.44% - -

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)

Response Time

Measured Response Times Simulated Response Times

Add Vehicle View Vehicle Register Delete
Vehicle

Logout Update User Get Quote Login View User
0

200

400

600

800

1000

1200

1400

1600

1800

Highcharts.com

Figure 7.19: Response times SPECjEnterpriseNEXT Experiment 7 (G1)

Experiment 7 - SPECjEnterpriseNEXT G1 We changed the GC algorithm to the
newest G1 algorithm in all three JVMs running our three components. We conducted
a monitoring run to collect GC behavior data and calibrate the Resource Environment
accordingly. Finally, we conducted a load test with only coarse-grained monitoring and
compared the results to the simulation of the altered performance model. The results are
presented in Table 7.8.

The prediction error was reduced for the memory resource compared to the previous
experiment. The effects on CPU and HDD prediction were minimal and the throughput
prediction error was below 8.5%. The response time prediction error was decreased by
about 8% as shown in Figure 7.19.

Experiment 8 - SPECjEnterpriseNEXT Alternative Workload For the final ex-
periment, we altered the workload distribution of the SPECjEnterpriseNEXT benchmark.
The original workload used an equal distribution amongst the 9 business transactions. We
increased the usage of the Get Quote and the View Vehicle each to 15% and the rest to

7.4. EVALUATION 98

Table 7.9: Measurement and simulation results for SPECjEnterpriseNEXT using an al-
ternated workload accessed by 140 concurrent users

Resource Metric Application Server (AS)
Deployment - Insurance Domain Insurance Provider Vehicle Service

CPU
Mean measured utilization 55.43% 34.75% 32.43%
Mean simulated utilization 51.80% 30.65% 28.73%
Relative error 6.55% 11.80% 11.41%

Memory
Mean committed memory 6.54 GB 1.75 GB 2.68 GB
Mean simulated memory 6.78 GB 1.93 GB 2.95 GB
Relative error 3.65% 10.15% 10.19%

HDD
Mean measured demand 3.51% 2.83% 1.83%
Mean simulated demand 3.51% 2.83% 1.20%
Relative error 20.80% 28.62% 34.43%

Throughput
Mean transactions per minute 322.12% - -
Mean simulated transactions per minute 293.29 - -
Relative error 8.95% - -

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)

Response Time

Measured Response Times Simulated Response Times

Add Vehicle View Vehicle Register Delete
Vehicle

Logout Update User Get Quote Login View User
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Highcharts.com

Figure 7.20: Response times SPECjEnterpriseNEXT Experiment 8 (Alternative Work-
load)

10% of the transactions. This reflects the key functions of the system (calculating quotes
for certain vehicles) in a more realistic way. The altered workload was configured in the
load test and in the Usage Model of our performance model. We again compared coarse-
grained monitoring data of a load test with a simulation run. The results are listed in
Table 7.9.

The two increasingly used business transactions are more CPU intensive. This is very well
reflected in our performance model. Therefore, we could decrease the prediction error for
CPU and memory by about 5%. The prediction for the response times could also be
decreased, as presented in Figure 7.20.

7.5. CONCLUSION 99

7.4.4 Discussion

The controlled experiments demonstrated the accuracy and feasibility of our approach
(Hevner et al., 2004). The simulated memory profile approximates well to the actual
profile observed during load tests. We tend to under-predict CPU demands but over-
predict memory demands for the application servers. The under-prediction is a result of
overhead tasks of the servers that are not part of the model (e.g., DB pool management,
load-balancer health checks, etc.) (Willnecker/Krcmar, 2016). The over-prediction of
memory demands is a result of the delay between a threshold detection and the GC, the
memory growth, or the memory shrink execution in the simulation.

The CPU prediction accuracy has been enhanced compared to previous research (Brun-
nert/Krcmar, 2017; Willnecker/Dlugi et al., 2015c). This shows, that the influence of GC
on the CPU resource is significant and requires the consideration of such effects, when
predicting the CPU consumption of an EA. Furthermore, the influence on the response
times prediction quality is as well positive, due to the indirect time consumption of GC
runs when utilizing the CPU resource.

Predicting response times is the most complex task, as the response times are the result of
all aspects of an application including all resources and suspension periods. Even though,
our model contains all major resources, the model is still an approximation of the reality
and thus, to some extent blurred. For instance, DB thread pools are not part of the
model, which can lead to delays if they are utilized to capacity, and also the time taken
for allocating and releasing memory is not part of the model. Therefore, we tend to under-
predict the real response times. However, the relative error is still below 30%, which is
adequate for capacity planning tasks (Woodside/Franks/Petriu, 2007; Smith, 2007).

7.5 Conclusion

Our work successfully demonstrates an approach for predicting memory and garbage col-
lection behavior. We present a meta-model extension for the well-established architecture-
level performance model PCM, a monitoring approach for extracting memory and GC
probability distribution, and an extended model generator creating memory-aware models
of multiple EAs. We demonstrated the accuracy of this approach in a series of controlled
experiments in an on-premise and industry cloud environment. The results approximate
the actual memory behavior very well and show that this approach is suitable for memory
and GC behavior prediction.

Predicting the impact of software changes, workload changes, or changes to the runtime
does not require extensive load tests. A short load test for generating a performance model
results in an accurate memory model. This model can be compared to previous models to
predict the impact on the memory profile or it can be used to predict the profile in other
environments or for longer periods. The latter allows for accurate capacity planning
for large-scale EA. Integrated into a continuous integration pipeline, performance bug
detection for CPU, HDD, network utilization, and memory allow one to continuously

evaluate the quality of an application’s architecture and to adjust the capacity planning
(Brunnert/Krcmar, 2017).

Automatic analysis can be integrated into the continuous delivery pipeline of an applica-
tion. Warnings whenever significant changes occur as feedback for the developer would
improve the overall quality of the shipment. Memory issues are detected before production
but without extensive load tests and in such fosters fast release cycles (Brunnert et al.,
2015).

Future work could improve the model by introducing time consumption for memory al-
location and release operations as well as stop-the-world scenarios in certain GC im-
plementations. This would further increase the prediction quality of the model. Fur-
thermore, integrating this model in applications using performance model-based decision
making could significantly improve their prediction quality. Most models today are bi-
ased, as they do not consider memory or ignore GC behavior and thus predict deployment
topologies that require extensive memory or crash at a certain point. Architecture op-
timizers, runtime decision making, or capacity planning tools benefit from the result of
this work (Koziolek/Koziolek/Reussner, 2011; Brunnert/Krcmar, 2017; Brosig/Huber/
Kounev, 2014; Aleti et al., 2013).

Models from distributed (enterprise) applications, In-Memory databases, and Big Data
systems benefit from our approach when predicting the utilization of all four major re-
sources. Based on these predictions, capacity adjustments or optimizations of the topology
are possible and accurate (Willnecker/Krcmar, 2016). General performance improvements
as well as cost savings result in a better user experience and lower application operation
costs (Roussel/Branson, 2017).

Chapter 8

Optimization of Deployment
Topologies for Distributed
Enterprise Applications

Authors Willnecker, Felix1 (willnecker@fortiss.org)
Krcmar, Helmut2 (krcmar@in.tum.de)

1fortiss GmbH, Guerickestraße 25, 80805 München, Germany
2Technical University of Munich (TUM), Boltzmannstraße 3,

85748 Garching, Germany

Outlet Proceedings of 12th International ACM SIGSOFT Conference on

Quality of Software Architectures (QoSA) 2016

Status Accepted

Keywords Performance Model Generation, Deployment Topologies, Deploy-

ment Optimization, Palladio Component Model

Individual Contribution Problem and scope definition, construction of the conceptual ap-
proach, prototype development, experiment design, execution and

result analysis, paper writing, paper editing

Table 8.1: Bibliographic details for P5

Abstract Enterprise applications are typically implemented as distributed systems com-
posed of several components. Deciding where to deploy which component is a difficult
task that today is usually assisted by logical topology recommendations. Choosing ineffi-
cient topologies allocates the wrong amount of resources, leads to unnecessary operation
costs, or results in poor performance. Testing different topologies to find good solutions
takes a lot of time and might delay productive operations. Therefore, this work introduces
a software based deployment topology optimization approach for distributed enterprise
applications. We use an enhanced performance model generator that extracts models
from running applications. The extracted model is used to simulate performance met-
rics (e.g., resource utilization, response times, throughput) of an enterprise application.
Subsequently, we introduce a deployment topology optimizer, which selects an optimized
topology for a specified workload. The following two optimization goals are presented in
this work: (i) minimum response time for an optimized user experience and (ii) maximize
resource utilization for cost-effective topologies. To evaluate the approach we use the

101

8.1. INTRODUCTION 102

SPECjEnterpriseNEXT industry benchmark as distributed enterprise application. The
evaluation demonstrates the accuracy of the simulation compared to the actual deploy-
ment and the pre-eminence of the selected topology compared to runner-up topologies.

8.1 Introduction

Distributed architectures are state of the art in large scale Enterprise Applications (EAs)
(Brunnert/Krcmar, 2017; Denaro/Polini/Emmerich, 2004; Brunnert et al., 2015). These
applications typically consist of multiple deployment units. Each deployment unit is
composed of several components and is movable from one runtime instance to another.
Furthermore, these units can be replicated to cope with increased workload. Selecting
the right amount of deployment unit replications and corresponding runtime instances is
a difficult task. Numerous different combinations, so called deployment topologies, exist
(Denaro/Polini/Emmerich, 2004; Brunnert et al., 2015). Not only the right amount of
unit replications must be selected, but also the right amount of resource containers (e.g.,
Virtual Machines (VMs), bare-metal server, or application containers), which depends
on the demand a component operation places on its resources (Denaro/Polini/Emmerich,
2004). The most important resources Central Processing Unit (CPU), Hard Disk Drive
(HDD), memory and network and their demands have to be considered for deployment
topology decisions (Koziolek et al., 2014; Brunnert et al., 2015).

These decisions are today usually assisted by logical recommendations or simply based
on estimations. Such estimations and resulting topologies often rely on peak demands
(Speitkamp/Bichler, 2010), which leads to under-utilized data centers. Different stud-
ies estimate the current data center utilization between 6% and 20% (Huang/Masanet,
2015; Speitkamp/Bichler, 2010). Hence, servers are most of their uptime simply idle.
On the other hand, over-utilized servers are not desirable, as this results in overly long
response times or unstable systems. Therefore, selecting the right amount of resource
containers and optimizing the utilization of their resources is important when running
EAs (Ardagna et al., 2014).

Instead of deploying an EA in-house, managed infrastructures like cloud environments are
available today and can provide extensive reliability and cost reduction (Ardagna et al.,
2014). Managed infrastructure providers now invoice the usage of runtime instances.
In contrast to once purchased servers, these providers charge current costs. Thus, EA
operators have a vested interest to optimize their topologies in order to reduce hosting
costs. Different providers apply different cost models based on the number of machines,
requests processed, number of user sessions, or simply aggregated uptime. Depending on
which provider is chosen, the optimization goal for the deployment might change to save
costs. A high utilization might be preferred if uptime of servers is basis of the cost model
instead of optimized response times.

In practice deployment topology considerations require a lot of effort. Planning and
testing topology changes in a production environment comprise risks for the stability
of the EA. Risk assessment compared to the potential savings in operation costs or

8.1. INTRODUCTION 103

performance gains might be negative. Evaluating topologies in test environments require
productive-alike environments. Such environments are as expensive as the production
environment itself. Furthermore, such testing environments are often used to capacity
by various projects executing load tests or may simply not yet be available when new
hardware or managed infrastructures like cloud environments are introduced as new target
environments (Ardagna et al., 2014).

This work proposes to use performance models extracted from small scale test envi-
ronments and subsequently size and optimize available resource containers to specified
workloads. To accomplish this goal, we combine automatic performance model genera-
tors (PMGs) and architecture optimizers to automatically detect optimized deployment
topologies. This approach allows to use accurate resource demands from generated per-
formance models and established architecture optimization algorithms. We use the PMG
of the RETIT1 Capacity Manager, the Palladio Component Model (PCM) as performance
meta-model and an opt4j2 based approach to optimize the deployment topologies for EAs
(Brunnert/Krcmar, 2017; Koziolek/Koziolek/Reussner, 2011; Lukasiewycz et al., 2011).

Performance models can be used to predict performance metrics by evaluating alternative
deployment topologies, resource environments, and simulate the effects on these metrics
(Brunnert/Krcmar, 2017). Building such models manually often outweighs their benefits
(Kounev, 2005). Recent research created PMGs for EAs to limit the effort of building
such models (Brunnert/Krcmar, 2017). However, no current available PMG considers
all four main resources (CPU, HDD, memory, and network). The here used PMG has
the most comprehensive approach, but lacks automatic memory management simulation.
Therefore, we introduce an extension to PCM and the contemplated PMG for dynamic
and automatic memory management modeling and simulation.

PMGs focus on the extraction of the software architecture of an EA, but disregard de-
ployment topology decisions. Selecting the right amount of resources and evaluating the
selected topologies requires again manual effort. Manual selection soon becomes impos-
sible, as the number of potential topologies grows exponentially with the number of de-
ployment units and available resource containers (Koziolek/Koziolek/Reussner, 2011). To
automate this process architecture optimizers have been introduced to the scientific com-
munity (Aleti et al., 2013; Koziolek/Koziolek/Reussner, 2011). These optimizers require
an already created (performance) model to conduct optimizations (Koziolek/Koziolek/
Reussner, 2011). Such models can be derived from design specifications or created man-
ually. However, the actual resource demands are usually estimated and therefore error-
prone. Generated performance models provide high accuracy for predictions, but are not
yet compatible with architecture optimizers. A combination of PMG approaches and ar-
chitecture optimizers to automate deployment topology decisions is the main contribution
of this work.

Our results allow architects to evaluate different resource environments (e.g., in-house,
hosted, cloud), to evaluate different deployment topologies, and to automatically size
EAs without deploying the application in a production or production-like environment.

1http://www.retit.de/
2http://opt4j.sourceforge.net/

http://www.retit.de/

8.2. RELATED WORK 104

For the evaluation we conducted a series of controlled experiments using the industry
standard benchmark SPECjEnterpriseNEXT3 as distributed EA.

The contributions of this work are as follows:

(i) Combination of performance model generation and architecture optimization.
(ii) System design and evaluation of automatic deployment topology selection in different

resource environments.
(iii) Dynamic and automatic memory management simulation approach.

8.2 Related Work

First PMGs have already been demonstrated in the work of Rolia et al. (1999) (Rolia,
1999). Their work focuses on layered queueing networks (LQNs) which do not separate
workload, software components and resource environments (Rolia, 1999). Without such
a separation exchanging the resource environment model or changing the deployment
topology are hard to accomplish. Therefore, architecture-level performance models such
as PCM introduced separated sub-models for workload, software architecture and resource
environments (Becker/Koziolek/Reussner, 2009). The work of Brosig et al. (2014) gen-
erates performance models for PCM and simulates CPU, HDD and memory demands,
but lacks automatic memory management and network demands (Brosig/Huber/Kounev,
2014). Especially in distributed environments the network latency and bandwidth can
have a huge impact on the performance of the system (Brunnert/Krcmar, 2017).

Another performance model generation approach has been introduced by Brunnert et al.
(2015) (Brunnert/Krcmar, 2017). The generated models are called resource profiles and
consider CPU, HDD, and network demands (Brunnert/Krcmar, 2017). The approach
generates accurate models from running EAs but lacks automatic memory management
(Brunnert/Krcmar, 2017). A thoroughly conducted capacity planning requires to take
the resource memory into account in order to charge the capacity of available systems
effectively. Therefore, we extend this generator with automatic memory management
simulations in our deployment topology optimization architecture.

Speitkamp et al. (2010) identified the need to consolidate resource usage and proposed
a mathematical model to optimize resource allocation using VMs (Speitkamp/Bichler,
2010). VMs with high CPU utilization could be run on the same host together with VMs
utilizing other resources having low CPU utilization (Speitkamp/Bichler, 2010). This
concept should optimize the utilization of all resources in a data center. However, the
proposed model is not aware of the workload or the EAs running in the VMs and their
dependencies. The model requires a re-calculation and allocation of the VMs when the
resource utilization of the hosted applications changes. Such changes occur frequently

3SPECjEnterpriseNEXT is a trademark of the Standard Performance Evaluation Corp. (SPEC). The
SPECjEnterpriseNEXT results or findings in this publication have not been reviewed or accepted by
SPEC, therefore no comparison nor performance inference can be made against any published SPEC
result.

8.3. ENTERPRISE APPLICATION COMPONENTS 105

as new versions are deployed or the workload executed changes. An architecture aware
optimization approach can produce better results.

The architecture optimization approach PerOpteryx evaluates design alternatives based
on PCM models (Koziolek/Koziolek/Reussner, 2011). The number of decisions is large
as hardware, network and software architecture is taken into account. PerOpteryx has a
broad variety of optimization goals and degrees of freedom. We adapt the PerOpteryx
approach for deployment optimization but with certain changes (e.g., simulations instead
of solvers and limitation on deployment topology decisions). This allows us to not only
evaluate CPU utilization and response times, but to also take network, automatic memory
management and HDD demands into account.

Aleti et al. (2013) provide a comprehensive review on software architecture optimization
methods (Aleti et al., 2013). The work recommends to provide evidence for resulting
architectures in order to proof the validity of these strategies and suggests to establish
holistic tool support (Aleti et al., 2013). Current work fails on providing evidence as the
presented approaches are hard to compare to real environments. Our work addresses this
gap by evaluating architecture optimization with a real EA and combining architecture
detection (performance model generation) with architecture optimization into a holistic
tool for automatic deployment topology optimization.

8.3 Enterprise application components

A deployment unit is a packaged artifact installable on a middleware instance or directly
on an operating system (OS). Such units consist of several components and operations
and build the core of any EA. A typical EA consists of many deployment units distributed
throughout a middleware.

In order to analyze the deployment topology of an EA its context has to be taken into
account. The context comprises (i) the resource profile of the EA and (ii) the workload
executed on the EA. Hence, an optimized topology always depends on both factors.
Figure 8.1 depicts the main components of an EA. We use Java Enterprise Edition
(EE) as an example middleware, even though the depicted concepts are applicable for
other technologies as long as monitoring technology is available (Spinner et al., 2015;
Willnecker/Brunnert et al., 2015a). Furthermore, Figure 8.1 shows how we map the
different parts of an EA to the PCM meta-model.

The workload describes the number of users and how they use the EA, which ultimately
causes the resource utilization of the EA. These users can be real users accessing the
system or virtual users when executing a (load) test to analyze the behavior of an EA.
We use Application Performance Management (APM) data during a monitoring run to
reason an initial workload. However, this workload is changeable in order to size an EA
according to the expected workload in production.

8.3. ENTERPRISE APPLICATION COMPONENTS 106

Deployment

Topology

Resource

Profile

Workload

Palladio Component

Model

Number of Users

and

User Behavior

Real Users or

Virtual Users

Java EEConcept

EJBs, JSPs, Servlets
Components and

Operations

Deployment Units

Resource Container,

Resources and

Network Conn.

Deployment Unit to

Resource Container

Relationship

Usage Model

Repository Model

System ModelEARs/WARs

Installation on

Application Server

Allocation Model

Resource Env.Virtual Machine/

Bare-Metal Server

Figure 8.1: Enterprise application components (adapted from Becker/Koziolek/Reuss-
ner (2009); Brunnert/Krcmar (2017)).

The resource profile of an EA describes how an operation of a component utilizes different
resources (Brunnert/Krcmar, 2017). The profile consists of a basic workflow and the
deployment unit structure of the EA. Each operation of the EA is modeled in the profile
including its resource demands for several resources. Resource profiles are the core result
of PMGs (Brunnert/Krcmar, 2017).

The runtime of the EA representation is defined by the deployment topology. For each
deployment unit of a distributed EA exists at least one instance during runtime. If the
workload necessitate replicas of this deployment unit might exist. If depicted as a graph,
each deployment unit node needs at least one edge to a resource container node. The
node is replicated if multiple edges from a deployment unit node exist.

A deployment topology describes the structure and relationship of a set of these deploy-
ment units installed and executed on a number of resource containers. This relationship
is in PCM defined by the allocation model. The containers are organized in a resource

8.4. DEPLOYMENT TOPOLOGY OPTIMIZATION PROCESS 107

Generate

Resource

Profile

Generate

Deployment

Topologies

Simulate

Deployment

Topologies

Select

Deployment

Topology

Enterprise

Application in

Test

Environment

Enterprise

Application in

Production

Environment

Evaluate

Figure 8.2: Deployment topology optimization process.

environment. This environment consists of the hosting machines with their capabilities
(e.g., CPU processing rate, available memory, HDD speed) and the network connection
(focusing on bandwidth and latency) between the resource containers. Two deployment
units, which are dependent, can only be deployed on two resource containers that are
linked via a network connection. Therefore, the number of potential topologies depends
on the number of deployment units du and the valid resource containers rc. Equation 8.1
calculates the number of possible deployment topologies depending on du and rc, when
all resource container targets are valid for all deployment units.

