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Abstract. An iterative search method is proposed for obtaining orientation
maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD)

data. In each step, detector pixel intensities are calculated by a forward model
based on the current estimate of the orientation map. The pixel at which

the experimentally measured value most exceeds the simulated one is identi-

fied. This difference can only be reduced by changing the current estimate at
a location from a relatively small subset of all possible locations in the esti-

mate and, at each such location, an increase at the identified pixel can only be

achieved by changing the orientation in only a few possible ways. The method
selects the location/orientation pair indicated as best by a function that mea-

sures data consistency combined with prior information on orientation maps.

The superiority of the method to a previously published forward projection
Monte Carlo optimization is demonstrated on simulated data.
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1. Introduction.

1.1. Relevance of the application field. The inverse problem of recovering poly-
crystal orientation maps from X-ray diffraction data arises as an imaging problem
in materials science. Many materials − such as metals, ceramics and alloys − are
composed of crystalline elements. These elements, called grains, might all share the
same crystal lattice structure, but they typically differ in size, shape and orienta-
tion of the lattice. For deformed materials even the orientation might differ slightly
within the grain. An image of the material at the grain level should therefore pro-
vide for each location i two quantities f(i) and o(i): f(i) is the label of the grain
that occupies i, while o(i) is its orientation at i. Thus recovering an image at the
grain level is equivalent to recovering the grain map f and the orientation map o,
which both act as functions on the image domain.

The physical, chemical and mechanical properties of the material are to a large
extent governed by the geometrical features of the grains and their relative positions
(such features include the correlation between the orientation of two neighboring
grains and the morphology of the boundary separating them). Properties of grains
are studied in a number of different applications in materials science. Such applica-
tions include the study of polycrystalline deformation, recrystallization, and phase
transformation, [8, 19, 22].

Until recently, no nondestructive methods existed for imaging grains in 3D. The
Three Dimensional X-Ray Diffraction (3DXRD) microscope, resulting from collab-
orative efforts between Risø DTU, Technical University of Denmark and the Eu-
ropean Synchrotron Radiation Facility (ESRF), is a novel instrument that for the
first time allows nondestructive structural characterization of polycrystals [27]. The
3DXRD microscope utilizes X-rays that generate diffraction patterns on a detector.
From these diffraction patterns one tries to recover the grain/orientation maps. So
far, 3D maps have been generated of the morphology of the individual grains within
millimeter thick specimens [2, 3, 20, 23, 28, 29, 30, 34]. Furthermore, in favorable
cases 3D animations can be produced of grain growth processes [32, 33].

1.2. Methodological contributions. Four methods for recovering maps from
3DXRD diffraction data can be found in the literature [3, 28, 30, 34]. Only the
algorithm presented in [30], which we shall from now on call SARGM (Stochastic
Algorithm for Reconstruction of Grain Maps), can recover orientation maps, the
other algorithms implicitly assume that the orientations are constant within the
grain (i.e., the material is undeformed). We present a new method that recovers
maps of moderately deformed materials, which outperforms SARGM in terms of
running time and quality of reconstruction. We follow the approach of all previous
methods by focusing on layer-by-layer reconstructions, where 2D sections (layers)
in the sample are illuminated consecutively and reconstructed independently. To
generate 3D maps the results for the layers have to be stacked.

In [3, 30] tools from the relatively new mathematical discipline of discrete to-
mography [7, 14, 17, 18] were successfully included, to penalize solutions with un-
physical variations in local orientations or erratic grain boundaries. We follow the
same approach by trying to find a grain/orientation map pair that is indicated as
best by a function on the maps; the function combines data consistency with prior
map information. Previously, Monte Carlo methods have been used, because the
function has numerous local optima. The sampled solution space, however, is ex-
tremely large since potentially every location in the maps can be processed. In
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the present paper we demonstrate that it suffices to process (deterministically) the
much fewer diffraction spot pixels on the detector, and backproject changes into the
grain/orientation map space. This method is similar to the Algebraic Reconstruc-
tion Technique (ART) used in tomography where detector pixel intensities refer to
line integrals. ART methodology has been used in photon migration imaging for
cases where the integrals are not taken over lines [5, 11] − the case of hyperbolas
in a discrete setting, as in our application, seems to be new.

