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Abstract

This dissertation explores the use of optimal control methods in the field of filtration. All sim-

ulation and optimization approaches are based on continuum models because this model type

provides the required computational efficiency. Two case studies are considered in detail. First,

the design of depth filters is optimized with respect to the spatial distribution of deposit within

the filter and achievable filtration times. The control variable is the local filtration performance

as described by the filter coefficient. For a simplified problem, an analytical optimal control

solution is derived and the numerical algorithm is validated against this solution. Furthermore,

a method to derive discrete filter layers from the continuous optimal control trajectories, as

required for practical filter design, is presented.

The second case study considers filter-aid filtration. In a first step, a mechanistic model

is derived which takes the contributions of surface and depth filtration to the total separation

into account. Appropriate mathematical and numerical tools for solving the model equations,

a moving boundary problem with sharp discontinuities, are identified. Secondly, an analytical

optimal control solution for the dosage of filter aids is presented for a simplified problem, where

all separation takes place due to surface filtration. In a third step, optimal filter-aid dosage is

computed numerically for the full model. Goal of both optimal control approaches is to minimize

energy consumption.

Furthermore, a broader historical and systematic framework is developed in which the two

case studies on depth filtration and filter-aid filtration are embedded. Using systematic analo-

gies, it is argued that the methods and results of the two case studies can be transferred to

related applications. Flow through compressible porous media and processes based on intra-

particle diffusion are discussed as promising candidates for such a transfer. The conducted

historical analysis shows that we are entering a period in which, for the first time, the mi-

crostructure of filters can be tailored according to given specifications, e.g., using 3D printing

technologies. It is asserted that the developed optimal control methods can play an important

part in determining spatially-distributed microstructural properties and that they, therefore, aid

a multi-scale approach to filter design and control.
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Kurzzusammenfassung

Diese Dissertation erschließt Optimalsteuerungsmethoden für das Feld der Filtration. Alle Simu-

lations- und Optimierungsansätze beruhen auf Kontinuumsmodellen, da dieser Modelltyp die

benötigte Recheneffizienz gewährleistet. Zwei Fallstudien werden detailliert behandelt. In der

ersten Studie wird der Aufbau von Tiefenfiltern in Bezug auf die örtliche Verteilung von Abschei-

dungen im Filter und erzielbare Filtrationszeiten optimiert. Die Kontrollvariable ist die lokale

Filtrationsleistung, wie sie durch den Filterkoeffizienten beschrieben wird. Für ein vereinfachtes

Modell wird eine analytische Optimalsteuerungslösung hergeleitet und der numerische Algorith-

mus damit validiert. Außerdem wird eine Methode vorgestellt, um diskrete Filterschichten, wie

sie für das praktische Auslegen von Filtern benötigt werden, aus den kontinuierlichen Optimal-

steuerungstrajektorien abzuleiten.

Die zweite Fallstudie behandelt das Verfahren der Anschwemmfiltration. Hierbei wird als

erstes ein mechanistisches Modell hergeleitet, das Beiträge von Oberflächen- und Tiefenfil-

tration an der gesamten Trennung berücksichtigt. Geeignete mathematische und numerische

Werkzeuge zur Lösung der Modellgleichungen, die ein Moving-Boundary-Problem mit scharfen

Diskontinuitäten bilden, werden identifiziert. Weiterhin wird eine analytische Optimalsteue-

rungslösung der Dosierung von Filterhilfsmitteln für ein vereinfachtes Model präsentiert, in dem

nur Oberflächenfiltration berücksichtigt wird. Außerdem wird die Filterhilfsmitteldosierung nu-

merisch für das volle Modell optimiert. Ziel der Optimalsteuerung ist je die Minimierung des

Energieeinsatzes.

Die beiden zentralen Fallstudien dieser Arbeit werden zudem in einen umfassenderen his-

torischen und systematischen Rahmen gestellt. Basierend auf systematischen Analogien wird

dafür argumentiert, dass die Methoden und Ergebnisse der Fallstudien auf verwandte Anwen-

dungen übertragen werden können. Als zwei vielversprechende Beispiele für eine solche Über-

tragung werden die Durchströmung kompressibler poröser Medien und diffusionsgetriebene

Prozesse diskutiert. Die durchgeführte historische Analyse zeigt, dass gerade eine Phase be-

ginnt, in der es zum ersten Mal möglich ist, Filtermikrostrukturen nach gegebenen Anforderun-

gen herzustellen, z.B. unter Verwendung von 3D-Drucktechnologien. Es wird vermutet, dass

die entwickelten Optimalsteuerungsmethoden einen wichtigen Beitrag zur Ermittlung örtlich

verteilter Mikrostruktureigenschaften leisten können und damit einen Multiskalen-Ansatz im

Bereich Filterauslegung und -steuerung unterstützen.
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different indices; if they are used to denote separate variables or quantities, they are introduced

together with the corresponding letters. Units are only supplied where they are meaningful. The

few ambiguities in symbol use are clearly marked in the following lists.
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Section 5.3
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q Superficial velocity [m/s]

R Total filter cake resistance [m], overall radius [m] (only in Chapter 6)

r Filter cake resistance [m2], radial coordinate [m] (only in Chapter 6)

ri Ratio between neighboring gradients
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s Source term, characteristic variable (only in Appendix 4.1)
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t Time [s]

u Control variable [-]

V Volume [m3]

v Velocity [m/s]

x Spatial location [m], unspecified independent variable [-]

y Unspecified dependent variable [-]

z Spatial location [m]

Greek Symbols

∆ Difference

ε Porosity [-]

εp Machine precision [-]

εs Solidosity [-]

η Dimensionless spatial coordinate [-]

ρ Density [kg/m3]

λ Filter coefficient [1/m]

µ Dynamic viscosity [kg/(m s)]

µw Friction coefficient at the wall [-]

ν Poisson’s ratio [-]

σ Specific deposit [-]

σc Compressive stress [N/m2]

ψ Costate state, adjoint state, Lagrange multiplier (synonymous)

φ Volume fraction (Section 2.1.2), limiter function (Section 3.1.2)

Subscripts

0 Initial state

41 . . .55 Parameters in constitutive equations; the first number denotes the chapter, i.e.,

4 or 5, the second the number of the corresponding parameter

c Component



Symbols and Abbreviations xvii

d Deposit

DF Depth filtration

DF-A Depth filtration, analytical optimal control solution
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s Solid, stop, system (only in Section 2.3)

v Volume
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Chapter 1

Introduction

1.1 Introducing the Topic by an Explication of the Title

In this section, a first outline of the topic is provided by a word-by-word comment on the title.

All of these points will be discussed in much more depth later on.

Filtration denotes the unit operation in process engineering where dispersed matter, often

solid, is separated from a fluid phase. In this thesis, the considered fluid is always a liquid,

as opposed to gas filtration. Furthermore, all discussed filtration processes aim at clarification

of the liquid phase, in contrast to other processes where the separated solids are of primary

interest.

Optimal control, generally speaking, is the systematic search for functions that minimize

a given cost measure. These functions can be conceived of as paths, usually in space or time,

hence the path label in the title. Additionally, possible developments resulting from this thesis

can be interpreted as new paths.

Continuum models are based on continuum mechanics. This implies that matter is treated

as a continuum in contrast to being composed of parts. In particular, the continuum label is used

to demarcate the porous media and filtration models used in this work from other methods such

as pore-scale models, where the true geometry of pores is considered, and pore-network mod-

els, where the pores are represented by simplified networks. Continuum models are used in this

dissertation mainly due to their computational efficiency compared to the other two approaches.

Next, some historical background is provided, followed by a discussion of the epistemological

stance of this work. Both sections flesh out some general foundation of the following material.

The introductory chapter ends with a detailed outline of the remaining thesis.

1
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1.2 Filtration and Control: A Short History of Practice and Theory

Filtration and control are now briefly reviewed from a historical perspective. This allows to

introduce some central concepts and to locate this dissertation with respect to the broad back-

ground of the two fields. It will be seen that practice mostly preceded theory in the history of

filtration and control; for that reason, practice is also mentioned first in the title of this section.

The historical account of filtration along with the reflection on paradigms in engineering follows

Kuhn et al. (2017c).

1.2.1 Paradigms in Filtration

Writing history consists not only in an enumeration of facts, the historical facts also have to

be organized in some way. A very influential model for structuring the historical development

of scientific disciplines was provided by the physicist and historian of science Thomas Kuhn1

in his highly influential 1962 book, “The Structure of Scientific Revolutions” (Kuhn, 1970). In

that work, the concept of research paradigms plays a central role. A paradigm comprises all

aspects of scientific practice including theories, laws, methods, and applications. It is a set

of shared believes among scientists, as to what counts as proper science and what does not.

Notably, paradigms include prototypical problem solutions that inspire further research and

pose follow-up problems considered interesting and relevant by the scientific community. As

seen by Kuhn, Newtonian mechanics, Einsteinian relativity, or Darwin’s theory of evolution are

typical examples of paradigms in different disciplines.

According to Kuhn’s model, each discipline undergoes a preparadigmatic phase, followed

by the establishment of a paradigm in which “normal science” is conducted, i.e. problems are

solved using the means provided by the paradigm. If too many unsolved problems accumulate,

i.e. if problems continuously resist a solution within the framework of a given paradigm, it

is abandoned resulting in a scientific revolution, which leads to the establishment of a new

paradigm replacing the old one. This scheme is now briefly applied to the history of liquid

filtration. A schematic of the identified paradigms, including the rough time frames, is shown in

Figure 1.1.

Preparadigmatic

phase

Macro-

manipulative 

paradigm

Macro-theoretic 

paradigm

Micro-theoretic 

paradigm

Micro-

manipulative 

paradigm

Systematic design 

of filters

Analysis on 

continuum level

Analysis on

pore scale

Design of

pore scale

1750 1850 1960 2010

Figure 1.1: Paradigms in filtration research with corresponding characteristics; years of para-
digm shifts are understood only as rough estimates.

1In no way affiliated with the author of this thesis.
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Filtration in its preparadigmatic phase is characterized by trial-and-error approaches. Re-

sults were not published systematically, there were no explicit filtration researchers and no sci-

entific community focusing on filtration. No coherent framework of established methods, unified

goals, prototypical problems, etc. existed. One only finds largely unconnected empirical results

and evidence from practically applied filtration approaches scattered across different times and

locations. Typical examples are the filtration of water utilizing porous vessels as filter media in

ancient Egypt (Anlauf, 2003) and “Hippocrates’ sleeve”, cloth bags used to clarify rain water,

suggested by the ancient Greek physician Hippocrates (c. 460- c. 380 BC) (Baker, 1948, p. 5).

The first coherent research endeavor that eventually emerged could be termed the macro-

manipulative paradigm. The main characteristic of this paradigm is systematic experimenta-

tion at the level of whole filters or filter components, i.e. macroscopically. Different design vari-

ables, such as filter geometries and filter media, were manipulated and the filter performance

was evaluated. In this phase, a scientific community existed that discussed about filtration prob-

lems in view of certain experimental findings and published their results. This first paradigm

was established around the middle of the 18th century as indicated by the first patent for a filter

design in 1745 and the first book on filtration published in 1750, both by Joseph Amy (1696-

1760) (Baker, 1948, p. 30). The macro-manipulative paradigm is a powerful illustration of the

dictum by Ian Hacking (*1936), an American philosopher of science, that “experimentation has

a life of its own” (Hacking, 1983, p. 150), implying that detailed theory is often not necessary

for successful experimentation. Nevertheless, many problems could not be solved within the

macro-manipulative paradigm, e.g., scale-up issues of linking laboratory filtration experiments

to full-scale filters. Such defects finally induced a paradigm shift.

A next paradigm can be identified when mathematical analysis is introduced to filtration.

It might be called the macro-theoretic paradigm, due to the fact that in this period filtration

was mathematically described on the macroscopic level, i.e. by global variables, such as flow

rate or pressure drop, as well as continuum approaches. The pore-level of the filter or the exact

nature and separation mechanisms of impurities were not yet addressed. The paradigm already

dawned in the work of Reinhard Woltman (1757-1837), who, e.g., introduced the notion of

volume fractions, such as porosity, to characterize porous media on a continuum scale (De Boer,

1992). The first prototypical example, however, is Darcy’s law. It was developed by Henry Darcy

(1803-1858) during his design of the Dijon water works in France and was published in 1856

(Darcy, 1856; Brown, 2002). In its modern formulation, Darcy’s law reads

Q =− k
µ
· ∆p

L
·A , (1.1)

where Q is the volumetric flow rate, k is the permeability, µ the fluid’s dynamic viscosity, ∆p the

pressure difference across the porous layer, L its height, and A is the cross-sectional area. Darcy’s

law, for the first time, yielded a quantitative and mechanistic description of filter behavior. For

example, the equation was successfully employed for up-scaling of filters which solved problems

that could not be addressed within the previous paradigm. Once the permeability k of a filter

material is determined and the fluid viscosity µ is known, Darcy’s law yields the pressure-flow



4 Chapter 1. Introduction

relationship for any filter dimension, i.e., height L and cross-sectional area A. In the phase of

“normal engineering”, a term that could be used in analogy to Kuhn’s notion of “normal science”,

many further problems resulted and were solved by such macro-scale equations. Another very

influential example is the treatment of depth filtration by Iwasaki (1937). He developed a

differential equation that describes the separation of impurities within filter materials. However,

in this approach, impurities are only described by their concentration, i.e., by a continuum-

mechanical approach, and the separation is modeled as a reduction of that concentration in the

fluid phase. The exact mechanisms on the pore scale could not be addressed with Iwasaki’s

method. In this manner, unanswered questions concerning micro-scale separation mechanisms

accumulated and eventually led to a paradigm shift.

The macro-theoretic paradigm was followed by the micro-theoretic paradigm. In this

phase, the separation of impurities in filters was investigated on the micro scale, empirically

as well as theoretically. Hypotheses concerning elementary separation mechanisms were formu-

lated and tested. This paradigm was strongly influenced by the new discipline of colloid science,

initiated around 1950, which is concerned with the study of interactions between small parti-

cles suspended in liquids and solid surfaces (Israelachvili, 2011, p. 17). The results of colloid

science were adapted to filtration problems from around 1960 onwards, a transition reflected

in publications such as Herzig et al. (1970) and Ives (1975). New imaging technologies, e.g.,

micro-computed tomography, are another key element in the micro-theoretic paradigm. These

imaging technologies allow for a detailed analysis of the microstructure of different filter media,

such as the determination of true pore size distributions and the characterization of deposited

impurities, including their location on or within different filter media. Also large-scale computer

simulations play an important role in this paradigm. An example is the study of flow in com-

plicated 3D pore geometries of filters by computational fluid dynamics (CFD) (Mirabolghasemi

et al., 2015). All this micro-scale information is valuable for selecting appropriate filter materi-

als and designing new filters. Additionally, this paradigm raised many related problems which

were subsequently addressed in another phase of “normal engineering”. However, the micro-

scale analysis eventually led to novel ideas concerning pore-scale properties which go beyond

the micro-theoretic paradigm.

We might thus be facing once again the beginning of a novel research phase which could be

called the micro-manipulative paradigm. It is characterized by chemically and nanotechno-

logically functionalized filter surfaces, e.g., membranes that are sensitive to temperature or pH

shifts (Liu et al., 2016). Equally, it is marked by the advent of novel technologies like the 3D

printer which allow to exactly tailor the microstructure of filters according to given specifica-

tions (Low et al., 2017; Nawada et al., 2017).

All paradigms introduced here are based on methods used in filtration research. Of course,

the proposed classification is just one out of a number of possibilities. One could, for example,

also define paradigms based on apparatus concepts, such as the slow sand filter, the rapid filter,

the vacuum drum filter, etc. However, this would lead to a multitude of paradigms with no
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clear temporal order; also, the comparison between different areas of application, such as water

treatment and chemical engineering, would be difficult due to the different apparatuses used in

these fields. Such a classification, thus, gives no real structure to the overall history of filtration.

It is asserted that the proposed classification does better in this respect and that it is, therefore,

a good starting point to approach the history of filtration.

Additionally, two major differences to Kuhn’s approach are worth mentioning. Paradigms

in engineering differ in some important aspects from Kuhn’s notion. Namely, engineering is

never as isolated as the fundamental research in physics that was Kuhn’s main object of study. A

specific field in technology is always embedded in a broader technological, scientific, and social

context which renders it difficult to determine what to include in the corresponding paradigms

and what to leave out. For example, it depends on the perspective, if the wide-spread combina-

tion of filtration with other technological developments, such as flocculation, is to be regarded

as a paradigmatic move, or how the effect of data-science methods on filtration is evaluated.

Furthermore, paradigm shifts in engineering are not as radical as the ones portrayed by Kuhn

in physics. True revolutions hardly occur, paradigms usually exist in parallel, and old paradigms

are rarely completely abandoned. For example, there is still macroscopic experimental research

in filtration, benefiting, e.g., from improved measurement technologies. This stands in contrast

to Kuhn’s notion of a paradigm: After Einstein, physicists largely abandoned the paradigm of

Newtonian mechanics and subsequently considered the theory of relativity as the better or more

probable description of the phenomena. Paradigms in engineering differ from those in physics,

for one reason, due to a different function of theory in these disciplines. Contrary to natural sci-

ence, theory in engineering does not primarily strive for truth, but mainly aims to be functional

in a given context. Thus, even superseded theories can be exact enough for some tasks and

are, for that reason, also used in later paradigms. A more detailed discussion on the specifics of

engineering knowledge is provided in Kuhn et al. (2017c).

1.2.2 Developments in Process Control

After the comparatively detailed assessment of filtration history in the last section, a much

shorter overview of the development of process control is given now. Filtration was treated in

greater detail because this work is primarily considered as a work of filtration research; optimal

control methods, on the contrary, are mainly applied as tools here.

Whereas mechanically realized feedback control devices existed since antiquity, e.g., in the

form of float valve regulators (Bissell, 2009), theory on feedback control developed mainly in

the 20th century. This development is closely related with the more widespread availability

of instruments for measuring, indicating, and recording the states of various processes such as

voltage, current, temperature, pressure, or flow velocity – the latter two being also important in

the context of filtration. In this manner, the beginning of the 20th century saw a pronounced

increase in the ratio of instrument to machinery sales (Bennett, 1996).

While classical control theory is concerned with the search for optimal points in some given

state spaces, optimal control theory aims at optimal paths. Having precursors in the calculus of
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variations that emerged in the late 17th century (Sussmann and Willems, 1997), optimal control

theory essentially developed since the 1950s. Modern optimal control theory was mainly influ-

enced by the will to control missiles and space vehicles as well as the advent of digital computers

(Bennett, 1996). The terms “optimal control” and “dynamic programming” are mostly used syn-

onymously, whereas “calculus of variations” denotes only one method to solve optimal control

problems. For political reasons, the label “dynamic programming” was chosen in the context

of Richard Bellman’s research on the allocation of missiles to maximize overall damage around

1950 due to the positive connotations of “dynamic” and the preference of “programming” over

“planning” (Bennett, 1996).

In the pre-WWII period, filters were primarily controlled manually or by simple mechanical

control devices. For example, the differential pressure from Venturi flow-meters was used as

a signal for flow valves which were counteracted by beams with weights attached to achieve

the desired flow rate. As a next step, pneumatic control was introduced, followed by electronic

control. In water treatment, variable flow rate control was first introduced in the 1960s (Fulton,

1981, pp. 67-69). Recently, data-driven methods were investigated for the control of filtration.

Data mining was tested by Eberhard (2006); the practical application of a fuzzy-logic control

for beer filtration was introduced in Fellner et al. (2012). Some studies also applied optimal

control in the context of filtration; they will be introduced in Section 2.3.4.

1.2.3 Lessons from History

Some conclusions from the historical developments discussed in the last two sections are drawn

now. If the assessment of developments in filtration research is essentially correct, the stage is

set for specifically tailored filter microstructures. This recently emerging movement was labeled

the micro-manipulative paradigm. However, the ability to manipulate filter microstructures also

requires detailed information on what microstructural properties are actually desirable. In this

respect, it is also imaginable that there is not a unique optimal microstructure for a given filter

but that local variations on the micro level offer some benefits.

Using a few examples, it was illustrated that within the last ten years advanced control

methods have also been tentatively tried out in the field of filtration. Optimal control, as one

such method, seems a new and promising tool in the context of microstructure design; even

though, usually, it is not yet applied for that purpose. As the goal of optimal control is to

determine optimal paths, these paths can also be optimal distributions in space and thus guide

the design of filter microstructures. In this respect, the developments in filtration research and

control engineering converge and possibly exhibit some synergistic effects.

That there are such synergistic effects is one of the main working hypotheses of this disser-

tation. Based on continuum models, optimal spatial trajectories of filter properties are derived.

Methods to bridge the gap between pore scale and continuum scale are known and introduced

in Section 2.1.2, a complete agenda for multi-scale filter optimization is sketched in the outlook

provided in Chapter 7. Note that the use of continuum models in this thesis, which were a

key element of the macro-theoretic paradigm, illustrates the observation of Section 1.2.1 that
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paradigms in engineering are rarely completely abandoned. It is asserted here that continuum

approaches also provide an important tool within the micro-manipulative paradigm.

1.3 Epistemological Positioning

1.3.1 Scientific Stance

After the historical background was outlined in the last section, the epistemological position of

the dissertation is explained now. The current work is a scientific analysis of some engineering

problems, namely in the field of solid-liquid separation. As in all science, its empirical claims

need to be tested experimentally. Since this is a theoretical work, some models and strategies

are proposed but not validated yet. Different aspects, therefore, still remain in the state of “bold

conjectures” (Popper, 2002b, pp. 278, 280). Also, the mathematical parts contain open hy-

potheses, however, without empirical content but rather structural claims of the form “solution

method X is suitable for problem Y”. All hypotheses, of either type, are clearly indicated in this

work so that further research may challenge these claims and can continue from there. These

“conjectures” that are prone to future “refutations” (Popper, 2002a) are, however, no disadvan-

tage of this particular work. It rather is a general characteristic of the scientific method, which

can be seen as “an evolutionary approach” (Popper, 1972). This being said, the “paths” in the

title still gets a further meaning, namely that this dissertation does not present final and fixed

results, but rather is seen as an exploration of some paths opened up by the synthesis of modern

optimal control theory and filtration modeling.

1.3.2 Technological Stance

Even though scientific methods are used, this dissertation is not a work of natural science or

mathematics, but primarily of engineering. Engineering differs from natural science in that

its main focus is not on true descriptions of the world as it is, but rather on changing the

world technologically. Engineers invent new artifacts, they develop and improve processes and

technological strategies. Development, invention, and improvement all imply that the current

state of the world is changed. This raises the question how engineers go about to change the

status quo. The author has argued elsewhere that engineering can be interpreted as a form of

fiction (Kuhn, 2015, 2017); a similar thesis was formulated by Dunne and Raby (2014) for the

discipline of design. Engineers develop visions of a different world and they go about it in a

similar manner than writers making up imaginary worlds.

As in literature, new technology is a combination of previously existing elements (Arthur,

2009; Kuhn, 2017). In literature, on the one hand, these elements are, e.g., words, phrases,

basic plots, etc. Engineers, on the other hand, use simple parts, such as the screw or the electrical

resistance, and causal mechanisms, such as the lever, to generate new solutions. Also similar

to literature, technology does not only exist within the heads of individuals but is facilitated by

external media. In the case of literature, the primary medium is language; engineers, on the
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contrary, develop their visions primarily by means of models, which are understood here in a

broad sense, comprising hand sketches, technical drawings, scale models, and computer models

of different sorts. Ludwig Wittgenstein (1889-1951), a philosopher of language, has famously

remarked: “The limits of my language mean the limits of my world.” (Wittgenstein, 2001, 5.6).

In a similar manner, the models and modeling strategies available to engineers limit their world

– or, to be more precise, their ability to explore possible worlds. Thus, two important driving

forces for technological innovation are new combinations of conceptual building blocks as well

as new general models.

The benefit of the present work can be seen as developing itself visions of a technologically

different world. In this technologically different world, filtration processes allow for spatial and

temporal variation of control variables which were previously kept constant. Therefore, a new

combination of previously separate concepts is introduced which is, as already mentioned in the

last section, a synthesis of modern optimal control theory and filtration modeling. Furthermore,

the methods and models developed in this dissertation, may benefit the “technical imagination”

(Dunne and Raby, 2014, p. 70) generally. The developed models, understood as media, could

be able to broaden the scope of what is conceivable. Also, the applied optimal control strategies

may, by analogy, help to question the technological status quo in other areas than solid-liquid

separation; examples are provided in Chapter 6. This claim could be summed up by the imper-

ative: May there be variable functions where previously there were only constants.

1.4 Outline of the Thesis

After the quick sweep over the historical and epistemological position of this dissertation in the

introduction, the theoretical background is discussed in Chapter 2. In detail, the continuum

treatment of porous media is introduced and demarcated from pore scale models and pore-

network models. Volume averaging is presented as a way to move from the pore scale to the

continuum scale, a method that is required if microscale design is to be coupled with optimal

control on the continuum scale. Also, basics of filtration and optimal control theory are dis-

cussed.

Chapter 3 provides some background on the numerical methods used in this work. The

material is mainly included as a separate chapter in order to avoid repetition of these themes in

the two subsequent case studies for which essentially the same methods were used. In detail,

numerical methods for partial differential equations are introduced and the method of lines, as

the chosen option, is discussed. Furthermore, strategies to treat sharp moving fronts and moving

boundary problems are discussed.

The two case studies of Chapters 4 and 5 form the main body of the present work. In

Chapter 4 depth filtration is considered. Based on some phenomenological observations from

filtration practice, optimal control scenarios are identified and solved using mainly models from

the literature. The results are optimized depth filter designs in which the local filtration per-

formance is the control variable. From the continuous optimal control solutions, layered filter
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designs are derived that are useful for practical filter design. However, it is also highlighted that

within the micro-manipulative paradigm also continuous solutions may prove useful.

Chapter 5 addresses filter-aid filtration. Whereas the focus of Chapter 4 is clearly on the

optimization of filter design, the focus of this chapter is primarily on the derivation of a mecha-

nistic and fully dynamical model. Subsequently, an analytical optimal control solution is derived

based on a simplified model from the literature. Also, numerical optimal control solutions for

the full model are shown. All results are temporal trajectories of filter-aid dosage. However,

even though the control variables are determined in time, the indirect goal is also optimization

of filter’s microstructure because the dosage of filter aids affects the dynamically created filter

cake structure.