DTdu,rc = (2rc − 1)du (8.1)

2rc − 1 describes each possible installation combination of an deployment unit on one or
more resource containers. As any permutation with other deployment unit installations
is possible, we have to add du as an exponent. Given 10 resource containers and 5
deployment units the number of possible topologies is already greater than 115. The
number of combinations in this scenario already prohibits a manual selection. Deployment
topology optimization requires an automated approach to save time and costs.

8.4 Deployment Topology Optimization Process

An automated approach requires an holistic tool to optimize deployment topologies, which
consists of three basic components:

(i) Performance model generator to detect the resource profile of an EA including its
resource demands, system behavior, current deployment topology, and current work-
load.

(ii) Architecture optimizer to evaluate different target deployment topologies and to
select the best topology in terms of the optimization goal.

(iii) Simulation service for parallel predicting performance metrics of multiple perfor-
mance models.

Figure 8.2 illustrates the optimization process. We deploy a distributed EA in a test
environment to conduct the process. This EA is instrumented with APM software and
set under load in order to get meaningful APM data. In a first step, this APM data is
used to generate a performance model. The model consists of the detected workload, the

8.5. PERFORMANCE MODEL GENERATOR 108

detected resource profile and a specification of the resources in the test environment. The
generated model represents the current state of the EA in the test environment.

In a second step the architecture optimizer based on an optj4 uses an evolutionary
algorithm for selecting an initial number of possible topologies (initial population)
(Lukasiewycz et al., 2011). This initial topology set is based on the generated model
and the available resource containers. Each topology is validated in order to check if all
deployment units are at least instantiated once and can communicate with all dependent
deployment units via a network connection. The deployment topologies are packaged for
simulation including workload and resource profile. We constructed a distributed simula-
tion cluster that can simulate multiple topologies in parallel.

After each simulation run the optimizer evaluates the results. We currently support two
optimization goals: the algorithm assess either the mean resource utilization per resource
over all containers or the response time per transaction. Thus, our weighting function
either maximizes the utilization per container (reduces the number of used resource con-
tainers) or minimizes the response time. A topology can be invalidated if one resource
is utilized above a certain threshold to prevent over-utilizing certain containers. The
optimizer mutates new topologies based on the evaluation results and delegates the simu-
lation. This process is repeated until the initial population and the number of generations
are processed.

The best topology in terms of the optimization goal (min. number of resource containers
or min. response time) is selected and provided as a result. The final step is deploying
this topology in the production environment.

8.5 Performance Model Generator

This section explains the PMG and extensions we added to support generating a com-
prehensive performance model. The generated model considers the most important re-
sources: CPU, HDD, network and memory. Furthermore, a transaction flow throughout
a distributed EA is detected and used for reasoning the system control-flow.

We use and extend the PMG of the RETIT Capacity Manager and the corresponding
monitoring solution RETIT Java EE. Both solutions are based on the Performance Man-
agement Work Tools (PMWT) PMG introduced by Brunnert et al. (2015) (Brunnert/
Krcmar, 2017). As depicted in Figure 8.3 the generation process consists of three phases
(Willnecker/Dlugi et al., 2015c):

(i) Monitoring the instrumented EA,
(ii) Aggregating the monitoring data per operation, and
(iii) Generating the performance model based on the aggregated monitoring data.

The result of the three phases is a resource profile, a workload description representing
the usage of the EA during the monitoring phase, and a resource environment describing

8.5. PERFORMANCE MODEL GENERATOR 109

Aggregator Perfor-

mance

Model

System

Performance

Monitoring

1. Monitoring 3. Model Generation

R
E

T
IT

 P
e
rf

o
rm

a
n
c
e

M
o
d
e
l

G
e
n
e
ra

to
r

LibReDE

Monitoring

Database

Application

Performance

Monitoring

2. Aggregation

Figure 8.3: Performance model generator framework (adapted from Willnecker/Dlugi et
al. (2015c)).

the current deployment of the EA. All three model parts are stored as a PCM instance
(Brunnert/Krcmar, 2017; Becker/Koziolek/Reussner, 2009).

8.5.1 Monitoring

The monitoring step collects operation invocations of the instrumented EA. We dis-
tinguish between resource demand measurement and resource demand estimation (Spin-
ner et al., 2015; Willnecker/Dlugi et al., 2015c). Resource demand measurement uses fine
grained monitoring data per operation invocation to measure the exact demand an op-
eration places on a resource. These measurements can be collected with standard APM
software like Dynatrace4 Application Monitoring (AM) (Willnecker/Dlugi et al., 2015c).
Resource demand estimations use coarse grained monitoring data like total resource uti-
lization and response time series per operation and distribute the utilization through-
out the operations (Spinner et al., 2015). Such coarse grained resource utilization data
can be collected using standard system monitors like System Activity Reporter (SAR),
procfs5, or monitoring and control interfaces of virtual machines like Java Management
Extensions (JMX). Load drivers like jMeter6 or access logs of web servers provide re-
sponse time series of operations invoked on system-entry level. For more detailed (e.g.,
component-level) response time series, custom filter, or logger are necessary.

4http://www.dynatrace.com/
5https://www.kernel.org/doc/Documentation/filesystems/proc.txt
6http://jmeter.apache.org/

8.5. PERFORMANCE MODEL GENERATOR 110

The PMG supports data from different data sources as depicted in Figure 8.3:

(i) Application Performance Monitoring for fine grained application data. We use the
RETIT Java EE Monitoring solution in this work. Previous work demonstrated the
applicability of industry standard solutions like Dynatrace AM (Willnecker/Dlugi
et al., 2015c).

(ii) System Performance Monitoring for coarse grained application data. Standard sys-
tem tools or custom host agents are possible. We use Apache Webserver7 access
logs, RETIT Host Monitoring and JMX in this work.

The collected data is stored ongoing in a monitoring database based on the Apache Cas-
sandra8 project. The large amount of data requires a scalable, yet simple database struc-
ture. Each row in the database corresponds to an operation invocation or a measurement
record from system monitoring. The next phase uses the monitoring database as single
source of input.

8.5.2 Aggregation

The aggregation phase concentrates all the single operation invocations as a preparation
for the the model generation by consolidating all invocations of the same operation. The
mean demand per resource (e.g., mean CPU demand) is calculated for every operation of
every component. Furthermore, the calculation of network demands at the deployment
unit boundaries and transaction flows based on unique transaction IDs is conducted in
this step.

In order to support resource demand measurement and resource demand estimation ap-
proaches, we extended RETIT Java EE monitoring with the Library for Resource Demand
Estimation (LibReDE) (Spinner et al., 2015; Willnecker/Dlugi et al., 2015c). Figure 8.3
shows the currently supported data sources in the monitoring step, however, other APM
solutions or coarse grained monitoring providers can be added to the PMG. The demand
calculation is either done by the aggregator, or delegated to LibReDE in a post-processing
after initial aggregation. After this phase, all operation invocations, their resource de-
mands and the transaction flow are prepared for the model generation phase.

8.5.3 Model Generation

This final phase transforms the operation invocations, demands and the transaction flow
into a PCM instance. This allows changing and/or simulating, hence predicting the system
behavior using the Palladio-Bench (Becker/Koziolek/Reussner, 2009). PCM supports
CPU, HDD and network demands. The in-built features of PCM are used for the the
above mentioned three resources (Brunnert/Krcmar, 2017).

7https://httpd.apache.org/
8http://cassandra.apache.org/

8.5. PERFORMANCE MODEL GENERATOR 111

ResourceContainer

- entityName : String

ProcessingResourceSpecification

- numberOfReplicas : int

MemoryResourceSpecification

- capacity : long

- name : String

ResourceEnvironment

- entityName : String

resourceContainer
activeResourceSpecifications

GarbageCollectionBehavior

- threshold : PCMRandomVariable

- freeRatio : PCMRandomVariable

<<Interface>>

Entity

- cpuDemand : PCMRandomVariable

Figure 8.4: PCM extension for memory resources.

The generator calculates CPU demands using the mean CPU demand per operation
(Brunnert/Krcmar, 2017). Each operation invocation results in at least one action with
a CPU demand. In contrast, for HDD demands we distinguish between write and read
demands, as the write speed of a HDD is very different from the read speed (Brunnert/
Krcmar, 2017). Network demands are only measured at the deployment unit boundaries.
We calculate the mean request and response size to simulate the time this request travels
through the network based on available bandwidth and latency (Brunnert/Krcmar, 2017).

Memory demands and simulation are more complex due to automatic memory manage-
ment (Libič et al., 2015). We can calculate the mean memory demand of an operation
by measuring the memory demand of each operation invocation and forming the average
demand similar to CPU demands. To place the demands a dedicated resource is neces-
sary, which supports dynamic memory management scenarios as in C-based systems and
automatic memory management scenarios as in virtualized runtimes like the Java Virtual
Machine (JVM).

We extended the PCM meta-model in order to add a memory resource representation as
depicted in Figure 8.4. This resource works for dynamic memory management scenarios
and supports different types of automatic memory management methods, like Garbage
Collections (GCs). GCs delay the release of memory, leading to a larger memory utiliza-
tion during runtime. Thus, memory is more likely to become a bottleneck. To simulate
this effect we extended PCM (Becker/Koziolek/Reussner, 2009; Willnecker et al., 2015b).
We added two classes to the meta-model to support this behavior:

(i) MemoryResourceSpecification to specify the attributes of a memory resource.
(ii) GarbageCollectionBehaviour to define the behavior of automatic memory manage-

ment. No behavior is specified in dynamic memory management scenarios.

A typical GC collects and stores released objects in different memory spaces (Libič et al.,
2015). The spaces are cleaned in different intervals. For instance, the JVM executes two
types (minor and major) of GCs to clean different spaces or promote objects to another
space (Libič et al., 2015). Objects which cannot be released, due to references to active
objects or objects in other spaces, are either contained in the same space or promoted
to the next higher space. Objects without any active reference are released and the used
space in memory is free to be allocated by new objects. As long as objects are stored

8.5. PERFORMANCE MODEL GENERATOR 112

in one of the GC spaces, allocated bytes are not released and are, thus not available for
new objects. A memory simulation containing garbage collection requires to monitor GC
events and to generate instances of the memory resource and the GC behavior in PCM.

For Java EE, we monitor the GC events of the running application using the GarbageCol-
lectorMXBean9 via JMX and measure the following metrics:

(i) The type of garbage collection that is executed. For Java EE this is either a minor
GC or a major GC. Other GC implementations or technologies can have different
GC types.

(ii) Size of total memory available in the JVM.
(iii) Size of allocated memory before and after the GC execution. This is a simplification

of the actual mechanism, as we do not simulate object movements in the fine grained
GC spaces. This probabilistic approach enables automatic memory management
simulation with low overhead compared to complex object movement simulations
(Libič et al., 2015; Willnecker et al., 2015b).

(iv) CPU time necessary to execute the GC.

The measurement data is aggregated and processed for the performance model generation.
The resource environment generation creates a MemoryResourceSpecification instance. If
GC behavior is detected, the capacity of this resource is set to the total available mem-
ory detected. For dynamic memory management no further generation is conducted. For
automatic memory management we extract the GC types and create a GarbageCollection-
Behavior instance for each GC type. For each behavior instance we calculate the mean
CPU demand per byte released, the mean free ratio and the threshold leading to a GC
execution. Threshold and free ratio are calculated in percent and are, hence independent
from the current memory size. This implementation automatically adapts GarbageCol-
lectionBehavior to other resource containers representing larger or smaller servers with
less or more available memory for the JVM.

In order to access the newly introduced memory resource we extended ResourceCalls in
PCM. We added two more signatures to execute allocation and free calls on this resource.
Each operation in the performance model calls the alloc signature of the corresponding
memory resource. No free call is necessary for automatic memory management, as this is
handled by the GarbageCollectionBehavior. In dynamic memory scenarios the free opera-
tion is called after each operation. The available memory is immediately increased by the
amount specified in the free call. We extended the PMG to generate such ResourceCalls
automatically for every operation that allocates memory.

For automatic memory management a thread per memory resource is started with the
simulation. This thread checks in frequent intervals if the threshold of the corresponding
resource exceeds. In this case, a GC run is simulated. The memory of this resource is
freed depending on the free ratio of the executed GarbageCollectionBehavior. A CPU
demand depending on the CPU demand per byte of the GarbageCollectionBehavior and
the number of freed bytes is placed on the CPU resource of the same ResourceContainer.

9https://docs.oracle.com/javase/7/docs/jre/api/management/extension/com /sun/management/-
GarbageCollectorMXBean.html

8.6. ARCHITECTURE OPTIMIZER 113

In addition to the extraction of the system behavior and resource demands, we are able to
extract the workload executed on the EA during instrumentation. Therefore, we measure
the number of calls at system-entry point per operation. The PCM usage model supports
so called OpenWorkloadScenarios. We create such a scenario per operation on system-
entry point. To calculate the workload per operation we compute the mean inter arrival
time IAT between two calls of this operation. The IAT is calculated by dividing the
total time of the monitoring MonTime by the total number of calls of this operation
TotalCallsOp as stated in Equation 8.2.

IATOp =
MonTime

TotalCallsOp

(8.2)

8.6 Architecture Optimizer

The architecture optimizer is the core of the deployment topology optimizer. It is based
on the opt4j framework (version 3.1.4) for evolutionary computation (Lukasiewycz et al.,
2011). While the technological foundation is similar to PerOpteryx, we use simulations
instead of solvers for the evaluation of design alternatives (Koziolek/Koziolek/Reussner,
2011). The Palladio solver works only for single user scenarios. Alternatively, we could
transform our PCM model to a LQN and use LQN solver. However, model transformations
are never loss free and we know from previous research, that small changes in the system
can have large impact on the overall performance and the decision process (Brunnert/
Krcmar, 2017). Simulations provide high accuracy considering the predictions results
although they are computational intensive compared to solvers. Therefore, we decided
to use simulations in our approach. To limit the effect on the time it takes to find an
optimized solution we added a simulation cluster to process several simulations in parallel
on a dedicated system.

To conduct an optimization run three input artifacts are necessary as depicted in Fig-
ure 8.5:

(i) The resource profile created by the PMG containing the software architecture and
resource demands of the EA that should be optimized.

(ii) The expected workload of the system to deploy. The simulations use this workload
to predict the utilization of the available resources. This may be the same workload
as generated by the PMG but usually the workload of the generation run is smaller
than the expected workload in the production system.

(iii) Constraints to the optimization like the minimum/maximum utilization of a re-
source, the minimum/maximum number of systems, and logical constraints that can
for instance prohibit deploying the database on a resource container that comprises
an Application Server (AS).

The Optimization Controller acts as workflow controller using obj4j and triggers the sub
components of the system (Lukasiewycz et al., 2011). In a first step it requests design
alternatives from the Deployment Topology Allocator. Therefore, this allocator takes a

8.6. ARCHITECTURE OPTIMIZER 114

Resource

Profile

Workload

Deployment Unit Optimizer

Resource

Container

Database

Deployment

Topology

Allocator

Model

Trans-

formator
Optimization

Database

Constraint

Definition

Simulation Cluster

Simulation

Slave
Simulation

SlaveWorker

Optimization Controller

Simulation

Results

Analyzer

Figure 8.5: Deployment Unit Optimizer.

number of resource containers and network connections between these containers from the
Resource Container Database. The database consists of a list of all available containers
that should be considered for the optimization run. Such a database is filled with available
instances in a data center or with instances offered by a cloud provider. The capability of
the CPUs of these containers must be calibrated in comparison to the CPUs used in the
test environment where the monitoring for model generation was conducted. Brunnert et
al. (2015) showed that CPU benchmarks provide accurate results for transforming CPU
resource representations from one machine to another (Brunnert/Krcmar, 2017).

The initial population is calculated by the Deployment Topology Allocator out of the list of
containers, deployment units, and constraints. The initial population is input of the evo-
lutionary algorithm implementation of opt4j, the so called genotype (Lukasiewycz et al.,
2011). Our genotype can be described as a du × rc matrix G. Each column represents
one available resource container rc and each row represents a deployment unit du of the
EA. The values of the cells of the matrix are either 0 or 1. A 1 in the cell Gi,j indicates
that the deployment unit dui is deployed on resource container rcj. The genotypes are
created randomly, but invalid selections are discarded. A valid matrix has at least one
1 in each row, so that each deployment unit is at least deployed once and complies to
the constraints (e.g., no database (DB) deployment unit on the same container as an
application deployment unit).

The second step is the transformation of the matrix into a PCM instance. The deployment
topology is transformed into resource environment and allocation model instances. The
PMG only creates one instance per deployment unit. Therefore, additional deployment
unit instances are generated in the repository and system model if necessary. The result
of this process is a complete PCM instance ready for simulation acting as the phenotype
of the evolutionary algorithm (Lukasiewycz et al., 2011).

8.6. ARCHITECTURE OPTIMIZER 115

The evaluator of the evolutionary algorithm is implemented in multiple components
(Lukasiewycz et al., 2011). To prevent simulating the same topology twice, the Opti-
mization Controller checks against the Optimization Database if results for this topology
are available. The DB is used to detect already simulated topologies in order to prevent
duplicated simulations. A topology is considered equal if the deployment units are dis-
tributed throughout equal resource containers. Two resource containers are considered
equal, if their resources have the same capabilities. If an equal topology is detected, the
simulation results from the Optimization Database are used.

If no equal topology is detected a simulation job is dispatched to a simulation cluster.
The cluster consists of several worker nodes running the Palladio-Bench simulations in an
headless eclipse instance (Becker/Koziolek/Reussner, 2009). The simulation job is dis-
patched to a worker and automatically queued and executed when resources are available.
The cluster consists of at least one worker node that executes the simulations. This worker
node is connected to a load balancer and stores the results in a shared folder. Therefore,
each worker node is able to simulate a PCM meta-model instance and provide results for
every conducted simulation.

The Optimization Controller sends an archive containing all model elements as depicted in
Figure 8.1 to the cluster. The load balancer uses a session sticky round robin approach to
balance the load across all workers. This means that new requests will be placed randomly
on one of the workers. Follow-up requests, like requesting the status or exporting the
results will be executed on the same worker node. Furthermore, as the results of the
simulation are stored in a shared folder results can be retrieved even after a worker was
shutdown.

The bottleneck of a simulation run is usually the memory. Hence, each worker node
is memory aware and only starts a new headless eclipse instance if enough memory is
available. The parameter of a simulation job are part of the initial request. A new job
is queued, if the maximum required memory of the simulation job exceeds the available
memory in the JVM. The Simulation Results Analyzer can request the status of each job
based on its unique jobID. The job can either run, be queued, be finished or be failed.
If a job is finished the results of the simulation are returned as an archive containing all
simulation metrics and results.

The analyzer parses these raw results of the simulation and calculates aggregates, e.g.,
total resource utilization or response times per operation. Afterwards, it stores the aggre-
gated results together with the topology in the Optimization Database and forwards the
results to the Optimization Controller. The controller spawns new topology based on the
evaluation results and the configuration of the evolutionary algorithm (Lukasiewycz et al.,
2011). We currently support two optimization goals:

(i) Minimize the total response time of the system.
(ii) Maximize the resource utilization of all resources in all used resource containers.

For the first optimization goal we calculate the mean response time over all simulated
operations. The deployment topology with the smallest median response time is selected

8.7. EVALUATION 116

Table 8.2: Software and hardware configuration of the deployment
Server Load Balancer Insurance Customer Driver Insurance Domain Vehicle Service Insurance Agent Insurance Database Vehicle Agent
Application Server/Database Apache 2.2.31 Faban 1.3.0 JBoss Wildfly 8.1.0 PostgreSQL 9.4.4
Java Virtual Machine - OpenJDK 1.8.0 40
Operating System CentOS 6.7 openSUSE 13.2 (x86 64)
CPU Cores 4 vCores (2.1 Gigahertz) 8 vCores (2.1 Gigahertz)
Memory 8 Gigabyte 16 Gigabyte 8 Gigabyte
Host System IBM System X3755M3
Network 1 gigabit-per-second (GBit/s)

as optimized deployment topology. This optimization goal tends to require more resources
and generally generates more costs when executed in production.

The second optimization goal creates more resource efficient topologies. It is important to
limit the maximum CPU utilization up to 70% or 80%, otherwise the resulting response
times are not representative as the system becomes unpredictable at maximum load.
This optimization sorts for example memory intensive deployment units to CPU intensive
deployment units. In total the number of resources used is lower with this optimization
goal compared to the first goal.

Although, the proposed approach tries to handle automatic deployment topology opti-
mizations in a comprehensive way, it still has certain limitations. (i) Distributed Database
Management System (DBMS) have not been considered. Instead of sharding or replicat-
ing the DBs, we can today only size VMs for the DBs according to the workload. A more
advanced DB performance model and dedicated monitoring solutions are necessary to
dissolve this limitation. (ii) The results calculated by the architecture optimizer are never
certain to be the best solution. Such algorithms can run into local optima and never find
the best possible solution or it might take to much time to find a good solution. However,
such a structured approach optimizes effectively based on all EA components (workload,
resource profile, and available resource containers) (Koziolek/Koziolek/Reussner, 2011).