We propose a scheme that determines the order in which detector pixels are
processed. The scheme prioritizes detector pixels at which the difference of the
actual measurement and the pseudo-measurement (i.e., the simulated diffraction
intensity of the current solution estimate) are maximal. This is a so-called greedy
scheme, which has already been successfully adopted in other applications of discrete
tomography [14]. However, we apply this scheme to select pixels on the detector
(and not in the image space), which − to our knowledge − is new.

Although the size of the search space is reduced considerably using the mentioned
techniques, in practice it will remain rather large. Our method is turned into a
practical method only by paying careful attention to details of implementation,
which are therefore explained in the paper.

1.3. Outline of the paper. In what follows we summarize in Section 2 basic con-
cepts of 3DXRD reconstruction, and we discuss the representation of orientations
that we use for our algorithm. In Section 3 we give a description of the proposed
algorithm. The implementational details are explained in Section 4. The simula-
tions in Section 5 are used to test the quality of reconstructions in noiseless cases,
and also as a function of noise and running time. We discuss the prospective uses
and possible extensions of the algorithm in Section 6.

2. Background.

2.1. 3DXRD experimental setup. Figure 1 shows the relevant 3DXRD setup. A
sample fixed to a turntable is illuminated by a parallel and monochromatic incoming
X-ray beam. Parts of the microstructure that happen to have orientations that
fulfill Bragg’s law (see next subsection) will give rise to diffraction spots, which
are recorded by a high-spatial-resolution area detector placed in close proximity to
the sample. The turntable (and thus the sample) is rotated by an angle ω around
an axis perpendicular to the beam, and diffraction images are acquired for equally
spaced values of ω ∈ [0, 90◦].

2.2. Diffraction. Grains, as mentioned in the introduction, are smaller crystals
(at different orientations) inside a polycrystal. The translational symmetry of a
crystal can be described using the concept of the Bravais lattice. This lattice is the
set

(1) L = {x ∈ R3 | x = α1a + α2b + α3c, α1, α2, α3 ∈ Z},
where a,b, c ∈ R3 are given vectors not all lying in the same plane. A crystal
contains different families of parallel lattice planes, each of which is determined by
an integer triple {hkl} with no common factors, the so-called Miller indices. The
triple {hkl} denotes the infinite family of parallel equidistant planes, one of which
passes through the origin, and the next nearest intersects the lattice axes in the
points a/h, b/k, and c/l (if one of the indices is zero, it means that the plane
does not intersect the corresponding axis). Figure 2 shows a Bravais lattice and the
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family of lattice planes determined by the Miller indices {100}. For given lattice
planes {hkl} we denote by h the uniquely determined vector that is perpendicular
to these planes, pointing away from them, and whose magnitude is the reciprocal
of the spacing.

An incoming X-ray beam with wavelength λ hitting the first lattice plane of a
crystal at an angle θ will be reflected at the same angle. The reflection, however,
interferes (constructively or destructively) with reflections that occur on parallel
lattice planes that are deeper in the crystal. If constructive interference occurs, it
produces a so-called diffraction spot. Bragg’s law, giving a condition on θ, h and λ,
characterizes exactly this situation. Let s0 and s denote unit vectors in the direction
of the incoming and reflected beams. Constructive interference along s will occur
if and only if the following condition (known as Bragg’s law in vector form [35])
holds:

(2)
s− s0

λ
= h.