In Chapter 6, further fields of application are discussed in which ideas and methods de-

veloped in this dissertation could be beneficial. These further fields are broadly divided into

flow through compressible porous media, such as encountered in preparative chromatography,

and processes based on intra-particle diffusion, such as coffee extraction. Also some further

applications that do not fit into these two categories are mentioned. Chapter 6 does not pro-

vide numerical modeling or optimization results; the potential benefits are only discussed with

respect to the underlying physical theory and by means of analogy to the conducted optimal

control calculations.

Chapter 7 provides a general conclusion of the whole thesis and a broad outlook. The ear-

lier threads of the introduction concerning a multi-scale method for filter control and design

are picked up and developed further. Open points are highlighted, notably, possible problems

in transferring the optimal control results from the case studies of Chapters 4 and 5 to actual

filtration practice as well as using the methods of this thesis for new applications such as the

ones discussed in Chapter 6. Also, further challenges regarding the applied numerical methods

are discussed.

Note that throughout this work, some redundancies are intended. The most important points

are highlighted in various places to keep the common theme in focus. Also, some theoretical

building blocks are repeated, e.g., when treating the theory in Chapter 2 as well as in the case

studies of Chapters 4 and 5, to allow the results chapters to stand for themselves to some degree

and prevent the reader from turning back to the theory part too often.
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Chapter 2

Theoretical Background

In this chapter, the theoretical background is introduced, namely the continuum treatment of

porous media as well as some basics on filtration and optimal control. The theory is kept as con-

cise as possible; for more information, references to the corresponding literature are included.

2.1 Continuum Treatment of Porous Media

Filters, in whatever form, always consist of porous materials. For that reason, porous media and

their mathematical description are discussed first. Simply put, a porous medium is a “solid with

holes” (Bear, 1988, p. 14). However, this definition is still too simple, because a tube, which can

be also considered a solid with a hole, is usually not classified as a porous medium. Therefore,

a porous medium is defined as a multiphase material of which at least one phase is solid and

one phase is not solid. Additionally, all phases are required to be spatially distributed within

the domain of interest in such a way that stable averaged quantities can be derived, as will be

explained below. All regions that are not part of the solid phase are called void space or pore

space. If convective transport is to take place in porous media, the pore space needs to be at

least partially connected. Convection denotes the ordered collective movement of molecules in

fluids as opposed to their random movement that takes place during diffusion.

2.1.1 Micro, Meso, and Macro Scale

Different levels of detail are of interest in the study of porous media, each with their own

methods and research traditions. These detail levels are referred to in this work as the micro,

meso, and macro scale.

On the micro scale or pore scale, the true geometry of porous media is the basis of inves-

tigation, i.e., the “solid with holes”. A two-dimensional illustration of the micro scale is given

in Figure 2.1. Studies on the micro scale belong to the newest movements in research which

correspond to the micro-theoretic paradigm and micro-manipulative paradigm in filtration as

described in Section 1.2.1. Micro-scale information is obtained by 3D imaging technologies,

such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), or confocal laser

11
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scanning microscopy (CLSM). Other means to obtain pore-scale information with a lower level

of detail are, e.g., mercury intrusion porosimetry and gas adsorption (Xiong et al., 2016). In

some studies, also idealized micro-scale geometries are used, such as simplified model pores

(Lee and Koplik, 1999). Micro scale information can be used for purely geometrical characteri-

zations such as the determination of pore size distributions. Also mass transport can be studied

on the pore scale, be it purely flow or reaction and deposition phenomena (Mirabolghasemi

et al., 2015). Analyses on the micro scale are important to gain insights into prevailing mecha-

nisms. However, they are always computationally expensive, both in terms of required storage

as well as computational times necessary for analysis and simulation.

Figure 2.1: Two-dimensional illustration of porous-media micro scale. The solid phase is de-
picted in gray, the pore space in white.

To counteract these computational costs while keeping some geometrical details, pore-net-

work methods were introduced. Historically, they appeared in the transition from the macro-

theoretic to the micro-theoretic paradigm, as they were introduced for filtration in Section 1.2.1.

Pore-network methods are located at the meso scale (Xiong et al., 2016). They, thus, conceptu-

ally, not only historically, bridge the gap between micro and macro scale. From the full micro-

scale information, pore networks are extracted by identifying pore bodies and pore throats, as

illustrated in Figure 2.2. The result is a graph, where the throats are the edges and the pores

are the nodes. These graphs can be analyzed by mathematical graph theory and can be used

for further computations, e.g., of mass transport phenomena. However, there is a plethora of

variants of pore network models (Tansey and Balhoff, 2016; Xiong et al., 2016). In very simple

cases, pores are simply seen as connections of throats without an own contribution, and flow in

each throat is modeled, e.g., by the Hagen-Poiseuille equation (Gostick et al., 2016). Due to the

computational efficiency of pore network models, it is possible to simulate thousands of pores

simultaneously, which is impossible so far at the micro scale.

The lowest level of detail is retained on the macro scale which refers in our case to the con-

tinuum treatment of porous media. The term continuum is understood here in the same sense

as in classical continuum mechanics, i.e., matter is not treated as composed of discrete parts
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but as a continuum which, therefore, can be described by continuous variables and functions

(Malvern, 1969, pp. 1-2).

Figure 2.2: Two-dimensional illustration of pore-network models. The solid phase is depicted
in gray, the pore space in white; the pore network structure is shown in green, comprising pore
bodies (circles) and throats (lines).

The continuum scale corresponds to the macro-theoretic paradigm in filtration, as introduced

in Section 1.2.1. On the macro scale, porous media are only described by averaged qualities,

such as the relative volumetric concentration of pores, i.e., the porosity. Averaging as a way to

arrive at continuous variables is introduced in the next subsection. Due to the low level of detail,

macro-scale approaches allow for most efficient computations of the three discussed scales. The

continuum treatment, although the oldest method, is, therefore, still the method of choice when

computational efficiency is required, such as in optimization and optimal control, which are

addressed in this work.

Obviously, the relevant scales strongly depend on the problem at hand and the perspective

under which it is considered. What was here referred to as the micro scale results already

from a scale-up from the atomistic level, as it is considered, e.g., in molecular dynamics (MD)

simulations. Also, the macro scale, as it was just discussed, is not the largest possible scale; one

can also analyze the whole-plant level, as it is done, e.g., in flow-sheet simulations.

2.1.2 From Micro to Macro Scale by Spatial Averaging

Spatial averaging is a means to derive continuum-scale information from the pore scale. It is,

therefore, an indispensable tool for multi-scale approaches. As the name indicates, variables on

the micro scale are averaged across space, leading to new integral variables. The minimal size

of spatial regions used for averaging is denoted as representative elemental volume (REV).

If the regions to be analyzed are taken from larger samples, the criteria proposed by Brun

et al. (2009) and Huang et al. (2015) are applicable to determine the size of a representative

elemental volume, i.e., a volume that is statistically representative of the bigger sample. Re-

quired REV sizes are given by the convergence of the variable of interest and are, therefore,

no universal constants of a given system. Figure 2.3 illustrates the convergence behavior with



14 Chapter 2. Theoretical Background

increasing sampling volume. As also shown in the figure, if the size of the averaging volume is

further enlarged, macroscopic inhomogeneities affect the averaged variables.

(a)

Characteristic length of averaging volume

C
h

a
ra

c
te

ri
s
ti
c
 v

a
ri
a

b
le

Macroscopic

inhomogeneities

Continuum scale

(b)

Figure 2.3: Two-dimensional illustration of representative elementary volume (REV), marked by
dashed line; the solid phase is shown in gray (a). Convergence behavior of variable of interest
with increasing REV size, adapted from Bear (1988, p. 20) (b).

Spatial averages of some functional variable f (t,x) are denoted as 〈 f (t,x)〉 and follow from

〈 f (t,x)〉= 1
V

∫
V

f (t,x) dV ′ . (2.1)

Some of the quantities and equations used later on are now derived by spatial averaging. For

this reason, the phase function Iα(x, t) is introduced (Lu and Torquato, 1993; Torquato, 2002):

Iα(t,x) =

1 if x lies within phase α

0 otherwise.
(2.2)

Iα(t,x) refers to any phase α within a multi-phase domain and indicates that α is found at a

given location x at time t by the value 1. For now, the temporal dependency of Iα is neglected.

Phase fractions are denoted by φα . Assuming the phase of interest is the pore space p of a porous

medium, the volume fraction of the pore space φp, respectively the porosity ε, is defined as

φp = ε = 〈Ip(x)〉=
1
V

∫
V

Ip(x) dV ′ =
Vp

V
. (2.3)

In depth filtration, solid matter is separated and, therefore, deposited within some filter medium.

The specific deposit σ is defined as

φd = σ = 〈Id(x)〉=
1
V

∫
V

Id(x) dV ′ =
Vd

V
(2.4)

where the index d refer to the phase created by the deposited material.
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Another property, used in many filtration equations, is the specific surface, i.e., surface area

between phases per volume. For detecting phase boundaries, the function Mp is introduced,

defined as

Mp(x) = |∇Ip(x)| ; (2.5)

the specific surface sp then is

sp = 〈Mp(x)〉=
1
V

∫
V

Mp(x) dV ′ =
Sp

V
. (2.6)

Imagining, as a thought experiment, a 3D imaging process with a sufficiently high temporal and

spatial resolution, e.g., an X-ray micro-tomography device, all information to describe the pro-

cess would be given. In case of filtration, the distribution of the relevant phases, i.e., the filter

material, the pore space, and the separated impurities, would be known exactly. These informa-

tion could be averaged subsequently according to the above rules yielding a complete dynamic

description of the process. However, not all processes at all scales can be imaged online due to

practical limitations such as limited resolution in time and space as well as accessibility of the

relevant process operations. Furthermore, the goal is not only a true description of processes

but also prediction of phenomena under different boundary conditions. For these reasons, de-

scriptive variables are linked by mechanistic equations.

Mechanistic equations on the macro scale comprise spatially averaged variables and are them-

selves derived by volume averaging. As an example on how to arrive at spatially average equa-

tions, an advection-reaction equation is considered. Its averaged form will be further developed

below in Section 2.2.3 and it will be also used in the case studies of Chapters 4 and 5. The

derivation is presented in some detail in the main text because the method of volume averaging,

which is thereby shown in action, directly links this dissertation to the now often-used pore-scale

approaches. Also, the perspective for a multi-scale method of filter design and control directly

hinges on this method.

The one-phase advection-reaction equation results from a mass balance of the component

under consideration and reads

∂c
∂ t

+∇ · (v c) = ra , (2.7)

where c is the component concentration in the liquid phase and v is the transport velocity of this

phase. This equation is now considered in a porous domain where the pore space is completely

filled with the liquid phase. Averaging it spatially gives

1
V

∫
V

(
∂c
∂ t

)
dV ′+

1
V

∫
V

∇ · (v c) dV ′ =
1
V

∫
V

ra dV ′ , (2.8)

which is equal to
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∂ 〈c〉
∂ t

+ 〈∇ · (v c)〉= 〈ra〉 . (2.9)

In case of the first term, integration and derivation can be exchanged because the averaging

volume V is independent of time; additionally only the definition of

〈c〉= 1
V

∫
V

c dV ′ . (2.10)

is used. The spatial averaging theorem (Whitaker, 1999, p. 126) states that

〈∇ · (v c)〉= ∇ · 〈(v c)〉+ 1
V

∫
A

n · (v c) dA′ , (2.11)

n is the normal vector on the phase boundary. Neglecting interfacial fluxes, i.e., considering the

solid phase as rigid and impermeable, thus gives

〈∇ · (v c)〉= ∇ · 〈v c〉 (2.12)

To treat the convective term, the following decomposition is performed (Whitaker, 1999, p.

127):

v =〈v〉p + ṽ (2.13)

c =〈c〉p + c̃ , (2.14)

where 〈 f 〉p are the spatially averaged quantities with respect to the pore phase p:

〈 f 〉p = 1
Vp

∫
V

f dV ′ ; (2.15)

f̃ are spatial deviations, i.e., the fluctuations around the average (Whitaker, 1999, p. 15).

Substitution gives

〈c v〉= 〈〈v〉p〈c〉p + 〈v〉pc̃+ ṽ〈c〉p + ṽc̃〉 . (2.16)

Using the averaging rules

〈 f +g〉= 〈 f 〉+ 〈g〉 (2.17)

〈〈 f 〉pg〉= 〈 f 〉p〈g〉 (2.18)

according to Drew (1983) and Civan (2011, p. 66) yields

〈c v〉= 〈〈v〉p〈c〉p〉+ 〈v〉p〈c̃〉+ 〈ṽ〉〈c〉p + 〈ṽc̃〉 . (2.19)

If the term 〈〈v〉p〈c〉p〉 is treated consecutively by the following relationships (Civan, 2011, p. 66)

〈〈 f 〉p〈g〉p〉= ε〈〈 f 〉p〉p〈〈g〉p〉p + ε〈〈 f̃ 〉p〈g̃〉p〉p (2.20)
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〈〈 f 〉p〉p = 〈 f 〉p (2.21)

〈 f̃ 〉p = 0 , (2.22)

the result is

〈c v〉= ε〈v〉p〈c〉p + 〈v〉p〈c̃〉+ 〈ṽ〉〈c〉p + 〈ṽc̃〉 . (2.23)

Again, by definition, the fluctuations vanish when averaged, i.e., 〈ṽ〉= 0 and 〈c̃〉= 0 (Whitaker,

1999, p. 128), therefore

〈c v〉= ε〈v〉p〈c〉p + 〈ṽc̃〉 . (2.24)

Substitution in the main balance equation gives

∂ 〈c〉
∂ t

+∇ · (ε〈v〉p〈c〉p)︸ ︷︷ ︸
convection

+ ∇ · 〈ṽc̃〉︸ ︷︷ ︸
dispersion

= 〈ra〉 , (2.25)

with the convection and dispersion terms marked in Eq. (2.25). Combining Eqs. (2.1) and

(2.15) yields

〈c〉= ε · 〈c〉p . (2.26)

Porosity ε is assumed to be constant and dispersion is neglected. Using furthermore the chain

rule together with the volume-averaged continuity equation (Whitaker, 1999, p. 132)

∇ · 〈v〉= 0 , (2.27)

the result is

ε
∂ 〈c〉p

∂ t
+ ε〈v〉p ·∇〈c〉p = 〈ra〉 . (2.28)

This form of the transport equation will be further used in Section 2.2.3 when the basic

equations of filtration will be introduced. Note that often 〈c〉p is treated like c. However, whereas

c is the point value at some given location x within the pore space, 〈c〉p is a spatially averaged

or filtered value determined using the averaging volume V . Having emphasized this here, also

simply c will be used in the remaining work for reasons of readability.

2.2 Filtration

This section explains some terminology and introduces some basic building blocks to mathe-

matically describe filtration. These information form the basis for the case studies presented in

Chapters 4 and 5.
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2.2.1 Nomenclature and Classifications

As noted in the introduction, filtration is a unit operation in process engineering that aims at

separating a dispersed phase (solids, cells, droplets) from a fluid phase. Because in all processes

considered in this thesis clarification of the liquid is the goal, the dispersed phase is also referred

to as the impurities. Figure 2.4 shows how filtration operations can be classified with respect

to the sizes of impurities to be separated; note that often reverse osmosis is not counted as

filtration, but it is listed here nevertheless for reasons of completeness. The two applications

presented in the case studies of Chapters 4 and 5, namely depth filtration and filter-aid filtration,

are usually operated as particle filtration with mainly particles in the range of 1 . . .100 µm to be

separated.

0.001 0.01 0.1 1 10 100 1000
Impurity 

size

[µm]

Separation 

process

Reverse 

osmosis
Ultrafiltration Microfiltration Particle filtration

Figure 2.4: Filtration operations classified according to sizes of impurities to be separated; figure
adapted from Svarovsky (2000, p. 27).

In all modes of filtration, the elements of the dispersed phase are captured on or within some

material structure which is referred to as the filter medium or septum. In order to introduce

movement to the fluid phase and thereby facilitate the separation process, a pressure difference

across the filter medium needs to be applied. In this thesis, only liquid filtration is considered.

The liquid entering the filter is called suspension, the liquid leaving the filter is denoted as

filtrate.

Besides the classification of Figure 2.4, filtration operations can be sorted according to var-

ious other criteria. Ripperger et al. (2012) mention classifications according to the following

characteristics:

• Location of particle retention: surface filtration, depth filtration, . . .

• Generation of pressure difference: pressure filtration, vacuum filtration, . . .

• Mode of operation: continuous filtration, discontinuous filtration, . . .

• Application: water filtration, beer filtration, . . .

Of these possibilities, classification according to location of particle retention is used here.

The location of particle retention is closely linked to the prevailing separation mechanism. Due

to the methodological focus of this work, prevailing mechanisms are most important. In contrast,

it does not matter if the pressure is applied as excess pressure on the upstream side or suction
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at the downstream side of the filter; also, the concrete application is of secondary importance

due to the methodological focus of the present work.

Surface filtration, also called cake filtration, denotes the mode where particles are com-

pletely captured at the surface of the filter cake, no impurities penetrate the already existing

cake. In pure cake filtration, the particles to be separated are usually larger than the pores of

the already existing filter cake; however, particle bridges over pores of the filter medium are

often decisive at the beginning of filtration (Rainer, 2003; Tichy, 2007). In depth filtration, on

the contrary, particles are solely separated within the filter medium. For pure depth filtration,

the particles to be separated need to be smaller than the pores of the filter medium, at least than

the pores at the entry. Sometimes deep bed filtration is synonymously used to depth filtration.

However, in most cases, deep bed filtration is only used when the filter bed consists of a par-

ticle packing of a depth in the order of meters, as encountered, e.g., in water treatment. The

mechanisms of surface filtration and depth filtration are illustrated in Figure 2.5.

(a) (b)

Figure 2.5: Illustration of filtration mechanisms: surface filtration (a) and depth filtration (b).
The main particles, composing the porous structure, are shown in gray, impurities in (b) are
depicted in black; the blue arrow indicates the flow direction.

Note that pure surface and depth filtration are idealizations that are seldom encountered

in practice. Often, some small particles are able to penetrate the already existing cake in sur-

face filtration and some particles are already retained on the filter surface in depth filtration.

However, the nomenclature is still used to describe the process as a whole if the corresponding

location of particle retention clearly dominates. Besides these non-pure forms, there are also

processes where both mechanisms are at work to a significant degree. This is often the case in

filter-aid filtration, addressed in the case study of Chapter 5. Filter aids are inert materials that

are added to the suspension in order to prevent a complete blocking of the filter medium and

facilitate the build-up of permeable filter cakes. More details are provided in the case study.
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2.2.2 Separation Mechanisms

In filtration, separation of dispersed matter from a liquid phase is caused by different mech-

anisms. Dispersed matter is here simply referred to as particles. In general, for a successful

separation two steps are necessary: first, particles must come into contact with filter surfaces;

second, particles need to be captured there. Commonly, the following causes for contact between

particles and filter surfaces are distinguished (Herzig et al., 1970; Ives, 1975; McDowell-Boyer

et al., 1986; Tien and Ramarao, 2007; Zamani and Maini, 2009):

• Interception: Particles follow the stream lines of liquid flow and thereby touch filter sur-

faces due to their geometrical extension.

• Sedimentation: Particles with densities that differ from the fluid phase can deviate from

the fluid flow due to the influence of gravity, thus causing contact with filter surfaces.

• Inertia: Trajectories between particles and fluid can deviate due to the inertia of particles.

Note that inertia and gravity, even though physically identical forces, lead to phenomeno-

logically separate effects in filtration because the latter only acts in the direction of the

gravitational field created by the earth, whereas the former counteracts any changes in

direction of particle movement.

• Hydrodynamic action: Shear forces in the fluid can cause rotational movements in non-

spherical particles; these so called hydrodynamic actions are a possible cause of contact.

The term “hydrodynamic action” might be somewhat confusing because, e.g., interception

is also caused by fluid-induced forces. It is used here nevertheless to denote rotational

effects to keep the nomenclature in agreement with literature.

• Diffusion: Brownian motion can cause particles to touch filter surfaces.

• Electrostatic forces: Short-ranged forces, such as the Van-der Waals force, can attract

particles to filter surfaces.

• Straining: Particles are captured within constrictions of the filter geometry; this is a purely

geometrical effect and is also referred to as sieving.

Figure 2.6 gives an illustration of three mechanisms. Similar figures are found in a row of

publications, e.g., Ives (1975, p. 195), McDowell-Boyer et al. (1986), and Sutherland (2008,

p. 16). Whether particles are permanently captured on filter surfaces depends on the prevailing

forces; however, a simple and general treatment is not possible due to the complexity of the

problem. Therefore, the underlying logic will only be illustrated briefly. If the filter surface is not

itself pushing off the particles, e.g., due to repelling electrostatic forces, and the particles have

a certain tendency to stick to the surface, e.g., due to surface friction or attractive electrostatic

forces, the particle-surface connection needs to withstand mainly forces exerted by the fluid

flow. These are drag and lift forces. Trivially, if the attractive forces are larger than the repulsive

ones, the particles will be captured on the filter surface (Bai and Tien, 1997; Molnar et al.,
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2015). Usually, the most stable mechanism of particle capture is by straining; in this case, the

particles are strongly bound in constrictions. Experimental characterization of relevant particle

properties and interactions between particles is discussed in Hintz et al. (2008).

A
B

C

Figure 2.6: Three important mechanisms for contact between impurity particles (black) and
filter surfaces (gray): inertia (A), interception (B), and diffusion (C).

The different causes for contact and capture are prevailing to different degrees in surface

and depth filtration. Usually, straining is the dominant mechanism in surface filtration; particles

are captured on the existing filter cake, where the previously separated matter therefore acts as

the effective filter medium; they usually move until they are in a geometrically stable position.

However, also surface friction and electrostatic forces can play an important role, especially

when forces exerted by the fluid are comparatively small as is the case, e.g., in gas filtration

(Tien, 2006, pp. 117-147).

2.2.3 Basic Equations

Filtration can be modeled on the pore scale, using pore networks, and on the continuum scale.

A continuum treatment has the advantage of computational efficiency, which is important for

optimization as well as optimal control approaches because, in these cases, simulations need to

be performed many times. For this reason, continuum models are used in this work. All shown

equations can be derived by spatial averaging from micro-scale information as illustrated above.

First, depth filtration is introduced because it directly continues the discussion of Sec-

tion 2.1.2. If Eq. (2.28) is picked up and the pore-space averages are omitted for reasons of

readability one gets

ε
∂c
∂ t

+ ε v ·∇c = 〈ra〉 . (2.29)

Converting it to a 1D formulation, often used for basic modeling approaches in filtration re-

search, gives

ε
∂c
∂ t

+ ε v · ∂c
∂ z

= 〈ra〉 . (2.30)
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The 1D pore-space velocity v is often expressed in terms of the superficial velocity q, defined as

q =
Q
A
, (2.31)

where Q is the volumetric flow rate and A is the cross-sectional area. Further, it holds that

v =
q
ε
. (2.32)

Substituting v in Eq. (2.4) yields

ε
∂c
∂ t

+q · ∂c
∂ z

= 〈ra〉 . (2.33)

The source term 〈ra〉 is in case of depth filtration expressed as−∂σ/∂ t, i.e., as a sink term, where

σ is the specific deposit as defined earlier. ∂σ/∂ t, therefore, directly conforms to the volume

averaged form of 〈ra〉 as derived in Section 2.1.2. Thus, the final equation is

ε
∂c
∂ t

+q · ∂c
∂ z

=−∂σ

∂ t
; (2.34)

∂σ/∂ t is usually described by
∂σ

∂ t
= λ ·q · c , (2.35)

with λ being the filter coefficient, which describes the efficiency of local filtration performance.

On the continuum level, λ comprises all the diverse effects of particle capture discussed in

Section 2.2.2. Values of the filter coefficient for a broad variety of applications are listed in

Herzig et al. (1970). Note that due to deposition within the filter, ε is no longer constant as

assumed in the derivation of Section 2.1.2. A mathematical argument why, nevertheless, ε

appears outside of the time derivative in Eq. (2.34) was given by Civan and Rasmussen (2005)

and Civan (2015). Furthermore, it is often argued on physical grounds that the changes of ε

are comparatively small (Civan and Rasmussen, 2005). If λ is assumed to be independent of

σ , Eq. (2.35) is introduced into Eq. (2.34), and stationary behavior is considered, Eq. (2.34)

reduces to the well-known relationship first formulated by Iwasaki (1937):

dc
dz

=−λ · c . (2.36)

Note that in depth filtration models usually the origin of the coordinate system is located at the

filter inlet and the spatial coordinate points in the same direction as the flow direction.

Darcy’s law relates pressure gradient ∇p in the fluid phase and flow rate q in porous media

and, therefore, also in filters. It is one of the oldest and most basic continuum laws in porous

media studies and is really a paradigmatic example for the macro-theoretic research period as

discussed in Section 1.2.1. Darcy’s law can also be derived by spatial averaging along similar

lines as the transport equation just discussed. However, the derivation is more lengthy and is

well documented in the literature (Whitaker, 1966, 1986). For this reason, only the result is

shown here:
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q =− k
µ
· (∇p−ρg) . (2.37)

k is the permeability; µ and ρ are the fluid’s dynamic viscosity and density, respectively; g is

the gravitational constant. In 3D, k takes the form of a tensor. As in filtration liquid heights are

often small, gravitation can be usually neglected. Also, as already mentioned, basic modeling

approaches are often conducted in 1D. Under these assumptions, Darcy’s law reads

q =− k
µ
· d p

dz
. (2.38)

Permeability k is a property of the solid phase only. It can be spelled out by different models. One

of the most popular expressions for k is the Kozeny-Carman equation (Kozeny, 1927; Carman,

1997) which is derived from an analogy between porous media flow and flow in pipes governed

by the Hagen–Poiseuille equation (Epstein, 1989). The model is formulated as

k =
d2

9 ·b · τ2 ·
ε3

(1− ε)2 , (2.39)

where d is the mean particle diameter, b is some shape factor, and τ is the tortuosity. Tortuosity

is defined as

τ =
Leff

L
, (2.40)

with Leff being the effective pore length, i.e., the path actually traveled by fluid elements, and L

the length of the porous medium, i.e., the length macroscopically accounted for. If b is assumed

to be 40, i.e., the mean value between a circular flow cross section and an infinite slit, and τ

is assumed to be
√

2 (Epstein, 1989), i.e., the flow paths are assumed to be on the average 45°

inclined with respect to the shortest path, the result is:

k =
d2

180
· ε3

(1− ε)2 . (2.41)

Detailed derivations of the Kozeny-Carman model are shown in Bear (1988, p. 166) and Epstein

(1989). It is important to note, however, that the concrete formulation of the formula deviates

to some degree in different publications. Sometimes, Darcy’s law with the model for k already

introduced is referred to as the Kozeny-Carman equation. Also, the prefactor of 1/180 often

deviates due to different assumptions in the derivation or its direct adjustment to experimental

data.