8.7 Evaluation

The SPECjEnterpriseNEXT industry benchmark is the successor of the SPECjEnter-
prise2010 benchmark. Both are Java EE applications typically used to benchmark the
performance of different Java EE AS. We use a pre-release version10 of the SPECjEnter-
priseNEXT as example EA. This application represents an insurance policy management
system for car insurances. It consists of three different components (Insurance Domain,
Vehicle Service, Insurance Agent) and two databases (Insurance and Vehicle Database) as
depicted in Figure 8.6. Furthermore, we deploy a load balancer before the AS instances
to handle multiple AS instances in the optimized topologies. Each component is deployed
as one deployment unit in one VM for the performance model generation. The initial
deployment is described in Table 8.2.

The Insurance Customer Driver is based on Faban11 and executes five different business
transactions on the Insurance Domain server, which triggers JAX-RS12 REST calls on the

10version from 29.06.2015
11http://faban.org/
12https://jax-rs-spec.java.net/

http://faban.org/
https://jax-rs-spec.java.net/

8.7. EVALUATION 117

VM #6

Vehicle

Database

VM #2

Load

Balancer

VM #1

Insurance

Customer

Driver

AJAX

VM #3

Insurance

Domain
AJAX

VM #5

Vehicle

Service
JAX-RS

VM #4

Insurance

Agent
JAX-RS

VM #7

Vehicle

Database

JPA

JPA

JAX-RS

JAX-RS

Insurance

Database

Figure 8.6: SPECjEnterpriseNEXT test deployment.

other two servers(Fielding, 2000). We conducted a run with active instrumentation and
100 virtual users to collect APM data for the model generation. We used the RETIT Java
EE solution for the ASs. This includes a Java Database Connectivity (JDBC) wrapper to
collect response times from the DB servers. For the load balancer and database VMs we
used the RETIT host monitoring to collect CPU utilization. The load balancer response
times are collected from Apache Webserver access logs13. With the response times and
utilization we estimated the resource demands for the DB servers and the load balancer
using LibReDE (Willnecker et al., 2015b).

After initial generation we conducted two optimization runs. One for each optimization
goal. Furthermore, we increased the workload to 500 users. The initial population of the
architecture optimizer consisted of 100 different topologies. We selected a cross-over rate
of 0.95, an offspring population size λ and a parent population size µ of 25 each. The
algorithm calculated 100 generations resulting in a total of 2500 tested topologies. We
used 4 worker nodes in the simulation cluster resulting in about 8 hours of computation.

The topology for the minimum response time goal required 8 ASs, 2 DB servers and
1 load balancer. We deployed the system as specified and conducted a run without
instrumentation to compare the response times with the simulation. Figure 8.7 shows the
comparison of measured response times (MRTs) and simulated response times (SRTs) for

13https://httpd.apache.org/docs/2.2/en/logs.html

8.8. CONCLUSION 118

Table 8.3: Measurement and simulation results

Resource Metric Load Balancer AS 1 AS 2 AS 3 AS 4 AS 5 DBMS 1 DBMS 2

CPU
Measured utilization 21.21% 67.37% 73.78% 71.13% 64.37% 61.27% 22.46% 45.34%
Simulated utilization 20.19% 60.19% 65.05% 64.54% 57.98% 53.78% 21.79% 44.32%
Relative error 4.81% 10.66% 11.83% 9.26% 9.93% 12.22% 2.98% 2.25%

Memory
Measured demand - 3627.23 MB 2212.19 MB 2879.76 MB 3987.05 MB 4430.45 MB - -
Simulated demand - 3291.78 MB 2349.77 MB 3123.23 MB 3719.78 MB 3987.70 MB - -
Relative error - 9.25% 6.22% 8.45% 6.70% 9.99% - -

HDD
Measured demand - 1.13% 0.45% 0.89% 1.45% 2.34% - -
Simulated demand - 0.98% 0.37% 0.80% 1.33% 1.98% - -
Relative error - 13.27% 17.78% 10.11% 8.28% 15.38% - -

each business transaction. The simulation tends to under-predict the response times, as
not all performance-relevant aspects are part of the model (e.g., DB queues as well as HDD
demands of the database are not part of the model). The median response time error is
around 18% and well below the 30% acceptable error propagated by Menascé and Almeida
(2002) (Menascé, 2008). To ensure that runner up topologies do not produce better
results, we compared the top 5 deployment topologies. These topologies had only minor
differences and produced almost identical or worse results in the simulation. Monitoring
the solutions produced similar results for the top 3 deployment topologies, but worse for
the 4th and 5th best deployment topologies.

We used the same model and workload for the second evaluation. Instead of minimum
response time we optimized for maximum resource utilization, but limited the maximum
CPU utilization to 70%. The best topology needed 5 ASs, 2 DBMS servers and 1 load
balancer. We deployed the same system and executed a monitoring run to compare it with
the simulation. Table 8.3 shows the result of this evaluation. The memory simulation
has only been conducted for the ASs as the memory demand for the load balancer and
DBMS servers are not available in simulation. This is due to the fact that LibReDE
calculates demands only for the CPU resource and no dedicated monitoring solution was
available for these systems. The same fact is true for HDD demands. The accuracy
is quite high for CPU demands, especially when LibReDE is used. This confirms the
results of our previous research (Willnecker et al., 2015b). We tend to under-predict CPU
demands but over-predict memory demands for the ASs. The under-prediction results
from overhead tasks of the servers that are not part of the model. The over-prediction
of memory demands originates from the time between a threshold detection and the GC
execution in the simulation.

8.8 Conclusion

This work successfully connected PMGs and architecture optimizer for optimizing deploy-
ment topologies of EAs. This approach allows software architects to detect the current
software architecture and demands of an EA and to automatically size and optimize tar-
get environments. This holds true in up-scaling scenarios as presented in Section 8.7. For
practitioners, this allows to reduce response times, increase resource utilization and, thus,
reduce costs. For academia, this approach can be used to test optimization approaches
against real world applications.

In addition, this work presented an extension for the PCM meta-model for memory re-
sources. The extension supports dynamic and automatic memory management and in-
troduces a probabilistic GC simulation. Monitoring and detecting GC events as well as
generating performance models with an accurate memory model have been integrated into
the RETIT PMG and the PMWT. The accuracy and feasibility of this approach have
been demonstrated.

In contrast to previously introduced architecture optimizers, the here presented approach
uses simulations instead of solvers. The high accuracy of the simulations presented in
Section 8.7 justify this decision. However, this accuracy comes with computational costs.
To limit the effect on the decision time we introduced parallel execution in a simulation
cluster.

Future extensions of this deployment topology optimizer can speed up the calculation by
improving the simulator or by introducing a two-phase optimization. A faster approach
(e.g., solver, simplified model) could be used to calculate a good initial population instead
of random topologies. This population would be the input for the optimization approach
presented in this work. This concept could lead to faster or better results.

Faster calculations would allow to use this concept for runtime decisions. Optimized
topologies could be calculated on-the-fly, when continuously monitoring and analyzing
the workload of an EA. Current runtime models tend to allocate new resources when
spikes in the workload occur. A workload and software architecture aware can produce
more resource efficient results and therefore reduce overhead and costs in distributed EAs.

8.8. CONCLUSION 120

M
R

T

S
R

T

0

20

40

60

80

100

Login
M

R
T

S
R

T

0

50

100

150

200

Registration

M
R

T

S
R

T

0

500

1000

1500

2000

2500

3000

AddVehicle

M
R

T

S
R

T

0

500

1000

1500

2000

2500

3000

GetQuote

M
R

T

S
R

T

0

20

40

60

80

100

120

140

Logout

Figure 8.7: Response time evaluation.

Chapter 9

SiaaS: Simulation as a Service

Authors Willnecker, Felix1 (willnecker@fortiss.org)
Vögele, Christian1 (voegele@fortiss.org)
Krcmar, Helmut2 (krcmar@in.tum.de)

1fortiss GmbH, Guerickestraße 25, 80805 München, Germany
2Technical University of Munich (TUM), Boltzmannstraße 3,

85748 Garching, Germany

Outlet Proceeding of the Symposium on Software Performance (SSP)

2016

Status Accepted

Keywords Performance Simulation, Microservice Architecture, Scalable Sim-

ulation Engine, Palladio Component Model

Individual Contribution Problem and scope definition, construction of the conceptual ap-
proach, prototype development, experiment design, execution and

result analysis, paper writing, paper editing

Table 9.1: Bibliographic details for P6

Abstract One major advantage of performance models over tests using real systems
is the ability to simulate design alternatives by simply modifying or exchanging parts
of such models. However, the evaluation of numerous design alternatives can be time
consuming depending on the number of alternatives and the complexity of the model. To
overcome this challenge, this work presents a scalable simulation service for the Palladio
Component Model (PCM) workbench based on a headless Eclipse instance, a Java EE
application server, packaged in a docker container and run in kubernetes. The simulation
service supports parallel simulation runs, multiple PCM instances in the same container
and scales out automatically, when resources of one container instance exceed. Simulation
jobs are triggered by a platform-independent REST interface and can be re-used by other
applications. This allows to simulate a vast amount of model instances in parallel on
cloud or on-premise installations.

121

9.1. INTRODUCTION 122

9.1 Introduction

Performance models and corresponding simulation techniques are able to predict per-
formance metrics (e.g., resource utilization, response times, throughput) of applications
systems (Brunnert et al., 2015). Simulations become time consuming and resource inten-
sive when multiple simulations are executed, or the complexity of the simulated model,
the number of simulated users or the simulation time increases (Brunnert et al., 2015).
Today, these simulations are computed on the workstation of the user of this model in a
workbench application one after each other (Becker/Koziolek/Reussner, 2009). Parallel
simulations are merely possible, only by running multiple workbench instances in paral-
lel including the resource overhead for running multiple applications. Furthermore, the
workstation is busy running the simulations and restrains normal usage. A job scheduler
to run several simulations overnight is typically not included making the usage of these
workbenches improper for large amount of simulation runs.

A large amount of simulation runs is necessary when the evaluation of a vast amount
of design alternatives is required. Such alternatives concern among others granularity of
components, deployment units, or deployment topologies (Koziolek/Koziolek/Reussner,
2011; Willnecker/Krcmar, 2016). The number of possible simulations increases exponen-
tially with the number of possible decisions (Willnecker/Krcmar, 2016). We propose a
distributed and scalable simulation service in order to cope with these increased resource
requirements. This service runs on an application server, requires less overhead per simu-
lation, and can schedule and execute a vast amount of jobs in parallel. Furthermore, the
system is designed to auto-scale to the required number of application servers as long as
resources are available. We call this service SiaaS: Simulation as a Service1.

9.2 Related Work

Guo et al (2011) designed a service-oriented architecture for simulation services, named
SimSaas (Guo/Bai/Hu, 2011). Although, technology has evolved since 2011, the core
architecture principles of SimSaaS can be applied to the here presented service.

Dlugi et al. (2015) presented a headless Palladio Component Model (PCM) simulation
engine in order to integrate it in a continuous delivery pipeline (Dlugi/Brunnert/Krcmar,
2015). Their work is based on a headless Eclipse2 instance requiring no user interface.
This headless simulator runs on a build server instance and is started via command line.
Our work reuses an advanced version of this Command Line Simulator (CLS) to execute
simulations on application servers.

The microservices architecture style became increasingly popular as a core architecture
principle (Balalaie/Heydarnoori/Jamshidi, 2016). Small, manageable and independent
services are easier to develop and to maintain (Balalaie/Heydarnoori/Jamshidi, 2016).

1http://pmw.fortiss.org/tools/siaas/
2http://eclipse.org/

9.3. SIMULATION SERVICE 123

Load
Balancer

Result
Store

...SiaaS-
Client

Simulation Worker 1

Job Scheduler

CLS 1 CLS n...

Simulation Worker n

Job Scheduler

CLS 1 CLS n...

Figure 9.1: Simulation cluster architecture

Therefore, we adopt the service thought but implement it in a modern architecture style
for simulating PCM instances.

9.3 Simulation Service

SiaaS is based on Java Enterprise Edition (EE) and is accessed using a RESTful ser-
vice Application Programming Interface (API). We use the Java API for RESTful Web
Services (JAX-RS) and Contexts and Dependency Injection (CDI) to provide the API
either run on a standard Java EE application server or packaged as Wildfly-Swarm3 Mi-
croservice (Balalaie/Heydarnoori/Jamshidi, 2016). Therefore, this service can be part of
a larger service infrastructure as in the Performance Management Work (PMW) tools4

architecture. An instance can be run in a docker5 container inside a kubernetes6 instance
to scale out automatically (Verma et al., 2015).

The complete SiaaS architecture as depicted in Figure 9.1 consists of three core compo-
nents: (i) A load balancer distributing the jobs among the simulation worker instances,
(ii) one or many worker executing simulation jobs, and (iii) a shared result store saving
the simulation results. When SiaaS is run in a kubernetes cluster the load balancer is
automatically part of each instance and becomes obsolete in such a setup as depicted in
Figure 9.2 (Verma et al., 2015).

We designed SiaaS to support multiple PCM versions in parallel, so that older and newer
versions can be run on the same service cluster and to test extensions not yet part of

3http://wildfly-swarm.io/
4http://pmw.fortiss.org
5http://www.docker.com/
6http://kubernetes.io/

9.3. SIMULATION SERVICE 124

the PCM release in a larger scale. A SiaaS cluster consists of SiaaS worker instances.
Each worker instance has a job scheduler, which controls a number of independent CLS
instances thus control simulation jobs in separated processes. This architecture allows
to separate simulation instances from each other on the same SiaaS instance without
common dependencies.

The CLS uses a headless Eclipse instance started by a shell script (Dlugi/Brunnert/
Krcmar, 2015). As input the script requires a complete PCM model, the simulation
time, the maximum available heap size for one simulation, and the name of the used
simulation engine (Dlugi/Brunnert/Krcmar, 2015). It currently supports the two main
simulation engines of PCM: SimuCom and EventSim (Becker/Koziolek/Reussner, 2009).
It is important that all SiaaS worker of a SiaaS cluster use the exact same CLSs. This
can be achieved by storing the simulators in a common folder. The results of a simulation
run are stored as a file archive to the disk and can be collected when a simulation job is
finished. This archive is stored in the results store, which is a common file share between
all instances. The same share can be used to store the CLSs.

The CLS is controlled by the job scheduler of the SiaaS. Each simulation worker controls
a local job scheduler. When a new simulation is triggered, the job scheduler receives
the necessary parameter to execute the simulation. If different versions of the CLS are
available the correct version must be selected when starting a job. The job scheduler
starts a new process using the selected CLS and assigns a unique job ID based on the
session ID of the client. The scheduler continuously monitors the status of the job and
provides this information via the SiaaS REST interface. Valid job status are started,
running, finished, failed or queued.

The job scheduler is resource-aware and checks the available memory resources of the host
before a new job is started. A job will be queued if less memory is available then necessary
to execute a simulation. The queued job will be started as soon, as enough memory is
available, after other simulation jobs have finished or failed. This allows clients to upload
a batch of jobs which are automatically scheduled and executed based on the available
resources.

SiaaS can run in a docker container inside a kubernetes instance (Verma et al., 2015).
New SiaaS workers can be spawned as soon as jobs need to be queued out of resource
shortages. This allows SiaaS to adapt to the current load and scale out to the necessary
number of instances. These two technologies are leveraged to deploy SiaaS as an elastic
microservice (He et al., 2012). Figure 9.2 depicts the deployment structure when using
docker and kubernetes (Verma et al., 2015).

SiaaS is controlled and monitored using a REST interface. This allows to integrate SiaaS
into all sorts of applications independent from technology or plattform constraints. The
REST interface of SiaaS provides four main interfaces: (i) schedule a new simulation job,
(ii) get status of simulation job, (iii) abort a simulation job and, (iv) retrieve the results
of a simulation job.

Scheduling simulation jobs requires to submit a model, the simulation time and the identi-
fier of the used CLS. This initial request returns the unique job ID of the newly scheduled

9.4. EVALUATION 125

Kubernete Instance

...

SiaaS-
Client

SiaaS Worker Container 1

Simulation
Worker 1

Load
Balancer

SiaaS Worker Container n

Simulation
Worker n

Load
Balancer

Storage Container

Result
Store

Load
Balancer

Figure 9.2: Simulation cluster in kubernetes instance

simulation job. The job ID is the only parameter necessary for the interfaces ii-iv. As
long as a job is running, only the computing worker can provide the job status correctly.
Therefore, it is important that the client is routed to the same worker instance where the
simulation job was initially scheduled. Valid routing is enforced by session stickiness of
the load balancer, while each new job creates a new session. The client must send its
session ID with every status or abort request, in order to get a correct answer. Regular
status polls must be executed by the client to avoid session timeouts. Session timeouts
can occure, if a simulation runs longer without intermediate status polls. However, results
are still stored in the Result Store after the job is finished and are available from all worker
instances.

9.4 Evaluation

SiaaS is part of the PMW tools. It has been used and evaluated as a simulation cluster
for two other PMW tools projects: (i) Deployment Unit Optimizer (DUO) and Load Test
Selector (LTS) (Willnecker/Krcmar, 2016; Vögele et al., 2015).

The DUO project automatically selects an optimal deployment topology for an Enterprise
Application (EA) for a given set of resource containers (Willnecker/Krcmar, 2016). The
number of potential topology grows exponentially with the number of deployable compo-
nents and the number of resource containers available (Willnecker/Krcmar, 2016). There-
fore, a vast amount of simulations is required to detect an optimal solution (Willnecker/
Krcmar, 2016). SiaaS computed about 1200 simulations on 4 nodes in 8 hours using the
SimuCom engine (Willnecker/Krcmar, 2016). SiaaS was deployed in a fixed setup, with 4
application servers and one Apache Webserver7 as load balancer. DUO acted as a client

7http://httpd.apache.org/

and queued new simulation runs based on the results from previous runs. The results
were collected and analyzed and evaluated by DUO.

LTS searches for load tests design candidates matching given performance objectives like
finding a minimum test set with a good component test coverage and/or high resource
utilization. LTS uses a single SiaaS instance as simulation service. As with DUO new
simulations are triggered by the results from simulations computed previously, which are
analyzed and evaluated by LTS. LTS uses the SimCom engine with another CLS as DUO
as different PCM versions are required (Vögele et al., 2015).

First tests using EventSim instead of SimuCom finish already in about 30% of the time a
SimuCom simulation took for the same models. Thus, future usage of SiaaS will leverage
the speed increase to compute more simulation runs in a shorter period of time or with
less resources.

9.5 Conclusions

We showed a scalable simulation service called SiaaS as part of the PMW tool chain. SiaaS
can compute PCM simulations as a distributed service that is resource aware and auto
scales to necessary size when run in a kubernetes instance. SiaaS is controlled via a simple
REST interface allowing developers to easily integrate SiaaS into their tool chain. We
demonstrated this with two PMW tools: DUO and LTS, both using SiaaS as distributed
simulation service.

SiaaS is able to support multiple versions of PCM CLSs. Therefore, SiaaS is a multi-
tenant application, which allows to use the same service instance for multiple purposes
as demonstrated by DUO and LTS. Furthermore, this feature allows to run SiaaS as a
Software as a Service (SaaS) application for multiple institutes or to run tests of multiple
PCM instances. The general architecture allows developers to integrate other performance
simulations or solving techniques for performance models.

Future work mainly concerns integrating SiaaS into other tools and increase the stability
of the service and its infrastructure components. Furthermore, the resource-awareness of
SiaaS can be extended to consider CPU utilization instead of only memory consumption
for scheduling jobs and spawning new simulation instances.

Chapter 10

Multi-Objective Optimization of
Deployment Topologies for
Distributed Applications

Authors Willnecker, Felix1 (willnecker@fortiss.org)
Krcmar, Helmut2 (krcmar@in.tum.de)

1fortiss GmbH, Guerickestraße 25, 80805 München, Germany
2Technical University of Munich (TUM), Boltzmannstraße 3,

85748 Garching, Germany

Outlet ACM Transactions on Internet Technology

Status Accepted

Keywords Deployment Topology Optimization, Performance Model, Dis-
tributed Enterprise Applications, Performance Model Generation,

Memory Simulation

Individual Contribution Problem and scope definition, construction of the conceptual ap-
proach, prototype development, experiment design, execution and

result analysis, paper writing, paper editing

Table 10.1: Bibliographic details for P7

Abstract Modern applications are typically implemented as distributed systems com-
prising several components. Deciding where to deploy which component is a difficult task
that today is usually assisted by logical topology recommendations. Choosing inefficient
topologies allocates the wrong amount of resources, leads to unnecessary operation costs,
or results in poor performance. Testing different topologies to find good solutions takes
a lot of time and might delay productive operations. Therefore, this work introduces a
software-based deployment topology optimization approach for distributed applications.
We use an enhanced performance model generator that extracts models from operational
monitoring data of running applications. The extracted model is used to simulate perfor-
mance metrics (e.g., resource utilization, response times, throughput) and runtime costs
of distributed applications. Subsequently, we introduce a deployment topology optimizer,
which selects an optimized topology for a specified workload and considers on-premise,
cloud, and hybrid topologies. The following three optimization goals are presented in
this work: (i) minimum response time for an optimized user experience, (ii) approximate

127

10.1. INTRODUCTION 128

resource utilization around certain peaks, and (iii) minimum cost for running the applica-
tion. To evaluate the approach, we use the SPECjEnterpriseNEXT industry benchmark
as distributed application in an on-premise and in a cloud/on-premise hybrid environ-
ment. The evaluation demonstrates the accuracy of the simulation compared to the ac-
tual deployment by deploying an optimized topology and comparing measurements with
simulation results.