Figure 3 gives an illustration of Bragg’s law in the 3DXRD setting where the lab-
oratory coordinate system (x̂l, ŷl, ẑl) is fixed as in Figure 1. In this system we have
s0 = (1, 0, 0)T for the incoming beam, and s for the reflected beam, characterized
in spherical coordinates by the two angles 2θ and η (Figure 1)

(3)

 cos(2θ)
− sin(2θ) sin(η)
sin(2θ) cos(η)

 .

It should be noted that finite crystals, such as grains, contain a finite number of
{hkl}-families. Above we have seen how h, in the coordinate system of the grain,
can be computed from its Miller indices {hkl}. An a priori known orthogonal
transformation, describing the rotation of the sample and the crystal orientation,
transforms h into coordinates of the laboratory system. Alternative descriptions
and additional details can be found in [2, 27].

2.3. Forward and backward projections. In the previous subsection we have
seen that there are finitely many candidates h describing lattice planes for which
diffraction can occur. We have discussed how s and s0 can be expressed in the
laboratory system, and thus, by (2), we can calculate for each h the angles θ and η
fulfilling Bragg’s law (λ is given by the experimental setup). Suppose that the pair
(θ, η) fulfills Bragg’s law. Thus, for a given point (xl, yl, zl) of the grain, we can easily
compute, using (3), the associated diffraction point on the detector (L, ydet, zdet) as
the intersection point of the line (xl, yl, zl)T + Rs with the detector plane. We thus
obtain

(4)
ydet = −(L− xl) tan(2θ) sin(η) + yl

zdet = (L− xl) tan(2θ) cos(η) + zl.

In the present case of a line beam configuration (where the X-ray beam is used
for illuminating one layer, say zl = 0, in the specimen) we can find the set of points
in the laboratory system that potentially can contribute diffracted intensity to a
given point d = (ydet, zdet) on the detector. For a given Bragg angle 2θ we obtain a
one-dimensional curve, called the projection curve, that consists of all points (xl, yl)
in the sample plane that satisfy

(5) (ydet − yl)
2 − (L− xl)

2 tan2(2θ) = −z2
det, xl < L,
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see Figure 4. The formula follows immediately from (4), and it is easily seen that
the projection curve is a hyperbola. The diffraction spots on the detector result
from a finite number of {hkl}-families (Section 5 describes the five {hkl}-families
that are used in our simulations), which correspond to a finite number of θ values.
Considering all those finite possibilities of θ, we form the set σ(d) of all projection
curves that potentially can contribute diffracted intensity at d. We call σ(d) the
set of projection curves of d.

2.4. Representation of grains and orientations. Our goal, as mentioned in
the introduction, is to recover grain and orientation maps. Let the total number of
locations in the 2D area of interest (sample layer) be I. We assign to each location
i (1 ≤ i ≤ I) both a grain label, f(i), and an orientation, o(i). Our approach
simultaneously generates the grain map, f , and the orientation map, o. Grains
are labeled by ` ∈ {1, 2, . . . , n}, where n, the total number of grains, is assumed
to be known a priori. For each grain ` an average orientation and the maximum
orientation spread Θ` must be known. Orientations can be represented in various
ways, most common are representations in Euler angles, Rodrigues vectors and unit
quaternions [4, 26]. These representations describe rotations in 3D-space. In this
article (as in [30, 31]), we choose representations by unit quaternions, mainly for
two reasons: quaternions form a division ring that, in our case, leads to simpler
equations (which in turn leads to faster algorithms), and the orientation space is
bounded and has no singularities (which is favorable for discretizations) [26].

We write unit quaternions in the form

(6) q = (a, b, c, d) = (cos(ϕ/2),n sin(ϕ/2)),

where the 3D unit vector n and the real scalar ϕ are the axis and angle of rotation,
respectively. Due to crystal symmetries, multiple unit quaternions may represent
the same orientation. The distance between orientations represented by unit quater-
nions q1 and q2 is defined as

(7) d(q1,q2) = min
s1,s2∈S

r(q1s1,q2s2),

where S is the set of symmetry rotations as given by crystallography and r is

(8) r(q1,q2) = 1− |a3| = 1− | cos(ϕ12/2)|.