As seen from the Kozeny-Carman equation, porosity and particle size are the decisive in-

fluences on permeability. Some of the more complex interactions between these variables are

briefly highlighted now. For monodisperse particles, ε is independent of the particle size and

ranges from 0.26 to 0.48 for spheres in the idealized rhombohedral and cubical packing, re-

spectively (Bear, 1988, p. 45). Typical porosity values in natural sedimentary materials such as

sands or soils are ε = 0.3 . . .0.6 (Bear, 1988, p. 46). A range of ε = 0.1 . . .0.9 is reported in cake
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filtration, where the high values are found in loose packings of fibers (Tiller and Cooper, 1962;

Tien and Ramarao, 2013). As depth filters are also composed of particles or fiber beds, similar

porosities are encountered. If particles are distributed in their sizes, ε is usually also a function

of their size distribution. Especially the packing of bidisperse particles was studied intensively

(Yang, 2003, Ch. 2) and it was found in most cases that the porosity of binary particle mixtures

is lower than the monodisperse packing porosities of the two constituents because smaller par-

ticles occupy the voids between larger particles; an effect that is dependent on the size ratio

of the two mixed particles (Shapiro and Probstein, 1992; Mota et al., 2001; Dias et al., 2004;

Brouwers, 2013). Some works also addressed the effects of mixing more than two particle sizes

as well as of continuous particle size distributions (MacDonald et al., 1991; Yu et al., 1992;

Dias et al., 2005; Brouwers, 2014). Additional to size, particle shape influences the porosity

and, therefore, the permeability of packings (Yu et al., 1992; Allen et al., 2013; Vollmari et al.,

2015). The properties of the materials involved represent another important factor (Dong et al.,

2012; Liu et al., 2017).

Next, cake filtration is considered. Contrary to the treatment of depth filtration and Darcy’s

law, cake filtration is directly introduced in 1D on the continuum level as usual in the literature

(Stamatakis and Tien, 1991; Civan, 1998; Tien, 2006). An important variable in cake filtration

is cake height. Following from a mass balance at the cake surface (Tien, 2006, p. 57), cake

height L in case of compressible cake filtration can be expressed as

dL
dt

=
εs

εs− c
·
(

k
µ

∂ p
∂ z

)
(z=L)

+q(z = 0) =− εs

εs− c
·qeff(z = L)+q(z = 0) , (2.42)

where c is the volume concentration of impurities in the liquid phase and εs is the solidosity of

the resulting filter cake. Solidosity is defined as solid volume per total volume and is the com-

plement to porosity, i.e., εs = 1− ε. In case of compressible cake filtration also the solid phase

moves and, therefore, Darcy’s law leads to some effective superficial velocity qeff everywhere

except at the filter medium at z = 0 where solid movement is prevented. However, this is not

further discussed here because only incompressible cakes are considered in this work. Incom-

pressible cake filtration can be interpreted as a special case of compressible cake filtration for

which qeff(z = L) = q(z = 0) = q because the solid phase remains stationary. Therefore

dL
dt

=− c
εs− c

·q . (2.43)

Often, c� εs; thus, the last equation is well approximated by

dL
dt

=− c
εs
·q ; (2.44)

a relationship that is used, e.g., by Hackl et al. (1993, p. 18). Note that for a constant solid

concentration in the suspension c and constant solidosity εs, the cake grows linearly with time in

case of constant-rate filtration. This is contrary to compressible cake filtration where εs is locally

increased due to compression which results in a non-linear cake growth. Different than in most
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depth filtration models, the origin of the coordinate system is located at the filter medium and

the spatial coordinate is opposed to the flow direction when cake filtration is modeled; thus, the

minus sign in Eqs. (2.43) and (2.44).

The pressure drop-flow relationship in case of cake filtration is usually modeled by Darcy’s

law, as formulated above in Eq. (2.38). Combining the shown treatment of cake growth with

Darcy’s law leads to the classical equations of cake filtration (Verein Deutscher Ingenieure, 2006;

Ripperger et al., 2012) which are, however, not presented here because they are not used in this

thesis.

A special case of cake filtration is filter-aid filtration. In this case, the permeability of the

filter cake is dependent on both the impurities to be separated and the filter aids dosed to the

suspension. The classical model to account for this effect is known as the Sutherland equation.

Before introducing the model, a preliminary remark is in order. Some descriptions, such as the

Sutherland equation, use filter cake resistance r instead of permeability k. The two properties

are simply inversely related, i.e.

r =
1
k
. (2.45)

The Sutherland equation expresses the resistance of filter cakes composed of filter aids and im-

purities in case of pure surface filtration and was developed, as the name indicates, by Suther-

land and Hidi (1966). An analogous expression was found by Heertjes and Zuideveld (1978c).

Haba and Koch (1978) validated the model. Further uses appear in Berndt (1981, pp. 31-32),

Wegner (1985, p. 24), Tittel (1987, pp. 8, 56), and Hackl et al. (1993, p. 30). The equation

reads

r = r0 ·exp
(

KS ·
c

cFA

)
, (2.46)

where r0 is the resistance of a filter cake which is only composed of filter-aid particles; c and

cFA are the concentrations of impurities and filter aid, respectively; KS is a model constant. r0

is determined experimentally or estimated using Darcy’s law; KS is determined experimentally

for a given system of substances. Expressed in terms of permeablities, the Sutherland equation

reads

k = k0 ·exp
(
−KS ·

c
cFA

)
. (2.47)

It is important to note that most practice-oriented works on filtration use mass concentra-

tions, i.e., c as component mass per total volume. In this manner, the Sutherland equation was

developed for mass concentrations of filter aids and impurities. On the contrary, most theo-

retical works use volume concentrations, i.e., c as component volume per total volume. For

example, this treatment is more closely linked to the volumetrically defined variables of porosity

and specific deposit as discussed in Section 2.1.2. Trivially, volume concentrations cv and mass

component concentrations cm are linked by the component densities ρc, i.e.

cv =
cm

ρc
. (2.48)
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Throughout this thesis, only volume concentrations are used when filtration is treated. For

reasons of readability, therefore, the index v is omitted.

As indicated by the title of the section, only basic equations were introduced at this point. In

order to obtain a closed description, additional relations are needed. However, these constitutive

equations are introduced directly in the case studies of Chapters 4 and 5.

2.3 Optimal Control

Optimal control is a broad field, spanning purely mathematical investigations as well as applica-

tions in many branches of engineering. The classical theory is summarized in various textbooks

(Bryson Jr. and Ho, 1975; Kirk, 2004; Lewis et al., 2012; Papageorgiou et al., 2012; Upreti,

2013). For this reason, only those parts of optimal control theory that are actually used in

this dissertation are reviewed here. Generally, the formulation of an optimal control problem

requires

• A system model,

• A performance criterion, and

• Physical constraints, if applicable (Kirk, 2004, p. 4).

To be more precise, optimal control problems comprise state variables y and control variables u
of the system under consideration; the system model usually has the form

ẏ = fS(x,y,u(x)) , (2.49)

where x is the independent variable. However, also other system models are encountered, e.g.,

partial differential equations, as used in Chapters 4 and 5, which naturally comprise more than

one independent variable. Solving optimal control problems consists in determining paths of

the control variables u so that a given performance criterion or cost measure J is minimized, i.e.

the optimal control task is

min
u

(J(u)) . (2.50)

2.3.1 Types of Objective Functionals

The cost or performance measures in optimal control are usually referred to as objective fun-

tionals. They are named functionals because they assign scalars to input functions. Commonly,

three types of objective funtionals are used in optimal control:

• Lagrangian type

• Mayer’s type

• Bolza’s type
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The Lagrangian objective functional is defined as

J(u) =
∫ xe

x0

fL(x,y(x,u(x)),u(x))dx . (2.51)

Thus, in this case an integral measure over the whole range of the independent variable [x0 xe] is

minimized. Mayer’s objective functional, on the contrary, implies only an optimization of some

end state-dependent measure fM. It is defined as

J(u) = fM(xe,y(xe)) . (2.52)

Bolza’s objective functional is a combination of the Lagrangian and the Mayer type, being de-

fined as

J(u) = fM(xe,y(xe))+

∫ xe

x0

fL(x,y(x,u(x)),u(x))dx ; (2.53)

it, thus, contains end state components fM and integral components fL which can be weighted

differently.

2.3.2 Classification of Problems

Besides the type of objective functional, optimal control problems are further classified according

to the following criteria (Upreti, 2013, pp. 153-184):

• Range of independent variable: fixed xe vs. free xe

• Final states: fixed final states ye vs. free final states ye

• Constraints: on states y and/or controls u

Note that due to the fact that often time is the independent variable, fixed xe and free xe are

usually referred to as “fixed final time” and “free final time”, respectively. If the control variables

u are constrained, trajectories of u that satisfy these constraints over the entire interval of the

independent variable are called admissible controls. Analogously, admissible states denote

states satisfying any given state constraints (Kirk, 2004, pp. 7-8).

The introduced classifications are used in the derivation of conditions for optimality, as dis-

cussed in the next section. The same criteria also guide the selection of numerical methods to

solve optimal control problems; they will be introduced in Section 3.2.2 of the next chapter.

2.3.3 Necessary Conditions

Optimal control problems can be solved by so called direct and indirect methods. The direct

method that is used to numerically solve problems based on full models is presented in Sec-

tion 3.2.2. Indirect methods employ the calculus of variations to derive a set of necessary and

sometimes also sufficient conditions for optimality. Some basic conditions are introduced in this

section and are used later on to derive analytical optimal control solutions for simplified models.
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The conditions are introduced here for the simplest case, i.e., for a fixed range of the indepen-

dent variable and a free end state (Upreti, 2013, p. 161). This is exactly the type of problem

encountered in the derivation of the analytical solutions for the two case studies of Chapters 4

and 5.

To simplify the theoretical treatment, usually the Hamiltonian is introduced as a new com-

bined function

H = fL +ψ · fS , (2.54)

where ψ are the Langrange multipliers or costates. The three main necessary conditions are

called state equation, costate equation, and control condition; all three are formulated in terms

of the Hamiltonian. The state equation reads:

∂H
∂ψ

= ẏ = fS(x,y,u(x)) . (2.55)

The control condition is

∂H
∂u

= 0 . (2.56)

The costate equation is given as

∂H
∂y

=−ψ̇ . (2.57)

Additionally, the costates must satisfy

ψ(xe) = 0 (2.58)

in case of Lagrangian objective functionals. The initial condition for the states is

y(x = x0) = y0 . (2.59)

2.3.4 Short Review of Relevant Optimal Control Applications

In this section, relevant optimal control studies are reviewed. Relevance is understood here with

respect to the practical implementation of the corresponding strategies. The studies may differ

in their mathematical structure and the applied solution methods. As already mentioned, nu-

merical optimal control methods will be examined in the next chapter. With practical application

as the relevance criterion, filtration is relevant because it is exactly the main field considered in

this thesis. It is known phenomenologically that filters with spatially varying properties have

favorable properties, as discussed in detail in Chapter 4. Such filters are very similar to other

porous structures with properties that vary in space. Therefore, optimal control in space is

relevant, especially when porous structures are addressed.
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As already indicated in Chapter 1, there are very few optimal control approaches in filtration

research. All publications known to the author are concerned with some form of membrane

filtration and address optimal control in time; these studies are introduced now.

Dynamic programming was used by van Boxtel et al. (1992) to optimize the performance of

a one-stage reverse osmosis plant. By applying an overall cost-model, the optimal flow rates and

process pressures were determined; membrane fouling was also accounted for. The trajectories

in time were compared to optimal constant values of the control variables and benefits were

found.

Blankert et al. (2006) presented the optimal control of flow rate for dead-end membrane

filtration and found that constant power filtration is optimal, an operational mode that lies

between the usual modes of constant-pressure and constant-rate filtration. All computations in

this paper were conducted analytically using similar optimality criteria as defined in this chapter.

Blankert et al. (2007) extended the previous work and included the effect of compressible cakes

build-up on the filter membranes for which the solution is determined numerically. Blankert’s

work is summed up in his dissertation (Blankert, 2007).

Zondervan and Roffel (2008) optimized the chemical cleaning in dead-end ultra filtration. A

bang-bang control of cleaning flow and cleaning agent concentration was found to be optimal.

Bang-bang control implies that the control variables switch abruptly between constant values;

in this case, they change between zero as the lower bound and some prescribed upper bound.

The result of the optimal control approach are optimal switching points. This and further work

along similar lines is summed up in Zondervan’s dissertation (Zondervan, 2007).

Paulen (2012) applied dynamic programming to optimize batch membrane diafiltration. He

determined how an impurity-free diluant should by dosed to the feed solution to minimize

separation time or amount of added diluant. Pontryagin’s mimimum principle was applied to

arrive at analytical solutions, control parametrization was chosen as the numerical method.

In this thesis, mainly optimal control in space is aimed at. This is contrary to most optimal

control studies where time is the independent variable, also reflected in the standard terminol-

ogy for problem classification, e.g., “fixed end time”. There are, however, also various studies

that determine spatial trajectories of the optimal control variables. Classical works are con-

cerned with plug-flow reactors; those are introduced first.

Horn (1961) computed optimal stationary temperature profiles along the length of tubular

reactors. A similar problem was addressed by Chou et al. (1967) where the temperature pro-

file that maximizes yield was determined for tubular reactors including catalyst decay. Ogunye

and Ray (1971) determined the optimal catalyst distribution along the length of tubular reac-

tors also in case of decaying catalysts. Besides these early studies, similar problems were also

treated in newer publications. Johannessen and Kjelstrup (2004) determined optimal tempera-

ture profiles to minimize entropy production in case of SO2 oxidation in a tubular reactor. They

also optimized the reactor length, i.e., they solved a problem variable in the end value of the

independent variable.
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The main focus of this work is the optimization of filter structures along spatial coordinates.

To the knowledge of the author, this has not been addressed so far. There are, however, other ap-

plications where similar questions were posed and answered. One example is the determination

of spatial configurations to optimize controlled drug delivery. In this manner, Lu et al. (1998)

applied optimal control theory to optimize the layered structure of polymer matrices and the

embedded amount of drugs therein to control drug release. Similarly, Georgiadis and Kostoglou

(2001) used dynamic optimization to determine optimal initial drug profiles for controlled re-

lease from multi-layered polymer matrices.

Another area where material structures are directly optimized along spatial coordinates is

heat-insulation research. This is a particularly interesting application because porous media,

similar to filter structures, are addressed. Venkataraman et al. (2004) and Zhu et al. (2004)

determined optimal density and solidosity profiles, respectively, to improve the thermal insula-

tion properties of foam materials. Both works explicitly address functionally graded materials

(FGM), i.e., materials that locally vary, for example, in their density, geometry, or material

composition. Du et al. (2009) presented profiles for optimal porosity distributions in fibrous

insulation layers. However, the resulting curves are rather jagged, a fact that casts doubt on the

validity of their numerical approach. Even though the last three studies do not refer explicitly to

optimal control theory, they are mentioned here, because in all three cases, spatial trajectories

of a control variable that optimize some overall heat-transfer measure were determined. In a

new study, Hao et al. (2016) investigated the optimal 1D and 2D porosity distributions in heat

insulation layers. Fixed mass and thickness of the material were used as constraints.

Optimal profiles in space are also determined in battery design, an application that again

relies heavily on porous material structures. Ramadesigan et al. (2010) optimized the spatial

void distribution in electrodes of Li-ion batteries by using a control-parametrization method

with six piece-wise constant segments. Ohmic resistance is decreased by distributing the same

amount of material with locally varying porosities. Similar results were presented by the same

group at a conference (Methekar et al., 2010). Golmon et al. (2014) used a gradient-based

method to determine optimal distributions of electrode porosity and radii of particles embedded

in the host electrolyte of Li batteries. Their multi-objective optimization of functionally graded

electrodes showed benefits for the usable battery capacity over a range of discharge rates while,

at the same time, mechanical stresses were limited. However, the study of Daia and Srinivasana

(2016) critically examined previous results of electrodes with graded porosity and claimed that

some of the found benefits are only due to comparison with unsuitable base cases.

2.3.5 Identifying Optimal Control Problems and Evaluating their Results

After having introduced the basic concepts and some relevant applications, two questions re-

main:

1) How are worthwhile optimal control problems identified?

2) How are the results of optimal control approaches evaluated?
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The hypothetical answers gathered in this section will be further used when the optimal con-

trol results of the two case studies in the Chapters 4 and 5 are discussed as well as when the

applicability of the strategies of this thesis to other applications is explored in Chapter 6. Op-

timal control cases which reduce to simple optimization problems and problems in which the

optimum is a constant control variable are called trivial. Worthwhile, i.e., non-trivial problems

result when the following criteria are fulfilled (1):

a) The optimal control problem conforms to the formal criteria introduced above. Using two

examples, it is shown how trivial optimal control problems result, if this is not the case.

First, if the control variables u are not allowed to be functions of the independent variable

x, the optimal control problem reduces to an optimization problem. Second, if the current

state is not coupled to states at other times or other locations, i.e., if the system equation

is no differential equation as shown in Eq. 2.49, the optimal control problem reduces to

an optimization problem at each point along the independent variable.

b) Either, the control variables directly contribute to the costs described by the objective

functional J, or there are some over-all constraints on the control variables, e.g., that they

must have a fixed integral value. If neither is the case, the optimum is simply given by the

extrema of the control variables, i.e., by constant values.

These criteria can serve as guidelines to identify worthwhile optimal control solutions prior

to the actual computations. Once optimal control solutions are reached, the question remains,

how much is gained by them (2). It is common to evaluate to what extent the optimal control

trajectories perform better than optimal constant values, as, e.g., done in the study of van Boxtel

et al. (1992) introduced in the last section, or how much superior the optimal trajectories are

compared to the constant control values indeed used in practice (which often are not the optimal

ones).

Also, care must be taken that the optimal control results are indeed juxtaposed with truly

comparable scenarios. As shown in Section 2.3.4, a similar point was made by Daia and Srini-

vasana (2016) by criticizing the use of unsuitable base cases for judging the optimization results

in battery design. When judging optimal control outcomes, the only difference between the op-

timized scenario and the base case should be the paths of the control variables; often, this needs

to be assured by additional constraints. If, say, the goal is to maximize the yield of some chem-

ical reaction, it is not enough to compare the increased yield achieved by the optimal control

policy, but also the probably higher energy expenditure for the optimal approach needs to be

accounted for. In this example, therefore, additional constraints should assure that the energy

expenditure is indeed the same in the reference case and the optimally controlled case. Alterna-

tively, energy expenditure can be also included in the performance measure. It will be seen later

on in this thesis, however, that it is often impossible to change the control variables alone; this

principle, thus, is an idealization. In the case studies of the Chapters 4 and 5 as well as when

further applications are discussed in Chapter 6, all process characteristics are depicted by flow

charts which are also used to motivate the chosen optimal control approach. Figure 2.7 provides
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an illustration of such a flow chart. Overall constraints, important for non-trivial solutions (1,

b) as well as for the evaluation of results (2), are shown in green boxes that are connected to

the corresponding variables by dashed lines. Control variables are shown in orange. The inter-

dependency between different process variables is shown by solid lines, when an increase in the

first leads to an increase in the second, and by dash-dotted lines, when an increase in the first

variables causes a decrease in the second variable.

Process variable

Process variable Process variable Process variable

Process variable

Overall 

constraint

Positive influence

Negative influence

Constraint

Control variable

Figure 2.7: Illustration of causality diagrams.

A last remark is made with respect to the evaluation of optimal control results. Based on the

above reasoning, a constant value of control variables resulting from optimal control computa-

tions has zero benefit because it is the same as the optimal constant value determined from a

simple optimization approach. However, prior to the optimal control computation, it might not

have been obvious that a constant value is indeed optimal despite the provided guidelines. If this

is the case, the optimal control approach indeed had some benefits. Thus, one has to be aware

of the psychological effect called hindsight bias (Kahneman, 2012, pp. 201-204, 218), some-

times also referred to as retrospective distortion (Taleb, 2007, pp. 8, 310), when evaluating

optimal control outcomes. Hindsight bias denotes the effect that results, once they are known,

often seem completely obvious and it is impossible to imagine not to have known them before-

hand; however, it would have been indeed impossible to predict the outcome intuitively in a

correct way ex ante. In optimal control, this forwards-backwards asymmetry in reasoning is also

reflected in computation times: To determine an optimal control solution is much more compu-

tationally expensive than to perform forward computations with the optimal trajectories of the

control variables. Furthermore, it needs to be remembered that, even though it is sometimes
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possible in predict improved control policies intuitively in a qualitative way, the quantitatively

optimal trajectories are only obtained by applying optimal control methods.
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Chapter 3

Numerical Methods

This chapter introduces the numerical methods that are used throughout this work. It, thus, pre-

vents that the same strategies need to be repeated in the discussion of the different case studies.

The presented material is intended as a short toolbox; therefore, the numerical methods and

especially the used terminology is briefly summed up so that this thesis remains self-contained.

All strategies are discussed in much more detail in the literature to which the corresponding

references are made. Computations were performed without exception using MATLAB (version:

2015a, supplier: The MathWorks, Natick/Massachusetts).

3.1 Partial Differential Equations

A differential equation contains derivatives of functions f . If a differential equation contains only

one independent variable, such as time or one spatial dimension, it is called an ordinary differ-

ential equation (ODE); in this case, derivatives are written as d f/dx. If a differential equations

depends on more than one independent variable, it is called a partial differential equation

(PDE); the corresponding derivatives are then written as ∂ f/∂x, ∂ f/∂y, etc. PDEs arise in vari-

ous disciplines and are therefore of the utmost importance to scientists and engineers. Examples

are the Maxwell equations of electrodynamics, the Navier-Stokes equations of fluid mechanics,

and Schrödinger’s equation of quantum mechanics, in each of which the functional variables

depend on space and time and are also derived with respect to these independent variables.

PDEs can be classified according to different criteria which also guide the search for suitable

numerical methods to solve the corresponding equations. The order of a PDE denotes its highest

partial derivative, e.g., an equation containing ∂ 2 f/∂x2 as the highest derivative would be of the

second order. PDEs can be linear or nonlinear; the former implies that the functional variable

f and its derivatives appear only linearly, e.g., not multiplied with each other or squared as f 2.

Generally, second order linear PDEs can be written as

A · ∂
2 f

∂x2 +B · ∂ 2 f
∂x∂y

+C · ∂
2 f

∂y2 +D · ∂ f
∂x

+E · ∂ f
∂y

+F · f = G . (3.1)

35
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A PDE is homogeneous if G(x,y) is 0 for all x and y, otherwise it is called inhomogeneous.

Another classification is with respect to constant or variable coefficients A to G. The same

coefficients are also used to group linear PDEs into parabolic, hyperbolic, and elliptic PDEs.

• If B2−4AC = 0, the equation is called parabolic.

• If B2−4AC > 0, the PDE is said to be hyperbolic.

• If B2−4AC < 0, the equation is classified as elliptic1.

Typical examples for parabolic PDEs are heat and diffusion equations, for hyperbolic PDEs

wave and advection equations, and for eliptic PDEs Laplace and Poisson equations (Farlow,

1993, pp. 3-7).

3.1.1 The Method of Lines and Finite Difference Approximations

Among the most popular numerical strategies to solve PDEs is the method of lines (MOL)

(Schiesser and Griffiths, 2009). It proceeds by an approximation of the derivatives with re-

spect to all independent variables excluding one. Usually, all spatial derivatives are substituted

so that only time derivatives remain. Approximation of derivatives is usually based on finite

difference (FDM), finite volume (FVM), or finite element methods (FEM). After applying one of

these approximation schemes, the initial PDE problem is reduced to a system of ODEs and can

be solved by standard ODE solvers (Schäfer, 2006, pp. 150-151; Wouwer et al., 2014, p. 125).

In this work, MOL is used together with finite difference approximations. FDM are based

on the opposite principle as derivations in differential calculus: derivatives are substituted by

difference quotients, i.e., d f/dx is substituted by ∆ f/∆x. In case of simple equations, such as the

linear advection equation or the one-dimensional diffusion equation, it is still possible to ana-

lytically derive quality criteria to be met for the use of approximation schemes. However, for a

theoretical discussion of the relation between consistency, stability, and convergence, the reader

is referred to the corresponding literature, e.g., Schäfer (2006). Contrary to simple textbook

examples for which sometimes, e.g., the stability of numerical methods can be proven theoret-

ically, numerical schemes for more complicated models, such as the Navier-Stokes equations of

fluid mechanics, are often chosen based on established heuristics (Ferziger and Perić, 2002, p.

32). Instances for such heuristics that are also used in this dissertation are:

• Spatial derivatives of the first order, i.e., of the advection type, are best approximated by

upwind schemes (Carver and Hinds, 1978; Wouwer et al., 2014, pp. 151, 200).

• Derivatives of the second order, i.e., of the diffusion type, are best approximated by central

schemes (Wouwer et al., 2014, pp. 151, 200).

• Steep moving fronts can be treated by upwind schemes, adaptive grid methods, or flux

limiters (Wouwer et al., 2014, pp. 285-286).
1Sometimes, the factor 4 is omitted in these criteria due to a different problem framing; however, the formulation

here consistently follows Farlow (1993).
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• Problems that are stiff in the time dimension, i.e., that include strongly differing time

scales2, are addressed by implicit ODE solvers (Wouwer et al., 2014, p. 154).

The main equations encountered in the case studies of Chapters 4 and 5 are of the hyper-

bolic type and are inhomogeneous due to the presence of sink terms. Using the just-mentioned

heuristics, the following solution schemes are applied:

• Spatial derivatives of the first order without steep moving fronts are approximated by a

five-point upwind scheme (Bickley, 1941).

• Spatial derivatives of the first order with steep moving fronts are approximated by a flux-

limiter scheme; more details are provided in the following Section 3.1.2.

• Due to varying time scales, all sets of time-dependent ODEs resulting from the MOL are

solved using ode15s, a solver for stiff ODEs in MATLAB. ode15s is an implicit solver in

which the order of the approximation scheme is adapted (Shampine and Reichelt, 1997).