10.1 Introduction

Distributed architectures are state of the art in large-scale and modern internet applica-
tions (Brunnert/Krcmar, 2017; Brunnert et al., 2015). Such applications typically com-
prise multiple deployment units. Each deployment unit is composed of several compo-
nents and is movable from one server instance to another. Furthermore, these units can
be replicated to cope with increased workload based on data from operations. Selecting
the right amount of deployment unit replications and corresponding runtime instances is
a difficult task and requires developers (dev) and operations (ops) expertise. Numerous
different combinations, so-called deployment topologies, exist (Brunnert et al., 2015). Not
only the right amount of unit replications must be selected, but also the right amount of
resource containers (e.g., Virtual Machines (VMs), bare-metal server, or application con-
tainers), which depends on the demand a component operation places on its resources
(Brunnert et al., 2015). The most important resources, including Central Processing
Unit (CPU), Hard Disk Drive (HDD), memory and network, and their demands have
to be considered for deployment topology decisions (Koziolek et al., 2014; Brunnert et al.,
2015).

At present, these decisions are assisted by logical recommendations or simply based on
estimations instead of continuous measurements from operations (Brunnert et al., 2015).
Such estimations and resulting topologies often rely on peak demands, which leads to
under-utilized data centers (Speitkamp/Bichler, 2010). Different studies estimate the
current average CPU utilization in data centers between 6% and 20% (Huang/Masanet,
2015; Speitkamp/Bichler, 2010). Hence, servers are idle for most of their uptime. This
situation serves well for Infrastructure as a Service (IaaS) cloud providers as they can
over-provision their physical capacities, but the situation produces unnecessary costs for
operators of distributed applications (DAs). By contrast, over-utilized servers are not
desirable as this results in overly long response times or unstable systems. Therefore,
selecting the right amount of resource containers and optimizing the utilization of their
resources is important when running DAs (Ardagna et al., 2014).

Instead of deploying a DA on-premise, managed infrastructures like cloud environments
are available today and can provide extensive reliability and cost reduction (Ardagna et al.,
2014). Managed infrastructure providers now invoice the usage of runtime instances. In
contrast to previously purchased servers, these providers charge current costs. Thus, DA
operators have a vested interest in optimizing their topologies in order to reduce operation
costs. Different providers apply different cost models based on the number of machines,
requests processed, number of user sessions, or simply aggregated uptime. Depending on

10.1. INTRODUCTION 129

which provider is chosen, the optimization goal for the deployment might change to save
costs. A high utilization might be preferred if the uptime of servers forms the basis of the
cost model instead of optimized response times.

In practice, deployment topology considerations require a great amount of effort and ex-
pert knowledge about operation data and the software that has been developed. The
role of the DevOps engineer is designed for these type of tasks. Planning and testing
topology changes in a production environment may incur risks for the stability of the
DA. The potential savings in operation costs or performance gains compared to the risks
might not be worth it. Evaluating topologies in test environments requires production-like
environments, although these environments are as expensive as the production environ-
ment itself. Furthermore, such testing environments are often used to capacity by various
projects executing load tests or may simply not yet be available when new hardware or
managed infrastructures like cloud environments are introduced as new target environ-
ments (Ardagna et al., 2014).

This work proposes to use performance models extracted from small scale test environ-
ments and subsequently size and optimize available resource containers to specified work-
loads. To accomplish this goal, we combine performance model generators (PMGs) and
architecture optimizers to automatically detect optimized deployment topologies. This
approach allows to use accurate resource demands from generated performance models
and established architecture optimization algorithms. We use the PMG of the RETIT1

Capacity Manager, the Palladio Component Model (PCM) as performance meta-model,
and an opt4j based approach to optimize the deployment topologies for DAs (Brunnert/
Krcmar, 2017; Koziolek/Koziolek/Reussner, 2011; Lukasiewycz et al., 2011).

Performance models can be used to predict performance metrics by evaluating alterna-
tive deployment topologies and resource environments, and simulate the effects on these
metrics (Brunnert/Krcmar, 2017). Building such models manually often outweighs any
potential benefit (Kounev, 2005). Recent research created PMGs for DAs to limit the
effort of building such models (Brunnert/Krcmar, 2017). However, no currently available
PMG considers all four main resources (CPU, HDD, memory, and network). The PMG
we use has a comprehensive approach, but lacks automatic memory management simu-
lation. Therefore, we introduce an extension to PCM and the contemplated PMG for
dynamic and automatic memory management modeling and simulation.

PMGs focus on the extraction of the software architecture of a DA but disregard de-
ployment topology decisions. Selecting the right amount of resources and evaluating the
selected topologies again requires manual effort. Manual selection soon becomes impos-
sible as the number of potential topologies grows exponentially with the number of de-
ployment units and available resource containers (Koziolek/Koziolek/Reussner, 2011). To
automate this process architecture optimizers have been introduced to the scientific com-
munity (Aleti et al., 2013; Koziolek/Koziolek/Reussner, 2011). These optimizers require
an already created (performance) model to conduct optimizations (Koziolek/Koziolek/
Reussner, 2011). Such models can be derived from design specifications or created man-
ually. However, the actual resource demands are usually estimated and therefore error-

1http://www.retit.de/

http://www.retit.de/

10.2. RELATED WORK 130

prone. While generated performance models provide high accuracy for predictions, they
are not yet compatible with architecture optimizers. Development and evaluation of an
automated approach based on PMG and architecture optimizers to identify ideal deploy-
ment topology is the main contribution of this work.

Our results allow DevOps engineers to evaluate different resource environments (e.g.,
in-house, hosted, cloud), to evaluate different deployment topologies, and to automati-
cally size DAs without deploying the application in a production or production-like en-
vironment. For the evaluation we conducted a series of controlled experiments using the
industry standard benchmark SPECjEnterpriseNEXT2 as DA.

To what is already known in this area we contribute:

(i) An automated approach to identify optimal deployments.
(ii) The combination of performance model generation and architecture optimization.
(iii) System design and evaluation of automatic deployment topology selection in different

resource environments.
(iv) A dynamic and automatic memory management simulation approach.
(v) A cost model for on-premise and IaaS cloud environments.

This paper builds on our previous work (Willnecker/Krcmar, 2016; Willnecker et al.,
2015b) on deployment topology optimization and contains the following major improve-
ments and extensions:

(i) Multi-objective optimization that calculates the Pareto-front along the optimal re-
sults for three goals: minimum response time, minimum costs, optimal resource
utilization.

(ii) A flexible cost-model for cloud and on-premise environments based on actual usage
of the resources.

(iii) An extension for our garbage collection approach that allows growing and shrinking
committed memory.

(iv) An evaluation of a newer and more complex SPECjEnterpriseNEXT version in an
on-premise and industry cloud environment.

10.2 Related Work

Early PMGs have been demonstrated in the work of Hrischuk et al. in 1999 (Hrischuk/
Woodside/Rolia, 1999). Their work focuses on layered queueing networks (LQNs) which
do not separate workload, software components and resource environments (Hrischuk/
Woodside/Rolia, 1999). Without such a separation, exchanging the resource environ-
ment model or changing the deployment topology is difficult to accomplish. Therefore,

2SPECjEnterpriseNEXT is a trademark of the Standard Performance Evaluation Corp. (SPEC). The
SPECjEnterpriseNEXT results or findings in this publication have not been reviewed or accepted by
SPEC, therefore no comparison nor performance inference can be made against any published SPEC
result.

10.2. RELATED WORK 131

architecture-level performance models, such as PCM, introduce separated sub-models for
workload, software architecture and resource environments (Becker/Koziolek/Reussner,
2009). The work of Brosig et al. (2014) generates performance models for PCM and sim-
ulates CPU, HDD and memory demands, but lacks automatic memory management and
network demands (Brosig/Huber/Kounev, 2014). Especially in distributed environments
the network latency and bandwidth can have a huge impact on the performance of the
system (Brunnert/Krcmar, 2017).

Another performance model generation approach has been introduced by Brunnert et al.
(2015) (Brunnert/Krcmar, 2017). The generated models are called resource profiles and
consider CPU, HDD, and network demands (Brunnert/Krcmar, 2017). The approach
generates accurate models from running DAs but lacks automatic memory management
(Brunnert/Krcmar, 2017). Thoroughly conducted capacity planning requires taking the
memory resource into account in order to charge the capacity of available systems effec-
tively. We extend this generator with automatic memory management simulations in our
deployment topology optimization architecture.

Huber/Brosig et al. (2016) describe a performance model-based approach for self-aware
systems (Huber/Brosig et al., 2016). An endless monitoring, model deduction, and pre-
diction loop allows the constant optimization of the performance of an application system
(Huber/Brosig et al., 2016). The effects rely on the quality of the workload prediction. If
the correct workload for a certain timeframe is predicted, the topology can be adjusted.
Nevertheless, complex optimizations are often prohibited as decisions must be made fast.

Speitkamp/Bichler (2010) identified the need to consolidate resource usage and proposed
a mathematical model to optimize resource allocation using VMs (Speitkamp/Bichler,
2010). VMs with high CPU utilization could be run on the same host together with VMs
utilizing other resources having low CPU utilization (Speitkamp/Bichler, 2010). This
concept should optimize the utilization of all resources in a data center. However, the
proposed model is not aware of the workload or the DAs running in the VMs and their
dependencies. The model requires a re-calculation and allocation of the VMs when the
resource utilization of the hosted applications changes. Such changes occur frequently as
new versions are deployed or the executed workload changes.

Chen et al. (2015) demonstrate a tool called StressCloud to model and optimize cloud
deployments. The focus on performance and energy consumption as well as load test
generation (Chen et al., 2015). This approach allows to model workload, software and
target infrastructure in a new meta-model (Chen et al., 2015). The accuracy of such
approaches relies on the quality of the model. A model generation approach based on
measurement results may increase the quality of the StressCloud models.

The architecture optimization approach PerOpteryx evaluates design alternatives based
on PCM models (Koziolek/Koziolek/Reussner, 2011). The number of decisions is large
as hardware, network, and software architecture are taken into account. PerOpteryx has
a broad variety of optimization goals and degrees of freedom. We adapt the PerOpteryx
approach for deployment optimization but with certain changes (e.g., simulations instead
of analytical solvers and limitation of deployment topology decisions). This adaption

10.3. DISTRIBUTED APPLICATION COMPONENTS 132

Deployment

Topology

Resource

Profile

Workload

Palladio Component

Model

Number of Users

and

User Behavior

Real Users or

Virtual Users

Java EEConcept

EJBs, JSPs, Servlets
Components and

Operations

Deployment Units

Resource Container,

Resources and

Network Conn.

Deployment Unit to

Resource Container

Relationship

Usage Model

Repository Model

System ModelEARs/WARs

Installation on

Application Server

Allocation Model

Resource Env.Virtual Machine/

Bare-Metal Server

Figure 10.1: Distributed application structure adapted from (Becker/Koziolek/Reussner,
2009; Brunnert/Krcmar, 2017)

allows us to not only evaluate CPU utilization and response times, but also to take
network, automatic memory management, and HDD demands into account.

Aleti et al. (2013) provide a comprehensive review on software architecture optimization
methods (Aleti et al., 2013). Their work recommends providing evidence for resulting
architectures in order to prove the validity of these strategies and suggests establishing
holistic tool support (Aleti et al., 2013). Current work fails to provide evidence as the pre-
sented approaches are difficult to compare to real environments. Our work addresses this
gap by evaluating architecture optimization with a real DA and combining architecture
detection (performance model generation) with architecture optimization into a holistic
tool for automatic deployment topology optimization.

10.3 Distributed application components

A deployment unit is a packaged artifact installable on a server instance or directly on
an operating system (OS). Such units consist of several components and operations and

10.3. DISTRIBUTED APPLICATION COMPONENTS 133

build the core of any DA. A typical DA consists of many deployment units distributed
throughout multiple servers.

In order to analyze the deployment topology of a DA, its context has to be taken into
account. The context comprises (i) the resource profile of the DA and (ii) the workload
executed on the DA. Hence, an optimized topology always depends on both factors.
Figure 10.1 depicts the main components of a DA. We use Java Enterprise Edition (EE)
as an example middleware even though the depicted concepts are applicable for other
technologies as long as monitoring technology is available (Spinner et al., 2015; Willnecker/
Krcmar, 2016). Figure 10.1 also shows how we map the different parts of a DA to the PCM
meta-model. We selected PCM as it is a mature and stable meta-model and corresponding
simulation environment. Our previous technology, like the PMG, extensions to simulate
HDDs, and network have already been applied to PCM and we can easily reuse these
accomplishments (Becker/Koziolek/Reussner, 2009; Brunnert/Krcmar, 2017).

The workload describes the number of users and how they use the DA, which ultimately
causes the resource utilization of the DA. These users can be real users accessing the
system or virtual users executing a (load) test to analyze the behavior of a DA. We use
Application Performance Management (APM) data during a monitoring run to derive an
initial workload. This workload is editable in order to size a DA according to the expected
workload in production.

The resource profile of a DA describes how an operation of a component utilizes different
resources (Brunnert/Krcmar, 2017). The profile consists of a basic workflow and the
deployment unit structure of the DA. Each operation of the DA is modeled in the profile
including its resource demands for several resources. Resource profiles are the core result
of PMGs (Brunnert/Krcmar, 2017).

The runtime of the DA representation is defined by the deployment topology. For each
deployment unit of a DA at least one instance exists during runtime. If required by
the workload, replicas of a deployment unit might exist. If depicted as a graph, each
deployment unit node needs at least one edge to a resource container node. The node is
replicated if multiple edges from a deployment unit node exist.

A deployment topology describes the structure and relationship of a set of these deploy-
ment units installed and executed on a number of resource containers. The containers
are organized in the so-called resource environment model. This environment consists
of the hosting machines, their capabilities (e.g., CPU processing rate, available memory,
HDD speed), and the network connections (focusing on bandwidth and latency) between
the resource containers. Two deployment units, which are dependent, can only be de-
ployed on two resource containers that are linked via a network connection. Therefore,
the number of potential topologies depends on the number of deployment units du and the
valid resource containers rc. Equation 10.1 calculates the number of possible deployment
topologies depending on du and rc, when all resource container targets are valid for all
deployment units.

DTdu,rc = (2rc − 1)du (10.1)

10.4. DEPLOYMENT TOPOLOGY OPTIMIZATION PROCESS 134

Generate

Resource

Profile

Generate

Deployment

Topologies

Simulate

Deployment

Topologies

Select

Deployment

Topology

Distributed

Application in

Test

Environment

Distributed

Application in

Production

Environment

Evaluate

Figure 10.2: Deployment topology optimization process.

2rc − 1 describes each possible installation combination of a deployment unit on one or
more resource containers. As any permutation with other deployment unit installations is
possible, we have to add du as an exponent. Given 10 resource containers and 5 deploy-
ment units, the number of possible topologies is already greater than 1015. The number
of combinations in this scenario prohibits a manual selection. Deployment topology opti-
mization requires an automated approach.

10.4 Deployment Topology Optimization Process

An automated approach requires a holistic tool to optimize deployment topologies, which
comprises three basic components:

(i) Performance model generator to detect the resource profile of a DA including its
resource demands, system behavior, current deployment topology, and current work-
load.

(ii) Architecture optimizer to evaluate different target deployment topologies and to
select the best topology in terms of the optimization goal.

(iii) Simulation service for parallel predicting performance metrics of multiple perfor-
mance models.

Figure 10.2 illustrates the optimization process. We deploy a DA in a test environment
to conduct the process. This DA is instrumented with APM agents and set under load in
order to obtain meaningful APM data. In a first step, this APM data is used to generate
a performance model. The model consists of the detected workload, the detected resource
profile, and a specification of the resources in the test environment. The generated model
represents the current state of the DA in the test environment.

In a second step, the architecture optimizer based on optj4 uses an evolutionary
algorithm for selecting an initial number of possible topologies (initial population)
(Lukasiewycz et al., 2011). This initial population set is based on the generated model
and the available resource containers. Each topology is validated in order to check if all
deployment units are at least instantiated once and can communicate with all dependent
deployment units via a network connection. The deployment topologies are packaged for
simulation including workload and resource profile. We constructed a distributed simula-
tion cluster that can simulate multiple topologies in parallel.

10.5. PERFORMANCE MODEL GENERATOR 135

After each simulation run the optimizer evaluates the results. We currently support three
optimization goals: (i) approximate the mean resource utilization per resource over of all
containers to a certain level (e.g., 70% CPU utilization and 80% memory utilization), (ii)
minimize the costs, or (iii) minimize the response time per transaction. A topology can
be invalidated if one resource is utilized above a certain threshold to prevent over-utilizing
certain containers. The optimizer mutates new topologies based on the evaluation results
and delegates the simulation. This process is repeated until the initial population and the
number of generations are processed.

The best topology in terms of the optimization goals is a Pareto-front. Therefore, multiple
solutions are possible and can be selected by the DevOps engineer. The final step is
deploying this topology in the production environment.

10.5 Performance Model Generator

This section explains the PMG and extensions we added to support generating a compre-
hensive performance model. The generated model considers the most important resources:
CPU, HDD, network and memory. Furthermore, a transaction flow throughout a DA is
detected and used for reasoning the systems control-flow.

We use and extend the PMG of the RETIT Capacity Manager and the corresponding
monitoring solution RETIT Java EE. Both solutions are based on the Performance Man-
agement Work Tools (PMWT) PMG introduced by Brunnert et al. in 2015 (Brunnert/
Krcmar, 2017). As depicted in Figure 10.3(a), the generation process consists of three
phases (Willnecker/Krcmar, 2016):

(i) monitoring the instrumented DA,
(ii) aggregating the monitoring data per operation, and
(iii) generating the performance model based on the aggregated monitoring data.

The result of the three phases is a resource profile, a workload description representing
the usage of the DA during the monitoring phase, and a resource environment describing
the current deployment of the DA. All three model parts are stored as a PCM instance
(Brunnert/Krcmar, 2017; Becker/Koziolek/Reussner, 2009).

10.5.1 Monitoring

The monitoring step collects operation invocations of the instrumented DA. We dis-
tinguish between resource demand measurement and resource demand estimation (Spin-
ner et al., 2015; Willnecker/Krcmar, 2016). Resource demand measurement uses fine-
grained monitoring data per operation invocation to measure the exact demand an opera-
tion places on a resource. These measurements can be collected with standard APM soft-

10.5. PERFORMANCE MODEL GENERATOR 136

Aggre-

gator
Perfor-

mance

Model

System

Performance

Monitoring

1. Monitoring 3. Model Generation

R
E

T
IT

 P
e
rf

o
rm

a
n

ce

M
o

d
el

 G
e
n
e
ra

to
r

LibReDE

Monitoring

Database

Application

Performance

Monitoring

2. Aggregation

(a) Performance model generator (adapted from (Willnecker/Krcmar, 2016))

Resource

Profile

Workload

Deployment Unit Optimizer

Resource

Container

Database

Deployment

Topology

Allocator

Model

Trans-

formator
Optimization

Database

Constraint

Definition

Simulation Cluster

Simulation

Slave
Simulation

SlaveWorker

Optimization Controller

Simulation

Results

Analyzer

Performance

Evaluation

Tool (PET)

(b) Deployment Unit Optimizer (adapted from (Willnecker/Krcmar, 2016))

Figure 10.3: Core subsystem of deployment topology optimization

10.5. PERFORMANCE MODEL GENERATOR 137

ware like Dynatrace3 Application Monitoring (AM) (Willnecker/Krcmar, 2016). Resource
demand estimation uses coarse-grained monitoring data like total resource utilization and
response time series per operation and distributes the utilization throughout the opera-
tions (Spinner et al., 2015). Such coarse-grained resource utilization data can be collected
using standard system monitors like System Activity Reporter (SAR), or monitoring and
control interfaces of virtual machines like Java Management Extensions (JMX). Load
drivers like jMeter4 or access logs of web servers provide response time series of opera-
tions invoked on system-entry level. For more detailed (e.g., component-level) response
time series, custom filter or logger are necessary.