Here a3 is the first component of the quaternion q3 = q2q1 (q2 multiplied by
the conjugate of q1) and ϕ12 is the rotation angle associated with the rotation
from q1 to q2. Usually we specify a distance d(q1,q2) by the associated angle of
disorientation, which is defined as that ψ ∈ [0, 180◦] for which cos(ψ/2) = 1− d.

For unit quaternions, each component has a value with magnitude less than or
equal to 1. We can choose a to be non-negative (because the unit quaternions q and
−q define the same rotation) and then it is uniquely determined by the other three
components using a2 + b2 + c2 + d2 = 1. Hence we can discretize the whole unit
quaternion space by sampling the values of components b, c, and d in the interval
[−1, 1] and allowing only values that satisfy b2 + c2 + d2 ≤ 1.

With respect to this discretization we define the discretized space Q(`) of pos-
sible orientations for each location in the grain ` with average orientation q` =
(a`, b`, c`, d`) and maximum orientation spread Θ` as follows

(9) Q(`) = {q = (a, b, c, d) : a ≥ 0, d(q`,q) ≤ Θ`} ,
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b = b` + i1u, c = c` + i2u, d = d` + i3u,

a2 + b2 + c2 + d2 = 1,

where i1, i2, i3 are integers and u is the sampling unit of each component.

3. Algorithm. Our iterative algorithm is deterministic, but has many similarities
with the stochastic Metropolis algorithm [24, 36]. It maximizes an objective function
γ(f, o) corresponding to a grain-map f and an orientation map o for the layer of
interest.

3.1. Objective function. The objective function, from [30], has the form

(10) γ(f, o) = exp
(
−β

(
α ‖Po −Pinput‖1 +H(f, o)

))
.

where α, β > 0 are predefined system parameters, which we specify in Subsec-
tion 5.2, and the two terms ‖Po −Pinput‖1 and H(f, o) are computed from f and
o as follows. The first term is a measure of the correspondence of the experimental
pixel intensities on the detector − arranged in a vector Pinput − and of the simu-
lated (projected) pixel intensities − arranged in a vector Po − given the orientation
map o. The second term comprises prior information about grain orientations and
morphology. As such it splits into two terms

(11) H(f, o) = H1(f, o) +H2(f).

TheH1 term, measuring the degree of homogeneity of the orientation map, is defined
as follows. Let Cf,`

NN denote the set of all pairs (i, j) of locations that are 4-connected
nearest neighbors (adjacent either vertically or horizontally) within a grain ` (i.e.,
the set of all locations i such that f(i) = `). Similarly, let Cf,`

NNN denote the set of
all location pairs (i, j) that are nearest neighbors (adjacent diagonally) within grain
`. Then

(12) H1(f, o) = −
n∑

`=1

 ∑
C∈Cf,`

NN

λ1ΦC(o) +
∑

C∈Cf,`
NNN

λ2ΦC(o)

 ,

with

(13) ΦC(o) = e−
(d(o(i),o(j)))2

2δ2 .

The parameters λ1, λ2, and δ are system parameters specified in Subsection 5.2
below. The H2 term, measuring the likelihood of the grain morphologies in the
grain map f , is based on a weighted counting of seven predefined local 3×3 features
G0, · · · , G6 in the grain map. Let N(Gc, f) count the number of times a feature
Gc occurs in f , and let Uc denote a predefined weight (preference) for that class.
Then,

(14) H2(f) = −
6∑

c=0

N(Gc, f)Uc.

The weights Uc and features Gc for our simulations, including “grain interior,”
“corner” and “random structure,” shall be defined in Subsection 5.2. We remark
that (10) is inspired by statistical mechanics: γ(f, o)/Z with a normalization factor
Z is a well-known probability measure - the so-called Gibbs measure [36]. The
application of Gibbs priors for 3DXRD data from undeformed specimens was derived
and motivated in [3].
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3.2. General outline of our approach. The input to our algorithm is a grain
map f and an orientation map o. How these maps are derived from physical data
is discussed in Subsection 5.3.