3.1.2 Treating Discontinuities by Flux Limiters

Numerical problems are encountered with most solution strategies for PDEs around disconti-

nuities or sharp changes in the solution. Commonly, the results are spurious oscillations, also

referred to as “wiggles”. Strategies to address these problems were mentioned in the last section,

some of which, such as upwind finite-difference schemes, can handle only mild discontinuities

(Wouwer et al., 2014, p. 286); flux limiters, on the contrary, are robust with respect to the

changes in the solution. Because large discontinuities are encountered in the case study on

filter-aid filtration of Chapter 5, a flux-limter scheme is used. Flux limiters switch between high

numerical resolution in regions where the solution is smooth and low resolution around sharp

fronts. Detailed information on the theory of flux limiters can be found in LeVeque (1992) and

Wouwer et al. (2014).

To solve the system equations of filter-aid filtration, a van-Leer flux limiter is used (van Leer,

1974). Assuming a homogenous grid, the spatial derivative is written as

∂ f
∂ z

=
fi+1/2− fi−1/2

∆z
, (3.2)

with fi+1/2 being the flux between node i and i+1 and fi−1/2 the flux between node i−1 and i.

The ratio ri between two consecutive solution derivatives is

ri =

yi+1−yi
∆z

yi−yi−1
∆z

=
yi+1− yi

yi− yi−1
, (3.3)

where yi is the dependent variable. In case of the van-Leer flux limiter, the limiter function is

2Note that this is a simplified notion; the concept of stiffness is more involved and unambiguous definitions are
hard to come by (Spijker, 1996).
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φ =
r+ |r|
1+ r

, (3.4)

which adapts the solution accuracy between first and second order according to

yi+1/2 = yi +
φ(ri)

2
(yi− yi−1) (3.5)

yi−1/2 = yi−1 +
φ(ri)

2
(yi−1− yi−2) . (3.6)

Note that here an upwind formulation is presented; the shown equations are only applicable if

d f/dy > 0. The analogue formulations for d f/dy < 0 are omitted for reasons of brevity and can

be found, e.g., in Wouwer et al. (2014, p. 308).

3.1.3 Handling Moving Boundaries by the Front-Fixing Method

Computational domains of PDE problems are often bounded; this is also the case for the method

of lines as used in this work. When the domain boundaries are not known, it is distinguished

between free and moving boundary problems. In the former case, boundaries do not move;

however, the fixed position of the boundary is not known ad hoc but is determined as part of

the overall problem solution. On the contrary, in moving boundary problems, the position of the

domain boundary changes with time. Due to the growing filter cake height in surface filtration,

this process leads to a moving boundary problem. For this reason, this problem-type is relevant

for the present work.

Moving boundary problems can be treated by different numerical methods. For example,

adaptable grids can be used, i.e., the spatial discretization is adjusted according to the current

position of the boundary in each time step. An overview of classical methods is found in Crank

(1984). In this work, a coordinate transformation called the front-fixing method is used. It was

chosen because it already proved useful in studies of cake filtration (Stamatakis and Tien, 1991;

Tien, 2006).

Basic relations are now briefly derived for a 1D problem with the moving boundary L(t). The

derivation follows roughly Crank (1984, p. 187) and Nielsen et al. (2002), but is adapted to the

form needed in this work. The obtained relations are directly used to treat the system equations

of the case study on filter-aid filtration in Chapter 5. To transform the moving boundary problem

into a problem with a steady boundary, the new spatial coordinate

η =
z

L(t)
(3.7)

is introduced, which fixes the boundary at η = 1. Between an arbitrary space- and time-

dependent function f (z, t) in the original coordinate system and the corresponding function

f̂ (η , t) in the transformed coordinate system, the following relationship must hold:
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f (z, t) = f̂ (η , t) (3.8)

i.e., the function values at z and the corresponding location η must be identical. Functions in

the new coordinate system are marked by the hat accent. Deriving Eq. (3.8) with respect to z

and t leads to:

∂ f
∂ z

=
∂ f̂
∂η
· ∂η

∂ z
(3.9)

∂ f
∂ t

=
∂ f̂
∂ t

+
∂ f̂
∂η
· ∂η

∂ t
. (3.10)

If the definition of η from Eq. (3.7) is introduced to the Eqs. (3.9) and (3.10), the final relation-

ships are obtained:

∂ f
∂ z

=
1
L
· ∂ f̂

∂η
(3.11)

∂ f
∂ t

=
∂ f̂
∂ t
− η

L
· dL

dt
· ∂ f̂

∂η
. (3.12)

3.2 Optimization

Numerical strategies to solve optimal control problems often consist in the reduction to conven-

tional optimization problems. For that reason, some optimization basics are introduced before

the applied numerical optimal control method is discussed.

3.2.1 Basic Terminology and Algorithms

In computational optimization, a cost function or objective function J(x) is minimized. If no fur-

ther conditions are imposed, this is an unconstrained optimization task. As long as J(x) linearly

depends on the parameters x, this is a linear optimization, otherwise it is called nonlinear.

Additional conditions of the form

g(x) = 0 (3.13)

and

h(x)≤ 0 (3.14)

are called equality and inequality constraints, respectively. Analogously to the cost function,

also the constraints g(x) and h(x) are classified according to their dependency on x in nonlinear

and linear.

Similar to the selection of numerical solution methods according to the classification of the

system equations, optimization algorithms are chosen based on the categories just introduced.

In this manner, MATLAB offers a decision table for algorithm selection (The MathWorks, 2017).
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Broadly, these algorithms can be divided into two categories: gradient-based and gradient-free

methods. In the first class of methods, exact or estimated gradients are used to speed up the

search for the minimum.

In this work, MATLAB’s gradient-based fmincon algorithm is used. Using the default settings,

gradients are estimated based on a first-order forward finite-difference scheme using external

numerical differentiation, i.e.,

dJ(xi)

dxi
≈

J(xi +
√

εp)− J(xi)√
εp

, i = 1,2, . . .n , (3.15)

where εp is the machine precision and n is the number of parameters. All used cost functions

consist of the full model equations and are, therefore, nonlinear. Equality as well as inequality

constraints are used.

3.2.2 Numerical Solution Strategy for Optimal Control

Sargent (2000) distinguishes three types of numerical solutions strategies for optimal control

problems; these are:

• Solution of the boundary value problem based on the necessary conditions for optimality,

as introduced in Section 2.3.3.

• Converting the problem into a finite-dimensional nonlinear program by complete dis-

cretization.

• Parameterization of only the control trajectories resulting also in a nonlinear program,

however, with the objective and constraint functions still being evaluated by integrating

the system equations along the independent variable.

The first strategy is usually referred to as an indirect method, the latter two as direct methods.

In direct optimal control methods, the optimal paths are determined directly from the system

equations, i.e., not by using the necessary conditions for optimality.

In this work, a method of the third type is used. This is due to the smaller number of

parameters to be determined by optimization compared to complete discretization. The first

method is often not suitable for problems based on PDEs, as encountered in this dissertation,

because necessary conditions are not always known.

Particularly, the direct method of control parameterization (Goh and Teo, 1988) in combi-

nation with a direct single shooting method (Hannemann-Tamas and Marquardt, 2012) is used

to numerically solve the optimal control problems based on the full model equations, i.e., as

explained, optimal control problems with PDE constraints. The method proceeds as follows: At

first, a linear profile is assumed and the two end points are determined optimally, i.e., such that

they minimize the given objective functional. In the second step, a new point is introduced in

the middle between the start points. The new point is initialized with the mean value of the two



Chapter 3. Numerical Methods 41

previously optimized points and a new optimization run is conducted. All further iterations con-

sist of analog bisections and initializations. In each optimization step, the points obtained are

connected linearly. If enough points are generated, any profile, including strongly non-linear

trajectories, can be approximated (Goh and Teo, 1988). Figure 3.1 illustrates the numerical

strategy.
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Figure 3.1: Illustration of numerical optimal control strategy; exemplary trajectory of control
variable after first (a), second (b), and third iteration (c).
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Chapter 4

Depth Filtration

Depth filters are mostly designed on the basis of trial and error. To address this methodological

gap, a new technique to optimize filter design is introduced in this chapter, which is based on

the recent publication of Kuhn et al. (2017a). Using optimal control theory, paths of the filter

coefficient, a measure for local filtration performance, are determined along the filter depth.

An analytical optimal control solution is derived and used to validate the numerical method.

Two optimal control scenarios are solved numerically: In the first scenario, local filtration per-

formance is optimized to achieve homogeneous deposition of impurities over the filter depth.

The second scenario aims at maximizing the time until some maximal pressure drop is reached.

Furthermore, a computational strategy is presented to transform the continuous filter-coefficient

trajectories into discrete layers suitable for practical design. All optimized scenarios are com-

pared to a one-layered filter design and significant improvements are found. As this approach

is based on strongly validated and widely used filtration models, the presented methods are

expected to have broad applicability.

4.1 Introduction

Depth filters come in various designs and are used for a whole range of different purposes. Thin

filter media in the form of sheets can be based on the mechanism of depth filtration as well as

packed beds of particles or fibers (Sutherland, 2008). Depth filtration is used for many different

applications, from the cleaning of gases to the purification of liquids, the latter being the main

focus of this chapter. All realizations and applications of depth filters are characterized by the

fact that the particles to be separated from the fluid are captured within the filter medium,

as contrasted to pure cake filtration, wherefore these particles are usually significantly smaller

than the pores of the filter. When depth filtration is used, usually, the cleaned fluid is aimed

at in contrast to other solid-liquid separation processes, in which the separated solids are the

valuable products.

From the vast literature on depth filtration, two items of phenomenological knowledge are

most important for the present chapter: First, separated matter is usually deposited very inho-

mogeneously over the height of depth filters, with most of the deposit located at the filter inlet;

43
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second, layered filter designs often perform better than homogeneous filters in terms of achiev-

able filtration times or pressure drop. Some of the studies pointing in this direction are reported

in the following paragraphs.

Tien et al. (1979) simulated the dynamics of depth filters using continuum models and vali-

dated their results via a comparison with experimental data. They found the most pronounced

deposit at the fluid inlet and a decreasing profile toward the outlet. Similar results for inho-

mogeneous deposition of solids obtained from classical continuum models have been reported,

e.g., by Bai and Tien (2000); moreover, a summary of continuum approaches is also found in

Tien and Ramarao (2007). Burganos et al. (2001) presented deposit curves simulated by net-

work models that show the same inhomogeneous deposition of impurities. Yoon et al. (2006)

experimentally determined deposit as a function of filter height by imaging a filter of packed

glass beads and also found decreasing deposit along the flow direction. Kandra et al. (2014a)

detected a similar inhomogeneous deposit in storm water filters. Mirabolghasemi et al. (2015)

conducted micro-scale simulations using real porous media geometries obtained by tomography

and found the strongest reduction in porosity due to particle deposition at the fluid inlet.

In the history of filtration, various set-ups have been tried out in which particle size was

varied along the filter depth, e.g., to improve filtration performance or make the filter easier to

clean (Baker, 1948). Fulton (1981) gave a historical account of filtration in the 20th century

and showed that layered depth filters were already used in the pre-World War II period. They

were justified by their improved solid-holding capacity. However, in some cases, the realiza-

tion of filters comprising layers of differently sized particles was prevented owing to the loss of

particle-size grading along the bed height during filter cleaning by backwashing. This problem

was overcome partly when materials of different densities were used that sustained the particle-

size gradient after backwashing due to their differing settling behaviors. Layered filter designs

have been also introduced in various current textbooks. Wakeman and Tarleton (1999) men-

tioned that sand filters are often designed with coarser particles at the fluid inlet. Sutherland

(2008, p. 212) referred to multi-media filters for water treatment, i.e., depth filters with coarser

particles on top, resulting in larger pores at the water inlet. These stratified designs were justi-

fied with a more favorable clogging behavior. In recent studies by Kandra et al. (2012), Kandra

et al. (2014b), and Kandra et al. (2014a), it was found that layered storm water filters allow for

longer filtration times, compared to homogeneously packed beds.

Based on these two observations, namely inhomogeneous clogging and advantages of lay-

ered filter designs, it is hypothesized that homogeneity of the deposit profile within the filter

can be increased by varying the local filtration performance. Furthermore, it is assumed that

a specifically tailored deposit profile leads to lower pressure drops and, therefore, allows for

longer filtration times, given a constant flow rate. The third hypothesis is that layered filters are

only an approximation of the true optimum trajectory of filtration performance along the filter

depth.

Methods for determining such optimal trajectories are provided by optimal control theory.

Thus far, this approach is rarely used in filtration and the few studies on the subject are summed



Chapter 4. Depth Filtration 45

up in Section 2.3.4. Additionally, Kuhn and Briesen (2015) addressed filter-aid filtration in the

case of pure surface filtration by optimal control theory, which will be also considered in the

next chapter. To the author’s knowledge, the present chapter summarizes the first application of

optimal control theory to depth filtration as it was published in Kuhn et al. (2017a). Preliminary

work on the topic was presented at a conference (Kuhn and Briesen, 2016b). Contrary to most

optimal control studies in which the control variables are determined as functions of time, the

method is applied here to a variable in space. Studies from other fields, where also optimal

control along spatial coordinates was conducted, were introduced in Section 2.3.4.

As in all optimal control approaches, computational efficiency of the models used is crucial.

To find the optimal trajectory of the control variable, the model equations need to be solved

many times. Therefore, computation times of the order of seconds are desirable. For that reason,

classical continuum models of depth filtration are used instead of the now often-used pore

scale models, e.g., Mirabolghasemi et al. (2015). Due to the extensive literature on continuum

treatment of depth filtration, the reader is referred to the summaries of Herzig et al. (1970), Tien

and Ramarao (2007), Zamani and Maini (2009), and Molnar et al. (2015). Using the classical

continuum approach along with some constitutive relationships offers the further advantage that

the presented method remains very general. The models used have already been validated for

a broad variety of applications, and parametrization strategies are known (Zamani and Maini,

2009).

The goal of this chapter is, therefore, not to optimize a specific case of depth filtration but

rather to introduce a general method applicable to many problems. For that reason, all results

below are shown in non-dimensional form, and the actual numerical values are not stressed

much because they depend strongly on the case at hand. In all shown case studies, the local

filtration performance, as expressed by the filter coefficient, is optimized along the filter depth.

Two optimal control scenarios are shown. In the first scenario, the objective is to achieve a

completely homogeneous deposition within the filter. For this scenario, also an analytical opti-

mal control solution based on a simplified model is derived which is used to validate the numer-

ical method. Motivation for the first scenario comes from remarks in the literature that consider

inhomogeneous clogging of depth filters as disadvantageous (Baker, 1948; Fulton, 1981). Opti-

mizing for homogeneous deposition within the filter offers the additional benefit that validation

is very straightforward, meaning that one can observe directly whether the goal was reached. In

practice, the objective is often to maximize filtration time, i.e., the time until some maximum dif-

ferential pressure that can be provided by the system is reached (Sutherland, 2008). However,

ad hoc, it is not clear whether homogeneous deposition within a filter, as addressed in the first

scenario, automatically yields the longest possible filtration times as well. Therefore, filtration

time is maximized directly in the second optimal control scenario and the results are compared

with those of the first scenario. Given that the optimal trajectories of the filter coefficient are

hardly useful for practical filter design , a method for transforming the continuous trajectories

into any number of discrete filter layers is introduced. By using this method, layered solutions
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are derived for both optimal control scenarios, and the performance of the layered filter designs

is compared to those of the optimal configurations.

To pick up the second optimal control scenario, the proposed approach is expected to be

beneficial for the following reasons:

• Smaller characteristic length scales of the filter bed, e.g., particle diameters, lead to an

increased local filtration performance and, therefore, higher local deposit.

• Smaller characteristic length scales of the filter bed also imply a higher local pressure drop.

• Without any local control of filtration performance, depth filters show the strongest clog-

ging at the inlet.

• Local clogging, increases the local pressure drop.

• Clogging can be made more homogeneous and the increase in overall pressure drop, there-

fore, smaller by locally varying the characteristic length scale.

• At the inlet, larger characteristic length scales are desirable to counteract the more pro-

nounced clogging there.

• A decrease in characteristic length scale towards the filter outlet is expected to be benefi-

cial.

The mentioned process causalities are also depicted in the flow chart of Figure 4.1. Further-

more, an overall constraint on the local filtration performance is shown in the figure. According

to the discussion of Section 2.3.5, the constraint assures that the different scenarios are compa-

rable; this issue will be further discussed when the optimal control strategy is explained. In the

next section, the causal relationships of Figure 4.1 are expressed by the corresponding model

equations.

Overall energy 

expenditure

Local impurity 

concentration
Distance to inlet

Local pressure 

drop

Overall filtration 

performance 

fixed

Positive influence

Negative influence

Constraint

Local filtration 

performance
Local deposit

Figure 4.1: Process causalities in depth filtration.
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4.2 Model

4.2.1 Model Equations

To model depth filtration, the classical continuum mechanics approach is used, consisting of the

mass balance equation

ε · ∂c
∂ t

+q · ∂c
∂ z

=−∂σ

∂ t
(4.1)

along with some constitutive relations. ε is the bed porosity; c is the volumetric impurity con-

centration in the suspension; q is the superficial velocity of the suspension; σ is specific deposit,

i.e., deposited volume of impurities per filter bed volume; t and z are the independent variables

time and space, respectively. A model sketch, including the coordinate system and important

variables, is provided in Figure 4.2.

L

q

z

c

Figure 4.2: Model sketch for depth filtration.

Because only constant-rate filtration is considered, q is constant. The general form of Eq. (4.1)

was derived in Section 2.1.2; its application to filtration, including the fact that ε appears out-

side of the time derivative, was discussed in Section 2.2.3. As shown there, ∂σ/∂ t is usually

modeled as
∂σ

∂ t
= λ ·q · c , (4.2)

with λ being the filter coefficient, which describes the efficiency of local filtration performance.

If λ is assumed to be independent of σ , Eq. (4.2) is introduced into Eq. (4.1), and stationary

behavior is considered, Eq. (4.1) reduces to the well-known relationship first formulated by

Iwasaki (1937):
dc
dz

=−λ · c . (4.3)

However, in most cases λ is a function of deposit σ , which is usually formulated as

λ = FDF(σ ,P) ·λ0 , (4.4)
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where λ0 is the filter coefficient of an unclogged bed and FDF(σ ,P) is a functional relationship

describing the dependency of the filter coefficient on specific deposit σ and a number of param-

eters collected in the parameter vector P. For the case presented in Eq. (4.3), FDF = 1.

The local drop pressure d p/dz within the filter follows Darcy’s law:

d p
dz

=−µ ·q
k

, (4.5)

where µ is the dynamic viscosity of the fluid and k the permeability of the solid phase.

The equations presented thus far are generally undisputed and are valid for a broad vari-

ety of applications. However, in order to have an applicable model, these equations need to

be supplemented by additional constitutive relationships. Before discussing these relationships,

some general remarks are in order. Given the wide variety of constitutive relationships in the

literature, it is impossible to investigate a representative sample of them in the present chapter

or to even focus on typical ones. Therefore, simple and intuitive relationships are used that cap-

ture the qualitative behavior of many depth-filtration applications and simultaneously contain

only few parameters. So, the focus here is on the method of optimal control; the constitutive

relationships can be changed easily enough.

λ0, the filter coefficient of an unclogged bed, is subject to different influences such as fluid

viscosity, flow velocity, and filter characteristics, e.g., bed particle diameter. Because only the

latter is of interest for the optimal control problems addressed here, the relationship can be

reduced to

λ0 = a40 ·db40 . (4.6)

Here, d is the characteristic length of the filter microscale, e.g., the bed particle diameter. a40

and b40 are model parameters1; b40 typically ranges between −1.5 and −3, see, e.g., Herzig

et al. (1970). The proportionality constant a40 captures the remaining effects. This relationship

will be employed only for qualitative interpretation of the results and will not be used in actual

simulations. For this purpose, only the inverse relationship between λ0 and d is important. As an

illustration, with increasing bed particle size d, the specific surface and, therefore, the capture

probability of impurities decreases.

FDF, as defined in Eq. (4.4), is formulated as

FDF = 1+a41 ·σ , (4.7)

i.e., a linear relationship between the filter coefficient λ and specific deposit σ is assumed (Tien

and Ramarao, 2007). Reduction of initial porosity ε0 due to deposit σ is modeled as

ε = ε0−a42 ·σ , (4.8)

1All parameters in constitutive equations are denoted in their subscripts by first the number of the chapter and
then the number of the corresponding parameter. In the case of Eq. (4.6), the numbering starts with 0 because
this equation and its parameters are not used for simulations but only for qualitative considerations, as explained
subsequently.
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where a42 is the parameter that accounts for the strength of the effect.

The local permeability of an unclogged bed is a function of the filter coefficient (Herzig et al.,

1970):

k0 = a43 ·λ b41 , (4.9)

where b41 has negative values, illustrating that bed properties that guarantee an effective sepa-

ration of impurities usually also decrease the filter’s permeability. For example, large values of

λ usually correlate with a high specific surface of the filter bed, which also implies a low perme-

ability. Accordingly, Boccardo et al. (2014) showed that smaller bed particles lead to a higher

filtration efficiency, as also given by Zamani and Maini (2009), who mentioned the interplay

between separation efficiency and pressure drop.

Clogging of the filter bed leads to a decreasing fluid permeability and therefore an increasing

pressure drop, which is described by the following equation (Tien and Ramarao, 2007; Alvarez

et al., 2007):

k =
k0

1+a44 ·σb42
. (4.10)

Some authors use a linear dependency on σ in the denominator, i.e., b42 = 1 (Vafai, 2005); also,

non-linear relationships, such as polynomials, are often found (Alvarez, 2005).

4.2.2 Preliminary Considerations

For some preliminary considerations, λ (z) is taken to be independent of the deposited concen-

tration σ but is allowed to vary along the spatial direction z, which implies that the impurity

concentration c(z) exhibits stationary behavior, as is shown in Appendix 4.1. This is a good

approximation for the beginning of filtration if the initial penetration of the suspension is ne-

glected. Thus, the result is Eq. (4.3) which is solved by separation of variables and subsequent

integration over the filter domain [0 L]:

cL = c0 ·exp
(
−
∫ L

0
λ (z)dz

)
= c0 · e−λ ·L , (4.11)

where c0 and cL are the impurity concentrations at the filter inlet and outlet, respectively; λ is

the mean value of the filter coefficient, which is defined as

λ =
1
L

∫ L

0
λ (z)dz . (4.12)

Eq. (4.11) shows that the separation efficiency over a given filter height L, i.e., the reduction in

impurity concentration, depends only on the integral value of the filter coefficient λ (z) over that

same height, implying that only λ is important, regardless of how λ (z) is spatially distributed.

This fact will be used to compare different filter designs, because for a meaningful comparison

some factors must be kept constant, as discussed in Section 2.3.5, and separation efficiency is

one of the most important characteristics of a filter. The choice of λ for a desired separation
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efficiency follows from rearranging Eq. (4.11):

λ =
1
L
· ln
(

c0

cL

)
. (4.13)

4.3 Analytical Optimal Control Solution for Simplified Model

In this section, an analytical optimal control solution for a simplified model is derived with the

goal of achieving homogeneous deposition of impurities within the filter. It is referred to as

Scenario DF-A. As in all of the following optimal control cases, λ (z) is the control variable. The

full model is simplified by assuming that λ (z) is not a function of σ , i.e., a41 = 0, and therefore

FDF = 1. Note that porosity, thereby, vanishes from the equations and does not need to be

accounted for anymore. A mathematical argument for the stationarity of c as long as λ is not a

function of σ is provided in Appendix 4.1. Note that in the entire chapter, λ (z) is used instead of

λ whenever specific reference is made to the spatial dependency of λ . The objective functional

for homogeneous deposit reads

JDF-A(th) =
∫ L

0
[σ(th)−σ(th,z)]

2 dz , (4.14)

where σ(th) is the mean deposit in the filter, and th is the time at which a homogeneous deposit

is aimed at which enters here as a parameter. JDF-A, thus, expresses the variance of σ at th.

From Eq. (4.14), it can be seen that expressions for σ(th) and σ(th) are needed. Integration of

Eq. (4.2) from 0 to th yields

σ(th,z) = q ·λ (z) · c(z) · th . (4.15)

Substituting λ (z) · c(z) using Eq. (4.3) gives

σ(th,z) =−q · th ·
dc(z)

dz
. (4.16)

σ(th) is obtained by averaging σ(th) over the filter height L:

σ(th) =
1
L

∫ L

0
σ(th,z)dz =−q · th ·

∆c
L

. (4.17)

For the desired goal of achieving homogeneous deposit, it must hold that σ(th,z)=σ(th,z), which

implies that JDF-A(th) of Eq. (4.14) becomes exactly 0. This condition yields

λ (z) · c(z) =−∆c
L
. (4.18)

For an explicit formulation of λ (z), c(z) still needs to be substituted. Using again Eq. (4.3) to

substitute λ (z) · c(z) gives
dc
dz

=
∆c
L

, (4.19)
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which, after integration over the filter depth, results in

c(z) =
∆c
L
· z+ c0 , (4.20)

with ∆c = cL− c0, where c0 is the concentration at the filter inlet. Thus, the sought-for spatial

trajectory of the filter coefficient λ (z) is:

λ (z) =−
[
L ·
( c0

∆c
+

z
L

)]−1
. (4.21)

Note, that th completely vanished from the derivation. For the simplified model, the result

of Eq. (4.21) therefore yields a homogeneous deposit at any time, which also implies that

JDF-A(th) = JDF-A. In the results section, the analytical solution is further interpreted and used to

validate the numerical method.

The optimal control solution for λ (z), so far obtained by an analysis of the system equations, is

now checked against the necessary optimality conditions as introduced in Section 2.3.3. Formu-

lated with the variables of this chapter, the conditions are

∂H
∂ψ

=
dc
dz

(4.22)

∂H
∂λ

= 0 (4.23)

∂H
∂c

=−dψ

dz
(4.24)

ψ(L) = 0 , (4.25)

with the Hamiltonian

H = (σ −σ)2−ψ ·λ · c ; (4.26)

c is the state variable and λ is the control variable. The first condition

∂H
∂ψ

=−λ · c = dc
dz

(4.27)

is naturally fulfilled. Note that (σ−σ) = 0 for the assumed solution, which is already substituted

here and in the following equations. The second condition yields

∂H
∂λ

=−ψ · c = 0 . (4.28)

In the case of optimality, it follows that ψ is 0 when c is substituted with the proposed solution.