The PMG supports data from different data sources as depicted in Figure 10.3(a):

(i) Application Performance Monitoring for fine-grained application data. We use the
RETIT Java EE Monitoring solution in this work. Previous work demonstrated the
applicability of industry standard solutions like Dynatrace AM (Willnecker/Krcmar,
2016).

(ii) System Performance Monitoring for coarse-grained application data. Standard sys-
tem tools or custom host agents are possible. We use Apache Webserver5 access
logs, RETIT Host Monitoring and JMX in this work.

The collected data is stored ongoing in a monitoring database based on the Apache Cas-
sandra6 project. The large amount of data requires a scalable, yet simple database struc-
ture. Each row in the database corresponds to an operation invocation or a measurement
record from system monitoring. The next phase uses this monitoring database as a single
source of input.

10.5.2 Aggregation

The aggregation phase concentrates all the single operation invocations as a preparation
for the model generation. The mean demand per resource (e.g., mean CPU demand)
is calculated for every operation of every component. Furthermore, the calculation of
network demands at the deployment unit boundaries and transaction flows based on
unique transaction IDs is conducted in this step.

Figure 10.3(a) shows the currently supported data sources in the monitoring step; other
APM solutions or coarse-grained monitoring providers can be added to the PMG. The de-
mand calculation is either done by the aggregator, or delegated to Library for Resource De-
mand Estimation (LibReDE) in a post-processing after initial aggregation (Spinner et al.,
2015). After this phase, all operation invocations, their resource demands, and the trans-
action flow are prepared for the model generation phase.

3http://www.dynatrace.com/
4http://jmeter.apache.org/
5http://httpd.apache.org/
6http://cassandra.apache.org/

http://www.dynatrace.com/
http://jmeter.apache.org/
http://httpd.apache.org/
http://cassandra.apache.org/

10.5. PERFORMANCE MODEL GENERATOR 138

ResourceContainer

- entityName : String

ProcessingResourceSpecification

- numberOfReplicas : int

MemoryResourceSpecification

- capacity : long

- name : String

ResourceEnvironment

- entityName : String

resourceContainer

ac
ti

v
eR

es
o
u
rc

eS
p
ec

if
ic

at
io

n
s

GarbageCollectionBehavior

- threshold : PCMRandomVariable

- freeRatio : PCMRandomVariable

<<Interface>>

Entity

- cpuDemand : PCMRandomVariable

- initialComittedMemory : long

- maxComittedMemory : long

- growComittedThreshold : PCMRandomVariable

- shrinkComittedThreshold : PCMRandomVariable

Figure 10.4: PCM extension for memory resources.

10.5.3 Model Generation

This final phase transforms the operation invocations, resource demands, and the trans-
action flow into a PCM instance. This transformation allows changing and/or simulating,
hence predicting the system behavior using the Palladio-Bench (Becker/Koziolek/Reuss-
ner, 2009). PCM supports CPU, HDD and network demands. The built-in features of
PCM are used for the above mentioned three resources (Brunnert/Krcmar, 2017).

Each operation invocation results in at least one action with a CPU demand. In contrast,
for HDD demands we distinguish between write and read demands as the write speed of
a HDD is very different from the read speed (Brunnert/Krcmar, 2017). Furthermore, we
use the mean request and response size to simulate the time this request travels through
the network based on available bandwidth and latency (Brunnert/Krcmar, 2017).

Memory demands and simulation are more complex due to automatic memory manage-
ment (Libič et al., 2015). We can calculate the mean memory demand of an operation by
measuring the memory demand of each operation invocation and forming the average de-
mand similar to CPU demands. A dedicated resource is necessary to place the demands,
which supports automatic memory management scenarios as in virtualized runtimes like
the Java Virtual Machine (JVM).

We extended the PCM meta-model in order to add a memory resource representation as
depicted in Figure 10.4. This resource works for dynamic memory management scenarios
and supports different types of automatic memory management methods, like Garbage
Collections (GCs). GCs delay the release of memory, leading to a larger memory utiliza-
tion during runtime. Thus, memory is more likely to become a bottleneck. We extended
PCM to simulate this effect (Becker/Koziolek/Reussner, 2009; Willnecker/Krcmar, 2016).
We added two classes to the meta-model to support this behavior:

(i) MemoryResourceSpecification to specify the attributes of a memory resource.
(ii) GarbageCollectionBehaviour to define the behavior of automatic memory manage-

ment. No behavior is specified in dynamic memory management scenarios.

10.5. PERFORMANCE MODEL GENERATOR 139

A typical GC collects and stores released objects in different memory spaces (Libič et al.,
2015). The spaces are cleaned in different intervals. For instance, the JVM executes two
types of GCs (minor and major) to clean different spaces or promote objects to another
space (Libič et al., 2015). A memory simulation containing garbage collection requires
monitoring GC events and generating instances of the memory resource and the GC
behavior in PCM.

For Java EE, we monitor the GC events of the running application using the GarbageCol-
lectorMXBean7 via JMX and measure the following metrics:

(i) The type of garbage collection that is executed. For Java EE this is either a minor
GC or a major GC. Other GC implementations or technologies can have different
GC types.

(ii) Size of total memory available in the JVM.
(iii) Size of allocated memory before and after the GC execution. This is a simplification

of the actual mechanism as we do not simulate object movements in the fine-grained
GC spaces. This probabilistic approach enables automatic memory management
simulation with low overhead compared to complex object movement simulations
(Libič et al., 2015; Willnecker/Krcmar, 2016).

(iv) CPU time necessary to execute the GC.

The measurement data is aggregated and processed for the performance model generation.
The resource environment generation creates a MemoryResourceSpecification instance per
resource container. This resource contains the initial and the maximum available memory.
Furthermore, an optional grow and shrink threshold is part of the resource for simulat-
ing changes to the committed memory. For dynamic memory management no further
generation is conducted. For automatic memory management we extract the GC types
and create a GarbageCollectionBehavior instance for each GC type. For each behav-
ior instance we calculate the mean CPU demand per byte released, the mean free ratio
and the threshold leading to a GC execution. Threshold and free ratio are calculated
in percent and are independent from the current memory size. This implementation au-
tomatically adapts GarbageCollectionBehavior to other resource containers representing
larger or smaller servers with less or more available memory for the JVM.

In order to access the newly introduced memory resource we extended ResourceCalls in
PCM. We added two more signatures to execute allocation and free calls on this resource.
Each operation in the performance model calls the alloc signature of the corresponding
memory resource. No free call is necessary for automatic memory management as this is
handled by the GarbageCollectionBehavior. In dynamic memory scenarios, the free opera-
tion is called after each operation. The available memory is immediately increased by the
amount specified in the free call. We extended the PMG to generate such ResourceCalls
automatically for every operation that allocates memory.

For automatic memory management a thread per memory resource is started with the
simulation. This thread watches if the committed memory of the corresponding resource
container exceeds the configured threshold. If the committed memory exceeds the GC ex-

7http://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/

management/GarbageCollectorMXBean.html

http://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/management/GarbageCollectorMXBean.html
http://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/management/GarbageCollectorMXBean.html

10.5. PERFORMANCE MODEL GENERATOR 140

ProcessingResourceSpecification ResourceEnvironment

BillingInformation

- name: String

- costPerUnit : Double

ResourceContainer

TimeInformation

- value : Double

- unit : TimeUnit

LinkingResource

DataInformation

- value : Double

- unit : DataUnit

RangeInformation

- costs : Double

- rangeOperator : RangeOperator

TrafficBoundInformation

- value : BoundDirection

<<Enumeration>>

TimeUnit

- notApplicable
- seconds

...
- years

<<Enumeration>>

DataUnit

- notApplicable

- byte
...
- terabyte

- utilization

<<Enumeration>>

RangeOperator

- notApplicable
- greaterThan
- greaterThanOrEqual
- lessThan
- lessThanOrEqual

<<Enumeration>>

BoundDirection

- notApplicable
- inboundTraffic
- outboundTraffic- minutes

Figure 10.5: Cost model extension

ecution threshold, a GC run is simulated. The memory of this resource is freed depending
on the free ratio of the executed GarbageCollectionBehavior. A CPU demand depending
on the CPU demand per byte of the GarbageCollectionBehavior and the number of freed
bytes is placed on the CPU resource of the same ResourceContainer.

10.5.4 Cost model

The costs of on-premise installations are usually flat and thus easy to calculate. The num-
ber of servers, their energy consumption, and the maintenance and administration costs
are the core influencing factors. In managed infrastructures like IaaS cloud environments,
the cost structure gets more complicated. The accounting items are no longer hardware
and the staff maintaining it, but uptime of (virtual) instances, different types of network
traffic, or average utilization of certain resources. In previous research, we reduced the
number of server instances by optimizing the deployment topologies of the software run-
ning on it (Willnecker/Krcmar, 2016). We used a simple optimization goal: approximate
the resource utilization as close to 70% as possible. 70% was selected as higher utilization
usually leads to longer and unpredictable response times due to missing/reduced peak tol-
erance head room. Using 70% reduced the costs for simple cost structures in on-premise
scenarios. Complex cost structures required a more sophisticated method. Therefore, we
constructed a flexible cost model for on-premise, cloud and hybrid environments.

10.6. ARCHITECTURE OPTIMIZER 141

Figure 10.5 depicts our model. We connected the model to the PCM meta-model so
that our performance model already contains the cost structure of the target model. Our
deployment topology optimizer can now use a holistic cost and performance model and
select cost effective deployment topologies for cloud environments.

We connect resource containers (e.g., VMs), resources (e.g., CPUs), and linking resources
to a BillingInformation. Thus, each resource or container can be accounted for. The
model allows attaching costs based on time using TimingInformation objects. This allows
defining the costs over time for resource container for example. The amount of data
processed or transferred can be accounted for with the DataInformation class. This is
especially useful to model the costs of network traffic. We further distinguish between
inbound and outbound traffic. Typical cloud providers offer cheaper costs per Gigabyte
(GB) when the data is transmitted within the data centers of the cloud provider (inbound)
instead of through the open Internet (outbound).

Several cloud providers have different pricing tiers. The first GBs of network traffic are
free, the next couple of GBs are expensive, until the costs decrease for heavy users. To
model these tiers, we added a RangeInformation allowing definition of the prices for
different tiers. This comprehensive approach allows modeling and calculating the costs
of deployment topologies in on-premise and IaaS cloud environments. Therefore, our
optimizer can consider resource utilization, response times, and costs when searching for
a Pareto-optimal topology of a DA.

10.6 Architecture Optimizer

The core of our deployment topology optimization approach is the architecture optimizer.
We use the evolutionary computation algorithms of the opt4j framework (version 3.1.4)
(Lukasiewycz et al., 2011). The technological foundation is similar to design space explo-
ration tools like PerOpteryx, but we use simulations instead of solvers for the evaluation
of design alternatives (Koziolek/Koziolek/Reussner, 2011). We chose opt4j for its col-
lection of optimization algorithms amongst which we use the Evolutionary Algorithm
module (Lukasiewycz et al., 2011). Previous work of Koziolek at el. (2014) and our own
experiments produced the best results using this module (Koziolek/Koziolek/Reussner,
2011; Lukasiewycz et al., 2011). Optj4 in combination with PCM-conform performance
models allows us to simulate the performance and cost effects on the topology simulating
hundreds of users accessing the system. The simulation approach provides high prediction
accuracy although such simulations are computational intensive compared to solver-based
approaches. We constructed a simulation cluster to process several simulations in parallel
on a dedicated system. This simulation cluster reduces time it takes to find an optimized
solution.

The architecture optimizer requires three artifacts to conduct an optimization run as
depicted in Figure 10.3(b):

10.6. ARCHITECTURE OPTIMIZER 142

(i) The resource profile generated by the PMG containing the software architecture and
resource demands for all four major resources of the DA.

(ii) The expected workload of the system in the target environment. The topology
is optimized according to this workload. In general, the workload in the target
environment is expected to be higher compared to the workload executed for the
model generation.

(iii) Constraints to the optimization like the minimum/maximum utilization of a re-
source, the minimum/maximum number of systems, and logical constraints that
can, for instance, prohibit deploying the database on a resource container that al-
ready contains an Application Server (AS).

The Optimization Controller acts as workflow controller and triggers all sub components
of the system. In a first step the Deployment Topology Allocator creates a random set
of valid design alternatives. The allocator considers available resource containers and the
network connections between these containers stored in the Resource Container Database.
The database consists of a list of all containers available for the optimization run. It can
also consist of instances in a local data center or of instances offered by a cloud provider.
The capability of the resources of these containers must be calibrated compared to the
resources used during the generation. Brunnert et al. (2015) showed that benchmarks
provide accurate results for transforming resource capabilities from one machine to an-
other (Brunnert/Krcmar, 2017). We calibrate network, HDD, and CPU capabilities. This
allows us to make performance predictions for an application running in another environ-
ment. Therefore, we run HDD, CPU and network benchmarks in both environments and
calculate the HDD read and write speed, the relative CPU capability, and the network
bandwidth and latency. This calibration has to be done for each host or VM configuration
and the network they are connected to.

The initial population of the evolutionary algorithm is calculated by the Deployment
Topology Allocator from the list of available containers, deployment units, and constraints.
Our population can be represented as a du × rc matrix G. Each column stands for one
available resource container rc and each row for a deployment unit du of the DA. The cell
values are either 0 or 1. A 1 in the cell Gi,j indicates that in this topology the deployment
unit dui is deployed on resource container rcj. The initial topologies are created randomly
but invalid selections are discarded immediately. A valid matrix has at least one 1 in each
row so that each deployment unit is at least deployed once and fulfills the constraints
(e.g., no database (DB) deployment unit on the same container as an AS deployment
unit).

The second step is the model-to-model transformation of the matrix into a PCM instance.
The matrix representation is transformed into resource environment and allocation model
instance. The PMG only creates one instance per deployment unit. Therefore, additional
deployment unit instances are created in the repository and system model if necessary
during the transformation. The resource environment and allocation model are packaged
with the resource profile and workload. The result of this process is a complete PCM
instance ready for simulation.

Our evolutionary algorithm evaluates the quality of a topology in multiple components
(Lukasiewycz et al., 2011). First of all, the Optimization Controller checks against the

10.6. ARCHITECTURE OPTIMIZER 143

Optimization Database if an equal topology was already simulated. A topology is con-
sidered equal if the same deployment units are distributed throughout equal resource
containers. Two resource containers are considered equal if their resources have the same
capabilities (e.g., same number and speed of the CPU). If an equal topology is detected,
the simulation results from a previous run are returned instead of a full simulation run.

The controller dispatches a new simulation job to the simulation cluster if no equal topol-
ogy has been detected. The cluster consists of a load-balancer and several worker nodes
executing the Palladio-Bench in a headless Eclipse instance (Becker/Koziolek/Reussner,
2009). The load-balancer assigns the simulation job to one worker. If not enough re-
sources for the execution are available, the simulation job is queued. The job is started
when resources are free again after, for instance, another simulation job on this worker
has been finished. After a job run, the worker stores the results in a shared folder. Each
worker node is equally able to simulate a PCM meta-model instance and provide results
for already conducted simulations.

The Optimization Controller sends an archive containing all model elements as depicted in
Figure 10.1 to the cluster to start a simulation job. The load-balancer uses a session sticky
round-robin approach to balance the load across all simulation workers. This means that
new requests will be placed per round-robin on one of the workers. Follow-up requests,
like requesting the status or exporting the results, are executed on the same worker node
on which the job was started. Furthermore, as the results of the simulation are stored in a
shared folder, results can be retrieved from every worker even if the worker that executed
the simulation is already shutdown.

The bottleneck of a simulation run is usually the memory resource. Hence, each worker
node is memory-aware and only starts a simulation job when enough memory is available.
The parameters of a simulation job are part of the initial request and contain the maximum
amount of required memory for the simulation. A new job is queued if the maximum
required memory of the simulation job exceeds the available memory in the JVM of the
worker. To obtain the status of a job the Simulation Results Analyzer queries the cluster
using the simulations jobID. The job can either run, be queued, be finished, or has failed.
After a job has been finished, the results of the simulation are available as an archive
containing all simulation metrics and results.

The Performance Evaluation Tool (PET) is used to analyze the raw results of the simu-
lation and calculates e.g., total resource utilization per resource and container, response
times per operation, and total costs (Kroß et al., 2016). The aggregated results together
with the topology are stored in the Optimization Database. The controller spawns new
topologies based on the evaluation results and the configuration of the evolutionary algo-
rithm (Lukasiewycz et al., 2011). We currently support three optimization goals:

(i) Approximate the resource utilization of all resources in all used resource containers
to a certain level.

(ii) Minimize the total costs of the system.
(iii) Minimize the total response time of the system.

10.7. EVALUATION 144

The first optimization goal creates resource efficient topologies. It is important to limit
the maximum CPU utilization to 70% or 80%, otherwise the resulting topologies are
not representative as the response times become unpredictable due to the high system
load. This optimization sorts, for example, memory intensive deployment units to CPU
intensive deployment units.

The second optimization goal creates cheaper, more efficient topologies. The number of
resource containers here is usually relatively low. Deployment units that interact fre-
quently are deployed on the same server if network traffic is accounted for. The cost
optimization goal has a loose relation with the first optimization goal.

For the last optimization goal, we calculate the mean response time over all simulated
operations. A deployment topology with a smaller median response time is considered
superior to a topology with a larger median response time. This optimization goal tends
to require more resources and generates more costs when executed in production.

The applied framework for evolutionary computation supports multi-objective optimiza-
tion. Hence, our approach supports combinations of the above stated optimization goals.
This usually creates multiple optimal solutions along a Pareto-front (Koziolek/Koziolek/
Reussner, 2011). The user must pick one of the solutions or let the optimizer select one
solution randomly. Selecting one resulting topology implies accepting trade-offs. Fast
topologies are usually more expensive than slower topologies. Depending on the appli-
cation and its performance requirements, which are not part of the model, one solution
might be superior to another. Thus, a manual selection is recommended.

Although the proposed approach attempts to handle deployment topology optimizations
in a comprehensive way, it has two limitations. (i) Distributed Database Management
Systems (DBMSs) have not been considered. We can today only size VMs for the DBs
according to the workload instead of sharding or replicating the DBs. A more advanced
DB performance model and dedicated monitoring solutions are required to resolve this
limitation. (ii) The results of the architecture optimizer are never certain to be the
best solution. Such algorithms can run into local optima and never find the best possible
solution or might take extensive time to find the best solution. However, such a structured
approach optimizes effectively based on all DA components (workload, resource profile,
and available resource containers) (Koziolek/Koziolek/Reussner, 2011).

10.7 Evaluation

10.7.1 Evaluation System

The SPECjEnterpriseNEXT industry benchmark is the successor of the SPECjEnter-
prise2010 benchmark. Both are Java EE applications typically used to rate the per-
formance of different Java EE ASs. We use a pre-release version8 of the SPECjEnter-

8version from 19.02.2016

10.7. EVALUATION 145

Table 10.2: Software and hardware configuration for model generation

Server Load-balancer Driver Insurance/Vehicle/Provider Server Insurance/Vehicle/Provider Database

Application Server Apache 2.2.31 Faban 1.3.0 JBoss Wildfly 8.1.0 Final -

Database - - - PostgreSQL 9.4.4

Java Virtual Machine - Oracle JDK 1.7.0 79 -

Operating System CentOS 6.7 openSUSE Leap 42.1 (x86 64)

CPU Cores 4 vCores (2.1 Gigahertz (GHz)) 8 vCores (2.1 GHz)

Memory 8 GB 16 GB 8 GB

Host System IBM System X3755M3

Network 1 Gigabit-per-second (GBit/s)

priseNEXT as example DA for our evaluation. This benchmark mimics an insurance
policy management system for car insurances. It consists of three different service com-
ponents (Insurance, Vehicle, and Insurance Service) and three databases (Insurance, Ve-
hicle, and Provider Database). Furthermore, we added a load-balancer handling requests
to the AS instances to enable replicas of the ASs.

The benchmark contains a load driver emulating insurance customers. The so-called
Insurance Customer Driver is based on Faban9 and executes different business transac-
tions on the Insurance Domain, which triggers JAX-RS10 Representational State Trans-
fer (REST) calls to the other two services and Java Persistence API (JPA) calls to the
DBs.

10.7.2 Evaluation Approach

We conducted two evaluations to demonstrate the capabilities of our approach. One for
on-premise installations and one for cloud environments. The second evaluation was con-
ducted in the Amazon Web Services (AWS) Elastic Compute Cloud (EC2) environment
to demonstrate the applicability of our approach in industry cloud environments. AWS
EC2 environment is the largest public IaaS provider11. Applying our research on this
providers promises the best leverage to impact industry usage of our approach.

The evaluation process was similar for both environments. In a first step, we deployed a
test system in our on-premise environment and executed load on this system to collect
monitoring data. The complete configuration is described in Table 10.2. We conducted a
run with 100 virtual users to collect APM data. We applied the RETIT Java EE solution
as APM software for the ASs. This solution contains a Java Database Connectivity
(JDBC) wrapper to collect response times from external DBs. For the load-balancer and
database VMs we used the RETIT host monitoring, which collects CPU utilization time
series. The load-balancer response times were extracted from Apache HTTP Server12

access logs. With the response times and utilization we estimated the resource demands
for the DB servers and the load-balancer using LibReDE (Willnecker/Krcmar, 2016).