Our algorithm is a deterministic iterative method, which locally changes grain
labels and orientations. We aim for changes that have maximal effect (in terms
of improving the objective function) by selecting detector pixels using a greedy
approach. The changes, however, are made in the location space − and it should
be noted that such a change might in fact decrease the objective function value.
Our method is therefore not a greedy approach in location space. Furthermore, we
combine this method with a technique similar to tabu search [12] that forces the
algorithm to avoid reprocessing recently processed detector pixels. For this purpose,
we keep a tabu list T of a fixed length that contains such pixels. Both greedy
and tabu search are local search techniques used in a broad range of applications
[1, 12]. Tabu search, in particular, tries to avoid getting trapped in local optima by
prohibiting the option of visiting a recently left local optimum.

The general outline of our algorithm can be seen in Algorithm 1. We iteratively
select a pixel d on the detector and select a local change in grain label and orien-
tation that best affects d. We update to new maps, and terminate the iterative
procedure if a termination criterion is met. At termination we return the current
pair (f, o) since we found that this yields already a high quality reconstruction.
While it might be better to return the pair (f, o) that is the optimal one observed
during the whole iterative process, but in the experiments reported below this was
found to be unnecessary. We now explain the steps of the algorithm in more detail.

Input: Initial estimates (f, o) of a grain and an orientation map.
Output: Maps (f, o) for which the value of γ is nearly maximal.

Set T := ∅;
Repeat

Let D be the set of all detector pixels d for which the difference ∆d

of the actual measurement and the pseudo-measurement exceeds
the noise level;

If D \ T = ∅ then set T := ∅;
If D 6= ∅ then
Begin

Choose d ∈ D \ T with ∆d = maxd′∈D\T ∆d′ ;
Insert d into T ;
Select from all triples (i, fi, oi), such that grain fi at location i with

orientation oi leads to the highest γ(f ′, o′) if f ′ is obtained from f
by changing the label at i to fi, and o′ is obtained from o by chang-
ing the orientation at i to oi;

Set f := f ′ and o := o′;
Update simulated diffraction intensities;

End;
Until termination criterion is met;
Return (f, o).

Algorithm 1: General description of our greedy method.
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3.2.1. Detector Pixel Selection. We choose the detector position d, among those
which are not in T , for which the difference ∆d of the actual measurement and
the pseudo-measurement (simulated diffraction intensity for the current estimate)
has the highest value. The idea is that we want to increase at this detector pixel
the simulated diffraction intensity − thus decreasing ∆d. For the selection of d we
only take pixels into account for which ∆d > ε, where ε ≥ 0 is chosen to reflect
the level of noise. If no pixel with ∆d > ε exist then the algorithm terminates
(Subsection 3.2.3). If all d with ∆d > ε are elements of T then we empty the tabu
list, which enables us then to select an appropriate d. Pixel d is inserted into T in
the following way: If the length of T does not exceed a predefined parameter Tmax

then d is appended to the list, otherwise it replaces the element that has been a
member of T for the last Tmax iterations.

3.2.2. Update. For the selected detector pixels d, we consider all triples (i, fi, oi)
with

(15) i ∈ σ(d) (Subsection 2.3 describes the set of projection curves σ(d)),

(16) fi ∈
{
f(i) ∪

⋃
j∈N4(i)

f(j)
}
,

(17) oi ∈ Q(fi),

where N4(i) denotes the set of all locations that are 4-connected neighbors to i.
Among those triples (i, fi, oi) we keep only those in a list S(d) that potentially
contribute to the intensity in d. Thus, every triple can only have the grain label from
one of its 4-neighbors, or it might remain unchanged. For each element (i, fi, oi) in
S(d) we define the grain map f ′ to be the same as f except that f ′(i) = fi and the
orientation map o′ to be the same as o except that o′(i) = oi. We select an (f ′, o′)
to replace (f, o) for which γ(f ′, o′) is maximal.