From the third condition
∂H
∂c

=−ψ ·λ (4.29)
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it follows that dψ/dz = 0 if the assumed solution for λ (z) and ψ = 0 are substituted. Since

ψ is 0 everywhere, it is so also at the final location L, from which it follows that the fourth

condition holds as well. Thus, all four necessary conditions are fulfilled. In the case of convex

objective functionals and the here given linear system equation, the necessary conditions are also

sufficient for optimality (Upreti, 2013). As the objective functional in Eq. (4.14) is of quadratic

form and therefore convex, the derived solution is the true optimum.

4.4 Nondimensionalization, Parameter Values, and Initialization

All variables in the numerical part are displayed nondimensionally. This leads to a good problem

scaling, advantageous for numerical solution and optimization approaches. Moreover, as it is the

primary aim of this chapter to introduce a general method, nondimensional variables make it

easier to detect trends. Furthermore, the number of model parameters is reduced. The following

nondimensional and scaled variables are introduced:

c̃ =
c
c0

(4.30)

σ̃ =
σ

c0
(4.31)

λ̃ = λ ·L (4.32)

z̃ =
z
L

(4.33)

t̃ =
t ·q
L

(4.34)

p̃ =
p ·L
µ ·q

(4.35)

k̃ =
k

L2 . (4.36)

Correspondingly, the nondimensional model parameters are

ã41 = a41 · c0 (4.37)

ã42 = a42 · c0 (4.38)

ã43 =
a43

L(b41+2) (4.39)

ã44 = a44 · (c0)
b42 (4.40)

b̃41 = b41 (4.41)

b̃42 = b42 ; (4.42)

they can be easily checked using Eqs. (4.51) to (4.55) below. A similar scaling was applied by

Civan and Rasmussen (2005) and Bedrikovetsky (2008). Owing to the nondimensionalization,

c0, L, q, and µ completely cancel from the equations. Thus, the final equations to be solved

become
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ε · ∂ c̃
∂ t̃

+
∂ c̃
∂ z̃

=−∂ σ̃

∂ t̃
(4.43)

∂ σ̃

∂ t̃
= λ̃ · c̃ (4.44)

d p̃
dz̃

=−1
k̃
. (4.45)

In all computed and optimized cases, the following initial conditions are used:

c̃(0, z̃) = exp
(
−
∫ z̃

0
λ̃ (z̃)dz̃∗

)
(4.46)

σ̃(0, z̃) = 0 , (4.47)

implying that the first layer of fluid has already passed through the filter, see Appendix 4.1, and

that the filter is unclogged initially. At the filter inlet, the subsequent boundary conditions are

defined:

c̃(t̃,0) = 1 (4.48)

σ̃(t̃,0) = λ̃ (0) · t̃ , (4.49)

where the latter condition follows from the time integration of Eq. (4.44); the concentration

vanishes, because c̃ is always 1 at the filter inlet. Total, nondimensional pressure drop is obtained

from an integration of Eq. (4.45):

∆ p̃ =−
∫ L̃

0

1
k̃

dz̃ . (4.50)

As ∆p̃ is always negative with the coordinate system chosen in this chapter, |∆ p̃| is shown in

the results section. Note that above no boundary condition was provided for p̃, because none is

needed as only the differential pressure ∆p̃ is evaluated by the definite integral of Eq. (4.50). In

nondimensional form, the corresponding constitutive equations are

λ̃ = λ̃0 · F̃DF (4.51)

F̃DF = 1+ ã41 · σ̃ (4.52)

ε = ε0− ã42 · σ̃ (4.53)

k̃0 = ã43 · λ̃ b̃41 (4.54)

k̃ =
k̃0

1+ ã44 · σ̃ b̃42
. (4.55)

The filtration quality was specified as a 2/3 reduction in impurities, i.e., c̃(t̃,1) = 0.33. All

discussed designs meet this specification exactly at the beginning of filtration and their perfor-
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mance improves with clogging according to Eqs. (4.4) and (4.7). All further model parameters

are summarized in Table 4.1.

Table 4.1: Model parameters for depth filtration.

Parameter ε0 ã41 ã42 ã43 ã44 b̃41 b̃42

Value 0.40 0.20 0.01 5.0 5.0 -1.0 2.0

4.5 Numerical Methods and Solver Settings

Numerically, the model equations, including their initial and boundary conditions, are solved

by the method of lines using a five-point upwind approximation for the spatial derivatives. 150

spatial discretization points are used. For a discussion of these methods, the reader is referred

to Chapter 3, especially Section 3.1.1.

Optimal control is approximated numerically by a direct single shooting method, as de-

scribed in Section 3.2.2. The resulting optimization problem is solved by MATLAB’s fmincon

solver using the default interior-point algorithm and specifying constraint tolerance (TolCon),

termination tolerance for function values (TolFun), and termination tolerance for parameter

values all as 10−14. More details on optimization are provided in Section 3.2.2.

To assure a specified filtration quality, i.e., a specified impurity concentration at the filter

outlet c̃(t̃,1), extra conditions must be imposed on the filter coefficient. Eq. (4.11) shows that

for a desired separation only the integral value of λ̃ (z) over the filter depth matters. Therefore,

this integral value is imposed as a constraint in the optimization procedure to guarantee that

an unclogged filter always yields the same filtration quality. By this measure, a meaningful

comparison of results according to the considerations of Section 2.3.5 is enabled.

Because in many cases a continuous profile of local filtration performance is practically not

feasible, discrete layers are derived in the following manner from the computed trajectories.

First, the desired number of layers n is specified. Then, the points that bound the layers are

initialized for equally thick layers. Obviously, the first and the last point are no free parameters

because the total filter height is fixed, i.e., z̃0 = 0 and z̃L = 1. So, n layers lead to n− 1 free

parameters to be determined. They are computed by minimizing the objective function

JLayers =

∫ 1

0

[
λ̃ (z̃)− f (z)

]
dz̃ , (4.56)

with

f (z) =

∫ z̃i+1
z̃i

λ̃ (z̃)dz̃

z̃i+1− z̃i
, z̃i ≤ z̃ < 1, i = 1,2, . . .(n+1), (4.57)

yielding the locally constant values of λ̃ . f is formulated such that the local and, therefore, also

the total integral values of the discrete and continuous profiles are the same, which again guar-
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antees the specified filtration quality. The discrete filter layers are determined using MATLAB’s

fminsearch solver with its default settings. In the case studies shown below, the number of

filter layers n is set to 3.

4.6 Numerical Optimal Control Solutions for Full Model

4.6.1 Numerically Solved Optimal Control Scenarios

In this chapter, two optimal control cases are solved numerically which are referred to as Scenar-

ios DF-OC1 and DF-OC2. Contrary to the simplified model used above, in the Scenarios DF-OC1

and DF-OC2 λ̃ changes with deposit according to Eq. (4.52). Therefore, λ̃0(z), i.e., the filter

coefficient prior to deposit, is the control variable, because only λ̃0(z) can be affected during the

design of depth filters. For example, λ̃0(z) can be influenced by suitably choosing the particle

size of the filter bed, see Eq. (4.6). The first numerical optimal control case, Scenario DF-OC1,

aims to achieve a homogeneous deposit within the filter at some defined filtration time th. The

corresponding objective functional is

JDF-OC1(t̃h) =
∫ 1

0

[
σ̃(t̃h)−σ(t̃h, z̃)

]2 dz̃ , (4.58)

with σ̃(t̃h) being the mean deposit over the filter depth at time t̃h, where homogeneous deposit is

aimed at. Note that this scenario resembles JDF-A as formulated in Eq. (4.14). However, it is no

longer possible to solve the problem analytically because now ã41 6= 0 and ã42 6= 0, wherefore ε

and λ̃ change with σ̃ . Thus, the full system of coupled PDEs needs to be considered. Moreover,

JDF-OC1(t̃h) truly depends on t̃h as a parameter, whereas t̃h canceled in the derivation of the

analytical solution.

Scenario DF-OC2, the second numerical optimal control case study, aims at maximizing the

achievable filtration time. The objective functional is

JDF-OC2 =−t̃s , (4.59)

where t̃s is the stopping time, i.e., the time where a limit in maximal pressure drop |∆ p̃| = 3

is reached. t̃s is determined by introducing an event function in MATLAB’s ODE solver and

computing the set of equations only till the event function detects the limiting pressure drop.

4.6.2 Basic Model Results

All optimal control scenarios are compared to a filter configuration with a constant filter coef-

ficient λ̃0, i.e., a homogeneously designed or one-layered filter. This setting is referred to as

Scenario DF-0. To illustrate the general model behavior, some basic results for this configuration

are shown. At the filter outlet, the impurity concentration c̃ decreases with filtration time, as

shown in Figure 4.3a. This reflects the increase of λ̃ with deposit σ̃ , modeled by Eqs. (4.4) and

(4.7). Figure 4.3b shows the typical deposit curves, which are also reported in the literature (see
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Section 4.1). As usual, the most pronounced deposition is observed at the filter inlet at z̃ = 0

and deposit increases with filtration time, i.e., the more solids are retained within the filter.
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Figure 4.3: Impurity concentration at filter outlet (a) and specific deposit over filter height at
three times for reference Scenario DF-0 (b).

4.6.3 Validation of Numerical Method

To validate the numerical optimal control method, the numerically determined trajectory of

λ̃ (z) is compared to the analytical solution obtained using Eq. (4.21), which was derived in

Section 4.3. For determining the numerical solution, the model was simplified in the same way

as it was for determining the analytical solution. It was assumed that λ̃ is not a function of σ̃ ,

i.e., ã41 = 0, and therefore F̃DF = 1; λ̃ is, thus, equal to λ̃0. In Figure 4.4, the analytical and the

numerical optimal control solutions are juxtaposed. A perfect agreement can be observed and,

therefore, it is concluded that the numerical method is valid. In this figure and in the following

plots of λ (z), the points shown on the optimal curves are the discrete points determined by the

direct single shooting method as described in Section 3.2.2.
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Figure 4.4: Comparison of analytical and numerical optimal control solution for filter coefficient
λ̃ (z) in case of the simplified model.
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Figure 4.5 shows model results computed using the optimized filter coefficient. The impurity

concentration in the suspension c̃ decreases linearly along the spatial direction z̃, as compared

to the reference scenario with a constant filter coefficient, which shows an exponential decrease.

Deposit σ̃ has a constant value along the filter depth, which increases with time. The spatially

constant value of σ̃ shows that the desired goal of a constant deposit is exactly met at each time.

The results also precisely confirm the considerations in the derivation of the optimal trajectory

of λ̃ (z). Mainly, the outcome illustrates that a linear path of c̃ indeed leads to a homogeneous

deposit within the filter, as formulated in Eq. (4.19).
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Figure 4.5: Impurity concentration in suspension at t̃ = 0, comparison of analytical optimal
control solution of Scenario DF-A and reference Scenario DF-0 (a); specific deposit along the
filter depth at three times for Scenario DF-A (b).

4.6.4 Homogeneous Deposit

Now, the results of the first numerical optimal control scenario are shown, where the goal was

to achieve a homogenous deposit σ̃ at the specified filtration time t̃ = t̃h = 5, i.e., Scenario DF-

OC1. Figure 4.6 shows the results of the trajectory of λ̃0(z) determined using the cost functional

given in Eq. (4.58). In the same figure, the three-layered solution is shown as well, which was

determined using the strategy of Eqs. (4.56) and (4.57). For comparison, also the constant λ̃0

value of the reference Scenario DF-0 is plotted.

The temporal development of deposit as well as a comparison of deposit values at t̃ = t̃h = 5

for the optimal solution of Scenario DF-OC1, the corresponding three-layered solution of Sce-

nario DF-OC1-3L, and the reference Scenario DF-0 are shown in Figure 4.7. First, it can be

observed that at t̃ = 5, the deposit along the filter height is indeed completely homogeneous,

which means that the optimization goal was achieved exactly. Second, in Scenario DF-OC1, the

deposit is homogeneous only at t̃ = 5, compared to the results shown in Figure 4.5, because in

this case λ̃ is no longer constant but changes with deposit according to Eq. (4.52). Third, the

three-layered solution of Scenario DF-OC1-3L still provides a good approximation of the truly
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optimal trajectory, because the corresponding deposit curve is still significantly more homoge-

neous than deposit in the reference Scenario DF-0.
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Figure 4.6: Filter coefficient λ̃0(z) of optimal solution for Scenario DF-OC1, corresponding three-
layered solution (Scenario DF-OC1-3L), and reference Scenario DF-0.
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Figure 4.7: Specific deposit along the filter depth at three times, the final time is t̃h = 5 (a);
comparison of deposit curves for the optimal solution of Scenario DF-OC1, corresponding three-
layered solution (Scenario DF-OC1-3L), and reference Scenario DF-0 at t̃ = t̃h = 5 (b).

4.6.5 Maximization of Filtration Time

Maximization of filtration time according the cost functional JDF-OC2 of Eq. (4.59) leads to the

λ̃0(z) trajectories shown in Figure 4.8. In this case, the optimal trajectory is nearly linear. There-

fore, the three layers determined according to Eqs. (4.56) and (4.57) are of approximately equal

thickness. The reference Scenario DF-0 is shown again for comparison.
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Figure 4.8: Filter coefficient λ̃0(z) for optimal solution of Scenario DF-OC2, corresponding three-
layered solution (Scenario DF-OC2-3L), and reference Scenario DF-0.

Figure 4.9a shows that the deposit profiles within the filter for maximized time differ from

the curves determined for homogeneous deposit, as shown in Figure 4.7. Therefore, the two

scenarios are not identical. Due to the shorter time span of filtration, also the numerical values

of σ̃ are smaller in Figure 4.9a compared to the previous scenarios. The trajectories of absolute

differential pressure |∆ p̃| across the filter are plotted in Figure 4.9b. All curves stop at |∆ p̃| = 3

because this is the limit defined in the optimal control approach. Already this figure shows

that the optimized scenario as well as the three-layered solution derived from it allow longer

filtration times compared to the reference scenario with a constant λ̃ , i.e., ∆ p̃ = 3 is reached at

later stopping times t̃s.
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Figure 4.9: Specific deposit along the filter depth at three times, the stopping time is t̃s = 2.20 (a);
temporal development of absolute differential pressure |∆ p̃| for Scenario DF-OC2, corresponding
three-layered solution of Scenario DF-OC2-3L, and reference Scenario DF-0 (b).

For quantitative analysis, the corresponding numerical values are given in Table 4.2. It can

be observed that stopping time t̃s is significantly larger in Scenario DF-OC2, where maximization

of time was aimed at, compared to the base case of Scenario DF-0. Moreover, the three-layered

solution of Scenario DF-OC2-3L is, again, nearly as good as the continuous trajectory. Further-
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more, the concrete values of stopping time confirm that optimizing for maximal filtration time

leads to significantly higher values of t̃s than in Scenario DF-OC1, in which homogeneous deposit

was the goal, even though the latter performs still better than Scenario DF-0. Also, maximizing

stopping time leads to a non-homogeneous deposit profile within the filter at t̃ = t̃s as can be

seen in Figure 4.9a. Thus, the two numerical optimal control scenarios are indeed different and,

therefore, cannot be reduced to each other.

Table 4.2: Stopping times t̃s when pressure limit |∆ p̃| = 3 is reached for different scenarios.
Increase in t̃s denotes the percentage difference between the corresponding optimized scenarios
and the reference of Scenario DF-0.

Scenario DF-0 DF-0C2 DF-0C2-3L DF-OC1

Stopping time t̃s
[-]

2.03 2.22 2.21 2.11

Increase in t̃s
[%]

– 9.36 8.87 3.94

It is important to note, that especially the solution for maximization of filtration time strongly

depends on the chosen constitutive equations, including the corresponding parameters. A ben-

eficial optimal control solution is only obtained as long as non-linear clogging behavior is as-

sumed. This is because the overall pressure drop according to Darcy’s law, Eq. (4.5), depends on

the integral value of inverse permeability. The influence of deposit on permeability is modeled

according to Eq. (4.55) with b̃42 = 2, i.e., by using a quadratic relationship in the denomina-

tor. If deposit linearly affects the denominator, the local distribution of σ̃ has no effect on the

overall pressure drop and, therefore, a constant filter coefficient λ̃0 leads to the same result as a

locally-variable λ̃0(z).

Moreover, it is highlighted that all optimal control cases resulted in an increasing value of

filter coefficient λ̃0 along the filter depth. Because λ̃0 and the characteristic length of the filter mi-

croscale d are usually inversely proportional, compare Eq. (4.6), larger values of d are desirable

at the filter inlet and smaller values at the outlet. This agrees exactly with the phenomenological

evidence gathered in the literature review of this chapter and the systematic reasoning provided

also in Section 4.1.

4.7 Conclusions from Optimally Controlled Depth Filtration

In this chapter, a new model-based method for improving the design of depth filters was intro-

duced. From an analysis of the system equations and by using optimal control theory, an ana-

lytical solution of local filtration performance, as expressed by the filter coefficient, was derived

to achieve homogeneous deposit along the filter depth. This solution is based on a simplified

model assuming a filter coefficient that is independent of deposit. Using this analytical solution,
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the numerical optimal control algorithm, a direct single shooting approach, was validated. It

could be shown that under the assumption of the simplified model, a linear decrease in impurity

concentration in the suspension while passing through the filter leads to homogeneous deposit

along the filter depth.

Using the full model, the targeted optimal control scenarios could only be solved numerically.

If the filter coefficient functionally depends on deposit, also homogeneous deposit along the filter

depth can be achieved by optimally controlling the initial filter coefficient, but in this way, the

desired homogeneous deposit is now achieved only at one specific time. The second numerically-

solved optimal control scenario addressed the maximization of filtration time, i.e., of the time

until a specific overall pressure drop is reached. A significant increase in filtration time could be

achieved with a solution that differs from the scenario of homogeneous deposit. It follows that

homogeneous deposit is not generally the same as maximization of filtration time. However, it

was also highlighted that especially the maximization of filtration time depends strongly on the

constitutive equations describing the influence of deposit on permeability.

Due to the difficulties in realizing continuous variation of the filter coefficient practically,

layered solutions were computed. For both numerical optimal control scenarios, three discrete

filter layers were derived from the continuous solutions by using a newly developed optimization

approach. In both cases, the three layers well approximated the continuous optimal control

solutions. However, the layered solutions showed some local discontinuities at the boundaries

of the discrete layers.

In future work, the effect of these discontinuities should be observed by pore-scale simu-

lations because it can be hypothesized that local effects play a role at that scale that are not

captured by the present continuum mechanical treatment. The main purpose of the present

chapter was to introduce the general optimization method; however, application of this strategy

to practical cases of depth filtration is needed to finally test its usefulness. It is asserted that

methods, as the one developed in the this chapter, will gain increasing importance in the future.

Even though layered filter configurations continue to be the state of the art, continuous design

of filters is within reach due to the advent of the 3D printer. For example, 3D-printing of particle

agglomerates was conducted by Ge et al. (2017). Perspectives for 3D printing of filter mem-

branes were discussed by Low et al. (2017). The possibility of locally tailored filters within the

micro-manipulative paradigm (see Section 1.2.1) will, therefore, increasingly demand quanti-

tative methods to determine the desired spatial distributions. The short outlook provided here

will be broadened and generalized in Chapter 7.
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Appendix 4.1

In this appendix2, an analytical solution is derived for the main depth filtration model under the

assumption that the filter coefficient λ (z) is not a function of the deposited solids’ concentration

σ . The derivation follows the strategy used by Civan and Rasmussen (2005), except that these

authors assumed a constant λ . The solution is derived using the method of characteristics, which

is based on the definition of the total differential, given as

dc
ds

=
∂c
∂ t
· dt

ds
+

∂c
∂ z
· dz

ds
, (4.60)

where s is the characteristic variable. If the coefficients and terms of this definition are compared

with the basic depth filtration equation

ε · ∂c
∂ t

+q · ∂c
∂ z

=−q ·λ · c , (4.61)

the following three equations are obtained:

dc
ds

=−q ·λ · c , (4.62)

dt
ds

= ε , (4.63)

and
dz
ds

= q . (4.64)

According to the optimal control approach presented in this chapter, λ is a function of the spatial

variable z. Therefore, the solution of the first ODE presented above is:

c = K ·exp
(
−q ·

∫ s

0
λ dŝ

)
. (4.65)

It is demanded that at t = 0 also s = 0; thus

t = s · ε . (4.66)

From the third ODE, it follows that

z = q · s+ z0 . (4.67)

The initial condition for s = 0 is given by

c(0,z0) = c0 · [1−H(z0)] , (4.68)

2As this appendix exclusively refers to Chapter 4, it is included directly after the chapter rather than at the end of
the thesis, because it is deemed that this aids the reading flow.
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which implies that the initial impurity concentration inside the filter is 0 and it has the value

c0 in the suspension outside of the filter, i.e., for z < 0. Further, it is required that at z = 0, the

impurity concentration should remain at c0, i.e.

c(t,0) = c0 . (4.69)

Enforcing both conditions leads to an integration constant of

K = c0 · [1−H(z0)] ·exp
(
−
∫ z0

0
λ dz

)
= c0 · [1−H (z−q/ε · t)] ·exp

(
−
∫ z0

0
λ dz

)
. (4.70)

Turning back to Eq. (4.65) and substituting the integral to the z coordinate gives

c = K ·exp
(
−
∫ z

z0

λ dẑ
)
. (4.71)

If K is substituted with the above expression, one gets

c = c0 · [1−H(z−q/ε · t)] ·exp
(
−
∫ z0

0
λ dẑ

)
·exp

(
−
∫ z

z0

λ dẑ
)
, (4.72)

respectively

c = c0 · [1−H (z−q/ε · t)] ·exp
(
−
∫ z

0
λ dẑ

)
. (4.73)

Thus, it follows that after the initial disturbance, represented by the Heaviside function, has

passed through the filter, a stationary solution is reached, as expressed by the last term. This so-

lution is similar to the one derived by Civan and Rasmussen (2005) for a constant λ . Therefore,

the assumption of a time-independent solution of c is justified, as long as the initial disturbance

is neglected.
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Chapter 5

Filter-Aid Filtration

Based on Kuhn and Briesen (2016a), a new mechanistic model for filter-aid filtration with incom-

pressible cakes is presented in this chapter. The model considers surface- and depth-filtration

effects and leads to a moving boundary problem with sharp moving fronts. Proper mathemati-

cal and numerical methods for its solution are identified which allow fully transient simulations

concerning all process variables and parameters. All relevant physical phenomena known from

experimental studies are captured by the model, some of them for the first time. An analytical

optimal control solution is derived for a simplified model in which only surface filtration is re-

garded; the control variable is the filter-aid concentration and the goal is to minimize energy

consumption. Subsequently, the properties of the full model are explored in two case studies.

First, the effects of changing the filter-aid particle diameter at a discrete time point are ob-

served. Second, a continuous variation of the amount of filter aid dosed to the suspension is

considered. Significant influences on the separation efficiency, the local deposit profile within

the filter cake, and the overall energy consumption are found. Lastly, a numerical optimal con-

trol scenario based on the full model is shown in which again the filter-aid concentration is the

control variable and the objective is to minimize energy consumption. The main outcome can

be summarized as follows: As long as only surface filtration is encountered, a constant filter-aid

dosage is truly optimal. When depth filtration is present, a time-variable dosage offers benefits

for the energy consumption; however, the effect is so small that it is deemed insignificant.

5.1 Introduction

Filter aids are used for systems that prove hard to filter. Such systems often contain impuri-

ties that differ widely in their properties or gelatinous particles which tend to block the filter

medium. In these cases, the use of filter aids assures increased filtration times and lower en-

ergy expenditure due to higher filter-cake permeabilities. This technique is applied in many ar-

eas, such as chemistry and biotechnology (Hunt, 2009), water filtration (Bhardwaj and Mirliss,

2005), and filtration of beverages (Annemüller and Manger, 2011).

There are different modes of filter-aid use. If a layer of filter aid is only added to the filter

medium in the beginning of a process cycle, one speaks of precoat filtration. The filter aid

65
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constantly dosed to the suspension is referred to as body feed and the corresponding operational

mode is called body or filter-aid filtration (Sutherland and Hidi, 1966). Often, in body filtration

a precoat is used as well. The remaining chapter addresses filter-aid filtration including a precoat

layer, but focuses especially on the body feed.

The selection and dosage of filter aids in industrial practice is mostly based on experience. It

is, however, very unlikely that the optimal operation strategy is thus found, because the process

at hand is rather complex and comprises many free variables, such as filter-aid material, size

distribution, and concentration. For many decades, the role of the right amount of body feed

for successful filtration was emphasized (Carman, 1938, 1939; Babbitt and Baumann, 1954;

Sutherland and Hidi, 1966; Haba and Koch, 1978; Heertjes and Zuideveld, 1978a,c). Some

of these classical works presented simple models that relate the cake resistance to the ratio of

impurity and filter-aid concentration. They assumed that separation only takes place by pure

cake filtration, i.e., directly at the surface of the cake (Sutherland and Hidi, 1966; Haba and

Koch, 1978). However, in the meantime, the importance of depth-filtration effects has been

shown experimentally (Heertjes and Zuideveld, 1978a,b; Husemann et al., 2003; Hebmüller,

2003).

A series of PhD theses, conducted in the 1980s at TU Dresden under the supervision of Pro-

fessor Heidenreich, presented and validated models of filter-aid filtration that combine surface

and depth filtration (Berndt, 1981; Wegner, 1985; Blobel, 1985; Tittel, 1987). However, due

to computational limitations, these models were simplified to analytical equations and can only

consider scenarios with constant impurity concentrations and a constant dosage of filter aids

which is clearly a disadvantage because the beneficial effects of a time-varying dosage of filter

aids were shown experimentally (Coote, 1999).

A general approach for describing growing, compressible filter cakes which are also blocked

on the inside is provided by Tien et al. (1997). But neither does this study focus on time-varying

process conditions nor are the applied numerical methods able to handle sharp moving fronts,

as they are encountered when filter-aid filtration is modeled. Therefore, a new mechanistic

model that combines surface and depth filtration and allows considering fully transient con-

ditions concerning all process variables and parameters is presented. The focus is laid on the

effects of filter-aid particle diameter and volume concentration in the body feed. Mathematical

and numerical methods to solve the resulting set of partial differential equations (PDEs) are

identified.