9http://faban.org/
10http://jax-rs-spec.java.net/
11http://www.cloudcomputing-news.net/news/2016/aug/02/aws-microsoft-ibm-and-google\-

own-more-half-global-cloud-infrastructure-market/
12http://httpd.apache.org/docs/2.2/en/logs.html

http://faban.org/
http://jax-rs-spec.java.net/
http://www.cloudcomputing-news.net/news/2016/aug/02/aws-microsoft-ibm-and-google\ -own-more-half-global-cloud-infrastructure-market/
http://www.cloudcomputing-news.net/news/2016/aug/02/aws-microsoft-ibm-and-google\ -own-more-half-global-cloud-infrastructure-market/
http://httpd.apache.org/docs/2.2/en/logs.html

10.7. EVALUATION 146

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)
Response Time

Measured Response Times Simulated Response Times

Add Vehicle View Vehicle Register Delete
Vehicle

Logout Update User Get Quote Login View User
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

Highcharts.com

Figure 10.6: Response time evaluation - On-premise environment

Two cost model instances were created. One for each environment considering their
different characteristics. The cost-model for the on-premise environment uses only flat
costs for running VMs, while the cloud cost-model considers uptime of different VM types,
networking costs, and cost-free sections (e.g., first 10 GB traffic free, further traffic 0.16
ct/GB). We attached the cost models to the generated model. The complete model, an
increased workload, and a list of available resource containers were used as input for our
deployment topology optimizer.

Afterwards, the optimizer calculated topologies for both environments. The optimizer
considered three optimization goals: (i) approximate the utilization of the resources at
around 70%, (ii) minimize total costs of operations, and (iii) minimize the median response
time over all business transactions. The result of the optimizer was a list of possible de-
ployment topologies. Previous research showed that the optimization algorithm produces
accurate results for single optimization goals (Willnecker/Krcmar, 2016). Therefore, we
picked one of the best topologies close to the Pareto-front for each environment and de-
ployed it.

Finally, we executed the increased workload on the newly deployed systems. The systems
were monitored using system monitoring, which minimizes the influence of the monitoring
on the system. Finally, we compared the system monitoring results of a test run in the
real environment with the simulation results.

10.7.3 On-premise Evaluation

We used the topology described in Table 10.2 for the model generation run emulating
100 users. After initial generation, we conducted an optimization run discarding all
CPU utilization above 70%, minimizing the response times and costs. Furthermore, we
increased the workload from 100 to 500 users. The Deployment Topology Allocator created

10.7. EVALUATION 147

Table 10.3: Measurement and simulation results for a selected topology on-premise ac-
cessed by 500 users

Resource Metric Balancer Application Server (AS) Database (DB)
AS 1 AS 2 AS 3 AS 4 AS 5 DB 1 DB 2 DB 3

Deployment - Balancer
Vehicle Vehicle Provider Provider

Insurance Insurance Vehicle Provider
Insurance Insurance Vehicle Insurance

CPU
Measured util. 15.34% 71.23% 69.27% 68.19% 72.89% 72.64% 18.27% 34.47% 8.32%
Simulated util 13.61% 65.37% 64.02% 62.87% 64.79% 63.65% 16.91% 30.85% 7.82%
Relative err. 11.28% 8.23% 7.58% 7.80% 11.11% 12.38% 7.44% 10.50% 6.01%

Memory
Measured dem. 1 GB 5.95 GB 6.13 GB 4.25 GB 3.76 GB 6.79 GB 8 GB 8 GB 8 GB
Simulated dem. - 6.59 GB 6.73 GB 4.86 GB 4.04 GB 7.50 GB - - -
Relative err. - 10.76% 9.79% 14.35% 7.45% 10.46% - - -

HDD
Measured dem. 0.24% 1.29% 0.54% 1.09% 1.51% 2.99% 8.21% 10.92% 4.39%
Simulated dem. - 0.92% 0.41% 0.69% 1.10% 2.67% - - -
Relative err. - 28.68% 21.15% 36.70% 27.15% 10.70% - - -

an initial population of 50 different topologies for the evolutionary algorithm. We selected
a cross-over rate of 0.95, an offspring population size λ of 25 and a parent population size
µ of 25. The algorithm calculated 50 generations resulting in a total of 1250 tested
topologies. We used 16 worker nodes in the simulation cluster resulting in about 5 hours
of computation.

The resulting topologies and their evaluation criteria are depicted in Figure 10.7(a). As
the costs did not make a huge difference in this scenario we selected a topology with high
utilization (meaning less VMs) and relatively good response times. Especially response
times can vary from an average response time of 1500 to 2500 ms as depicted on the y-axis
in Figure 10.7(a).

The selected topology required 5 ASs, 3 DB servers and 1 load-balancer. We deployed the
system as specified and conducted a run with only system monitoring as instrumentation.
Afterwards, we compared the response times and resource utilization from the system
monitoring with the simulation results for this topology. The median response time error
was about 15% for most of the transactions as depicted in Figure 10.6. Only the Register
and View User business transactions had a larger error of above 20%, still below the
30% acceptable error for capacity planning propagated by Menascé and Almeida (2008)
(Menascé, 2008).

Table 10.3 shows the comparison of simulated and measured resource utilization. The
HDD and memory simulation has only been conducted for the ASs due to the fact that
LibReDE calculates demands only for the CPU resource and no dedicated monitoring
solution was available for these technologies. However, we added our measurements for
all resources on all servers, even though memory measurements on the DB servers are
only available on process-level. The accuracy is high for CPU demands, especially when
LibReDE is used. This confirms previous research comparing LibReDE and resource
demand monitoring solutions (Willnecker/Krcmar, 2016). We tend to under-predict CPU
demands but over-predict memory demands for the ASs. The under-prediction is a result
of overhead tasks of the servers that are not part of the model (e.g., database pool
management, load-balancer health checks, etc.) (Willnecker/Krcmar, 2016). The over-
prediction of memory demands is a result of the delay between a threshold detection and
the GC, the memory grow, or the memory shrink execution in the simulation.

10.7. EVALUATION 148

1500

3000

(a) On-premise Pareto-front (b) Cloud Pareto-front

Figure 10.7: Pareto-fronts along optimal deployments in both environments. X-Axis:
costs, Y-Axis: average response times, Z-Axis: average resource utiliza-
tion. Dots represent actual measurements, blue plane represents calculated
Pareto-front)

10.7. EVALUATION 149

Transaction Name

Re
sp

on
se

 T
im

e (
ms

)
Response Time

Measured Response Times Simulated Response Times

Add Vehicle View Vehicle Register Delete
Vehicle

Logout Update User Get Quote Login View User
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250

Highcharts.com

Figure 10.8: Response time evaluation - Cloud environment

10.7.4 Cloud Environment Evaluation

We could reuse large parts of the model definition from the on-premise setting. We had
to re-calibrate CPU frequencies in the resource environment model as well as network
bandwidth and latency. Therefore, we conducted CPU calibrations using the SPEC CPU
200613 benchmark on our local VMs as well as on the different EC2 instances. This
allowed us to calculate the relative CPU processing rate between the VMs used for the
model generation and the EC2 instances that are simulated. Furthermore, we conducted
bandwidth and latency calibrations using lmbench14. This sort of calibration allows us to
transform the model from one hardware environment to another and provides accurate
results even for virtualized environments (Brunnert/Krcmar, 2017). The load driver was
still installed in our on-premise environment as a usual customer would access the system
from outside of the AWS EC2 environment.

Using the AWS EC2 environment increased the number of possible resource containers
(complete M4 instance types15 except for m4.10xlarge) and regions (e.g., Europe - Ireland,
US-East). Therefore, we increase the number of generations calculated by our optimizer
to 100 (from 50 in the previous scenario). This resulted in 2500 tested topologies and
took about 10 hours to compute using our 16 simulation worker nodes.

The results of the optimization run are depicted Figure 10.7(b). As shown, similar re-
sponse times can be achieved with costs ranging from less than $1500 per month and up
to $3300. We selected a topology with very good response times and upper mid-range
costs (about $2800 per month). The response times are depicted in Figure 10.8. The
simulation results are even more accurate compared to the on-premise installation. The
relative error of the media response time is below 20% for all cases. The Register and Get

13http://www.spec.org/cpu2006/
14http://lmbench.sourceforge.net/
15http://aws.amazon.com/de/ec2/instance-types/

http://www.spec.org/cpu2006/
http://lmbench.sourceforge.net/
http://aws.amazon.com/de/ec2/instance-types/

10.7. EVALUATION 150

Table 10.4: Measurement and simulation results for a selected cloud topology accessed
by 500 users users

Resource Metric Balancer Application Server (AS) Database (DB)
AS 1 AS 2 AS 3 AS 4 DB 1 DB 2 DB 3

- Deployment Balancer
Vehicle Vehicle Provider

Vehicle Provider Vehicle InsuranceProvider Provider Insurance
Insurance

CPU
Measured util. 8.78% 58.73% 45.47% 53.99% 55.38% 12.17% 28.88% 6.34%
Simulated util. 8.09% 50.91% 39.01% 47.60% 50.07% 12.05% 27.41% 5.93%
Relative err. 7.86% 13.32% 14.21% 11.84% 9.59% 0.99% 5.09% 6.47%

Memory
Measured dem. 1 GB 7.81 GB 8.56 GB 8.09 GB 7.95 GB 8 GB 8 GB 8 GB
Simulated dem. - 8.13 GB 8.94 GB 8.48 GB 8.46 GB - - -
Relative err. - 4.10% 4.44% 4.82% 6.42% - - -

HDD
Measured dem. 0.12% 1.79% 1.32% 1.53% 2.89% 6.92% 9.18% 8.02%
Simulated dem. - 1.37% 1.07% 1.27% 2.31% - - -
Relative err. - 23.36% 18.94% 16.99% 20.07% - - -

Costs
Measured dem. 116.64 € 193.25 € 773.00 € 773.00 € 386.50 € 96.63 € 386.50 € 96.63 €
Simulated dem. 113.97 € 190.09 € 764.23 € 764.23 € 380.38 € 95.23 € 380.38 € 95.23 €
Relative err. 2.29% 1.64% 1.13% 1.13% 1.58% 1.45% 1.58% 1.45%

Quote business transactions have an error of only 5%. As in the on-premise evaluation,
we tend to under-predict the actual response times. Our model lacks certain overhead
tasks of the application server and OS. Computation time needed by these tasks are
not considered in our model. Therefore, CPU utilization and response times are slightly
under-predicted.

The resource utilization results are depicted in Table 10.4. The results are comparable
to the previous evaluation. To evaluate the cost estimation, we approximated the costs
for a month and compared this with the AWS cost calculator16, as the calculator also
provides costs per month. This included costs for the containers and the outbound traf-
fic. Inbound traffic between the EC2 instances was without cost. The cost estimation
error was below 2%. Both the cost and the performance model produce accurate results
allowing to predict and thus optimize topologies in cloud environments. Using the net-
work benchmarking even allows prediction of the performance of hybrid environments
with components deployed in multiple cloud environments or parts deployed in the cloud
and other parts on-premise.

To demonstrate the advantages of our approach, we tested two logical topologies. These
topologies where derived by scaling up small instances of AWS EC2 instance and large
instances for the second topology. We scaled up deployed 3 m4.large instances until the
CPU utilization was below 90% on each instance. This lead to 12 application server
instances and 3 DB server instances. The costs were 41.90% higher compared to our
selected deployment and the median response times increased by about 135ms. The CPU
utilization was at about 68% only one of the DB servers was at about 80% already. To
select the second topology we increased the instance type until the CPU utilization was
below 90%. This topology used 3 m4.4xlarge machines for the application servers and
the same m4.large servers for the DBs. The response times were similar to the response
times from the optimized topology but the costs increased by 152.11%. This is due to
the relatively small CPU utilization of about 45% on the application servers side. These
two topologies use simple strategies but such default topologies are easy to derive as more

16http://calculator.s3.amazonaws.com/index.html

http://calculator.s3.amazonaws.com/index.html

10.8. CONCLUSION 151

complex strategies lack of tools to support as the here presented deployment topology
optimizer.

10.8 Conclusion

This work successfully connected PMGs and architecture optimizers for optimizing de-
ployment topologies of DAs. This approach allows DevOps engineers to detect the cur-
rent software architecture and demands of a DA and to size and optimize for on-premise,
cloud or hybrid environments. This holds true in up-scaling scenarios as presented in
Section 10.7. This leads to reduced response times, increased resource utilization, and/or
reduced costs.

In addition, this work presented an extension for the PCM meta-model for memory re-
sources. The extension supports dynamic and automatic memory management and in-
troduces a probabilistic GC simulation. Monitoring and detecting GC events as well as
generating performance models with an accurate memory model have been integrated into
the RETIT PMG and the PMWT. The accuracy and feasibility of this approach have
been demonstrated.

We presented a flexible cost model as an extension for the PCM meta-model. This cost
model can be extended with other billable items and supports tiered pricing models. We
demonstrated the accuracy for the AWS EC2 environment with a prediction error below
2%.

In contrast to previously introduced architecture optimizers, our approach uses simula-
tions instead of solvers. The high accuracy of the simulations presented in Section 10.7
justify this decision. However, this accuracy comes with computational costs. To limit
the effect on the decision time we introduced parallel execution in a simulation cluster.
We demonstrated the scalability of this cluster with up to 16 worker nodes. Furthermore,
optimizations of the simulation process as well as using analytical solvers for a coarse-
grained topology estimation before simulating the best candidates would allow to speed
up the computation. This would allow to search for more topologies or evaluate the same
amount of topologies in shorter period.

Compared to our previous research, we improved the calculation speed by switching
from the SimuCom to the EventSim simulation engine (Willnecker/Krcmar, 2016). This
increased the amount of simulations that can be conducted by a single worker. Pre-
calulating several topologies and selecting the one that best suits the current workload
could reduce the disadvantage of computational intensity of our approach. This would
allow to use our approach also for runtime decisions.

A continuous monitoring of workload and resource demands in combination with the
above mentioned optimizations allow using this approach for runtime decisions. Smart
application-aware resource provisioning can increase average resource utilization in data
centers, reduce the cost of operations and reduce the carbon footprint due to more efficient

10.8. CONCLUSION 152

typologies. Furthermore, geographic characteristics could be considered during runtime.
Latency and thus response times of the application can be reduced by considering the
current workload per region and assigning VMs geographically close to the majority of
the users. Global workforces can benefit from smart and proactive resource provisioning
which takes working hours in different regions of the world into consideration.

Part C

Chapter 11

Discussion

In this chapter the results of the publications are further discussed. First, the results are
summarized and then limitations, contributions and future research are described.

11.1 Summary

This section provides an overview of the findings for each embedded publication. The key
results are ordered per paper and listed in Table 11.1.

P1 proposed an integration of an industry Application Performance Management (APM)
solution with an established performance model generation framework. The integration
was realized using an abstraction layer that allows to integrate different input formats
and levels of granularity. The application of this extension to industry standard solutions
demonstrates that the generator and its interface are generally applicable and other APM
or monitoring solutions. As the Dynatrace solution is in widespread use, the monitoring
technology is very mature and allows to use performance model generation in varied
operation environments. The generated models can be used to simulate different scenarios,
such as new workloads or other resource environments. This enhances the Dynatrace
solution with capacity planning capabilities.

P2 compared three different techniques for collecting resource demands for performance
model generation. In this work, we compared a monitoring approach from academia,
the industry monitoring solution Dynatrace, and Library for Resource Demand Estima-
tion (LibReDE), a library combining six different estimation approaches. We integrated
this techniques into an automatic performance model generator (PMG). We evaluated all
techniques in a standalone and in a distributed setup, Furthermore, we tested the tech-
niques in a virtualized and a bare-metal environment for two levels of granularity: system
entry point level and component operation level. The results in this paper show that all
three techniques deliver good results for both granularity levels and in all environments.
Hence, all of this techniques can be used to derivce resource demands for performance

154

11.1. SUMMARY 155

model generation. However, some techniques work better in certain scenarios. The es-
timation techniques delivers better results at system entry point level, but falls short
behind direct measurements for the component operation level. Furthermore, measure-
ments can extract resource demands on any level of detail. Estimation techniques require
to calculate demands fo the complete monitored system to distribute the measured uti-
lization amongst its components. Estimation techniques can be applied to a broad variety
of technologies as the requirements for data collection are easily fulfilled with standard
system tools. Combining the approaches provides the best results. We demonstrated
this by using a hybrid setup, where measurement approaches are used to extract resource
demands for the User Interface (UI) and Web Service (WS) combined with estimations
for the database (DB).

With P3, we demonstrated a full stack performance model considering all four major
resource types. We demonstrate the generated model to be accurate for all resource
types. Even though the resource utilization simulation is accurate, the response time
error was quite high. Overhead tasks that were not part of the model, as well as a simple
Garbage Collection (GC) approach leave room for improvement. The probabilistic GC
model delivers promising results, however the average number of bytes could be eliminated
as an input parameter for the GC operations. This requires, that the actual number of
bytes ready to be freed is stored during simulation.

P4 significantly improved the GC model and corresponding simulation. It demonstrated
an accurate approach for predicting memory and garbage collection behavior. This work
presented a meta-model extension for the architecture-level performance model Palladio
Component Model (PCM), a monitoring approach for extracting memory including GC
heuristics, and a model generation approach creating memory-aware models for Enterprise
Applications (EAs). The results were validated in a series of controlled experiments using
an on-premise and an industry cloud environment. The results approximate the actual
memory behavior with high accuracy and show that this probabilistic approach is suitable
for memory and GC behavior prediction. Predicting the impact of software changes,
workload changes, or changes to the runtime do not require extensive performance tests.
A short load test for the model generation results in an accurate memory model. This
model compared to previous model versions can predict the impact on an applications
memory profile or it can be used to predict the applications memory behavior in other
environments. This allows accurate capacity planning for large-scale EA.

P5 successfully connected PMGs and architecture optimizer for optimizing deployment
topologies of EAs. This approach allows software architects to detect the current software
architecture and resource demands of an EA and to automatically size and optimize for
the target environments. This was demonstrated in an up-scaling scenario. Using this
approach allows to reduce response times, increase resource utilization and, reduce costs
depending on the optimization goal. Furthermore, this approach can be used to test
optimization approaches against real world applications using the contained PMG. In
contrast to previously introduced architecture optimizers, the presented approach uses
simulations instead of solvers and covers scenarios with many users. The high accuracy
of the simulations presented in this work justify this decision. However, this accuracy
comes with higher computational costs. To reduce the effect on the optimization time we
introduced parallel simulation in a dedicated model simulation cluster.

11.2. LIMITATIONS 156

This cluster was further developed and presented in P6. This work showed a scalable
simulation service called SiaaS as part of the Performance Management Work (PMW) tool
chain. SiaaS can conduct PCM simulations as a distributed service that is resource-aware
and automatically scales to necessary size when run in a Kubernetes instance. SiaaS is
offers a simple REST interface allowing developers to easily integrate SiaaS into their tool
chain. We demonstrated this with by integrating SiaaS into two PMW tools: Deployment
Unit Optimizer (DUO) and Load Test Selector (LTS). SiaaS is able to support multiple
versions of PCM using a Command Line Simulators (CLSs). This feature allows to run
SiaaS as a Software as a Service (SaaS) application for multiple institutes or to run tests
of multiple PCM instances. The general architecture allows developers to integrate other
performance simulations or solving techniques for performance models.

P7 combines the above mentioned approaches into a memory-aware multi-objective de-
ployment topology optimizer. This allows DevOps engineers to detect the current software
architecture and demands of a distributed application (DA) and to size and optimize for
on-premise, cloud, or hybrid environments. Furthermore, this work presented a flexible
cost model as an extension for the PCM meta-model. This cost model can be extended
with other billable items and supports tiered pricing models. We demonstrated the ac-
curacy for the Amazon Web Services (AWS) Elastic Compute Cloud (EC2) environment
with a prediction error below 2%. In addition, this work demonstrated the scalability of
the simulation cluster with up to 16 worker nodes. Compared to previous research, we
improved the calculation speed by switching from the SimuCom to the EventSim simula-
tion engine. This increased the amount of simulations that can be conducted by a single
worker.

11.2 Limitations

The presented methods, models, and techniques have certain limitations, which we present
in this section. The performance model generation approach, requires a transaction ID
that is unique through the complete system. Such IDs are usually injected into the working
thread of a user request and into the header information when network transfers, such as
REST calls, occur. However, this works fine unless the technology stack does not allow
that. This is the case for database management systems. We can still track database
calls from an application server, but our monitoring an model generation is blind if any
further cascades occur, like a secondary database system, a replication, or a shard. The
resulting model would be inaccurate and with a higher error level.