3.2.3. Termination. Our algorithm terminates if one of the following termination
criteria is met: (1) There are no detector pixels d with ∆d > ε (i.e., with this
noise level no further detector image improvements are possible), (2) a maximum
number of iterations is exceeded, (3) a maximum time for iterations is reached, or
(4) the command T := ∅ has been executed a prescribed number of times (in our
implementation this number is set to 5).

4. Implementational details. The algorithm has been implemented as a C pro-
gram running under Linux. The simulations were performed on a PC with a 1.86
GHz Intel pentium M processor and 512 MB RAM. Since the calculation of pos-
sible assignments during each optimization step is potentially expensive (directly
proportional to the orientation spread of the grain), considerable effort has been
invested in optimizing the code. For reference purposes we summarize the relevant
details of implementation.

4.1. Look-up tables. To save time during optimization we use look-up tables for
calculations that can be pre-calculated.

• We pre-calculate Q(`) since for every grain the average orientation and orien-
tation spread are known a priori.
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• During optimization we need to find a possible assignment (f, o) at some
sample location i ∈ σ(d) (Subsection 2.3) that will definitely give rise to a
spot at the currently chosen detector location d. Hence the list of forward
projections that need to be calculated at location i will not change during the
optimization process and it can be pre-calculated for all the sample locations
(irrespective of σ(d)). These forward calculations may not be able to fit into
the memory of the computer, so currently they are being swapped to the hard
drive and are loaded into the memory as required.

• The computation of the H2(f) term in the objective function (Subsection 3.1)
can be reasonably speeded up by employing a look-up table for the potential
values of specific 3× 3 local configurations, as discussed by [3].

• We also keep a look-up table for calculating the distance between any two
quaternions q1 and q2 of the discretized unit quaternion space [30].

4.2. Additional speedups. The relevant values of the objective function are up-
dated by taking into account only those terms that have changed since the preceding
iteration. Further speedups are obtained by using efficient data structures.

• Instead of repeatedly finding the d in D that maximizes ∆d, we order the
elements d of D according to the size of ∆d once at the beginning, and then
we update this ordered list after each change. The ordered list, called priority
queue, is implemented as binary heap [9], which is a data structure that enables
fast updates.

• Building the complete list S(d) for the proposed triples (i, fi, oi) in the algo-
rithm is expensive, but it will have to be done at most once (then it is stored
and so no recalculation is needed) for any d (and not at all for most d).

5. Simulations. We performed simulations under idealized conditions as in [30]
(details see below) to demonstrate the performance of our new approach − as well
as to investigate the dependence of the current algorithm on experimental noise.

5.1. Test data. Three 64 × 64 location test maps of aluminum microstructures
of varying complexity were defined in [30]. In each case the orientation map was
generated by electron microscopy (EBSD), which was then discretized such that
all resulting orientations were representable as quaternions in the discretized unit
quaternion space. Furthermore, by applying crystal symmetry operations we en-
sured that every q belonging to grain ` is an element of Q(`). Based on these
discretized test maps, 3DXRD data sets were simulated as detailed in [30]. As we
shall see, the fact that the simulations are based on the special discretizations used
in our algorithm enables us to obtain perfect reconstructions (This idealization is
further discussed in Subsection 5.4.) In passing we mention that 91 projections were
generated for each case, corresponding to equally spaced rotation angles over a ro-
tation range of 90◦. For simulating the diffraction spots, we particularly included
the {111}, {200}, {220}, {222}, and {311} hkl-planes since they give rise to the
brightest spots on the detector.