Despite some evidence on the benefits of a time-variable dosage of filter aids, a constant

body-feed concentration is still common industrial practice. One possibility of improving the

constant body-feeding strategy by a rigorous application of optimal control theory is explored

in this chapter. As shown in Section 2.3.4, optimal control has only scarcely been used in the

field of filtration so far; and, to the knowledge of the author, optimal control theory has never

been applied to filter-aid filtration before. Using filter-aid concentration as the control variable,

the body-feeding strategy is optimized in this chapter with the goal to minimize the overall

energy consumption of one filtration cycle, i.e., within a given time interval. An analytical
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control solution is provided for pure surface filtration and numerical results are shown for the

full model, comprising contributions of surface and depth filtration. Alternative optimal control

scenarios are discussed in the outlook at the end of the chapter. For the following reasons,

optimally controlling the filter-aid dosage is expected to be beneficial:

• Dosage of filter aids leads to cake growth.

• Filter cake growth increases the overall pressure drop and, therefore, the energy consump-

tion.

• Clogging of the filter cake increases local pressure drop and, therefore, energy consump-

tion.

• Filter-aid dosage decreases clogging of the filter cake.

• So far, an optimal trade-off between cake growth and cake clogging seems expectable.

• Additionally, when depth filtration takes place, the existing cake is continuously penetrated

by impurities from the suspension. Clogging, therefore, continuously takes place not only

at the cake surface but also in deeper layers of the filter cake.

• In case of occurring depth filtration, it is, therefore, likely that more body feed is to be

supplied at the beginning of filtration and filter-aid concentration is to be decreased over

the course of one filtration cycle.

• Thus, it is guaranteed that earlier on in the process a less clogged filter cake is created that

is able to accommodate impurities later separated by depth filtration.

The reasoning is also reflected in the process causalities depicted in Figure 5.1. A fixed over-

all amount of filter aids is shown in the figure as a constraint on the control variable. Analogous

to Chapter 4 and according to the principles discussed in Section 2.3.5, the constraint guaran-

tees that the different scenarios are comparable; it will be further discussed when the optimal

control strategy is explained.
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Figure 5.1: Process causalities in filter-aid filtration.

5.2 Model Derivation

Before approaching the optimal problems discussed in the introduction, the new model for filter-

aid filtration is introduced. It is based on the following assumptions:

• A1: The filter cake is treated as incompressible.

• A2: All filter aids are deposited at the cake surface.

• A3: A constant share of impurities is deposited at the cake surface, but does not contribute

to cake growth.

• A4: The rest of the impurities passes on to deeper cake layers and is subject to depth

filtration.

• A5: Sedimentation is not taken into account.

• A6: The filter medium is neglected.

A1 is a safe assumption for all traditionally used filter aids, such as kieselguhr or perlite, and

also holds true for alternative ones, such as cellulose, at moderate pressures. A2 implies that

the filter aids do not contain fine enough particles able to penetrate the already existing filter
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cake. A3 is commonly assumed in filter-aid filtration (Tittel, 1987; Hebmüller, 2003). Ideally,

impurity particles are properly embedded within the porous filter-aid layer and do, therefore, not

contribute to cake growth. If they do, this usually leads to unpredictably compressible cakes and

means that too little filter aid was added. A3 and A4 can be interpreted in terms of the impurity

particle sizes. Larger impurity particles are completely deposited at the surface; smaller particles

penetrate the cake and are separated to a certain degree by depth filtration. A5 is reasonable

because in filtration practice the suspension’s velocity is high enough for sedimentation not to

take place (Annemüller and Manger, 2011, p. 222). A6 is also a standard assumption (Heertjes

and Zuideveld, 1978a) which is not essential here but simply reduces the number of model

parameters. Further, in the following only constant rate filtration is addressed because this is

the most common mode in industrial practice. However, mathematically, the model readily

allows for a time-variable flow rate. From A2 and A3 follows that only filter aid contributes to

cake growth. Thus, the velocity of the cake surface can be derived by a mass balance directly at

the suspension-cake boundary, leading to

dL
dt

=−cFA

εs
·q , (5.1)

assuming that cFA� εs, compare Section 2.2.3. L is the cake height, t the time, q the superficial

velocity of the liquid, cFA the volume concentration of filter aids in the liquid phase, and εs

the solidosity of the resulting, unclogged cake. Solidosity is defined as volume solid per total

volume. As explained in Section 2.2.3, εs is the complement to porosity; nevertheless, both are

used to keep the nomenclature in agreement with literature. The minus sign in Eq. (5.1) is due

to the fact that q and dL/dt have opposing directions, compare Figure 5.2 below.

Analogous to Chapter 4, depth filtration is modeled by a mass balance along the flow direc-

tion within the cake and a corresponding constitutive equation characterizing the separation,

thus defining the sink term in the balance equation. The mass balance is given as

ε · ∂c
∂ t

+q · ∂c
∂ z

=−∂σ

∂ t
. (5.2)

The constitutive equation for the separation is

∂σ

∂ t
=−λ ·q · c ; (5.3)

σ is the specific deposit, i.e., the volume of deposited matter per unit filter volume, z is the

spatial coordinate, and λ is the filter coefficient. Note that the minus sign on the right-hand

side of Eq. (5.3) arises from the fact that the flow direction here is opposed to the positive

spatial coordinate direction; this is contrary to most depth-filtration models and, therefore, also

to the model presented in Chapter 4. A schematic of the problem setup including the coordinate

system and important variables is given in Figure 5.2.
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Figure 5.2: Model sketch for filter-aid filtration; gray circles symbolize filter-aid particles, black
circles stand for impurities.

The sink model goes back to Iwasaki (1937) and is by now well established for a broad

variety of applications. A rigorous derivation of the depth filtration model can be found, e.g.,

in Civan and Rasmussen (2005); compare also Sections 2.1.2 and 2.2.3 for a derivation of the

transport equation and further explanations on the separation model. In the mass balance of

Eq. (5.2), the first term is often neglected in filtration research, because it is claimed that it only

contributes significantly at the beginning of the filtration process (Herzig et al., 1970; Zamani

and Maini, 2009). Here, however, the full equations need to be used as the depth filtration

within an unloaded, newly formed filter layer is always present due to the constantly growing

cake. The local drop pressure d p/dz within the filter cake is modeled by Darcy’s law:

d p
dz

=−µ ·q
k

; (5.4)

µ is the dynamic viscosity of the fluid and k the permeability of the solid phase. Energy con-

sumption is expressed as energy per filter area e and is given as

e =−
∫

q ·∆pdt . (5.5)

The overall pressure difference ∆p follows from an integration of Darcy’s law. Note that q and

∆p always have opposing directions, i.e., in a 1D formulation one of them is negative. Therefore,

the minus sign in Eq. (5.5) always leads to positive values of e.

Additionally to the basic relationships of the last equations, some additional constitutive

equations are needed for a closed problem description. Depth-filtration performance, expressed

by the filter coefficient λ , depends on the diameter of the particles composing the packed bed,

which here is the filter-aid diameter dFA. This relationship can be generalized to

λ0 = a51 ·db51
FA , (5.6)

where λ0 denotes the filter coefficient of the unclogged bed. Parameter a51 summarizes other

influences such as the fluid’s viscosity and flow velocity, which are not the focus of attention in
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this work. The model parameter b51 has negative values, meaning that the separation improves

with smaller filter-aid particles (Herzig et al., 1970). Usually, Eqs. (5.2) and (5.3) cannot be

reduced to one equation because λ is also a function of σ in the following way (Tien and

Ramarao, 2007; Zamani and Maini, 2009):

λ = FFA(σ ,P) ·λ0 ; (5.7)

FFA contains constitutive relationships (Tien and Ramarao, 2007; Zamani and Maini, 2009) of

which the following is used here:

FFA = 1+a52 ·σ , (5.8)

implying that the separation improves as the filter cake gets clogged, because the parameter a52

has positive values. Eq. (5.8) can be interpreted in terms of the capture probability of impu-

rity particles. This probability increases as the pores get smaller due to deposited impurities.

Therefore, deposit also reduces the overall cake porosity, which is modeled as

ε = ε0−a53 ·σ , (5.9)

with ε0 being the porosity of the unclogged cake and a53 a parameter describing the internal

porosity of the deposited material (Herzig et al., 1970; Tien and Ramarao, 2007; Zamani and

Maini, 2009). The permeability in the unclogged cake k0 is described by a Kozeny-Carman-type

equation (Kozeny, 1927; Carman, 1997):

k0 = a54 ·db52
FA . (5.10)

The influences of porosity, tortuosity, and shape of the pores of the full Kozeny-Carman model as

introduced in Section 2.2.3 are summarized here in the parameter a54. This is justified because

only the effects of particle size and clogging on the overall pressure drop are studied. Eq. (5.10)

shows that smaller particles lead to higher pressure drops and vice versa. Because real filter aids

do not consist of monodisperse spherical particles, dFA is interpreted as a representative particle

diameter.

To account for the change in pressure drop due to clogging by directly modeling the influence

on structural filter cake parameters, such as porosity and tortuosity, was shown to be generally

not reliable. Instead, a number of constitutive relationships were proposed in literature (Herzig

et al., 1970; Tien and Ramarao, 2007; Zamani and Maini, 2009). Here, the Sutherland equation,

as introduced and explained in Section 2.2.3, is used because it is widely applied and validated

in filter-aid filtration; it reads

k = k0 ·exp(−a55 ·σ) , (5.11)

and includes the model parameter a55. As a55 has positive values, deposit σ decreases the

permeability compared to the unclogged cake. Note that this form of the Sutherland equation
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differs from the one introduced in Section 2.2.3, namely that Eq. (5.11) contains only σ in the

exponent whereas Eq. (2.47) was formulated in terms of the c/cFA ratio. The difference is due

to the fact that Eq. (2.47) holds true as long as only surface filtration is considered; the relation

between both formulations is further explained in Appendix 5.1.

Thus, the overall model derived in this chapter comprises many submodels which reflect the

current state of the art. Although, these submodels were all separately validated in the literature,

a model for the dynamic behavior of the fully coupled problem has been lacking so far. On the

one hand, the new coupled model appears to yield particular numerical challenges, but, on

the other hand, it allows for a mechanistic explanation of previously unexplained experimental

observations. Before analyzing the full model, a simplified model is used in the next section to

derive an analytical optimal control solution. This analytical solution will be used to shed more

light on the numerical model and optimal control results presented subsequently.

5.3 Analytical Optimal Control Solution for Simplified Model

Based on the assumption that depth filtration is negligible and separation of solids, therefore,

occurs by pure surface filtration, an analytical optimal control solution is derived in this sec-

tion; it is referred to as Scenario FA-A. These considerations build on the work of Heertjes and

Zuideveld (1978c). In their study, an optimal body-feed concentration cFA was derived; how-

ever, it was assumed that the impurity concentration c as well as the filter-aid concentration cFA

are constant over time. At first glance, it may be surprising that there is an optimal body-feed

concentration at all because the Sutherland equation, Eq. (2.46), appears to suggest that with

respect to cake resistance it is desirable to add as much filter aid as possible. But there are two

mechanisms at work at the same time: On the one hand, a higher body-feed concentration leads

to a lower local cake resistance; on the other hand, an increased body-feed concentration leads

to a more pronounced cake growth, as seen from Eq. (5.1). The found optimum is the trade-off

between these two effects.

Contrary to the study by Heertjes and Zuideveld (1978c), here both c and cFA are understood

as functions of time. The results of this section are, thus, generalizations of their findings.

The derivation below is modified from Kuhn and Briesen (2015). Goal of the optimal control

approach is to minimize energy consumption, filter-aid concentration cFA is the control variable.

The system state is described by the total cake resistance R according to

R =

∫ te

0

(
dL
dt
· r
)

dt =
∫ te

0

(
−cFA

εs
·q · r

)
dt . (5.12)

dL/dt follows from Eq. (5.1); r is the specific cake resistance which is modeled by the resistance-

form of the Sutherland equation according to

r = r0 ·exp
(

a′55 ·
c

cFA

)
. (5.13)
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Eq. (5.13) shows that the resistance r decreases at a constant level of impurities c when the

amount of filter aids cFA dosed to the suspension is increased. As already mentioned, the differ-

ent variants of the Sutherland equation, i.e., formulations that account only for surface filtration

as opposed to versions that can also consider depth filtration effects are explained in detail in

Appendix 5.1. For now, it is only important to note that Eq. (5.13) is valid under the assump-

tion of pure surface filtration, i.e., exactly the simplified scenario studied in this section. Time

derivation of Eq. (5.12) yields

dR
dt

=
dL
dt
· r =−cFA

εs
·q · r . (5.14)

The corresponding initial condition is R(0) = 0, i.e., initially, the cake has no resistance. Note

that this implies that the resistance of the filter medium is neglected, as already discussed at

the beginning of Section 5.2. Furthermore, the precoat layer is not taken into account because

its effect on the overall resistance is relatively small and it contributes nothing to the optimal

control problem that is addressed here. Energy per filter area e is used as the performance index:

JFA-A = e =−
∫ te

0
q ·∆pdt . (5.15)

Using Darcy’s law in it resistance form (Blankert et al., 2006)

q =− ∆p
µ ·R

(5.16)

to substitute ∆p, one gets

e = q2 ·µ ·
∫ te

0
Rdt . (5.17)

Due to the form of e, this problem can be classified as being of the Lagrangian type with a fixed

final time te and a free final state R(te), according to the optimal control framework presented in

Section 2.3. The corresponding Hamiltonian reads as follows:

H = q2 ·µ ·R−ψ · cFA

εs
·q · r0 ·exp

(
a′55 ·

c
cFA

)
; (5.18)

ψ is the costate. The three necessary conditions for an extremal solution, as introduced in

Section 2.3, when formulated with the present variables are the state equation

dR
dt

=
∂H
∂ψ

, (5.19)

the control condition
∂H
∂cFA

= 0 , (5.20)

and the costate equation
dψ

dt
=−∂H

∂R
. (5.21)
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Furthermore, it is required that

ψ(te) = 0 . (5.22)

It can be easily checked that the first of the conditions above is naturally fulfilled. The control

condition leads to

ψ ·
(

a′55 · c
cFA

−1
)
· r0 ·exp

(
a′55 ·

c
cFA

)
= 0 . (5.23)

An evaluation of the third condition, i.e., the costate equation, shows that

dψ

dt
= q2 ·µ . (5.24)

As the term q2 ·µ is constant, separation of variables and integration yields

ψ = q2 ·µ · t +a , (5.25)

with the integration constant a. Thus, ψ follows a linear profile which is non-zero except at the

final time te, as follows from Eq. (5.22). Turning back to Eq. (5.23), only the second term on

the left-hand side can guarantee that the equation yields zero over the whole time span. Thus,

it must hold that at each time t (
a′55 · c
cFA

−1
)
= 0 , (5.26)

and, therefore,

cFA = a′55 · c . (5.27)

That Eq. (5.27) is the best and not the worst extremum is shown in Kuhn and Briesen (2015) by

a comparison to other constructed trajectories which are found to perform worse. In that same

publication, the identical result was arrived at by way of a different derivation. Interestingly,

also Heertjes and Zuideveld (1978c) obtained the result of Eq. (5.27), only under the restrictions

that c and cFA are no functions of time.

To summarize the main findings of this section again: Allowing c, cFA, and, therefore, also r to

be functions of time, energy consumption of filter-aid filtration based purely on surface filtration

is minimal if impurity concentration c and filter-aid concentration cFA follow Eq. (5.27) at each

point in time. Thus, in case of a constant impurity concentration, a constant dosage of filter aids

is optimal.

According to the nomenclature of Section 2.3.5, the obtained solution is trivial in that a

constant control is optimal for the simplified model. As can be seen from Eq. (5.14), the system

state R is not coupled to states at other times, i.e., R does not appear at the right-hand side of

the differential equation. For that reason, a trivial solution could have been expected according

to the considerations of Section 2.3.5; see especially 1, a). However, as also discussed there, one
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has to be aware of hindsight bias when judging optimal control results. Before a close analysis

of the problem, the obtained solution, most likely, would have been impossible to predict.

5.4 Nondimensionalization, Parameter Values, and Initialization

After the analysis of the simplified model in the last section, the full model equations as in-

troduced in Section 5.2 are considered again. Similar to Chapter 4, all basic considerations,

including the derivations in the appendices of this chapter, rely on the dimensional equations

to ease comparison with literature. All numerical solutions, on the contrary, are based on the

nondimensionalized equations of the full model, as this yields a good problem scaling. Further-

more, the nondimensional variables aid interpretation of the results and additionally reduce the

number of model parameters. The following nondimensional variables are introduced:

c̃FA =
cFA

εs
(5.28)

c̃ =
c
c0

(5.29)

σ̃ =
σ

c0
(5.30)

d̃FA =
dFA

dFA,PC
(5.31)

λ̃ = λ ·L0 (5.32)

L̃ =
L
L0

(5.33)

z̃ =
z

L0
(5.34)

t̃ =
t · |q|

L0
(5.35)

p̃ =
p ·L0

µ · |q|
(5.36)

k̃ =
k

L2
0

(5.37)

ẽ =
e

µ · |q|
. (5.38)

Correspondingly, the nondimensional model parameters are:

ã51 = a51 ·L0 · (dFA,PC)
b51 (5.39)

ã52 = a52 · c0 (5.40)

ã53 = a53 · c0 (5.41)

ã54 =
a54

L(b52−2)
0

(5.42)

ã55 = a55 · c0 (5.43)

b̃51 = b41 (5.44)
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b̃52 = b42 ; (5.45)

these relationships can be easily checked using Eqs. (5.60) to (5.65) below. L0 is the height of

the precoat layer. |q| is used here for nondimensionalization, because in the case study of this

chapter, contrary to Chapter 4, superficial velocity q is negative due to the chosen coordinate

system as depicted in Figure 5.2. dFA,PC is the diameter of filter-aid particles in the precoat layer.

In nondimensional form, cake growth velocity is formulated as

dL̃
dt̃

=−c̃FA · sgn(q) . (5.46)

Note that the signum function sgn(q) arises due to the chosen nondimensional variables, because

it holds that q/|q|= sgn(q). q is always negative in this chapter, i.e., sgn(q)=−1. If the remaining

system equations are treated by the front-fixing method, as explained in Section 3.1.3, and

nondimensionalized, the resulting relationships are

ε
∂ c̃
∂ t̃

+
∂ σ̃

∂ t̃
=

(
ε

η

L̃
dL̃
dt̃

∂ c̃
∂η
− sgn(q)

L̃

)
∂ c̃
∂η

+

(
η

L̃
dL̃
dt̃

)
∂ σ̃

∂η
(5.47)

∂ σ̃

∂ t̃
=

(
η

L̃
dL̃
dt̃

)
∂ σ̃

∂η
− sgn(q)λ̃ c̃ (5.48)

∂ d̃FA

∂ t̃
=

(
η

L̃
dL̃
dt̃

)
∂ d̃FA

∂η
(5.49)

d p̃
dz̃

=−sgn(q)
k̃

. (5.50)

More details on applying the front-fixing method are provided in Appendix 5.2. In particular,

the origin of the new Eq. (5.49) is explained in this appendix. Next, the initial conditions are

introduced. At the beginning, the cake height is equal to the precoat layer height L0 which yields

L̃(0) = 1 (5.51)

in nondimensional form. Neglecting, as usual, the first flooding of the cake, it holds that

c̃(0,η) = (1− c̃∆) ·exp
[
−λ̃0 · L̃0 · (1−η)

]
, (5.52)

i.e., the impurity concentration is initialized with the stationary solution. c̃∆ is the concentration

of impurities which is completely deposited at the cake surface (compare assumption A3). At

the beginning of filtration, the cake is unclogged, i.e.,

σ̃(0,η) = 0 . (5.53)

As initially only the precoat layer is given, d̃FA is expressed as

d̃FA(0,η) = 1 . (5.54)
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The boundary conditions are

c̃(t̃,1) = (1− c̃∆) (5.55)

σ̃(t̃,1) =
c̃∆

c̃FA
(5.56)

d̃FA(t̃,1) = d̃FA(1, t̃) . (5.57)

When c̃∆ = 1, i.e., c∆ = c0, the resulting process is completely governed by surface filtration as

can be seen from Eqs. (5.52), (5.55), and (5.56); this was assumed when deriving the analytical

optimal control solution in Section 5.3. Eq. (5.56) results from a mass balance at the cake

surface and is derived in Appendix 5.3. As seen from Eq. (5.56), the cake surface clogs more

with higher cake solidosities εs, higher impurity concentrations separated at the surface c̃∆, and

lower filter-aid concentrations in the suspension c̃FA.

Total, nondimensional pressure drop is obtained from an integration of Eq. (5.50) as

∆p̃ =−
∫ L̃

0

sgn(q)
k̃

dz̃ . (5.58)

As in Chapter 4, no boundary condition was provided for p̃, because none is needed as only

the differential pressure ∆ p̃ is evaluated by the definite integral of Eq. (5.58). Using ∆p̃ and

Eq. (5.5) in its nondimentional form, specific energy consumption is obtained from

ẽ =−sgn(q)
∫ t̃e

0
∆ p̃dt̃ . (5.59)

Due to the fact that q is always negative, ∆ p̃ is, therefore, positive, and ẽ is positive as well. The

constitutive relationships in nondimensional form read:

λ̃0 = ã51 · d̃b̃51
FA (5.60)

λ̃ = λ̃0 · F̃FA (5.61)

F̃FA = 1+ ã52 · σ̃ (5.62)

ε = ε0− ã53 · σ̃ (5.63)

k̃0 = ã54 · λ̃ b̃52 (5.64)

k̃ = k̃0 ·exp(−ã55 · σ̃) . (5.65)
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All model parameters, expressed nondimensionally, are summarized in Table 5.1. c̃∆ = c∆/c0 =

0.5, as shown in the table, means that half of the impurity concentration in the suspension is

separated by surface filtration.

Table 5.1: Model parameters for filter-aid filtration.

Parameter ε0 c̃∆ ã51 ã52 ã53 ã54 ã55 b̃51 b̃52

Value 0.50 0.50 1.0 0.005 0.005 1.0 0.015 -2.0 2.0

Note that εs is not shown separately in Table 5.1, because it is simply defined as εs = 1−
ε, as explained in Section 2.2.3. For the numerical computations of Section 5.6, a filter-aid

concentration c̃FA of 0.006 is used; this value is not shown in Table 5.1 because it is not a fixed

parameter but will be changed for the optimization and optimal control approaches presented

in Section 5.7.

5.5 Numerical Methods and Solver Settings

Numerically, the above equations, including their initial and boundary conditions, are solved

by the method of lines using a van-Leer flux limiter scheme with 100 spatial discretization

points. For a discussion of the numerical methods, the reader is referred to Chapter 3, especially

Sections 3.1.1 and 3.1.2.

As described in Section 3.2.2, optimal control is approximated numerically by a direct single

shooting method. The resulting optimization problem is solved by MATLAB’s fmincon solver

using the default interior-point algorithm and specifying constraint tolerance (TolCon), termi-

nation tolerance for function values (TolFun), and termination tolerance for parameter values

all as 10−7. Tolerances were relaxed compared to the values reported in Chapter 4 to reduce

the computational time; it was assured that the chosen tolerance values do not affect the results

significantly.

5.6 Numerical Model Results

To understand the basic properties of the model, a simulation with a constant dosage of filter

aids and a constant filter-aid particle diameter is shown first. This setting will be further on used

for comparison and is referred to as Scenario FA-0. Figure 5.3 shows the impurity concentration

in the suspension while passing through the growing cake at three different times. The step of

0.5 in c̃ is the constant fraction which is separated at the cake surface, i.e., c̃∆, and therefore

also marks the current cake height L̃. It can be seen that the filtration quality improves with

time, i.e., the outlet concentration at z̃ = 0 decreases, due to the growing filter cake and the thus

increased cake volume available for depth filtration. This agrees exactly with measurement data

(Blobel, 1985; Tittel, 1987; Hackl et al., 1993).



Chapter 5. Filter-Aid Filtration 79

Distance from filter medium z̃ [-]
0 0.5 1 1.5 2

Im
p
u
ri
ty

co
n
ce
n
tr
at
io
n
c̃
[-
]

0

0.2

0.4

0.6

0.8

1
Time t̃ = 10
Time t̃ = 65
Time t̃ = 120

Figure 5.3: Impurity concentration within the filter cake at three different times for the reference
Scenario FA-0.

Specific deposit within the filter cake at three different times is shown in Figure 5.4. The

offset in specific deposit of about 85 units, present from the precoat layer height at z̃ = 1 to the

final value of z̃ = L̃, can be attributed to surface filtration. It is nonexistent in the precoat cake,

because from the beginning matter is separated only by depth filtration for z̃ < 1. This offset,

together with the fact that in depth filtration most matter is accumulated at the filter inlet

(Bai and Tien, 2000; Burganos et al., 2001), leads to a pronounced peak in local deposit at the

boundary from the precoat cake to the body-feed cake (z̃ = 1). The same behavior was measured

by Heertjes and Zuideveld (1978a) and is also observed in Annemüller and Manger (2011) as

well as Hebmüller (2003). It is mechanistically modeled here for the first time. Figure 5.4

shows, furthermore, that deposit within the precoat layer (z̃ < 1) decreases towards the filter

medium whereas the curve inclines in the opposite direction within the filter-aid layer, i.e., for

z̃ > 1, because in the precoat cake the usual deposition profile due to depth filtration, as also

encountered in Chapter 4, is still retained. In the body-feed cake, on the contrary, less material

is deposited in newer cake layers because newer layers of filter aid have less time to accumulate

impurities separated by depth filtration.
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Figure 5.4: Specific deposit within the filter cake at three different times for the reference
Scenario FA-0.
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Next, two case studies are discussed to illustrate the model’s transient capabilities and to

better understand the physical mechanisms at work. Further, both scenarios also serve the

purpose of exploring advanced process control scenarios that will be discussed later. In Scenario

FA-1, the filter-aid particle diameter d̃FA is abruptly increased by 50% at t̃ = 65 compared to

its initial value. This time point corresponds to z̃ = 1.4, meaning that the cake had a height

of L̃ = 1.4 when the particle diameter was changed. The scenario shows that the numerical

strategy can handle sharp changes in model variables without instabilities. Also concerning

process control in filtration practice, it is more realistic to switch particle diameter discretely

instead of continuously varying it. The physical motivation is: If depth filtration contributes

ever more strongly to the overall separation (as seen in Scenario FA-0), it makes sense to switch

at some point to a larger filter-aid particle size, as long as the desired surface filtration, described

by c̃∆, is still guaranteed. The larger particles increase the permeability in the newly grown cake,

as seen from Eq. (5.10), which in turn reduces energy consumption. Figure 5.5a shows a smaller

slope in c̃ for values of z̃ > 1.4, i.e., from the point onwards where the changed filter aid was

used, which can be attributed to the reduced separation efficiency of the larger particles, as

modeled by Eq. (5.6). However, it can be seen that the outlet concentration does not increase

significantly due to the stronger clogging of the filter cake for z̃ < 1.4 and the thus increased

filter coefficient, as described by Eq. (5.8). Note that cake growth according to Eq. (5.1) is

not affected because, for reasons of simplicity, the filter-aid concentration remained unchanged

while it was assumed that the larger particles form a cake of the same packing density as the

smaller ones.