Another limitation regarding the performance model generation is the amount of data
and the expected input parameters. The amount of data handled by the EA should
be representative, compared to the actual environment, when the model generation is
conducted. Otherwise, higher or lower amounts of data might produce other resource
demands and harm the accuracy of the resulting model. Same goes for input parameters.
The resulting model can be inaccurate, if the the input parameters during the model
generation and their distribution does not match the real environment. Assuming, that
we want to generate a model for an address book application. This limitation also harms

11.2. LIMITATIONS 157

No. Key Results

P1 • Monitoring-abstract layer for a PMG

• Application of this abstraction layer to industry APM solutions

• Model generation and comprehensive evaluation using the industry-standard
benchmark SPECjEnterprise2010 with an integrated database

P2 • Comparison of resource demand measurements and resource demand estimation

• Integration of LibReDE into a PMG

• Hybrid of measurements and demand techniques

• Model generation and comprehensive evaluation using the industry-standard
benchmark SPECjEnterprise2010 with an external database

P3 • Initial probabilistic memory and garage collection model

• Integration of Central Processing Unit (CPU), Hard Disk Drive (HDD), network and
memory into a single PMG

• Full-stack evaluation of a performance model using all four resource types

• Model generation and comprehensive evaluation using the industry-standard
benchmark SPECjEnterpriseNEXT with internal databases

P4 • Mature memory meta-model for dynamic and automatic memory management
simulation

• Automatic extraction of memory demands and garbage collection heuristics

• Demonstration of applicability in different environments, using different garbage
collector algorithms, and different workloads

• Model generation and comprehensive evaluation using the industry-standard
benchmark SPECjEnterprise2010 and SPECjEnterpriseNEXT with internal databases

P5 • Single-objective deployment topology optimizer

• Combination of architecture optimization and performance model generation

• Model generation and comprehensive evaluation using the industry-standard
benchmark SPECjEnterpriseNEXT using external databases

P6 • Scalable simulation service for PCM

• Extension interface for other simulation engines and meta-models

• Containerization of simulation service

P7 • Multi-objective deployment topology optimizer

• Flexible cost-model integrated into PCM for cloud environments

• Optimization of on-premise, cloud, and hybrid environments

• Model generation and comprehensive evaluation using the industry-standard
benchmark SPECjEnterpriseNEXT using external databases in multiple environments

Table 11.1: Key results of embedded publications

11.3. CONTRIBUTION TO RESEARCH 158

load test approaches that use inaccurate or wrong data inputs to estimate the performance
of a real system.

Even though, we use a combination of recombination and mutation for our deployment
optimizer, it is still possible that not the best solution is found. The optimal solution
might never be found as the search space can be very large. We try to conduct a broad
search, by using recombinations in every generation. This might not lead to the best
solution, but usually to a deployment topology that makes use of underutilized resources
in a naive deployment.

The evaluation has been conducted using several technologies, amongst these are multi-
ple databases (Derby and PostgreSQL), multiple application servers (Wildfly and Glass-
fish), and multiple EAs (SPECjEnterprise2010 and SPECjEnterpriseNEXT). However,
the technological stack mostly relies on the Java Virtual Machine (JVM). The integra-
tion of industry APM and estimation techniques like LibReDE demonstrate that other
stacks can work well with our PMG. Nevertheless, this has not yet been demonstrated
yet. Therefore, other technologies might produce different results.

11.3 Contribution to Research

As a main contribution to research, this work combined two separated research fields: ar-
chitecture optimization and performance model generation/extraction. This combinations
allows to use real world applications and connect those to academic research regarding ar-
chitecture optimization. It can be expected, that future research in this area is evaluated
with real applications, as the barrier for generating such models is lower today.

Furthermore, academic research benefits from the meta-model approaches presented in
this work. Especially, the probabilistic memory model allows to research in memory
intensive areas such as in-memory databases. The performance model research so far
disregarded memory, especially automatic memory management. With the contributions
of this work, automatic and dynamic memory management is integrated in architecture-
level performance models. The presented methods for generating a performance model
including memory demands and garbage collection increases the quality of these models
and their accuracy regarding real world performance.

Larger simulation-based experiments with a huge amount of variants become possible with
the simulation service SiaaS. This tool provides researches using PCM the opportunity to
run multiple parallel simulations on a distributed simulation cluster. The integration into
other tool-chains using a REST Application Programming Interface (API) contributes to
automation in performance research. Other simulation engines are easily integrated, so
that research in other fields as performance possibly benefits from this service.

11.4. CONTRIBUTION TO PRACTICE 159

11.4 Contribution to Practice

This work contributes to practice by providing a holistic tool that can derive performance
models and optimize their deployment topology. Especially for cloud environments, this
allows companies to save operation costs by providing similar quality of service (Rous-
sel/Branson, 2017). Unused resources are utilized by the EA provider instead of the
Infrastructure as a Service (IaaS) provider. Furthermore, this contributes to energy sav-
ings by optimizing the resource utilization of data centers and thus reducing the amount
of necessary hosts.

The memory management model provides an easy to understand heuristic for profiling
memory behavior of an application. Developers and architects can use these as metrics
to understand, monitor, and improve the memory footprint of their applications. Instead
of analyzing large amount of memory monitoring, the key heuristics of this model allow
to analyze and simulate the memory behavior of an application.

The improvements of the PMGs presented in this work lead to more accurate perfor-
mance models. These models cover more aspects of the runtime environment and of the
application itself. This comprises memory and garbage collection behavior and the use
of resource demand measurements and estimations. The latter increases the supported
technologies for model generation the number of potential monitoring solutions is higher
when combining both approaches. Tools for capacity planning and in continuous delivery
pipelines that use PMG benefit from these improvements Brunnert/Krcmar (2017); Düll-
mann et al. (2017).

11.5 Future Research

With the foundations of this research, analysis of industry EA regarding their performance
was eased. The combination of of industry standard APM solutions with academic PMGs
allows software engineers, architects, and operators to use latest performance model re-
search in practical scenarios. However, applying this tools to other technology stacks,
other than JVM based technologies, remains an open challenge. Differences in the run-
time, typical application architectures, and design patterns might impact the generation
approach. This can affect the resource demands, the workflow, and the memory/garbage
collection behavior. Tweaks or changes might be necessary to generalize the approaches
presented in this work.

Regarding our simulation cluster, future work mainly concerns integrating SiaaS into
other tools and increase the stability of the service and its infrastructure components.
Furthermore, the resource-awareness of SiaaS can be extended to consider CPU utilization
instead of only memory consumption for scheduling jobs and spawning new simulation
instances.

11.5. FUTURE RESEARCH 160

The memory-model and simulation techniques enables researchers to analyze several new
technologies. Especially in-memory technologies, like in-memory databases, rely heavily
on an accurate memory-model. Such a model is provided with this work and integrated
into architecture-level performance models. This allows to generate, simulate, and predict
the behavior of such memory-depended applications and runtimes. Future research in this
area is eased by using the applied model and simulation technologies.

The deployment optimizer takes several hours of computation today. Future extensions of
this optimizer can speed up the calculation by improving the simulator or by introducing a
two-phase optimization. Using analytical solvers for a coarse-grained topology estimation
before simulating the best candidates would allow to speed up the computation. This
would allow to search for more topologies or evaluate the same amount of topologies
in shorter period. A faster approach (e.g., solver, simplified model) could be used to
calculate a good initial population instead of random topologies. This population would
be the input for the optimization approach presented in this work. This concept could
lead to faster or better results. Reducing the computation time by selecting smarter
initial populations remains an open challenge that can be addressed with the results of
this thesis.

Faster calculations would allow to use our concept for real-time decisions. Optimized
topologies could be calculated on-the-fly, when continuously monitoring and analyzing
the workload of an EA. Current runtime models tend to allocate new resources when
spikes in the workload occur. A workload and software architecture aware can produce
more resource efficient results and therefore reduce overhead and costs for distributed
applications. Especially in cloud environments, cost savings by smart runtime decisions,
can significantly reduce the operation costs (Roussel/Branson, 2017). The combination
of our approach with runtime decision or autonomous computing frameworks is a very
interesting topic for further research.

References

Alavi, M. (1984): An Assessment of the Prototyping Approach to Information Systems
Development. Communications of the ACM , vol. 27 no. 6, 556–563 〈URL: http://
doi.acm.org/10.1145/358080.358095〉 last accessed 2010-06-30, ISSN 0001–0782.

Aleti, A.; Buhnova, B.; Grunske, L.; Koziolek, A.; Meedeniya, I. (2013): Soft-
ware Architecture Optimization Methods: A Systematic Literature Review. Soft-
ware Engineering, IEEE Transactions on, vol. 39 no. 5, 658–683.

Angel, D. J.; Kumorek, J. R.; Morshed, F.; Seidel, D. A. (2001): Byte Code In-
strumentation. Web https://patents.google.com/patent/US6314558B1/en, US
Patent 6,314,558.

Appel, A. W. (1989): Simple Generational Garbage Collection and Fast Allocation.
Software: Practice and Experience, vol. 19 no. 2, 171–183.

Ardagna, D.; Gibilisco, G.; Ciavotta, M.; Lavrentev, A. (2014): A Multi-model
Optimization Framework for the Model Driven Design of Cloud Applications. In
Search-Based Software Engineering. vol. 8636, Springer International Publishing,
Switzerland 〈URL: http://dx.doi.org/10.1007/978-3-319-09940-8_5〉 last ac-
cessed 2010-06-30, ISBN 978–3–319–09939–2, 61–76.

Balalaie, A.; Heydarnoori, A.; Jamshidi, P. (2016): Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture. IEEE Software, vol.
33 no. 3, 42–52.

Balsamo, Simonetta, M. A. (2007): Queueing Networks. Veneizia, Italy
〈URL: http://www.sti.uniurb.it/events/sfm07pe/slides/Balsamo.pdf〉 last
accessed 2010-06-30.

Becker, S.; Koziolek, H.; Reussner, R. (2009): The Palladio Component Model
for Model-Driven Performance Prediction. Journal of Systems and Software, vol. 82
no. 1, 3–22, Special Issue: Software Performance - Modeling and Analysis, ISSN
0164–1212.

Blaschek, G.; Lengauer, P. (2015): Time Matters: Minimizing Garbage Collection
Overhead with Minimal Effort. In Proceedings of the 2015 Symposium on Software
Performance (SSP 2015)..

Boehm, H.-J.; Weiser, M. (1988): Garbage Collection in an Uncooperative Environ-
ment. Software: Practice and Experience, vol. 18 no. 9, 807–820.

161

http://doi.acm.org/10.1145/358080.358095
http://doi.acm.org/10.1145/358080.358095
https://patents.google.com/patent/US6314558B1/en
http://dx.doi.org/10.1007/978-3-319-09940-8_5
http://www.sti.uniurb.it/events/sfm07pe/slides/Balsamo.pdf

References 162

Brosig, F.; Gorsler, F.; Huber, N.; Kounev, S. (2013): Evaluating Approaches for
Performance Prediction in Virtualized Environments. In Modeling, Analysis Simu-
lation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st
International Symposium on. , ISSN 1526–7539, 404–408.

Brosig, F.; Huber, N.; Kounev, S. (2014): Architecture-Level Software Performance
Abstractions for Online Performance Prediction. Science of Computer Program-
ming , vol. 90, 71–92, ISSN 0167–6423.

Brosig, F.; Kounev, S.; Krogmann, K. (2009): Automated Extraction of Palladio
Component Models from Running Enterprise Java Applications. In Proceedings of
the 1st International Workshop on Run-time Models for Self-managing Systems and
Applications (ROSSA 2009). ACM, New York, NY, USA.

Brunnert, A.; Hoorn, A. van; Willnecker, F.; Danciu, A.; Hasselbring,
W.; Heger, C.; Herbst, N.; Jamshidi, P.; Jung, R.; Kistowski,
J. von; Koziolek, A.; Kroß, J.; Spinner, S.; Vögele, C.; Wal-
ter, J.; Wert, A. (2015): Performance-oriented DevOps: A Research
Agenda. SPEC Research Group — DevOps Performance Working Group,
Standard Performance Evaluation Corporation (SPEC) (SPEC-RG-2015-
01) – technical report 〈URL: http://research.spec.org/fileadmin/user_

upload/documents/wg_devops/endorsed_publications/SPEC-RG-2015-001-

DevOpsPerformanceResearchAgenda.pdf〉 last accessed 2010-06-30.

Brunnert, A.; Krcmar, H. (2017): Continuous performance evaluation and capacity
planning using resource profiles for enterprise applications. Journal of Systems and
Software, vol. 123, 239 – 262 〈URL: http://www.sciencedirect.com/science/
article/pii/S0164121215001831〉 last accessed 2010-06-30, ISSN 0164–1212.

Brunnert, A.; Neubig, S.; Krcmar, H. (2014): Evaluating the Prediction Accuracy
of Generated Performance Models in Up- and Downscaling Scenarios. In Symposium
on Software Performance (SOSP) 2014., 113–130.

Brunnert, A.; Vögele, C.; Danciu, A.; Pfaff, M.; Mayer, M.; Krcmar, H. (2014):
Performance Management Work. Business & Information Systems Engineering , vol.
6 no. 3, 177–179.

Brunnert, A.; Vögele, C.; Krcmar, H. (2013): Automatic Performance Model Gen-
eration for Java Enterprise Edition (EE) Applications. In Computer Performance
Engineering. vol. 8168, Springer, Berlin Heidelberg, ISBN 978–3–642–40724–6, 74–
88.

Brunnert, A.; Wischer, K.; Krcmar, H. (2014): Using Architecture-level Perfor-
mance Models As Resource Profiles for Enterprise Applications. In Proceedings
of the 10th International ACM Sigsoft Conference on Quality of Software Archi-
tectures. ACM, Lille, France, QoSA ’14 〈URL: http://doi.acm.org/10.1145/

2602576.2602587〉 last accessed 2010-06-30, ISBN 978–1–4503–2576–9, 53–62.

Chen, F.; Grundy, J.; Schneider, J.-G.; Yang, Y.; He, Q. (2015): StressCloud: A
Tool for Analysing Performance and Energy Consumption of Cloud Applications.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
vol. 2,, ISSN 0270–5257, 721–724.

http://research.spec.org/fileadmin/user_upload/documents/wg_devops/endorsed_publications/SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf
http://research.spec.org/fileadmin/user_upload/documents/wg_devops/endorsed_publications/SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf
http://research.spec.org/fileadmin/user_upload/documents/wg_devops/endorsed_publications/SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf
http://www.sciencedirect.com/science/article/pii/S0164121215001831
http://www.sciencedirect.com/science/article/pii/S0164121215001831
http://doi.acm.org/10.1145/2602576.2602587
http://doi.acm.org/10.1145/2602576.2602587

References 163

Coello, C. A. C.; Lamont, G. B.; Van Veldhuisen, D. A. (2007): Evolutionary
Algorithms for Solving Multi-objective Problems. Springer, New York, USA.

Cooperation, O. (2016): Java Platform, Standard Edition HotSpot Vir-
tual Machine Garbage Collection Tuning Guide. USA, Blog Article 〈URL:
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/

collectors.html#sthref28〉 last accessed 2010-06-30.

Cortellessa, V.; Di Marco, A.; Inverardi, P. (2011): Model-based software perfor-
mance analysis. Springer Science & Business Media, Berlin, Germany.

Danciu, A.; Kroß, J.; Brunnert, A.; Willnecker, F.; Vögele, C.; Kapadia, A.;
Krcmar, H. (2015): Landscaping Performance Research at the ICPE and Its Pre-
decessors: A Systematic Literature Review. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. ACM, New York, NY, USA,
ICPE 2015, ISBN 978–1–4503–3248–4, 91–96.

Denaro, G.; Polini, A.; Emmerich, W. (2004): Early Performance Testing of Dis-
tributed Software Applications. In ACM SIGSOFT Software Engineering Notes.
vol. 29, ACM, 94–103.

Denning, P. J. (1997): A New Social Contract for Research. Communications of
the ACM , vol. 40 no. 2, 132–134 〈URL: http://doi.acm.org/10.1145/253671.
253755〉 last accessed 2010-06-30, ISSN 0001–0782.

Dijkstra, E. W.; Lamport, L.; Martin, A. J.; Scholten, C. S.; Steffens,
E. F. (1978): On-the-fly Garbage Collection: An Exercise in Cooperation. Com-
munications of the ACM , vol. 21 no. 11, 966–975.

Dlugi, M.; Brunnert, A.; Krcmar, H. (2015): Model-based Performance Evaluations
in Continuous Delivery Pipelines. In Proc. Qudos ’15. ACM, 25–26.

Düllmann, T.; Heinrich, R.; Hoorn, A. van; Pitakrat, T.; Walter, J.; Will-
necker, F. (2017): CASPA: A Platform for Comparability of Architecture-based
Software Performance Engineering Approaches. In Proceedings of the IEEE Interna-
tional Conference on Software Architecture (ICSA 2017). IEEE, Gothenburg, Swe-
den, ICSA 2017.

Dynatrace (2015): Dynatrace Agent Timers. USA, https://community.

compuwareapm.com/community/display/DOCDT60/Agent+Timers, Accessed:
14.05.2015.

Ehrgott, M. (2006): Multicriteria Optimization. Springer Science & Business Media,
Berlin - Heidelberg, Germany.

Fielding, R. T. (2000): Architectural styles and the design of network-based software
architectures. Dissertation, University of California, Irvine.

Forouzan, B. A. (2013): Foundations of Computer Science. 3. edition. Cengage Learn-
ing Emea, Cheriton House, North Way, Walworth Industrial Estate, Andover SP10
5BE, UK.

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref28
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref28
http://doi.acm.org/10.1145/253671.253755
http://doi.acm.org/10.1145/253671.253755
https://community.compuwareapm.com/community/display/DOCDT60/Agent+Timers
https://community.compuwareapm.com/community/display/DOCDT60/Agent+Timers

References 164

Fowler, M.; Lewis, J. (2014): Microservices - A Definition of this New Archi-
tectural Term. USA, Blog Article 〈URL: http://martinfowler.com/articles/

microservices.html〉 last accessed 2010-06-30.

Franks, G.; Hubbard, A.; Majumdar, S.; Neilson, J.; Petriu, D.; Rolia, J.;
Woodside, M. (1995): A Toolset for Performance Engineering and Software
Design of Client-Server Systems. Performance Evaluation, vol. 24 no. 1-2, 117–136.

Greifeneder, B. (2011): Method and System for Processing Application Performance
Data Outside of Monitored Applications to Limit Overhead Caused by Monitoring.
USA, US Patent 7,957,934.

Grinshpan, L.; Hanso, L. ed. (2012): Solving Enterprise Applications Performance
Puzzles: Queuing Models to the Rescue. 1. edition. John Wiley & Sons, USA, ISBN
1118061578, 9781118061572.

Guo, S.; Bai, F.; Hu, X. (2011): Simulation Software as a Service and Service-Oriented
Simulation Experiment. In Proceedings of the 2011 IEEE International Conference
on Information Reuse and Integration (IRI)., 113–116.

Haight, C.; De Silva, F. (2016): Magic Quadrant for Application Performance Mon-
itoring Suites. Gartner – technical report 〈URL: https://www.gartner.com/doc/
3551918/magic-quadrant-application-performance-monitoring〉 last accessed
2010-06-30.

Harchol-Balter, M. (2013): Performance Modeling and Design of Computer Systems.
Cambridge University Press, New York, NY, USA.

He, S.; Guo, L.; Guo, Y.; Wu, C.; Ghanem, M.; Han, R. (2012): Elastic Ap-
plication Container: A Lightweight Approach for Cloud Resource Provisioning. In
2012 IEEE 26th International Conference on Advanced Information Networking and
Applications. , ISSN 1550–445X, 15–22.

Henning, J. L. (2006): SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput.
Archit. News , vol. 34 no. 4, 1–17 〈URL: http://doi.acm.org/10.1145/1186736.
1186737〉 last accessed 2010-06-30, ISSN 0163–5964.

Herbst, N. R.; Huber, N.; Kounev, S.; Amrehn, E. (2014): Self-adaptive workload
classification and forecasting for proactive resource provisioning. Concurrency and
computation: practice and experience, vol. 26 no. 12, 2053–2078.

Hevner, A.; March, S.; Park, J.; Ram, S. (2004): Design Science in Information
Systems Research. MIS quarterly , vol. 28 no. 1, 75–105.

Hofer, P.; Hörschläger, F.; Mössenböck, H. (2015): Sampling-based Steal Time Ac-
counting Under Hardware Virtualization. In Proceedings of the 6th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE 2015). ACM, New York,
NY, USA, ISBN 978–1–4503–3248–4, 87–90.

Honk, J. (2014): How many Types Nemory Areas Allocated by JVM. USA, Blog Ar-
ticle 〈URL: http://javahonk.com/how-many-types-memory-areas-allocated-
by-jvm/〉 last accessed 2010-06-30.