The three orientation maps represent different complexities in terms of the num-
ber of grains and the orientation spread within grains (defined as the maximum
distance between the average orientation of the grain and the orientation of any
location in the grain). Visually, the test orientation maps are indistinguishable
from their reconstructions, which are shown in the top two rows of Figures 5 to 7.
However, the numerical values in the reconstructions produced by the two methods
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that are being compared are not identical, as can be seen in the bottom two rows
of Figures 5 that depict the differences between the test maps and their reconstruc-
tions.

• Case I: This map comprises 11 grains; on average the orientation spread
within grains is 3◦, but one grain has a spread of 7◦.

• Case II: This map comprises 26 grains; the average orientation spread is
about 7◦, but the spreads within grains vary from 3◦ up to 22◦.

• Case III: This map comprises 3 grains; the average orientation spread is 14◦.
The simulated detector images were subjected to varying degrees of noise. As an

approximation of Poisson noise, the noise was implemented by increasing/decreasing
every pixel’s intensity (photon count) I0 by a uniformly distributed random number
in the range [−I0µ, I0µ], subject to the constraint of non-negativity. In the following,
noise levels µ will be indicated in percents.

5.2. System parameters. The system parameters in the optimization function,
see (10) and (12), are α = β = λ1 = 1 and λ2 = 1/

√
2 as described in [30]. The

Gibbs potentials Uc in (14) were selected as for the set U1 in [3]. Furthermore, we
assume that the material is single phase and that the crystallographic space group
and the lattice parameters are also known in advance. The value of δ in (13) for
the three test cases was set to 11.5◦, 16.2◦, and 14.5◦, respectively. The value of
the sampling unit u in (9) was set to 0.02. The default length Tmax of the tabu list
was set to 15% of the number of elements in D initially.

5.3. Input maps for the initialization step. As input we need maps f and
o. We obtain these maps by using SARGM, which only needs the center-of-mass
information for each grain. SARGM yields reasonably good reconstructions in a
very short time. However, frequently it stops increasing the figure-of-merit (specified
below in Subsection 5.4) after some time (Figure 8). Our goal is to demonstrate
that further improvements can be achieved deterministically, with our algorithm
using the maps produced by SARGM as input. Thus, for the simulations we take
a two-phase approach: We obtain grain and orientation maps from center-of-mass
“seeds” by running SARGM for a short while, then these maps are used as input
(f, o) for our algorithm. For comparison reasons, we monitor simultaneously the
progress of SARGM at these later stages.

5.4. Quality of reconstruction. The quality of reconstruction is determined by a
figure-of-merit (FOM) that measures the distance between the original orientation
oorig(i) and the resulting orientation ores(i) for each location i:

(18) FOM = 1− 1
I · dmax

I∑
i=1

d
(
oorig(i), ores(i)

)
.

Here dmax is the maximal possible value of d , which for cubic lattice systems corre-
sponds to the angle ϕ12 ≈ 62.8◦, and I is the number of locations. Evidently FOM
= 1 for a perfect reconstruction.

In Figures 5 to 7 the results of the new algorithm are compared to SARGM for
the three test cases in the idealized situation of no noise. In all cases, the new
algorithm recovers the test phantom exactly, but SARGM does not.

Figure 8 compares the rate of convergence of the two algorithms for Test Case I.
As initial maps for our algorithm we used the maps produced by SARGM after 1
second. SARGM initially is faster, but eventually slows down. Even after 8 hours
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it is hovering around the FOM value of 0.99966. In contrast, the new algorithm
converges nearly linearly with time and finds an exact reconstruction (FOM =
1) in 54 seconds. Note that exact reconstructions are possible due to the fact
that the simulated projection data were generated from discretized test phantoms;
one cannot expect perfect reconstructions from data physically collected from real
(undiscretized) objects.

Figure 9 summarizes our results for 50% and 100% of noise. The noise in ex-
perimental data is estimated to be of the order of 10%, so the effect is clearly
exaggerated in these simulations. In all cases the FOM of the orientation maps
produced with the new algorithm was found to be better than the FOM for the
corresponding orientation maps produced by SARGM.