In Figure 5.5b, it can be seen that increasing the filter-aid particle diameter leads to less

deposition in the top filter layers. Instead, a more pronounced deposit peak around the precoat

layer height at z̃ = 1 is found compared to Scenario FA-0, because the top cake layers capture a

lower share of impurities in Scenario FA-1 and, therefore, more is deposited in the lower layers.
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Figure 5.5: Impurity concentration (a) and specific deposit (b) within the filter cake at three
different times for Scenario FA-1 in which the filter-aid particle diameter was increased by 50 %
at t̃ = 65. A comparison to Scenario FA-0 is shown at t̃ = 120 (black line).
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In Scenario FA-2, the amount of body feed is linearly decreased in the time span t̃ = [0 125].

The corresponding profile is depicted in Figure 5.6. Note that the mean value of cFA is 0.006, i.e.,

the same value that was previously used as a constant; therefore, the overall amount of filter

aids stayed the same.
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Figure 5.6: Profile of body-feed concentration c̃FA as used in Scenario FA-2.

Scenario FA-2 illustrates the physical effects of changing the filter-aid concentration over

time. It is already a step in the direction of the numerical optimal control approach presented

below in Section 5.7. A justification for varying c̃FA was also given in the bullet-point list at

the end of Section 5.1. Figure 5.7a shows the effect of a varied filter-aid dosage on impurity

concentration within the cake. The nonuniform cake growth is reflected by the fact that the

filter cake grew more from t̃ = 10 to t̃ = 65 than from t̃ = 65 to t̃ = 120. The concentration profile

at t̃ = 120, however, is nearly identical to those of Scenario FA-0 which can be attributed to the

fact the same amount of filter aids is used in both scenarios.
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Figure 5.7: Impurity concentration (a) and specific deposit (b) within the filter cake at three
different times for Scenario FA-2 in which the filter-aid concentration cFA was linearly decreased.
A comparison to Scenario FA-0 is shown at t̃ = 120 (black line).
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The effect of the decreased dosage on the deposit profile within the filter cake is also shown

in Figure 5.7b. Whereas varying c̃FA had only a small influence on the impurity concentration in

the cake, the effect on the deposit profile is significant. The higher body-feed concentration in

the beginning leads to a less pronounced clogging of the cake surface, as described by Eq. (5.56),

and, therefore, to a decreasing step on the right-hand side of the deposit curves for small values

of t̃; as c̃FA is decreased over time, surface clogging increases. Note again that despite the sharp

moving fronts in various variables, smooth solutions could be achieved for all analyzed cases

with the selected numerical methods.

A comparison of all three scenarios by looking at global performance values is given in

Figures 5.8 and 5.9. The first plot shows the scaled impurity concentration at the filter outlet.

Increasing the filter-aid particle diameter in Scenario FA-1 leads, as already discussed, to a lower

separation efficiency and, therefore, a higher outlet concentration. Scenarios FA-0 and FA-1 are

identical up to the point where the filter-aid diameter is increased (indicated by the arrow in the

figure); after that point, Scenario FA-1 shows a smaller slope of the impurity concentration due

to the reduced separation efficiency of the larger particles, as modeled by Eq. (5.6). Scenario FA-

2 diverges from Scenario FA-0 over time but ends at the same point at t̃ = 125 because the same

amount of filter aid is used in both scenarios.
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Figure 5.8: Development of the impurity concentration at the filter outlet for the Scenarios FA-
0, FA-1, and FA-2. The arrow indicates the point where in Scenario FA-1 the filter-aid particle
diameter was increased by 50 %.

In Figure 5.9, the scenarios are compared with respect to the total differential pressure

across the filter. As in Scenario FA-0, also experimental studies found non-linear differential

pressure curves for cases of incompressible filter-aid filtration with a constant dosage (Heert-

jes and Zuideveld, 1978a; Kain, 2004). This shows that depth filtration cannot be neglected

and also indicates a nonlinear clogging behavior which further warrants the use of Sutherland’s

model, as shown in Eq. (5.11). In Scenario FA-1, the slope of the differential pressure becomes

smaller from the point onwards where the coarser filter aids were used (indicated by the ar-

row), as was to be expected from Eq. (5.10). In general, pressure drop increases due to two

competitive factors: cake growth and clogging of the cake, i.e., higher cake growth rates lead

to lower cake clogging and vice versa. In Scenario FA-2, a case is presented where the influence
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of cake clogging steadily increases due to the decreasing amount of filter aids used, as shown in

Figure 5.6. Therefore, one can observe first a lower increase in pressure drop and subsequently

and higher ∆ p̃ gradient compared to Scenario FA-0. However, it must be mentioned that the

characteristics of the pressure-drop curves depend on the value of a55.
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Figure 5.9: Pressure drop across the filter for the Scenarios FA-0, FA-1, and FA-2. The arrow
indicates the point where in Scenario FA-1 the filter-aid particle diameter was increased by
50 %.

Last, the energy consumption according to Eq. (5.59) of the different scenarios is compared.

In case of Scenario FA-0, ẽ = 382.2; for Scenarios FA-1 and FA-2, the values are ẽ = 357.1 and

ẽ = 377.4, respectively. Scenario FA-0, therefore, has the highest energy consumption. It is no

surprise that Scenario FA-1 consumes less energy, because, as already discussed, the larger par-

ticles used for t̃ > 65 create a more permeable filter cake and, thereby, ẽ is reduced. However, it

is surprising that Scenario FA-2 leads to a decreased energy consumption even though over the

time span of t = [0 125] the same amount of filter aids was used. This finding gives further war-

rant to the argumentation in Section 5.1 for the benefits of a time-variable filter-aid dosage. In

the next section, the time variation of c̃FA is addressed by an numerical optimal control approach.

5.7 Numerical Optimization and Optimal Control Solutions for Full

Model

As explained in Section 2.3.5, it is important to compare optimal control results with suitable

base cases. In this section, the common option of juxtaposing optimal control outcomes with

optimal constant values of the control variables is chosen. Therefore, an optimization is con-

ducted first to find the optimal constant value of c̃FA; the case is referred to as Scenario FA-Opt.

The objective function is given by the energy consumption, as defined in Eq. (5.59), i.e.,

JFA-Opt = ẽ(c̃FA) . (5.66)
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c̃FA,Opt, the optimal constant value, is found to be 0.0089. The corresponding energy consumption

of Scenario FA-Opt is ẽ = 365.9, a value that is significantly smaller than for all tested scenarios

of the last section. This finding provides a valuable hint on the importance of the body-feed

concentration and confirms the phenomenological knowledge gathered in the literature review

at the beginning of this section.

c̃FA,Opt, obtained from the full model by numerical optimization, is now compared to approx-

imate solutions determined from the analytical optimal control solution of Eq. (5.27). In its

nondimensional form, the condition is

c̃FA = ã′55 · c̃ = ã55 · c̃ . (5.67)

Compare Appendix 5.1 for the relation between ã′55 and ã55; note that the factor εs, relating a′55

and a55 in the appendix cancels due to the scaling of the parameters. As Eq. (5.67) was derived

in Section 5.3 under the assumption of pure surface filtration, it is unclear what value of c̃ is to

be used in the present case where also depth filtration is considered. If c̃ is interpreted as c̃∆, i.e.,

if only surface filtration is taken into account, c̃FA is 0.0075. Alternatively, c̃ can be interpreted

as the total reduction in impurities, including surface and depth filtration. As this value changes

over time and is dependent on the scenario, it is roughly approximated by 0.9; compare, e.g.,

Figure 5.8. In this case, c̃FA is obtained from Eq. (5.67) as 0.0135. The numerically found

c̃FA,Opt = 0.0089 is, thus, different from both values and is located between the two analytically

calculated extremes.

Using the single-shooting method described in Sections 3.2.2 and 5.5, the optimal trajectory

of c̃FA(z̃) is approximated. The scenario is abbreviated as FA-OC. Goal is again to minimize

energy consumption according to Eq. (5.59), i.e., the objective functional is

JFA-OC = ẽ(c̃FA(t̃)) . (5.68)

In the numerical optimization, it is enforced by constraints that the integral value of c̃FA(z̃)

over the whole time span is the same as the time integral of c̃FA,Opt. Note that this condition

implies that the same amount of filter aids is used in both cases, only in Scenario FA-OC the

given amount is dosed unevenly over the time of one process cycle, i.e., here t̃ = [0 125]. The

approximation of the optimal trajectory together with c̃FA,Opt is shown in Figure 5.10. As can

be seen in the figure, the optimally controlled profile is approximated by only five points and

is non-smooth; the latter observation points to numerical instabilities of the optimal control

approach in this case. More jagged curves result, if the profile is approximated by an increased

number of points. However, the present five-point profile of Scenario FA-OC still performs better

than a corresponding curve which is only approximated by two points, i.e., an optimal linear

profile. Having noted this here, these points will be picked up and explained in more detail a

little later.
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Figure 5.10: Approximation of optimal dosage trajectory c̃FA(t̃) and comparison to optimal con-
stant body-feed concentration c̃FA,Opt.

The effects on impurity concentration and deposit within the filter cake are shown in Fig-

ure 5.11 and compared to Scenario FA-0 of the last section as well as to the optimal constant

filter-aid dosage of Scenario FA-Opt. In terms of c̃, the Scenarios FA-Opt and FA-OC show no

significant differences; FA-0 results in a smaller cake height but results in a qualitatively similar

profile. On the contrary, the deposit curves show significant differences between all three sce-

narios. Both for FA-Opt and FA-OC, the peak values of σ̃ are smaller, because a higher filter-aid

dosage leads to less surface clogging according to Eq. (5.56). The resulting smaller peak val-

ues of σ̃ in turn influence cake permeability and energy consumption, compare Eqs. (5.5) and

(5.11).
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Figure 5.11: Impurity concentrations within the filter cake for the Scenarios FA-0, FA-Opt, and
FA-OC at t̃ = 120 (a); specific deposit within the filter cake at t̃ = 120 for the Scenarios FA-0,
FA-Opt, and FA-OC (b).

Scenario FA-OC leads to an energy consumption of ẽ= 365.2, as compared to ẽ= 365.9 in case

of Scenario FA-Opt. For the chosen setup, optimally controlling the body-feed concentration,

thus, results in a benefit of only 0.2%. As the comparison of Scenario FA-0 of the last section

with Scenario FA-Opt showed a much larger improvement, the effect of the constant body-
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feed concentration on energy consumption was investigated and the outcomes are shown in

Figure 5.12.
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Figure 5.12: Influence of constant body-feed concentration on energy consumption. The optimal
concentration c̃FA,Opt is marked by the orange point and all values of ẽ are normalized by c̃FA,Opt.

It can be seen that the constant body-feed concentration has a large influence on ẽ. Due to

this finding and the very small effect of optimally controlling the body feed, the optimal control

approach is not further pursued here. Note that even though the share of depth filtration on the

overall separation was chosen to be rather large in that only 50 % of impurities were separated

by surface filtration, the benefits of Scenario FA-OC are still small. Also, it is unlikely that the

numerical instabilities alone led to this outcome, because optimally controlling c̃FA did decrease

energy consumption.

Two further points are worth mentioning: First, the general reasoning for the benefits of an

optimal control approach, provided at the beginning of this chapter in Section 5.1, remains valid;

only the quantitative benefits are small for the investigated case. This finding does, however, not

exclude benefits for other scenarios, some of which will be discussed in the next section. Second,

it is important to note that also the optimal constant body-feed concentration could only be

determined by numerical optimization. This was underlined by contrasting c̃FA,Opt with values

obtained from the analytical optimal control solution that was derived in Section 5.3. The newly

developed model is, thus, indispensable for calculating the optimal body-feed concentration.

5.8 Conclusions from Optimally Controlled Filter-Aid Filtration

Whereas the focus of Chapter 4 was clearly on the optimal control approach, the focus of this

chapter lies primarily on model development and analysis. A new mechanistic model for filter-

aid filtration with incompressible cakes that considers the contributions of surface and depth

filtration was introduced. The problem was identified as of the moving-boundary type and

treated by the front-fixing method. Van Leer’s flux-limiter scheme was found suitable to yield

smooth results, despite sharp moving fronts in the solution. To the knowledge of the author, this

is the first model capable of handling transient process conditions concerning all variables and
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parameters. It was shown that the growing filter cake leads to a decreasing impurity concentra-

tion at the filter outlet due to the increasing influence of depth filtration. The interplay between

surface and depth filtration resulted in a pronounced deposit peak at the boundary between the

precoat and the body-feed cake. The model successfully reproduced these effects which were by

now known only from experimental studies.

Based on a simplified model where the contribution of depth filtration was neglected, an an-

alytical optimal control solution was derived. It was shown that filter-aid concentration should

be proportional at each time to the concentration of impurities in the suspension. This result

is a generalization of the findings by Heertjes and Zuideveld (1978c). As one important con-

sequence, the generalized relation offers benefits for process control. Online measurements of

impurity mass concentration in the suspension, e.g., by a calibrated turbidity sensor, can be used

to determine the optimal body-feed concentration at each time. But it also follows from the de-

rived analytical optimal control solution that, in case of a constant impurity concentration, a

constant dosage of filter aids is optimal.

The full model’s capabilities were explored in two case studies where filter-aid dosage was

changed dynamically. Increasing the filter-aid particle diameter at a discrete point in time led to

a decreased separation efficiency in the following coarser cake layers. However, due to the more

pronounced clogging in the finer layers, the effect on the overall separation efficiency was mod-

erated. Continuously varying the amount of body feed caused a variable cake growth velocity

and a strongly changed deposit profile within the filter cake. A decreased energy consumption

was found in case of time-variable dosage, even though the same amount of filter aids was used.

This last finding motivated an optimal control approach.

However, it was discovered that varying the optimal constant amount of filter aids over the

time of one process cycle, as determined by an numerical optimal control approach, showed only

small benefits for the energy consumption. It appeared that the decisive factor is the amount

of filter aids used per filtration cycle, with a significantly lower energy consumption in case of

the optimal quantity. Dosing this given optimal amount in turn unevenly over the time of one

process cycle led to a slightly lower energy consumption, an effect that was deemed insignificant

compared to the influence of the overall amount of filter aids.

In general, the simulation results showed that the complex interplay between the various

process variables and parameters is hard to predict intuitively. The given model can, therefore,

significantly aid a mechanistic process understanding and allows to study the effects of differ-

ent control strategies. Due to the high efficiency of the numerical approach, it could be also

used for computational optimization. Additionally, the model might also be applied for model-

predictive control where real-time capabilities are a prerequisite. For all practical purposes, the

model equations have to be parameterized. Due to the fact that this approach is a combination

of already established surface and depth filtration models, the corresponding parameterization

methods can be adapted directly if the two phenomena are separated experimentally. The feasi-

bility of this strategy was already shown by Heertjes and Zuideveld (1978b,c). Parameterization

methods can be, e.g., found in Tien (2006) for cake filtration and Tien and Ramarao (2007) as
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well as Zamani and Maini (2009) for depth filtration. In future work, the model can be further

developed to cover cake compression as well. This becomes especially important when filter

aids are used that are themselves compressible, as encountered in fibers (Braun, 2012).

Even though the conducted optimization and optimal control approaches provided important

insights, many questions remain to be investigated. In the first place, it needs to be mentioned

that the results are only optimal with respect to energy consumption; however, minimal energy

consumption is not necessarily the economic optimum in every case. For example, the used

amount of filter aids could be taken into account by an overall cost model because filter aids

need to be bought and might cause disposal costs as well. After all, it seems likely that the

identified optimal filter-aid concentrations can be interpreted as upper bounds that should not

be exceeded because, in that case, both filter-aid consumption and energy expenditure would be

overly large. Besides the mentioned case of multi-objective optimization, i.e., optimizing with

respect to energy consumption and filter-aid usage, other scenarios are possible. To name just

three further examples: The amount of filter aids could be minimized under the constraint that

some filtration quality is still guaranteed; the time until some maximal pressure drop is reached

could be maximized, as done in Chapter 4 for the case of depth filtration; besides controlling

filter-aid concentration, also filter-aid particle size might be varied in time even though this is

more challenging to implement practically. Obviously, all optimization and optimal control re-

sults strongly depend on the chosen constitutive equations and the used model parameters. For

that reason, optimization should be conducted in the future for practical problems of filter-aid

filtration using a fully parameterized model. In that case, the quantitative effects of implement-

ing an optimal control strategy must be evaluated again. If optimal control seems a promising

strategy, the numerical stability of the used algorithm needs to be checked again and, if nec-

essary, the algorithms have to be further developed, an outcome that is made likely by the

numerical instabilities encountered in Section 5.7.
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Appendix 5.1

Two forms of the Sutherland equation, that are both found in the literature, are related in

this Appendix1. As introduced in Section 2.2.3, Eq. (2.46), the Sutherland equation in one

formulation reads

k = k0 ·exp
(
−a′55 ·

c
cFA

)
. (5.69)

In this case, the model is based on the assumption that separation takes places solely due to

surface filtration, i.e., all impurities c = c∆ are deposited on top of the cake. The c/cFA ratio,

when expressed in terms of volume concentrations, is simply a measure for specific deposit:

c
cFA

=
σ

εs
, (5.70)

as obtained when using the relation

σ =
εs · c∆

cFA
(5.71)

that is derived below in Appendix 5.3; εs again is the solidosity. Thus, the Sutherland equation

can be also expressed as

k = k0 ·exp(−a55 ·σ) , (5.72)

if εs is included in the new constant a55, i.e.

a55 =
a′55
εs

. (5.73)

In this more general form, the equation can be also used if, additionally to surface filtration,

depth filtration occurs for which case deposit σ is caused by both mechanisms. An analogous

formulation, based on mass concentrations instead of volume concentration and resistances

instead of permeabilites, is derived and used in Hackl et al. (1993, p. 29); similar formulations

were used by Berndt (1981, p. 83) and Tittel (1987, p. 55).

Appendix 5.2

In this Appendix, the front-fixing method is applied to the main system equations. Using the

dimensionless height coordinate

η =
z

L(t)
(5.74)

and applying the transformation rules that were derived in Section 3.1.3, namely

1Analogously to Chapter 4, the appendices are again directly included after the main chapter to which they
exclusively refer.
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∂ f
∂ z

=
1
L
· ∂ f̂

∂η
(5.75)

∂ f
∂ t

=
∂ f̂
∂ t
− η

L
· dL

dt
· ∂ f̂

∂η
, (5.76)

to the main model equations, i.e., substituting f with c and σ , respectively, yields:

ε

(
∂ ĉ
∂ t
− η

L
dL
dt

∂ ĉ
∂η

)
+

q
L

∂ ĉ
∂η

=−
(

∂ σ̂

∂ t
− η

L
dL
dt

∂ σ̂

∂η

)
(5.77)

∂ σ̂

∂ t
− η

L
dL
dt

∂ σ̂

∂η
=−λ̂qĉ . (5.78)

Minor rearrangements and nondimensionalization lead to the Eqs. (5.47) and (5.48) of the main

text of this chapter. A side effect of the front-fixing method is that a fixed spatial point in the

original coordinate system (z) moves in the new coordinate system (η). Because incompressible

cake filtration is considered, the filter-aid particle diameter dFA at a given spatial location stays

constant with time in the original coordinate system, i.e.,

∂dFA

∂ t
= 0 . (5.79)

However, applying Eq. (5.76) results in an additional transport equation that needs to be con-

sidered in the transformed coordinate system:

∂ d̂FA

∂ t
− η

L
dL
dt

∂ d̂FA

∂η
= 0 . (5.80)

Eq. (5.80) in its nondimensional form corresponds to Eq. (5.49) of the main text of this chapter.

The hat signs are omitted in the equations of the main text to improve readability. Wherever η

is encountered as the spatial variable, the transformed coordinate system is used; all numerical

results where obtained by the transformed equations, i.e., with a fixed front.

Appendix 5.3

For the PDE system, the specific deposit at the cake surface, i.e., at z= L, is needed as a boundary

condition. Since Eq. (5.56) of the main text is not found in the literature, its derivation is shown

in this appendix. Specific deposit is defined as volume of deposited impurities Vd per total

volume V . This can also be written differentially as

σ(t,L) =
dVd

dV
. (5.81)

Because a time-dependent process is considered, rates are used instead, i.e., the last equation is

expanded by dt, giving
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σ(t,L) =
dVd/dt
dV/dt

. (5.82)

dV/dt is the cake growth velocity of Eq. (5.1) multiplied with the total area A:

dV
dt

=−cFA

εs
·q ·A . (5.83)

dVd/dt describes the rate with which impurities are supplied. It can be expressed as:

dVd

dt
=−c∆ ·q ·A , (5.84)

where c∆ is the volume concentration of impurities in the suspension deposited at the surface,

q is the suspension’s superficial velocity, and dL/dt the cake growth velocity. As q is negative in

the present coordinate system, the last two equations contain minus signs. Note that Eq. (5.84)

depends only on q and cake growth velocity is neglected here. This is justified because cake

growth is much slower than fluid transport. However, the same final result is arrived at when

the effect of cake growth is included in Eq. (5.84) and the full equation for dL/dt is used, as

shown in Eq. (2.43); this was demonstrated in Kuhn and Briesen (2016a). Under the present

assumptions, the final relationship is obtained when Eqs. (5.83) and (5.84) are introduced into

Eq. (5.81):

σ(t,L) =
εs · c∆

cFA
. (5.85)
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Chapter 6

Further Applications

Some new paths within filtration research may also open up new ways outside of this field. A

few examples where this might be the case are introduced in this chapter. Only a simplified

mathematical treatment is presented and no optimization results are shown. However, it is

argued on systematic grounds that the methods used in the previous case studies might also

be beneficial for the applications presented here. The systematic argumentation hinges on the

principles presented in Section 2.3.5 to identify worthwhile optimal control problems and to

judge their outcomes. Flow charts in the form of causality graphs are used to further illustrate

analogies between the different applications. The material of this chapter, therefore, falls under

the category of “bold conjectures” as discussed in Section 1.3; future research may build on

it and judge its validity. The discussed applications are broadly divided into two subcategories,

namely flow through compressible porous media and processes based on intra-particle diffusion.

As can be seen, both categories are still closely related to the previous investigations on filtration

as they also belong to the fields of transport in porous media as well as particle technology.

6.1 Flow Through Compressible Porous Media

Compressible porous media are encountered in various different fields and applications. In

many cases, soils are characterized by compressible behavior (Bear, 1988, p. 52); the same

holds true for biological tissues (Khaled and Vafai, 2003). Filter cakes are often compressible

(Sorensen and Sorensen, 1997; Alles, 2000) and columns for preparative chromatography are

packed frequently with compressible media (Carta and Jungbauer, 2010, pp. 119-121, 317-

326). It is generally distinguished between mechanical compression and flow compression. The

first leads to a homogeneous compression within the medium, the latter causes an increasing

compression along the flow direction (Parker et al., 1987). In this section, only flow compression

is considered. Phenomenologically, compression reduces the fluid permeability and, therefore,

leads to an increasing differential pressure across the porous medium if a constant flow rate is

enforced.

93
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For the following considerations, a cylindrical geometry is investigated and treated as one-

dimensional with the spatial dimension z being the axis of the cylinder. A model sketch including

the main variables is provided in Figure 6.1.

L

L 

q

z
w

dvessel

Figure 6.1: Model sketch for stationary flow through compressible porous media.

Only a stationary process is considered. In this case, a force balance on an infinitesimal 1D

element leads to

dσc

dz
=−d p

dz
− 4

dvessel
µw

ν

1−ν
σc , (6.1)

where σc is the compressive or tensile stress, p is the fluid pressure, z is the height coordinate,

dvessel is the diameter, µw is the coefficient of wall friction, and ν is Poisson’s ratio (Hekmat et al.,

2013). The right term accounts for wall support, i.e., the fact that the vessel wall counteracts

compression. Note that wall support is negligible for large containers, i.e., dvessel → ∞. If the

pressure gradient is substituted by Darcy’s law, one gets:

dσc

dz
=

q ·µ
k
− 4

dvessel
µw

ν

1−ν
σc , (6.2)

where permeability k is a function of the characteristic length scale d of the pore space, as

previously discussed. The equation is solved within the domain [0 L] using the initial condition

σc(L) = 0 . (6.3)

However, the initial height L0 is reduced to L due to compression. Local uniaxial compression is

defined as

ec =
dud

dz
, (6.4)

with the local displacement ud (Gross et al., 2011, pp. 14, 20). Assuming zero displacement at

z = 0, i.e., at the fluid outlet, the global change in length results from an integration of ec as
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∆L = u(L) =
∫ L

0
ec dz . (6.5)

In implicit form, L can be expressed as

L = L0

(
1− ∆L

L

)
, (6.6)

e is coupled to compressive stress via Hooke’s law, if linear elastic behavior is assumed for

reasons of simplicity:

ec = E ·σc , (6.7)

where E is Young’s modulus which describes the stiffness of the packed bed, i.e., it is an effective

or macroscopic elastic modulus. Based on these equations, the compressive stress σc is lowest

at the flow inlet, namely 0, and increases steadily towards the flow outlet.

Two further causalities need to be mentioned, namely, how the characteristic length scale of

the micro scale d influences the permeability k and the compressibility described by E. On the

one hand, k increases with d, as, e.g., modeled by the Kozeny-Carman equation (Section 2.2.3).

Therefore, larger particles lead to a more permeable packed bed. On the other hand, packings

of larger particles are also often more compressible, i.e., E of the packed bed increases with d.

For fibers, the van-Wyk equation implies that larger, i.e., longer, fibers lead to a higher bed com-

pressibility. This behavior was attributed to a more pronounced bending of larger single fibers

(Van Wyk, 1946). If single spherical particles are considered, their stiffness increases with in-

creasing particle size, as described, e.g., by Hertz’ law (Flores and Lankarani, 2016, pp. 19-21).