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.gartner.com/doc/3551918/magic-quadrant-application-performance-monitoring
https://www.gartner.com/doc/3551918/magic-quadrant-application-performance-monitoring
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://javahonk.com/how-many-types-memory-areas-allocated-by-jvm/
http://javahonk.com/how-many-types-memory-areas-allocated-by-jvm/

References 165

Hoorn, A. van; Waller, J.; Hasselbring, W. (2012): Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceed-
ings of the 3rd ACM/SPEC International Conference on Performance Engineering.
ACM, New York, NY, USA, ICPE ’12 〈URL: http://doi.acm.org.eaccess.ub.
tum.de/10.1145/2188286.2188326〉 last accessed 2010-06-30, ISBN 978–1–4503–
1202–8, 247–248.

Hrischuk, C.; Woodside, M.; Rolia, J. (1999): Trace-based Load Characteriza-
tion for Generating Performance Software Models. IEEE Transactions on Software
Engineering , vol. 25 no. 1, 122–135, ISSN 0098–5589.

Huang, R.; Masanet, E. (2015): Data Center IT Efficiency Measures. National Re-
newable Energy Laboratory (NREL), Golden, CO. – technical report.

Huber, N.; Brosig, F.; Spinner, S.; Kounev, S.; Bahr, M. (2016): Model-Based
Self-Aware Performance and Resource Management Using the Descartes Modeling
Language. IEEE Transactions on Software Engineering , vol. PP no. 99, 1–1, ISSN
0098–5589.

Huber, N.; Quast, M. von; Hauck, M.; Kounev, S. (2011): Evaluating and Mod-
eling Virtualization Performance Overhead for Cloud Environments. In Proceed-
ings of the 1st International Conference on Cloud Computing and Services Science
(CLOSER 2011). SciTePress, Av. Dom Manuel i, 2910-582 Setúbal, Portugal, ISBN
978–989–8425–52–2, 563–573.

Jones, R.; Hosking, A.; Moss, E. (2016): The Garbage Collection Handbook: The
Art of Automatic Memory Management. CRC Press, USA.

Jones, R.; Lins, R. D. (1996): Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. Wiley, USA.

Koch-Kemper, B. (2015): Performance Model Generation of Distributed Java Enter-
prise Edition Applications considering CPU, Memory and I/O Resources. Master’s
thesis Technische Universität München.

Kounev, S. (2005): Performance Engineering of Distributed Component-Based Systems
- Benchmarking, Modeling and Performance Prediction. Dissertation, Technische
Universität Darmstadt, Germany, Darmstadt, Germany.

Kounev, S.; Brosig, F.; Huber, N. (2014): The Descartes Modeling Language.
Department of Computer Science, University of Wuerzburg, Tech. Rep,, 1–93.

Kowall, J.; Cappelli, W. (2012): Magic quadrant for Application Performance Mon-
itoring. 56 Top Gallant Road, Stamford, CT, USA.

Koziolek, A.; Koziolek, H.; Reussner, R. (2011): PerOpteryx: Automated Ap-
plication of Tactics in Multi-objective Software Architecture Optimization. In
Proceedings of the joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT
symposium–ISARCS on Quality of software architectures–QoSA and architecting
critical systems–ISARCS. ACM, 33–42.

http://doi.acm.org.eaccess.ub.tum.de/10.1145/2188286.2188326
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2188286.2188326

References 166

Koziolek, H. (2010): Performance Evaluation of Component-based Software Sys-
tems: A Survey. Performance Evaluation, vol. 67 no. 8, 634 – 658 〈URL: http:
//www.sciencedirect.com/science/article/pii/S016653160900100X〉 last ac-
cessed 2010-06-30, Special Issue on Software and Performance, ISSN 0166–5316.

Koziolek, H.; Becker, S.; Happe, J.; Tuma, P.; Gooijer, T. de (2014): Towards
Software Performance Engineering for Multicore and Manycore Systems. ACM SIG-
METRICS Performance Evaluation Review , vol. 41 no. 3, 2–11.

Kroß, J.; Willnecker, F.; Zwickl, T.; Krcmar, H. (2016): PET: Continuous Per-
formance Evaluation Tool. In Proceedings of the 2nd International Workshop on
Quality-Aware DevOps. ACM, New York, NY, USA, QUDOS 2016, ISBN 978–1–
4503–4411–1, 42–43.

Kuperberg, M. (2010): Quantifying and Predicting the Influence of Execution Plat-
form on Software Component Performance. vol. 5, KIT Scientific Publishing, Karl-
sruhe, Germany, ISBN 3866447418.

Levy, Y.; Ellis, T. J. (2006): A Systems Approach to Conduct an Effective Literature
Review in Support of Information Systems Research. Informing Science: Interna-
tional Journal of an Emerging Transdiscipline, vol. 9 no. 1, 181–212.

Libič, P.; Bulej, L.; Horky, V.; Tůma, P. (2015): Estimating the Impact of
Code Additions on Garbage Collection Overhead. In Computer Performance Engi-
neering. vol. 9272, Springer International Publishing, Gewerbestrasse 11 CH-6330
Cham (ZG) Switzerland 〈URL: http://dx.doi.org/10.1007/978-3-319-23267-
6_9〉 last accessed 2010-06-30, ISBN 978–3–319–23266–9, 130–145.

Libič, P.; Bulej, L.; Horky, V.; Tůma, P. (2014): On the Limits of Modeling
Generational Garbage Collector Performance. In Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering. ACM, New York, NY, USA,
ICPE ’14 〈URL: http://doi.acm.org/10.1145/2568088.2568097〉 last accessed
2010-06-30, ISBN 978–1–4503–2733–6, 15–26.

Lukasiewycz, M.; Glaß, M.; Reimann, F.; Teich, J. (2011): Opt4J - A Modu-
lar Framework for Meta-heuristic Optimization. In Proceedings of the Genetic and
Evolutionary Computing Conference (GECCO 2011). Dublin, Ireland, 1723–1730.

McVoy, L. W.; Staelin, C. et al. (1996): lmbench: Portable Tools for Performance
Analysis. In USENIX annual technical conference. San Diego, CA, USA, 279–294.

Menascé, D. A. (2008): Computing Missing Service Demand Parameters for Perfor-
mance Models. In Proceedings of the 2008 Computer Measurement Group Confer-
ence (CMG 2008). Las Vegas, NV, USA, 241–248.

Mendel, T. (2013): Vendor Selection Matric - Depp Application Transaction Manage-
ment. Research in Action - Independent research and consulting – technical re-
port 〈URL: http://www.amasol.de/files/the_need_for_speed-research_in_

action.pdf〉 last accessed 2010-06-30.

Merkle, P.; Henss, J. (2011): EventSim–An Event-driven Palladio Software Architec-
ture Simulator. Palladio Days ,, 15–22.

http://www.sciencedirect.com/science/article/pii/S016653160900100X
http://www.sciencedirect.com/science/article/pii/S016653160900100X
http://dx.doi.org/10.1007/978-3-319-23267-6_9
http://dx.doi.org/10.1007/978-3-319-23267-6_9
http://doi.acm.org/10.1145/2568088.2568097
http://www.amasol.de/files/the_need_for_speed-research_in_action.pdf
http://www.amasol.de/files/the_need_for_speed-research_in_action.pdf

References 167

Okanović, D.; Hoorn, A. van; Heger, C.; Wert, A.; Siegl, S. (2016): Towards
Performance Tooling Interoperability: An Open Format for Representing Execution
Traces. In Fiems, D.; Paolieri, M.; Platis, A. N. eds.: Computer Performance
Engineering: 13th European Workshop, EPEW 2016, Chios, Greece, October 5-
7, 2016, Proceedings. Springer International Publishing, Cham 〈URL: http://dx.
doi.org/10.1007/978-3-319-46433-6_7〉 last accessed 2010-06-30, ISBN 978–3–
319–46433–6, 94–108.

Oracle Cooperation (2015): Java Garbage Collection Basics. USA 〈URL:
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/

index.html〉 last accessed 2010-06-30.

Oransa, O. (2014): Java EE 7 Performance Tuning and Optimization. Packt Publishing
Ltd, Birmingham, UK.

Pawlish, M.; Varde, A.; Robila, S. (2012): Analyzing utilization rates in data centers
for optimizing energy management. In Green Computing Conference (IGCC), 2012
International., 1–6.

Peffers, K.; Tuunanen, T.; Rothenberger, M. A.; Chatterjee, S. (2007): A
Design Science Research Methodology for Information Systems Research. Journal
of Management Information Systems , vol. 24 no. 3, 45–77 〈URL: http://www.

tandfonline.com/doi/abs/10.2753/MIS0742-1222240302〉 last accessed 2010-06-
30.

Pitakrat, T.; Okanović, D.; Hoorn, A. van; Grunske, L. (2017): Hora:
Architecture-aware Online Failure Prediction. Journal of Systems and Software,,
–.

Reussner, R.; Becker, S.; Burger, E.; Happe, J.; Hauck, M.; Koziolek, A.; Kozi-
olek, H.; Krogmann, K.; Kuperberg, M. (2009): The Palladio Component
Model. Journal of Systems and Software, vol. 82 no. 1, 3 – 22.

Reussner, R. H.; Becker, S.; Happe, J.; Heinrich, R.; Koziolek, A.; Koziolek,
H.; Kramer, M.; Krogmann, K. (2016): Modeling and Simulating Software
Architectures: The Palladio Approach. MIT Press, Cambridge, MA, USA.

Rolia, J. (1999): Trace-based load characterization for generating performance software
models. Software Engineering, IEEE Transactions on, vol. 25 no. 1, 122–135, ISSN
0098–5589.

Rolia, J.; Vetland, V. (1995): Parameter Estimation for Performance Models of Dis-
tributed Application Systems. In Proceedings of the 1995 conference of the Centre
for Advanced Studies on Collaborative research (CASCON ’95). IBM Press, USA,
54.

Rolia, J. A.; Sevcik, K. C. (1995): The Method of Layers. IEEE Transactions on
Software Engineering , vol. 21 no. 8, 689–700.

Roussel, A.; Branson, R. (2017): The Million Dollar Engineering Problem. USA,
Web https://segment.com/blog/the-million-dollar-eng-problem/.

http://dx.doi.org/10.1007/978-3-319-46433-6_7
http://dx.doi.org/10.1007/978-3-319-46433-6_7
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.tandfonline.com/doi/abs/10.2753/MIS0742-1222240302
http://www.tandfonline.com/doi/abs/10.2753/MIS0742-1222240302
https://segment.com/blog/the-million-dollar-eng-problem/

References 168

Rumbaugh, J.; Jacobson, I.; Booch, G. (2004): The Unified Modeling Language
Reference Manual. Addison-Wesley Longman, Amsterdam, Netherlands.

Salehie, M.; Tahvildari, L. (2009): Self-adaptive Software: Landscape and Research
Challenges. ACM Trans. Auton. Adapt. Syst. vol. 4 no. 2, 14:1–14:42 〈URL: http:
//doi.acm.org/10.1145/1516533.1516538〉 last accessed 2010-06-30, ISSN 1556–
4665.

Saraswati, S.; Chatterjee, S.; Ramachandra, R. (2016): Steal-A-GC: Framework
to Trigger GC during Idle Periods in Distributed Systems. In 2016 IEEE 23rd In-
ternational Conference on High Performance Computing (HiPC)., 392–400.

Schildt, H. (2014): Java: The Complete Reference. Ninth Edition edition. McGraw-Hill
Education, New York, NY, USA.

Simon, H. A. (1996): The Sciences of the Artificial. MIT press, Boston, USA.

Sjoeberg, D. I. K.; Hannay, J. E.; Hansen, O.; Kampenes, V. B.; Kara-
hasanovic, A.; Liborg, N. K.; Rekdal, A. C. (2005): A Survey of Controlled
Experiments in Software Engineering. IEEE Transactions on Software Engineering ,
vol. 31 no. 9, 733–753, ISSN 0098–5589.

Smith, C. U. (2007): Introduction to Software Performance Engineering: Origins
and Outstanding Problems. In Proceedings of the 7th International Conference on
Dormal Methods for Performance Evaluation., 395–428.

Speitkamp, B.; Bichler, M. (2010): A Mathematical Programming Approach for
Server Consolidation Problems in Virtualized Data Centers. Services Computing,
IEEE Transactions on, vol. 3 no. 4, 266–278.

Spinner, S. (2011): Evaluating Approaches to Resource Demand estimation. Diplo-
marbeit, Karlsruhe Institute of Technology (KIT).

Spinner, S.; Casale, G.; Brosig, F.; Kounev, S. (2015): Evaluating
Approaches to Resource Demand Estimation. Performance Evaluation, vol.
92, 51 – 71 〈URL: http://www.sciencedirect.com/science/article/pii/

S0166531615000711〉 last accessed 2010-06-30, ISSN 0166–5316.

Spinner, S.; Casale, G.; Zhu, X.; Kounev, S. (2014): LibReDE: A Library for
Resource Demand Estimation. In Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering (ICPE 2014). ACM, New York, NY, USA,
ISBN 978–1–4503–2733–6, 227–228.

Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes,
J. (2015): Large-scale Cluster Management at Google with Borg. In Proc. EuroSys
’15. ACM, New York, NY, USA 〈URL: http://doi.acm.org/10.1145/2741948.
2741964〉 last accessed 2010-06-30, ISBN 978–1–4503–3238–5, 18:1–18:17.

Vögele, C.; Heinrich, R.; Heilein, R.; Hoorn, A. v.; Krcmar, H. (2015): Modeling
Complex User Behavior with the Palladio Component Model. In Proceedings of
the Symposium on Software Performance (SSP) 2015. GI - Softwaretechnik-Trends,
Siegen, Germany.

http://doi.acm.org/10.1145/1516533.1516538
http://doi.acm.org/10.1145/1516533.1516538
http://www.sciencedirect.com/science/article/pii/S0166531615000711
http://www.sciencedirect.com/science/article/pii/S0166531615000711
http://doi.acm.org/10.1145/2741948.2741964
http://doi.acm.org/10.1145/2741948.2741964

References 169

Walter, J.; Stier, C.; Koziolek, H.; Kounev, S. (2017): An Expandable Extraction
Framework for Architectural Performance Models. In Proceedings of the 2017 In-
ternational Workshop on Quality-Aware DevOps (QUDOS’17) co-located with 8th
ACM/SPEC International Conference on Performance Engineering (ICPE 2017).
ACM..

Wang, W.; Huang, X.; Qin, X.; Zhang, W.; Wei, J.; Zhong, H. (2012):
Application-Level CPU Consumption Estimation: Towards Performance Isolation of
Multi-tenancy Web Applications. In Proceedings of the 5th International Conference
on Cloud Computing (CLOUD). IEEE, Piscataway, New Jersey, USA, 439–446.

Webster, J.; Watson, R. T. (2002): Analyzing the Past to Prepare for the Future:
Writing a Literature Review. MIS Quarterly , vol. 26 no. 2, xiii–xxiii 〈URL: http:
//www.jstor.org/stable/4132319〉 last accessed 2010-06-30, ISSN 02767783.

Wieringa, R. J. (2014): Design Science Methodology for Information Systems and
Software Engineering. Springer-Verlag, Berlin Heidelberg.

Willnecker, F.; Brunnert, A.; Gottesheim, W.; Krcmar, H. (2015a): Using Dyna-
trace Monitoring Data for Generating Performance Models of Java EE Applications.
In Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering (ICPE 2015). ACM, New York, NY, USA, ISBN 978–1–4503–3248–4,
103–104.

Willnecker, F.; Brunnert, A.; Koch-Kemper, B.; Krcmar, H. (2015b): Full-Stack
Performance Model Evaluation using Probabilistic Garbage Collection Simulation.
In Proceedings of the 2015 Symposium on Software Performance (SSP 2015)..

Willnecker, F.; Dlugi, M.; Brunnert, A.; Spinner, S.; Kounev, S.; Gottesheim,
W.; Krcmar, H. (2015c): Comparing the Accuracy of Resource Demand
Measurement and Estimation Techniques. In Computer Performance Engineering.
Springer International Publishing, Gewerbestrasse 11 CH-6330 Cham (ZG) Switzer-
land, Lecture Notes in Computer Science 〈URL: http://dx.doi.org/10.1007/
978-3-319-23267-6_8〉 last accessed 2010-06-30, ISBN 978–3–319–23266–9, 115–
129.

Willnecker, F.; Krcmar, H. (2016): Optimization of Deployment Topologies for
Distributed Enterprise Applications. In Proceedings of the 12th International ACM
Sigsoft Conference QoSA 2016. ACM.

Woodside, M.; Franks, G.; Petriu, D. C. (2007): The Future of Software Perfor-
mance Engineering. In Future of Software Engineering (FOSE). IEEE, Washington,
DC, USA, 171–187.

Woolf, B. (2009): WebSphere SOA and JEE in Practice. Web 〈URL:
https://www.ibm.com/developerworks/community/blogs/woolf/entry/

websphere_process_server_golden_topology?lang=en〉 last accessed 2010-
06-30.

Zheng, T.; Woodside, M.; Litoiu, M. (2008): Performance Model Estimation and
Tracking Using Optimal Filters. IEEE Transactions on Software Engineering , vol.
34 no. 3, 391–406.

http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/4132319
http://dx.doi.org/10.1007/978-3-319-23267-6_8
http://dx.doi.org/10.1007/978-3-319-23267-6_8
https://www.ibm.com/developerworks/community/blogs/woolf/entry/websphere_process_server_golden_topology?lang=en
https://www.ibm.com/developerworks/community/blogs/woolf/entry/websphere_process_server_golden_topology?lang=en

	Acknowledgement
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Part A
	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Research Goal and Research Questions
	1.3 Thesis Structure

	2 Conceptual Background
	2.1 Performance Metrics
	2.2 Application Performance Management
	2.3 Model-based Performance Evaluation
	2.3.1 Queuing Networks
	2.3.2 Layered Queuing Networks
	2.3.3 Palladio Component Model

	2.4 Automatic Architecture Optimization
	2.4.1 Multi-objective Optimization Problems
	2.4.2 Basic Concepts of Evolutionary Optimization

	2.5 Memory Management

	3 Research Methodology
	3.1 Research Design
	3.2 Research Methods
	3.3 Publications

	Part B
	4 Using Dynatrace Monitoring Data for Generating Performance Models of Java EE Applications
	4.1 Introduction
	4.2 Automatic Performance Model Generation Framework
	4.3 Conclusion & Future Work

	5 Comparing the Accuracy of Resource Demand Measurement and Estimation Techniques
	5.1 Introduction
	5.2 Extracting Resource Demands
	5.2.1 Performance Management Work - Tools Monitoring
	5.2.2 Dynatrace Application Monitoring
	5.2.3 Library for Resource Demand Estimation
	5.2.3.1 Demand estimation approaches
	5.2.3.2 Estimation approach selection

	5.3 Evaluation
	5.3.1 Standalone evaluation
	5.3.2 Distributed Setup

	5.4 Related Work
	5.5 Conclusion and Future Work

	6 Full-Stack Performance Model Evaluation using Probabilistic Garbage Collection Simulation
	6.1 Introduction
	6.2 Garbage Collection Model
	6.3 Evaluation
	6.4 Conclusions

	7 Model-based Prediction of Automatic Memory Management and Garbage Collection Behavior
	7.1 Related Work
	7.1.1 Memory management
	7.1.2 Performance Model Generation
	7.1.3 Performance Management

	7.2 Use Cases
	7.3 Research Method
	7.3.1 Memory Management and Garbage Collection
	7.3.2 Memory Meta-Model
	7.3.3 Observing memory demands and GC
	7.3.4 Memory model generation
	7.3.5 Limitations

	7.4 Evaluation
	7.4.1 Experimental Setup
	7.4.2 Evaluation process
	7.4.3 Evaluation Results
	7.4.4 Discussion

	7.5 Conclusion

	8 Optimization of Deployment Topologies for Distributed Enterprise Applications
	8.1 Introduction
	8.2 Related Work
	8.3 Enterprise application components
	8.4 Deployment Topology Optimization Process
	8.5 Performance Model Generator
	8.5.1 Monitoring
	8.5.2 Aggregation
	8.5.3 Model Generation

	8.6 Architecture Optimizer
	8.7 Evaluation
	8.8 Conclusion

	9 SiaaS: Simulation as a Service
	9.1 Introduction
	9.2 Related Work
	9.3 Simulation Service
	9.4 Evaluation
	9.5 Conclusions

	10 Multi-Objective Optimization of Deployment Topologies for Distributed Applications
	10.1 Introduction
	10.2 Related Work
	10.3 Distributed application components
	10.4 Deployment Topology Optimization Process
	10.5 Performance Model Generator
	10.5.1 Monitoring
	10.5.2 Aggregation
	10.5.3 Model Generation
	10.5.4 Cost model

	10.6 Architecture Optimizer
	10.7 Evaluation
	10.7.1 Evaluation System
	10.7.2 Evaluation Approach
	10.7.3 On-premise Evaluation
	10.7.4 Cloud Environment Evaluation

	10.8 Conclusion

	Part C
	11 Discussion
	11.1 Summary
	11.2 Limitations
	11.3 Contribution to Research
	11.4 Contribution to Practice
	11.5 Future Research

	References