6. Discussion. Grain maps are inherently discrete objects in the sense that the
reconstructed grain labels are drawn from a discrete set. In fact, the subproblem of
reconstructing a single grain (with known orientation) amounts to solving a system
Ax = b of linear equation, where the vector of unknowns x is a 0-1 vector [3], [28].
This is a classical problem in combinatorial optimization, and it is well-known that
it is NP-hard in general (and therefore believed to be computationally intractable
[21]). In our case, A has a special structure that might be exploited, because the
equations correspond to intensity summations along hyperbolas, all in the same
plane. However, the slightly different case in which the intensities are summed up
along straight lines is known to lead to NP-hard problems [10]. A practically useful
convergence proof would have to be for an algorithm that converges in polynomial
time, and for the reasons just expressed we do not expect that such an algorithm
exists for our problem.

Heuristics seeking for approximate rather than exact solutions, however, can be
quite effective. The theoretical foundation of tabu search (that we use in our ap-
proach) is not far developed, but the method has been successfully applied to many
other NP-hard problems, such as maximum satisfiability [6], max k-cut [16], and 0-1
knapsack [15]. In common with these earlier papers that represent in-practice suc-
cessful algorithms for problems for which there is no algorithm that is guaranteed
to converge in polynomial time in all cases, our paper also lacks theoretical conver-
gence results and error analysis, but demonstrates instead the actual performance
of the proposed algorithm on examples from the intended application area.

In the following we present some possible generalizations of the algorithm:

• It is known that − given a particular sample location − the orientations that
can contribute to the intensity at a certain detector pixel at a certain rotation
angle ω are positioned on a circle in quaternion space [25]. It seems useful to
restrict the search in Q(`) to this circle. However, for the test cases used in
this paper, such a procedure was found to be computationally slower than an
unconstrained search. Nevertheless, use of this additional information may be
relevant, e.g., in the case of highly deformed samples where the size of Q(`)
will be large.

• 3DXRD experiments often involve several settings of the detector at different
sample-to-detector distances (Figure 1). Including such additional data in the
reconstruction is straightforward. We speculate that such an extension would
enhance accuracy substantially in case there are large overlaps of diffraction
spots, i.e., for large maps with grains exhibiting a large mosaic spread. Other
relevant extensions involve the use of more general sample geometries and of
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tilted detectors (in practice it can be difficult to ensure that the detector plane
is truly perpendicular to the beam).

• In the experiments reported above, the discretization of the test phantoms
exactly matches the discretization of the orientation space used in the algo-
rithm. This is clearly an idealized situation, which makes it possible to have
an exact reconstruction. Evaluation of reconstruction quality when physically
collected data from real (undiscretized) objects are used is a nontrivial task
and is left for future investigations.

7. Conclusions. We have introduced a greedy deterministic algorithm for the re-
construction of orientation maps from 3DXRD data of moderately deformed speci-
mens. We have evaluated its performance on simulated data (in the idealized case
of objects with discretized orientations) and have shown that (at least for such
data) the new algorithm outperforms a previously published one that makes use of
random sampling [30], both in terms of the quality of reconstruction and of running
time.
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[27].

REFERENCES

[1] E. Aarts and J. K. Lenstra (eds.), “Local Search in Combinatorial Optimization,” Princeton

University Press, Princeton, 2003.
[2] A. Alpers, E. Knudsen, H. F. Poulsen and G. T. Herman, Resolving ambiguities in recon-

structed grain maps using discrete tomography, Electron. Notes Discrete Math., 20 (2005),

419–437.

Inverse Problems and Imaging Volume 3, No. 1 (2009), 69–85

http://www.ams.org/mathscinet-getitem?mr=1993597&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2301110&return=pdf


Greedy Reconstruction of Polycrystals 81

a
bc

Figure 2. A Bravais lattice and {100} lattice planes.

h

s0 /λ
s/λ

xl

zl

θ

θ
θ

Figure 3. Illustration showing the relevant relations, in the labo-
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