This is contrary to the just discussed behavior of fibers. However, deformation of single particles

is not the only mechanism for macroscopic bed compression. Other effects, like rearrangement

of particles or breakage of agglomerates, can also be important (Alles, 2000). Therefore, the

macroscopic bed behavior can differ from the compression behavior of single particles. For ex-

ample, a direct proportionality between particle size and effective elastic modulus of the bed

was also reported for nearly incompressible sand particles (Brzesowsky et al., 2014). The rea-

soning in the next section is based exemplarily on the same phenomenological behavior, namely

that bed compressibility increases with particle size.

In all of the following considerations about process optimization, a minimal overall pressure

drop ∆p is aimed at. The corresponding objective functional is:

J =

∫ L

0

(
d p
dz

)
dz = ∆p . (6.8)

In case of processes with a constant flow rate, minimal pressure drop also leads to the smallest

energy consumption. Now that the performance index is defined, suitable control variables still

need to be identified. Hypothetically, the characteristic length scale d of the pore space as well
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as the vessel diameter dvessel are chosen as promising candidates for control variables. These

two options are explored in the following two sections.

6.1.1 Using Stratified Packings

Using the characteristic length scale d of the pore space as the control variable and varying it

along the independent variable z leads to stratified packings. Stratified packings denotes pack-

ings of particulate materials that vary in their properties along the height. In this first consider-

ation, the wall support is neglected, i.e., vessels with large diameters dvessel are considered. The

characteristic length scale d is interpreted as the particle size, where particles are understood in

a broad sense, comprising, for example, also fibers. It can be observed that the underlying logic

here is similar to the one applied in the previous case studies, especially in Chapter 4 where the

packing properties of depth filters were varied along the filter depth.

Process causalities for flow through compressible porous media using local particle size as

the control variable are depicted in Figure 6.2. As indicated in the figure, it is assumed that the

overall size distribution of the particles is constant, i.e., that a given batch of particles is used

that are distributed along the bed height according to their sizes. This is true to the principle

discussed in Section 2.3.5 that for a meaningful comparison of standard and optimized process

configurations, ideally all properties except for the control variables need to be kept constant.
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Figure 6.2: Process causalities in flow through compressible porous media including the influ-
ence of the local particle size.

However, an important assumption is implied here, namely that the packing porosity is not

affected by spatially rearranging the particles according to their sizes. Contrary to that assump-
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tion, packing porosity is indeed affected by the size distribution of particles. Consider as an

example particles of two sizes: Each particle fraction alone will have a higher packing porosity

than the homogeneous particle mixture (Mota et al., 2001; Dias et al., 2004; Brouwers, 2013),

as discussed in Section 2.2.3. Thus, a stratified packing configuration with two layers composed

each of mono-sized particles will have a higher porosity than a bed of mixed particles; also the

overall bed height will be affected. Usually, the effect will be less pronounced in case of broad

particle size distributions, instead of two mono-sized particle fractions. However, as the effect

of a broader size distribution is not easy to generalize, further research is necessary to inves-

tigate the quantitative influence on the packing properties for given cases. For now, only the

simplification is noted and it is assumed that variations in packing porosity will not eliminate

the benefits of the proposed optimal control approach. Based on Figure 6.2 and the introduced

equations, an optimal control approach is expected to reduce the overall energy expenditure for

the following reasons:

• Larger particles result in an higher permeability k in an uncompressed state, i.e., d ↑ −→
k ↑.

• However, larger particles are also more compressible than smaller ones, i.e., d ↑ −→ E ↓.

• The compressive stress is lowest at the flow inlet and increases steadily towards the flow

outlet.

• It is assumed that a certain particle size spectrum is available.

• Therefore, larger particles out of the available size spectrum should be used at the inlet

and their size should be decreased toward the fluid outlet.

Whereas the basic idea of local particle size variation to counteract increased energy expen-

diture due to flow compression was illustrated so far in a general manner, this principle can be

used for process optimization in different fields. Examples are provided now by picking up some

applications mentioned at the beginning of Section 6.1.

One mode of precoat filtration is based on a constant precoat layer height (Hackl et al.,

1993, pp. 7-9). Often, compressible fibers are used as a precoating material. In this case,

grading of fiber length along the layer height with the shortest fibers closest to the fluid outlet

might decrease energy consumption. However, care must be taken that the separation properties

of the graded or stratified precoat layer are still within a tolerable margin, i.e., comparable to a

homogeneous layer.

Particle sizes in preparative chromatography columns could, analogously, be varied along

the column height. Again, it is desirable that the particles which form the stiffest packing are

located at the fluid outlet where the compressive stress is highest. Similar to the last example,

care must be taken that the chromatographic operation is still guaranteed to a sufficient degree

by this modified packing configuration. Li and Liapis (2012) showed evidence that for some

chromatographic operations stratified beds are directly beneficial; however, no optimal control
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approach is used. Fee et al. (2014) and Nawada et al. (2017) did experiments on 3D printing

of chromatography columns and packing materials, respectively. Even though not mentioned in

these studies, both techniques are usable for the fabrication of locally optimized chromatography

packings, a strategy which is directly related to the micro-manipulative paradigm in filtration

research as identified in Section 1.2.1.

Another application is the washing of compressible particulate materials. For some uses,

fibers or particles are washed in packed beds before they are further used (Noerpel et al., 2012).

For example, this is the case in the fabrication of chromatographic media. In contrast to pre-

coat filtration or chromatography where a particle-size gradient might affect the function of the

process, particle washing should not be impaired by stratified particle-packing configurations.

Whereas the previous examples can be and often are described by the modeling approach

sketched in this section, also further applications that go beyond this model can be optimized

along similar lines. Compressible cake filtration is mentioned as an instance (Tien, 2006, pp. 51-

89). The growing cakes are no longer stationary, as assumed in the model equations above. On

the contrary, a moving-boundary problem is encountered. Nevertheless, the highest compressive

stress occurs at the filter medium. Therefore, it may be beneficial to filter the smallest particles

first and the largest last. This particle size grading is contrary to the natural sedimentation

layering of size-distributed particles where the largest particles sink fastest and are, therefore,

encountered at the bottom. For this reason, a combination of cake filtration with some pre-

treatment steps, e.g., centrifugation, may be advantageous. It is suggested that particles are

subsequently filtered in different size classes, starting with the smallest ones.

6.1.2 Using Wall Support

So far, wall support was neglected, i.e., dvessel→ ∞. On the contrary, now not only vessels with

a finite diameter are considered but dvessel is actively used as the control variable. The process

follows the causalities depicted in Figure 6.3.

In this case, the total bed height is imposed as a constraint so that only the distribution of

vessel diameters within that height is considered. Otherwise, the given particle volume could

be accommodated within a vessel of the smallest possible diameter so that the wall support is

maximal everywhere. Distributing dvessel along the height might be beneficial for the following

reasons:

• The compressive stress is lowest at the flow inlet and increases steadily towards the fluid

outlet.

• A certain amount of particles need to be accommodated within a given height L which is

imposed as an additional constraint.

• The column diameter, therefore, should be smallest at the fluid outlet to offer the highest

wall support where it is needed most.
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The general idea of varying the diameter distribution might be beneficial for different ap-

plications. In preparative chromatography, ever higher flow rates are desired for economical

reasons. Therefore, bed stability is an issue, e.g., due to channel formation at the column wall

or within the bed (Hekmat et al., 2011).
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Figure 6.3: Process causalities in flow through compressible porous media including the influ-
ence of the local vessel diameter.

Gerontas et al. (2015) investigated the effect of mechanical inserts, i.e., concentric metal

rings, in chromatography packings to increase wall support and by that achieve higher bed

stability. However, rings of constant diameter were used and the diameters seem to have been

selected by trial and error. Using an optimal control approach, in contrast, offers the possibility

to determine not only improved wall support but the optimal wall support according to the

chosen model and cost functional – an argument that hinges on the discussion of Section 2.3.5

where improvement based on intuition was contrasted with mathematical optimization.

Once the optimal vessel geometry is known, also additional overall process improvements

can be addressed. An example of how to move from a single vessel geometry to a new process de-

sign, in this case a counter-flow arrangement, is shown in Figure 6.4. The figure illustrates that

also more complicated geometries of single vessels can be accommodated effectively by using

advanced overall designs. Even though preparative chromatography was used as an example so

far, similar approaches can, of course, be also beneficial for filtration. In this respect, advanced

geometries become ever more attractive, the higher the compressibility of the corresponding

materials and the more, therefore, is gained by counteracting local compression. A further, re-

lated idea is worth mentioning that arose in discussions with Jörg Engstle, former employer at

the Chair of Process Systems Engineering. Local wall support cannot only be increased by ac-
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tually changing the overall vessel geometry, but also by inserts in a given vessel; the concentric

rings used by Gerontas et al. (2015) to achieve higher wall support in chromatography columns

were already mentioned. In contrast, the idea of Jörg Engstle and the author of this thesis was

to use random packing rings1, normally applied, e.g., in fractionating columns (Raschig, 2017),

to locally increase wall support. The idealized concept is that the random packing rings create

internal confinements of small dimensions that offer high local wall support to the compressible

particle packing. In this mode of usage, random packing rings can also be conceived as macro-

scopic filter aids, because the random packing rings enable the build-up of stable filter cakes just

as conventional filter aids do, only their geometrical dimensions are orders of magnitudes larger

than the substances to be separated, which distinguishes them from conventional filter aids.

(a) (b)

Figure 6.4: Illustration of optimally controlled vessel diameter: single narrowing vessel (a) and
three narrowing vessels in counter-flow arrangement (b); the blue arrows indicate the flow
direction.

Preliminary experiments by Jörg Engstle for lautering, a solid-liquid separation step in the

beer brewing process that comprises highly compressible filter cakes, showed promising results,

i.e., increased flow rates at a still acceptable separation efficiency. Currently, further experiments

with compressible fibrous materials are being conducted. Using optimal control methods, the

local packing configuration of the random packing rings can be optimized. However, especially

when small geometrical confinements are encountered, the effect of confinement diameter on

pressure drop also needs to be taken into account (Cheng, 2011). This effect is also marked in

Figure 6.3 as the relationship between local vessel diameter and local pressure drop. Whether

the strategy described is beneficial for filtration practice depends on the actual financial savings.

Different scenarios are conceivable: For example, either the random packing rings are regener-

ated, i.e., cleaned, and used repeatedly or they are discarded with the filter cake. In addition to

their use in filtration, random packing rings can also be used to decrease packing compressibility

in a row of other applications where flow through compressible porous media is encountered.

1Often, random packing rings are also simply called random packings or they are referred to by their commercial
names, e.g., Raschig rings or Pall rings.
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6.2 Processes Based on Intra-Particle Diffusion

As a second broad field of applications, processes based on intra-particle diffusion are consid-

ered. To name a few examples, intra-particle diffusion is decisive in various extraction processes,

e.g., of coffee. Furthermore, intra-particle diffusion plays an important role during washing of

porous particles as well as for many chromatographic applications.

In this section, a case is considered where solids are laden with the substance of interest

which is transported within the solid particles by diffusion and within the fluid phase by con-

vection. All considerations analogously hold for the converse case where solids are increasingly

enriched with the component of interest by transport from the fluid phase. Note that, phe-

nomenologically, such extraction-like processes are opposed to filtration: During the first, a

clear fluid enters a particle packing and gets enriched with substances; during the second, a

fluid laden with substances passes a filter medium and, thereby, gets clarified.

According to the phenomenological description provided so far, processes based on intra-

particle diffusion can be modeled by a diffusion equation in the solid phase that is coupled to a

convection equation in the fluid phase. The following model was developed for coffee extraction

in Kuhn et al. (2017b). A model sketch is provided in Figure 6.5.
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Figure 6.5: Model sketch for diffusive mass transport from particles to fluid flow.

As derived in Section 2.1.2, convective transport is described by

ε · ∂cl

∂ t
+q · ∂cl

∂ z
= s , (6.9)

with cl being the component’s mass concentration2 in the liquid phase and s as a source term

which can be formulated as

s = Sv · kl · (c∗l − cl) , (6.10)

2In this section, mass concentrations are used as is customary in mass transfer studies. Note that this is contrary
to the volume concentration used when filtration was treated in the previous chapters. A justification for the use of
volume concentrations in filtration was given at the end of Section 2.2.3.
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where kl is the mass transfer coefficient on the liquid side and c∗l is the concentration in the

liquid at the phase boundary. Sv, the specific surface of the bed, can be expressed in terms of the

specific particle surface Sv,p and the bed porosity ε (Bear, 1988, p. 51) as

Sv = (1− ε) ·Sv,p = (1− ε) · 3
R
, (6.11)

with the particle radius R, if spherical particles are considered. Phase equilibrium at the bound-

ary between the solid and the liquid phase is described by

c∗l = K · c∗s , (6.12)

with the equilibrium constant K and the solid concentration at the phase boundary c∗s . Mass

transfer in the solid phase is modeled as Fickian diffusion according to

∂cs

∂ t
=

1
r2

∂

∂ r

(
−r2 · j

)
= D

(
∂ 2cs

∂ r2 +
2
r

∂cs

∂ r

)
, (6.13)

i.e., in spherical coordinates with symmetry assumed along both angular directions. cs is the

concentration in the solid phase, j is the diffusive flux, r is the particle radius, and D the diffu-

sivity of the solid particles. Note that D needs to be interpreted as an effective diffusivity when

porous particles are encountered, as is the case for coffee extraction (Moroney et al., 2015) as

well as in many chromatography applications (Carta and Jungbauer, 2010, p. 70). The bound-

ary conditions are

cl(z = 0) = 0 (6.14)

j(r = 0) = 0 (6.15)

j(r = R) =−kl · (c∗l − cl) . (6.16)

Initially it holds that

cs = cs,0 ; (6.17)

cl can be initialized with a stationary profile if the initial flooding of the porous material is ne-

glected. An analysis of these system equations shows that the strongest gradient and, therefore,

the largest driving force for extraction is given at the flow inlet. This driving force decreases

towards the fluid outlet because ever more of the considered substance is enriched in the fluid

phase. Hubbuch et al. (2003a) and Hubbuch et al. (2003b) showed that the local concentra-

tions can be studied experimentally by CLSM using a small model chromatography column. The

same studies illustrate how diffusive transport is dependent on the particle radius. As can be

seen also by the system equations, especially Eq. (6.11), smaller particles release their content

of the considered component faster than larger ones. Based on these observations, the process

causalities are depicted in Figure 6.6.
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The control variable is again the particle size, meaning the radius R here, and its distribution

along the bed height is to be determined. Assuming that the extraction shall be conducted as fast

as possible, the task turns into an optimal control problem with a free final time. The objective

functional, therefore, is

J = te , (6.18)

where te is the end time at which some cumulative extracted amount of the considered compo-

nent mc shall be achieved. To assure this, the following stopping criterion can be used

mc =

∫ te

0
[cl(t,z = L) ·q ·A] dt , (6.19)

where mc is the cumulative component mass and A is the cross-sectional area. Alternatively, one

could set the goal also to maximize the yield mc, respectively to minimize (−mc) within a fixed

time period [0 te].
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Figure 6.6: Causalities for processes based on intra-particle diffusion including the influence of
the local particle size.

As supported by Figure 6.6, the reasoning for the benefits of such an optimal control ap-

proach is as follows:

• The driving force for extraction is highest at the flow inlet and decreases towards the

outlet.

• It is assumed that a certain particle size spectrum is available.

• Therefore, larger particles out of the available size spectrum should be used at the fluid

inlet where the driving gradient is largest and smaller particles at the fluid outlet to com-

pensate for the smaller gradient there.

However, as already discussed in Section 2.3.5, for a meaningful comparison of standard

and optimized process configurations, all properties except for the control variables need to be



104 Chapter 6. Further Applications

kept constant. In this case, this is particularly important for the particle size distribution. In an

ideal case, the particle diameter is as small as possible; thus, extraction is maximal everywhere.

If, however, a certain amount of size distributed particles need to be accommodated within a

given height L, i.e., additional constraints are imposed, then the distribution of diameters along

the height offers benefits.

As quickly mentioned at the beginning of this section, the washing of porous particles could

be optimized by the described approach. Particles with an internal or intra-particle porosity are

used in areas such as catalysis, chromatography, or pharmaceutics. After manufacturing, porous

particles usually still contain unwanted impurities from their synthesis within the inner pore

system (Noerpel et al., 2012). Due to the small size of the inner pores, usually only diffusive

transport takes place within the particles. Based on the above reasoning, the washing process

could be optimized by arranging them in stratified packings with the largest particles at the flow

inlet and the smallest at the outlet.

Using the same strategy, extraction from coffee particles can be improved. This becomes

especially attractive when only the overall yield matters as is the case, for example, during

decaffeination where as much caffeine as possible is to be extracted in the shortest possible

time. Note that usually whole beans are decaffeinated, i.e., the particles are understood here

as whole coffee beans. As the beans are distributed in their size, they can be arranged in

stratified packings too. With a modified objective functional and kinetics for different key aroma

components, also the aroma profile of coffee could be optimized by a spatial arrangement of

milled coffee grains according to their sizes.

As a last example, mass transport in chromatography could be optimized. As already men-

tioned above, Li and Liapis (2012) reported benefits of stratified beds for the chromatographic

operation based on a continuum modeling approach. However, they used no optimal control

method to determine their optimal particle-packing configuration as is suggested here. It is

important to emphasize that they set larger particles at the flow inlet and smaller ones at the

outlet, i.e., the identical strategy suggested in this section. It is noted in passing that the same

authors found benefits of stratified particle packings for freeze drying of particulate substances

a few years later (Bruttini and Liapis, 2015). Even though they conducted a model-based study,

again no optimization or optimal control approach was used.

6.3 Conclusions from the Considered Further Applications

In this chapter, it was argued on systematic grounds that the methods used in the case studies of

Chapters 4 and 5 might also be beneficial for different other applications. Two process classes

that are closely related to these earlier investigations on filtration were discussed: flow through

compressible porous media and processes based on intra-particle diffusion.

In case of flow through compressible porous media, two strategies were proposed to coun-

teract media compression and, therefore, reduce energy consumption of the corresponding pro-

cesses. First, it was suggested to make the particle diameter the control variable and vary the
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particle size along the bed height. It was argued that larger particles should be used at the flow

inlet and smaller particles at the fluid outlet. However, it is important to note that this strategy

is only valid if bed compressibility increases with particle size, as is the case, e.g., for fibers.

As a second option, it was proposed to use the local vessel diameter as the control variable.

Larger diameters are desirable at the fluid inlet and smaller vessel diameters at the outlet. Some

suggestions for practical realization were made. It was also highlighted that the effective vessel

diameter can be modified as well by mechanical inserts into some given overall geometry.

Maximization of extraction yield was the goal defined for processes based on intra-particle

diffusion. The local particle size was again chosen as the control variable. It was argued that a

particle size gradient leading from larger particles at the flow inlet to smaller ones at the outlet

increases extraction yield.

In all cases that were discussed, some principles of Section 2.3.5 were applied and, thereby,

illustrated. It was repeatedly shown that it is important to keep all variables except for the

control variables constant in order to evaluate the benefits of the optimal control approach

in a meaningful way. Furthermore, overall constraints on the control variables are often one

important prerequisite for non-trivial, i.e., non-constant, optimal control solutions; otherwise,

the optimal trajectory is simply given by one of the bounds of the control variables.

Hopefully, the hypotheses for process improvement and beneficial optimal control approaches

are picked up in future work. Only fully conducted optimal control computations, ideally to-

gether with an experimental validation, can judge the proposed strategies. Note that also many

suggestions can be interpreted as micro-manipulative strategies, according to the label intro-

duced in Section 1.2.1, notably where the particle packing is optimized locally or when mechan-

ical inserts are used to increase local wall support.
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Chapter 7

Conclusions and Outlook

Different optimal control problems in the field of filtration and related areas were considered in

this dissertation. Throughout the work, a few central motifs, explicitly introduced in Chapter 1,

were present in the background. Arranged by increasing abstractness, these central motifs are:

1) In many cases, variable control functions, i.e., the paths determined by optimal control

methods, offer benefits over constant values of control variables.

2) The continuum models, used in this thesis because of their computational efficiency, are to

be considered as part of a larger framework for multiscale design and control of filtration

and similar processes.

3) Results from one area of science and engineering can offer benefits for other areas.

4) Engineering, like natural science, advances by trial and error. On the one hand, therefore,

all results have to be seen as hypothetical; on the other, bold conjectures can help to

advance the knowledge in a field.

Motifs 1) to 4) are also used to organize this conclusion and give some outlook. Note that the

detailed and topic-specific summaries, provided at the end of Chapters 4 to 6, are not repeated

here. Only those points most important for the central storyline are included in this chapter.

Motif 1), the hypothetical benefits of variable control paths, was a central guideline in the two

case studies of Chapters 4 and 5, the main findings of which are summed-up first. The other

motifs will be picked up subsequently.

In Chapter 4, a new model-based design method for depth filters was developed. Using the

filter coefficient, a measure for local filtration performance, as the control variable which is var-

ied along the filter depth, two scenarios were investigated: First, the filter-coefficient path was

optimized in order to achieve a constant deposition of impurities along the filter depth; second,

the time until some maximal pressure drop is reached was maximized. The numerical algorithm

was also validated for the first scenario using a newly-derived analytical optimal control solu-

tion based on a simplified model. Discrete filter layers, usable for practical filter design, were

subsequently derived from the optimal trajectories for both scenarios.
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A new mechanistic model for filter-aid filtration was introduced in Chapter 5. The model’s

properties were explored and it was used for optimization and optimal control computations.

The chosen mathematical and numerical methods were shown to be able to handle the moving

boundary problem including its sharp moving fronts. A front-fixing method was used to trans-

form the problem into one with a fixed computational domain; a flux-limiter scheme assured a

numerically stable solution despite strong discontinuities in the solution. Optimization and op-

timal control showed that the optimal constant filter-aid concentration offers large benefits for

energy consumption compared to deviating concentrations; optimally controlling the filter-aid

dosage, on the contrary, led only to insignificant improvements.

According to Motif 4), technological and scientific knowledge is always fallible and incom-

plete. The incompleteness is addressed now by summing-up some open points. The studies on

depth filtration, presented in Chapter 4, need to be applied to practical cases of filtration using

a fully parameterized model in order to judge the benefits of the proposed design method. To

put it briefly: Only the actual use in design can finally judge the value of a design method. The

same holds true for the case of filter-aid filtration as discussed in Chapter 5. Even though the

new model was qualitatively compared to literature results, a detailed empirical validation is

still necessary. Also, the optimization and optimal control results need to be tested empirically.

In a nutshell: Only its use for actual process control can finally judge the value of a control

method. Additionally, it was found that the chosen numerical optimal control method, a direct

single-shooting algorithm, showed some numerical instabilities when computing the optimal

filter-aid dosage trajectories. This provided no problem in the context of Chapter 5 because

optimal control was found to offer little benefits. If the method is to be applied to analogous

cases, however, it is likely that the algorithm needs to be further developed.

One of the common themes in the case studies on depth filtration and filter-aid filtration was

the creation of structures with spatially varying characteristics. Note that also the time-variable

dosage of filter-aids finally leads to a filter cake with spatially varying properties. According to

Motif 3), the transfer of this principle to related areas was explored in Chapter 6. These areas

were divided into flow through compressible porous media and processes based on intra-particle

diffusion. In the first case, it was suggested that compression and, therefore, energy consump-

tion can be reduced by varying the particle size along the whole packing height or by providing

locally varying wall support. In case of diffusion-limited processes, also benefits of varying the

particle size along the flow direction were asserted. As all proposed measures were neither de-

veloped theoretically in great detail nor tested empirically, the material of Chapter 6 consists

of many “bold conjectures”. According to Motif 4), it is hoped that they might benefit future

research. In this respect, it is important to remark that even when no actual optimal control

computations are performed, the proposed strategies might be beneficial. Simply the idea of

varying certain process variables along spatial dimensions may open up room for experimental

investigations and practical process improvement.

Last, a multiscale approach to porous-media design is outlined for which the present work is an

important building block; this paragraph, thus, picks up Motif 2). The multiscale approach to



Chapter 7. Conclusions and Outlook 109

be described is depicted in Figure 7.1; it is based on a row of observations: First, the important

mechanisms in porous media transport often take place on the microscale; e.g., in filtration,

impurities are separated on the pore level. Second, in recent times it is possible to a previously

unimaginable degree to tailor microstructures after given specifications; this was called the

micro-manipulative paradigm in Section 1.2.1. Third, what is needed, therefore, are precise

criteria stating what microstructural properties are actually desirable. Fourth, optimal control is

a suitable tool to determine optimal profiles of continuum-scale properties, as was shown in this

thesis. Fifth, a method is required to bridge the gap between the microscale and the continuum

scale.

Analysis

Continuum 

model
Optimal control

DesignPore scale

Continuum scale

Scale-upScale-down

Figure 7.1: Schematic of multi-scale approach to porous-media design.

To flesh-out the sketched multiscale approach, the manufacturing of microstructures as well

as the bridging of scales is addressed next. From the different possibilities within the micro-

manipulative paradigm, 3D-printing and selective-manufacturing technologies are of great im-

portance. To provide a few examples: Fee et al. (2014) reported on their use of 3D printing to

create porous media with precisely defined packing morphologies. Ge et al. (2017) produced

particle agglomerates with defined properties by 3D printing. Low et al. (2017) provided a re-

view of 3D printing technologies and their possible application for the fabrication of separation

membranes. In the context of chromatography, Nawada et al. (2017) used additive manu-

facturing to produce columns with defined microstructures and characterized their transport

properties. In none of these studies, however, structures with spatially varying properties were

addressed, even though their manufacturing clearly is technologically possible.

Bridging of scales is an important ingredient in all multiscale approaches (Horstemeyer,

2010). In the context of porous media research, spatial averaging is a known method to de-

rive macroscopic information from micro-scale properties. Due to its importance in the present

context, it was introduced in some detail in Chapter 2. Using spatial averaging, the continuum

equations of this work can be derived from pore-scale descriptions. Therefore, all the needed

ingredients for the sketched multiscale approach are given. Pore geometries can be manufac-
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tured and analyzed on the microscale. Spatial averaging can be used to derived continuum

models from microscale mechanisms. Optimal control can be used to optimize spatial profiles

on the continuum scale. The known correlations between the continuum equations and the mi-

croscale properties can, in turn, be used to translate the continuum results back to the pore scale.

Spatially-variable microstructures can be manufactured by 3D printing; thus, the predictions can

be validated and the benefits of the optimal control approach can be evaluated.

It is hoped that some of the new paths that were explored in this thesis will be used, extended,

and improved upon by others. Science and engineering are open-ended endeavors; thus, there

is much to do.
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